
MATH 1014 Calculus II Spring 2022 Lecture 21

Lecture 21 Taylor and Maclaurin Series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Recall last time

Substitution The basic geometric series is

1

1− x
= 1 + x+ x2 + x3 + · · ·+ xn + · · · =

∞∑
n=0

xn, if |x| < 1.

We could replace x by −x, x2, −x2, and get

1

1 + x
=

1

1− (−x)
= 1− x+ x2 − x3 + · · ·+ (−1)nxn + · · · =

∞∑
n=0

(−1)nxn, if |x| < 1,

1

1− x2
= 1 + x2 + x4 + x6 + · · ·+ x2n + · · · =

∞∑
n=0

x2n, if |x| < 1,

1

1 + x2
=

1

1− (−x2)
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + · · · =

∞∑
n=0

(−1)nx2n, if |x| < 1.

Example.

1

2 + 3x
=

1

2
(
1 + 3x

2

) =
1

2
· 1

1 + 3x
2

=
1

2

[
1− 3x

2
+

(
3x

2

)2

−
(
3x

2

)3

+ · · ·

]
=
∞∑
n=0

(−1)n3nxn

2n+1
,

where
∣∣3x

2

∣∣ < 1, say |x| < 2
3 =⇒ −2

3 < x < 2
3 . At the endpoint x = −2

3 , the series is
∑∞

n=0
1
2 =∞;

at the endpoint x = 2
3 , the series is

∑∞
n=0(−1)n

1
2 , which is divergent by the Divergent Test. Thus,

the interval of convergence is I = (−2
3 ,

2
3). Note that this series is centered at x = 0.

To represent below at center x = 1,

1

2 + 3x
=

∞∑
n=0

cn(x− 1)n

and note that

1

2 + 3x
=

1

3(x− 1) + 1
=

1

5 + 3(x− 1)
=

1

5
· 1

1 + 3
5(x− 1)

, if

∣∣∣∣35(x− 1)

∣∣∣∣ < 1

=
1

5

[
1− 3

5
(x− 1) +

32

52
(x− 1)2 − 33

53
(x− 1)3 + · · ·

]
=

∞∑
n=0

(−1)n3n · (x− 1)n

5n+1
if |x− 1| < 5

3
,

say −2
3 < x < 8

3 . At the endpoint x = −2
3 , the series is

∑∞
n=0

1
5 ; at x = 8

3 , the series is∑∞
n=0(−1)n

1
5 . By the divergence test, both cases are divergent. Thus, the interval of convergence

is I =
(
−2

3 ,
8
3

)
.

For power series
∑∞

n=0 cn(x− a)n, we consider the operation below,
Differentiation

d

dx

[ ∞∑
n=0

cn(x− a)n
]
=

∞∑
n=1

cnn · (x− a)n−1,

1
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which is differentiation term by term.
Integration ∫ [ ∞∑

n=0

cn(x− a)n
]
dx =

∞∑
n=0

cn

∫
(x− a)n dx,

which is integration term by term.
Rk. Definite integral below∫ b

a

( ∞∑
n=0

cn(x− a)n
)
dx =

∞∑
n=0

cn

∫ b

a
(x− a)n dx, b ∈ (a−R, a+R).

Example. We have known that the convergent geometric series below,

1 + x+ x2 + x3 + · · ·+ xn + · · · = 1

1− x
, if |x| < 1,

by differentiating on both sides, we have

0 + 1 + 2x+ 3x2 + · · ·+ nxn−1 + · = d

dx
(1− x)−1 =

1

(1− x)2
, if |x| < 1,

which gives a power series representation of 1
(1−x)2

. We can specify some series, e.g., taking x = 1
2 ,

we have

1 + 2 · 1
2
+ 3 ·

(
1

2

)2

+ · · ·+ n ·
(
1

2

)n−1

+ · = 1

(1− 1
2)

2
= 4,

say,

∞∑
n=1

n ·
(
1

2

)n−1

= 4,

and

∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2

If we differentiate more, we have

0 + 2 + 3 · 2x+ 4 · 3x2 + · · ·+ n(n− 1)xn−2 =
d

dx
(1− x)−2 =

2

(1− x)3
,

say

2

(1− x)3
=

∞∑
n=2

n(n− 1)xn−2.

Applications of differentiation and integration of power series for other function

1 + t+ t2 + t3 + · · ·+ tn + · · · = 1

1− t
, if |t| < 1.

If we take integration over [0, x], where |x| < 1,∫ x

0
(1 + t+ t2 + t3 + · · ·+ tn + · · · ) dt =

∫ x

0

1

1− t
dt = − ln(1− t)|x0 = − ln(1− x),

2



MATH 1014 Calculus II Spring 2022 Lecture 21

say,

x+
x2

2
+
x3

3
+ · · ·+ xn+1

n+ 1
+ · · · = − ln(1− x) =⇒ − ln(1− x) =

∞∑
n=0

xn+1

n+ 1
=
∞∑
n=1

xn

n
, (1)

where x ∈ (−1, 1). Then replace x by −x, we have

− ln(1 + x) =
∞∑
n=1

(−1)nxn

n
=⇒ ln(1 + x) = −

∞∑
n=1

(−1)nxn

n
=
∞∑
n=1

(−1)n−1xn

n
, (2)

where x ∈ (−1, 1). At the endpoint x = −1, the series is
∑ (−1)2n−1

n = −
∑ 1

n is divergent by

p-series test (p = 1). At the endpoint x = 1, the series is
∑ (−1)n−1

n is convergent by the alternating
series test. Thus, the interval of convergence if I = (−1, 1], the radius R = 1.
If we take x = 1

2 for (1), we have

− ln

(
1

2

)
=
∞∑
n=1

1

n

(
1

2

)n
=⇒ ln 2 =

∞∑
n=1

1

n

(
1

2

)n
.

If we take x = 1 for (2), we have

ln 2 =
∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

Actually, we can consider the n-th partial sum and see the remainder term. Note first that

1− x+ x2 + · · ·+ (−1)nxn =
1− (−x)n+1

1− (−x)
=

1 + (−1)nxn+1

1 + x
, if x 6= −1, (3)

where the decomposition of 1− an+1 = (1− a)(1 + a+ a2 + a3 + · · ·+ an) with a = −x has been
used. Integrating (3) on both sides over [0, 1], we have∫ 1

0

[
1− x+ x2 + · · ·+ (−1)nxn

]
dx = 1− 1

2
+

1

3
+ · · ·+ (−1)n

n+ 1

=

∫ 1

0

1

1 + x
dx+ (−1)n

∫ 1

0

xn+1

1 + x
dx = ln 2 + (−1)n

∫ 1

0

xn+1

1 + x
dx.

It turns out to be

0 ≤
∣∣∣∣ln 2− [1− 1

2
+

1

3
+ · · ·+ (−1)n

n+ 1

]∣∣∣∣ = ∣∣∣∣(−1)n+1

∫ 1

0

xn+1

1 + x
dx

∣∣∣∣ ≤ ∫ 1

0
xn+1 dx =

1

n+ 2
→ 0,

as n→∞, we have limn→ø∞Rn = 0, where Rn is remainder term, which gives exactly

ln 2 = 1− 1

2
+

1

3
+ · · ·+ (−1)n

n+ 1
+ · · · =

∞∑
n=0

(−1)n

n+ 1
.

Of course, we could use the substitution to get the expression of power series for functions, still
starting with

1 + t+ t2 + t3 + · · ·+ tn + · · · = 1

1− t
, if |t| < 1,

by substituting t by −t, we have

1− t+ t2 − t3 + · · ·+ (−1)ntn + · · · = 1

1 + t
, if |t| < 1.

3



MATH 1014 Calculus II Spring 2022 Lecture 21

If then substituting t by t2, we have

1− t2 + t4 − t6 + · · ·+ (−1)nt2n + · · · = 1

1 + t2
, |t2| < 1 =⇒ |t| < 1.

Integrating on both sides, then∫ x

0
1 dt−

∫ x

0
t2 dt+

∫ x

0
t4 dt−

∫ x

0
t6 dt+ · · · =

∫ x

0

1

1 + t2
dt = tan−1(x),

say,

x− 1

3
x3 +

x5

5
− x7

7
+ · · ·+ (−1)nx2n+1

2n+ 1
+ · · · = tan−1 x,=⇒ tan−1 x =

∞∑
n=0

(−1)nx2n+1

2n+ 1
,

where x ∈ (−1, 1), at the endpoint x = −1, the series is
∑ (−1)3n+1

2n+1 ; at the endpoint x = 1,

the series is
∑ (−1)n

2n+1 . Both cases are convergent by the alternating series test. The interval of
convergence is I = [−1, 1] and the radius of convergence R = 1. We have

tan−1 1 = 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n+ 1
.

Actually, note that

1 + (−x2) + (−x2)2 + · · ·+ (−x2)n =
1− (−x)n+1

1− (−x2)
,

where the decomposition of 1− an+1 = (1− a)(1 + a+ a2 + a3 + · · ·+ an) with a = −x2 has been
used. Integrating on both sides over [0, 1], we have∫ 1

0

[
1− x2 + x4 + · · ·+ (−1)nx2n

]
dx = 1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n

2n+ 1

=

∫ 1

0

1

1 + x2
dx+

∫ 1

0

(−1)nx2n+2

1 + x2
dx = tan−1 1 +

∫ 1

0

(−1)nx2n+2

1 + x2
dx,

which gives

0 ≤
∣∣∣∣tan−1 1−

[
1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)n

2n+ 1

]∣∣∣∣ = ∣∣∣∣∫ 1

0

(−1)nx2n+2

1 + x2
dx

∣∣∣∣ ≤ ∫ 1

0
x2n+2 dx =

1

2n+ 3
→ 0,

as n→∞ (since 0 < 1
1+x2

≤ 1), thus limn→∞Rn = 0, which gives exactly

π

4
= tan−1 1 = 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n+ 1
.

Thus,

tan−1 x = x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)nx2n+1

2n+ 1
+ · · · =

∞∑
n=0

(−1)nx2n+1

2n+ 1
, if x ∈ [−1, 1].

4
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2 Taylor and Maclaurin Series

In the previous section we started looking at writing down a power series representation of a function.
The problem with the approach in that section is that everything came down to needing to be able
to relate the function in some way to 1

1−x , and while there are many functions out there that can be
related to this function there are many more that simply can’t be related to this.
So, without taking anything away from the process we looked at in the previous section, what we
need to do is come up with a more general method for writing a power series representation for a
function.
Intuition (how to find the power series of ex). Note first the FTC that

ex − 1 = [et]|x0 =

∫ x

0
et dt =

∫ x

0
(−et) d(x− t) = −et(x− t)|x0 +

∫ x

0
(x− t)et dt

= x+

∫ x

0
(−et) d(x− t)

2

2!
= x− et · (x− t)

2

2!
|x0 +

∫ x

0

(x− t)2

2!
et dt

= x+
x2

2!
+

∫ x

0
(−et) d(x− t)

3

3!
= x+

x2

2!
+
x3

3!
+

∫ x

0
(−et) d(x− t)

4

4!
= · · ·

where the integration by parts has been used. Thus,

ex −
[
1 + x+

x2

2!
+ · · ·+ xn

n!

]
=

∫ x

0

(x− t)n

n!
· et dt =: Rn(x),

For the remainder term,

0 ≤ (x− t)n

n!
et ≤ ex(x− t)n

n!
=⇒ Rn(x) =

∫ x

0

(x− t)n

n!
et dt ≤ ex

n!

∫ x

0
(x− t)n dt

=
ex

n!

[
(x− t)n+1

n+ 1

]
|x0 =

exxn+1

(n+ 1)!

Since that limn→∞
exxn+1

(n+1)! = 0 for all x =⇒ limn→∞Rn(x) = 0, turn outs

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · =

∞∑
n=0

xn

n!
, x ∈ (−∞,∞).

Using the idea of integration by parts for the power series of function f at x = a,

f(x)− f(a) =
∫ x

a
f ′(t) dt =

∫ x

a
(−f ′(t)) d(x− t) = −f ′(t)(x− t)|ax +

∫ x

a
(x− t)f ′′(t) dt

= f ′(a)(x− a) +
∫ x

a
(−f ′′(t)) d(x− t)

2

2!

= f ′(a)(x− a)− f ′′(t) · (x− t)
2

2!
|xa +

∫ x

a

(x− t)2

2!
f ′′′(t) dt

= f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +

∫ x

a

(x− t)n

n!
f (n+1)(t) dt.

Thus, ∣∣∣∣∣f(x)−
(
f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a2) + · · ·++

f (n)(a)

n!
(x− a)n

)∣∣∣∣∣
=

∣∣∣∣∫ x

a

(x− t)n

n!
f (n+1)(t) dt

∣∣∣∣ =: Rn(x)

5
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If limn→∞Rn(x) = 0, then

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a2) + · · ·++

f (n)(a)

n!
(x− a)n + · · ·

Another idea of differentiation: So, for the time being, let’s make two assumptions.

• Assume that f(x) does in fact have a power series representation about x = a,

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + c4(x− a)4 + · · ·

• Assume that f(x) has derivatives of every order and that we can in fact find them all.

Now that we’ve assumed that a power series representation exists we need to determine what the
coefficients, cn, are.
Let’s first just evaluate everything at x = a. This gives

f(a) = c0.

Let’s take derivative of function f(x) and then plug in x = a, we have

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)3 + 4c4(x− a)3 + · · ·
f ′(a) = c1,

and we now know c1. Let’s continue with this idea and find the second derivative.

f ′′(x) = 2c2 + 3 · 2c3(x− a) + 4 · 3c4(x− a)2 + · · ·
f ′′(a) = 2c2,

so c2 = f ′′(a)
2 . Using the third derivative gives,

f ′′′(x) = 3 · 2c3 + 4 · 3 · 2c4(x− a) + · · ·

f ′′′(a) = 3 · 2c3 =⇒ c3 =
f ′′′(a)

3 · 2
.

Using the fourth derivative gives,

f (4)(x) = 4 · 3 · 2c4 + 5 · 4 · 3 · 2c5(x− a) + · · ·

f (4)(a) = 4 · 3 · 2c4, =⇒ c4 =
f (4)(a)

4 · 3 · 2
.

Hopefully by this time you have seen the pattern here. It looks like, in general, we’ve got the following
formula for the coefficients.

cn =
f (n)(a)

n!
.

This even works for n = 0 if you recall that 0! = 1 and define f (0)(x) = f(x).
So, provided a power series representation for the function f(x) about x = a exists the Taylor Series
for f(x) about x = a is
Fact (Taylor Series).

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) + f ′(a)(x− a) + f ′′(a)

2!
(x− a)2 + f ′′′(a)

3!
(x− a)3 + · · · .

6
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If we use a = 0, so we are talking about the Taylor Series about x = 0, we call the series a Maclaurin
Series for f(x) below.
Fact (Maclaurin Series).

f(x) =
∞∑
n=0

f (n)(0)

n!
xn

= f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

Before working any examples of Taylor Series we first need to address the assumption that a Taylor
Series will in fact exist for a given function. Let’s start out with some notation and definitions that
we’ll need.
To determine a condition that must be true in order for a Taylor series to exist for a function let’s
first define the nth degree Taylor polynomial of f(x) as,

Tn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.

Note that this really is a polynomial of degree at most n. If we were to write out the sum without
the summation notation this would clearly be an nth degree polynomial. Notice as well that for the
full Taylor Series,

∞∑
n=0

f (n)(a)

n!
(x− a)n,

the nth degree Taylor polynomial is just the partial sum for the series.
Next, the remainder is defined to be,

Rn(x) = f(x)− Tn(x),

So, the remainder is really just the error between the function f(x) and the nth degree Taylor
polynomial for a given n. Thus,

f(x) = Tn(x) +Rn(x).

We now have the following Theorem.
Theorem. Suppose that f(x) = Tn(x) +Rn(x). Then if

lim
n→∞

Rn(x) = 0,

for |x− a| < R then,

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n,

on |x− a| < R.
Rk. In general, showing that limn→∞Rn(x) = 0 is a somewhat difficult process and so we will be
assuming that this can be done for some R in all of the examples that we’ll be looking at.
We give the remainder formulas below,
Theorem (integral form of the remainder). If f (n+1) is continuous over an open interval I that con-
tains a, then

Rn(x) =
1

n!

∫ x

a
(x− t)nf (n+1)(t) dt, x ∈ I.

7
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Proof. This remainder formula could be proved by induction.
For n = 0, the formula gives

1

0!

∫ x

a
(x− t)0f ′(t) dt = f(x)− f(a) = f(x)− T0(x) = R0(x).

So the formula is true for n = 0. Suppose the formula holds for n = k:

Rk(x) =
1

k!

∫ x

a
(x− t)kf (k+1)(t) dt, x ∈ I.

Then, by integration by parts, we get

1

(k + 1)!

∫ x

a
(x− t)k+1f (k+2)(t) dt

=

[
1

(k + 1)!
(x− t)k+1f (k+1)(t)

]
|xa +

1

k!

∫ x

a
(x− t)kf (k+1)(t) dt

= Rk(x)−
f (k+1)(a)

(k + 1)
(x− a)k+1 = f(x)− Tk(x)−

f (k+1)(a)

(k + 1)
(x− a)k+1 = f(x)− Tk+1 = Rk+1(x).

So the formula is also true for n = k + 1. Hence, the remainder formula holds for all n ≥ 0.

By the Intermediate Value Theorem, we can easily get the variation below,
Theorem (Lagrange remainder of Taylor series.) If f (n+1) is continuous over I that contains a, then
there is c ∈ [a, x], such that

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

Theorem (remainder estimate). If |f (n+1)(x)| ≤M over I that contains a, then

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1, x ∈ I.

Thus, for each x ∈ I, since limn→∞
|x−a|n+1

(n+1!) = 0, then

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n, x ∈ I.

Theorem (convergence theorem of Taylor series) If limn→∞Rn(x) = 0 over I that contains a, then

f(x) = lim
n→∞

Tn(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n, x ∈ I.

Now let’s look at some examples.
Example. Find the Taylor Series for f(x) = ex about x = 0.
solution. Note that

f (n)(x) = ex n = 0, 1, 2, 3, · · ·

and so, f (n)(0) = e0 = 1. Therefore, the Taylor series for f(x) = ex about x = 0 is,

ex =
∞∑
n=0

1

n!
xn =

∞∑
n=0

xn

n!
.

8
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Rk. To find the interval of convergence, we use the ratio test below,

L = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣ = |x| limn→∞

1

n+ 1
= 0 < 1, for all x.

Thus, the interval of convergence is I = (−∞,∞), the radius of convergence R = ∞. Of course,∑∞
n=0

xn

n! is convergent to ex for all x, since that the remainder term (different form, let’s take the
Lagrange form remainder) is

lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣∣ = ec lim
n→∞

|x|n+1

(n+ 1)!
≤ ex lim

n→∞

|x|n+1

(n+ 1)!
= 0, for all x,

where c ∈ [0, x] ⊂ (−R,R) =⇒ ec ≤ ex, and f (n+1)(c) = ec, note that |x|n+1 � (n + 1)! as
n→∞.
Example. Find the Taylor Series for f(x) = e−x about x = 0.
solution. Method 1. We need to replace the x in the Taylor Series with −x below,

e−x =
∞∑
n=0

(−x)n

n!
=
∞∑
n=0

(−1)nxn

n!
.

Method 2. Let’s first take some derivatives and evaluate them at x = 0.

f (0)(x) = e−x, =⇒ f (0)(0) = 1,

f (1)(x) = −e−x, =⇒ f (1)(0) = −1,
f (2)(x) = e−x, =⇒ f (2)(0) = 1,

f (3)(x) = −e−x, =⇒ f (3)(0) = −1
· · · · · ·
f (n)(x) = (−1)ne−x, =⇒ f (n)(0) = (−1)n.

Thus, we have

e−x =
∞∑
n=0

(−1)nxn

n!
.

Rk. To find the interval of convergence, we use the ratio test below,

L = lim
n→∞

∣∣∣∣(−1)n+1xn+1

(n+ 1)!
· n!

(−1)nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣− 1

n+ 1
x

∣∣∣∣ = |x| limn→∞

1

n+ 1
= 0 < 1, for all x.

Thus, the interval of convergence is I = (−∞,∞); the radius of convergence is R =∞. Of course,∑∞
n=0

(−1)nxn

n! is convergent to e−x for all x, since that the Lagrange remainder term as n → ∞
would be

lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)ne−c(n+ 1)!
xn+1

∣∣∣∣ ≤ lim
n→∞

|x|n+1

(n+ 1)!
= 0, for all x

where c ∈ [0, x] =⇒ e−c ≤ 1 and note that |x|n+1 � (n+ 1)! as n→∞.
Example. Find the Taylor Series for f(x) = x4e−3x2 about x = 0.
solution. For this example, we will take advantage of the fact that we already have a Taylor Series
for ex about x = 0.

x4e−3x2 = x4
∞∑
n=0

(−3x2)n

n!
= x4

∞∑
n=0

(−3)nx2n

n!

=
∞∑
n=0

(−3)nx2n+4

n!
.

9
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Rk. By the ratio test, we have

L = lim
n→∞

∣∣∣∣∣(−3)n+1x2(n+1)+4

(n+ 1)!
· n!

(−3)nx2n+4

∣∣∣∣∣ = x2 lim
n→∞

3

n+ 1
= 0 < 1, for all x.

Thus, the interval of convergence is I = (−∞,∞); The radius R =∞. Of course,
∑∞

n=0
(−3)nx2n+4

n!

is convergent to x4e−3x2 for all x, since that the Lagrange remainder for e−x goes to 0 as n→∞.
Thus, when we do the substitution and multiplication of some polynomial, this gives us the convergent
function.
To this point we’ve only looked at Taylor Series about x = 0 (also known as Maclaurin Series) so
let’s take a look at a Taylor Series that isn’t about x = 0.
Example. Find the Taylor Series for f(x) = e−x about x = −4.

solution. Finding a general formula for f (n)(−4) is fairly simple.

f (n)(x) = (−1)ne−x, f (n)(−4) = (−1)ne4.

The Taylor Series is then,

e−x =

∞∑
n=0

(−1)ne4

n!
(x+ 4)n.

We now need to work some examples that don’t involve the exponential function since these will
tend to require a little more work.
Rk. By the ratio test, we have

L = lim
n→∞

∣∣∣∣(−1)n+1e4

(n+ 1)!
(x+ 4)n+1 · n!

(−1)ne4(x+ 4)n

∣∣∣∣ = |x+ 4| lim
n→∞

1

n+ 1
= 0 < 1, for all x.

Thus, the interval of convergence is I = (−∞,∞); the radius R = ∞. Of course, the series
is convergent to e−x for all x, since that limn→∞ |Rn(x)| = 0 over I below for the Lagrange
remainder.

lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− (−4))n+1

∣∣∣∣∣
= e−c lim

n→∞

|x+ 4|n+1

(n+ 1)!
≤ e−x lim

n→∞

|x+ 4|n+1

(n+ 1)!
= 0, for all x,

where c ∈ [−4, x], and |x+ 4|n+1 � (n+ 1)!.
Example. Find the Taylor Series for f(x) = cos(x) about x = 0.
solution. First, we’ll need to take some derivatives of the function and evaluate them at x = 0.

f (0)(x) = cosx, f (0)(0) = 1

f (1)(x) = − sinx, f (1)(0) = 0

f (2)(x) = − cosx, f (2)(0) = −1
f (3)(x) = sinx, f (3)(0) = 0

f (4)(x) = cosx, f (4)(0) = 1

f (5)(x) = − sinx, f (5)(0) = 0

f (6)(x) = − cosx, f (6)(0) = −1
· · · · · · · · ·

10
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In this example, unlike the previous ones, there is not an easy formula for either the general derivative
or the evaluation of the derivative. However, there is a clear pattern to the evaluations. So, let’s
plug what we’ve got into the Taylor series and see what we get,

cosx =
∞∑
n=0

f (n)(0)

n!
xn

= f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 + · · ·

= 1 + 0− 1

2!
x2 + 0 +

1

4!
x4 + 0− 1

6!
x6 + · · ·

Thus, we have

cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

we can actually come up with a general formula for the Taylor Series below,

cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, x ∈ (−∞,∞).

Rk. By the Ratio Test, we have

L = lim
n→∞

∣∣∣∣∣(−1)n+1x2(n+1)

(2(n+ 1))!
· (2n)!

(−1)nx2n

∣∣∣∣∣ = |x2| lim
n→∞

1

(2n+ 2)(2n+ 1)
= 0, for all x.

Thus, the interval of convergence is I = (−∞,∞); the radius R = ∞. Of course, the series is
convergent to cosx for all x, since that the Lagrange remainder term as n→∞ would be

lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣∣ ≤ lim
n→∞

|x|n+1

(n+ 1)!
= 0, for all x,

where c ∈ [0, c] and |f (n+1)(c)| ≤ 1, note that |x|n+1 � (n+ 1)! as n→∞.
Example. Find the Taylor Series for f(x) = sin(x) about x = 0.
solution. As with the last example we’ll start off in the same manner.

f (0)(x) = sinx f (0)(0) = 0

f (1)(x) = cosx f (1)(0) = 1

f (2)(x) = − sinx f (2)(0) = 0

f (3)(x) = − cosx f (3)(0) = −1
f (4)(x) = sinx f (4)(0) = 0

f (5)(x) = cosx f (5)(0) = 1

f (6)(x) = − sinx f (6)(0) = 0

· · · · · · · · ·

So, we get a similar pattern for this one. Let’s plug the numbers into the Taylor Series.

sinx =
∞∑
n=0

f (n)(0)

n!
xn

=
1

1!
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

11



MATH 1014 Calculus II Spring 2022 Lecture 21

In this case we only get terms that have an odd exponent on x and as with the last problem once
we ignore the zero terms there is a clear pattern and formula. So renumbering the terms as we did
in the previous example we get the following Taylor Series.

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!

We saw the remainder term given below (note that |f (k)| ≤ 1),

|Rn(x)| =
∣∣∣∣sinx− [x− x3

3!
+
x5

5!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!

]∣∣∣∣ = ∣∣∣∣∫ x

0

(x− t)2n+1

(2n+ 1)!
f (2n+2)(t) dt

∣∣∣∣
≤
∫ x

0

(x− t)2n+1

(2n+ 1)!
dt =

[
−(x− t)2n+2

(2n+ 2)!

]
|x0 =

x2n+2

(2n+ 2)!
,

thus, limn→∞Rn(x) = 0 for all x (since that x2n+2 � (2n + 2)! as n → ∞ for fixed x), say the
interval of convergence is I = (−∞,∞) and the radius R =∞ (this could be done by the ratio test
as well).
We really need to work another example or two in which f(x) isn’t about x = 0.
Exercise. Find the Taylor Series for f(x) = sin(x) at x = π.
Example. For f(x) = tan−1(x), find the higher order derivative f (2019)(0).
solution. Note that the Maclaurin series below,

tan−1 x =
∞∑
n=0

(−1)n x
2n+1

2n+ 1
, x ∈ [−1, 1].

By the uniqueness of Taylor expansion, we have

f (2n+1)(0)

(2n+ 1)!
=

(−1)n

2n+ 1
, n ≥ 0,

Thus,

f (2019)(0) = (−1)1009 · 2018! = −2018!.

Example. Find the Taylor Series for f(x) = lnx about x = 2.
solution. Here are the first few derivatives and the evaluations.

f (0)(x) = lnx f (0)(2) = ln 2

f (1)(x) =
1

x
f (1)(2) =

1

2

f (2)(x) = − 1

x2
f (2)(2) = − 1

22

f (3)(x) =
2

x3
f (3)(2) =

2

23

f (4)(x) = −2 · 3
x4

f (4)(2) = −2 · 3
24

f (5)(x) =
2 · 3 · 4
x5

f (5)(2) =
2 · 3 · 4

25

· · · · · · · · ·

f (n)(x) =
(−1)n+1(n− 1)!

xn
f (n)(2) =

(−1)n+1(n− 1)!

2n

12
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Note that while we got a general formula here it doesn’t work for n = 0. This will happen on
occasion so don’t worry about it when it does. In order to plug this into the Taylor Series formula
we’ll need to strip out the n = 0 term first.

lnx =
∞∑
n=0

f (n)(2)

n!
(x− 2)n

= f(2) +

∞∑
n=1

f (n)(2)

n!
(x− 2)n

= ln 2 +
∞∑
n=1

(−1)n+1(n− 1)!

n!2n
(x− 2)n

= ln 2 +

∞∑
n=1

(−1)n+1

n2n
(x− 2)n

Rk. By the ratio test, we have

L = lim
n→∞

∣∣∣∣(−1)n+2(x− 2)n+1

(n+ 1)2n+1
· n2n

(−1)n+1(x− 2)n

∣∣∣∣ = |x− 2| · 1
2

lim
n→∞

n

n+ 1
=
|x− 2|

2
< 1,

say |x− 2| < 2 =⇒ −2 < x− 2 < 2 =⇒ 0 < x < 4. At the endpoint x = 0, the series is

∞∑
n=1

(−1)n+1

n2n
(−1)n2n =

∞∑
n=1

(
− 1

n

)
,

which is divergent by the p-series test. At the endpoint x = 4, the series is

∞∑
n=1

(−1)n+1

n2n
2n =

∞∑
n=1

(−1)n+1 1

n
,

which is convergent alternating series by the alternating series test. Thus, the interval of convergence
is I = (0, 4]. The series is convergent to lnx over I, since that the Lagrange remainder term as
n→∞ would be

lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣∣f (n+1)(c)

(n+ 1)!
(x− 2)n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(−1)n+2n!
cn+1

(n+ 1)!
(x− 2)n+1

∣∣∣∣∣
= lim

n→∞

∣∣∣∣x− 2

c

∣∣∣∣n+1 1

n+ 1
≤ lim

n→∞

1

n+ 1
= 0, for x ∈ (0, 4],

where c ∈ [2, x], x ∈ (0, 4], and

|x− 2| < 2 =⇒ 1

2
≤ |x− 2|

c
≤ 1 =⇒

(
1

2

)n+1

≤
∣∣∣∣x− 2

c

∣∣∣∣n+1

≤ 1.

Rk. About the term sitting in front of the series, sometimes we need to do that when we can’t get
a general formula that will hold for all values of n.
Example. Find the Taylor Series for f(x) = 1

x2
about x = −1.

13
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solution. Again, here are the derivatives and evaluations.

f (0)(x) =
1

x2
f (0)(−1) = 1

(−1)2
= 1

f (1)(x) = − 2

x3
f (1)(−1) = − 2

(−1)3
= 2

f (2)(x) =
2 · 3
x4

f (2)(−1) = 2 · 3
(−1)4

= 2 · 3

f (3)(x) = −2 · 3 · 4
x5

f (3)(−1) = −2 · 3 · 4
(−1)5

= 2 · 3 · 4

· · · · · · · · ·

f (n)(x) =
(−1)n(n+ 1)!

xn+2
f (n)(−1) = (−1)n(n+ 1)!

(−1)n+2
= (n+ 1)!

Notice that all the negative signs will cancel out in the evaluation. Also, this formula will work for
all n, unlike the previous example.
Here is the Taylor Series for this function.

1

x2
=

∞∑
n=0

f (n)(−1)
n!

(x+ 1)n

=
∞∑
n=0

(n+ 1)!

n!
(x+ 1)n =

∞∑
n=0

(n+ 1)(x+ 1)n.

Rk. By the ratio test, we have

L = lim
n→∞

∣∣∣∣(n+ 2)(x+ 1)n+1

(n+ 1)(x+ 1)n

∣∣∣∣ = |x+ 1| lim
n→∞

n+ 2

n+ 1
= |x+ 1| < 1,

say −1 < x+1 < 1 =⇒ −2 < x < 0. At the endpoint x = −2, the series
∑∞

n=0(n+1)(−1)n which
is divergent by the Divergent test; at the endpoint x = 0, the series

∑∞
n=0(n + 1) is divergent by

the divergent test. Thus, the interval of convergence is I = (−2, 0); the radius R = 1.
Example. Find the Taylor Series for f(x) = x3 − 10x2 + 6 about x = 3.
solution. Here are the derivatives for this problem.

f (0)(x) = x3 − 10x2 + 6 f (0)(3) = −57
f (1)(x) = 3x2 − 20x f (1)(3) = −33
f (2)(x) = 6x− 20 f (2)(3) = −2
f (3)(x) = 6 f (3)(3) = 6

f (n)(x) = 0 f (4)(3) = 0, n ≥ 4

This Taylor series will terminate after n = 3. This will always happen when we are finding the Taylor
Series of a polynomial. Here is the Taylor Series for this one.

x3 − 10x2 + 6 =
∞∑
n=0

f (n)(3)

n!
(x− 3)n

= f(3) + f ′(3)(x− 3) +
f ′′(3)

2!
(x− 3)2 +

f ′′′(3)

3!
(x− 3)3 + 0

= −57− 33(x− 3)− (x− 3)2 + (x− 3)3.

14
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Rk. When finding the Taylor Series of a polynomial we don’t do any simplification of the right-hand
side. We leave it like it is. In fact, if we were to multiply everything out we just get back to the
original polynomial! While it’s not apparent that writing the Taylor Series for a polynomial is useful
there are times where this needs to be done.
Rk. So, we’ve seen quite a few examples of Taylor Series to this point and in all of them we were
able to find general formulas for the series. This won’t always be the case. To see an example of
one that doesn’t have a general formula, we will introduce some examples in the next section.
There are three important Taylor Series that we’ve derived in this section that we should summarize
up

ex =

∞∑
n=0

xn

n!

cosx =
∞∑
n=0

(−1)nx2n

(2n)!

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

Summary
Theorem (common Maclaurin series and their radii of convergence)

1.
1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · , x ∈ (−1, 1), R = 1,

2. ex =

∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · x ∈ (−∞,∞), R =∞,

3. sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n+ 1)!
+ · · · , x ∈ (−∞,∞), R =∞,

4. cosx =
∞∑
n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · , x ∈ (−∞,∞), R =∞

5. tan−1 x =

∞∑
n=0

(−1)n x
2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)n x

2n+1

2n+ 1
+ · · · , x ∈ [−1, 1], R = 1

6. ln(1 + x) =
∞∑
n=1

(−1)n−1x
n

n
= x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1x

n

n
+ · · · , x ∈ (−1, 1], R = 1

7. (1 + x)α =

∞∑
n=0

(
α

n

)
xn = 1 + αx+

α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · ,

at least for x ∈ (−1, 1), R = 1.
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