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Lecture 18 Absolute and conditional convergence

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Absolute Convergence and Conditional Convergence

Definition.

• A series
∑

ak is called absolutely convergent, if the series of the absolute values
∑
|ak| is

convergent;

• A series
∑

ak is called conditionally convergent, if
∑

ak is convergent, but
∑
|ak| is diver-

gent.

Intuition. Clearly, we have

0 ≤ ak + |ak| ≤ 2|ak|, for all k.

If
∑

ak is absolutely convergent, then
∑

2|ak| is convergent. By the Comparison Test,
∑

(ak+ |ak|)
is convergent. Thus, ∑

ak =
∑

(ak + |ak|)−
∑
|ak|,

is convergent.
Theorem. If a series

∑
ak is absolutely convergent, then it is convergent.

Rk. This fact is one of the ways in which absolute convergence is a “stronger” type of convergence.
Series that are absolutely convergent are guaranteed to be convergent. However, series that are
convergent may or may not be absolutely convergent.
Example. The series

(a)

∞∑
k=1

(−1)k−1

k2
, (b)

∞∑
k=1

(−1)k−1

k
, (c)

∞∑
k=1

sin k

k3
.

solution. For (a), since that

∞∑
k=1

|ak| =
∞∑
k=1

1

k2
,

is convergent. Thus, this series is absolutely convergent.

For (b), the alternating harmonic series
∑∞

k=1
(−1)k−1

k is convergent by the Alternating Series Test,
but the harmonic series

∑∞
k=1

1
k =

∑∞
k=1 |ak| is divergent. Thus, the alternating harmonic series is

conditionally convergent.
For (c), since that

|ak| =
| sin k|
k3

≤ 1

k3
,

and
∞∑
k=1

|ak| ≤
∞∑
k=1

1

k3
.

Note that
∑∞

k=1
1
k3

is convergent, by the Comparison Test, we have that
∑∞

k=1 |ak| is convergent.
Thus

∑∞
k=1 ak is absolutely convergent (and hence convergent).
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2 Recall the ratio rest, root test for finding the absolute convergence

In this section we are going to take a look at a test that we can use to see if a series is absolutely
convergent or not. Recall that if a series is absolutely convergent then we will also know that it’s
convergent and so we will often use it to simply determine the convergence of a series.
Ratio test Suppose we have the series

∑
an. Define

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then

• if c < 1, the series
∑

an is absolutely convergent (and hence convergent);

• if c > 1, the series
∑

an is divergent;

• if c = 1, the series
∑

an may be divergent, conditionally convergent, or absolutely convergent.

Proof. First note that we can assume without loss of generality that the series will start at n = 1.

• If c < 1, there is some number r, such that c < r < 1.

Thus, for some constant N , when n > N , we have∣∣∣∣an+1

an

∣∣∣∣ < r, =⇒ |an+1| < r|an|,

and

|aN+1| < r|aN |
|aN+2| < r|aN+1| < r2|aN |
|aN+3 < r|aN+2|| < r3|aN |

...

|aN+k| < r|aN+k−1| < rk|aN |.

Thus, for k = 1, 2, 3, · · · , we have |aN+k| < rk|aN |. Note that the series below

∞∑
k=0

|aN |rk

which is a geometric series with 0 < r < 1. Thus,
∑∞

k=0 |aN |rk is convergent. Also since |aN+k| <
rk|aN | by the Comparison test, the series

∞∑
n=N+1

|an| =
∞∑
k=1

|aN+k|,

is convergent. Note that

∞∑
n=1

|an| =
N∑

n=1

|an|+
∞∑

n=N+1

|an|,

we know that
∑∞

n=1 |an| is also convergent since the first term on the right is a finite sum of finite
terms and hence finite. Therefore

∑∞
n=1 an is absolutely convergent.
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If c > 1, there is a constant N , such that n ≥ N , we have∣∣∣∣an+1

an

∣∣∣∣ > 1, =⇒ |an+1| > |an|.

Thus, we have

lim
n→∞

|an| 6= 0.

Thus, by the Divergence Test,
∑

an is divergent.

If c = 1, we can take some examples to see below,

∞∑
n=1

1

n2
, absolutely convergent

∞∑
n=1

(−1)n

n
, conditionally convergent

∞∑
n=1

1

n
, divergent .

Example. Determine if the series below is convergent or divergent.

∞∑
n=1

(−10)n

42n+1(n+ 1)
.

solution.
Let’s take

an =
(−10)n

42n+1(n+ 1)
,

and note that

an+1 =
(−10)n+1

42(n+1)+1((n+ 1) + 1)
=

(−10)n+1

42n+3(n+ 2)
.

In turn, we have

c = lim
n→∞

∣∣∣∣an+1 ·
1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−10)n+1

42n+3(n+ 2)
· 4

2n+1(n+ 1)

(−10)n

∣∣∣∣
= lim

n→∞

∣∣∣∣(−10)(n+ 1)

42(n+ 2)

∣∣∣∣ = 10

16
lim
n→∞

n+ 1

n+ 2
=

10

16
< 1.

By the Ratio Test, the series converges absolutely and hence will converge.
Example. Determine if the series below is convergent or divergent.

∞∑
n=0

n!

5n
.

solution. Note that the definition of the n factorial by

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1,

and

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!

5n+1
· 5

n

n!

∣∣∣∣ = lim
n→∞

(n+ 1)!

5n!
= lim

n→∞

(n+ 1)n!

5n!
= lim

n→∞

n+ 1

5
=∞ > 1.

So, by the Ratio Test, this series diverges.
Rk.
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• 0! = 1, 1! = 1, 2! = 2 · 1 = 2, 3! = 3 · 2! = 6, 4! = 4 · 3! = 24, 5! = 5 · 4! = 120;

• n! = n(n− 1)(n− 2) · · · (n− k) · (n− k − 1)!

• (2n)! 6= 2 · n!, since that

(2n)! = (2n) · (2n− 1) · (2n− 2) · · · 3 · 2 · 1,
2n! = 2 [n(n− 1)(n− 2) · · · 3 · 2 · 1] .

Example. Determine if the series below is convergent or divergent.

∞∑
n=2

n2

(2n− 1)!
.

solution. Note that

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)2

(2(n+ 1)− 1)!
· (2n− 1)!

n2

∣∣∣∣
= lim

n→∞

∣∣∣∣ (n+ 1)2

(2n+ 1)!
· (2n− 1)!

n2

∣∣∣∣ = lim
n→∞

(n+ 1)2

(2n+ 1)(2n)(2n− 1)!
· (2n− 1)!

n2

= lim
n→∞

(n+ 1)2

(2n+ 1)(2n)(n2)
= 0 < 1.

Thus, by the Ratio Test, this series converges absolutely and so converges.
Example. Determine if the series below is convergent or divergent.

∞∑
n=1

9n

(−2)n+1n
.

solution.
Note that

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 9n+1

(−2)n+2(n+ 1)
· (−2)

n+1n

9n

∣∣∣∣
= lim

n→∞

∣∣∣∣ 9n

−2(n+ 1)

∣∣∣∣ = 9

2
lim
n→∞

n

n+ 1
=

9

2
> 1,

thus, by the Ratio Test, this series is divergent.
Example. Determine if the series below is convergent or divergent.

∞∑
n=0

(−1)n

n2 + 1
.

solution. Let’s first get c below,

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (−1)n+1

(n+ 1)2 + 1
· n

2 + 1

(−1)n

∣∣∣∣ = lim
n→∞

n2 + 1

(n+ 1)2 + 1
= 1,

which means the ratio test is not good for determining the convergence of this series. We will need
to resort to another test for this series. This series is an alternating series and so let’s check the two
conditions from that test.

lim
n→∞

bn = lim
n→∞

1

n2 + 1
= 0,

bn =
1

n2 + 1
>

1

(n+ 1)2 + 1
= bn+1.
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The two conditions are met and so by the Alternating Series Test this series is convergent. Note
that

∑
|an| by the comparison test with

∑ 1
n2 , this series is also absolutely convergent.

Example. Determine if the series below is convergent or divergent.

∞∑
n=0

n+ 2

2n+ 7
.

solution. Note that

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ n+ 3

2(n+ 1) + 7
· 2n+ 7

n+ 2

∣∣∣∣ = lim
n→∞

(n+ 3)(2n+ 7)

(2n+ 9)(n+ 2)
= 1.

Again, the ratio test tells us nothing here. We can however, quickly use the divergence test on this.
In fact that probably should have been our first choice on this one anyway.

lim
n→∞

n+ 2

2n+ 7
=

1

2
6= 0.

By the Divergence Test this series is divergent.
Root Test. Suppose that we have the series

∑
an. Define

c = lim
n→∞

n
√
|an| = lim

n→∞
|an|

1
n .

Then

• if c < 1, the series
∑

an is absolutely convergent (and hence convergent);

• if c > 1, the series
∑

an is divergent;

• if c = 1, the series
∑

an may be divergent, conditionally convergent, or absolutely convergent.

Proof. First note that we can assume without loss of generality that the series will start at n = 1.

• If c < 1, there is a number r, such that c < r < 1. Thus, there is some N , when n > N , we
have

|an|
1
n < r, =⇒ |an| < rn.

Note that
∑∞

n=0 r
n is a convergent geometric series with 0 < r < 1. By the comparison test,

the series
∑∞

n=N |an| is convergent. On the other hand,

∞∑
n=1

|an| =
N−1∑
n=1

|an|+
∞∑

n=N

|an|,

which indicates that
∑∞

n=1 |an| si convergent as well, since the first term on the right is a finite
sum of finite terms and hence finite. Thus,

∑∞
n=1 an is absolutely convergent.

• If c > 1, there must be some N , such that n ≥ N , we have

|an|
1
n > 1, =⇒ |an| > 1.

As a result,

lim
n→∞

|an| 6= 0 =⇒ lim
n→∞

an 6= 0.

Thus, by the Divergence Test,
∑

an is divergent.
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• If c = 1, we can take some examples below,

∞∑
n=1

1

n2
, absolutely convergent,

∞∑
n=1

(−1)n

n
, conditionally convergent,

∞∑
n=1

1

n
divergent .

Fact.

lim
n→∞

n
1
n = 1

solution. We can take an = ln
(
n

1
n

)
= lnn

n =⇒ n
1
n = ean . Since that by the L’Hospital’s rule, we

have

lim
x→∞

lnx

x
= lim

x→∞

1
x

1
= 0.

Thus,

lim
n→∞

an = 0,=⇒ lim
n→∞

n
1
n = lim

n→∞
ean = e0 = 1.

Example. Determine if the series below is convergent or divergent.

∞∑
n=1

nn

31+2n
.

solution. Note that

c = lim
n→∞

∣∣∣∣ nn

31+2n

∣∣∣∣ 1n = lim
n→∞

n

3
1
n
+2

=
∞
32

=∞ > 1.

Thus, by the Root Test, this series is divergent.
Example. Determine if the series below is convergent or divergent.

∞∑
n=0

(
5n− 3n3

7n3 + 2

)n

.

solution. Note that

c = lim
n→∞

∣∣∣∣(5n− 3n3

7n3 + 2

)n∣∣∣∣
1
n

= lim
n→∞

∣∣∣∣5n− 3n3

7n3 + 2

∣∣∣∣ = ∣∣∣∣−37
∣∣∣∣ = 3

7
< 1.

Thus, by the Root Test this series converges absolutely and hence converges.
Example. Determine if the series below is convergent or divergent.

∞∑
n=3

(−12)n

n
.

solution. Note that

c = lim
n→∞

∣∣∣∣(−12)nn

∣∣∣∣ 1n = lim
n→∞

12

n
1
n

=
12

1
= 12 > 1.

By the Root Test, this series is divergent.
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3 Summary: Strategy For Series

The guidelines for determining the convergence of a series below. Again, remember that these are
only a set of guidelines and not a set of hard and fast rules to use when trying to determine the best
test to use on a series.

• With a quick glance does it look like the series terms don’t converge to zero in the limit, i.e.,
does limn→∞ an 6= 0? If so, use the Divergence Test. Note that you should only do the
Divergence Test if a quick glance suggests that the series terms may not converge to zero in
the limit;

• Is the series a p-series
∑ 1

np or a geometric series (
∑∞

n=0 ar
n or

∑∞
n=1 ar

n−1)? If so use the
fact that p-series will only converge if p > 1 and a geometric series will only converge if |r| < 1.
Remember as well that often some algebraic manipulation is required to get a geometric series
into the correct form.

• Is the series similar to a p-series or a geometric series? If so, try the Comparison Test.

• Is the series a rational expression involving only polynomials or polynomials under radicals
(i.e. a fraction involving only polynomials or polynomials under radicals)? If so, try the
Comparison Test and/or the Limit Comparison Test. Remember however, that in order to use
the Comparison Test and the Limit Comparison Test the series terms all need to be positive.

• Does the series contain factorials or constants raised to powers involving n? If so, then the
Ratio Test may work. Note that if the series term contains a factorial then the only test that
we’ve got that will work is the Ratio Test.

• Can the series terms be written in the form an = (−1)nbn or an = (−1)n+1bn? If so, then the
Alternating Series Test may work.

• Can the series terms be written in the form an = (bn)
n? If so, then the Root Test may work.

• If an = f(n) for some positive, decreasing function and
∫∞
a f(x) dx is easy to evaluate then

the Integral Test may work.

In summary,
Divergence Test. If limn→∞ an 6= 0, then

∑
an will diverge.

Integral Test. Suppose that f(x) is a positive, decreasing function on the interval [k,∞) and that
f(n) = an then,

• If
∫∞
k f(x) dx is convergent then so is

∑∞
n=k an;

• If
∫∞
k f(x) dx is divergent then so is

∑∞
n=k an.

Comparison Test. Suppose that we have two series
∑

an and
∑

bn with an, bn ≥ 0 for all n and
an ≤ bn for all n. Then,

• If
∑

bn is convergent then so is
∑

an;

• If
∑

an is divergent then so is
∑

bn.

Limit Comparison Test. Suppose that we have two series
∑

an and
∑

bn with an, bn ≥ 0 for all n.
Define

c = lim
n→∞

an
bn

.

If 0 < c <∞, then either both series converge or both series diverge.
Alternating Series Test. Suppose that we have series

∑
an and either an = (−1)nbn or an =

(−1)n+1bn, where bn ≥ 0 for all n. Then if
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• limn→∞ bn = 0;

• {bn} is eventually a decreasing sequence;

then the series
∑

an is convergent.
Ratio Test. Suppose we have series

∑
an. Define

c = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then,

• if c < 1, the series is absolutely convergent (and hence convergent);

• if c > 1, the series is divergent;

• if c = 1, the series may be divergent, conditionally convergent, or absolutely convergent.

Root Test. Suppose that we have the series
∑

an. Define

c = lim
n→∞

n
√
|an| = lim

n→∞
|an|

1
n .

Then,

• if c < 1, the series is absolutely convergent (and hence convergent);

• if c > 1, the series is divergent;

• if c = 1, the series may be divergent, conditionally convergent, or absolutely convergent.

Rk. Common comparison object below,

• p-series:

∞∑
n=1

1

np
=

{
converges , if p > 1

diverges , if p ≤ 1.

• geometric series:

∞∑
r=1

ark−1 =


a

1− r
, if |r| < 1,

diverges , if |r| ≥ 1,

where a 6= 0 and r be a real number.
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