Lecture 16 Comparison test

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Comparison test

Intuition. Suppose $\sum a_{k}$ and $\sum b_{k}$ are series with nonnegative terms.

- Suppose $\sum b_{k}$ is convergent. Let

$$
s_{n}=\sum_{k=1}^{n} a_{k}, \quad t_{n}=\sum_{k=1}^{n} b_{k}, \quad t=\sum_{k=1}^{\infty} b_{k}
$$

Since both series have positive terms, the sequences $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are increasing. Since $t_{n} \rightarrow t$, we have $t_{n} \leq t$ for all n. Since $a_{k} \leq b_{k}$, we have $s_{n} \leq t_{n}$. Thus $s_{n} \leq t$ for all n which means $\left\{s_{n}\right\}$ is increasing and bounded above and so converges by the Monotonic Sequence Theorem. Thus $\sum a_{k}$ converges.

- Suppose $\sum b_{k}$ is divergent. We show that $\sum a_{k}$ is divergent by contradiction. In fact, if $\sum a_{k}$ is convergent, since $b_{k} \leq a_{k}$, from the deviation above, we have that $\sum b_{k}$ is convergent, a contradiction.

We have the fact below,
Theorem (Comparison Test). Suppose $\sum a_{k}$ and $\sum b_{k}$ are series with nonnegative terms.

- if $a_{k} \leq b_{k}$ for all k and $\sum b_{k}$ is convergent $\Longrightarrow \sum a_{k}$ is convergent;
- if $a_{k} \geq b_{k}$ for all k and $\sum b_{k}$ is divergent $\Longrightarrow \sum a_{k}$ is divergent.

Example. Determine whether the series converges below,

$$
\sum_{k=1}^{\infty} \frac{k}{3 k^{3}-k^{2}+1}
$$

solution. Take $a_{k}=\frac{k}{3 k^{3}-k^{2}+1}$, clearly, $a_{k}=\frac{k}{k^{2}(3 k-1)+1}>0$ for all $k \geq 1$. Note that

$$
a_{k}=\frac{k}{2 k^{3}+\left(k^{3}-k^{2}\right)+1} \leq \frac{k}{2 k^{3}+1}<\frac{k}{2 k^{3}}<\frac{1}{k^{2}}
$$

Since that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ is convergent, by the Comparison Test, the series $\sum_{k=1}^{\infty} a_{k}$ is convergent. Example. Determine if the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{n}{n^{2}-\cos ^{2} n}
$$

solution. Since the cosine term in the denominator doesn't get too large we can assume that the series terms will behave like $\frac{n}{n^{2}}=\frac{1}{n}$, which, as a series, will diverge. So, from this we can guess that the series will probably diverge and so we'll need to find a smaller series that will also diverge. Note that

$$
\frac{n}{n^{2}-\cos ^{2} n}>\frac{n}{n^{2}}=\frac{1}{n}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by the Comparison Test, our original series must also diverge.
Example. Determine if the following series is convergent or divergent.

$$
\sum_{n=1}^{\infty} \frac{e^{-n}}{n+\cos ^{2} n}
$$

solution. Since that the exponential goes to zeros very fast. So, let's guess that this series will converge and we'll need to find a larger series that will also converge. Note that

$$
\frac{e^{-n}}{n+\cos ^{2} n} \leq \frac{e^{-n}}{n} \leq \frac{e^{-n}}{1}=e^{-n}
$$

for all $n \geq 1$. Take $f(x)=e^{-x}$ which is positive and decreasing on $[1, \infty)$. Note that

$$
\int_{1}^{\infty} e^{-x} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x=\left.\lim _{t \rightarrow \infty}\left(-e^{-x}\right)\right|_{1} ^{t}=\lim _{t \rightarrow \infty}\left(-e^{-t}+e^{-1}\right)=e^{-1}
$$

Thus, by the integral test, we have that $\sum_{n=1}^{\infty} e^{-n}$ is convergent as well as the original series. Example. Determine if the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{4}+5}
$$

solution. Note that

$$
\frac{n^{2}+2}{n^{4}+5}<\frac{n^{2}+2}{n^{4}}
$$

and

$$
\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{4}}=\sum_{n=1}^{\infty} \frac{n^{2}}{n^{4}}+\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ are both convergent, thus, $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{4}}$ is convergent as well as the original series by the Comparison Test.
Example. Determine whether the series converges below,

$$
\sum_{k=1}^{\infty} \frac{\ln k}{k^{2}}
$$

solution. Take $a_{k}=\frac{\ln k}{k^{2}}$, clearly, $a_{k} \geq 0$ for all $k \geq 1$. Since that

$$
(\ln x-\sqrt{x})^{\prime}=\frac{1}{x}-\frac{1}{2 \sqrt{x}}=\frac{2-\sqrt{x}}{2 x}
$$

We have

- $0<x<4,2-\sqrt{x}>0, \ln x-\sqrt{x}$ is increasing;
- $x \geq 4,2-\sqrt{x} \leq 0, \ln x-\sqrt{x}$ is decreasing;
- when $x=4$, the maximum $\ln (4)-\sqrt{4}=2 \ln 2-2=2(\ln 2-1)<0$.

Thus, $\ln x-\sqrt{x}<0 \Longrightarrow \ln x<\sqrt{x}$. Note that

$$
a_{k}<\frac{\sqrt{k}}{k^{2}}=\frac{1}{k^{\frac{3}{2}}}
$$

and $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ is convergent, by the Comparison Test, $\sum_{k=1}^{\infty} a_{k}$ is convergent.
Example (decimal series). Show that any decimal series of the form $0 . a_{1} a_{2} a_{3} \cdots$, where a_{i} is an integer satisfying $0 \leq a_{i} \leq 9$, is convergent. In other words, it always represents a real number. solution. Note that

$$
0 . a_{1} a_{2} a_{3} \cdots=a_{1} \cdot 10^{-1}+a_{2} \cdot 10^{-2}+a_{3} \cdot 10^{-3}+\cdots=\sum_{k=1}^{\infty} a_{k} \cdot 10^{-k}
$$

and

$$
0 \leq a_{k} \cdot 10^{-k} \leq 9 \cdot 10^{-k}
$$

for all $k \geq 1$. Note that the geometric series $\sum_{k=1}^{\infty} 9 \cdot 10^{-k}$ converges, by the Comparison Test, the decimal series always converges.
Theorem (Limit Comparison Test). Suppose that $\sum a_{k}$ and $\sum b_{k}$ are series with $a_{k} \geq 0$ and $b_{k}>0$. Assume

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=c
$$

- If $0<c<\infty$ (say, c is a finite positive number), then $\sum a_{k}$ and $\sum b_{k}$ either both converge or both diverge;
- If $c=0$ and $\sum b_{k}$ converges, then $\sum a_{k}$ converges;
- If $c=\infty$ and $\sum b_{k}$ diverges, then $\sum a_{k}$ diverges.

Proof. - If $c \in(0, \infty)$, let m and M be positive numbers such that $m<c<M$. Since $\frac{a_{k}}{b_{k}} \rightarrow c$ as $k \rightarrow \infty$, there is an integer K, such that

$$
m<\frac{a_{k}}{b_{k}}<M, \quad \text { for } k>K
$$

or equivalently, $m b_{k}<a_{k}<M b_{k}$, for $k>K$. By the comparison test, $\sum b_{k}$ has the same behavior of convergence or divergence as with $\sum a_{k}$.

- If $c=0$, there is a integer K, such that

$$
a_{k}<M b_{k}, \quad k>K .
$$

By the Comparison Test, we have that if $\sum b_{k}$ converges, then $\sum a_{k}$ converges.

- If $c=\infty$, there is an integer K, such that

$$
m b_{k}<a_{k}, \quad \text { for } k>K
$$

By the Comparison Test, we have that if $\sum b_{k}$ diverges, then $\sum a_{k}$ diverges.

Example. Determine whether the series converges below.

$$
\sum_{k=1}^{\infty} \frac{k}{3 k^{3}-k^{2}+1}
$$

solution.
Taking $a_{k}=\frac{k}{3 k^{3}-k^{2}+1}$ which is positive for all $k \geq 1$. We take $b_{k}=\frac{1}{k^{2}}$ and note that

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{k}{3 k^{3}-k^{2}+1}}{\frac{1}{k^{2}}}=\lim _{k \rightarrow \infty} \frac{k^{3}}{3 k^{3}-k^{2}+1}=\lim _{k \rightarrow \infty} \frac{1}{3-\frac{1}{k}+\frac{1}{k^{3}}}=\frac{1}{3} .
$$

Since that $\sum b_{k}$ is convergent. By the Limit Comparison Test, the series $\sum a_{k}$ is convergent as well. Example. Determine whether the series converges below

$$
\sum_{k=1}^{\infty} \frac{k^{2}}{3 k^{3}-k^{2}+1}
$$

solution.
Taking $a_{k}=\frac{k^{2}}{3 k^{3}-k^{2}+1}$ which is positive for all $k \geq 1$. We take $b_{k}=\frac{1}{k}$ and note that

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{k^{2}}{3 k^{3}-k^{2}+1}}{\frac{1}{k}}=\lim _{k \rightarrow \infty} \frac{k^{3}}{3 k^{3}-k^{2}+1}=\frac{1}{3} .
$$

Since that $\sum b_{k}$ is divergent. By the Limit Comparison Test, the series $\sum a_{k}$ is divergent as well. Example. Determine if the following series converges or diverges.

$$
\sum_{n=2}^{\infty} \frac{4 n^{2}+n}{\sqrt[3]{n^{7}+n^{3}}}
$$

solution. Fractions involving only polynomials or polynomials under radicals will behave in the same way as the largest power of n will behave in the limit. So, the terms in this series should behave as,

$$
\frac{n^{2}}{\sqrt[3]{n^{7}}}=\frac{n^{2}}{n^{\frac{7}{3}}}=\frac{1}{n^{\frac{1}{3}}}
$$

and as a series this will diverge by the p-series test. In fact, this would make a nice choice for our second series in the limit comparison test so let's use it.

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}+n}{\sqrt[3]{n^{7}+n^{3}}} \cdot \frac{n^{\frac{1}{3}}}{1}=\lim _{n \rightarrow \infty} \frac{4 n^{\frac{7}{3}}+n^{\frac{4}{3}}}{\sqrt[3]{n^{7}\left(1+\frac{1}{n^{4}}\right)}}=\lim _{n \rightarrow \infty} \frac{n^{\frac{7}{3}}\left(4+\frac{1}{n}\right)}{n^{\frac{7}{3}} \sqrt[3]{1+\frac{1}{n^{4}}}}=\frac{4}{\sqrt[3]{1}}=4
$$

Since that $\sum_{n=2}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ diverges, we have that the original series is divergent.
Example. Determine whether the series converges below,

$$
\sum_{k=1}^{\infty} \frac{\ln k}{k^{2}}
$$

solution.
Taking $a_{k}=\frac{\ln k}{k^{2}}$ which is positive for all $k \geq 1$. We take $b_{k}=\frac{1}{k^{p}}$ and note that

$$
0<\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{\ln k}{k^{2}}}{\frac{1}{k^{p}}}=\lim _{k \rightarrow \infty} \frac{\ln k}{k^{2-p}}<\lim _{k \rightarrow \infty} \frac{k^{\frac{1}{2}}}{k^{2-p}}=\lim _{k \rightarrow \infty} \frac{1}{k^{\frac{3}{2}-p}} .
$$

- when $p>\frac{3}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{3}{2}-p}}=\infty$;
- when $p<\frac{3}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{3}{2}-p}}=0$;
- when $p=\frac{3}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{3}{2}-p}}=\left(\lim _{k \rightarrow \infty} \frac{1}{k}\right)^{0}=1$.

Thus, we could choose $p \in\left(1, \frac{3}{2}\right]$, since $\sum b_{k}$ is convergent, by the Limit Comparison Test, the series $\sum a_{k}$ is convergent. For simplicity, we can take $b_{k}=\frac{1}{k^{\frac{3}{2}}}$.
Example. Determine whether the series converges below.

$$
\sum_{k=1}^{\infty} \frac{\ln k}{k} .
$$

solution. Taking $a_{k}=\frac{\ln k}{k}$ which is positive for all $k \geq 1$. We take $b_{k}=\frac{1}{k^{p}}$ and note that

$$
0<\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{\ln k}{k}}{\frac{1}{k^{p}}}=\lim _{k \rightarrow \infty} \frac{\ln k}{k^{1-p}}<\lim _{k \rightarrow \infty} \frac{k^{\frac{1}{2}}}{k^{1-p}}=\lim _{k \rightarrow \infty} \frac{1}{k^{\frac{1}{2}-p}} .
$$

- when $p>\frac{1}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{1}{2}-p}}=\infty$;
- when $p<\frac{1}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{1}{2}-p}}=0$;
- when $p=\frac{1}{2}, \lim _{k \rightarrow \infty} \frac{1}{k^{\frac{1}{2}-p}}=\left(\lim _{k \rightarrow \infty} \frac{1}{k}\right)^{0}=1$.

Thus, we could choose $p \in\left[\frac{1}{2}, 1\right]$, since $\sum b_{k}$ is divergent, by the Limit Comparison Test, the series $\sum a_{k}$ is divergent. For simplicity, we can take $b_{k}=\frac{1}{k}$.
Theorem (Ratio Test) Suppose that $\sum a_{k}$ is a series with positive terms.

- If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=L<1 \Longrightarrow \sum a_{k}$ converges;
- If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=L>1$ or $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\infty \Longrightarrow \sum a_{k}$ diverges;
- If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1$, the test is inconclusive.

Proof. - If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=L<1$, we take any number r, such that $r \in(L, 1)$. Thus, there is K such that when $k \geq K$,

$$
\left|\frac{a_{k+1}}{a_{k}}-L\right|<r-L \Longrightarrow-(r-L)<\frac{a_{k+1}}{a_{k}}-L<r-L, \Longrightarrow \frac{a_{k+1}}{a_{k}}<r
$$

we have $a_{k+1}<r a_{k}$ for all $k \geq K$. Thus $a_{K+k}<r^{k} \cdot a_{K}$ for all $k \geq 1$. Since that $|r|=r<1$, the geometry series $\sum_{k=1}^{\infty} a_{K} r^{k}$ converges. By the Comparison Test, the series $\sum_{k=K+1}^{\infty} a_{k}$ converges. Thus, $\sum_{k=1}^{\infty} a_{k}$ converges.

- To show $\sum a_{k}$ diverges, by the Divergence Test, it is sufficient to show that $\lim _{k \rightarrow \infty} a_{k} \neq 0$. Since $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=L>1$, there is K such that when $k>K$,

$$
\left|\frac{a_{k+1}}{a_{k}}-L\right|<L-1, \Longrightarrow-(L-1)<\frac{a_{k+1}}{a_{k}}-L \Longrightarrow \frac{a_{k+1}}{a_{k}}>1, \Longrightarrow a_{k+1}>a_{k}>\cdots>a_{K}
$$

Thus, $a_{k}>a_{K}$ for $k \geq K$. We have $\lim _{k \rightarrow \infty} a_{k} \neq 0$.

- Take $a_{k}=\frac{1}{k}$ and $a_{k}=\frac{1}{k^{2}}$ for $\sum a_{k}$. The former is divergent and the latter is convergent. For both series, we have

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1
$$

Hence, the Ratio Test is inconclusive if $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1$.

Example. Determine whether the series converge below, where $b>0$,

$$
\text { (a) } \sum_{k=1}^{\infty} \frac{b^{k}}{k!} \quad \text { (b) } \sum_{k=1}^{\infty} \frac{k!}{k^{k}} \text {. }
$$

solution. Note that $k!=k \cdot(k-1) \cdot(k-2) \cdots 2 \cdot 1$.
For (a), take $a_{k}=\frac{b^{k}}{k!}$ which is positive. Since that

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{b^{k+1}}{(k+1)!}}{\frac{b^{k}}{k!}}=\lim _{k \rightarrow \infty} \frac{b}{k+1}=0
$$

by the Ratio Test, the series $\sum a_{k}$ is convergent for any $b>0$.
For (b), take $a_{k}=\frac{k!}{k^{k}}$, which is positive. Since that

$$
\frac{a_{k+1}}{a_{k}}=\frac{\frac{(k+1)!}{(k+1)^{k+1}}}{\frac{k!}{k^{k}}}=\frac{1}{\frac{(k+1)^{k}}{k^{k}}}=\frac{1}{\left(1+\frac{1}{k}\right)^{k}}
$$

Since that $e=\lim _{k \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$, we have $e=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}$, such that

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\frac{1}{e}<1
$$

By the Ratio Test, the series $\sum a_{k}$ is convergent.
Theorem (Root Test). Suppose $\sum a_{k}$ is a series with nonnegative terms.

- If $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=L<1, \Longrightarrow \sum a_{k}$ converges;
- If $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=L>1$ or $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\infty, \Longrightarrow \sum a_{k}$ diverges;
- If $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=1$, the test is inconclusive.

Proof. - If $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=L<1$, we take $r \in(L, 1)$. Thus, there is K such that when $k \geq K$,

$$
\left|\sqrt[k]{a_{k}}-L\right|<r-L \Longrightarrow-(r-L)<\sqrt[k]{a_{k}}-L<r-L, \Longrightarrow \sqrt[k]{a_{k}}<r \Longrightarrow a_{k}<r^{k}
$$

When $|r|<1$, the geometric series $\sum r^{k}$ converges. By the Comparison Test, the series $\sum_{k=K}^{\infty} a_{k}$ converges. Thus, $\sum_{k=1}^{\infty} a_{k}$ converges.

- To show $\sum a_{k}$ diverges, by the Divergence Test, it is sufficient to show that $\lim _{k \rightarrow \infty} a_{k} \neq 0$. Since $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=L>1$, there is K, such that when $k \geq K$,

$$
\left|\sqrt[k]{a_{k}}-L\right|<(L-1) \Longrightarrow-(L-1)<\sqrt[k]{a_{k}}-L \Longrightarrow \sqrt[k]{a_{k}}>1 \Longrightarrow a_{k}>1
$$

We have $\lim _{k \rightarrow \infty} a_{k} \neq 0$. Similarly as above, if $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\infty$, we also have $\lim _{k \rightarrow \infty} a_{k} \neq$ 0 .

- Take $a_{k}=\frac{1}{k}$ and $a_{k}=\frac{1}{k^{2}}$ for the series $\sum a_{k}$. The former is divergent and the latter is convergent. For both series, we have $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=1$.

Example. Determine whether the series converge below,

$$
\text { (a) } \sum_{k=1}^{\infty}\left(\frac{3 k-1}{4 k+1}\right)^{k}, \quad \text { (b) } \sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{-k^{2}}
$$

solution. For (a), taking $a_{k}=\left(\frac{3 k-1}{4 k+1}\right)^{k}$ which is positive. Note that

$$
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{3 k-1}{4 k+1}\right)^{k}}=\lim _{k \rightarrow \infty} \frac{3 k-1}{4 k+1}=\lim _{k \rightarrow \infty} \frac{3-\frac{1}{k}}{4+\frac{1}{k}}=\frac{3}{4}<1
$$

By the Root Test, the series $\sum a_{k}$ is convergent.
For (b), take $a_{k}=\left(\frac{k}{k+1}\right)^{-k^{2}}$ which is positive. Note that

$$
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \sqrt[k]{\left(\frac{k}{k+1}\right)^{-k^{2}}}=\lim _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{k}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e>1
$$

By the Root Test, the series $\sum a_{k}$ is divergent.

