MATH 1014 Calculus Il Spring 2022 Lecture 11

Lecture 11 (Applications of integration)—Arc lengths and
surface areas

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Arc lengths

Intuition of the arc length

e taking a curve y = f(x), f(x) is continuous over [a,b]. Dividing the interval [a,b] into n
subintervals with end points xg, 1, - -, x, and equal width Az. Denote the endpoints of the
line segments to be Py, Py,---, P,,where P; lines on the curve y = f(z) with coordinates
(x4, f(zi)). Then length L of the curve y = f(x) is defined by

n
£l > IP-1F,
1=

e taking a curve x = ¢g(y), g(y) is continuous over [c,d]. Dividing the interval [c,d] into n
subintervals with end points yo, y1, - ,yn and equal width Ay. Denote the endpoints of the
line segments to be Qo, @1, -, Qn,where Q; lines on the curve z = g(y) with coordinates
(yi,9(yi)). Then length L of the curve x = g(y) is defined by

'Ko 7(\\ \ x

Formula of the arc length Let Ay; = y; — yi—1 = f(zi) — f(zi—1). The distance of the straight line
between P;_1 and P; is given by

|P1 Py = /(i — 2-1)2 + (yi — yi—1)?2 = V(A7) + (Ay;)2.

Note that the mean value theorem below.
Mean value theorem Suppose f(x) is continuous on [a,b], differentiable on (a,b). Then there is a

number ¢ such that ¢ < ¢ < b, and
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Tangent Line
> ()
s 2

or f(b) — f(a) = f'(c)(b— a). The sketch is shown below,
By the mean value theorem, we have

Ay; = f(x) = f(wia) = f/(2]) (i — zi1) = f'(2]) Az,

where z;_1 < x} < x; and f'(x}) is the slope of the tangent line at point (z}, f(z})). Thus,

PPyl = V(B2 1 (By)? = \/(Ax)? + [f/(a]) Aaf?

L+ [f'(z})]?Ax.
Thus,
n n b
L= lim > [PiaP|=lim Y /14 [f()PAz = / L+ [f"()]? da.
i=1 i=1 a
Theorem

e If f’is continuous on [a, ], then the length of the curve y = f(z), = € [a,b] is given by

L= /1/1+ dU /de

e If ¢’ is continuous on [c, d], then the length of the curve x = g(y), y € [c,d] is given by

L= /,/1+ dy/ V1+1g ()] dy,

Rk. If f/(x) is continuous on [a,b], the distance along the curve from the initial point (a, f(a)) to
the point (z, f(z)) defines the arc length function below,

_ / L0 dt.
Note that by FTC, s'(x) = /1 + [f’(x)]? means that ds = /1 + [f/(x)]? dx.

Example. Find the arc length of the curve y = e® from (0,1) to (1,e).
solution.

o y=2¢c", y =e”, the arc length is

1 1
L':/ Vl—l—(y’)QdaJ:/ V1+ e dx,
0 0
by substitution u = €*, we have z = Inu, dx = % duandz:0—1,u:1— e and

e 2
c:/ Vit g,
1 u
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e r=Iny, 2 = % the arc length is

e e /1 2
E—/\/l—&-(m’)Qdy—/—i_yd
1 1 Yy
As a result, we have
“V1it+y? ‘yv1+y? L [ey1ity®
1 1 1

e2 e2+1 e2+1 2 VeZ+1 42
1 1 t t t“—1+1
Vit g, / ot dt = / dt:/ roirl
V2 V2

- LA dt
21 21 /2 21

2

W@/ﬁwm e
ﬁ— |ve-
- (Ve a) g [ e

where the substitutions © = y? and t = /1 + u, i.e., u = t? — 1, du = 2t dt have been used.
Example. Find the arc length of the curve y = 22 from (0,0) to (1,1).

solution. Since that y = 22, we have y' = 2z. Thus, the arc length of the curve from (0,0) to (3, 1)

is given by

1 1
£=/2 V1+ ()2 d:c:/2 V1 + 422 da.
0 0

Using the substitution z = tan& we have z: 0 — 1 ,0:0— 7, dr =35 L sec?6 df and

™ 1 1 ™
£:/4se00-sec29d9:/4 sec® 0 do.
0 2 2 Jo

Note that by the integration by parts, we have
1= /Se030 df = /sec& dtan = secftanf — /tan2t9$ec€ db
=secftanf — / (sec29 - 1) -secf df = secOtanf + /sec@ do — 1,
in turn,

2I:sec:9tan0+/sec«9 de
=secftanf + In|secf + tan | + C,

say,
1
I= 5sec€tan9+ ln|sec9+tan¢9|+C’

Thus, the arc length is given by

1 [ 1 x
L= 2/4 sec3 0 df = Z[sec@tan@—l—ln|sec€+tan9\] & =V2+In(v2+1).
0

Rk.

e since that (In|secz + tanz|)’ = secz, we have [secz dz =1In|secz + tanz|+ C;
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e let ©u = sinx, we have

1
[secwto= [ o [0 e [ dsin
cos T cos* x 1 —sin“x
1 1 1 1 1
= ——du=Z|] —du— | —— du| =Z1
/1—u2“ 2[u+1u/u—1 “] T

sinx + 1 1 tanx 4+ secx
— |+ C=-In|—m

u—+1
u—1

o

1
—1In
2

1
< In
2
dzx

Rk. How about the arc length for the same curve x = y%. We have dy = %y‘?. Thus, the arc

length from (0,0) to (3,1) is

1 1
i i 1
— /4 V1t (@) dy—/4,/1+y—1 dy.
Jo 0 4

Evaluate this improper integral is more complicated! So, when there are more than one choices in

finding a quantity (like area, volume, arc length, etc), one may need to choose a wise setup.
: . L2 2 2
Example. Find the circumference of the astr0|d r3 +y3 =as.

solution. We have y = f(z) = <a§ —a:3> \/(\/> ﬁ) thus, f(—xz) = f(x), similarly,

sinx — 1 2 tanz — secx

Note that

tanx + secz |\’ ’
—— | | = (In|secz + tanz|)’ = secx.

tanx — secx

z = g(y) = \/<\/ — %/ 2) thus, g(—y) = ¢(y). Thus, the astroid is symmetric about the
x-axis and the y-axis. The graph of this curve is shown below, So, its circumference is four time the

arc length in the first quadrant. In the first quadrant. In the first quadrant, y¥ > 0, In this region,
solving the equation of the astroid gives

where x € [0, a]. By chain rule, we have

dy 3 3 2 B
ﬁ = 5 (a% — x%) 2. (—1)§x7% = —xfé (a% — x%) 2 .

Thus, the circumference of the astroid is
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which is an improper integral, by the definition, we have

a a
_1 . _1 . 3 2| .,
/ x”3 dr= lim 73 dr= lim |-z3||} =
0 h—0+ Jp h—0+ | 2

Thus, we have

Theorem (arc length for parametric curve). Suppose a parametric curve is given by the parametric
equations

z = f(t),

y=g(),

where t € [, (], f and ¢’ are continuous and the parametric curve is traversed exactly once as
t increases from « to 5. Since t : @ — (3, we have z : f(a) — f(B), vy : g(a) — ¢g() and
dx = f'(t) dt, dy = ¢'(t) dt.

Then the arc length is
1 + \/ (dx)? + (dy)?
() \/ dﬂ«“ f(@)

/a IR + @) dt.

e= [ \/ (&) 4 (&) a= [ rorsiwor a

Rk. Of course, we can get the similar arc length by

Say,

9(5) 2 9(8)
(50) av= [ Vi @

(a) g(a)
/ \/ +[f(t) di)? / \/ () ()] dt.
Example. Find the circumference of the astroid shown above, given by the parametric equations
T =acos’t
{y = asin®t,
where t € [0, 27].

solution. The astroid is symmetric about the x-axis and the y-axis. So, its circumference is four
time the arc length in the first quadrant. Thus,

L= 4/2 \/[3@ cos?t - (—sint)]? + [3asint - (cost)]2 dt
0

L L.,
= 12a/ sintcost dt = 12a <2s1n t>]
0

Example (from classviva.org). Find the arc length of the curve y = %(e”” +e %) from z = 0 to
x=3.
solution. Note that y = f(z) = 3(e” + %), we have

= 6a.

[=IVTF]

5
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e whenx=0,y=1,whenz =3, y = %(634-6_3)
e f(—xz) = f(z), the curve is symmetric about y-axis;
o f'(z) = 3(e* — e %), when z > 0, f'(2) > 0; when z < 0, f'(z) < 0.

The arc length of the curve is

L:/Ogde:/og\/Hi(ex—e—w)?dx.

Note that sinhx = 61_2671, cosh? z — sinh?z = 1 and % sinh z = cosh z, we have

3 3 r __ ,—T 1
Cz/ \/1+sinh2xdm:/ coshx dz = sinhz|j = <e€> |8:§(63—6_3).
0 0

2
Rk. Note that

\/1+i(ez—ew)2 _ \/4+62z _42+e_2z _ \/(€$+€_w)2 _arer

Thus, we have

3 -
1 1
E:/O %dzz§[em—eﬂ’] |g:§(63—6_3).

2 Surface areas

Intuition of surface area of revolution

e taking a curve y = f(x) > 0, over [a,b]. Dividing the interval [a,b] into n subintervals with
endpoints xg, 21, - ,Z, and equal width Ax. The part of the surface between x; 1 and x;
is approximated by taking the line segment P;_1 P; and rotating it about the z-axis, where
Pi(z;i, f(z;)) lies on the curve. The result is a band with slant height P;_1P;. The surface
area is obtained by rotating the curve y = f(z) over [a, b] about the z-axis by

=1

where S; is the area of the band with slant height |P,_1 F;|.

Ly
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e taking a curve x = g(y) > 0, over [c,d]. Dividing the interval [a,b] into n subintervals with
endpoints 4o, Y1, - ,Yn and equal width Ay. The part of the surface between y;_1 and y;
is approximated by taking the line segment (Q;_1Q; and rotating it about the y-axis, where
Qi(yi, g(yi)) lies on the curve. The result is a band with slant height Q;—1Q;. The surface
area is obtained by rotating the curve z = g(y) over [c, d] about the y-axis by

n

S = lim Si,
n—oo
=1

where S; is the area of the band with slant height |Q;—1Q;|.

Let's look at two examples here.

Example. Find the area of a circular cone with base radius 7 and slant height 2.

solution. We can flat the cone to form a sector with the area A of a circle with radius ¢ and central
angle 6. Thus, we have

l
l
2nr
« T >

O _2m g2
or 21/ Y
A 0 B Ly [(2mr 1,

Example. Find the area A of the band, or frustum of a cone, with slant height ¢ and upper and lower
radii 71 and rs.

244

solution. We have
A=A — Ay = 7T7°2(£+€1) —arl =T [(7‘2 — 7“1)51 + 7‘25] .

From similar triangles we have

O b+t

)

T1 )

which gives rof] = 7'1(51 + E) - (7"2 — r1)€1 =7/,
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Thus, we have
A = m[ril + rof] = 2mrl = (average circumference) x (slant height),

where the average radius of the band is r = %(’I“l +72).
Formula of the surface area

e Assume that f’ is continuous on [a,b], For a band with slant height ¢ = |P;_; P;| and average
radius 7 = 3(f(zi—1) + f(2;)). The surface area is

S; = 2nrl = 27 - % [f(xic1) + f(x)] - |Pic1 By

By the Pythagorean Theorem and the Mean Value Theorem, we have

Pt Py = 3 (i — i) + £ (@) — F(im))
—\/A:L‘ A:UQ_\/l + [f'(z3)]? Az,

where taking @}, such that f(z}) = 3[f(zi—1) + f(z;)], where z} € [z;_1,2;]. we have

S; = 2m - fa)/1+ [f/(a))PAa.

Thus,
5= nlggofj 5= lim Z om - flat /1 + ()P
Z;wa vﬁdi—'leWf@ﬂdb
where ds = /1 + [f(z)]2 du.

e Assume that ¢’ is continuous on [¢, d], For a band with slant height ¢ = |Q;_1Q;| and average
radius 7 = 3(g(yi—1) + g(y;)). The surface area is

S; = 2mrd = 27 - % [9(yi—1) + 9(yi)] - |Qi—1Qq-

By the Pythagorean Theorem and the Mean Value Theorem, we have

|Qi—1Qi| = \/( = 4i-1)% + [9(4i) — 9(yi1)]?
—\/Ay 9 (y;) Ay2—\/1 9 (v;)IPAy.

where taking y, such that g(y;x) = %[g(yi_l) + g(yi)], where ¥ € [yi—1,v:]. we have

Si =21 - gyi)\/1+ [¢'(y)]2Ay.

Thus,
S E = 1; . * I(y*)]2
S— nl;n;OZSZ = nh_)rgczwr g/ 1+ 9 (y))]?Ay
—/ 2mg(y)V/1+ g ()2 dy —/ 2mg(y) ds,
where ds = /1 + [¢'(y)]? dy.
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Theorem (general formula for surface area of revolution)

e For rotations of y = f(z) over [a,b] about the z-axis, the surface area is given by

b
S:/ 21y ds,

o\ 2
where ds = /1 + <d—g> dx.

e For rotations of z = g(y) over [c, d] about the y-axis, the surface area is given by

d
Sz/ 27z ds,

2
where ds = 4/1 + (%) dy.

Rk. In general, the surface area of rotation is

S = /(27rr) - (ds) = /(circumference) - (arc length).
Example (surface area of a sphere). A sphere can be generated by rotating the semicircle

y=vVr2—22>0, —-r<z<r.

about the z-axis, as shown below. Find its surface area.

Y

solution. Since that

dr  JrZ_ g2




MATH 1014 Calculus Il Spring 2022 Lecture 11

Thus, the surface area of the sphere is

S = ' 27 f(x)\/1 + [f')? dz

T

zzw/zm\/u [——]2d:c

T
V2 — 22
:277/ rdr = 4rr?.
—-Tr

Example (surface area of a torus). A torus can be generated by rotating the circle

(x—R?+y*=7r% 0<r<R, >0

about y-axis, as shown below. Find the surface area of this torus.

solution. The torus consists of two portions: the outer portion generated by the rightmost semicircle

x =R+ +\/r? —y?, y € [—r,r| and the inner portion by the leftmost semicircle x = R — /72 — 12,
Yy € [_Ta ’I“]

e along the rightmost semicircle:

dr Y
dy 72 y2’
e along the leftmost semicircle :
dr Y
dy  /r2 — Y2

Thus, the surface area of the torus is

—r 2 g2

2
5251+32=/ 27T<R—|—\/1"2—y2> 1+(—L> dy

2
+/ 27T<R—\/1"2—y2> 1—1—(%) dy
-7 =y

2 rcosf

T r T r
—4rR | ————dy=8tR | ————dy=8rRr [ ——0
7T/_T\/my ”/Omy 7TT/Orcose

— 87Rr- ~ — 47Ryr.

\)

10
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where the property of even function and the substitution y = rsin f have been used.

Exercise. Find the surface area of the rotation of the curve y = e¢® on z € [0,In4] about z-axis or
y-axis.

solution.

e For the rotation about x-axis, the area can be given by

In4 In4
S = / 2mry ds = / 2me® /14 (e*)? dz.
0

This area can be also written below, (z =Iny : l

S = /27Tyds—/ 27Ty“1+ dy,

by usage of the same arc length of ds w.r.t different variables.

e For the rotation about y-axis, the area can be given by

4 2 4 2
S:/ 27r1:\/1—|—<dx> dy:/ 27T1ny1/1—|—(1> ,
1 dy 1 Y

or as an x-integral by

In4 In4 2 In4
d
S = / 2rx ds = / 2wz /1 + <di> dxr = / 2/l + (ex)Q dz.
0 0 0

Rk. Go wolframAlpha to see some “strange function” as anti-derivatives.
Rk.

e For general curve y = f(x) over [a,b] passing the z-axis, note that y > 0 gives 27y ds > 0;
y < 0 gives 27y ds < 0. Rotating this curve about z-axis. However the surface is positive.
Thus, the area is

b
5= / 27| (@) |V/1+ [ @) d.

e For general curve z = g(y) over [c,d] passing the y-axis, note that = > 0 gives 27x ds > 0,
x < 0 gives 2z ds < 0. Rotating this curve about y-axis. However the surface is positive.
Thus, the area is

d
5= / 27g(w)| I+ W @IE dy.

e For the curve y = f(z) > k > 0 over [a, b], rotating this curve about the line y = k. The area
is

b
s :/ 27 [f(x) — k] /1 + [f'(2)]Pda.

Or the curve 0 < y = f(z) < k over [a, b], rotating this curve about the line y = k. The area
is

b
s :/ 2 [k — F(2)] /1 [f'(2)]Pd.

Or the general curve y = f(x) over [a, b], rotating this curve about the line y = k. The area is

b
S = / 27 | f(x) — k| /1 + [f'(z)])?dx.

11
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e For the curve x = g(y) > k > 0 over [c, d], rotating this curve about the line = k. The area
is

d
S = / 2m [g(y) — k1 + [d'(v)]*dy.

Other cases are similar to derive. For the curve y = f(z) < 0 over [a,b], rotating this curve
about the x-axis. The area is

b
5= / 27| £ (@) |V/T+ [P @) d,

Theorem (surface area of revolution by parametric curve) Assume that a parametric curve is given
by the parametric equations

x = f(t)
y=g(1),

where oo <t < 3, where f" and ¢’ are continuous and g(¢) > 0. Then the surface area of revolution
about the z-axis is

s— [ i %y\/ (fﬁ) " (f;;) a- [ o)) VIO ¥ QP dt.

Similarly, the surface area of revolution about the y-axis is

S= /j QM\/(CCZ’)Q + (2@2 dt — (/j 2 F (O[O + [g (O dt.

Rotate the area under one arch of the cycloid

x =r(t—sint),

y =r7r(1— cost),

where ¢t € [0,27]. about the z-axis and the y-axis, respectively. Find the surface areas of the two
solids.

solution.

The surface area of revolution is

S = /(27‘(‘7“) - (ds) = /(circumference) - (arc length)

3
2r C—_)

(g —

12
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1. Rotation about z-axis, a typical circle has radius y = y(t), while the arc length is given by

ds =+/2'(t)% + y'(t)? dt.

Thus, the surface area of the solid is

2T
S—A 2ry(t) - /F O + (O dt

2m
= 27rr2/ (1 —cos t)\/(l — cost)? +sin?t dt

2/ (1 —cost) -2 —2cost dt

0

27 1
= 27r7“2/ 2 sin? < ) 2sin ( ) dt
0 2

1
_87rr2/ (1 —cos®u)sinu -2 du = 167r> [—cosu+scos3u H
0

= 1672 - 3 ?71'7“2,

where the half-angle formula and the substitution ¢ = 2u have been used.

2. Rotation about y-axis, a typical circle has radius x = z(t), while the arc length is given by

ds = /@' (t)% + ¢/ (t)? dt.

Thus, the surface area of the solid is

5:/%%ﬂnw&wp+ym%u
0

27
= 27rr2/ (t — sint)\/(l — cost)? +sin?t dt
0

2w
= 27rr2/ (t —sint) -2 —2cost dt
0
2w 1
= 27rr2/ (t —sint) - 2sin <t> dt
0 2
= 47r? / (2u — sin 2u) sinw - 2 du
0
s
= 87?7’2/ (2usinu — sin2usinu) du
0
3 1
= 87r? {—211 cosu + 5 sinu + 5 sin SU} o = 8rr? - 2w = 167212,

where the half-angle formula and the substitution ¢ = 2u have been used.

13
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