# Lecture 10 (Applications of integration)-Volume by cylindrical shells 

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

## 1 Recap last time

volume by slicing

- if the cross-sectional area $A(x)$ is perpendicular to the $x$-axis over $[a, b]$, the volume of solid is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

- if the cross-sectional area $A(y)$ is perpendicular to the $y$-axis over $[c, d]$, the volume of solid is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(y_{i}^{*}\right) \Delta y=\int_{c}^{d} A(y) d y
$$

Specification of $A(x)$ and $A(y)$ : The solid is generated by rotating some enclosed area of resolution about some line. For example,

- If $y=f(x) \geq 0$ or $y=f(x) \leq 0$ for all $x \in[a, b]$, rotating it about $x$-axis, we have $A(x)=\pi(f(x))^{2} \Longrightarrow V=\int_{a}^{b} A(x) d x=\pi \int_{a}^{b} f^{2} d x$;
- If $x=g(y) \geq 0$ or $x=g(y) \leq 0$ for all $y \in[c, d]$, rotating it about $y$-axis, we have $A(y)=\pi(g(y))^{2} \Longrightarrow V=\int_{c}^{d} A(y) d y=\int_{c}^{d} g^{2} d y ;$
- If $0 \leq f(x) \leq g(x)$ for all $x \in[a, b]$, rotating the enclosed region of $y=f(x), y=g(x)$, $x=a, x=b$ about $x$-axis, we have $A(x)=\pi\left[g^{2}-f^{2}\right] \Longrightarrow V=\pi \int_{a}^{b}\left[g^{2}(x)-f^{2}(x)\right] d x$;
- If $0 \leq f(y) \leq g(y)$ for all $y \in[c, d]$, rotating the enclosed region of $x=f(y), x=g(y), y=c$, $y=d$ about $y$-axis, we have $A(y)=\pi\left[g^{2}-f^{2}\right] \Longrightarrow V=\pi \int_{c}^{d}\left[g^{2}(y)-f^{2}(y)\right] d y$;

Exercise. Calculate volume $V$ of the solid by rotating the area bounded by $y=x$ and $y=x^{2}$ about $x$-axis and $y$-axis, respectively.
solution. Intersections: 1) $x=0, y=0$; 2) $x=1, y=1$.

- rotation about $x$-axis,

$$
V=\int_{0}^{1} \pi\left[x^{2}-\left(x^{2}\right)^{2}\right] d x=\frac{2}{15} \pi
$$

- rotation about $y$-axis,

$$
V=\int_{0}^{1} \pi\left[(\sqrt{y})^{2}-y^{2}\right] d y=\frac{1}{6} \pi .
$$

Example. A solid with base $\frac{x^{2}}{4}+y^{2}=1$ has cross sections along the $x$-axis as equilateral triangles. Find the volume of the solid.
solution. We use $V=\int_{a}^{b} A(x) d x$ as below.

$$
\begin{aligned}
& \xrightarrow[2]{\frac{x^{2}}{4}+y^{2}=1} \\
& \text { base view } \\
& \text { Solid } \\
& \text { cross section view } \\
& S=2 y=2 \sqrt{1-\frac{x^{2}}{4}} \\
& h=S \cdot \sin 60^{\circ}=\frac{\sqrt{3}}{2} \cdot 2 \sqrt{1-\frac{x^{2}}{4}} \\
& =\sqrt{3} \sqrt{1-\frac{x^{2}}{4}} \\
& A(x)=\frac{1}{2} \cdot 5 h=\frac{1}{2} \cdot 2 \sqrt{1-\frac{x^{2}}{4}} \cdot \sqrt{3} \sqrt{1-\frac{x^{2}}{4}} \\
& =\sqrt{3}\left(1-\frac{x^{2}}{4}\right) \\
& V=\int_{-2}^{2} \sqrt{3}\left(1-\frac{x^{2}}{4}\right) d x=\sqrt{3}\left[x-\frac{x^{3}}{12}\right]_{-2}^{2} \\
& =\frac{8 \sqrt{3}}{3}
\end{aligned}
$$

## 2 Volume by cylindrical shells

volume by using shells Another way to decompose the volume of the solid of resolution,

- obtained by rotating about $y$-axis the region under the curve $y=f(x)$ over $[a, b](0 \leq a<b)$, is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} V_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

- obtained by rotating about $x$-axis the region under the curve $x=f(y)$ over $[c, d](0 \leq c<d)$, is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} V_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi y_{i}^{*} f\left(y_{i}^{*}\right) \Delta y=\int_{c}^{d} 2 \pi y f(y) d y
$$

Here, in the formula,

$$
V_{i}=(\text { circumference }) \times(\text { height }) \times(\text { thickness })
$$

and the terms can be interpreted as

- $x$ or $y$ : radius of a typical cylinder shell;
- $2 \pi x$ or $2 \pi y$ : circumference;
- $f(x)$ or $f(y)$ : height;
- $d x$ or $d y$ : thickness of the shell.



Example (using shells). Find the volume of the ball of radius $r$.
solution. The ball can be thought of the rotation about $y$-axis of the half curve $x=\sqrt{r^{2}-y^{2}}$. The shell with radius $x$ and the height $h=2 y=2 \sqrt{r^{2}-x^{2}}$. Thus, we have

$$
\begin{aligned}
V & =\int_{0}^{r} 2 \pi x \cdot 2 \sqrt{r^{2}-x^{2}} d x=(-2 \pi) \int_{0}^{r} \sqrt{r^{2}-x^{2}} d\left(r^{2}-x^{2}\right) \\
& =\left.(-2 \pi) \cdot \frac{2}{3}\left(r^{2}-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{r}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Example (volume of a solid torus using shells) Consider the region bounded by the curves

$$
(x-R)^{2}+y^{2}=r^{2}, \quad 0<r<R .
$$

The solid obtained by rotating the region about the $y$-axis, is the solid torus, as shown below, compute the volume of the solid.

solution. Let $u=x-R$, we have $d u=d x, x=u+R, x: R-r \rightarrow R+r, u:-r \rightarrow r$. Note that the function $u \sqrt{r^{2}-R^{2}}$ is odd. In turn,

$$
\int_{-r}^{r} u \sqrt{r^{2}-u^{2}} d u=0
$$

The volume is given by

$$
\begin{aligned}
V & =\int_{R-r}^{R+r} 2 \pi x \cdot 2 \sqrt{r^{2}-(x-R)^{2}} d x=4 \pi \int_{-r}^{r}(u+R) \sqrt{r^{2}-u^{2}} d u \\
& =4 \pi R \int_{-r}^{r} \sqrt{r^{2}-u^{2}} d u
\end{aligned}
$$

Since the last integral represents the area of the semicircular region of radius $r$, we have

$$
V=4 \pi R \cdot \frac{1}{2} \pi r^{2}=2 \pi^{2} R r^{2}
$$

Rk. If we compute the volume by slicing, we have

$$
\begin{aligned}
V & =\int_{-r}^{r} \pi\left[\left(R+\sqrt{r^{2}-y^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-y^{2}}\right)^{2}\right] d y \\
& =4 \pi R \int_{-r}^{r} \sqrt{r^{2}-y^{2}} d y=4 \pi R \cdot \frac{\pi r^{2}}{2}=2 \pi R \cdot \pi r^{2} .
\end{aligned}
$$

Example (rotating about a horizontal line using shells). Find the volume of the solid obtained by rotating the region bounded by the curves $y=f(x)=\sqrt{x}$ and $y=g(x)=x^{2}$ about the horizontal line $y=-1$.

solution. To find the intersections, we have to take

$$
\sqrt{x}=x^{2}, \quad \Longrightarrow x=0, x=1
$$

The typical shell is shown below. Thus, the volume is

$$
V=\int_{0}^{1} 2 \pi(y+1) \cdot\left(\sqrt{y}-y^{2}\right) d y=2 \pi \int_{0}^{1}\left(y^{\frac{3}{2}}-y^{3}+y^{\frac{1}{2}}-y^{2}\right) d x=\frac{29 \pi}{30}
$$

Example (from classviva.org). The volume of the solid obtained by rotating the region bounded by $y=e^{x}, y=\ln x, x=1$ and $x=5$ about the line $y$-axis. Find the volume.

## solution.

The bounded domain and the typical shell are shown below. The volume is


$$
\begin{aligned}
V & =\int_{1}^{5} 2 \pi x \cdot\left(e^{x}-\ln x\right) d x=2 \pi\left(\int_{1}^{5} x e^{x} d x-\int_{1}^{5} x \ln x d x\right) \\
& =2 \pi\left(\left.x e^{x}\right|_{1} ^{5}-\int_{1}^{5} e^{x} d x-\frac{1}{2} \int_{1}^{5} \ln x d x^{2}\right)=2 \pi\left(\left.(x-1) e^{x}\right|_{1} ^{5}-\frac{1}{2}\left(\left.x^{2} \ln x\right|_{1} ^{5}-\int_{1}^{5} x^{2} \frac{1}{x} d x\right)\right) \\
& =2 \pi\left[4 e^{5}-\frac{25}{2} \ln 5+6\right]
\end{aligned}
$$

Example (solid generated by a parametric curve). Rotate the area under one arch of the cycloid

$$
x=r(t-\sin t), \quad y=r(1-\cos t), \quad 0 \leq t \leq 2 \pi
$$

about the $x$-axis and $y$-axis, respectively. Find the volumes of the two solids.
solution. Note that

- when $t=0$, we have $x=0, y=0$;
- when $t=2 \pi$, we have $x=2 \pi r, y=0$;
- when $0 \leq t \leq 2 \pi$, we have $1-\cos t \geq 0 \Longrightarrow y \geq 0$.


$\checkmark$ When rotating the region about the $x$-axis, the volume by slices is

$$
\begin{aligned}
V & =\int_{0}^{2 \pi r} \pi[y(x)]^{2} d x=\int_{0}^{2 \pi} \pi[r(1-\cos t)]^{2} \cdot[r(t-\sin t)]^{\prime} d t \\
& =\pi r^{3} \int_{0}^{2 \pi}(1-\cos t)^{3} d t=\pi r^{3} \int_{0}^{2 \pi}\left[1-3 \cos t+3 \cos ^{2} t-\cos ^{3} t\right] d t \\
& =\pi r^{3} \int_{0}^{2 \pi}\left[1-3 \cos t+\frac{3}{2}(1+\cos 2 t)-\left(1-\sin ^{2} t\right) \cos t\right] d t \\
& =\left.\pi r^{3}\left[\frac{5}{2} t-3 \sin t+\frac{3}{4} \sin 2 t-\sin t+\frac{1}{3} \sin ^{3} t\right]\right|_{0} ^{2 \pi}=5 \pi^{2} r^{3}
\end{aligned}
$$

$\checkmark$ When rotating the region about the $y$-axis, the volume by shells is

$$
\begin{aligned}
V & =\int_{0}^{2 \pi r} 2 \pi x \cdot y(x) d x=\int_{0}^{2 \pi} 2 \pi r(t-\sin t) \cdot[r(1-\cos t)] \cdot[r(t-\sin t)]^{\prime} \\
& =2 \pi r^{3} \int_{0}^{2 \pi}(t-\sin t)(1-\cos t)^{2} d t
\end{aligned}
$$

Note that $\left(\operatorname{since} \sin t(1-\cos t)^{2}\right.$ is a $2 \pi$ periodic odd function)

$$
\int_{0}^{2 \pi} \sin t \cdot(1-\cos t)^{2} d t=\int_{-\pi}^{\pi} \sin t(1-\cos t)^{2} d t=0
$$

Thus,

$$
V=2 \pi r^{3} \int_{0}^{2 \pi} t(1-\cos t)^{2} d t=2 \pi r^{3} \int_{0}^{2 \pi} t\left[1-2 \cos t+\frac{1}{2}(1+\cos 2 t)\right] d t=6 \pi^{3} r^{3}
$$

