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1
CHAPTER

Limit and Continuity

1.1 Functions

1.1 Definition: function

In the calculus of one variable, a function y = f(x) is a rule assigning a unique real
number y to a real number x in a subset D ⊂ R. Here x is called the independent variable
and y the dependent variable. The set D is called the domain of the function and the set R
of all y values is called the range of the function. The function is denoted by f , while f(x)
represents the value y at x, i.e., y = f(x).

1.2 Example: domain of function

1. The function f(x) = x2 assigns the square
x2 for any number x. The domain D is the
whole real line, i.e., D = (−∞, +∞). The
range R is the interval [0, +∞).

x

y

−1 1

1

2

y = x2

O



2 Limit and Continuity

2. The function g(x) = x2 is defined on the
interval [−1, 1]. The function g has the
same rule as the function f in (i) except
the domains are different. The function
f has the whole real line as the domain,
while g has the closed interval [−1, 1] as
its domain. x

y

−1 1

1
y = g(x)

O

3. The function h(x) = 1
x

is defined every-
where except at x = 0. So the domain
D is the whole real line with 0 deleted,
i.e., D = (−∞, 0) ∪ (0, +∞). The range R
is the whole real line with 0 deleted, i.e.,
R = (−∞, 0) ∪ (0, +∞). x

y

1

−1
1

−1

y = 1
x

O

1.3 Example: natural domain of function

The domain of a function sometimes is not given explicitly. In this case, the domain can be
found from the expression of the function or from the context. It is called the natural domain.

1. The natural domain of the polynomial
f(x) = x3 + 1 is the whole real line.

x

y

−1

1
y = x3 + 1

O

2. The natural domain of the rational func-
tion

g(x) = x

(x − 1)(x + 2)
is the whole real line with −2 and 1
deleted, i.e.,

D = (−∞, −2) ∪ (−2, 1) ∪ (1, +∞).

x

y

−2 1

y = x

(x − 1)(x + 2)

O
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3. The function h(x) =
√

x is defined for any
x ≥ 0, so the natural domain is [0, +∞).

x

y

y =
√

x

O

4. The function

k(x) =
√

(x − 1)(x + 2)

is defined for all x such that (x−1)(x+2) ≥
0. The inequality implies that x ≥ 1
or x ≤ −2. So the natural domain is
D = (−∞, −2] ∪ [1, +∞). x

y

−2 1O

5. The natural domain of p(x) = x2 − 1
x − 1

is (−∞, 1) ∪ (1, +∞). Note that x = 1 is not in
the domain of p since p(x) cannot be evaluated at x = 1. If we let q(x) = x + 1 whose
natural domain is (−∞, +∞), then p(x) = q(x) when x ̸= 1. Be alert that p and q are
not the same functions, since they have different domains.

x

y

−1 1

1

2y = x2 − 1
x − 1

O
x

y

−1 1

1

2y = x + 1

O

1.4 Example: application - natural domain

Consider a rectangle with one side with
length x and the other side with length y.
Suppose the sum of lengths of four sides is L.
Then the area

A(x) = x · y = x · L − 2x

2
. x

y

Since x is the length of one side, we have 0 ≤ x ≤ 1
2 L. So the natural domain of the

function A is the closed interval [0, 1
2 L]. When x = 0 or 1

2 L, the rectangle is degenerate, i.e.,
the area of the rectangle is zero.
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1.5 Example: transcendental functions

Typical transcendental functions are exponential functions, sine function, cosine function,
logarithmic functions. The following are examples of transcendental functions:

xπ, 2x, log2 x, xx, x1/x, sin x.

A general transcendental function is a function that does not satisfy a polynomial equation.

Exponential Functions

1.6 Definition: exponentiation and exponential function

For a positive number b (called the base) and a real number β (called the exponent), the
exponentiation bβ defines a real number.

The exponential function is f(x) = ax, where a is a positive number. It has domain R and
range (0, +∞).

1.7 Theorem: Laws of Exponents

Let a, b be positive numbers and α, β be real numbers. The following laws of exponents
hold:

1. aα · aβ = aα+β .

2. aα

aβ
= aα−β .

3. (aα)β = aα·β .

4. (a · b)α = aα · bα.

5. a−α = 1
aα

.

6. a1 = a, a0 = 1.

1.8 Example: application - exponential function

A hot object tends to cool down to the surrounding temperature. Newton expressed this
as the following relationship (known as Newton’s Law of Cooling):

T (t) = Te + (T0 − Te)a−t,

where T (t) is the temperature at a time t, T0 is the temperature at t = 0, Te is the temperature
of the environment around the cooling object, and a is some constant.



1.1 Functions 5

Trigonometric Functions

1.9 Definition: trigonometric functions

Trigonometric functions of an acute angle
are ratios of different pairs of sides of a right-
angled triangle, as shown in the figure:

sin θ = opposite
hypotenuse

, cos θ = adjacent
hypotenuse

,

tan θ = opposite
adjacent

, cot θ = adjacent
opposite

,

csc θ = hypotenuse
opposite

, sec θ = hypotenuse
adjacent

.
adjacent

oppositehypoten
use

θ

In general, for an angle θ, with θ ∈ [0, 2π),
if we let P (x, y) be the point on the terminal
side of θ and if let r be the distance |OP |, the
values of the sine and the cosine are defined
as

sin θ = y

r
, cos θ = x

r
.

P (x, y)

r
θ

x

y

O

For θ outside [0, 2π), the values of the sine and the cosine are defined in terms of the
following periodic property:

sin(θ + 2π) = sin θ, cos(θ + 2π) = cos θ.

The tangent function is defined by tan θ = sin θ

cos θ
. The cosecant, secant, and cotangent

function are the reciprocals of the sine, cosine, and tangent functions.

θ

y

sin θ

−1

1

π
2

π 3π
2

2πO

domain: (−∞, ∞)
range: [−1, 1]

θ

y

cos θ

−1

1

π
2

π 3π
2

2πO

domain: (−∞, ∞)
range: [−1, 1]

θ

y

domain: (−∞, ∞) − {± π
2 , ± 3π

2 , . . . }
range: (−∞, ∞)

− 3π
2 − π

2

π
2

3π
2

tan θ

O
θ

y

domain: (−∞, ∞) − {±π, ±3π, . . . }
range: (−∞, ∞)

−π π

cot θ

O
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θ

y

domain: (−∞, ∞) − {±π, ±3π, . . . }
range: (−∞, −1] ∪ [1, ∞)

−π π

csc θ

sin θ

O
θ

y

domain: (−∞, ∞) − {± π
2 , ± 3π

2 , . . . }
range: (−∞, −1] ∪ [1, ∞)

− 3π
2 − π

2

π
2

3π
2

sec θ

cos θ

O

1.10 Theorem: exact values on special angles

For some special angles between 0 and π
2 , we have the following table of exact values:

degree radian sine cosine
0◦ 0 0 1

30◦ π
6

1
2

√
3

2

45◦ π
4

√
2

2

√
2

2

60◦ π
3

√
3

2
1
2

90◦ π
2 1 0

For other trigonometric functions, the exact values at these special angles can be obtained
by using

tan θ = sin θ

cos θ
, cot θ = cos θ

sin θ
, sec θ = 1

cos θ
, csc θ = 1

sin θ
.

For angles in other ranges, one may use the following equalities:

sin(x + π) = − sin x, cos(x + π) = − cos x, tan(x + π) = tan x,
csc(x + π) = − csc x, cos(x + π) = − sec x, cot(x + π) = cot x.

1.11 Theorem: Two Key Identities of Trigonometric Functions

• The basic relationship between the sine
and the cosine is given by the Pythagorean
identity:

sin2 θ + cos2 θ = 1.
x

y
r

θ
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• Euler’s formula, the fundamental rela-
tionship between the trigonometric functions
and the complex exponential function: for
any real number θ:

eiθ = cos θ + i sin θ,

where i is the imaginary unit satisfying i2 =
−1.

Re

Im

eiθ = cos θ + i sin θ

θ

1

i

cos θ

sin θ

O

Remark: complex functions

• Any complex number can be expressed in the form a + bi, where a and b are real
numbers. The number a is called the real part of a + bi, and b is its imaginary part.

• The complex exponential function eiθ can be treated similarly as other real expo-
nential functions.

• Many trigonometric identities can be proved by using the Pythagorean identity
sin2 θ + cos2 θ = 1 and Euler’s formula eiθ = cos θ + i sin θ. For instance, from the
following:

cos(α + β) + i sin(α + β)
= ei(α+β) = eiα · eiβ

= (cos α + i sin α) · (cos β + i sin β)
= (cos α cos β − sin α sin β) + i(sin α cos β + cos α sin β),

by identifying the real and imaginary parts on both sides, we have the angle sum
identities:

cos(α + β) = cos α cos β − sin α sin β,

sin(α + β) = sin α cos β + cos α sin β.

• The proof of Euler’s formula requires advanced knowledge of mathematics, so is
omitted here.

1.12 Example: piecewise function

There are various ways to express functions, numerically, graphically, or using mathemat-
ical expressions.

Some functions may have different mathematical expressions over different parts of its
domain. Here are some examples.
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1.
f(x) =

{
x, if x ≤ 0;
sin x, if x > 0.

x

y

y = f(x)

−1 1
2 π π

−1

1

O

2.
g(x) =

{
cos x, if x ̸= 0;
0, if x = 0.

x

y

1

−1

y = g(x)

−π − 1
2 π 1

2 π πO

3.

h(x) =

 cos x, if x ≤ −1;
sin x, if −1 < x ≤ 1;
2, if x > 1.

x

y

y = h(x)

1−π − 1
2 π− 3

2 π−2π

1

2

−1
O

1.13 MATLAB: symbolic function

MATLAB supports creating the symbolic function with the help of the command syms.
There are two ways to creat a symbolic function in MATLAB. The first way creates the
symbolic function by first creating the symbolic variable. The following example shows how
to create the function y = f(x) = x2 through creating the symbolic variable x.

>> syms x;
>> y = x^2;

where syms x creates the symbolic variable x.
The second way is to create the symbolic function and the symbolic variable simultaneously,

which is shown in the following:

>> syms f(x);
>> f(x) = x^2;

where syms f(x) creates the symbolic function f(x) as well as the symbolic variable x.
Moreover, we can plot the figure of y = f(x) = x2 using the plot command in MATLAB.

The MATLAB code below shows how to plot the function y = f(x) = x2 in the domain
D = [−1, 1].
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>> x = -1:0.01:1;
>> figure
>> plot(x,x.^2)
>> xlabel ('x')
>> ylabel ('y = x^2 ')

With the above MATLAB code, we can generate the figure of y = f(x) = x2 in the domain
D = [−1, 1], shown in the following:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
 =

 x
2

1.14 Engineering Example: signal

The signal is a basic concept in signal processing, communication systems and electrical
engineering. Signals in nature are mathematical functions. For example, the independent
variable can be the time; while the dependent variable can be electric current, flow rate,
sound, motion of an object, and energy, etc.

1.2 Limit

1.15 Example: behaviors near a point

Consider two types of behaviors of functions near a point.

1. Consider f(x) = x2. When x approaches
0, f(x) approaches 0.

x

y

−1 1

1

y = x2

O

2. Consider g(x) = 1
x

and h(x) = sin 1
x

. When x approaches 0, both g(x) and h(x) do
not approach any finite number.
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x

y

1

−1
1

−1

y = 1
x

O
x

y

y = sin 1
x

1−1

1

−1

O

1.16 Definition: limit of function

We say a function f with domain D has a finite limit L at a if f(x) approaches L when
x ∈ D approaches a. In this case, we write lim

x→a
f(x) = L.

1.17 Example: tangent line

Consider the function f(x) = 1
2 x2 and the

tangent line of the graph of y = f(x) at x = 1.
We first consider the secant line of the graph
near x = 1.

The secant line passes through two points
P0 = (1, 1

2 ) and P = (1 + h, 1
2 (1 + h)2). The

slope of the secant line is

S(h) =
1
2 (1 + h)2 − 1

2
(1 + h) − 1

=
h + 1

2 h2

h
= 1 + 1

2 h.
x

y

y = 1
2 x2

tangent line

secant line

P0

P

1 1 + h

1
2

1
2 (1 + h)2

O

As the point P approaches P0, i.e., as h approaches 0, the secant line approaches the
tangent line. In the language of limits, the tangent line is the limit of the secant line. Hence
the limit of the slope of the secant line is the slope S of the tangent line, i.e.,

S = lim
h→0

S(h) = lim
h→0

(1 + 1
2 h) = 1.

1.18 Example: eliminating the zero factor

Consider the function f(x) = x − 1
x2 − 1

. The
function is not defined at 1. In fact, if we sub-
stitute x by 1 in x − 1

x2 − 1
, we will get 0

0
, which

is meaningless.
However, the limit of the function,

lim
x→1

x − 1
x2 − 1

, only involves values of the func-
tion near x = 1, but not the value at x = 1.

x

y

−1 1

1

−1

y = x − 1
x2 − 1

O
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Indeed, the value of the limit is 1
2 , that can be obtained by eliminating the same “zero”

factor x − 1 in the numerator and the denominator:

lim
x→1

x − 1
x2 − 1

= lim
x→1

x − 1
(x + 1)(x − 1)

factoring

= lim
x→1

1
x + 1

cancelling 0-factor

= 1
2 ,

This example shows that the limit of of a function at x = 1 is irrelevant to the actual value
of the function at x = 1.

Remark:

Note that in the definition of limit, we do not require a in the domain D. In
particular, the actual value of f(a) even when a ∈ D plays no role in the definition of
limit as shown in the current example.

1.19 Example: search for rigorous definition of limits (optional)

The intuitive definition of the limit of a function f(x) at x = a is that f(x) approaches a
number L when x approaches a. To phrase in another way, lim

x→a
f(x) = L if, when x is close

to a, f(x) is close to L.
Consider two functions

f(x) = x2, g(x) =
√

x.

We know that
lim
x→0

f(x) = 0 = lim
x→0

g(x).

When x is close to 0, say |x| < 0.01, f(x) = x2 is close to L = 0, i.e. |f(x)−0| = |x2| < 0.0001.
For the function g(x) =

√
x, if we choose |x| < 0.01, then we can only obtain |g(x)| < 0.1.

Even though 0.1 is a small number, the number 0.0001 is much smaller than 0.1. If we require
|g(x)| < 0.0001 = 10−4, we need to choose |x| < 10−8.

Now we can rephrase lim
x→a

f(x) = L as follows: we can make f(x) arbitrarily close to L by
choose x sufficiently close to a.

In the above example, if we make f(x) = x2 close to 0 within 0.01, we choose x close to 0
within 0.1; if we make g(x) =

√
x close to 0 within 0.01, we choose x close to 0 within 10−8.

The statement “we can make f(x) arbitrarily close to L” can be phrased as “Given a
positive ϵ, which might be very small, we require |f(x) − L| < ϵ”; the statement “choosing
x sufficiently close to a" can be rephrased as “there exists a positive number δ such that
|x − a| < δ."

Now we can write the rigorous definition of limit lim
x→a

f(x) = L as follows:
Given an ϵ > 0, there exists δ > 0 such that, whenever |x − a| < δ, we have |f(x) − L| < ϵ.
For the function f(x) = x2, given ϵ = 0.01, there exists δ = 0.1 such that, whenever

|x| < δ = 0.1, we have |f(x) − 0| = |x2| < ϵ = 0.01; given ϵ = 0.0001, there exists δ = 0.01
such that, whenever |x| < δ = 0.01, we have |f(x) − 0| = |x2| < ϵ = 0.0001.
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1.20 Definition: rigorous definition of limit (optional)

Th limit of f(x) equals L as x approaches a, denoted by

lim
x→a

f(x) = L,

if, given an ϵ > 0, there exists δ > 0 such that, whenever |x − a| < δ, we have |f(x) − L| < ϵ.

1.21 MATLAB: limit

MATLAB can calculate the limit of a function with command limit. The following ex-
ample shows how to calculate the limit of f(x) = x2 when x approaches 2, i.e., lim

x→2
x2, in

MATLAB.

>> syms x;
>> limit(x^2,x ,2)

ans =

4

MATLAB returns 4 as the result of the limit.
The following example shows the calculation of lim

x→1

x − 1
x2 − 1

in MATLAB.

>> syms x;
>> f = (x - 1)/(x^2 - 1);
>> limit(f,x ,1)

ans =

1/2

MATLAB returns 1
2 as the result of the limit.

1.22 Engineering Example: unit-impulse signal

Consider the function

pϵ(t) =

{
1
2ϵ , if −ϵ ≤ t ≤ ϵ;
0, otherwise.

The graph of pϵ(t) is shown.
t

pϵ(t)

1
2ϵ

−ϵ ϵO
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Clearly, as ϵ gets smaller, the graph of pϵ(t)
gets narrower and taller. In particular, as
ϵ → 0, the function pϵ(t) approaches the
Dirac delta function δ(t), and can be mathe-
matically written as

δ(t) = lim
ϵ→0

pϵ(t). t

δ(t)

O

Note that the Dirac delta function equals to 0 everywhere except for 0, and the “area”
under the function equals 1. The Dirac delta function δ(t) is depicted as shown.

In engineering fields, especially signal processing, the Dirac delta function is also known
as the unit-impulse signal. The output of a system with the unit-impulse signal input is
called the unit-impulse response. The unit-impulse response can completely describe a linear
time-invariant (LTI) system, such as communication channels.

Limit Rules

1.23 Theorem: arithmetic rules of limits

Suppose lim
x→a

f(x) and lim
x→a

g(x) exist. Then the following rules hold.

1. Sum Rule:
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

2. Difference Rule:

lim
x→a

[f(x) − g(x)] = lim
x→a

f(x) − lim
x→a

g(x).

3. Product Rule:
lim
x→a

[f(x) g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

In particular, lim
x→a

[cf(x)] = c lim
x→a

f(x), where c is any constant.

4. Quotient Rule: If lim
x→a

g(x) ̸= 0, then

lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)
.

1.24 Example: arithmetic rules

Using the product rule of limits, we get lim
x→a

x2 = ( lim
x→a

x)2 = a2. By induction, it is easy
to have lim

x→a
xn = an for any positive integer n.
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Then using the sum rule of limits, we get

lim
x→a

(cnxn + cn−1xn−1 + · · · + c1x + c0)

= cnan + cn−1an−1 + · · · + c1a + c0.

Thus for any polynomial f(x), we have lim
x→a

f(x) = f(a).

If f(x) and g(x) are polynomials with g(a) ̸= 0, then for the rational function r(x) = f(x)
g(x)

,

by using the quotient rule, we have

lim
x→a

r(x) = lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)
= f(a)

g(a)
= r(a).

1.25 Pitfall: arithmetic rules - conditions not met

For every arithmetic rule, there are associated conditions under which the rule holds. If
these conditions are not all satisfied, then the corresponding rule may fail.

For example, if we hope to calculate lim
x→1

x2 − 1
x4 − 1

, we cannot directly apply the quotient
rule since lim

x→1
(x4 − 1) = 0.

The correct way to calculate the limit is
first to simplify the expression by eliminating
the “zero” factor:

x2 − 1
x4 − 1

= x2 − 1
(x2 − 1)(x2 + 1)

= 1
x2 + 1

.

x

y

y = x2 − 1
x4 − 1

−1 1

1

1
2

O

Then we can apply the quotient rule to get

lim
x→1

x2 − 1
x4 − 1

= lim
x→1

1
x2 + 1

= 1
2 .

1.26 Theorem: Squeeze Theorem

Suppose

1. f(x) ≤ g(x) ≤ h(x) near a (not necessarily at a).

2. lim
x→a

f(x) = lim
x→a

h(x) = L.

Then lim
x→a

g(x) = L.
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1.27 Example: Squeeze Theorem

Calculate lim
x→0

x sin 1
x

.

We cannot use the product rule since
lim
x→0

sin 1
x

does not exist. However, we can
apply the Squeeze Theorem. In fact, since

0 ≤
∣∣∣∣x sin 1

x

∣∣∣∣ ≤ |x|, we have

−|x| ≤ x sin 1
x

≤ |x|.

x

y

y = x

y = −x

y = x sin 1
x

1−1

1

O

Because lim
x→0

|x| = lim
x→0

(−|x|) = 0, by the Squeeze Theorem, we get lim
x→0

x sin 1
x

= 0.

1.28 Example: Squeeze Theorem and arithmetic rules

Calculate lim
x→1

(x − 1)2
(

1
x2 − 1

+ sin 1
x − 1

)
.

Since the values of 1
x2 − 1

can be made arbitrarily large when x approaches 1 and sin 1
x − 1

is bounded by 1,
(

1
x2 − 1

+ sin 1
x − 1

)
does not have limit (or approaches ∞) and is not

bounded either. Thus we can apply neither the product rule nor the Squeeze Theorem.
However, we can do the following changes before we take the limit:

(x − 1)2
(

1
x2 − 1

+ sin 1
x − 1

)
= (x − 1)2 · 1

(x − 1)(x + 1)
+ (x − 1)2 sin 1

x − 1
expanding

= x − 1
x + 1

+ (x − 1)2 sin 1
x − 1

. cancelling 0-factor

For the first term above, we have

lim
x→1

x − 1
x + 1

= 0. applying the quotient rule

For the second term, since

−(x − 1)2 ≤ (x − 1)2 sin 1
x − 1

≤ (x − 1)2

and both (x − 1)2 and −(x − 1)2 approaches zero as x → 1, we apply the Squeeze Theorem
and get

lim
x→1

(x − 1)2 sin 1
x − 1

= 0.



16 Limit and Continuity

Thus,

lim
x→1

(x − 1)2
(

1
x2 − 1

+ sin 1
x − 1

)
= lim

x→1

x − 1
x + 1

+ lim
x→1

(x − 1)2 sin 1
x − 1

= 0 + 0 = 0.

x

y

1

1

O

One-Sided Limits

1.29 Definition: one-sided limits

We write
lim

x→a−
f(x) = L

and say the left-hand limit of f(x) as x approaches a [or the limit of f(x) as x ap-
proaches a from the left] is equal to L, if f(x) is arbitrarily close to L for all x sufficiently
close to a with x < a.

Similarly, we write
lim

x→a+
f(x) = L

and say the right-hand limit of f(x) as x approaches a [or the limit of f(x) as x ap-
proaches a from the right] is equal to L, if f(x) is arbitrarily close to L for all x sufficiently
close to a with x > a.

1.30 Theorem: relationship - the limit and the one-sided limits

lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = lim
x→a+

f(x) = L.

1.31 Example: one-sided limits

1. When we calculate the limit lim
x→0

√
x, since

x must be non-negative, we in fact are cal-
culating the right-hand limit lim

x→0+

√
x.

x

y

y =
√

x

1

1

O
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2. Consider the function

f(x) =
{

x + 1, if x ≤ 0;
sin x, if x > 0.

• When x < 0, f(x) = x + 1. So,

lim
x→0−

f(x) = lim
x→0−

(x + 1) = 1.

• When x > 0, f(x) = sin x. So,

lim
x→0+

f(x) = lim
x→0+

sin x = 0.

x

y

y = f(x)

−1 1
2 π π

−1

1

O

Because lim
x→0−

f(x) ̸= lim
x→0+

f(x), we conclude that the limit lim
x→0

f(x) does not exist.

3. Consider the function

g(x) =
{

x, if x ≤ 0;
sin x, if x > 0.

• When x < 0, g(x) = x. So,

lim
x→0−

g(x) = lim
x→0−

x = 0.

• When x > 0, g(x) = sin x. So,

lim
x→0+

g(x) = lim
x→0+

sin x = 0.

x

y

y = g(x)

−1 1
2 π π

−1

1

O

Because lim
x→0−

g(x) = 0 = lim
x→0+

g(x), we conclude that lim
x→0

g(x) = 0.

1.32 MATLAB: one-sided limits

The MATLAB command limit can also calculate the one-sided limit of a function. The
following example shows how to calculate the left-hand limit of f(x) = x2 as x approaches
2, i.e., lim

x→2−
x2, in MATLAB.

>> syms x;
>> limit (x^2,x,2,'left ')

ans =

4

MATLAB returns 4 as the result of the left-hand limit.
The right-hand limit of f(x) = x2 as x approaches 2, i.e., lim

x→2+
x2, can also be calculated

using similar MATLAB code, shown as follows:

>> syms x;
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>> limit(x^2,x,2,'right ')

ans =

4

MATLAB returns 4 as the result of the right-hand limit.

1.33 Example: lim
x→a

sin x and lim
x→a

cos x

Firstly, let us calculate lim
x→0

sin x.
From the diagram, we see that the arc-

length from the point (1, 0) to the point
(cos x, sin x) is equal to x which is bigger than
the blue side of the triangle with length equal
to sin x. Thus when 0 < x < π/2, we have
0 < sin x < x.

x

y

x
1

1

(cos x, sin x)

O

By the Squeeze Theorem, we get lim
x→0+

sin x = 0. Because sin x is an odd function, i.e.,
sin(−x) = − sin x, we further have lim

x→0−
sin x = lim

−x→0+
[− sin(−x)] = 0. Thus we get

lim
x→0

sin x = 0.
Furthermore, since

| sin x − sin a| =
∣∣∣∣2 sin x − a

2
cos x + a

2

∣∣∣∣ ≤ 2
∣∣∣∣sin x − a

2

∣∣∣∣ ,
by the Squeeze Theorem, we get lim

x→a
sin x = sin a.

Since cos x = sin
(

π
2 − x

)
= − sin

(
x − π

2
)
, we have

lim
x→a

cos x = lim
x→a

[
− sin

(
x − π

2
)]

= − lim
x→a− π

2

sin x = − sin
(
a − π

2
)

= cos a.

1.34 Example: lim
θ→0

sin θ

θ
= 1

We cannot apply the quotient rule to calculate the limit lim
θ→0

sin θ

θ
, since the limit of the

denominator is zero.
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We use geometry and the Squeeze Theo-
rem to calculate the limit. In fact, from the
diagram shown, for 0 < θ < π

2 , we have

Area △OSP < Area sector OSP

< Area △OST ,

or
1
2 · sin θ· < π12 (θ · 1

2π

)
< 1

2 · 1 · tan θ.
O

1

x

y

cos θ

sin θ

P

S

tan θ

T

1

Q

θ

These inequalities give
cos θ <

sin θ

θ
< 1.

Since lim
θ→0+

cos θ = cos 0 = 1, by the Squeeze Theorem, we obtain lim
θ→0+

sin θ

θ
= 1. Because

sin θ is an odd function, we further have

lim
θ→0−

sin θ

θ
= lim

θ→0−

sin(−θ)
−θ

= lim
θ→0+

sin θ

θ
= 1.

Hence, lim
θ→0

sin θ

θ
= 1.

Limits at Infinities

1.35 Example: limits at infinities

For the function y = 1
x

, we see that when
x takes arbitrarily large values, f(x) will ap-
proach 0. The line y = 0 is called the
asymptote of the function. This is one of the
key components in curve sketching.

x

y

y = 1
x

O

1.36 Definition: limits at infinities

• If the values of f(x) can be made arbitrarily close to L by taking x sufficiently large
positive values, then we write

lim
x→+∞

f(x) = L.

• If the values of f(x) can be made arbitrarily close to L by taking x sufficiently large
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negative values, then we write
lim

x→−∞
f(x) = L.

• If the values of f(x) can be made arbitrarily close to L by taking |x| sufficiently large
values, then we write

lim
x→∞

f(x) = L.

1.37 Definition: horizontal asymptote

The line y = b is called a horizontal asymptote of the curve y = f(x) if either

lim
x→+∞

f(x) = b

or
lim

x→−∞
f(x) = b.

1.38 Example: horizontal asymptote

The arithmetic rules and the Squeeze Theorem still hold for limits at infinities.

For the rational function x2 + 1
2x2 + x + 3

, we can apply some arithmetic rules of limits to
calculate the limit at infinity:

lim
x→∞

x2 + 1
2x2 + x + 3

comparing the leading powers

= lim
x→∞

1 + 1
x2

2 + 1
x

+ 3
x2

dividing each term by x2

=
lim

x→∞

(
1 + 1

x2

)
lim

x→∞

(
2 + 1

x
+ 3

x2

) = 1
2 . using the arithmetic rules of limits

Thus, this function has a horizontal asymptote x = 1
2 .

x

y

y = 1
2

y = x2 + 1
2x2 + x + 3

O
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1.39 Example: limit at infinity - difference of two radicals

Rationalizing radicals is a usual approach to deal with limits of this type before applying
arithmetic rules:

lim
x→+∞

(√
x + 1 −

√
x
)

= lim
x→+∞

(√
x + 1 −

√
x
) (√

x + 1 +
√

x
)

√
x + 1 +

√
x

multiplying
√

x + 1 +
√

x√
x + 1 +

√
x

= lim
x→+∞

(√
x + 1

)2 − (
√

x)2

√
x + 1 +

√
x

simplifying

= lim
x→+∞

1√
x + 1 +

√
x

simplifying

= 0.

This shows that y = 0 is a horizontal
asymptote of the function.

x

y

y =
√

x + 1 −
√

x

1

1

O

1.40 MATLAB: limits at infinities

With the help of positive infinity inf, MATLAB can calculate the limit of a function at
infinities. The MATLAB code in the following shows how to calculate lim

x→+∞

(√
x + 1 −

√
x
)
.

>> syms x;
>> f = sqrt(x+1) -sqrt(x);
>> limit (f,x,inf)

ans =

0

From the MATLAB code above, we see that

lim
x→+∞

(√
x + 1 −

√
x
)

= 0.

1.41 Example: limit at infinity - polynomials

Let f(x) = xn + an−1xn−1 + · · · + a1x + a0 be a polynomial. We can rewrite

f(x) = xn
(

1 + an−1

x
+ · · · + a0

xn

)
.
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When x approaches ±∞, the term 1 + an−1

x
+ · · · + a0

xn
approaches 1, and the term xn

approaches ∞. In fact, if n is an even integer, xn approaches +∞; if n is an odd integer, xn

approaches ±∞. Thus we get the following useful result:
• When n is an even positive integer, a degree-n polynomial f(x) = xn + · · · + a1x + a0

approaches positive infinity when x approaches infinites.
• When n is an odd positive integer, f(x) = xn +an−1xn−1 +· · ·+a1x+a0 approaches posi-

tive infinity (respectively, negative infinity) when x approaches positive infinity (respectively,
negative infinity).

1.42 Example: limits at infinity - slant asymptote

Let us study the behaviors of the function f(x) = x3 − 2x2 + 1
2x2 + 1

near the infinities.
We factor out the highest power in numerator and denominator and have

x3 − 2x2 + 1
2x2 + 1

=
x3
(

1 − 2
x

+ 1
x3

)
x2
(

2 + 1
x2

) = x ·

(
1 − 2

x
+ 1

x3

)
(

2 + 1
x2

) .

By applying the arithmetic rules, we have

lim
x→+∞

(
1 − 2

x
+ 1

x3

)
lim

x→+∞

(
2 + 1

x2

) = 1
2 ,

so that
lim

x→+∞

f(x)
x

= 1
2 .

Furthermore, we have

lim
x→+∞

[
f(x) − 1

2 x
]

= lim
x→+∞

(
x3 − 2x2 + 1

2x2 + 1
− 1

2 x

)
= lim

x→+∞

(
−4x2 + x − 2

4x2 + 2

)
= −1.

x

y

y = x3 − 2x2 + 1
2x2 + 1

y =
1
2
x − 1

O

We see that as x → +∞, the difference between f(x) and 1
2 x − 1 approaches zero. This

means that, near the positive infinity, the function y = f(x) behaves like the function y =
1
2 x − 1. Similarly, the function also behaves like the function y = 1

2 x − 1 near the negative
infinity. The line y = 1

2 x − 1 is called a slant asymptote of the function f(x).
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Remark:

An alternating approach of finding a slant asymptote for a rational function is to
use polynomial long division. For the above example, the long division gives

x3 − 2x2 + 1 =
( 1

2 x − 1
)

(2x2 + 1) + 1
2 (−x + 4)

so that
x3 − 2x2 + 1

2x2 + 1
= 1

2 x − 1 + −x + 4
4x2 + 2

,

The quotient 1
2 x − 1 gives the slant asymptote of the function f .

1.43 Engineering Example: initial value theorem

In electronic engineering and control system, the time-domain behaviour of a system can be
characterized by the step response, which is the output of a system in the time domain when
the input is a unit-step function. The unit-step input means the input changes from 0 to 1
in a very short time. In other words, there is a sudden input. Note that a sudden input may
cause a fast and possibly large system performance deviation from its long-term steady state,
which may have severe effects on a certain system component or even the overall system.
Moreover, if a sudden input occurs, it may take time for the system output to settle down to
some vicinity of its final state before the system can act properly. Hence, it is important to
understand how the system responds to a sudden input, i.e., understand the step response.

The initial slope of the step response is one of the important quantities to describe the
step response. One way to calculate the initial slope of the step response is to use the Initial
Value Theorem. Let the initial slope of the step response of a system be denoted by
lim
t→0

f(t), the Initial Value Theorem says that

lim
t→0

f(t) = lim
s→+∞

sF (s),

where F (s) is the (one-sided) Laplace transform of the step response f(t) and s is a complex
number frequency parameter. Note that the Laplace transform provides an alternative way
of analyzing the system in the frequency domain.

Now, we use the Initial Value Theorem to
calculate the initial slope of the step response
for a resistor-capacitor (RC) circuit.

Given that the step response of the RC cir-
cuit is vC(t) =

(
1 − e− t

RC

)
u(t), where R is

the resistance of the resistor, C is the capaci-
tance of the capacitor and u(t) is the unit-step
function, then the Laplace transform of this
step response is VC(s) = 1

s (RC · s + 1)
.

C
+

−
vC(t)

R

−
+vI(t)
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According to the property of Laplace transform, the Laplace transform of the slope of the
step response can be calculated as

F (s) = sVC(s) = 1
RC · s + 1

.

Then, we use the Initial Value Theorem to calculate the initial slope of the step response and
have

lim
t→0

f(t) = lim
s→+∞

sF (s) = lim
s→+∞

s

RC · s + 1
= 1

RC
.

This shows that the initial slope of the step response is 1
RC

.

1.44 Engineering Example: final value theorem

A system or process is in a steady state when the behaviour of this system or process
is unchanging in time. The steady state is an important concept in many fields, e.g., eco-
nomics, electronics, chemical engineering, etc. For example, many design specifications of
the electronic systems are given in terms of the steady-state characteristics. Given that the
step response of a system is f(t), then the steady state of a system is defined as lim

t→+∞
f(t).

According to the definition, the steady state can be obtained by calculating the limit of the
step response when time t approaches infinity. Alternatively, we can use the Final Value
Theorem to calculate the steady state. The Final Value Theorem is provided in the follow-
ing.

lim
t→+∞

f(t) = lim
s→0

sF (s),

where F (s) is the (one-sided) Laplace transform of f(t) and s is a complex number frequency
parameter. Note that the Laplace transform provides an alternative way of analyzing the
system in the frequency domain.

Now, we use the Final Value Theorem
to calculate the steady state of a resistor-
capacitor (RC) circuit.

Given that the Laplace transform of the
step response is VC(s) = 1

s (RC · s + 1)
,

where R is the resistance of the resistor and
C is the capacitance of the capacitor.

C
+

−
vC(t)

R

−
+vI(t)

By applying the Final Value Theorem, we have

lim
t→+∞

vC(t) = lim
s→0

sVC(s) = lim
s→0

s

s (RC · s + 1)
= 1.

This shows that the steady state of the RC circuit is 1.
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Infinite Limits

1.45 Example: infinite limits

We know both functions f(x) = sin 1
x

and g(x) = 1
x

do not have limit at x = 0. However,
we do know the behavior of g(x) near 0. In fact, when x approaches 0 from the right (x > 0),
the values of g(x) can be made arbitrarily large positive, and when x approaches 0 from the
left (x < 0), the values of g(x) can be made arbitrarily large negative. The infinite limits are
related to vertical asymptotes of the graph of a function.

x

y

y = sin 1
x

1−1

1

−1

O
x

y

1

−1
1

−1

y = 1
x

O

1.46 Definition: infinite limits

• If the values of f(x) can be made arbitrarily large by taking x sufficiently close to a (but
not equal to a), then we write

lim
x→a

f(x) = ∞.

• If the values of f(x) can be made arbitrarily large positive by taking x sufficiently close
to a (but not equal to a), then we write

lim
x→a

f(x) = +∞.

• If the values of f(x) can be made arbitrarily large negative by taking x sufficiently close
to a (but not equal to a), then we write

lim
x→a

f(x) = −∞.

Similarly, if we take x sufficiently close to from the left-hand side or the right-hand side of
a, then we can define

lim
x→a−

f(x) = ∞, lim
x→a−

f(x) = +∞, lim
x→a−

f(x) = −∞,

and
lim

x→a+
f(x) = ∞, lim

x→a+
f(x) = +∞, lim

x→a+
f(x) = −∞.



26 Limit and Continuity

1.47 Definition: vertical asymptote

The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the
following is true:

lim
x→a

f(x) = +∞, lim
x→a−

f(x) = +∞, lim
x→a+

f(x) = +∞,

lim
x→a

f(x) = −∞, lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.

1.48 Example: vertical asymptotes

Consider the function f(x) = x

(x − 1)(x + 2)
.

When x approaches 1 from the right, x − 1 approaches 0 and the values of f(x) can be
made arbitrarily large. To determine whether it is the positive infinity or negative infinity,
let us check the sign of f(x). In fact, when x approaches 1 from the right, (x − 1) > 0,
x + 2 approaches 3 and hence, for x near 1 and x > 1, f(x) has the positive sign. So
lim

x→1+
f(x) = +∞. Hence x = 1 is a vertical asymptote for the graph of the function. One

can calculate similarly to get

lim
x→1−

f(x) = −∞,

lim
x→−2+

f(x) = +∞,

lim
x→−2−

f(x) = −∞.

It also has a horizontal asymptote line y =
0 since when x → ∞, if we ignore −1 in
(x − 1) and 2 in (x + 2), we get lim

x→∞
f(x) =

lim
x→∞

x

x2 = 0.

x

y

x = 1x = −2

−2 1

y = x

(x − 1)(x + 2)

O

1.49 Pitfall: zero of the denominator ⇍⇒ vertical asymptote

Consider the function f(x) = x2 − 1
(x + 2)(x − 1)

.

The denominator equals (x + 2)(x − 1) which have two roots x = −2 and x = 1. It seems
f(x) should have vertical asymptotes x = −2 and x = 1. However,

lim
x→1

x2 − 1
(x + 2)(x − 1)

= lim
x→1

(x − 1)(x + 1)
(x + 2)(x − 1)

factoring the numerator

= lim
x→1

x + 1
x + 2

cancelling 0-factor

= 2
3 .
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Thus x = 1 is not a vertical asymptote of
the function. This example shows that a zero
of the denominator is not necessarily a verti-
cal asymptote.

x

y

−2 1

1

y = x2 − 1
(x + 2)(x − 1)

O

1.3 Continuous Functions

1.50 Example: continuous function - motivation

Consider the following functions: f(x) = |x|
x

, g(x) = x

x
, and h(x) = x. The graphs are

given below.

x

y

y = f(x)

1

1

−1
O

x

y

y = g(x)

1

1

O
x

y

y = h(x)

O

We can see that the graph of h(x) moves continuously as x moves along the x-axis while
the graphs of both f(x) and g(x) have a break at x = 0. In order to distinguish these two
different behaviors of functions, we introduce the concept of continuous function. Let us
check the difference between these three functions in order to get a correct definition. For
the function f(x), the limit lim

x→0
f(x) does not exist. For the function g(x), the limit lim

x→0
g(x)

exists but g(x) is not defined at x = 0. For the function h(x), the limit lim
x→0

h(x) exists and
equals the function value at x = 0, i.e., lim

x→0
h(x) = h(0).

1.51 Definition: continuous function

• A function f is continuous at x = a if

1. lim
x→a

f(x) exists;

2. f(x) is defined at x = a;
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3. lim
x→a

f(x) = f(a).

• A function f is continuous in an interval (α, β) if it is continuous at every number in
the interval.

• A function f is continuous on an closed interval [α, β] if it is continuous at every
number in the interval (α, β), and also continuous at the endpoints. The latter means that

lim
x→α+

f(x) = f(α) and lim
x→β−

f(x) = f(β).

• If f is not continuous at a point a in its domain, we say that f is discontinuous at a.

1.52 Theorem: continuity with arithmetic operations

If f and g are continuous at a and c is a constant, then the following functions are also
continuous at a:

1. f + g;

2. f − g;

3. cf ;

4. f · g;

5. f

g
, provided that g(a) ̸= 0.

1.53 Example: discontinuous functions

1. Consider the function

f(x) =


|x|
x

, if x ̸= 0;

0, if x = 0. x

y

y = f(x)

1

1

−1

O

It is easy to calculate the one-sided limits:

lim
x→0−

f(x) = lim
x→0−

|x|
x

= lim
x→0−

−x

x
= −1,

lim
x→0+

f(x) = lim
x→0+

|x|
x

= lim
x→0+

x

x
= 1.

Since the left and right-hand limits are not equal, the limit lim
x→0

f(x) does not exists.
Hence, the function f is not continuous at x = 0.

2. Consider the function

g(x) =


x

x
, if x ̸= 0;

0, if x = 0. x

y

y = g(x)

1

1

O
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It is clear that g(x) = 1 if x ̸= 0, so that

lim
x→0−

g(x) = 1, lim
x→0+

g(x) = 1.

Since the left and right-hand limits are both equal to 1, the limit lim
x→0

g(x) exists and
equals to 1. However, since lim

x→0
g(x) = 1 ̸= g(0) = 0, the function is not continuous at

x = 0.

1.54 Example: continuous elementary functions

Besides the facts on continuity under arithmetic operations, we can prove the following
elementary functions are continuous in their domains.

1. Polynomials are continuous in R.

2. The functions sin x and cos x are continuous in R.

3. If n is an odd positive integer, the function f(x) = n
√

x is continuous for all x. If n is
an even positive integer, the function f(x) = n

√
x is continuous for all x ≥ 0.

Composite Functions

1.55 Definition: composite function

Let f and g be two functions such that the range of g is contained in the domain of f , we
can get a new function, called the composite function h, defined by h(x) = f(g(x)).

1.56 Example: composite functions

Let f(x) =
√

x and g(x) = x2 + 1. Then
the composite function f(g(x)) =

√
x2 + 1.

Note that the composition of two functions
depends on the order of the composition. For
example, g(f(x)) = (

√
x)2 + 1 = x + 1. Thus

f(g(x)) ̸= g(f(x)).
In fact, f(g(x)) and g(f(x)) have not only

different expressions, but also different do-
mains: the function f(g(x)) is defined for all
real number x; the function g(f(x)) is defined
for x ≥ 0.

x

y

y = f(x)

y = g(x)

y = f(g(x))

y = g(f(x))

1

1

O

1.57 MATLAB: composite function

MATLAB can show the composite function with command compose. The following exam-
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ple shows the composite function h(x) = f (g(x)), where f(x) = 1
x

and g(x) = 1 + x2.

>> syms x;
>> f = 1/x;
>> g = 1+x^2;
>> h = compose (f,g)

h =

1/(x^2 + 1)

1.58 Theorem: continuity of composition of continuous functions

Given two continuous functions f and g such that the composition f(g(x)) exists. Then
the composite function f(g(x)) is continuous.

1.59 Example: continuous composite functions

Let f(x) = sin x and g(x) = x2 + 1. Then the composite functions f(g(x)) = sin(x2 + 1)
and g(f(x)) = (sin x)2 + 1 are continuous.

Intermediate Value Theorem

1.60 Theorem: Intermediate Value Theorem

Let f be a continuous function over a closed interval [a, b]. For any number ξ between f(a)
and f(b), there exists at least one c in the interval [a, b] such that f(c) = ξ.

x

y

f(a)

a

f(b)

b

ξ

cO
x

y

f(a)

a

f(b)

b

ξ

c1 c2 c3O
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1.61 Remark: key hypothesis in the Intermediate Value Theorem

Continuity of f is the key hypothesis in the Intermediate Value Theorem. If f is not
continuous, then the conclusion of the theorem may not hold.

For example, consider the function f de-
fined on [−1, 3]:

f(x) =
{

sin x, if 0 ≤ x ≤ 1;
2, if 1 < x ≤ 3.

Clearly, f(0) = 0 and f(3) = 2. For the in-
termediate value ξ = 1.5, there is no values c
in [0, 3] such that f(c) = 1.5.

x

y

y = f(x)

ξ = 1.5

1 3

2

O

1.62 Example: Intermediate Value Theorem - existence of roots

1. Consider the function f(x) = x3. It is
clear that f is continuous on [−1, 1], with
f(−1) = −1 and f(1) = 1. To see whether
there exists c in the interval [−1, 1] such
that f(c) = 0, we examine the equation
f(x) = 0. Such a solution is a root of f .
It is easy to see that f indeed has a root
c = 0, for which we do not need to apply
the Intermediate Value Theorem.

x

y

y = f(x)

−1 1

−1

1

O

2. Consider another function g(x) = x3−5x+
2. It is not obvious that g has a root in
[0, 1]. However, it is clear g is continu-
ous, with g(0) = 2 and g(1) = −2. Since
−2 < 0 < 2 (i.e., 0 is an intermediate
value), from the Intermediate Value Theo-
rem, there exists c in the interval [0, 1] such
that g(c) = 0, i.e., g(x) = 0 has a root in
the interval [0, 1].

x

y

y = x3 − 5x + 2

1c

−2

2

O

1.63 Example: Intermediate Value Theorem - third-order polynomial

The Intermediate Value Theorem can be used to show that f(x) = x3 +ax2 +bx+c, which
is continuous everywhere, always has a real root for any numbers a, b and c.

In fact, since lim
x→+∞

f(x) = +∞, there exists b > 0 such that f(b) > 0. Similarly since
lim

x→−∞
f(x) = −∞, there exists a < 0 such that f(a) < 0. Because 0 is an intermediate value

of f(a) and f(b), from the Intermediate Value Theorem, on the closed interval [a, b], there
exists c in [a, b] such that f(c) = 0.
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1.64 Engineering Example: amplitude modulation

Communication technology plays an important role in modern society by connecting peo-
ple together. For example, radio broadcast program has been very popular for providing
information and entertainment to people. There are two popular transmission technologies
used for radio broadcasting, namely, AM (amplitude modulation) and FM (frequency mod-
ulation). For both schemes, the programs (music, news, stories, etc.) are brought to people
by radio waves, which serve as the carrier signal. In particular, in AM, the carrier signal is a
sinusoidal function, and the sinusoidal waveform is modulated by an information-bearing
audio waveform before transmission. In this way, the amplitude (signal strength) of the
carrier signal is varied in proportion to the information-bearing signal to be transmitted.

1.65 Engineering Example: sinusoidal function - signal processing

An engineering system usually can be described by its response to a certain input function.
The sinusoidal function is one of such input functions. The sinusoidal function, denoted as
sin x, is one of the trigonometric functions, which is thus a periodical function. The sinusoidal
function sin x (i.e., with period 2π) is plotted in the following.

x

y

−8 8−2π − 3
2 π −π − 1

2 π 1
2 π π 3

2 π 2π

−1

1y = sin x

O

Many systems, e.g., audio system, can be described by their responses to the sinusoidal
function. For linear time-invariant (LTI) systems, the sinusoidal input is especially important,
because the output is also a sinusoidal function with the same frequency as the input, but
possibly different amplitudes and phase angels. Then, the frequency response, which is an
important way of charactering a system, will be utilized to measure the amplitude and the
phase angel of the sinusoidal output.

1.66 Engineering Example: sinusoidal function - aeronautics and astronautics

As one of the four “earth-like” terrestrial planets in the solar system, Mars has been
explored by multiple organizations and space agencies. For example, the National Aeronautics
and Space Administration (NASA) has been exploring Mars for more than 40 years. In
January 2004, NASA landed on the surface of Mars with the Mars exploration rovers, spirit
and Opportunity. However, humans have not landed on Mars yet. To successfully complete
the “human landing on Mars” mission, the communication between Mars and Earth is vital.
But, there is normally a significant communication delay due to the long distance between
these two planets (on average, over 100 million kilometers). Since Mars and Earth orbit Sun
at different rates, the distance between them is constantly varying. A natural question thus
arises as to when is Mars closest to Earth (so that the communication delay is the smallest)?
According to some data collected by NASA scientists and equipments, it turns out that the
distance between Mars and Earth can be modelled as a sinusoidal function (with shift),
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which is plotted in the following.

t (×102 days)

y (×108 km)

102 4 6 7.72

0.557

2.27

4

y = 1.72 sin
(

π
386 t
)

× 108 + 2.27 × 108

O

We can see from the above figure that the distance between Mars and Earth is in a 772-day
(i.e., around 26 months) cycle and the closest distance between these two planets is around
5.57×107 kilometers. Given that the radio waves which can carry information travel in space
at the speed of light, the one-way communication time is around 3.1 minutes when Mars is
closest to Earth.

1.67 Engineering Example: unit-step function

In mathematics, the unit-step function is
defined as follows:

H(x) =
{

1, if x ≥ 0;
0, if x < 0.

It is a discontinuous function and not contin-
uous at x = 0.

x

y

y = H(x)

−1 1

−1

1

O

The unit-step function is a fundamental function in engineering and can be widely applied
to many fields, e.g., circuit analysis and communication systems. In particular, for circuit
analysis, the unit-step function can model the behaviour of a switch (on/off). Moreover, it
can also describe sudden changes of the voltage or the current in a circuit. In communication
systems, the sum of unit-step functions can be used to represent waveforms.

1.4 Some Transcendental Functions

Exponential Functions

1.68 Theorem: properties of exponential functions

The exponential function is f(x) = ax, where a is a positive number.

1. The exponential function f(x) = ax has domain R and range (0, +∞).

2. The exponential function f(x) = ax is a continuous function.
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3. The graph of the exponential function f(x) = ax depends the value of a.

4. If a > 1, then lim
x→+∞

ax = +∞ and lim
x→−∞

ax = 0; if 0 < a < 1, then lim
x→+∞

ax = 0 and
lim

x→−∞
ax = +∞.

5. The following are the graphs of ax for various bases.

x

y

1x

1.2x
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2x
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1.69 Definition: the number e

Among all exponential functions ax with different base a, there is a base which will play
an important role in calculus. This number is denoted by e, defined by

e = lim
x→+∞

(
1 + 1

x

)x

.

This limit exists and e is an irrational number, approximately 2.71828.

1.70 MATLAB: exponential functions

In MATLAB, the exponential functions can be simply written in the following form.

>> syms x;
>> f = 3^x

f =

3^x

where 3 is the base.
Specifically, the command exp can be used for the exponential functions with base e. The

following examples show the exponential functions e and e2, respectively.

>> exp (1)
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ans =

2.7183

>> exp (2)

ans =

7.3891

1.71 Example: exponential function - population growth

Suppose a bacteria culture with 100 bac-
teria triples in every hour. To write the
function describing the bacteria population
growth, let x be the variable representing
number of hours, and y = f(x) be the func-
tion of bacteria population by x hours. We
observe

f(1) = 100 × 3,

f(2) = 100 × 32,

f(3) = 100 × 33.

So, in general, we get y = 100 · 3x.
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1.72 Example: exponential function - radioactive decay

Carbon-14 is a radioactive substance with half-life 5730 years. Half-life means that 1-pound
of Carbon-14 will be half-pound after 5730 years.

Suppose the initial amount of Carbon-14 is A0 and f(t) represents the amount after t
years. Then

f(0) = A0,

f(5730) = A0/2,

f(2 × 5730) = A0/22.
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So, f(k × 5730) = A0/2k. Let k × 5730 = t.
Then we get k = t

5730
, so that the amount

of Carbon-14 after t-years is

f(t) = A0

2 t
5730

= A0 · 2−t/5730.

If we further write a = 2− 1
5730 , then we get

y = f(t) = A0at, which is an exponential
function.

t

y

y = A0 · 2−t/5730

5730 × 1 5730 × 2 5730 × 3

A0

0.5 × A0

0.25 × A0

O

1.73 Example: exponential function - bank interest

A bank has a savings account with the annual interest rate r. Let P be the initial deposit.
If the bank provides interest m times per year, then after t years, the amount A is given by

A = P
(

1 + r

m

)mt

.

If the interest is calculated continuously, i.e. let m go to infinity, the amount A is given by

A = lim
m→+∞

P
(

1 + r

m

)mt

= P lim
m→+∞

[(
1 + r

m

)m
r

]rt

= P

[
lim

m→+∞

(
1 + r

m

)m
r

]rt

= P

[
lim

x→+∞

(
1 + 1

x

)x]rt

= Pert.

Here the number e appears naturally.

The graph compares different models for
fixed P and r. It shows that the yield in-
creases as m increases. In other words, the
bank will pay you more money if the inter-
est is compounded more often. The amount
will reach its maximum if the bank calculates
the compound interest (for which they will
avoid). t (year)

y

y = Pert m = 1
m = 4
m = +∞

y = P
(

1 + r

m

)mt

1 2 3 4 5 6 7

P

O
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Inverse Function

1.74 Definition: one-to-one

We say f(x) is one-to-one if it never takes on the same value twice, i.e., if x1 ̸= x2, then
f(x1) ̸= f(x2), or equivalently, if f(x1) = f(x2), then x1 = x2.

1.75 Theorem: horizontal line test

A function is one-to-one if and only if no horizontal line intersects its graph more than
once.

1.76 Example: one-to-one functions

1. The function f(x) = x3 is a one-to-one
function. It is easy to check that if f(x1) =
f(x2), then x1 = x2. It is also easy to ver-
ify that the function f passes the horizon-
tal line test.

x

y

−1

1
y = x3 + 1

O

2. The function g(x) = x2 defined over
(−∞, +∞) is not one-to-one because
g(1) = 1 = g(−1). It is easy to see that
the function fails the horizontal line test.

x

y

−1 1

1

2

y = x2

O

3. The function h(x) = x2 with the domain
[0, +∞) is one-to-one. In fact, if x2

1 = x2
2

and both x1 and x2 are non-negative, we
must have x1 = x2. It is also easy to verify
that the function h passes the horizontal
line test.

x

y
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1
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y = x2

O

1.77 Definition: inverse function

One can regard a function f with domain D and range R as a map f from D to R. If f
is one-to-one, then we can construct a map from R to D whose composition with f is the
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identity map. The corresponding function of the new map is called the inverse function.
Let f be a one-to-one function with domain D and range R. Then its inverse function f−1

has domain R and range D and is defined by

f−1(y) = x ⇐⇒ f(x) = y

for any y in R. Thus,

domain of f−1 = range of f,

range of f−1 = domain of f.

Theorem: cancellation equations

The function f and its inverse function f−1 satisfy the following cancellation
equations:

f−1 (f(x)) = x for every x in D;
f
(
f−1(x)

)
= x for every x in R.

1.78 Method: find the inverse function

1. Write y = f(x).

2. Solve this equation for x in terms of y (if possible).

3. To express f−1 as a function of x, interchange x and y. The resulting equation is
y = f−1(x).

1.79 Example: inverse functions

1. The function f(x) = x3 is a one-to-one
function. The inverse function of f is
f−1(x) = 3

√
x since f(f−1(x)) = ( 3

√
x)3 =

x.
The inverse function f−1 can be found by
the following steps: solving y = x3 to get
x = 3

√
y, then interchanging x and y to

have y = 3
√

x.

x

y

y = x3

y = 3
√

x

y
=

x

O

One can see the graph of the inverse function f−1(x) = 3
√

x is the mirror image of that
of the function f(x) = x3 with respect to the diagonal line y = x as the mirror.
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2. The function h(x) = x2 defined on the
domain [0, +∞) is one-to-one. Its inverse
function is h−1(x) =

√
x.

One also sees the graph of the inverse func-
tion h−1(x) =

√
x is the mirror image of

that of the function h(x) = x2 with respect
to the diagonal line y = x as the mirror.

x

y

y = x2

y =
√

x

y
=

x

O

3. The function p(x) = x2 defined on the
domain [−∞, 0) is one-to-one. Its inverse
function is p−1(x) = −

√
x.

One again sees the graph of the inverse
function p−1(x) = −

√
x is the mirror im-

age of that of the function h(x) = x2 with
respect to the diagonal line y = x as the
mirror.

x

y

y = x2

y = −
√

x

y
=

x

O

1.80 Method: obtain the graph of f−1 from the graph of f

If f is a one-to-one function, then f(a) = b
if and only if f−1(b) = a. So, the point (a, b)
is on the graph of f if and only if the point
(b, a) is on the graph of f−1. Hence, the graph
of f−1 is the reflection of the graph of f about
the line y = x. x

y

y = f(x)

y = f−1(x)

y
=

x

O

1.81 Theorem: continuity of the inverse function

The inverse function of any continuous one-to-one function is also continuous.

1.82 MATLAB: inverse function

In MATLAB, the inverse function can be calculated using command finverse. The fol-
lowing example shows how to calculate the inverse function of f(x) = x3 + 1 in MATLAB.

>> syms x;
>> f = x^3 + 1;
>> finverse (f)
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ans =

(x - 1) ^(1/3)

The following figure plots both the function f(x) = x3+1 and its inverse function f−1(x) =
3
√

x − 1.

>> x = -3:0.02:3;
>> y = x.^3 + 1;
>> y_i = nthroot (x - 1,3);
>> figure
>> plot(x,y,'r')
>> hold on
>> plot(x,y_i ,'b')
>> axis ([-3 3 -3 3]) % Change the axis limits so that both ...

the x-axis and the y-axis range from -3 to 3
>> xlabel ('x')
>> ylabel ('y')
>> grid
>> legend ({ '$f(x) = x^3 + 1$ ','$f^{ -1}(x) = ...

\sqrt [3]{x -1}$ '},'Interpreter ','latex ')

-3 -2 -1 0 1 2 3

x

-3

-2

-1

0

1

2

3

y

Logarithmic Functions

1.83 Definition: logarithmic function

Since the exponential function ax is one-to-one, it has an inverse. The inverse function of
f(x) = ax is called logarithmic function with base a, denoted by loga x. We use ln x for
loge x.
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1.84 Theorem: Laws of Logarithms

Let a, b be positive numbers not equal to 1, A, B be positive numbers, and α be a real
numbers.

1. loga(A · B) = loga A + loga B.

2. loga

(
A

B

)
= loga A − loga B.

3. loga Aα = α loga A.

4. aloga A = A.

5. loga A = logb A

logb a
.

6. loga a = 1, loga 1 = 0.

1.85 Theorem: properties of logarithmic functions

Assume a is positive number not equal to 1.

1. The logarithmic function f(x) = loga x has domain (0, +∞) and range R.

2. The logarithmic function f(x) = loga x is a continuous function.

3. The graph of the logarithmic function f(x) = loga x depends on the value of a.

4. If a > 1, then lim
x→+∞

loga x = +∞ and lim
x→0+

loga x = −∞; if 0 < a < 1, then
lim

x→+∞
loga x = −∞ and lim

x→0+
loga x = +∞.

5. The following are the graphs of loga x for various bases.

x

y

log1.5 x
log2 x

ln x
log4 x

log10 x

log1/2 x

log1/4 x

log0.8 x

1O

1.86 Example: logarithmic functions

Let us look at some examples using the fact that exponential functions and logarithmic
functions are inverse to each other.

1. To solve the equation ln(x − 1) = 0, we take exponential on both sides of the equation
simultaneously to have eln(x−1) = e0. Using the identity eln a = a, we get x − 1 = 1, so
that x = 2.
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2. To solve the equation 2x−1 = 5, we take logarithm on both sides of the equation
simultaneously to have log2 2x−1 = log2 5. Using the identity loga aα = α, we get
x − 1 = log2 5, so that

x = 1 + log2 5 = log2 2 + log2 5 = log2 10.

1.87 MATLAB: logarithmic functions

MATLAB provides commands for logarithmic functions with different bases, e.g., log2
for base 2, log for base e, and log10 for base 10. The following examples show functions
f(x) = log2(x), g(x) = ln(x) and h(x) = log10(x) in MATLAB.

>> syms x;
>> f = log2(x)

f =

log(x)/log (2)

>> g = log(x)

g =

log(x)

>> h = log10(x)

h =

log(x)/log (10)

Inverse Trigonometric Functions

1.88 Definition: inverse trigonometric functions

• The function sin x restricted on [− π
2 , π

2 ]
has unique inverse function, denoted by
sin−1 x or arcsin x, that has domain [−1, 1]
and range [− π

2 , π
2 ]. That is,

sin−1 x = y (|x| ≤ 1)
⇐⇒ sin y = x, − π

2 ≤ y ≤ π
2 .

x

y

sin x

sin−1 x

−1 1

−1

1

− π
2

π
2

− π
2

π
2

O
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• The function of cos x restricted on [0, π]
has unique inverse function, denoted by
cos−1 x or arccos x, that has domain [−1, 1]
and range [0, π]. That is,

cos−1 x = y (|x| ≤ 1)
⇐⇒ cos y = x, 0 ≤ y ≤ π.

x

y

−1 1

−1

1

ππ
2

π

− π
2

cos x

cos−1 x

O

• The function of tan x restricted on
(− π

2 , π
2 ) has unique inverse function, denoted

by tan−1 x or arctan x, that has domain
(−∞, +∞) and range (− π

2 , π
2 ). That is,

tan−1 x = y (x ∈ R)
⇐⇒ tan y = x, − π

2 < y < π
2 .

x

y

tan x

tan−1 x

− π
2

π
2

− π
2

π
2

O

• The function of cot x restricted on (0, π)
has unique inverse function, denoted by
cot−1 x or arccot x, that has domain (−∞, ∞)
and range (0, π). That is,

cot−1 x = y (x ∈ R)
⇐⇒ cot y = x, y ∈ (0, π).

x

y

π
2

π

π
2

π

cot x

cot−1 x

O

• The function of csc x restricted on
[− π

2 , 0) ∪ (0, π
2 ], has unique inverse function,

denoted by csc−1 x or arccsc x, that has do-
main |x| ≥ 1 and range [− π

2 , 0) ∪ (0, π
2 ]. That

is,

csc−1 x = y (|x| ≥ 1)
⇐⇒ csc y = x, y ∈ [− π

2 , 0) ∪ (0, π
2 ].

x

y

−1 1
−1

1
− π

2

π
2

− π
2

π
2

csc x

csc−1 x

O
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• The function of sec x restricted on [0, π
2 )∪

( π
2 , π], has unique inverse function, denoted

by sec−1 x or arcsec x, that has domain |x| ≥
1 and range [0, π

2 ) ∪ ( π
2 , π]. That is,

sec−1 x = y (|x| ≥ 1)
⇐⇒ sec y = x, y ∈ [0, π

2 ) ∪ ( π
2 , π].

x

y

−1 1
−1

1

π
2

π

π
2

π

sec x

sec−1 x

O

1.89 Example: inverse trigonometric functions

1. Calculate sin−1
(√

2
2

)
.

Solution Let θ = sin−1
(√

2
2

)
. Then, by the definition of sin−1, θ is an angle in [− π

2 , π
2 ]

and sin θ =
√

2
2 . So θ = π

4 .

2. Calculate cos−1
(

−
√

2
2

)
.

Solution Let θ = cos−1
(

−
√

2
2

)
. Then, by the definition of cos−1, θ is an angle in [0, π]

and cos θ = −
√

2
2 . So θ = 3π

4 .

3. Find cos(sin−1 c) for c in [0, 1].
Solution Let θ = sin−1 c, then sin θ = c.
We can draw a triangle with the opposite
side of length c and hypotenuse of length 1.
Then the adjacent side has length

√
1 − c2.

Hence,
√

1 − c2

c
1

θ

cos(sin−1 c) = cos θ =
√

1 − c2/1 =
√

1 − c2.

1.90 MATLAB: trigonometric and inverse trigonometric functions

In MATLAB, there are several commands for calculating the trigonometric and inverse
trigonometric functions, which are provided in the following table.
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Command Function
sin Sine function
cos Cosine function
tan Tangent function
cot Cotangent function
sec Secant function
csc Cosecant function
asin Inverse sine function
acos Inverse cosine function
atan Inverse tangent function
acot Inverse cotangent function
asec Inverse secant function
acsc Inverse cosecant function

The following examples show the calculations of sin
(

π
2
)

and tan−1(1), respectively, in
MATLAB.

>> sin(pi /2)

ans =

1

>> atan (1)

ans =

0.7854

Besides calculating the values of the trigonometric and inverse trigonometric functions,
graphs of the trigonometric and inverse trigonometric functions can also be easily plotted by
MATLAB. The following code shows the plot of cos−1(x) within the interval [−1, 1]:

>> x = -1:0.01:1;
>> y = acos(x);
>> figure
>> plot(x,y,'r')
>> xlabel ('x')
>> ylabel ('y = cos ^{ -1}(x)')
>> grid

The plotted figure is shown below.
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1.91 Theorem: continuity of basic elementary functions

The following types of basic elementary functions are continuous at every point in their
domains:

polynomials, rational functions, root functions,
trigonometric functions, inverse trigonometric functions,
exponential functions, logarithmic functions.

1.92 Engineering Example: inverse tangent - aeronautics and astronautics

It is said that the National Aeronautics and Space Administration (NASA) astronauts will
explore the surface of Moon again by 2020. This time, the astronauts are going to stay, build
outposts, and pave a way for the journeys to Mars and beyond. It is thus critical to have a
reliable and robust surface-to-surface communication between astronauts on Moon, and also
keep constant communications with Earth. This will likely be accomplished by a combined
use of communication satellites in orbit around Moon and communication equipments on
the lunar surface. In the case of no satellite coverage over an outpost, the astronauts there
will purely rely on the communication equipments on the lunar surface, e.g., communication
towers. Since Moon is a sphere, the surface-to-surface communication is limited by the height
of the communication tower. In particular, the communication signals cannot be received
beyond the point of tangency P in the following figure.

Parameter Description
r radius of Moon (1738.14 km)
h tower height
d line of sight distance
P point of tangency
a arc length
α central angle measure
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In the case of no satellite coverage over a certain area on the lunar surface, if there is a
communication tower with height 60 meters, then calculate the maximum distance that the
astronaut can explore in this area.

First, we note that the area which the astronaut can explore should be within the com-
munication range of the communication tower, i.e., not beyond the point of tangency P.
Moreover, the distance that the astronaut can explore refers to the one on the lunar surface.
Hence, the maximum distance is the arc length a in the above figure.

In order to calculate the arc length a, we first need to calculate the central angel measure
α which can be obtained by using the inverse tangent function. Specifically, we have

α = tan−1
(

d

r

)
.

We have known the Moon radius r = 1738.14 km. Now, we need to calculate the line of
sight distance d. We note that r2 + d2 = (r + h)2, so we have

d =
√

(r + h)2 − r2

=
√

(1738.14 + 0.06)2 − 1738.142 ≈ 14.44 (km).

Substituting the value of d to the first equation, we obtain

α = tan−1
(

14.44
1738.14

)
≈ 0.0083.

Finally, we can calculate the arc length a, i.e., the maximum distance that the astronaut
can explore, as follows:

a = θ

2π
× 2πr = 0.0083 × 1738.14 ≈ 14.43 (km).

1.93 Engineering Example: decibel

The decibel (dB) is used to measure the ratio of two quantities with the same unit. For
example, in terms of decibel, the ratio of two quantities A and B, which have the same unit,
is defined as

10 log10

(
A

B

)
(dB).

The decibel has been widely used in a variety of science and engineering fields, such as
electronics and control theory. For example, in electronics, the gains of amplifiers, the signal-
to-noise ratio (SNR), and the attenuations of signals are often represented in decibel.

Note that the decibel can be used to express the ratio of A with respect to any absolute
value B or a fixed reference value B. In the latter case, a suffix which indicates the reference
value is usually appended to the decibel symbol. For example, if the reference value B is 1
volt, then the suffix is “V”, e.g., 10 dBV; if the reference value B is 1 milliwatt, then the
suffix is “m”, e.g., 10 dBm.

The use of the decibel has several advantages. First, since the decibel is on a logarithmic
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scale, it means that a very big ratio can be represented in a convenient way. For example, if
A is a trillion times of B, then in terms of decibel, we have

10 log10

(
A

B

)
= 10 log10 1012 = 120 (dB),

which is a more compact representation than 1, 000, 000, 000, 000.
Second, due to the logarithmic scale property, the decibel can be used for simplifying the

calculations of multiplied effects of a system. For example, a multi-component system has
three components with gains g1,dB (dB), g2,dB (dB) and g3,dB (dB), respectively. Then the
overall gain go,dB (dB) of the system can be calculated as

go,dB = 10 log10 (go)
= 10 log10 (g1g2g3)

= 10 log10

(
10

g1,dB
10 10

g2,dB
10 10

g3,dB
10

)
= 10 log10

(
10

g1,dB
10

)
+ 10 log10

(
10

g2,dB
10

)
+ 10 log10

(
10

g3,dB
10

)
= g1,dB + g2,dB + g3,dB,

where go, g1, g2 and g3 are the overall gain, the gain of the 1st component, the gain of the 2nd
component and the gain of the 3rd component in the linear scale, respectively. The above
additive operation is more convenient than the multiplication of multiple gains.

1.94 Engineering Example: RC charging circuit

The capacitor is an electronic component which can store electrical energy. If a resistor
is connected in series with the capacitor to form a resistor-capacitor (RC) circuit, then the
capacitor will charge up gradually through the resistor until the voltage across this capacitor
reaches the value of the supply voltage.

An example of the RC circuit is shown,
where R represents the resistance of the re-
sistor, C represents the capacitance of the
capacitor, Vs represents the supply voltage,
and vC(t) represents the voltage across the
capacitor.

C
+

−
vC(t)

R

−
+Vs

i(t)

Assume that Vs = 10 V, R = 4.7 × 104 Ω, C = 10−3 F, and the initial voltage (i.e.,
the voltage at t = 0) across the capacitor is 0, it can be shown that the voltage across the
capacitor is given by

vC(t) = Vs(1 − e− t
RC ) (t ≥ 0).

We can find the time taken for the capacitor to achieve vC(t) = 9.8 V.
In fact, to achieve vC(t) = 9.8 V, we need to solve the following equation:

Vs(1 − e− t
RC ) = 9.8.
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Substituting the values of Vs, R and C into the equation above, we have

10(1 − e
− t

4.7×104×10−3 ) = 9.8.

After some algebraic manipulations, we find that the time taken can be represented in terms
of a logarithmic function, and it is shown as follows:

t = −47 ln(1 − 0.98) ≈ 183.86 (s).

Note that the maximum voltage the capacitor can achieve is the supply voltage Vs. The
result above thus shows that it takes 183.86 seconds which is around 3 minutes for the
capacitor to virtually fully charged (i.e., achieve 98% of its maximum value).

Moreover, in RC circuit, the term τ = RC is defined as the time constant. In this example,
τ = RC = 47 (s). We notice that 183.86

47 ≈ 4, which means the time taken for the capacitor to
achieve 98% of its maximum voltage is 4 times of the time constant. The time period taken
for the capacitor to reach this 4τ point (i.e., achieve 98% of the maximum voltage) is known
as the transient period.
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Summary

Definition: basic concepts

• function : f : D ⊂ R → R

(D = domain, R = range)

• function continuous at a : lim
x→a

f(x) = f(a)

• function continuous in I : lim
x→a

f(x) = f(a) for every a ∈ I

• composite function : f(g(x))

• one-to-one function : if x1 ̸= x2, then f(x1) ̸= f(x2)

⇐⇒ f passes the horizontal line test.

• inverse function : f−1(y) = x ⇐⇒ f(x) = y

(f has to be one-to-one)

Definition: limit

limit : lim
x→a

f(x) = L

⇐⇒ f(x) approaches L when x ∈ D approaches a

Definition: asymptotes

• horizontal asymptote y = b if at least one of the following is true:

lim
x→+∞

f(x) = b, lim
x→−∞

f(x) = b.

• vertical asymptote x = a if at least one of the following is true:

lim
x→a

f(x) = +∞, lim
x→a−

f(x) = +∞, lim
x→a+

f(x) = +∞,

lim
x→a

f(x) = −∞, lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.

Theorem: limit rules and theorems

Suppose lim
x→a

f(x) and lim
x→a

g(x) exist. Then the following rules hold.

1. Sum Rule:
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

2. Difference Rule:

lim
x→a

[f(x) − g(x)] = lim
x→a

f(x) − lim
x→a

g(x).
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3. Product Rule:
lim
x→a

[f(x) g(x)] = lim
x→a

f(x) · lim
x→a

g(x).

In particular, lim
x→a

[cf(x)] = c lim
x→a

f(x), where c is any constant.

4. Quotient Rule: If lim
x→a

g(x) ̸= 0, then

lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)
.

5. Squeeze Theorem: If f(x) ≤ g(x) ≤ h(x) and lim
x→a

f(x) = lim
x→a

h(x) = L, then
lim
x→a

g(x) = L.

6. Limit and One-Sided Limit: lim
x→a

f(x) = L if and only if lim
x→a−

f(x) = lim
x→a+

f(x) =
L.

Theorem: continuity of basic elementary functions

The following types of basic elementary functions are continuous at every point in their
domains:

polynomials, rational functions, root functions,
trigonometric functions, inverse trigonometric functions,
exponential functions, logarithmic functions.

Theorem: composite function and inverse function

The composite function of two continuous functions is a continuous function.
The inverse function of a one-to-one continuous function is a continuous function.

Theorem: continuity of arithmetic operations

If f and g are continuous at a and c is a constant, then the following functions are also
continuous at a:

1. f + g;

2. f − g;

3. cf ;

4. f · g;

5. f

g
, provided that g(a) ̸= 0.
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Theorem: two important limits

1. lim
x→0

sin x

x
= 1. 2. lim

x→+∞

(
1 + 1

x

)x

= e.

Method: find and graph the inverse function

If f is a one-to-one function, then f(a) = b
if and only if f−1(b) = a. So, the point (a, b)
is on the graph of f if and only if the point
(b, a) is on the graph of f−1. Hence, the graph
of f−1 is the reflection of the graph of f about
the line y = x. x

y

y = f(x)

y = f−1(x)

y
=

x

O

Theorem: Laws of Exponents

Let a, b be positive numbers and α, β be real numbers.

1. aα · aβ = aα+β .

2. aα

aβ
= aα−β .

3. (aα)β = aα·β .

4. (a · b)α = aα · bα.

5. a−α = 1
aα

.

6. a1 = a, a0 = 1.

Theorem: Laws of Logarithms

Let a, b be positive numbers not equal to 1, A, B be positive numbers, and α be a real
numbers.

1. loga(A · B) = loga A + loga B.

2. loga

(
A

B

)
= loga A − loga B.

3. loga Aα = α loga A.

4. aloga A = A.

5. loga A = logb A

logb a
.

6. loga a = 1, loga 1 = 0.

Theorem: properties of exponential functions

The exponential function is f(x) = ax, where a is a positive number.
1. The exponential function f(x) = ax has domain R and range (0, +∞).

2. The exponential function f(x) = ax is a continuous function.

3. The graph of the exponential function f(x) = ax depends the value of a.
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4. If a > 1, then lim
x→+∞

ax = +∞ and lim
x→−∞

ax = 0; if 0 < a < 1, then lim
x→+∞

ax = 0 and
lim

x→−∞
ax = +∞.

5. The following are the graphs of ax for various bases.

x

y

1x

1.2x

1.5x
2x

10x( 1
2 )x

( 1
4 )x

0.8x

1O

Theorem: properties of logarithmic functions

Assume a is positive number not equal to 1.

1. The logarithmic function f(x) = loga x has domain (0, +∞) and range R.

2. The logarithmic function f(x) = loga x is a continuous function.

3. The graph of the logarithmic function f(x) = loga x depends the value of a.

4. If a > 1, then lim
x→+∞

loga x = +∞ and lim
x→0+

loga x = −∞; if 0 < a < 1, then
lim

x→+∞
loga x = −∞ and lim

x→0+
loga x = +∞.

5. The following are the graphs of loga x for various bases.

x

y

log1.5 x
log2 x

ln x
log4 x

log10 x

log1/2 x

log1/4 x

log0.8 x

1O
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Definition: some inverse functions

• y = loga x ⇐⇒ x = ay;

• y = sin−1 x (|x| ≤ 1) ⇐⇒ sin y = x, − π
2 ≤ y ≤ π

2 ;

• y = cos−1 x (|x| ≤ 1) ⇐⇒ cos y = x, 0 ≤ y ≤ π;

• y = tan−1 x (x ∈ R) ⇐⇒ tan y = x, − π
2 < y < π

2 ;

• y = cot−1 x (x ∈ R) ⇐⇒ cot y = x, y ∈ (0, π);

• y = csc−1 x (|x| ≥ 1) ⇐⇒ csc y = x, y ∈ [− π
2 , 0) ∪ (0, π

2 ];

• y = sec−1 x (|x| ≥ 1) ⇐⇒ sec y = x, y ∈ [0, π
2 ) ∪ ( π

2 , π].

Theorem: Intermediate Value Theorem

Let f be a continuous function over a closed interval [a, b], for any number ξ between f(a)
and f(b), there exists at least one c in the interval [a, b] such that f(c) = ξ.

x

y

f(a)

a

f(b)

b

ξ

cO
x

y

f(a)

a

f(b)

b

ξ

c1 c2 c3O
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CHAPTER

Differentiation

2.1 Derivatives

2.1 Example: instantaneous velocity

Let y = f(t) = t2 be the distant function describing a movement of a particle on the x-axis
and t is the time variable. The velocity of the particle is not a constant and depends uopn the
time t. So we call the velocity at time t the instantaneous velocity v(t). How to calculate
the instantaneous velocity? We know how to find the average velocity. So let’s calculate the
average velocity from time t = 1 to time t. The distance traveled by the particle within the
time is f(t) − f(1) = t2 − 12. The time spent is t − 1. Thus the average velocity is

f(t) − f(1)
t − 1

= t2 − 1
t − 1

= t + 1.

Clearly this average velocity doesn’t equal the instantaneous velocity at t = 1. However, if
we use the average velocity to approximate the instantaneous velocity at t = 1, the approx-
imation is better if t is closer to 1. Using the idea of limits, it is reasonable to say that the
instantaneous velocity v(1) is the limit of the average velocity as t approaches 1, i.e.,

v(1) = lim
t→1

f(t) − f(1)
t − 1

= lim
t→1

(t + 1) = 2.

2.2 Example: slope of tangent line

Consider the function f(x) = 1
2 x2 and the tangent line of the graph of y = f(x) at x = 1.

We first consider the secant line of the graph at x = 1.
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x

y

y = 1
2 x2

tangent line

secant line

1 1 + h

1
2

1
2 (1 + h)2

O

The secant line passes through two points P0 = (1, 1
2 ) and P = (1 + h, 1

2 (1 + h)2). The
slope of the secant line is

S(h) =
1
2 (1 + h)2 − 1

2
(1 + h) − 1

=
h + 1

2 h2

h
= 1 + 1

2 h.

As the point P approaches P0, i.e., as h approaches 0, the secant line approaches the
tangent line. In the language of limits, the tangent line is the limit of the secant line. Hence
the limit of the slope of the secant line is the slope S of the tangent line, i.e.

S = lim
h→0

S(h) = lim
h→0

f(1 + h) − f(1)
h

= lim
h→0

(1 + 1
2 h) = 1.

2.3 Remark: derivative - motivation

Given a function y = f(x), take a point a in the domain of the function. The change in

y from a to x is f(x) − f(a). The average rate of change is f(x) − f(a)
x − a

. The instantaneous
rate of change at a is the limit of average rate of change when x approaches a, i.e.,

lim
x→a

f(x) − f(a)
x − a

.

Since many important concepts such as velocity and slope of the tangent line of a function
can be described in this way, we will call such kind of limit the derivative of the function at
x = a.

2.4 Definition: derivative

Given a function f and a point a in the domain of f , the derivative of f at x = a is

lim
x→a

f(x) − f(a)
x − a

,

provided the limit exists. In this case, we say f has a derivative at x = a.
For single variable functions, the term “being differentiable” is used as synonymous with

“having a derivative”.
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2.5 Definition: notations of derivative

There are several widely used notations for derivatives.
• The derivative of f(x) at x = a is denoted by f ′(a).

• The limit lim
x→a

f(x) − f(a)
x − a

can be written as

lim
h→0

f(a + h) − f(a)
h

,

where we replace x by a + h. When x varies, h varies so that x approaches a if and only if h
goes to zero.

• The limit lim
x→a

f(x) − f(a)
x − a

can be written as

lim
∆x→0

f(a + ∆x) − f(a)
∆x

,

where ∆x = x − a is the another symbol representing the change in x.
• We can also calculate the derivative of f at any point of the domain. Thus we define the

derivative of the function at x:

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

.

• If we write the change in y as ∆y = f(x + ∆x) − f(x), then the derivative can also be
expressed as

f ′(x) = lim
∆x→0

∆y

∆x
.

Hence the change in y is ∆y, the change in x is ∆x, the average rate of change is ∆y

∆x
, and

the (instantaneous) rate of change of the function at x is the limit of the average rate of
change as ∆x approaches zero.

• Leibniz notation: f ′(x) can also be expressed as df(x)
dx

. If we write y = f(x), we can

also write dy

dx
for f ′(x).

• We sometimes use f ′(x)|x=a, or df(x)
dx

∣∣∣∣
x=a

to denote f ′(a).

2.6 Example: calculate derivatives by the definition

1. Find f ′(x) for f(x) = x2.
Solution By the definition,

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

(x + h)2 − x2

h

= lim
h→0

2hx + h2

h
= lim

h→0
(2x + h) = 2x.
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In the above calculation, the changing variable is h, while x should be treated as a
constant.

2. Find f ′(x) for f(x) =
√

x where x > 0.
Solution By the definition,

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= lim
h→0

√
x + h −

√
x

h

= lim
h→0

(
√

x + h −
√

x)(
√

x + h +
√

x)
h(

√
x + h +

√
x)

= lim
h→0

h

h(
√

x + h +
√

x)

= lim
h→0

1
(
√

x + h +
√

x)
= 1

2
√

x
.

In the above calculation, again the changing variable is h, while x should be treated as
a constant. When we calculate lim

h→0

√
h + x =

√
x, we used the fact that the function

√
h + x is a continuous function as a function of h.

Also from the calculation above, we see that f ′(0) does not exist.

2.7 MATLAB: derivative

In MATLAB, the derivative of a function can be calculated using command diff. More-
over, using the symbolic substitution command subs, we can obtain the value of the deriva-
tive at a certain point. The MATLAB code below shows the calculations of f ′(x), where
f(x) = x2, and the value of f ′(3).

>> syms x;
>> f = x^2;
>> d = diff(f)

d =

2*x

>> subs(d,x ,3)

ans =

6
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2.8 Example: tangent line

Find the equation of the tangent line of the graph of y = x2 at x = 1.

Solution By using the definition, we can
calculate the derivative f ′(1) = 2, which is
the slope of the tangent line. Since the tan-
gent lien passes through the point (1, f(1)) =
(1, 1), the equation of the tangent line is

y − 1 = 2 · (x − 1).
x

y

y = x2

y − 1 = 2(x − 1)

1

1

O

2.9 Example: velocity

If we toss a ball straightly up into the air with initial velocity 98 m/s, the distance (mea-
sured in meters) of the ball to the ground is given by the function f(t) = −4.9t2 + 98t where
t is the time measured in seconds. Find the velocity of the ball at time t and find the time
and the distance travelled when the ball reaches the highest height.

Solution Since the velocity v(t) is the derivative of the distance function, we obtain

v(t) = f ′(t) = lim
h→0

[−4.9(h + t)2 + 98(h + t)] − (−4.9t2 + 98t)
h

= lim
h→0

−4.9(2ht + h2) + 98h

h

= lim
h→0

[−4.9(2t + h) + 98] = −9.8t + 98.

The ball reaches the highest height when the velocity is zero. So let v(t) = 0, we get
−9.8t + 98 = 0 and t = 10. So in ten seconds, the ball reaches the highest height. The
distance travelled during the ten seconds is f(10) = −490 + 980 = 490 meters.

Relationship Between Differentiability and Continuity

2.10 Theorem: differentiability and continuity

If f is differentiable at a, then f is continuous at a. The converse is false; that is, there are
functions that are continuous but not differentiable.
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Pitfall: continuous but not differentiable

Indeed, consider the function f(x) = |x|. It is continuous everywhere. However,
since

lim
h→0+

f(h) − f(0)
h

= lim
h→0+

|h| − 0
h

= lim
h→0+

h − 0
h

= 1,

lim
h→0−

f(h) − f(0)
h

= lim
h→0−

|h| − 0
h

= lim
h→0−

−h − 0
h

= −1,

we know that lim
h→0

f(h) − f(0)
h

does not exist. So, f is not differentiable at x = 0.

Justification:

If f is differentiable at a, then lim
x→a

f(x) − f(a)
x − a

= f ′(a) exists. Thus,

lim
x→a

[f(x) − f(a)] = lim
x→a

f(x) − f(a)
x − a

· (x − a)

= lim
x→a

f(x) − f(a)
x − a

· lim
x→a

(x − a) = f ′(a) · 0 = 0.

Hence lim
x→a

f(x) = f(a), so that f is continuous at a.

2.11 Engineering Example: electric current

An electric current is the flow of electric charge. Electric currents can cause Joule heating
which creates light in the incandescent light bulbs. Electric currents can also cause magnetic
fields which are used in motor, inductors and generators.

In mathematics, the electric current can be defined as the rate at which the electric charge
flows through a given surface, which is given as follows:

I = dQ

dt
,

where I represents the electric current, Q represents the electric charge, and t represents the
time.

2.12 Engineering Example: angular velocity

The angular velocity is a basic concept in physics. It is the rate at which a particle rotates
around a center point. In other words, the angular velocity represents how fast an object
goes around something. For example, the angular velocity of Earth represents how fast the
Earth obits the Sun.
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Mathematically, the angular velocity is de-
fined as the rate of a particle’s angular dis-
placement change relative to the origin and
can be expressed as follows:

ω = dϕ

dt
,

O

ϕ

ω = dϕ

dt

where ω represents the angular velocity, ϕ represents the angular displacement, and t repre-
sents the time. The angular velocity can be depicted in the figure.

Suppose a person is jogging on a circular track with angular displacement ϕ(t) = 1
20 t

(radians). Calculate this person’s angular velocity.
According to the definition of angular velocity, we have

ω = dϕ(t)
dt

=
d( 1

20 t)
dt

= 1
20 (radians/second).

2.13 Engineering Example: acceleration

Acceleration widely exists in our life. For example, when a car speeds up, the passengers
might experience a force of pushing them back to seats. This feeling occurs because they are
accelerating. In layman’s words, acceleration means any process where the velocity (either
the magnitude or the direction) changes. In particular, the magnitude of the velocity is called
speed. Mathematically, the magnitude of the acceleration is defined as the rate of the speed
change of an object with respect to time, and given as follows:

a = dv

dt
,

where a represents the acceleration, v represents the speed, and t represents the time.
Suppose a person is running on the track. At the starting stage, the speed of this person

is v(t) = t (meter/second). Calculate the acceleration of this person.
According to the definition of acceleration, we have

a = dv(t)
dt

= dt

dt
= 1 (meter/second2).

2.2 Rules of Differentiation

2.14 Theorem: rules of differentiation

Suppose f ′(x) and g′(x) exist. Then the following rules of differentiation hold.

1. Sum Rule:
[f(x) + g(x)]′ = f ′(x) + g′(x).
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2. Difference Rule:
[f(x) − g(x)]′ = f ′(x) − g′(x).

3. Product Rule:
[f(x) g(x)]′ = f(x) g′(x) + g(x) f ′(x).

4. Quotient Rule: If g(a) ̸= 0, then[
f(x)
g(x)

]′

= g(x) f ′(x) − f(x) g′(x)
[g(x)]2

.

Justification:

By the definition, for the sum and difference rules, we have

[f(x) ± g(x)]′

= lim
h→0

[f(x + h) ± g(x + h)] − [f(x) ± g(x)]
h

= lim
h→0

[f(x + h) − f(x)] ± [g(x + h) − g(x)]
h

= lim
h→0

[
f(x + h) − f(x)

h
± g(x + h) − g(x)

h

]
= lim

h→0

f(x + h) − f(x)
h

± lim
h→0

g(x + h) − g(x)
h

= f ′(x) ± g′(x).

For the product rule, we may re-write the derivative as follows:

[f(x)g(x)]′

= lim
h→0

f(x + h)g(x + h) − f(x)g(x)
h

= lim
h→0

[
f(x + h)g(x + h) − f(x + h)g(x)

h
+ f(x + h)g(x) − f(x)g(x)

h

]
= lim

h→0

[
f(x + h) · g(x + h) − g(x)

h
+ f(x + h) − f(x)

h
· g(x)

]
.

If f is differentiable, f is continuous, so that

lim
h→0

f(x + h) = f(x).

Hence,

[f(x)g(x)]′

= lim
h→0

f(x + h) · lim
h→0

g(x + h) − g(x)
h

+ lim
h→0

f(x + h) − f(x)
h

· g(x)

= f(x) g′(x) + g(x) f ′(x).

The quotient rule can be shown similarly.



2.2 Rules of Differentiation 63

2.15 Example: derivatives of polynomials

Show that (
anxn + an−1xn−1 + · · · + a1x + a0

)′ = nanxn−1 + · · · + a1.

Solution We prove the equality in following steps.

1. If f(x) ≡ c, then f ′(x) = 0.
In fact, by the definition,

f ′(x) = lim
h→0

c − c

h
= 0.

2. If f(x) = x, then f ′(x) = 1.
In fact, by the definition,

f ′(x) = lim
h→0

(x + h) − x

h
= lim

h→0

h

h
= 1.

3. If f(x) = xn for an positive integer n, then f ′(x) = nxn−1.
This can be proved by induction on n.
First, we know that the formula (xn)′ = nxn−1 holds for n = 1.

Suppose the formula holds for n = k, i.e.,
(
xk
)′ = kxk−1. Then, for n = k + 1, from

the product rule,

f ′(x) =
(
xk+1)′ =

(
x · xk

)′

= x′ · xk + x ·
(
xk
)′

= xk + kxk = (k + 1)xk.

Hence, for any positive integer n, (xn)′ = nxn−1.

4. If f(x) = cg(x), then f ′(x) = cg′(x).
In fact, applying the product rule gives

(cg)′ = c′ · g + c · g′ = 0 + c · g′ = cg′.

5. Let f(x) = anxn + · · · + a1x + a0 be a polynomial. Then

f ′(x) = nanxn−1 + · · · + a1.

In fact,

f ′(x) = (anxn)′ + · · · + (a1x)′ + (a0)′ sum rule
= nanxn−1 + · · · + a1 + 0 items 1, 3, 4
= nanxn−1 + · · · + a1.
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2.16 Example: reciprocal rule

Suppose f is differentiable. By applying the quotient rule, we get the following reciprocal
rule: [

1
f(x)

]′

= (1)′ · f(x) − 1 · f ′(x)
f(x)2 = − f ′(x)

f(x)2 .

2.17 Example: horizontal tangent line

Find points where the tangent lines of y = f(x) = 2x3 − 3x2 − 12x + 1 are horizontal.

Solution A line is horizontal if and only if the slope of the line is zero. Since the slope of
the tangent line is given by f ′(x), we just need to find points where f ′(x) = 0.

Since (
2x3 − 3x2 − 12x + 1

)′

= 2 · 3x2 − 3 · 2x − 12
= 6(x2 − x − 2)
= 6(x − 2)(x + 1),

we know that at x = 2 and x = −1, the tan-
gent lines are horizontal.

x

y

y = 2x3 − 3x2 − 12x + 1

−1 2

−19

8

O

2.18 MATLAB: rules of differentiation

With diff, we can easily calculate the derivatives of f(x) + g(x), f(x) − g(x), f(x) g(x)

and f(x)
g(x)

. Following examples show the derivatives of f(x) g(x) and f(x)
g(x)

in MATLAB.

>> syms f(x) g(x);
>> diff(f(x)*g(x),x)

ans =

f(x)*diff(g(x), x) + g(x)*diff(f(x), x)

>> diff(f(x)/g(x),x)

ans =

diff(f(x), x)/g(x) - (f(x)*diff(g(x), x))/g(x)^2
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Differentiation of Trigonometric Functions

2.19 Theorem: derivatives of trigonometric functions

1. (sin x)′ = cos x;

2. (cos x)′ = − sin x;

3. (tan x)′ = sec2 x;

4. (csc x)′ = − csc x cot x;

5. (sec x)′ = sec x tan x;

6. (cot x)′ = − csc2 x.

Justification:

The derivatives of all six trigonometric functions can be found as follows.

1. By using some trigonometric identities (addition and double angle identities), continuity

of sin x, and the limit lim
h→0

sin h

h
= 1, we have

(sin x)′ = lim
h→0

sin(x + h) − sin x

h

= lim
h→0

sin x cos h + cos x sin h − sin x

h

= lim
h→0

sin x(cos h − 1) + sin h cos x

h

= lim
h→0

[
sin x · −2 sin2(h/2)

h
+ cos x · sin h

h

]
= sin x · lim

h→0

[
− sin(h/2) · sin(h/2)

h/2

]
+ cos x · lim

h→0

sin h

h

= 0 + cos x = cos x.

2. By using some trigonometric identities (addition and double angle identities), continuity

of sin x, and the limit lim
h→0

sin h

h
= 1, we have

(cos x)′ = lim
h→0

cos(x + h) − cos x

h

= lim
h→0

cos x cos h − sin x sin h − cos x

h

= lim
h→0

cos x(cos h − 1) − sin h sin x

h

= lim
h→0

[
cos x · −2 sin2(h/2)

h
− sin x · sin h

h

]
= cos x · lim

h→0

[
− sin(h/2) · sin(h/2)

h/2

]
− sin x · lim

h→0

sin h

h

= 0 − sin x = − sin x.
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3. By applying the quotient rule, we have

(tan x)′ =
(

sin x

cos x

)′

= (sin x)′ cos x − sin x(cos x)′

cos2 x

= cos x cos x − sin x(− sin x)
cos2 x

= cos2 x + sin2 x

cos2 x
= sec2 x.

4. By applying the quotient rule, we have

(csc x)′ =
(

1
sin x

)′

= (1)′ sin x − (sin x)′

sin2 x

= − cos x

sin2 x
= − cot x csc x.

5. By applying the quotient rule, we have

(sec x)′ =
(

1
cos x

)′

= (1)′ cos x − (cos x)′

cos2 x

= sin x

cos2 x
= tan x sec x.

6. By applying the quotient rule, we have

(cot x)′ =
(cos x

sin x

)′
= (cos x)′ sin x − cos x(sin x)′

sin2 x

= − sin x sin x − cos x cos x

sin2 x

= − cos2 x − sin2 x

sin2 x
= − csc2 x.

2.20 MATLAB: derivatives of trigonometric functions

We can calculate the derivatives of trigonometric functions easily using command diff.
Moreover, with the help of the variable precision arithmetic command vpa and the symbolic
substitution command subs, we can calculate the value of the derivative of a trigonometric
function at a certain point. The following example shows the calculations of f ′(x), where
f(x) = sin(x), and f ′(1).

>> syms x;
>> f = sin(x);
>> d = diff(f)

d =

cos(x)
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>> v1 = subs(d,x ,1)

v1 =

cos (1)

>> vpa(v1)

ans =

0.54030230586813971740093660744298

2.21 Example: tangent line - trigonometric functions

Find the equation of horizontal tangent line(s) of y = f(x) = sin x + cos x in (0, π).

Solution Horizontal tangent lines have zero slope. The slope of the tangent line is given
by the derivative of f . Thus we calculate

f ′(x) = (sin x + cos x)′ = cos x − sin x = 0 =⇒ tan x = 1.

Solving the equation gives x = π/4. Since
f( π

4 ) = sin π
4 + cos π

4 =
√

2, we get the equa-
tion of the horizontal tangent line

y =
√

2.
x

y

y = sin x + cos x

y =
√

2

1
4 π 3

4 π π

−1

1

O

2.22 Engineering Example: electric current - capacitor

Consider a circuit with a capacitor below, where C is the capacitance of the capacitor, i(t)
is the current through the capacitor, and vC(t) is the voltage across the capacitor.

C

+ −
vC(t)

i(t)

Given that vC(t) = 4 cos t, where t ≥ 0, calculate the electric current i(t) where i(t) =
C dvC(t)

dt .
First, we calculate dvC (t)

dt , and we have

dvC(t)
dt

= −4 sin t.
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Therefore, the current i(t) is given by

i(t) = −4C sin t

where “-” specifies the direction of the current.

Chain Rule

2.23 Theorem: chain rule

If g is differentiable at a and f is differentiable at g(a), then the composite function F ,
defined by F (x) = f(g(x)), is differentiable at a and the derivative F ′(a) is given by the
product:

F ′(a) = f ′(g(a)) · g′(a).

Or
dy

dx
= dy

du
· du

dx
.

This is the so-called chain rule.

Justification:

Suppose u = g(x) is differentiable at a and y = f(u) is differentiable at b = g(a). If ∆x is
an increment in x and ∆u and ∆y are the corresponding increments in u and y, then, from
the hypotheses,

lim
∆x→0

∆u

∆x
= g′(a), lim

∆u→0

∆y

∆u
= f ′(b).

Thus,

∆u = g′(a)∆x + ε1∆x, where ε1 → 0 as ∆x → 0;
∆y = f ′(b)∆u + ε2∆u, where ε2 → 0 as ∆u → 0.

Hence,
∆y = [f ′(b) + ε2]∆u = [f ′(b) + ε2][g′(a) + ε1]∆x,

so that
∆y

∆x
= [f ′(b) + ε2][g′(a) + ε1].

Since g is differentiable at a, it must be continuous at a and thus lim
∆x→0

g(a + ∆x) = g(a) so
that ∆u goes to zero as ∆x goes to zero. This gives that both ε1 → 0 and ε2 → 0 as ∆x → 0.
Therefore,

F ′(a) = lim
∆x→0

∆y

∆x
= lim

∆x→0
[f ′(b) + ε2][g′(a) + ε1]

= f ′(b)g′(a) = f ′(g(a))g′(a).

This proves the chain rule.
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2.24 Example: chain rule

1. Compute the derivative of h(x) = sin2 x.
Solution Write y = f(u) = u2 and u = g(x) = sin x. Then h(x) = f(g(x)). Thus, by
the chain rule,

h′(x) = dy

du

∣∣∣∣
u=g(x)

· g′(x) = 2u|u=g(x) · cos x = 2 sin x cos x.

2. Compute the derivative of h(x) = sin(x2).
Solution Write y = f(u) = sin u and u = g(x) = x2. Then h(x) = f(g(x)). Thus, by
the chain rule,

h′(x) = dy

du

∣∣∣∣
u=g(x)

· g′(x) = cos u|u=g(x) · 2x = 2x cos(x2).

2.25 MATLAB: chain rule

The following example shows the calculation of F ′(x), where F (x) = f(g(x)), in MATLAB.
It verifies that the Chain Rule holds in general.

>> syms f(x) g(x);
>> F(x) = compose (f(x),g(x))

F(x) =

f(g(x))

>> diff(F(x))

ans =

D(f)(g(x))*diff(g(x), x)

2.26 Engineering Example: maximum wind speed

Consider the maximum wind speed at the site of the building. Denote the maximum
wind speed as V (the wind direction is ignored for simplicity) and the probability that this
maximum wind speed is no larger than v as FV (v). Empirical data indicate that, in many
locations, FV (v) has the following form:

FV (v) = e−( v
u )−k

where u and k are positive parameters.
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Specifically, in Boston, plausible values of u and k are 49.4 miles per hour (mph) and 6.5,
respectively. Hence, in Boston, FV (v) can be written as

FV (v) = e−( v
49.4 )−6.5

where the unit of the maximum wind speed V is mph.
Calculate F′

V (v) by the chain rule.
Let f(v) = ev and g(v) = −

(
v

49.4
)−6.5. Then, FV (v) can be rewritten as FV (v) = f (g(v)).

By the chain rule, we have

F′
V (v) = f ′ (g(v)) g′(v)

= eg(v)(−49.46.5)
(
v−6.5)′

= ae−( v
49.4 )−6.5

v−7.5,

where a = 6.5×49.46.5 ≈ 6.6395×1011. Note that in probability theory and statistics, FV (v)
is called the cumulative distribution function of V and F′

V (v) is called the probability density
function of V , which are both important functions to determine the statistical characteristics
of V .

2.27 Engineering Example: electric current in RC circuit

Consider a resistor-capacitor (RC) circuit below, where R is the resistance of the resistor,
C is the capacitance of the capacitor and vC(t) is the voltage across the capacitor.

C
+

−
vC(t)

R

−
+vI(t)

i(t)

Given that vC(t) = 1−e− t
RC (t ≥ 0), calculate the electric current i(t) where i(t) = C

dvC(t)
dt

.

First, we calculate dvC(t)
dt

. Let y = 1 − eu and u = − t
RC . Then, dvC(t)

dt
can be written as

dy

dt
. By the chain rule, we have

dy

dt
= dy

du
· du

dt
= −eu

(
− 1

RC

)
= 1

RC
e− t

RC .

Substituting the above result into i(t) = C
dvC(t)

dt
, we can obtain the electric current i(t), as

shown in the following:

i(t) = 1
R

e− t
RC .
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2.28 Engineering Example: reliability function

In reliability engineering, which is an interdisciplinary field of engineering and engineering
management, the reliability function gives the probability that a component will survive
beyond any given specified time. Suppose the reliability function of a component is given by

R(t) = e−
√

t (t ≥ 0).

Calculate d (1 − R(t))
dt

.

First, given the expression of R(t), d (1 − R(t))
dt

can be written as

d (1 − R(t))
dt

=
d
(

1 − e−
√

t
)

dt

Let f(t) = 1 − et and g(t) = −
√

t. Then, d (1 − R(t))
dt

can be rewritten as

d (1 − R(t))
dt

= df (g(t))
dt

.

By the chain rule, we have

df (g(t))
dt

= f ′ (g(t)) g′(t) = −eg(t)
(

− 1
2
√

t

)
= 1

2
√

t
e−

√
t.

Note that R(t) and d (1 − R(t))
dt

are the complementary cumulative distribution function
and the probability density function of the lifetime of the component, respectively. Besides
the engineering field, the reliability function can also be used for the study in other fields,
e.g., the duration of marriage, the death of a patient, etc. In these cases, the reliability
function is commonly known as the survival function.

Differentiation of Inverse Functions

2.29 Theorem: differentiation of inverse function

If f is differentiable and has an inverse function f−1 over an interval I, then f−1 is also
differentiable on I whose derivative equals

df−1(x)
dx

= 1
f ′(f−1(x))

= 1
df(u)

du

∣∣∣∣
u=f−1(x)

.
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For short, the formula can be re-written as

dx

dy
= 1

dy

dx

.

Justification:

We can apply the chain rule to prove the formula for differentiation of inverse functions.
If applying the differentiation with respect to x to the identity

f(f−1(x)) = x,

we obtain

df(f−1(x))
dx

= 1 =⇒ df(u)
du

∣∣∣∣
u=f−1(x)

· df−1(x)
dx

= 1

=⇒ df−1(x)
dx

= 1
df(u)

du

∣∣∣∣
u=f−1(x)

.

2.30 Example: derivative of n
√

x

Let f(x) = xn with n a positive integer, then f−1(x) = n
√

x. We write f(u) = un. Thus
df(u)

du
= nun−1. Thus we get df(u)

du

∣∣∣∣
u=f−1(x)

= n( n
√

x)n−1, and

(
x

1
n

)′
= ( n

√
x)′ = 1

n( n
√

x)n−1 = 1
n

x
1
n −1.

2.31 Example: derivative of xa

Consider the function xa where a is a rational number. If a is positive, we can write
a = n/m, where n and m are positive integers, so that

xa =
(

m
√

x
)n

.

Write g(x) = m
√

x and f(u) = un. Then xa = f(g(x)). Applying the chain rule, we get

(xa)′ = dun

du

∣∣∣∣
u= m

√
x

·
(

m
√

x
)′ = n

(
m
√

x
)n−1 · 1

m
x

1
m −1

= n

m
x

n−1
m + 1

m −1 = n

m
x

n
m −1 = axa−1.

If a is negative, we can write xa = x−b, where b = −a is a positive rational number. Then
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xa = 1
xb

. Applying the quotient rule gives

(xa)′ = −
(
xb
)′

(xb)2 = −bxb−1

x2b
= −bx−b−1 = axa−1.

In summary, for any rational number a, we have

(xa)′ = axa−1.

2.32 Theorem: derivatives of inverse trigonometric functions

1. (sin−1 x)′ = 1√
1 − x2

;

2. (cos−1 x)′ = − 1√
1 − x2

;

3. (tan−1 x)′ = 1
1 + x2 ;

4. (csc−1 x)′ = − 1
|x|

√
x2 − 1

;

5. (sec−1 x)′ = 1
|x|

√
x2 − 1

;

6. (cot−1 x)′ = − 1
1 + x2 .

Justification:

We can use the formula of derivative of inverse functions to calculate the derivatives of the
inverse trigonometric functions. For example,(

sin−1 x
)′ = 1

(sin u)′ |u=sin−1(x)
= 1

cos(sin−1 x)
.

The last expression can be simplified as fol-
lows. Let θ = sin−1 x, then sin θ = x. Draw
a right triangle with one angle |θ| whose op-
posite side has length |x| and hypotenuse has
length 1. Then the adjacent side has length√

1 − x2. Thus, cos θ =
√

1 − x2.
√

1 − x2

|x|
1

|θ|

Hence, (
sin−1 x

)′ = 1
cos θ

= 1√
1 − x2

.

The other five derivatives can be calculated similarly.

2.33 Engineering Example: roof truss design

There is a symmetrical roof truss shown below, where the span AB is 16 m.
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A B

C

θ

r

Now, we need to design the rise r. Find the rate at which the angle θ between the rafter AC
and the span AB changes with the rise r, i.e., find dθ

dr .
First, let the length of the span AB be lAB. We note that tan θ = r

1
2 lAB

= r
8 . So, we have

θ = tan−1
(r

8

)
.

Let u = r
8 , f(x) = tan x, then θ = f−1(u). According to the chain rule, we have

dθ

dr
= df−1(u)

dr

= df−1(u)
du

du

dr
.

Moreover, according to the theorem for the differentiation of inverse function, we can calculate

df−1(u)
du

= 1
df(x)

dx

∣∣∣
x=f−1(u)

= 1
sec2

(
tan−1(u)

)
=

cos2 (tan−1(u)
)

sin2 (tan−1(u)
)

+ cos2
(
tan−1(u)

)
= 1

1 + tan2 (tan−1(u)
)

= 1
1 + u2 .

Therefore, we can get

dθ

dr
= 1

1 + u2
du

dr

= 1
1 +

(
r
8
)2

1
8

= 8
r2 + 64

.
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2.3 Differentiation of Exponential and Logarithmic Functions

2.34 Theorem: derivatives of exponential functions

(ex)′ = ex.

In general, for any a > 0,
(ax)′ = ax ln a.

Justification:

Since e = lim
x→+∞

(
1 + 1

x

)x

, by making a change of variable, we get

e = lim
y→0+

(1 + y)1/y.

From the continuity of the logarithmic function, we have

lim
y→0+

ln(1 + y)
y

= lim
y→0+

ln(1 + y)1/y = ln e = 1.

Denote y = eh − 1. It is easy to see that y → 0+ is equivalent to h → 0+. Thus, we get

lim
h→0+

h

eh − 1
= lim

y→0+

ln(1 + y)
y

= 1.

We further get

lim
h→0−

h

eh − 1
= lim

h→0+

−h

e−h − 1
= lim

h→0+

heh

eh − 1
= 1.

So, we know that lim
h→0

h

eh − 1
= 1. Hence,

(ex)′ = lim
h→0

ex+h − ex

h
= ex · lim

h→0

eh − 1
h

= ex.

In general,

(ax)′ = lim
h→0

ax+h − ax

h
= ax · lim

h→0

ah − 1
h

= ax ln a · lim
h→0

eh ln a − 1
h ln a

= ax ln a.

2.35 Theorem: derivatives of logarithmic functions

(ln x)′ = 1
x

.
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In general, for any a > 0, a ̸= 1,
(loga x)′ = 1

x ln a
.

Justification:

Let f(u) = au and u = loga x. Then the equality aloga x = x can be re-written as au = x.
Applying the chain rule, we get

au ln a · du

dx
= 1.

Hence,
(loga x)′ = du

dx
= 1

au ln a
= 1

x ln a
.

2.36 Example: derivative of ln |x|

Show that (ln |x|)′ = 1
x

for any x ̸= 0.

Solution In fact, we know that for x > 0,

(ln |x|)′ = (ln x)′ = 1
x

.

If x < 0, then, by the chain rule,

(ln |x|)′ = [ln(−x)]′ = 1
−x

· (−1) = 1
x

.
x

y

y = ln |x| y = 1
x

−1 1 2

1

O

2.37 Example: derivative of composite function

Calculate the derivative of ln(ax + 1).

Solution By applying the chain rule, we have

[ln(ax + 1)]′ = 1
ax + 1

· (ax + 1)′ = ax ln a

ax + 1
.
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Logarithmic Differentiation

2.38 Method: logarithmic differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of
Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y′.

2.39 Example: logarithmic differentiation

The “logarithmic differentiation” method can often be used to calculate the derivatives for
exponential functions in the form [u(x)]v(x), or products u1(x)u2(x) · · · uk(x) with relatively
larger k.

1. Calculate the derivative of xµ where x > 0 and µ is a real constant.

Solution Let f(x) = xµ. Taking logarithm of both sides gives

ln f(x) = ln xµ = µ ln x.

Then we can take derivative of both sides of the last equation and apply the chain rule
to obtain

1
f(x)

f ′(x) = µ · 1
x

= µx−1.

Thus,
f ′(x) = f(x) · µx−1 = µxµ−1.

2. Calculate the derivative of xx where x > 0.

Solution Let f(x) = xx. Taking logarithm of both sides gives

ln f(x) = ln xx = x ln x.

Then we can take derivative of both sides of the last equation and apply the chain rule
to obtain

1
f(x)

f ′(x) = ln x + x · 1
x

= ln x + 1.

Thus,
f ′(x) = f(x) · (ln x + 1) = xx(ln x + 1).
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3. Calculate the derivative of f(x) = ex
√

1 − x2

1 + x + x2 .

Solution We can calculate this derivative directly using the product rule and the
quotient rule. Since there are many terms, it is quite involved. In the following, we
make use of logarithm for a simpler calculation. In fact, we have

ln f(x) = ln ex
√

1 − x2

1 + x + x2

= x + 1
2 ln(1 − x2) − ln(1 + x + x2).

Taking derivative of both sides of the equation and applying the chain rule, we obtain

1
f(x)

f ′(x) = 1 − x

1 − x2 − 1 + 2x

1 + x + x2 ,

so that
f ′(x) = ex

√
1 − x2

1 + x + x2

(
1 − x

1 − x2 − 1 + 2x

1 + x + x2

)
.

2.40 Engineering Example: atmospheric pressure

The atmospheric pressure on earth changes with the altitude of the surface. The weather
conditions, such as the temperature and the humidity, also affect the atmospheric pressure,
so it is necessary to know these to calculate an accurate atmospheric pressure at a certain lo-
cation. However, for general conditions, the National Aeronautics and Space Administration
(NASA) has averaged the conditions for all parts of the earth year-round, and it is shown
that the atmospheric pressure decreases as the altitude increases.

Specifically, at low altitudes above sea level (e.g., the first 1000 meters above sea level),
the atmospheric pressure decreases by approximately 11.3 Pa per meter. For higher altitudes
where the standard temperature lapse rate (i.e., the rate at which the temperature changes
with the altitude) is zero, the atmospheric pressure is shown in the following equation:

P (h) = Pbe
− gM

RTb
(h−hb)

where
Parameter Explanation

Pb static pressure of layer b (Pa)
g gravitational acceleration : 9.80665

(
m/s2

)
M molar mass of Earth’s air : 0.0289644 (kg/mol)
R universal gas constant : 8.3144598 (J/mol/K)
Tb standard temperature of layer b (K)
hb height at bottom of layer b (m)

with b ∈ [0, 6] (b ∈ Z) in accordance with each of seven successive layers of the atmosphere.

Calculate dP (h)
dh

.
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In P (h), we treat h as the independent variable and all the other parameters as constants.
Then, by the chain rule, we have

dP (h)
dh

= Pbe
− gM

RTb
(h−hb)

(
− gM

RTb
(h − hb)

)′

= − gM

RTb
Pbe

− gM
RTb

(h−hb)
.

Note that the result above represents the rate at which the atmospheric pressure changes
with the altitude.

For example, in the stratosphere (i.e., b = 1), the standard temperature lapse rate is 0. We

thus can use the above expressions of P (h) and dP (h)
dh

to calculate the atmospheric pressure
and its changing rate, respectively. In particular, when b = 1, we have

Parameter Value
P1 22632.10 (Pa)
T1 216.65 (K)
h1 11000 (m)

Therefore, P (h) and dP (h)
dh

in the stratosphere can be calculated as follows:

P (h) = 22632.10e− 9.80665×0.0289644
8.3144598×216.65 (h−11000)

≈ 2.2 × 104e−1.6×10−4(h−11000) (Pa),
dP (h)

dh
= −9.80665 × 0.0289644

8.3144598 × 216.65
× 22632.10 × e− 9.80665×0.0289644

8.3144598×216.65 (h−11000)

≈ −3.6e−1.6×10−4(h−11000) (Pa/m).

Note that the sign “−” in dP (h)
dh

means that the atmospheric pressure decreases with the
altitude.

2.41 Engineering Example: entropy - information theory

First introduced by Claude Shannon in 1948, in information theory, the entropy is used
to quantitively measure the information which is produced by a stochastic source of data.
Specifically, when a low-probability event occurs at the source, then the event carries more
information than when a high-probability event occurs. The amount of information conveyed
by each event becomes a random variable whose expected value is the entropy. Hence, the
low-probability event has more entropy. In general, the more uncertain a event is, the more
information the event carries and the more the entropy of this event is. In other words, the
entropy refers to uncertainty or disorder.

For a communication system, if it has two inputs 0 and 1 and they occur with probability
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p and 1 − p (0 < p < 1), respectively, then the entropy of the source is defined as

H(p) = −p log2 p − (1 − p) log2(1 − p).

Calculate dH(p)
dp in this communication system.

By applying the product rule and the chain rule, we have

dH(p)
dp

= − log2 p − p (log2 p)′ − (−1) log2(1 − p) − (1 − p) (log2(1 − p))′

= − log2 p − p
1

p ln 2
+ log2(1 − p) − (1 − p) −1

(1 − p) ln 2
= log2(1 − p) − log2 p.

Note that dH(p)
dp shows the changing rate of the entropy H(p) with respect to the probability

of the input p. Now, we investigate how H(p) changes with p.
In particular, since log2(1 − p) is a decreasing function of p and log2 p is an increasing

function of p, dH(p)
dp is thus a decreasing function of p. Moreover, we notice that when p is

small, dH(p)
dp > 0; while when p gets bigger and approaches 1, dH(p)

dp < 0. We thus know that
there exists a point p∗ ∈ (0, 1) such that H(p∗) = 0. Furthermore, since dH(p)

dp > 0 means
H(p) increases with p and dH(p)

dp < 0 means H(p) decreases with p, the entropy H(p) is thus
maximized at p∗. This shows that when p is neither too small nor too big, i.e., the input is
more uncertain, more entropy can be achieved.

Actually, we can plot the figure of H(p) as
follows:

Indeed, we see from the figure above that
H(p) increases with p up to a certain point,
denoted as p∗, then it decreases with p. In
other words, more entropy is obtained when
p is neither too big nor too small, i.e., when
the input is more uncertain.

p

H(p)

y = log2(1 − p) − log2 p

1p∗

1

O

2.4 Implicit Differentiation

2.42 Example: implicit differentiation - circle

For the function y = f(x) defined by y2 + x2 = 1, we can take the derivative of y with
respect to x of both sides of the equation. By treating y as a function of x and applying the
chain rule, we get

d
(
x2 + y2)

dx
= 0 =⇒ 2x + 2y · dy

dx
= 0,
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so that
dy

dx
= −x

y
.

This function y = f(x) is defined implicitly. We keep in mind that y is a function of x.

We can find the derivative dy

dx
by “implicit differentiation”.

2.43 Method: implicit differentiation

1. Replace y by y(x) in the given equation which defines the function y = y(x) implicitly.

2. Differentiate both sides of the equation with respect to x, by applying the rules of
differentiation.

3. Solve for dy

dx
from the resulting equation.

2.44 Example: implicit differentiation

The equation 2y4 − x2 − sin y + 1 = 0 (x > 0) gives a curve on the plane. Use implicit

differentiation to find y′ = dy

dx
and then determine the tangent line of the curve at the point

P = (1, 0).
Solution By treating y as a function of x, we differentiate both sides of the equation

2y4 − 2x2 − sin y + 1 = 0 with respect to x and get

8y3y′ − 2x − y′ cos y = 0.

Solving the equation for y′ gives
y′ = 2x

8y3 − cos y
.

The point P = (1, 0) satisfies the equation
and thus lies on the curve. The tangent line
of the curve at the point has slope

y′|P = 2(1)
8(03) − cos 0

= −2.

Hence the tangent line at P is given by the
equation

y = −2(x − 1).

x

y

y = −2(x − 1)

2y4 − x2 − sin y + 1 = 0

1 2

1

O



82 Differentiation

2.45 MATLAB: implicit differentiation

MATLAB supports the implicit differentiation if the symbolic function y(x) is appropriately
created. The following example shows the calculation of y′ in MATLAB, where x and y satisfy
the equation 2y4 − x2 − sin y + 1 = 0.

>> syms x y(x) t
>> f = 2*y(x)^4 - x^2 - sin(y(x)) + 1;
>> d = diff(f,x)

d =

8*y(x)^3* diff(y(x), x) - 2*x - cos(y(x))*diff(y(x), x)

>> d0 = subs(d,diff(y(x),x),t)

d0 =

8*t*y(x)^3 - 2*x - t*cos(y(x))

>> s = solve(d0 ,t)

s =

-(2*x)/( cos(y(x)) - 8*y(x)^3)

where d0 = subs(d,diff(y(x),x),t) is to replace diff(y(x),x) with t, so that the com-
mand solve can work to obtain the expression of t (i.e., the expression of diff(y(x),x) or
y′). Note that if we solve d = 0 with respect to diff(y(x),x) directly, i.e., using command
solve(d,diff(y(x),x)), MATLAB is unable to find the explicit solution.

Moreover, based on the expression of diff(y(x),x) or y′, which was calculated above, we
can easily determine the slope of the tangent line at point (1, 0).

>> s_x = subs(s,x ,1) % substitute x = 1

s_x =

-2/( cos(y(1)) - 8*y(1) ^3)

>> s_xy = subs(s_x ,y ,0) % substitute y = 0

s_xy =

-2
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MATLAB shows that the slope of the tangent line at point (1, 0) is −2.

2.5 Related Rates

2.46 Example: application - related rates

John observes a rising helium balloon. He
stands 100 meters away from the launch site.
The balloon rises vertically at the constant
speed 2 meter/second. How fast is the angle
of the elevation of the balloon increasing 50
seconds after the launch? (The angle of ele-
vation is the angle between the ground and
John’s line of sight to the balloon.)

I ♡ HK

100
θ(t)

Solution Let y(t) be the distance traveled by the balloon from the launch site at time t.
Let θ(t) be the angle of elevation at time t.

The speed of the balloon is y′(t), which equals to 2 m/s. “How fast is the angle of the
elevation” means that we need to find the rate of change of θ(t), i.e., the derivative θ′(t).

The relation between y(t) and θ(t) is given by

y(t) = 100 · tan θ(t).

Taking the differentiation of both sides of the equation above, we obtain

y′(t) = 100 · θ′(t)
cos2 θ(t)

.

Since we need to find θ′(t), we obtain

θ′(t) = y′(t)
100

cos2 θ(t) = 2
100

cos2 θ(t).

We need to find cos θ(t) at t = 50. In fact,

y(50) = 2 × 50 = 100.

From the relation between y(t) and θ(t), we have 100 = 100 · tan θ(50), so that θ(50) = π
4 .

Thus we obtain
cos θ(50) = cos( π

4 ) =
√

2
2

.

Therefore, we have

θ′(50) = 2
100

·
(√

2
2

)2

= 0.01.
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Since two rates of change, i.e., derivatives θ′(t) and y′(t), are related by the equation

θ′(t) = y′(t)
100

cos2 θ(t).

This is a typical problem of related rates. In general, so-called related rates problems
involve finding a rate at which a quantity changes by relating that quantity to other quantities
whose rates of change are known.

2.47 Example: related rates - area

An oil tank springs an oil leak on the ground, and the oil spreads in a circular patch around
the tank. If the radius of the oil patch increases at a rate of 10 meters/hour, how fast is the
area of the patch increasing when the patch has a radius of 20 meters?

Solution
Step 1: Label all variables:
Let r(t) be the radius of the oil patch at time t and A(t) be the area of the oil patch at

time t.
The rate of the area change is the quantity A′(t).
Step 2: Write the relation between concerned variables:
The area of the patch is

A(t) = πr(t)2.

Step 3: Write the relations between rates:
We take the differentiation with respect to t on both sides of the equation above,

A′(t) = 2πr(t) · r′(t).

Step 4: List all known quantities:
The radius of the oil patch increases at a rate of 10 meters/hour, that is,

r′(t) = 10.

At the time t0 when the patch has a radius of 20 meters, we have

r(t0) = 20, r′(t0) = 10.

Step 5: Find the desired rate:
Combining all the results above gives

A′(t0) = 2πr(t0) · r′(t0) = 2π · 20 · 10 = 400π ≈ 1256.64 (m2/h).

2.48 Example: related rates - distance

Two sailing boats sail towards a docking
port. Boat A sails due west at the con-
stant speed 8 miles/hour and Boat B sails due
north at the constant speed 10 miles/hour.
How fast is the distance between the boats
changing when the westbound boat is 30
miles from the port and the northbound boat
is 40 miles from the port?

30

40

P
A

B
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Solution
Step 1: Label all variables:
Let x(t) be the distance of the westbound boat to the port at time t. Let y(t) be the

distance of the northbound boat to the port at time t. Let z(t) be the distance between two
boats at time t.

The rate of the distance change is the quantity z′(t).
Step 2: Write the relation between concerned variables:
From the Pythagorean theorem,

z(t)2 = x(t)2 + y(t)2.

Step 3: Write the relations between the rates:
We take the differentiation with respect to t on both sides of the equation above,

2z(t) · z′(t) = 2x(t) · x′(t) + 2y(t) · y′(t) =⇒ z′(t) = x(t) · x′(t) + y(t) · y′(t)
z(t)

.

Step 4: List all given quantities:
At the time t0 when westbound boat is 30 miles from the port, we have

x(t0) = 30, y(t0) = 40, x′(t0) = −8, y′(t0) = −10.

Notice that the derivatives x′(t) and y′(t) are negative, since the distances from both boats
to the port decrease in time.

Step 5: Determine other quantities from the given quantities:
We can determine the quantity z(t0) by using the Pythagorean identity:

z(t0) =
√

x(t0)2 + y(t0)2 =
√

302 + 402 = 50.

Step 6: Find the desired rate:
Combining all the results above gives

z′(t0) = x(t0) · x′(t0) + y(t0) · y′(t0)
z(t0)

= −8 · 30 − 10 · 40
50

= −12.8 (mi/h).

2.6 Linear Approximation

2.49 Example: linear approximation

x

y

y = 1
2 x2

tangent line

1

1
2

O

x

y

y = 1
2 x2

tangent line

1

1
2

O
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Geometrically, the tangent line of a graph y = f(x) at x = a is close to the graph when x
is very close to a. Algebraically, the value f(a) + f ′(a)(x − a) is very close to f(x) when x is
close to a, that is, when x ≈ a,

f(x) ≈ f(a) + f ′(a)(x − a).

2.50 Theorem: linear approximation

Let f be differentiable at a. Then the linear function y = f(a) + f ′(a)(x − a) approximates
y = f(x) near x = a, that is, when x ≈ a,

f(x) ≈ f(a) + f ′(a)(x − a).

This linear function y = f(a) + f ′(a)(x − a) is called the linear approximation (or
linearization) of f at x = a.

2.51 Example: linear approximation - numerical approximation

Consider the function f(x) =
√

1 + x. Its derivative is f ′(x) = 1
2
√

1 + x
. The tangent

line at x = 0 is y = f(0) + f ′(0)x = 1 + 1
2 x. We know that, for small x, y = 1 + 1

2 x

approximates
√

1 + x. Numerically, we can verify this. For different values of small x, we
make the following table

x
√

1 + x 1 + 1
2 x

0.1 1.04880884817 1.05
0.01 1.00498756211 1.005
0.001 1.00049987506 1.0005

We see that the approximation is getting better when x is closer to 0.

2.52 Example: linear approximation - numerical approximation

Find approximate value of 3
√

1.02.

Solution Consider the function f(x) = 3
√

1 + x. Since f ′(x) = 1
3 3
√

(1 + x)2
, the linear

approximation of f is
y = 1 + 1

3 x.

Thus, we have an approximate value of 3
√

1.02:
3
√

1.02 ≈ 1 + 1
3 (0.02) ≈ 1.006667.

The real value of 3
√

1.02 is 1.0066227 · · · .
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Differential

2.53 Definition: differential

The differential of y = f(x) at x, denoted
as dy or df(x), is

dy = f ′(x) ∆x.

We often call the change in x, ∆x, as the
differential of the independent variable, de-
noted as dx, that is dx = ∆x. Hence,

dy = f ′(x) dx.
x

y

O

Q

x x + ∆x

P

dx = ∆x

∆y

S

R

dy

2.54 Example: differential - numerical approximation

Compute the differential of the function f(x) = cos x. Use it to find approximate value of
cos 94◦.

Solution For the function y = cos x, we have y′ = − sin x, so that dy = − sin x dx. Thus,

cos(a + ∆x) − cos a = ∆y ≈ dy = − sin a dx = − sin a ∆x.

Notice that 94◦ = 90◦ + 4◦ = 1
2 π + 4

180 π = 1
2 π + 1

45 π. By taking a = 1
2 π and ∆x = 1

45 π, we
have

cos 94◦ = cos(a + ∆x) ≈ cos a − sin a · ∆x

= cos 1
2 π − sin 1

2 π · ( 1
45 π)

= 0 − 1 · 1
45 π ≈ −0.0698132.

The real value of cos 94◦ is −0.0697565 · · · .

2.55 MATLAB: linear approximation

In MATLAB, the linear approximation of a function can be calculated using the command
taylor. The following examples show the calculations of the linear approximations of f(x) =
3
√

1 + x at x = 0 and f(x) = cos x at x = a, respectively.

>> syms x;
>> f = (1+x) ^(1/3) ;
>> taylor (f,x,0,'Order ' ,2)

ans =
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x/3 + 1
>> syms x a;
>> f = cos(x);
>> taylor (f,x,a,'Order ' ,2)

ans =

cos(a) + sin(a)*(a-x)

Because the linear approximation f(x) ≈ f(a) + f ′(a)(x − a) has two terms, we specify
‘Order’ and 2 in the command taylor in the MATLAB code above.

2.56 Engineering Example: small signal analysis

In electronic circuits, many of the components that make up of the circuits are nonlinear,
e.g., diodes, transistors and vacuum tubes. For these nonlinear components, the current
through them is not proportional to the voltage, which makes calculations and analysis
complicated. Moreover, there are many applications where nonlinear devices only operate
in a very restricted range of voltage or current, such as many sensor applications and audio
amplifiers. For easy calculations and analysis of the voltage and current, a method called
small signal analysis (or incremental analysis) is proposed to approximate circuits containing
nonlinear elements with linear equations over a restricted region. Specifically, if the time-
varying alternating current (AC) signal of an electronic current is small compared to the
deterministic direct current (DC) bias, then using linear approximation, the nonlinear
circuit elements are replaced by linear elements over a restricted range in the resultant AC-
equivalent circuit. The small signal analysis method widely applies to electronic circuits
where the AC signals are small compared to the DC ones, e.g., radio receivers, sensors,
telecommunications and signal processing circuits.

A nonlinear circuit example is shown in the following, where the diode is a nonlinear
component.

+

−
vD−

+ vI

iD

Parameter Description
VD DC voltage
ID DC current
vd AC voltage
id AC current

vD = VD + vd total voltage
iD = ID + id total current

vI input voltage

For the total voltage vD and the total current iD of the above circuit, we have iD = f (vD).
Note that iD is a nonlinear function of vD due to the nonlinear diode. We will then use the
small signal analysis method to approximate the behaviour of this circuit near the DC bias
point.

In particular, at vD = VD, using linear approximation, the function iD = f(vD) can be
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approximated as

iD ≈ f (VD) + df (vD)
dvD

∣∣∣∣
vD=VD

· (vD − VD)

= f (VD) + df (vD)
dvD

∣∣∣∣
vD=VD

· vd.

Note that iD = ID + id and ID can be written as ID = f (VD). Hence, the term
df (vD)

dvD

∣∣∣∣
vD=VD

· vd can be treated as the AC current id, and we have

id = df (vD)
dvD

∣∣∣∣
vD=VD

· vd.

Further, we note that df (vD)
dvD

∣∣∣∣
vD=VD

is independent of vd, so id is in proportion with vd

after linear approximation, i.e.,

id ∝ vd.

A graphical interpretation of the small signal analysis is shown below.

vD

iD

O

iD = f (VD) + df (vD)
dvD

∣∣∣∣
vD=VD

· vd

iD = f (vD)

VD

ID

A

B

vd

id

The point (VD, ID) representing the steady DC voltage and current is called the operating
point. Note that the small signal analysis is dependent on the operating point, i.e., the DC
bias voltage and current. From the figure above, we see that over a restricted range around
vD = VD, the time-varying AC current id becomes a linear function of the AC voltage vd (or
graphically, we approximate A with B in the restricted region), which facilitates the analysis
of the nonlinear circuit over this range.
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2.7 Higher Derivatives

2.57 Definition: higher derivatives

The second derivative of f is the derivative of the derivative of f :

f ′′(x) = (f ′)′ (x).

The third derivative of f is the derivative of the second derivative of f :

f ′′′(x) = (f ′′)′ (x).

In general, the n-th derivative of f is the derivative of the (n − 1)th derivative of f :

f (n)(x) =
(

f (n−1)
)′

(x).

2.58 Example: higher derivatives

Calculate the second derivative of f(x) = sin x2.

Solution We apply the chain rule to calculate the first derivative:

f ′(x) = (cos x2) · 2x = 2x cos x2.

Then we need to use product rule and the chain rule to calculate the second derivative:

f ′′(x) = (f ′(x))′ = (2x cos x2)′

= (2x)′ · cos x2 + 2x · (cos x2)′ = 2 cos x2 − 4x2 sin x2.

2.59 Example: higher derivatives - polynomials

For any polynomial Pn(x) of degree n, show that dk

dxk
Pn(x) = 0 for k > n.

Solution Since (xm)′ = mxm−1 for integer m, we know that dm

dxm
(xm) = m! and hence

dm+1

dxm+1 (xm) = (m!)′ = 0. Thus we obtain dk

dxk
(xm) = 0 if k > m. If k > n, then

dk

dxk
Pn(x) = dk

dxk
(a0 + a1x + · · · + anxn)

= a0
dk

dxk
(1) + a1

dk

dxk
(x) + · · · + an

dk

dxk
(xn)

= 0 + 0 + · · · + 0 = 0.
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2.60 Example: higher derivatives - sin x and cos x

Prove that

dn

dxn
sin x = sin(x + 1

2 nπ), dn

dxn
cos x = cos(x + 1

2 nπ).

Solution Both equalities can be proved by induction. Here we only demonstrate the proof
of the first equality.

Clearly, since (sin x)′ = cos x = sin(x + 1
2 π), the equality holds for n = 1.

Suppose the equality holds for n = k, that is, dk

dxk
sin x = sin(x + 1

2 kπ). Thus,

dk+1

dxk+1 sin x =
(

dk

dxk
sin x

)′

=
[
sin(x + 1

2 kπ)
]′

= sin(x + 1
2 kπ + 1

2 π)
= sin

[
x + 1

2 (k + 1)π
]

.

So, the equality holds for n = k + 1.
Hence, the first equality holds for all n ≥ 1.

2.61 Example: higher derivatives - implicit differentiation

For the function y = f(x) defined implicitly by y2 + x2 = 1, by implicit differentiation, we
get

2y
dy

dx
+ 2x = 0 =⇒ dy

dx
= −x

y
.

For finding the second derivative, we can adopt one of the following two approaches.
(1) By differentiating dy

dx
= −x

y
once more, we have

d2y

dx2 = d
dx

(
−x

y

)
= −

1 · y − x · dy

dx
y2

= −
1 · y − x ·

(
−x

y

)
y2 = −x2 + y2

y3 = − 1
y3 .

(2) By implicitly differentiating 2y
dy

dx
+ 2x = 0, we have

2
(

dy

dx

)2

+ 2y
d2y

dx2 + 2 = 0,
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so that

d2y

dx2 = −
1 +

(
dy

dx

)2

y
= −

1 +
(

−x

y

)2

y

= −x2 + y2

y3 = − 1
y3 .

2.62 Example: acceleration

Let f(t) = g

2
t2 be the distance function of a free-fall object and t be the time. Its derivative

is the velocity v(t) = f ′(t) = gt. The rate of change of the velocity is the acceleration a(t):
a(t) = v′(t) = f ′′(t). Thus the acceleration is the second derivative of f(t).

In general, if y = f(t) is a distance function, then the first derivative of f is the velocity
v(t) = f ′(t) and the second derivative of f is the acceleration a(t) = v′(t) = f ′′(t).

2.63 Engineering Example: Newton’s second law of motion

Newton’s second law of motion presents the relationship between the net force acting on
an object and the rate of the object’s momentum change. This is one of the most important
laws in physics. It was first proposed by Isaac Newton in his book “Philosophiae Naturalis
Principia Mathematica (Mathematical Principles of Natural Philosophy)”, which was first
published in 1687. In terms of magnitude, Newton’s second law is given in the following:

F = dp

dt
= m

dv

dt
,

where F is the net force acting on an object, p is the momentum of the object, v is the speed,
and t is the time.

Note that the speed v equals to the rate of an object’s displacement change with respect to
time, i.e., v = dx

dt
, where x is the displacement of an object. Then, we can rewrite Newton’s

second law as

F = m
d2x

dt2 .

Suppose that a ball of mass 0.25 kg is rolling on the ground, and it starts to decelerate at
t = 0. The displacement of this ball from its original position at t = 0 is x(t) = 2t − 0.2t2

(0 ≤ t ≤ 5). What is the resistive force acting on the ball?
According to Newton’s second law, we have

F = m
d2x(t)

dt2 = 0.25 ×
d2 (2t − 0.2t2)

dt2 = 0.25 × d (2 − 0.4t)
dt

= −0.1 (N).

The result above shows that the magnitude of the resistive force acting on the ball is 0.1 N.
The sign “−” means the direction of the resistive force is opposite to the rolling direction of
the ball.
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Leibniz Formula

2.64 Theorem: Leibniz Formula

If f (n) and g(n) exits, so is (f · g)(n) and the Leibniz Formula holds:

[f(x) · g(x)](n) =
n∑

i=0

(
n

i

)
f (i)(x) · g(n−i)(x).

This is also called the Leibniz Rule.

Justification:

The formula can be proved by induction. In fact, it is clear that the formula holds for
n = 1:

[f(x) · g(x)]′ = f ′(x) g(x) + f(x) g′(x) =
1∑

i=0

(
1
i

)
f (i)(x) · g(1−i)(x).

Suppose the formula holds for n = k, that is,

[f(x) · g(x)](k) =
k∑

i=0

(
k

i

)
f (i)(x) · g(k−i)(x).

Thus,

[f(x) · g(x)](k+1)

=

[
k∑

i=0

(
k

i

)
f (i)(x) · g(k−i)(x)

]′

=
k∑

i=0

(
k

i

)[
f (i+1)(x) · g(k−i)(x) + f (i)(x) · g(k+1−i)(x)

]
= f (k+1)(x) g(x) +

k∑
i=1

(
k

i − 1

)
f (i)(x) · g(k+1−i)(x)

+
k∑

i=1

(
k

i

)
f (i)(x) · g(k+1−i)(x) + f(x) g(k+1)(x)

= f (k+1)(x) g(x)

+
k∑

i=1

[(
k

i − 1

)
+
(

k

i

)]
f (i)(x) · g(k+1−i)(x) + f(x) g(k+1)

=
k+1∑
i=0

(
k + 1

i

)
f (i)(x) · g(k+1−i)(x)

So, the Leibniz Formula holds for all n ≥ 1.
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2.65 Example: Leibniz Formula

Compute dn

dxn

(
x2ex

)
for n ≥ 1.

Solution We know that

(x2)′ = 2x, (x2)′′ = 2, (x2)(i) = 0 for all i > 2.

Thus, by the Leibniz Formula, we have

dn

dxn

(
x2ex

)
= x2(ex)(n) + n(x2)′(ex)(n−1) + n(n − 1)

2
(x2)′′(ex)(n−2)

=
[
x2 + 2nx + n(n − 1)

]
ex.
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Summary

Definition: basic concepts

derivative : f ′(x) = lim
h→0

f(x + h) − f(x)
h

higher derivative : f (n)(x) =
(
f (n−1))′ (x), n ≥ 2

differential : dy = f ′(x) dx

linear approximation : f(x) ≈ f(a) + f ′(a)(x − a)

Theorem: rules of differentiation

Suppose f ′(x) and g′(x) exist. Then the following rules of differentiation hold.

1. Sum Rule:
[f(x) + g(x)]′ = f ′(x) + g′(x).

2. Difference Rule:
[f(x) − g(x)]′ = f ′(x) − g′(x).

3. Product Rule:
[f(x) g(x)]′ = f(x) g′(x) + g(x) f ′(x).

4. Quotient Rule: If g(a) ̸= 0, then[
f(x)
g(x)

]′

= g(x) f ′(x) − f(x) g′(x)
[g(x)]2

.

5. Chain Rule: Suppose f ′ and g′ exist. Then

[f(g(x))]′ = f ′(g(x)) · g′(x),

or in Leibniz notation,
dy

dx
= dy

du
· du

dx
.

6. Inverse Function: Suppose f is one-to-one and differentiable with non-zero derivative.
Then [

f−1(x)
]′ = 1

f ′(f−1(x))
.

7. Leibniz Formula: Suppose f (n) and g(n) exist. Then

[f(x) · g(x)](n) =
n∑

i=0

(
n

i

)
f (i)(x) · g(n−i)(x).
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Theorem: derivatives of some elementary functions

1. (c)′ = 0

2. (xµ)′ = µxµ−1

3. (ex)′ = ex,
(ax)′ = ax ln a

4. (ln x)′ = 1
x

,

(loga x)′ = 1
x ln a

5. (sin x)′ = cos x

6. (cos x)′ = − sin x

7. (tan x)′ = sec2 x

8. (csc x)′ = − csc x cot x

9. (sec x)′ = sec x tan x

10. (cot x)′ = − csc2 x.

11. (sin−1 x)′ = 1√
1 − x2

12. (cos−1 x)′ = − 1√
1 − x2

13. (tan−1 x)′ = 1
1 + x2

14. (csc−1 x)′ = − 1
|x|

√
x2 − 1

15. (sec−1 x)′ = 1
|x|

√
x2 − 1

16. (cot−1 x)′ = − 1
1 + x2

Method: logarithmic differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws of
Logarithms to simplify.

2. Differentiate implicitly with respect to x.

3. Solve the resulting equation for y′.

Method: implicit differentiation

1. Replace y by y(x) in the given equation which defines the function y = y(x) implicitly.

2. Differentiate both sides of the equation with respect to x, by applying the rules of
differentiation.

3. Solve for dy

dx
from the resulting equation.



3
CHAPTER

Applications of Differentiation

3.1 Maximum and Minimum Values

3.1 Definition: extreme values

Suppose f is a function defined over a domain D and c is a number in D.

Definition: absolute extreme values

The number f(c) is the

• absolute maximum value of f if f(c) ≥ f(x) for all x in D;

• absolute minimum value of f if f(c) ≤ f(x) for all x in D.

Definition: local extreme values

The number f(c) is a

• local maximum value of f if f(c) ≥ f(x) when x is near c;

• local minimum value of f if f(c) ≤ f(x) when x is near c.

When f attains its extremum at a point x = c, we call x = c an extreme point of f .

3.2 Example: absolute maximum and absolute minimum

1. Consider f(x) = x2 defined over the interval [−1, 1]. From the graph of the function,
we see that
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• f has the absolute maximum value
f(±1) = 1;

• f has the absolute minimum value
f(0) = 0;

• f has two local maximum values
f(±1) = 1;

• f has one local minimum value
f(0) = 0.

x

y

y = f(x)

−1 1

1

O

2. Consider g(x) = x2 defined over the interval (−1, 1). From the graph of the function,
we see that

• g has no absolute maximum value;
• g has the absolute minimum value

g(0) = 0;
• g has no local maximum value;
• g has one local minimum value g(0) =

0. x

y

y = g(x)

−1 1

1

O

3. Consider h(x) = x2 defined over (−∞, +∞). From the graph of the function, we see
that

• h has no absolute maximum value;
• h has the absolute minimum value

h(0) = 0;
• h has no local maximum value;
• h has one local minimum value

h(0) = 0. x

y

y = h(x)

−1 1

1

O

4. Consider k(x) = 1
x

defined over (0, +∞). From the graph of the function, we see that

• k has no absolute maximum value;
• k has no absolute minimum value;
• k has no local maximum value;
• k has no local minimum value. x

y

y = k(x)

1

1

O
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5. Consider r(x) = cos x defined over (−∞, +∞). From the graph, we see that, for
n = 0, ±1, ±2, . . . ,

• r has the absolute maximum value
r(2nπ) = 1;

• r has the absolute minimum value
r((2n + 1)π) = −1;

• r has local maximum values r(2nπ) =
1;

• r has local minimum values r((2n +
1)π) = −1.

x

y

1

−1

y = r(x)

−π − 1
2 π 1

2 π πO

6. Consider the function p(x) = xe−x with the graph given below. We see that

• p has the absolute maximum value
p(1) = 1/e;

• p has no absolute minimum value;
• p has a local maximum values p(1) =

1/e;
• p has no local minimum value.

x

y

y = p(x)

1

1

8

O

7. For the function q(x) = |x|, we see that

• q has no absolute maximum value;
• q has the absolute minimum value

q(0) = 0;
• q has no local maximum value;
• q has one local minimum value q(0) =

0. x

y

y = q(x)

−1 1

1

O

3.3 Theorem: Fermat’s Theorem

If f has a local maximum or minimum value at an interior point c in the domain D of f ,
and if f ′(c) exists, then f ′(c) = 0.

A point c is an interior point of D if there is an open interval (a, b) such that c ∈ (a, b) ⊂
D.

Justification:

Without loss of generality, suppose f has a local maximum at c, that is,

f(x) ≤ f(c) for x sufficiently close to c.
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This implies that
f(c + h) − f(c) ≤ 0,

for all h sufficiently close to 0, since c is an interior point. Thus, if h > 0 and h is sufficiently
small, we have

f(c + h) − f(c)
h

≤ 0.

Since f is differentiable at c, we have

f ′(c) = lim
h→0+

f(c + h) − f(c)
h

≤ 0.

Similarly, if h < 0 and h is sufficiently small, we have

f(c + h) − f(c)
h

≥ 0.

Since f is differentiable at c, we have

f ′(c) = lim
h→0−

f(c + h) − f(c)
h

≥ 0.

Since both f ′(c) ≤ 0 and f ′(c) ≥ 0 hold, we get f ′(c) = 0.
The case of a local minimum can be proved in a similar manner.

Remark: interior point ⇐⇒ not a boundary point

That a point is an interior point means that it is not a boundary point. For example, the
point 0 is an interior point of the interval [−1, 1] since 0 ∈ (−1, 1) ⊂ [−1, 1]. The point −1 is
not an interior point of [−1, 1], but a boundary point.

The point 0 is not an interior point of the interval (0, 1) since it is even not a point in
(0, 1). In fact, 0 is a boundary point of (0, 1). The number 10−100 is an interior point of
(0, 1) since 10−100 ∈ (0.5 × 10−100, 1.5 × 10−100) ⊂ (0, 1).

Remark: locations of local extrema

Fermat’s Theorem concludes that a local extreme value f(c), where c is in the domain of
f , only occurs at one of the following three types of locations:

• an interior point where f ′(c) = 0;

• an interior point where f ′(c) does not exist;

• a boundary point.

3.4 Definition: critical point

Let f be defined over a domain D. A number c in D is called a critical point of f if
either f ′(c) = 0 or f ′(c) does not exist.
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3.5 Theorem: Fermat’s Theorem - rephrase

If f has a local maximum or minimum value at an interior point c in the domain D of f ,
then c is a critical point of f .

3.6 Example: local extreme occur at critical points

1. Consider the function p(x) = 2x3 − 3x2 − 12x + 1 with the graph given below. The
derivative of p is

p′(x) = 6x2 − 6x − 12 = 6(x2 − x − 2) = 6(x − 2)(x + 1).

Solving p′(x) = 0 gives x = 2 or x = −1.
Thus these two points are all the critical
points of p. From the graph, we see that
the function p attains local extreme values
at these points. x

y

y = 2x3 − 3x2 − 12x + 1

−1 2
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O

2. Consider the function q(x) = |x|. Since q(x) does not have derivative at x = 0, so that
x = 0 is a critical point. The function also attains a local minimum value as well as an
absolute minimum value at x = 0.

3.7 Pitfall: critical points do not necessarily yield local extreme values

Fermat’s Theorem states that a local extremed value only occurs at an interior critical
point or at a boundary point. However, not all critical points will yield local extreme values.

1. Consider g(x) = x3. Since g′(x) = 3x2,
x = 0 is a critical point of g. From the
graph of function, we see that x = 0 is not
a local extreme point.
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y = g(x)
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2. Consider the function

h(x) =

 cos x, if x ≤ −1;
sin x, if −1 < x ≤ 1;
2, if x > 1.

It is not differentiable at points x = −1
and 1, so that they are critical points.
From the graph, we see that x = −1 is a
local maximum point and 1 is not a local
extreme point.
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y = h(x)
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3.8 Theorem: Extreme Value Theorem

Let f be a continuous function defined over a finite closed interval [a, b]. Then f(x) has at
least one absolute maximum point and one absolute minimum point in the interval [a, b].

3.9 Example: continuous function on a finite closed interval

The function f(x) = x2 is continuous on
the finite closed interval [−1, 1]. So the Ex-
treme Value Theorem applies. In fact, the
function has the absolute maximum value
f(−1) = f(1) = 1 and the absolute minimum
value f(0) = 0. x

y

y = f(x)
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3.10 Pitfall: continuous function may not have absolute maximum

The function g(x) = x2 is continuous on
the finite interval (−1, 1). However, the Ex-
treme Value Theorem does not apply to the
function g, since the interval (−1, 1) is not
closed. In fact, it is easy to see that the func-
tion g does not have absolute maximum value. x

y

y = g(x)
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3.11 Pitfall: discontinuous function may have absolute extrema

Consider the function h:

h(x) =

 cos x, if x ≤ −1;
sin x, if −1 < x ≤ 1;
2, if x > 1.

The function is not continuous on the domain
(−∞, +∞), and the domain is not closed nor
finite. Nevertheless, it has an absolute maxi-
mum and absolute minimum.
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3.12 Method: finding absolute extrema

Given a continuous function f over a finite closed interval [a, b].

1. Find the critical points and evaluate the values of f at critical points.

2. Evaluate the values of f at the boundary points x = a and x = b.

3. The largest value and smallest value from steps 1 and 2 are the absolute maximum
value and the absolute minimum value respectively.

3.13 Example: absolute maximum and absolute minimum

Consider f(x) = x2 defined over the in-
terval [−2, 1]. The function f is continuous,
and the domain [−2, 1] is a finite closed in-
terval. Since the function f satisfies all the
hypotheses in the Extreme Value Theorem,
the function f must have the absolute maxi-
mum value and the absolute minimum value.
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y = f(x)
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To find the absolute extrema, we precede as follows:

(1) First try to determine the critical points. Indeed, by solving the equation f ′(x) = 2x =
0, we see that the critical point of f is x = 0. Thus, we get the value f(0) = 0.

(2) Next we evaluate the values of f at two boundary points: f(−2) = (−2)2 = 4 and
f(1) = 1.

(3) Among these three values, the largest one is f(−2) = 4 and the smallest one is f(0) = 0.
So the absolute maximum value occurs at x = −2 and the absolute minimum value occurs
at x = 0.

3.14 MATLAB: maximum and minimum values

1. To obtain the local maximum or minimum value of a function, we can first plot the
function in MATLAB to see the rough location of the local maximum or minimum value.
The following code shows how to plot the figure of the function p(x) = 2x3−3x2−12x+1.

>> syms x;
>> p(x) = 2*x^3 - 3*x^2 - 12*x + 1;
>> x_array = -3:0.05:3;
>> y_array = p( x_array );
>> figure
>> plot(x_array ,y_array ,'r')
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>> grid
>> xlabel ('x')
>> ylabel ('p(x)')

After running the MATLAB code above,
we have the figure for the function p.
From this figure, we see that, for the
function p, the local maximum value is
around x = −1 and the local minimum
value is around x = 2. According to Fer-
mat’s Theorem, we know that p′ (xmax) =
p′ (xmin) = 0, where xmax and xmin are the
points obtaining the local maximum value
and the local minimum value, respectively.
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To obtain the exact locations of the local maximum and minimum values of p, we need
the following MATLAB code.

>> d = diff(p);
>> d_fun = matlabFunction (d)

d_fun =

function_handle with value:

@(x)x.* -6.0+x .^2.*6.0 -1.2 e1

>> max_p = fzero(d_fun ,-1)

max_p =

-1

>> min_p = fzero(d_fun ,2)

min_p =

2

where matlabFunction(d) is to convert the symbolic function d to a function handle
which can be analyzed by the command fzero. Note that the command solve is
not used here, because MATLAB may not be able to obtain explicit solutions for some
equations; while fzero can numerically find the zero of a function near the initial guess.
MATLAB returns that the local maximum value can be achieved at x = −1, and the
local minimum value can be achieved at x = 2.
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2. The following example shows how to find the absolute minimum value of the function
f(x) = x2 − 2.1x + 1.1025. First, we plot the curve of f . The MATLAB code is shown
below.

>> syms x;
>> f(x) = x^2 - 2.1*x + 1.1025;
>> x_array = -1:0.2:3;
>> y_array = f( x_array );
>> figure
>> plot(x_array ,y_array ,'r')
>> xlabel ('x')
>> ylabel ('f(x)')
>> grid

Then, we have the figure showing the
graph of f .
From this figure, we see that the absolute
minimum value of f(x) is around x = 1.
To find the exact location of the abso-
lute minimum value, we need the following
MATLAB code.
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>> d = diff(f);
>> d_fun = matlabFunction (d)

d_fun =

function_handle with value:

@(x)x.*2.0 -2.1 e1 ./1.0 e1

>> min_p = fzero(d_fun ,1)

min_p =

1.0500

MATLAB returns that the absolute minimum value of f(x) can be achieved at x = 1.05.
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3.15 Engineering Example: fugacity coefficient

In chemical thermodynamics, the fugacity is an effective partial pressure of a real gas. It
equals the pressure of an ideal gas which has the same temperature and molar Gibbs free
energy as this real gas. For example, the Nitrogen gas (N2) at 0 ℃ and a pressure of P = 100
atmospheres (atm) has a fugacity of f = 97.03 atm. This means that the molar Gibbs free
energy of this real Nitrogen gas is the same with the ideal gas at 0 ℃ and a pressure of 97.03
atm. The pressure and the fugacity of a gas is related through a parameter called fugacity
coefficient, which is defined as φ = f

P
, where f is the fugacity and P is the pressure. For

example, the fugacity coefficient of the Nitrogen gas at 0 ℃ and a pressure of P = 100 atm
is 0.9703. Note that for the ideal gas, the fugacity coefficient is always 1.

The fugacity coefficient can be rewritten in the form of the compressibility factor which
is a correction factor describing the deviation of a real gas from ideal gas behaviour. In
particular, under certain conditions, the fugacity coefficient in terms of the compressibility
factor is provided as follows:

φ = f(x) = x − 1 − ln (x − 1) − ln
(

1 + 1
x

)
where x (x > 1) is the compressibility factor.

Use MATLAB to calculate the minimum value of the fugacity coefficient function and the
corresponding compressibility factor.

First, we plot the function f(x) = x − 1 − ln (x − 1) − ln
(
1 + 1

x

)
in MATLAB to see the

rough location of the minimum value. The code is shown in the following.

>> syms x
>> f(x) = x - 1 - log(x - 1) - log (1 + 1/x);
>> x_array = 1.1:0.1:10;
>> y_array = f( x_array );
>> figure
>> plot(x_array ,y_array ,'r')
>> grid
>> xlabel ('x')
>> ylabel ('f(x)')

From the graph of f , we see that the min-
imum value is around x = 2. According to
Fermat’s Theorem, to obtain the minimum
value of f(x), we need to calculate the value
of x which satisfies f ′(x) = 0.
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Next, we run the following MATLAB code.
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>> df = diff(f)

df(x) =

1/(x ^2*(1/ x + 1)) - 1/(x - 1) + 1

>> df_fun = matlabFunction (df)

df_fun =

function_handle with value:

@(x) -1.0./(x -1.0) +1.0./ x .^2./(1.0./ x+1.0) +1.0

>> x_min = fzero (df_fun ,2)

x_min =

1.8393

It shows that f ′(1.8393) = 0, i.e., the minimum value of f(x) is achieved when the compress-
ibility factor x = 1.8393.

Substituting x = 1.8393 into the fugacity coefficient function f(x), we have the minimum
value of the fugacity coefficient shown as follows.

>> f_min = vpa(f(x_min))

f_min =

0.58031458931953300345263227407065

The result shows that the minimum value of the fugacity coefficient is around 0.5803.

3.2 Monotone Functions and Mean Value Theorem

3.16 Definition: monotone functions

A function f is said to be

• increasing on an interval I if

f(x1) < f(x2) whenever x1 < x2 in I;

• decreasing on an interval I if

f(x1) > f(x2) whenever x1 < x2 in I.
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Such functions are also said to be monotone (or monotonic) functions.

3.17 Example: monotone functions

1. The function f(x) = x2 is decreasing on
the interval (−∞, 0) and increasing on the
interval (0, +∞).

x

y
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y = x2

O

2. The function g(x) = x3 is increasing on
the whole real line (−∞, +∞).

x

y

1

1
y = x3

O

3. The function h(x) = 1
x

is deceasing on the
interval (−∞, 0) as well as on the interval
(0, +∞).
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y = 1
x

O

4. The function k(x) = sin x is increasing on
the interval (− 1

2 π, 1
2 π) and decreasing on

the interval ( 1
2 π, 3

2 π).
x

y

− 1
2 π 1

2 π 3
2 π

−1

1
y = sin x

O

3.18 Theorem: Mean Value Theorem

Suppose f is a function that satisfies the following:

1. f is continuous on the closed interval [a, b].

2. f is differentiable in the open interval (a, b).
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Then there exists at least one number c in (a, b) such that

f ′(c) = f(b) − f(a)
b − a

or, equivalently,
f(b) − f(a) = f ′(c)(b − a).

x

y

f(a)

a

f(b)

bcO
x

y

f(a)

a

f(b)

bc1 c2O

Justification:

An equation of the line segment connecting (a, f(a)) and (b, f(b)) is

y = f(a) − f(b) − f(a)
b − a

(x − a).

As shown in the figure, at x with a ≤ x ≤ b, consider the auxiliary function

h(x) = f(x) − f(a) − f(b) − f(a)
b − a

(x − a).

x

y

f(a)

a

f(b)

b

h(x)

f(a) + f(b) − f(a)
b − a

(x − a)

f(x)

xO

Since f is continuous on [a, b], so is h. By the Extreme Value Theorem, there exist absolute
maximum point M and absolute minimum point m.

If one of m and M is attained at an interior point of (a, b), since h is differentiable in (a, b),
by Fermat’s Theorem, there exists c ∈ (a, b) such that h′(c) = 0. Since

h′(x) = f ′(x) − f(b) − f(a)
b − a

,
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we get

f ′(c) = f(b) − f(a)
b − a

.

If both m and M are attained at the boundary points of [a, b], since

h(a) = f(a) − f(a) − f(b) − f(a)
b − a

(a − a) = 0,

h(b) = f(b) − f(a) − f(b) − f(a)
b − a

(b − a)

= f(b) − f(a) − [f(b) − f(a)] = 0,

we must have m = M = 0. This means that h must be a constant function. Thus, for any
c ∈ (a, b), we have h′(c) = 0. Similarly as above, we again have

f ′(c) = f(b) − f(a)
b − a

.

3.19 Pitfall: when the hypotheses in the Mean Value Theorem fail

The hypotheses of the Mean Value Theorem are that the function f is continuous on the
closed interval [a, b] and differentiable in the open interval (a, b). We will see that if any of
these fails, then the conclusion of the Mean Value Theorem does not necessarily hold.

1. Consider the function f defined on [0, 1]:

f(x) =
{

1, if 0 < x ≤ 1;
0, if x = 0.

Clearly, f is discontinuous at x = 1, so that f is not continuous on [0, 1]. Obviously,
for any x ∈ (0, 1), f ′(x) = 0 and

f(1) − f(0)
1 − 0

= 1 − 0
1 − 0

= 1.

So there exists no c in (0, 1) such that

f ′(c) = f(1) − f(0)
1 − 0

.

2. Consider the function g(x) = |x| defined over [−1, 1]. We know that g′(0) does not
exist, so g is not differentiable in (−1, 1). It is easy to see that

g(1) − g(−1)
1 − (−1)

= 1 − 1
2

= 0,

and
g′(x) =

{
−1, if −1 < x < 0;

1, if 0 < x < 1.

Clearly, there exists no c inside (−1, 1) such that

g′(c) = g(1) − g(−1)
1 − (−1)

.
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3.20 Theorem: Monotone Test

Suppose f is differentiable on an interval I.

1. If f ′(x) > 0 on I, then f is increasing on I.

2. If f ′(x) < 0 on I, then f is decreasing on I.

Justification:

Suppose f ′(x) > 0 on (a, b). We take any two numbers x1, x2 ∈ (a, b) such that with
x1 < x2. By the Mean Value Theorem, there is c ∈ (x1, x2) such that

f(x1) − f(x2) = f ′(c)(x1 − x2) < 0,

which implies that f(x1) < f(x2). Hence, f is increasing on (a, b).
The other case can be proved similarly.

3.21 Example: determine intervals of monotonicity

Consider the function f(x) = 2x3 − 3x2 − 12x + 1. To find the intervals where f is
monotone, by the Monotone Test, we need to determine the intervals in which f ′ keeps its
sign unchanged.

In fact,
f ′(x) = 6x2 − 6x − 12 = 6(x2 − x − 2) = 6(x − 2)(x + 1),

so that it has two real roots x = −1 and x = 2. These two numbers divide the interval
(−∞, +∞) into three open intervals (−∞, −1), (−1, 2), and (2, +∞). Since the function f ′

is continuous and nonzero over each of these intervals, by the Intermediate Value Theorem,
it must be either positive or negative on each interval. In (−∞, −1), since f ′ is positive for
large negative x, f ′(x) is positive on (−∞, −1). The function f ′ changes its sign on two sides
of x = −1 and x = 2, so that f ′(x) is negative on (−1, 2) and positive on (2, +∞).
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Thus the function f(x) is increasing over the intervals (−∞, −1) and (2, +∞), and de-
creasing over the interval (−1, 2).
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3.22 Method: solving inequalities by using the number line

There is a method that works for solving inequalities of the form f(x) > 0, or inequalities
involving ≥, <, or ≤, where f is a polynomial. It consists of the following major steps:

(1) Solve the equation f(x) = 0 to find all real roots.
(2) Specify the roots on the number line.
(3) Sketch the graph of y = f(x) by starting from x near −∞. If the order of f is odd, the

graph of f is below the number line; if the order of f is even, the graph is above the number
line.

(4) From the left to the right, the curve y = f(x) intersects the number line at the roots,
one after another.

(5) The curve y = f(x) crosses the number line at roots when the multiplicities are odd
and does not cross at roots when the multiplicities are even.

(6) The inequality f(x) > 0 holds on the interval over which the graph of y = f(x) is above
the number line.

The method can be modified for inequalities with f being rational functions or even tran-
scendental functions.

3.23 Theorem: zero derivative implies constant function

Suppose f is differentiable in (a, b). If f ′(x) = 0 for all x in (a, b), then f is a constant
function.

Justification:

For any two numbers x1, x2 in (a, b), by the Mean Value Theorem, there is a number
x∗ ∈ (x1, x2) ⊂ (a, b) such that

f(x1) − f(x2) = f ′(x∗)(x1 − x2).

Since f ′(x) = 0 for all x in an interval (a, b), we have f ′(x∗) = 0. Thus, f(x1) = f(x2). This
shows that at any two numbers in (a, b), the values of f are the same. So, f is constant on
(a, b).

3.24 Example: identity proving

Show that when |x| ≤ 1
2 , the following identity holds:

3 arccos x − arccos(3x − 4x3) = π.

Solution When |x| < 1
2 ,[

3 arccos x − arccos(3x − 4x3)
]′

= − 3√
1 − x2

+ 1√
1 − (3x − 4x3)2

(3 − 12x2)

= − 3√
1 − x2

+ 1√
1 − x2 · (1 − 4x2)

(3 − 12x2) = 0,
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so we have
3 arccos x − arccos(3x − 4x3) = C, − 1

2 < x < 1
2 ,

where C is a constant. Setting x = 0 gives C = π. Hence,

3 arccos x − arccos(3x − 4x3) = π, − 1
2 < x < 1

2 .

It is easy to verify that the identity also holds when x = ± 1
2 . Therefore,

3 arccos x − arccos(3x − 4x3) = π, |x| ≤ 1
2 .

3.25 MATLAB: monotone function

The following example shows how to determine the monotone intervals of the function
f(x) = 2x3 − 3x2 − 12x + 1 in MATLAB.

>> syms x;
>> f(x) = 2*x^3 - 3*x^2 - 12*x + 1;
>> d(x) = diff(f(x),x);
>> rts_d = solve (d(x) == 0,x)

rts_d =

-1
2

>> x_array = -3:0.05:3;
>> figure
>> plot(x_array ,d( x_array ),'b')
>> xlabel ('x')
>> ylabel ('f''(x)')
>> grid

Note that for a string (e.g., x inside ‘x’ and f”(x) inside ‘f”(x)’ ), we need to use double
single quotes to obtain a single quote (simply using one single quote represents conjugate
transpose in MATLAB), e.g., we use ‘f”(x)’ to represent f ′(x).

From the MATLAB code above, we have
the graph of f ′ and see that f ′(x) = 0 has
two roots: x = −1 and x = 2. We also see
that f ′ is negative on (−1, 2), and positive
on (−∞, −1) and (2, +∞). According to the
Monotone Test, we know that f is decreasing
on the interval (−1, 2), and f is increasing on
the intervals (−∞, −1) and (2, +∞).
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Actually, we can plot f to check the above results.

>> f(x) = 2*x^3 - 3*x^2 - 12*x + 1;
>> figure
>> plot(x_array ,f( x_array ),'r')
>> xlabel ('x')
>> ylabel ('f(x)')
>> grid

We see from the graph of f that indeed
f is decreasing on (−1, 2), and increasing on
(−∞, −1) and (2, +∞).
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3.3 Tests for Local Extrema and Concavity

Local Extrema

3.26 Theorem: First Derivative Test

Suppose that c is a critical point of a continuous function f .

1. If f ′ changes from positive to negative at c, then f has a local maximum value at c.

2. If f ′ changes from negative to positive at c, then f has a local minimum value at c.

3. If f ′ does not change sign at c, then f has no local extreme value at c.
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Justification:

Near c, suppose f ′(x) is positive for a < x < c and negative for c < x < b. Then f(x)
is continuous on [a, c] and differentiable on (a, c). Thus f(x) is increasing over [a, c], i.e. for
any x with a < x < c, f(x) < f(c). By the similar argument, f(x) is decreasing over [c, b],
i.e. for any x with c < x < b, f(c) > f(x). Therefore c is a local maximum point.

The same argument applies to the other two cases.

3.27 Example: local extrema using the First Derivative Test

1. Consider the function f(x) = 2x3 − 3x2 − 12x + 1. Its derivative is

f ′(x) = 6x2 − 6x − 12 = 6(x − 2)(x + 1).
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By solving the equation f ′(x) = 0, we see
that f has critical points x = −1, 2. It
is easy to see that f ′(x) is positive for
x < −1, negative for −1 < x < 2, and
positive for x > 2. Thus, by the First
Derivative Test, we know that x = −1 is a
local maximum point and x = 2 is a local
minimum point.

x

y

y = 2x3 − 3x2 − 12x + 1

−1 2

−19

8

O

2. Consider the function g(x) = x3. Its
derivative is g′(x) = 3x2. By solving the
equation g′(x) = 0, we see that g has one
critical point x = 0. It is easy to see
that near x = 0, g′(x) does not change
signs. Thus, by the First Derivative Test,
we know that x = 0 is not a local extreme
point.
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y = x3
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3. Consider the function

h(x) = |x|.

It is not differentiable at x = 0, so that
h has a critical point at x = 0. When
x < 0, h′(x) = −1 < 0; when x > 0,
h′(x) = 1 > 0. Thus, by the First Deriva-
tive Test, x = 0 is a local minimum point. x

y

y = |x|

−1 1

1

O

4. Consider r(x) = 1
2 sin x − 1

2 x cos x over (−5, 5). Its derivative is

r′(x) = 1
2 cos x − 1

2 (cos x − x sin x) = 1
2 x sin x.

Solving r′(x) = 1
2 x sin x = 0 in the interval (−5, 5) gives three critical points −π, 0, π.

In fact, the derivative r′(x) = 1
2 x sin x has

simple root at x = −π and π, and a double
root at x = 0. The later is because

lim
x→0

r′(x)
x2 = 1

2 lim
x→0

sin x

x
= 1

2 ̸= 0.

x

y

1

−1

y = r′(x)

−5 5−π πO

Since sin x is positive for −5 < x < −π, we know that r′(x) is negative near x = −5.
Thus, we can sketch the graph of r′, as shown.
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From the graph of r′, we see that r′(x) changes from negative to positive at the critical
point x = −π, does not change sign at the critical point x = 0, and changes from
positive to negative at the critical point x = π.

Hence, by the First Derivative Test, f has
a local minimum value at x = −π, not a
local extreme at x = 0, and a local maxi-
mum value at x = π. x

y

1

−1

y = r(x)

−5 5

−π

πO

3.28 Theorem: Second Derivative Test

Suppose f ′′(c) exists .

1. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum value at c.

2. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum value at c.

3. If f ′(c) = 0 and f ′′(c) = 0, it is inconclusive about local extreme of f at c.

Justification:

1. Assume f ′(c) = 0 and f ′′(c) > 0. Since f ′′(c) exists and is positive, we know that, for

x near c, f ′(x) − f ′(c)
x − c

> 0. Hence f ′(x) < f ′(c) = 0 for x < c, and f ′(x) > f ′(c) = 0 for
x > c. By the First Derivative Test, c is a local minimum point.

2. The proof for this case is similar as case 1.
3. We use two functions to demonstrate this. They both satisfy the hypotheses, but the

first function has no local extreme value at c while the second has a local maximum value at
c.

(1) Consider f(x) = x3. It is easy to see that f ′(0) = 0, f ′′(0) = 0, and f ′′(x) = 6x is
continuous near x = 0. Since f(x) < 0 = f(0) when x < 0 and f(x) > 0 = f(0), f(0) is not
a local extreme value.

(2) Consider g(x) = x4. It is easy to see that g′(0) = 0, g′′(0) = 0, and g′′(x) = 12x2 is
continuous near x = 0. Since g(x) ≥ 0 = g(0) for all real x, g(0) is a local minimum value.

3.29 Example: local extrema using the Second Derivative Test

1. Consider f(x) = 2x3 − 3x2 − 12x + 1. Its derivatives are
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f ′(x) = 6x2 − 6x − 12
= 6(x − 2)(x + 1),

f ′′(x) = 12x − 6.

Solving f ′(x) = 0 gives x = −1, 2. Since
f ′′(−1) = −18 < 0, f(−1) = 8 is a lo-
cal maximum value; f ′′(2) = 18 > 0, thus
f(2) = −19 is a local minimum value.

x

y

y = 2x3 − 3x2 − 12x + 1

−1 2

−19

8

O

2. Consider r(x) = 1
2 sin x − 1

2 x cos x over (−5, 5). Its derivatives are

r′(x) = 1
2 cos x − 1

2 (cos x − x sin x) = 1
2 x sin x,

r′′(x) = 1
2 (sin x + x cos x).

Solving r′(x) = 1
2 x sin x = 0 in the interval

(−5, 5) gives three critical points −π, 0, π.
Since r′′(−π) = 1

2 π > 0, r has a local min-
imax value at x = −π; r′′(π) = − 1

2 π < 0,
r has a local minimum value at x = π.

x

y

1

−1

y = r(x)

−5 5

−π

πO

However, since r′′(0) = 0, the Second Derivative Test is inconclusive in this case. In
fact, we can apply the First Derivative Test to conclude that r has not a local extreme
at x = 0, since r′ does not change sign at the critical point x = 0.

3.30 Pitfall: the Second Derivative Test may not be applicable

Consider the function f(x) = x|x|. When x ̸= 0,

f ′(x) =
{

−2x, if x < 0;
2x, if x > 0.

To calculate the derivative f ′(0), we use the definition of derivative.

lim
x→0−

f(x) − f(0)
x − 0

= lim
h→0−

−2x2

x
= lim

h→0−
(−2x) = 0,

lim
x→0+

f(x) − f(0)
x − 0

= lim
h→0+

2x2

x
= lim

h→0+
(2x) = 0.

Since the left limit and right limit are equal, f ′(0) = 0. Thus f ′(x) = 2|x| for all x ∈ R.
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Clearly f ′(x) has no derivative at x = 0.
Hence f does not have the second derivative
at x = 0, so that the Second Derivative Test
cannot be applied to the function f .

However, we can still apply the First
Derivative Test to show that f(0) is not a
local extreme value, since f ′(0) = 0 and f ′

does not change sign at x = 0.

x

y

y = x|x|
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1

O

3.31 MATLAB: tests for local extrema

The following example shows the tests for local extrema of the function f(x) = 2x3 −3x2 −
12x + 1.

We first test the local extrema of f using First Derivative Test.

>> syms x;
>> f(x) = 2*x^3 - 3*x^2 - 12*x + 1;
>> d(x) = diff(f(x),x);
>> rts_d = solve (d(x) == 0,x)

rts_d =

-1
2

>> x_array = -3:0.05:3;
>> figure
>> plot(x_array ,d( x_array ),'b')
>> xlabel ('x')
>> ylabel ('f''(x)')
>> grid

From the MATLAB code above, we have
the graph of f ′ and see that f ′(x) = 0 has
two roots: x = −1 and x = 2. We also see
that f ′ is negative on (−1, 2), and positive on
(−∞, −1) and (2, +∞). According to First
Derivative Test, we know that f has a local
maximum value at x = −1 and a local mini-
mum value at x = 2.
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Next, we test the local extrema of f using Second Derivative Test.

>> d2(x) = diff(f(x),x ,2)

d2(x) =

12*x - 6

>> d2(-1)

ans =

-18

>> d2 (2)

ans =

18

We see from the MATLAB code above that f ′′(−1) = −18 < 0 and f ′′(2) = 18 > 0. Hence,
according to Second Derivative Test, f has a local maximum value at x = −1 and a local
minimum value at x = 2.

Actually, we can plot f to check the above results.

>> figure
>> plot(x_array ,f( x_array ),'r')
>> xlabel ('x')
>> ylabel ('f(x)')
>> grid

We see from the figure that f indeed has a
local maximum value at x = −1 and a local
minimum value at x = 2.
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Concavity

3.32 Definition: concave up and concave down

Suppose f is defined over an interval I. The function f is said to be

• concave up if its graph is above all its tangent lines over the interval;

• concave down if its graph is below all its tangent lines over the interval.

A point P is an inflection point of f if f is continuous at P and changes concavity at P .

3.33 Example: concave up and concave down

x

y

−1 1

1

2

y = x2
O

x

y

−1 1

1

−1

y = −x2

O x

y

1

−1

1

−1

y = x3

O

1. The function y = x2 is concave up on R.

2. The function y = −x2 is concave down on R.

3. The function y = x3 is concave down over the interval (−∞, 0) and concave up over
the interval (0, ∞). The point 0 is an inflection point of f .

3.34 Theorem: Concavity Test

Suppose f ′′ exists on an interval I.

1. If f ′′(x) > 0 on I, then f is concave up on I.

2. If f ′′(x) < 0 on I, then f is concave down on I.

3.35 Example: Concavity Test

1. For the function y1 = x2, we have y′′
1 = 2 > 0. Thus, by the Concavity Test, this

function is concave up on R. For the function y2 = −x2, we have y′′
2 = −2 < 0 and the

function is concave down on R.
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2. For the function f(x) = x3, f ′′(x) = 6x.
Since f ′′(x) < 0 when x < 0, by the Con-
cavity Test, f is concave down on (−∞, 0).
Similarly, since f ′′(x) > 0 when x > 0, f
is concave up on (0, ∞). Thus, 0 is an in-
flection point.
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O

3. Consider g(x) = 2x3 − 3x2 − 12x + 1.
The second derivative g′′(x) = 12x − 6 =
6(2x−1). Since g′′(x) < 0 when x < 1

2 , by
the Concavity Test, g is concave down on
(−∞, 1

2 ). Similarly, since g′′(x) > 0 when
x > 1

2 , g is concave up on ( 1
2 , +∞). Thus,

x = 1
2 is an inflection point.
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y = 2x3 − 3x2 − 12x + 1
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3.36 MATLAB: concavity

The example below shows the concavity test of the function f(x) = 2x3 − 3x2 − 12x + 1.

>> syms x;
>> f(x) = 2*x^3 - 3*x^2 - 12*x + 1;
>> d2(x) = diff(f(x),x ,2)

d2(x) =

12*x - 6

>> rts_d2 = solve (d2(x) == 0,x)

rts_d2 =
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1/2

>> x_array = -3:0.05:3;
>> figure
>> plot(x_array ,d2( x_array ),'r')
>> grid

From the MATLAB code, we know that f ′′

is a linear function and f ′′(x) = 0 has one
root: x = 1

2 . Furthermore, from the figure of
f ′′ above, we see that f ′′(x) < 0 if x < 1

2 and
f ′′(x) > 0 if f ′′(x) > 1

2 . Hence, according
to the Concavity Test, f is concave down on(
−∞, 1

2
)

and concave up on
( 1

2 , +∞
)
, while

x = 1
2 is thus an inflection point.

-3 -2 -1 0 1 2 3
x

-50

-40

-30

-20

-10

0

10

20

30

f''
(x

)

Actually, we can plot f to check the above results.

>> figure
>> plot(x_array ,f( x_array ),'r')
>> xlabel ('x')
>> ylabel ('f(x)')
>> grid

We can see from the graph of f that f is in-
deed concave down on

(
−∞, 1

2
)

and concave
up on

( 1
2 , +∞

)
.
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3.37 Engineering Example: genetics

According to genetics, if a parent provides a gene A with probability p (0 ≤ p ≤ 1) and a
gene a with probability 1−p, then the offspring is of the genotype AA with probability p2, the
genotype Aa with probability 2p(1−p) and the genotype aa with probability (1−p)2. Suppose
that there are 100 people. Among them, 25 of them is of the genotype AA, 47 of them is of the
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genotype Aa, and 28 of them is of the genotype aa. Let f(p) be the probability of observing
this specific sequence among these 100 people. Then, we can calculate the probability f(p)
as follows:

f(p) =
(
p2)25 [2p (1 − p)]47

[
(1 − p)2

]28

= 247p97(1 − p)103.

Calculate the probability p such that f(p) is maximized.
First, using the rules of differentiation, we calculate the first derivative of f in the following:

f ′(p) = 247 [97p96(1 − p)103 − 103p9(1 − p)102]
= 247p96(1 − p)102(97 − 200p).

Next, we calculate the value of p in the open interval (0, 1) at which f can achieve the
local maximum value. Note that when p ∈ (0, 1), we have p96(1 − p)102 > 0. Hence, from the
expression above, we know that f ′(p) = 0 when p = 97

200 = 0.485 and{
f ′(p) > 0, if p < 0.485;
f ′(p) < 0, if p > 0.485.

According to First Derivative Test, f can achieve the local maximum value at p = 0.485.
To verify whether f can achieve its absolute maximum value at p = 0.485, we need to

calculate the values of f(p) at the boundary points p = 0 and p = 1, respectively. We can
easily calculate that f(0) = f(1) = 0 < p(0.485). Therefore, we conclude that f can achieve
the absolute maximum value at p = 0.485.

MATLAB solution:
Alternatively, this problem can also be solved using MATLAB.
First, we calculate f ′ and the root of f ′(p) = 0 using the following MATLAB code.

>> syms p
>> f(p) = 2^47*p^97*(1 -p)^103;
>> df(p) = simplify (diff(f(p)))

df(p) =

-140737488355328* p ^96*(200* p - 97) *(p - 1) ^102

>> df_root = solve(df(p) == 0,p>0,p <1) % specify the range of p

df_root =

97/200

In order to verify whether p = 97
200 is a local maximum point or a local minimum point, we

plot the figure of f ′ using the following MATLAB code.
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>> p_array = 0:0.01:1;
>> df_array = df( p_array );
>> figure
>> plot(p_array ,df_array ,'r')
>> grid
>> xlabel ('p')
>> ylabel ('f''(p)')

The figure is plotted as shown. We see
from the figure that f ′(p) > 0 if p < 97

200
and f ′(p) < 0 if p > 97

200 . According to
First Derivative Test, we thus know that at
p = 97

200 , f achieves a local maximum value.
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At last, to verify whether p = 97
200 is an absolute maximum point, we need to calculate

the value of f(0) and f(1), respectively. It can be easily shown that f(0) = f(1) = 0 and
f
( 97

200
)

> 0. Therefore, p = 97
200 is an absolute maximum point and f achieves the absolute

maximum value at p = 97
200 .

3.38 Engineering Example: beam testing problem

Quality control is a process of reviewing the quality of all factors to confirm the fulfillment
of the quality requirements. A quality control engineer is testing the failure rate of a certain
type of beams under stress. To conduct the testing, beams are put under steady stress for
some time. Suppose that the beam can pass the test with probability p, then it cannot
pass the test with probability 1 − p. If the quality control engineer conducts trials for 100
beams and 5 of them do not pass the test, then the probability of observing this sequence of
successes and failures is

f(p) = p95(1 − p)5.

Calculate the probability p such that f(p) is maximized.
First, using the rules of differentiation, we calculate the first derivative of f(p) in the

following:

f ′(p) = 95p94(1 − p)5 − 5p95(1 − p)4

= p94(1 − p)4(95 − 100p).

Next, we calculate the value of the local maximum point p in the open interval (0, 1). Note
that when p ∈ (0, 1), we have p94(1 − p)4 > 0. Hence, from the expression above, we know
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that f ′(p) = 0 when p = 95
100 = 0.95 and{

f ′(p) > 0, if p < 0.95;
f ′(p) < 0, if p > 0.95.

According to First Derivative Test, we know that f(p) can achieve a local maximum value
at p = 0.95.

To verify whether p = 0.95 is an absolute maximum point, we now calculate the values of
f(p) at p = 0 and p = 1, respectively. It can be easily calculated that f(0) = f(1) = 0 and
f(0.95) > 0. Therefore, we conclude that f(p) is maximized at p = 0.95.

MATLAB solution:
Alternatively, this problem can also be solved using MATLAB.
First, we calculate f ′(p) and the root of f ′(p) = 0 using the following MATLAB code.

>> syms p
>> f(p) = p^95*(1 -p)^5;
>> df(p) = simplify (diff(f(p)))

df(p) =

-5*p ^94*(20* p - 19) *(p - 1)^4

>> df_root = solve(df(p) == 0,p>0,p <1) % specify the range of p

df_root =

19/20

In order to check whether p = 19
20 is a local maximum point or a local minimum point, we

plot the figure of f ′(p) using the following MATLAB code:

>> p_array = 0:0.01:1;
>> df_array = df( p_array );
>> figure
>> plot(p_array ,df_array ,'b')
>> grid
>> xlabel ('p')
>> ylabel ('f''(p)')
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The figure is plotted as shown.
From the figure, we see that f ′(p) > 0 if

p < 19
20 and f ′(p) < 0 if p > 19

20 . Hence,
according to First Derivative Test, we know
that p = 19

20 is a local maximum point.
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At last, to check whether p = 19
20 is an absolute maximum point, we need to calculate the

values of f(p) at p = 0 and p = 1, respectively. It can be easily shown that f(0) = f(1) = 0
and f

( 19
20
)

> 0. Therefore, p = 19
20 is an absolute maximum point and f is maximized at

p = 19
20 .

3.39 Engineering Example: profit maximization

In economics, profit maximization is a short run or long run process by which a firm can
determine the price, input and output levels to make the greatest profit. Given price p ∈ R,
the demand of a product is d(p). If the unit cost is c, then to maximize the profit, the seller’s
objective is

max
p

d(p)(p − c)

Calculate the value of p which satisfies the seller’s objective in the following cases:

1. If d(p) is a linear demand, i.e., d(p) = a − bp.

2. If d(p) is an exponential demand, i.e., d(p) = λ exp
(
− p

θ

)
.

3. In the constant elasticity of substitution case, i.e., d(p) = ap−b (b > 1).

Let the objective function be f(p) = d(p)(p − c). First, by the Product Rule, we can easily
calculate f ′(p) as follows:

f ′(p) = d′(p)(p − c) + d(p).

Next, we calculate the value of p which maximizes f(p) in different cases, respectively.

1. If d(p) = a − bp, we have

f ′(p) = (−b)(p − c) + a − bp

= −2bp + bc + a.

Then, the root of f ′(p) = 0 is p = 1
2
(
c + a

b

)
.

It can be easily verified that{
f ′(p) > 0, if p < 1

2
(
c + a

b

)
;

f ′(p) < 0, if p > 1
2
(
c + a

b

)
.
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Hence, according to First Derivative Test, we know that p = 1
2
(
c + a

b

)
maximizes f(p),

i.e., it satisfies the seller’s objective. Note that the optimal price p = 1
2
(
c + a

b

)
increases

with the unit cost c.

2. If d(p) = λ exp
(

−p

θ

)
, we have

f ′(p) = −λ

θ
exp

(
−p

θ

)
(p − c) + λ exp

(
−p

θ

)
= exp

(
−p

θ

)[
−λ

θ
p +

(
1 + c

θ

)
λ

]
.

Then, we can calculate that the root of f ′(p) = 0 is p = θ + c.
It can be easily verified that {

f ′(p) > 0, if p < θ + c;
f ′(p) < 0, if p > θ + c.

Hence, according to First Derivative Test, we know that p = θ + c maximizes f(p), i.e.,
it satisfies the seller’s objective. Note that p = θ + c > c, which means the optimal
price is greater than and increasing with the unit cost c.

3. If d(p) = ap−b, we have

f ′(p) = (−ab)p−(b+1)(p − c) + ap−b

= p−b
[
(a − ab) + abcp−1] .

Then, the root of f ′(p) = 0 is p = bc
b−1 .

It can be easily verified that {
f ′(p) > 0, if p < bc

b−1 ;
f ′(p) < 0, if p > bc

b−1 .

Hence, according to First Derivative Test, we know that p = bc
b−1 maximizes f(p), i.e.,

it satisfies the seller’s objective. Note that p = bc
b−1 > c, which means the optimal price

is greater than and increasing with the unit cost c.

3.40 Engineering Example: maximum power transfer

RL

RS

−
+VS
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Consider the circuit in the following figure. A load of resistance RL is connected over a
power source of voltage VS and internal resistance RS .

According to Ohm’s Law, we have

Electric Current : I = VS

RS + RL
;

Output Power : P = V 2
S RL

(RS + RL)2 .

Calculate the the value of RL such that the output power P is maximized.
Let f (RL) = P = V 2

S RL

(RS+RL)2 , then by Quotient Rule, we have

f ′ (RL) = V 2
S (RS + RL)2 − 2V 2

S RL (RS + RL)
(RS + RL)4

= V 2
S (RS − RL)
(RS + RL)3 .

Then, the root of f ′ (RL) = 0 is RL = RS . Moreover, we can easily verify that{
f ′ (RL) > 0, if 0 < RL < RS ;
f ′ (RL) < 0, if RL > RS .

Hence, according to First Derivative Test, we know that RL = RS maximizes f (RL), i.e.,
the maximum power transfer occurs in the load when the load resistance (RL) equals to the
source resistance (RS). This is called a “matched condition”, and it illustrates the theorem
that the maximum power would be transferred to the output when the impedance of the
external device matches that of the source. Note that improper impedance matching would
lead to excessive power use and dissipation.

3.41 Engineering Example: projectile motion

Consider the case where a ball is thrown with initial velocity u and an angle θ
(0◦ ≤ θ ≤ 90◦) against the ground.

1. Find the relationship between the horizontal distance that the ball can reach sx, and
the variables u and θ.

2. Prove that in order to throw a ball as far as possible, we need to start the motion with
an angle of 45◦.

x

y

θ

O
x

y

θ = 45◦

θ = 30◦

θ = 60◦

O
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1. First, we note that for the motion, the only force that affects the system is the gravi-
tational force in the vertical direction. For the vertical movement, we have

uy = u sin θ

where uy is the velocity in the y-axis direction.
With the velocity in the y-axis direction uy, we can calculate the displacement of the
ball in the y-direction at time t, which is shown in the following:

sy = uyt − 1
2 gt2

= (u sin θ)t − 1
2 gt2.

When the ball hits the ground again, i.e., sy = 0, we have

(u sin θ)t − 1
2 gt2 = 0.

=⇒ t
( 1

2 gt − u sin θ
)

= 0.

Solving the above equation, we can obtain two roots: t = 0 and t = 2u sin θ

g
. Note

that at t = 0, the ball is at its initial position. Hence, the ball hits the ground again
at t = 2u sin θ

g
. In other words, the projectile motion ends at t = 2u sin θ

g
and the ball

hits the ground again.
Next, we consider the horizontal movement of the ball. The velocity in the x-axis
direction can be calculated as follows:

ux = u cos θ.

With the velocity in the x-axis direction ux, we can calculate the displacement of the
ball in the x-direction at time t, which is shown in the following:

sx = uxt = (u cos θ)t.

At t = 2u sin θ

g
, the displacement of the ball in the x-direction is

sx = u
2u sin θ

g
cos θ = 2u2

g
sin θ cos θ.

2. Let f (θ) = sx = 2u2

g
sin θ cos θ. To calculate the maximum horizontal movement of

the ball, i.e., to maximize sx, we first need to calculate f ′ (θ). According to Product
Rule, the calculation is shown in the following:

f ′ (θ) = 2u2

g

(
cos2 θ − sin2 θ

)
.
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In the range of
(
0, π

2
)
, f ′(θ) = 0 has a solution at θ = π

4 . Moreover, it can be easily
verified that {

f ′ (θ) > 0, if 0 ≤ θ < π
4 ;

f ′ (θ) < 0, if π
4 < θ ≤ π.

Hence, according to First Derivative Test, we know that θ = π
4 is a local maximum

point. In order to prove that θ = π
4 is also an absolute maximum point, we need to

calculate the values of f (0) and f (π). It can be easily calculated that f (0) = f (π) =
0 < f

(
π
4
)
. Therefore, θ = π

4 is also an absolute maximum point, i.e., in order to throw
a ball as far as possible, we need to start the motion with an angle of 45◦.

MATLAB solution:

We now turn to the use of MATLAB. Let f (θ) = sx = 2u2

g
sin θ cos θ. Specifically, we

calculate f ′ (θ) and the roots of f ′ (θ) = 0 using MATLAB.

>> syms a x % a:2u^2/g, x:theta
>> f(x) = a*sin(x)*cos(x);
>> df(x) = diff(f(x),x)

df(x) =

a*cos(x)^2 - a*sin(x)^2

>> root_df = solve(df(x) == 0,x)

root_df =

pi/4

From the MATLAB code above, we see that f ′ (π
4
)

= 0, i.e., f ′ (45◦) = 0. In order to
check whether f ′ (π

4
)

= 0 is a local maximum point or a local minimum point, we need
to know the sign of f ′ (θ) (i.e., positive or negative) when 0 ≤ θ < π

4 and π
4 < θ ≤ π,

respectively. Since a = 2u2

g
> 0, we plot the figures of g (θ) = cos2 θ − sin2 θ for

0 ≤ θ < π
4 and π

4 < θ ≤ π, respectively, using the following MATLAB code.

>> syms x % x:theta
>> g(x) = cos(x)^2 - sin(x)^2;
>> x_array1 = linspace (0,pi /4 ,100);
>> g_array1 = g( x_array1 );
>> subplot (1 ,2 ,1)
>> plot(x_array1 ,g_array1 ,'r')
>> xlabel ('\ theta ')
>> ylabel ('g(\ theta )')
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>> grid
>> x_array2 = linspace (pi/4,pi /2 ,100);
>> g_array2 = g( x_array2 );
>> subplot (1 ,2 ,2)
>> plot(x_array2 ,g_array2 ,'b')
>> xlabel ('\ theta ')
>> ylabel ('g(\ theta )')
>> grid

The figure plotted is shown as follows:
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Note that π
4 ≈ 0.7854. We thus see from the figure above that{

g (θ) > 0, if 0 ≤ θ < π
4 ;

g (θ) < 0, if π
4 < θ ≤ π

=⇒
{

f ′ (θ) > 0, if 0 ≤ θ < π
4 ;

f ′ (θ) < 0, if π
4 < θ ≤ π.

According to First Derivative Test, we know that θ = π
4 is a local maximum point. In

order to prove that θ = π
4 is also an absolute maximum point, we need to calculate the

values of f (0) and f (π). It can be easily obtained that f (0) = f (π) = 0 < f
(

π
4
)
.

Therefore, θ = π
4 is also an absolute maximum point, i.e., in order to throw a ball as

far as possible, we need to start the motion with an angle of 45◦.

3.4 l’Hospital’s Rule

3.42 Example: indeterminate forms

1. In calculating limits, we often encounter indeterminate forms such as lim
x→0

sin x

x
where it

becomes the indeterminate form 0
0

if we naively plug x = 0 into the expression. In order

to calculate the limit, we used some geometry of the sine function to get lim
x→0

sin x

x
= 1.
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2. For the limit lim
x→1

x2 − 1
x − 1

, if we directly plug x = 1 into the expression, we will get the

indeterminate form 0
0

. To calculate the actual limit, we can perform the cancellation
x2 − 1
x − 1

= x + 1 and lim
x→1

x2 − 1
x − 1

= lim
x→1

(x + 1) = 2.

3. For the limit lim
x→1

ln x

x − 1
, it is an indeterminate form 0

0
if we plug x = 1 into the

expression. We will develop a general approach to find such a limit.

3.43 Definition: indeterminate forms

The following are typical indeterminate forms:

indeterminate form of type 0
0

indeterminate form of type ∞
∞

}
two standard indeterminate forms

indeterminate form of type 0 · ∞
}

indeterminate product
indeterminate form of type ∞ − ∞

}
indeterminate difference

indeterminate form of type 00

indeterminate form of type ∞0

indeterminate form of type 1∞

 indeterminate powers

Here the form 0
0 means a limit of the form

lim
x→a

f(x)
g(x)

,

where f(x) → 0 and g(x) → 0 as x → a. The other indeterminate forms arise similarly in
the corresponding symbolic expressions.

3.44 Example: indeterminate forms

The following are some examples of indeterminate forms:

• 0
0

: lim
x→1

ln x

x − 1
;

• ∞
∞

: lim
x→∞

ex

x
;

• 0 · ∞: lim
x→0+

(sin x) ln x;

• ∞ − ∞: lim
x→+∞

(
√

x + 1 −
√

x);

• 00: lim
x→0+

xx;

• ∞0: lim
x→+∞

x1/x;

• 1∞: lim
x→∞

(
1 − 1

x

)x

.
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3.45 Theorem: L’Hospital’s Rule

Suppose

1. f and g are differentiable functions;

2. g′(x) is not zero on an open interval I containing a except possibly at a;

3. lim
x→a

f(x) = 0 = lim
x→a

g(x) or lim
x→a

f(x) = ∞ = lim
x→a

g(x);

4. lim
x→a

f ′(x)
g′(x)

exists or is ∞.

Then
lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

The rule also holds when limits are one-sided limits or when x → a is replaced by x → ∞.

3.46 Example: 0
0

form

Find the limit lim
x→1

ln x

x − 1
.

Solution For the given limit, we can verify the hypotheses of l’Hospital’s Rule:
1. Both functions ln x and x − 1 are differentiable;
2. (x − 1)′ = 1 is nowhere zero near x = 1;
3. lim

x→1
ln x = 0 and lim

x→1
(x − 1) = 0;

4. lim
x→1

(ln x)′

(x − 1)′ = lim
x→1

1
x

= 1.

Thus, legitimately we can apply l’Hospital’s Rule and get

lim
x→1

ln x

x − 1
H= lim

x→1

(ln x)′

(x − 1)′ = lim
x→1

1
x

= 1.

3.47 Example: ∞
∞

form

Find the limit lim
x→+∞

ex

x
.

Solution For the given limit, we can verify the hypotheses of l’Hospital’s Rule:
1. Both functions ex and x are differentiable;
2. x′ = 1 is nowhere zero;
3. lim

x→+∞
ex = +∞ and lim

x→+∞
x = +∞;

4. lim
x→+∞

(ex)′

(x)′ = lim
x→+∞

ex = +∞.
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Thus, legitimately we can apply l’Hospital’s Rule and get

lim
x→+∞

ex

x

H= lim
x→+∞

(ex)′

(x)′ = lim
x→+∞

ex = +∞.

3.48 Example: using l’Hospital’s Rule repeatedly

Find the limit lim
x→+∞

ex

x2 .
Analysis: If we apply l’Hospital’s Rule, we get

lim
x→+∞

ex

x2
H= lim

x→+∞

(ex)′

(x2)′ = lim
x→+∞

ex

2x
.

For the last limit, we again apply l’Hospital’s Rule and get

lim
x→+∞

ex

2x

H= lim
x→+∞

(ex)′

(2x)′ = lim
x→+∞

ex

2
= +∞.

These two steps need to be justified by checking the hypotheses of l’Hospital’s Rule.

Solution For the limit lim
x→+∞

ex

2x
, we can verify the hypotheses of l’Hospital’s Rule:

1. Both functions ex and 2x are differentiable;
2. (2x)′ = 2 is nowhere zero when x is large;
3. lim

x→+∞
ex = +∞ and lim

x→+∞
2x = +∞;

4. lim
x→+∞

(ex)′

(2x)′ = lim
x→+∞

ex

2
= +∞.

Thus, legitimately we can apply l’Hospital’s Rule and get

lim
x→+∞

ex

2x

H= lim
x→+∞

(ex)′

(2x)′ = lim
x→+∞

ex

2
= +∞.

For the original limit lim
x→+∞

ex

x2 , we can verify the hypotheses of l’Hospital’s Rule:
1. Both functions ex and x2 are differentiable;
2. (x2)′ = 2x is nowhere zero when x is large;
3. lim

x→+∞
ex = +∞ and lim

x→+∞
x2 = +∞;

4. As shown above, lim
x→+∞

(ex)′

(x2)′ = lim
x→+∞

ex

2x
= +∞.

Thus, legitimately we can apply l’Hospital’s Rule and get

lim
x→+∞

ex

x2
H= lim

x→+∞

(ex)′

(x2)′ = +∞.
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Remark:

Since the verification of the hypotheses of l’Hospital’s Rule is straightforward, often
we omit this step. Thus, for finding the limit lim

x→+∞

ex

x2 , typically, we simply write:

lim
x→+∞

ex

x2
H= lim

x→+∞

(ex)′

(x2)′ = lim
x→+∞

ex

2x

H= lim
x→+∞

(ex)′

(2x)′ = lim
x→+∞

ex

2
= +∞.

3.49 Pitfall: l’Hospital’s Rule

1. Consider lim
x→0

1 − sin x

1 + sin x
.

If one calculates the limit by using l’Hospital’s Rule without verifying the hypotheses,
one would get

lim
x→0

1 − sin x

1 + sin x

H= lim
x→0

(1 − sin x)′

(1 + sin x)′ = lim
x→0

− cos x

cos x
= −1.

However, this is a wrong value! The correct value can be obtained by the continuity:

lim
x→0

1 − sin x

1 + sin x
= 1 − sin 0

1 + sin 0
= 1.

The reason for the failure is that one of the hypotheses of l’Hospital’s Rule is not
satisfied. In fact, we see that lim

x→0
(1 − sin x) = 1, which is neither zero nor ∞.

2. Consider lim
x→+∞

x + sin x

x
.

If one applies l’Hospital’s Rule, one would get

lim
x→+∞

x + sin x

x

H= lim
x→+∞

(x + sin x)′

(x)′ = lim
x→+∞

(1 + cos x).

Clearly, the last limit does not exist. However, we have

lim
x→+∞

x + sin x

x
= lim

x→+∞

(
1 + sin x

x

)
= 1.

This contradiction shows that not all indeterminate form can apply l’Hospital’s Rule.
The failure in this example is due to the fact that the limit lim

x→+∞
(1 + cos x) does not

exist. This is one of the hypotheses of l’Hospital’s Rule.
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3.50 Example: 0 · ∞ form

Find the limit lim
x→0+

(sin x) ln x.

Solution The given limit is indeterminate form of 0 · ∞. We may first convert it to a form
of ∞

∞
then apply l’Hospital’s Rule, as shown in the following:

lim
x→0+

(sin x) ln x = lim
x→0+

ln x

(sin x)−1

H= lim
x→0+

(ln x)′[
(sin x)−1

]′

= lim
x→0+

x−1

− (sin x)−2 · cos x

= lim
x→0+

sin2 x

−x cos x
= 0.

Remark:

We may first convert it to a form of 0
0

then apply l’Hospital’s Rule, as shown in the
following:

lim
x→0+

(sin x) ln x = lim
x→0+

sin x

(ln x)−1

H= lim
x→0+

(sin x)′[
(ln x)−1

]′

= lim
x→0+

cos x

− (ln x)−2 · x−1

= lim
x→0+

[
−x ln2 x · cos x

]
.

We see that the last limit seems more complicated than the original one. This shows
that sometimes it is an art to convert indeterminate form to 0

0
or ∞

∞
in order to

rightfully apply l’Hospital’s Rule.

3.51 Example: ∞ − ∞ form

Find the limit lim
x→+∞

(
√

x + 1 −
√

x).

Solution The given limit is indeterminate form of ∞ − ∞. We may first convert it to a
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form of 0
0

then apply l’Hospital’s Rule, as shown in the following:

lim
x→+∞

(
√

x + 1 −
√

x) = lim
x→+∞

√
x

(√
x + 1√

x
− 1
)

= lim
x→+∞

√
1 + x−1 − 1

x−1/2

H= lim
x→+∞

(√
1 + x−1 − 1

)′(
x−1/2

)′

= lim
x→+∞

1
2 (1 + x−1)−1/2 · (−x−2)

− 1
2 x−3/2

= lim
x→+∞

1
√

x ·
√

1 + x−1
= 0.

3.52 Example: 00 form

Find the limit lim
x→0+

xx.

Solution Let y = xx. If taking logarithm of both sides, we get ln y = ln xx = x ln x.
Clearly, x ln x is 0 · ∞ form. We can change it into ∞

∞
form ln x

x−1 and apply l’Hospital’s Rule
to get

lim
x→0+

x ln x = lim
x→0+

ln x

x−1

H= lim
x→0+

(ln x)′

(x−1)′

= lim
x→0+

x−1

−x−2

= lim
x→0+

(−x) = 0.

Since y = eln y, by the continuity of the exponential function, we get

lim
x→0+

xx = lim
x→0+

eln y = e0 = 1.

3.53 Example: ∞0 form

Find the limit lim
x→+∞

x1/x.

Solution Let y = x1/x. If taking logarithm of both sides, we get ln y = ln x1/x = ln x

x
.
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Clearly, ln x

x
is ∞

∞
form. Applying l’Hospital’s Rule gives

lim
x→+∞

ln x

x

H= lim
x→+∞

(ln x)′

(x)′

= lim
x→+∞

x−1

1
= 0.

Since y = eln y, by the continuity of the exponential function, we get

lim
x→+∞

x1/x = lim
x→+∞

eln y = e0 = 1.

3.54 Example: 1∞ form

Find the limit lim
x→∞

(
1 − 1

x

)x

.

Solution Let y =
(

1 − 1
x

)x

. If taking logarithm of both sides, we get ln y = x ln
(

1 − 1
x

)
.

Clearly, it is 0 · ∞ form. We can change it into 0
0

form

ln
(

1 − 1
x

)
x−1 .

If we let z = x−1, then x → ∞ ⇐⇒ z → 0. Thus, by applying l’Hospital’s Rule, we get

lim
x→∞

ln
(

1 − 1
x

)
x−1 = lim

z→0

ln(1 − z)
z

H= lim
z→0

[ln(1 − z)]′

(z)′

= lim
z→0

−1
1 − z

= −1.

Since y = eln y, by the continuity of the exponential function, we get

lim
x→∞

(
1 − 1

x

)x

= lim
x→∞

eln y = e−1.

3.55 MATLAB: indeterminate forms

We use MATLAB to calculate the following limits:
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• lim
x→1

ln x

x − 1
;

• lim
x→∞

ex

x
;

• lim
x→0+

(sin x) ln x;

• lim
x→+∞

(
√

x + 1 −
√

x);

• lim
x→0+

xx;

• lim
x→+∞

x1/x;

• lim
x→∞

(
1 − 1

x

)x

.

>> syms x;
>> f = log(x)/(x -1);
>> limit(f,x ,1)

ans =

1

>> f = exp(x)/x;
>> limit(f,x,inf)

ans =

Inf

>> f = sin(x)*log(x);
>> limit(f,x,0,'right ')

ans =

0

>> f = sqrt(x + 1) - sqrt(x);
>> limit(f,x,inf)

ans =

0

>> f = x^x;
>> limit(f,x,0,'right ')

ans =

1
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>> f = x^(1/x);
>> limit (f,x,inf)

ans =

1

>> f = (1 - 1/x)^x;
>> limit (f,x,inf)

ans =

exp (-1)

3.5 Curve Sketching

3.56 Definition: symmetry

(A) Suppose the domain D of f is symmetric about the origin.
• f is even if f(−x) = f(x) for all x in D.
• f is odd if f(−x) = −f(x) for all x in D.

(B) A function f is said to be periodic if f(x+p) = f(x) for every number x in its domain,
where p is a positive constant. The smallest such number p is called the period.

3.57 Example: even and odd functions

1. f(x) = x2, g(x) = cos x, and h(x) = 3x4 − 2x2 − 1
2 are even functions.

x

y

−1 1

1

2

y = x2
O

x

y

− 1
2 π 1

2 π

1

−1

y = cos x

O
x

y

−1 1

−1

1

y = 3x4 − 2x2 − 1
2

O

Suppose (a, b) is a point on the graph of an even function y = F (x). Since

F (−a) = F (a) = b,
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we know that (−a, b) is also on the graph of F . This means that the graph of every
even function is symmetric with respect to the y-axis.

2. f(x) = x3, g(x) = cos x, and h(x) = −x5 + 2x3 − x are odd functions.

x

y

−1 1

1

−1

y = x3

O x

y

− 1
2 π 1

2 π

1

−1

y = sin x

O

x

y

−1 1

−1

1

y = −x5 + 2x3 − x

O

Suppose (a, b) is a point on the graph of an odd function y = F (x). Since

F (−a) = −F (a) = −b,

we know that (−a, −b) is also on the graph of F . This means that the graph of every
odd function is symmetric with respect to the origin.

3.58 Method: guidelines for curve sketching

By following the guidelines, you are able to make a sketch that displays the most important
aspects of a given function y = f(x).

A. Domain: Domain D is the set of values of x for which f is defined.

B. Intercepts:
The y-intercept is f(0). The x-intercepts are the real solutions of the equation f(x) = 0.

C. Symmetry:
(i) If f(−x) = f(x) for all x ∈ D, then f is an even function and the curve is symmetric

about the y-axis.
(ii) If f(−x) = −f(x) for all x ∈ D, then f is an odd function and the curve is symmetric

about the origin.
(iii) If f(x + p) = f(x) for all x ∈ D, where p is a positive constant, then f is a

periodic function and the smallest such number p is the period.

D. Asymptotes:
(i) The line y = L is a horizontal asymptote of the curve y = f(x) if either

lim
x→+∞

f(x) = L or lim
x→−∞

f(x) = L.

(ii) The line x = a is a vertical asymptote of the curve y = f(x) if at least one of the
following statements is true:

lim
x→a

f(x) = +∞, lim
x→a−

f(x) = +∞, lim
x→a+

f(x) = +∞,

lim
x→a

f(x) = −∞, lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.
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E. Intervals of Increase and Decrease:
Apply the Increasing/Decreasing Test:
(a) If f ′(x) > 0 on an interval I, then f is increasing on I.
(b) If f ′(x) < 0 on an interval I, then f is decreasing on I.

F. Local Maximum and Minimum Values:
First find the critical points, the numbers c where f ′(c) = 0 or f ′(c) does not exist. Then

apply the First Derivative Test or the Second Derivative Test to determine whether f(c) is a
local maximum or minimum value.

(i) First Derivative Test: Suppose that c is a critical number of a continuous function f .
(a) If f ′ changes from positive to negative at c, then f has a local maximum at c.
(b) If f ′ changes from negative to positive at c, then f has a local minimum at c.
(c) If f ′ does not change sign at c, then f has no local maximum or minimum at c.

(ii) Second Derivative Test: Suppose f ′′ is continuous near c.
(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

G. Concavity and Points of Inflection:
(i) Apply the Concavity Test:

(a) If f ′′(x) > 0 on an interval, then the graph of f is concave upward on that interval.
(b) If f ′′(x) < 0 on an interval, then the graph of f is concave downward on that

interval.

(ii) Inflection Points: At these points, the curve changes the direction of concavity.

H. Sketch the Curve: Sketch the curve y = f(x) by using the information in items A-G.

3.59 Example: curve sketching

Sketch the function f(x) = 2x3 − 3x2 − 12x + 1.
A. Domain: The function f is defined at every point, so that the domain is the whole

real line (−∞, +∞).
B. Intercepts: The y-intercept is f(0) = 1. The x-intercepts are the real solutions of the

equation f(x) = 0, that is,
2x3 − 3x2 − 12x + 1 = 0.

The exact values of solutions can be approximated by using the Intermediate Value Theorem.
In fact, we can obtain the following bounds for the three roots of f : f(−2) = −3, f(−1.5) = 5.5 =⇒ −2 < x1 < −1.5;

f(0) = 1, f(0.5) = −5.5 =⇒ 0 < x2 < 0.5;
f(3) = −8, f(3.5) = 8 =⇒ 3 < x3 < 3.5.

C. Symmetry: The function f is neither even nor odd, and it is not a periodic function
either.
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D. Asymptotes: The function f is defined everywhere and thus has no vertical asymptote.
Since

lim
x→±∞

(2x3 − 3x2 − 12x + 1) = lim
x→±∞

x3
(

2 − 3
x

− 12
x2 + 1

x3

)
= ±∞,

the function f does not have any horizontal asymptote either.
E. Intervals of Increase or Decrease: Since

f ′(x) = 6x2 − 6x − 12 = 6(x2 − x − 2) = 6(x + 1)(x − 2),

we see that the derivative f ′ has two simple roots x = −1 and x = 2. These two points
divide the interval (−∞, +∞) into three open intervals (−∞, −1), (−1, 2), and (2, +∞). We
solve the inequalities f ′(x) ≷ 0 by using the number line and know that f ′ is positive on
(−∞, −1), negative in (−1, 2), and positive in (2, +∞). Thus, by the Monotone Test, the
function f is increasing over the intervals (−∞, −1) and (2, +∞), and decreasing over the
interval (−1, 2).

F. Local Maximum and Minimum Values: The roots of f ′, x = −1 and x = 2, are
critical points of f . The second derivative

f ′′(x) = 12x − 6

gives f ′′(−1) < 0 and f ′′(2) > 0. By the Second Derivative Test, f has a local maximum
value f(−1) = 8 and a local minimum value f(−1) = −19.

G. Concavity and Inflection Points: Since f ′′(x) < 0 when x < 1
2 , by the Concavity

Test, f is concave down on (−∞, 1
2 ). Similarly, since f ′′(x) > 0 when x > 1

2 , f is concave up
on ( 1

2 , +∞). Thus, x = 1
2 is an inflection point, with f( 1

2 ) = − 11
2 .

H. Sketch the Curve: Use the results obtained in items A-G, we can sketch the graph
of f(x) = 2x3 − 3x2 − 12x + 1.

x

y

y = 2x3 − 3x2 − 12x + 1

−1 2

−19

8

O

3.60 Example: curve sketching

Sketch the function f(x) = x

x2 + 1
.

A. Domain: The function f is defined at every point, so that the domain is the whole
real line (−∞, +∞).

B. Intercepts: The y-intercept is f(0) = 0. The x-intercept(s) is the real solutions of the
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equation f(x) = 0, that is,
x

x2 + 1
= 0,

which gives the unique solution x = 0. Thus, the curve passes through the x-axis at the
origin.

C. Symmetry: Since

f(−x) = −x

(−x)2 + 1
= − x

x2 + 1
= −f(x),

the function f is odd, so the graph is symmetric about the origin.
The function f is not a periodic function.
D. Asymptotes: The function f is defined everywhere and thus has no vertical asymptote.

Since
lim

x→±∞

x

x2 + 1
= lim

x→±∞

1

x + 1
x

= 0,

the function f has the x-axis as its horizontal asymptote.
E. Intervals of Increase or Decrease, and
F. Local Maximum and Minimum Values: Since

f ′(x) = − (x + 1)(x − 1)
(x2 + 1)2 ,

we see that the derivative f ′ has two simple roots x = −1 and x = 1. These two points
divide the interval (−∞, +∞) into three open intervals (−∞, −1), (−1, 1), and (1, +∞). We
solve the inequalities f ′(x) ≷ 0 by using the number line, we know that f ′ is negative on
(−∞, −1), positive in (−1, 1), and negative in (1, +∞). Thus, by the Monotone Test and the
First Derivative Test, we can have the following table:

interval sign of f ′ monotonicity
(−∞, −1) − ↘

−1 0 local min
(−1, 1) + ↗

1 0 local max
(1, +∞) − ↘

This table gives the intervals in which the function is monotone and the locations of the local
extrema. In fact, the local minimum value is f(−1) = − 1

2 and the local maximum value is
f(1) = 1

2 .
G. Concavity and Inflection Points: The second derivative f ′′ is

f ′′(x) = 2x(x2 − 3)
(x2 + 1)3 .

It has three simple roots x = −
√

3, x = 0, and x =
√

3. These three points divide the
interval (−∞, +∞) into four open intervals (−∞, −

√
3), (−

√
3, 0), (0,

√
3), and (

√
3, +∞).

We solve the inequalities f ′′(x) ≷ 0 by using the number line and know that f ′′ is negative
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in (−∞, −
√

3), positive in (−
√

3, 0), negative in (0,
√

3), and positive in (
√

3, +∞). Thus, by
the Concavity Test, we can have the following table:

interval sign of f ′′ concavity
(−∞, −

√
3) − ⌢

−
√

3 0 inflection
(−

√
3, 0] + ⌣

0 0 inflection
(0,

√
3) − ⌢√

3 0 inflection
(
√

3, +∞) + ⌣

This table gives the intervals in which the function is concave up/down and the locations of
the inflection points. In fact, the inflection points are at x = 0 and x = ±

√
3.

H. Sketch the Curve: Use the results obtained in items A-G, we can sketch the graph
of f(x) = x

x2 + 1
.

x

y

y = x

x2 + 1

−1 1

−1

1

O

3.61 Example: curve sketching

Sketch the function f(x) = x3

x2 − 1
.

A. Domain: The function f(x) = x3

x2 − 1
is defined everywhere except ±1, so that the

domain of f is (−∞, −1) ∪ (−1, 1) ∪ (1, +∞).
B. Intercepts: The y-intercept is f(0) = 0. The x-intercept(s) is the real solutions of the

equation f(x) = 0, that is,
x3

x2 − 1
= 0,

which gives the unique solution x = 0. Thus, the curve passes through the x-axis at the
origin.

C. Symmetry: Since

f(−x) = (−x)3

(−x)2 − 1
= − x3

x2 − 1
= −f(x),

the function f is odd, so the graph is symmetric about the origin.
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The function f is not a periodic function.
D. Asymptotes: Since

lim
x→−1−

x3

x2 − 1
= lim

x→1−

x3

x2 − 1
= −∞,

lim
x→−1+

x3

x2 − 1
= lim

x→1+

x3

x2 − 1
= +∞,

Moreover, by long division, we have

x3

x2 − 1
= x + x

x2 − 1
,

so that
lim

x→∞

(
x3

x2 − 1
− x

)
= lim

x→∞

x

x2 − 1
. = 0

This shows that y = x is a slant asymptote along both infinity directions, i.e., the graph of
f(x) gets closer to the line y = x when x → ∞. We also see that the graph of f is above the
asymptote for x > 0 and below the asymptote for x < 0.

E. Intervals of Increase or Decrease, and
F. Local Maximum and Minimum Values: The derivative f ′ is

f ′(x) = x2(x2 − 3)
(x2 − 1)2 .

Its denominator has two double roots at x = ±1, while the numerator has two simple roots
x = −

√
3 and x =

√
3, and a double root x = 0. These five points divide the inter-

val (−∞, +∞) into six open intervals (−∞, −
√

3), (−
√

3, −1), (−1, 0), (0, 1), (1,
√

3), and
(
√

3, +∞). We solve the inequalities f ′(x) ≷ 0 by using the number line and know that f ′

changes its signs only at x = ±
√

3. By the Monotone Test and the First Derivative Test, we
can have the following table:

interval sign of f ′ monotonicity
(−∞, −

√
3) + ↗

−
√

3 0 local max
(−

√
3, −1) − ↘

−1 not exist
(−1, 0) − ↘

0 0 no extreme
(0, 1) − ↘

1 not exist
(1,

√
3) − ↘√

3 0 local min
(
√

3, +∞) + ↗

This table gives the intervals in which the function is monotone and the locations of the local
extrema. In fact, the local maximum value is f(−

√
3) = − 3

√
3

2 and the local minimum value
is f(

√
3) = 3

√
3

2 .
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G. Concavity and Inflection Points: The second derivative f ′′ is

f ′′(x) = 2x(x2 + 3)
(x2 − 1)3 .

Its denominator has two triple roots at x = ±1, while the numerator has one simple root
x = 0. These three points divide the interval (−∞, +∞) into four open intervals (−∞, −1),
(−1, 0), (0, 1), and (1, +∞). We solve the inequalities f ′′(x) ≷ 0 by using the number line
and know that f ′′ changes its signs at x = ±1 and x = 0. By the Concavity Test, we can
have the following table:

interval sign of f ′′ concavity
(−∞, −1) − ⌢

−1 not exist
(−1, 0) + ⌣

0 0 inflection
(0, 1) − ⌢

1 not exist
(1, +∞) + ⌣

The function has one inflection point at x = 0, with f(0) = 0. The other two points x = ±1
are not inflection points, since they are not in the domain of f .

H. Sketch the Curve: Use the results obtained in items A-G, we can sketch the graph

of f(x) = x3

x2 − 1
.

O
x

y

y = x3

x2 − 1

−1 1

−1

1

3.62 MATLAB: curve sketching

There are several commands to plot figures in MATLAB.

1. The following example shows the plots of f(x) = 2x3 −3x2 −12x+1 and g(x) = x

x2 + 1
in the same figure.

syms x;
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f(x) = 2*x^3 - 3*x^2 - 12*x + 1;
g(x) = x/(x^2 + 1);

x_array = -3:0.05:3; % x-axis ranges from -3 to 3 with ...
step size 0.05

subplot (2 ,1 ,1) % create 2 rows and 1 column of graphs and ...
place the current figure in the 1st position

plot(x_array ,f( x_array ),'r')
xlabel ('x')
ylabel ('f(x)')
grid

subplot (2 ,1 ,2)
x_array2 = linspace ( -3 ,3 ,121); % a vector with 121 evenly ...

spaced points from -3 to 3
plot(x_array2 ,g( x_array2 ),'b')
xlabel ('x')
ylabel ('g(x)')
grid

Note that we use different commands to generate vectors for x-axis, but the vectors
generated, i.e., x_array and x_array2, are the same.
The figure plotting f and g is shown below.

-3 -2 -1 0 1 2 3

x

-40

-20

0

f(
x
)

-3 -2 -1 0 1 2 3

x

-0.5

0

0.5

g
(x

)

2. The following example shows the plot of f(x) = x3

x2 − 1
using the command fplot.

syms x;
f(x) = x^3/(x^2 - 1);

fplot(f(x))
xlabel ('x')
ylabel ('f(x)')
grid
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where fplot(f(x)) plots the figure of f on the default interval [−5, 5] along the x-axis.
The figure of f on [−5, 5] is shown below.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-6

-4

-2

0

2

4

6

f(
x
)

We can see from the figure above that x = −1 and x = 1 are vertical asymptotes of the
curve y = f(x).
Note that we can input the expression of f into fplot directly without the need of
defining a symbolic function beforehand. In this way, f should be input in the form of
an anonymous function. Moreover, we can also specify the interval along the x-axis for
the figure to be plotted. The following example shows this alternative way of using the
command fplot.

fplot (@(x)x .^3./( x.^2 - 1) ,[-4,4]) % 1st input : anonymous ...
function ; 2nd input : x-axis ranges from -4 to 4

xlabel ('x')
ylabel ('f(x)')
grid

-4 -3 -2 -1 0 1 2 3 4

x

-6

-4

-2

0

2

4

6

f(
x
)

The figure above shows f on the interval [−4, 4] (except at ±1).
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3.6 Parametric Curves

3.63 Definition: parametric equations and parametric curve

Suppose that x and y are both given as functions of a third variable t (called a parameter)
by the so-called parametric equations:

x = f(t), y = g(t), a ≤ t ≤ b.

As t varies, the point (x, y) = (f(t), g(t)) varies and traces out a curve, which we call a
parametric curve. The points (f(a), g(a)) and (f(b), g(b)) are called the initial point and
terminal point of the curve.

3.64 Example: parametric equations and parametric curve

The parametric equations

x = cos t, y = sin t, 0 ≤ t ≤ 2π

describe the unit circle. In fact, for each value of t, the corresponding ordered pair (x, y) is
a point on the circle centered at (0, 0) with radius 1. To be more explicit, for some special
values of t, we can generate the following table and the corresponding points (x, y) which are
on the circle.

t (x, y)

0 (1, 0)
π
4 (

√
2

2 ,
√

2
2 )

π
2 (0, 1)

3π
4 (−

√
2

2 ,
√

2
2 )

π (−1, 0)
3π
2 (0, −1)

2π (1, 0)

x

y

t = 0, (1, 0)

t = π
4 , (

√
2

2 ,
√

2
2 )

t = π
2 , (0, 1)

t = 3π
4 , (−

√
2

2 ,
√

2
2 )

t = π, (−1, 0)

t = 3π
2 , (0, −1)

t = 2π, (1, 0)O

From the figure, we see that as t increases from the initial value t = 0 to the final value
of t = 2π, the curve is generated from the initial point (1, 0) to the final point (1, 0). The
parametric equations trace out the unit circle in the counterclockwise direction. The initial
point and the final point coincide at the same location.
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3.65 Example: parametric equations of a line

The parametric equations

x = x0 + at, y = y0 + bt, −∞ < t < +∞,

where x0, y0, a, and b are constants, describ a line with slope b

a
, if a ̸= 0. If a = 0 and b ̸= 0,

the line is vertical.

3.66 Example: parametric equations of cycloid

Suppose a point P starting at the origin on the circumference of a circle of radius r traces
out a curve as the circle rolls along the x-axis. Show that the parametric equations of the
curve are

x = r(t − sin t), y = r(1 − cos t),

where the parameter t is the angle of the rotation of the circle with t = 0 when P is at the
origin.

Solution We take t, the angle of the rotation of the circle, as the parameter. Suppose the
circle has rotated through t radians. From the figure, we see that the distance it has rolled
from the origin is

|OT | = arc PT = rt,

so that the coordinates of the center of the circle is C(rt, r). Let the coordinates of P be
(x, y). Then

x = |OT | − |PQ| = rt − r sin t = r(t − sin t),
y = |TC| − |QC| = r − r cos t = r(1 − cos t).

These give the parametric equations of the cycloid.

r

y

x

C(rt, r)
QP

T

rt

x

y

2πrO

3.67 Remark: non-uniqueness of parametrization

A curve can have more than one parametrizations. For example, it is easy to verify that
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the unit circle x2 + y2 = 1 admits the following parametrizations:

(1) x = cos t, y = sin t, 0 ≤ t < 2π;
(2) x = sin t, y = cos t, π

2 < t ≤ 5π
2 .

3.68 Theorem: tangent to parametric curve

Suppose a parametric curve is given by the parametric equations

x = f(t), y = g(t).

If f and g are differentiable functions, and if f ′(t) ̸= 0, then the chain rule gives the slope of
the tangent line at (x, y) = (f(t), g(t)):

dy

dx
= dy/dt

dx/dt
= g′(t)

f ′(t)
.

Theorem: horizontal tangent

The parametric curve has a horizontal tangent at (x, y) = (f(t), g(t)) if

dy

dt
= g′(t) = 0,

dx

dt
= f ′(t) ̸= 0.

Theorem: vertical tangent

The parametric curve has a vertical tangent at (x, y) = (f(t), g(t)) if

dx

dt
= f ′(t) = 0,

dy

dt
= g′(t) ̸= 0.

3.69 MATLAB: parametric curves

In MATLAB, parametric curves can be plotted using the command plot. The following
examples show the plot of two parametric curves.

1. The parametric equations are

x = cos t, y = sin t, 0 ≤ t ≤ 2π

The parametric curve is plotted using the following code:

>> t = linspace (0 ,2*pi ,200);
>> x = cos(t);
>> y = sin(t);
>> figure
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>> plot(x,y,'r')
>> grid
>> xlabel ('x')
>> ylabel ('y')

The parametric curve is shown below.
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2. The parametric equations are

x = t − sin t, y = 1 − cos t, 0 ≤ t ≤ 4π

The parametric curve is plotted using the following code:

>> t = linspace (0 ,4*pi ,200);
>> x = t - sin(t);
>> y = 1 - cos(t);
>> figure
>> plot(x,y,'b')
>> grid
>> xlabel ('x')
>> ylabel ('y')

The parametric curve is shown below.
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Polar Coordinates and Polar Curves

3.70 Definition: Cartesian coordinates and polar coordinates

A point (x, y) in Cartesian coordinates can
be expressed in polar coordinates by

x = r cos θ, y = r sin θ.

Conversely, we can express r and θ in terms
of x and y:

r2 = x2 + y2, tan θ = y

x
.

P (r, θ) = P (x, y)

y

x
θ x

y

O

3.71 Definition: polar curve

The graph of a polar equation r = f(θ), or more generally F (r, θ) = 0, consists of all points
P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

3.72 Example: polar curve - Archimedean spiral

The general Archimedean spiral is a polar curve described by the equation

r = a + bθ, θ ≥ 0,

where a and b are real numbers. Sketch the curve with a = 2 and b = 1.
Solution For θ ≥ 0, in Cartesian coordinates, the equation r = 2 + θ gives a line of slope

1 in the first quadrant, starting from the point (0, 2), as in the following left figure. As θ
increases from 0, it shows that r increases monotonically from 2. It gives a spiral curve, as
shown in the following right figure.
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3.73 Example: polar curve - three-leaved rose

Sketch the curve with the given polar equation

r = 2 sin 3θ.
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Solution The function is periodic of period 2
3 π, and a full revolution is 2π, so the least

common multiple is 2π. Thus, we sketch r = 2 sin 3θ, 0 ≤ θ ≤ 2π, in Cartesian coordinates
in the following left figure.

(1) As θ increases from 0 to π
6 , r increases from 0 to 2; as θ increases from π

6 to π
3 , r

decreases from 2 to 0. Since r is positive, the curve is in the first quadrant.
(2) As θ increases from π

3 to π
2 , r decreases further from 0 to −2; as θ increases from π

2 to
2π
3 , r increases from −2 to 0. Since r is negative, the curve is in the lower-half plane.

(3) As θ increases from 2π
3 to 5π

6 , r increases from 0 to 2; as θ increases from 5π
6 to π, r

decreases from 2 to 0. Since r is positive, the curve is in the second quadrant.
Thus, as θ varies from 0 to π, the curve traces a three-leaved rose.
(4) As θ increases from π to 2π, since r = −2 sin(3θ − π), we know that the curve traces

the same three-leaved rose once more.
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3.74 Example: polar curve sketching

Sketch the curve with the given polar equation

r = a + b cos θ,

where (A) a = b = 4; (B) a = 3 and b = 5.

Solution For any given a and b, the function r = a + b cos θ is periodic of period 2π. Since
a full revolution is 2π, we only need to sketch the polar curve for 0 ≤ θ ≤ 2π.

(A) For 0 ≤ θ ≤ 2π, we sketch r = 4 + 4 cos θ in Cartesian coordinates in the following left
figure. As θ increases from 0 to π, it shows that r decreases from 4 to 0. Since r is positive,
the curve is in the upper-half plane. As θ increases from π to 2π, r increases from 0 to 4.
Again since r is positive, the curve is in the lower-half plane. Thus, as θ varies from 0 to 2π,
the curve completes one loop, as shown in the following right figure. This is a cardioid.
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θ

r
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(B) For 0 ≤ θ ≤ 2π, we sketch r = 3 + 5 cos θ in Cartesian coordinates in the following left
figure.

(1) As θ increases from 0 to cos−1(− 3
5 ) ≈ 2.2143 (rad) ≈ 126.87◦, r decreases from 8 to 0.

Since r is positive, the curve is in the upper-half plane.
(2) As θ increases from cos−1(− 3

5 ) to π, r decreases further from 0 to −3. Since r is
negative, the curve is in the fourth quadrant.

(3) As θ increases from π to 2π − cos−1(− 3
5 ) ≈ 4.0689 (rad) ≈ 233.13◦, r increases from

−2 to 0. Since r is negative, the curve is in the first quadrant.
In fact, when θ varies from cos−1(− 3

5 ) to 2π − cos−1(− 3
5 ), the curve completes the small

loop.
(4) As θ increases from 2π − cos−1(− 3

5 ) to 2π, r increases from 0 to 8, and the curve is in
the lower-half plane.

The curve also completes a large loop, as shown in the following right figure. We get a
limaçon.
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3.75 Method: determine symmetry of a polar curve

(a) If a polar equation is unchanged when θ
is replaced by −θ, the curve is symmetric
about the polar axis.

θ = 0

(r, θ)

(r, −θ)
O
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(b) If the equation is unchanged when r is re-
placed by −r, or when θ is replaced by
θ + π, the curve is symmetric about the
pole.

θ = 0

(r, θ)

(−r, θ)
O

(c) If the equation is unchanged when θ is re-
placed by π − θ, the curve is symmetric
about the vertical line θ = π

2 .
θ = 0

(r, θ)(r, π − θ)

O

3.76 Theorem: tangent to polar curve

Suppose a polar curve is given by the equation r = f(θ). Then we can write its parametric
equations as

x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ.

If f is differentiable, and if dx

dθ
= f ′(θ) cos θ − f(θ) sin θ ̸= 0, then the chain rule gives the

slope of the tangent line at (x, y) = (f(θ) cos θ, f(θ) sin θ):

dy

dx
= dy/dθ

dx/dθ
= f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

Theorem: horizontal tangent

The parametric curve has a horizontal tangent at (x, y) = (f(θ) cos θ, f(θ) sin θ) if

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ = 0,

dx

dθ
= f ′(θ) cos θ − f(θ) sin θ ̸= 0.

Theorem: vertical tangent

The parametric curve has a vertical tangent at (x, y) = (f(θ) cos θ, f(θ) sin θ) if

dx

dθ
= f ′(θ) cos θ − f(θ) sin θ = 0,

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ ̸= 0.

3.77 Example: highest point of limaçon

Find the highest point of limaçon r = 3 + 5 cos θ.
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Solution The function r = 3 + 5 cos θ is periodic of period 2π. Since a full revolution is
2π, we only need to determine the highest point for 0 ≤ θ ≤ 2π.

The parametric equations for the limaçon are

x = (3 + 5 cos θ) cos θ, y = (3 + 5 cos θ) sin θ, 0 ≤ θ ≤ 2π.

At the highest point, we must have dy

dθ
= dy

dx
· dx

dθ
= 0 · dx

dθ
= 0. It is easy to have

dy

dθ
= (−5 sin θ) sin θ + (3 + 5 cos θ) cos θ

= −5(1 − cos2 θ) + (3 + 5 cos θ) cos θ

= 10 cos2 θ + 3 cos θ − 5.

Solving dy

dθ
= 0 gives

cos θ = 1
20 (−3 +

√
209) ≈ 0.5728 or 1

20 (−3 −
√

209) ≈ −0.8728.

Thus, for 0 < θ < 2π, there are four critical points:

θ1 = cos−1 ( 1
20 (−3 +

√
209)

)
≈ 0.9608,

θ2 = cos−1 ( 1
20 (−3 −

√
209)

)
≈ 2.6318,

θ3 = 2π − cos−1 ( 1
20 (−3 +

√
209)

)
≈ 3.6514,

θ4 = 2π − cos−1 ( 1
20 (−3 −

√
209)

)
≈ 5.3224,

at which the corresponding Cartesian coordinates (x, y) are

(x1, y1) = (3.35926, 4.8067),
(x2, y2) = (1.19074, −0.6657),
(x3, y3) = (1.19074, 0.6657),
(x4, y4) = (3.35926, −4.8067).

The Cartesian coordinates of two endpoints when θ = 0 and θ = 2π coincide at (8, 0). By
comparing the values of the y-coordinates at these five points, we see that the highest point
of the curve attains at (x1, y1), approximately at (3.35926, 4.8067).
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3.78 MATLAB: polar curves

In MATLAB, the command polarplot facilitates the plot of polar curves. Two examples
are provided below to show how to plot polar curves in MATLAB.

1. The polar curve is described by the following equation:

r = 2 sin 3θ.

This polar curve can be plotted using the following code:

>> theta = linspace (0 ,2*pi ,200);
>> r = 2* sin (3* theta);
>> figure
>> polarplot (theta ,r)

The polar curve plotted is shown below.
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2. The polar curve is described by the following equation:

r = 4 + 4 cos θ,

This polar curve can be plotted using the following code:

>> theta = linspace (0 ,2*pi ,200);
>> r = 4 + 4* cos(theta);
>> figure
>> polarplot (theta ,r,'r')

The polar curve plotted is shown below.
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3.7 Optimization

3.79 Example: optimization - largest area

John has 120 meters of fencing to build a rectangular fence along a straight river. He needs
to build three sides, and the side along the river does not need fencing. What are the lengths
of sides of the field to have the largest area?

x

y

x

Solution This is a typical example of optimization problems. Its solution involves a few
steps, shown below.

Step 1: Introduce variables.
Let x be the length of the side of the rectangle perpendicular to the river and y be the

length of the other side.
Step 2: Write down the function to be optimized and the constraints on variables. Simplify

the function under the constraints.
(1) We need to maximize the area of the rectangle, which is A = xy.
(2) There are some constraints for variables x and y. Clearly, we must have 2x + y = 120,

or y = 120 − 2x. We also have 0 ≤ x ≤ 60 and 0 ≤ y ≤ 120.
(3) Substitute y = 120 − 2x into the function we need to optimize, we get

A(x) = x(120 − 2x) = 120x − 2x2,

where 0 ≤ x ≤ 60.
Step 3: Solve the optimization problem.
This is a problem of finding maximum for the function A(x) = 120x − 2x2 defined in a

finite closed interval [0, 120].
In fact, the function A is continuous on [0, 120] and differentiable in (0, 120). The derivative

of A is
A′(x) = 120 − 4x.

Solving A′(x) = 0 gives only one critical point x = 30 in [0, 120]. We can use one of the
following two approaches to determine the absolute maximum value of A in the interval
[0, 120].

(a) We evaluate the function A at two boundary points x = 0 and x = 120 and the critical
point at x = 30:

A(0) = 0 = A(60), A(30) = 30 × 60 = 1800.

By choosing the largest value, we get the absolute maximum value A(30) = 1800.
(b) It is easy to see that {

A′(x) > 0, if 0 < x < 30;
A′(x) < 0, if 30 < x < 120.
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Thus, by the First Derivative Test, the function A has a local maximum value at x = 30.
Since A is increasing on (0, 30), and decreasing on (30, 120), the local maximum value is also
the absolute maximum.

Hence, the function A attains the absolute maximum value A(30) = 1800.

3.80 Example: optimization - Snell’s law of refraction

Fermat’s principle says that light travels along the path of shortest traveling time. In the
figure below, we consider a light ray traveling from point A located in one medium to point
B in another medium. The media are separated by the x-axis. Assume that the speed of
light is respectively c1 and c2 in the media. Denote by θ1 the angle of incidence and θ2 the
angle of refraction.

d − x

b

x

a

θ1

θ2

A

C

B
d

The total time for light to travel along the path ACB is

T (x) = (time from A to C) + (time from C to B)

=
√

a2 + x2

c1
+
√

b2 + (d − x)2

c2
.

We shall determine the value of x by applying Fermat’s Principle to minimize the function
T on [0, d].

In fact, the derivative of T is

T ′(x) = x

c1
√

a2 + x2
− d − x

c2
√

b2 + (d − x)2
.

We claim that the equation T ′(x) = 0 has a unique solution on [0, d]. Indeed, the equation
has a solution by the Intermediate Value Theorem, and

T ′(0) = − d

c2
√

b2 + d2
< 0, T ′(d) = d

c1
√

a2 + d2
> 0.

The solution is unique since T ′ is increasing on (0, d):

T ′′(x) = a2

c1
(a2 + x2)−3/2 + b2

c2
(b2 + (d − x)2)−3/2 > 0.

Let x = x0 be the unique solution of the equation T ′(x) = 0 on (0, d). The above argument
shows that {

T ′(x) < 0, if 0 < x < x0;
T ′(x) > 0, if x0 < x < d.
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Thus, by the First Derivative Test, the function T has a local minimum at x = x0. Since
T is increasing on (x0, d), and decreasing on (0, x0), the local minimum is also the absolute
minimum. Hence, along the path ACB when x = x0, light travels from A to B in the shortest
time.

When x = x0, the equation T ′(x0) = 0 gives

x0

c1
√

a2 + x2
0

= d − x0

c2
√

b2 + (d − x0)2
.

In terms of the angles of incidence and refraction, we have

sin θ1

c1
= sin θ2

c2

which gives Snell’s law
sin θ1

sin θ2
= c1

c2
,

3.81 Example: optimization - shortest distance

Find points on the parabola y = 1
2 x2 that is closest to the point (4, 1).

Solution The distance from a point (x, y) on the parabola to the point (4, 1) is

d =
√

(x − 4)2 + ( 1
2 x2 − 1)2.

We need to minimize the function d. It is equivalent to minimize the function f(x) = d2(x),
which is computationally easier.

In fact, the derivative f ′ is

f ′(x) =
[
(x − 4)2 + ( 1

2 x2 − 1)2]′ = 2(x − 4) + 2( 1
2 x2 − 1)x = x3 − 8.

By solving f ′(x) = 0, we see that f has only one critical point x = 2. It is easy to see that{
f ′(x) < 0, if x < 2;
f ′(x) > 0, if x > 2.

Thus, by the First Derivative Test, the function f has a local minimum value at x = 2. Since
f is decreasing on (−∞, 2), and increasing on (2, +∞), the local minimum value is also the
absolute minimum.

Hence, the shortest distance is attained
when x = 2, with

d =
√

(2 − 4)2 + (22/2 − 1)2 =
√

5.

x

y

(4, 1)

(2, 2)

y = 1
2 x2

1 2 4

1

2

O
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3.82 MATLAB: optimization

John has 120 meters of fencing to build a rectangular fence along a straight river. He needs
to build three sides, and the side along the river does not need fencing. What are the lengths
of sides of the field to have the largest area?

The following MATLAB code solves the above optimization problem.

>> syms x y S(x);
>> y = 120 - 2*x; % the side parallel to the river
>> S(x) = x*y; % area
>> d(x) = diff(S(x),x)

d(x) =

120 - 4*x

>> rts_d = solve(d(x) == 0,x)

rts_d =

30

>> x_array = 0:0.5:60; % x < 60
>> figure
>> plot(x_array ,d( x_array ),'r')
>> xlabel ('x')
>> ylabel ('S''(x)')
>> grid

0 10 20 30 40 50 60

x

-150

-100

-50

0

50

100

150

S
'(
x
)

We see from the above MATLAB code that S′(x) = 0 has one root: x = 30. Moreover,
we note from the above figure of S′(x) that S′(x) > 0 on (0, 30) and S′(x) < 0 on (30, 60).
According to the First Derivative Test, S(x) has a local maximum value at x = 30. Moreover,
since S′(x) > 0 on (0, 30), i.e., S(x) is increasing on (0, 30), and S′(x) < 0 on (30, 60), i.e.,
S(x) is decreasing on (30, 60), we know that S(x) also has an absolute maximum value at
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x = 30. Therefore, to have the largest area, the length perpendicular to the river should be
30 meters, and the side parallel to the river should be 120 − 2 × 30 = 60 meters.

3.83 Engineering Example: bending moment

When an external force is applied to a structural element, e.g., beam, and it causes this el-
ement to bend, we say the bending moment is induced. The bending moment is an important
concept in physics and engineering, especially civil and mechanical engineering.

Suppose there is a beam of length L with uniform distributed loading of q per unit length.
At the distance x of the beam, the bending moment M is given by

M = −q

2
x2 + qL

2
x.

This is illustrated in the figure below.

L

x

Find the value of x which gives the maximum bending moment and calculate this maximum
bending moment.

First, let f(x) = M = − q
2 x2 + qL

2 x (0 ≤ x ≤ L). Then, we have

f ′(x) = −qx + qL

2
.

It is easy to see that {
f ′(x) > 0, if 0 ≤ x < L

2 ;
f ′(x) < 0, if L

2 < x ≤ L.

Thus, by the First Derivative Test, we know that f(x) has a local maximum value at x = L
2 .

Moreover, since f ′(x) > 0 on
[
0, L

2
)
, i.e., f(x) is increasing on

[
0, L

2
)
, and f ′(x) < 0 on

(
L
2 , L

]
,

i.e., S(x) is decreasing on
(

L
2 , L

]
, we know that f(x) also has an absolute maximum value at

x = L
2 . Hence, at x = L

2 , the bending moment is the maximum.
To calculate the corresponding maximum bending moment, we substitute x = L

2 into f(x)
and have

f

(
L

2

)
= −q

2

(
L

2

)2

+ qL

2
L

2
= qL2

8
.

The result above shows that the maximum bending moment is qL2

8 .
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3.84 Engineering Example: tank volume optimization

One piece of metal is provided to build a water tank. For this purpose, four corners of the
metal should be cut, as illustrated in the figure below.

x

x

3 m

6 m

Find the value of x such that the volume of the water tank is maximized and calculate the
maximum volume of the water tank.

First, the volume of the water tank can be calculated as follows:

V (x) = (6 − 2x)(3 − 2x)x
= 4x3 − 18x2 + 18x.

The derivative of V (x) is

V ′(x) = 12x2 − 36x + 18.

As we know, the roots of an equation ax2 + bx + c = 0 are given by

x = −b ±
√

b2 − 4ac

2a
.

We thus can calculate the roots of V ′(x) = 12x2 − 36x + 18 = 0 as

x = 36 ±
√

362 − 4 × 12 × 18
24

≈ 0.634 or 2.366.

Since 2x < 3, the value of x should satisfy 0 < x < 1.5, which shows that x cannot be 2.336.
We will then check whether x = 0.634 is a maximum point.

The second derivative of V (x) can be easily calculated and shown below:

V ′′(x) = 24x − 36.

Substituting x = 0.634 into V ′′(x), we have

V ′′(0.634) = 15.216 − 36 < 0.

According to the Second Derivative Test, we know that V (x) has a local maximum value at
x = 0.634. To check whether x = 0.634 is also an absolute maximum point, we rewrite V ′(x)
as

V ′(x) = 2(x − 0.634)(x − 2.366).
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Obviously, we know that {
V ′(x) > 0, if 0 < x < 0.634;
V ′(x) < 0, if 0.634 < x < 1.5,

which means V (x) is increasing on (0, 0.634) and decreasing on (0.634, 1.5). Therefore, x =
0.634 is also an absolute maximum point, i.e., the volume of the water tank is maximized at
x = 0.634 (m). Finally, substituting x = 0.634 into V (x), we have the maximum volume of
the water tank as

V (0.634) = 4 × 0.6343 − 18 × 0.6342 + 18 × 0.634 ≈ 5.196
(
m3) .

3.85 Engineering Example: entropy optimization

In information theory, the entropy refers to the uncertainty or the disorder of an event. If
an event has more uncertainty, then it carries more information and has more entropy.

For a communication system, if it has two inputs 0 and 1 and they occur with probability
p and 1 − p (0 < p < 1), respectively, then the entropy of the source is given by

H(p) = −p log2 p − (1 − p) log2(1 − p).

Find the value of p such that the entropy H(p) is maximized and calculate the maximum
entropy.

By applying the product rule and the chain rule, we have

dH(p)
dp

= − log2 p − p (log2 p)′ − (−1) log2(1 − p) − (1 − p) (log2(1 − p))′

= − log2 p − p
1

p ln 2
+ log2(1 − p) − (1 − p) −1

(1 − p) ln 2
= log2(1 − p) − log2 p.

According to Fermat’s Theorem, we first calculate the value of p such that dH(p)
dp = 0. It

can be calculated that dH(p)
dp

∣∣∣
p=0.5

= 0. Moreover, since log2 x is an increasing function, we

notice that when p < 0.5, dH(p)
dp > 0; while when p > 0.5, dH(p)

dp < 0. Therefore, according to
the first derivative test, the entropy H(p) is maximized at p = 0.5.

Substituting p = 0.5 into the expression of H(p), we have

H(p) = −0.5 × log2 0.5 − (1 − 0.5) × log2(1 − 0.5)
= − log2 0.5 = 1 (bit).

The maximum entropy is thus 1 bit.
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3.8 Newton’s Method

3.86 Method: Newton’s iteration

To find approximations to a solution r of the equation f(x) = 0, we start with an initial
guessing value x0, which is not equal to r in general. To improve the approximation, consider
the tangent line to the curve y = f(x) at the point (x0, f(x0)). An equation of the line is

y − f(x0) = f ′(x0)(x − x0),

whose x-intercept gives the first approximation x1, obtained by putting y = 0 in the last
equation:

0 − f(x0) = f ′(x0)(x1 − x0) =⇒ x1 − x0 = − f(x0)
f ′(x0)

=⇒ x1 = x0 − f(x0)
f ′(x0)

.

The formula for x1 is meaningful if f ′(x0) ̸= 0.
We repeat this procedure with x0 replaced by the first approximation x1, using the tangent

line at (x1, f(x1)). This gives a second approximation:

x2 = x1 − f(x1)
f ′(x1)

.

If we keep repeating this process, we generate a sequence of approximations
x1, x2, x3, x4, . . . . In general, if xn is the nth approximation and f ′(xn) ̸= 0, then the
next approximation is given by

xn+1 = xn − f(xn)
f ′(xn)

.

This recursive formula is called Newton’s iteration and the sequence {xn} generated is
called Newton’s approximations.

x

y

x0x1x2x3

(x0, f(x0))

(x1, f(x1))

(x2, f(x2))

r

O
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Theorem: convergence of Newton’s approximations

If x0 is chosen to be sufficiently close to a solution r of f(x) = 0, and if f ′(xn) ̸= 0
for n = 1, 2, 3, . . . , then the sequence {xn} generated by Newton’s iteration converges
to r:

lim
n→∞

xn = r.

3.87 Example: Newton’s method

Given f(x) = x3 − 5x + 1. Use six steps of Newton’s method to approximate all three real
roots of f .

1. Choose an initial guessing value for each root.
The function f is a polynomial of degree 3, so it has at most three real roots. Since f(−3) < 0, f(−2) > 0;

f(0) > 0, f(1) < 0;
f(2) < 0, f(3) > 0,

by the Intermediate Value Theorem, f must have one root in each of the three intervals
(−3, −2), (0, 1), and (2, 3).
Hence, it is plausible to choose the initial guessing values −2.5, 0.5, 2.5 for Newton’s
iterations for approximating the three roots of f .

2. Write the recursive formula of Newton’s method.
For f(x) = x3 − 5x + 1, we have

f ′(x) = (x3 − 5x + 1)′ = 3x2 − 5.

Thus, the recursive formula of Newton’s method is

xn+1 = xn − f(xn)
f ′(xn)

= xn − x3
n − 5xn + 1

3x2
n − 5

= 2x3
n − 1

3x2
n − 5

.

3. Perform the iteration.
For the initial guessing value x0 = −2.5,

x1 = 2x3
0 − 1

3x2
0 − 5

= 2(−2.5)3 − 1
3(−2.5)2 − 5

= −2.345455,

x2 = 2x3
1 − 1

3x2
1 − 5

= 2(−2.345455)3 − 1
3(−2.345455)2 − 5

= −2.330203,

...

x5 = 2x3
4 − 1

3x2
4 − 5

= −2.330059.
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We list Newton’s approximations of all three roots in the following table.

k xk xk xk

0 −2.500000 0.500000 2.500000
1 −2.345455 0.176471 2.200000
2 −2.330203 0.201568 2.131933
3 −2.330059 0.201640 2.128428
4 −2.330059 0.201640 2.128419
5 −2.330059 0.201640 2.128419

Remark: when to stop for Newton’s iteration

There is a need for a good estimation of the error of the approximation. However,
since the actual value of the root is not know, it is not easy to get the estimation
of the error. The rule of thumb is that if we want n decimal accuracy, we should
compute until two successive approximations agree up to n decimal places.

Remark: how many steps needed

For a given accuracy, the number of steps of Newton’s iteration can vary. In the
example, if the initial guessing value is x0 = 1.3, then Newton’s approximations are

k xk

0 1.300000
1 48.485718
2 32.346600
...

...
12 2.128441
13 2.128419

It takes 13 steps of Newton’s iterations to achieve 6 decimal accuracy.

3.88 Pitfall: convergence of Newton’s method

In Newtons’s method, f ′(xn) appears in the denominator of the formula. When f ′(xn) is
zero, the method breaks down. When f ′(xn) is close to zero, the method is slow to converge
to the actual root or may fail to converge.

Consider f(x) = 8x2

3x2 + 1
. Then the recursive formula of Newton’s method is

xn+1 = xn − f(xn)
f ′(xn)

= xn − xn(3x2
n + 1)
2

= xn

2
(1 − 3x2

n).

Clearly the function f has 0 as the only real root. For the following three initial guessing
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values x0 = 1, 0.15, and 1.1, we list the corresponding Newton’s approximations:

k xk xk xk

0 1.000000 0.150000 1.200000
1 −1.000000 0.069938 −1.992000
2 1.000000 0.034456 10.860575
3 −1.000000 0.017166 −1.92 × 103

4 1.000000 0.008576 1.06 × 1010

5 −1.000000 0.004287 −1.76 × 1030

6 1.000000 0.002143 8.21 × 1090

From the computations, we see that the approximations with the initial guessing values
x0 = 1 and x0 = 1.2 fail to converge.

3.89 MATLAB: Newton’s method

The following example shows how to calculate the roots of f(x) = x3 −5x+1 in MATLAB.
We note that f is a polynomial of degree 3, so it has at most three real roots. To roughly
estimate these roots, we first plot the figure of f as follows.

>> syms x;
>> f(x) = x^3 - 5*x + 1;
>> x_array = -3:0.05:3;
>> figure
>> plot(x_array ,f( x_array ),'r')
>> xlabel ('x')
>> ylabel ('f(x)')
>> grid

-3 -2 -1 0 1 2 3

x

-15

-10

-5

0

5

10

15

f(
x
)

From the figure above, we see that there are 3 roots of f , and these roots are on intervals
(−3, −2), (0, 1) and (2, 3), respectively. Hence, we choose the initial guessing values −2.5,
0.5 and 2.5 for Newton’s iterations for approximating the three roots of f(x).

Next, we use Newton’s method to approximate these three roots of f . The MATLAB code
is provided below.
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syms x;
f(x) = x^3 - 5*x + 1; % function
d(x) = diff(f(x),x);

n = 5;
N_max = 10; % maximum no. of iterations
x = zeros (1, N_max);
x0 = - 2.5; % initial guess
x(1) = x0;

for num = 1: N_max
x(num + 1) = x(num) - f(x(num))/d(x(num));
if abs(x(num + 1) - x(num)) <10^( -(n + 1)) % to ensure n ...

decimal accuracy
break ; % accuracy achieved , so exit!

end
end

x_iter = x(1:( num + 1)) % show iteration results

By inputting different initial guessing values, we can obtain approximations of all three
roots. Moreover, we can have 15-digit approximations by using the command format long.
The Newton’s approximations of all three roots with initial guessing values −2.5, 0.5 and 2.5,
respectively, are listed in the following table.

k xk xk xk

0 −2.500000000000000 0.500000000000000 2.500000000000000
1 −2.345454545454545 0.176470588235294 2.200000000000000
2 −2.330203407719357 0.201568074338339 2.131932773109244
3 −2.330058752527104 0.201639675087802 2.128428202971012
4 −2.330058739567982 0.201639675723405 2.128419063906659
5 2.128419063844577

Note that to ensure the 5 decimal accuracy, it requires the absolute difference of two
successive approximations to be less than 10−6 in the MATLAB code. In this case, the
initial guessing values of −2.5 and 0.5 result in 4 iterations, and the initial guessing value of
2.5 results in 5 iterations.

3.90 Engineering Example: projectile - Newton’s method

Consider the case where a ball is thrown with initial velocity u and an angle θ
(0◦ ≤ θ ≤ 90◦) against the ground, as shown in the following figure. Then, at time t, the
displacement of the ball in the y-direction is sy = u sin θt − 1

2
gt2, where g ≈ 9.8 m/s2 is

the standard gravity. Suppose that the initial velocity is 40 m/s and the angle against the
ground is 45◦. Use Newton’s method to calculate the time t at which the ball is 10 meters
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above the ground during the falling down stage.

x

y

θ

O

When u = 40 m/s and θ = 45◦, the displacement of the ball in the y-direction is

f(t) = 40 sin(45◦)t − 9.8
2

t2 = 20
√

2t − 4.9t2.

Note that
√

2 ≈ 1.414, we thus have

f(t) ≈ 28.28t − 4.9t2.

First, we need to find an initial guessing value x0. We notice that{
f(5) ≈ 18.9 > 10;
f(6) ≈ −6.7 < 10,

so, by the Intermediate Value Theorem, one of the roots of f(t) = 10 is in the interval (5, 6).
Moreover, since f(5) > f(6), the root of f(t) = 10 in the interval (5, 6) is the time during
the falling down stage of the ball. Hence, we set the initial guessing value as x0 = 5.5.

Before performing the iterations, we first define a function g(t) = f(t) − 10 = 20
√

2t −
4.9t2 − 10. To write the recursive formula of Newton’s method, we need to calculate g′(t),
which is shown in the following

g′(t) = 20
√

2 − 9.8t.

Then, the recursive formula of Newton’s method can be written as

tn+1 = tn − g(tn)
g′(tn)

= tn − 20
√

2tn − 4.9t2
n − 10

20
√

2 − 9.8tn

.

From the initial guessing value t0 = 5.5, we have

t1 = t0 − g(t0)
g′(t0)

= 5.5 − g(5.5)
g′(5.5)

= 5.5 − −2.661508
−25.615729

= 5.396099,

t2 = t1 − g(t1)
g′(t1)

= 5.396099 − g(5.396099)
g′(5.396099)

= 5.396099 − −0.052906
−24.597499

= 5.393948,

t3 = t2 − g(t2)
g′(t2)

= 5.393948 − g(5.393948)
g′(5.393948)

= 5.393948 − −0.000019
−24.576419

= 5.393947.
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We see that three steps are required to achieve 5 decimal accuracy. Moreover, since t3 =
5.393947, we can conclude that at t = 5.393947, the ball is in the falling down stage and is
10 meters above the ground.

MATLAB solution:
We now turn to the use of MATLAB. Let g(t) = f(t) − 10 = 20

√
2t − 4.9t2 − 10. We will

run the following MATLAB code of the Newton’s method to calculate the result.

syms t;
g(t) = 20* sqrt (2)*t - 4.9*t^2 - 10;
d(t) = diff(g(t),t);

n = 5; % n decimal accuracy
N_max = 10; % maximum no. of iterations
x = zeros (1, N_max);
x0 = 5.5; % initial guess
x(1) = x0;

for num = 1: N_max
x(num + 1) = x(num) - g(x(num))/d(x(num));
if abs(x(num + 1) - x(num)) <10^( -(n + 1)) % to ensure n ...

decimal accuracy
break ; % accuracy achieved , so exit!

end
end

x_iter = x(1:( num + 1)) % show iteration results

Starting from the initial guessing value t0 = 5.5, we can obtain approximations of the root
near 5.5. Note that by using the command format long, we can have 15-digit approxima-
tions. The Newton’s approximations are listed in the following table.

k tk

0 5.500000000000000
1 5.396098675752262
2 5.393948136613312
3 5.393947214525773

We see that 3 iterations are needed to ensure 5 decimal accuracy. At t = 5.393947214525773,
the ball is in the falling down stage and is 10 meters above the ground.

3.91 Engineering Example: water tank design

One piece of metal is provided to build a water tank. For this purpose, four corners of the
metal should be cut, as illustrated in the figure below.



3.8 Newton’s Method 175

x

x

3 m

6 m

By Newton’s method, find the value of x such that the volume of the water tank is 3.5 m3

and the water tank covers the least area on the ground.
First, the volume of the water tank can be calculated as follows:

V (x) = (6 − 2x)(3 − 2x)x
= 4x3 − 18x2 + 18x.

To find the value of x such that the volume of the water tank V (x) is 3.5 m3, we actually
need to find x which satisfies 4x3 − 18x2 + 18x = 3.5. Let g(x) = 4x3 − 18x2 + 18x − 3.5.
The derivative of g(x) is

g′(x) = 12x2 − 36x + 18.

Then, the recursive formula of Newton’s method can be written as

xn+1 = xn − g(xn)
g′(xn)

= xn − 4x3
n − 18x2

n + 18xn − 3.5
12x2

n − 36xn + 18
.

The function g(x) is a polynomial of degree 3, so it has at most three real roots. Since g(0) = −3.5 < 0, g(1) = 0.5 > 0;
g(1) = 0.5 > 0, g(1.5) = −3.5 < 0;
g(3) = −3.5 < 0, g(4) = 36.5 > 0,

by the Intermediate Value Theorem, g(x) must have one root in each of the three intervals
(0, 1), (1, 1.5), and (3, 4). Note that 2x < 3, so we have 0 < x < 1.5. Moreover, the area that
the water tank covers on the ground can be written as (6 − 2x)(3 − 2x) which is a decreasing
function of x. Hence, if we are looking for the value of x such that the water tank covers the
least area on the ground, the value of x should be as large as possible, i.e., it is within the
interval (1, 1.5). Therefore, we choose the initial value x0 as 1.25.

Now, we use the recursive formula of Newton’s method to calculate the root of g(x) = 0
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within (1, 1.5). From the initial guessing value x0 = 1.25, we have

x1 = x0 − g(x0)
g′(x0)

= 1.25 − g(1.25)
g′(1.25)

= 1.25 − −1.3125
−8.25

= 1.090909,

x2 = x1 − g(x1)
g′(x1)

= 1.090909 − g(1.090909)
g′(1.090909)

= 1.090909 − −0.092035
−6.991735

= 1.077746,

x3 = x2 − g(x2)
g′(x2)

= 1.077746 − g(1.077746)
g′(1.077746)

= 1.077746 − −0.000863
−6.860419

= 1.077620.

We see that three steps are required to achieve 3 decimal accuracy. Moreover, since x3 =
1.077620, we can conclude that the volume of the water tank is 3.5 m3 and the water tank
covers the least area on the ground if x = 1.078 m.

MATLAB solution:
We now turn to the use of MATLAB. Let g(x) = 4x3 − 18x2 + 18x − 3.5. We will run the

following MATLAB code of the Newton’s method to calculate the result.

syms x;
g(x) = 4*x^3 - 18*x^2 + 18*x - 3.5;
d(x) = diff(g(x),x);

n = 3; % n decimal accuracy
N_max = 10; % maximum no. of iterations
x_array = zeros (1, N_max);
x0 = 1.25; % initial guess
x_array (1) = x0;

for num = 1: N_max
x_array (num + 1) = x_array (num) - ...

g( x_array (num))/d( x_array (num));
if abs( x_array (num + 1) - x_array (num)) <10^( -(n + 1)) % ...

to ensure n decimal accuracy
break ; % accuracy achieved , so exit!

end
end

x_iter = x_array (1:( num + 1)) % show iteration results
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Starting from the initial guessing value x0 = 1.25, we can obtain approximations of the
root near 1.25. The Newton’s approximations are listed in the following table.

k tk

0 1.250000000000000
1 1.090909090909091
2 1.077745540511498
3 1.077620217678657
4 1.077620206075159

We see that in order to ensure 3 decimal accuracy, 4 iterations are needed if running the
MATLAB code above. At x = 1.077620206075159, i.e., x = 1.078 m, the volume of the water
tank is 3.5 m3 and the water tank covers the least area on the ground.

3.92 Engineering Example: tank optimization - Newton’s method

One piece of metal is provided to build a water tank. For this purpose, four corners of the
metal should be cut, as illustrated in the figure below.

x

x

3 m

6 m

By Newton’s method, find the value of x such that the volume of the water tank is maximized.
First, the volume of the water tank can be calculated as follows:

V (x) = (6 − 2x)(3 − 2x)x
= 4x3 − 18x2 + 18x.

The derivative of V (x) is

V ′(x) = 12x2 − 36x + 18.

To find the value of x such that the volume of the water tank V (x) is maximized, we need
to find x which satisfies V ′(x) = 12x2 − 36x + 18 = 0, i.e., find the root of V ′(x) = 12x2 −
36x + 18 = 0. As such, we let f(x) = V ′(x) = 12x2 − 36x + 18, and the derivative of f(x) is

f ′(x) = 24x − 36.

Then, the recursive formula of Newton’s method can be written as

xn+1 = xn − f(xn)
f ′(xn)

= xn − 12x2
n − 36xn + 18
24xn − 36

.
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Before using Newton’s method to find the value of x, we need to find an initial guessing
value x0. Hence, we plot the figure of f(x) = V ′(x), as shown below.

x

f(x) = V ′(x)

1.5O

Note that 2x < 3, so we have 0 < x < 1.5. To find the value of x which maximizes V (x),
we need to find the root of V ′(x) = 0 within the interval (0, 1.5). From the figure of V ′(x)
above, we notice that there is one root within the interval (0, 1.5) and it is roughly in the
middle of this interval. Thus, we choose the initial guessing value x0 around this root and
set it as 0.75.

Now, we use the recursive formula of Newton’s method to calculate the root of f(x) =
V ′(x) = 0 within (0, 1.5). From the initial guessing value x0 = 0.75, we have

x1 = x0 − f(x0)
f ′(x0)

= 0.75 − f(0.75)
f ′(0.75)

= 0.75 − −2.25
−18

= 0.625,

x2 = x1 − f(x1)
f ′(x1)

= 0.625 − f(0.625)
f ′(0.625)

= 0.625 − 0.1875
−21.0

= 0.633928,

x3 = x2 − f(x2)
f ′(x2)

= 0.633928 − f(0.633928)
f ′(0.633928)

= 0.633928 − 0.000968
−20.785728

= 0.633974.

We see that three steps are required to achieve 3 decimal accuracy. Moreover, from the
figure of V ′(x) above, we see that if x is smaller than the root of V ′(x) within (0, 1.5), then
V ′(x) > 0, i.e., V ′(x) is an increasing function; if x is larger than this root, then V ′(x) < 0,
i.e., V ′(x) is a decreasing function. So this root is an absolute maximum point. Therefore,
we can conclude that the volume of the water tank is maximized when x = 0.634 (m).

MATLAB solution:
We now turn to the use of MATLAB. Let f(x) = V ′(x) = 12x2 − 36x + 18. We will run

the following MATLAB code of the Newton’s method to calculate the result.

syms x;
f(x) = 12*x^2 - 36*x + 18;
d(x) = diff(f(x),x);
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n = 3; % n decimal accuracy
N_max = 10; % maximum no. of iterations
x_array = zeros (1, N_max);
x0 = 0.75; % initial guess
x_array (1) = x0;

for num = 1: N_max
x_array (num + 1) = x_array (num) - ...

f( x_array (num))/d( x_array (num));
if abs( x_array (num + 1) - x_array (num)) <10^( -(n + 1)) % ...

to ensure n decimal accuracy
break ; % accuracy achieved , so exit!

end
end

x_iter = x_array (1:( num + 1)) % show iteration results

Starting from the initial guessing value x0 = 0.75, we can obtain approximations of the
root near 0.75. The Newton’s approximations are listed in the following table.

k tk

0 0.750000000000000
1 0.625000000000000
2 0.633928571428571
3 0.633974594992636

We see that 3 iterations are needed to ensure 3 decimal accuracy. Moreover, as explained in
the first part, the root of V ′(x) within (0, 1.5) is an absolute maximum point. Therefore, we
can conclude that when x = 0.634 (m), the volume of the water tank is maximized.

Remark:

The Newton’s method is utilized to find the root of f(x) = 0 by iteratively approx-
imating the root from an initial guessing value. Hence, any function whose root is
required to be found can be set to be f(x), e.g., V ′(x) instead of V (x) is set to be
f(x) in this example.
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Summary

Definition: basic concepts

Extrema :
absolute maximum : if f(c) ≥ f(x) for all x in D

absolute minimum : if f(c) ≤ f(x) for all x in D

local maximum : if f(c) ≥ f(x) when x is near c

local minimum : if f(c) ≤ f(x) when x is near c

SpecialPoints :
critical point c : either f ′(c) = 0 or f ′(c) does not exist
interior point c of D : if there exists (a, b) such that c ∈ (a, b) ⊂ D

inflection point P : at P , f is continuous and changes concavity

Monotonicity :
increasing : if f(x1) < f(x2) whenever x1 < x2 in (a, b)
decreasing : if f(x1) > f(x2) whenever x1 < x2 in (a, b)

Concavity :
concave up : if the graph of f is above all its

tangent lines over (a, b)
concave down : if the graph of f is below all its

tangent lines over (a, b)

Theorem: Fermat’s Theorem

If f has a local maximum or minimum value at an interior point c in the domain D of f ,
then c is a critical point of f .

Theorem: Extreme Value Theorem

Let f be a continuous function defined over a finite closed interval [a, b]. Then f(x) has at
least one absolute maximum point and one absolute minimum point in the interval [a, b].

Method: find absolute extrema

Given a continuous function f over a finite closed interval [a, b].

1. Find the critical points and evaluate the values of f at critical points.

2. Evaluate the values of f at the boundary points x = a and x = b.

3. The largest value and smallest value from steps 1 and 2 are the absolute maximum
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value and the absolute minimum value respectively.

Theorem: Mean Value Theorem

Suppose f is a function that satisfies the following:

1. f is continuous on the closed interval [a, b].

2. f is differentiable in the open interval (a, b).

Then there exists at least one number c in (a, b) such that

f ′(c) = f(b) − f(a)
b − a

or, equivalently,
f(b) − f(a) = f ′(c)(b − a).

x

y

f(a)

a

f(b)

bcO
x

y

f(a)

a

f(b)

bc1 c2O

Theorem: zero derivative implies constant function

Suppose f is differentiable in (a, b). If f ′(x) = 0 for all x in (a, b), then f is a constant
function.

Theorem: Monotone Test

Suppose f is differentiable on an interval I.

1. If f ′(x) > 0 on I, then f is increasing on I.

2. If f ′(x) < 0 on I, then f is decreasing on I.

Theorem: First Derivative Test

Suppose that c is a critical point of a continuous function f .

1. If f ′ changes from positive to negative at c, then f has a local maximum value at c.
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2. If f ′ changes from negative to positive at c, then f has a local minimum value at c.

3. If f ′ does not change sign at c, then f has no local extreme value at c.

x

y

f ′(x) < 0 f ′(x) > 0

cO

f ′ changes from positive to negative at c

x

y

f ′(x) > 0 f ′(x) < 0

cO

f ′ changes from negative to positive at c

x

y

f ′(x) > 0

f ′(x) > 0

cO

No maximum or minimum

x

y

f ′(x) < 0

f ′(x) < 0

cO

No maximum or minimum

Theorem: Second Derivative Test

Suppose f ′′ is continuous near c.

1. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum value at c.

2. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum value at c.

3. If f ′(c) = 0 and f ′′(c) = 0, it is inconclusive about local extreme of f at c.

Theorem: Concavity Test

Suppose f ′′ exists on an interval I.

1. If f ′′(x) > 0 on I, then f is concave up on I.

2. If f ′′(x) < 0 on I, then f is concave down on I.
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Theorem: l’Hospital’s Rule

Suppose

1. f and g are differentiable functions;

2. g′(x) is not zero on an open interval I containing a except possibly at a;

3. lim
x→a

f(x) = 0 = lim
x→a

g(x) or lim
x→a

f(x) = ∞ = lim
x→a

g(x);

4. lim
x→a

f ′(x)
g′(x)

exists or is ∞.

Then
lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

The rule also holds when limits are one-sided limits or when x → a is replaced by x → ∞.

Method: guidelines for curve sketching

By following the guidelines, you are able to make a sketch that displays the most important
aspects of a given function y = f(x).

A. Domain: Domain D is the set of values of x for which f is defined.

B. Intercepts:
The y-intercept is f(0). The x-intercepts are the real solutions of the equation f(x) = 0.

C. Symmetry:
(i) If f(−x) = f(x) for all x ∈ D, then f is an even function and the curve is symmetric

about the y-axis.
(ii) If f(−x) = −f(x) for all x ∈ D, then f is an odd function and the curve is symmetric

about the origin.
(iii) If f(x + p) = f(x) for all x ∈ D, where p is a positive constant, then f is a

periodic function and the smallest such number p is the period.

D. Asymptotes:
(i) The line y = L is a horizontal asymptote of the curve y = f(x) if either

lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L.

(ii) The line x = a is a vertical asymptote of the curve y = f(x) if at least one of the
following statements is true:

lim
x→a

f(x) = ∞, lim
x→a−

f(x) = ∞, lim
x→a+

f(x) = ∞,

lim
x→a

f(x) = −∞, lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.

E. Intervals of Increase or Decrease:
Apply the Increasing/Decreasing Test:
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(a) If f ′(x) > 0 on an interval I, then f is increasing on I.
(b) If f ′(x) < 0 on an interval I, then f is decreasing on I.

F. Local Maximum and Minimum Values:
First find the critical points, the numbers c where f ′(c) = 0 or f ′(c) does not exist. Then

apply the First Derivative Test or the Second Derivative Test to determine whether f(c) is a
local maximum or minimum value.

(i) First Derivative Test: Suppose that c is a critical number of a continuous function f .
(a) If f ′ changes from positive to negative at c, then f has a local maximum at c.
(b) If f ′ changes from negative to positive at c, then f has a local minimum at c.
(c) If f ′ does not change sign at c, then f has no local maximum or minimum at c.

(ii) Second Derivative Test: Suppose f ′′ is continuous near c.
(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

G. Concavity and Points of Inflection:
(i) Apply the Concavity Test:

(a) If f ′′(x) > 0 on an interval, then the graph of f is concave upward on that interval.
(b) If f ′′(x) < 0 on an interval, then the graph of f is concave downward on that

interval.

(ii) Inflection Points: At these points, the curve changes the direction of concavity.

H. Sketch the Curve: Sketch the curve y = f(x) by using the information in items A-G.

Theorem: convergence of Newton’s approximations

If x0 is chosen to be sufficiently close to a solution r of f(x) = 0, and if f ′(xn) ̸= 0 for
n = 1, 2, 3, . . . , then the sequence {xn} generated by Newton’s iteration

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, 2, . . .

converges to r:
lim

n→∞
xn = r.
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CHAPTER

Integration

4.1 Areas under Curves

4.1 Example: area under a curve

To find the area A of the region bounded by the curve y = f(x) = x2 and the x-axis over
[0, 1], we divide the interval [0, 1] into n subintervals of equal length 1

n
. Let

x0 = 0, x1 = 1
n

, x2 = 2
n

, . . . , xn−1 = n − 1
n

, xn = n

n
= 1

be the endpoints of these subintervals. For each i (1 ≤ i ≤ n), over the i-th subinterval
[xi−1, xi], we use the the area of the rectangle with height f(xi) to approximate the area of
the region between the curve and the x-axis over the interval [xi−1, xi].

x

y

x1 x2 xi−1 xi xn = 1

RSn

O
x

y

1

RS2n

O
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The sum of n rectangles is

RSn = f( 1
n ) · 1

n + f( 2
n ) · 1

n + · · · + f( n
n ) · 1

n

=
(

1
n2 + 22

n2 + · · · + n2

n2

)
· 1

n

=
(
1 + 22 + . . . + n2) · 1

n3 = n(n + 1)(2n + 1)
6n3 .

Clearly RSn approximates the area A, and when n get larger, the approximation gets better.

Since lim
n→∞

RSn = lim
n→∞

n(n + 1)(2n + 1)
6n3 = 1

3 , we get A = 1
3 .

We can similarly choose the left endpoint of each subinterval instead of the right endpoint
to make a new approximation to A. Denote it as LSn. By the same manner, we also get
A = lim

n→∞
LSn = 1

3 .

x

y

x1 x2 xi−1 xi xn = 1

LSn

O
x

y

x1 x2 xi−1 xi
x∗

i
xn = 1

Sn

O

For any fixed n, if we choose x∗
i in the interval [xi−1, xi] arbitrarily and use the rectangle

of height f(x∗
i ) over the base [xi−1, xi] to make approximation, we will get the sum

Sn = [f(x∗
1) + . . . + f(x∗

n)] · 1
n

.

Clearly LSn ≤ Sn ≤ RSn. As n → ∞, since both LSn and RSn converge to the same limit
1
3 , by using a similar argument as the Squeeze Theorem, we get

lim
n→∞

Sn = 1
3 .

4.2 Remark: sigma notation

We often encounter sums with multiple terms, for example,

1 + 22 + · · · + n2.
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For convenience, we use a sigma notation to write

1 + 22 + · · · + n2 =
n∑

i=1
i2.

Here i2 is the general term of the summation. The symbol Σ is the Greek capital letter
Sigma corresponding to our letter ‘S’, and refers to the initial letter of the word ‘Sum’. So
this expression means the sum of all the terms i2, where i takes the values from 1 to n.

In general, for fixed numbers k and n with k ≤ n, let ai be a number depending on i.
Then the sum ak + ak+1 + · · · + an can be represented in terms of the following sigma sum
notation:

n∑
i=k

ai = ak + ak+1 + · · · + an.

4.3 Definition: definite integral

Let f be a function defined over [a, b]. Divide the interval into n subintervals of equal

length b − a

n
:

[x0, x1], [x1, x2], . . . , [xn−1, xn].

Let ∆x = xi − xi−1 = b − a

n
. Choose x∗

i in [xi−1, xi] for each subinterval. The Riemann sum
is

n∑
i=1

f(x∗
i )∆x.

The function f is said to be integrable if the limit of the Riemann sum exists and has a
unique limit, i.e.,

lim
∆x→0

n∑
i=1

f(x∗
i )∆x = L

for all choices of x∗
i . The limit is called the definite integral of f (or Riemann integral)

from a to b, denoted by ˆ b

a

f(x) dx,

where the function f is called the integrand, a is the lower limit, and b is the upper limit.

Theorem: necessary condition

If f is integrable on [a, b], then f must be bounded on [a, b].

4.4 Theorem: integrable functions

If f is continuous over [a, b] or bounded on [a, b] with a finite number of discontinuous
points, then f is integrable on [a, b].
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4.5 Example: integrable functions

The function

h(x) =

 cos x, if x ≤ −1;
sin x, if −1 < x ≤ 1;
2, if x > 1

is integrable on [−2, 2] since it is discontin-
uous only at the points x = −1 and x = 1.
The function is bounded and continuous away
from these two discontinuities.

x

y

y = h(x)

1−π − 1
2 π− 3

2 π−2π

1

2

−1
O

4.6 Pitfall: nonexistence of definite integrals

The integrand 1
x

of the definite integral,

ˆ 2

−1

1
x

dx,

is continuous everywhere except at x = 0.
However, the integral does not exist since
f(x) is not bounded.

The function 1
x

is not integrable on [−1, 2].

x

y

y = 1
x

−1

2

1

O

4.7 Definition: area and net area

• Let R be a region. The net area of R is the area of the part of R above the x-axis
minus the area of the part of R below the x-axis. If R is bounded by the graph y = f(x)
and the x-axis over the interval [a, b], then the net area of the region R is

ˆ b

a

f(x) dx.

x

y

− −

+

+

y = f(x)

a

b

• Let R be a region. The area of R is the area of the part of R above the x-axis plus
the area of the part of R below the x-axis. If R is bounded by the graph y = f(x) and the
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x-axis over the interval [a, b], then the area of the region R is
ˆ b

a

|f(x)| dx.

x

y

y = f(x)

a

b
x

y

y = |f(x)|

a b

4.8 Example: area and net area

1. The integral
ˆ 1

0
x dx calculates the area of

the region between the curve y = x and the
x-axis over the interval [0, 1]. This gives
a triangular region above the x-axis, with
the area 1

2 . Thus, the area equals the net
area in this case. x

y

y = x

1

1

O

2. The integral
ˆ 1

−1
x dx calculates the net

area of the region between the curve y = x
and the x-axis over the interval [−1, 1].
The net area is the area of the region in
the first quadrant, which is 1

2 , minus the
area of the region in the third quadrant,
which is also 1

2 . Hence the net area is 0.
The area of the region is 1

2 + 1
2 = 1.

x

y

y = x

1

−1

1

−1

O

3. The integral
ˆ 1

−2
x dx calculates the net

area of the region between the curve y = x
and the x-axis over the interval [−2, 1].
The net area is the area of the region in the
first quadrant, which is 1

2 , minus the area
of the region in the third quadrant, which
is 2. Hence the net area is − 3

2 . However,
the area of the region is 1

2 + 2 = 5
2 .

x

y

y = x

1

−1−2

1

−1

−2

O
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Properties of Definite Integrals

4.9 Theorem: properties of definite integrals

Let f and g be integrable functions over an interval I and let a < b < c be points in I.

1. If f and g are integrable over [a, b], then f + g is integrable over [a, b], and we have
ˆ b

a

[f(x) + g(x)] dx =
ˆ b

a

f(x) dx +
ˆ b

a

g(x) dx.

2. If f is integrable over [a, b], then kf(x) is integrable over [a, b], and we have
ˆ b

a

kf(x) dx = k

ˆ b

a

f(x) dx.

3. If f is integrable over [a, b] and [b, c], then f is integrable over [a, c], and we have
ˆ b

a

f(x) dx +
ˆ c

b

f(x) dx =
ˆ c

a

f(x) dx.

4.
ˆ a

a

f(x) dx = 0.

5. If f and g are both integrable over [a, b], and f(x) ≤ g(x), then
ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx.

6. ∣∣∣∣∣
ˆ b

a

f(x) dx

∣∣∣∣∣ ≤
ˆ b

a

|f(x)| dx.

7. (Mean Value Theorem for Integrals) If f is continuous on [a, b], then there is c ∈
[a, b] such that ˆ b

a

f(x) dx = f(c)(b − a).

Justification: Part 1

The proof of these properties follows directly from the definition of the definite integral.

Let’s prove the last two statements.
Consider the Riemann sum of the function f for any partition:

a = x0 < x1 < · · · < xn−1 < xn = b,

which divides the interval [a, b] into n subintervals. For each index i, choose x∗
i inside the
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subinterval [xi−1, xi] and make the Riemann sum

Rn(f) =
n∑

i=1
f(x∗

i )∆xi,

where ∆xi = xi −xi−1 > 0 is the length of the subinterval [xi−1, xi]. Using the same partition
and same choice of x∗

i , we can also have the Riemann sum of the function |f(x)| ,

Rn(|f |) =
n∑

i=1
|f(x∗

i )|∆xi.

Recall the triangle inequality
|α + β| ≤ |α| + |β|.

Apply the inequality to the Riemann sum, we get∣∣∣ n∑
i=1

f(x∗
i )∆xi

∣∣∣ ≤
n∑

i=1

∣∣f(x∗
i )
∣∣∆xi, i.e., |Rn(f)| ≤ Rn(|f |).

Take limits of both sides as n → ∞, we get

lim
n→∞

|Rn(f)| ≤ lim
n→∞

Rn(|f |), order rule of limits∣∣∣ lim
n→∞

Rn(f)
∣∣∣ ≤ lim

n→∞
Rn(|f |), continuity of the absolute value function∣∣∣∣∣

ˆ b

a

f(x) dx

∣∣∣∣∣ ≤
ˆ b

a

|f(x)| dx.

Justification: Part 2

If f is continuous on [a, b], by the Extreme Value Theorem, the function f can attain its
minimum m and maximum M :

f(c1) = m, f(c2) = M,

where c1, c2 ∈ [a, b]. Since m ≤ f(x) ≤ M , we have

m(b − a) ≤
ˆ b

a

f(x) dx ≤ M(b − a).

Thus,

f(c1) ≤ 1
b − a

ˆ b

a

f(x) dx ≤ f(c2).

By the Intermediate Value Theorem, there is a number c between c1 and c2, such that

f(c) = 1
b − a

ˆ b

a

f(x) dx.
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Obviously, c ∈ [a, b] and the equality holds:
ˆ b

a

f(x) dx = f(c)(b − a).

4.10 Example: simple definite integrals

1. The integral
ˆ 1

0
x dx represents the area

of the triangular region bounded by the
graph y = x and the x-axis over [0, 1],
which equals 1

2 . So,
ˆ 1

0
x dx = 1

2 .
x

y

y = x

1

1

O

2. From the properties of definite integrals,
we have the net area of the region bounded
by the graph y = 2x+1 and the x-axis over
[0, 1]:
ˆ 1

0
(2x + 1) dx =

ˆ 1

0
(2x) dx +

ˆ 1

0
1 dx

= 2
ˆ 1

0
x dx +

ˆ 1

0
1 dx

= 2 · 1
2 + 1 = 2.

x

y

y = 2x + 1

1

1

3

O

3. For the piecewise function

f(x) =

 x, if −2 ≤ x ≤ −1;
1, if −1 < x ≤ 1;
−x, if 1 < x ≤ 3,

by using the different expressions over dif-
ferent intervals, we haveˆ 3

−2
f(x) dx

=
ˆ −1

−2
f(x) dx +

ˆ 1

−1
f(x) dx +

ˆ 3

1
f(x) dx

=
ˆ −1

−2
x dx +

ˆ 1

−1
1 dx +

ˆ 3

1
(−x) dx

= − 3
2 + 2 − 4 = − 7

2 .

x

y

y = f(x)

−2 −1 1 2 3

1

−1

−2

−3

O
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We note that the contributions from the integrals with negative integrands are negative.

Average Value of a Function

4.11 Example: average temperature

Since temperatures fluctuate throughout the day, as well as varying substantially depending
on the locations, average temperatures gives you a more accurate picture of the temperature
in a specific location than a single measurement ever could. For example, knowing the average
temperature of a given week in Hong Kong will certainly help a traveler to prepare his trip
to the city.

The average temperature can be calculated from several temperature measurements using
the formula:

average temperature = sum of measured temperatures
number of measurements

.

For instance, for calculating the average temperature on January 1, 2019, one may first
measure temperature every hour in Central, Hong Kong to get a dataset of 24 temperatures.
Then using the formula above, one may obtain an approximation of the average temperature.
Apparently, increasing the number of measurements should get a better result in reflecting
Hong Kong’s temperature situation on the new year day.

4.12 Definition: average value of a function

The average value of f on the interval [a, b] is

fave = 1
b − a

ˆ b

a

f(x) dx,

provided that the integral exists.

Justification:

To compute the average value of a function y = f(x) on [a, b], we start by dividing
the interval [a, b] into n equal subintervals, each with length ∆x = (b − a)/n. Then we
choose points x∗

1, . . . , x∗
n in successive subintervals and calculate the average of the numbers

f(x∗
1), . . . , f(x∗

n):
f(x∗

1) + · · · + f(x∗
n)

n
.

Since n = (b − a)/∆x, the average value becomes

f(x∗
1) + · · · + f(x∗

n)
(b − a)/∆x

= 1
b − a

[f(x∗
1)∆x + · · · + f(x∗

n)∆x]

= 1
b − a

n∑
i=1

f(x∗
i )∆x,
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so that

lim
n→∞

1
b − a

n∑
i=1

f(x∗
i )∆x = 1

b − a

ˆ b

a

f(x) dx.

Therefore, we define the average value of f on [a, b] as

fave = 1
b − a

ˆ b

a

f(x) dx.

4.13 Example: average distance from the Pluto to the Sun

The perihelion is the shortest distance from a planet to the Sun, and aphelion is the longest
distance. The sun is at one of the two foci. For the Pluto, the perihelion is 4.44 billion km
and the aphelion is 7.38 billion km.

As shown in the figure, assume that the or-
bit of the Pluto is

x2

a2 + y2

b2 = 1,

where 0 < b < a. It is known that the foci
are located at (±

√
a2 − b2, 0). Let us assume

the coordinates of the Sun is (
√

a2 − b2, 0).

x

y

d

Sun

Pluto

aphelion perihelion

a

b

Then the distance from the Pluto, located at (x, y), to the Sun is

d =
√

(x −
√

a2 − b2)2 + y2

=

√
(x −

√
a2 − b2)2 + b2

(
1 − x2

a2

)
= a−1

√(
a2 −

√
a2 − b2x

)2

= a−1
(

a2 −
√

a2 − b2x
)

. a2 >
√

a2 − b2x for −a ≤ x ≤ a

Thus, the average distance from the Pluto to the Sun is

D = 1
2a

·
ˆ a

−a

a−1
(

a2 −
√

a2 − b2x
)

dx

= 1
2a

·
ˆ a

−a

a dx − 1
2a

a−1
√

a2 − b2
ˆ a

−a

x dx

= 1
2a

· a · 2a − 0 = a.



4.1 Areas under Curves 195

In other words, the average distance equals to the average of the perihelion and aphelion:

D = perihelion + aphelion
2

.

4.14 Theorem: geometric interpretation on average value

If f is continuous on [a, b], then there exists
a number c in [a, b] such that

f(c) = fave = 1
b − a

ˆ b

a

f(x) dx,

that is
ˆ b

a

f(x) dx = f(c)(b − a). O c

f(c)

a b
x

y

4.15 MATLAB: Riemann sums

In MATLAB, the command rsums is used to interactively approximate the integral of a

function by Riemann sum. The following example shows the approximation of
ˆ 1

0
x2 dx by

using the command.

>> syms x;
>> f = x^2;
>> rsums (f ,[0 ,1])

After running the MATLAB code above, the figure shown in the following is generated.
 0.332500

0 0.2 0.4 0.6 0.8 1

10

0

0.2

0.4

0.6

0.8

The figure above displays a graph of f(x) = x2 using 10 rectangles. In other words,
the interval [0, 1] is divided into 10 subintervals. Note that the height of each rectangle
is determined by the value of f(x) = x2 in the middle of each subinterval. In this case,ˆ 1

0
x2 dx ≈ 0.332500, which we can see from the top of the figure. Furthermore, we can
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adjust the number of the rectangles (from 2 to 128) by using the slider below the figure. For
example, if we choose the number of the rectangles to be 80, the graph of f(x) = x2 is shown
below.

From the figure above, we see that
ˆ 1

0
x2 dx ≈ 0.333320 which is closer to the real value

of
ˆ 1

0
x2 dx (i.e., 1

3 ).

4.16 MATLAB: definite integrals

To calculate definite integrals, we can use the commands int and integral. Specifically,
int performs symbolic integration and integral performs numerical integration. The fol-

lowing example shows the calculation of
ˆ 1

−1
(1−x2) dx using int and integral, respectively.

>> syms x;
>> f = 1 - x^2;
>> int(f ,-1,1)

ans =

4/3

>> integral (@(x)1 - x.^2 , -1 ,1)

ans =

1.3333

We see from the MATLAB code above that the command int returns a symbolic number
4
3 , while the command integral returns a floating-point number 1.3333. Note that the first
input of the command int is a symbolic expression, but the first input of the command
integral should be a function handle.
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Besides int and integral, the command quadgk can also be used for numerical integration.

4.17 MATLAB: definite integrals - polynomials

If the integrand is a polynomial, besides int and integral, we can also use the command

polyint to calculate the integral. The following example shows the calculation of
ˆ 1

−1
(1 −

x2) dx using polyint.
First, we calculate the coefficients of the new polynomial obtained after integration, and

we have the following:

>> p = [-1 0 1]; % -x^2 + 1
>> q = polyint (p) % coefficients of the polynomial after ...

integration

q =

-0.3333 0 1.0000 0

We see from the MATLAB code above that after integration, the new polynomial is
−0.3333x3 + x. Next, we calculate the values of −0.3333x3 + x at the lower limit −1 and the
upper limit 1, respectively, and obtain the result of the integral using the following code.

>> a = -1; % lower limit
>> b = 1; % upper limit
>> q_val = polyval (q,[a b]) % evaluate the values of q at a ...

and b, respectively

q_val =

-0.6667 0.6667

>> polyint_ans = diff(q_val) % q_val (2) - q_val (1)

polyint_ans =

1.3333

The result shows that
ˆ 1

−1
(1 − x2)dx = 1.3333. Note that for diff(X),

if the input X is a vector, the command diff(X) returns the result of
[X(2) − X(1), X(3) − X(2), . . . , X(n) − X(n − 1)].
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4.18 Engineering Example: energy stored in a capacitor

The capacitor is an electrical component that can store electrical energy in an electric field.
Capacitors have been widely used as important parts of electrical circuits in many common
electrical devices. The following figures show a real capacitor and a symbol for the capacitor
in circuits, respectively.

+ −V

The energy stored in a capacitor is equal to the work done in establishing the electric
field from an uncharged state by moving charge for the negative to the positive plate of the
capacitor. Mathematically, the energy W stored in a capacitor can be written as a definite
integral, as shown in the following:

W =
ˆ Q

0
V (q) dq,

where Q is the total charge stored in the capacitor, q is a variable representing the charge,
and V is the voltage across the capacitor (which is a function of q).

4.19 Engineering Example: PID controller

The Proportional-Integral-Derivative (PID) controller is a closed-loop feedback component
widely used in industrial control systems and different types of other applications, e.g., the
cruise control on a car. The PID controller first calculates an error value as the difference
between a desired setpoint and a measured output. Then, based on the error value, a cor-
rection term based on the proportional (P), integral (I) and derivative (D) terms of the PID
controller is applied at the input. This process is executed continuously to achieve the desired
setpoint in an optimal way as well as to keep the system in a steady state.

Mathematically, the overall control function of the PID controller can be written as

u(t) = Kpe(t)︸ ︷︷ ︸
Proportional (P) term

+ Ki

ˆ t

0
e(t′) dt′︸ ︷︷ ︸

Integral (I) term

+ Kd
de(t)

dt︸ ︷︷ ︸
Derivative (D) term

where Kp ≥ 0, Ki ≥ 0 and Kd ≥ 0 are the coefficients for the proportional (P), integral (I),
and derivative (D) terms, respectively, and e(t) is the error value.

4.20 Engineering Example: electrical energy

Any object that carries charges will experience electrical force created by electrical potential
difference (voltage) in electrical field. The force will drive charges to move orderly in one
direction. Such orderly movement of charges will form current. All electrical devices work
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based on the transformation of electrical energy to other types of energy, for example, heat,
light, mechanical energy, etc. The power generated/consumed by a component (battery,
resistor, etc.) is calculated by the product between the voltage across the component and
the current going through the component. Consider a circuit as shown in the following:

C
+

−
vC(t)−

+vs(t)

i(t) R

The power generated by the power source at time t can be obtained by vs(t)i(t), where
vs(t) is the voltage of the source and i(t) is the electric current. As a result, the electrical
energy E provided by the source during T can be calculated as

E =
ˆ T

0
vs(t)i(t) dt.

4.21 Engineering Example: electricity voltage in China

The signal we get from the wall socket is from the power plant. This signal fluctuates in
terms of both the magnitude and the direction, we thus call it “Alternating Current (AC)
signal”. Specifically, the voltage provided by the AC signal can be formulated as

v(t) = v0 sin (2πft)

where f is the electricity frequency. Note that f = 50 Hz in China.
It is well known that China generally uses a 220 volts voltage. We may wonder whether

v0 = 220 or not. Actually, v0 represents the peak value of the voltage and v0 = 311. Then,
why do we say “China uses a 220 volts voltage”?

Let’s consider the following two circuits.

v(t) R R−
+v

As we said, in practice, we use the AC signal, as shown in the left figure. Assume that
the AC signal provides power PAC for the resistance R. Can we find an equivalent Direct
Current (DC) signal, as shown in the right figure, which provides power PDC for R such that
PDC = PAC?

In order to answer this question, we first need to calculate the power PAC. Let the period
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of the AC signal be denoted by T . Based on Ohm’s law, the calculation is shown below:

PAC = 1
T

ˆ T

0

v2(t)
R

dt = 1
TR

ˆ T

0
v2

0 sin2 (ωt) dt

= 1
TR

ˆ T

0
v2

0
1 − cos(2ωt)

2
dt = 1

TR

(
v2

0
2

ˆ T

0
dt − v2

0
2

ˆ T

0
cos(2ωt)dt

)

= 1
R

(
v2

0
2

− 1
T

v2
0
2

1
2ω

sin(2ωt)
∣∣∣T
0

)
= v2

0
2R

.

For the DC circuit in the right figure, based on Ohm’s law, the power provided for R can
be calculated as

PDC = v2

R
.

If PDC = PAC, we have

v2

R
= v2

0
2R

⇒ v = v0√
2

≈ 220 (V).

Therefore, the “220 volts” is a DC equivalent voltage such that the DC signal provides the
same power as the AC signal v(t) = 311 sin (100πt).

4.2 Fundamental Theorem of Calculus

4.22 Theorem: Fundamental Theorem of Calculus

Let f be a continuous function on [a, b].

1. Then the function
A(x) =

ˆ x

a

f(t) dt

is continuous on [a, b], differentiable in (a, b), and A′(x) = f(x).

2. If F is a differentiable function [a, b] such that F ′(x) = f(x), then
ˆ b

a

f(x) dx = F (b) − F (a).

Justification: Part 1

Since f is continuous over [a, b], it has an absolute maximum and an absolute minimum
over [a, b], and thus it is bounded, i.e., there exists B such that |f(x)| ≤ B for all x in [a, b].
Let c be a point in [a, b]. Let x be an arbitrary point and assume x > c. By the properties
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of integration, we have

|A(x) − A(c)| =
∣∣∣∣ˆ x

a

f(t) dt −
ˆ c

a

f(t) dt

∣∣∣∣ =
∣∣∣∣ˆ x

c

f(t) dt

∣∣∣∣
≤
ˆ x

c

|f(t)| dt ≤
ˆ x

c

B dt = B(x − c).

Thus when x → c+, by the Squeeze Theorem, lim
x→c+

|A(x)−A(c)| = 0, i.e., lim
x→c+

A(x) = A(c).
By the same argument, we get lim

x→c−
A(x) = A(c). Therefore we conclude that lim

x→c
A(x) =

A(c), i,e., A is continuous at c.
To show that f is differentiable in (a, b), we assume c is any point in (a, b). Without loss

of generality, assume x > c. We write:

A(x) − A(c) − f(c)(x − c) =
ˆ x

a

f(t) dt −
ˆ c

a

f(t) dt −
ˆ x

c

f(c) dt

=
ˆ x

c

f(t) dt −
ˆ x

c

f(c) dt

=
ˆ x

c

[f(t) − f(c)] dt.

Let M(x) be the maximum value of the function |f(t)−f(c)| over the interval between c and
x, i.e.,

|f(t) − f(c)| ≤ M(x) for all t between c and x.

It depends on x. Since f(x) is continuous, M(x) goes to zero as x goes to 0. Thus we get∣∣∣∣A(x) − A(c)
x − c

− f(c)
∣∣∣∣ =

∣∣∣∣ˆ x

c

f(t) − f(c)
x − c

dt

∣∣∣∣
≤
ˆ x

c

∣∣∣∣f(t) − f(c)
x − c

∣∣∣∣ dt properties of integrals

≤
ˆ x

c

M(x)
x − c

dt the order rule

= M(x)
x − c

(x − c) = M(x),

which goes to zero as x goes to 0. Thus

lim
x→c

[
A(x) − A(c)

x − c
− f(c)

]
= 0, i.e. lim

x→c

A(x) − A(c)
x − c

= f(c).

Thus we obtain A′(c) = f(c).

Justification: Part 2

Partition the interval [a, b] with n subintervals of equal length b − a

n
. By the Mean Value
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Theorem, there exists x∗
i in [xi−1, xi] such that

F (xi) − F (xi−1) = F ′(x∗
i )(xi − xi−1) = f(x∗

i ) · b − a

n
.

Then, we take the Riemann sum of the function f on [a, b]:

n∑
i=1

f(x∗
i ) · b − a

n
=

n∑
i=1

[F (xi) − F (xi−1)] = F (xn) − F (x0) = F (b) − F (a).

Thus by the definition of definite integral, we have
ˆ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗
i ) · b − a

n
= F (b) − F (a).

4.23 Example: evaluate definite integrals

Evaluate ˆ 1

0
x2 dx,

ˆ π

0
sin x dx, and

ˆ 1

0
ex dx.

Solution

1. Since
( 1

3 x3)′ = x2, by the Fundamental Theorem of Calculus, we have
ˆ 1

0
x2 dx = 1

3 x3
∣∣1
0 = 1

3 .

2. Since (− cos x)′ = sin x, by the Fundamental Theorem of Calculus, we have
ˆ π

0
sin x dx = − cos x|π0 = − cos π − (− cos 0) = 1 + 1 = 2.

3. Since (ex)′ = ex, by the Fundamental Theorem of Calculus, we have
ˆ 1

0
ex dx = ex|10 = e1 − e0 = e − 1.

4.24 Example: area and net area

1. Find the net area of the region between the graph of f(x) = x2 − 1 and the x-axis over
[−2, 2].
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Solution The net area of the region is the
integral of f over [−2, 2]. It is easy to see
that ( 1

3 x3 − x
)′ = x2 − 1.

Thus, by the Fundamental Theorem of
Calculus, the net area isˆ 2

−2
(x2 − 1) dx =

( 1
3 x3 − x

)∣∣2
−2

=
[ 1

3 (23) − 2
]

−
[ 1

3 (−2)3 − (−2)
]

= 4
3 .

x

y

y = x2 − 1

−2 21−1

1

3

−1

O

2. Find the area of the region between the graph of f(x) = x2 − 1 and the x-axis over
[−2, 2].
Solution The area of the region equals the sum of the area of the region above the
x-axis and the area of the region below the x-axis.

We need to find the intervals over which f does not change its sign. Solve

x2 − 1 = 0 =⇒ x = 1 or x = −1.

Thus f(x) is positive over [−2, −1], negative over [−1, 1], and positive over [1, 2]. Thus,
by the Fundamental Theorem of Calculus, the total area equals

ˆ 2

−2

∣∣x2 − 1
∣∣ dx

=
ˆ −1

−2
(x2 − 1) dx −

ˆ 1

−1
(x2 − 1) dx +

ˆ 2

1
(x2 − 1) dx

=
( 1

3 x3 − x
)∣∣−1

−3 −
( 1

3 x3 − x
)∣∣1

−1 +
( 1

3 x3 − x
)∣∣3

1

=
[ 1

3 (−1)3 − (−1)
]

−
[ 1

3 (−2)3 − (−2)
]

−
[ 1

3 (13) − 1
]

+
[ 1

3 (−1)3 − (−1)
]

+
[ 1

3 (23) − 2
]

−
[ 1

3 (13) − 1
]

= 44
3 .

x

y

y = x2 − 1

−2 21−1

1

3

−1

O x

y

y = |x2 − 1|

−2 21−1

−1

3

1

O
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4.25 Example: Derivatives of Integrals

Find the derivatives

d
dx

ˆ x

0
sin t2 dt and d

dx

ˆ x2

1
sin t2 dt.

Solution

1. We can use directly the Fundamental Theorem of Calculus to compute the first integral:

d
dx

ˆ x

0
sin t2 dt = sin x2.

2. Here we need to apply the chain rule of differentiation. If we let f(u) =
ˆ u

1
sin t2 dt

and u = g(x) = x2, we get ˆ x2

1
sin t2 dt = f

(
g(x)

)
.

So we apply the chain rule to get

d
dx

ˆ x2

1
sin t2 dt =

(
d

du

ˆ u

1
sin t2 dt

)∣∣∣∣
u=x2

· d(x2)
dx

= sin u2∣∣
u=x2 · 2x

= sin x4 · 2x = 2x sin x4.

4.26 Pitfall: nonexistence of definite integrals

Consider the integral
ˆ 2

−1

1
x2 dx.

Since
(

− 1
x

)′

= 1
x2 , if one had used the Fundamental Theorem of Calculus for this integral,

one would get the integral equal to
ˆ 2

−1

1
x2 dx =

(
− 1

x

)∣∣∣∣2
−1

incorrect equality

= − 1
2 + (−1) = − 3

2 .

The computation is incorrect because the integrand 1
x2 is not defined at x = 0 which is a

point in [−1, 2]. In fact, if one uses Riemann sum to approximate this integral, the limit of
the Riemann sum diverges.
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4.3 Indefinite Integrals

4.27 Remark:

From the Fundamental Theorem of Calculus, in order to calculate a definite integral
ˆ b

a

f(x) dx,

it is important to know a function F (x) whose derivative is f(x), i.e., F ′(x) = f(x). This
leads to the concept of indefinite integral, equivalently, antiderivative.

4.28 Definition: indefinite integral

The indefinite integral of f , denoted by
ˆ

f(x) dx

is the collection of all functions F whose derivative equals f , i.e.,

F ′(x) = f(x).

Any function F satisfying F ′(x) = f(x) is called an antiderivative of f .

4.29 Example: finding indefinite integral

Find
ˆ

2x dx.

Solution We know that (x2)′ = 2x and (x2 + 1)′ = 2x. In fact, for any constant C,
(x2 + C)′ = 2x.

We know from the Mean Value Theorem that zero derivative implies constant function.
Thus, any differentiable function F with F ′(x) = 2x must differ from x2 at most by a
constant. Hence, by the definition of indefinite integral, we have

ˆ
2x dx = x2 + C.

4.30 Theorem: linearity of indefinite integral

1.
ˆ

[f(x) + g(x)] dx =
ˆ

f(x) dx +
ˆ

g(x) dx.

2.
ˆ

kf(x) dx = k

ˆ
f(x) dx, where k is a constant.
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Justification:

The equalities follow from the linearity of differentiation.

4.31 Theorem: indefinite integrals of some elementary functions

1.
ˆ

k dx = kx + C

2.
ˆ

xµ dx = xµ+1

µ + 1
(µ ̸= −1)

3.
ˆ

dx

x
= ln |x| + C

4.
ˆ

dx

x2 + 1
= arctan x + C

5.
ˆ

dx√
1 − x2

= arcsin x + C

6.
ˆ

cos x dx = sin x + C

7.
ˆ

sin x dx = − cos x + C

8.
ˆ

ex dx = ex + C

9.
ˆ

ax dx = ax

ln a
+ C

10.
ˆ

dx

cos2 x
=
ˆ

sec2 x dx = tan x + C

11.
ˆ

dx

sin2 x
=
ˆ

csc2 x dx = − cot x + C

12.
ˆ

sec x tan x dx = sec x + C

13.
ˆ

csc x cot x dx = − csc x + C

Justification:

For formula 1, it is easy to see that (kx + C)′ = k for any constant C. We know from the
Mean Value Theorem that zero derivative implies constant function. Thus, any differentiable
function F with F ′(x) = k must differ from kx at most by a constant. Hence, by the definition
of indefinite integral, we have ˆ

k dx = kx + C.

Similar argument applies to other formulae, except formula 3.
For formula 3, if x > 0, we have ln |x| = ln x and

(ln x)′ = 1
x

.

Since, from the Mean Value Theorem, zero derivative implies constant function, we know that
any differentiable function F with F ′(x) = 1

x
must differ from ln x at most by a constant.

Hence, by the definition of indefinite integral, we know that for x > 0,
ˆ

x−1 dx = ln x + C.
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If x < 0, we have ln |x| = ln(−x) and, applying the chain rule,(
ln(−x)

)′ = 1
−x

· (−x)′ = 1
x

.

By a similar argument as above, we know that for x < 0,
ˆ

x−1 dx = ln(−x) + C.
Combining two cases into one format, we obtain formula 3:

ˆ
x−1 dx = ln |x| + C.

4.32 Remark: constants in indefinite integrals

It is easy to see that
ˆ

1 dx = x + C1,

ˆ
2x dx = x2 + C2,

ˆ
(1 + 2x) dx = x + x2 + C,

where C1, C2, and C are all arbitrary constants.
On the other hand, if we use the linearity of indefinite integrals, we have

ˆ
(1 + 2x) dx =

ˆ
1 dx +

ˆ
2x dx

= x + C1 + x2 + C2 = x + x2 + C1 + C2.

It seems that we get different results from different ways of computations.
However, the constant C in indefinite integrals means that it is an arbitrary constant. For

our example, since C1 and C2 are arbitrary constants, so is C1 + C2. Therefore, it makes
sense to write x + x2 + C1 + C2 as x + x2 + C.

4.33 Example: definite integral - Fundamental Theorem of Calculus

Evaluate
ˆ 1

0

(
x5 + 2 cos x − 1

x2 + 1

)
dx.

Solution We can first evaluate the indefinite integral:
ˆ (

x5 + 2 cos x − 1
x2 + 1

)
dx

=
ˆ

x5 dx + 2
ˆ

cos x dx −
ˆ

1
x2 + 1

dx applying linearity

= 1
6 x6 + 2 sin x − tan−1 x + C using the known integrals
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Then, by applying the Fundamental Theorem of Calculus, we get
ˆ 1

0

(
x5 + 2 cos x − 1

x2 + 1

)
dx =

( 1
6 x6 + 2 sin x − tan−1 x

)∣∣1
0

= 1
6 + 2 sin 1 − tan−1 1

= 1
6 + 2 sin 1 − π

4 .

4.34 Remark: displacement function and velocity function

If s(t) is the displacement function, then v(t) = s′(t) is the velocity function from the
definition of derivatives.

Conversely, if we are given the velocity function v(t), then the indefinite integral
ˆ

v(t) dt

is a collection of displacement functions having v(t) as its velocity.

4.35 Example: velocity - application

A particle moves on a line with the velocity at time t, v(t) = t2 − t−6 (measured in meters
per second).

1. Find the displacement function of the particle as a function of the time t. Assume the
particle is at the position of the origin when time t = 0.

Solution Let f be the displacement function of the particle satisfying f(0) = 0. Since
f ′(t) = v(t), in order to find f , we just need to calculate the indefinite integral

f(t) =
ˆ

v(t) dt =
ˆ

(t2 − t − 6) dt = 1
3 t3 − 1

2 t2 − 6t + C.

The initial condition f(0) = 0 will determine the constant C. In fact, C = 0.

2. Find the displacement traveled during the time period 1 ≤ t ≤ 4.

Solution It requires us to calculate the following definite integral.
ˆ 4

1
v(t) dt =

( 1
3 t3 − 1

2 t2 − 6t
)∣∣4

1 = − 9
2 .

3. Find the distance traveled during the time period 1 ≤ t ≤ 4.

Solution This amounts to calculate the definite integral
ˆ 4

1
|v(t)| dt.
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To do so, we need to find intervals where v has the same sign. In fact, let v(t) = 0, we
get

t2 − t − 6 = 0 =⇒ (t − 3)(t + 2) = 0 =⇒ t = 3 or t = −2.

It is easy to see that v(t) is positive on (−∞, −2), negative on (−2, 3), and positive on
(3, ∞). Therefore the distance traveled during the time period 1 ≤ t ≤ 4 is

ˆ 4

1
|v(t)| dt = −

ˆ 3

1
v(t) dt +

ˆ 4

3
v(t) dt

= −
( 1

3 t3 − 1
2 t2 − 6t

)∣∣3
1 +

( 1
3 t3 − 1

2 t2 − 6t
)∣∣4

3 = 61
6 .

4.36 MATLAB: indefinite integrals

In MATLAB, the command int can be used to calculate indefinite integrals. The following
examples show the calculation of

ˆ
xn dx and

ˆ (
t2 − t − 6

)
dt.

>> syms x;
>> f = x^n;
>> int(f,x)

ans =

piecewise (n == -1, log(x), n ̸= -1, x^(n + 1)/(n + 1))

>> syms t;
>> g = t^2 - t - 6;
>> m = int(g)

m =

-(t*(- 2*t^2 + 3*t + 36))/6

>> m_cl = collect (m) % rewrite m in terms of the powers of t

m_cl =

t^3/3 - t^2/2 - 6*t

>> pretty (m_cl) % rewrite m_cl in a format that resembles ...
type -set mathematics

3 2
t t
-- - -- - 6 t

3 2
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We see from the MATLAB code above that
ˆ

xn dx is a piecewise function. With the help
of collect and pretty, we can rewrite the results calculated by int. Note that for all the
results calculated by int, the constant term C is not shown.

4.4 Substitution Method

4.37 Example: substitution method

For the function ex2 , we apply the chain rule and get

d
dx

ex2
= 2xex2

.

We can decompose the computation into several steps. First, let u = x2. Then

d
dx

ex2
= d

du
eu

∣∣∣∣
u=x2

· du

dx
.

By the definition of indefinite integral, we get
ˆ

2xex2
dx = ex2

+ C.

Or, if we let u = x2, then we get du = (x2)′ dx = 2x dx, and the integral can be rewritten as
ˆ

2xex2
dx =

ˆ
ex2

2x dx︸ ︷︷ ︸
du

=
ˆ

eu du = eu + C = ex2
+ C.

This process is a typical case of the substitution method.

4.38 Theorem: substitution method for indefinite integral

Let u = g(x) be a differentiable function and f be a continuous function. Suppose the
range of g is contained in the domain of f . Then

ˆ
f
(
g(x)

)
· g′(x) dx =

ˆ
f(u) du.

Justification:

It follows directly from the chain rule for differentiation. Let F (x) be a function whose
derivative is f(x), i.e., F ′(x) = f(x). Equivalently, we have

ˆ
f(u) du = F (u) + C.
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Then by the chain rule of differentiation, we have

d
dx

F
(
g(x)

)
= dF (u)

du
· g′(x) = f(u) · g′(x) = f

(
g(x)

)
· g′(x),

or equivalently
ˆ

f
(
g(x)

)
· g′(x) dx =

ˆ
d

dx
F
(
g(x)

)
dx

= F
(
g(x)

)
+ C = F (u) + C u = g(x)

=
ˆ

f(u) du.

4.39 Example: substitution method for indefinite integrals

Using the substitution method to evaluate the integral
ˆ

x√
x + 1

dx.

1. Let u = x + 1. Then du = dx. Thus, we have
ˆ

x√
x + 1

dx

=
ˆ

u − 1√
u

du u = x + 1, du = dx

=
ˆ (

u
1
2 − u− 1

2

)
du simplifying

= 2
3 u

3
2 − 2u

1
2 + C evaluating

= 2
3 (x + 1) 3

2 − 2(x + 1) 1
2 + C replacing u by x + 1

= 2
3

√
(x + 1)3 − 2

√
x + 1 + C.

2. We can also make the following substitution u =
√

x + 1. Then x = u2 − 1 and
dx = 2u du. Thus, we have

ˆ
x√

x + 1
dx

=
ˆ

u2 − 1
u

2u du u =
√

x + 1, dx = 2u du

=
ˆ

(2u2 − 2) du simplifying

= 2
3 u3 − 2u + C evaluating

= 2
3

√
(x + 1)3 − 2

√
x + 1 + C. replacing u by

√
x + 1

From this example, we see that there might be more than one way to make substitution.



212 Integration

4.40 Theorem: substitution method for definite integral

Let u = g(x), where g′(x) is continuous on [a, b], and let f be continuous on an interval
containing the range of g. Then

ˆ b

a

f
(
g(x)

)
· g′(x) dx =

ˆ g(b)

g(a)
f(u) du.

4.41 Example: substitution method for definite integrals

Evaluate ˆ π
2

0
sin3 x cos x dx.

Solution If we let u = sin x, then

du = (sin x)′ dx = cos x dx.

When x = 0, u = sin 0 = 0; when x = π
2 , u = sin π

2 = 1. Thus the integral can be evaluated
as follows:

ˆ π
2

0
sin3 x cos x dx︸ ︷︷ ︸

du

=
ˆ 1

0
u3(du) substituting u = sin x, du = cos x dx

and changing the upper and lower limits

= 1
4 u4
∣∣1
0

=
( 1

4 − 0
)

= 1
4 .

4.42 Engineering Example: electrical power in a circuit

The electrical power can be supplied to business and homes by the electrical power industry
through electrical power grids, and it can be converted into other forms of energy, such as
heat, light and motion. The amount of power produced in a circuit is related to the electric
current, the voltage, etc.

In particular, in the case of an alternating current (AC) circuit with Ohmic resistive loads,
the Ohm’s law can be combined, and thus the electrical power during one time period (0, T )
is given by

P = R

T

ˆ T

0
i2(t)dt,

where i(t) is the alternating current.
Suppose that i(t) = A sin (ωt), where A is the amplitude and ω is the angular frequency.

Calculate P .
First, if i(t) = A sin (ωt), the electrical power P can be calculated by solving the following
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integral:

P = A2R

T

ˆ T

0
sin2 (ωt) dt.

Let u = ωt, then

du = ωdt.

When t = 0, u = ω × 0 = 0; when t = T , u = ωT . Thus the integral of P can be rewritten
as follows:

P = A2R

Tω

ˆ ωT

0
sin2 udu.

Moreover, we note that sin2 u = 1
2 − 1

2 cos(2u), the integral above thus can be rewritten as

P = A2R

Tω

ˆ ωT

0

(
1
2

− 1
2

cos(2u)
)

du

= A2R

2Tω

ˆ ωT

0
du − A2R

2Tω

ˆ ωT

0
cos(2u)du

= 1
2

A2R − A2R

2Tω

ˆ ωT

0
cos(2u)du.

Furthermore, we let v = 2u, then

dv = 2du.

When u = 0, v = 2 × 0 = 0; when u = ωT , v = 2 × ωT = 2ωT . We thus have
ˆ ωT

0
cos(2u)du = 1

2

ˆ 2ωT

0
cos vdv

= 1
2

[sin v]2ωT
0 = 1

2
sin (2ωT ) .

Therefore, we can obtain

P = 1
2

A2R − 1
4Tω

A2R sin (2ωT ) .

Note that T = 2π
ω , so P can be further simplified as

P = 1
2

A2R − 1
8π

A2R sin (4π) = 1
2

A2R.



214 Integration

4.43 Engineering Example: hazard function

The hazard function provides the instantaneous failure rate of a component at time t.
Mathematically, the hazard function h(t) can be defined as the ratio of the probability density
function f(t) and the complementary cumulative distribution function R(t) of the lifetime of
a component, i.e.,

h(t) = f(t)
R(t)

.

Note that R(t) can be calculated in terms of f(t) as follows:

R(t) = 1 −
ˆ t

0
f(u)du,

so hazard function can be rewritten as

h(t) = f(t)
1 −
´ t

0 f(u)du
.

Suppose that the probability density function of a component is f(t) = 1
2

√
t
e−

√
t. Find

h(t).
In order to calculate h(t), we first calculate the integral in the denominator:

ˆ t

0
f(u)du = 1

2

ˆ t

0

1√
u

e−
√

udu.

Let v =
√

u, then

dv = 1
2
√

u
du.

When u = 0, v =
√

0 = 0; when u = t, v =
√

t. We thus have
ˆ t

0
f(u)du =

ˆ √
t

0
e−vdv

= −
[
e−v
]√t

0 = 1 − e−
√

t.

Substituting the above result into the expression of h(t) and after some algebraic manipu-
lations, we have

h(t) = 1
2
√

t
.
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Trigonometric Substitutions

4.44 Example: integrals involving
√

a2 − x2

Find the area of a circle of radius a.

Solution The area of the circle equals four
times the area of the part of the circle in the
first quadrant, which can be calculated via
the area below the curve y =

√
a2 − x2 over

the interval [0, a], i.e., we need to calculate
the following integral

4
ˆ a

0

√
a2 − x2 dx.

x

y

a

a

x2 + y2 = a2

y =
√

a2 − x2

O

In order to remove the radical in the integrals, we use the following trigonometric substi-
tution for integrals involving a2 − x2. Let x = a sin θ. Then dx = a cos θ dθ, and when x = 0,
θ = 0; when x = a, θ = π

2 . Hence,

4
ˆ a

0

√
a2 − x2 dx

= 4
ˆ π

2

0

√
a2 − a2 sin2 θ · a cos θ dθ making substitution x = a sin θ

= 4
ˆ π

2

0
a cos θ · a cos θ dθ using 1 − sin2 θ = cos2 θ

= 4a2
ˆ π

2

0

1
2 (1 + cos 2θ) dθ using the double-angle formula

= 2a2 (θ + 1
2 sin 2θ

)∣∣π
2
0 evaluating

= 2a2 (π
2 + 0

)
= πa2. simplifying

4.45 Method: trigonometric substitutions

Expression Corresponding Substitution Useful Identity
√

a2 − x2 x = a sin θ, − π
2 ≤ θ ≤ π

2 1 − sin2 θ = cos2 θ

√
a2 + x2 x = a tan θ, − π

2 < θ < π
2 1 + tan2 θ = sec2 θ

√
x2 − a2 x = a sec θ,

0 ≤ θ < π
2 or

π ≤ θ < 3π
2

sec2 θ − 1 = tan2 θ
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4.46 Example: integrals involving
√

x2 − a2

Evaluate the integral ˆ
dx√

(x2 − 1)3
.

Solution In order to remove the radical in the integrals, we use the trigonometric substi-
tution x = sec θ. Then we have

x2 − 1 = sec2 θ − 1 = tan2 θ, dx = sec θ tan θ dθ.

Thus ˆ
dx√

(x2 − 1)3
=
ˆ

sec θ tan θ

tan3 θ
dθ substituting x = sec θ

=
ˆ

cos θ

sin2 θ
dθ simplifying

=
ˆ

1
u2 du substituting u = sin θ

= − 1
u

+ C evaluating

= − 1
sin θ

+ C changing the variable from u to θ

= − x√
x2 − 1

+ C. changing the variable from θ to x

Here we use the following diagram to convert
the variable from θ to x:

sin θ =
√

x2 − 1
x

.
1

√
x2 − 1

x

θ

4.47 Example: integrals involving
√

a2 + x2

Evaluate the integral
ˆ

dx

(1 + x2)2 .

Solution Although the integrand contains no radicals, a trigonometric substitution can
still apply to simplify the term (1 + x2)k. Indeed, using the trigonometric substitution
x = tan θ, we have

1 + x2 = 1 + tan2 θ = sec2 θ, d(tan θ) = sec2 θ dθ.

The integral is
ˆ

dx

(1 + x2)2 =
ˆ

sec2 θ

sec4 θ
dθ =

ˆ
cos2 θ dθ

=
ˆ

1
2 (1 + cos 2θ) dθ = 1

2 θ + 1
4 sin 2θ + C.
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To convert θ back to x, we have θ = tan−1 x. From the triangle below, we have

sin θ = x√
1 + x2

, cos θ = 1√
1 + x2

,

sin 2θ = 2 sin θ cos θ = 2x

1 + x2 .

1

x

√
1 + x2

θ

Thus the integral is ˆ
dx

(1 + x2)2 = 1
2 tan−1 x + x

2(1 + x2)
+ C.

4.5 Integration by Parts

4.48 Example: product rule and integration by parts

Let u(x) and v(x) be differentiable functions of x. The product rule of differentiation gives
that

(uv)′ = u′v + uv′.

Rewrite the expression as
uv′ = (uv)′ − u′v.

As an example, consider the integral
ˆ

xex dx. If we let

u(x) = x, v′(x) = ex,

then, for the latter, we may choose v = ex. From the equality uv′ = (uv)′ − u′v, we get
ˆ

xex dx

=
ˆ

x(ex)′ dx =
ˆ

u(x)v′(x) dx u = x and v = ex

=
ˆ [(

u(x)v(x)
)′ − u′(x)v(x)

]
dx applying the product rule

= u(x)v(x) −
ˆ

u′(x)v(x) dx definition of indefinite integral

= xex −
ˆ

ex dx

= xex − ex + C.

This process is a typical case of so-called integration by parts.
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4.49 Theorem: integration by parts

Suppose u and v are differentiable functions of x. Then
ˆ

u(x) · v′(x) dx︸ ︷︷ ︸
dv

= u(x) · v(x) −
ˆ

v(x) · u′(x) dx︸ ︷︷ ︸
du

,

or ˆ
u dv = uv −

ˆ
v du.

Furthermore, for definite integral,
ˆ b

a

u(x) · v′(x) dx = [u(x) · v(x)]ba −
ˆ b

a

v(x) · u′(x) dx.

Justification:

By the product rule of differentiation, we get

(uv)′ = u′v + uv′ =⇒ uv′ = (uv)′ − u′v.

Integrating the both sides of the latter equality gives
ˆ

uv′ dx =
ˆ

(uv)′ dx −
ˆ

u′v dx = uv −
ˆ

u′v dx,

or equivalently ˆ
u dv = uv −

ˆ
v du.

By further applying the Fundamental Theorem of Calculus, we get the formula of integra-
tion by parts for definite integral.

4.50 Example: repeatedly integrating by parts

Evaluate the integral ˆ
e2x sin x dx.

Solution We make the following choice of u and v:

Functions in original integral u = e2x dv = sin x dx

Functions in new integral du = 2e2x dx v = − cos x
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We obtainˆ
e2x sin x dx

=
ˆ

e2x(− cos x)′ dx =
ˆ

u(x)v′(x) dx u = e2x and v = − cos x

=
ˆ [(

u(x)v(x)
)′ − u′(x)v(x)

]
dx applying the product rule

= u(x)v(x) −
ˆ

u′(x)v(x) dx definition of indefinite integral

= e2x(− cos x) −
ˆ

(− cos x)2e2x dx

= −e2x cos x + 2
ˆ

e2x cos x dx.

By comparing the last integral
ˆ

e2x cos x dx with the original integral
ˆ

e2x sin x dx,
we see that integration by parts converts the sine function to the cosine function in the
integrands. This motivates us to apply integration by part once more to the integralˆ

e2x cos x dx.

To do so, we make the following choice of u and v:

Functions in original integral u = e2x dv = cos x dx

Functions in new integral du = 2e2x dx v = sin x

We obtainˆ
e2x cos x dx

=
ˆ

e2x(sin x)′ dx =
ˆ

u(x)v′(x) dx u = e2x and v = sin x

=
ˆ [(

u(x)v(x)
)′ − u′(x)v(x)

]
dx applying the product rule

= u(x)v(x) −
ˆ

u′(x)v(x) dx definition of indefinite integral

= e2x sin x −
ˆ

sin x · 2e2x dx

= e2x sin x − 2
ˆ

e2x sin x dx.

Combining two relations obtained above givesˆ
e2x sin x dx = −e2x cos x + 2e2x sin x − 4

ˆ
e2x sin x dx.
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Therefore, by treating the desired integral as an unknown, we get
ˆ

e2x sin x dx = − 1
5 e2x cos x + 2

5 e2x sin x + C.

4.51 Pitfall: choices of u and v

If we choose u = ex, dv = x dx and hence v = 1
2 x2 to evaluate the integral

ˆ
xex dx.

Integrating by parts, we get
ˆ

xex dx =
ˆ

ex
( 1

2 x2)′ dx

= 1
2 x2 · ex −

ˆ
1
2 x2 · (ex)′ dx

= 1
2 x2 · ex −

ˆ
1
2 x2 · ex dx.

Now we see the resulting integration on the right hand side is more complicated than the
original one. Thus we made a wrong choice of u and v.

Instead, if we let u = x and v = ex, we get
ˆ

xex dx =
ˆ

x(ex)′ dx

= xex −
ˆ

ex dx = xex − ex + C.

4.52 Example: recursive formula

In many cases, integration by parts can be used to yield recursive formula for integrals, so
that some complicated integrals can be evaluated through simpler integrals.

Consider the integral Ip =
ˆ π

2

0
cosp x dx.

For p > 1, if taking u(x) = cosp−1 x and v(x) = sin x, we integrate by parts to have

Ip =
ˆ π

2

0
cosp−1 x · (sin x)′ dx

=
[
cosp−1 x · sin x

]π
2
0 −
ˆ π

2

0
sin x · (p − 1) cosp−2 x · (− sin x) dx

= (p − 1)
ˆ π

2

0
(1 − cos2 x) cosp−2 x dx

= (p − 1)Ip−2 − (p − 1)Ip.
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Hence, we have the following recursive formula:

Ip = p − 1
p

Ip−2, p > 1.

It is easy to have that

I0 =
ˆ π

2

0
1 dx = π

2 ;

I1 =
ˆ π

2

0
cos x dx = 1.

Therefore, we have
ˆ π

2

0
cos2n x dx = I2n = 2n − 1

2n
I2n−2 = 2n − 1

2n
· 2n − 3

2n − 2
I2n−4

= · · · = 2n − 1
2n

· 2n − 3
2n − 2

· · · 1
2

I0

= (2n − 1)(2n − 3) · · · 1
2n(2n − 2) · · · 2

· π

2

= (2n)! · π

22n+1(n!)2 ;
ˆ π

2

0
cos2n+1 x dx = I2n+1 = 2n

2n + 1
I2n−1 = 2n

2n + 1
· 2n − 2

2n − 1
I2n−3

= · · · = 2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3
I1

= (2n)(2n − 2) · · · 2
(2n + 1)(2n − 1) · · · 3

· 1

= 22n(n!)2

(2n + 1)!
.

These hold for all integers n ≥ 0.

4.53 Example: use substitution or integration by parts?

Expressions of similar integrals sometimes need different integration techniques.

Consider the integral of the form
ˆ

xp ln x dx.

1. Assume p = −1. In this case, we use the substitution method. We take u = ln x. Then
du = x−1 dx. Thus,

ˆ
x−1 ln x dx =

ˆ
u du = 1

2 u2 + C = 1
2 ln2 x + C.
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2. Assume p ̸= −1. In this case, we use integration by parts. In fact,
ˆ

xp ln x dx =
ˆ

ln x ·
(

xp+1

p + 1

)′

dx

= xp+1

p + 1
ln x −

ˆ
xp+1

p + 1
(ln x)′ dx

= xp+1

p + 1
ln x −

ˆ
xp+1

p + 1
x−1 dx

= xp+1

p + 1
ln x −

ˆ
xp

p + 1
dx

= xp+1

p + 1
ln x − xp+1

(p + 1)2 + C.

4.54 Engineering Example: electric current - inductor

The inductor is a two-terminal electrical component that can store energy in a magnetic
field and is characterized by its inductance. The inductance is defined as the ratio of the
voltage to the rate of the change of the electric current. Mathematically, the inductance L is
defined as

L = v(t)
di(t)

dt

where v(t) is the voltage across the inductor and i(t) is the electric current through the
inductor.

Alternatively, according to the fundamental theorem of calculus, the electric current
through the inductor i(t) can be calculated as follows:

i(t) = 1
L

ˆ t

0
v(u)du.

Suppose that L = 5 × 10−3 (H) and v(t) = 3te−t (V), find i(t).
First, we know that

i(t) = 3
5

× 103
ˆ t

0
ue−udu.

Integrating by parts, the integral above can be solved asˆ t

0
ue−udt = −

ˆ t

0
u
(
e−u

)′ du

= −
[
ue−u

]t
0 +
ˆ t

0
e−udu

= −te−t −
[
e−u

]t
0

= 1 − e−t − te−t.

Therefore, the electric current through the inductor is

i(t) = 600
(
1 − e−t − te−t

)
(A).



4.6 Some Common Integrals 223

4.6 Some Common Integrals

Trigonometric Integrals

4.55 Example: integrating products of sin mx and cos nx

1. Calculate ˆ
sin 2x cos 3x dx.

Solution By using the identity

sin α cos β = 1
2 [sin(α − β) + sin(α + β)] ,

we have ˆ
sin 2x cos 3x dx =

ˆ
1
2 (− sin x + sin 5x) dx

= 1
2 cos x − 1

10 cos 5x + C.

2. Calculate ˆ
cos 4x cos x dx.

Solution By using the identity

cos α cos β = 1
2 [cos(α − β) + cos(α + β)] ,

we have ˆ
cos 4x cos x dx =

ˆ
1
2 (cos 3x + cos 5x) dx

= 1
6 sin 3x + 1

10 sin 5x + C.

4.56 Method: integrating products of sin mx and cos nx

For evaluating
ˆ

sin mx cos nx dx,

ˆ
sin mx sin nx dx,

ˆ
cos mx cos nx dx,

use the identities:

sin α cos β = 1
2 [sin(α − β) + sin(α + β)]

sin α sin β = 1
2 [cos(α − β) − cos(α + β)]

cos α cos β = 1
2 [cos(α − β) + cos(α + β)]
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4.57 Engineering Example: energy in a capacitor - calculation

The capacitor is a two-terminal electronic component that can store electrical energy in an
electric field. The electric power is the rate (per unit time) at which the electrical energy is
transferred by an electric circuit. Hence, to calculate the energy that is stored in a capacitor,
we can calculate the electric power of the capacitor first. In particular, the instantaneous
electric power of the capacitor Pc(t) can be calculated by

Pc(t) = ic(t)vc(t)

where ic(t) is the electric current through the capacitor at time t and vc(t) is the voltage
across the capacitor at time t. Then, the energy stored in a capacitor during the time interval
(0, Tc) is given by

Wc =
ˆ Tc

0
Pc(t)dt =

ˆ Tc

0
ic(t)vc(t)dt.

Suppose that the voltage across a capacitor with capacitance C and zero energy storage
at time 0 is vc(t) = A sin (ωt), where A is the amplitude and ω is the angular frequency.
Calculate Wc which is the energy stored during the time interval (0, Tc).

First, the electric current through the capacitor can be calculated as

ic(t) = C
dvc(t)

dt
= C

A · d[sin (ωt)]
dt

= CAω cos (ωt) .

Hence, the energy stored in the capacitor during the time interval (0, Tc) can be calculated
by solving the following integral:

Wc = CAω

ˆ Tc

0
cos (ωt) sin (ωt) dt.

Let u = cos (ωt), then we have du = −ω sin (ωt) dt. Moreover, when t = 0, u = 1; when
t = Tc, u = cos (ωTc). So we can get

Wc = −CA

ˆ cos(ωTc)

1
u du = CA

ˆ 1

cos(ωTc)
udu

= CA
[ 1

2 u2]1
cos(ωTc) = 1

2 CA
(
1 − cos2 (ωTc)

)
= 1

2 CA sin2 (ωTc) .

4.58 Example: integrating products of powers of sin x and cos x

1. Calculate ˆ
sin2 x cos x dx.

Solution We apply the substitution method and let u = sin x. Then we have du =
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cos x dx and get
ˆ

sin2 x cos x dx =
ˆ

u2 du

= 1
3 u3 + C = 1

3 sin3 x + C.

2. Calculate ˆ
sin3 x cos2 x dx.

Solution If we let u = cos x, then du = − sin x dx and

sin2 x cos2 x = (1 − cos2 x) cos2 x = (1 − u2)u2.

Applying the substitution method gives
ˆ

sin3 x cos2 x dx =
ˆ

(1 − u2)u2(−du)

= 1
5 u5 − 1

3 u3 + C = 1
5 cos5 x − 1

3 cos3 x + C.

3. Calculate ˆ
sin2 x cos2 x dx.

Solution By the double-angle formula, we write the integrand as

sin2 x cos2 x = 1
2 (1 − cos 2x) · 1

2 (1 + cos 2x)
= 1

4 (1 − cos2 2x)
= 1

4
[
1 − 1

2 (1 + cos 4x)
]

= 1
8 (1 − cos 4x).

Thus,
ˆ

sin2 x cos2 x dx =
ˆ

1
8 (1 − cos 4x) dx

= 1
8 x − 1

32 sin 4x + C.

4.59 Method: integrating products of powers of sin x and cos x

For integrals of the form ˆ
sin xmx cosn x dx,

one can integrate by the following approach:

1. When m odd, n real: split off sin x, rewrite even power of sin x in terms of cos x, then
substitute u = cos x.

2. When n odd, m real: split off cos x, rewrite even power of cos x in terms of sin x, then
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substitute u = sin x.

3. When m and n both even nonnegative integers: use half-angle identities to transform
the integrand into a polynomial in terms of cos 2x, and apply previous strategies.

4.60 Theorem: the universal trigonometric substitution

Consider any integral of the form
ˆ

R(sin x, cos x) dx,

where R is rational in sin x and cos x. Then the universal trigonometric substitution

t = tan( 1
2 x) or x = 2 tan−1 t

converts the integral into some integral of a rational function of t.

Justification:

For the given substitution t = tan( 1
2 x),

from the triangle below, we have

sin( 1
2 x) = t√

1 + t2
,

cos( 1
2 x) = 1√

1 + t2
, 1

t

√
1 + t2

1
2 x

so that

sin x = 2 sin( 1
2 x) cos( 1

2 x) = 2 t√
1 + t2

· 1√
1 + t2

= 2t

1 + t2 ,

cos x = 2 cos2( 1
2 x) − 1 = 2 · 1

1 + t2 − 1 = 1 − t2

1 + t2 .

Thus, under the substitution, the function R(sin x, cos x) becomes

R

(
2t

1 + t2 ,
1 − t2

1 + t2

)
,

which is a rational function in t. Furthermore, since

dt = 1
2 sec2( 1

2 x) dx or dx = 2
1 + t2 dt,

we get
ˆ

R(sin x, cos x) dx =
ˆ

R

(
2t

1 + t2 ,
1 − t2

1 + t2

)
· 2

1 + t2 dt.

This shows that the universal trigonometric substitution converts the given integral into some
integral of a rational function of t.
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4.61 Example: integrating the secant function

Calculate
ˆ

sec x dx.

Solution We notice that if we make the
substitution t = tan( 1

2 x), then, from the tri-
angle below, we have

cos( 1
2 x) = 1√

1 + t2
,

1

t

√
1 + t2

1
2 x

so that

sec x = 1
cos x

= 1
2 cos2( 1

2 x) − 1

= 1

2 · 1
1 + t2 − 1

= 1 + t2

1 − t2 .

It is easy to have
dt = 1

2 sec2( 1
2 x) dx or dx = 2

1 + t2 dt.

Thus, by applying the substitution rule, we get
ˆ

sec x dx =
ˆ

1 + t2

1 − t2 · 2
1 + t2 dt

=
ˆ

2
1 − t2 dt. rational integrand

For the last integral, we write the integrand as its form of the partial fraction decomposition:

2
1 − t2 = 1

1 − t
+ 1

1 + t
.

Hence,
ˆ

sec x dx =
ˆ (

1
1 − t

+ 1
1 + t

)
dt

= − ln |1 − t| + ln |1 + t| + C

= ln
∣∣∣∣1 + tan( 1

2 x)
1 − tan( 1

2 x)

∣∣∣∣+ C.
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Rational Functions

4.62 Example: partial fractions for rational functions

1. Calculate the integral
ˆ (

1
x − 2

+ 1
x + 1

)
dx.

We can use substitution method.
ˆ (

1
x − 2

+ 1
x + 1

)
dx =

ˆ
dx

x − 2
+
ˆ

dx

x + 1
splitting the integral

=
ˆ

du

u
+
ˆ

dv

v
letting u = x − 2 and v = x + 1

= ln |u| + ln |v| + C evaluating integrals
= ln |x − 2| + ln |x + 1| + C. converting variables back to x

2. Calculate the integral
ˆ

2x − 1
x2 − x − 2

dx.

We notice that
2x − 1

x2 − x − 2
= 1

x − 2
+ 1

x + 1
,

so that the integral equals the previous one.

It seems a mystery to have the identity. However, there is an algorithm to derive this,
as demonstrated below.
Step 1 Factorize the denominator:

x2 − x − 2 = (x − 2)(x + 1).

Step 2 Write the partial fraction decomposition with coefficients to be determined:

2x − 1
x2 − x − 2

= A

x − 2
+ B

x + 1
.

Step 3 Clear the denominators:

2x − 1
x2 − x − 2

= A

x − 2
+ B

x + 1

= A(x + 1) + B(x − 2)
x2 − x − 2

= (A + B)x + A − 2B

x2 − x − 2
.

Step 4 Solve for A and B by letting numerators of both sides equal:

2x − 1 = (A + B)x + A − 2B =⇒ A + B = 2, A − 2B = −1
=⇒ A = 1, B = 1.

The above process is a special case of the method of partial fractions.
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4.63 Remark: integrals of rational functions

There are two facts worth knowing:

1. Any real rational function can be expressed as partial fractions;

2. Any partial fraction can be integrated.

Both can be effectively implemented on computers symbolically.

4.64 Method: integrating rational functions by partial fractions

For an improper rational function P (x)/Q(x), where P and Q are polynomials with deg P ≥
deg Q, one can use long division to reduce it to the form

P (x)
Q(x)

= S(x) + R(x)
Q(x)

,

where S(x) and R(x) are polynomials and R(x)/Q(x) is a proper rational function with
deg R < deg Q. Hence, for integrating rational functions, it is essential to integrate proper
rational functions.

For any proper rational function, we can integrate it by using partial fractions in one of
the four cases:

1. The denominator Q has only distinct real roots.
In this case, we write

Q(x) = A(x − λ1)(x − λ2) · · · (x − λk).

In this case, a proper rational function R(x)/Q(x) can be expressed as

R(x)
Q(x)

= A1

x − λ1
+ A2

x − λ2
+ · · · + Ak

x − λk
.

For each fraction, we can make a substitution t = x − λ to integrate:ˆ
1

x − λ
dx =

ˆ
1
t

dt = ln |t| + C.

2. The denominator Q is a product of linear factors and some of them are repeated.

Suppose the function (x−λ) is repeated r times. Then instead of the single term A1

x − λ
,

one needs to use the form
A1

x − λ
+ A2

(x − λ)2 + · · · + Ar

(x − λ)r
.

For each fraction of the form 1
(x − λ)m

, we can make a substitution to integrate. In

fact, if m = 1, we can integrate the fraction as in Case 1. If m > 1, by making the
substitution t = x − λ, we getˆ

1
(x − λ)m

dx =
ˆ

1
tm

dt = t−m+1

−m + 1
+ C.
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3. The denominator Q contains irreducible quadratic factors and none of them is repeated.
Suppose x2 + ax + b is an irreducible quadratic factor, with a2 − 4b < 0. Then the
partial fraction for the proper rational function R(x)/Q(x) will have a term of the form

Ax + B

x2 + ax + b

whose integration can be re-written as
ˆ

Ax + B

x2 + ax + b
dx =

ˆ 1
2 A(2x + a) + (B − 1

2 aA)
x2 + ax + b

dx

=
ˆ 1

2 A(x2 + ax + b)′ + (B − 1
2 aA)

x2 + ax + b
dx

=
ˆ 1

2 A(x2 + ax + b)′

x2 + ax + b
dx +

ˆ (B − 1
2 aA)

x2 + ax + b
dx.

For the last two integrals on the right-hand side, they can be compute by using different
substitution. In fact, for the first integral, by using the substitution t = x2 + ax + b, it
can be reduced to ˆ

dt

t
= ln |t| + C;

for the second integral, by using the substitution t = x + 1
2 a, we can reduce the last

integral to the form ˆ
1

t2 + α2 dt = 1
α

tan−1
(

t

α

)
+ C.

4. The denominator Q contains a repeated irreducible quadratic factor.
Suppose Q contains the factor (x2 + ax + b)r, where a2 − 4b < 0. Then instead of the

single factor A1x + B1

x2 + ax + b
, one needs to use the form

A1x + B1

x2 + ax + b
+ A2x + B2

(x2 + ax + b)2 + · · · + Arx + Br

(x2 + ax + b)r
.

As in Case 3, we re-write the integral of a typical term as
ˆ

Ax + B

(x2 + ax + b)m
dx

=
ˆ 1

2 A(x2 + ax + b)′

(x2 + ax + b)m
dx +

ˆ (B − 1
2 aA)

(x2 + ax + b)m
dx.

In fact, if m = 1, we can integrate the fraction as in Case 3. If m > 1, the first integral
on the right-hand side, by using the substitution t = x2 + ax + b, it can be reduced to

ˆ
dt

tm
= − 1

(m − 1)tm−1 + C;
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for the second integral, by using the substitution t = x + 1
2 a, we can reduce it to the

form ˆ
1

(t2 + α2)m
dt.

By integrating by parts, we have
ˆ

1
(t2 + α2)m−1 dt

= t

(t2 + α2)m−1 −
ˆ

t · (−m + 1)(t2 + α2)−m · 2t dt

= t

(t2 + α2)m−1 + 2(m − 1)
ˆ

(t2 + α2)−m(t2 + α2 − α2) dt

= t

(t2 + α2)m−1 + 2(m − 1)
ˆ [

1
(t2 + α2)m−1 − α2

(t2 + α2)m

]
dt.

So, we have the recursive formula
ˆ

1
(t2 + α2)m

dt

= 1
2(m − 1)α2

t

(t2 + α2)m−1 + 2m − 3
2(m − 1)α2

ˆ
1

(t2 + α2)m−1 dt.

Using this formula recursively reduces the integral to the integral
ˆ

1
t2 + α2 dt = 1

α
tan−1

(
t

α

)
+ C.

4.65 Example: partial fractions for various rational functions

1. Calculate the integral
ˆ

x6

x2 + 1
dx.

Solution The integrand x6

x2 + 1
is an improper rational function. By long division, we

have
x6

x2 + 1
= (x4 − x2 + 1) + −1

x2 + 1
.

The denominator x2 + 1 is an irreducible quadratic polynomial, so the term −1
x2 + 1

is
in the form of partial fraction already. Hence,

ˆ
x6

x2 + 1
dx =

ˆ [
(x4 − x2 + 1) + −1

x2 + 1

]
dx

=
ˆ

(x4 − x2 + 1) dx −
ˆ

1
x2 + 1

dx

= 1
5 x5 − 1

3 x3 + x − tan−1 x = C.
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2. Calculate the integral
ˆ

2x2 + 1
(x + 1)(x − 1)3 dx.

Solution We express the proper rational integrand as its partial fraction decomposition:

2x2 + 1
(x + 1)(x − 1)3 = A1

x + 1
+ B1

x − 1
+ B2

(x − 1)2 + B3

(x − 1)3 .

By clearing the denominators, we get

2x2 + 1 = A1(x − 1)3 + B1(x + 1)(x − 1)2 + B2(x + 1)(x − 1) + B3(x + 1).

So,
x = −1 : 3 = A1 · (−2)3 =⇒ A1 = − 3

8 ;
x = 1 : 3 = B3 · 2 =⇒ B3 = 3

2 ;
differentiating then x = 1 : 4 = B2 · 2 + B3 =⇒ B2 = 5

4 ;
coefficients of x3 : 0 = A1 + B1 =⇒ B1 = 3

8 .

Thus, we have the partial fraction decomposition:

2x2 + 1
(x + 1)(x − 1)3 = − 3

8 · 1
x + 1

+ 3
8 · 1

x − 1
+ 5

4 · 1
(x − 1)2 + 3

2 · 1
(x − 1)3 .

Hence,
ˆ

2x2 + 1
(x + 1)(x − 1)3 dx

=
ˆ [

− 3
8 · 1

x + 1
+ 3

8 · 1
x − 1

+ 5
4 · 1

(x − 1)2 + 3
2 · 1

(x − 1)3

]
dx

= − 3
8 ln |x + 1| + 3

8 ln |x − 1| − 5
4 · 1

x − 1
− 3

4 · 1
(x − 1)2 + C.

3. Calculate the integral
ˆ

x

x3 + 1
dx.

Solution We express the proper rational integrand as its partial fraction decomposition:

x

x3 + 1
= x

(x + 1)(x2 − x + 1)
= A1

x + 1
+ B1x + C1

x2 − x + 1
.

By clearing the denominators, we get

x = A1(x2 − x + 1) + (B1x + C1)(x + 1).

So,
x = −1 : −1 = A1 · 3 =⇒ A1 = − 1

3 ;
x = 0 : 0 = A1 + C1 =⇒ C1 = 1

3 ;
coefficients of x2 : 0 = A1 + B1 =⇒ B1 = 1

3 .
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Thus, we have the partial fraction decomposition:

x

x3 + 1
= − 1

3 · 1
x + 1

+
1
3 x + 1

3
x2 − x + 1

.

Note that (x2 − x + 1)′ = 2x − 1, so we further write the integrand as

x

x3 + 1
= − 1

3 · 1
x + 1

+
1
6 (2x − 1) + 1

2
x2 − x + 1

.

Hence,
ˆ

x

x3 + 1
dx

=
ˆ [

− 1
3 · 1

x + 1
+

1
6 (2x − 1) + 1

2
x2 − x + 1

]
dx

= − 1
3 ln |x + 1| + 1

6 ln(x2 − x + 1) + 1
2

ˆ
dx

x2 − x + 1
.

The last integral can be integrated as
ˆ

dx

x2 − x + 1
=
ˆ

dx

(x − 1
2 )2 + 3

4
completing square

=
ˆ √

3
4 sec2 t dt

3
4 sec2 t

x − 1 =
√

3
4 tan t

=
ˆ √

4
3 dt

=
√

4
3 t + C =

√
4
3 tan−1

√
4
3 (x − 1) + C.

Therefore,
ˆ

x

x3 + 1
dx = − 1

3 ln |x + 1| + 1
6 ln(x2 − x + 1) + 1√

3 tan−1 2x − 1√
3

+ C.

4. Calculate the integral
ˆ

x2 + 1
x4 + 1

dx.

Solution The denominator x4 +1 can be factored as a product of irreducible quadratic
factors:

x4 + 1 = (x4 + 2x2) + 1 − 2x2

= (x2 + 1)2 − (
√

2x)2

= (x2 −
√

2x + 1)(x2 +
√

2x + 1).

Thus, we can express the proper rational integrand as its partial fraction decomposition:

x2 + 1
x4 + 1

= A1x + B1

x2 −
√

2x + 1
+ A2x + B2

x2 +
√

2x + 1
.
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By clearing the denominators, we get

x2 + 1 = (A1x + B1)(x2 +
√

2x + 1) + (A2x + B2)(x2 −
√

2x + 1).

So,
x = 0 : 1 = B1 + B2;
coefficients of x3 : 0 = A1 + A2;
coefficients of x : 0 = A1 +

√
2B1 + A2 −

√
2B2;

coefficients of x2 : 1 = B1 +
√

2A1 + B2 −
√

2A2.

Solving the system gives

A1 = 0, A2 = 0, B1 = 1
2 , B2 = 1

2 .

Thus, we have the partial fraction decomposition:

x2 + 1
x4 + 1

=
1
2

x2 −
√

2x + 1
+

1
2

x2 +
√

2x + 1
.

Since ˆ
dx

x2 −
√

2x + 1
=
ˆ

dx

(x − 1√
2 )2 + 1

2
completing square

=
ˆ 1√

2 sec2 t dt

1
2 sec2 t

x − 1√
2 = 1√

2 tan t

=
ˆ √

2 dt

=
√

2t + C =
√

2 tan−1(
√

2x − 1) + C,

similarly, ˆ
dx

x2 −
√

2x + 1
=

√
2 tan−1(

√
2x + 1) + C,

Therefore,
ˆ

x2 + 1
x4 + 1

dx = 1√
2 tan−1(

√
2x − 1) + 1√

2 tan−1(
√

2x + 1) + C.

4.66 MATLAB: partial fractions for rational functions

For integrating rational functions, one important step is to perform the partial fraction
decomposition for the rational functions. In MATLAB, the partial fraction decomposition
can be executed by using the command partfrac. The following MATLAB code shows how

to perform the partial fraction decomposition for the rational functions 2x2 + 1
(x + 1)(x − 1)3 and
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x

x3 + 1
, respectively.

>> syms x
>> f(x) = (2*x^2 + 1) /((x + 1)*(x - 1) ^3);
>> partfrac (f(x),x)

ans =

3/(8*( x - 1)) - 3/(8*( x + 1)) + 5/(4*( x - 1) ^2) + 3/(2*( x - ...
1) ^3)

>> g(x) = x/(x^3 + 1);
>> partfrac (g(x),x)

ans =

(x/3 + 1/3) /(x^2 - x + 1) - 1/(3*( x + 1))

Based on the above results of the partial fraction decomposition, the integrals of´ 2x2+1
(x+1)(x−1)3 dx and

´
x

x3+1 dx can be solved by utilizing some integration methods such
as the substitution method.

4.7 Numerical Approximation of Integrals

4.67 Example: numerical integration

Consider the integral
ˆ 1

0
ex2

dx.

We know that there is a function F (x) whose derivative is ex2 and the integral above equals
F (1) − F (0). However, there is no explicit expression of F (x) in terms of known functions
such as polynomials, trigonometric functions and their inverses, and transcendental functions
and their inverses. We can use the definition of definite integrals to approximate the integral.

Recall the definition of definite integrals. Let f(x) = ex2 . Divide the interval [0, 1] into n
equal subintervals:

x0 = 0, x1 = 1
n

, . . . , xn−1 = n − 1
n

, xn = n

n
= 1.

To approximate the integral numerically, one can use the Riemann sum of left end points:
ˆ 1

0
ex2

dx ≈ Ln = [f(x0) + f(x1) + · · · + f(xn−1)] · 1
n

,
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or the Riemann sum of right end points:
ˆ 1

0
ex2

dx ≈ Rn = [f(x1) + f(x2) + · · · + f(xn)] · 1
n

.

Or, one can use the Riemann sum of middle points. In fact, if we let

x∗
1 = x0 + x1

2
= 1

2n
, x∗

2 = x1 + x2

2
= 3

2n
, . . . , x∗

n = xn−1 + xn

2
= 2n − 1

2n

be the middle points of each subinterval, then the Riemann sum of middle points is

Mn = [f(x∗
1) + f(x∗

2) + · · · + f(x∗
n)] · 1

n
.

For instance, if one takes n = 10, the approximation gives:
ˆ 1

0
ex2

dx ≈ M10 =
[
f( 1

20 ) + f( 3
20 ) + · · · + f( 19

20 )
]

· 1
10

=
(
e0.0025 + e0.0225 + · · · + e0.9025) · 0.1

≈ 1.460393.

Or one can approximate the region under the graph of the function f on [xi−1, xi] by a
trapezoidal region, equivalently, the average of Riemann sums of left end points and right
end points:

Tn = Ln + Rn

2
= 1

2n
[f(x0) + 2f(x1) + · · · + 2f(xn−1) + f(xn)] .

4.68 Method: numerical integration

Let f be integrable function over [a, b]. Divide the interval [a, b] into n equal subintervals

x0 = a, x1 = a + b − a

n
, . . . , xn−1 = a + (n − 1)(b − a)

n
, xn = b.

• The left point rule is the Riemann sum
of left end points of f on [a, b]. The re-
gion under the graph of the function f on
[xi−1, xi] is approximated by a rectangle.
ˆ b

a

f(x) dx ≈ Ln

= [f(x0) + f(x1) + · · · + f(xn−1)] · b − a

n
.

x

y

x0 x1 xi−1 xi xn

left point rule
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• The right point rule is the Riemann sum
of right end points of f on [a, b]. The re-
gion under the graph of the function f on
[xi−1, xi] is approximated by a rectangle.
ˆ b

a

f(x) dx ≈ Rn

= [f(x1) + f(x2) + · · · + f(xn)] · b − a

n
.

x

y

x0 x1 xi−1 xi xn

right point rule

• The trapezoidal rule is the average of
the Riemann sums of left end points and
right end points. The region under the
graph of the function f on [xi−1, xi] is ap-
proximated by a trapezoid.
ˆ b

a

f(x) dx ≈ Tn

= [f(x0) + 2f(x1) + · · · + 2f(xn−1) + f(xn)] · b − a

2n
.

x

y

x0 x1 xi−1 xi xn

trapezoidal rule

• The midpoint rule is the Riemann sum
of middle points of f on [a, b]. The re-
gion under the graph of the function f on
[xi−1, xi] is approximated by a rectangle.
ˆ b

a

f(x) dx ≈ Mn

= [f(x∗
1) + f(x∗

2) + · · · + f(x∗
n)] · b − a

n
,

where x∗
i = xi−1 + xi

2
.

x

y

x0 x1 xi−1
x̄i

xi xn

midpoint rule

4.69 Example: various numerical integrations and their errors

We use various rules to estimate the integral

I =
ˆ 1

0

dx

1 + x2 .

Take n = 4. The partition gives four subintervals

[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1].
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Each subinterval has length 0.25. The values at the partition points are

y0 = 1.000000, y1 = 0.941176, y2 = 0.800000,

y3 = 0.640000, y4 = 0.500000.

Then we get the approximate values of the integral I according to various rules

R4 = 0.25 × (0.941176 + 0.800000 + 0.640000 + 0.500000) ≈ 0.720294,

L4 = 0.25 × (1.000000 + 0.941176 + 0.800000 + 0.640000) ≈ 0.845294,

T4 = L4 + R4

2
= 0.25

2
× (1.000000 + 2 × 0.941176 + 2 × 0.800000

+2 × 0.640000 + 0.500000)

≈ 0.782794.

The middle points are
0.125 < 0.375 < 0.625 < 0.875,

and the values at the middle points are

ȳ1 = 0.984615, ȳ2 = 0.876712, ȳ3 = 0.719101, ȳ4 = 0.566372.

Then the midpoint rule gives

M4 = 0.25 × (0.984615 + 0.876712 + 0.719101 + 0.566372) ≈ 0.786700.

If we double the number of partition points by taking n = 8, then the length of each
subinterval is 0.125, and we have

i xi yi x̄i ȳi

0 0 1.000000
1 0.125 0.984615 0.0625 0.996109
2 0.250 0.941176 0.1875 0.966038
3 0.325 0.876712 0.3125 0.911032
4 0.500 0.800000 0.4375 0.839344
5 0.625 0.719101 0.5625 0.759644
6 0.750 0.640000 0.6875 0.679045
7 0.875 0.566372 0.8125 0.602353
8 1.000 0.500000 0.9375 0.532225

Then we get the approximations

L8 ≈ 0.815997, R8 ≈ 0.753497, T8 ≈ 0.784747, M8 ≈ 0.785721.

We actually know the exact value of the integral

I =
ˆ 1

0

dx

1 + x2 = π
4 ≈ 0.785398.
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We may compare the approximate values with the actual value in the following table.

error n = 4 n = 8
I − Ln −0.059896 −0.030599
I − Rn 0.065104 0.031901
I − Tn 0.002604 0.000651
I − Mn −0.001302 −0.000323

4.70 Theorem: error bounds of midpoint and trapezoidal rules

Suppose f ′′ is continuous and |f ′′(x)| ≤ K on [a, b]. Then∣∣∣∣∣
ˆ b

a

f(x) dx − Tn

∣∣∣∣∣ ≤ K(b − a)3

12n2 ,

∣∣∣∣∣
ˆ b

a

f(x) dx − Mn

∣∣∣∣∣ ≤ K(b − a)3

24n2 .

4.71 Remark: error bounds

We can make the following observations from the theorem.

1. Both midpoint rule and trapezoidal rule produce better approximation as n increases.

2. Generally, the error of the midpoint rule is about half of the error of the trapezoidal
rule.

4.72 Example: error bound of trapezoidal rule

Consider the integral ˆ 1

0
2 cos x dx.

How large n should we take so that trapezoidal rule is accurate within 0.0001?
Since |(2 cos x)′′| = | − 2 cos x| ≤ 2, from the error bound, we know that the number n

should satisfy
2

12n2 < 0.0001,

so that n >
1√

0.0006
≈ 40.8.

Hence, if we take an integer n ≥ 41, then the trapezoidal rule will yield a numerical value
that approximates the given integral with error smaller than 0.0001.

4.73 Method: Simpson’s Rule

Let f be integrable function over [a, b]. For an even integer n, divide the interval [a, b] into
n equal subintervals

x0 = a, x1 = a + b − a

n
, . . . , xn−1 = a + (n − 1)(b − a)

n
, xn = b.
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Simpson’s rule is the approximation to the integral
ˆ b

a

f(x) dx:

ˆ b

a

f(x) dx ≈ Sn = b − a

3n
· [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+2f(xn−2) + 4f(xn−1) + f(xn)] .

Justification:

(1) Let us first derive a formula for the area under a parabola of equation y = ax2 + bx + c
passing through the three points (−h, y0), (0, y1), and (h, y2).

O
x

y

−h

(−h, y0)

(0, y1)

h

(h, y2)
y = ax2 + bx + c

The area is

A =
ˆ h

−h

(ax2 + bx + c) dx

=
[ 1

3 ax3 + 1
2 bx2 + cx

]h
x=−h

= 2
3 ah3 + 2ch = 1

3 h(2ah2 + 6c).

(2) Since the parabola passes through (−h, y0), (0, y1), and (h, y2), we have

y0 = a(−h)2 + b(−h) + c,

y1 = c,

y2 = ah2 + bh + c.

It is easy to see that

y0 + 4y1 + y2 =
[
a(−h)2 + b(−h) + c

]
+ 4c + (ah2 + bh + c) = 2ah2 + 6c,

which is the same the area under the parabola, so

A = 1
3 h(y0 + 4y1 + y2).

This formula shows that the area under the parabola depends only on the values of y0, y1, y2,
and h. It is clear that shifting this parabola horizontally does not change the area under it.

(3) For an integral
ˆ b

a

f(x) dx, we divide [a, b] into an even number n of subintervals of

equal length ∆x = b − a

n
by using n + 1 points

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn = a + n∆x = b.

For each consecutive pair of subintervals, we apply the area under the parabola. Adding all
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the areas gives Simpson’s rule:
ˆ b

a

f(x) dx ≈ 1
3 h(y0 + 4y1 + y2) + 1

3 h(y2 + 4y3 + y4)

+ · · · + 1
3 h(yn−2 + 4yn−1 + yn)

= 1
3 h(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · · + 2yn−2 + 4yn−1 + yn)

= Sn.

4.74 Theorem: error bound of Simpson’s rule

Suppose f (4) is continuous and
∣∣f (4)(x)

∣∣ ≤ K on [a, b]. Then∣∣∣∣∣
ˆ b

a

f(x) dx − Sn

∣∣∣∣∣ ≤ K(b − a)5

180n4 .

4.75 Remark: Simpson’s rule

1. In Simpson’s rule, the integrand f is approximated by a piecewise quadratic function.
In comparison, in the left point rule, the right point rule, the trapezoidal rule, or the
midpoint rule, the function f is approximated by a piecewise linear function.

2. Simpson’s rule is related to other rules by

S2n = 1
3 Tn + 2

3 Mn.

3. The error of Simpson’s rule is smaller than the error in the trapezoidal rule. In other
words, Simpson’s rule generally yields a better result in evaluating integrals.

4.76 Example: error bound of Simpson’s rule

Consider the integral ˆ 1

0
2 cos x dx.

How large n should we take so that Simpson’s rule is accurate to within 0.0001?
Thus |(2 cos x)(4)| = |2 cos x| ≤ 2. The number n should satisfy

2
180n4 < 0.0001,

so that n >
1

4
√

0.009
≈ 3.25.

Hence, if we take an integer n ≥ 4, then the Simpson’s rule will yield a numerical value
that approximates the given integral with error smaller than 0.0001.
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4.77 MATLAB: left point rule

The left-point rule of approximating an integral can be executed in MATLAB via program-

ming. In particular, the following MATLAB code shows the calculation of
ˆ 1

0

dx

1 + x2 using
the left-point rule.

Ln = 0;
a = 0; % interval start
b = 1; % interval end
n = 4; % number of subintervals
itv = (b - a)/n; % subinterval length

x = linspace (a,b,n + 1); % n subintervals , n + 1 points
y = 1./(1 + x.^2);

for k = 1:n % y value index
Ln = Ln + itv*y(k);

end

In the MATLAB code above, the interval [0, 1] is partitioned into 4 subintervals. After
executing the above MATLAB code, the result can be seen by typing Ln in the command
window, as shown in the following.

>> Ln

Ln =

0.8453

4.78 MATLAB: right point rule

The right-point rule of approximating an integral can be executed in MATLAB via pro-

gramming. In particular, the following MATLAB code shows the calculation of
ˆ 1

0

dx

1 + x2

using the right-point rule.

Rn = 0;
a = 0; % interval start
b = 1; % interval end
n = 4; % number of subintervals
itv = (b - a)/n; % subinterval length

x = linspace (a,b,n + 1); % n subintervals , n + 1 points



4.7 Numerical Approximation of Integrals 243

y = 1./(1 + x.^2);

for k = 1:n % y value index
Rn = Rn + itv*y(k+1);

end

In the MATLAB code above, the interval [0, 1] is partitioned into 4 subintervals. After
executing the above MATLAB code, the result can be seen by typing Rn in the command
window, as shown in the following.

>> Rn

Rn =

0.7203

4.79 MATLAB: midpoint rule

The midpoint rule of approximating an integral can be executed in MATLAB via program-

ming. In particular, the following MATLAB code shows the calculation of
ˆ 1

0

dx

1 + x2 using
the midpoint rule.

Mn = 0;
a = 0; % interval start
b = 1; % interval end
n = 4; % number of subintervals
itv = (b - a)/n; % subinterval length

x = linspace (a,b,n + 1); % n subintervals , n + 1 points

for k = 1:n % y value index
x_m = (x(k) + x(k + 1))/2; % midpoint
y_m = 1/(1 + x_m ^2); % y value at midpoint
Mn = Mn + itv*y_m;

end

In the MATLAB code above, the interval [0, 1] is partitioned into 4 subintervals. After
executing the above MATLAB code, the result can be seen by typing Mn in the command
window, as shown in the following.

>> Mn

Mn =
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0.7867

4.80 MATLAB: trapezoidal rule

In MATLAB, the command trapz can be used to compute the approximation of an integral
using the trapezoidal rule. The following MATLAB code shows an example of how to use

trapz to approximate
ˆ 1

0

dx

1 + x2 .

>> x = 0:0.25:1; % 4 subintervals with length 0.25 each
>> y = 1./(1 + x.^2);
>> T4 = trapz (x,y)

T4 =

0.7828

In the MATLAB code above, the interval [0, 1] is partitioned into 4 subintervals of equal
length 0.25. Note that if there is only one input in trapz, i.e., the command is written as
trapz(y), then the length of the subinterval (or the gap between two neighbouring points)
will be set to the default value 1.

4.81 MATLAB: Simpson’s rule

The following MATLAB code shows the calculation of
ˆ 1

0

dx

1 + x2 using Simpson’s rule.

Sn = 0;
a = 0; % interval start
b = 1; % interval end
n = 4; % even number of subintervals
itv = (b - a)/n; % subinterval length

x = linspace (a,b,n + 1); % n subintervals , n + 1 points
y = 1./(1 + x.^2);

for k = 1:2:(n -1) % y value index
sum_term = y(k) + 4*y(k + 1) + y(k + 2);
Sn = Sn + itv* sum_term /3;

end

In the MATLAB code above, the interval [0, 1] is partitioned into 4 subintervals. After
executing the above MATLAB code, the result can be seen by typing Sn in the command
window, as shown in the following.
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>> Sn

Sn =

0.7854

4.82 Engineering Example: error function

The error function is an important function in statistics, applied mathematics, physics, etc.
For example, it is useful in determining the bit error rate (BER) of a digital communication
system. The error function is defined as

erf(x) = 2√
π

ˆ x

0
e−t2

dt.

Use the left point rule, the right point rule, the midpoint rule, the trapezoidal rule and the
Simpson’s rule, respectively, to approximate erf(3).

First, erf(3) can be written as

erf(3) = 2√
π

ˆ 3

0
e−t2

dt.

Take n = 10. The partition gives ten subintervals as follows:

[0, 0.3], [0.3, 0.6], [0.6, 0.9], [0.9, 1.2], [1.2, 1.5],
[1.5, 1.8], [1.8, 2.1], [2.1, 2.4], [2.4, 2.7], [2.7, 3].

Each subinterval has length 0.3. Let y = f(t) = 2√
π

e−t2 . The values of y = f(t) at the
partition points are

y0 = 1.128379167095513, y1 = 1.031260909618963,

y2 = 0.787243431714287, y3 = 0.501968574240363,

y4 = 0.267344347003539, y5 = 0.118930289223629,

y6 = 0.044191723332011, y7 = 0.013715649999807,

y8 = 0.003555648680878, y9 = 0.000769924759855,

y10 = 0.000139253051947,

where yi denotes the value of y = f(t) at the ith partition point. Then we get the approximate
values of erf(3) according to various rules. In particular, by the left point rule, the right point
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rule, the trapezoidal rule and the Simpson’s rule, respectively, we have

L10 = 0.3
9∑

i=0
yi = 1.169207899700653,

R10 = 0.3
10∑

i=1
yi = 0.830735925487584,

T10 = 0.3
2

9∑
i=0

(yi + yi+1) = 0.999971912594118,

S10 = 0.3
3

(y0 + 4y1 + 2y2 + 4y3 + · · · + 2y8 + 4y9 + y10)

= 0.999977011297936.

Before using the midpoint rule to approximate erf(3), we first need to get the middle points
of each interval:

x∗
1 = 0.15, x∗

2 = 0.45, x∗
3 = 0.75, x∗

4 = 1.05, x∗
5 = 1.35,

x∗
6 = 1.65, x∗

7 = 1.95, x∗
8 = 2.25, x∗

9 = 2.55, x∗
10 = 2.85.

The corresponding values of y = f(t) at each middle point are

f (x∗
1) = 1.103274126650824, f (x∗

2) = 0.921532013012220,

f (x∗
3) = 0.642931069195207, f (x∗

4) = 0.374666956970448,

f (x∗
5) = 0.182369986539023, f (x∗

6) = 0.074146103374068,

f (x∗
7) = 0.025179684949841, f (x∗

8) = 0.007142319022018,

f (x∗
9) = 0.001692213637679, f (x∗

10) = 0.000334886877468.

The approximation of erf(3) by the midpoint rule is thus

M10 = 0.3
10∑

i=1
f (x∗

i ) = 0.999980808068639.

Actually, the exact value of erf(3) can be calculated by MATLAB using command erf, as
shown below:

>> y = erf (3)

y =

0.999977909503001
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We may compare the approximate values with the actual value in the following table.

error n = 10
y − Ln −0.169229990197652
y − Rn 0.169241984015417
y − Tn 5.996908883365570 × 10−6

y − Sn 8.982050653250084 × 10−7

y − Mn −2.898565637621253 × 10−6

4.8 Improper Integrals

4.83 Example: improper integrals over unbounded intervals

Consider the area of the graph of the function f(x) = 1
x2 above the x-axis over the interval

[1, +∞). Since the interval [1, +∞) is unbounded, we can consider the area over a finite
interval [1, T ], and let T get larger and larger to approximate the required area. We need to
calculate ˆ T

1

1
x2 dx =

(
− 1

x

)∣∣∣∣T
1

= 1 − 1
T

.

Thus the required area is

lim
T →+∞

ˆ T

1

1
x2 dx = lim

T →+∞

(
1 − 1

T

)
= 1.

We can use the following notation to denote this area, called an improper integral
ˆ +∞

1

1
x2 dx = lim

T →+∞

ˆ T

1

1
x2 dx.

If we want to know the area of the graph of the function f(x) = 1
x

above the x-axis over
the interval [1, +∞), we need to calculate the improper integral

ˆ +∞

1

1
x

dx = lim
T →+∞

ˆ T

1

1
x

dx = lim
T →+∞

(ln T − 1) = +∞.

Thus the required area is infinite.

Comparing these two improper integrals, the former is a finite number and the latter is
infinite. Since the improper integrals are in fact the limits of some integrals, we call the
former convergent and the latter divergent.
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4.84 Definition: improper integrals over infinite intervals

Suppose f is a function defined over an in-
terval [a, +∞) such that f is integrable over
[a, b] for any b > a. The improper integral
is defined as a limit of a definite integral as
follows:ˆ +∞

a

f(x) dx = lim
b→+∞

ˆ b

a

f(x) dx.
a b

x

y

We say the improper integral is convergent if the limit exists, otherwise divergent.

Similarly, we define ˆ a

−∞
f(x) dx = lim

b→−∞

ˆ a

b

f(x) dx.

If
ˆ ∞

a

f(x) dx and
ˆ a

−∞
f(x) dx are convergent, then we define

ˆ ∞

−∞
f(x) dx =

ˆ a

−∞
f(x) dx +

ˆ ∞

a

f(x) dx,

where a is any fixed real number.

4.85 Example: improper integral over unbounded interval

Consider the improper integral
ˆ 0

−∞
xex dx.

x

y

−1

−1

b

y = xex

O

By definition, we first calculate the definite integral
ˆ 0

b

xex dx on a finite interval. From
integration by parts, we have

ˆ 0

b

xex dx =
ˆ 0

b

x d(ex) = xex|0b −
ˆ 0

b

ex dx = −beb − ex|0b = −beb − 1 + eb.

Thus, ˆ 0

−∞
xex dx = lim

b→−∞
(−beb − 1 + eb) = −1.
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Hence this improper integral is convergent to −1.

4.86 Example: divergent improper integral over unbounded interval

Consider the improper integral
ˆ 0

−∞
cos x dx.

x

y

xb

1

−1

b

y = cos x

O

By definition, we first calculate the definite integral
ˆ 0

b

cos x dx on a finite interval. From
integration by parts, we have

ˆ 0

b

cos x dx = sin x|0b = − sin b.

Thus, ˆ 0

−∞
cos x dx = − lim

b→−∞
sin b,

that is, the given improper integral is divergent.

4.87 Example: convergence/divergence of improper integral

Consider the improper integral
ˆ +∞

1

1
xp

dx (p > 0, p ̸= 1).

x

y

b

y = 1
xp

(p > 1)

x
1

1

O
x

y

b

y = 1
xp

(0 < p < 1)

x
1

1

b

y = cos x

O

By definition, we first calculate the definite integral
ˆ b

1

1
xp

dx on a finite interval:

ˆ b

1

1
xp

dx = x1−p

1 − p

∣∣∣∣b
1

= b1−p

1 − p
− 1

1 − p
.
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Thus,
ˆ +∞

1

1
xp

dx = lim
b→+∞

(
b1−p

1 − p
− 1

1 − p

)
= 1

p − 1
, when p > 1;

ˆ +∞

1

1
xp

dx = lim
b→+∞

(
b1−p

1 − p
− 1

1 − p

)
= ∞, when p < 1.

So, when p > 1, the given improper integral is convergent; when p < 1, it is divergent.

4.88 Definition: improper integrals with unbounded integrands

Suppose f is a function defined over an in-
terval [a, b) such that f is integrable over [a, c]
for any c with a < c < b, and suppose f is
unbounded in [c, b). We define the improper
integral as a limit of a definite integral as fol-
lows:

ˆ b

a

f(x) dx = lim
c→b

ˆ c

a

f(x) dx.
ba c x

y

We say the improper integral is convergent if the limit exists, otherwise divergent.

Similarly, if f is unbounded near a, we define
ˆ b

a

f(x) dx = lim
c→a

ˆ b

c

f(x) dx.

If f is unbounded near a and b, and if
ˆ c

a

f(x) dx and
ˆ b

c

f(x) dx are convergent, then we
define ˆ b

a

f(x) dx =
ˆ c

a

f(x) dx +
ˆ b

c

f(x) dx,

where c is any fixed real number with a < c < b.

4.89 Example: improper integral with unbounded integrand

Consider the improper integral
ˆ 1

0
ln x dx. The integrand ln x becomes unbounded near

x = 0.
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x

y

x

y

c 1

−1
y = xex

O

By definition, we first calculate the definite integral
ˆ 1

c

ln x dx on [c, 1]. From integration
by parts, we have

ˆ 1

c

ln x dx = x ln x|1c −
ˆ 1

c

1 dx = −c ln c − x|1c = −c ln c − 1 + c.

Thus, ˆ 1

0
ln x dx = lim

c→0
(−c ln c − 1 + c) = −1.

Here we used l’Hospital’s Rule and had lim
c→0

(−c ln c) = 0. Hence, the given improper integral
is convergent to −1.

4.90 Example: convergence/divergence of improper integrals

Consider the improper integral
ˆ 1

0
xp dx (p < 0, p ̸= −1). The integrand xp becomes

unbounded near x = 0.

x

yy

c

y = xp (p < −1)

x
1

1

O
x

yy

c

y = xp (−1 < p < 0)

x
1

1

O
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By definition, we first calculate the definite integral
ˆ 1

c

xp dx on [c, 1]:

ˆ 1

c

xp dx = xp+1

p + 1

∣∣∣∣1
c

= 1
p + 1

− cp+1

p + 1
.

Thus,
ˆ 1

0
xp dx = lim

c→0

(
1

p + 1
− cp+1

p + 1

)
= 1

p + 1
, when −1 < p < 0;

ˆ 1

0
xp dx = lim

c→0

(
1

p + 1
− cp+1

p + 1

)
= +∞, when p < −1.

So, when −1 < p < 0, the given improper integral is convergent; when p < −1, it is
divergent.

4.91 Pitfall: improper integrals

Consider the integral ˆ 1

−1

1
x

dx.

If one mistakenly thought this was a definite integral, he would have calculated as follows
ˆ 1

−1

1
x

dx = ln |x|
∣∣1
−1 = ln 1 − ln 1 = 0.

This is incorrect since the integral is an improper integral, for 1
x

being unbounded near
0 ∈ [−1, 1].

We could write a sum of two improper integrals
ˆ 1

−1

1
x

dx =
ˆ 0

−1

1
x

dx +
ˆ 1

0

1
x

dx.

One may naively calculate the improper integral as limits of the following definite integrals,
for b > 0,

ˆ −b

−1

1
x

dx +
ˆ 1

b

1
x

dx = ln |x|
∣∣−b

−1 + ln |x|
∣∣1
b

= ln b − ln 1 + ln 1 − ln b = 0.

So, one might conclude that the improper integral is zero. In fact, this is a wrong answer
again.

The correct way is to apply the definition. For each of the two improper integrals,
ˆ 0

−1

1
x

dx and
ˆ 1

0

1
x

dx,
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one should first evaluate the corresponding definite integral. Indeed, for −1 < a < 0 and
0 < b < 1, one gets

ˆ a

−1

1
x

dx +
ˆ 1

b

1
x

dx = ln |x|
∣∣∣a
−1

+ ln |x|
∣∣∣1
b

= ln |a| − ln 1 + ln 1 − ln b.

Clearly when a → 0 and b → 0, the expression above diverges. Therefore, the original

improper integral
ˆ 1

−1

1
x

dx is divergent.

Similar results also hold for other types of improper integrals.

4.92 Theorem: Comparison Test for improper integrals

Let f and g be continuous over [a, +∞) and 0 ≤ f(x) ≤ g(x). Then

1. If
ˆ +∞

a

g(x) dx converges, then
ˆ +∞

a

f(x) dx converges.

2. If
ˆ +∞

a

f(x) dx diverges, then
ˆ +∞

a

g(x) dx diverges.

Similar results hold for other types of improper integrals.

4.93 Example: Comparison Test for convergence

Consider the improper integral
ˆ +∞

1

1 + sin x

x2 dx.

Since we have the inequality

1 + sin x

x2 ≤ 2
x2 ,

and we know the improper integralˆ +∞

1

2
x2 dx converges, the improper integral

ˆ +∞

1

1 + sin x

x2 dx converges. x

y

y = 2
x2

y = 1 + sin x

x2
x

1

1

2

O

4.94 MATLAB: improper integrals over infinite intervals

In MATLAB, the commands integral, quadgk and int support calculating improper
integrals over infinite intervals, i.e., the input which specifies the interval of the integral can

be -Inf or Inf. The following example shows the calculation of
ˆ 0

−∞
xex dx using integral,

quadgk and int, respectively.



254 Integration

>> integral_ans = integral (@(x)x.* exp(x),-Inf ,0)

integral_ans =

-1

>> quadgk_ans = quadgk (@(x)x.* exp(x),-Inf ,0)

quadgk_ans =

-1.0000

>> syms t
>> f(t) = t*exp(t);
>> int_ans = int(f(t),-Inf ,0)

int_ans =

-1

Note that the first input of the commands integral and quadgk should be a function handle,
and the first input of the command int is a symbolic expression.

4.95 MATLAB: improper integral with unbounded integrand

For convergent improper integrals with unbounded integrands, we can use the commands
integral, quadgk and int to calculate the results. The following example shows the calcu-

lation of
ˆ 1

0
x−0.5 dx in MATLAB.

>> integral_ans = integral (@(x)x.^( -0.5) ,0,1)

integral_ans =

2.0000

>> quadgk_ans = quadgk (@(x)x.^( -0.5) ,0,1)

quadgk_ans =

2.0000

>> syms t
>> f(t) = t^( -0.5);
>> int_ans = int(f(t) ,0,1)
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int_ans =

2

However, for divergent improper integrals with unbounded integrands, we need to use the

command int. The following example shows the calculations of
ˆ 1

−1

1
x

dx and
ˆ 1

0
x−2 dx

using int, respectively.

>> syms t
>> f(t) = 1/t;
>> int_ans = int(f(t) ,-1,1)

int_ans =

NaN

>> f(t) = t^( -2);
>> int_ans = int(f(t) ,0,1)

int_ans =

Inf

It shows that the result of
ˆ 1

−1

1
x

dx is NaN, i.e., Not-a-Number, which means
ˆ 1

−1

1
x

dx is

divergent. The result of
ˆ 1

0
x−2 dx is Inf, i.e., ∞, which also means

ˆ 1

0
x−2 dx is divergent.

4.96 Engineering Example: Fourier transform

Mathematically, the Fourier transform f̂(ξ) (ξ ∈ R) of an integrable function f(x) is defined
as

f̂(ξ) =
ˆ ∞

−∞
f(x)e−2πixξ dx,

where f(x) is in the time domain, and f̂(ξ) is in the frequency domain.
The Fourier transform decomposes a function in the time domain into the frequency-

domain components which make it up. It allows us to analyze a signal in the time domain
from a different perspective, i.e., in the frequency domain. The Fourier transform has wide
applications in communication engineering, differentiation equation analysis area, quantum
mechanics, etc. For example, the Fourier transform is used to help with the deduction of
noise in a communication system. Moreover, the Fourier transform can facilitate the analysis
of partial differential equations.
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4.97 Engineering Example: Laplace transform

The Laplace transform takes a function of a real variable t (e.g., time) to a function of
a complex variable s (e.g., frequency). Mathematically, the Laplace transform f(s) of an
integrable function f(t) (ξ ∈ R+) is defined as follows

f̂(s) =
ˆ ∞

0
f(t)e−stdt,

where f(t) is in the time domain, and f(s) is in the frequency domain.
Similar to the Fourier transform, the Laplace transform provides an alternative way of

analyzing a signal in the time domain, i.e., in the frequency domain. The Laplace transform
has been widely used in engineering and physics. For example, the Laplace transform has
been used to analyze the linear time-invariant system in control theory by transforming the
convolution to a multiplication which is easier to solve due to the algebraic form. Another
important application of the Laplace transform is to solve partial differential equations, which
has been extensively used in mechanical engineering and electrical engineering. In particular,
the Laplace transform can turn a linear differential equation to an algebraic equation which
can be easily solved by the formal rules of algebra, and the original linear differential equation
can then be solved using the inverse Laplace transform.

4.98 Engineering Example: unit-step function - integral form

In mathematics, the unit-step function can
defined in the following:

H(x) =
{

1, if x ≥ 0;
0, if x < 0. x

y

y = H(x)

−1 1

−1

1

O

Alternatively, H(x) can also be defined as an integral of the Dirac delta function δ(s),
which is provided as follows:

H(x) =
ˆ x

−∞
δ(s) ds

where δ(s) is the Dirac delta function defined as

δ(s) =
{

x, if x ≤ 0;
sin x, if x > 0,

and
ˆ ∞

−∞
δ(s) ds = 1.

In communication theory, sum of the unit-step functions can be used for representations
of waveforms. Moreover, the unit-step response, which is the time behaviour of the output
of a general system when its input is a unit-step function, can be used to describe the
characteristics of a system and is thus widely used in electronic engineering and control
theory.
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4.99 Engineering Example: continuous-time convolution

In mathematics, the continuous-time convolution is defined as an improper function as
follows:

(f ⋆ g)(t) =
ˆ ∞

−∞
f(τ)g(t − τ) dτ.

The function produced by convolution, i.e., (f ⋆ g)(t), shows how the shape of one function
(e.g., f(t)) is modified by the other one (e.g., g(t)). The continuous-time convolution has
wide applications in probability, statistics, signal processing and many other engineering
areas. For example, the convolution is an important computation tool to characterize the
linear time invariant (LTI) systems.

4.100 Engineering Example: integrator - signal processing

The integrator is a device whose output signal is the time integral of its input signal. It is
an important part in many engineering and scientific applications, such as signal processing
circuits and mechanical engineering devices.

In signal processing area, block diagrams are commonly seen to illustrate the signal flow
paths. One example is shown below, where the quadrate block represents an integrator.

x(t)
ˆ

y(t)

Given that the input signal is x(t) and the output signal is y(t), then the integrator
represents the following integral:

y(t) =
ˆ t

−∞
x(τ) dτ.
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Summary

Definition: basic concepts

definite integral :
ˆ b

a

f(x) dx = lim
∆x→0

n∑
i=1

f(x∗
i )∆x

indefinite integral :
ˆ

f(x) dx = F (x) + C, where F ′(x) = f(x)

Theorem: properties of definite integrals

Let f and g be integrable functions over an interval I and let a < b < c be points in I.

1. If f and g are integrable over [a, b], then f + g is integrable over [a, b], and we have
ˆ b

a

[f(x) + g(x)] dx =
ˆ b

a

f(x) dx +
ˆ b

a

g(x) dx.

2. If f is integrable over [a, b], then kf(x) is integrable over [a, b], and we have
ˆ b

a

kf(x) dx = k

ˆ b

a

f(x) dx.

3. If f is integrable over [a, b] and [b, c], then f is integrable over [a, c], and we have
ˆ b

a

f(x) dx +
ˆ c

b

f(x) dx =
ˆ c

a

f(x) dx.

4.
ˆ a

a

f(x) dx = 0.

5. If f and g are both integrable over [a, b], and f(x) ≤ g(x), then
ˆ b

a

f(x) dx ≤
ˆ b

a

g(x) dx.

6. ∣∣∣∣∣
ˆ b

a

f(x) dx

∣∣∣∣∣ ≤
ˆ b

a

|f(x)| dx.

7. (Mean Value Theorem for Integrals) If f is continuous on [a, b], then there is c ∈
[a, b] such that ˆ b

a

f(x) dx = f(c)(b − a).
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Theorem: linearity of indefinite integral

1.
ˆ

[f(x) + g(x)] dx =
ˆ

f(x) dx +
ˆ

g(x) dx.

2.
ˆ

kf(x) dx = k

ˆ
f(x) dx, where k is a constant.

Theorem: Fundamental Theorem of Calculus

Let f be a continuous function on [a, b].

1. Then the function
A(x) =

ˆ x

a

f(t) dt

is continuous on [a, b], differentiable in (a, b), and A′(x) = f(x).

2. If F is a differentiable function [a, b] such that F ′(x) = f(x), then
ˆ b

a

f(x) dx = F (b) − F (a).

Theorem: Indefinite Integrals of Some Elementary Functions

1.
ˆ

k dx = kx + C

2.
ˆ

xµ dx = xµ+1

µ + 1
(µ ̸= −1)

3.
ˆ

dx

x
= ln |x| + C

4.
ˆ

dx

x2 + 1
= arctan x + C

5.
ˆ

dx√
1 − x2

= arcsin x + C

6.
ˆ

cos x dx = sin x + C

7.
ˆ

sin x dx = − cos x + C

8.
ˆ

ex dx = ex + C

9.
ˆ

ax dx = ax

ln a
+ C

10.
ˆ

dx

cos2 x
=
ˆ

sec2 x dx = tan x + C

11.
ˆ

dx

sin2 x
=
ˆ

csc2 x dx = − cot x + C

12.
ˆ

sec x tan x dx = sec x + C

13.
ˆ

csc x cot x dx = − csc x + C
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Theorem: substitution method

Theorem: for indefinite integral

Let u = g(x) be a differentiable function and f be a continuous function. Suppose
the range of g is contained in the domain of f . Then

ˆ
f
(
g(x)

)
· g′(x) dx =

ˆ
f(u) du.

Theorem: for definite integral

Let u = g(x), where g′(x) is continuous on [a, b], and let f be continuous on an
interval containing the range of g. Then

ˆ b

a

f
(
g(x)

)
· g′(x) dx =

ˆ g(b)

g(a)
f(u) du.

Theorem: integration by parts

Suppose u and v are differentiable functions of x. Then
ˆ

u(x) · v′(x) dx︸ ︷︷ ︸
dv

= u(x) · v(x) −
ˆ

v(x) · u′(x) dx︸ ︷︷ ︸
du

,

or ˆ
u dv = uv −

ˆ
v du.

Furthermore, for definite integral,
ˆ b

a

u(x) · v′(x) dx = [u(x) · v(x)]ba −
ˆ b

a

v(x) · u′(x) dx.

Method: numerical integration

Let f be integrable function over [a, b]. Divide the interval [a, b] into n equal subintervals

x0 = a, x1 = a + b − a

n
, . . . , xn−1 = a + (n − 1)(b − a)

n
, xn = b.

• The left point rule is the Riemann sum of left end points of f on [a, b]:
ˆ b

a

f(x) dx ≈ Ln = [f(x0) + f(x1) + · · · + f(xn−1)] · b − a

n
.
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• The right point rule is the Riemann sum of right end points of f on [a, b]:
ˆ b

a

f(x) dx ≈ Rn = [f(x1) + f(x2) + · · · + f(xn)] · b − a

n
.

• The trapezoidal rule is the average of Riemann sum of left end points and right end
points:

ˆ b

a

f(x) dx ≈ Tn = [f(x0) + 2f(x1) + · · · + 2f(xn−1) + f(xn)] · b − a

2n
.

The region under the graph of the function f on [xi−1, xi] is approximated by a trape-
zoid.

• The midpoint rule is the Riemann sum of middle points of f on [a, b]:
ˆ b

a

f(x) dx ≈ Mn = [f(x∗
1) + f(x∗

2) + · · · + f(x∗
n)] · b − a

n
,

where x∗
i = xi−1 + xi

2
.

• Simpson’s rule is the following approximation
ˆ b

a

f(x) dx ≈ Sn = b − a

3n
· [f(x0) + 4f(x1) + 2f(x2) + 4f(x3)

+ · · · + 2f(xn−2) + 4f(xn−1) + f(xn)] ,

where n is an even integer.

Theorem: error bounds of numerical integration

Theorem: error bounds of the midpoint and trapezoidal rules

Suppose f ′′ is continuous and |f ′′(x)| ≤ K on [a, b]. Then∣∣∣∣∣
ˆ b

a

f(x) dx − Tn

∣∣∣∣∣ ≤ K(b − a)3

12n2 ,∣∣∣∣∣
ˆ b

a

f(x) dx − Mn

∣∣∣∣∣ ≤ K(b − a)3

24n2 .
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Theorem: error bounds of Simpson’s rule

Suppose f (4) is continuous and
∣∣f (4)(x)

∣∣ ≤ K on [a, b]. Then∣∣∣∣∣
ˆ b

a

f(x) dx − Sn

∣∣∣∣∣ ≤ K(b − a)5

180n4 .

Definition: improper integrals

•
ˆ +∞

a

f(x) dx = lim
b→+∞

ˆ b

a

f(x) dx.

•
ˆ a

−∞
f(x) dx = lim

b→−∞

ˆ a

b

f(x) dx.

•
ˆ ∞

−∞
f(x) dx =

ˆ a

−∞
f(x) dx +

ˆ ∞

a

f(x) dx.

•
ˆ b

a

f(x) dx = lim
c→b

ˆ c

a

f(x) dx, if f is unbounded near b.

•
ˆ b

a

f(x) dx = lim
c→a

ˆ b

c

f(x) dx, if f is unbounded near a.

•
ˆ b

a

f(x) dx =
ˆ c

a

f(x) dx +
ˆ b

c

f(x) dx, if f is unbounded near a and b (c is any fixed

real number between a and b).

Theorem: Comparison Test for improper integrals

Let f and g be continuous over [a, +∞) and 0 ≤ f(x) ≤ g(x). Then

1. If
ˆ +∞

a

g(x) dx converges, then
ˆ +∞

a

f(x) dx converges.

2. If
ˆ +∞

a

f(x) dx diverges, then
ˆ +∞

a

g(x) dx diverges.

Similar results hold for other types of improper integrals.



5
CHAPTER

Applications of Integration

5.1 Areas of Regions Between Curves

5.1 Theorem: area of a region bounded by two curves

Let f and g be two continuous functions
with f(x) ≥ g(x) over the interval [a, b]. The
area of the region between the graphs of f
and g over [a, b] is

ˆ b

a

[f(x) − g(x)] dx.
x

y

x = a

x = b

y = f(x)

y = g(x)

5.2 Example: area bounded by two curves

Find the area of the closed region bounded by the graphs of the functions f(x) = 1
x2 + 1

and g(x) = 1
2 .

Solution We sketch the graphs of the given functions.
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We need first to find the intersections of the
two curves so that we know the interval over
which the two curves bound a closed region.
In fact, by solving the equation

1
x2 + 1

= 1
2 ,

we have x = ±1.
−1 1

y = 1
x2 + 1

y = 1
2

x

y

O

Over the interval [−1, 1], f(x) ≥ g(x). Thus, the area of the region bounded by two curves
is

ˆ 1

−1

(
1

x2 + 1
− 1

2

)
dx =

[
tan−1 x

]1
x=−1 −

[ 1
2 x
]1

x=−1

= tan−1 1 − tan−1(−1) −
( 1

2 − −1
2
)

= π
4 − −π

4 − 1 = π
2 − 1.

5.3 Example: multiple regions

Find the area of the closed region bounded by the graphs of the functions f(x) = x + 2
and g(x) = |x| over the interval [−2, 1].

Solution Even though the interval [−2, 1] is given, the integral
ˆ 1

−2
[f(x) − g(x)] dx

is not the area of the region bounded by the curves over [−2, 1]. This is because that neither
f(x) ≥ g(x) hold over the whole interval [−2, 1], nor g(x) ≥ f(x) over the whole interval.
Hence, we need to determine the interval(s) over which f(x) ≥ g(x) and f(x) ≤ g(x),
respectively.

In fact, by solving the equation f(x) =
g(x), or x + 2 = |x|, we get a unique solu-
tion x = −1. We see that g(x) ≥ f(x) when
x ≤ −1; f(x) ≥ g(x) when x ≥ −1, as shown
in the figure.

−2 1

y = x + 2

y = |x|
x

y

−1 2O
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Thus, the area of the region bounded by the two curves is
ˆ −1

−2
[g(x) − f(x)] dx +

ˆ 1

−1
[f(x) − g(x)] dx

=
ˆ −1

−2
[|x| − (x + 2)] dx +

ˆ 1

−1
[x + 2 − |x|] dx

=
ˆ −1

−2
[−x − (x + 2)] dx +

ˆ 0

−1
[x + 2 − (−x)] dx +

ˆ 1

0
[x + 2 − x] dx

= (−x2 − 2x)
∣∣−1
−2 + (x2 + 2x)

∣∣0
−1 + 2x|10

= (−1 + 2) − (−4 + 4) + 0 − (1 − 2) + 2 − 0 = 4.

Geometrically, we see that the area is the same as
ˆ 1

−2
|f(x) − g(x)| dx.

5.4 Theorem: area between two curves

In general, the area between the curve y = f(x) and y = g(x) over [a, b] is
ˆ b

a

|f(x) − g(x)| dx.

5.5 Example: areas between two curves

Find the area between y = cos x and y = sin x over [0, π
2 ].

Solution We need to calculate the integral
ˆ π

2

0
| sin x − cos x| dx.

Firstly we find intervals where sin x ≥
cos x. To do so, in the interval [0, π

2 ], we solve
the equation

sin x = cos x

and get x = π
4 . We know that sin x ≤ cos x

when 0 ≤ x ≤ π
4 ; sin x ≥ cos x when π

4 ≤ x ≤
π
2 , as shown in the figure.

π
2

π
4

y = cos x

y = sin x

x

y

O
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Hence, the area between y = cos x and y = sin x over [0, π
2 ] is

ˆ π
2

0
| sin x − cos x| dx

=
ˆ π

4

0
(cos x − sin x) dx +

ˆ π
2

π
4

(sin x − cos x) dx

= (sin x + cos x)|
π
4
0 + (− cos x − sin x)|

π
2
π
4

= (sin π
4 + cos π

4 ) − (sin 0 + cos 0) + (− cos π
2 − sin π

2 ) − (− cos π
4 − sin π

4 )

=
√

2 − 1 − 1 +
√

2 = 2
√

2 − 2.

5.6 Theorem: area bounded by two curves along the y-axis

Let A be the area of the region that lies be-
tween two curves x = f(y) and x = g(y) and
between the horizontal lines y = c and y = d,
where f and g are continuous functions and
f(y) ≥ g(y) for all x in [c, d]. Then

A =
ˆ d

c

[f(y) − g(y)] dy.

y = d

y = c

x = f(y)x = g(y)

x

y

5.7 Example: areas between two curves

Find the common area of two disks x2 + y2 ≤ r2 and (x − r)2 + y2 ≤ r2.

Solution Solving two simultaneous equa-
tions

x2 + y2 = r2, (x − r)2 + y2 = r2

gives y = ±
√

3
2 r. It is easy to get the two arcs

that enclosed the region are x =
√

r2 − y2

and x = r−
√

r2 − y2, as shown in the figure.

y

x =
√

r2 − y2x = r −
√

r2 − y2

x
O

Thus, the common region is

ˆ √
3

2 r

−
√

3
2 r

[√
r2 − y2 −

(
r −

√
r2 − y2

)]
dy =

ˆ √
3

2 r

−
√

3
2 r

(
r − 2

√
r2 − y2

)
dy.

To evaluate the last integral, we make a trigonometric substitution y = r sin t. Then the area
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is
ˆ √

3
2 r

−
√

3
2 r

(
2
√

r2 − y2 − r
)

dy =
ˆ π

3

− π
3

(2r cos t − r) · r cos t dt

= 2r2
ˆ π

3

0

(
2 cos2 t − cos t

)
dt

= 2r2
ˆ π

3

0
[(1 + cos 2t) − cos t] dt

= 2r2 ·
[
t + 1

2 sin 2t − sin t
]∣∣π

3
0

= 2r2 ·
(

π
3 + 1

2 ·
√

3
2 −

√
3

2

)
= ( 2π

3 −
√

3
2 )r2.

5.8 MATLAB: area bounded by two curves along the x-axis

Find the area between y = cos x and y = sin x over [0, π
2 ].

Solution First, we plot the curves of given functions.

>> syms x
>> y1(x) = cos(x);
>> y2(x) = sin(x);
>> x_array = linspace (0,pi /2 ,200);
>> y1_array = y1( x_array );
>> y2_array = y2( x_array );
>> figure
>> plot(x_array ,y1_array ,'b',x_array ,y2_array ,'r') % plot two ...

curves on the same figure
>> legend ('y = cos x','y = sin x')
>> xlabel ('x')
>> ylabel ('y')
>> grid

Note that to plot two curves on the same figure, we can write specifications of the two curves
using one plot command instead of two plot commands. The figure plotted is shown below.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

y = cos x

y = sin x

We see that y = cos x and y = sin x intersect at a point around x = 0.8. So, we try to find a
point around x = 0.8 such that cos x = sin x. This is shown in the following MATLAB code.

>> Delta_y = y1 - y2

Delta_y (x) =

cos(x) - sin(x)

>> Delta_y_hd = matlabFunction ( Delta_y ) % convert symbolic ...
expression to function handle

Delta_y_hd =

function_handle with value:

@(x)cos(x)-sin(x)

>> x0 = fzero (Delta_y_hd ,0.8)

x0 =

0.7854

We see from the result above that y = cos x and y = sin x intersect at x0 = 0.7854. Hence,
we can determine the two intervals over which the two curves bound a closed region, namely,
[0, x0] and

[
x0, π

2
]
. According to these two intervals, we calculate the area bounded by the

two curves as follows:
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>> area1 = int(Delta_y ,x,0,x0);
>> area2 = int(-Delta_y ,x,x0 ,pi /2);
>> area = area1 + area2

area =

2*2^(1/2) - 2

The result shows that the area bounded by y = cos x and y = sin x over [0, π
2 ] is 2

√
2 − 2.

5.9 MATLAB: area bounded by two curves along the y-axis

Find the common area of two disks x2 + y2 ≤ 32 and (x − 3)2 + y2 ≤ 32.
Solution First, we notice that x2 + y2 = 32 and (x − 3)2 + y2 = 32 are two circles.

Specifically, x2+y2 = 32 is a circle with the center at (0, 0) and radius 3, and (x−3)2+y2 = 32

is a circle with the center at (3, 0) and radius 3. We thus can plot a figure with these two
circles using the following MATLAB code:

>> cla % clear the axes
>> c1 = viscircles ([0 0],3,'Color ','b'); % center : [0 0], ...

radius : 3
>> c2 = viscircles ([3 0],3,'Color ','r'); % center : [3 0], ...

radius : 3
>> grid
>> legend ([c1 ,c2],{'x^2 + y^2 = 3^2 ','(x - 3) ^2 + y^2 = 3^2 '});
>> xlabel ('x')
>> ylabel ('y')

Note that the command viscircles can plot a circle with given center and radius. Moreover,
to specify the colour of the circle, besides the parameter specifying the colour, e.g., ‘b’ and
‘r’, we also need to type in ‘Color’ in the command viscircles. Furthermore, since the
command viscircles does not clear the target axes before plotting circles, we need to first
remove any graphs that have been previously plotted in the axes using the cla command.

The figure plotted is shown below.
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(x - 3)
2
 + y

2
 = 3

2

From the figure above, we see that the intersections of the two circles are the ones of
the two functions x =

√
32 − y2 and x = 3 −

√
32 − y2. In particular, these two functions

intersect at points around y = −2.5 and y = 2.5, respectively. Therefore, we try to find the
points around y = −2.5 and y = 2.5, respectively, such that

√
32 − y2 = 3 −

√
32 − y2 by

using the following MATLAB code.

>> syms y
>> x1 = sqrt (3^2 - y^2);
>> x2 = 3 - sqrt (3^2 - y^2);
>> Delta_x = x1 - x2

Delta_x =

2*(9 - y^2) ^(1/2) - 3

>> Delta_x_hd = matlabFunction ( Delta_x ) % convert symbolic ...
expression to function handle

Delta_x_hd =

function_handle with value:

@(y)sqrt(-y .^2+9.0) .*2.0 -3.0

>> y1 = fzero (Delta_x_hd , -2.5)

y1 =

-2.5981

>> y2 = fzero (Delta_x_hd ,2.5)
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y2 =

2.5981

The results above show that x =
√

32 − y2 and x = 3 −
√

32 − y2 intersect at y1 = −2.5981
and y2 = 2.5981. Hence, we can determine the interval over which these two functions bound
a closed region, i.e., [y1, y2]. Then, we calculate the area bounded by the two curves as
follows:

>> area = int(Delta_x ,y1 ,y2)

area =

6*pi - (9*3^(1/2) )/2

We see from the result above that the common area of two disks x2+y2 ≤ 32 and (x−3)2+y2 ≤
32 is 6π − 9

√
3

2 .

Area Under Parametric Curve

5.10 Theorem: area under a parametric curve

If a curve is traced out once by the parametric equations x = f(t) and y = g(t), α ≤ t ≤ β,
then the area under the curve is ˆ β

α

g(t) f ′(t) dt.

Justification:

The area under a curve y = F (x) over [a, b] is A =
ˆ b

a

F (x) dx. By applying the substitu-
tion rule, we get

A =
ˆ β

α

F (f(t)) f ′(t) dt,

where F (a) = α and F (b) = β. Since the curve y = F (x), a ≤ x ≤ b, is traced out by the
given parametric equations, we have

y = F (x) = F (f(t)),

and y = g(t), so that F (f(t)) = g(t). Hence, we obtain the area formula in parametric
equations.
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5.11 Example: area under one arch of the cycloid

Find the area under one arch of the cycloid

x = r(t − sin t), y = r(1 − cos t), 0 ≤ t ≤ 2π.

x

y

2πr

2r

O

Solution It is known that, for a given curve above the x-axis, the area under the curve

over an interval [a, b] is A =
ˆ b

a

y(x) dx. Thus, if the curve is given by parametric equations

x = x(t), y = y(t), then these equations can be served as a substitution.
Hence, the area under one arch of the cycloid is

A =
ˆ 2πr

0
y dx

=
ˆ 2π

0
r(1 − cos t) · [r(t − sin t)]′ dt

{
x = r(t − sin t)
y = r(1 − cos t)

= r2
ˆ 2π

0
(1 − 2 cos t + cos2 t) dt

= r2
ˆ 2π

0

[
1 − 2 cos t + 1

2 (1 + cos 2t)
]

dt double-angle formula

= r2 [ 3
2 t − 2 sin t + 1

4 sin 2t
]2π

t=0 = 3πr2.

5.12 MATLAB: area under one arch of the cycloid

Find the area under one arch of the cycloid

x = 3(t − sin t), y = 3(1 − cos t), 0 ≤ t ≤ 2π.

Solution First, we plot the graph of the cycloid when 0 ≤ t ≤ 2π.

>> t_array = linspace (0 ,2*pi ,200);
>> x_array = 3*( t_array - sin( t_array ));
>> y_array = 3*(1 - cos( t_array ));
>> figure
>> plot(x_array ,y_array ,'r')
>> grid
>> xlabel ('x')
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>> ylabel ('y')

The figure plotted is shown below.
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Then, the area under one arch of the cycloid can be calculated as follows:

>> syms t
>> x(t) = 3*(t - sin(t));
>> y(t) = 3*(1 - cos(t));
>> dx(t) = diff(x(t),t);
>> area = int(y(t)*dx(t) ,0,2*pi)

area =

27* pi

The result above shows that the area is 27π.

5.2 Volumes

5.13 Definition: volume

Let S be a solid that lies between x = a
and x = b. If the cross-sectional area of S in
the plane Px, through x and perpendicular to
the x-axis, is A(x), where A is a continuous
function, then the volume of S is

V = lim
n→∞

n∑
i=1

A(x∗
i )∆x =

ˆ b

a

A(x) dx.

x = a x = bA(x)
x

Similarly, if S is a solid that lies between y = c and y = d and if the cross-sectional area
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of S through y perpendicular to the y-axis is A(y), where A is a continuous function, then
the volume of S is

V = lim
n→∞

n∑
i=1

A(y∗
i )∆y =

ˆ d

c

A(y) dy.

We normally say the above method as finding volume by using slices.

5.14 Example: volume of a pyramid - using slices

Find the volume of a pyramid whose base is a square with side L and whose height is h.

Solution We place the origin O of the coordinates at the vertex of the pyramid and the
x-axis along its central axis. Any plane Px that passes through x and is perpendicular to
the x-axis intersects the pyramid in a square with side of length s, say. We can express s in
terms of x by observing from the similar triangles:

x

s
= h

L

and so s = xL

h
. Thus, the cross-sectional area is A(x) = s2 = L2

h2 x2.

O

h

x

y

x

s L

x
h x

y

z

The pyramid lies between x = 0 and x = h, so its volume is

V =
ˆ h

0
A(x) dx =

ˆ h

0

L2

h2 x2 dx = L2

h2 ( 1
3 x3
∣∣h
0 = 1

3 L2h.

5.15 Example: volume of a solid - using slices

Consider a solid whose base is a circular disk with radius r. Find the volume of the solid
if parallel cross-sections perpendicular to the base are isosceles triangles with height h and
unequal side in the base.

Solution We sketch the diagram of the situation as in the figure.
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x

y

O

y =
√

r2 − x2

y = −
√

r2 − x2
x

y

Solving the equation x2 + y2 = r2 for x, we have the expressions of the top-half and the
bottom-half of the circle,

x = ±
√

r2 − y2.

It is clear that the circle intersects the x-axis at x = ±r.
By symmetry, without loss of generality, we can assume that cross-sections are perpendic-

ular to the x-axis. For −r ≤ x ≤ r, the area of the cross-section is

A(x) = 1
2 · 2

√
r2 − x2 · h = h

√
r2 − x2.

Hence, the volume of the solid is

V =
ˆ r

−r

A(x) dx =
ˆ r

−r

h
√

r2 − x2 dx = h

ˆ r

−r

√
r2 − x2 dx.

We observe that the last integral is the area of semi-circular disk of radius r, so

V = h · 1
2 πr2 = 1

2 πr2h.

5.16 Example: volume of a ball - using slices

It is known that the area of circular disk of radius r is πr2. Find the volume of the ball of
radius r.

Solution A ball of radius r can be generated by rotating the upper semicircle y =
√

r2 − x2

about the x-axis. For −r ≤ x ≤ r, the cross-section is a circular disk, with area π(r2 − x2),
as shown in the figure.
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r−r O
x

y

y =
√

r2 − x2

Thus, the volume of the ball is

V =
ˆ r

−r

π(r2 − x2) dx

= 2
ˆ r

0
π(r2 − x2) dx = 2π (r2x − 1

3 x3)
∣∣r
0 = 4

3 πr3.

5.17 Example: volume of a solid torus - using slices

Consider the region bounded by the curves

(x − R)2 + y2 = r2, 0 < r < R.

The solid obtained by rotating the region about the y-axis is the solid torus, as shown in the
figure.

x

y

O

y

R −
√

r2 − y2

R +
√

r2 − y2

R

R − r R + r

(x − R)2 + y2 = r2

We shall use the method of slices to compute the volume of the solid.
The region and a typical slice are shown in the figure.
We see that the slice is a washer, with outer radius R +

√
r2 − y2, and inner radius

R −
√

r2 − y2. So the cross-sectional area is

π
(

R +
√

r2 − y2
)2

− π
(

R −
√

r2 − y2
)2

.
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Thus, the volume of the solid torus is

V =
ˆ r

−r

[
π
(

R +
√

r2 − y2
)2

− π
(

R −
√

r2 − y2
)2
]

dx

= π

ˆ r

−r

2R · 2
√

r2 − y2 dy factoring

= 4πR

ˆ r

−r

√
r2 − y2 dy.

Since the last integral represents the area of the semicircular region of radius r, we have

V = 4πR · 1
2 πr2 = 2π2Rr2.

5.18 MATLAB: volume of a ball - using slices

Find the volume of a ball with radius 3.
Solution First, to well visualize the ball and the cross-section, we plot the ball and a

cross-section for a fixed x value in MATLAB by the following code:

% plot the sphere with radius r
N = 40;
r = 3; % sphere radius

[XX ,YY ,ZZ] = sphere (N); % unit sphere generated by three ...
(N+1) -by -(N+1) matrices XX , YY and ZZ

X = r*XX; % expand the sphere radius
Y = r*YY;
Z = r*ZZ;

figure
surf(X,Y,Z,'FaceAlpha ' ,0.2,'FaceColor ','b') % 'FaceAlpha ': ...

face transparency - ranges from 0 (fully transparent ) to 1 ...
( fully opaque )

xlabel ('x')
ylabel ('y')
zlabel ('z')

% plot the cross - section
x0 = 2; % cross - section is at x = 2
r0 = sqrt(r^2 - x0 ^2); % radius of the cross - sectional circle

y1 = linspace (0,r0 ,200);
z1 = zeros (1, length (y1));

for ind = 1: length (y1) % first quadrant
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y = y1(ind);
z1(ind) = sqrt(r0^2 - y^2);

end

y2 = -y1 (1: length (y1)); % second quadrant
z2 = z1 (1: length (z1));

y3 = -y1 (1:( length (y1))); % third quadrant
z3 = -z1 (1:( length (z1)));

y4 = y1 (1:( length (y1))); % fourth quadrant
z4 = -z1 (1:( length (z1)));

y_array = [ fliplr (y1),y2 , fliplr (y3),y4]; % plot the circle ...
anticlockwise

z_array = [ fliplr (z1),z2 , fliplr (z3),z4];
x_array = ones (1, length ( y_array ))*x0;
x4 = ones (1, length (y4))*x0;

hold on
plot3(x_array ,y_array ,z_array ,'r','LineWidth ' ,4)

Note that the command sphere can be used to generate a ball with unit radius, the
command surf can be used to plot the surface of the ball, and the command plot3 can
be used to plot curves in three-dimensional space. Moreover, the face transparency and the
face colour of the ball can be specified when using surf, and the width of the curve can be
specified when using plot3.

The figure plotted is shown below.
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Since the cross-section is a circular disk with area π(32 −x2), as shown in the figure above,
we thus can calculate the volume of the ball by solving the following integral:

V =
ˆ 3

−3
π(32 − x2)dx.

It can be implemented in MATLAB as follows:

>> syms x
>> f(x) = pi *(3^2 - x^2);
>> V = int(f(x) ,-3,3)

V =

36* pi

The volume of the ball is thus 36π.

Method of Cylindrical Shells

5.19 Theorem: volume by cylindrical shells

The volume of the solid, obtained by ro-
tating about the y-axis the region under the
curve y = f(x) from a to b (0 ≤ a < b), is

V =
ˆ b

a

2πxf(x) dx.
x

y

a b

y = f(x)

We normally say the above method as finding volume by using shells.

Justification:

We divide the interval [a, b] into n subintervals [xi−1, xi] of equal width ∆x and let x∗
i be a

point in the ith subinterval. If the rectangle with base [xi−1, xi] and height f(x∗
i ) is rotated

about the y-axis, then the result is a cylindrical shell with average radius x∗
i , height f(x∗

i ),
and thickness ∆x, so its volume is

Vi = (circumference) × (height) × (thickness) = (2πx∗
i ) · f(x∗

i ) · ∆x.
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x

y

a b∆x

f(x∗
i )

x∗
i

a b
x

y

x∗
i

2πx∗
i

∆x

f(x∗
i )

Hence an approximation to the volume V of S is given by the sum of the volumes of these
shells:

V ≈
n∑

i=1
Vi =

n∑
i=1

2πx∗
i f(x∗

i )∆x.

This gives the volume:

V = lim
n→∞

n∑
i=1

2πx∗
i f(x∗

i )∆x =
ˆ b

a

2πxf(x) dx,

where the terms in the formula can be interpreted as

x : radius of a typical cylinder shell
2πx : circumference
f(x) : height
dx : thickness of the shell
ˆ b

a

(2πx)︸ ︷︷ ︸
circumference

[f(x)]︸ ︷︷ ︸
height

(dx)︸︷︷︸
thickness

5.20 Example: volume of a ball - using shells

Find the volume of the ball of radius r.
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r

−r

O

x h
x

y

x2 + y2 = r2

The region and a typical shell are shown in the figure. We see that the shell has radius x,
circumference 2πx, and height 2

√
r2 − x2. So the volume is

V =
ˆ r

0
2πx · 2

√
r2 − x2 dx

= (−2π)
ˆ r

0

√
r2 − x2 · (r2 − x2)′ dx

= (−2π) · 2
3 (r2 − x2) 3

2

∣∣∣r
0

= 4
3 πr3.

5.21 Example: volume of a solid torus - using shells

Consider the region bounded by the curves

(x − R)2 + y2 = r2, 0 < r < R.

The solid obtained by rotating the region about the y-axis is the solid torus, as shown in the
figure.

x

y

O x

hR

(x − R)2 + y2 = r2

We shall use the method of cylindrical shells to compute the volume of the solid.
The region and a typical shell are shown in the figure.
We see that the shell has radius x, circumference 2πx, and height 2

√
r2 − (x − R)2. So
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the volume is

V =
ˆ R+r

R−r

2πx · 2
√

r2 − (x − R)2 dx

=
ˆ r

−r

4π(u + R)
√

r2 − u2 du u = x − R, du = dx

= 4π

ˆ r

−r

(
u
√

r2 − u2 + R
√

r2 − u2
)

du

= 4π

ˆ r

−r

R
√

r2 − u2 du odd function

= 4πR

ˆ r

−r

√
r2 − u2 du.

Since the last integral represents the area of the semicircular region of radius r, we have

V = 4πR · 1
2 πr2 = 2π2Rr2.

5.22 Example: rotating about a horizontal line

Find the volume of the solid obtained by rotating the region bounded by the curves

y =
√

x and y = x2,

about the horizontal line y = −k (k > 0).

Solution By solving the simultaneous equations y =
√

x and y = x2, we see that there are
two intersections (0, 0) and (1, 1). So the region bounded by the given curves is 0 ≤ x ≤ 1 as
well as 0 ≤ y ≤ 1.

We compute the volume of the solid by slices and shells.

1. The region and a typical slice are shown in the following figures.

x

y

1

1

y = −k

O x

√
x + k

x2 + k

y =
√

x

y = x2

x

y

1

1

y = −k

O

y =
√

x

y = x2

We see that the slice is a washer, with inner radius x2 + k and outer radius
√

x + k. So
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the volume is

V =
ˆ 1

0

[
π(

√
x + k)2 − π(x2 + k)2] dx

= π

ˆ 1

0

(
x + 2k

√
x − x4 − 2kx2) dx

= π
30 (9 + 20k).

2. The region and a typical shell are shown in the following figures.

x

y

1

1

y = −k

O

y
y + k

y2

√
y

y =
√

x

y = x2

x

y

1

1

y = −k

O

y =
√

x

y = x2

We see that the shell has radius y + k, circumference 2π(y + k), and height √
y − y2.

So the volume is

V =
ˆ 1

0
2π(y + k) · (√y − y2) dy

= 2π

ˆ 1

0

(
y

3
2 − y3 + ky

1
2 − ky2

)
dx

= π
30 (9 + 20k).

Solid Generated by Parametric Curve

5.23 Example: solid generated by a parametric curve

Rotate the area under one arch of the cycloid

x = r(t − sin t), y = r(1 − cos t), 0 ≤ t ≤ 2π,

about the x-axis and the y-axis, respectively. Find the volumes of the two solids.
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x

y

2πr

2r

O

Solution

1. When rotating the region about the x-axis, we compute the volume of the solid by
slices.
A typical slice is shown in the following figure.

x

y

2πr

2r

O

The volume of the solid is V =
ˆ 2π

0
π[y(x)]2 dx. We can use the parametric equations

for the cycloid as a substitution for the definite integral. Thus, the volume of the solid
is

V =
ˆ 2πr

0
π[y(x)]2 dx

=
ˆ 2π

0
π [r(1 − cos t)]2 · [r(t − sin t)]′ dt

{
x = r(t − sin t)
y = r(1 − cos t)

= πr3
ˆ 2π

0
(1 − cos t)3 dt

= πr3
ˆ 2π

0

(
1 − 3 cos t + 3 cos2 t − cos3 t

)
dt expanding

= πr3
ˆ 2π

0

[
1 − 3 cos t + 3

2 (1 + cos 2t)

−(1 − sin2 x) cos t
]

dt

= πr3 [ 5
2 t − 3 sin t + 3

4 sin 2t − sin t + 1
3 sin3 t

]2π

t=0

= 5π2r3.

2. When rotating the region about the y-axis, we compute the volume of the solid by
shells.
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A typical shell is shown in the following figure.

x

y

2πr

2r

O

The volume of the solid is V =
ˆ 2π

0
2πx · y(x) dx. We use the parametric equations for

the cycloid as a substitution for the definite integral. Thus, the volume of the solid is

V =
ˆ 2πr

0
2πx · y(x) dx

=
ˆ 2π

0
2πr(t − sin t) · [r(1 − cos t)] · [r(t − sin t)]′ dt

= 2πr3
ˆ 2π

0
(t − sin t)(1 − cos t)2 dt.

The function sin t · (1 − cos t)2 is a 2π periodic odd function, so
ˆ 2π

0
sin t · (1 − cos t)2 dt =

ˆ π

−π

sin t · (1 − cos t)2 dt = 0.

Hence,

V = 2πr3
ˆ 2π

0
t(1 − cos t)2 dt

= 2πr3
ˆ 2π

0
t(1 − 2 cos t + cos2 t) dt

= 2πr3
ˆ 2π

0
t
[
1 − 2 cos t + 1

2 (1 + cos 2t)
]

dt

= 2πr3 ·
[ 3

4 t2 − 2t sin t − 2 cos t + 1
4 t sin 2t + 1

8 cos 2t
]2π

t=0

= 6π3r3.
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5.3 Arc Lengths

5.24 Definition: arc length

Suppose a curve is defined by y = f(x), where f is continuous and a ≤ x ≤ b. We approxi-
mate C by a collection of line segments, by dividing the interval [a, b] into n subintervals with
end points x0, x1, . . . , xn and equal width ∆x. Denote the endpoints of the line segments
to be P0, P1, . . . , Pn, where Pi lines on the curve C with coordinates (xi, f(xi)). Then, the
length L of the curve C is defined as

L = lim
n→∞

n∑
i=1

|Pi−1Pi|.

x

y

x0 x1 xi−1 xi xn

P0

P1
Pi−1 Pi

Pn

5.25 Theorem: formulas for arc length of a smooth curve

If f ′ is continuous on [a, b], then the length of the curve y = f(x), a ≤ x ≤ b, is

L =
ˆ b

a

√
1 +

(
dy

dx

)2

dx =
ˆ b

a

√
1 + [f ′(x)]2 dx.

Similarly, If g′ is continuous on [c, d], then the length of the curve x = g(y), c ≤
y ≤ d, is

L =
ˆ d

c

√
1 +

(
dx

dy

)2

dy =
ˆ d

c

√
1 + [g′(y)]2 dy.

Definition: arc length function

If f ′ is continuous on [a, b], the distance along the curve from the initial point
(a, f(a)) to the point (x, f(x)) defines the arc length function:

s(x) =
ˆ x

a

√
1 + [f ′(t)]2 dt.
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Justification:

Let ∆yi = yi − yi−1 = f(xi) − f(xi−1). Then

|Pi−1Pi| =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√

(∆x)2 + (∆yi)2.

By the Mean Value Theorem,

∆yi = f(xi) − f(xi−1) = f ′(x∗
i )(xi − xi−1) = f ′(x∗

i )∆x,

where x∗
i is between xi−1 and xi. Thus,

|Pi−1Pi| =
√

(∆x)2 + (∆yi)2 =
√

(∆x)2 + [f ′(x∗
i )∆x]2

=
√

1 + [f ′(x∗
i )]2∆x.

Hence,

L = lim
n→∞

n∑
i=1

|Pi−1Pi| = lim
n→∞

n∑
i=1

√
1 + [f ′(x∗

i )]2∆x

=
ˆ b

a

√
1 + [f ′(x)]2 dx.

5.26 Example: arc length

Find the arc length of the curve y = x
3
2

from (0, 0) to (1, 1).

Solution The equation y = x
3
2 gives y′ =

3
2 x

1
2 . Thus, the arc length of the curve from

(0, 0) to (1, 1) is

y = x
3
2

x

y

1

1

O

L =
ˆ 1

0

√
1 + y′2 dx =

ˆ 1

0

√
1 + 9

4 x dx

=
ˆ 13

4

1
t

1
2 · 4

9 dt t = 1 + 9
4

x

= 4
9

[
2
3 t

3
2

] 13
4

t=1
= 13

√
13−8

27 .
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Remark:

The same curve can be expressed as x = y
2
3 , which gives dx

dy
= 2

3 y− 1
3 . Thus, the

arc length from (0, 0) to (1, 1) is

L =
ˆ 1

0

√
1 +

(
dx

dy

)2

dy =
ˆ 1

0

√
1 + 4

9 y− 2
3 dy.

Evaluation of the last integral (an improper integral!) is technically more complicated.
So, when there are more than one choices in finding a quantity (like area, volume,

arc length, etc), one may need to choose a wise setup.

5.27 Example: arc length of astroid

Find the circumference of the astroid x
2
3 +

y
2
3 = a

2
3 .

Solution The astroid is symmetric about
the x-axis and the y-axis. So, its circumfer-
ence is four time the arc length in the first
quadrant. In the first quadrant, y ≥ 0. In
this region, solving the equation of the as-
troid gives

y =
(

a
2
3 − x

2
3

) 3
2

,

where 0 ≤ x ≤ a, so that

a

a

x
2
3 + y

2
3 = a

2
3

x

y

O

dy

dx
= 3

2 ·
(

a
2
3 − x

2
3

) 1
2 · (−1) 2

3 x− 1
3 = −x− 1

3

(
a

2
3 − x

2
3

) 1
2

.

Thus, the circumference of the astroid is

L = 4
ˆ a

0

√
1 +

[
x− 2

3

(
a

2
3 − x

2
3

)]
dx

= 4
ˆ a

0
a

1
3 x− 1

3 dx an improper integral

= 4a
1
3 lim

ϵ→0+

ˆ a

ϵ

x− 1
3 dx

= 4a
1
3 lim

ϵ→0+

[
3
2 x

2
3

]a

x=ϵ
= 6a.
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5.28 MATLAB: arc length

Find the arc length of the curve y = x
3
2 from (0, 0) to (1, 1).

Solution First, we plot the curve of y = x
3
2 within the interval [0, 1].

>> syms x
>> f(x) = x ^(3/2) ;
>> x_array = linspace (0 ,1 ,200);
>> figure
>> plot(x_array ,f( x_array ),'b')
>> xlabel ('x')
>> ylabel ('y')
>> grid

The figure plotted is shown below.

To calculate the arc length of the curve in MATLAB, we provide two methods.

1. We calculate the arc length of the curve by using the arc length function.

>> syms x
>> f(x) = x ^(3/2) ;
>> df(x) = diff(f(x),x)

df(x) =

(3*x ^(1/2) )/2

>> arc_len = int(sqrt (1 + df(x)^2) ,0,1)

arc_len =

(13*13^(1/2) )/27 - 8/27

The result above shows that the arc length is 13
√

13
27 − 8

27 .
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2. We calculate an approximation of the arc length based on the arc length definition.

N = 1000; % number of line segments

x_array = linspace (0,1,N);
y_array = x_array .^(3/2) ;
arc_len = 0;

for ind = 2: length ( x_array )

x2 = x_array (ind);
x1 = x_array (ind - 1);
y2 = y_array (ind);
y1 = y_array (ind - 1);
seg_len = sqrt ((y2 - y1)^2 + (x2 - x1)^2);
arc_len = arc_len + seg_len ;

end

Note that the bigger the number of line segments N is, the more accurate the approxi-
mation is.
The result of the arc length can be seen when we type in arc_len in the command
window, as shown below.

>> format long
>> arc_len

arc_len =

1.439709685755622

It is shown that when N = 1000, the approximation is 1.439709685755622, which is
very close to the exact result 13

√
13−8

27 ≈ 1.439709873371550.

Arc Length of Parametric Curve

5.29 Theorem: arc length for parametric curve

Suppose a parametric curve is given by the parametric equations

x = f(t), y = g(t), α ≤ t ≤ β,

where f ′ and g′ are continuous and the parametric curve is traversed exactly once as t
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increases from α to β. Then the arc length is

L =
ˆ β

α

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
ˆ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

Justification: Part 1

We divide the parameter interval [α, β]
into n subintervals of equal width ∆t. If
t0, t1, t2, . . . , tn are the endpoints of these
subintervals, then xi = f(ti) and yi =
g(ti) are the coordinates of points Pi(xi, yi)
that lie on C and the polygon with vertices
P0, P1, . . . , Pn approximates C. x

y

P0

P1

P2

Pi−1 Pi

C

tα βti−1 ti

The length L of C is defined as the limit of the lengths of these approximating polygons
as n → ∞:

L = lim
n→∞

n∑
i=1

|Pi−1Pi|.

Justification: Part 2

By the Mean Value Theorem, there are t∗
i and t∗∗

i in (ti−1, ti) such that

∆xi = f(ti) − f(ti−1) = f ′(t∗
i )∆t,

∆yi = g(ti) − g(ti−1) = g′(t∗∗
i )∆t.

Thus,

|Pi−1Pi| =
√

(∆xi)2 + (∆yi)2 =
√

[f ′(t∗
i )]∆t)2 + [g′(t∗∗

i )]∆t)2

=
√

[f ′(t∗
i )]2 + [g′(t∗∗

i )]2 ∆t,

and so

L = lim
n→∞

n∑
i=1

√
[f ′(t∗

i )]2 + [g′(t∗∗
i )]2 ∆t.

The last sum resembles a Riemann sum for the function
√

[f ′(t)]2 + [g′(t)]2 but it is not
exactly a Riemann sum because t∗

i ̸= t∗∗
i in general. Nevertheless, if f ′ and g′ are continuous,

it can be shown that the limit is the same as if t∗
i and t∗∗

i were equal, namely,

L =
ˆ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.
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5.30 Example: arc length of a parametric curve

Find the circumference of the astroid, given
by the parametric equations

x = a cos3 t, y = a sin3 t,

where 0 ≤ t ≤ 2π.

Solution The astroid is symmetric about
the x-axis and the y-axis. So, its circumfer-
ence is four time the arc length in the first
quadrant. Thus,

a

a x = a cos3 t,
y = a sin3 t
(0 ≤ t ≤ 2π)

x

y

O

L = 4
ˆ π

2

0

√
[3a cos2 t · (− sin t)]2 + [3a sin2 t · (cos t)]2 dt

= 12a

ˆ π
2

0
sin t cos t dt

= 12a
[ 1

2 sin2 t
]π

2
t=0 = 6a.

5.31 MATLAB: arc length of a parametric curve

Find the circumference of the astroid, given by the parametric equations

x = cos3 t, y = sin3 t,

where 0 ≤ t ≤ 2π.
Solution First, we plot the curve of x = cos3 t, y = sin3 t where 0 ≤ t ≤ 2π.

>> syms t
>> x(t) = cos(t)^3;
>> y(t) = sin(t)^3;
>> t_array = linspace (0 ,2*pi ,200);
>> figure
>> plot(x( t_array ),y( t_array ),'r')
>> xlabel ('x')
>> ylabel ('y')
>> grid

The figure plotted is shown below.
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We see from the figure above that the plotted astroid is symmetric about the x-axis and the
y-axis. So, its circumference is four times the arc length in the first quadrant. We thus first
calculate the arc length of the curve in the first quadrant, and then multiply it by 4.

To calculate the arc length of the astroid in MATLAB, we provide two methods.

1. We calculate the arc length of the astroid by using the arc length function.

>> syms t
>> x(t) = (cos(t))^3;
>> y(t) = (sin(t))^3;
>> dx(t) = diff(x(t),t)

dx(t) =

-3* cos(t)^2* sin(t)

>> dy(t) = diff(y(t),t)

dy(t) =

3* cos(t)*sin(t)^2

>> arc_len = 4* int(sqrt ((dx(t))^2 + (dy(t))^2) ,0,pi /2)

arc_len =

6

The result above shows that the arc length of the astroid is 6.

2. We calculate an approximation of the arc length based on the arc length definition.

N = 1000; % number of line segments
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t_array = linspace (0,pi/2,N);
x_array = cos( t_array ).^3;
y_array = sin( t_array ).^3;
arc_len1 = 0; % arc length in the 1st quadrant

for ind = 2: length ( t_array )

x2 = x_array (ind);
x1 = x_array (ind - 1);
y2 = y_array (ind);
y1 = y_array (ind - 1);
seg_len = sqrt ((x2 - x1)^2 + (y2 - y1)^2);
arc_len1 = arc_len1 + seg_len ;

end

arc_len = 4* arc_len1 ;

Note that the bigger the number of line segments N is, the more accurate the approxi-
mation is.
The result of the arc length can be seen when we type in arc_len in the command
window, as shown below.

>> format long
>> arc_len

arc_len =

5.999999381918176

It is shown that when N = 1000, the approximation is 5.999999381918176, which is
very close to the exact result 6.

5.4 Surface Area of Revolution

5.32 Definition: surface area of revolution

Consider the surface is obtained by rotating the curve defined by y = f(x), where f is
positive and a ≤ x ≤ b. In order to define its surface area, we divide the interval [a, b] into
n subintervals with endpoints x0, x1, . . . , xn and equal width ∆x. The part of the surface
between xi−1 and xi is approximated by taking the line segment Pi−1Pi and rotating it
about the x-axis, where Pi(xi, f(xi)) lies on the curve. The result is a band with slant height
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|Pi−1Pi|. Therefore, in the case where f is positive we define the surface area obtained by
rotating the curve y = f(x), a ≤ x ≤ b, about the x-axis as

S = lim
n→∞

n∑
i=1

Si,

where Si is the area of the band with slant
height |Pi−1Pi|. x

y

P0

Pi−1
Pi

Pn

5.33 Theorem: formula for surface area of revolution

If f ′ is continuous on [a, b], then the surface area of the surface obtained by rotating
the curve y = f(x), a ≤ x ≤ b, about the x-axis, is

S =
ˆ b

a

2π y(x)

√
1 +

(
dy

dx

)2

dx =
ˆ b

a

2π f(x)
√

1 + [f ′(x)]2 dx.

Similarly, if g′ is continuous on [c, d], then the surface area of the surface obtained
by rotating the curve x = g(y), c ≤ y ≤ d, about the y-axis, is

S =
ˆ d

c

2π x(y)

√
1 +

(
dx

dy

)2

dy =
ˆ d

c

2π g(y)
√

1 + [g′(y)]2 dy.

Justification: Part 1

Let us first derive a formula for the area of a circular cone with base radius r and slant
height l.

l

r

l

θ

2πr

In fact, we can flat it to form a sector of a circle with radius l and central angle θ = 2πr/l.
Since it is a part of a disk of radius l, we have the area of the sector to be

A = 1
2 l2θ = 1

2 l2 · (2πr/l) = πrl.
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Justification: Part 2

Thus, the area of the band, or frustum of a cone, with slant height l and upper and lower
radii r1 and r2 is

A = πr2(l1 + l) − πr1l1 = π [(r2 − r1)l1 + r2l] .

From similar triangles we have
l1
r1

= l1 + l

r2

which gives
r2l1 = r1l1 + r1l or (r2 − r1)l1 = r1l.

Hence,
A = π [r1l + r2l] = 2πrl = (average circumference) × (slant height),

where r = 1
2 (r1 + r2) is the average radius of the band.

l

l1

r1

r2

Justification: Part 3

Suppose f ′ is continuous on [a, b]. For a band with slant height l = |Pi−1Pi| and average
radius r = 1

2 (f(xi−1) + f(xi)), its surface area is

Si = 2π · 1
2 (f(xi−1) + f(xi)) · |Pi−1Pi|.

By the Pythagorean Theorem and the Mean Value Theorem,

|Pi−1Pi| =
√

(xi − xi−1)2 + [f(xi) − f(xi−1)]2

=
√

(∆x)2 + [f ′(x∗
i )∆x]2 =

√
1 + [f ′(x∗

i )]2∆x.

Thus, by approximating 1
2 (f(xi−1) + f(xi)) using f(x∗

i ), we get

Si ≈ 2π · f(x∗
i )
√

1 + [f ′(x∗
i )]2∆x.

Therefore,

S = lim
n→∞

n∑
i=1

Si = lim
n→∞

n∑
i=1

2π · f(x∗
i )
√

1 + [f ′(x∗
i )]2∆x

=
ˆ b

a

2π f(x)
√

1 + [f ′(x)]2 dx.
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5.34 Theorem: general formula for surface area of revolution

For rotations about the x-axis and the y-axis, respectively, the surface area formula becomes

S =
ˆ

2πy ds or S =
ˆ

2πx ds,

where

ds =

√
1 +

(
dy

dx

)2

dx or

√
1 +

(
dx

dy

)2

dy.

In general, the surface area of rotation is
ˆ

(2πr)︸ ︷︷ ︸
circumference

(ds)︸︷︷︸
arc length

x

y

x

y

5.35 Example: surface area of a sphere

A sphere can be generated by rotating the semicircle

y =
√

r2 − x2, −r ≤ x ≤ r,

about the x-axis, as shown in the figure. Find its surface area.

r−r O
x

y

y =
√

r2 − x2



298 Applications of Integration

Solution It is easy to see that

dy

dx
= − x√

r2 − x2
.

Thus, the surface area of the sphere is

S =
ˆ r

−r

2π
√

r2 − x2

√
1 +

(
− x√

r2 − x2

)2

dx

= 2π

ˆ r

−r

r dx = 4πr2.

5.36 Example: surface area of a torus

A torus can be generated by rotating the circle

(x − R)2 + y2 = r2, 0 < r < R,

about the y-axis, as shown in the figure.

x

y

O R

(x − R)2 + y2 = r2

The torus consists of two portions: the outer portion generated by the rightmost semicircle
x = R +

√
r2 − y2 (−r ≤ y ≤ r), and the inner portion by the leftmost semicircle x =

R −
√

r2 − y2 (−r ≤ y ≤ r). It is easy to see that

along the rightmost semicircle : dx

dy
= − y√

r2 − y2
;

along the leftmost semicircle : dx

dy
= y√

r2 − y2
.
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Thus, the surface area of the torus is

S =
ˆ r

−r

2π
(

R +
√

r2 − y2
)√√√√1 +

(
− y√

r2 − y2

)2

dy

+
ˆ r

−r

2π
(

R −
√

r2 − y2
)√√√√1 +

(
y√

r2 − y2

)2

dy

= 4πR

ˆ r

−r

r√
r2 − y2

dy

= 8πR

ˆ r

0

r√
r2 − y2

dy even function

= 8πRr

ˆ π
2

0

r cos θ dθ

r cos θ
y = r sin θ

= 8πRr · π

2
= 4π2Rr.

5.37 MATLAB: surface area of a sphere

A sphere can be generated by rotating the semicircle

y =
√

32 − x2, −3 ≤ x ≤ 3,

about the x-axis. Find its surface area.
Solution We calculate the surface area of the sphere by two methods.

1. The surface area of the sphere is calculated by using the formula for surface area of
revolution.

>> syms x
>> y(x) = sqrt (3^2 - x^2);
>> dy(x) = diff(y(x),x)

dy(x) =

-x/(9 - x^2) ^(1/2)

>> int_fun = 2*pi*y(x)*sqrt (1 + dy(x)^2); % integrand
>> S = int(int_fun ,-3,3)

S =

36* pi

The result above shows that the surface area of the sphere is 36π.
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2. An approximation of the surface area is calculated based on the definition.

R = 3; % radius of the sphere
N = 1000; % number of line segments

x_array = linspace (-R,R,N);
y_array = sqrt (3^2 - x_array .^2);
S_sum = 0;

for ind = 2: length ( x_array )

x2 = x_array (ind);
x1 = x_array (ind - 1);
y2 = y_array (ind);
y1 = y_array (ind - 1);
ell = sqrt ((x2 - x1)^2 + (y2 - y1)^2);
S = 2* pi *0.5*( y1 + y2)*ell;
S_sum = S_sum + S;

end

Note that the bigger the number of line segments N is, the more accurate the approxi-
mation is.
The result of the surface area can be seen when we type in S_sum in the command
window, as shown below.

>> format long
>> S_sum

S_sum =

1.130970267960428 e+02

It is shown that when N = 1000, the approximation is 113.0970267960428, which is
very close to the exact result 36π ≈ 113.0973355292326.

Surface Area of Revolution by Parametric Curve

5.38 Theorem: surface area of revolution by parametric curve

Suppose a parametric curve is given by the parametric equations

x = f(t), y = g(t), α ≤ t ≤ β,

where f ′ and g′ are continuous and g(t) ≥ 0. Then the surface area of revolution about the
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x-axis is

S =
ˆ β

α

2πy

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
ˆ β

α

2πg(t)
√

[f ′(t)]2 + [g′(t)]2 dt.

Similarly, the surface area of revolution about the y-axis is

S =
ˆ β

α

2πx

√(
dx

dt

)2

+
(

dy

dt

)2

dt =
ˆ β

α

2πf(t)
√

[f ′(t)]2 + [g′(t)]2 dt.

Justification:

The general formula for the surface area of revolution about the x-axis is

S =
ˆ

2πy ds.

For the parametric curve we have

ds =
√

[f ′(t)]2 + [g′(t)]2 dt.

Thus, by the substitution rule, we get

S =
ˆ β

α

2πg(t)
√

[f ′(t)]2 + [g′(t)]2 dt.

5.39 Example: solid generated by a parametric curve

Rotate the area under one arch of the cycloid

x = r(t − sin t), y = r(1 − cos t), 0 ≤ t ≤ 2π,

about the x-axis and the y-axis, respectively. Find the surface areas of the two solids.

x

y

2πr

2r

O

Solution Generally, the surface area of revolution is
ˆ

(2πr)︸ ︷︷ ︸
circumference

(ds)︸︷︷︸
arc length

.
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1. When the area under one arch of the cycloid rotates about the x-axis, a typical circle
has radius y = y(t), while the arc length is given by

ds =
√

x′(t)2 + y′(t)2 dt.

x

y

2πr

2r

O

Thus, the surface area of the solid is

S =
ˆ 2π

0
2πy(t) ·

√
x′(t)2 + y′(t)2 dt

=
ˆ 2π

0
2π · r(1 − cos t) ·

√
[r(t − sin t)]′2 + [r(1 − cos t)]′2 dt

= 2πr2
ˆ 2π

0
(1 − cos t)

√
(1 − cos t)2 + sin2 t dt

= 2πr2
ˆ 2π

0
(1 − cos t) ·

√
2 − 2 cos t dt

= 2πr2
ˆ 2π

0
2 sin2( 1

2 t) · 2 sin( 1
2 t) dt half-angle formula

= 8πr2
ˆ π

0
(1 − cos2 u) sin u · 2 du t = 2u

= 16πr2 [− cos u + 1
3 cos3 u

]π
u=0 = 16πr2 · 4

3 = 64
3 πr2.

2. When the area under one arch of the cycloid rotates about the y-axis, a typical circle
has radius x = x(t), while the arc length is given by

ds =
√

x′(t)2 + y′(t)2 dt.

x

y

x(t)

2πr

2r

O
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Thus, the surface area of the solid is

S =
ˆ 2π

0
2πx(t) ·

√
x′(t)2 + y′(t)2 dt

=
ˆ 2π

0
2π · r(t − sin t) ·

√
[r(t − sin t)]′2 + [r(1 − cos t)]′2 dt

= 2πr2
ˆ 2π

0
(t − sin t)

√
(1 − cos t)2 + sin2 t dt

= 2πr2
ˆ 2π

0
(t − sin t) ·

√
2 − 2 cos t dt

= 2πr2
ˆ 2π

0
(t − sin t) · 2 sin( 1

2 t) dt half-angle formula

= 4πr2
ˆ π

0
(2u − sin 2u) sin u · 2 du t = 2u

= 8πr2
ˆ π

0
(2u sin u − sin 2u sin u) du

= 8πr2 [−2u cos u + 3
2 sin u + 1

6 sin 3u
]π

u=0 = 8πr2 · 2π = 16π2r2.

5.40 MATLAB: solid generated by a parametric curve

Rotate the area under one arch of the cycloid

x = 3(t − sin t), y = 3(1 − cos t), 0 ≤ t ≤ 2π,

about the x-axis. Find the surface area of the generated solid.
Solution We calculate the surface area of the solid by two methods.

1. The surface area of the solid is calculated by using the formula for surface area of
revolution.

>> syms t
>> x(t) = 3*(t - sin(t));
>> y(t) = 3*(1 - cos(t));
>> dx(t) = diff(x(t),t);
>> dy(t) = diff(y(t),t);
>> int_fun = 2*pi*y(t)*sqrt(dx(t)^2 + dy(t)^2)

int_fun =

-6*pi *(3* cos(t) - 3)*( sin(t)^2 + (3* cos(t) - 3) ^2/9) ^(1/2)

>> int_fun2 = matlabFunction ( int_fun ); % convert to ...
function handle

>> S = integral (int_fun2 ,0 ,2* pi)
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S =

603.1858

The result above shows that the surface area of the solid is 603.1858. Note that the com-
mand integral can only deal with a function handle, so we need to convert the symbolic
expression int_fun to the function handle int_fun2 using command matlabFunction.

2. An approximation of the surface area is calculated based on the definition.

N = 1000; % number of line segments

t_array = linspace (0 ,2*pi ,N);
x_array = 3*( t_array - sin( t_array ));
y_array = 3*(1 - cos( t_array ));
S_sum = 0;

for ind = 2: length ( x_array )

x2 = x_array (ind);
x1 = x_array (ind - 1);
y2 = y_array (ind);
y1 = y_array (ind - 1);
ell = sqrt ((x2 - x1)^2 + (y2 - y1)^2);
S = 2* pi *0.5*( y1 + y2)*ell;
S_sum = S_sum + S;

end

Note that the bigger the number of line segments N is, the more accurate the approxi-
mation is.
The result of the surface area can be seen when we type in S_sum in the command
window, as shown below.

>> S_sum

S_sum =

603.1845

It is shown that when N = 1000, the approximation is 603.1845.
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5.5 Lengths and Areas in Polar Coordinates

Arc Length of Polar Curve

5.41 Theorem: arc length of polar curve

Suppose a polar curve is given by the equa-
tion r = f(θ). If f ′ is continuous, then the
arc length of the polar curve from θ = α to
θ = β is

L =
ˆ β

α

√
[f(θ)]2 + [f ′(θ)]2 dθ

=
ˆ β

α

√
r2 + (dr/dθ)2 dθ.

θ = 0
O

θ = α

θ = β

r = f(θ)

Justification:

We write its parametric equations as

x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ.

Since (
dx

dθ

)2

+
(

dy

dθ

)2

= [f ′(θ) cos θ − f(θ) sin θ]2 + [f ′(θ) sin θ + f(θ) cos θ]2

= [f(θ)]2 + [f ′(θ)]2 ,

the length is

L =
ˆ β

α

√(
dx

dθ

)2

+
(

dy

dθ

)2

dθ =
ˆ β

α

√
[f(θ)]2 + [f ′(θ)]2 dθ.

5.42 Example: arc length of polar curve

Find the arc length of the cardioid

r = a + a cos θ,

where a > 0.
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a
0◦

15◦

30◦

45◦

60◦
75◦90◦

105◦

120◦

135◦

150◦

165◦

180◦

195◦

210◦

225◦

240◦

255◦
270◦ 285◦

300◦

315◦

330◦

345◦

Solution The given polar curve r = a+a cos θ is periodic of period 2π. Since r′ = −a sin θ,
we get the arc length

L =
ˆ 2π

0

√
(a + a cos θ)2 + (−a sin θ)2 dθ

=
ˆ 2π

0
a
√

2 + 2 cos θ dθ

= 2a

ˆ 2π

0

∣∣cos( 1
2 θ)
∣∣ dθ

= 2a

ˆ π

0
cos( 1

2 θ) dθ + 2a

ˆ 2π

π

(−1) cos( 1
2 θ) dθ

= 2a
[
2 sin( 1

2 θ)
]π

θ=0 − 2a
[
2 sin( 1

2 θ)
]2π

θ=π
= 8a.

5.43 MATLAB: arc length of polar curve

Find the arc length of the cardioid

r = 1 + cos θ.

The arc length of the cardioid can be calculated in MATLAB using the following code:

>> syms theta
>> r( theta) = 1 + cos(theta);
>> dr(theta) = diff(r(theta),theta)

dr(theta) =

-sin(theta)

>> int_fun = sqrt(r(theta)^2 + dr(theta)^2);
>> arc_len = int(int_fun ,theta ,0 ,2* pi)

arc_len =
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8

The result above shows that the arc length of the cardioid is 8.

Area of Polar Region

5.44 Theorem: area of polar region

Let R be a polar region bounded by the po-
lar curve r = f(θ) and by the rays θ = α to
θ = β, where f is a positive continuous func-
tion and the angles satisfy 0 < β − α ≤ 2π.
Then the area of R is

A =
ˆ β

α

1
2 r2 dθ =

ˆ β

α

1
2 [f(θ)]2 dθ. θ = 0

O

θ = α

θ = β

r = f(θ)

R

Theorem: area between two polar curves

Let R be a polar region bounded by
the polar curves r = f(θ), r = g(θ),
and by the rays θ = α to θ = β, where
f(θ) ≥ g(θ) ≥ 0 and the angles satisfy
0 < β − α ≤ 2π. Then the area A of the
polar region R is

A = 1
2

ˆ β

α

(
[f(θ)]2 − [g(θ)]2

)
dθ. θ = 0

O

θ = α

θ = β

r = f(θ)

r = g(θ)

R

Justification:

For the polar curve r = f(θ), we write its parametric equations as

x = r cos θ = f(θ) cos θ, y = r sin θ = f(θ) sin θ.

We divide the interval [α, β] into subintervals of equal width ∆θ with endpoints
θ0, θ1, θ2, . . . , θn. If we choose θ∗

i in the ith subinterval [θi−1, θi], then the area ∆Ai of
the ith region is approximated by the area of the sector of a circle with central angle ∆θ and
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radius f(θ∗
i ). The area can be approximated by

∆Ai ≈ π(radius)2 · (central angle)
2π

= 1
2 (radius)2 × (central angle)

= 1
2 [f(θ∗

i )]2 ∆θ.

So, an approximation to the total area A of R is

A ≈
n∑

i=1

1
2 [f(θ∗

i )]2 ∆θ.

Hence, we obtain the formula for the area A of the polar region R

A = lim
n→∞

n∑
i=1

1
2 [f(θ∗

i )]2 ∆θ =
ˆ β

α

1
2 [f(θ)]2 dθ.

r

θ

area = 1
2 r2θ θ = 0

O

θ = α

θ = β

f(θ∗
i )

θ = θi−1

θ = θi

r = f(θ)

5.45 Example: area between two polar curves

Find the area of the region that lies inside the circle r = 9 cos θ outside of the cardioid
r = 3 + 3 cos θ.

2 4 6 8
0◦

15◦

30◦

45◦

60◦
75◦90◦

105◦

120◦

135◦

150◦

165◦

180◦

195◦

210◦

225◦

240◦

255◦
270◦ 285◦

300◦

315◦

330◦

345◦

θ = π
3

θ = − π
3

Solution The circle r = 9 cos θ makes a complete rotation when θ varies from − π
2 to π

2 ;
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the cardioid r = 3+3 cos θ make a complete loop when θ varies from −π to π. By solving the
simultaneous equations r = 9 cos θ and r = 3 + 3 cos θ, we find the intersections at θ = − π

3
and θ = π

3 . Since r(−θ) = r(θ) for both polar equations, these curves are symmetric about
the polar axis.

Thus, the area of the region that lies inside the circle outside of the cardioid is

A = 2
ˆ π

3

0

1
2
[
(9 cos θ)2 − (3 + 3 cos θ)2] dθ

=
ˆ π

3

0
(−9 − 18 cos θ + 72 cos2 θ) dθ

=
ˆ π

3

0
[−9 − 18 cos θ + 36(1 + cos 2θ)] dθ

= [27θ − 18 sin θ + 18 sin 2θ]
π
3
θ=0

= 9π.

5.46 Example: area between two polar curves

The limaçon r = 3 + 5 cos θ consists of an inner loop and an outer loop. Find the area
between these loops.

2 4 6 8
0◦

15◦

30◦

45◦

60◦
75◦90◦

105◦

120◦

135◦

150◦

165◦

180◦

195◦

210◦

225◦

240◦

255◦
270◦ 285◦

300◦

315◦

330◦

345◦

θ = cos−1(− 3
5 )

θ = 2π − cos−1(− 3
5 )

Solution The given polar curve r = 3+5 cos θ is periodic of period 2π. Since r(−θ) = r(θ),
the polar graph is symmetric to the polar axis. As θ varies from 0 to arccos(− 3

5 ), the polar
equation describes the upper-half outer loop; as θ varies from π to 2π − arccos(− 3

5 ), it
describes the upper-half inner loop. Thus, the area between these loops is

A = 2
ˆ arccos(− 3

5 )

0

1
2 (3 + 5 cos θ)2 dθ − 2

ˆ 2π−arccos(− 3
5 )

π

1
2 (3 + 5 cos θ)2 dθ.

We can compute the following indefinite integral:ˆ
(3 + 5 cos θ)2 dθ =

ˆ
(9 + 30 cos θ + 25 cos2 θ) dθ

=
ˆ [

9 + 30 cos θ + 25
2 (1 + cos 2θ)

]
dθ

= 43
2 θ + 30 sin θ + 25

4 sin 2θ + C.



310 Applications of Integration

Hence,

A =
[ 43

2 θ + 30 sin θ + 25
4 sin 2θ

]arccos(− 3
5 )

θ=0

−
[ 43

2 θ + 30 sin θ + 25
4 sin 2θ

]2π−arccos(− 3
5 )

θ=π

= 43
2 · arccos(− 3

5 ) + 30 · ( 4
5 ) + 25

4 · 2( 4
5 )(− 3

5 )
− 43

2 ·
[
2π − arccos(− 3

5 )
]

− 30 · (− 4
5 ) − 25

4 · 2(− 4
5 )( 3

5 ) + 43
2 · π

= 36 − 43
2 π + 43 · arccos(− 3

5 )
≈ 63.6705.

5.47 MATLAB: area between two polar curves

Find the area of the region that lies inside the circle r = 9 cos θ outside of the cardioid
r = 3 + 3 cos θ.

First, we plot these two polar curves in MATLAB.

>> syms theta
>> r1(theta) = 9* cos(theta);
>> r2(theta) = 3 + 3* cos(theta);
>> theta_array = linspace (-pi ,pi ,200);
>> figure
>> polarplot ( theta_array ,r1( theta_array ),'r')
>> hold on
>> polarplot ( theta_array ,r2( theta_array ),'b')

The figure plotted is shown below.
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In order to calculate the area of the specified region, we need to first find the intersections
of these two polar curves, which is shown in the following:
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>> solve (r1( theta) == r2(theta))

ans =

-pi/3
pi/3

We see that the circle r = 9 cos θ intersects with the cardioid r = 3 + 3 cos θ at θ = − π
3 and

θ = π
3 . Then, we can calculate the area of the specified region below.

>> int_fun = 0.5*( r1(theta)^2 - r2(theta)^2);
>> S = int(int_fun ,-pi/3,pi /3)

S =

9*pi

The area of the specified region is thus 9π.

5.6 Moments, Centers of Mass, and Centroids

Discrete Systems

5.48 Theorem: moment and center of mass for discrete system

Theorem: moment and center of mass for one-dimensional discrete system

For a system of n particles with masses m1, m2, . . . , mn located at the points
x1, x2, . . . , xn on the x-axis, the center of mass of the system is located at

x̄ = M

m
=

n∑
i=1

mixi

n∑
i=1

mi

,

where M =
n∑

i=1
mixi is the moment of the system about the origin.
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Theorem: moments and center of mass for two-dimensional discrete system

For a system of n particles with masses m1, m2, . . . , mn located at the points
(x1, y1), (x2, y2) . . . , (xn, yn) in the xy-plane, the center of mass of the system is lo-
cated at (x̄, ȳ), where

x̄ = My

m
=

n∑
i=1

mixi

n∑
i=1

mi

, ȳ = Mx

m
=

n∑
i=1

miyi

n∑
i=1

mi

.

Here My =
n∑

i=1
mixi is the moment of the system about the y-axis and Mx =

n∑
i=1

miyi is the moment of the system about the x-axis.

Justification:

Consider a situation with two particles with masses m1 and m2 on a rod that lies along
x-axis. Suppose the distances from the masses to fulcrum are d1 and d2 respectively. The
rod will balance if

m1d1 = m2d2.

m1 m1

d1 d2

Denote the coordinates of m1 and m2 to be x1 and x2, and the center of mass at x̄. We
see that d1 = x̄ − x1 and d2 = x2 − x̄. Then we have

m1(x̄ − x1) = m2(x2 − x̄) =⇒ x̄ = m1x1 + m2x2

m1 + m2
.

If we have a system of n particles with masses m1, m2, . . . , mn located at the points
x1, x2, . . . , xn on the x-axis, and if the rod balances, then the center of mass x̄ satisfies:

n∑
i=1

mi(xi − x̄) = 0 =⇒ x̄ =

n∑
i=1

mixi

n∑
i=1

mi

.

For a system of n particles with masses m1, m2, . . . , mn located at the points
(x1, y1), (x2, y2) . . . , (xn, yn) in the xy-plane, we assume that the center of mass of the system
is located at (x̄, ȳ). Then, similarly, we have
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

n∑
i=1

mi(xi − x̄) = 0,

n∑
i=1

mi(yi − ȳ) = 0,

so that

x̄ = My

m
=

n∑
i=1

mixi

n∑
i=1

mi

, ȳ = Mx

m
=

n∑
i=1

miyi

n∑
i=1

mi

.

x

y

m1

m2

m3

m4

m5

m6

m7

m8

mn

(x̄, ȳ)

Center of Mass Along a Curve

5.49 Theorem: center of mass along a curve

Consider a continuous system of mass distributed along a thin curve C : y = f(x), a ≤ x ≤
b, with density ρ(x). Then the center of mass is (x̄, ȳ), where

x̄ = 1
m

ˆ b

a

ρ(x) · x
√

1 + [f ′(x)]2 dx,

ȳ = 1
m

ˆ b

a

ρ(x) · f(x)
√

1 + [f ′(x)]2 dx,

and m =
ˆ b

a

ρ(x) ·
√

1 + [f ′(x)]2 dx is the total mass along the curve C .

Theorem: centroid of a curve

In particular, if ρ(x) = ρ is a constant, then the center of mass is the same as the
centroid of the curve, with

x̄ = 1
L

ˆ b

a

x
√

1 + [f ′(x)]2 dx,

ȳ = 1
L

ˆ b

a

f(x)
√

1 + [f ′(x)]2 dx,

where L =
ˆ b

a

√
1 + [f ′(x)]2 dx is the length of the curve C .
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Justification:

We divide the interval [a, b] into n subintervals with endpoints x0, x1, . . . , xn and equal
width ∆x. Then the ith arc can be approximated by a line segment from (xi−1, f(xi−1)) to
(xi, f(xi)), whose approximate length is, by the Mean value Theorem,

√
(∆x)2 + (f(xi) − f(xi−1))2 =

√
1 +

[
f(xi) − f(xi−1

xi − xi−1

]2

∆x

=
√

1 + [f ′(x∗
i )]2 ∆x.

The mass along the ith piece of arc is approximately

ρ(x∗
i )
√

1 + [f ′(x∗
i )]2 ∆x.

so the moment about the y-axis is

ρ(x∗
i )
√

1 + [f ′(x∗
i )]2 ∆x · x∗

i .

Adding these moments, we obtain the approximate moment of C . By taking the limit as
n → ∞ we obtain the moment of C about the y-axis:

My = lim
n→∞

n∑
i=1

ρ(x∗
i )x∗

i

√
1 + [f ′(x∗

i )]2∆x

=
ˆ b

a

ρ(x) · x

√
1 + [f ′(x)]2 dx.

In a similar fashion, the moment along the ith piece of arc about the x-axis is

ρ(x∗
i )
√

1 + [f ′(x∗
i )]2 ∆x · f(x∗

i )

so we get the moment about the x-axis:

Mx = lim
n→∞

n∑
i=1

ρ(x∗
i )f(x∗

i )
√

1 + [f ′(x∗
i )]2 ∆x

=
ˆ b

a

ρ(x) · f(x)
√

1 + [f ′(x)]2 dx.

The mass along the ith piece of arc is

ρ(x∗
i )
√

1 + [f ′(x∗
i )]2 ∆x,

so we get the total mass of the curve C :

m =
ˆ b

a

ρ(x) ·
√

1 + [f ′(x)]2 dx.
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Hence, the center of mass of the curve is located at the point (x̄, ȳ) =
(

My

m
,

Mx

m

)
, that is,

x̄ =

ˆ b

a

ρ(x) · x

√
1 + [f ′(x)]2 dx

ˆ b

a

ρ(x) ·
√

1 + [f ′(x)]2 dx

, ȳ =

ˆ b

a

ρ(x) · f(x)
√

1 + [f ′(x)]2 dx

ˆ b

a

ρ(x) ·
√

1 + [f ′(x)]2 dx

.

It is easy to deduce the centroid from the center of mass when the density is a constant.

5.50 Example: centroid of a semicircle

Find the centroid of the semicircle y =√
r2 − x2 (−r ≤ x ≤ r).

Solution By symmetry, the centroid (x̄, ȳ)
must lie on the y-axis, so that x̄ = 0. The
length of the semicircle is L = πr. Since x

y

r−r O

y =
√

r2 − x2

y′ = 1
2 (r2 − x2)− 1

2 · (−2x) = − x√
r2 − x2

.

we have

ȳ = 1
L

ˆ r

−r

√
r2 − x2 ·

√
1 +

[
− x√

r2 − x2

]2

dx

= 1
πr

ˆ r

−r

r dx = 1
πr

· 2r2 = 2
π

r.

Hence, the centroid of the semicircle is at
(x̄, ȳ) = (0, 2

π r).

x

y

r−r O

y =
√

r2 − x2

(
0, 2

π r
)

5.51 MATLAB: centroid of a semicircle

Find the centroid of the semicircle y =
√

32 − x2 (−3 ≤ x ≤ 3).
Solution First, we notice that the length of the semicircle is L = 3π. Then, by symmetry,

we know that the centroid (x̄, ȳ) must lie on the y-axis, so that x̄ = 0. We will calculate ȳ
below.

>> syms x
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>> f(x) = sqrt (3^2 - x^2);
>> df(x) = diff(f(x),x)

df(x) =

-x/(9 - x^2) ^(1/2)

>> L = 3*pi;
>> int_fun_y = f(x)*sqrt (1 + df(x)^2);
>> cen_y = int(int_fun_y ,-3,3)/L

cen_y =

6/pi

The result above shows that ȳ = 6
π .

5.52 Theorem: center of mass along a parametric curve

Consider a continuous system of mass distributed along a parametric curve C given by the
parametric equations

x = f(t), y = g(t), α ≤ t ≤ β,

with density ρ(t). Suppose f ′ and g′ are continuous. Then the center of mass of C is (x̄, ȳ),
where

x̄ = 1
L

ˆ β

α

ρ(t) · f(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

ȳ = 1
L

ˆ β

α

ρ(t) · g(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

and m =
ˆ β

α

ρ(t) ·
√

[f ′(t)]2 + [g′(t)]2 dt is the total mass of C .

Theorem: centroid of a parametric curve

In particular, if ρ(t) = ρ is a constant, then the center of mass is the same as the
centroid of the curve, with

x̄ = 1
L

ˆ β

α

f(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

ȳ = 1
L

ˆ β

α

g(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

where L =
ˆ β

α

√
[f ′(t)]2 + [g′(t)]2 dt is the length of the curve C .
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Justification:

The moment of C about the y-axis is

My =
ˆ

ρx ds.

For the parametric curve we have

ds =
√

[f ′(t)]2 + [g′(t)]2 dt.

Thus, by the substitution rule, we get

My =
ˆ β

α

ρ(t) · f(t)
√

[f ′(t)]2 + [g′(t)]2 dt.

Hence, we get

x̄ = My

m
=

ˆ β

α

ρ(t) · f(t)
√

[f ′(t)]2 + [g′(t)]2 dt

ˆ β

α

ρ(t) ·
√

[f ′(t)]2 + [g′(t)]2 dt

.

Similarly, we have

ȳ = Mx

m
=

ˆ β

α

ρ(t) · g(t)
√

[f ′(t)]2 + [g′(t)]2 dt

ˆ β

α

ρ(t) ·
√

[f ′(t)]2 + [g′(t)]2 dt

.

5.53 Example: centroid of a parametric curve

Find the centroid of one arch of the cycloid

x = r(t − sin t), y = r(1 − cos t),

where 0 ≤ t ≤ 2π. x

y

2πr

2r

O

Solution The length of one arch of the cycloid is

L =
ˆ 2π

0

√
[r(1 − cos t)]2 + (−r sin t)2 dt

= r

ˆ 2π

0

√
2 − 2 cos t dt

= 2r

ˆ 2π

0
sin( 1

2 t) dt half-angle formula

= 2r
[
−2 cos( 1

2 t)
]2π

t=0 = 8r.
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Without loss of generality, assume the density ρ = 1. Then the moment of the curve about
the y-axis is

My =
ˆ 2π

0
r(t − sin t) ·

√
[r(t − sin t)]′2 + [r(1 − cos t)]′2 dt

= r2
ˆ 2π

0
(t − sin t)

√
(1 − cos t)2 + sin2 t dt

= r2
ˆ 2π

0
(t − sin t) ·

√
2 − 2 cos t dt

= r2
ˆ 2π

0
(t − sin t) · 2 sin( 1

2 t) dt half-angle formula

= 2r2
ˆ π

0
(2u − sin 2u) sin u · 2 du t = 2u

= 4r2
ˆ π

0
(2u sin u − sin 2u sin u) du

= 4r2 [−2u cos u + 3
2 sin u + 1

6 sin 3u
]π

u=0

= 4r2 · 2π = 8πr2;

the moment of the curve about the x-axis is

Mx =
ˆ 2π

0
r(1 − cos t) ·

√
[r(1 − cos t)]2 + (−r sin t)2 dt

= r2
ˆ 2π

0
(1 − cos t)

√
(1 − cos t)2 + sin2 t dt

= r2
ˆ 2π

0
(1 − cos t) ·

√
2 − 2 cos t dt

= r2
ˆ 2π

0
2 sin2( 1

2 t) · 2 sin( 1
2 t) dt half-angle formula

= 4r2
ˆ π

0
(1 − cos2 u) sin u · 2 du t = 2u

= 8r2 [− cos u + 1
3 cos3 u

]π
u=0

= 8r2 · 4
3 = 32

3 r2.

Hence the centroid of the curve is (x̄, ȳ),
where

x̄ = My

L
= 8πr2

8r
= πr,

ȳ = Mx

L
=

32
3 r2

8r
= 4

3 r.

(
πr, 4

3 r
)

x

y

2πr

2r

O
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5.54 MATLAB: centroid of a parametric curve

Find the centroid of one arch of the cycloid

x = 3(t − sin t), y = 3(1 − cos t),

where 0 ≤ t ≤ 2π.
Solution For one arch of the cycloid, the centroid is calculated in MATLAB using the

following code:

>> syms t
>> x(t) = 3*(t - sin(t));
>> y(t) = 3*(1 - cos(t));
>> dx(t) = diff(x(t),t);
>> dy(t) = diff(y(t),t);
>> int_fun_L = sqrt(dx(t)^2 + dy(t)^2);
>> L = int(int_fun_L ,0 ,2* pi)

L =

24

>> int_fun_x = x(t)*sqrt(dx(t)^2 + dy(t)^2);
>> cen_x = int(int_fun_x ,0 ,2* pi)/L

cen_x =

3*pi

>> int_fun_y = y(t)*sqrt(dx(t)^2 + dy(t)^2);
>> int_fun_y2 = matlabFunction ( int_fun_y ); % convert to ...

function handle
>> cen_y = integral (int_fun_y2 ,0 ,2* pi)/L

cen_y =

4

The result above shows that the centroid is (3π, 4). Note that the command int cannot

solve the integral
ˆ 2π

0
3 (1 − cos t)

√
(3(t − sin t))′ + (3(1 − cos t))′dt, so we use the command

integral to numerically evaluate the integral.
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Centroid for Planar Region

5.55 Theorem: centroid for planar region between two curves

Consider a flat plate (called a lamina) with uniform density ρ that occupies a region R. If
R lies between two curves y = f(x) and y = g(x), where f(x) ≥ g(x) for a ≤ x ≤ b, then the
centroid of R is (x̄, ȳ), where

x̄ = 1
A

ˆ b

a

x [f(x) − g(x)] dx, ȳ = 1
A

ˆ b

a

1
2

{
[f(x)]2 − [g(x)]2

}
dx,

where A =
ˆ b

a

[f(x) − g(x)] dx is the area of R.

Justification: Part 1

First we consider the case that g(x) ≡ 0.
We divide the interval [a, b] into n subintervals with endpoints x0, x1, . . . , xn and equal

width ∆x. Denote x̄i = 1
2 (xi−1 + xi) to be the midpoint of the ith subinterval. Then the

centroid of the ith approximating rectangle is (x̄i,
1
2 f(x̄i)). Its area is f(x̄i)∆x, so its mass

is ρf(x̄i)∆x. Thus, for the ith approximating rectangle, the moment about the y-axis is

ρf(x̄i)∆x · x̄i

Adding these moments, we obtain the moment of the polygonal approximation to R. By
taking the limit as n → ∞ we obtain the moment of R about the y-axis:

My = lim
n→∞

n∑
i=1

ρx̄if(x̄i)∆x = ρ

ˆ b

a

xf(x) dx.

In a similar fashion, the moment of the ith approximating rectangle about the x-axis is

ρf(x̄i)∆x · 1
2 f(x̄i)

so we get the moment of R about the x-axis:

Mx = lim
n→∞

n∑
i=1

ρ · 1
2 [f(x̄i)]2 ∆x = ρ

ˆ b

a

1
2 [f(x)]2 dx.

x

y

x̄i

1
2 f(x̄i)

x0 x1 xi−1 xi xn
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The mass of the lamina is
m = ρA = ρ

ˆ b

a

f(x) dx.

So, the center of mass of the plate (or the centroid of R since the density is uniform) is
located at the point (x̄, ȳ), where

x̄ = My

m
=

ˆ b

a

xf(x) dx

ˆ b

a

f(x) dx

, ȳ = Mx

m
=

ˆ b

a

1
2 [f(x)]2 dx

ˆ b

a

f(x) dx

.

Justification: Part 2

Next, for g(x) ̸≡ 0, the mass of the lamina is

m = ρA = ρ

ˆ b

a

[f(x) − g(x)] dx,

where A is the area bounded by the functions y = f(x) and y = g(x) over the interval [a, b].
The moment of R about the y-axis and about the x-axis are, respectively,

My = ρ

ˆ b

a

x [f(x) − g(x)] dx,

Mx = ρ

ˆ b

a

1
2

{
[f(x)]2 − [g(x)]2

}
dx.

Hence,

x̄ = 1
A

ˆ b

a

x [f(x) − g(x)] dx, ȳ = 1
A

ˆ b

a

1
2

{
[f(x)]2 − [g(x)]2

}
dx.

5.56 Example: centroid of a semicircular plate

As shown in the figure, we place the plate
so that the circular arc is y = f(x) =√

r2 − x2 (−r ≤ x ≤ r). Find the centroid
of the plate.

r−r O
x

y

y =
√

r2 − x2

Solution By symmetry, the centroid (x̄, ȳ) must lie on the y-axis, so that x̄ = 0. The area



322 Applications of Integration

of the semicircular plate is A = 1
2 πr2. Thus,

ȳ = 1
A

ˆ r

−r

1
2 [f(x)]2 dx

= 1
1
2 πr2 ·

ˆ r

−r

1
2

(√
r2 − x2

)2
dx

= 2
πr2

ˆ r

0

(
r2 − x2) dx even function

= 2
πr2

[
r2x − 1

3 x3]r
x=0 = 4

3π r.

Hence, the centroid of the semicircular
plate is at (x̄, ȳ) = (0, 4

3π r).
r−r O

x

y

y =
√

r2 − x2

(
0, 4

3π r
)

5.57 Example: centroid of a cycloid plate

Find the centroid of the plate between one
arch of the cycloid

x = r(t − sin t), y = r(1 − cos t),

where 0 ≤ t ≤ 2π, and the x-axis.
x

y

2πr

2r

O

Solution By applying the substitution rule using the parametric equations, the area of
one arch of the cycloid is

A =
ˆ 2πr

0
y dx

=
ˆ 2π

0
r(1 − cos t) · [r(t − sin t)]′ dt

{
x = r(t − sin t)
y = r(1 − cos t)

= r2
ˆ 2π

0
(1 − 2 cos t + cos2 t) dt

= r2
ˆ 2π

0

[
1 − 2 cos t + 1

2 (1 + cos 2t)
]

dt double-angle formula

= r2 [ 3
2 t − 2 sin t + 1

4 sin 2t
]2π

t=0 = 3πr2.

Without loss of generality, assume the density ρ = 1. Then the moment of the plate about
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the y-axis is

My =
ˆ 2πr

0
xy dx

=
ˆ 2π

0
r(t − sin t) · r(1 − cos t) · [r(t − sin t)]′ dt

{
x = r(t − sin t)
y = r(1 − cos t)

= r3
ˆ 2π

0
(t − sin t)(1 − cos t)2 dt = 3π2r3;

the moment of the plate about the x-axis is

Mx =
ˆ 2πr

0

1
2 y2 dx

=
ˆ 2π

0

1
2 [r(1 − cos t)]2 · [r(t − sin t)]′ dt

{
x = r(t − sin t)
y = r(1 − cos t)

= 1
2 r3
ˆ 2π

0
(1 − cos t)3 dt = 5

2 πr3.

Hence the centroid of the plate is (x̄, ȳ),
where

x̄ = My

L
= 3π2r3

3πr2 = πr,

ȳ = Mx

L
=

5
2 πr3

3πr2 = 5
6 r.

x

y

2πr

2r (
πr, 5

6 r
)

O

5.58 MATLAB: centroid of a semicircular plate

Find the centroid of the semicircular plate whose circular arc is y = f(x) =
√

32 − x2

(−3 ≤ x ≤ 3).
Solution First, we notice that the area of the semicircular plate is A = 9π

2 . Moreover, by
symmetry, the centroid (x̄, ȳ) must lie on the y-axis, so that x̄ = 0. Then, we calculate ȳ
below.

>> syms x
>> y(x) = sqrt (3^2 - x^2);
>> A = 3^2* pi /2;
>> int_fun = 0.5*f(x)^2;
>> cen_y = int(int_fun ,-3,3)/A

cen_y =

4/pi

The result above shows that ȳ = 4
π .
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5.59 MATLAB: centroid of a cycloid plate

Find the centroid of the plate between one arch of the cycloid

x = 3(t − sin t), y = 3(1 − cos t),

where 0 ≤ t ≤ 2π, and the x-axis.
Solution The centroid of the plate is calculated in MATLAB using the following code:

>> syms t
>> x(t) = 3*(t - sin(t));
>> y(t) = 3*(1 - cos(t));
>> dx(t) = diff(x(t),t);
>> int_fun_A = y(t)*dx(t);
>> A = int(int_fun_A ,0 ,2* pi)

A =

27* pi

>> int_fun_x = x(t)*y(t)*dx(t);
>> cen_x = int(int_fun_x ,0 ,2* pi)/A

cen_x =

3*pi

>> int_fun_y = 0.5*y(t)^2* dx(t);
>> cen_y = int(int_fun_y ,0 ,2* pi)/A

cen_y =

5/2

The result above shows that the centroid of the plate is
(
3π, 5

2
)
.

Pappus’s Theorem

5.60 Example: relationship - arc length and surface area of revolution

We have calculated several geometric quantities associated with the cycloid

x = r(t − sin t), y = r(1 − cos t), 0 ≤ t ≤ 2π.

We know that the arc length is L = 8r and the centroid of the arc is (x̄, ȳ) = (πr, 4
3 r).

1. For the solid obtained by rotating the region under the curve about the x-axis, we know
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that the surface area is S = 64
3 πr2. It is easy to verify that

S = 64
3 πr2 = 2π( 4

3 r) × (8r) = 2πȳ × L.

2. For the solid obtained by rotating the region under the curve about the y-axis, we know
that the surface area is S = 16π2r2. It is easy to verify that

S = 16π2r2 = 2π(πr) × (8r) = 2πx̄ × L.

5.61 Example: relationship - area and volume of revolution

We have calculated several geometric quantities associated with the area under the cycloid

x = r(t − sin t), y = r(1 − cos t), 0 ≤ t ≤ 2π.

We know that the area under the arc is A = 3πr2 and the centroid of region under the arc is
(x̄, ȳ) = (πr, 5

6 r).

1. For the solid obtained by rotating the region under the curve about the x-axis, we know
that the volume is V = 5π2r3. It is easy to verify that

V = 5π2r3 = 2π( 5
6 r) · (3πr2) = 2πȳ · A.

2. For the solid obtained by rotating the region under the curve about the y-axis, we know
that the volume is V = 6π3r3. It is easy to verify that

V = 6π3r3 = 2π(πr) · (3πr2) = 2πx̄ · A.

5.62 Theorem: Pappus’s Theorem

1. The surface area S of a surface of revolution generated by rotating a plane curve C
about an axis external to C and on the same plane is equal to the product of the arc
length L of C and the distance d traveled by the centroid of C .

2. The volume V of a solid of revolution generated by rotating a plane region R about an
external axis is equal to the product of the area A of R and the distance d traveled by
the centroid of R.

5.7 Work

5.63 Theorem: work done in moving an object along a line

Suppose that the object moves along the x-axis in the positive direction, from x = a to
x = b, and at each point x between a and b a force f(x) acts on the object, where f is a
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continuous function. Then the total work by the force is

W =
ˆ b

a

f(x) dx.

Justification:

Suppose that the object moves along the x-axis in the positive direction, from x = a
to x = b, and at each point x between a and b a force f(x) acts on the object, where f
is a continuous function. We divide the interval [a, b] into n subintervals with endpoints
x0, x1, . . . , xn and equal width ∆x. We choose a sample point x∗

i in the ith subinterval
[xi−1, xi]. Then the force at that point is f(x∗

i ). If n is large, then ∆x is small, and since f is
continuous, the values of f don’t change very much over the interval [xi−1, xi]. In other words,
f is almost constant on the interval and so the work Wi that is done in moving the particle
from xi−1 to xi is approximately given by Wi ≈ f(x∗

i ) × ∆x. Thus we can approximate the
total work by

W ≈
n∑

i=1
f(x∗

i )∆x.

Therefore, the work done in moving the object from a to b as the limit of this quantity as
n → ∞. Since the right side is a Riemann sum, we recognize its limit as being a definite
integral:

W = lim
n→∞

n∑
i=1

f(x∗
i )∆x =

ˆ b

a

f(x) dx.

5.64 Example: spring stretching

A spring exerts a force of 10 N when stretched 10 cm beyond its natural length. How much
work is required to stretch the spring 20 cm beyond its natural length?

Solution According to Hooke’s law, the force needed to extend or compress a spring by
some distance x meters away from its natural length scales linearly with respect to that
distance, that is, f(x) = kx. When the spring is stretched 10 cm beyond its natural length,
the force is 0.1k. By the hypothesis, 10 = 0.1k, so that k = 100. Thus, f(x) = 100x.

Hence the work done in stretching the spring 20 cm beyond its natural length is

W =
ˆ 0.2

0
100x dx =

[
50x2]0.2

x=0 = 2 J.

5.65 Example: cable lifting

A cable 60 meters long whose mass is 30 kilograms is hanging over the edge of a tall
building and does not touch the ground. How much work is required to lift the top 12 meters
of the cable to the top of the building?

Solution To lift the top 12 meters of the cable to the top of the building, the total work
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done consists of two parts: (1) W1 for moving the first top 12 meters of the cable to the top
the building; (2) W2 for moving the bottom (60 − 12) = 48 meters of the cable 12 meters
higher.

(1) Let us place the origin at the top of the building and the x-axis pointing downward.
To compute the work W1, we divide the cable into small segments with length ∆x. If x∗

i is a
point in the ith such segment, then all points in the segment are lifted by approximately the
same amount, namely x∗

i . Since the cable weights 30
60 = 1

2 kilograms per meter, so the weight
of the ith segment is 1

2 ∆x. Thus, the work done on the ith segment is

( 1
2 ∆x) · x∗

i · g = 1
2 gx∗

i ∆x,

By adding all these approximations and letting the number of segments becomes large (equiv-
alently ∆x → 0), we get the work done for moving the first top 12 meters of the cable to the
top the building:

W1 = lim
n→∞

n∑
i=1

1
2 gx∗

i ∆x =
ˆ 12

0

1
2 gx dx =

[ 1
4 gx2]12

x=0 = 36g.

(2) Similar as above, we divide the second portion of cable into small segments with length
∆x. This gives the weight of the ith segment to be 1

2 ∆x. Thus, the work done on the ith
segment is

( 1
2 ∆x) · 12 · g = 6g∆x,

By adding all these approximations and letting the number of segments becomes large (equiv-
alently ∆x → 0), we get the work done for moving the bottom 48 meters of the cable to the
top the building:

W2 = lim
n→∞

n∑
i=1

6g∆x =
ˆ 60

12
6g dx = 6g × (60 − 12) = 288g.

In fact, we can compute W2 without using integration. Since this portion of cable exerts a
force of 1

2 × 48g along the direction of motion, the work done is W2 = 1
2 × 48g × 12 = 288g.

Hence the total work done is

W = W1 + W2 = 36g + 288g = 324g = 3175.2 J.

5.66 Example: pumping liquid

A frustum of a cone of height H, top radius R and base radius r contains some liquid of
density ρ. Suppose that the depth of the liquid in the frustum is h. How much work does it
take to pump the liquid to the top of the container?

Solution Let x be the distance to the top of the container. Then the liquid extends from
x = H − h to x = H. We sketch a diagram of the situation.
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r

ri ∆x

RO

x

x∗
i

h

H

R

ri

r
rH

R − r

By similar triangles, the radius r(x) of the disk at depth x satisfies

r(x) − r

R − r
= H − x

H
,

which gives
r(x) = (R − r)H − x

H
+ r.

We divide the interval [H − h, H] into subintervals. Then the thin layer corresponding to
[xi−1, xi] has approximate volume

∆Vi ≈ π[r(x∗
i )]2∆x,

and the work needed to pump the layer to the top of the container is approximately

∆Wi ≈ (gρ∆Vi)x∗
i = πgρx∗

i [r(x∗
i )]2∆x,

where g is the gravitational constant. Therefore the total work needed to pump all the liquid
to the top of container is approximately

n∑
i=1

∆Wi = πgρ

n∑
i=1

x∗
i [r(x∗

i )]2∆x.

Taking the limit as ∆x → 0, we get the total work

W = πgρ

ˆ H

H−h

x[r(x)]2 dx = πgρ

H2

ˆ H

H−h

x[(R − r)(H − x) + rH]2 dx

= πgρH2R2 [a2b + 1
2 a(2a − 3b)b2 + 1

3 (1 − a)(1 − 3a)b3 − 1
4 (1 − a)2b4] ,

where a = r

R
and b = h

H
.
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5.67 MATLAB: spring stretching

A spring exerts a force of 10 N when stretched 10 cm beyond its natural length. How much
work is required to stretch the spring 20 cm beyond its natural length?

Solution The problem can be solved in MATLAB as follows:

>> syms k
>> g(k) = 0.1*k; % Hooke 's law
>> k0 = solve (g(k) == 10) % solve the constant k

k0 =

100

>> syms x
>> int_fun = k0*x;
>> W = int(int_fun ,0 ,0.2)

W =

2

We see that the work required is 2 (J).
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Summary

Theorem: area

• If f(x) ≥ g(x),

A =
ˆ b

a

[f(x) − g(x)] dx

• In general,

A =
ˆ b

a

|f(x) − g(x)| dx

x = a

x = b

y = f(x)

y = g(x)

x

y

• For a region under the parametric curve x = f(t), y = g(t) (α ≤ t ≤ β),

A =
ˆ β

α

g(t) f ′(t) dt

• For a polar region bounded by the polar
curves r = f(θ), r = g(θ), and by the rays
θ = α to θ = β,

A = 1
2

ˆ β

α

(
[f(θ)]2 − [g(θ)]2

)
dθ

θ = 0
O

θ = α

θ = β

r = f(θ)

r = g(θ)

R

Theorem: volume

• by slices:

V =
ˆ b

a

A(x) dx x = a x = bA(x)
x

• by shells:

V =
ˆ b

a

(2πx)︸ ︷︷ ︸
circumference

[f(x)]︸ ︷︷ ︸
height

(dx)︸︷︷︸
thickness x

y

a b

y = f(x)
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Theorem: arc length

• For y = f(x) (a ≤ x ≤ b),

L =
ˆ b

a

√
1 + [f ′(x)]2 dx.

• For parametric curve x = f(t), y = g(t)
(α ≤ t ≤ β),

L =
ˆ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

• In general,

L =
ˆ

(ds)︸︷︷︸
arc length

.

x

y

• For the polar curve r = f(θ) from θ = α
to θ = β,

L =
ˆ β

α

√
[f(θ)]2 + [f ′(θ)]2 dθ

=
ˆ β

α

√
r2 + (dr/dθ)2 dθ

θ = 0
O

θ = α

θ = β

r = f(θ)

Theorem: surface area of revolution

• For a curve y = f(x) (a ≤ x ≤ b),

S =
ˆ b

a

2π f(x)
√

1 + [f ′(x)]2 dx;

• For a parametric curve x = f(t), y = g(t)
(α ≤ t ≤ β),

S =
ˆ β

α

2πg(t)
√

[f ′(t)]2 + [g′(t)]2 dt.

• In general,ˆ
(2πr)︸ ︷︷ ︸

circumference

(ds)︸︷︷︸
arc length

.

x

y
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Theorem: center of mass for discrete system

• For one-dimensional system:

x̄ = M

m
=

n∑
i=1

mixi

n∑
i=1

mi

.

• For two-dimensional system:

x̄ = My

m
=

n∑
i=1

mixi

n∑
i=1

mi

, ȳ = Mx

m
=

n∑
i=1

miyi

n∑
i=1

mi

.

Theorem: center of mass

• For mass distributed along a curve y = f(x) (a ≤ x ≤ b),

x̄ = 1
m

ˆ b

a

ρ(x) · x
√

1 + [f ′(x)]2 dx,

ȳ = 1
m

ˆ b

a

ρ(x) · f(x)
√

1 + [f ′(x)]2 dx,

where m =
ˆ b

a

ρ(x) ·
√

1 + [f ′(x)]2 dx is the total mass of the curve.

• For mass distributed along a parametric curve x = f(t), y = g(t) (α ≤ t ≤ β),

x̄ = 1
m

ˆ β

α

ρ(t) · f(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

ȳ = 1
m

ˆ β

α

ρ(t) · g(t)
√

[f ′(t)]2 + [g′(t)]2 dt,

where m =
ˆ β

α

ρ(t) ·
√

[f ′(t)]2 + [g′(t)]2 dt is the total mass of the curve.

• For a plate occupying the region bounded by two curves y = f(x) and y = g(x) (a ≤
x ≤ b), with f(x) ≥ g(x), the centroid is at (x̄, ȳ):

x̄ = 1
A

ˆ b

a

x [f(x) − g(x)] dx, ȳ = 1
A

ˆ b

a

1
2

{
[f(x)]2 − [g(x)]2

}
dx,

where A =
ˆ b

a

[f(x) − g(x)] dx is the area of the region.
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Theorem: Pappus’s Theorem

1. The surface area S of a surface of revolution generated by rotating a plane curve C
about an axis external to C and on the same plane is equal to the product of the arc
length L of C and the distance d traveled by the centroid of C .

2. The volume V of a solid of revolution generated by rotating a plane region R about an
external axis is equal to the product of the area A of R and the distance d traveled by
the centroid of R.

Theorem: work done by a force

W =
ˆ b

a

f(x) dx.
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6
CHAPTER

Infinite Sequences and Series

6.1 Infinite Sequences

6.1 Definition: infinite sequence

An infinite sequence (or sequence for short) is an ordered list of numbers of the form

{a1, a2, a3, . . . , an, . . . }.

For each n, the term an is called the nth term of the sequence.
For convenience, sometimes we write a sequence as {an}.

6.2 Example: infinite sequences

The following are some examples of sequences.

1. The sequence {1, 2, 3, . . . , n, . . . } consists of all the positive integers, with the nth term
of the sequence being an = n.

2. The nth term of the sequence {1, −1, 1, −1, 1, −1, . . . } is an = (−1)n−1.

3. The terms in the sequence

{3, 3.1, 3.14, 3.141, 3.1415, . . . }

are from the truncations of the number π. The nth term of the sequence is the num-
ber obtained by truncating π to n − 1 decimal place. For this sequence, there is no
elementary formula available to express an in terms of n.

4. For a given expression of a function f , by evaluating the function at integers, we can
obtain a sequence

{a1, a2, a3, . . . , an, . . . } ,
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where an = f(n) (n = 1, 2, 3, . . . ). For instance, the infinite sequence{
cos π

1 , cos π
2 , cos π

3 , . . . , cos π
n , . . .

}
can be generated by the function f(x) = cos π

x .

5. The infinite sequence{
√

2,
√

2 +
√

2,

√
2 +

√
2 +

√
2,

√
2 +

√
2 +

√
2 +

√
2, . . .

}

can be defined as

a1 =
√

2; an =
√

2 + an−1, for n ≥ 2.

By using the formula, we can generate the whole sequence recursively. In fact, for the
first few terms:

when n = 1 : a1 =
√

2;
when n = 2 : a2 =

√
2 + a1

=
√

2 +
√

2;
when n = 3 : a3 =

√
2 + a2

=
√

2 +
√

2 +
√

2;
when n = 4 : a4 =

√
2 + a3

=

√
2 +

√
2 +

√
2 +

√
2.

6.3 Definition: limit of infinite sequence

• An infinite sequence {an} has the limit L,
which is a finite number, and we write

lim
n→∞

an = L or an → L as n → ∞

if we can make the terms an as close to L
as we like by taking n sufficiently large.

n

an

L

1 2 3 4 5 6 7 8 9 10O

If lim
n→∞

an exists, we say the sequence converges (or is convergent). Otherwise, we
say the sequence diverges (or is divergent).

• The infinite limit lim
n→∞

an = ∞ means that we can make the terms an as large as we like
by taking n sufficiently large. In this case, we say the sequence diverges to infinity.
Similarly, we can definite lim

n→∞
an = −∞.
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6.4 Example: convergent/divergent sequences

1. The sequence { 1
1 , 1

2 , 1
3 , . . . , 1

n , . . .
}

converges to 0, since we can make the terms an = 1
n

as close to 0 as we like by taking
n sufficiently large. In fact, for instance, to make the terms an close to 0 within 0.1,
that is,

|an − 0| < 0.1,

we just need to take n > 10, as shown in the figure.

n an n an

1 1.0 11 0.090909
2 0.5 12 0.083333
3 0.333333 13 0.076923
4 0.25 14 0.071429
5 0.2 15 0.066667
6 0.166667 20 0.05
7 0.142857 30 0.033333
8 0.125 40 0.025
9 0.111111 50 0.02
10 0.1 60 0.016667

n

an

0 + 0.1

0 − 0.1 1 2 3 4 5 10

0.5

2. The sequence { 1
2 , ( 1

2 )2, ( 1
2 )4, . . . , ( 1

2 )n, . . .
}

converges to 0, since we can make the terms an = ( 1
2 )n as close to 0 as we like by taking

n sufficiently large. In fact, for instance, to make the terms an close to 0 within 0.05,
that is,

|an − 0| < 0.05,

we just need to take n > 4, as shown in the figure.

n an

1 0.5
2 0.25
3 0.125
4 0.0625
5 0.03125
6 0.015625
7 0.0078125
8 0.00390625
9 0.00195313
10 0.000976563

n

an

0 + 0.05
0 − 0.05 1 2 3 4 5 10

0.5



338 Infinite Sequences and Series

3. The sequence
{0.9, 0.99, 0.999, 0.9999, . . . }

converges to 1, since the terms increase in magnitude and approach 1. For instance, to
make the terms an close to 0 within 0.07, that is,

|an − 0| < 0.07,

we just need to take n > 1.

n an

1 0.9
2 0.99
3 0.999
4 0.9999
5 0.99999
6 0.999999

n

an

1
1 + 0.07
1 − 0.07

1 2 3 10

0.5

4. The sequence {
−1

3
,

8
9

,
3
19

, . . . ,
n2 + 2 · (−1)nn

2n2 + 1
, . . .

}
converges to 1

2 , since we can make the terms an = n2 + 2 · (−1)n

2n2 + 1
as close to 1

2 as we
like by taking n sufficiently large. In fact, for instance, to make the terms an close to
1
2 within 0.15, that is, ∣∣an − 1

2
∣∣ < 0.15,

we just need to take n > 6, as shown in the figure.

n an n an

1 −0.333333 11 0.407407
2 0.888889 12 0.581315
3 0.157895 13 0.421829
4 0.727273 14 0.569975
5 0.294118 15 0.432373
6 0.657534 20 0.549313
7 0.353535 30 0.533037
8 0.620155 40 0.524836
9 0.386503 60 0.516595
10 0.597015 80 0.512460

n

an

1
2

1
2 + 0.15

1
2 − 0.15

1 2 3 4 5 6 7 10 20
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5. The sequence

{sin 1, sin 2, sin 3, . . . , sin n, . . . }

diverges, since an = sin n does not appear
to approach any finite number as n → ∞. n

an

12 5 10 20 30 40 50

−1

1

6. The sequence{
1

ln 2
,

2
ln 3

,
3

ln 4
, . . . ,

n

ln(n + 1)
, . . .

}
diverges to ∞. This is because,

lim
x→∞

x

ln(x + 1)
H= lim

x→∞

1
1

x + 1
= lim

x→∞
(x + 1) = ∞,

we have lim
n→∞

an = lim
n→∞

n

ln(n + 1)
= ∞.

n

an

1 2 3 4 5 10 20 30 40 50

1
2

5

6.5 Theorem: limit of a sequence from limit of a function

If lim
x→∞

f(x) = L and f(n) = an when n is an integer, then lim
n→∞

an = L. The same result
holds when L = ∞ or −∞.

6.6 Theorem: Limit Laws for sequences

Suppose {an} and {bn} are convergent sequences and c is a constant. Then the following
hold.

1. lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

2. lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn.

3. lim
n→∞

can = c lim
n→∞

an. In particular, lim
n→∞

c = c.

4. lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn.

5. lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn ̸= 0.
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6. lim
n→∞

ap
n =

[
lim

n→∞
an

]p

if p > 0 and an > 0.

6.7 Example: limits of sequences

1. Show that lim
n→∞

1
np

= 0 (p > 0).

Solution Because lim
x→∞

1
x

= 0, we know that lim
n→∞

1
n

= 0. Thus, for p > 0, by the
Limit Laws,

lim
n→∞

1
np

=
(

lim
n→∞

1
n

)p

= 0p = 0.

2. Compute lim
n→∞

n
3
2 + 2n − 1
n

3
2 + 1

.

Solution Since

n
3
2 + 2n − 1
n

3
2 + 1

=
n

3
2

(
1 + 2 · 1

n
1
2

− 1
n

3
2

)
n

3
2

(
1 + 1

n
3
2

) =
1 + 2 · 1

n
1
2

− 1
n

3
2

1 + 1
n

3
2

,

from the Limit Laws, we have

lim
n→∞

n
3
2 + 2n − 1
n

3
2 + 1

=
1 + 2 · lim

n→∞

1
n

1
2

− lim
n→∞

1
n

3
2

1 + lim
n→∞

1
n

3
2

= 1 + 2 · 0 − 0
1 + 0

= 1.

6.8 Theorem: Squeeze Theorem

If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

6.9 Example: limits of sequence - Squeeze Theorem

Show that lim
n→∞

cos n√
n

= 0.

Solution Since −1 ≤ cos n ≤ 1 for all n, we have

− 1√
n

≤ cos n√
n

≤ 1√
n

.

Because lim
n→∞

1√
n

= lim
n→∞

(
− 1√

n

)
= 0, by the Squeeze Theorem, we get that lim

n→∞

cos n√
n

= 0.
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6.10 Example: zero limit and its absolute value

Show that lim
n→∞

|an| = 0 if and only if lim
n→∞

an = 0.
Solution
“=⇒”: Suppose lim

n→∞
|an| = 0. By the Limit Laws, lim

n→∞
(−|an|) = 0. Since

−|an| ≤ an ≤ |an|,

by the Squeeze Theorem, lim
n→∞

an = 0.
“⇐=”: Suppose lim

n→∞
an = 0. By the Limit Laws,

lim
n→∞

√
a2

n + n−1 =
√

lim
n→∞

(a2
n + n−1)

=
√

lim
n→∞

a2
n + lim

n→∞
n−1

=
√

lim
n→∞

a2
n + 0 =

√
02 + 0 = 0.

Since
0 ≤ |an| ≤

√
a2

n + n−1,

by the Squeeze Theorem, lim
n→∞

|an| = 0.

6.11 Definition: two asymptotic relations

• The notation
an ≪ bn, as n → ∞,

which is read “an is much smaller than bn as n tends to ∞,” means

lim
n→∞

an

bn
= 0.

• The notation
an ∼ bn, as n → ∞,

which is read “an is asymptotic to bn as n tends to ∞,” means that

an − bn ≪ bn, as n → ∞,

or, equivalently,
lim

n→∞

an

bn
= 1.

6.12 Theorem: growth rates of sequences

For any real numbers p > 0, q > 0, r > 0, and b > 1, the following asymptotic relations
hold: as n → ∞,

lnq n ≪ np ≪ np lnr n ≪ bn ≪ n! ≪ nn.
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Remark: Stirling’s formula

A more precise formula for n! is given by Stirling’s formula:

n! ∼
√

2πn
(n

e

)n

, as n → ∞.

Justification: lnq n ≪ np

Since, as n → ∞,

lnq n ≪ np ⇐⇒ lnq n

np
≪ 1 ⇐⇒

(
lnq n

np

)1/q

≪ 1 ⇐⇒ ln n

np/q
≪ 1 ⇐⇒ ln n ≪ np/q,

we only need to show for any positive real number p,

ln n ≪ np, as n → ∞.

In fact, by l’Hospital’s Rule,

lim
x→∞

ln x

xp

H= lim
x→∞

1
x

pxp−1 = lim
x→∞

1
pxp

= 0,

so that lim
n→∞

ln n

np
= 0. Thus, ln n ≪ np as n → ∞.

Justification: np ≪ np lnr n

Since, as n → ∞,

np ≪ np lnr n ⇐⇒ 1 ≪ lnr n ⇐⇒ 1 ≪ ln n,

we only need to show that lim
n→∞

1
ln n

= 0. The latter is obvious since lim
x→∞

1
ln x

= 0.

Justification: np lnr n ≪ bn

Since lnq n ≪ np as n → ∞ for any positive p and q, to show that np lnr n ≪ bn, we only
need to show that the asymptotic relation np ≪ bn for any positive p and b > 1. Furthermore,
since

np ≪ bn ⇐⇒ n ≪ (b1/p)n,

it is sufficient to show that n ≪ bn for any b > 1.
In fact, we may write b = 1 + a, with a > 0. Then, by the binomial expansion, we have

bn = (1 + a)n = 1 + na + 1
2 n(n − 1)a2 + · · · + an > 1

2 n(n − 1)a2.

We get
0 <

n

bn
<

2
a2 · 1

n − 1
.
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Because lim
n→∞

1
n − 1

= 0, by the Squeeze Theorem, we have lim
n→∞

n

bn
= 0. That is, n ≪ bn.

Justification: bn ≪ n!

For the given number b, take a sufficiently large K such that b < K. Then, for n > K, we
have

0 <
bn

n!
=

n factors︷ ︸︸ ︷
b · b · · · b · b

n · (n − 1) · · · 2 · 1

= b

n
· b

n − 1
· · · b

K
· b

K − 1
· · · b

2
· b

1

<
b

n
· b

K − 1
· · · b

2
· b

1
.

Since
lim

n→∞

(
b

n
· b

K − 1
· · · b

2
· b

1

)
=
(

b · b

K − 1
· · · b

2
· b

1

)
· lim

n→∞

1
n

= 0,

by the Squeeze Theorem, we have lim
n→∞

bn

n!
= 0. That is, bn ≪ n! as n → ∞.

Justification: n! ≪ nn

Since

0 <
n!
nn

= n · (n − 1) · · · 2 · 1
n · n · · · n · n︸ ︷︷ ︸

n factors

= n

n
· n − 1

n
· · · 2

n
· 1

n
<

1
n

.

It is known that lim
n→∞

1
n

= 0. By the Squeeze Theorem, we have lim
n→∞

n!
nn

= 0. That is,
n! ≪ nn as n → ∞.

6.13 Theorem: geometric sequences

Let r be a real number. Then

lim
n→∞

rn =

 0, if |r| < 1;
1, if r = 1;
diverges, if r ≤ −1 or r > 1.

Justification:

1. Consider 0 ≤ |r| < 1.
When r = 0, it is clear that lim

n→∞
rn = 0.
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When 0 < r < 1, we put b = 1
r

and know that b > 1. Since 1 ≪ bn as n → ∞, we have

lim
n→∞

1
bn

= 0 =⇒ lim
n→∞

rn = 0.

When −1 < r < 0, we have 0 < |r| < 1. Since

−|r|n ≤ rn ≤ |r|n,

and lim
n→∞

|r|n = lim
n→∞

(−|r|n) = 0, by the Squeeze Theorem, we know that lim
n→∞

rn = 0.

2. If r = 1, then rn ≡ 1 for all n ≥ 1. In this case, it is clear that lim
n→∞

rn = 1.

3. Suppose r ≤ −1 or r > 1.
When r > 1, we know that 1 ≪ rn, so that {rn} diverges to ∞.
When r ≤ −1, {|r|n} diverges to ∞, so that {rn} oscillates and never approach any
finite number. Hence, {rn} diverges in this case.

6.14 Theorem: sequential limit for continuous function

If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f(an) = f(L).

6.15 Example: limit of sequence

1. Compute the limit lim
n→∞

n
√

a for a > 0.

Solution Let an = ln n
√

a = ln a

n
. Then n

√
a = ean . We know that 1 ≪ n as n → ∞,

so that lim
n→∞

an = 0. Because ex is a continuous function at x = 0, we have

lim
n→∞

n
√

a = lim
n→∞

ean = e0 = 1.

2. Compute the limit lim
n→∞

n
√

n.

Solution Let an = ln n
√

n = ln n

n
. Then n

√
n = ean . We know that ln n ≪ n as n → ∞,

so that lim
n→∞

an = 0. Because ex is a continuous function at x = 0, we have

lim
n→∞

n
√

n = lim
n→∞

ean = e0 = 1.

3. Compute the limit lim
n→∞

(
1 − 2

n

)n

.
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Solution Let an = ln
(

1 − 2
n

)n

= n · ln
(

1 − 2
n

)
. Then

(
1 − 2

n

)n

= ean . Replacing

n by a continuous variable x−1, we see that n → ∞ is a special case when x → 0+.
Applying l’Hospital’s Rule gives

lim
x→0+

x−1 · ln (1 − 2x) = lim
x→0+

ln (1 − 2x)
x

H= lim
x→0+

−2
1 − 2x

1
= −2,

so we have lim
n→∞

an = −2. Because ex is a continuous function at x = −2, we have

lim
n→∞

(
1 − 2

n

)n

= lim
n→∞

ean = e−2.

6.16 Definition: terminology for sequences

• {an} is increasing if an+1 > an. For example, {1, 2, 3, . . . }.

• {an} is non-decreasing if an+1 ≥ an. For example, {1, 1, 2, 2, 3, 3, . . . }.

• {an} is decreasing if an+1 < an. For example, {0, −1, −2, −3, . . . }.

• {an} is non-increasing if an+1 ≤ an. For example, {0, 0, −1, −1, −2, −2, . . . }.

• {an} is monotonic if it is either non-increasing or non-decreasing.

• {an} is bounded if there is number M such that |an| ≤ M for all n.

6.17 Example: product of sequences

Suppose {an} is bounded and lim
n→∞

bn = 0. Show that lim
n→∞

anbn = 0.
Solution Since {an} is bounded, there is a number M such that |an| ≤ M for all n. Thus,

for every n,
−M |bn| ≤ anbn ≤ M |bn|.

Since lim
n→∞

bn = 0 implies lim
n→∞

|bn| = 0, by the Limit Laws, we know that lim
n→∞

M |bn| =
lim

n→∞
(−M |bn|) = 0. Hence, by the Squeeze Theorem, we get lim

n→∞
anbn = 0.

6.18 Theorem: Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.
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Remark:

The proof of the theorem is based on a fundamental property of the real numbers
that if a sequence (or a nonempty set) is bounded above, then it has a least upper
bound. It is an expression of the fact that there is no gap or hole in the real number
line. We omit the details of the proof because it is beyond the scope of the text.

6.19 Example: sequence generated by recurrence relation

Show the sequence {an}, defined by the recurrence relation,

an = 1
2 an−1 + 1, (n ≥ 2); a1 = 1,

has a limit. What is the limit?

Analysis: By plotting the first few terms
of the sequence, we see that the sequence ap-
pears increasing and bounded.

n

an

2

1 2 3 4 5 6 7 8 9 10

1

O

Solution We shall prove the following statement by induction: for n ≥ 1,

Sn :
{

an+1 > an,
1 ≤ an < 2.

In fact, for n = 1, we have

a2 = 1
2 a1 + 1 = 1

2 · 1 + 1 = 3
2 > 1 = a1,

1 = a1 < 2.

So S1 is true. Suppose the statement is true for some k:

Sk :
{

ak+1 > ak,
1 ≤ ak < 2.

Then,
ak+2 = 1

2 ak+1 + 1 > 1
2 ak + 1 = ak+1,

and
1 ≤ ak < ak+1 = 1

2 ak + 1 < 1
2 · 2 + 1 = 2,

that is
Sk+1 :

{
ak+2 > ak+1,
1 ≤ ak+1 < 2,

Sk+1 is also true. Hence, by the principle of induction, the statement Sn is true for all n ≥ 1.
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Because {an} is increasing and bounded, by the Monotonic Sequence Theorem, lim
n→∞

an

exists, say L.
To find the limit L, we let n tend to ∞ on the both sides of the recurrence relation

an = 1
2 an−1 + 1. This yields L = 1

2 L + 1. Solving the equation gives L = 2.

6.20 MATLAB: limit of sequence

We will compute the limit of the following sequences in MATLAB.

1. lim
n→∞

n
√

a for a > 0.

Solution

>> syms a n
>> assume (a,'positive ') % a>0
>> assume (n,'positive ') % n>0
>> assumeAlso (n,'integer ') % n is also an integer
>> limit (a^(1/n),n,Inf)

ans =

1

2. lim
n→∞

n
√

n.

Solution

>> syms n
>> assume (n,'positive ') % n>0
>> assumeAlso (n,'integer ') % n is also an integer
>> limit (n^(1/n),n,Inf)

ans =

1

3. lim
n→∞

(
1 − 2

n

)n

.

Solution

>> syms n
>> assume (n,'positive ') % n>0
>> assumeAlso (n,'integer ') % n is also an integer
>> limit ((1 - 2/n)^n,n,Inf)
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ans =

exp ( -2)

6.2 Series

Convergence of Series

6.21 Definition: convergent series

For a given series
∞∑

k=1
ak = a1 + a2 + a3 + · · · , let sn denote its nth partial sum:

sn =
n∑

k=1

ak = a1 + a2 + · · · + an.

If the sequence {sn} is convergent and lim
n→∞

sn = s exists as a real number, then the series∑
ak is called convergent and we write

a1 + a2 + a3 + · · · = s or
∞∑

k=1

ak = s.

The number s is called the sum of the series. If the sequence {sn} is divergent, then the
series is called divergent.

6.22 Theorem: geometric series

Let a ̸= 0 and r be a real number. Then

∞∑
k=1

ark−1 =


a

1 − r
, if |r| < 1;

diverges, if |r| ≥ 1.

Definition: geometric series

The series
∞∑

k=1

ark−1 = a + ar + ar2 + · · ·

is called a geometric series. Each term is obtained from the preceding one by
multiplying it by the common ratio r.
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Justification:

If r = 1, the nth partial sum sn = a + a + · · · + a = na diverges either to ∞ or −∞, as n
tends to ∞.

If r ̸= 1, the nth partial sum sn can be found as follows: by multiplying r to both side of

sn = a + ar + ar2 + · · · + arn−1,

we get

rsn = ar + ar2 + · · · + arn−1 + arn.

Subtracting these equations, we get

sn − rsn = a − arn,

so that
sn = a − arn

1 − r
.

Thus, if −1 < r < 1, since rn → 0 as n → ∞, we get

lim
n→∞

sn = lim
n→∞

a − arn

1 − r
=

a − a · lim
n→∞

rn

1 − r
= a

1 − r
.

If r ≤ −1 or r > 1, the sequence {rn} is divergent, so {sn} is also divergent. Thus, if
r ≤ −1 or r > 1, the geometric series diverges.

6.23 Example: repeating decimal

Express 3.0127 as a fraction.
Solution The given number can be written as a geometric series:

3.0127 = 3 + 0.0127 = 3 + 0.0127 + 0.0000127 + 0.0000000127 + · · ·
= 3 + 0.0127 + 0.0127 · 10−3 + 0.0127 · 10−6 + · · ·︸ ︷︷ ︸

geometric series

= 3 + 0.0127
1 − 10−3

= 3 + 127 × 10−4

10−3 × (103 − 1)

= 3 + 127
9990

= 30097
9990

.

Remark:

It is easy to generalize the above argument to show that any repeating decimal can
be expressed as a fraction. Hence, any repeating decimal must be a rational number.
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6.24 Example: telescoping series

1. Evaluate the series
∞∑

k=1

(
1
2k

− 1
2k+1

)
.

Solution The partial sum for the given series is

sn =
n∑

k=1

(
1
2k

− 1
2k+1

)
=
(

1
21 −

�
��1

22

)
+
(
A
AA
1
22 −

�
��1

23

)
+
(
A
AA
1
23 −

�
��1

24

)
+ · · · +

(
A
AA
1
2n

− 1
2n+1

)
= 1

21 − 1
2n+1 .

Thus,

lim
n→∞

sn = lim
n→∞

(
1
21 − 1

2n+1

)
= 1

2
.

Hence,
∞∑

k=1

(
1
2k

− 1
2k+1

)
= 1

2
.

This is called telescoping series since the partial sum collapses (like a pirate’s collapsing
telescope) into just two terms.

2. Evaluate the series
∞∑

k=1

1
k(k + 1)

.

Solution The partial sum for the given series can be evaluated by writing it as a
telescoping sum:

sn =
n∑

k=1

1
k(k + 1)

=
n∑

k=1

(
1
k

− 1
k + 1

)
=
(

1
1

−
�
��1
2

)
+
(
C
CC
1
2

−
�
��1
3

)
+
(
C
CC
1
3

−
�
��1
4

)
+ · · · +

(
C
CC
1
n

− 1
n + 1

)
= 1

1
− 1

n + 1
.

Thus,

lim
n→∞

sn = lim
n→∞

(
1
1

− 1
n + 1

)
= 1.

Hence,
∞∑

k=1

1
k(k + 1)

= 1.



6.2 Series 351

6.25 Theorem: properties of convergent series

1. If
∑

ak converges and c is a real number, then the series
∑

cak converges and∑
cak = c

∑
ak.

2. If
∑

ak and
∑

bk converge, then the series
∑

(ak ± bk) converges and∑
(ak ± bk) =

∑
ak ±

∑
bk.

3. If N is a positive integer, then
∞∑

k=1
ak and

∞∑
k=N

ak either both converge or both diverge.

In general, changing a finite number of terms in a convergent series does not change its
convergence, although it does change the value of the series.

Justification:

1. Let sn =
n∑

k=1
ak and lim

n→∞
sn = s. Then the nth partial sum for the series

∞∑
k=1

cak is

un =
n∑

k=1

cak = c

n∑
k=1

ak = csn,

and

lim
n→∞

un = lim
n→∞

csn = c · lim
n→∞

sn = c · s.

That is,
∑

cak is convergent and

∞∑
k=1

cak = c

∞∑
k=1

ak.

2. Let

sn =
n∑

k=1

ak, tn =
n∑

k=1

bk,

and lim
n→∞

sn = s, lim
n→∞

tn = t. Then the nth partial sum for the series
∞∑

k=1
(ak + bk) is

un =
n∑

k=1

(ak + bk) =
n∑

k=1

ak +
n∑

k=1

bk = sn + tn,

and

lim
n→∞

un = lim
n→∞

(sn + tn) = lim
n→∞

sn + lim
n→∞

tn = s + t.
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That is,
∑

(ak + bk) is convergent and

∞∑
k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk.

Similarly we can show that
∑

(ak − bk) is convergent and

∞∑
k=1

(ak − bk) =
∞∑

k=1

ak −
∞∑

k=1

bk.

3. For fixed integer N with 1 < N < n,

n∑
k=N

ak =
n∑

k=1

ak −
N−1∑
k=1

ak.

If
∞∑

k=1
ak converges, then the right side has a finite value as n tends to ∞, so

∞∑
k=N

ak

converges. Similarly, it is easy to see that, from the equality

n∑
k=1

ak =
N−1∑
k=1

ak +
n∑

k=N

ak,

if
∞∑

k=N

ak converges, then
∞∑

k=1
ak converges.

If
∑

bk is generated by changing a finite number of terms in a convergent series
∑

ak,
then there exists a sufficiently large N , such that, when n > N ,

n∑
k=N

bk =
n∑

k=N

ak.

Thus, when n > N , the equality holds:
n∑

k=1

bk =
n∑

k=1

ak + K,

where K is a fixed constant. It is easy to see from the last equality that
∞∑

k=1
bk converges,

while its value may differ from the value of
∞∑

k=1
ak.

6.26 Remark: finding the sums

Besides the geometric series and telescoping series, generally, it is not easy to find the sum
of a series. However, it is possible to study convergence of a series without knowing its sum.
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6.27 MATLAB: telescoping series

In MATLAB, we can use the command symsum to evaluate the sum of a series. In the
following, we will show two examples.

1.
∞∑

k=1

(
1
2k

− 1
2k+1

)
.

Solution

>> syms k
>> f = 1/2^k - 1/2^(k + 1);
>> symsum (f,k,1, Inf)

ans =

1/2

2.
∞∑

k=1

1
k(k + 1)

.

Solution

>> syms k
>> f = 1/(k*(k + 1));
>> symsum (f,k,1, Inf)

ans =

1

6.28 Engineering Example: discrete-time convolution

The convolution is an operation on two functions to produce a third function that shows
how the shape of one of the original functions is modified by the other one. For two functions
f [n] and g[n] defined on the set Z of integers, the discrete-time convolution of f [n] and g[n]
is given by

f [n] ⋆ g[n] =
∞∑

m=−∞
f [m]g[n − m].

The discrete-time convolution has wide applications in engineering fields, e.g., computer
vision, natural language processing and digital signal processing (DSP) systems.

For example, the block diagram for a linear time-invariant (LTI) system is shown below,
where x[n] is the input and y[n] is the output.
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x[n] LTI system y[n]

The output of the system y[n] is the convolution of the input x[n] with the system’s
response to an impulse, i.e., the impulse response. Mathematically, it can be written as

y[n] = x[n] ⋆ h[n]

=
∞∑

m=−∞
x[m]h[n − m]

where h[n] is the impulse response of the LTI system.

6.29 Engineering Example: discrete-time correlation

Correlation is a way to compare signals with each other and search for similarities between
signals. The signal correlation can be performed either between two different signals or with
one signal.

Specifically, the correlation between two different signals is called cross-correlation.
Given two signals x[n] and y[n], the cross-correlation between x[n] and y[n] is defined as

Rxy[k] =
∞∑

m=−∞
x[m]y[m − k].

There are many applications of signal cross-correlation in signal processing systems. For
example, when a signal is corrupted by another undesirable signal, e.g., noise, during trans-
mission, the cross-correlation is then used to estimate the signal at the receiver side.

The correlation with one signal is called auto-correlation. For the signal x[n], its auto-
correlation is defined as

Rxx[k] =
∞∑

m=−∞
x[m]x[m − k].

The auto-correlation is widely applied in radar, sonar, satellite, wireless communication sys-
tems, etc.

6.30 Engineering Example: geometric distribution

Assume a programmer has 85% chance of finding a bug every time he compiles his code.
Then, the probability that he finds the bug at the kth (k ≥ 1) trial can be calculated as

p(k) = (1 − 0.85)k−10.85.

Note that the probability that the programmer finds the bug at the kth trial, i.e., p(k), obeys
the geometric distribution.

Suppose that the total number of chances that the programmer can try to find the bug
every workday is n. Then, the probability that the programmer can find the bug before he
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gets off work is

sn =
n∑

k=1

p(k) =
n∑

k=1

(1 − 0.85)k−10.85.

In particular, when n → ∞, it can be proved that

s =
∞∑

k=1

(1 − 0.85)k−10.85 = 1.

The result above shows that the series
∞∑

k=1

(1 − 0.85)k−10.85 converges to 1. Note that this

result holds for any bug finding probability q ∈ (0, 1], i.e.,
∞∑

k=1

(1 − q)k−1q = 1 for any

0 < q ≤ 1. It means if given enough times of trial, no matter how proficient the programmer
is, he can find the bug for sure.

6.31 Engineering Example: Poisson distribution

The Poisson distribution is a discrete probability distribution that describes the likelihood
of a given number of events occurring within a fixed interval of time (or space), if these events
occur 1) with a knowing constant average rate, and 2) independently of the time since the
last event occurred. The Poisson distribution can be used to model quite a large number of
processes, e.g., the number of births expected during the night in a hospital, the number of
arrivals in any service facility such as at an ATM, bank, bus station and petrol pump, and
the number of clicks on any website.

Let the probability of k arrivals at a bus station during a fixed time interval be denoted as
p(k). Since p(k) obeys the Poisson distribution, we have

p(k) = e−λ λk

k!

where λ is the average number of arrivals at the bus station during the fixed time interval.
Furthermore, it can be proved that

s =
∞∑

k=0

p(k) = e−λ
∞∑

k=0

λk

k!
= 1.

The convergent series above means there is either no arrival or at least one arrival at the bus
station during the fixed time interval, which is consistent with the intuition.
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Divergence Test

6.32 Theorem: Divergence Test

If
∑

ak converges, then lim
k→∞

ak = 0. Hence, if lim
k→∞

ak ̸= 0, then the series diverges.

Justification:

If
∑

ak is convergent, by the definition, lim
n→∞

sn = s exists, where sn =
n∑

k=1
ak. Thus,

lim
k→∞

ak = lim
k→∞

(sk − sk−1) = lim
k→∞

sk − lim
k→∞

sk−1 = s − s = 0.

6.33 Example: divergent series

Show that the series
∞∑

k=1

(−1)kk2

k2 + 1
diverges.

Solution Since, as k → ∞,∣∣∣∣ (−1)kk2

k2 + 1

∣∣∣∣ = k2

k2 + 1
= k2

k2
(

1 + 1
k2

) = 1

1 + 1
k2

→ 1 ̸= 0,

we know that lim
k→∞

(−1)kk2

k2 + 1
̸= 0. Hence, by the Divergence Test, the given series is divergent.

6.34 Remark: Divergence Test

1. If lim
k→∞

ak ̸= 0, then either the limit does not exist, or the limit exists but does not
equal to 0.

2. If lim
k→∞

ak = 0, the Divergence Test is inconclusive. In other words, the zero limit of
the sequence {an} is not sufficient for the convergence of the series

∑
ak. An example

of such kind of series is the so-called harmonic series
∑ 1

k
.

6.35 Example: harmonic series

Show that the harmonic series
∞∑

k=1

1
k

diverges.

Solution We can show that the partial sums s2, s4, s8, s16, s32, . . . become unbounded, so
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the sequence {sn} does not have a finite limit. For the first few terms, we see that

s2 = 1 + 1
2 ,

s4 = 1 + 1
2 +

( 1
3 + 1

4
)

> 1 + 1
2 +

( 1
4 + 1

4
)

= 1 + 2
2 ,

s8 = 1 + 1
2 +

( 1
3 + 1

4
)

+
( 1

5 + 1
6 + 1

7 + 1
8
)

> 1 + 1
2 +

( 1
4 + 1

4
)

+
( 1

8 + 1
8 + 1

8 + 1
8
)

= 1 + 3
2 ,

s16 = 1 + 1
2 +

( 1
3 + 1

4
)

+
( 1

5 + 1
6 + 1

7 + 1
8
)

+
( 1

9 + 1
10 + · · · + 1

16
)

> 1 + 1
2 +

( 1
4 + 1

4
)

+
( 1

8 + 1
8 + 1

8 + 1
8
)

+
( 1

16 + 1
16 + · · · + 1

16
)

= 1 + 4
2 .

In fact, we see generally that
s2n > 1 + n

2
.

Thus, {sn} does not have a finite limit. That is, the harmonic series diverges.

6.36 MATLAB: divergent series

Show the convergence/divergence of the series
∞∑

k=1

(−1)kk2

k2 + 1
in MATLAB.

Solution We will use the Divergence Test to verify the convergence/divergence of the
series, as shown in the following:

>> syms k
>> f = ( -1)^k*k^2/(k^2 + 1);
>> limit (abs(f),k,Inf)

ans =

1

Note that in MATLAB, the command abs(x) can calculate the absolute value of x. From

the result above, we see that limk→∞

∣∣∣∣ (−1)kk2

k2 + 1

∣∣∣∣ = 1 ̸= 0, which means limk→∞
(−1)kk2

k2 + 1
̸= 0.

Hence, according to the Divergence Test, we know that the series
∞∑

k=1

(−1)kk2

k2 + 1
is divergent.

6.3 Integral Test

6.37 Theorem: Integral Test

Suppose f is a continuous, positive, decreasing function on [1, ∞) and let ak = f(k). Then

the series
∞∑

k=1
ak is convergent if and only if the improper integral

ˆ ∞

1
f(x) dx is convergent.
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In other words:

1. If
ˆ ∞

1
f(x) dx is convergent, then

∞∑
k=1

ak is convergent;

2. If
ˆ ∞

1
f(x) dx is divergent, then

∞∑
k=1

ak is divergent.

Justification:

1. Suppose
ˆ ∞

1
f(x) dx converges. To show that

∞∑
k=1

f(k) converges, since f ≥ 0, we only

need to show that
n∑

k=1
f(k) is bounded with respect to n.

For each positive integer k, put h(x) =
f(k+1) for x ∈ [k, k+1). Then h is a func-
tion defined on [1, ∞). Since f is decreases
monotonically, we know that h ≤ f . Hence

n∑
k=1

f(k) = f(1) +
n∑

k=2

f(k)

≤ f(1) +
ˆ n

1
h(x) dx

≤ f(1) +
ˆ n

1
f(x) dx ≤ f(1) +

ˆ ∞

1
f(x) dx,

so that
n∑

k=1

f(k) is bounded.

x

y

1 2 3 4 5 6O

a2 a3 a4 a5 a6 . . .

y = f(x)

2. Suppose
ˆ ∞

1
f(x) dx is divergent. We show that

∞∑
k=1

f(k) converges by contradiction.
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For each positive integer k, put g(x) =
f(k) for x ∈ [k, k + 1). Then g is a func-
tion defined on [1, ∞). Since f is decreases
monotonically, it is clear that g ≥ f . For
any b, we choose an integer n such that
n ≥ b. Thenˆ b

1
f(x) dx ≤

ˆ n

1
f(x) dx ≤

ˆ n

1
g(x) dx

=
n−1∑
k=1

f(k) ≤
∞∑

k=1

f(k),

so that
ˆ b

1
f(x) dx is bounded, which im-

plies that the improper integral is conver-
gent. This contradicts to the hypothesis

that
ˆ ∞

1
f(x) dx is divergent.

x

y

1 2 3 4 5 6O

a1

a2 a3 a4 a5 . . .

y = f(x)

6.38 Remark: Integral Test

The hypotheses in the Integral Test say that f is a continuous, positive, decreasing function
on [1, ∞). However, it is not necessary to start the series or the integral at n = 1. In fact,
if f is decreasing for x larger than some number N , then the same conclusion holds. The
reason is that changing a finite number of terms in a convergent series does not change its
convergence.

As an example, consider the infinite se-
ries

∞∑
k=1

1
(2k − 5)2 . As usual, if one takes

f(x) = 1
(2x − 5)2 , then f is not decreasing

on [1, ∞) (also not continuous in this inter-
val). However, we can consider the interval
[3, ∞) on which f is continuous, positive, and
decreasing. We can similarly have the con-
clusion that

∞∑
k=3

1
(2k − 5)2 is convergent since

ˆ ∞

3

1
(2x − 5)2 dx is convergent.

x

y

1 2 3 4 5 6O

y = f(x)

Since
∞∑

k=1

1
(2k − 5)2 =

2∑
k=1

1
(2k − 5)2 +

∞∑
k=3

1
(2k − 5)2 ,

we know that
∞∑

k=1

1
(2k − 5)2 is indeed convergent.
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6.39 Example: harmonic series - Integral Test

Apply the Integral Test to show that the harmonic series
∞∑

k=1

1
k

diverges.

Solution Consider the function f(x) = 1
x

. It is clear that f is a continuous, positive,

decreasing function on [1, ∞). The improper integral
ˆ ∞

1

1
x

dx is divergent:

ˆ ∞

1

1
x

dx = lim
b→∞

ˆ b

1

1
x

dx = lim
b→∞

ln x|bx=1 = lim
b→∞

ln b = ∞.

Hence, by the Integral Test, the harmonic series
∞∑

k=1

1
k

is divergent.

6.40 Example: Integral Test

1. Determine whether the series
∞∑

k=1

k

k2 + 1
converges.

Solution Consider the function f(x) =
x

x2 + 1
. It is clear that f is a continuous,

positive function on [1, ∞). It is decreas-
ing on (1, ∞), since

f ′(x) =
(

x

x2 + 1

)′

= 1 · (x2 + 1) − x · 2x

(x2 + 1)2

= − x2 − 1
(x2 + 1)2 < 0.

x

y

1 2 3 4 5 6

1
2

O

y = f(x)

The improper integral
ˆ ∞

1

x

x2 + 1
dx is divergent:

ˆ ∞

1

x

x2 + 1
dx = lim

b→∞

ˆ b

1

x

x2 + 1
dx = lim

b→∞
1
2 ln(x2 + 1)

∣∣b
x=1

= lim
b→∞

1
2
[
ln(b2 + 1) − ln 2

]
= ∞.

Hence, by the Integral Test, the series
∞∑

k=1

k

k2 + 1
is divergent.

2. Determine whether the series
∞∑

k=1

1
k2 + 2

converges.

Solution Consider the function f(x) = 1
x2 + 2

. It is clear that f is a continuous, posi-
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tive, decreasing function on [1, ∞). The improper integral
ˆ ∞

1

1
x2 + 2

dx is convergent:

ˆ ∞

1

1
x2 + 2

dx = lim
b→∞

ˆ b

1

1
x2 + 2

dx

= lim
b→∞

1√
2 tan−1

(
1√
2 x
)∣∣∣b

x=1

= lim
b→∞

1√
2

[
tan−1

(
1√
2 b
)

− tan−1 1√
2

]
= 1√

2

(
π
2 − tan−1 1√

2

)
.

Hence, by the Integral Test, the series
∞∑

k=1

1
k2 + 2

is convergent.

3. Determine whether the series
∞∑

k=1

1√
2k − 1

converges.

Solution Consider the function f(x) = 1√
2x − 1

. It is clear that f is a continuous,

positive, decreasing function on [1, ∞). The improper integral
ˆ ∞

1

1√
2x − 1

dx is di-
vergent:

ˆ ∞

1

1√
2x − 1

dx = lim
b→∞

ˆ b

1

1√
2x − 1

dx

= lim
b→∞

√
2x − 1

∣∣b
x=1 = lim

b→∞

(√
2b − 1 − 1

)
= ∞.

Hence, by the Integral Test, the series
∞∑

k=1

1√
2k − 1

is divergent.

4. Determine whether the series
∞∑

k=1

ln k

k
converges.

Solution Consider the function f(x) =
ln x

x
. It is clear that f is a continuous,

positive function on [1, ∞). It is decreas-
ing on (3, ∞), since

f ′(x) =
(

ln x

x

)′

=

1
x

· x − ln x · 1

x2

= − ln x − 1
(x2 + 1)2 < 0.

x

y

1 2 3 4 5 6

1
2

O

y = f(x)
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The improper integral
ˆ ∞

3

ln x

x
dx is divergent:

ˆ ∞

3

ln x

x
dx = lim

b→∞

ˆ b

3

ln x

x
dx

= lim
b→∞

1
2 ln2 x

∣∣b
x=3 = lim

b→∞
1
2
(
ln2 b − ln2 3

)
= ∞.

Thus, by the Integral Test, the series
∞∑

k=3

ln k

k
is divergent. Hence

∞∑
k=1

ln k

k
is divergent.

5. Show that the series
∞∑

k=1

1√
k3

converges.

Solution Consider the function f(x) = 1√
x3

. It is clear that f is a continuous, positive,

decreasing function on [1, ∞). The improper integral
ˆ ∞

1

1√
x3

dx is convergent:

ˆ ∞

1

1√
x3

dx = lim
b→∞

ˆ b

1

1√
x3

dx

= lim
b→∞

− 2√
x

∣∣∣∣b
x=1

= lim
b→∞

2
(

1 − 1√
b

)
= 2.

Hence, by the Integral Test, the series
∞∑

k=1

1√
k3

is convergent. This is a special case of

the p-series.

6.41 Theorem: convergence of the p-series

The p-series
∞∑

k=1

1
kp

converges for p > 1 and diverges for p ≤ 1.

Justification:

If p < 0, then lim
k→∞

1
kp

= ∞. If p = 0, then lim
k→∞

1
kp

= 1. In either case lim
k→∞

1
kp

̸= 0, so
the p-series diverges by the Divergence Test.

If p > 0, then the function f(x) = 1
xp

is clearly continuous, positive, and decreasing on
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[1, ∞). For the improper integral
ˆ ∞

1

1
xp

dx,

when p ̸= 1 :
ˆ ∞

1

1
xp

dx = lim
b→∞

ˆ b

1

1
xp

dx = lim
b→∞

x−p+1

−p + 1

∣∣∣∣b
x=1

= lim
b→∞

(
b−p+1

−p + 1
− 1

−p + 1

)

=


1

p − 1
, if p > 1;

∞, if p < 1;

when p = 1 :
ˆ ∞

1

1
xp

dx = lim
b→∞

ˆ b

1

1
x

dx = lim
b→∞

ln x|bx=1

= lim
b→∞

ln b = ∞,

so that it converges if p > 1 and diverges if p ≤ 1. It follows from the Integral Test that the
p-series

∞∑
k=1

1
kp

converges if p > 1 and diverges if 0 < p ≤ 1.

6.42 MATLAB: Integral Test

We will determine whether the following series are convergent by applying the Integral
Test.

1.
∞∑

k=1

k

k2 + 1
.

Solution

>> syms x
>> f(x) = x/(x^2 + 1);
>> int(f(x) ,1,Inf)

ans =

Inf

Since
ˆ ∞

1

x

x2 + 1
dx = ∞, we thus know that

∞∑
k=1

k

k2 + 1
is divergent.

2.
∞∑

k=1

1
k2 + 2

.

Solution

>> syms x
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>> f(x) = 1/(x^2 + 2);
>> int(f(x) ,1,Inf)

ans =

(pi *2^(1/2) )/4 - (2^(1/2) *atan (2^(1/2) /2))/2

We see from the result above that
ˆ ∞

1

1
x2 + 2

dx < ∞, we thus know that
∞∑

k=1

1
k2 + 2

is convergent.

3.
∞∑

k=1

1√
2k − 1

.

Solution

>> syms x
>> f(x) = 1/ sqrt (2*x - 1);
>> int(f(x) ,1,Inf)

ans =

Inf

Since
ˆ ∞

1

1√
2x − 1

dx = ∞, the series
∞∑

k=1

1√
2k − 1

is thus divergent.

4.
∞∑

k=1

ln k

k
.

Solution

>> syms x
>> f(x) = log(x)/x;
>> int(f(x) ,1,Inf)

ans =

Inf

Since
ˆ ∞

1

ln x

x
dx = ∞, the series

∞∑
k=1

ln k

k
is thus divergent.

5.
∞∑

k=1

1√
k3

.

>> syms x
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>> f(x) = 1/ sqrt(x^3);
>> int(f(x) ,1,Inf)

ans =

2

We see from the result above that
ˆ ∞

1

1√
x3

dx < ∞, the series
∞∑

k=1

1√
k3

is thus conver-

gent.

6.43 Theorem: remainder estimate for the Integral Test

Suppose f is a continuous, positive, decreasing function on [1, ∞). Let ak = f(k) and
suppose

∞∑
k=1

ak = s is convergent. Denote Rn = s − sn =
∞∑

k=n+1
ak. Then

1.
ˆ ∞

n+1
f(x) dx ≤ Rn ≤

ˆ ∞

n

f(x) dx;

2. sn +
ˆ ∞

n+1
f(x) dx ≤ s ≤ sn +

ˆ ∞

n

f(x) dx.

Justification:

1. We apply the same ideas as in the Integral Test, assuming that f is decreasing on
[n, ∞). Comparing the areas of the rectangles with the area under y = f(x) for x > n,
we see that

Rn = an+1 + an+2 + · · · ≤
ˆ ∞

n

f(x) dx.

Similarly, we have

Rn = an+1 + an+2 + · · · ≥
ˆ ∞

n+1
f(x) dx.

x

y

nO

an+1 an+2 an+3 an+4 . . .

y = f(x)

x

y

n + 1O

an+1

an+2 an+3 an+4 . . .

y = f(x)
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2. Adding sn to each side of the inequalities in part 1, we get the desired inequalities in
part 2.

6.44 Example:

In 1734, Euler derived the equality
∞∑

k=1

1
k2 = 1

12 + 1
22 + 1

32 + · · · = π2

6
.

1. How many terms of the series must be used to obtain an approximation that is within
10−4 of the exact value of the series?

2. Find an approximation to the series using 50 terms of the series.

Solution The function associated with this series is f(x) = 1
x2 . Clearly it is continuous,

positive, and decreasing on [1, ∞).

1. Using the bound on the remainder in the Integral Test, we have

Rn <

ˆ ∞

n

f(x) dx =
ˆ ∞

n

dx

x2 = 1
n

.

Thus, to ensure that Rn < 10−4, we need to choose n so that 1
n

< 10−4, or n > 10, 000.

Hence, the finite series
10,001∑
k=1

1
k2 gives an approximation that is within 10−4 of the exact

value of the series.

2. Using the bounds on the series in the Integral Test, we have

s50 +
ˆ ∞

51

dx

x2 < s < s50 +
ˆ ∞

50

dx

x2 ,

so that
s50 + 1

51
< s < s50 + 1

50
,

where s50 =
50∑

k=1

1
k2 . By using a calculator, we have s50 ≈ 1.62513273, which has 8th

decimal place accuracy. Thus,

1.64474057 < s < 1.64513273.

Taking the average of these two bounds as our approximation of s, we find that s ≈
1.64493665.

For comparison, π2

6
= 1.64493406 · · · . We see that our approximation matches first

five decimal places.
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6.4 Convergence Tests for Nonnegative Series

Comparison Test

6.45 Theorem: Comparison Test

Suppose that
∑

ak and
∑

bk are series with nonnegative terms.

1. If
∑

bk is convergent and ak ≤ bk for all k, then
∑

ak is also convergent;

2. If
∑

bk is divergent and ak ≥ bk for all k, then
∑

ak is also divergent.

Justification:

1. Suppose
∑

bk is convergent. Let

sn =
n∑

k=1

ak, tn =
n∑

k=1

bk, t =
∞∑

k=1

bk

Since both series have positive terms, the sequences {sn} and {tn} are increasing.
Because tn → t, we have tn ≤ t for all n. Since ak ≤ bk, we have sn ≤ tn. Thus,
sn ≤ t for all n. This means that {sn} is increasing and bounded above and therefore
converges by the Monotonic Sequence Theorem. Thus

∑
ak converges.

2. Suppose
∑

bk is divergent. We show that
∑

ak is divergent by contradiction.
In fact, if

∑
ak is convergent, because bk ≤ ak, from part 1, we know that

∑
bk is

convergent, a contradiction.

6.46 Example: Comparison Test

1. Determine whether the series
∞∑

k=1

k

3k3 − k2 + 1
converges.

Solution The given series has all positive
terms. For any integer k ≥ 1,

k

3k3 − 2k + 1
= k

2k3 + (k3 − k2) + 1

≤ k

2k3 + 1
<

k

2k3

<
1
k2 .

k

term

k

3k3 − k2 + 1
1
k2

1 2 3 4 5 10

1

0.5

Since the p-series
∞∑

k=1

1
k2 is convergent (p = 2), by the Comparison Test, the series

∞∑
k=1

k

3k3 − k2 + 1
is convergent.
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2. Determine whether the series
∞∑

k=1

ln k

k2 converges.

Solution The given series has nonnega-
tive terms. For any integer k ≥ 1, since
ln k <

√
k, we know that

ln k

k2 <

√
k

k2 = 1
k

3
2

.

Since the p-series
∞∑

k=1

1
k

3
2

is convergent

(p = 3
2 ), by the Comparison Test, the se-

ries
∞∑

k=1

ln k

k2 is convergent.

k

term

ln k

k2

1
k

3
2

1 2 3 4 5 10

1

0.5

6.47 Example: Comparison Test - decimal series

Show that any decimal series of the form

0.a1a2a3 · · · ,

where ai is an integer satifying 0 ≤ ai ≤ 9, is convergent. In other words, it always represents
a real number.

Solution The decimal series can be rewritten as a series

0.a1a2a3 · · · = a1 · 10−1 + a2 · 10−2 + a3 · 10−3 + · · · =
∞∑

k=1

ak · 10−k.

It is clear that it is a series with nonnegative terms. Since 0 ≤ ak ≤ 9, we know that

0 ≤ ak · 10−k ≤ 9 · 10−k for all k ≥ 1.

The geometric series
∞∑

k=1
9 · 10−k has common ratio 10−1, so it converges. Hence, by the

Comparison Test, the decimal series always converges.

6.48 Theorem: Limit Comparison Test

Suppose that
∑

ak and
∑

bk are series with ak ≥ 0 and bk > 0. Assume

lim
k→∞

ak

bk
= c.

1. If 0 < c < ∞ (that is, c is a finite positive number), then
∑

ak and
∑

bk either both
converge or both diverge.

2. If c = 0 and
∑

bk converges, then
∑

ak converges.

3. If c = ∞ and
∑

bk diverges, then
∑

ak diverges.
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Justification:

1. If 0 < c < ∞, let m and M be positive numbers such that m < c < M . Because
ak

bk
→ c as k → ∞, there is an integer K such that

m <
ak

bk
< M for k > K,

or equivalently,
mbk < ak < Mbk for k > K.

If
∑

bk converges, so does
∑

Mbk. Thus
∑

ak converges by part 1 of the Comparison
Test. If

∑
bk diverges, so does

∑
mbk and part 2 of the Comparison Test shows that∑

an diverges.

2. If c = 0, then, similarly as in Case 1, there is an integer K such that

ak < Mbk for k > K.

It follows from part 1 of the Comparison Test that if
∑

bk converges, then
∑

ak con-
verges.

3. If c = ∞, similarly as in Case 1, there is an integer K such that

mbk < ak for k > K.

It follows from part 2 of the Comparison Test that if
∑

bk diverges, then
∑

ak diverges.

6.49 Example: Limit Comparison Test

1. Determine whether the series
∞∑

k=1

k

3k3 − k2 + 1
converges.

Solution The given series has all positive terms. We calculate the limit of the ratio of
the kth terms of the series and the p-series

∞∑
k=1

1
k2 (p = 2):

lim
k→∞

k

3k3 − 2k + 1
1
k2

= lim
k→∞

k3

3k3 − 2k + 1
= lim

k→∞

1

3 − 2
k2 + 1

k3

= 1
3

.

Since the p-series (p = 2) is convergent, by the Limit Comparison Test, the series
∞∑

k=1

k

3k3 − k2 + 1
is convergent.

2. Determine whether the series
∞∑

k=1

k2

3k3 − k2 + 1
converges.

Solution The given series has all positive terms. We calculate the limit of the ratio of
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the kth terms of the series and the harmonic series
∞∑

k=1

1
k

:

lim
k→∞

k2

3k3 − 2k + 1
1
k

= lim
k→∞

k3

3k3 − 2k + 1
= lim

k→∞

1

3 − 2
k2 + 1

k3

= 1
3

.

Since the harmonic series is divergent, by the Limit Comparison Test, the series
∞∑

k=1

k2

3k3 − k2 + 1
is divergent.

3. Determine whether the series
∞∑

k=1

ln k

k2 converges.

Solution The given series has nonnegative terms. Since ln k ≪ k
3
2 as k → ∞, we have

lim
k→∞

ln k

k2

1
k

3
2

= lim
k→∞

ln k

k
1
2

= 0.

It is known that the p-series
∞∑

k=1

1
k

3
2

is convergent (p = 3
2 ), by the Limit Comparison

Test, the series
∞∑

k=1

ln k

k2 is convergent.

4. Determine whether the series
∞∑

k=1

ln k

k
converges.

Solution The given series has nonnegative terms. Since 1 ≪ ln k as k → ∞, we have

lim
k→∞

ln k

k
1
k

= lim
k→∞

ln k = ∞.

It is known that the harmonic series
∞∑

k=1

1
k

is divergent, by the Limit Comparison Test,

the series
∞∑

k=1

ln k

k
is divergent.

Ratio Test and Root Test

6.50 Theorem: Ratio Test

Suppose that
∑

ak is a series with positive terms.
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1. If lim
k→∞

ak+1

ak
= L < 1, then the series

∑
ak converges.

2. If lim
k→∞

ak+1

ak
= L > 1 or lim

k→∞

ak+1

ak
= ∞, then the series

∑
ak diverges.

3. If lim
k→∞

ak+1

ak
= 1, the test is inconclusive.

Justification:

1. If lim
k→∞

ak+1

ak
= L < 1, we take any number r such that L < r < 1. Thus, there is K

such that when k ≥ K,∣∣∣∣ak+1

ak
− L

∣∣∣∣ < r − L =⇒ −(r − L) <
ak+1

ak
− L < r − L

=⇒ ak+1

ak
< r

=⇒ ak+1 < r · ak.

Putting k successively equal to K, K + 1, K + 2, . . . in the inequality, we obtain

aK+1 < r · aK ,

aK+2 < r · aK+1 < r2 · aK ,

aK+3 < r · aK+2 < r3 · aK ,

...

so that
aK+k < rk · aK , for all k ≥ 1.

Since |r| = r < 1, the geometric series
∞∑

k=1
aKrk converges. By the Comparison Test,

the series
∞∑

k=K+1
ak converges. Hence,

∞∑
k=1

ak converges.

2. To show
∑

ak diverges, by the Divergence Test, it is sufficient to show that lim
k→∞

ak ̸= 0.

Since lim
k→∞

ak+1

ak
= L > 1, there is K such that when k ≥ K,∣∣∣∣ak+1

ak
− L

∣∣∣∣ < (L − 1) =⇒ −(L − 1) <
ak+1

ak
− L

=⇒ ak+1

ak
> 1

=⇒ ak+1 > ak > · · · > aK .

Hence, ak ≥ aK for k ≥ K. This implies that lim
k→∞

ak ̸= 0.

Similarly as above, if lim
k→∞

ak+1

ak
= ∞, we can also show that lim

k→∞
ak ̸= 0.
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3. Consider the p-series
∞∑

k=1

1
k

with p = 1 and
∞∑

k=1

1
k2 with p = 2 > 1. The former is

divergent and the latter is convergent. For both series, we have

lim
k→∞

ak+1

ak
= 1.

Hence, the Ratio Test is inconclusive if lim
k→∞

ak+1

ak
= 1.

6.51 Example: Ratio Test

1. Determine whether the series
∞∑

k=1

bk

k!
converges, where b > 0.

Solution The given series has all positive terms. Since, for any b > 0,

lim
k→∞

bk+1

(k + 1)!
bk

k!

= lim
k→∞

b

k + 1
= 0,

by the Ratio Test, the series
∞∑

k=1

bk

k!
is convergent for any positive b.

2. Determine whether the series
∞∑

k=1

k!
kk

converges.

Solution The given series has all positive terms. The ratio of two consecutive terms is

(k + 1)!
(k + 1)k+1

k!
kk

= 1
(k + 1)k

kk

= 1(
1 + 1

k

)k
.

Since e = lim
x→∞

(
1 + 1

x

)x

, we have e = lim
k→∞

(
1 + 1

k

)k

, so that

lim
k→∞

(k + 1)!
(k + 1)k+1

k!
kk

= 1

lim
k→∞

(
1 + 1

k

)k
= 1

e
< 1.

By the Ratio Test, the series
∞∑

k=1

k!
kk

is convergent.
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6.52 MATLAB: Ratio Test

We will determine whether the following two series converge by applying the Ratio Test.

1.
∞∑

k=1

bk

k!
where b > 0.

Solution

>> syms b k
>> assume (b,'positive ') % b > 0
>> assume (k,'positive ') % k > 0
>> assumeAlso (k,'integer ') % k is also an integer
>> a(k) = b^k/ factorial (k);
>> ratio_a = simplify (a(k + 1)/a(k));
>> limit (ratio_a ,k,inf)

ans =

0

Note that we can set assumptions on symbolic objects using commands assume and
assumeAlso. To calculate factorial in MATLAB, the command factorial is used.
Moreover, the command simplify is used for symbolic simplification, so that the cal-
culation of the limit for the factorial ratio becomes feasible.

The result above shows that lim
k→∞

ak+1

ak
= 0 < 1, then the series

∞∑
k=1

bk

k!
is convergent.

2.
∞∑

k=1

k!
kk

.

Solution

>> syms k
>> assume (k,'positive ') % k > 0
>> assumeAlso (k,'integer ') % k is also an integer
>> a(k) = factorial (k)/k^k;
>> ratio_a = simplify (a(k + 1)/a(k));
>> limit (ratio_a ,k,inf)

ans =

exp ( -1)

From the result above, we see that lim
k→∞

ak+1

ak
= e−1 < 1, so that the series

∞∑
k=1

k!
kk

is

convergent.
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6.53 Theorem: Root Test

Suppose that
∑

ak is a series with nonnegative terms.

1. If lim
k→∞

k
√

ak = L < 1, then the series
∑

ak converges.

2. If lim
k→∞

k
√

ak = L > 1 or lim
k→∞

k
√

ak = ∞, then the series
∑

ak diverges.

3. If lim
k→∞

k
√

ak = 1, the test is inconclusive.

Justification:

1. If lim
k→∞

k
√

ak = L < 1, we take any number r such that L < r < 1. Thus, there is K

such that when k ≥ K,

| k
√

ak − L| < r − L =⇒ −(r − L) < k
√

ak − L < r − L

=⇒ k
√

ak < r

=⇒ ak < rk.

When |r| < 1, the geometric series
∑

rk converges. By the Comparison Test, the series
∞∑

k=K

ak converges. Hence,
∞∑

k=1
ak converges.

2. To show
∑

ak diverges, by the Divergence Test, it is sufficient to show that lim
k→∞

ak ̸= 0.

Since lim
k→∞

k
√

ak = L > 1, there is K such that when k ≥ K,

| k
√

ak − L| < (L − 1) =⇒ −(L − 1) < k
√

ak − L

=⇒ k
√

ak > 1
=⇒ ak > 1.

This implies that lim
k→∞

ak ̸= 0.

Similarly as above, if lim
k→∞

k
√

ak = ∞, we can also show that lim
k→∞

ak ̸= 0.

3. Consider the p-series
∞∑

k=1

1
k

with p = 1 and
∞∑

k=1

1
k2 with p = 2 > 1. The former is

divergent and the latter is convergent. For both series, we have

lim
k→∞

k
√

ak = 1.

Hence, the Root Test is inconclusive if lim
k→∞

k
√

ak = 1.
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6.54 Example: Root Test

1. Determine whether the series
∞∑

k=1

(
3k − 1
4k + 1

)k

converges.

Solution The given series has all positive terms. It is easy to have

lim
k→∞

k

√(
3k − 1
4k + 1

)k

= lim
k→∞

3k − 1
4k + 1

= lim
k→∞

3 − 1
k

4 + 1
k

= 3
4

< 1.

By the Root Test, the series
∞∑

k=1

(
3k − 1
4k + 1

)k

is convergent.

2. Determine whether the series
∞∑

k=1

(
k

k + 1

)−k2

converges.

Solution The given series has all positive terms. Since e = lim
x→∞

(
1 + 1

x

)x

, we have

e = lim
k→∞

(
1 + 1

k

)k

, so that

lim
k→∞

k

√(
k

k + 1

)−k2

= lim
k→∞

(
k + 1

k

)k

= lim
k→∞

(
1 + 1

k

)k

= e > 1.

By the Root Test, the series
∞∑

k=1

(
k

k + 1

)−k2

is divergent.

6.55 MATLAB: Root Test

We will determine whether the following two series converge by applying the Root Test.

1.
∞∑

k=1

(
3k − 1
4k + 1

)k

.

Solution

>> syms k
>> assume (k,'positive ') % k > 0
>> assumeAlso (k,'integer ') % k is also an integer
>> a(k) = ((3*k - 1) /(4*k + 1))^k;
>> root_a = (a(k))^(1/k);
>> limit (root_a ,k,inf)

ans =
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3/4

The result above shows that lim
k→∞

ak+1

ak
= 3

4
< 1, then the series

∞∑
k=1

(
3k − 1
4k + 1

)k

is

convergent.

2.
∞∑

k=1

(
k

k + 1

)−k2

.

Solution

>> syms k
>> assume (k,'positive ') % k > 0
>> assumeAlso (k,'integer ') % k is also an integer
>> a(k) = (k/(k + 1))^(-k^2);
>> root_a = (a(k))^(1/k);
>> limit (root_a ,k,inf)

ans =

exp (1)

We see from the result above that lim
k→∞

ak+1

ak
= e > 1, so that the series

∞∑
k=1

(
k

k + 1

)−k2

is divergent.

6.5 Convergence Tests for General Series

Alternating Series

6.56 Example: alternating series

An alternating series is a series whose terms are alternately positive and negative. The
following are two examples of alternating series:

1 − 1
2

+ 1
3

− 1
4

+ 1
5

− 1
6

+ · · · =
∞∑

k=1

(−1)k−1

k
,

−1 + 2
√

2 − 3
√

3 + 4
√

4 − 5
√

5 + 6
√

6 − · · · =
∞∑

k=1

(−1)k k
√

k.
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In general, an alternating series
∞∑

k=1
ak has its kth term in the form

ak = (−1)k−1bk or ak = (−1)kbk,

where bk > 0 for all k.

6.57 Theorem: Alternating Series Test

The alternating series
∞∑

k=1

(−1)k−1bk = b1 − b2 + b3 − b4 + b5 − b6 + · · · , bk > 0

converges if

1. if {bk} is a positive non-increasing sequence, bk ≥ bk+1 > 0, and

2. lim
k→∞

bk = 0.

Justification:

First consider the even partial sums:

s2 = b1 − b2 ≥ 0, since b1 ≥ b2

s4 = s2 + (b3 − b4) ≥ s2, since b3 ≥ b4

...
s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n−1 ≥ b2n

Also,
s2n = b1 − (b2 − b3) − (b4 − b5) − · · · − (b2n−2 − b2n−1) − b2n ≤ b1.

So, {s2n} is increasing and bounded above. Hence, it is convergent by the Monotonic Sequence
Theorem. Denote s = lim

n→∞
s2n. Now we compute the limit of the odd partial sums:

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1) = lim
n→∞

s2n + lim
n→∞

b2n+1 = s + 0 = s.

Since both the even and odd partial sums converge to s, we have lim
n→∞

sn = s and so the
series is convergent.

6.58 Example: alternating harmonic series

The alternating harmonic series

1 − 1
2

+ 1
3

− 1
4

+ 1
5

− 1
6

+ · · · =
∞∑

k=1

(−1)k−1

k
=

∞∑
k=1

(−1)k−1bk,
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where bk = 1
k

satisfies

bk ≥ bk+1 > 0 and lim
k→∞

bk = 0.

Hence, by the Alternating Series Test, the series converges.

6.59 MATLAB: Alternating Series Test

Determine whether the series
∞∑

k=1

(−1)k−1bk where bk = 1
k

converges.

Solution Clearly, we know that bk = 1
k

> 0 when k ≥ 1. Hence, we will check whether
lim bk = 0 and bk ≥ bk+1 in the following:

>> syms k
>> assume (k,'positive ') % k > 0
>> assumeAlso (k,'integer ') % k is also an integer
>> b(k) = 1/k;
>> limit(b(k),k,inf)

ans =

0

>> Delta_b = b(k) - b(k + 1);
>> isAlways ( Delta_b > 0)

ans =

logical

1

Note that the command isAlways can be used to test whether a mathematical statement is
true or not. If the mathematical statement is true, then the result will be 1; if it is false,
then the result will be 0.

From the above result, we see that lim bk = 0 and bk > bk+1. Therefore, according to the

Alternating Series Test, the series
∞∑

k=1

(−1)k−1bk where bk = 1
k

is convergent.

6.60 Theorem: remainder estimate for alternating series

If s =
∞∑

k=1
(−1)kbk is the sum of an alternating series that satisfies
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1. bk+1 ≤ bk for all k;

2. lim
k→∞

bk = 0

then
|Rn| = |s − sn| ≤ bn+1.

Justification:

The even partial sums {s2n} form an increasing sequence:

s2 = b1 − b2 ≥ 0, since b1 ≥ b2

s4 = s2 + (b3 − b4) ≥ s2, since b3 ≥ b4

...
s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2 since b2n−1 ≥ b2n

Similarly, the odd partial sums {s2n+1} form a decreasing sequence. Because we know that
both {s2n} and {s2n+1} converge to s, we get

s2n ≤ s ≤ s2n+1, for all n.

It follows that
|Rn| = |s − sn| ≤ |sn+1 − sn| = bn+1.

6.61 Example:

Consider the series
∞∑

k=0

(−1)k

k!
= 1 − 1

2!
+ 1

3!
− 1

4!
+ · · · .

1. How many terms of the series must be used to obtain an approximation that is within
10−4 of the exact value of the series?

2. What is the approximation value?

Solution Write
∞∑

k=0

(−1)k

k!
=

n∑
k=0

(−1)k

k!
+ Rn.

1. Using the bound on the remainder in the Alternating Series Test, we have

|Rn| <
1

(n + 1)!
.

Thus, to ensure that |Rn| < 10−4, we need to choose n so that 1
(n + 1)!

< 10−4, or

n > 7. Hence, the finite series
7∑

k=0

(−1)k

k!
gives an approximation that is within 10−4 of

the exact value of the series.
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2. Using the bounds on the series in the Alternating Series Test, we have

s7 − 1
8!

< s < s7 + 1
8!

,

where s7 =
7∑

k=0

(−1)k

k!
. By using a calculator, we have s7 ≈ 0.36786, which has 5th

decimal place accuracy. Thus,

0.36784 < s < 0.36789.

Taking the average of these two bounds as our approximation of s, we find that s ≈
0.36787.

For comparison,
∞∑

k=0

(−1)k

k!
= e−1 = 0.3678794412 · · · . We see that our approximation

indeed is within 10−4 of the exact value of the series.

Absolute Convergence and Conditional Convergence

6.62 Definition: absolute convergece and conditional convergence

• A series
∑

ak is called absolutely convergent if the series of absolute values
∑

|ak|
is convergent.

• A series
∑

ak is called conditionally convergent if it is convergent but not absolutely
convergent.

6.63 Theorem: convergence of absolutely convergent series

If a series
∑

ak is absolutely convergent, then it is convergent.

Justification:

It is clear that
0 ≤ ak + |ak| ≤ 2|ak|, for all k.

If
∑

ak is absolutely convergent, then
∑

2|ak| is convergent. By the Comparison Test,∑
(ak + |ak|) is convergent. Thus,∑

ak =
∑

(ak + |ak|) −
∑

|ak|

is convergent.
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6.64 Example: absolutely/conditionally convergent series

1. The p-series
∞∑

k=1

1
k2 , with p = 2, is convergent, so the alternating series

∞∑
k=1

(−1)k−1

k2 = 1 − 1
4

+ 1
9

− 1
16

+ · · ·

is absolutely convergent.

2. The alternating harmonic series
∞∑

k=1

(−1)k−1

k
is convergent by the Alternating Series

Test, but the harmonic series
∞∑

k=1

1
k

=
∞∑

k=1

∣∣∣∣ (−1)k−1

k

∣∣∣∣ is divergent, so the alternating

harmonic series is conditionally convergent.

6.65 Remark: differences between absolutely and conditionally convergent series

There are some fundamental differences between absolutely convergent series and condi-
tionally convergent series.

Riemann discovered a striking result, known as the Riemann Rearrangement Theorem. It
says that for any given number α, a conditionally convergent series may be rearranged in its
terms so that the rearranged series converges to α.
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Summary

Definition: limit of infinite sequence

• lim
n→∞

an = L ⇐⇒ we can make the terms an as close to L as we like by taking n

sufficiently large.
– lim

n→∞
an exists ⇐⇒ {an} converges (or is convergent).

– lim
n→∞

an does not exist ⇐⇒ {an} diverges (or is divergent).

• lim
n→∞

an = ∞ ⇐⇒ we can make the terms an as large as we like by taking n sufficiently
large.
– lim

n→∞
an = ∞ ⇐⇒ {an} diverges to infinity.

– lim
n→∞

an = −∞ ⇐⇒ {an} diverges to negative infinity.

Definition: terminology for sequences

• {an} is increasing if an+1 > an. For example, {1, 2, 3, . . . }.

• {an} is non-decreasing if an+1 ≥ an. For example, {1, 1, 2, 2, 3, 3, . . . }.

• {an} is decreasing if an+1 < an. For example, {0, −1, −2, −3, . . . }.

• {an} is non-increasing if an+1 ≤ an. For example, {0, 0, −1, −1, −2, −2, . . . }.

• {an} is monotonic if it is either non-increasing or non-decreasing.

• {an} is bounded if there is number M such that |an| ≤ M for all n.

6.66 Definition: two asymptotic relations

• an ≪ bn (as n → ∞) ⇐⇒ lim
n→∞

an

bn
= 0.

• an ∼ bn (as n → ∞) ⇐⇒ an − bn ≪ bn (as n → ∞) ⇐⇒ lim
n→∞

an

bn
= 1.

Theorem: limit of a sequence from limit of a function

If lim
x→∞

f(x) = L and f(n) = an when n is an integer, then lim
n→∞

an = L. The same result
holds when L = ∞ or −∞.

Theorem: Limit Laws for sequences

Suppose {an} and {bn} are convergent sequences and c is a constant. Then the following
hold.
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1. lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

2. lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn.

3. lim
n→∞

can = c lim
n→∞

an. In particular, lim
n→∞

c = c.

4. lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn.

5. lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
if lim

n→∞
bn ̸= 0.

6. lim
n→∞

ap
n =

[
lim

n→∞
an

]p

if p > 0 and an > 0.

Theorem: Squeeze Theorem

If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Theorem: growth rates of sequences

For any real numbers p > 0, q > 0, r > 0, and b > 1, the following asymptotic relations
hold: as n → ∞,

lnq n ≪ np ≪ np lnr n ≪ bn ≪ n! ≪ nn.

Theorem: geometric sequences

Let r be a real number. Then

lim
n→∞

rn =

 0, if |r| < 1;
1, if r = 1;
diverges, if r ≤ −1 or r > 1.

Theorem: sequential limit for continuous function

If lim
n→∞

an = L and the function f is continuous at L, then

lim
n→∞

f(an) = f(L).

Theorem: Monotonic Sequence Theorem

Every bounded, monotonic sequence is convergent.
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Definition: convergent series

∞∑
k=1

ak converges to s ⇐⇒ lim
n→∞

sn = s, where sn =
n∑

k=1
ak.

Theorem: geometric series

Let a ̸= 0 and r be a real number. Then

∞∑
k=1

ark−1 =


a

1 − r
, if |r| < 1;

diverges, if |r| ≥ 1.

Theorem: properties of convergent series

1. If
∑

ak converges and c is a real number, then the series
∑

cak converges and∑
cak = c

∑
ak.

2. If
∑

ak and
∑

bk converge, then the series
∑

(ak ± bk) converges and∑
(ak ± bk) =

∑
ak ±

∑
bk.

3. If N is a positive integer, then
∞∑

k=1
ak and

∞∑
k=N

ak either both converge or both diverge.

In general, changing a finite number of terms in a convergent series does not change its
convergence, although it does change the value of the series.

Theorem: Divergence Test

If
∑

ak converges, then lim
k→∞

ak = 0. Hence, if lim
k→∞

ak ̸= 0, then the series diverges.

Theorem: Integral Test

Suppose f is a continuous, positive, decreasing function on [1, ∞) and let ak = f(k). Then

the series
∞∑

k=1
ak is convergent if and only if the improper integral

ˆ ∞

1
f(x) dx is convergent.

In other words:

1. If
ˆ ∞

1
f(x) dx is convergent, then

∞∑
k=1

ak is convergent;

2. If
ˆ ∞

1
f(x) dx is divergent, then

∞∑
k=1

ak is divergent.
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Theorem: remainder estimate for the Integral Test

Suppose f is a continuous, positive, decreasing function on [1, ∞). Let ak = f(k) and
suppose

∞∑
k=1

ak = s is convergent. Denote Rn = s − sn =
∞∑

k=n+1
ak. Then

1.
ˆ ∞

n+1
f(x) dx ≤ Rn ≤

ˆ ∞

n

f(x) dx;

2. sn +
ˆ ∞

n+1
f(x) dx ≤ s ≤ sn +

ˆ ∞

n

f(x) dx.

Theorem: convergence of the p-series

The p-series
∞∑

k=1

1
kp

converges for p > 1 and diverges for p ≤ 1.

Theorem: Comparison Test

Suppose that
∑

ak and
∑

bk are series with nonnegative terms.

1. If
∑

bk is convergent and ak ≤ bk for all k, then
∑

ak is also convergent;

2. If
∑

bk is divergent and ak ≥ bk for all k, then
∑

ak is also divergent.

Theorem: Limit Comparison Test

Suppose that
∑

ak and
∑

bk are series with ak ≥ 0 and bk > 0. Assume

lim
k→∞

ak

bk
= c.

1. If 0 < c < ∞ (that is, c is a finite positive number), then
∑

ak and
∑

bk either both
converge or both diverge.

2. If c = 0 and
∑

bk converges, then
∑

ak converges.

3. If c = ∞ and
∑

bk diverges, then
∑

ak diverges.

Theorem: Ratio Test

Suppose that
∑

ak is a series with positive terms.

1. If lim
k→∞

ak+1

ak
= L < 1, then the series

∑
ak converges.

2. If lim
k→∞

ak+1

ak
= L > 1 or lim

k→∞

ak+1

ak
= ∞, then the series

∑
ak diverges.
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3. If lim
k→∞

ak+1

ak
= 1, the test is inconclusive.

Theorem: Root Test

Suppose that
∑

ak is a series with nonnegative terms.

1. If lim
k→∞

k
√

ak = L < 1, then the series
∑

ak converges.

2. If lim
k→∞

k
√

ak = L > 1 or lim
k→∞

k
√

ak = ∞, then the series
∑

ak diverges.

3. If lim
k→∞

k
√

ak = 1, the test is inconclusive.

Theorem: Alternating Series Test

The alternating series
∞∑

k=1

(−1)k−1bk = b1 − b2 + b3 − b4 + b5 − b6 + · · · , bk > 0

converges if

1. if {bk} is a positive non-increasing sequence, bk ≥ bk+1 > 0, and

2. lim
k→∞

bk = 0.

Theorem: remainder estimate for alternating series

If s =
∞∑

k=1
(−1)kbk is the sum of an alternating series that satisfies

1. bk+1 ≤ bk for all k;

2. lim
k→∞

bk = 0

then
|Rn| = |s − sn| ≤ bn+1.

Definition: absolute convergece and conditional convergence

• A series
∑

ak is called absolutely convergent if the series of absolute values
∑

|ak|
is convergent.

• A series
∑

ak is called conditionally convergent if it is convergent but not absolutely
convergent.
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Theorem: convergence of absolutely convergent series

If a series
∑

ak is absolutely convergent, then it is convergent.
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7
CHAPTER

Series of Functions

7.1 Approximating Functions with Polynomials

Taylor Polynomials

7.1 Example: linear approximation and quadratic approximation

1. We know that if a function f is differen-
tiable at a point a, then it can be ap-
proximated near a by its tangent line y =
f(a) + f ′(a)(x − a) (or “linearization”).
This is a linear approximation to f at the
point a. Since it is a first-degree polyno-
mial, it is convenient to write

p1(x) = f(a) + f ′(a)(x − a).

Clearly, this polynomial p1 matches f in
value and in slope at a. That is,

p1(a) = f(a) and p′
1(a) = f ′(a).

x

y

y = f(x)

y = p1(x)

a
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2. If f has a fairly constant slope near a, the
tangent line provides a good approxima-
tion. However, if the graph of f near a
has a larger curvature, then the linear ap-
proximation may not be good enough. To
improve accuracy, we consider a quadratic
approximating polynomial p2 by adding
one new term to the linear polynomial:
p2(x) = f(a) + f ′(a)(x − a) + c2(x − a)2.

The constant c2 should be chosen so that
p2 is a good approximation to f near a. To
do so, we require that p2 agree with f in
value, slope, and concavity at a:

x

y

y = f(x)

y = p1(x)

y = p2(x)

a

p2(a) = f(a), p′
2(a) = f ′(a), and p′′

2(a) = f ′′(a),

where we assume that f(a), f ′(a), and f ′′(a) exist. In fact, we can easily verify that
indeed p2 satisfies the first and the second equations. The third equation holds if c2
satisfies 2c2 = f ′′(a), or c2 = 1

2 f ′′(a). Hence, the quadratic approximating polynomial
is

p2(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2

(x − a)2.

7.2 Example: linear approximation and quadratic approximation for
√

x

Find the linear approximation and the quadratic approximation for
√

x at x = 1. Then
use them to approximate the value of

√
1.03.

Solution For the function f(x) =
√

x, we have

f ′(x) = 1
2 x− 1

2 , f ′′(x) = − 1
4 x− 3

2 .

Thus, the linear approximation and the quadratic approximation at x = 1 are, respectively,

p1(x) = f(1) + f ′(1)(x − 1)
= 1 + 1

2 (x − 1),

p2(x) = f(1) + f ′(1)(x − 1) + f ′′(1)
2

(x − 1)2

= 1 + 1
2 (x − 1) − 1

8 (x − 1)2.

Thus, by using these formulas, we obtain the approximating values of
√

1.03:

p1(1.03) = 1 + 1
2 (1.03 − 1) = 1.015,

p2(1.03) = 1 + 1
2 (1.03 − 1) − 1

8 (x − 1)2 = 1.0148875.

For comparison, the value of
√

1.03 is 1.014889156509222 · · · . We see that the quadratic
approximation indeed yields better accuracy.
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7.3 Definition: Taylor polynomials

Let f be a function with f ′, f ′′, . . . , and f (n) defined at a. The nth-order Taylor poly-
nomial for f with its center at a is

Tn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n.

7.4 Theorem: uniqueness of Taylor polynomials

Suppose f is a function with f ′, f ′′, . . . , and f (n) defined at a. If Pn is a polynomial of
degree n satisfying

Pn(a) = f(a), P ′
n(a) = f ′(a), P ′′

n (a) = f ′′(a), . . . , P (n)
n (a) = f (n)(a),

Then

Pn(x) ≡ Tn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n.

Justification:

Write Pn as
Pn(x) = c0 + c1(x − a) + · · · + cn(x − a)n.

The equation Pn(a) = f(a) gives c0 = f(a). Differentiating the expression of Pn and evalu-
ating at x = a gives P ′

n(a) = c1, so that c1 = f ′(a). In general, differentiating the expression

of Pn for k times and evaluating at x = a gives P
(k)
n (a) = ck ·k!, so that ck = f (k)(a)

k!
. Hence,

Pn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n = Tn(x).

7.5 Example: Taylor polynomials for ex

Find the Taylor polynomials of order n = 0, 1, 2, 3, and 4 for f(x) = ex centered at 0.
Graph f and the polynomials. Use T4(x) to approximate the value of e0.1. What is the
nth-order Taylor polynomial centered at 0 for general n?

Solution For any integer k ≥ 0, we have

f (k)(x) = ex =⇒ f (k)(0) = 1.
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Thus, the first few Taylor polynomials for f(x) = ex centered at 0 are:

T0(x) = f(0) = 1,

T1(x) = f(0) + f ′(0)x = 1 + x,

T2(x) = f(0) + f ′(0)x + f ′′(0)
2!

x2 = 1 + x + x2

2!
,

T3(x) = f(0) + f ′(0)x + f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 = 1 + x + x2

2!
+ x3

3!
,

T4(x) = f(0) + f ′(0)x + f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 + f (4)(0)
3!

x4 = 1 + x + x2

2!
+ x3

3!
+ x4

4!
.

x

y

y = ex

y = T0(x)

y = T1(x)

y = T2(x)

y = T3(x)

y = T4(x)

y = T1(x)

−1 1

2

3

4

5

6

7

O

Using the Taylor polynomial T4, we get the approximation to e0.1 (to 8th decimal places):

T4(0.1) ≈ 1.10517083.

The actual value of e0.1 to 8th decimal places is 1.10517092.
In general, we have the nth-order Taylor polynomial centered at 0:

Tn(x) = 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
=

n∑
k=0

xk

k!
.

7.6 Theorem: asymptotic approximation of Taylor polynomials

If f (n)(a) exists, then lim
x→a

f(x) − Tn(x)
(x − a)n

= 0, or equivalently, by using little-o notation,

f(x) = Tn(x) + o(|x − a|n) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o(|x − a|n), as x → a.
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Justification:

By applying l’Hospital’s Rule, we have

lim
x→a

f(x) − Tn(x)
(x − a)n

= lim
x→a

f(x) − Tn−1(x) − f (n)(a)
n!

(x − a)n

(x − a)n

= lim
x→a

f(x) − Tn−1(x)
(x − a)n

− f (n)(a)
n!

H= lim
x→a

f ′(x) − T ′
n−1(x)

n(x − a)n−1 − f (n)(a)
n!

H= · · ·

H= lim
x→a

f (n−1)(x) − T
(n−1)
n−1 (x)

n(n − 1) · · · 2(x − a)
− f (n)(a)

n!

= lim
x→a

f (n−1)(x) − f (n−1)(a)
n(n − 1) · · · 2(x − a)

− f (n)(a)
n!

= 1
n!

· lim
x→a

f (n−1)(x) − f (n−1)(a)
x − a

− f (n)(a)
n!

= 1
n!

· f (n)(a) − f (n)(a)
n!

= 0.

7.7 Pitfall: Taylor approximation

From the conclusion that f(x) = Tn(x) + o(|x − a|n) (as x → a), we know that Tn(x)
approximates f(x) as x → a and the accuracy improves as n increases. However, this
does not imply that the sequence {Tn(x)} approaches f(x) as n → ∞. In fact, generally
f(x) ̸= lim

n→∞
Tn(x).

As an example, consider the function

f(x) =
{

e− 1
x2 , if x ̸= 0,

0, if x = 0.

We can show that f (n)(0) = 0 (n ≥ 0) by
induction. So, the n-th order Taylor polyno-
mial for f at 0 is x

y

y = f(x)

−1 1

1

Tn(x) = 0 + 0 · x + · · · + 0 · xn = 0.

By Applying l’Hospital’s Rule, we can see that as x → 0,

f(x) = Tn(x) + o(|x|n) = o(|x|n), for all n ≥ 0.

However, for any x ̸= 0,

f(x) ̸= 0 = 0 + 0 · x + · · · + 0 · xn + · · · = lim
n→∞

Tn(x).
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7.8 MATLAB: Taylor polynomials

Find the Taylor polynomial of order n = 4 for f(x) = ex centered at 0.
Solution In MATLAB, we can use the command taylor to calculate the Taylor polynomial

approximation for a function. The following MATLAB code shows how to find the Taylor
polynomial of order 4 for f(x) = ex centered at 0.

>> syms x
>> f(x) = exp(x);
>> taylor (f(x),x,0,'Order ',4 + 1) % centered at 0, order 4 ...

plus one constant term

ans =

x^4/24 + x^3/6 + x^2/2 + x + 1

Since the first term of the Taylor polynomial is a constant, the Taylor polynomial of order
4 for f(x) = ex has 5 terms. In other words, the value of ‘Order’ in the command taylor
is the required order of the Taylor polynomial plus 1.

7.2 Represent Functions by Power Series

7.9 Definition: remainder of Taylor series

Let Tn be the Taylor polynomial of order n for f at a:

Tn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n.

The term Rn(x) = f(x) − Tn(x) is called the remainder of the Taylor series. The latter
refers the following “formal” power series of f :

f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n + · · · .

This power series is also called Taylor expansion of f at a. A Taylor series centered at 0
is called a Maclaurin series.

7.10 Definition: power series

A power series is a series of the form
∞∑

k=0

ckxk = c0 + c1x + c2x2 + c3x3 + · · · ,

where x is a variable and the ck’s are constants called the coefficients of the series.
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More generally, a series of the form
∞∑

k=0

ck(x − a)k = c0 + c1(x − a) + c2(x − a)2 + · · · ,

is called a power series in (x − a) or a power series centered at a or a power series
about a.

7.11 Pitfall: power series

For any given function f , if f (n)(a) (n ≥ 0) all exist, then the Taylor series for f at a is
defined as

∞∑
k=0

f (k)(a)
k!

(x − a)k.

The series is defined formally, since the series may not converge for some x at which f is
defined.

As an example, consider the function f(x) = 1
1 + x

. It has the following power series
(centered at 0):

1 − x + x2 − x3 + x4 − x5 + · · · .

In fact, we can have by induction that

f (n)(x) = (−1)nn!
(1 + x)n

,

so that f (n)(0) = (−1)nn!. Thus, the Taylor series for f at 0 is

∞∑
k=0

f (k)(0)
k!

xk =
∞∑

k=0

(−1)kk!
k!

xk =
∞∑

k=0

(−1)kxk.

It is clear that the function f is defined everywhere except at x = −1, but the series only
converges for |x| < 1.

7.12 Theorem: convergence theorem of Taylor series

If lim
n→∞

Rn(x) = 0 in an open interval I that contains a, then

f(x) = lim
n→∞

Tn(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k, x ∈ I.

Justification:

If lim
n→∞

Rn(x) = 0, then

lim
n→∞

Tn(x) = lim
n→∞

[f(x) − Rn(x)] = f(x) − lim
n→∞

Rn(x) = f(x).
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It is clear that {Tn(x)} are the partial sums of the series

∞∑
k=0

f (k)(a)
k!

(x − a)k = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (k)(a)
k!

(x − a)k + · · · .

Thus, we have

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k.

7.13 Engineering Example: Z-transform

The Z-transform converts a sequence of discrete-time signals into a complex frequency-
domain representation for easy interpretations. The Z-transform can be defined as either a
two-sided or one-sided transform.

Specifically, given a discrete-time signal x[n], the two-sided Z-transform is defined as

X(z) =
∞∑

n=−∞
x[n]z−n.

where z is, in general, a complex number. Alternatively, if the signal x[n] is defined only for
n ≥ 0, the one-sided Z-transform is defined as

X(z) =
∞∑

n=0
x[n]z−n.

The Z-transform has been applied widely in science and engineering fields, e.g., probability
theory, digital signal processing (DSP) and control systems.

7.14 Engineering Example: continuous-time Fourier series

The Fourier series can represent periodic signals as sums of complex exponentials (or, sine
functions and cosine functions). Given a continuous-time periodic signal x(t), its continuous-
time Fourier series is defined as

x(t) =
∞∑

k=−∞

akej 2π
T kt

where ak is the Fourier series coefficient determined by x(t), and T is the period of x(t). From
the above definition, we see that the Fourier series can represent signals by their harmonics
ej 2π

T kt.
The Fourier series has many applications in electrical engineering, signal processing, image

processing, acoustics, optics, etc. For example, since the Fourier series can represent signals
by their harmonics, it is thus very useful for the signals which can be naturally described by
harmonics, e.g., music signals.

Moreover, for a linear time-invariant (LTI) system with frequency response H(jω), if the
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input is given by x(t) =
∞∑

k=−∞

akej 2π
T kt, then the output is

y(t) =
∞∑

k=−∞

akH

(
j

2π

T
k

)
ej 2π

T kt.

Since the amplitude of each component is scaled by H
(
j 2π

T k
)
, as seen above, the output of

the LTI system is thus a “filtered” version of the input. In other words, the Fourier series
motives a new representation of a system as a filter. This is useful for many systems, such
as the speech synthesis system.

Remainder Formulas

7.15 Theorem: integral form of the remainder

If f (n+1) is continuous in an open interval I that contains a, then

Rn(x) = 1
n!

ˆ x

a

(x − t)nf (n+1)(t) dt, x ∈ I.

Justification:

We prove the remainder formula by induction.
For n = 0, the formula gives

1
0!

ˆ x

a

(x − t)0f ′(t) dt = f(x) − f(a) = f(x) − T0(x) = R0(x).

So, the formula is true for n = 0.
Suppose the formula holds for n = k:

Rk(x) = 1
k!

ˆ x

a

(x − t)kf (k+1)(t) dt, x ∈ I.

Then, by integration by parts, we get

1
(k + 1)!

ˆ x

a

(x − t)k+1f (k+2)(t) dt

=
[

1
(k + 1)!

(x − t)k+1f (k+1)(t)
]x

t=a

+ 1
k!

ˆ x

a

(x − t)kf (k+1)(t) dt

= Rk(x) − f (k+1)(a)
(k + 1)

(x − a)k+1

= f(x) − Tk(x) − f (k+1)(a)
(k + 1)

(x − a)k+1

= f(x) − Tk+1(x) = Rk+1(x).
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So, the formula is also true for n = k + 1.
Hence, the remainder formula holds for all n ≥ 0.

7.16 Theorem: Lagrange remainder

If f (n+1) is continuous in an open interval I that contains a, then there is c between a and
x such that

Rn(x) = f (n+1)(c)
(n + 1)!

(x − a)n+1.

This formula is called the Lagrange remainder of Taylor series.

Justification:

Let x ∈ I be a fixed number.
If x > a, on the interval [a, x], the function f (n+1) has its minimum and maximum at s1

and s2:
m = f (n+1)(s1), M = f (n+1)(s2),

respectively. Since m ≤ f (n+1)(t) ≤ M on [a, x], we have

m

n!

ˆ x

a

(x − t)n dt ≤ 1
n!

ˆ x

a

(x − t)nf (n+1)(t) dt ≤ M

n!

ˆ x

a

(x − t)n dt,

so that
m(x − a)n+1 ≤ (n + 1)

ˆ x

a

(x − t)nf (n+1)(t) dt ≤ M(x − a)n+1,

or equivalently,

m ≤ (n + 1)
(x − a)n+1

ˆ x

a

(x − t)nf (n+1)(t) dt ≤ M.

By the Intermediate Value Theorem, there is c ∈ [a, x], such that

f (n+1)(c) = (n + 1)
(x − a)n+1

ˆ x

a

(x − t)nf (n+1)(t) dt.

Hence, from the integral form of the remainder,

Rn(x) = 1
n!

ˆ x

a

(x − t)nf (n+1)(t) dt = f (n+1)(c)
(n + 1)!

(x − a)n+1.

If x < a, the argument is similar.

7.17 Theorem: remainder estimate

If
∣∣f (n+1)(x)

∣∣ ≤ M in an open interval I that contains a, then

|Rn(x)| ≤ M

(n + 1)!
|x − a|n+1, x ∈ I.
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Hence, if
∣∣f (n+1)(x)

∣∣ ≤ M for every n in I, then

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k, x ∈ I.

Justification:

If
∣∣f (n+1)(x)

∣∣ ≤ M in I, by the Lagrange remainder,

|Rn(x)| =
∣∣∣∣f (n+1)(c)

(n + 1)!
(x − a)n+1

∣∣∣∣ ≤ M

(n + 1)!
|x − a|n+1, x ∈ I.

We know that |x − a|n+1 ≪ (n + 1)! as n → ∞. Thus, if
∣∣f (n+1)(x)

∣∣ ≤ M for every n in I,
then lim

n→∞
Rn(x) = 0. Hence, by the convergence theorem of the Taylor series,

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k, x ∈ I,

7.18 Example: convergent Taylor series

1. Show that for all x ∈ R,

ex =
∞∑

k=0

xk

k!
= 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · .

Solution Let f(x) = ex. For all n, since f (n)(x) = ex, we have f (n)(0) = e0 = 1. Thus,

Tn(x) =
n∑

k=0

f (k)(0)
k!

xk =
n∑

k=0

xk

k!

is well-defined for every n ≥ 0. Its Lagrange remainder is

Rn(x) = f(x) − Tn(x) = f (n+1)(c)
(n + 1)!

xn+1,

where c is between 0 and x. For any fixed x,∣∣∣f (n+1)(c)
∣∣∣ = ec ≤ e|x|,

so that
− e|x|

(n + 1)!
|x|n+1 ≤ Rn(x) ≤ e|x|

(n + 1)!
|x|n+1.

Since |x|n+1 ≪ (n + 1)! as n → ∞, by the Squeeze Theorem, lim
n→∞

Rn(x) = 0. Hence,
by the convergence theorem of Taylor series, we have

ex =
∞∑

k=0

xk

k!
, x ∈ R.
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2. Show that for all x ∈ R,

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − x3

3!
+ x5

5!
− x7

x7 + · · · ,

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1 − x2

2!
+ x4

4!
− x6

x6 + · · · .

Solution Let f(x) = sin x. Directly computation gives, for k = 0, 1, 2, . . . ,

f (4k)(0) = 0, f (4k+1)(0) = 1, f (4k+2)(0) = 0, f (4k+3)(0) = −1.

Thus, for n ≥ 1,

T2n+1(x) = T2n+2(x) =
n∑

k=0

(−1)k

(2k + 1)!
x2k+1.

The Lagrange remainder is

Rn(x) = f(x) − Tn(x) = f (n+1)(c)
(n + 1)!

xn+1,

where c is between 0 and x. For any fixed x, it is easy to see that f (n)(x) is either
± sin x or ± cos x. Thus, we have ∣∣∣f (n+1)(c)

∣∣∣ ≤ 1,

so that
− 1

(n + 1)!
|x|n+1 ≤ Rn(x) ≤ 1

(n + 1)!
|x|n+1.

Since |x|n+1 ≪ (n + 1)! as n → ∞, by the Squeeze Theorem, lim
n→∞

Rn(x) = 0. Hence,
by the convergence theorem of Taylor series, we have

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 = x − x3

3!
+ x5

5!
− x7

x7 + · · · , x ∈ R.

In a similar manner, we can have

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · , x ∈ R.
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7.3 Properties of Power Series

Radius of Convergence and Interval of Convergence

7.19 Example: power series

1. The polynomial Pn(x) = a0 + a1x + a2x2 + · · · + anxn is a power series centered at 0.
It has finite number of terms and is meaningful (convergent) for any x ∈ R.

2. The power series
∞∑

k=0
k!xk converges only when x = 0 (it is a convention that 0! = 1).

In fact, for any x ̸= 0, we know that, as k → ∞,
(

1
|x|

)k

≪ k!, so that 1 ≪ k!|x|k.

Thus, lim
k→∞

k!xk ̸= 0 for any x ̸= 0. Hence, if x ̸= 0, the series
∞∑

k=0
k!xk always diverges

by the Divergence Test.

3. The power series
∞∑

k=0

xk

√
k!

converges for any x ∈ R.

In fact, for any x ∈ R,

lim
k→∞

∣∣∣∣∣ xk+1√
(k + 1)!

∣∣∣∣∣∣∣∣∣ xk

√
k!

∣∣∣∣ = lim
k→∞

|x|√
k + 1

= 0.

By the Ratio Test, the series
∞∑

k=0

xk

√
k!

is absolutely convergent, so it is convergent.

4. The power series
∞∑

k=0
xk converges for x ∈ (−1, 1) and diverges for x ∈ (−∞, −1]∪[1, ∞).

In fact, for x ∈ (−1, 1), the power series is a convergent geometric series. For x ∈
(−∞, −1]∪ [1, ∞), the limit of kth term xk is not zero: lim

k→∞
xk ̸= 0. By the Divergence

Test, the power series is divergent.

5. The power series
∞∑

k=0

(−1)kxk

k + 1
converges for x ∈ (−1, 1] and diverges for x ∈ (−∞, −1]∪

(1, ∞).
In fact, for any fixed x ∈ R,

lim
k→∞

∣∣∣∣ (−1)k+1xk+1

k + 2

∣∣∣∣∣∣∣∣ (−1)kxk

k + 1

∣∣∣∣ = lim
k→∞

(k + 1)|x|
k + 2

= |x|.
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By the Ratio Test, the series is absolutely convergent for |x| < 1 and divergent for
|x| > 1. Hence, the series is convergent for x ∈ (−1, 1) and divergent for x ∈ (−∞, −1)∪
(1, ∞).

For x = −1, the power series is the divergent harmonic series
∞∑

k=1

1
k

.

For x = 1, the power series is the convergent alternating harmonic series
∞∑

k=1

(−1)k−1

k
.

6. The power series
∞∑

k=0

(
k

k + 1

)k

(x + 1)k converges for x ∈ (−2, 0) and diverges for

x ∈ (−∞, −2] ∪ [0, ∞).
In fact, for any fixed x ∈ R,

lim
k→∞

k

√√√√∣∣∣∣∣
(

k

k + 1

)k

(x + 1)k

∣∣∣∣∣ = lim
k→∞

k · |x + 1|
k + 1

= |x + 1|.

By the Root Test, the series is absolutely convergent for |x + 1| < 1 and divergent
for |x + 1| > 1. Hence, the series is convergent for x ∈ (−2, 0) and divergent for
x ∈ (−∞, −2) ∪ (0, ∞).
For x = −2 or x = 0, since

lim
k→∞

∣∣∣∣∣
(

k

k + 1

)k

(x + 1)k

∣∣∣∣∣ = lim
k→∞

1(
1 + 1

k

)k
= 1

e
̸= 0,

by the Divergence Test, the series diverges.

7.20 Theorem: convergence of power series

For a given power series
∞∑

k=0
ck(x − a)k there are only three possibilities:

1. The series converges only when x = a.

2. The series converges for all x.

3. There is a positive number R such that the series converges if |x − a| < R and diverges
if |x − a| > R.
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Definition: radius of convergence

The number R is called the radius of convergence of the power series.
By convention, the radius of convergence is R = 0 when the power series converges

only at the center a and R = ∞ when the power series converges for all x. The
interval of convergence of a power series is the interval that consists of all values
of x for which the series converges.

Remark: interval of convergence

When 0 < R < ∞, the theorem says nothing about the convergence of the
series at the endpoint points |x − a| = R (i.e., x = a ± R) of the interval.
Generally, the interval of convergence cannot be obtained from the radius of
convergence.

Justification:

The theorem is a consequence of the following claim: if
∑

akrk converges, then
∑

akxk

absolutely converges for |x| < |r|.
In fact, for convergent series

∑
akrk, we have lim

k→∞
akrk = 0. Thus, there is K such that

when k > K,
|akxk| < 1.

For |x| < |r|, this implies that when k > K,

|akxk| = |akrk| ·
∣∣∣x
r

∣∣∣k ≤
∣∣∣x
r

∣∣∣k .

Since
∣∣∣x
r

∣∣∣ < 1, the geometric series
∑∣∣∣x

r

∣∣∣k converges. Then, by the comparison test, the

series
∞∑

k=K

akxk absolutely converges. Hence,
∞∑

k=1
akxk absolutely converges.

7.21 Method: determine the interval of convergence

Let
∞∑

k=0
ck(x − a)k be a given power series.

1. Compute the radius of convergence R by using the Ratio Test (or sometimes the Root
Test) by

R = 1

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣ ck

ck+1

∣∣∣∣ or R = 1
lim

k→∞
k
√

|ck|
.

2. The Ratio and Root Tests are inconclusive when x is an endpoint of the interval of
convergence. Apply some other test to determine whether the series is convergent or
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divergent at an endpoint.

7.22 Example: radius of convergence and interval of convergence

1. Determine the radius of convergence and the interval of convergence of the power series
∞∑

k=0

x2k

(k + 1)k
.

Solution Since

lim
k→∞

k

√∣∣∣∣ x2k

(k + 1)k

∣∣∣∣ = |x|2 lim
k→∞

1
k + 1

= 0,

by the Root Test, for all x, the power series absolutely converges, so it converges. Thus,
the radius of convergence is R = ∞ and the interval of convergence is (−∞, ∞).

2. Determine the radius of convergence and the interval of convergence of the power series
∞∑

k=0

k(x + 1)k

k + 1
.

Solution

(a) Compute the radius of convergence by the Ratio Test.
Since

lim
k→∞

∣∣∣∣ (k + 1)(x + 1)k+1

k + 2

∣∣∣∣∣∣∣∣k(x + 1)k

k + 1

∣∣∣∣ = |x + 1| · lim
k→∞

(k + 1)2

k(k + 2)
= |x + 1|,

by the Ratio Test, when |x + 1| < 1, the power series converges; when |x + 1| > 1,
it diverges. Thus, the radius of convergence is R = 1.
So, the series converges if −2 < x < 0; diverges if x < −2 or x > 0.

(b) Determine whether the power series is convergent at the endpoints.

At the left endpoint x = −2, the series is
∞∑

k=0

(−1)kk

k + 1
. Since

lim
k→∞

∣∣∣∣ (−1)kk

k + 1

∣∣∣∣ = lim
k→∞

k

k + 1
= 1 ̸= 0,

so that lim
k→∞

(−1)kk

k + 1
̸= 0. From the Divergence Test, the series is divergent .

At the right endpoint x = 0, the series is
∞∑

k=0

k

k + 1
. Again from the Divergence

Test, it is divergent from the Divergence Test.

Hence, for the power series
∞∑

k=0

k(x + 1)k

k + 1
, the radius of convergence R = 1 and the

interval of convergence is (−2, 0).
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3. Determine the radius of convergence and the interval of convergence of the power series
∞∑

k=0

(x − 2)k

√
k + 1

.

Solution

(a) Compute the radius of convergence by the Ratio Test.
Since

lim
k→∞

∣∣∣∣ (x − 2)k+1
√

k + 1 + 1

∣∣∣∣∣∣∣∣ (x − 2)k

√
k + 1

∣∣∣∣ = |x − 2| · lim
k→∞

√
k + 1√

k + 1 + 1
= |x − 2|,

by the Ratio Test, when |x − 2| < 1, the power series converges; when |x − 2| > 1,
it diverges. Thus, the radius of convergence is R = 1.
So, the series converges if 1 < x < 3; diverges if x < 1 or x > 3.

(b) Determine whether the power series is convergent at the endpoints.

At the left endpoint x = 1, the series is
∞∑

k=0

(−1)k

√
k + 1

, which is an alternating series.

Let bk = 1√
k + 1

. Then, {bk} is a positive decreasing sequence and lim
k→∞

bk = 0.

By the Alternating Series Test, this series is convergent.

At the right endpoint x = 3, the series is
∞∑

k=0

1√
k + 1

. Since

lim
k→∞

1√
k + 1√

k
= 1,

and the p-series
∞∑

k=0

1√
k

is divergent (p = 1
2 ), by the Limit Comparison Test, the

series
∞∑

k=0

1√
k + 1

is divergent.

Hence, for the power series
∞∑

k=0

(x − 2)k

√
k + 1

, the radius of convergence R = 1 and the

interval of convergence is [1, 3).

7.23 MATLAB: radius of convergence and interval of convergence

Determine the radius of convergence and the interval of convergence of the power series
∞∑

k=0

k(x + 1)k

k + 1
.

Solution
First, we compute the radius of convergence by the Ratio Test.
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>> syms k x
>> assume (k,'positive ') % k >0
>> assumeAlso (k,'integer ') % k is also an integer
>> a(k) = k*(x + 1)^k/(k + 1);
>> ratio_a = simplify (abs(a(k + 1)/a(k)));
>> L = limit(ratio_a ,k,inf)

L =

abs(x + 1)

According to the Ratio Test, when |x + 1| < 1, the power series is convergent; when |x + 1| >
1, it is divergent. Thus, the radius of convergence is R = 1.

Moreover, from the result above, we can know that the series converges if −2 < x < 0, and
diverges if x < −2 or x > 0. To determine the interval of convergence, we need to determine
whether the power series is convergent at the endpoints x = −2 and x = 0, which is shown
in the following:

>> a_left = subs(a(k),x,-2) % when x = -2

a_left =

(( -1)^k*k)/(k + 1)

>> lim_a_left = limit(abs( a_left ),k,inf)

lim_a_left =

1

>> a_right = subs(a(k),x ,0) % when x = 0

a_right =

k/(k + 1)

>> lim_a_right = limit(a_right ,k,inf)

lim_a_right =

1

We see from the results above that lim
k→∞

k(−2 + 1)k

k + 1
= 1 ̸= 0 and lim

k→∞

k(0 + 1)k

k + 1
= 1 ̸= 0.

So, according to the Divergence Test, the power series is divergent at both endpoints x = −2
and x = 0. Therefore, the interval of convergence of this power series is (−2, 0).
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Operations on Power Series

7.24 Theorem: combining power series

Suppose
∑

ckxk and
∑

dkxk converge to f(x) and g(x), respectively, in an open interval
I containing 0. Then

1. Sum and Difference:
∑

(ck ± dk)xk converges to f(x) ± g(x) in I, that is,

∞∑
k=0

(ck ± dk)xk =
∞∑

k=0

ckxk ±
∞∑

k=0

dkxk, x ∈ I.

2. Product:
∑

(c0dk + c1dk−1 + · · · + ck−1d1 + ckd0) xk converges to f(x) · g(x) in I,
that is,

∞∑
k=0

 k∑
j=0

cjdk−j

xk =

( ∞∑
k=0

ckxk

)( ∞∑
k=0

dkxk

)
, x ∈ I.

3. Quotient: If d0 ̸= 0, then in a neighborhood of x = 0, the power series
∑

akxk

converges to f(x)
g(x)

, that is,

∞∑
k=0

akxk =

∞∑
k=0

ckxk

∞∑
k=0

dkxk

,

where

a0 = c0

d0
, ak = 1

d0

ck −
k∑

j=1
djak−j

 for k ≥ 1.

4. Composition: If h(x) = bxm, where m is a positive integer and b ̸= 0 a real number,
the power series

∑
ck(h(x))k converges to f(h(x)) for x such that h(x) ∈ I.

7.25 Example: product and quotient of power series

1. The product can be found by a vertical set-up. For instance, for the power series
representations

ex = 1 + x + 1
2 x2 + 1

6 x3 + · · · , x ∈ R,

cos x = 1 − 1
2! x

2 + 1
4! x

4 − · · · , x ∈ R,
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to compute the Maclaurin series for ex cos x, we collect like terms just as for polynomials:

1 + x + 1
2 x2 + 1

6 x3 + · · ·

× 1 − 1
2 x2 + · · ·

1 + x + 1
2 x2 + 1

6 x3 + · · ·
− 1

2 x2 − 1
2 x3 − · · ·

+
. . .

1 + x − 1
3 x3 − · · ·

Thus,
ex cos x = 1 + x − 1

3 x3 − · · · , x ∈ R.

2. The quotient can be found by a vertical set-up. For instance, for the power series
representations

sin x = x − 1
3! x

3 + 1
5! x

5 − · · · , x ∈ R,

cos x = 1 − 1
2! x

2 + 1
4! x

4 − · · · , x ∈ R,

to compute the Maclaurin series for tan x = sin x

cos x
, we use a procedure like long division:

x + 1
3 x3 + 2

15 x5 + · · ·

1 − 1
2 x2 + 1

24 x4 − · · · x − 1
6 x3 + 1

120 x5 − · · ·
x − 1

2 x3 + 1
24 x5 − · · ·

1
3 x3 − 1

30 x5 + · · ·
1
3 x3 − 1

6 x5 + · · ·
2

15 x5 + · · ·
2

15 x5 + · · ·

· · ·

Thus,
tan x = x + 1

3 x3 + 2
15 x5 + · · · , x ∈ (− π

2 , π
2 ).

The Maclaurin series for the tangent function tan x has a smaller interval of convergence
due to the fact that the denominator cos x becomes zero at x = ± π

2 .

7.26 MATLAB: product and quotient of power series

1. Given two power series f(x) =
∞∑

k=0

xk

k!
(x ∈ (−∞, ∞)) and g(x) =
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∞∑
k=0

(−1)k x2k

(2k)!
(x ∈ (−∞, ∞)), find the power series for the product of these two power

series, i.e., f(x)g(x).
Solution

>> syms x k
>> assume (k,'integer ') % k is an integer
>> a(k) = x^k/ factorial (k);
>> b(k) = (-1)^k*x^(2*k)/ factorial (2*k);
>> f(x) = symsum (a(k),k,0, inf)

f(x) =

exp(x)

>> g(x) = symsum (b(k),k,0, inf)

g(x) =

cos(x)

>> prod_term = f(x)*g(x)

prod_term =

exp(x)*cos(x)

>> prod_series = ...
taylor (prod_term ,x,'ExpansionPoint ',0,'Order ' ,6)

prod_series =

- x^5/30 - x^4/6 - x^3/3 + x + 1

It is shown that, up to the order of 5, the product of these two series can be written as

f(x)g(x) = 1 + x − 1
3 x3 − 1

6 x4 − 1
30 x5 + · · · , x ∈ R.

2. Given two power series f(x) =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!
(x ∈ (−∞, ∞)) and g(x) =

∞∑
k=0

(−1)k x2k

(2k)!
(x ∈ (−∞, ∞)), find the power series for the quotient of these two

power series, i.e., f(x)
g(x)

.

Solution
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>> syms x k
>> assume (k,'integer ') % k is an integer
>> a(k) = (-1)^k*x^(2*k + 1)/ factorial (2*k + 1);
>> b(k) = (-1)^k*x^(2*k)/ factorial (2*k);
>> f(x) = symsum (a(k),k,0, inf)

f(x) =

sin(x)

>> g(x) = symsum (b(k),k,0, inf)

g(x) =

cos(x)

>> quot_term = f(x)/g(x)

quot_term =

sin(x)/cos(x)

>> quot_series = ...
taylor (quot_term ,x,'ExpansionPoint ' ,0,'Order ' ,6)

quot_series =

(2*x^5) /15 + x^3/3 + x

It is shown that, up to the order of 5, the quotient of these two series can be written as

f(x)
g(x)

= x + 1
3 x3 + 2

15 x5 + · · · .

Note that the denominator g(x) = cos x becomes 0 when x = ± π
2 . Hence, the power

series for the quotient is convergent when x ∈
(
− π

2 , π
2
)
.

7.27 Theorem: differentiation and integration of power series

If the power series
∞∑

k=0

ck(x − a)k has radius of convergence R > 0, then the function f

defined by

f(x) = c0 + c1(x − a) + c2(x − a)2 + · · · =
∞∑

k=0

ck(x − a)k

is differentiable (and therefore continuous) on the interval (a − R, a + R) and
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1. f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · =
∞∑

k=1
kck(x − a)k−1.

2.
ˆ

f(x) dx = C + c0(x − a) + c1
(x − a)2

2
+ c2

(x − a)3

3
+ · · · = C +

∞∑
k=0

ck
(x − a)k+1

k + 1
.

The radii of convergence of the these power series are both still R.

7.28 Example: differentiation of power series

Find 1 + 3x2 + 5x4 + 7x6 + · · · .
Solution Finite geometric series gives

n∑
k=0

xk = 1 + x + x2 + x3 + · · · + xn = 1 − xn+1

1 − x
,

so that
1

1 − x
=

∞∑
k=0

(−1)kxk = 1 + x + x2 + x3 + · · · , x ∈ (−1, 1).

Substituting x by −x (or making a composition) gives

1
1 + x

=
∞∑

k=0

(−1)kxk = 1 − x + x2 − x3 + · · · , x ∈ (−1, 1).

Thus, differentiating these two equalities, respectively, gives(
1

1 − x

)′

= 1 + 2x + 3x2 + 4x3 + · · · , x ∈ (−1, 1);(
1

1 + x

)′

= −1 + 2x − 3x2 + 4x3 − · · · , x ∈ (−1, 1).

The difference of the last two equalities is

2
(
1 + 3x2 + 5x4 + 7x6 + · · ·

)
=
(

1
1 − x

)′

−
(

1
1 + x

)′

= 1
(1 − x)2 + 1

(1 + x)2 = 2(1 + x2)
(1 − x2)2 ,

so that
1 + 3x2 + 5x4 + 7x6 + · · · = 1 + x2

(1 − x2)2 , x ∈ (−1, 1).

7.29 Example: integration of power series

1. Finite geometric series gives
n∑

k=0

(−1)kxk = 1 − x + x2 − x3 + · · · + (−1)nxn = 1 − (−x)n+1

1 + x
,
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so that

1
1 + x

=
∞∑

k=0

(−1)kxk = 1 − x + x2 − x3 + · · · , for x ∈ (−1, 1).

Integrating the equality gives

ln(1 + x) = C + x − x2

2
+ x3

3
− x4

4
+ · · · , for x ∈ (−1, 1).

By putting x = 0 on both of the last equality, we get C = 0. Hence, for x ∈ (−1, 1),
we have

ln(1 + x) =
∞∑

k=1

(−1)k−1 xk

k
= x − x2

2
+ x3

3
− x4

4
+ · · · .

At the endpoints x = −1, the Maclaurin series is the divergent harmonic series. At
the other endpoint x = 1, the Maclaurin series is the convergent alternating harmonic
series. We can get the Maclaurin series for the function ln(1 + x):

ln(1 + x) =
∞∑

k=1

(−1)k−1 xk

k
= x − x2

2
+ x3

3
− x4

4
+ · · · , for x ∈ (−1, 1].

The following result can be applied to justify the equality at x = 1:

If
∑

ck converges and f(x) =
∞∑

k=0
ckxk (−1 < x < 1), then lim

x→1−
f(x) =

∞∑
k=0

ck.

2. Notice that
ˆ

dx

1 + x2 = tan−1 x + C. So, to find the Maclaurin series for the function

tan−1 x, we may start with the Maclaurin series for the function 1
1 + x

:

1
1 + x

= 1 − x + x2 − x3 + · · · , x ∈ (−1, 1).

Substituting x by x2 gives

1
1 + x2 = 1 − x2 + x4 − x6 + · · · , x ∈ (−1, 1).

Integrating the equality gives

tan−1 x = C + x − 1
3 x3 + 1

5 x5 − 1
7 x7 + · · · , x ∈ (−1, 1).

By putting x = 0 on both of the last equality, we get C = 0. Hence, for x ∈ (−1, 1),
we have

tan−1 x =
∞∑

k=0

(−1)k x2k+1

2k + 1
= x − 1

3 x3 + 1
5 x5 − 1

7 x7 + · · · .
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At each of the endpoints x = ±1, the Maclaurin series is a convergent alternating series,
by Alternating Series Test. We can get the Maclaurin series for the function tan−1 x:

tan−1 x =
∞∑

k=0

(−1)k x2k+1

2k + 1
= x − 1

3 x3 + 1
5 x5 − 1

7 x7 + · · · , for x ∈ [−1, 1].

Again, the equality holds at both endpoints due to the same result stated above.

7.30 MATLAB: differentiation of power series

Find the power series for

( ∞∑
k=0

xk

)′

−

( ∞∑
k=0

(−1)kxk

)′

, x ∈ (−1, 1).

Solution

>> syms x k
>> assume (k,'integer ') % k is an integer
>> a(k) = x^k;
>> b(k) = ( -1)^k*x^k;
>> term1 = symsum (a(k),k,0, inf);
>> term2 = symsum (b(k),k,0, inf);
>> term1_diff = diff(term1 ,x)

term1_diff =

piecewise (1 < x, 0, abs(x) < 1, 1/(x - 1) ^2)

>> term2_diff = diff(term2 ,x)

term2_diff =

piecewise (x < -1, 0, abs(x) < 1, -1/(x + 1) ^2)

>> Delta_term_diff = term1_diff - term2_diff ;
>> Delta_term_diff_series = ...

taylor ( Delta_term_diff ,x,'ExpansionPoint ',0,'Order ' ,7)

Delta_term_diff_series =

14*x^6 + 10*x^4 + 6*x^2 + 2

It is shown that, up to the order of 6, the power series for

( ∞∑
k=0

xk

)′

−

( ∞∑
k=0

(−1)kxk

)′

can
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be written as( ∞∑
k=0

xk

)′

−

( ∞∑
k=0

(−1)kxk

)′

= 2 + 6x2 + 10x4 + 14x6 + · · · , x ∈ (−1, 1).

7.31 MATLAB: integration of power series

Find the power series for
ˆ ∞∑

k=0

(−1)kxkdx, x ∈ (−1, 1).

Solution

>> syms x k
>> assume (k,'integer ') % k is an integer
>> a(k) = ( -1)^k*x^k;
>> int_fun = symsum (a(k),k,0, inf);
>> int_term = int(int_fun ,x);
>> int_series = taylor (int_term ,x,'ExpansionPoint ' ,0,'Order ' ,5)

int_series =

- x^4/4 + x^3/3 - x^2/2 + x

It is shown that, up to the order of 4, the power series for
ˆ ∞∑

k=0

(−1)kxkdx, x ∈ (−1, 1), can

be written as ˆ ∞∑
k=0

(−1)kxkdx = x − 1
2

x2 + 1
3

x3 − 1
4

x4 + · · · .

7.32 Theorem: common Maclaurin series and their radii of convergence

1. 1
1 − x

=
∞∑

k=0
xk = 1 + x + x2 + x3 + · · · , x ∈ (−1, 1), R = 1.

2. ex =
∞∑

k=0

xk

k!
= 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · , x ∈ (−∞, ∞), R = ∞.

3. sin x =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!
= x − x3

3!
+ x5

5!
− x7

7!
+ · · · , x ∈ (−∞, ∞), R = ∞.

4. cos x =
∞∑

k=0
(−1)k x2k

(2k)!
= 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · , x ∈ (−∞, ∞), R = ∞.

5. tan−1 x =
∞∑

k=0
(−1)k x2k+1

2k + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · , x ∈ [−1, 1], R = 1.
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6. ln(1 + x) =
∞∑

k=1
(−1)k−1 xk

k
= x − x2

2
+ x3

3
− x4

4
+ · · · , x ∈ (−1, 1], R = 1.

7. (1 + x)α =
∞∑

k=0

(
α

k

)
xk = 1 + αx + α(α − 1)

2!
x2 + α(α − 1)(α − 2)

3!
x3 + · · · , at least for

x ∈ (−1, 1), R = 1.

7.33 Example: binomial expansion

Expand the function y =
√

a2 + x2 (a > 0) as its Maclaurin series.
Solution Write the function as

y = a
[
1 + (x/a)2] 1

2 .

By the binomial expansion

(1 + x)α =
∞∑

k=0

(
α

k

)
xk, x ∈ (−1, 1).

we get, for −a < x < a,

√
a2 + x2 = a

∞∑
k=0

( 1
2
k

)
(x/a)2k

= a

[
1 +

1
2
1!

·
(x

a

)2
+

1
2 ( 1

2 − 1)
2!

·
(x

a

)4
+

1
2 ( 1

2 − 1)( 1
2 − 2)

3!
·
(x

a

)6
+ · · ·

]
= a +

1
2
1!

· a−1x2 +
1
2 ( 1

2 − 1)
2!

· a−3x4 +
1
2 ( 1

2 − 1)( 1
2 − 2)

3!
· a−5x6 + · · · .

7.34 Theorem: theorem of analytic function

Suppose f has a power series representation (expansion) at a:

f(x) =
∞∑

k=0

ck(x − a)k, |x − a| < R,

where R > 0 or R = ∞. Then

1. The coefficients are given by the formula

ck = f (k)(a)
k!

, k ≥ 0.

2. lim
x→a

f(x) − Tn(x)
(x − a)n

= 0, or equivalently,

f(x) = Tn(x) + o(|x − a|n) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o(|x − a|n), as x → a.
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3. f(x) = lim
n→∞

Tn(x) for |x − a| < R.

Justification:

1. We know that it is legitimate to differentiate the infinite series term by term at any
number x satisfying |x − a| < R. Thus, for each k, k = 0, 1, 2, . . . , we differentiate and
substitute x = a to have

f (k)(a) = 2 · 3 · 4 · · · k · ck = k! · ck,

so that
ck = f (k)(a)

k!
, k ≥ 0.

2. By part 1, we get Tn(x) =
n∑

k=0
ck(x − a)k. Thus,

lim
x→a

f(x) − Tn(x)
(x − a)n

= lim
x→a

(x − a)n+1 ·
∞∑

k=0
cn+k(x − a)k

(x − a)n
= 0.

3. By part 1, we get Tn(x) =
n∑

k=0
ck(x − a)k. Thus,

f(x) =
∞∑

k=0

ck(x − a)k = lim
n→∞

Tn(x).

7.35 Example: find higher derivative

For f(x) = tan−1 x, find f (2019)(0).
Solution We know that the function f(x) = tan−1 x has the following Maclaurin series:

tan−1 x =
∞∑

k=0

(−1)k x2k+1

2k + 1
, x ∈ [−1, 1].

By the uniqueness of Taylor expansion, we have

f (2k+1)(0)
(2k + 1)!

= (−1)k

2k + 1
, k ≥ 0.

Thus,
f (2019)(0) = (−1)1009 · 2018! = −2018!.
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7.36 MATLAB: find higher derivative

For f(x) = tan−1 x, find f (2019)(0).
Solution First, the Maclaurin series of f(x) = tan−1 x can be written as

f(x) = tan−1 x =
∞∑

k=0

ckxk, x < R.

According to the theorem of analytic function, the coefficient of the term with order k is
given by

ck = f (k)(0)
k!

, k ≥ 0.

Hence, we have f (2019)(0) = 2019!c2019. To calculate f (2019)(0), we thus only need to calculate
c2019, which is shown as follows:

>> syms x
>> f(x) = atan(x);
>> f_series = taylor (f(x),x,'ExpansionPoint ',0,'Order ' ,2019 + ...

1); % expand f(x) up to order 2019
>> c_array = coeffs ( f_series ); % find all the coefficients of ...

the series , the coefficient of the term with the highest ...
order is the last element of the array

>> ind = length ( c_array ); % the location of the coefficient ...
for x ^2019 in the array

>> c = c_array (ind) % the value of the last coefficient , ...
i.e., the one for x^2019

c =

-1/2019

In the MATLAB code above, the command coeffs can return all the coefficients of a poly-
nomial, and the command length can return the length of a vector.

We see from the result above that c2019 = − 1
2019 . Therefore, we have

f (2019)(0) = 2019!c2019 = −2018!.
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7.4 Applications of Taylor Series

Limits by Taylor Series

7.37 Example: limit by Taylor series

Find lim
x→0

x3 − 6x cos(x2) + 6 sin x

x5 .
Solution The limit has the indeterminate form 0

0 . Although we may apply l’Hospital’s
Rule, alternatively we use the technique of Taylor series. In fact, near x = 0, we have

sin x = x − 1
3! x

3 + 1
5! x

5 + · · · ,

cos(x2) = 1 − 1
2! (x

2)2 + · · · ,

so that, as x → 0,

sin x = x − 1
6 x3 + 1

120 x5 + o(|x|5),
cos(x2) = 1 − 1

2 x4 + o(|x|4),

Hence,

lim
x→0

x3 − 6x cos(x2) + 6 sin x

x5

= lim
x→0

x3 − 6x
[
1 − 1

2 x4 + o(|x|4)
]

+ 6
[
x − 1

6 x3 + 1
120 x5 + o(|x|5)

]
x5

= lim
x→0

61
20 x5 + o(|x|5)

x5 = 61
20 .

7.38 Example: limit by Taylor series

Find lim
x→∞

[
x4 sin

(
x−4)− x2e−1/x2 + x2

]
.

Solution If making the substitution x = t−1, we see that x → ∞ ⇐⇒ t → 0+. Thus,

lim
x→∞

[
x4 sin

(
x−4)− x2e−1/x2

+ x2
]

= lim
t→0+

[
t−4 sin(t4) − t−2e−t2

+ t−2
]

= lim
t→0+

sin(t4) − t2e−t2 + t2

t4 .

The last limit has the indeterminate form 0
0 . We use the technique of Taylor series. In fact,

near t = 0, we have

sin(t4) = t4 + · · · ,

e−t2
= 1 + 1

1! (−t2) + · · · ,
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so that, as t → 0+,

sin(t4) = t4 + o(|t|4),

e−t2
= 1 − t2 + o(|t|2),

Hence,

lim
t→0+

sin(t4) − t2e−t2 + t2

t4

= lim
t→0+

[
t4 + o(|t|4)

]
− t2 [1 − t2 + o(|t|2)

]
+ t2

t4

= lim
t→0+

2t4 + o(|t|4)
t4 = 2.

Therefore,
lim

x→∞

[
x4 sin

(
x−4)− x2e−1/x2

+ x2
]

= 2.

Approximation of Definite Integrals

7.39 Example: approximation of a definite integral

Approximate
ˆ 1

0
e−x2

dx within 10−4 of the exact value.

Solution We begin with the Maclaurin series

ex =
∞∑

k=0

xk

k!
= 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · , x ∈ (−∞, ∞).

By replacing x with −x2, we have

e−x2
=

∞∑
k=0

(−x2)k

k!
= 1 − x2

1!
+ x4

2!
− x6

3!
+ · · · , x ∈ (−∞, ∞).

Thus,
ˆ 1

0
e−x2

dx =
(

x − x3

3 · 1!
+ x5

5 · 2!
− x7

7 · 3!
+ · · ·

)∣∣∣∣1
x=0

= 1 − 1
3 · 1!

+ 1
5 · 2!

− 1
7 · 3!

+ · · · =
∞∑

k=0

(−1)k

(2k + 1) · k!
.

This shows that the definite integral can be expressed as a convergent alternating series, with
bk = 1

(2k + 1) · k!
satisfying:

0 < bk+1 < bk, lim
k→∞

bk = 0.
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Using the bound on the remainder in the Alternating Series Test, we have

|Rn| =

∣∣∣∣∣
ˆ 1

0
e−x2

dx −
n∑

k=0

(−1)k

(2k + 1) · k!

∣∣∣∣∣ <
1

(2n + 3) · (n + 1)!
.

Thus, to ensure that |Rn| < 10−4, we need to choose n so that 1
(2n + 3) · (n + 1)!

< 10−4, or

n > 6. Hence, the finite series
6∑

k=0

(−1)k

(2k + 1) · k!
gives an approximation that is within 10−4

of the exact value of the series.
Using the bounds on the series in the Alternating Series Test, we have

s6 − 1
15 · 7!

<

ˆ 1

0
e−x2

dx < s6 + 1
15 · 7!

,

where s6 =
6∑

k=0

(−1)k

(2k + 1) · k!
. By using a calculator, we have s6 ≈ 0.74684, which has 5th

decimal place accuracy. Thus,

0.74683 < s < 0.74685.

Taking the average of these two bounds as our approximation of
ˆ 1

0
e−x2

dx, we find that
ˆ 1

0
e−x2

dx ≈ 0.74684.

For comparison,
ˆ 1

0
e−x2

dx = 0.7468241324 · · · . We see that our approximation indeed is

within 10−4 of the exact value of the series.

Solving Differential Equations

7.40 Example: solving differential equation by power series

Solve the differential equation y′(t) = y(t)−1, subject to the initial value condition y(0) = 3.
Solution We assume the solution has a power series solution of the form

y(t) =
∞∑

k=0

cktk = c0 + c1t + c2t2 + c3t3 + · · · ,

where the coefficients {ck} will be determined.
Since y(0) = 3, we get c0 = 3.
The other coefficients can be determined one by one. In fact, substituting the series solution

into the differential equation gives

c1 + 2c2t + 3c3t2 + 4c4t3 + · · · = (c0 + c1t + c2t2 + c3t3 + · · · ) − 1.
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Putting t = 0 on both sides of the equation gives

c1 = c0 − 1 =⇒ c1 = 2. since c0 = 3

We differentiate both sides of the above equation to have

2c2 + 3 · 2c3t + 4 · 3c4t2 + · · · = (c1 + 2c2t + 3c3t2 + · · · ) − 0.

Again, putting t = 0 on both sides of the last equation gives

2c2 = c1 =⇒ c2 = 1. since c1 = 2

We repeat the above process by differentiating the equation once more then putting t = 0 on
the resulted equation. Recursively, we get:

c3 = 1
3

, c4 = 1
4 · 3

, c5 = 1
5 · 4 · 3

, . . . .

Thus, we obtain an “formal” solution:

y(t) = 3 + 2t + t2 + t3

3
+ t4

4 · 3
+ t5

5 · 4 · 3
+ · · ·

The formal solution can be re-written as (formally!)

y(t) = 1 + 2
(

1 + t + t2

2!
+ t3

3!
+ t4

4!
+ t5

5!
+ · · ·

)
.

We recognize that the right-hand side is actually the Maclaurin series of the function 1 + 2et.
Finally, we can verify that the formally obtained solution is indeed the true solution of the

original problem, since

y′(t) = (1 + 2et)′ = 2et = (1 + 2et) − 1 = y(t) − 1;
y(0) = (1 + 2et)

∣∣
t=0 = 3.
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Summary

Definition: basic concepts

• Let f be a function with f ′, f ′′, . . . , and f (n) defined at a. The nth-order Taylor
polynomial for f with its center at a is

Tn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n.

• Let Tn be the Taylor polynomial of order n for f at a. The term Rn(x) = f(x) − Tn(x)
is called the remainder of the Taylor series. The latter refers the following “formal”
power series of f :

f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n + · · · .

This power series is also called Taylor expansion of f at a. A Taylor series centered
at 0 is called a Maclaurin series.

• A power series in (x − a) or a power series centered at a or a power series
about a is a series of the form

∞∑
k=0

ck(x − a)k = c0 + c1(x − a) + c2(x − a)2 + · · · .

Theorem: uniqueness of Taylor polynomials

Suppose f is a function with f ′, f ′′, . . . , and f (n) defined at a. If Pn is a polynomial of
degree n satisfying

Pn(a) = f(a), P ′
n(a) = f ′(a), P ′′

n (a) = f ′′(a), . . . , P (n)
n (a) = f (n)(a),

Then

Pn(x) ≡ Tn(x) = f(a) + f ′(a)(x − a) + f ′′(a)
2!

(x − a)2 + · · · + f (n)(a)
n!

(x − a)n.

Theorem: asymptotic approximation of Taylor polynomials

If f (n)(a) exists, then lim
x→a

f(x) − Tn(x)
(x − a)n

= 0, or equivalently, by using little-o notation,

f(x) = Tn(x) + o(|x − a|n) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o(|x − a|n), as x → a.
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Theorem: convergence theorem of Taylor series

If lim
n→∞

Rn(x) = 0 in an open interval I that contains a, then

f(x) = lim
n→∞

Tn(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k, x ∈ I.

Theorem: integral form of the remainder

If f (n+1) is continuous in an open interval I that contains a, then

Rn(x) = 1
n!

ˆ x

a

(x − t)nf (n+1)(t) dt, x ∈ I.

Theorem: Lagrange remainder

If f (n+1) is continuous in an open interval I that contains a, then there is c between a and
x such that

Rn(x) = f (n+1)(c)
(n + 1)!

(x − a)n+1.

This formula is called the Lagrange remainder of Taylor series.

Theorem: remainder estimate

If
∣∣f (n+1)(x)

∣∣ ≤ M in an open interval I that contains a, then

|Rn(x)| ≤ M

(n + 1)!
|x − a|n+1, x ∈ I.

Hence, if
∣∣f (n+1)(x)

∣∣ ≤ M for every n in I, then

f(x) =
∞∑

k=0

f (k)(a)
k!

(x − a)k, x ∈ I.

Theorem: convergence of power series

For a given power series
∞∑

k=0
ck(x − a)k there are only three possibilities:

1. The series converges only when x = a.

2. The series converges for all x.

3. There is a positive number R such that the series converges if |x − a| < R and diverges
if |x − a| > R.
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Definition: radius of convergence

The number R is called the radius of convergence of the power series.
By convention, the radius of convergence is R = 0 when the power series converges

only at the center a and R = ∞ when the power series converges for all x. The
interval of convergence of a power series is the interval that consists of all values
of x for which the series converges.

Method: determine the interval of convergence

Let
∞∑

k=0
ck(x − a)k be a given power series.

1. Compute the radius of convergence R by using the Ratio Test (or sometimes the Root
Test) by

R = 1

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = lim
k→∞

∣∣∣∣ ck

ck+1

∣∣∣∣ or R = 1
lim

k→∞
k
√

|ck|
.

2. The Ratio and Root Tests are inconclusive when x is an endpoint of the interval of
convergence. Apply some other test to determine whether the series is convergent or
divergent at an endpoint.

Theorem: combining power series

Suppose
∑

ckxk and
∑

dkxk converge to f(x) and g(x), respectively, in an open interval
I containing 0. Then

1. Sum and Difference:
∑

(ck ± dk)xk converges to f(x) ± g(x) in I, that is,

∞∑
k=0

(ck ± dk)xk =
∞∑

k=0

ckxk ±
∞∑

k=0

dkxk, x ∈ I.

2. Product:
∑

(c0dk + c1dk−1 + · · · + ck−1d1 + ckd0) xk converges to f(x) · g(x) in I,
that is,

∞∑
k=0

 k∑
j=0

cjdk−j

xk =

( ∞∑
k=0

ckxk

)( ∞∑
k=0

dkxk

)
, x ∈ I.

3. Quotient: If d0 ̸= 0, then in a neighborhood of x = 0, the power series
∑

akxk
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converges to f(x)
g(x)

, that is,

∞∑
k=0

akxk =

∞∑
k=0

ckxk

∞∑
k=0

dkxk

,

where

a0 = c0

d0
, ak = 1

d0

ck −
k∑

j=1
djak−j

 for k ≥ 1.

4. Composition: If h(x) = bxm, where m is a positive integer and b ̸= 0 a real number,
the power series

∑
ck(h(x))k converges to f(h(x)) for x such that h(x) ∈ I.

Theorem: differentiation and integration of power series

If the power series
∞∑

k=0

ck(x − a)k has radius of convergence R > 0, then the function f

defined by

f(x) = c0 + c1(x − a) + c2(x − a)2 + · · · =
∞∑

k=0

ck(x − a)k

is differentiable (and therefore continuous) on the interval (a − R, a + R) and
1. f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + · · · =

∞∑
k=1

kck(x − a)k−1.

2.
ˆ

f(x) dx = C + c0(x − a) + c1
(x − a)2

2
+ c2

(x − a)3

3
+ · · · = C +

∞∑
k=0

ck
(x − a)k+1

k + 1
.

The radii of convergence of the these power series are both still R.

Theorem: common Maclaurin series and their radii of convergence

1. 1
1 − x

=
∞∑

k=0
xk = 1 + x + x2 + x3 + · · · , x ∈ (−1, 1), R = 1.

2. ex =
∞∑

k=0

xk

k!
= 1 + x

1!
+ x2

2!
+ x3

3!
+ · · · , x ∈ (−∞, ∞), R = ∞.

3. sin x =
∞∑

k=0
(−1)k x2k+1

(2k + 1)!
= x − x3

3!
+ x5

5!
− x7

7!
+ · · · , x ∈ (−∞, ∞), R = ∞.

4. cos x =
∞∑

k=0
(−1)k x2k

(2k)!
= 1 − x2

2!
+ x4

4!
− x6

6!
+ · · · , x ∈ (−∞, ∞), R = ∞.

5. tan−1 x =
∞∑

k=0
(−1)k x2k+1

2k + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · , x ∈ [−1, 1], R = 1.
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6. ln(1 + x) =
∞∑

k=1
(−1)k−1 xk

k
= x − x2

2
+ x3

3
− x4

4
+ · · · , x ∈ (−1, 1], R = 1.

7. (1 + x)α =
∞∑

k=0

(
α

k

)
xk = 1 + αx + α(α − 1)

2!
x2 + α(α − 1)(α − 2)

3!
x3 + · · · , at least for

x ∈ (−1, 1), R = 1.

Theorem: theorem of analytic function

Suppose f has a power series representation (expansion) at a:

f(x) =
∞∑

k=0

ck(x − a)k, |x − a| < R,

where R > 0 or R = ∞. Then

1. The coefficients are given by the formula

ck = f (k)(a)
k!

, k ≥ 0.

2. lim
x→a

f(x) − Tn(x)
(x − a)n

= 0, or equivalently,

f(x) = Tn(x) + o(|x − a|n) =
n∑

k=0

f (k)(a)
k!

(x − a)k + o(|x − a|n), as x → a.

3. f(x) = lim
n→∞

Tn(x) for |x − a| < R.
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7.41 MATLAB: What is MATLAB?

MATLAB is short for “Matrix Laboratory”. It is a multi-paradigm numerical computing
environment and proprietary programming language developed by MathWorks. MATLAB
allows matrix manipulations, plotting of functions and data, implementation of algorithms,
creation of user interfaces, and interfacing with programs written in other languages, including
C, C++, C#, Java, Fortran and Python. Although MATLAB is intended primarily for
numerical computing, an optional toolbox uses the MuPAD symbolic engine, allowing access
to symbolic computing abilities [Wikipedia].

7.42 MATLAB: Command Window

The command window is where the commands of MATLAB are typed in and calculations
are carried out. In particular, in the command window, the MATLAB commands are typed
in after two arrows >>, as shown in the following figure.
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After typing in the command and pressing “Enter” (in Windows) or “return” (in Mac), the
calculation will be carried out.

7.43 MATLAB: Current Folder and Workspace

Next to the command window, there are two other windows, namely, “Current Folder”
window and “Workspace” window, as shown in the following figure.

In particular, the “Current Folder” window on the left enables us to view, create, open,
move, and rename files and folders in the current folder. For the “Workspace” window on
the right, it enables us to view and interactively manage each variable or object used in
MATLAB. For example, we can edit the content a variable directly in the workspace by right
clicking the scalar and selecting the “Edit Value”, as shown in the following figure.
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Note that if we click the “Close” option under the triangle menu, the “Current Folder” or
“Workspace” window will be closed.

7.44 MATLAB: M-File

The MATLAB commands can be put into one file called m-file (or script file), and then
we can instruct MATLAB to execute these commands.

To create a m-file, we simply need to click the “New” option from the “HOME” menu and
select “Script”, as shown in the following figure.
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To open an existing m-file, we simply need to click the “Open” option from the “HOME”
menu and select the file required from the directory, as shown in the following figure.

To save an m-file, we can click the “Save” option from the “EDITOR” menu, as shown in
the following figure, and choose a suitable destination from the directory for the m-file. We
can also save an existing m-file to another destination by clicking the “Save As" option, and
then choose a suitable destination from the directory. Note that the m-file should be saved
with a “.m” extension.
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In the m-file, unlike in the command window, there are no double arrows after which the
command should be typed in. Moreover, all the commands in the m-file will not be executed
before clicking the “Run” button in the “EDITOR” menu which is shown in the figure above.
After clicking the “Run” button, the result will be shown if there is no error; otherwise, the
error information will be displayed in the command window.

7.45 MATLAB: Assignment of A Value and Semicolon

To explain how to assign a value and when to use the semicolon in MATLAB, we first
provide some examples as follows. Specifically, the following examples show the calculations
of cos(1) + 1 in the command window.

>> cos (1) + 1

ans =

1.5403

>> r1 = cos (1) + 1

r1 =

1.5403

>> r2 = cos (1) + 1;
>> r2

r2 =
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1.5403

We note that “=” means “assign a value” in MATLAB (The symbol “==” represents “equal”
in MATLAB). If no variable is specified, then the answer of cos(1)+1 is assigned to the default
variable ans, as can be seen from the first command of the MATLAB code above. Note that
in MATLAB, the number “1” in cos(1) is in radians (not degrees). If a certain variable is
specified, e.g., r1 in the second command, then the value of cos(1) + 1 is assigned to r1 after
executing this command.

Next, we explain the use of the semicolon (i.e., “;”). Specifically, if no semicolon is used
after a command, then the result of this command will be displayed directly after executing
this command; while if a semicolon is used after a command, then the result of this command
will not be displayed, as can be seen from the last two commands of the MATLAB code above.

7.46 MATLAB: Comments

In MATLAB, comments are written after %, and MATLAB does not attempt to compute
the commenst. For example, in the MATLAB code below, “Change the axis limits so
that both the x-axis and the y-axis range from -3 to 3” are the comments.

7.47 MATLAB: Help

In MATLAB, there is extensive documentation explaining the use of all its built-in func-
tions. To check the use of a function, we simply need to type in help function name after
>> in the command window. For example, in the following figure, two commands, namely,
help cos and help plot, are typed in to check the use of cos and plot, respectively.
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7.48 MATLAB: Vector

The most common variable type in MATLAB is matrix. In Calculus course, we will need
to frequently use the one-dimensional matrices, i.e., vectors, in MATLAB. In the following,
we will introduce two ways to define a vector in MATLAB.

1. initial:increment:terminator
The first way to define a vector is by specifying the initial value, the increment (or
step), and the terminator of the vector.

>> vec1 = 1:2:9

vec1 =

1 3 5 7 9

>> vec2 = 1:2:10

vec2 =

1 3 5 7 9

>> vec = 1:5

vec =

1 2 3 4 5
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The MATLAB code above defines two vectors named vec1 and vec2, respectively.
There are 5 elements in both of the vectors, namely, 1, 3, 5, 7 and 9. In particular,
vec1 starts at 1 (i.e., the initial value is 1), the increment from the previous value (i.e.,
the step) is 2, and it stops at 9.
However, sometimes the vector does not stop at the terminator specified in the com-
mand. With the value of each element changing from the value of the previous ele-
ment by adding an increment, the vector stops at a value which is not exceeding the
terminator but closest to the terminator. For example, vec2 stops at 9 instead of 10.
Note that if the increment is not specified in the command, the default increment is
1, as can be seen from the third command above.

2. linspace

Using the command linspace is another way of defining a vector.

>> vec3 = linspace (1 ,9 ,5)

vec3 =

1 3 5 7 9

>> vec4 = linspace (1 ,10 ,5)

vec4 =

1.0000 3.2500 5.5000 7.7500 10.0000

From the MATLAB code above, we see that the command linspace(x1,x2,N) defines
an N -element vector starting at x1 and stopping at x2. In this way, the increment
equals to x2 − x1

N − 1
.

Note that if we use the command linspace(x1,x2), then a 100-element vector with
initial value x1 and ending value x2 will be generated.
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7.49 MATLAB: Basic Computations

Some basic matrix operators are listed in the following.

Operator Meaning
+ Matrix addition
- Matrix subtraction
* Matrix multiplication
.* Element-by-element multiplication
./ Element-by-element division
ˆ Matrix exponentiation
.ˆ Element-by-element exponentiation

We see from the above table that some operators for matrices are the same with the ones
for scalars, but some are different and require an additional . before the scalar operator.

7.50 MATLAB: Plot

MATLAB has powerful graph-plotting features. For example, the command plot can be
used to generate a graph based on two vectors. The following MATLAB code generates the
figure of y = x2 by using the command plot.

>> x = -1:0.01:1;
>> y = x.^2;
>> figure % create a figure window
>> plot(x,y,'r') % graph is in red
>> xlabel ('x') % X-axis label
>> ylabel ('y = x^2 ') % Y-axis label
>> grid % add grid lines

The figure generated is shown in the following:
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Note that by clicking the third icon, we can save the figure. Moreover, after clicking the fifth
icon, i.e., the arrow, we can choose the “Property Editor” option from the “View” menu, as
highlighted in the following figure.

Then, a “Property Editor” window will appear as follows, and we can edit the figure, e.g.,
change the font, etc.
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