Lecture 11 (Applications of integration)-Arc lengths and surface areas

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Arc lengths

Intuition of the arc length

- taking a curve $y=f(x), f(x)$ is continuous over $[a, b]$. Dividing the interval $[a, b]$ into n subintervals with end points $x_{0}, x_{1}, \cdots, x_{n}$ and equal width Δx. Denote the endpoints of the line segments to be $P_{0}, P_{1}, \cdots, P_{n}$, where P_{i} lines on the curve $y=f(x)$ with coordinates $\left(x_{i}, f\left(x_{i}\right)\right)$. Then length \mathcal{L} of the curve $y=f(x)$ is defined by

$$
\mathcal{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|,
$$

- taking a curve $x=g(y), g(y)$ is continuous over $[c, d]$. Dividing the interval $[c, d]$ into n subintervals with end points $y_{0}, y_{1}, \cdots, y_{n}$ and equal width Δy. Denote the endpoints of the line segments to be $Q_{0}, Q_{1}, \cdots, Q_{n}$, where Q_{i} lines on the curve $x=g(y)$ with coordinates $\left(y_{i}, g\left(y_{i}\right)\right)$. Then length \mathcal{L} of the curve $x=g(y)$ is defined by

$$
\mathcal{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|Q_{i-1} Q_{i}\right|
$$

Formula of the arc length Let $\Delta y_{i}=y_{i}-y_{i-1}=f\left(x_{i}\right)-f\left(x_{i-1}\right)$. The distance of the straight line between P_{i-1} and P_{i} is given by

$$
\left|P_{i-1} P_{i}\right|=\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}
$$

Note that the mean value theorem below.
Mean value theorem Suppose $f(x)$ is continuous on $[a, b]$, differentiable on (a, b). Then there is a number c such that $a<c<b$, and

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or $f(b)-f(a)=f^{\prime}(c)(b-a)$. The sketch is shown below,
By the mean value theorem, we have

$$
\Delta y_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right) \Delta x,
$$

where $x_{i-1}<x_{i}^{*}<x_{i}$ and $f^{\prime}\left(x_{i}^{*}\right)$ is the slope of the tangent line at point $\left(x_{i}^{*}, f\left(x_{i}^{*}\right)\right)$. Thus,

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left[f^{\prime}\left(x_{i}^{*}\right) \Delta x\right]^{2}} \\
& =\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x .
\end{aligned}
$$

Thus,

$$
\mathcal{L}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x .
$$

Theorem

- If f^{\prime} is continuous on $[a, b]$, then the length of the curve $y=f(x), x \in[a, b]$ is given by

$$
\mathcal{L}=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

- If g^{\prime} is continuous on $[c, d]$, then the length of the curve $x=g(y), y \in[c, d]$ is given by

$$
\mathcal{L}=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Rk. If $f^{\prime}(x)$ is continuous on $[a, b]$, the distance along the curve from the initial point ($a, f(a)$) to the point ($x, f(x)$) defines the arc length function below,

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t .
$$

Note that by FTC, $s^{\prime}(x)=\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$ means that $d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.
Example. Find the arc length of the curve $y=e^{x}$ from $(0,1)$ to $(1, e)$.
solution.

- $y=e^{x}, y^{\prime}=e^{x}$, the arc length is

$$
\mathcal{L}=\int_{0}^{1} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{1} \sqrt{1+e^{2 x}} d x
$$

by substitution $u=e^{x}$, we have $x=\ln u, d x=\frac{1}{u} d u$ and $x: 0 \rightarrow 1, u: 1 \rightarrow e$ and

$$
\mathcal{L}=\int_{1}^{e} \frac{\sqrt{1+u^{2}}}{u} d u,
$$

- $x=\ln y, x^{\prime}=\frac{1}{y}$, the arc length is

$$
\mathcal{L}=\int_{1}^{e} \sqrt{1+\left(x^{\prime}\right)^{2}} d y=\int_{1}^{e} \frac{\sqrt{1+y^{2}}}{y} d y
$$

As a result, we have

$$
\begin{aligned}
\mathcal{L} & =\int_{1}^{e} \frac{\sqrt{1+y^{2}}}{y} d y=\int_{1}^{e} \frac{y \sqrt{1+y^{2}}}{y^{2}} d y=\frac{1}{2} \int_{1}^{e} \frac{\sqrt{1+y^{2}}}{y^{2}} d y^{2} \\
& =\frac{1}{2} \int_{1}^{e^{2}} \frac{\sqrt{1+u}}{u} d u=\frac{1}{2} \int_{\sqrt{2}}^{\sqrt{e^{2}+1}} \frac{t}{t^{2}-1} \cdot 2 t d t=\int_{\sqrt{2}}^{\sqrt{e^{2}+1}} \frac{t^{2}}{t^{2}-1} d t=\int_{\sqrt{2}}^{\sqrt{e^{2}+1}} \frac{t^{2}-1+1}{t^{2}-1} d t \\
& =\left(\sqrt{e^{2}+1}-\sqrt{2}\right)+\int_{\sqrt{2}}^{\sqrt{e^{2}+1}} \frac{1}{t^{2}-1} d t=\left(\sqrt{e^{2}+1}-\sqrt{2}\right)+\left.\frac{1}{2} \ln \left|\frac{t-1}{t+1}\right|\right|_{\sqrt{2}} ^{\sqrt{e^{2}+1}} \\
& =\left(\sqrt{e^{2}+1}-\sqrt{2}\right)+\frac{1}{2}\left[\ln \left|\frac{\sqrt{e^{2}+1}-1}{\sqrt{e^{2}+1}+1}\right|-\ln \left|\frac{\sqrt{2}-1}{\sqrt{2}+1}\right|\right] .
\end{aligned}
$$

where the substitutions $u=y^{2}$ and $t=\sqrt{1+u}$, i.e., $u=t^{2}-1, d u=2 t d t$ have been used.
Example. Find the arc length of the curve $y=x^{2}$ from $(0,0)$ to $\left(\frac{1}{2}, \frac{1}{4}\right)$.
solution. Since that $y=x^{2}$, we have $y^{\prime}=2 x$. Thus, the arc length of the curve from $(0,0)$ to $\left(\frac{1}{2}, \frac{1}{4}\right)$ is given by

$$
\mathcal{L}=\int_{0}^{\frac{1}{2}} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{\frac{1}{2}} \sqrt{1+4 x^{2}} d x
$$

Using the substitution $x=\frac{1}{2} \tan \theta$, we have $x: 0 \rightarrow \frac{1}{2}, \theta: 0 \rightarrow \frac{\pi}{4}, d x=\frac{1}{2} \sec ^{2} \theta d \theta$ and

$$
\mathcal{L}=\int_{0}^{\frac{\pi}{4}} \sec \theta \cdot \frac{1}{2} \sec ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta
$$

Note that by the integration by parts, we have

$$
\begin{aligned}
I & =\int \sec ^{3} \theta d \theta=\int \sec \theta d \tan \theta=\sec \theta \tan \theta-\int \tan ^{2} \theta \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int\left(\sec ^{2} \theta-1\right) \cdot \sec \theta d \theta=\sec \theta \tan \theta+\int \sec \theta d \theta-I
\end{aligned}
$$

in turn,

$$
\begin{aligned}
2 I & =\sec \theta \tan \theta+\int \sec \theta d \theta \\
& =\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

say,

$$
I=\frac{1}{2} \sec \theta \tan \theta+\frac{1}{2} \ln |\sec \theta+\tan \theta|+C
$$

Thus, the arc length is given by

$$
\mathcal{L}=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta=\left.\frac{1}{4}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]\right|_{0} ^{\frac{\pi}{4}}=\sqrt{2}+\ln (\sqrt{2}+1) .
$$

Rk.

- since that $(\ln |\sec x+\tan x|)^{\prime}=\sec x$, we have $\int \sec x d x=\ln |\sec x+\tan x|+C$;
- let $u=\sin x$, we have

$$
\begin{aligned}
\int \sec x d x & =\int \frac{1}{\cos x} d x=\int \frac{\cos x}{\cos ^{2} x} d x=\int \frac{1}{1-\sin ^{2} x} d \sin x \\
& =\int \frac{1}{1-u^{2}} d u=\frac{1}{2}\left[\int \frac{1}{u+1} d u-\int \frac{1}{u-1} d u\right]=\frac{1}{2} \ln \left|\frac{u+1}{u-1}\right|+C \\
& =\frac{1}{2} \ln \left|\frac{\sin x+1}{\sin x-1}\right|+C=\frac{1}{2} \ln \left|\frac{\tan x+\sec x}{\tan x-\sec x}\right|+C
\end{aligned}
$$

Note that

$$
\left(\frac{1}{2} \ln \left|\frac{\tan x+\sec x}{\tan x-\sec x}\right|\right)^{\prime}=(\ln |\sec x+\tan x|)^{\prime}=\sec x .
$$

Rk. How about the arc length for the same curve $x=y^{\frac{1}{2}}$. We have $\frac{d x}{d y}=\frac{1}{2} y^{-\frac{1}{2}}$. Thus, the arc length from $(0,0)$ to $\left(\frac{1}{2}, \frac{1}{4}\right)$ is

$$
\mathcal{L}=\int_{0}^{\frac{1}{4}} \sqrt{1+\left(x^{\prime}\right)^{2}} d y=\int_{0}^{\frac{1}{4}} \sqrt{1+\frac{1}{4} y^{-1}} d y
$$

Evaluate this improper integral is more complicated! So, when there are more than one choices in finding a quantity (like area, volume, arc length, etc), one may need to choose a wise setup.
Example. Find the circumference of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.
solution. We have $y=f(x)=\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{3}{2}}=\sqrt[3]{\left(\sqrt[3]{a^{2}}-\sqrt[3]{x^{2}}\right)^{2}}$, thus, $f(-x)=f(x)$, similarly, $x=g(y)=\sqrt[3]{\left(\sqrt[3]{a^{2}}-\sqrt[3]{y^{2}}\right)^{2}}$, thus, $g(-y)=g(y)$. Thus, the astroid is symmetric about the x-axis and the y-axis. The graph of this curve is shown below, So, its circumference is four time the

arc length in the first quadrant. In the first quadrant. In the first quadrant, $y \geq 0$, In this region, solving the equation of the astroid gives

$$
y=\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{3}{2}}
$$

where $x \in[0, a]$. By chain rule, we have

$$
\frac{d y}{d x}=\frac{3}{2}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{1}{2}} \cdot(-1) \frac{2}{3} x^{-\frac{1}{3}}=-x^{-\frac{1}{3}}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{1}{2}}
$$

Thus, the circumference of the astroid is

$$
\begin{aligned}
\mathcal{L} & =4 \int_{0}^{a} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=4 \int_{0}^{a} \sqrt{1+\left[x^{-\frac{2}{3}}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)\right]} d x \\
& =4 a^{\frac{1}{3}} \int_{0}^{a} x^{-\frac{1}{3}} d x
\end{aligned}
$$

which is an improper integral, by the definition, we have

$$
\int_{0}^{a} x^{-\frac{1}{3}} d x=\lim _{h \rightarrow 0^{+}} \int_{h}^{a} x^{-\frac{1}{3}} d x=\left.\lim _{h \rightarrow 0^{+}}\left[\frac{3}{2} x^{\frac{2}{3}}\right]\right|_{h} ^{a}=\frac{3}{2} a^{\frac{2}{3}}
$$

Thus, we have

$$
\mathcal{L}=4 a^{\frac{1}{3}} \cdot \frac{3}{2} a^{\frac{2}{3}}=6 a
$$

Theorem (arc length for parametric curve). Suppose a parametric curve is given by the parametric equations

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

where $t \in[\alpha, \beta], f$ and g^{\prime} are continuous and the parametric curve is traversed exactly once as t increases from α to β. Since $t: \alpha \rightarrow \beta$, we have $x: f(\alpha) \rightarrow f(\beta), y: g(\alpha) \rightarrow g(\beta)$ and $d x=f^{\prime}(t) d t, d y=g^{\prime}(t) d t$.
Then the arc length is

$$
\begin{aligned}
\mathcal{L} & =\int_{f(\alpha)}^{f(\beta)} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{f(\alpha)}^{f(\beta)} \sqrt{(d x)^{2}+(d y)^{2}} \\
& =\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t) d t\right]^{2}+\left[g^{\prime}(t) d t\right]^{2}}=\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

Say,

$$
\mathcal{L}=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Rk. Of course, we can get the similar arc length by

$$
\begin{aligned}
\mathcal{L} & =\int_{g(\alpha)}^{g(\beta)} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{g(\alpha)}^{g(\beta)} \sqrt{(d y)^{2}+(d x)^{2}} \\
& =\int_{\alpha}^{\beta} \sqrt{\left[g^{\prime}(t) d t\right]^{2}+\left[f^{\prime}(t) d t\right]^{2}}=\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
\end{aligned}
$$

Example. Find the circumference of the astroid shown above, given by the parametric equations

$$
\left\{\begin{array}{l}
x=a \cos ^{3} t \\
y=a \sin ^{3} t
\end{array}\right.
$$

where $t \in[0,2 \pi]$.
solution. The astroid is symmetric about the x-axis and the y-axis. So, its circumference is four time the arc length in the first quadrant. Thus,

$$
\begin{aligned}
\mathcal{L} & =4 \int_{0}^{\frac{\pi}{2}} \sqrt{\left[3 a \cos ^{2} t \cdot(-\sin t)\right]^{2}+\left[3 a \sin ^{2} t \cdot(\cos t)\right]^{2}} d t \\
& =12 a \int_{0}^{\frac{\pi}{2}} \sin t \cos t d t=\left.12 a\left(\frac{1}{2} \sin ^{2} t\right)\right|_{0} ^{\frac{\pi}{2}}=6 a
\end{aligned}
$$

 solution. Note that $y=f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$, we have

- when $x=0, y=1$; when $x=3, y=\frac{1}{2}\left(e^{3}+e^{-3}\right)$
- $f(-x)=f(x)$, the curve is symmetric about y-axis;
- $f^{\prime}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)$, when $x>0, f^{\prime}(x)>0$; when $x<0, f^{\prime}(x)<0$.

The arc length of the curve is

$$
\mathcal{L}=\int_{0}^{3} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{3} \sqrt{1+\frac{1}{4}\left(e^{x}-e^{-x}\right)^{2}} d x
$$

Note that $\sinh x=\frac{e^{x}-e^{-x}}{2}, \cosh ^{2} x-\sinh ^{2} x=1$ and $\frac{d}{d x} \sinh x=\cosh x$, we have

$$
\mathcal{L}=\int_{0}^{3} \sqrt{1+\sinh ^{2} x} d x=\int_{0}^{3} \cosh x d x=\left.\sinh x\right|_{0} ^{3}=\left.\left(\frac{e^{x}-e^{-x}}{2}\right)\right|_{0} ^{3}=\frac{1}{2}\left(e^{3}-e^{-3}\right)
$$

Rk. Note that

$$
\sqrt{1+\frac{1}{4}\left(e^{x}-e^{-x}\right)^{2}}=\sqrt{\frac{4+e^{2 x}-2+e^{-2 x}}{4}}=\sqrt{\frac{\left(e^{x}+e^{-x}\right)^{2}}{4}}=\frac{e^{x}+e^{-x}}{2} .
$$

Thus, we have

$$
\mathcal{L}=\int_{0}^{3} \frac{e^{x}+e^{-x}}{2} d x=\left.\frac{1}{2}\left[e^{x}-e^{-x}\right]\right|_{0} ^{3}=\frac{1}{2}\left(e^{3}-e^{-3}\right)
$$

2 Surface areas

Intuition of surface area of revolution

- taking a curve $y=f(x) \geq 0$, over $[a, b]$. Dividing the interval $[a, b]$ into n subintervals with endpoints $x_{0}, x_{1}, \cdots, x_{n}$ and equal width Δx. The part of the surface between x_{i-1} and x_{i} is approximated by taking the line segment $P_{i-1} P_{i}$ and rotating it about the x-axis, where $P_{i}\left(x_{i}, f\left(x_{i}\right)\right)$ lies on the curve. The result is a band with slant height $P_{i-1} P_{i}$. The surface area is obtained by rotating the curve $y=f(x)$ over $[a, b]$ about the x-axis by

$$
S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} S_{i}
$$

where S_{i} is the area of the band with slant height $\left|P_{i-1} P_{i}\right|$.

- taking a curve $x=g(y) \geq 0$, over $[c, d]$. Dividing the interval $[a, b]$ into n subintervals with endpoints $y_{0}, y_{1}, \cdots, y_{n}$ and equal width Δy. The part of the surface between y_{i-1} and y_{i} is approximated by taking the line segment $Q_{i-1} Q_{i}$ and rotating it about the y-axis, where $Q_{i}\left(y_{i}, g\left(y_{i}\right)\right)$ lies on the curve. The result is a band with slant height $Q_{i-1} Q_{i}$. The surface area is obtained by rotating the curve $x=g(y)$ over $[c, d]$ about the y-axis by

$$
S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} S_{i}
$$

where S_{i} is the area of the band with slant height $\left|Q_{i-1} Q_{i}\right|$.
Let's look at two examples here.
Example. Find the area of a circular cone with base radius r and slant height ℓ.
solution. We can flat the cone to form a sector with the area A of a circle with radius ℓ and central angle θ. Thus, we have

$$
\begin{aligned}
\frac{\theta}{2 \pi}=\frac{2 \pi r}{2 \pi \ell} \quad \Longrightarrow \theta=\frac{2 \pi r}{\ell} \\
\frac{A}{\pi \ell^{2}}=\frac{\theta}{2 \pi} \quad \Longrightarrow A=\pi r \ell=\frac{1}{2} \ell^{2} \cdot\left(\frac{2 \pi r}{\ell}\right)=\frac{1}{2} \ell^{2} \theta .
\end{aligned}
$$

Example. Find the area A of the band, or frustum of a cone, with slant height ℓ and upper and lower radii r_{1} and r_{2}.

solution. We have

$$
A=A_{1}-A_{2}=\pi r_{2}\left(\ell+\ell_{1}\right)-\pi r_{1} \ell_{1}=\pi\left[\left(r_{2}-r_{1}\right) \ell_{1}+r_{2} \ell\right]
$$

From similar triangles we have

$$
\frac{\ell_{1}}{r_{1}}=\frac{\ell_{1}+\ell}{r_{2}}
$$

which gives $r_{2} \ell_{1}=r_{1}\left(\ell_{1}+\ell\right) \Longrightarrow\left(r_{2}-r_{1}\right) \ell_{1}=r_{1} \ell$.

Thus, we have

$$
A=\pi\left[r_{1} \ell+r_{2} \ell\right]=2 \pi r \ell=(\text { average circumference }) \times(\text { slant height })
$$

where the average radius of the band is $r=\frac{1}{2}\left(r_{1}+r_{2}\right)$.
Formula of the surface area

- Assume that f^{\prime} is continuous on $[a, b]$, For a band with slant height $\ell=\left|P_{i-1} P_{i}\right|$ and average radius $r=\frac{1}{2}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)$. The surface area is

$$
S_{i}=2 \pi r \ell=2 \pi \cdot \frac{1}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \cdot\left|P_{i-1} P_{i}\right|
$$

By the Pythagorean Theorem and the Mean Value Theorem, we have

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right]^{2}} \\
& =\sqrt{(\Delta x)^{2}+\left[f^{\prime}\left(x_{i}^{*}\right) \Delta x\right]^{2}}=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
\end{aligned}
$$

where taking x_{i}^{*}, such that $f\left(x_{i}^{*}\right)=\frac{1}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]$, where $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. we have

$$
S_{i}=2 \pi \cdot f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

Thus,

$$
\begin{aligned}
S & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} S_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \cdot f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \\
& =\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{a}^{b} 2 \pi f(x) d s
\end{aligned}
$$

where $d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.

- Assume that g^{\prime} is continuous on $[c, d]$, For a band with slant height $\ell=\left|Q_{i-1} Q_{i}\right|$ and average radius $r=\frac{1}{2}\left(g\left(y_{i-1}\right)+g\left(y_{i}\right)\right)$. The surface area is

$$
S_{i}=2 \pi r \ell=2 \pi \cdot \frac{1}{2}\left[g\left(y_{i-1}\right)+g\left(y_{i}\right)\right] \cdot\left|Q_{i-1} Q_{i}\right|
$$

By the Pythagorean Theorem and the Mean Value Theorem, we have

$$
\begin{aligned}
\left|Q_{i-1} Q_{i}\right| & =\sqrt{\left(y_{i}-y_{i-1}\right)^{2}+\left[g\left(y_{i}\right)-g\left(y_{i-1}\right)\right]^{2}} \\
& =\sqrt{(\Delta y)^{2}+\left[g^{\prime}\left(y_{i}^{*}\right) \Delta y\right]^{2}}=\sqrt{1+\left[g^{\prime}\left(y_{i}^{*}\right)\right]^{2}} \Delta y
\end{aligned}
$$

where taking y_{i}^{*}, such that $g\left(y_{i} *\right)=\frac{1}{2}\left[g\left(y_{i-1}\right)+g\left(y_{i}\right)\right]$, where $y_{i}^{*} \in\left[y_{i-1}, y_{i}\right]$. we have

$$
S_{i}=2 \pi \cdot g\left(y_{i}^{*}\right) \sqrt{1+\left[g^{\prime}\left(y_{i}^{*}\right)\right]^{2}} \Delta y
$$

Thus,

$$
\begin{aligned}
S & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} S_{i}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \cdot g\left(y_{i}^{*}\right) \sqrt{1+\left[g^{\prime}\left(y_{i}^{*}\right)\right]^{2}} \Delta y \\
& =\int_{c}^{d} 2 \pi g(y) \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} 2 \pi g(y) d s
\end{aligned}
$$

where $d s=\sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y$.

Theorem (general formula for surface area of revolution)

- For rotations of $y=f(x)$ over $[a, b]$ about the x-axis, the surface area is given by

$$
S=\int_{a}^{b} 2 \pi y d s,
$$

where $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.

- For rotations of $x=g(y)$ over $[c, d]$ about the y-axis, the surface area is given by

$$
S=\int_{c}^{d} 2 \pi x d s,
$$

where $d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$.

Rk. In general, the surface area of rotation is

$$
S=\int(2 \pi r) \cdot(d s)=\int(\text { circumference }) \cdot(\text { arc length }) .
$$

Example (surface area of a sphere). A sphere can be generated by rotating the semicircle

$$
y=\sqrt{r^{2}-x^{2}} \geq 0, \quad-r \leq x \leq r .
$$

about the x-axis, as shown below. Find its surface area.

solution. Since that

$$
\frac{d y}{d x}=-\frac{x}{\sqrt{r^{2}-x^{2}}},
$$

Thus, the surface area of the sphere is

$$
\begin{aligned}
S & =\int_{-r}^{r} 2 \pi f(x) \sqrt{1+\left[f^{\prime}\right]^{2}} d x \\
& =2 \pi \int_{-r}^{r} \sqrt{r^{2}-x^{2}} \sqrt{1+\left[-\frac{x}{\sqrt{r^{2}-x^{2}}}\right]^{2}} d x \\
& =2 \pi \int_{-r}^{r} r d x=4 \pi r^{2}
\end{aligned}
$$

Example (surface area of a torus). A torus can be generated by rotating the circle

$$
(x-R)^{2}+y^{2}=r^{2}, \quad 0<r<R, \quad x \geq 0
$$

about y-axis, as shown below. Find the surface area of this torus.

solution. The torus consists of two portions: the outer portion generated by the rightmost semicircle $x=R+\sqrt{r^{2}-y^{2}}, y \in[-r, r]$ and the inner portion by the leftmost semicircle $x=R-\sqrt{r^{2}-y^{2}}$, $y \in[-r, r]$

- along the rightmost semicircle:

$$
\frac{d x}{d y}=-\frac{y}{\sqrt{r^{2}-y^{2}}}
$$

- along the leftmost semicircle :

$$
\frac{d x}{d y}=\frac{y}{\sqrt{r^{2}-y^{2}}}
$$

Thus, the surface area of the torus is

$$
\begin{aligned}
S= & S_{1}+S_{2}=\int_{-r}^{r} 2 \pi\left(R+\sqrt{r^{2}-y^{2}}\right) \sqrt{1+\left(-\frac{y}{\sqrt{r^{2}-y^{2}}}\right)^{2}} d y \\
& +\int_{-r}^{r} 2 \pi\left(R-\sqrt{r^{2}-y^{2}}\right) \sqrt{1+\left(\frac{y}{\sqrt{r^{2}-y^{2}}}\right)^{2}} d y \\
= & 4 \pi R \int_{-r}^{r} \frac{r}{\sqrt{r^{2}-y^{2}}} d y=8 \pi R \int_{0}^{r} \frac{r}{\sqrt{r^{2}-y^{2}}} d y=8 \pi R r \int_{0}^{\frac{\pi}{2}} \frac{r \cos \theta}{r \cos \theta} d \theta \\
= & 8 \pi R r \cdot \frac{\pi}{2}=4 \pi^{2} R r .
\end{aligned}
$$

where the property of even function and the substitution $y=r \sin \theta$ have been used.
Exercise. Find the surface area of the rotation of the curve $y=e^{x}$ on $x \in[0, \ln 4]$ about x-axis or y-axis.
solution.

- For the rotation about x-axis, the area can be given by

$$
S=\int_{0}^{\ln 4} 2 \pi y d s=\int_{0}^{\ln 4} 2 \pi e^{x} \sqrt{1+\left(e^{x}\right)^{2}} d x
$$

This area can be also written below, $\left(x=\ln y \Longrightarrow \frac{d x}{d y}=\frac{1}{y}\right)$

$$
S=\int_{1}^{4} 2 \pi y d s=\int_{1}^{4} 2 \pi y \sqrt{1+\left(\frac{1}{y}\right)^{2}} d y
$$

by usage of the same arc length of $d s$ w.r.t different variables.

- For the rotation about y-axis, the area can be given by

$$
S=\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{1}^{4} 2 \pi \ln y \sqrt{1+\left(\frac{1}{y}\right)^{2}}
$$

or as an x-integral by

$$
S=\int_{0}^{\ln 4} 2 \pi x d s=\int_{0}^{\ln 4} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{\ln 4} 2 \pi x \sqrt{1+\left(e^{x}\right)^{2}} d x
$$

Rk. Go wolframAlpha to see some"strange function" as anti-derivatives.
Rk.

- For general curve $y=f(x)$ over $[a, b]$ passing the x-axis, note that $y>0$ gives $2 \pi y d s>0$; $y<0$ gives $2 \pi y d s<0$. Rotating this curve about x-axis. However the surface is positive. Thus, the area is

$$
S=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

- For general curve $x=g(y)$ over $[c, d]$ passing the y-axis, note that $x>0$ gives $2 \pi x d s>0$; $x<0$ gives $2 \pi x d s<0$. Rotating this curve about y-axis. However the surface is positive. Thus, the area is

$$
S=\int_{c}^{d} 2 \pi|g(y)| \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

- For the curve $y=f(x)>k>0$ over $[a, b]$, rotating this curve about the line $y=k$. The area is

$$
S=\int_{a}^{b} 2 \pi[f(x)-k] \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Or the curve $0<y=f(x)<k$ over $[a, b]$, rotating this curve about the line $y=k$. The area is

$$
S=\int_{a}^{b} 2 \pi[k-f(x)] \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Or the general curve $y=f(x)$ over $[a, b]$, rotating this curve about the line $y=k$. The area is

$$
S=\int_{a}^{b} 2 \pi|f(x)-k| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

- For the curve $x=g(y)>k>0$ over $[c, d]$, rotating this curve about the line $x=k$. The area is

$$
S=\int_{c}^{d} 2 \pi[g(y)-k] \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Other cases are similar to derive. For the curve $y=f(x)<0$ over $[a, b]$, rotating this curve about the x-axis. The area is

$$
S=\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Theorem (surface area of revolution by parametric curve) Assume that a parametric curve is given by the parametric equations

$$
\begin{aligned}
& x=f(t) \\
& y=g(t)
\end{aligned}
$$

where $\alpha \leq t \leq \beta$, where f^{\prime} and g^{\prime} are continuous and $g(t) \geq 0$. Then the surface area of revolution about the x-axis is

$$
S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} 2 \pi g(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Similarly, the surface area of revolution about the y-axis is

$$
S=\int_{\alpha}^{\beta} 2 \pi x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} 2 \pi f(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Example.

Rotate the area under one arch of the cycloid

$$
\begin{aligned}
& x=r(t-\sin t) \\
& y=r(1-\cos t)
\end{aligned}
$$

where $t \in[0,2 \pi]$. about the x-axis and the y-axis, respectively. Find the surface areas of the two solids.
solution.
The surface area of revolution is

$$
S=\int(2 \pi r) \cdot(d s)=\int(\text { circumference }) \cdot(\text { arc length })
$$

1. Rotation about x-axis, a typical circle has radius $y=y(t)$, while the arc length is given by

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Thus, the surface area of the solid is

$$
\begin{aligned}
S & =\int_{0}^{2 \pi} 2 \pi y(t) \cdot \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi}(1-\cos t) \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi}(1-\cos t) \cdot \sqrt{2-2 \cos t} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi} 2 \sin ^{2}\left(\frac{1}{2} t\right) \cdot 2 \sin \left(\frac{1}{2} t\right) d t \\
& =8 \pi r^{2} \int_{0}^{\pi}\left(1-\cos ^{2} u\right) \sin u \cdot 2 d u=\left.16 \pi r^{2}\left[-\cos u+\frac{1}{3} \cos ^{3} u\right]\right|_{0} ^{\pi} \\
& =16 \pi r^{2} \cdot \frac{4}{3}=\frac{64}{3} \pi r^{2}
\end{aligned}
$$

where the half-angle formula and the substitution $t=2 u$ have been used.
2. Rotation about y-axis, a typical circle has radius $x=x(t)$, while the arc length is given by

$$
d s=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

Thus, the surface area of the solid is

$$
\begin{aligned}
S & =\int_{0}^{2 \pi} 2 \pi x(t) \cdot \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi}(t-\sin t) \sqrt{(1-\cos t)^{2}+\sin ^{2} t} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi}(t-\sin t) \cdot \sqrt{2-2 \cos t} d t \\
& =2 \pi r^{2} \int_{0}^{2 \pi}(t-\sin t) \cdot 2 \sin \left(\frac{1}{2} t\right) d t \\
& =4 \pi r^{2} \int_{0}^{\pi}(2 u-\sin 2 u) \sin u \cdot 2 d u \\
& =8 \pi r^{2} \int_{0}^{\pi}(2 u \sin u-\sin 2 u \sin u) d u \\
& =\left.8 \pi r^{2}\left[-2 u \cos u+\frac{3}{2} \sin u+\frac{1}{6} \sin 3 u\right]\right|_{0} ^{\pi}=8 \pi r^{2} \cdot 2 \pi=16 \pi^{2} r^{2}
\end{aligned}
$$

where the half-angle formula and the substitution $t=2 u$ have been used.

