Lecture 9 (Applications of integration)-Volumes by slicing

Instructor: Dr. C.J. Xie (macjxie@ust.hk)

1 Recap last time

Comparison Theorem of improper integral

- If $0 \leq f(x) \leq g(x)$, then $\int_{a}^{\infty} g(x) d x<\infty$ is convergent $\Longrightarrow \int_{a}^{\infty} f(x) d x<\infty$ is convergent;
- If $0 \leq f(x) \leq g(x)$, then $\int_{a}^{\infty} f(x) d x>\infty$ is divergent $\Longrightarrow \int_{a}^{\infty} g(x) d x>\infty$ is divergent;
- If $0 \leq|f(x)| \leq|g(x)|$, then $\int_{a}^{\infty}|g(x)| d x<\infty$ is convergent $\Longrightarrow \int_{a}^{\infty}|f(x)| d x<\infty$ is convergent; $\Longrightarrow \int_{a}^{\infty} f(x) d x<\infty$ is convergent;
- If $0 \leq|f(x)| \leq|g(x)|$, then $\int_{a}^{\infty}|f(x)| d x>\infty$ is divergent $\Longrightarrow \int_{a}^{\infty}|g(x)| d x>\infty$ is divergent.

Rk. Property of improper integrals below,

- $\int_{a}^{\infty} f(x) d x$ is convergent $\Longleftrightarrow \int_{b}^{\infty}$ is convergent for some $b \geq a$;
- $\int_{a}^{\infty} f(x)+g(x) d x=\int_{a}^{\infty} f(x) d x+\int_{a}^{\infty} g(x) d x$ whenever the improper integrals at right hand side are convergent.
- $\int_{a}^{\infty} c f(x) d x=c \int_{a}^{\infty} f(x) d x$ for any constant c;
- $\int_{a}^{\infty}|f(x)| d x<\infty$ is convergent $\Longrightarrow \int_{a}^{\infty} f(x) d x<\infty$ is convergent.
- $\int_{a}^{\infty} f(x) d x>\infty$ is divergent $\Longrightarrow \int_{a}^{\infty}|f(x)| d x>\infty$ is divergent.

The above property holds for other improper integrals.
Example. $\int_{1}^{\infty} e^{-x^{2}} d x$, convergent of divergent?
solution. Since that $e^{-x^{2}} \leq e^{-x}$ for $x \geq 1$ and

$$
\int_{1}^{\infty} e^{-x} d x=\left.\left(-e^{-x}\right)\right|_{1} ^{\infty}=\lim _{x \rightarrow \infty}-e^{-x}+e^{-1}=e^{-1}<\infty
$$

Thus the original improper integral is convergent.
Example. $\int_{1}^{\infty} \frac{1}{x^{3}+\sqrt[3]{x}} d x$, convergent of divergent?
solution. Since that

$$
\frac{1}{x^{3}+\sqrt[3]{x}} \leq \frac{1}{x^{3}} \quad \text { for all } x \geq 1
$$

and $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ is convergent, so does the original improper integral.
Example. $\int_{1}^{\infty} \frac{\sqrt{x}}{2 x+\sqrt{x}+3} d x$, convergent of divergent?
solution. Since that $2 x+\sqrt{x}+3=2 x\left(1+\frac{1}{2 \sqrt{x}}+\frac{3}{2 x}\right)$ and

$$
1+\frac{1}{2 \sqrt{x}}+\frac{3}{2 x}<1+\frac{1}{2 \sqrt{x}}+\frac{3}{2 \sqrt{x}}=1+\frac{2}{\sqrt{x}} \leq 3, \quad \text { for } x \geq 1
$$

Thus,

$$
\frac{\sqrt{x}}{2 x+\sqrt{x}+3} \geq \frac{\sqrt{x}}{2 x \cdot 3}=\frac{1}{6 x^{\frac{1}{2}}}
$$

Since $\int_{1}^{\infty} \frac{1}{x^{\frac{1}{2}}} d x=\infty$ is divergent, thus the original one is divergent.
Example. $\int_{1}^{\infty} \frac{\sqrt{x}}{x^{2}+2 x+1} d x$, convergent of divergent?
solution. Since that

$$
\frac{\sqrt{x}}{x^{2}+2 x+1} \leq \frac{\sqrt{x}}{x^{2}}=\frac{1}{x^{\frac{3}{2}}}
$$

and $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} d x<\infty$ is convergent, thus the original one is convergent.
Example. $\int_{1}^{\infty} \frac{1+\sin ^{2} x}{\sqrt{x}} d x$, convergent of divergent?
solution. Since that

$$
\frac{1+\sin ^{2} x}{\sqrt{x}} \geq \frac{1}{\sqrt{x}}
$$

we have

$$
\int_{1}^{\infty} \frac{1+\sin ^{2} x}{\sqrt{x}} d x \geq \int_{1}^{\infty} \frac{1}{\sqrt{x}} d x>\infty
$$

The original one is divergent.
Example. $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$, convergent of divergent?
solution. Since that $\ln x<x$ for all $x \geq 1$, thus

$$
\frac{2 \ln \sqrt{x}}{x^{2}} \leq \frac{2 \sqrt{x}}{x^{2}}=\frac{2}{x^{\frac{3}{2}}}
$$

Note that $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} d x$ is convergent, so does the original one.
Example. $\int_{1}^{\infty} \frac{{ }^{2} \ln x}{\sin ^{2} x+x^{2}} d x$, convergent of divergent?
solution.
Since that

$$
\frac{\ln x}{\sin ^{2} x+x^{2}}<\frac{\ln x}{x^{2}}
$$

From above example, we have the convergent original improper integral.
Example (other types improper integral).. $\int_{3}^{7} \frac{1}{\sqrt{(x-3)\left(x^{2}+x+1\right)}} d x$, convergent of divergent?
solution. Since that

$$
\frac{1}{\sqrt{(x-3)\left(x^{2}+x+1\right)}}<\frac{1}{\sqrt{x-3}}, \quad \text { for all } 3 \leq x \leq 7
$$

and

$$
\int_{3}^{7} \frac{1}{\sqrt{x-3}} d(x-3)=\int_{0}^{4} u^{-\frac{1}{2}} d u=\left.2 u^{\frac{1}{2}}\right|_{0} ^{4}=4
$$

Thus, the original one is convergent.
Example. $\int_{1}^{\infty} \frac{x^{2}+2 x+3}{2 x^{5}-x^{2}} d x$, convergent of divergent?
solution. For x is larger enough, we have

$$
\frac{x^{2}+2 x+3}{2 x^{5}-x^{2}} \approx \frac{x^{2}}{2 x^{5}}=\frac{1}{2 x^{3}}
$$

and $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ is convergent. Since that

$$
\frac{x^{2}+2 x+3}{2 x^{5}-x^{2}} \leq \frac{x^{2}+2 x^{2}+3 x^{2}}{2 x^{5}\left(1-\frac{1}{2 x^{3}}\right)}, \quad \text { for all } x \geq 1
$$

and

$$
\frac{1}{2 x^{3}} \leq \frac{1}{2} \Longrightarrow 1-\frac{1}{2 x^{3}} \geq \frac{1}{2} \Longrightarrow \frac{1}{1-\frac{1}{2 x^{3}}} \leq 2
$$

We have

$$
\frac{x^{2}+2 x+3}{2 x^{5}-x^{2}} \leq \frac{6 x^{2}}{2 x^{5}} \cdot 2=\frac{6}{x^{3}}
$$

Since $\int_{1}^{\infty} \frac{1}{x^{3}} d x$ is convergent, thus the original one is convergent as well.
Example. $\int_{1}^{\infty} \frac{\sin x}{x^{2}} d x$, convergent of divergent?
solution. Since that

$$
\left|\frac{\sin x}{x^{2}}\right| \leq \frac{1}{x^{2}}
$$

and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent. Thus, $\int_{1}^{\infty}\left|\frac{\sin x}{x^{2}}\right| d x$ is convergent $\Longrightarrow \int_{1}^{\infty} \frac{\sin x}{x^{2}} d x$ is convergent.
Area between curves
Example. Find the area enclosed by $y=e^{2 x}, y=x, x=2$ and the y-axis.
solution. The enclosed sketch is shown below. We have

$$
A=\int_{0}^{2}\left[e^{2 x}-x\right] d x=\left.\left(\frac{e^{2 x}}{2}-\frac{x^{2}}{2}\right)\right|_{0} ^{2}=\frac{e^{4}}{2}-\frac{5}{2} .
$$

Example. Find the area enclosed by $y=4 x^{2}-1$ and $y=\cos \pi x$.
solution. The enclosed sketch is shown below. We have

$$
\begin{aligned}
A & =\int_{-\frac{1}{2}}^{\frac{1}{2}}\left[\cos \pi x-\left(4 x^{2}-1\right)\right] d x=\left.\left(\frac{\sin \pi x}{\pi}-\frac{4}{3} x^{3}+x\right)\right|_{-\frac{1}{2}} ^{\frac{1}{2}}=\left(\frac{1}{\pi}-\frac{1}{6}+\frac{1}{2}\right)-\left(-\frac{1}{\pi}-\frac{1}{6}-\frac{1}{2}\right) \\
& =\frac{2}{\pi}+\frac{2}{3}
\end{aligned}
$$

Example. Find the area enclosed by $y^{2}=2 x+4$ and $y=x-2$.
solution. To find the intersections, we have to take

$$
\left\{\begin{array} { l l }
{ y ^ { 2 } = 2 x + 4 } \\
{ y = x - 2 }
\end{array} \Longrightarrow \left\{\begin{array}{ll}
x=6, & y=4 \\
x=0, & y=-2
\end{array}\right.\right.
$$

The enclosed sketch is shown below. Taking $u=2 x+4$, we have

$$
\begin{aligned}
A & =\int_{-2}^{0} 2 \sqrt{2 x+4} d x+\int_{0}^{6}[\sqrt{2 x+4}-(x-2)] d x \\
& =\int_{-2}^{0} \sqrt{2 x+4} d(2 x+4)+\frac{1}{2} \int_{0}^{6} \sqrt{2 x+4} d(2 x+4)+\left.\left(2 x-\frac{1}{2} x^{2}\right)\right|_{0} ^{6} \\
& =\left.\frac{2}{3} u^{\frac{3}{2}}\right|_{0} ^{4}+\left.\frac{1}{2} \cdot \frac{2}{3} u^{\frac{3}{2}}\right|_{4} ^{16}+\left.\left(2 x-\frac{1}{2} x^{2}\right)\right|_{0} ^{6} \\
& =18
\end{aligned}
$$

Rh. It can be easier as below.

$$
A=\int_{-2}^{4}\left[(y+2)-\left(\frac{y^{2}}{2}-2\right)\right] d y=\left.\left(\frac{y^{2}}{2}+4 y-\frac{1}{6} y^{3}\right)\right|_{-2} ^{4}=18
$$

Example. Find the area enclosed by $y=\ln x$ and $x=4$ and $y=0$.
solution. The enclosed sketch is shown below. We have

$$
A=\int_{1}^{4} \ln x d x=\left.x \ln x\right|_{1} ^{4}-\int_{1}^{4} x \cdot \frac{1}{x} d x=4 \ln 4-3
$$

or

$$
A=\int_{0}^{\ln 4}\left[4-\left(e^{y}\right)\right] d y=4 \ln 4-3 .
$$

2 Volumes by slicing

area If $f(x)>0$ is continuous over $[a, b]$, the area between the function f and the x-axis over $[a, b]$ is given by

$$
A=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

see below for the definition of the definite integral of $f(x)$ over $[a, b]$.

volume (finding volume by using slices) Let S be a solid

- that lies between $x=a$ and $x=b$. If the cross-sectional area of S in the plane P_{x}, through x and perpendicular to the x-axis, is denoted by $A(x)$, where A is continuous function, then the volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

- that lies between $y=c$ and $y=d$ and if the cross-sectional area of S through y perpendicular to the y-axis, is denoted by $A(y)$, where $A(y)$ is a continuous function, then the volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(y_{i}^{*}\right) \Delta y=\int_{a}^{b} A(y) d y
$$

Rk. Using the volume of slices, the idea is basically given below,

- build the coordinates, including the origin, the symmetric axis (x-axis or y-axis);
- formulate the expression of the cross-sectional area $A(x)$;
- compute $V=\int_{a}^{b} A(x) d x$ or $V=\int_{a}^{b} A(y) d y$.

Example (volume of a pyramid) Find the volume of a pyramid whose base is a square with side L and whose height is h.
solution. Build the coordinates below, where left graph is the base, the cross-section are all squares

Note that

$$
\frac{x}{s}=\frac{h}{L}
$$

we have $s=\frac{x L}{h}$. Thus, the cross-sectional area is

$$
A(x)=s^{2}=\frac{L^{2}}{h^{2}} x^{2}
$$

The volume of the pyramid over $[0, h]$ is

$$
V=\int_{0}^{h} A(x) d x=\int_{0}^{h} \frac{L^{2}}{h^{2}} x^{2} d x=\left.\frac{L^{2}}{h^{2}}\left(\frac{1}{3} x^{3}\right)\right|_{0} ^{h}=\frac{1}{3} L^{2} h=\frac{1}{3} S h
$$

where S is the bottom area.
$\underline{\mathrm{Rk}}$. There are many ways to get the cross-sectional area $A(x)$ or $A(y)$. Whether we will use $A(x)$ or $A(y)$ will depend upon the method and the axis of rotation used for each problem.
Example (from classviva.org). As is shown in fig. 1, the base of a certain solid is the area bounded

Figure 1: Base and cross-section view.
above by the graph of $y=f(x)=16$ and and below by the graph of $y=g(x)=25 x^{2}$. Crosssections perpendicular to the x-axis are squares. Using the formula $V=\int_{a}^{b} A(x) d x$ to find the volume.
solution. To find the intersections, we have to take

$$
16=25 x^{2}, \quad \Longrightarrow x= \pm \frac{4}{5} .
$$

Thus, the volume is

$$
V=\int_{-\frac{4}{5}}^{\frac{4}{5}}\left(16-25 x^{2}\right)^{2} d x=2 \int_{0}^{\frac{4}{5}}\left(16-25 x^{2}\right)^{2} d x=\frac{8192}{75} \cdot 2=\frac{16384}{75}
$$

Method of rings To find the specific $A(x)$ or $A(y)$, for example, see Figure 2. We take $y=x^{2}$ over $[1,2]$, and rotate the function about x-axis or y-axis, respectively. We get the cross-section area as

$$
A=\pi(\text { radius })^{2} .
$$

If we have two function $f(x)$ and $g(x)$ with $0 \leq f(x) \leq g(x)$ over $[a, b]$, see Figure 3. If we rotate

$$
\text { "radius }=y "
$$

"radius $=x$ "

$$
A(x)=\pi y^{2}=\pi x^{4}
$$

$A(y)=\pi x^{2}=\pi y$

$$
V=\int_{1}^{2} A(x) d x=\int_{1}^{2} \pi x^{4} d x=\frac{31}{5} \pi
$$

$V=\int_{1}^{4} A(y) d y=\int_{1}^{4} \pi y d y=\frac{15}{2} \pi$

Figure 2: Method of rings.
both functions about x-axis. We get the cross-section area as

$$
A=\pi\left(r_{g}^{2}-r_{f}^{2}\right)=\pi\left(g(x)^{2}-f(x)^{2}\right)
$$

If there are two functions $x=f(y)$ and $x=g(y)$ and $0 \leq f(y) \leq g(y)$ over $[c, d]$, similarly, the cross-section area is given by

$$
A=\pi\left(g(y)^{2}-\left(f(y)^{2}\right)\right)
$$

Rk. If we rotate about a horizontal axis (the x-axis), then the cross-sectional area will be a function of x. Likewise, if we rotate about a vertical axis (y-axis), then the cross-sectional area will be a function of y.
Example. Determine the volume of the solid obtained by rotating the region bounded by $y=$ $\overline{x^{2}-4 x}+5, x=1, x=4$ and the x-axis about x-axis.

Figure 3: The volume by rotating the closed region about x-axis between the $f(x)$ and $g(x)$ over $[a, b]$

solution. Note that $y=x^{2}-4 x+5=(x-2)^{2}+1$, and when $x=1, y=2$; when $x=4, y=5$.
The graph is shown in below.
We have the cross-sectional area

$$
A(x)=\pi y^{2}=\pi\left(x^{2}-4 x+5\right)^{2}=\pi\left[x^{4}-8 x^{3}+26 x^{2}-40 x+25\right]
$$

Thus, the volume is given by

$$
\begin{aligned}
V & =\int_{1}^{4} A(x) d x=\int_{1}^{4} \pi\left[x^{4}-8 x^{3}+26 x^{2}-40 x+25\right] d x \\
& =\left.\pi\left(\frac{1}{5} x^{5}-2 x^{4}+\frac{26}{3} x^{3}-20 x^{2}+25 x\right)\right|_{1} ^{4}=\frac{78}{5} \pi
\end{aligned}
$$

Example (volume of a ball) Find the volume of the ball of radius r.
solution Note that a ball of radius r can be generated by rotating the upper semicircle $y=\sqrt{r^{2}-x^{2}}$ about the x-axis presented below.

For $x \in[-r, r]$, the cross-section of a ball is a circular disk, with area $\pi y^{2}=\pi\left(r^{2}-x^{2}\right)$. Thus, the volume of the ball is

$$
V=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x=2 \int_{0}^{r} \pi\left(r^{2}-x^{2}\right) d x=\left.2 \pi\left(r^{2} x-\frac{1}{3} x^{3}\right)\right|_{0} ^{r}=\frac{4}{3} \pi r^{3}
$$

Example. Determine the volume of the solid obtained by rotating the portion of the region bounded by $y=\sqrt[3]{x}$ and $y=\frac{x}{4}$ hat lies in the first quadrant about the y-axis.
solution. To find the intersections, we have to take

$$
\sqrt[3]{x}=\frac{x}{4}
$$

we have $x=0$ and $x=0$ in the first quadrant. The graph is shown below. We have

$$
V=\int_{0}^{2} A(y) d y=\int_{0}^{2} \pi\left[(4 y)^{2}-\left(y^{3}\right)^{2}\right] d y=\left.\pi\left[\frac{16}{3} y^{3}-\frac{1}{7} y^{7}\right]\right|_{0} ^{2}=\frac{512}{21} \pi
$$

Example.

Determine the volume of the solid obtained by rotating the region bounded by $y=x^{2}-2 x$ and $y=x$ about the line $y=4$.
solution. To find the intersections, we have to take

$$
x^{2}-2 x=x, \Longrightarrow x=0, x=3
$$

The graph is shown in fig. 4. We have

Figure 4: The closed region between $y=x^{2}-2 x$, and $y=x$.

$$
\begin{aligned}
V & =\int_{0}^{3} A(x) d x=\int_{0}^{3} \pi\left[\left(4-\left(x^{2}-2 x\right)\right)^{2}-(4-x)^{2}\right] d x \\
& =\pi \int_{0}^{2}\left[x^{4}-4 x^{3}-5 x^{2}+24 x\right] d x=\left.\pi\left(\frac{1}{5} x^{5}-x^{4}-\frac{5}{3} x^{3}+12 x^{2}\right)\right|_{0} ^{3}=\frac{153}{5} \pi
\end{aligned}
$$

Exercise (hint: answer: $V=\frac{96 \pi}{5}$). Determine the volume of the solid obtained by rotating the region bounded by $y=2 \sqrt{x-1}$ and $y=x-1$ about the line $x=-1$.
$\underline{\mathrm{Rk}}$. If the rotation is about the line $y=a$ of the closed region, we have the cross-section area $A(x)$. If the rotation is about the line $x=b$ of the closed region, we have the cross-section area $A(y)$.

