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Lecture 22 Applications of Taylor Series

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Applications of Series

Limits by Taylor Series
Example. Find

lim
x→0

x3 − 6x cos(x2) + 6 sinx

x5
.

solution. The limit has the indeterminate form 0
0 . Although we may apply l’Hospital’s Rule, alterna-

tively we use the technique of Taylor series. In fact, near x = 0, we have

sinx = x− 1

3!
x3 +

1

5!
x5 + · · · ,

cos(x2) = 1− 1

2!
(x2)2 + · · · ,

then as n→∞,

sinx = x− 1

6
x3 +

1

120
x5 = o(|x|5),

cos(x2) = 1− 1

2
x4 + o(|x|4),

thus,

lim
x→0

x3 − 6x cos(x2) + 6 sinx

x5
= lim

x→0

x3 − 6x
[
1− 1

2x
4 + o(|x|4)

]
+ 6

[
x− 1

6x
3 + 1

120x
5 + o(|x|5)

]
x5

= lim
x→0

61
20x

5 + o(|x|5)
x5

=
61

20
.

Example. Find

lim
x→∞

[
x4 sin(x−4)− x2e−1/x2 + x2

]
.

solution. If making the substitution x = t−1, we see that x→∞⇐⇒ t→ 0+. Thus,

lim
x→∞

[
x4 sin(x−4)− x2e−1/x2 + x2

]
= lim

t→0+

[
t−4 sin(t4)− t−2e−t2 + t−2

]
= lim

t→0+

sin(t4)− t2e−t2 + t2

t4
.

The last limit has the indeterminate form 0
0 . We use the technique of Taylor series. In fact, near

t = 0, we have

sin(t4) = t4 + · · ·

e−t
2
= 1 +

1

1!
(−t2) + · · · ,

1
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then as t→ 0+,

sin(t4) = t4 + o(|t|4),

e−t
2
= 1− t2 + o(|t|2),

thus,

lim
t→0+

sin(t4)− t2e−t2 + t2

t4
= lim

t→0+

[t4 + o(|t|4)]− t2[1− t2 + o(|t|2)] + t2

t4
= lim

t→0+

2t4 + o(|t|4)
t4

= 2.

In turn,

lim
x→∞

[
x4 sin(x−4)− x2e−1/x2 + x2

]
= 2.

Approximation of Definite Integrals

Example (approximation of a definite integral). Approximate
∫ 1
0 e
−x2 dx within 10−4 of the exact

value.
solution. Starting with the Maclaurin series,

ex =

∞∑
n=0

xn

n!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+ · · · , x ∈ (−∞,∞).

By replacing x with −x2, we have

e−x
2
=
∞∑
n=0

(−x2)n

n!
= 1− x2

1!
+
x4

2!
− x6

3!
+ · · · , x ∈ (−∞,∞).

Thus, ∫ 1

0
e−x

2
dx =

(
x− x3

3 · 1!
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·

)
|10

= 1− 1

3 · 1!
+

1

5 · 2!
− 1

7 · 3!
+ · · · =

∞∑
n=0

(−1)n

(2n+ 1) · n!
.

This shows that the definite integral can be expressed as a convergent alternating series, with bn =
1

(2n+1)·n! satisfying

0 < bn+1 < bn, lim
n→∞

bn = 0.

Using the bound on the remainder in the Alternating Series Test, we have

|Rn| =

∣∣∣∣∣
∫ 1

0
e−x

2
dx−

n∑
k=0

(−1)k

(2k + 1) · k!

∣∣∣∣∣ < bn+1 =
1

(2n+ 3) · (n+ 1)!
.

Thus, to ensure that |Rn| < 10−4, we need to choose n, such that

1

(2n+ 3) · (n+ 1)!
< 10−4, =⇒ n > 6.

Thus, the finite series
∑6

k=0
(−1)k

(2k+1)·k! gives an approximation that is within 10−4 of the exact value
of the series.
Thus, we have ∫ 1

0
e−x

2
dx ≈ s6 ≈ 0.74684.
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For comparison,
∫ 1
0 e
−x2 dx = 0.7468241324.... We see that our approximation indeed is within

10−4 of the exact value of the series.
Solving Differential Equations
Solve the differential equation y′(t) = y(t)− 1 subject to the initial value condition y(0) = 3.
solution. We assume the solution has a power series solution of the form

y(t) =
∞∑
n=0

cnt
n = c0 + c1t+ c2t

2 + c3t
3 + · · · ,

where the coefficients {cn} will be determined. Since that y(0) = 0, we have c0 = 3. The other
coefficients can be determined one by one. In fact, substituting the series solution into the differential
equation gives

c1 + 2c2t+ 3c3t
2 + 4c4t

3 + · · · = (c0 + c1t+ c2t
2 + c3t

3 + · · · )− 1.

Putting t = 0 on both sides of the equation gives

c1 = c0 − 1 =⇒ c1 = 2.

We differentiate both sides of the above equation to have

2c2 + 3 · 2c3t+ 4 · 3c4t2 + · · · = (c1 + 2c2t+ 3c3t
2 + · · · )− 0.

Again, putting t = 0 on both sides of the last equation gives

2c2 = c1 =⇒ c2 = 1.

We repeat the above process by differentiating the equation once more then putting t = 0 on the
resulted equation. Recursively, we get

c3 =
1

3
, c4 =

1

4 · 3
, c5 =

1

5 · 4 · 3
, · · ·

Thus, we obtain an “formal” solution below,

y(t) = 3 + 2t+ t2 +
t3

3
+

t4

4 · 3
+

t5

5 · 4 · 3
+ · · ·

The formal solution can be re-written as

y(t) = 1 + 2

(
1 + t+

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ · · ·

)
.

We recognize that the right-hand side is actually the Maclaurin series of the function 1+2et. Finally,
we can verify that the formally obtained solution is indeed the true solution of the original problem,
since

y′(t) = (1 + 2et)′ = 2et = (1 + 2et)− 1 = y(t)− 1;

y(0) = (1 + 2et)|t=0 = 3.

Example (from classviva.org). Let F (x) =
∫ x
0 e
−4t4 dt. Find the MacLaurin polynomial of degree 5

for F (x) and use this polynomial to estimate the value of
∫ 0.7
0 e−4x

4
dx

solution. Note that the MacLaurin Series below,

et =

∞∑
n=0

tn

n!
= 1 +

t

1!
+
t2

2!
+
t3

3!
+ · · ·+ tn

n!
+ · · · , t ∈ (−∞,∞),

e−4t
4
=
∞∑
n=0

(−4t4)n

n!
=
∞∑
n=0

(−1)n · 4n t
4n

n!
= 1 +

(−4t4)
1!

+
(−4t4)2

2!
+

(−4t4)3

3!
+ · · · .
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As a result,

F (x) =

∫ x

0
e−4t

4
dt =

∫ x

0

( ∞∑
n=0

(−1)n · 4n t
4n

n!

)
dx =

∞∑
n=0

(−1)n4n 1

n!

∫ x

0
t4n dx

=

∞∑
n=0

(−1)n4n 1

n!

x4n+1

4n+ 1
.

Thus, the Maclaurin polynomial is

Mn(x) =
n∑
k=0

(−1)k4k 1
k!

x4k+1

4k + 1
.

To find the degree less than 5, we should take n = 1, we have

M1(x) = x− 4 · x
5

5
= x− 4

5
x5.

Since that∫ 0.7

0
e−4x

4
dt = F (0.7) ≈M1(0.7) =

(
x− 4

5
x5
)
|x=0.7 = 0.7− 4

5
(0.7)5 = 0.565544.

Example (from classviva.org). Let T6(x): be the Taylor polynomial of degree 6 of the function f(x) =
ln(1+x) at a = 0. Suppose you approximate f(x) by T6(x), find all positive values of x for which this
approximation is within 0.001 of the right answer. (Hint: use the alternating series approximation.)
(0 < x ≤?).
solution. Note that the MacLaurin series below,

ln(1 + x) =

∞∑
n=1

(−1)n−1x
n

n
= x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1x

n

n
+ · · · , x ∈ (−1, 1], R = 1.

Thus,

f(x) ≈ T6(x) =
6∑

k=1

(−1)k−1x
k

k
= x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
.

Using the bound on the remainder in the alternating series test, we have

|R6| = |f(x)− T6(x)| ≤ b7 =
x7

7
, where x > 0,

to find x > 0, such that |R6| ≤ 10−3,=⇒ x7

7 ≤ 10−3,=⇒ 0 < x ≤ 7
√
7× 10−3.

Example (from classviva.org). Compute the 9-th derivative of

f(x) = tan−1
(
x3

5

)
,

at x = 0. Find f (9)(0). (Hint: Use the MacLaurin series for f(x)).
solution. Note that the Maclaurin series below,

tan−1 x =

∞∑
n=0

(−1)n x
2n+1

2n+ 1
, x ∈ [−1, 1],

tan−1
(
x3

5

)
=
∞∑
n=0

(−1)n x6n+3

(2n+ 1) · 52n+1
x ∈ [−1, 1].
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By the uniqueness of Taylor expansion, we have

f (6n+3)(0)

(6n+ 3)!
= (−1)n 1

(2n+ 1) · 52n+1
, n ≥ 0.

Thus,

f (9)(0) = (9!) · (−1) · 1

3 · 53
= − 9!

3 · 53
.

Now, that we know how to represent function as power series we have talked about at least a couple
of applications of series.
There are in fact many applications of series, unfortunately most of them are beyond the scope of
this course. One application of power series (with the occasional use of Taylor Series) is in the field
of Ordinary Differential Equations when finding Series Solutions to Differential Equations.
Another application of series arises in the study of Partial Differential Equations. One of the more
commonly used methods in that subject makes use of Fourier Series (here, we do not talk about that
trigonometric series).
Example. Determine a Taylor Series about x = 0 for the following integral.∫

sinx

x
dx.

solution. To do this we will first need to find a Taylor Series about x = 0 for the integrand. We
already have a Taylor Series for sine about x = 0, so we’ll just use that as follows,

sinx

x
=

1

x

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)nx2n

(2n+ 1)!
.

Thus, from term by term integration.∫
sinx

x
dx =

∫ ∞∑
n=0

(−1)nx2n

(2n+ 1)!
dx = C +

∞∑
n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)!
.

So, while we can not integrate this function in terms of known functions we can come up with a
series representation for the integral.
This idea of deriving a series representation for a function instead of trying to find the function itself
is used quite often in several fields. In fact, there are some fields where this is one of the main ideas
used and without this idea it would be very difficult to accomplish anything in those fields.

2 Other examples

Example. Find the first three non-zero terms in the Taylor Series for f(x) = ex cosx about x = 0.
solution. Before we start let’s acknowledge that the easiest way to do this problem is to simply
compute the first 4 derivative evaluate them at x = 0 plug into the formula and we would be done.
However, as we noted prior to this example we want to use this example to illustrate how we multiply
series.
We will make use of the fact that we have got Taylor Series for each of these so we can use them in
this problem.

ex cosx =

( ∞∑
n=0

xn

n!

)( ∞∑
n=0

(−1)nx2n

(2n)!

)
.

5



MATH 1014 Calculus II Spring 2022 Lecture 22

Now, let’s write down the first few terms of each series and we’ll stop at the x4 in each series,

ex cosx =

(
1 + x+

x2

2
+
x3

6
+
x4

24
+ · · ·

)(
1− x2

2
+
x4

24
+ · · ·

)
=

(
1− x2

2
+
x4

24
+ · · ·

)
+

(
x− x3

2
+
x5

24
+ · · ·

)
+

(
x2

2
− x4

4
+
x6

48
+ · · ·

)
+

(
x3

6
− x5

12
+

x7

144
+ · · ·

)
+

(
x4

24
− x6

48
+

x8

576
+ · · ·

)
= 1 +

(
−1

2
+

1

2

)
x2 +

(
−1

2
+

1

6

)
x3 +

(
1

24
− 1

4
+

1

24

)
x4 + · · ·

= 1 + x− x3

3
− x4

6
+ · · ·

We are going to look at another series representation for a function. Before we do this let’s first
recall the following theorem.
Binomial Theorem If n is any positive integer then,

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk = an + nan−1b+

n(n− 1)

2!
an−2b2 + · · ·+ nabn−1 + bn,

where the notation(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
, k = 1, 2, 3, · · · , n(

n

0

)
= 1.

This is useful for expanding (a + b)n for large n when straight forward multiplication would not be
easy to do. Let’s take a quick look at an example.
Example. Use the Binomial Theorem to expand (2x− 3)4.
solution. There really isn’t much to do other than plugging into the theorem.

(2x− 3)4 =
4∑
i=0

(
4

k

)
(2x)4−k(−3)k

=

(
4

0

)
(2x)4 +

(
4

1

)
(2x)3(−3) +

(
4

2

)
(2x)2(−3)2 +

(
4

3

)
(2x)(−3)3 +

(
4

4

)
(−3)4

= (2x)4 + 4(2x)3(−3) + 4 · 3
2

(2x)2(−3)2 + 4 · (2x)(−3)3 + (−3)4

= 16x4 − 96x3 + 216x2 − 216x+ 81.

Now, the Binomial Theorem required that n be a positive integer. There is an extension to this
however that allows for any number at all.
Binomial Series If p is any number and |x| < 1, then

(1 + x)p =

∞∑
n=0

(
p

n

)
xn = 1 + px+

p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + · · · ,

where (
p

n

)
=
p(p− 1)(p− 2) · · · (p− n+ 1)

n!
, n = 1, 2, 3, · · ·(

p

0

)
= 1.
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So, similar to the binomial theorem except that it is an infinite series and we must have |x| < 1 in
order to get convergence.
Example. Write down the first four terms in the binomial series for

√
9− x.

solution. Note that p = 1
2 and

√
9− x = 3

(
1− x

9

) 1
2
= 3

(
1 +

(
−x
9

)) 1
2
.

The first four terms in the binomial series is then,

√
9− x = 3

(
1 +

(
−x
9

)) 1
2
= 3

∞∑
n=0

1

2
n

(−x
9

)n
= 3

[
1 +

1

2
·
(
−x
9

)
+

1
2

(
−1

2

)
2

(
−x
9

)2
+

1
2

(
−1

2

) (
−3

2

)
6

(
−x
9

)3
+ · · ·

]

= 3− x

6
− x2

216
− x3

3888
− · · ·

Example. Expand the function y =
√
a2 + x2, (a > 0) as its MacLaurin Series.

solution. Write the function as

y = a
[
1 + (x/a)2

] 1
2 .

By the binomial expansion

(1 + x)α =
∞∑
k=0

(
α

k

)
xk, x ∈ (−1, 1).

Thus, for x ∈ (−a, a),

√
a2 + x2 = a

∞∑
k=0

1

2
k

(x
a

)2k
= a

[
1 +

1
2

1!
·
(x
a

)2
+

1
2

(
1
2 − 1

)
2!

·
(x
a

)4
+

1
2

(
1
2 − 1

) (
1
2 − 2

)
3!

·
(x
a

)6
+ · · ·

]

= a+
1
2

1!
· a−1x2 +

1
2

(
1
2 − 1

)
2!

· a−3x4 +
1
2

(
1
2 − 1

) (
1
2 − 2

)
3!

· a−5x6 + · · ·

Example (from classviva.org). (a) Evaluate the integral∫ 2

0

16

x2 + 4
dx

Your answer should be in the form kπ, where k is an integer. What is the value of k? (Hint:
(tan−1(x))′ = 1

1+x2
).

(b) Now, let’s evaluate the same integral using power series. First, find the power series for the
function f(x) = 16

x2+4
. Then, integrate it from 0 to 2 and call it S. S should be an infinite series∑∞

n=0 an.
What are the first few terms of S? a0, a1, a2, a3, a4?
(c) The answer in part (a) equals the sum of the infinite series in part (b) (why?). Hence, if you
divide your infinite series from (b) by k (the answer to (a)), you have found an estimate for the value
of π in terms of an infinite series. Approximate the value of π by the first 5 terms.

7
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(d) What is an upper bound for your error of your estimate if you use the first 9 terms? (Use the
alternating series estimation.)
solution. For (a), note that∫ 2

0

16

x2 + 4
dx =

∫ 2

0

4

1 +
(
x
2

)2 dx = 8

∫ 2

0

1

1 +
(
x
2

)2 d(x2) = 8 tan−1
(x
2

)
|20 = 8 · π

4
= 2π.

Thus, k = 2.
For (b), note that

1

1 + x
=

∞∑
n=0

(−1)nxn, if |x| < 1,

we have

f(x) =
16

4 + x2
= 4 · 1

1 +
(
x
2

)2 =
∞∑
n=0

4(−1)n
(x
2

)2n
=
∞∑
n=0

(−1)n x
2n

4n−1
.

Then,

S =

∫ 2

0

( ∞∑
n=0

(−1)n x
2n

4n−1

)
dx =

∞∑
n=0

(−1)n 1

4n−1

∫ 2

0
x2n dx =

∞∑
n=0

(−1)n 1

4n−1
22n+1

2n+ 1
=

∞∑
n=0

(−1)n 8

2n+ 1
.

Thus,

a0 = 8, a1 = −
8

3
, a2 =

8

5
, a3 = −

8

7
, a4 =

8

9
.

For (c), note that

∞∑
n=0

(−1)n 8

2n+ 1
= 2π,

since that the remainder term (by the bound of alternating series)

|Rn| =

∣∣∣∣∣
∫ 2

0

16

x2 + 4
dx−

n−1∑
k=0

(−1)k 8

2k + 1

∣∣∣∣∣ =
∣∣∣∣∣
∫ 2

0

16

x2 + 4
dx−

n∑
k=1

(−1)k−1 8

2(k − 1) + 1

∣∣∣∣∣
≤ bn+1 =

8

2n+ 1
→ 0, as n→∞.

Thus,

π =

∞∑
n=0

(−1)n 4

2n+ 1
.

The approximation by the first 5 terms is

π ≈ 4− 4

3
+

4

5
− 4

7
+

4

9
≈ 3.3397

For (d), use the alternating series estimation, we have the upper bound for π

|R9| =

∣∣∣∣∣π −
8∑

k=0

(−1)k 4

2k + 1

∣∣∣∣∣ =
∣∣∣∣∣π −

9∑
k=1

(−1)k−1 4

2(k − 1) + 1

∣∣∣∣∣ ≤ b10 = 4

2 · 9 + 1
=

4

19
.
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Example. For the following alternating series,

∞∑
n=1

an = 1− (0.3)2

2!
+

(0.3)4

4!
− (0.3)6

6!
+

(0.3)8

8!
+ · · · ,

how many terms do you have to go for your approximation (your partial sum) to be within 10−7

from the convergent value of that series.
solution. Since that

cosx =

∞∑
n=0

(−1)n x2n

(2n)!

= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
+ · · ·+ (−1)n x2n

(2n)!
+ · · ·

=

∞∑
n=0

(−1)n f
(2n)(0)

(2n)!
x2n,

and use the Lagrange remainder and note that |f (k)| ≤ 1, we have

|Rn(x)| =

∣∣∣∣∣cosx−
n−1∑
k=0

(−1)k x
2k

(2k)!

∣∣∣∣∣ ≤ |f (2n)(c)|(2n)!
|x|2n,

where c ∈ [0, x]. Taking x = 0.3, to find n, we have to take

|Rn(0.3)| ≤
1

(2n)!
(0.3)2n ≤ 10−7,

in turn, n = 4 at least satisfied, such that 1.6272× 10−9 ≤ 10−7.
Counterexample for Taylor series of function. Considering

f(x) =

{
e−

1
x2 , if x 6= 0,

0 if x = 0.

Note that f(x) = e−
1
x2 → e0 = 1 as x → ∞; f(x) = e−

1
x2 → e−∞ = 0. The MacLaurin series of

f at x = 0 is

0 + 0 · x+ 0 · x2 + · · · = 0 6= f(x), except x = 0,

where f (n)(0) = 0. Just look at

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

e−
1
h2

h
= lim

h→0

1
h

e
1
h2

= lim
h→0

− 1
h2

− 2
h3
e

1
h2

= lim
h→0

1

2
he−

1
h2 = 0,

where the l’Hospital rule has been used. Thus,

f ′(x) =


2

x3
e−

1
x2 , if x 6= 0,

0 if x = 0.

For the general case of f (n)(x), we could use the definition of derivative, we could get f (n)(0) = 0.
However, in this example, the function f(x) can not be expanded at x = 0 with some Taylor series.
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