
MATH 1014 Calculus II Spring 2022 Lecture 15

Lecture 15 Integral test

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Integral test

Intuition. Suppose that f is continuous, positive, decreasing function on [1,∞) and take ak = f(k),

• if
∫∞
1 f(x) dx converges, taking the piecewise constant function p(x) = f(k + 1) for x ∈

[k, k + 1), which is defined on [1,∞). Since that f is decreasing, so p ≤ f . Thus

n∑
k=1

f(k) = f(1) +

n∑
k=2

f(k)

≤ f(1) +
∫ n

1
p(x) dx

f(1) +

∫ n

1
f(x) dx ≤ f(1) +

∫ ∞
1

f(x) dx.

Note that
∫∞
1 f(x) dx is convergent. Thus, sn =

∑n
k=1 f(k) is bounded. Since f is positive,

thus sn+1 > sn, say, {sn} is increasing monotonically. According to the Monotonic Sequence
Theorem, sn as n→∞ is convergent as well as

∑∞
k=1 f(k).

• if
∫∞
1 f(x) dx is divergent. Taking the piecewise constant q(x) = f(k) for x ∈ [k, k + 1),

which is defined on [1,∞). Since that f is decreasing, so q ≥ f . Thus∫ b

1
f(x) dx ≤

∫ n

1
f(x) dx ≤

∫ n

1
q(x) dx =

n−1∑
k=1

f(k) ≤
∞∑
k=1

f(k).

Note that
∫∞
1 f(x) is divergent. By contradiction, if

∑∞
k=1 f(k) is convergent, say it is

bounded. Thus,
∫ b
1 f(x) dx is also bounded. However,

∫∞
1 f(x) dx is divergent (means

that
∫ b
1 f(x) dx is unbounded). Thus,

∑∞
k=1 f(k) is divergent.

Exercise. Take
∑∞

n=1
1
n and

∑∞
n=1

1
n2 to see that divergence or convergence.

Theorem Suppose that f is continuous, positive, decreasing function on [1,∞) and take ak = f(k),
we have

• if
∫∞
1 f(x) dx is convergent, then

∑∞
k=1 ak is convergent;
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• if
∫∞
1 f(x) dx is divergent, then

∑∞
k=1 ak is divergent.

Rk If f is decreasing for x ≥ N , we have the same facts, since changing a finite number of terms in
a convergent series does not change its convergence.
Example. Determine the infinite series

∞∑
k=1

1

(2k − 5)2
,

if it is convergent or divergent.
solution.
We take f(x) = 1

(2x−5)2 , which is not decreasing on [1,∞) (also not continuous in this interval).

However, f is continuous, positive and decreasing on [3,∞). Since that
∫∞
3

1
(2x−5)2 dx is convergent,

so
∑∞

k=3
1

(2k−5)2 is convergent. Note that

∞∑
k=1

1

(2k − 5)2
=

2∑
k=1

1

(2k − 5)2
+
∞∑
k=3

1

(2k − 5)2
.

Thus,
∑∞

k=1
1

(2k−5)2 is convergent.

Example (harmonic series). Determine the infinite series

∞∑
k=1

1

k
,

if it is convergent or divergent.
solution. Take f(x) = 1

x and note that f is continuous, positive, decreasing on [1,∞). Since that∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
lnx|b1 = lim

b→∞
ln b =∞,

which indicates
∫∞
1 is divergent. By the integral test, the series

∑∞
k=1

1
k is divergent.

Example. Determine whether the series
∑∞

k=1
k

k2+1
converges.

solution.
Take f(x) = x

x2+1
. It is clear that f is a continuous, positive function on [1,∞). Note that

f ′(x) =

(
x

x2 + 1

)′
=

1 · (x2 + 1)− x · 2x
(x2 + 1)2

= − x2 − 1

(x2 + 1)2
< 0,
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thus, f is decreasing. Note that∫ ∞
1

x

x2 + 1
dx = lim

b→∞

∫ b

1

x

x2 + 1
dx = lim

b→∞

1

2
ln(x2 + 1)|b1

= lim
b→∞

1

2

[
ln(b2 + 1)− ln 2

]
=∞,

so the improper integral
∫∞
1

x
x2+1

dx is divergent. Hence, by the Integral Test, the series
∑∞

k=1
k

k2+1
is divergent.
Example. Determine whether the series

∑∞
k=1

1
k2+2

converges.
solution.
Take f(x) = 1

x2+2
. It is clear that f is continuous, positive and decreasing on [1,∞). Note that∫ ∞

1

1

x2 + 1
dx = lim

b→∞

∫ b

1

1

x2 + 2
dx = lim

b→∞

1√
2
tan−1

(
1√
2
x

)
|b1

= lim
b→∞

1√
2

[
tan−1

(
1√
2
b

)
− tan−1

1√
2

]
=

1√
2

(
π

2
− tan−1

1√
2

)
,

which indicates the improper integral
∫∞
1

1
x2+1

dx is convergent. Hence, by the Integral Test, the

series
∑∞

k=1
1

k2+2
is convergent.

Example. Determine whether the series
∑∞

k=1
1√

2k−1 converges.

solution. Take f(x) = 1√
2x−1 . It is clear that f is continuous, positive, decreasing on [1,∞). Note

that ∫ ∞
1

1√
2x− 1

dx = lim
b→∞

∫ b

1

1√
2x− 1

dx = lim
b→∞

√
2x− 1|b1 = lim

b→∞

(√
2b− 1− 1

)
=∞,

which indicates the improper integral
∫∞
1

1√
2x−1 dx is divergent. Hence, by the Integral Test, the

series
∑∞

k=1
1√

2k−1 is divergent.

Example. Determine whether the series
∑∞

k=1
ln k
k converges.

solution. Take f(x) = lnx
x . It is clear that f continuous, positive on [1,∞). Note that

f ′(x) =

(
lnx

x

)′
=

1
x · x− lnx · 1

x2
= − lnx− 1

(x2 + 1)2
.

When lnx > 1, say x > e ≈ 2.718, so f ′(x) < 0. Thus, f is decreasing on (3,∞). Note that∫ ∞
3

lnx

x
dx = lim

b→∞

∫ b

3

lnx

x
dx = lim

b→∞

1

2
ln2 x|b3 = lim

b→∞

1

2

(
ln2 b− ln2 3

)
=∞,

which indicates that the improper integral
∫∞
3

lnx
x dx is divergent. Thus, by the Integral Test, the

series
∑∞

k=3
ln k
k is divergent as well as

∑∞
k=1

ln k
k .

Exercise. Determine whether the series
∑∞

k=1
1√
k3

converges.

solution. Take f(x) = 1√
x3

, which is continuous, positive, decreasing on [1,∞). Since
∫∞
1

1√
x3
dx

is convergent, thus by the Integral Test, the series
∑∞

k=1
1√
k3

is convergent.

Example. Determine if the following series is convergent or divergent,

∞∑
n=2

1

n lnn
.
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solution. Taking f(x) = 1
x lnx which is clearly positive, continuous on [2,∞). If we make x larger,

the denominator will get larger and so the function is decreasing. Note that∫ ∞
2

1

x lnx
dx = lim

t→∞

∫ t

2

1

x lnx
dx = lim

t→∞
ln(ln(x))|t2 = lim

t→∞
[ln(ln t)− ln(ln 2)] =∞,

where the substitution u = lnx is used. The integral is divergent and so the series is also divergent
by the Integral Test.
Example. Determine if the following series is convergent or divergent,

∞∑
n=0

ne−n
2
.

solution. Taking f(x) = xe−x
2

which is clearly positive and continuous on [0,∞). Note that
f ′(x) = e−x

2
(1− 2x2). Let f ′(x) = 0, we have x = ± 1√

2
. Since that

• 0 ≤ x ≤ 1√
2

, f ′(x) ≥ 0 =⇒ f is increasing;

• x ≥ 1√
2

, f ′(x) ≤ 0 =⇒ f is decreasing;

which means f is decreasing on [1,∞). Note that∫ ∞
1

xe−x
2
dx = lim

t→∞

∫ t

0
xe−x

2
dx = lim

t→∞

(
−1

2
e−x

2

)
|t0 = lim

t→∞

(
1

2
− 1

2
e−t

2

)
=

1

2
.

The integral is convergent. Note that

∞∑
n=0

ne−n
2
=
∞∑
n=1

ne−n
2
,

so, the series is convergent.
Theorem (convergence of the p-series). The p-series

∑∞
n=1

1
np converges for p > 1 and diverges for

p ≤ 1.
Rk. In other words, if k > 0, then

∑∞
n=k

1
np converges if p > 1 and diverges if p ≤ 1. (This fact

follows directly from the Integral Test and a similar fact we saw in the Improper Integral section.
This fact says that the integral

∫∞
k

1
xp dx converges for p > 1 and diverges for p ≤ 1. )

Example. Determine if the following series are convergent or divergent.

(a)

∞∑
n=4

1

n7
, (b)

∞∑
n=1

1√
n
.

solution. For (a), take p = 7 > 1, so by this fact the series is convergent.
For (b), take p = 1

2 ≤ 1, so the series is divergent by the fact.
Theorem (remainder estimate for the Integral Test). Suppose f is continuous, positive, decreasing
on [1,∞). Let ak = f(k) and suppose

∑∞
k=1 ak = s is convergent. Denote Rn = s − sn =∑∞

k=n+1 ak. Then

•
∫∞
n+1 f(x) dx ≤ Rn ≤

∫∞
n f(x) dx;

• sn +
∫∞
n+1 f(x) dx ≤ s ≤ sn +

∫∞
n f(x) dx.

Proof. Since that f is decreasing on [n,∞), comparing the areas of the rectangles with the area
under y = f(x), for x > n, we have

4



MATH 1014 Calculus II Spring 2022 Lecture 15

Rn = an+1 + an+2 + · · · ≤
∫ ∞
n

f(x) dx,

and similarly,

Rn = an+1 + an+2 + · · · ≥
∫ ∞
n+1

f(x) dx.

Example. For the series

∞∑
k=1

1

k2
=

1

12
+

1

22
+

1

32
+ · · · = π2

6
.

(a) How many terms of the series must be used to obtain an approximation that is within 10−4 of
the exact value of the series;

(b) Find an approximation to the series using 50 terms of the series.

solution. For (a), taking f(x) = 1
x2

, which is continuous, positive and decreasing on [1,∞). Note
that

Rn <

∫ ∞
n

f(x) dx =

∫ ∞
n

1

x2
dx =

1

n
.

Thus, to ensure that Rn < 10−4, we take 1
n < 10−4 =⇒ n > 10000. Thus, we can take n = 10001

at least.
For (b), using the bounds on the series in the Integral Test, we have

s50 +

∫ ∞
51

1

x2
dx < s < s50 +

∫
50

1

x2
dx,

say

s50 +
1

51
< s < s50 +

1

50
,

where s50 =
∑50

k=1
1
k2

. By using a calculator, we have s50 ≈ 1.62513273. Thus

1.64474057 < s < 1.64513273.

Taking the average of these two bounds as our approximation of s, we have s ≈ 1.64493665. For
comparison, π2

6 = 1.64493406.... We see that our approximation matches first five decimal places.
Rk. In this section for integral test,

• we have used the fact that that a bounded and monotonic sequence was guaranteed to be
convergent (=⇒ the sequence of partial sums is convergent =⇒ the series must then also be
convergent);

• once again we can relate a series to an improper integral, the series and the integral have the
same convergence.
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