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Completed by Changjian Xie

Consider the following ordinary differential equation for u:

−u′′(x) + π2 cos2(πx)u(x) = f(x), x ∈ [0, 1], (1)

with boundary conditions:

u(0) = 0

u(1) = 0, (2)

i) Consider f(x) = π2 sin(πx) cosh(sin(πx)), and check that the function
u(x) = sinh(sin(πx)) is the solution to the boundary value problem
(BVP) (1)+(2).

ii) We want to solve this BVP numerically. We begin by discretizing the
interval [0, 1]. For this, consider the gridpoints:

xi = ih, i = 0, 1, . . . , n+ 1, h =
1

n+ 1
. (3)

Note that hi = xi+1− xi = h for all i. Now we approximate the second
derivative. Show that if g has four continuous derivatives, then

gi+1 − 2gi + gi−1
h2

= g′′i +O(h2) (4)

where gi = g(xi).

iii) Consider now the linear system of equations

−gi+1 − 2gi + gi−1
h2

+ π2 cos2(πxi) gi = f(xi), i = 1, 2, . . . , n. (5)

Show that this can be rewritten in matrix form as

A · g = f ,

where g = (g1, . . . , gn)T , f = (f1, . . . , fn)T , and the matrix A is tridi-
agonal, with entries:

ai,j =


− 1
h2

|i− j| = 1;
2
h2

+ π2 cos2(πxi) i = j;
0 Otherwise.

(6)
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iv) Solve the system of equations(5). Use the following values: n = 10, 20,
40, 80, 160, 320. For each h = 1/(n+ 1), compute the error

e(h) = sup
1≤i≤n

|gi − u(xi)| (7)

and do a log-log plot of e(h), that is, plot log(e(h)) as a function of
log(h). Show, using this plot, that e(h) = O(h2), consistent with (4).

Solution.

i) Consider f(x) = π2 sin(πx) cosh(sin(πx)), if u(x) = sinh(sin(πx)), first
of all, u(x) satisfies boundary conditions (2). And we note that

u′(x) = π cos(πx) · cosh(sin(πx)),

u′′(x) = π2 sinh(sin(πx) · cos2(πx)− π2 sin(πx) · cosh(sin(πx)).

Then,

−u′′(x) + π2 cos2(πx)u(x) = π2 sin(πx) cosh(sin(πx))

− π2 sinh(sin(πx)) cos2(πx)

+ π2 cos2(πx) sinh(sin(πx))

= π2 sin(πx) cosh(sin(πx))

= f(x).

On the one hand, u(x) satisfies ordinary differential equation (ODE)(1),
i.e., the function u(x) is the analytical solution to the boundary value
problem (BVP)(1)+(2). On the other hand, we can take advantage of
BVP solver of Matrix Lab and call deval function to check u(x) is the
solution of BVP.

ii) Suppose g(x) is the solution of BVP(1)+(2), we discrete the interval
[0, 1]. For this, consider the gridpoints:

xi = ih, i = 0, 1, . . . , n+ 1, h =
1

n+ 1
.

Due to g(x) has four continuous derivatives, then we will give the Taylor
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expansion of g(xi+1) and g(xi−1) with respect to xi.

g(xi+1) = g(xi + h)

= g(xi) + hg′(xi) +
1

2
h2g′′(xi) +

1

3!
h3g(3)(xi) +

1

4!
h4g(4)(ξ′i),

(8)

where xi < ξ′i < xi+1.

g(xi−1) = g(xi − h)

= g(xi)− hg′(xi) +
1

2
h2g′′(xi)−

1

3!
h3g(3)(xi) +

1

4!
h4g(4)(ξ′′i ),

(9)

where xi−1 < ξ′′i < xi.
From (8) and (9), we deduce that

gi+1 − 2gi + gi−1
h2

= g′′i +
1

12
h2g(4)(ξi) xi−1 < ξi < xi, (10)

i.e.,
gi+1 − 2gi + gi−1

h2
= g′′i +O(h2),

where gi = g(xi).

iii) Consider now the linear system of equations

−gi+1 − 2gi + gi−1
h2

+ π2 cos2(πxi) gi = fi i = 1, 2, . . . , n, (11)

where fi = f(xi). We can deserve that

− 1

h2
gi−1 + (

2

h2
+ π2 cos2(πxi))gi −

1

h2
gi+1 = fi i = 1, 2, . . . , n, (12)

we can plug g0 = 0, gn+1 = 0 into systems (12), one has n × n order
linear equations

A · g = f ,

in other words, we can deduce the process in detail, i.e.,

− 1
h2
g0 + ( 2

h2
+ π2cos2(πx1))g1 − 1

h2
g2 = f1,

− 1
h2
g1 + ( 2

h2
+ π2cos2(πx2))g2 − 1

h2
g3 = f2,

− 1
h2
g2 + ( 2

h2
+ π2cos2(πx3))g3 − 1

h2
g4 = f3,

· · · · · · · · ·
− 1
h2
gn−1 + ( 2

h2
+ π2cos2(πxn))gn − 1

h2
gn+1 = fn,
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note that g0 = 0, gn+1 = 0, hence

A =



2
h2 + π2 cos2(πx1) − 1

h2 0 · · · 0

− 1
h2

2
h2 + π2 cos2(πx2) − 1

h2 · · ·
.
.
.

0 − 1
h2

2
h2 + π2 cos2(πx3)

. .
. 0

.

.

.
.
. .

.
. .

.
. . − 1

h2

0 0 · · · − 1
h2

2
h2 + π2 cos2(πxn−1)



then, (12) can be rewritten in matrix form as

A · g = f ,

where g = (g1, . . . , gn)T , f = (f1, . . . , fn)T , and the matrix A is tridi-
agonal, with entries:

ai,j =


− 1
h2

|i− j| = 1;
2
h2

+ π2 cos2(πxi) i = j;
0 Otherwise.

(13)

iv) Solve the system of equations A ·g = f , that is, how to solve the tridiag-
onal equations. To begin with, according to the following algorithm, we
can save the elements of A and f , and then solve the formula equation
g = A \ f by Matrix Lab. Consider the algorithms as the following
that:

step1. Input N = n + 1, output the approximate value gi of solution g(x)
in xi, i = 1, . . . , n.

h =
1

N
;

x = h;

d1 =
2

h2
+ π2 cos2(πx);

c1 = − 1

h2
;

b1 = f(x);
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step2. For i = 2, . . . , n

x = ih;

di =
2

h2
+ π2 cos2(πx);

ci = − 1

h2
;

ai = − 1

h2
;

bi = f(x);

step3.

x = 1− h;

dn =
2

h2
+ π2 cos2(πx);

an = − 1

h2
;

bn = f(x).

Where d=(d1, d2, . . . , dn) represents diagonal elements, a represents
lower-semi-diagonal elements, c represents upper-semi-diagonal elements,
clearly, a=c, b represents right term. Hence, we save datas of A and
f .
On the one hand, g = A\f , on the other hand, we can solve A ·g = f
by tri-diagonal algorithm or speedup method, ie., we define function as
f = tridiag(a,b, c,d, n) and construct circulation as for i = 2 : n, i.e.,

step4.

r =
a(i)

b(i− 1)
;

b(i) = b(i)− r ∗ c(i− 1);

d(i) = d(i)− r ∗ d(i− 1);

d(n) =
d(n)

b(n)
.

Consider another circulation as for i = n− 1 : −1 : 1,

d(i) =
d(i)− c(i) ∗ d(i+ 1)

b(i)
,
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may as well suppose the solution is g1, g2, . . . , gn.

step5. As for i = 1, . . . , n, x = ih, output (x, yi). The procedure is com-
plete.
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ODE with BVP,by FDM,made by Changjian Xie,2017/3/24.
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Figure 1: Consider to call function with respect to n = 10, n = 20,n = 40,n =
80,n = 160,n = 320, we deserve numerical solution of BVP, compare with an-
lytical solution, note that the numerical solution is an effective approximation of
analytical solution.
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In order to see clearly, we give the analytical solution and each graph
concerning n.
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Figure 2: Analytical solution.
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Figure 3: Numerical solution.

When n = 10, n = 20, n = 40, n = 80, n = 160, n = 320,
we compute respectively the error equipped with L∞ norm, e(h1) =
0.0093614382288, e(h2) = 0.00260910867557, e(h3) = 0.00068740375,
e(h4) = 0.00017631744, e(h5) = 0.00004464145, e(h6) = 0.0000112308.
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Consider n = 10, 20, 40, 80, 160, 320, we deserve log e(h) is the function
of log h. From the following figure, the two straight lines have the same
slope 2. In other words, they parallel with each other.
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Figure 4: The order of error equipped with L∞ norm.
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Note that we can draw the log h2 with respect to log h. comparing two
graphs, we have the conclusion that the difference between log e(h)
and log h2 controlled by constant, so e(h) = O(h2) holds uniformly
concerning A · g = f .

Notation. Refer to the least square method, the method of least
squares is a standard approach in regression analysis. We can transfer
the original question into a easier case and take advantage of linear
least squares. The model as following that: {hi, e(hi)}ni=1, e(h) = chα,
e(hi) = chαi , i = 1, · · · , n, where n � 1. In the sequel, n is different
from the above n which discrete the interval [0, 1], where n represents
{hi, e(hi)}ni=1, i = 1, · · · , n, e(hi) ≈ ch2i , the motivation stems from

min
c,α

1

n

n∑
i=1

(e(hi)− chαi )2,

we take log which have same bottom on the two-side. Then, the prob-
lem transfers into

log e(h) = log c+ α log h,

for {xi, yi}ni=1, we need to get

min
α,β

1

n

n∑
i=1

(yi − (αxi + β))2,

we define

f(α, β) =
1

n

n∑
i=1

(yi − (αxi + β))2,

then, we take partial derivative for the above formula as following that
∂f
∂α

= 0,

∂f
∂β

= 0,

i.e., 
2
n

∑n
i=1(yi − αxi − β)(−xi) = 0,

2
n

∑n
i=1(yi − αxi − β)(−1) = 0,
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i.e., 
(
∑n

i=1 x
2
i )α +

∑n
i=1 xiβ =

∑n
i=1 xiyi,

(
∑n

i=1 xi)α + nβ =
∑n

i=1 yi,

it follows that

α =

∑n
i=1 yi

∑n
i=1 xi − n

∑n
i=1 xiyi

(
∑n

i=1 xi)
2 − n

∑n
i=1 x

2
i

,

β =

∑n
i=1 xi

∑n
i=1 xiyi −

∑n
i=1 x

2
i

∑n
i=1 yi

(
∑n

i=1 xi)
2 − n

∑n
i=1 x

2
i

,

we can compute the value of α and β by the method of linear least
squares, i.e.,

α β
1.9947585 0.1198744

Conclusion: The above method called finite difference method (FDM),
the error is defined usually as the difference between the approximation
and the exact analytical solution. To use a finite difference method to
approximate the solution to a problem, one must first discretize the
problem’s domain. The remainder term of a Taylor polynomial is con-
venient for analyzing the local truncation error. Refer to application of
FDM, we can consider the normalized heat equation in one dimension,
with homogeneous Dirichlet boundary conditions, etc.
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