
MATH 1014 Calculus II Spring 2022 Lecture 17

Lecture 17 Alternating series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

The last two tests (integral test and comparison test) that we looked at for series convergence have
required that all the terms in the series be positive. Of course there are many series out there that
have negative terms in them and so we now need to start looking at tests for these kinds of series.
The test that we are going to look into in this section will be a test for alternating series.

1 Alternating series

Definition An alternating series is a series whose terms are alternately positive and negative. In
general, an alternating series

∑∞
k=1 ak has its k-th term in the form

ak = (−1)k−1bk, or ak = (−1)kbk,

where bk > 0 for all k.
Example.
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Alternating Series Test. If {bk} is a positive and non-increasing (decreasing) sequence, say bk ≥
bk+1 > 0 and limk→∞ bk = 0, the alternating series below

∞∑
k=1

(−1)k−1bk = b1 − b2 + b3 − b4 + b5 − b6 + · · · , bk > 0,

converges.

Proof. Note that the even partial sums:

s2 = b1 − b2 ≥ 0,

s4 = s2 + (b3 − b4) ≥ s2,
...

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2,

and

s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1.

Thus, {s2n} is increasing and bounded. By the Monotonic Sequence Theorem, {s2n} is convergent.
Denote limn→∞ s2n = s. For the odd partial sums, we have

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1) = lim
n→∞

s2n + lim
n→∞

b2n+1 = s+ 0 = s.

Since both the even and odd partial sums converge to s, we have limn→∞ sn = s. As a result, the
alternating series is convergent.
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Rk. There are a couple of things to note about this test.

• First, unlike the Integral Test and the Comparison/Limit Comparison Test, this test will only
tell us when a series converges and not if a series will diverge;

• Secondly, in the second condition all that we need to require is that the series terms, bn will
be eventually decreasing. It is possible for the first few terms of a series to increase and still
have the test be valid. All that is required is that eventually we will have bn ≥ bn+1, for all n
after some point. For example, let us take the alternating series below,

∞∑
n=1

(−1)nbn,

and suppose that {bn} is not decreasing for 1 ≤ n ≤ N and decreasing for n ≥ N + 1. The
series can the be written as

∞∑
n=1

(−1)nbn =
N∑

n=1

(−1)nbn +
∞∑

n=N+1

(−1)nbn,

where
∑∞

n=1(−1)nbn has the same behavior of convergence or divergence as
∑∞

n=N+1(−1)nbn.
The point of all this is that we don’t need to require that the series terms be decreasing for
all n.

Example. The alternating harmonic series

∞∑
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ak = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · =

∞∑
k=1

(−1)k−1

k
=
∞∑
k=1

(−1)k−1bk,

where bk = 1
k is non-increasing and limk→∞ bk = 0. Thus by the Alternating Series Test, the series

converges.
Example. Determine if the series is convergent or divergent below.

∞∑
n=1

(−1)nn2

n2 + 5
.

solution. First, identify the bn for the test,

∞∑
n=1

(−1)nn2

n2 + 5
=
∞∑
n=1

(−1)n n2

n2 + 5
=⇒ bn =

n2

n2 + 5
.

Since that

lim
n→∞

bn = lim
n→∞

n2

n2 + 5
= 1 6= 0.

So, the condition isn’t met and so there is no reason to check the monotonicity. Since this condition
isn’t met we’ll need to use another test to check convergence. In this case where the condition isn’t
met it is usually best to use the divergence test. Note that

a2n =
(2n)2

(2n)2 + 5
, a2n+1 =

−(2n+ 1)2

(2n+ 1)2 + 5

and

lim
n→∞

a2n = 1 6= 0, lim
n→∞

a2n+1 = −1 6= 0.
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By the divergence test, Both series
∑
a2n and

∑
a2n+1 are divergent. Thus,

∑∞
n=1

(−1)nn2

n2+5
is

divergent.
Example. Determine if the following series is convergent or divergent.

∞∑
n=0

(−1)n−3
√
n

n+ 4
.

solution. Taking bn =
√
n

n+4 , clearly which is positive and

lim
n→∞

bn = lim
n→∞

√
n

n+ 4
= 0.

Then taking

f(x) =

√
x

x+ 4
, =⇒ f ′(x) =

4− x
2
√
x(x+ 4)2

.

Now, there are two critical points for this function, x = 0, and x = 4. Note that x = −4 is not a
critical point because the function is not defined at x = −4. The first is outside the bound of our
series so we won’t need to worry about that one. Since

• if 0 ≤ x ≤ 4, f ′(x) ≥ 0,=⇒ f(x) is increasing;

• if x ≥ 4, f ′(x) ≤ 0,=⇒ f(x) is decreasing;

We take bn = f(n) and then have that bn is also increasing on 0 ≤ n ≤ 4 and decreasing on n ≥ 4.
The bn are then eventually decreasing and so the condition is met. Thus, by the Alternating Series
Test, the series is convergent.
Example. Determine if the following series is convergent or divergent.

∞∑
n=2

cos(nπ)√
n

.

solution. Note that cos(nπ) = (−1)n and

∞∑
n=2

cos(nπ)√
n

=

∞∑
n=2

(−1)n√
n

=⇒ bn =
1√
n
.

Checking the two condition gives,

lim
n→∞

bn = lim
n→∞

1√
n
= 0

bn =
1√
n
>

1√
n+ 1

= bn+1.

The two conditions of the test are met and so by the Alternating Series Test, the series is convergent.
Remainder estimate for alternating series. If s =

∑∞
k=1(−1)kbk is the sum of an alternating series

that satisfies {bk} is non-increasing, (bk ≥ bk+1 > 0) and limk→∞ bk = 0, then

|Rn| = |s− sn| ≤ bn+1.

Proof. From the proof of alternating test, we have known that the sequence {s2n} is increasing.
Also, note that for the odd partial sums:

s1 = b1 > 0

s3 = b1 − (b2 − b3) ≤ s1
s5 = s3 − (b4 − b5) ≤ s3

...

s2n+1 =s2n−1 − (b2n − b2n+1) ≤ s2n−1.
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Thus, {s2n+1} is decreasing. Since we know that both {s2n} and {s2n+1} converge to s, we get

s2n ≤ s ≤ s2n+1, for all n.

Thus,

|Rn| = |s− sn| ≤ |sn+1 − sn| = bn+1.

Example. Consider the series

∞∑
k=0

(−1)k

k!
= 1− 1

2!
+

1

3!
− 1

4!
+ · · · .

(a) How many terms of the series must be used to obtain an approximation that is within 10−4 of
the exact value of the series.

(b) What is the approximation value.

solution. For (a), clearly, this alternating series is convergent. Then

s =

∞∑
k=0

(−1)k

k!
=

n∑
k=0

(−1)k

k!
+Rn,

Using the bound on the remainder in the Alternating Series Test, we have

|Rn| ≤
1

(n+ 1)!
.

Thus, to ensure that |Rn| < 10−4, we need to take n such that 1
(n+1)! < 10−4 =⇒ n > 7. Hence,

the finite series
∑7

k=0
(−1)k
k! gives an approximation that is w 10−4 of the exact value of the series.

For (b), it follows from |Rn| ≤ bn+1 =⇒ −bn+1 ≤ Rn ≤ bn+1 =⇒ sn − bn+1 ≤ sn + Rn = s ≤
sn + bn+1. We have

s7 −
1

8!
≤ s ≤ s7 +

1

8!
,

where s7 =
∑7

k=0
(−1)k
k! . By using a calculator, we have s7 ≈ 0.36786. Thus, 0.36784 < s <

0.36789. Taking the average of these two bounds as our approximation of s, we find that s ≈ 0.36787.
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