Lecture 8 (Applications of integration)-Areas between curves

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Areas between curves

If we let $f(x)>0$ and $g(x)<0$ on $[a, b]$, see Figure 1, and denote the areas between the graphs and x-axis by A_{f} and A_{g}. Thus,

$$
A_{f}=\int_{a}^{b} f(x) d x, \quad A_{g}=-\int_{a}^{b} g(x) d x
$$

For example,

$$
\begin{aligned}
& \int_{1}^{2} f(x) d x=\int_{1}^{2} x d x=\left.\frac{1}{2} x^{2}\right|_{1} ^{2}=\frac{1}{2}(4-1)=\frac{3}{2}=A_{f} \\
& \int_{1}^{2} g(x) d x=\int_{1}^{2}-x d x=-\left.\frac{1}{2} x^{2}\right|_{1} ^{2}=-\frac{1}{2}(4-1)=-\frac{3}{2}=-A_{g}
\end{aligned}
$$

Figure 1: The areas between the graphs and x-axis over $[a, b]$, where $f(x)>0$ and $g(x)<0$.

Area of a region bounded by two curves

Figure 2: Area of a region bounded by two curves.
Note that in Figure 2, the area over $[a, b]$ is bounded by two curves $f(x)$ and $g(x)$ which is given by

$$
A=A_{f}+A_{g}=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}[f(x)-g(x)] d x
$$

Theorem. Let f and $g(x)$ be two continuous functions with $f(x) \geq g(x)$ over $[a, b]$. The area between the graphs of f and g over $[a, b]$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example. Find the area of the closed region bounded by the graphs of the functions $f(x)=\frac{1}{x^{2}+1}$ and $g(x)=\frac{1}{2}$.
solution. To find the intersections of two curves, we take

$$
\frac{1}{x^{2}+1}=\frac{1}{2}, \quad \Longrightarrow x= \pm 1
$$

Note that

- when $-1 \leq x \leq 1, x^{2}+1 \leq 2$, we have $f(x) \geq g(x)$;
- when $x<-1$ or $x>1, x^{2}+1>2$, we have $f(x) \leq g(x)$.

The closed domain is presented below. Thus, the area of the region bounded by two curves is

$$
\begin{aligned}
A & =\int_{-1}^{1}[f(x)-g(x)] d x=\int_{-1}^{1}\left[\frac{1}{x^{2}+1}-\frac{1}{2}\right] d x=\left.\arctan x\right|_{-1} ^{1}-\frac{1}{2} \cdot 2 \\
& =\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)-1=\frac{\pi}{2}-1
\end{aligned}
$$

Example. Find the area of the closed region bounded by the graphs of the functions $f(x)=x+2$ and $g(x)=|x|$ over the interval $[-2,1]$.
solution. To find the intersection of $f(x)$ and $g(x)$, we take

$$
x+2=|x|, \quad \Longrightarrow x=-1
$$

Note that

- when $x \leq-1, x+2 \leq|x|$, we have $f(x) \leq g(x)$;
- when $x \geq-1, x+2 \geq|x|$, we have $f(x) \geq g(x)$.

The closed region is presented below. Thus, the area of the region bounded by f and g is

$$
\begin{aligned}
A & =\int_{-2}^{-1}[g(x)-f(x)] d x+\int_{-1}^{1}[f(x)-g(x)] d x \\
& =\int_{-2}^{-1}[|x|-(x+2)] d x+\int_{-1}^{1}[x+2-|x|] d x \\
& =\int_{-2}^{-1}[-x-(x+2)] d x+\int_{-1}^{0}[x+2-(-x)] d x+\int_{0}^{1}[x+2-x] d x \\
& =\left.\left(-x^{2}-2 x\right)\right|_{-2} ^{-1}+\left.\left(x^{2}+2 x\right)\right|_{-1} ^{0}+\left.2 x\right|_{0} ^{1} \\
& =(-1+2)-(-4+4)+0-(1-2)+2-0=4 .
\end{aligned}
$$

Rk. Note that

$$
A=\int_{-2}^{-1}[g(x)-f(x)] d x+\int_{-1}^{1}[f(x)-g(x)] d x=\int_{-2}^{1}|f(x)-g(x)| d x
$$

since that $f(x) \leq g(x)$ when $x \leq-1$ and $f(x) \geq g(x)$ when $x \geq-1$.
Theorem. Generally, the area between the curve $f(x)$ and $g(x)$ over $[a, b]$ is given by

$$
\int_{a}^{b}|f(x)-g(x)| d x
$$

Example. Find the area between $f(x)=\cos x$ and $g(x)=\sin x$ over $\left[0, \frac{\pi}{2}\right]$.
solution. The area is

$$
\int_{0}^{\frac{\pi}{2}}|f(x)-g(x)| d x=\int_{0}^{\frac{\pi}{2}}|\cos x-\sin x| d x
$$

To find the intersections, we take

$$
\cos x=\sin x, \quad \Longrightarrow \cos ^{2} x=\sin ^{2} x=1-\cos ^{2} x \quad \Longrightarrow \cos ^{2} x=\frac{1}{2}
$$

due to $x \in\left[0, \frac{\pi}{2}\right]$, we have $x=\frac{\pi}{4}$. Note that

- when $0 \leq x \leq \frac{\pi}{4}, \sin x \leq \frac{\sqrt{2}}{2} \leq \cos x$, we have $f(x) \geq g(x)$;
- when $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}, \sin x \geq \frac{\sqrt{2}}{2} \geq \cos x$, we have $f(x) \leq g(x)$.

The area between two curves is presented below. Thus, the area is

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{2}}|f(x)-g(x)| d x=\int_{0}^{\frac{\pi}{4}}[f(x)-g(x)] d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}[g(x)-f(x)] d x \\
& =\int_{0}^{\frac{\pi}{4}}[\cos x-\sin x] d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}[\sin x-\cos x] d x \\
& =\left.(\sin x+\cos x)\right|_{0} ^{\frac{\pi}{4}}+\left.(-\cos x-\sin x)\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-1+(-1)-\left(-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)=2 \sqrt{2}-2
\end{aligned}
$$

Example (from classviva.org). Find the area of the region that is enclosed between $y=7 x^{2}-x^{3}+x$ and $y=x^{2}+9 x$.
solution.
To find the intersection of two curves, we take

$$
\left\{\begin{array} { l }
{ y = f (x) = 7 x ^ { 2 } - x ^ { 3 } + x } \\
{ y = g (x) = x ^ { 2 } + 9 x , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=0,2,4 \\
y=0,22,52 .
\end{array}\right.\right.
$$

Note that $f(x)-g(x)=7 x^{2}-x^{3}+x-\left(x^{2}+9 x\right)=-x(x-2)(x-4)$ and

- when $x \leq 0$, thus, $-x(x-2)(x-4) \geq 0$, we have $f(x) \geq g(x)$;
- when $0 \leq x \leq 2$, thus, $-x(x-2)(x-4) \leq 0$, we have $f(x) \leq g(x)$;
- when $2 \leq x \leq 4$, thus, $-x(x-2)(x-4) \geq 0$, we have $f(x) \geq g(x)$;
- when $x \geq 4$, thus, $-x(x-2)(x-4) \leq 0$, we have $f(x) \leq g(x)$.

Thus, the area is

$$
\begin{aligned}
A & =\int_{0}^{4}|f(x)-g(x)| d x=\int_{0}^{2}[g(x)-f(x)] d x+\int_{2}^{4}[f(x)-g(x)] d x \\
& =\int_{0}^{2}\left[x^{2}+9 x-\left(7 x^{2}-x^{3}+x\right)\right] d x+\int_{2}^{4}\left[7 x^{2}-x^{3}+x-\left(x^{2}+9 x\right)\right] d x \\
& =\int_{0}^{2}\left[-6 x^{2}+x^{3}+8 x\right] d x+\int_{2}^{4}\left[6 x^{2}-x^{3}-8 x\right] d x \\
& =\left.\left(-2 x^{3}+\frac{1}{4} x^{4}+4 x^{2}\right)\right|_{0} ^{2}+\left.\left(2 x^{3}-\frac{1}{4} x^{4}-4 x^{2}\right)\right|_{2} ^{4}=8 .
\end{aligned}
$$

Theorem (area bounded by two curves along the y-axis). Let A be the area of the region that lies between two curves $x=f(y)$ and $x=g(y)$ over $y \in[c, d]$, where f and g are continuous functions and suppose $f(y) \geq g(y)$ (see the figure below), then

$$
A=\int_{c}^{d}[f(y)-g(y)] d y
$$

Example. Find the common area of two disks $x^{2}+y^{2} \leq r^{2}$ and $(x-r)^{2}+y^{2} \leq r^{2}$.
solution. To find the intersections between two curves, we take

$$
\left\{\begin{array} { l }
{ x ^ { 2 } + y ^ { 2 } = r ^ { 2 } } \\
{ (x - r) ^ { 2 } + y ^ { 2 } = r ^ { 2 } , }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x=\frac{r}{2} \\
y= \pm \frac{\sqrt{3}}{2} r .
\end{array}\right.\right.
$$

The area between two curves is presented above. We take

$$
\begin{aligned}
& x=f(y)=\sqrt{r^{2}-y^{2}} \\
& x=g(y)=r-\sqrt{r^{2}-y^{2}},
\end{aligned}
$$

where $f(y) \geq g(y)$. Thus, the common area is given by

$$
\begin{aligned}
A & =\int_{-\frac{\sqrt{3}}{2} r}^{\frac{\sqrt{3}}{2} r}[f(y)-g(y)] d y=\int_{-\frac{\sqrt{3}}{2} r}^{\frac{\sqrt{3}}{2} r}\left[\sqrt{r^{2}-y^{2}}-\left(r-\sqrt{r^{2}-y^{2}}\right)\right] d y \\
& =\int_{-\frac{\sqrt{3}}{2} r}^{\frac{\sqrt{3}}{2} r}\left[2 \sqrt{r^{2}-y^{2}}-r\right] d y
\end{aligned}
$$

Note that let $y=r \sin \theta$, we have $d y=r \cos \theta d \theta, y:-\frac{\sqrt{3}}{2} r \rightarrow \frac{\sqrt{3}}{2} r, \theta:-\frac{\pi}{3} \rightarrow \frac{\pi}{3}$ and

$$
\begin{aligned}
\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2} r}\left[2 \sqrt{r^{2}-y^{2}}-r\right] d y & =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}[2 r \cos \theta-r] \cdot r \cos \theta d \theta=r^{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left[2 \cos ^{2} \theta-\cos \theta\right] d \theta \\
& =r^{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}[\cos 2 \theta+1-\cos \theta] d \theta=\left.r^{2}\left(\frac{1}{2} \sin 2 \theta+\theta-\sin \theta\right)\right|_{-\frac{\pi}{3}} ^{\frac{\pi}{3}} \\
& =\left(\frac{\sqrt{3}}{2}+\frac{2 \pi}{3}\right) r^{2}
\end{aligned}
$$

Theorem (area under a parametric curve) If the curve is parameterized by $x=f(t)$ and $y=g(t)$ $(y>0)$, where $\alpha \leq t \leq \beta$. Then the area under the curve is given by

$$
A=\int_{f(\alpha)}^{f(\beta)} y d x=\int_{\alpha}^{\beta} g(t) d f(t)=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

Example. Find the area under one arch of the cycloid

$$
\left\{\begin{array}{l}
x=r(t-\sin t) \\
y=r(1-\cos t)
\end{array}\right.
$$

where $t \in[0,2 \pi]$.
solution. Note that

- when $t=0$, we have $x=0, y=0$;
- when $t=2 \pi$, we have $x=2 \pi r, y=0$.
- when $0 \leq t \leq 2 \pi$, we have $1-\cos t \geq 0, \Longrightarrow y \geq 0$.

The area under the curve over $x \in[0,2 \pi r]$ is presented above. Thus, we have

$$
\begin{aligned}
A & =\int_{0}^{2 \pi r} y d x=\int_{0}^{2 \pi} r(1-\cos t) \cdot[r(t-\sin t)]^{\prime} d t=r^{2} \int_{0}^{2 \pi}(1-\cos t)^{2} d t \\
& =r^{2} \int_{0}^{2 \pi}\left(1-2 \cos t+\cos ^{2} t\right) d t=\left.r^{2}(t-2 \sin t)\right|_{0} ^{2 \pi}+r^{2} \int_{0}^{2 \pi} \frac{1}{2}[\cos 2 t+1] d t \\
& =r^{2}(2 \pi-0)+\left.\frac{1}{2} r^{2}\left(\frac{1}{2} \sin 2 t+t\right)\right|_{0} ^{2 \pi}=2 \pi r^{2}+\pi r^{2}=3 \pi r^{2}
\end{aligned}
$$

