Lecture 14 Infinite sequences and series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Infinite Sequences

Definition. An infinite sequence is an ordered list of numbers of the form

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots\right\}
$$

For each n, the term a_{n} is called the n-th term of the sequence.
Example.

- $\{1,2,3, \cdots, n, \cdots\}, a_{n}=n$;
- $\{1,-1,1,-1,1,-1, \cdots\}, a_{n}=(-1)^{n-1}$;
- $\{3,3.14,3.141,3.1415, \cdots\}, a_{n}$ can be thought of the truncation of π to $n-1$ decimal place, but no explicit expression;
- Given $a_{n}=f(n)$ with $f(n)=\cos \left(\frac{\pi}{n}\right)$, gives $\left\{\cos \frac{\pi}{1}, \cos \frac{\pi}{2}, \cos \frac{\pi}{3}, \cdots\right\}$;
- The sequence

$$
\{\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots\}
$$

$a_{1}=\sqrt{2}, a_{n}=\sqrt{2+a_{n-1}}$, for $n \geq 2$.
Definition (limit of sequence).

- An infinite sequence $\left\{a_{n}\right\}$ has the limit a, which is a finite number, and we write

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

or $a_{n} \rightarrow a$ as $n \rightarrow \infty$. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

- The infinite limit $\lim _{n \rightarrow \infty} a_{n}=\infty$. In this case, we say the sequence diverges to infinity. Similarly, we can definite $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Example.

- The sequence $\left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots\right\}, a_{n}=\frac{1}{n}$. Since that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. We say that the sequence $\left\{a_{n}\right\}$ is convergent to 0 . Note that

$$
\left|a_{n}-0\right|<0.1, \Longrightarrow n>10 .
$$

The variation of a_{n} is shown below.

n	a_{n}	n	a_{n}
1	1.0	11	0.090909
2	0.5	12	0.083333
3	0.333333	13	0.076923
4	0.25	14	0.071429
5	0.2	15	0.066667
6	0.166667	20	0.05
7	0.142857	30	0.033333
8	0.125	40	0.025
9	0.111111	50	0.02
10	0.1	60	0.016667

n	a_{n}
1	0.5
2	0.25
3	0.125
4	0.0625
5	0.03125
6	0.015625
7	0.0078125
8	0.00390625
9	0.00195313
10	0.000976563

- The sequence $\left\{\frac{1}{2},\left(\frac{1}{2}\right)^{2},\left(\frac{1}{2}\right)^{3}, \cdots,\left(\frac{1}{2}\right)^{n}, \cdots\right\}, a_{n}=\left(\frac{1}{2}\right)^{n}$. Since that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, we say that the sequence $\left\{a_{n}\right\}$ is convergent to 0 . Note that

$$
\left|a_{n}-0\right|<0.05, \Longrightarrow n>4 .
$$

The variation of a_{n} is shown below.

- The sequence $\{0.9,0.99,0.999,0.9999\}$ converges to 1 .
- The sequence

$$
\left\{-\frac{1}{3}, \frac{8}{9}, \frac{3}{19}, \cdots, \frac{n^{2}+2 \cdot(-1)^{n} n}{2 n^{2}+1}, \cdots\right\}
$$

$a_{n}=\frac{n^{2}+2 \cdot(-1)^{n}}{2 n^{2}+1}$. Since that $a_{n} \rightarrow \frac{1}{2}$ as $n \rightarrow \infty$, we that the sequence $\left\{a_{n}\right\}$ converges to $\frac{1}{2}$. Note that

$$
\left|a_{n}-\frac{1}{2}\right|<0.15, \Longrightarrow n>6
$$

The variation of a_{n} is shown below.

- The sequence $\{\sin 1, \sin 2, \sin 3, \cdots, \sin n, \cdots\}$ diverges, since $a_{n}=\sin n$ does not appear to approach any finite number as $n \rightarrow \infty$. As is shown below.
- The sequence

$$
\left\{\frac{1}{\ln 2}, \frac{2}{\ln 3}, \frac{3}{\ln 4}, \cdots, \frac{n}{\ln (n+1)}, \cdots\right\} .
$$

n	a_{n}	n	a_{n}
1	-0.333333	11	0.407407
2	0.888889	12	0.581315
3	0.157895	13	0.421829
4	0.727273	14	0.569975
5	0.294118	15	0.432373
6	0.657534	20	0.549313
7	0.353535	30	0.533037
8	0.620155	40	0.524836
9	0.386503	60	0.516595
10	0.597015	80	0.512460

Note that by l'Hospital rule

$$
\lim _{x \rightarrow \infty} \frac{x}{\ln (x+1)}=\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x+1}}=\lim _{x \rightarrow \infty}(x+1)=\infty .
$$

Thus, we have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}=\infty .
$$

In turn, the sequence is divergent. As is shown below.

Theorem (limit of a sequence from limit of a function). If $\lim _{x \rightarrow \infty} f(x)=a$, and $f(n)=a_{n}$, when n is an integer, then $\lim _{n \rightarrow \infty} a_{n}=a$. The same result holds when $a=\infty$ or $-\infty$.
Theorem (Limit Laws for sequences) Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant. Then,

- $\lim _{n \rightarrow \infty}\left(c a_{n} \pm b_{n}\right)=c \lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$;
- $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$;
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, if $\lim _{n \rightarrow \infty} b_{n} \neq 0$;
- $\lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p}$, if $p>0$ and $a_{n}>0$.

Example.

- Compute $\lim _{n \rightarrow \infty} \frac{1}{n^{p}},(p>0)$. Since that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, we have $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Thus for $p>0$, by the Limit Laws,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=\left(\lim _{n \rightarrow \infty} \frac{1}{n}\right)^{p}=0
$$

- Compute

$$
\lim _{n \rightarrow \infty} \frac{n^{\frac{3}{2}}+2 n-1}{n^{\frac{3}{2}}+1}
$$

Since that

$$
\frac{n^{\frac{3}{2}}+2 n-1}{n^{\frac{3}{2}}+1}=\frac{n^{\frac{3}{2}}\left(1+2 \cdot \frac{1}{n^{\frac{1}{2}}}-\frac{1}{n^{\frac{3}{2}}}\right)}{n^{\frac{3}{2}}\left(1+\frac{1}{n^{\frac{3}{2}}}\right)}=\frac{1+2 \cdot \frac{1}{n^{\frac{1}{2}}}-\frac{1}{n^{\frac{3}{2}}}}{1+\frac{1}{n^{\frac{3}{2}}}},
$$

from the Limit Laws, we have

$$
\lim _{n \rightarrow \infty} \frac{n^{\frac{3}{2}}+2 n-1}{n^{\frac{3}{2}}+1}=\frac{1+2 \cdot \lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{2}}}-\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{3}{2}}}}{1+\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{3}{2}}}}=1
$$

Theorem (Squeeze Theorem). If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\varlimsup_{n \rightarrow \infty} b_{n}=L$.
Example. Compute $\lim _{n \rightarrow \infty} \frac{\cos n}{\sqrt{n}}$.

solution.

Since that $-1<\cos n<1$ for all n, we have

$$
-\frac{1}{\sqrt{n}} \leq \frac{\cos n}{\sqrt{n}} \leq \frac{1}{\sqrt{n}}
$$

Since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=\lim _{n \rightarrow \infty}\left(-\frac{1}{\sqrt{n}}\right)=0$, by the Squeeze Theorem, we get that $\lim _{n \rightarrow \infty} \frac{\cos n}{\sqrt{n}}=0$. Rk.

- $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \Longleftrightarrow \lim _{n \rightarrow \infty} a_{n}=0$;
- If $\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} a_{2 n+1}=a$, then $\left\{a_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} a_{n}=a$.

Definition (two asymptotic relations).

- $a_{n} \ll b_{n}$, as $n \rightarrow \infty$ means that a_{n} is much smaller than b_{n} as $n \rightarrow \infty, \Longrightarrow \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$;
- $a_{n} \sim b_{n}$ as $n \rightarrow \infty$ means that a_{n} is asymptotic to b_{n} as $n \rightarrow \infty, \Longrightarrow \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$.

$$
\ln ^{q} n \ll n^{p} \ll n^{p} \ln ^{r} n \ll b^{n} \ll n!=n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 2 \cdot 1 \ll n^{n} .
$$

Actually, by Stirling's formula, we have

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}, \quad \text { as } n \rightarrow \infty
$$

Theorem (geometric sequences). Let r be a real number, then

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{l}
0, \quad \text { if }|r|<1 \\
1, \quad \text { if } r=1, \\
\infty \text { or }-\infty(\text { diverges }), \quad \text { if } r \leq-1 \quad \text { or } r>1 .
\end{array}\right.
$$

Theorem (sequential limit for continuous function). If $\lim _{n \rightarrow \infty} a_{n}=a$ and the function f is continuous at a, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(a) .
$$

Example. Compute

(1) $\lim _{n \rightarrow \infty} \sqrt[n]{a}$ for $a>0$,
(2) $\lim _{n \rightarrow \infty} \sqrt[n]{n}$,
(3) $\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}$.
solution. For (1), let the substitution $a_{n}=\ln \sqrt[n]{a}=\frac{\ln a}{n}$. Thus, $\lim _{n \rightarrow \infty} a_{n}=0$ and $\sqrt[n]{a}=e^{a_{n}}$,

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a}=\lim _{n \rightarrow \infty} e^{a_{n}}=e^{0}=1
$$

For (2), let the substitution $a_{n}=\ln \sqrt[n]{n}=\frac{\ln n}{n}$. Then $\sqrt[n]{n}=e^{a_{n}}$ Note that $\ln n \ll n$ as $n \rightarrow \infty$, so that $\lim _{n \rightarrow \infty} a_{n}=0$, we have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=\lim _{n \rightarrow \infty} e^{a_{n}}=e^{0}=1
$$

For (3), let the substitution

$$
a_{n}=\ln \left(1-\frac{2}{n}\right)^{n}=n \cdot \ln \left(1-\frac{2}{n}\right) .
$$

Then $\left(1-\frac{2}{n}\right)^{n}=e^{a_{n}}$. Note that by l'Hospital's Rule

$$
\lim _{x \rightarrow 0^{+}} x^{-1} \cdot \ln (1-2 x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (1-2 x)}{x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{-2}{1-2 x}}{1}=-2,
$$

so we have $\lim _{n \rightarrow \infty} a_{n}=-2$. Then

$$
\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{a_{n}}=e^{-2}
$$

Rk. Terminology for sequences below,

- $\left\{a_{n}\right\}$ is increasing if $a_{n+1}>a_{n}$, e.g., $\{1,2,3, \cdots\}$ with $a_{n}=n$;
- $\left\{a_{n}\right\}$ is non-decreasing if $a_{n+1} \geq a_{n}$, e.g., $\{1,1,2,2,3,3, \cdots\}$;
- $\left\{a_{n}\right\}$ is decreasing if $a_{n+1}<a_{n}$, e.g., $\{0,-1,-2,-3, \cdots\}$;
- $\left\{a_{n}\right\}$ is non-increasing if $a_{n+1} \leq a_{n}$, e.g., $\{0,0,-1,-1,-2,-2, \cdots\}$;
- $\left\{a_{n}\right\}$ is monotonic if it is either non-increasing or non-decreasing;
- $\left\{a_{n}\right\}$ is bounded if there is a number M such that $\left|a_{n}\right| \leq M$ for all n.

Rk (product of sequences). If $\left\{a_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$. Theorem (Monotonic Sequence Theorem). Every bounded, monotonic sequence is convergent. Example. Compute the limit of a sequence $\left\{a_{n}\right\}$ with

$$
a_{n}=\frac{1}{2} a_{n-1}+1, \quad(n \geq 2) ; \quad a_{1}=1 .
$$

solution. From the observation, we have

$$
a_{n+1}>a_{n}, \quad 1 \leq a_{n}<2,
$$

actually, this can be proved by mathematical induction. Since that $\left\{a_{n}\right\}$ is increasing and bounded, by the Monotonic Sequence Theorem, we have $\lim _{n \rightarrow \infty} a_{n}=a$. To find a, note that $a_{n}=\frac{1}{2} a_{n-1}+1$, we take the limit on both sides as $n \rightarrow \infty$, and have

$$
a=\frac{1}{2} a+1, \quad \Longrightarrow a=2 .
$$

Example. Determine if the following sequences converge or diverge. If the sequence converges determine its limit.
(a) $\left\{\frac{3 n^{2}-1}{10 n+5 n^{2}}\right\}_{n=2}^{\infty}$
(b) $\left\{\frac{e^{2 n}}{n}\right\}_{n=1}^{\infty}$
(c) $\left\{\frac{(-1)^{n}}{n}\right\}_{n=1}^{\infty}$
(d) $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$.
solution. For (a),

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}-1}{10 n+5 n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}\left(3-\frac{1}{n^{2}}\right)}{n^{2}\left(\frac{10}{n}+5\right)}=\lim _{n \rightarrow \infty} \frac{3-\frac{1}{n^{2}}}{\frac{10}{n}+5}=\frac{3}{5} .
$$

For (b), since that by the L'Hospital rule, we have

$$
\lim _{x \rightarrow \infty} \frac{e^{2 x}}{x}=\lim _{x \rightarrow \infty} \frac{2 e^{2 x}}{1}=\infty .
$$

Thus, we have

$$
\lim _{n \rightarrow \infty} \frac{e^{2 n}}{n}=\infty
$$

which says the sequence diverges to ∞.
For (c), Since that

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
$$

Thus,

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0 .
$$

For (d), by the exponential series using $r=-1$, the sequence is divergent.

2 Series

Definition (convergent series). For a given series $\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots$, let s_{n} denote its n-th partial sum

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n} .
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum_{k=1}^{\infty} a_{k}$ is called convergent and we write

$$
a_{1}+a_{2}+a_{3}+\cdots=s \quad \text { or } \quad \sum_{k=1}^{\infty} a_{k}=s
$$

The number s is called the sum of the series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is called divergent.
Example. Perform the following index shifts.
(a) Write $\sum_{n=1}^{\infty} a r^{n-1}$ as a series that starts at $n=0$;
(b) Write $\sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}$ as a series that starts at $n=3$.
solution.
For (a),

$$
\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{(n+1)-1}=\sum_{n=0}^{\infty} a r^{n}
$$

For (b),

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}=\sum_{n=3}^{\infty} \frac{(n-2)^{2}}{1-3^{(n-2)+1}}=\sum_{n=3}^{\infty} \frac{(n-2)^{2}}{1-3^{n-1}}
$$

Rk. Note that

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{N} a_{n}+\sum_{n=N+1}^{\infty} a_{n}
$$

For example,

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{4} a_{n}+\sum_{n=5}^{\infty} a_{n}
$$

Theorem (geometric series). Let $a \neq 0$ and r be a real number. Then the geometric series

$$
\sum_{k=1}^{\infty} a r^{k-1}= \begin{cases}\frac{a}{1-r}, & \text { if }|r|<1 \\ \text { diverges, }, & \text { if }|r| \geq 1\end{cases}
$$

Proof.

- If $r=1$, the partial sum $s_{n}=a+a+\cdots+a=n a$, diverges either to ∞ or $-\infty$, as $n \rightarrow \infty$;
- If $r \neq 1$, the partial sum is

$$
s_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}
$$

In turn,

$$
r s_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n}
$$

Subtracting these equations, we get

$$
s_{n}-r s_{n}=a-a r^{n}
$$

so that

$$
s_{n}=\frac{a-a r^{n}}{1-r}
$$

\checkmark if $-1<r<1$, since $r^{n} \rightarrow 0$ as $n \rightarrow \infty$, we get

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{a-a r^{n}}{1-r}=\frac{a}{1-r}
$$

\checkmark if $r \leq-1$ or $r>1$, the sequence $\left\{r^{n}\right\}$ is divergent, so $\left\{s_{n}\right\}$ is divergent as well.

Example. Evaluate the series

$$
\sum_{k=1}^{\infty}\left(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}\right)
$$

solution. The partial sum is

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n}\left(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}\right)=\left(\frac{1}{2^{1}}-\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{2}}-\frac{1}{2^{3}}\right)+\cdots+\left(\frac{1}{2^{n}}-\frac{1}{2^{n+1}}\right) \\
& =\frac{1}{2}-\frac{1}{2^{n+1}} .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2^{n+1}}\right)=\frac{1}{2}
$$

Hence,

$$
\sum_{k=1}^{\infty}\left(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}\right)=\frac{1}{2}
$$

Example. Evaluate the series

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}
$$

solution. Note that the partial sum is

$$
\begin{aligned}
s_{n} & =\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1} .
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1
$$

Hence,

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=1
$$

Exercise. Determine if the following series converges or diverges. If it converges determine its sum.

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{1}{n^{2}-1} . \quad \text { (hint: convergent, } \frac{3}{4} \text {) } \\
& \sum_{n=0}^{\infty} \frac{1}{n^{2}+3 n+2}=\sum_{n=0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)
\end{aligned}
$$

Theorem (properties of convergent series).

- If $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ converge, then

$$
\sum_{k=1}^{\infty}\left(c a_{k} \pm b_{k}\right)=c \sum_{k=1}^{\infty} a_{k}+\sum_{k=1}^{\infty} b_{k}
$$

- the series $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=N}^{\infty} a_{k}$ either both converge or both diverge, where N is a positive integer. In general, changing a finite number of terms in a convergent series does not change its convergence, although it does change the value of the series.

Rk. Generally, it is not easy to find the sum of a series. However, it is possible to study convergence of a series without knowing its sum.
Theorem (Divergence Test).

- $\sum_{k=1}^{\infty} a_{k}$ converges $\Longrightarrow \lim _{k \rightarrow \infty} a_{k}=0$;
- $\lim _{k \rightarrow \infty} a_{k} \neq 0 \Longrightarrow \sum_{k=1}^{\infty} a_{k}$ diverges .

Since that if $\sum a_{k}$ converges, we have $\lim _{n \rightarrow \infty} s_{n}=s$ exists, where $s_{n}=\sum_{k=1}^{n} a_{k}$. Thus

$$
\lim _{k \rightarrow \infty} a_{k}=\lim _{k \rightarrow \infty}\left(s_{k}-s_{k-1}\right)=\lim _{k \rightarrow \infty} s_{k}-\lim _{k \rightarrow \infty} s_{k-1}=s-s=0
$$

Example. Determine the series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{k^{2}+1}
$$

if it is convergent or divergent.
solution. Since, as $k \rightarrow \infty$,

$$
\left|\frac{(-1)^{k} k^{2}}{k^{2}+1}\right|=\frac{k^{2}}{k^{2}+1}=\frac{k^{2}}{k^{2}\left(1+\frac{1}{k^{2}}\right)}=\frac{1}{1+\frac{1}{k^{2}}} \rightarrow 1 \neq 0
$$

In turn, $\lim _{k \rightarrow \infty} \frac{(-1)^{k} k^{2}}{k^{2}+1} \neq 0$. Hence, by the Divergence Test, the given series is divergent. Rk.

- $\lim _{k \rightarrow \infty} a_{k} \neq 0$, then either the limit does not exist, or the limit exists but does not equal to 0;
- If $\lim _{k \rightarrow \infty} a_{k}=0$, the Divergence Test is inconclusive. In other words, the zero limit of the sequence $\left\{a_{n}\right\}$ is not sufficient for the convergence of the series $\sum a_{k}$. An example of such kind of series is the so-called harmonic series $\sum \frac{1}{k}$ (diverges), since that the partial sum $\left\{s_{n}\right\}$ does not have a finite limit.

Exercise. Determine if the following series is convergent or divergent.

$$
\sum_{n=0}^{\infty} \frac{4 n^{2}-n^{3}}{10+2 n^{3}}, \quad \text { (hint: divergent) }
$$

Since that

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}-n^{3}}{10+2 n^{3}}=-\frac{1}{2} \neq 0
$$

