Lecture 1- Definite Integrals, Theorem of Calculus

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Recap MATH 1012/1013

1.1 Recall definitions and main theorems

1.1.1 Limits

Let's start with limit rules and theorems blow, and suppose that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist. Sum and difference rule: $\lim _{x \rightarrow a}(b f(x)+c g(x))=b \lim _{x \rightarrow a} f(x)+c \lim _{x \rightarrow a} g(x)$; Product rule: $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$; Quotient rule: If $\lim _{x \rightarrow a} g(x) \neq 0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$;
L'Hospital's rule Suppose that 1) f, g differentiable, 2) $g^{\prime}(x) \neq 0$ on $x \in I$, 3) $\lim _{x \rightarrow a} f(x)=0=$ $\lim _{x \rightarrow a} g(x)$ or $\left.\lim _{x \rightarrow a} f(x)=\infty=\lim _{x \rightarrow a} g(x), 4\right) \lim _{x \rightarrow a} \frac{f^{\prime}}{g^{\prime}}$ exist or is ∞. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Rk: $\frac{0}{0}$ form, $\frac{\infty}{\infty}$ form.
Ex. Find the limit $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$.
Squeeze theorem: If $f(x) \leq g(x) \leq h(x)$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=$ \bar{L};

Limit and one-sided limit: $\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f=\lim _{x \rightarrow a^{+}} f=L$;
Two important limits:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x}=e .
$$

1.1.2 Differentiation

Derivative: $\frac{d f}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, which denotes the rate of change of f with respect to (w.r.t.) x, can be understood as the slope of the tangent line.
Examples: (derivatives of some elementary functions)

- $(c)^{\prime}=0$, for any constant;
- $\left(x^{p}\right)^{\prime}=p x^{p-1}$, for any constant p;
- $\left(e^{x}\right)^{\prime}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=e^{x}$: the slope of $y=f(x)=e^{x}$ at $\left(x, e^{x}\right)$;
- $(\ln |x|)^{\prime}=\lim _{h \rightarrow 0} \frac{\ln |x+h|-\ln |x|}{h}=\frac{1}{x}$;

Rk: e^{x} and $\ln x$: inverse function of each other, since $\frac{d \ln x}{d x}=m=\frac{1}{M}=\frac{1}{e^{\ln x}}$, where m is the slope of $\ln x$ at $(x, \ln x)$, and M is the slope of e^{x} at $(\ln x, x)$;

- $(\sin x)^{\prime}=\cos x \longleftrightarrow(\cos x)^{\prime}=-\sin x ;$
- $(\tan x)^{\prime}=\sec ^{2} x \longleftrightarrow(\cot x)^{\prime}=-\csc ^{2} x ;$

$$
\begin{aligned}
\frac{d \cot x}{d x} & =\frac{d}{d x} \tan \left(\frac{\pi}{2}-x\right) \\
\quad & \begin{array}{l}
\text { chain } \\
\\
\\
\text { rule } \\
\\
\\
\\
=\csc ^{2}\left(\frac{\pi}{2}-x\right) \cdot(-1)=-\frac{d}{d x}\left(\frac{\pi}{2}-x\right) \\
\csc ^{2} x,
\end{array}
\end{aligned}
$$

where $\sec \left(\frac{\pi}{2}-x\right)=\csc x$ has been used;

- $(\sec x)^{\prime}=\sec x \tan x \longleftrightarrow(\csc x)^{\prime}=-\csc x \cot x ;$

Chain rule: Suppose f^{\prime} and g^{\prime} exist. Then

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x),
$$

or in Leibniz notation,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} .
$$

Example:

1. $(\ln |\sec x|)^{\prime} \quad$ 2. $(\ln |\sec x+\tan x|)^{\prime}$
solution Note that

$$
(\ln |g(x)|)^{\prime}=\frac{1}{g(x)} \cdot g^{\prime}
$$

Thus, we have

$$
(\ln |\sec x|)^{\prime}=\frac{1}{\sec x} \cdot(\sec x)^{\prime}=\frac{1}{\sec x} \cdot \sec x \tan x=\tan x
$$

and

$$
\begin{aligned}
(\ln |\sec x+\tan x|)^{\prime} & =\frac{1}{\sec x+\tan x}(\sec x+\tan x)^{\prime}=\frac{1}{\sec x \tan x} \cdot\left(\sec x \tan x+\sec ^{2} x\right) \\
& =\frac{\sec x \cdot(\tan x+\sec x)}{\tan x+\sec x}=\sec x
\end{aligned}
$$

Rk: $\ln |\sec x+\tan x|$ is an anti-derivative of $\sec x$.
Sum and difference rule:

$$
[a f(x)+b g(x)]^{\prime}=a f^{\prime}+b g^{\prime}
$$

Product rule:

$$
(f g)^{\prime}=f \cdot g^{\prime}+g \cdot f^{\prime}
$$

Quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g \cdot f^{\prime}-f \cdot g^{\prime}}{g^{2}}
$$

Example:

$$
\begin{aligned}
(\tan x)^{\prime} & =\left(\frac{\sin x}{\cos x}\right)^{\prime}=\frac{\cos x \cdot(\sin x)^{\prime}-\sin x \cdot(\cos x)^{\prime}}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x .
\end{aligned}
$$

Formulas of trigonometric functions:

- $\cos ^{2} x+\sin ^{2} x=1$;
- $1+\tan ^{2} x=\sec ^{2} x$, divide both sides by $\cos ^{2} x$ above;
- $\cot ^{2} x+1=\csc ^{2} x$, divide both sides by $\sin ^{2} x$ above;

Angle sum/Difference formulas

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha \\
& \sin (\alpha-\beta)=\sin \alpha \cos \beta-\sin \beta \cos \alpha \\
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{aligned}
$$

Double angle formulas:

$$
\begin{aligned}
& \sin 2 \alpha=2 \sin \alpha \cos \alpha \\
& \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha
\end{aligned}
$$

2 Definite integrals

Definite integral

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

Rk: 1) Interpretations of Definite Integral: the definite integral is to give the net area between the graph of $f(x)$ and the x-axis on the interval $[a, b] ; 2)$ the integral over the positive y axis is the area, however, the integral over the negative y axis, is negative area.
Example 2.1. Using the definition to calculate

$$
\int_{0}^{2} x^{2}+1 d x
$$

solution.
For brevity, we use the right endpoints of each interval. We know that for a general n the width of each subinterval is,

$$
\Delta x=\frac{2-0}{n}=\frac{2}{n}
$$

The subintervals are then,

$$
\left[0, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{4}{n}\right],\left[\frac{4}{n}, \frac{6}{n}\right], \ldots \ldots,\left[\frac{2(i-1)}{n}, \frac{2 i}{n}\right], \ldots,\left[\frac{2(n-1)}{n}, 2\right]
$$

As we can see the right endpoint of the $i^{\text {th }}$ subinterval is

$$
x_{i}^{*}=\frac{2 i}{n}
$$

The summation in the definition of the definite integral is then,

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x & =\sum_{i=1}^{n} f\left(\frac{2 i}{n}\right)\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left[\left(\frac{2 i}{n}\right)^{2}+1\right]\left(\frac{2}{n}\right) \\
& =\sum_{i=1}^{n}\left(\frac{8 i^{2}}{n^{3}}+\frac{2}{n}\right)
\end{aligned}
$$

In particular, note that the summation notation

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

We can evaluate the above summation as

$$
\begin{aligned}
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x & =\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}+\sum_{i=1}^{n} \frac{2}{n} \\
& =\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}+\frac{1}{n} \sum_{i=1}^{n} 2 \\
& =\frac{8}{n^{3}}\left[\frac{n(n+1)(2 n+1)}{6}\right]+\frac{1}{n} \cdot 2 n \\
& =\frac{4(n+1)(2 n+1)}{3 n^{2}}+2 \\
& =\frac{14 n^{2}+12 n+4}{3 n^{2}}
\end{aligned}
$$

We can now compute the definite integral by usage of taking a limit of this,

$$
\begin{aligned}
\int_{0}^{2} x^{2}+1 d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \frac{14 n^{2}+12 n+4}{3 n^{2}} \\
& =\frac{14}{3}
\end{aligned}
$$

Properties:

- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x, \quad \int_{a}^{a} f(x) d x=0, \quad \int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t$,
- $\int_{a}^{b} c f(x) \pm g(x) d x=c \int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$,
- $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ (where c is any number).

More properties that we often use:

- $\int_{a}^{b} c d x=c(b-a), c$ is any number;
- If $f(x) \geq 0$ for $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$;
- If $f(x) \geq g(x)$ for $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$;
- If $m \leq f(x) \leq M$ for $x \in[a, b]$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$;
- $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.

3 Theorem of calculus

Theorem 3.1 (Fundamental Theorem of Calculus). Let f be a continuous function on $[a, b]$.
Part I. Then the function

$$
A(x)=\int_{a}^{x} f(t) d t
$$

MATH 1014 Calculus II Spring 2022
is continuous on $[a, b]$, differentiable in (a, b), and $\frac{d}{d x} A(x)=f(x)$.
Part II. If F is a differentiable function $[a, b]$, such that $\frac{d}{d x} F(x)=f(x)$ (say, $F(x)$ is any antiderivative of $f(x)$), then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

Rk: 1) note Part I, for some constant $C, A(x)=F(x)+C$, however, $0=A(a)=F(a)+C$, thus $C=-F(a), A(x)=F(x)-F(a) ; 2)$ If the interval of integration is given, then the integral is definite.
Example [other way out the definite integral: FTC] Evaluate

$$
\int_{0}^{2}\left(x^{2}+1\right) d x=\left.\left(\frac{x^{3}}{3}+x\right)\right|_{0} ^{2}=\left(\frac{2^{3}}{3}+2\right)-0=\frac{8}{3}+2=\frac{14}{3} .
$$

Example: Evaluate

$$
\int_{0}^{1} x^{2} d x, \quad \int_{0}^{\pi} \sin x d x, \quad \int_{0}^{1} e^{x} d x
$$

solution.

- Since $\left(\frac{1}{3} x^{3}\right)^{\prime}=x^{2}$, by the Fundamental Theorem of Calculus (FTC), we have

$$
\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{1}{3} .
$$

Similarly, note that $(-\cos x)^{\prime}=\sin x,\left(e^{x}\right)^{\prime}=e^{x}$, (the anti-derivative once found, one can use the FTC), we have

$$
\begin{aligned}
& \int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi} d x=-\cos \pi-(-\cos 0)=1+1=2 \\
& \int_{0}^{1} e^{x} d x=\left.e^{x}\right|_{0} ^{1}=e^{1}-e^{0}=e-1 .
\end{aligned}
$$

Example. If $F(x)=\int_{0}^{x}\left(t^{2}+1\right) d t$, evaluate $F^{\prime}(x)$.
solution By the FTC, we have

$$
f(x)=\frac{d F(x)}{d x}=x^{2}+1
$$

Example. If $F(x)=\int_{0}^{x}\left(t^{2}+1\right) e^{x} d t$, evaluate $F^{\prime}(x)$.
solution note that $F(x)=e^{x} \int_{0}^{x}\left(t^{2}+1\right) d t$, by the FTC and chain rule, we have

$$
f(x)=\frac{d F(x)}{d x}=e^{x} \int_{0}^{x}\left(t^{2}+1\right) d t+e^{x}\left(x^{2}+1\right)
$$

Anti-differentiation

- Given f, to find f^{\prime}, called differentiation;
- Given f, to find F, such that $F^{\prime}=f$, called anti-differentiation;

Ideas to find anti-differentiation:
Note that indefinite integral $\int f(x) d x$ means that find all the anti-differentiation of f. The idea to find one anti-differentiations of f, denoted by F, such $F^{\prime}=f$, here F is called one anti-differentiation of f.
Note that if $F^{\prime}=f(x)=G^{\prime}$, we have

$$
(F-G)^{\prime}=f-f=0
$$

So, the rate of change is zero, means $F-G=C$, where C is arbitrary constant, say $F(x)=G(x)+C$. Thus, we have all the anti-differentiation of f given by

$$
\int f(x) d x=F(x)+C
$$

Example

$$
\begin{aligned}
\int x^{2} d x & =\frac{x^{3}}{3}+C, \quad \int x^{p} d x=\frac{1}{p+1} x^{p+1}+C, \quad \text { for all const. } p \neq 1, \\
\int e^{x} d x & =e^{x}+C, \quad \int \frac{1}{x} d x=\ln |x|+C, \quad \int a^{x} d x=\frac{x^{x}}{\ln a}+C \\
\int \cos x d x & =\sin x+C, \quad \int \sin x d x=-\cos x+C \\
\int \tan x d x & =\ln |\sec x|+C, \quad \int \sec x d x=\ln |\sec x+\tan x|+C \\
\int \frac{1}{1+x^{2}} d x & =\arctan x+C, \quad \int \frac{1}{\sqrt{1-x^{2}}}=\arcsin x+C \\
\int \sec ^{2} x d x & =\tan x+C, \quad \int \csc ^{2} x d x=-\cot x+C \\
\int \sec x \tan x d x & =\sec x+C, \quad \int \csc x \cot x d x=-\csc x+C .
\end{aligned}
$$

solution
since $\left(\frac{x^{3}}{3}\right)^{\prime}=x^{2}, \frac{x^{3}}{3}$ is one anti-derivative of x^{2}. Thus, all the anti-derivatives construct $\int x^{2} d x$. Similarly, other example as remained exercise!
Example:

Evaluate

$$
\int_{0}^{1}\left(x^{5}+2 \cos x-\frac{1}{x^{2}+1}\right) d x
$$

solution.
We can first evaluate the indefinite integral:

$$
\begin{aligned}
\int\left(x^{5}+2 \cos x-\frac{1}{x^{2}+1}\right) d x & =\int x^{5} d x+2 \int \cos x d x-\int \frac{1}{x^{2}+1} d x \\
& =\frac{1}{6} x^{6}+2 \sin x-\arctan x+C
\end{aligned}
$$

Then, by applying the FTC, we obtain

$$
\begin{aligned}
\int_{0}^{1}\left(x^{5}+2 \cos x-\frac{1}{x^{2}+1}\right) d x & =\left.\left(\frac{1}{6} x^{6}+2 \sin x-\arctan x\right)\right|_{0} ^{1} \\
& =\frac{1}{6}+2 \sin 1-\arctan 1 \\
& =\frac{1}{6}+2 \sin 1-\frac{\pi}{4}
\end{aligned}
$$

Rk: the homeworks can be found here https://www.classviva.org.
Example (from classviva.org).
$\overline{\text { Evaluate }}$

$$
\int_{6}^{8} x^{3} \sqrt{4 x^{4}-3} d x
$$

solution
Note that

$$
\left[\left(4 x^{4}-3\right)^{\frac{3}{2}}\right]^{\prime}=\frac{3}{2}\left(4 x^{4}-3\right)^{\frac{1}{2}} \cdot 16 x^{3}=24 x^{3} \sqrt{4 x^{4}-3}
$$

Say by FTC,

$$
\begin{aligned}
\int_{6}^{8} x^{3} \sqrt{4 x^{4}-3} d x & =\frac{1}{24} \int_{6}^{8}\left[\left(4 x^{4}-3\right)^{\frac{3}{2}}\right]^{\prime} d x=\left.\frac{1}{24}\left(4 x^{4}-3\right)^{\frac{3}{2}}\right|_{6} ^{8} \\
& =\frac{1}{24}\left[\sqrt{\left(4 \cdot 8^{4}-3\right)^{3}}-\sqrt{\left(4 \cdot 6^{4}-3\right)^{3}}\right] \approx 71818.83
\end{aligned}
$$

