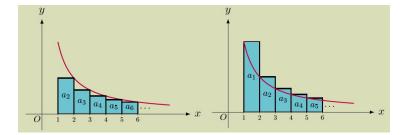
Lecture 15 Integral test

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Integral test

<u>Intuition</u>. Suppose that f is continuous, positive, decreasing function on $[1,\infty)$ and take $a_k = f(k)$,



• if $\int_1^{\infty} f(x) dx$ converges, taking the piecewise constant function p(x) = f(k+1) for $x \in [k, k+1)$, which is defined on $[1, \infty)$. Since that f is decreasing, so $p \leq f$. Thus

$$\sum_{k=1}^{n} f(k) = f(1) + \sum_{k=2}^{n} f(k)$$

$$\leq f(1) + \int_{1}^{n} p(x) \, dx$$

$$f(1) + \int_{1}^{n} f(x) \, dx \leq f(1) + \int_{1}^{\infty} f(x) \, dx.$$

Note that $\int_1^{\infty} f(x) dx$ is convergent. Thus, $s_n = \sum_{k=1}^n f(k)$ is bounded. Since f is positive, thus $s_{n+1} > s_n$, say, $\{s_n\}$ is increasing monotonically. According to the Monotonic Sequence Theorem, s_n as $n \to \infty$ is convergent as well as $\sum_{k=1}^{\infty} f(k)$.

• if $\int_1^{\infty} f(x) dx$ is divergent. Taking the piecewise constant q(x) = f(k) for $x \in [k, k+1)$, which is defined on $[1, \infty)$. Since that f is decreasing, so $q \ge f$. Thus

$$\int_{1}^{b} f(x) \, dx \le \int_{1}^{n} f(x) \, dx \le \int_{1}^{n} q(x) \, dx = \sum_{k=1}^{n-1} f(k) \le \sum_{k=1}^{\infty} f(k).$$

Note that $\int_1^{\infty} f(x)$ is divergent. By contradiction, if $\sum_{k=1}^{\infty} f(k)$ is convergent, say it is bounded. Thus, $\int_1^b f(x) dx$ is also bounded. However, $\int_1^{\infty} f(x) dx$ is divergent (means that $\int_1^b f(x) dx$ is unbounded). Thus, $\sum_{k=1}^{\infty} f(k)$ is divergent.

<u>Exercise</u>. Take $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ to see that divergence or convergence. <u>Theorem</u> Suppose that f is continuous, positive, decreasing function on $[1,\infty)$ and take $a_k = f(k)$, we have

• if $\int_1^\infty f(x) \, dx$ is convergent, then $\sum_{k=1}^\infty a_k$ is convergent;

• if $\int_1^\infty f(x) \, dx$ is divergent, then $\sum_{k=1}^\infty a_k$ is divergent.

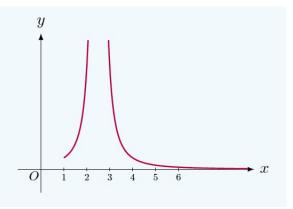
<u>Rk</u> If f is decreasing for $x \ge N$, we have the same facts, since changing a finite number of terms in a convergent series does not change its convergence. Example. Determine the infinite series

$$\sum_{k=1}^{\infty} \frac{1}{(2k-5)^2},$$

if it is convergent or divergent.

solution.

We take $f(x) = \frac{1}{(2x-5)^2}$, which is not decreasing on $[1,\infty)$ (also not continuous in this interval). However, f is continuous, positive and decreasing on $[3,\infty)$. Since that $\int_3^\infty \frac{1}{(2x-5)^2} dx$ is convergent,



so $\sum_{k=3}^{\infty} \frac{1}{(2k-5)^2}$ is convergent. Note that

$$\sum_{k=1}^{\infty} \frac{1}{(2k-5)^2} = \sum_{k=1}^{2} \frac{1}{(2k-5)^2} + \sum_{k=3}^{\infty} \frac{1}{(2k-5)^2}$$

Thus, $\sum_{k=1}^{\infty} \frac{1}{(2k-5)^2}$ is convergent.

Example (harmonic series). Determine the infinite series

$$\sum_{k=1}^{\infty} \frac{1}{k},$$

if it is convergent or divergent.

<u>solution</u>. Take $f(x) = \frac{1}{x}$ and note that f is continuous, positive, decreasing on $[1,\infty)$. Since that

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x} dx = \lim_{b \to \infty} \ln x |_{1}^{b} = \lim_{b \to \infty} \ln b = \infty,$$

which indicates \int_1^{∞} is divergent. By the integral test, the series $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent. Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^2+1}$ converges. solution.

Take $f(x) = \frac{x}{x^2+1}$. It is clear that f is a continuous, positive function on $[1,\infty)$. Note that

$$f'(x) = \left(\frac{x}{x^2+1}\right)' = \frac{1 \cdot (x^2+1) - x \cdot 2x}{(x^2+1)^2} = -\frac{x^2-1}{(x^2+1)^2} < 0$$

$$\int_{1}^{\infty} \frac{x}{x^{2}+1} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{x}{x^{2}+1} dx = \lim_{b \to \infty} \frac{1}{2} \ln(x^{2}+1)|_{1}^{b}$$
$$= \lim_{b \to \infty} \frac{1}{2} \left[\ln(b^{2}+1) - \ln 2 \right] = \infty,$$

so the improper integral $\int_1^\infty \frac{x}{x^2+1} dx$ is divergent. Hence, by the Integral Test, the series $\sum_{k=1}^\infty \frac{k}{k^2+1}$ is divergent.

Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k^2+2}$ converges. solution.

Take $f(x) = \frac{1}{x^2+2}$. It is clear that f is continuous, positive and decreasing on $[1,\infty)$. Note that

$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}+2} dx = \lim_{b \to \infty} \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1}{\sqrt{2}}x\right) |_{1}^{b}$$
$$= \lim_{b \to \infty} \frac{1}{\sqrt{2}} \left[\tan^{-1} \left(\frac{1}{\sqrt{2}}b\right) - \tan^{-1} \frac{1}{\sqrt{2}} \right] = \frac{1}{\sqrt{2}} \left(\frac{\pi}{2} - \tan^{-1} \frac{1}{\sqrt{2}}\right),$$

which indicates the improper integral $\int_1^\infty \frac{1}{x^2+1} dx$ is convergent. Hence, by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{k^2+2}$ is convergent.

Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{2k-1}}$ converges. <u>solution</u>. Take $f(x) = \frac{1}{\sqrt{2x-1}}$. It is clear that f is continuous, positive, decreasing on $[1,\infty)$. Note that

$$\int_{1}^{\infty} \frac{1}{\sqrt{2x-1}} \, dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{\sqrt{2x-1}} \, dx = \lim_{b \to \infty} \sqrt{2x-1} |_{1}^{b} = \lim_{b \to \infty} \left(\sqrt{2b-1} - 1 \right) = \infty,$$

which indicates the improper integral $\int_1^\infty \frac{1}{\sqrt{2x-1}} dx$ is divergent. Hence, by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{2k-1}}$ is divergent.

Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{\ln k}{k}$ converges. <u>solution</u>. Take $f(x) = \frac{\ln x}{x}$. It is clear that f continuous, positive on $[1,\infty)$. Note that

$$f'(x) = \left(\frac{\ln x}{x}\right)' = \frac{\frac{1}{x} \cdot x - \ln x \cdot 1}{x^2} = -\frac{\ln x - 1}{(x^2 + 1)^2}.$$

When $\ln x > 1$, say $x > e \approx 2.718$, so f'(x) < 0. Thus, f is decreasing on $(3, \infty)$. Note that

$$\int_{3}^{\infty} \frac{\ln x}{x} \, dx = \lim_{b \to \infty} \int_{3}^{b} \frac{\ln x}{x} \, dx = \lim_{b \to \infty} \frac{1}{2} \ln^{2} x |_{3}^{b} = \lim_{b \to \infty} \frac{1}{2} \left(\ln^{2} b - \ln^{2} 3 \right) = \infty,$$

which indicates that the improper integral $\int_{3}^{\infty} \frac{\ln x}{x} dx$ is divergent. Thus, by the Integral Test, the series $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ is divergent as well as $\sum_{k=1}^{\infty} \frac{\ln k}{k}$. <u>Exercise</u>. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^3}}$ converges.

<u>solution</u>. Take $f(x) = \frac{1}{\sqrt{x^3}}$, which is continuous, positive, decreasing on $[1,\infty)$. Since $\int_1^\infty \frac{1}{\sqrt{x^3}} dx$ is convergent, thus by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^3}}$ is convergent.

Example. Determine if the following series is convergent or divergent,

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

<u>solution</u>. Taking $f(x) = \frac{1}{x \ln x}$ which is clearly positive, continuous on $[2, \infty)$. If we make x larger, the denominator will get larger and so the function is decreasing. Note that

$$\int_{2}^{\infty} \frac{1}{x \ln x} \, dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x \ln x} \, dx = \lim_{t \to \infty} \ln(\ln(x))|_{2}^{t} = \lim_{t \to \infty} \left[\ln(\ln t) - \ln(\ln 2)\right] = \infty,$$

where the substitution $u = \ln x$ is used. The integral is divergent and so the series is also divergent by the Integral Test.

Example. Determine if the following series is convergent or divergent,

$$\sum_{n=0}^{\infty} n e^{-n^2}$$

solution. Taking $f(x) = xe^{-x^2}$ which is clearly positive and continuous on $[0,\infty)$. Note that $f'(x) = e^{-x^2}(1-2x^2)$. Let f'(x) = 0, we have $x = \pm \frac{1}{\sqrt{2}}$. Since that

- $0 \le x \le \frac{1}{\sqrt{2}}$, $f'(x) \ge 0 \Longrightarrow f$ is increasing;
- $x \ge \frac{1}{\sqrt{2}}$, $f'(x) \le 0 \Longrightarrow f$ is decreasing;

which means f is decreasing on $[1,\infty)$. Note that

$$\int_{1}^{\infty} x e^{-x^2} dx = \lim_{t \to \infty} \int_{0}^{t} x e^{-x^2} dx = \lim_{t \to \infty} \left(-\frac{1}{2} e^{-x^2} \right) |_{0}^{t} = \lim_{t \to \infty} \left(\frac{1}{2} - \frac{1}{2} e^{-t^2} \right) = \frac{1}{2}$$

The integral is convergent. Note that

$$\sum_{n=0}^{\infty} n e^{-n^2} = \sum_{n=1}^{\infty} n e^{-n^2},$$

so, the series is convergent.

Theorem (convergence of the *p*-series). The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges for $p \le 1$.

<u>Rk</u>. In other words, if k > 0, then $\sum_{n=k}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$. (This fact follows directly from the Integral Test and a similar fact we saw in the Improper Integral section. This fact says that the integral $\int_k^{\infty} \frac{1}{x^p} dx$ converges for p > 1 and diverges for $p \le 1$.) Example. Determine if the following series are convergent or divergent.

(a)
$$\sum_{n=4}^{\infty} \frac{1}{n^7}$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

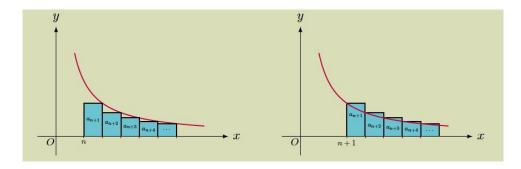
<u>solution</u>. For (a), take p = 7 > 1, so by this fact the series is convergent.

For (b), take $p = \frac{1}{2} \le 1$, so the series is divergent by the fact.

Theorem (remainder estimate for the Integral Test). Suppose f is continuous, positive, decreasing on $[1,\infty)$. Let $a_k = f(k)$ and suppose $\sum_{k=1}^{\infty} a_k = s$ is convergent. Denote $R_n = s - s_n = \sum_{k=n+1}^{\infty} a_k$. Then

- $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_n^{\infty} f(x) dx;$
- $s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx.$

Proof. Since that f is decreasing on $[n, \infty)$, comparing the areas of the rectangles with the area under y = f(x), for x > n, we have



$$R_n = a_{n+1} + a_{n+2} + \dots \leq \int_n^\infty f(x) \, dx,$$

and similarly,

$$R_n = a_{n+1} + a_{n+2} + \dots \ge \int_{n+1}^{\infty} f(x) \, dx.$$

Example. For the series

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}.$$

- (a) How many terms of the series must be used to obtain an approximation that is within 10^{-4} of the exact value of the series;
- (b) Find an approximation to the series using 50 terms of the series.

solution. For (a), taking $f(x) = \frac{1}{x^2}$, which is continuous, positive and decreasing on $[1, \infty)$. Note that

$$R_n < \int_n^\infty f(x) \, dx = \int_n^\infty \frac{1}{x^2} \, dx = \frac{1}{n}.$$

Thus, to ensure that $R_n < 10^{-4}$, we take $\frac{1}{n} < 10^{-4} \implies n > 10000$. Thus, we can take n = 10001 at least.

For (b), using the bounds on the series in the Integral Test, we have

$$s_{50} + \int_{51}^{\infty} \frac{1}{x^2} \, dx < s < s_{50} + \int_{50} \frac{1}{x^2} \, dx$$

say

$$s_{50} + \frac{1}{51} < s < s_{50} + \frac{1}{50}$$

where $s_{50} = \sum_{k=1}^{50} \frac{1}{k^2}$. By using a calculator, we have $s_{50} \approx 1.62513273$. Thus

Taking the average of these two bounds as our approximation of s, we have $s \approx 1.64493665$. For comparison, $\frac{\pi^2}{6} = 1.64493406...$ We see that our approximation matches first five decimal places. <u>Rk</u>. In this section for integral test,

- we have used the fact that that a **bounded** and **monotonic** sequence was guaranteed to be **convergent** (⇒ the sequence of partial sums is convergent ⇒ the series must then also be convergent);
- once again we can relate a series to an improper integral, the series and the integral have the same convergence.