
MATH 1014 Calculus II Spring 2022 Lecture 16

Lecture 16 Comparison test

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Comparison test

Intuition. Suppose
∑

ak and
∑

bk are series with nonnegative terms.

• Suppose
∑

bk is convergent. Let

sn =
n∑

k=1

ak, tn =
n∑

k=1

bk, t =
∞∑
k=1

bk.

Since both series have positive terms, the sequences {sn} and {tn} are increasing. Since
tn → t, we have tn ≤ t for all n. Since ak ≤ bk, we have sn ≤ tn. Thus sn ≤ t for all n which
means {sn} is increasing and bounded above and so converges by the Monotonic Sequence
Theorem. Thus

∑
ak converges.

• Suppose
∑

bk is divergent. We show that
∑

ak is divergent by contradiction. In fact, if∑
ak is convergent, since bk ≤ ak, from the deviation above, we have that

∑
bk is convergent,

a contradiction.

We have the fact below,
Theorem (Comparison Test). Suppose

∑
ak and

∑
bk are series with nonnegative terms.

• if ak ≤ bk for all k and
∑

bk is convergent =⇒
∑

ak is convergent;

• if ak ≥ bk for all k and
∑

bk is divergent =⇒
∑

ak is divergent.

Example. Determine whether the series converges below,

∞∑
k=1

k

3k3 − k2 + 1
.

solution. Take ak = k
3k3−k2+1

, clearly, ak = k
k2(3k−1)+1

> 0 for all k ≥ 1. Note that

ak =
k

2k3 + (k3 − k2) + 1
≤ k

2k3 + 1
<

k

2k3
<

1

k2
.

Since that
∑∞

k=1
1
k2

is convergent, by the Comparison Test, the series
∑∞

k=1 ak is convergent.
Example. Determine if the following series is convergent or divergent.

∞∑
n=1

n

n2 − cos2 n
.

solution. Since the cosine term in the denominator doesn’t get too large we can assume that the
series terms will behave like n

n2 = 1
n , which, as a series, will diverge. So, from this we can guess that

the series will probably diverge and so we’ll need to find a smaller series that will also diverge. Note
that

n

n2 − cos2 n
>

n

n2
=

1

n
.
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Since
∑∞

n=1
1
n diverges, by the Comparison Test, our original series must also diverge.

Example. Determine if the following series is convergent or divergent.

∞∑
n=1

e−n

n+ cos2 n
.

solution. Since that the exponential goes to zeros very fast. So, let’s guess that this series will
converge and we’ll need to find a larger series that will also converge. Note that

e−n

n+ cos2 n
≤ e−n

n
≤ e−n

1
= e−n,

for all n ≥ 1. Take f(x) = e−x which is positive and decreasing on [1,∞). Note that∫ ∞
1

e−x dx = lim
t→∞

∫ t

1
e−x dx = lim

t→∞
(−e−x)|t1 = lim

t→∞
(−e−t + e−1) = e−1.

Thus, by the integral test, we have that
∑∞

n=1 e
−n is convergent as well as the original series.

Example. Determine if the following series converges or diverges.

∞∑
n=1

n2 + 2

n4 + 5
.

solution. Note that

n2 + 2

n4 + 5
<

n2 + 2

n4
,

and

∞∑
n=1

n2 + 2

n4
=

∞∑
n=1

n2

n4
+

∞∑
n=1

1

n4
=

∞∑
n=1

1

n2
+

∞∑
n=1

1

n4
.

Since
∑∞

n=1
1
n2 and

∑∞
n=1

1
n4 are both convergent, thus,

∑∞
n=1

n2+2
n4 is convergent as well as the

original series by the Comparison Test.
Example. Determine whether the series converges below,

∞∑
k=1

ln k

k2
.

solution. Take ak = ln k
k2

, clearly, ak ≥ 0 for all k ≥ 1. Since that

(lnx−
√
x)′ =

1

x
− 1

2
√
x
=

2−
√
x

2x

We have

• 0 < x < 4, 2−
√
x > 0, lnx−

√
x is increasing;

• x ≥ 4, 2−
√
x ≤ 0, lnx−

√
x is decreasing;

• when x = 4, the maximum ln(4)−
√
4 = 2 ln 2− 2 = 2(ln 2− 1) < 0.
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Thus, lnx−
√
x < 0 =⇒ lnx <

√
x. Note that

ak <

√
k

k2
=

1

k
3
2

.

and
∑∞

k=1
1

k
3
2

is convergent, by the Comparison Test,
∑∞

k=1 ak is convergent.

Example (decimal series). Show that any decimal series of the form 0.a1a2a3 · · · , where ai is an
integer satisfying 0 ≤ ai ≤ 9, is convergent. In other words, it always represents a real number.
solution. Note that

0.a1a2a3 · · · = a1 · 10−1 + a2 · 10−2 + a3 · 10−3 + · · · =
∞∑
k=1

ak · 10−k.

and

0 ≤ ak · 10−k ≤ 9 · 10−k,

for all k ≥ 1. Note that the geometric series
∑∞

k=1 9 · 10−k converges, by the Comparison Test, the
decimal series always converges.
Theorem (Limit Comparison Test). Suppose that

∑
ak and

∑
bk are series with ak ≥ 0 and bk > 0.

Assume

lim
k→∞

ak
bk

= c.

• If 0 < c <∞ (say, c is a finite positive number), then
∑

ak and
∑

bk either both converge or
both diverge;

• If c = 0 and
∑

bk converges, then
∑

ak converges;

• If c =∞ and
∑

bk diverges, then
∑

ak diverges.

Proof. • If c ∈ (0,∞), let m and M be positive numbers such that m < c < M . Since ak
bk
→ c

as k →∞, there is an integer K, such that

m <
ak
bk

< M, for k > K,

or equivalently, mbk < ak < Mbk, for k > K. By the comparison test,
∑

bk has the same
behavior of convergence or divergence as with

∑
ak.

• If c = 0, there is a integer K, such that

ak < Mbk, k > K.

By the Comparison Test, we have that if
∑

bk converges, then
∑

ak converges.

• If c =∞, there is an integer K, such that

mbk < ak, for k > K.

By the Comparison Test, we have that if
∑

bk diverges, then
∑

ak diverges.

3



MATH 1014 Calculus II Spring 2022 Lecture 16

Example. Determine whether the series converges below.

∞∑
k=1

k

3k3 − k2 + 1
.

solution.
Taking ak = k

3k3−k2+1
which is positive for all k ≥ 1. We take bk = 1

k2
and note that

lim
k→∞

ak
bk

= lim
k→∞

k
3k3−k2+1

1
k2

= lim
k→∞

k3

3k3 − k2 + 1
= lim

k→∞

1

3− 1
k + 1

k3

=
1

3
.

Since that
∑

bk is convergent. By the Limit Comparison Test, the series
∑

ak is convergent as well.
Example. Determine whether the series converges below

∞∑
k=1

k2

3k3 − k2 + 1
.

solution.
Taking ak = k2

3k3−k2+1
which is positive for all k ≥ 1. We take bk = 1

k and note that

lim
k→∞

ak
bk

= lim
k→∞

k2

3k3−k2+1
1
k

= lim
k→∞

k3

3k3 − k2 + 1
=

1

3
.

Since that
∑

bk is divergent. By the Limit Comparison Test, the series
∑

ak is divergent as well.
Example. Determine if the following series converges or diverges.

∞∑
n=2

4n2 + n
3
√
n7 + n3

.

solution. Fractions involving only polynomials or polynomials under radicals will behave in the same
way as the largest power of n will behave in the limit. So, the terms in this series should behave as,

n2

3
√
n7

=
n2

n
7
3

=
1

n
1
3

.

and as a series this will diverge by the p-series test. In fact, this would make a nice choice for our
second series in the limit comparison test so let’s use it.

lim
n→∞

4n2 + n
3
√
n7 + n3

· n
1
3

1
= lim

n→∞

4n
7
3 + n

4
3

3

√
n7
(
1 + 1

n4

) = lim
n→∞

n
7
3

(
4 + 1

n

)
n

7
3 3

√
1 + 1

n4

=
4
3
√
1
= 4.

Since that
∑∞

n=2
1

n
1
3

diverges, we have that the original series is divergent.

Example. Determine whether the series converges below,

∞∑
k=1

ln k

k2
.

solution.
Taking ak = ln k

k2
which is positive for all k ≥ 1. We take bk = 1

kp and note that

0 < lim
k→∞

ak
bk

= lim
k→∞

ln k
k2

1
kp

= lim
k→∞

ln k

k2−p
< lim

k→∞

k
1
2

k2−p
= lim

k→∞

1

k
3
2
−p

.
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• when p > 3
2 , limk→∞

1

k
3
2−p

=∞;

• when p < 3
2 , limk→∞

1

k
3
2−p

= 0;

• when p = 3
2 , limk→∞

1

k
3
2−p

=
(
limk→∞

1
k

)0
= 1.

Thus, we could choose p ∈ (1, 32 ], since
∑

bk is convergent, by the Limit Comparison Test, the series∑
ak is convergent. For simplicity, we can take bk = 1

k
3
2

.

Example. Determine whether the series converges below.

∞∑
k=1

ln k

k
.

solution. Taking ak = ln k
k which is positive for all k ≥ 1. We take bk = 1

kp and note that

0 < lim
k→∞

ak
bk

= lim
k→∞

ln k
k
1
kp

= lim
k→∞

ln k

k1−p
< lim

k→∞

k
1
2

k1−p
= lim

k→∞

1

k
1
2
−p

.

• when p > 1
2 , limk→∞

1

k
1
2−p

=∞;

• when p < 1
2 , limk→∞

1

k
1
2−p

= 0;

• when p = 1
2 , limk→∞

1

k
1
2−p

=
(
limk→∞

1
k

)0
= 1.

Thus, we could choose p ∈ [12 , 1], since
∑

bk is divergent, by the Limit Comparison Test, the series∑
ak is divergent. For simplicity, we can take bk = 1

k .
Theorem (Ratio Test) Suppose that

∑
ak is a series with positive terms.

• If limk→∞
ak+1

ak
= L < 1 =⇒

∑
ak converges;

• If limk→∞
ak+1

ak
= L > 1 or limk→∞

ak+1

ak
=∞ =⇒

∑
ak diverges;

• If limk→∞
ak+1

ak
= 1, the test is inconclusive.

Proof. • If limk→∞
ak+1

ak
= L < 1, we take any number r, such that r ∈ (L, 1). Thus, there is

K such that when k ≥ K,∣∣∣∣ak+1

ak
− L

∣∣∣∣ < r − L =⇒ −(r − L) <
ak+1

ak
− L < r − L,=⇒ ak+1

ak
< r,

we have ak+1 < rak for all k ≥ K. Thus aK+k < rk ·aK for all k ≥ 1. Since that |r| = r < 1,
the geometry series

∑∞
k=1 aKrk converges. By the Comparison Test, the series

∑∞
k=K+1 ak

converges. Thus,
∑∞

k=1 ak converges.

• To show
∑

ak diverges, by the Divergence Test, it is sufficient to show that limk→∞ ak 6= 0.
Since limk→∞

ak+1

ak
= L > 1, there is K such that when k > K,∣∣∣∣ak+1

ak
− L

∣∣∣∣ < L− 1,=⇒ −(L− 1) <
ak+1

ak
− L =⇒ ak+1

ak
> 1,=⇒ ak+1 > ak > · · · > aK .

Thus, ak > aK for k ≥ K. We have limk→∞ ak 6= 0.
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• Take ak = 1
k and ak = 1

k2
for
∑

ak. The former is divergent and the latter is convergent. For
both series, we have

lim
k→∞

ak+1

ak
= 1.

Hence, the Ratio Test is inconclusive if limk→∞
ak+1

ak
= 1.

Example. Determine whether the series converge below, where b > 0,

(a)

∞∑
k=1

bk

k!
(b)

∞∑
k=1

k!

kk
.

solution. Note that k! = k · (k − 1) · (k − 2) · · · 2 · 1.

For (a), take ak = bk

k! which is positive. Since that

lim
k→∞

ak+1

ak
= lim

k→∞

bk+1

(k+1)!

bk

k!

= lim
k→∞

b

k + 1
= 0,

by the Ratio Test, the series
∑

ak is convergent for any b > 0.
For (b), take ak = k!

kk
, which is positive. Since that

ak+1

ak
=

(k+1)!
(k+1)k+1

k!
kk

=
1

(k+1)k

kk

=
1(

1 + 1
k

)k .
Since that e = limk→∞

(
1 + 1

x

)x
, we have e = limk→∞

(
1 + 1

k

)k
, such that

lim
k→∞

ak+1

ak
=

1

e
< 1.

By the Ratio Test, the series
∑

ak is convergent.
Theorem (Root Test). Suppose

∑
ak is a series with nonnegative terms.

• If limk→∞ k
√
ak = L < 1,=⇒

∑
ak converges;

• If limk→∞ k
√
ak = L > 1 or limk→∞ k

√
ak =∞,=⇒

∑
ak diverges;

• If limk→∞ k
√
ak = 1, the test is inconclusive.

Proof. • If limk→∞ k
√
ak = L < 1, we take r ∈ (L, 1). Thus, there is K such that when k ≥ K,

| k
√
ak − L| < r − L =⇒ −(r − L) < k

√
ak − L < r − L,=⇒ k

√
ak < r =⇒ ak < rk.

When |r| < 1, the geometric series
∑

rk converges. By the Comparison Test, the series∑∞
k=K ak converges. Thus,

∑∞
k=1 ak converges.

• To show
∑

ak diverges, by the Divergence Test, it is sufficient to show that limk→∞ ak 6= 0.
Since limk→∞ k

√
ak = L > 1, there is K, such that when k ≥ K,

| k
√
ak − L| < (L− 1) =⇒ −(L− 1) < k

√
ak − L =⇒ k

√
ak > 1 =⇒ ak > 1.

We have limk→∞ ak 6= 0. Similarly as above, if limk→∞ k
√
ak =∞, we also have limk→∞ ak 6=

0.
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• Take ak = 1
k and ak = 1

k2
for the series

∑
ak. The former is divergent and the latter is

convergent. For both series, we have limk→∞ k
√
ak = 1.

Example. Determine whether the series converge below,

(a)
∞∑
k=1

(
3k − 1

4k + 1

)k

, (b)
∞∑
k=1

(
k

k + 1

)−k2
.

solution. For (a), taking ak =
(
3k−1
4k+1

)k
which is positive. Note that

lim
k→∞

k
√
ak = lim

k→∞
k

√(
3k − 1

4k + 1

)k

= lim
k→∞

3k − 1

4k + 1
= lim

k→∞

3− 1
k

4 + 1
k

=
3

4
< 1.

By the Root Test, the series
∑

ak is convergent.

For (b), take ak =
(

k
k+1

)−k2
which is positive. Note that

lim
k→∞

k
√
ak = lim

k→∞

k

√(
k

k + 1

)−k2
= lim

k→∞

(
k + 1

k

)k

= lim
k→∞

(
1 +

1

k

)k

= e > 1.

By the Root Test, the series
∑

ak is divergent.

7


	Comparison test

