Lecture 15 Integral test

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Integral test

Intuition. Suppose that f is continuous, positive, decreasing function on $[1, \infty)$ and take $a_{k}=f(k)$,

- if $\int_{1}^{\infty} f(x) d x$ converges, taking the piecewise constant function $p(x)=f(k+1)$ for $x \in$ $[k, k+1)$, which is defined on $[1, \infty)$. Since that f is decreasing, so $p \leq f$. Thus

$$
\begin{aligned}
\sum_{k=1}^{n} f(k) & =f(1)+\sum_{k=2}^{n} f(k) \\
& \leq f(1)+\int_{1}^{n} p(x) d x \\
& f(1)+\int_{1}^{n} f(x) d x \leq f(1)+\int_{1}^{\infty} f(x) d x
\end{aligned}
$$

Note that $\int_{1}^{\infty} f(x) d x$ is convergent. Thus, $s_{n}=\sum_{k=1}^{n} f(k)$ is bounded. Since f is positive, thus $s_{n+1}>s_{n}$, say, $\left\{s_{n}\right\}$ is increasing monotonically. According to the Monotonic Sequence Theorem, s_{n} as $n \rightarrow \infty$ is convergent as well as $\sum_{k=1}^{\infty} f(k)$.

- if $\int_{1}^{\infty} f(x) d x$ is divergent. Taking the piecewise constant $q(x)=f(k)$ for $x \in[k, k+1)$, which is defined on $[1, \infty)$. Since that f is decreasing, so $q \geq f$. Thus

$$
\int_{1}^{b} f(x) d x \leq \int_{1}^{n} f(x) d x \leq \int_{1}^{n} q(x) d x=\sum_{k=1}^{n-1} f(k) \leq \sum_{k=1}^{\infty} f(k)
$$

Note that $\int_{1}^{\infty} f(x)$ is divergent. By contradiction, if $\sum_{k=1}^{\infty} f(k)$ is convergent, say it is bounded. Thus, $\int_{1}^{b} f(x) d x$ is also bounded. However, $\int_{1}^{\infty} f(x) d x$ is divergent (means that $\int_{1}^{b} f(x) d x$ is unbounded). Thus, $\sum_{k=1}^{\infty} f(k)$ is divergent.

Exercise. Take $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ to see that divergence or convergence.
Theorem Suppose that f is continuous, positive, decreasing function on $[1, \infty)$ and take $a_{k}=f(k)$, we have

- if $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is convergent;
- if $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{k=1}^{\infty} a_{k}$ is divergent.

Rk If f is decreasing for $x \geq N$, we have the same facts, since changing a finite number of terms in a convergent series does not change its convergence.
Example. Determine the infinite series

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-5)^{2}}
$$

if it is convergent or divergent.
solution.
We take $f(x)=\frac{1}{(2 x-5)^{2}}$, which is not decreasing on $[1, \infty)$ (also not continuous in this interval). However, f is continuous, positive and decreasing on $[3, \infty)$. Since that $\int_{3}^{\infty} \frac{1}{(2 x-5)^{2}} d x$ is convergent,

so $\sum_{k=3}^{\infty} \frac{1}{(2 k-5)^{2}}$ is convergent. Note that

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-5)^{2}}=\sum_{k=1}^{2} \frac{1}{(2 k-5)^{2}}+\sum_{k=3}^{\infty} \frac{1}{(2 k-5)^{2}}
$$

Thus, $\sum_{k=1}^{\infty} \frac{1}{(2 k-5)^{2}}$ is convergent.
Example (harmonic series). Determine the infinite series

$$
\sum_{k=1}^{\infty} \frac{1}{k},
$$

if it is convergent or divergent.
solution. Take $f(x)=\frac{1}{x}$ and note that f is continuous, positive, decreasing on $[1, \infty)$. Since that

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x} d x=\left.\lim _{b \rightarrow \infty} \ln x\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \ln b=\infty
$$

which indicates \int_{1}^{∞} is divergent. By the integral test, the series $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent.
Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ converges.

solution.

Take $f(x)=\frac{x}{x^{2}+1}$. It is clear that f is a continuous, positive function on $[1, \infty)$. Note that

$$
f^{\prime}(x)=\left(\frac{x}{x^{2}+1}\right)^{\prime}=\frac{1 \cdot\left(x^{2}+1\right)-x \cdot 2 x}{\left(x^{2}+1\right)^{2}}=-\frac{x^{2}-1}{\left(x^{2}+1\right)^{2}}<0
$$

thus, f is decreasing. Note that

$$
\begin{aligned}
\int_{1}^{\infty} \frac{x}{x^{2}+1} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{x}{x^{2}+1} d x=\left.\lim _{b \rightarrow \infty} \frac{1}{2} \ln \left(x^{2}+1\right)\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{2}\left[\ln \left(b^{2}+1\right)-\ln 2\right]=\infty
\end{aligned}
$$

so the improper integral $\int_{1}^{\infty} \frac{x}{x^{2}+1} d x$ is divergent. Hence, by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$ is divergent.
Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}+2}$ converges.

solution.

Take $f(x)=\frac{1}{x^{2}+2}$. It is clear that f is continuous, positive and decreasing on $[1, \infty)$. Note that

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{2}+2} d x=\left.\lim _{b \rightarrow \infty} \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}} x\right)\right|_{1} ^{b} \\
& =\lim _{b \rightarrow \infty} \frac{1}{\sqrt{2}}\left[\tan ^{-1}\left(\frac{1}{\sqrt{2}} b\right)-\tan ^{-1} \frac{1}{\sqrt{2}}\right]=\frac{1}{\sqrt{2}}\left(\frac{\pi}{2}-\tan ^{-1} \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

which indicates the improper integral $\int_{1}^{\infty} \frac{1}{x^{2}+1} d x$ is convergent. Hence, by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}+2}$ is convergent.
Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{2 k-1}}$ converges.
solution. Take $f(x)=\frac{1}{\sqrt{2 x-1}}$. It is clear that f is continuous, positive, decreasing on $[1, \infty)$. Note that

$$
\int_{1}^{\infty} \frac{1}{\sqrt{2 x-1}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{\sqrt{2 x-1}} d x=\left.\lim _{b \rightarrow \infty} \sqrt{2 x-1}\right|_{1} ^{b}=\lim _{b \rightarrow \infty}(\sqrt{2 b-1}-1)=\infty
$$

which indicates the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{2 x-1}} d x$ is divergent. Hence, by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{2 k-1}}$ is divergent.
Example. Determine whether the series $\sum_{k=1}^{\infty} \frac{\ln k}{k}$ converges.
solution. Take $f(x)=\frac{\ln x}{x}$. It is clear that f continuous, positive on $[1, \infty)$. Note that

$$
f^{\prime}(x)=\left(\frac{\ln x}{x}\right)^{\prime}=\frac{\frac{1}{x} \cdot x-\ln x \cdot 1}{x^{2}}=-\frac{\ln x-1}{\left(x^{2}+1\right)^{2}}
$$

When $\ln x>1$, say $x>e \approx 2.718$, so $f^{\prime}(x)<0$. Thus, f is decreasing on $(3, \infty)$. Note that

$$
\int_{3}^{\infty} \frac{\ln x}{x} d x=\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{\ln x}{x} d x=\left.\lim _{b \rightarrow \infty} \frac{1}{2} \ln ^{2} x\right|_{3} ^{b}=\lim _{b \rightarrow \infty} \frac{1}{2}\left(\ln ^{2} b-\ln ^{2} 3\right)=\infty
$$

which indicates that the improper integral $\int_{3}^{\infty} \frac{\ln x}{x} d x$ is divergent. Thus, by the Integral Test, the series $\sum_{k=3}^{\infty} \frac{\ln k}{k}$ is divergent as well as $\sum_{k=1}^{\infty} \frac{\ln k}{k}$.
Exercise. Determine whether the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{3}}}$ converges.
solution. Take $f(x)=\frac{1}{\sqrt{x^{3}}}$, which is continuous, positive, decreasing on $[1, \infty)$. Since $\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}}} d x$ is convergent, thus by the Integral Test, the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k^{3}}}$ is convergent.
Example. Determine if the following series is convergent or divergent,

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n}
$$

solution. Taking $f(x)=\frac{1}{x \ln x}$ which is clearly positive, continuous on $[2, \infty)$. If we make x larger, the denominator will get larger and so the function is decreasing. Note that

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\lim _{t \rightarrow \infty} \int_{2}^{t} \frac{1}{x \ln x} d x=\left.\lim _{t \rightarrow \infty} \ln (\ln (x))\right|_{2} ^{t}=\lim _{t \rightarrow \infty}[\ln (\ln t)-\ln (\ln 2)]=\infty
$$

where the substitution $u=\ln x$ is used. The integral is divergent and so the series is also divergent by the Integral Test.
Example. Determine if the following series is convergent or divergent,

$$
\sum_{n=0}^{\infty} n e^{-n^{2}}
$$

solution. Taking $f(x)=x e^{-x^{2}}$ which is clearly positive and continuous on $[0, \infty)$. Note that $f^{\prime}(x)=e^{-x^{2}}\left(1-2 x^{2}\right)$. Let $f^{\prime}(x)=0$, we have $x= \pm \frac{1}{\sqrt{2}}$. Since that

- $0 \leq x \leq \frac{1}{\sqrt{2}}, f^{\prime}(x) \geq 0 \Longrightarrow f$ is increasing;
- $x \geq \frac{1}{\sqrt{2}}, f^{\prime}(x) \leq 0 \Longrightarrow f$ is decreasing;
which means f is decreasing on $[1, \infty)$. Note that

$$
\int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-x^{2}} d x=\left.\lim _{t \rightarrow \infty}\left(-\frac{1}{2} e^{-x^{2}}\right)\right|_{0} ^{t}=\lim _{t \rightarrow \infty}\left(\frac{1}{2}-\frac{1}{2} e^{-t^{2}}\right)=\frac{1}{2}
$$

The integral is convergent. Note that

$$
\sum_{n=0}^{\infty} n e^{-n^{2}}=\sum_{n=1}^{\infty} n e^{-n^{2}}
$$

so, the series is convergent.
Theorem (convergence of the p-series). The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$ and diverges for $p \leq 1$.
Rk. In other words, if $k>0$, then $\sum_{n=k}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$. (This fact follows directly from the Integral Test and a similar fact we saw in the Improper Integral section. This fact says that the integral $\int_{k}^{\infty} \frac{1}{x^{p}} d x$ converges for $p>1$ and diverges for $p \leq 1$.)
Example. Determine if the following series are convergent or divergent.

$$
\text { (a) } \sum_{n=4}^{\infty} \frac{1}{n^{7}}, \quad \text { (b) } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

solution. For (a), take $p=7>1$, so by this fact the series is convergent.
For (b), take $p=\frac{1}{2} \leq 1$, so the series is divergent by the fact.
Theorem (remainder estimate for the Integral Test). Suppose f is continuous, positive, decreasing $\overline{\text { on }[1, \infty) \text {. Let } a_{k}=f(k) \text { and suppose } \sum_{k=1}^{\infty} a_{k}}=s$ is convergent. Denote $R_{n}=s-s_{n}=$ $\sum_{k=n+1}^{\infty} a_{k}$. Then

- $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x ;$
- $s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$.

Proof. Since that f is decreasing on $[n, \infty)$, comparing the areas of the rectangles with the area under $y=f(x)$, for $x>n$, we have

$$
R_{n}=a_{n+1}+a_{n+2}+\cdots \leq \int_{n}^{\infty} f(x) d x
$$

and similarly,

$$
R_{n}=a_{n+1}+a_{n+2}+\cdots \geq \int_{n+1}^{\infty} f(x) d x
$$

Example. For the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

(a) How many terms of the series must be used to obtain an approximation that is within 10^{-4} of the exact value of the series;
(b) Find an approximation to the series using 50 terms of the series.
solution. For (a), taking $f(x)=\frac{1}{x^{2}}$, which is continuous, positive and decreasing on $[1, \infty)$. Note that

$$
R_{n}<\int_{n}^{\infty} f(x) d x=\int_{n}^{\infty} \frac{1}{x^{2}} d x=\frac{1}{n}
$$

Thus, to ensure that $R_{n}<10^{-4}$, we take $\frac{1}{n}<10^{-4} \Longrightarrow n>10000$. Thus, we can take $n=10001$ at least.
For (b), using the bounds on the series in the Integral Test, we have

$$
s_{50}+\int_{51}^{\infty} \frac{1}{x^{2}} d x<s<s_{50}+\int_{50} \frac{1}{x^{2}} d x
$$

say

$$
s_{50}+\frac{1}{51}<s<s_{50}+\frac{1}{50}
$$

where $s_{50}=\sum_{k=1}^{50} \frac{1}{k^{2}}$. By using a calculator, we have $s_{50} \approx 1.62513273$. Thus

$$
1.64474057<s<1.64513273
$$

Taking the average of these two bounds as our approximation of s, we have $s \approx 1.64493665$. For comparison, $\frac{\pi^{2}}{6}=1.64493406 \ldots$. We see that our approximation matches first five decimal places. Rk. In this section for integral test,

- we have used the fact that that a bounded and monotonic sequence was guaranteed to be convergent $(\Longrightarrow$ the sequence of partial sums is convergent \Longrightarrow the series must then also be convergent);
- once again we can relate a series to an improper integral, the series and the integral have the same convergence.

