
MATH 1014 Calculus II Spring 2022 Lecture 11

Lecture 11 (Applications of integration)–Arc lengths and
surface areas

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Arc lengths

Intuition of the arc length

• taking a curve y = f(x), f(x) is continuous over [a, b]. Dividing the interval [a, b] into n
subintervals with end points x0, x1, · · · , xn and equal width ∆x. Denote the endpoints of the
line segments to be P0, P1, · · · , Pn,where Pi lines on the curve y = f(x) with coordinates
(xi, f(xi)). Then length L of the curve y = f(x) is defined by

L = lim
n→∞

n∑
i=1

|Pi−1Pi|,

• taking a curve x = g(y), g(y) is continuous over [c, d]. Dividing the interval [c, d] into n
subintervals with end points y0, y1, · · · , yn and equal width ∆y. Denote the endpoints of the
line segments to be Q0, Q1, · · · , Qn,where Qi lines on the curve x = g(y) with coordinates
(yi, g(yi)). Then length L of the curve x = g(y) is defined by

L = lim
n→∞

n∑
i=1

|Qi−1Qi|.

Formula of the arc length Let ∆yi = yi − yi−1 = f(xi)− f(xi−1). The distance of the straight line
between Pi−1 and Pi is given by

|Pi−1Pi| =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√

(∆x)2 + (∆yi)2.

Note that the mean value theorem below.
Mean value theorem Suppose f(x) is continuous on [a, b], differentiable on (a, b). Then there is a
number c such that a < c < b, and

f ′(c) =
f(b)− f(a)

b− a
,
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or f(b)− f(a) = f ′(c)(b− a). The sketch is shown below,
By the mean value theorem, we have

∆yi = f(xi)− f(xi−1) = f ′(x∗i )(xi − xi−1) = f ′(x∗i )∆x,

where xi−1 < x∗i < xi and f ′(x∗i ) is the slope of the tangent line at point (x∗i , f(x∗i )). Thus,

|Pi−1Pi| =
√

(∆x)2 + (∆yi)2 =
√

(∆x)2 + [f ′(x∗i )∆x]2

=
√

1 + [f ′(x∗i )]
2∆x.

Thus,

L = lim
n→∞

n∑
i=1

|Pi−1Pi| = lim
n→∞

n∑
i=1

√
1 + [f ′(x∗i )]

2∆x =

∫ b

a

√
1 + [f ′(x)]2 dx.

Theorem

• If f ′ is continuous on [a, b], then the length of the curve y = f(x), x ∈ [a, b] is given by

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx =

∫ b

a

√
1 + [f ′(x)]2 dx,

• If g′ is continuous on [c, d], then the length of the curve x = g(y), y ∈ [c, d] is given by

L =

∫ d

c

√
1 +

(
dx

dy

)2

dy =

∫ d

c

√
1 + [g′(y)]2 dy,

Rk. If f ′(x) is continuous on [a, b], the distance along the curve from the initial point (a, f(a)) to
the point (x, f(x)) defines the arc length function below,

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt.

Note that by FTC, s′(x) =
√

1 + [f ′(x)]2 means that ds =
√

1 + [f ′(x)]2 dx.
Example. Find the arc length of the curve y = ex from (0, 1) to (1, e).
solution.

• y = ex, y′ = ex, the arc length is

L =

∫ 1

0

√
1 + (y′)2 dx =

∫ 1

0

√
1 + e2x dx,

by substitution u = ex, we have x = lnu, dx = 1
u du and x : 0→ 1, u : 1→ e and

L =

∫ e

1

√
1 + u2

u
du,
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• x = ln y, x′ = 1
y , the arc length is

L =

∫ e

1

√
1 + (x′)2 dy =

∫ e

1

√
1 + y2

y
dy

As a result, we have

L =

∫ e

1

√
1 + y2

y
dy =

∫ e

1

y
√

1 + y2

y2
dy =

1

2

∫ e

1

√
1 + y2

y2
dy2

=
1

2

∫ e2

1

√
1 + u

u
du =

1

2

∫ √e2+1

√
2

t

t2 − 1
· 2t dt =

∫ √e2+1

√
2

t2

t2 − 1
dt =

∫ √e2+1

√
2

t2 − 1 + 1

t2 − 1
dt

=
(√

e2 + 1−
√

2
)

+

∫ √e2+1

√
2

1

t2 − 1
dt =

(√
e2 + 1−

√
2
)

+
1

2
ln

∣∣∣∣ t− 1

t+ 1

∣∣∣∣ |√e2+1√
2

=
(√

e2 + 1−
√

2
)

+
1

2

[
ln

∣∣∣∣∣
√
e2 + 1− 1√
e2 + 1 + 1

∣∣∣∣∣− ln

∣∣∣∣∣
√

2− 1√
2 + 1

∣∣∣∣∣
]
.

where the substitutions u = y2 and t =
√

1 + u, i.e., u = t2 − 1, du = 2t dt have been used.
Example. Find the arc length of the curve y = x2 from (0, 0) to (12 ,

1
4).

solution. Since that y = x2, we have y′ = 2x. Thus, the arc length of the curve from (0, 0) to (12 ,
1
4)

is given by

L =

∫ 1
2

0

√
1 + (y′)2 dx =

∫ 1
2

0

√
1 + 4x2 dx.

Using the substitution x = 1
2 tan θ, we have x : 0→ 1

2 , θ : 0→ π
4 , dx = 1

2 sec2 θ dθ and

L =

∫ π
4

0
sec θ · 1

2
sec2 θ dθ =

1

2

∫ π
4

0
sec3 θ dθ.

Note that by the integration by parts, we have

I =

∫
sec3 θ dθ =

∫
sec θ d tan θ = sec θ tan θ −

∫
tan2 θ sec θ dθ

= sec θ tan θ −
∫ (

sec2 θ − 1
)
· sec θ dθ = sec θ tan θ +

∫
sec θ dθ − I,

in turn,

2I = sec θ tan θ +

∫
sec θ dθ

= sec θ tan θ + ln | sec θ + tan θ|+ C,

say,

I =
1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|+ C.

Thus, the arc length is given by

L =
1

2

∫ π
4

0
sec3 θ dθ =

1

4
[sec θ tan θ + ln | sec θ + tan θ|] |

π
4
0 =

√
2 + ln(

√
2 + 1).

Rk.

• since that (ln | secx+ tanx|)′ = secx, we have
∫

secx dx = ln | secx+ tanx|+ C;
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• let u = sinx, we have∫
secx dx =

∫
1

cosx
dx =

∫
cosx

cos2 x
dx =

∫
1

1− sin2 x
d sinx

=

∫
1

1− u2
du =

1

2

[∫
1

u+ 1
du−

∫
1

u− 1
du

]
=

1

2
ln

∣∣∣∣u+ 1

u− 1

∣∣∣∣+ C

=
1

2
ln

∣∣∣∣sinx+ 1

sinx− 1

∣∣∣∣+ C =
1

2
ln

∣∣∣∣tanx+ secx

tanx− secx

∣∣∣∣+ C.

Note that (
1

2
ln

∣∣∣∣tanx+ secx

tanx− secx

∣∣∣∣)′ = (ln | secx+ tanx|)′ = secx.

Rk. How about the arc length for the same curve x = y
1
2 . We have dx

dy = 1
2y
− 1

2 . Thus, the arc

length from (0, 0) to (12 ,
1
4) is

L =

∫ 1
4

0

√
1 + (x′)2 dy =

∫ 1
4

0

√
1 +

1

4
y−1 dy.

Evaluate this improper integral is more complicated! So, when there are more than one choices in
finding a quantity (like area, volume, arc length, etc), one may need to choose a wise setup.

Example. Find the circumference of the astroid x
2
3 + y

2
3 = a

2
3 .

solution. We have y = f(x) =
(
a

2
3 − x

2
3

) 3
2

= 3

√(
3
√
a2 − 3

√
x2
)2

, thus, f(−x) = f(x), similarly,

x = g(y) = 3

√(
3
√
a2 − 3

√
y2
)2

, thus, g(−y) = g(y). Thus, the astroid is symmetric about the

x-axis and the y-axis. The graph of this curve is shown below, So, its circumference is four time the

arc length in the first quadrant. In the first quadrant. In the first quadrant, y ≥ 0, In this region,
solving the equation of the astroid gives

y =
(
a

2
3 − x

2
3

) 3
2
,

where x ∈ [0, a]. By chain rule, we have

dy

dx
=

3

2

(
a

2
3 − x

2
3

) 1
2 · (−1)

2

3
x−

1
3 = −x−

1
3

(
a

2
3 − x

2
3

) 1
2
.

Thus, the circumference of the astroid is

L = 4

∫ a

0

√
1 + (y′)2 dx = 4

∫ a

0

√
1 +

[
x−

2
3

(
a

2
3 − x

2
3

)]
dx

= 4a
1
3

∫ a

0
x−

1
3 dx,
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which is an improper integral, by the definition, we have∫ a

0
x−

1
3 dx = lim

h→0+

∫ a

h
x−

1
3 dx = lim

h→0+

[
3

2
x

2
3

]
|ah =

3

2
a

2
3 .

Thus, we have

L = 4a
1
3 · 3

2
a

2
3 = 6a.

Theorem (arc length for parametric curve). Suppose a parametric curve is given by the parametric
equations {

x = f(t),

y = g(t),

where t ∈ [α, β], f and g′ are continuous and the parametric curve is traversed exactly once as
t increases from α to β. Since t : α → β, we have x : f(α) → f(β), y : g(α) → g(β) and
dx = f ′(t) dt, dy = g′(t) dt.
Then the arc length is

L =

∫ f(β)

f(α)

√
1 +

(
dy

dx

)2

dx =

∫ f(β)

f(α)

√
(dx)2 + (dy)2

=

∫ β

α

√
[f ′(t) dt]2 + [g′(t) dt]2 =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

Say,

L =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

Rk. Of course, we can get the similar arc length by

L =

∫ g(β)

g(α)

√
1 +

(
dx

dy

)2

dy =

∫ g(β)

g(α)

√
(dy)2 + (dx)2

=

∫ β

α

√
[g′(t) dt]2 + [f ′(t) dt]2 =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt.

Example. Find the circumference of the astroid shown above, given by the parametric equations{
x = a cos3 t

y = a sin3 t,

where t ∈ [0, 2π].
solution. The astroid is symmetric about the x-axis and the y-axis. So, its circumference is four
time the arc length in the first quadrant. Thus,

L = 4

∫ π
2

0

√
[3a cos2 t · (− sin t)]2 +

[
3a sin2 t · (cos t)

]2
dt

= 12a

∫ π
2

0
sin t cos t dt = 12a

(
1

2
sin2 t

)
|
π
2
0 = 6a.

Example (from classviva.org). Find the arc length of the curve y = 1
2(ex + e−x) from x = 0 to

x = 3.
solution. Note that y = f(x) = 1

2(ex + e−x), we have
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• when x = 0, y = 1; when x = 3, y = 1
2(e3 + e−3)

• f(−x) = f(x), the curve is symmetric about y-axis;

• f ′(x) = 1
2(ex − e−x), when x > 0, f ′(x) > 0; when x < 0, f ′(x) < 0.

The arc length of the curve is

L =

∫ 3

0

√
1 + (y′)2 dx =

∫ 3

0

√
1 +

1

4
(ex − e−x)2 dx.

Note that sinhx = ex−e−x
2 , cosh2 x− sinh2 x = 1 and d

dx sinhx = coshx, we have

L =

∫ 3

0

√
1 + sinh2 x dx =

∫ 3

0
coshx dx = sinhx|30 =

(
ex − e−x

2

)
|30 =

1

2
(e3 − e−3).

Rk. Note that√
1 +

1

4
(ex − e−x)2 =

√
4 + e2x − 2 + e−2x

4
=

√
(ex + e−x)2

4
=
ex + e−x

2
.

Thus, we have

L =

∫ 3

0

ex + e−x

2
dx =

1

2

[
ex − e−x

]
|30 =

1

2
(e3 − e−3).

2 Surface areas

Intuition of surface area of revolution

• taking a curve y = f(x) ≥ 0, over [a, b]. Dividing the interval [a, b] into n subintervals with
endpoints x0, x1, · · · , xn and equal width ∆x. The part of the surface between xi−1 and xi
is approximated by taking the line segment Pi−1Pi and rotating it about the x-axis, where
Pi(xi, f(xi)) lies on the curve. The result is a band with slant height Pi−1Pi. The surface
area is obtained by rotating the curve y = f(x) over [a, b] about the x-axis by

S = lim
n→∞

n∑
i=1

Si,

where Si is the area of the band with slant height |Pi−1Pi|.
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• taking a curve x = g(y) ≥ 0, over [c, d]. Dividing the interval [a, b] into n subintervals with
endpoints y0, y1, · · · , yn and equal width ∆y. The part of the surface between yi−1 and yi
is approximated by taking the line segment Qi−1Qi and rotating it about the y-axis, where
Qi(yi, g(yi)) lies on the curve. The result is a band with slant height Qi−1Qi. The surface
area is obtained by rotating the curve x = g(y) over [c, d] about the y-axis by

S = lim
n→∞

n∑
i=1

Si,

where Si is the area of the band with slant height |Qi−1Qi|.

Let’s look at two examples here.
Example. Find the area of a circular cone with base radius r and slant height `.
solution. We can flat the cone to form a sector with the area A of a circle with radius ` and central
angle θ. Thus, we have

θ

2π
=

2πr

2π`
=⇒ θ =

2πr

`
A

π`2
=

θ

2π
=⇒ A = πr` =

1

2
`2 ·
(

2πr

`

)
=

1

2
`2θ.

Example. Find the area A of the band, or frustum of a cone, with slant height ` and upper and lower
radii r1 and r2.

solution. We have

A = A1 −A2 = πr2(`+ `1)− πr1`1 = π [(r2 − r1)`1 + r2`] .

From similar triangles we have

`1
r1

=
`1 + `

r2
,

which gives r2`1 = r1(`1 + `) =⇒ (r2 − r1)`1 = r1`.
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Thus, we have

A = π [r1`+ r2`] = 2πr` = (average circumference)× (slant height),

where the average radius of the band is r = 1
2(r1 + r2).

Formula of the surface area

• Assume that f ′ is continuous on [a, b], For a band with slant height ` = |Pi−1Pi| and average
radius r = 1

2(f(xi−1) + f(xi)). The surface area is

Si = 2πr` = 2π · 1

2
[f(xi−1) + f(xi)] · |Pi−1Pi|.

By the Pythagorean Theorem and the Mean Value Theorem, we have

|Pi−1Pi| =
√

(xi − xi−1)2 + [f(xi)− f(xi−1)]
2

=
√

(∆x)2 + [f ′(x∗i )∆x]2 =
√

1 + [f ′(x∗i )]
2∆x,

where taking x∗i , such that f(x∗i ) = 1
2 [f(xi−1) + f(xi)], where x∗i ∈ [xi−1, xi]. we have

Si = 2π · f(x∗i )
√

1 + [f ′(x∗i )]
2∆x.

Thus,

S= lim
n→∞

n∑
i=1

Si = lim
n→∞

n∑
i=1

2π · f(x∗i )
√

1 + [f ′(x∗i )]
2∆x

=

∫ b

a
2πf(x)

√
1 + [f ′(x)]2 dx =

∫ b

a
2πf(x) ds,

where ds =
√

1 + [f ′(x)]2 dx.

• Assume that g′ is continuous on [c, d], For a band with slant height ` = |Qi−1Qi| and average
radius r = 1

2(g(yi−1) + g(yi)). The surface area is

Si = 2πr` = 2π · 1

2
[g(yi−1) + g(yi)] · |Qi−1Qi|.

By the Pythagorean Theorem and the Mean Value Theorem, we have

|Qi−1Qi| =
√

(yi − yi−1)2 + [g(yi)− g(yi−1)]
2

=
√

(∆y)2 + [g′(y∗i )∆y]2 =
√

1 + [g′(y∗i )]
2∆y.

where taking y∗i , such that g(yi∗) = 1
2 [g(yi−1) + g(yi)], where y∗i ∈ [yi−1, yi]. we have

Si = 2π · g(y∗i )
√

1 + [g′(y∗i )]
2∆y.

Thus,

S= lim
n→∞

n∑
i=1

Si = lim
n→∞

n∑
i=1

2π · g(y∗i )
√

1 + [g′(y∗i )]
2∆y

=

∫ d

c
2πg(y)

√
1 + [g′(y)]2 dy =

∫ d

c
2πg(y) ds,

where ds =
√

1 + [g′(y)]2 dy.
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Theorem (general formula for surface area of revolution)

• For rotations of y = f(x) over [a, b] about the x-axis, the surface area is given by

S =

∫ b

a
2πy ds,

where ds =

√
1 +

(
dy
dx

)2
dx.

• For rotations of x = g(y) over [c, d] about the y-axis, the surface area is given by

S =

∫ d

c
2πx ds,

where ds =

√
1 +

(
dx
dy

)2
dy.

Rk. In general, the surface area of rotation is

S =

∫
(2πr) · (ds) =

∫
(circumference) · (arc length).

Example (surface area of a sphere). A sphere can be generated by rotating the semicircle

y =
√
r2 − x2 ≥ 0, −r ≤ x ≤ r.

about the x-axis, as shown below. Find its surface area.

solution. Since that

dy

dx
= − x√

r2 − x2
,

9
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Thus, the surface area of the sphere is

S =

∫ r

−r
2πf(x)

√
1 + [f ′]2 dx

= 2π

∫ r

−r

√
r2 − x2

√
1 +

[
− x√

r2 − x2

]2
dx

= 2π

∫ r

−r
r dx = 4πr2.

Example (surface area of a torus). A torus can be generated by rotating the circle

(x−R)2 + y2 = r2, 0 < r < R, x ≥ 0

about y-axis, as shown below. Find the surface area of this torus.

solution. The torus consists of two portions: the outer portion generated by the rightmost semicircle
x = R+

√
r2 − y2, y ∈ [−r, r] and the inner portion by the leftmost semicircle x = R−

√
r2 − y2,

y ∈ [−r, r]

• along the rightmost semicircle:

dx

dy
= − y√

r2 − y2
,

• along the leftmost semicircle :

dx

dy
=

y√
r2 − y2

Thus, the surface area of the torus is

S = S1 + S2 =

∫ r

−r
2π
(
R+

√
r2 − y2

)√√√√1 +

(
− y√

r2 − y2

)2

dy

+

∫ r

−r
2π
(
R−

√
r2 − y2

)√√√√1 +

(
y√

r2 − y2

)2

dy

= 4πR

∫ r

−r

r√
r2 − y2

dy = 8πR

∫ r

0

r√
r2 − y2

dy = 8πRr

∫ π
2

0

r cos θ

r cos θ
dθ

= 8πRr · π
2

= 4π2Rr.
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where the property of even function and the substitution y = r sin θ have been used.
Exercise. Find the surface area of the rotation of the curve y = ex on x ∈ [0, ln 4] about x-axis or
y-axis.
solution.

• For the rotation about x-axis, the area can be given by

S =

∫ ln 4

0
2πy ds =

∫ ln 4

0
2πex

√
1 + (ex)2 dx.

This area can be also written below, (x = ln y =⇒ dx
dy = 1

y )

S =

∫ 4

1
2πy ds =

∫ 4

1
2πy

√
1 +

(
1

y

)2

dy,

by usage of the same arc length of ds w.r.t different variables.

• For the rotation about y-axis, the area can be given by

S =

∫ 4

1
2πx

√
1 +

(
dx

dy

)2

dy =

∫ 4

1
2π ln y

√
1 +

(
1

y

)2

,

or as an x-integral by

S =

∫ ln 4

0
2πx ds =

∫ ln 4

0
2πx

√
1 +

(
dy

dx

)2

dx =

∫ ln 4

0
2πx

√
1 + (ex)2 dx.

Rk. Go wolframAlpha to see some“strange function” as anti-derivatives.
Rk.

• For general curve y = f(x) over [a, b] passing the x-axis, note that y > 0 gives 2πy ds > 0;
y < 0 gives 2πy ds < 0. Rotating this curve about x-axis. However the surface is positive.
Thus, the area is

S =

∫ b

a
2π|f(x)|

√
1 + [f ′(x)]2 dx.

• For general curve x = g(y) over [c, d] passing the y-axis, note that x > 0 gives 2πx ds > 0;
x < 0 gives 2πx ds < 0. Rotating this curve about y-axis. However the surface is positive.
Thus, the area is

S =

∫ d

c
2π|g(y)|

√
1 + [g′(y)]2 dy.

• For the curve y = f(x) > k > 0 over [a, b], rotating this curve about the line y = k. The area
is

S =

∫ b

a
2π [f(x)− k]

√
1 + [f ′(x)]2dx.

Or the curve 0 < y = f(x) < k over [a, b], rotating this curve about the line y = k. The area
is

S =

∫ b

a
2π [k − f(x)]

√
1 + [f ′(x)]2dx.

Or the general curve y = f(x) over [a, b], rotating this curve about the line y = k. The area is

S =

∫ b

a
2π |f(x)− k|

√
1 + [f ′(x)]2dx.

11
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• For the curve x = g(y) > k > 0 over [c, d], rotating this curve about the line x = k. The area
is

S =

∫ d

c
2π [g(y)− k]

√
1 + [g′(y)]2dy.

Other cases are similar to derive. For the curve y = f(x) < 0 over [a, b], rotating this curve
about the x-axis. The area is

S =

∫ b

a
2π|f(x)|

√
1 + [f ′(x)]2 dx,

Theorem (surface area of revolution by parametric curve) Assume that a parametric curve is given
by the parametric equations

x = f(t)

y = g(t),

where α ≤ t ≤ β, where f ′ and g′ are continuous and g(t) ≥ 0. Then the surface area of revolution
about the x-axis is

S =

∫ β

α
2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ β

α
2πg(t)

√
[f ′(t)]2 + [g′(t)]2 dt.

Similarly, the surface area of revolution about the y-axis is

S =

∫ β

α
2πx

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ β

α
2πf(t)

√
[f ′(t)]2 + [g′(t)]2 dt.

Example.
Rotate the area under one arch of the cycloid

x = r(t− sin t),

y = r(1− cos t),

where t ∈ [0, 2π]. about the x-axis and the y-axis, respectively. Find the surface areas of the two
solids.
solution.
The surface area of revolution is

S =

∫
(2πr) · (ds) =

∫
(circumference) · (arc length)

12
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1. Rotation about x-axis, a typical circle has radius y = y(t), while the arc length is given by

ds =
√
x′(t)2 + y′(t)2 dt.

Thus, the surface area of the solid is

S =

∫ 2π

0
2πy(t) ·

√
x′(t)2 + y′(t)2 dt

= 2πr2
∫ 2π

0
(1− cos t)

√
(1− cos t)2 + sin2 t dt

= 2πr2
∫ 2π

0
(1− cos t) ·

√
2− 2 cos t dt

= 2πr2
∫ 2π

0
2 sin2

(
1

2
t

)
· 2 sin

(
1

2
t

)
dt

= 8πr2
∫ π

0
(1− cos2 u) sinu · 2 du = 16πr2

[
− cosu+

1

3
cos3 u

]
|π0

= 16πr2 · 4

3
=

64

3
πr2,

where the half-angle formula and the substitution t = 2u have been used.

2. Rotation about y-axis, a typical circle has radius x = x(t), while the arc length is given by

ds =
√
x′(t)2 + y′(t)2 dt.

Thus, the surface area of the solid is

S =

∫ 2π

0
2πx(t) ·

√
x′(t)2 + y′(t)2 dt

= 2πr2
∫ 2π

0
(t− sin t)

√
(1− cos t)2 + sin2 t dt

= 2πr2
∫ 2π

0
(t− sin t) ·

√
2− 2 cos t dt

= 2πr2
∫ 2π

0
(t− sin t) · 2 sin

(
1

2
t

)
dt

= 4πr2
∫ π

0
(2u− sin 2u) sinu · 2 du

= 8πr2
∫ π

0
(2u sinu− sin 2u sinu) du

= 8πr2
[
−2u cosu+

3

2
sinu+

1

6
sin 3u

]
|π0 = 8πr2 · 2π = 16π2r2,

where the half-angle formula and the substitution t = 2u have been used.
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