
MATH 1014 Calculus II Spring 2022 Lecture 14

Lecture 14 Infinite sequences and series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Infinite Sequences

Definition. An infinite sequence is an ordered list of numbers of the form

{a1, a2, a3, · · · , an, · · · }.

For each n, the term an is called the n-th term of the sequence.
Example.

• {1, 2, 3, · · · , n, · · · }, an = n;

• {1,−1, 1,−1, 1,−1, · · · }, an = (−1)n−1;

• {3, 3.14, 3.141, 3.1415, · · · }, an can be thought of the truncation of π to n− 1 decimal place,
but no explicit expression;

• Given an = f(n) with f(n) = cos(πn), gives {cos π1 , cos
π
2 , cos

π
3 , · · · };

• The sequence {
√
2,

√
2 +
√
2,

√
2 +

√
2 +
√
2, · · ·

}
,

a1 =
√
2, an =

√
2 + an−1, for n ≥ 2.

Definition (limit of sequence).

• An infinite sequence {an} has the limit a, which is a finite number, and we write

lim
n→∞

an = a,

or an → a as n→∞. If limn→∞ an exists, we say the sequence converges (or is convergent).
Otherwise, we say the sequence diverges (or is divergent).

• The infinite limit limn→∞ an = ∞. In this case, we say the sequence diverges to infinity.
Similarly, we can definite limn→∞ an = −∞.

Example.

• The sequence {1, 12 ,
1
3 , · · · ,

1
n , · · · }, an = 1

n . Since that an → 0 as n → ∞. We say that the
sequence {an} is convergent to 0. Note that

|an − 0| < 0.1,=⇒ n > 10.

The variation of an is shown below.
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• The sequence {12 ,
(
1
2

)2
,
(
1
2

)3
, · · · ,

(
1
2

)n
, · · · }, an =

(
1
2

)n
. Since that an → 0 as n→∞, we

say that the sequence {an} is convergent to 0. Note that

|an − 0| < 0.05,=⇒ n > 4.

The variation of an is shown below.

• The sequence {0.9, 0.99, 0.999, 0.9999} converges to 1.

• The sequence {
−1

3
,
8

9
,
3

19
, · · · , n

2 + 2 · (−1)nn
2n2 + 1

, · · ·
}
,

an = n2+2·(−1)n
2n2+1

. Since that an → 1
2 as n → ∞, we that the sequence {an} converges to 1

2 .
Note that

|an −
1

2
| < 0.15,=⇒ n > 6.

The variation of an is shown below.

• The sequence {sin 1, sin 2, sin 3, · · · , sinn, · · · } diverges, since an = sinn does not appear to
approach any finite number as n→∞. As is shown below.

• The sequence {
1

ln 2
,

2

ln 3
,

3

ln 4
, · · · , n

ln(n+ 1)
, · · ·

}
.

2



MATH 1014 Calculus II Spring 2022 Lecture 14

Note that by l’Hospital rule

lim
x→∞

x

ln(x+ 1)
= lim

x→∞

1
1

x+1

= lim
x→∞

(x+ 1) =∞.

Thus, we have

lim
n→∞

an = lim
n→∞

n

ln(n+ 1)
=∞.

In turn, the sequence is divergent. As is shown below.

Theorem (limit of a sequence from limit of a function). If limx→∞ f(x) = a, and f(n) = an, when
n is an integer, then limn→∞ an = a. The same result holds when a =∞ or −∞.
Theorem (Limit Laws for sequences) Suppose {an} and {bn} are convergent sequences and c is a
constant. Then,

• limn→∞(can ± bn) = c limn→∞ an ± limn→∞ bn;

• limn→∞(anbn) = limn→∞ an · limn→∞ bn;
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• limn→∞
an
bn

= limn→∞ an
limn→∞ bn

, if limn→∞ bn 6= 0;

• limn→∞ a
p
n = [limn→∞ an]

p, if p > 0 and an > 0.

Example.

• Compute limn→∞
1
np , (p > 0). Since that limx→∞

1
x = 0, we have limn→∞

1
n = 0. Thus for

p > 0, by the Limit Laws,

lim
n→∞

1

np
=

(
lim
n→∞

1

n

)p
= 0.

• Compute

lim
n→∞

n
3
2 + 2n− 1

n
3
2 + 1

.

Since that

n
3
2 + 2n− 1

n
3
2 + 1

=
n

3
2

(
1 + 2 · 1

n
1
2
− 1

n
3
2

)
n

3
2

(
1 + 1

n
3
2

) =
1 + 2 · 1

n
1
2
− 1

n
3
2

1 + 1

n
3
2

,

from the Limit Laws, we have

lim
n→∞

n
3
2 + 2n− 1

n
3
2 + 1

=
1 + 2 · limn→∞

1

n
1
2
− limn→∞

1

n
3
2

1 + limn→∞
1

n
3
2

= 1.

Theorem (Squeeze Theorem). If an ≤ bn ≤ cn for n ≥ n0 and limn→∞ an = limn→∞ cn = L, then
limn→∞ bn = L.
Example. Compute limn→∞

cosn√
n

.

solution.
Since that −1 < cosn < 1 for all n, we have

− 1√
n
≤ cosn√

n
≤ 1√

n
.

Since limn→∞
1√
n
= limn→∞

(
− 1√

n

)
= 0, by the Squeeze Theorem, we get that limn→∞

cosn√
n

= 0.

Rk.

• limn→∞ |an| = 0⇐⇒ limn→∞ an = 0;

• If limn→∞ a2n = limn→∞ a2n+1 = a, then {an} is convergent and limn→∞ an = a.

Definition (two asymptotic relations).

• an � bn, as n→∞ means that an is much smaller than bn as n→∞, =⇒ limn→∞
an
bn

= 0;

• an ∼ bn as n→∞ means that an is asymptotic to bn as n→∞, =⇒ limn→∞
an
bn

= 1.

Rk. For any real numbers p > 0, q > 0, r > 0 and b > 1, when n→∞, we have

lnq n� np � np lnr n� bn � n! = n · (n− 1) · (n− 2) · · · · · 2 · 1� nn.

Actually, by Stirling’s formula, we have

n! ∼
√
2πn

(n
e

)n
, as n→∞.
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Theorem (geometric sequences). Let r be a real number, then

lim
n→∞

rn =


0, if |r| < 1,

1, if r = 1,

∞ or −∞ ( diverges ), if r ≤ −1 or r > 1.

Theorem (sequential limit for continuous function). If limn→∞ an = a and the function f is contin-
uous at a, then

lim
n→∞

f(an) = f
(
lim
n→∞

an

)
= f(a).

Example. Compute

(1) lim
n→∞

n
√
a for a > 0, (2) lim

n→∞
n
√
n, (3) lim

n→∞

(
1− 2

n

)n
.

solution. For (1), let the substitution an = ln n
√
a = ln a

n . Thus, limn→∞ an = 0 and n
√
a = ean ,

lim
n→∞

n
√
a = lim

n→∞
ean = e0 = 1.

For (2), let the substitution an = ln n
√
n = lnn

n . Then n
√
n = ean Note that lnn� n as n→∞, so

that limn→∞ an = 0, we have

lim
n→∞

n
√
n = lim

n→∞
ean = e0 = 1.

For (3), let the substitution

an = ln

(
1− 2

n

)n
= n · ln

(
1− 2

n

)
.

Then
(
1− 2

n

)n
= ean . Note that by l’Hospital’s Rule

lim
x→0+

x−1 · ln(1− 2x) = lim
x→0+

ln(1− 2x)

x
= lim

x→0+

−2
1−2x
1

= −2,

so we have limn→∞ an = −2. Then

lim
n→∞

(
1− 2

n

)n
= lim

n→∞
ean = e−2.

Rk. Terminology for sequences below,

• {an} is increasing if an+1 > an, e.g., {1, 2, 3, · · · } with an = n;

• {an} is non-decreasing if an+1 ≥ an, e.g., {1, 1, 2, 2, 3, 3, · · · };

• {an} is decreasing if an+1 < an, e.g., {0,−1,−2,−3, · · · };

• {an} is non-increasing if an+1 ≤ an, e.g., {0, 0,−1,−1,−2,−2, · · · };

• {an} is monotonic if it is either non-increasing or non-decreasing;

• {an} is bounded if there is a number M such that |an| ≤M for all n.
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Rk (product of sequences). If {an} is bounded and limn→∞ bn = 0, then limn→∞(anbn) = 0.
Theorem (Monotonic Sequence Theorem). Every bounded, monotonic sequence is convergent.
Example. Compute the limit of a sequence {an} with

an =
1

2
an−1 + 1, (n ≥ 2); a1 = 1.

solution. From the observation, we have

an+1 > an, 1 ≤ an < 2,

actually, this can be proved by mathematical induction. Since that {an} is increasing and bounded,
by the Monotonic Sequence Theorem, we have limn→∞ an = a. To find a, note that an = 1

2an−1+1,
we take the limit on both sides as n→∞, and have

a =
1

2
a+ 1, =⇒ a = 2.

Example. Determine if the following sequences converge or diverge. If the sequence converges
determine its limit.

(a)

{
3n2 − 1

10n+ 5n2

}∞
n=2

(b)

{
e2n

n

}∞
n=1

(c)

{
(−1)n

n

}∞
n=1

(d) {(−1)n}∞n=0 .

solution. For (a),

lim
n→∞

3n2 − 1

10n+ 5n2
= lim

n→∞

n2
(
3− 1

n2

)
n2
(
10
n + 5

) = lim
n→∞

3− 1
n2

10
n + 5

=
3

5
.

For (b), since that by the L’Hospital rule, we have

lim
x→∞

e2x

x
= lim

x→∞

2e2x

1
=∞.

Thus, we have

lim
n→∞

e2n

n
=∞,

which says the sequence diverges to ∞.
For (c), Since that

lim
n→∞

∣∣∣∣(−1)nn

∣∣∣∣ = lim
n→∞

1

n
= 0.

Thus,

lim
n→∞

(−1)n

n
= 0.

For (d), by the exponential series using r = −1, the sequence is divergent.

2 Series

Definition (convergent series). For a given series
∑∞

k=1 ak = a1 + a2 + a3 + · · · , let sn denote its
n-th partial sum

sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an.
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If the sequence {sn} is convergent and limn→∞ sn = s exists as a real number, then the series∑∞
k=1 ak is called convergent and we write

a1 + a2 + a3 + · · · = s or
∞∑
k=1

ak = s.

The number s is called the sum of the series. If the sequence {sn} is divergent, then the series is
called divergent.
Example. Perform the following index shifts.

(a) Write
∑∞

n=1 ar
n−1 as a series that starts at n = 0;

(b) Write
∑∞

n=1
n2

1−3n+1 as a series that starts at n = 3.

solution.
For (a),

∞∑
n=1

arn−1 =
∞∑
n=0

ar(n+1)−1 =
∞∑
n=0

arn.

For (b),

∞∑
n=1

n2

1− 3n+1
=

∞∑
n=3

(n− 2)2

1− 3(n−2)+1
=

∞∑
n=3

(n− 2)2

1− 3n−1
.

Rk. Note that

∞∑
n=1

an =

N∑
n=1

an +

∞∑
n=N+1

an.

For example,

∞∑
n=1

an =

4∑
n=1

an +

∞∑
n=5

an.

Theorem (geometric series). Let a 6= 0 and r be a real number. Then the geometric series

∞∑
k=1

ark−1 =


a

1− r
, if |r| < 1;

diverges, if |r| ≥ 1.

Proof.

• If r = 1, the partial sum sn = a+ a+ · · ·+ a = na, diverges either to ∞ or −∞, as n→∞;

• If r 6= 1, the partial sum is

sn = a+ ar + ar2 + · · ·+ arn−1,

In turn,

rsn = ar + ar2 + ar3 + · · ·+ arn,

Subtracting these equations, we get

sn − rsn = a− arn,

so that

sn =
a− arn

1− r
.
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X if −1 < r < 1, since rn → 0 as n→∞, we get

lim
n→∞

sn = lim
n→∞

a− arn

1− r
=

a

1− r
;

X if r ≤ −1 or r > 1, the sequence {rn} is divergent, so {sn} is divergent as well.

Example. Evaluate the series

∞∑
k=1

(
1

2k
− 1

2k+1

)
.

solution. The partial sum is

sn =
n∑
k=1

(
1

2k
− 1

2k+1

)
=

(
1

21
− 1

22

)
+

(
1

22
− 1

23

)
+ · · ·+

(
1

2n
− 1

2n+1

)
=

1

2
− 1

2n+1
.

Thus,

lim
n→∞

sn = lim
n→∞

(
1

2
− 1

2n+1

)
=

1

2
.

Hence,

∞∑
k=1

(
1

2k
− 1

2k+1

)
=

1

2
.

Example. Evaluate the series

∞∑
k=1

1

k(k + 1)
.

solution. Note that the partial sum is

sn =

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
.

Thus,

lim
n→∞

sn = lim
n→∞

(
1− 1

n+ 1

)
= 1.

Hence,

∞∑
k=1

1

k(k + 1)
= 1.

Exercise. Determine if the following series converges or diverges. If it converges determine its sum.

∞∑
n=2

1

n2 − 1
. ( hint: convergent,

3

4
)

∞∑
n=0

1

n2 + 3n+ 2
=

∞∑
n=0

(
1

n+ 1
− 1

n+ 2

)
Theorem (properties of convergent series).
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• If
∑∞

k=1 ak and
∑∞

k=1 bk converge, then

∞∑
k=1

(cak ± bk) = c
∞∑
k=1

ak +
∞∑
k=1

bk.

• the series
∑∞

k=1 ak and
∑∞

k=N ak either both converge or both diverge, where N is a positive
integer. In general, changing a finite number of terms in a convergent series does not change
its convergence, although it does change the value of the series.

Rk. Generally, it is not easy to find the sum of a series. However, it is possible to study convergence
of a series without knowing its sum.
Theorem (Divergence Test).

•
∑∞

k=1 ak converges =⇒ limk→∞ ak = 0;

• limk→∞ ak 6= 0 =⇒
∑∞

k=1 ak diverges .

Since that if
∑
ak converges, we have limn→∞ sn = s exists, where sn =

∑n
k=1 ak. Thus

lim
k→∞

ak = lim
k→∞

(sk − sk−1) = lim
k→∞

sk − lim
k→∞

sk−1 = s− s = 0.

Example. Determine the series

∞∑
k=1

(−1)kk2

k2 + 1
,

if it is convergent or divergent.
solution. Since, as k →∞,∣∣∣∣(−1)kk2k2 + 1

∣∣∣∣ = k2

k2 + 1
=

k2

k2
(
1 + 1

k2

) =
1

1 + 1
k2

→ 1 6= 0.

In turn, limk→∞
(−1)kk2
k2+1

6= 0. Hence, by the Divergence Test, the given series is divergent.
Rk.

• limk→∞ ak 6= 0, then either the limit does not exist, or the limit exists but does not equal to
0;

• If limk→∞ ak = 0, the Divergence Test is inconclusive. In other words, the zero limit of the
sequence {an} is not sufficient for the convergence of the series

∑
ak. An example of such

kind of series is the so-called harmonic series
∑ 1

k (diverges), since that the partial sum {sn}
does not have a finite limit.

Exercise. Determine if the following series is convergent or divergent.

∞∑
n=0

4n2 − n3

10 + 2n3
, ( hint: divergent )

Since that

lim
n→∞

4n2 − n3

10 + 2n3
= −1

2
6= 0.

9


	Infinite Sequences
	Series

