Lecture 14 Infinite sequences and series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Infinite Sequences

Definition. An infinite sequence is an ordered list of numbers of the form

$$\{a_1, a_2, a_3, \cdots, a_n, \cdots\}.$$

For each n, the term a_n is called the $n\mbox{-th}$ term of the sequence. Example.

- $\{1, 2, 3, \cdots, n, \cdots\}$, $a_n = n$;
- $\{1, -1, 1, -1, 1, -1, \cdots\}$, $a_n = (-1)^{n-1}$;
- $\{3, 3.14, 3.141, 3.1415, \cdots\}$, a_n can be thought of the truncation of π to n-1 decimal place, but no explicit expression;
- Given $a_n = f(n)$ with $f(n) = \cos(\frac{\pi}{n})$, gives $\{\cos\frac{\pi}{1}, \cos\frac{\pi}{2}, \cos\frac{\pi}{3}, \cdots\}$;
- The sequence

$$\left\{\sqrt{2},\sqrt{2+\sqrt{2}},\sqrt{2+\sqrt{2+\sqrt{2}}},\cdots\right\},$$

 $a_1 = \sqrt{2}$, $a_n = \sqrt{2 + a_{n-1}}$, for $n \ge 2$.

Definition (limit of sequence).

• An infinite sequence $\{a_n\}$ has the **limit** a, which is a finite number, and we write

$$\lim_{n \to \infty} a_n = a,$$

or $a_n \to a$ as $n \to \infty$. If $\lim_{n\to\infty} a_n$ exists, we say the sequence **converges** (or is **convergent**). Otherwise, we say the sequence **diverges** (or is **divergent**).

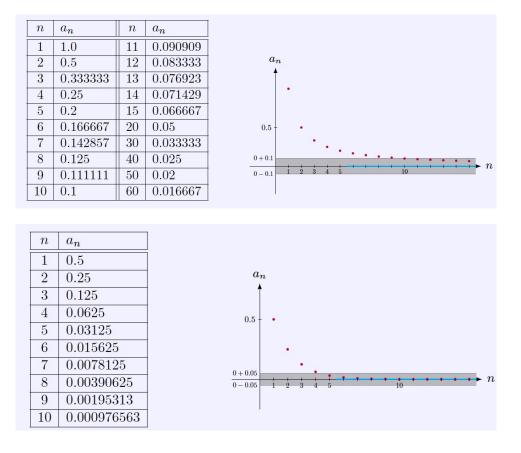
• The infinite limit $\lim_{n\to\infty} a_n = \infty$. In this case, we say the sequence **diverges** to infinity. Similarly, we can definite $\lim_{n\to\infty} a_n = -\infty$.

Example.

The sequence {1, ¹/₂, ¹/₃, · · · , ¹/_n, · · · }, a_n = ¹/_n. Since that a_n → 0 as n → ∞. We say that the sequence {a_n} is convergent to 0. Note that

$$|a_n - 0| < 0.1, \Longrightarrow n > 10.$$

The variation of a_n is shown below.



• The sequence $\left\{\frac{1}{2}, \left(\frac{1}{2}\right)^2, \left(\frac{1}{2}\right)^3, \cdots, \left(\frac{1}{2}\right)^n, \cdots\right\}$, $a_n = \left(\frac{1}{2}\right)^n$. Since that $a_n \to 0$ as $n \to \infty$, we say that the sequence $\{a_n\}$ is convergent to 0. Note that

$$|a_n - 0| < 0.05, \Longrightarrow n > 4.$$

The variation of a_n is shown below.

- The sequence $\{0.9, 0.99, 0.999, 0.9999\}$ converges to 1.
- The sequence

$$\left\{-\frac{1}{3}, \frac{8}{9}, \frac{3}{19}, \cdots, \frac{n^2 + 2 \cdot (-1)^n n}{2n^2 + 1}, \cdots\right\}$$

 $a_n = \frac{n^2 + 2 \cdot (-1)^n}{2n^2 + 1}$. Since that $a_n \to \frac{1}{2}$ as $n \to \infty$, we that the sequence $\{a_n\}$ converges to $\frac{1}{2}$. Note that

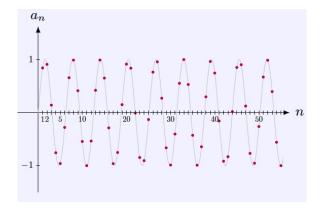
$$|a_n - \frac{1}{2}| < 0.15, \Longrightarrow n > 6.$$

The variation of a_n is shown below.

- The sequence {sin 1, sin 2, sin 3, · · · , sin n, · · · } diverges, since a_n = sin n does not appear to approach any finite number as n → ∞. As is shown below.
- The sequence

$$\left\{\frac{1}{\ln 2}, \frac{2}{\ln 3}, \frac{3}{\ln 4}, \cdots, \frac{n}{\ln(n+1)}, \cdots\right\}.$$

n	a_n	n	a_n	a_n
1	-0.3333333	11	0.407407	. Internet in the second se
2	0.888889	12	0.581315	
3	0.157895	13	0.421829	1.01
4	0.727273	14	0.569975	$\frac{1}{2} + 0.15$
5	0.294118	15	0.432373	$\frac{1}{2} - 0.15$
6	0.657534	20	0.549313	•
7	0.353535	30	0.533037	$\xrightarrow[1 2 3 4 5 6 7 10]{1 2 3 4 5 6 7 10} n$
8	0.620155	40	0.524836	•
9	0.386503	60	0.516595	
10	0.597015	80	0.512460	



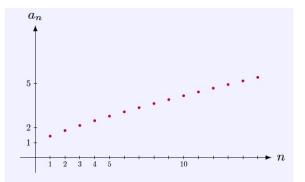
Note that by l'Hospital rule

$$\lim_{x \to \infty} \frac{x}{\ln(x+1)} = \lim_{x \to \infty} \frac{1}{\frac{1}{x+1}} = \lim_{x \to \infty} (x+1) = \infty.$$

Thus, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{\ln(n+1)} = \infty.$$

In turn, the sequence is divergent. As is shown below.



Theorem (limit of a sequence from limit of a function). If $\lim_{x\to\infty} f(x) = a$, and $f(n) = a_n$, when \overline{n} is an integer, then $\lim_{n\to\infty} a_n = a$. The same result holds when $a = \infty$ or $-\infty$. Theorem (Limit Laws for sequences) Suppose $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant. Then,

- $\lim_{n\to\infty} (ca_n \pm b_n) = c \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n;$
- $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$;

- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$, if $\lim_{n\to\infty} b_n \neq 0$;
- $\lim_{n\to\infty} a_n^p = [\lim_{n\to\infty} a_n]^p$, if p > 0 and $a_n > 0$.

Example.

• Compute $\lim_{n\to\infty} \frac{1}{n^p}$, (p > 0). Since that $\lim_{x\to\infty} \frac{1}{x} = 0$, we have $\lim_{n\to\infty} \frac{1}{n} = 0$. Thus for p > 0, by the Limit Laws,

$$\lim_{n \to \infty} \frac{1}{n^p} = \left(\lim_{n \to \infty} \frac{1}{n}\right)^p = 0.$$

• Compute

$$\lim_{n \to \infty} \frac{n^{\frac{3}{2}} + 2n - 1}{n^{\frac{3}{2}} + 1}$$

Since that

$$\frac{n^{\frac{3}{2}} + 2n - 1}{n^{\frac{3}{2}} + 1} = \frac{n^{\frac{3}{2}} \left(1 + 2 \cdot \frac{1}{n^{\frac{1}{2}}} - \frac{1}{n^{\frac{3}{2}}}\right)}{n^{\frac{3}{2}} \left(1 + \frac{1}{n^{\frac{3}{2}}}\right)} = \frac{1 + 2 \cdot \frac{1}{n^{\frac{1}{2}}} - \frac{1}{n^{\frac{3}{2}}}}{1 + \frac{1}{n^{\frac{3}{2}}}}$$

from the Limit Laws, we have

$$\lim_{n \to \infty} \frac{n^{\frac{3}{2}} + 2n - 1}{n^{\frac{3}{2}} + 1} = \frac{1 + 2 \cdot \lim_{n \to \infty} \frac{1}{n^{\frac{1}{2}}} - \lim_{n \to \infty} \frac{1}{n^{\frac{3}{2}}}}{1 + \lim_{n \to \infty} \frac{1}{n^{\frac{3}{2}}}} = 1.$$

Theorem (Squeeze Theorem). If $a_n \leq b_n \leq c_n$ for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Example. Compute $\lim_{n\to\infty} \frac{\cos n}{\sqrt{n}}$.

Since that $-1 < \cos n < 1$ for all n, we have

$$-\frac{1}{\sqrt{n}} \le \frac{\cos n}{\sqrt{n}} \le \frac{1}{\sqrt{n}}.$$

Since $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = \lim_{n\to\infty} \left(-\frac{1}{\sqrt{n}}\right) = 0$, by the Squeeze Theorem, we get that $\lim_{n\to\infty} \frac{\cos n}{\sqrt{n}} = 0$. <u>Rk</u>.

- $\lim_{n\to\infty} |a_n| = 0 \iff \lim_{n\to\infty} a_n = 0;$
- If $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} a_{2n+1} = a$, then $\{a_n\}$ is convergent and $\lim_{n\to\infty} a_n = a$.

Definition (two asymptotic relations).

- $a_n \ll b_n$, as $n \to \infty$ means that a_n is much smaller than b_n as $n \to \infty$, $\Longrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 0$;
- $a_n \sim b_n$ as $n \to \infty$ means that a_n is asymptotic to b_n as $n \to \infty$, $\Longrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 1$.

<u>Rk</u>. For any real numbers p > 0, q > 0, r > 0 and b > 1, when $n \to \infty$, we have

$$\ln^{q} n \ll n^{p} \ll n^{p} \ln^{r} n \ll b^{n} \ll n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1 \ll n^{n}.$$

Actually, by Stirling's formula, we have

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
, as $n \to \infty$.

Theorem (geometric sequences). Let r be a real number, then

$$\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } |r| < 1, \\ 1, & \text{if } r = 1, \\ \infty \text{ or } -\infty \text{ (diverges)}, & \text{if } r \leq -1 \text{ or } r > 1. \end{cases}$$

Theorem (sequential limit for continuous function). If $\lim_{n\to\infty} a_n = a$ and the function f is continuous at a, then

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(a).$$

Example. Compute

(1)
$$\lim_{n \to \infty} \sqrt[n]{a}$$
 for $a > 0$, (2) $\lim_{n \to \infty} \sqrt[n]{n}$, (3) $\lim_{n \to \infty} \left(1 - \frac{2}{n}\right)^n$.

<u>solution</u>. For (1), let the substitution $a_n = \ln \sqrt[n]{a} = \frac{\ln a}{n}$. Thus, $\lim_{n \to \infty} a_n = 0$ and $\sqrt[n]{a} = e^{a_n}$,

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} e^{a_n} = e^0 = 1.$$

For (2), let the substitution $a_n = \ln \sqrt[n]{n} = \frac{\ln n}{n}$. Then $\sqrt[n]{n} = e^{a_n}$ Note that $\ln n \ll n$ as $n \to \infty$, so that $\lim_{n\to\infty} a_n = 0$, we have

$$\lim_{n \to \infty} \sqrt[n]{n} = \lim_{n \to \infty} e^{a_n} = e^0 = 1.$$

For (3), let the substitution

$$a_n = \ln\left(1 - \frac{2}{n}\right)^n = n \cdot \ln\left(1 - \frac{2}{n}\right).$$

Then $\left(1-\frac{2}{n}\right)^n=e^{a_n}.$ Note that by l'Hospital's Rule

$$\lim_{x \to 0^+} x^{-1} \cdot \ln(1 - 2x) = \lim_{x \to 0^+} \frac{\ln(1 - 2x)}{x} = \lim_{x \to 0^+} \frac{\frac{-2}{1 - 2x}}{1} = -2,$$

so we have $\lim_{n\to\infty} a_n = -2$. Then

$$\lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n = \lim_{n \to \infty} e^{a_n} = e^{-2}.$$

Rk. Terminology for sequences below,

- $\{a_n\}$ is increasing if $a_{n+1} > a_n$, e.g., $\{1, 2, 3, \dots\}$ with $a_n = n$;
- $\{a_n\}$ is non-decreasing if $a_{n+1} \ge a_n$, e.g., $\{1, 1, 2, 2, 3, 3, \cdots\}$;
- $\{a_n\}$ is decreasing if $a_{n+1} < a_n$, e.g., $\{0, -1, -2, -3, \cdots\}$;
- $\{a_n\}$ is non-increasing if $a_{n+1} \leq a_n$, e.g., $\{0, 0, -1, -1, -2, -2, \cdots\}$;
- $\{a_n\}$ is **monotonic** if it is either non-increasing or non-decreasing;
- $\{a_n\}$ is **bounded** if there is a number M such that $|a_n| \leq M$ for all n.

Rk (product of sequences). If $\{a_n\}$ is bounded and $\lim_{n\to\infty} b_n = 0$, then $\lim_{n\to\infty} (a_n b_n) = 0$. Theorem (Monotonic Sequence Theorem). Every **bounded**, monotonic sequence is convergent. Example. Compute the limit of a sequence $\{a_n\}$ with

$$a_n = \frac{1}{2}a_{n-1} + 1, \quad (n \ge 2); \quad a_1 = 1.$$

solution. From the observation, we have

$$a_{n+1} > a_n, \quad 1 \le a_n < 2,$$

actually, this can be proved by mathematical induction. Since that $\{a_n\}$ is increasing and bounded, by the Monotonic Sequence Theorem, we have $\lim_{n\to\infty} a_n = a$. To find a, note that $a_n = \frac{1}{2}a_{n-1}+1$, we take the limit on both sides as $n \to \infty$, and have

$$a = \frac{1}{2}a + 1, \implies a = 2.$$

Example. Determine if the following sequences converge or diverge. If the sequence converges determine its limit.

(a)
$$\left\{\frac{3n^2 - 1}{10n + 5n^2}\right\}_{n=2}^{\infty}$$
 (b) $\left\{\frac{e^{2n}}{n}\right\}_{n=1}^{\infty}$ (c) $\left\{\frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$ (d) $\{(-1)^n\}_{n=0}^{\infty}$.

solution. For (a),

$$\lim_{n \to \infty} \frac{3n^2 - 1}{10n + 5n^2} = \lim_{n \to \infty} \frac{n^2 \left(3 - \frac{1}{n^2}\right)}{n^2 \left(\frac{10}{n} + 5\right)} = \lim_{n \to \infty} \frac{3 - \frac{1}{n^2}}{\frac{10}{n} + 5} = \frac{3}{5}$$

For (b), since that by the L'Hospital rule, we have

$$\lim_{x \to \infty} \frac{e^{2x}}{x} = \lim_{x \to \infty} \frac{2e^{2x}}{1} = \infty.$$

Thus, we have

$$\lim_{n \to \infty} \frac{e^{2n}}{n} = \infty,$$

which says the sequence diverges to ∞ . For (c), Since that

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n} = 0.$$

Thus,

$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

For (d), by the exponential series using r = -1, the sequence is divergent.

2 Series

Definition (convergent series). For a given series $\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \cdots$, let s_n denote its n-th partial sum

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n.$$

If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n = s$ exists as a real number, then the series $\sum_{k=1}^{\infty} a_k$ is called **convergent** and we write

$$a_1 + a_2 + a_3 + \dots = s$$
 or $\sum_{k=1}^{\infty} a_k = s$.

The number s is called the sum of the series. If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

Example. Perform the following index shifts.

- (a) Write $\sum_{n=1}^{\infty} ar^{n-1}$ as a series that starts at n=0;
- (b) Write $\sum_{n=1}^{\infty} \frac{n^2}{1-3^{n+1}}$ as a series that starts at n=3.

solution.

For (a),

$$\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^{(n+1)-1} = \sum_{n=0}^{\infty} ar^n.$$

For (b),

$$\sum_{n=1}^{\infty} \frac{n^2}{1-3^{n+1}} = \sum_{n=3}^{\infty} \frac{(n-2)^2}{1-3^{(n-2)+1}} = \sum_{n=3}^{\infty} \frac{(n-2)^2}{1-3^{n-1}}.$$

<u>Rk</u>. Note that

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{N} a_n + \sum_{n=N+1}^{\infty} a_n.$$

For example,

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{4} a_n + \sum_{n=5}^{\infty} a_n.$$

Theorem (geometric series). Let $a \neq 0$ and r be a real number. Then the geometric series

$$\sum_{k=1}^{\infty} ar^{k-1} = \begin{cases} \frac{a}{1-r}, & \text{if } |r| < 1; \\ \text{diverges,} & \text{if } |r| \ge 1. \end{cases}$$

<u>Proof.</u>

• If r = 1, the partial sum $s_n = a + a + \cdots + a = na$, diverges either to ∞ or $-\infty$, as $n \to \infty$;

• If $r \neq 1$, the partial sum is

$$s_n = a + ar + ar^2 + \dots + ar^{n-1},$$

In turn,

$$rs_n = ar + ar^2 + ar^3 + \dots + ar^n,$$

Subtracting these equations, we get

$$s_n - rs_n = a - ar^n,$$

so that

$$s_n = \frac{a - ar^n}{1 - r}.$$

 $\checkmark \ \mbox{if } -1 < r < 1 \mbox{, since } r^n \rightarrow 0 \mbox{ as } n \rightarrow \infty \mbox{, we get}$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{a - ar^n}{1 - r} = \frac{a}{1 - r};$$

 \checkmark if $r \leq -1$ or r > 1, the sequence $\{r^n\}$ is divergent, so $\{s_n\}$ is divergent as well.

Example. Evaluate the series

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} - \frac{1}{2^{k+1}} \right).$$

solution. The partial sum is

$$s_n = \sum_{k=1}^n \left(\frac{1}{2^k} - \frac{1}{2^{k+1}}\right) = \left(\frac{1}{2^1} - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{2^3}\right) + \dots + \left(\frac{1}{2^n} - \frac{1}{2^{n+1}}\right)$$
$$= \frac{1}{2} - \frac{1}{2^{n+1}}.$$

Thus,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{1}{2^{n+1}} \right) = \frac{1}{2}.$$

Hence,

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} - \frac{1}{2^{k+1}} \right) = \frac{1}{2}.$$

Example. Evaluate the series

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}.$$

solution. Note that the partial sum is

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}.$$

Thus,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

Hence,

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1.$$

Exercise. Determine if the following series converges or diverges. If it converges determine its sum.

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}.$$
 (hint: convergent, $\frac{3}{4}$)
$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 3n + 2} = \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)$$

Theorem (properties of convergent series).

• If $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ converge, then

$$\sum_{k=1}^{\infty} (ca_k \pm b_k) = c \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k.$$

the series ∑_{k=1}[∞] a_k and ∑_{k=N}[∞] a_k either both converge or both diverge, where N is a positive integer. In general, changing a finite number of terms in a convergent series does not change its convergence, although it does change the value of the series.

<u>Rk</u>. Generally, it is not easy to find the sum of a series. However, it is possible to study convergence of a series without knowing its sum.

Theorem (Divergence Test).

- $\sum_{k=1}^{\infty} a_k$ converges $\Longrightarrow \lim_{k \to \infty} a_k = 0$;
- $\lim_{k\to\infty} a_k \neq 0 \Longrightarrow \sum_{k=1}^{\infty} a_k$ diverges .

Since that if $\sum a_k$ converges, we have $\lim_{n\to\infty} s_n = s$ exists, where $s_n = \sum_{k=1}^n a_k$. Thus

$$\lim_{k \to \infty} a_k = \lim_{k \to \infty} (s_k - s_{k-1}) = \lim_{k \to \infty} s_k - \lim_{k \to \infty} s_{k-1} = s - s = 0.$$

Example. Determine the series

$$\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{k^2 + 1},$$

if it is convergent or divergent. solution. Since, as $k \to \infty$,

$$\left|\frac{(-1)^k k^2}{k^2 + 1}\right| = \frac{k^2}{k^2 + 1} = \frac{k^2}{k^2 \left(1 + \frac{1}{k^2}\right)} = \frac{1}{1 + \frac{1}{k^2}} \to 1 \neq 0.$$

In turn, $\lim_{k\to\infty} \frac{(-1)^k k^2}{k^2+1} \neq 0$. Hence, by the Divergence Test, the given series is divergent. <u>Rk</u>.

- $\lim_{k\to\infty} a_k \neq 0$, then either the limit does not exist, or the limit exists but does not equal to 0;
- If lim_{k→∞} a_k = 0, the Divergence Test is inconclusive. In other words, the zero limit of the sequence {a_n} is not sufficient for the convergence of the series ∑ a_k. An example of such kind of series is the so-called harmonic series ∑ ¹/_k (diverges), since that the partial sum {s_n} does not have a finite limit.

Exercise. Determine if the following series is convergent or divergent.

$$\sum_{n=0}^{\infty} \frac{4n^2 - n^3}{10 + 2n^3}, \quad (\text{ hint: divergent })$$

Since that

$$\lim_{n \to \infty} \frac{4n^2 - n^3}{10 + 2n^3} = -\frac{1}{2} \neq 0.$$