Project 2

Due on Friday, May 5th, 2017 (Four weeks)
Consider the tridiagonal matrix $\mathbf{A}=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ given by

$$
a_{i, j}=\left\{\begin{array}{rr}
-\frac{1}{h^{2}} & |i-j|=1 \tag{1}\\
\frac{2}{h^{2}} & i=j \\
0 & \text { Otherwise }
\end{array}\right.
$$

obtained when the following ODE

$$
\begin{align*}
-u^{\prime \prime}(x) & =f(x), \quad x \in[0,1] \\
u(0) & =u(1)=0, \tag{2}
\end{align*}
$$

is discretized using second order centered differences:

$$
\begin{equation*}
-\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=f\left(x_{i}\right) \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

where $h=1 /(n+1)$.

1. For each $k=1,2, \ldots, n$, show that the vector $\mathbf{u}^{(k)}$ given by

$$
\begin{equation*}
u_{i}^{(k)}=\sin \left(\frac{\pi k i}{n+1}\right), \quad i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

is an eigenvector of the matrix A, and determine the corresponding eigenvalue λ_{k}.
2. Set up the Jacobi iteration for system (3), and show that the vectors (4) are also eigenvectors of the Jacobi iteration matrix, $\mathbf{T}_{\mathbf{J}}$.
3. Determine the spectral radius of $\mathbf{T}_{\mathbf{J}}, \rho\left(\mathbf{T}_{\mathbf{J}}\right)$.
4. The Jacobi iteration can be written as

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\mathbf{T}_{\mathbf{J}} \mathbf{x}^{(k)}+\mathbf{c} \tag{5}
\end{equation*}
$$

From the previous steps, we know that $\mathbf{T}_{\mathbf{J}}$ is symmetric and diagonalizable. Use this fact to show that if \mathbf{x}^{*} is the (unique) fixed point of (5), then

$$
\begin{equation*}
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq \rho\left(\mathbf{T}_{\mathbf{J}}\right)^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2} \tag{6}
\end{equation*}
$$

5. Use formula (6) and the spectral radius obtained earlier to estimate the number of iterations necessary for the error to be less than a given ϵ as a function of the number of grid points used, n. You should end up with a formula of the form Iter $=O\left(n^{\alpha}\right)$ for some α.
6. Fix $\epsilon=10^{-4}$. Consider the vector \mathbf{u} such that

$$
\begin{equation*}
u_{i}=\sin \left(\frac{\pi i}{n+1}\right) \tag{7}
\end{equation*}
$$

and construct the right hand side $\mathbf{f}=\mathbf{A u}$. Solve the system of equations

$$
\begin{equation*}
\mathbf{A x}=\mathbf{f} \tag{8}
\end{equation*}
$$

using Jacobi's method. Use the values $n=10,20,40,80,160,320$. Do a log-log plot of the number of Jacobi iterations necessary for the error to satisfy

$$
\begin{equation*}
\left\|\mathbf{x}^{(k)}-\mathbf{u}\right\|_{2} \leq \epsilon\|\mathbf{u}\| . \tag{9}
\end{equation*}
$$

Explain theoretically why this is the expected number of iterations.
7. Repeat the previous part with Gauss-Seidel's method. How much faster is it?

Solution.

1. Consider the tridiagonal matrix $\mathbf{A}=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ given by

$$
a_{i, j}=\left\{\begin{array}{rrr}
-\frac{1}{h^{2}} & & |i-j| \tag{10}\\
\frac{2}{h^{2}} & =1 \\
0 & & =j \\
0 & \text { Otherwise }
\end{array}\right.
$$

i.e.,

$$
\mathbf{A}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & -1 \\
0 & 0 & \cdots & -1 & 2
\end{array}\right)_{n \times n}
$$

According to the definition of eigenvalue and eigenvector of the matrix, it is easy to check the vector $\mathbf{u}^{(k)}$ given by

$$
u_{i}^{(k)}=\sin \left(\frac{\pi k i}{n+1}\right), \quad i=1,2, \ldots, n
$$

is an eigenvector of the matrix \mathbf{A}, for each $k=1,2, \ldots, n$. When $i \neq 1, n$, we can take the i-th component of $\mathbf{A} \mathbf{u}^{(k)}$, i.e., we need to show that

$$
\begin{align*}
\left(\mathbf{A} \mathbf{u}^{(k)}\right)_{i} & =\frac{1}{h^{2}}\left(-\sin \frac{\pi k(i-1)}{n+1}+2 \sin \frac{\pi k i}{n+1}-\sin \frac{\pi k(i+1)}{n+1}\right) \\
& \stackrel{(?)}{=} \lambda_{k} \mathbf{u}_{i}^{(k)}=\lambda_{k} \sin \left(\frac{\pi k i}{n+1}\right), \tag{11}
\end{align*}
$$

note that

$$
\begin{gathered}
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
\end{gathered}
$$

Then,

$$
\begin{align*}
\left(\mathbf{A} \mathbf{u}^{(k)}\right)_{i} & =\frac{1}{h^{2}}\left(2 \sin \frac{\pi k i}{n+1}-2 \sin \frac{\pi k i}{n+1} \cdot \cos \frac{\pi k}{n+1}\right) \\
& =\frac{1}{h^{2}} 2 \sin \frac{\pi k i}{n+1}\left(1-\cos \frac{\pi k}{n+1}\right) \tag{12}
\end{align*}
$$

consequently,

$$
\lambda_{k}=\frac{2}{h^{2}}\left(1-\cos \frac{\pi k}{n+1}\right), \quad k=1, \ldots, n .
$$

Let us check the first and the last component, for $i=1$, we need to show

$$
\begin{align*}
\left(\mathbf{A u}{ }^{(k)}\right)_{1} & =\frac{1}{h^{2}}\left(2 \sin \frac{\pi k}{n+1}-\sin \frac{\pi 2 k}{n+1}\right) \\
& =\frac{1}{h^{2}}\left(2 \sin \frac{\pi k}{n+1}-2 \sin \frac{\pi k}{n+1} \cos \frac{\pi k}{n+1}\right) \\
& =\frac{2}{h^{2}}\left(1-\cos \frac{\pi k}{n+1}\right) \sin \frac{\pi k}{n+1} \\
& =\lambda_{k} \sin \frac{\pi k}{n+1}, \tag{13}
\end{align*}
$$

for $i=n$, we need to show

$$
\begin{align*}
\left(\mathbf{A u}^{(k)}\right)_{n} & =\frac{1}{h^{2}}\left(-\sin \frac{\pi k(n-1)}{n+1}+2 \sin \frac{\pi k n}{n+1}\right) \\
& =\frac{1}{h^{2}}\left(2 \sin \frac{\pi k n}{n+1}-\sin \frac{\pi k n}{n+1} \cos \frac{\pi k}{n+1}+\cos \frac{\pi k n}{n+1} \sin \frac{\pi k}{n+1}\right) \\
& \stackrel{(*)}{=} \frac{2}{h^{2}}\left(1-\cos \frac{\pi k}{n+1}\right) \sin \frac{\pi k n}{n+1} \\
& =\lambda_{k} \sin \frac{\pi k n}{n+1}, \tag{14}
\end{align*}
$$

where the identity $(*)$ is true, if

$$
-\sin \frac{\pi k n}{n+1} \cos \frac{\pi k}{n+1}+\cos \frac{\pi k n}{n+1} \sin \frac{\pi k}{n+1}=-2 \cos \frac{\pi k}{n+1} \sin \frac{\pi k n}{n+1}
$$

i.e.,

$$
\begin{align*}
\cos \frac{\pi k}{n+1} \sin \frac{\pi k n}{n+1}+\cos \frac{\pi k n}{n+1} \sin \frac{\pi k}{n+1} & =\sin \left(\frac{\pi k n}{n+1}+\frac{\pi k}{n+1}\right) \\
& =\sin \left(\frac{\pi k(n+1)}{n+1}\right) \\
& =0 . \tag{15}
\end{align*}
$$

Therefore, the vectors $\mathbf{u}^{(k)}$ with components

$$
u_{i}^{(k)}=\sin \left(\frac{\pi k i}{n+1}\right), \quad i=1,2, \ldots, n,
$$

and the corresponding eigenvalue

$$
\lambda_{k}=\frac{2}{h^{2}}\left(1-\cos \frac{\pi k}{n+1}\right), \quad k=1, \ldots, n .
$$

2. Consider the Jacobi iteration is $\mathbf{A}=\mathbf{D}-\mathbf{L}-\mathbf{U}$, where $\mathbf{U}=\mathbf{L}^{T}$,

$$
\mathbf{L}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)_{n \times n}
$$

$$
\mathbf{D}=\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & 0 & 0 & \cdots & 0 \\
0 & 2 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & 0 & 2
\end{array}\right)_{n \times n}
$$

Set up the Jacobi iteration for system (3)

$$
\begin{equation*}
\mathbf{A x}=\mathbf{f} \tag{16}
\end{equation*}
$$

i.e.,

$$
(\mathbf{D}-\mathbf{L}-\mathbf{U}) \mathbf{x}=\mathbf{f}
$$

Then

$$
\mathbf{D} \mathbf{x}^{(k+1)}=(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(k)}+\mathbf{f}
$$

We can obtain the Jacobi iteration as the following that

$$
\mathbf{x}^{(k+1)}=\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(k)}+\mathbf{D}^{-1} \mathbf{f} .
$$

Introducing the notation

$$
\mathbf{x}^{(k+1)}=\mathbf{T}_{\mathbf{J} \mathbf{X}^{(k)}+\mathbf{c}}
$$

where $\mathbf{T}_{\mathbf{J}}=\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})$, and $\mathbf{c}=\mathbf{D}^{-1} \mathbf{f}$. We rewrite the scheme in component,

$$
\left\{\begin{array}{l}
\mathbf{x}_{1}^{(k+1)}=\frac{1}{2} \mathbf{x}_{2}^{(k)}+\frac{h^{2}}{2} f_{1} \quad i=1, \\
\mathbf{x}_{i}^{(k+1)}=\frac{1}{2}\left(\mathbf{x}_{i-1}^{(k)}+\mathbf{x}_{i+1}^{(k)}\right)+\frac{h^{2}}{2} f_{i} \quad i=2: n-1, \\
\mathbf{x}_{n}^{(k+1)}=\frac{1}{2} \mathbf{x}_{n-1}^{(k)}+\frac{h^{2}}{2} f_{n} \quad i=n .
\end{array}\right.
$$

the vectors (4) are also eigenvectors of the Jacobi iteration matrix, $\mathbf{T}_{\mathbf{J}}$. Indeed,

$$
\begin{aligned}
\mathbf{T}_{\mathbf{J}} & =\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U}) \\
& =\mathbf{D}^{-1}(\mathbf{D}-\mathbf{A}) \\
& =-\mathbf{D}^{-1} \mathbf{A}+\mathbf{I} \\
& =-\frac{h^{2}}{2} \mathbf{A}+\mathbf{I},
\end{aligned}
$$

the final equality is due to $\mathbf{D}=\frac{2}{h^{2}} \mathbf{I}$. Then,

$$
\begin{aligned}
\mathbf{T}_{\mathbf{J}} \mathbf{u}^{(k)} & =\left(-\frac{h^{2}}{2} \mathbf{A}+\mathbf{I}\right) \mathbf{u}^{(k)} \\
& =-\frac{h^{2}}{2} \lambda_{k} \mathbf{u}^{(k)}+\mathbf{u}^{(k)} \\
& =\left(-\frac{h^{2}}{2} \lambda_{k}+1\right) \mathbf{u}^{(k)} .
\end{aligned}
$$

Note that

$$
\lambda_{k}=\frac{2}{h^{2}}\left(1-\cos \frac{\pi k}{n+1}\right), \quad k=1, \ldots, n .
$$

we get that the eigenvalue of $\mathbf{T}_{\mathbf{J}}$ are

$$
\begin{aligned}
\mu_{k} & =-\frac{h^{2}}{2} \lambda_{k}+1 \\
& =-\frac{h^{2}}{2} \cdot \frac{2}{h^{2}}\left(\left(1-\cos \frac{\pi k}{n+1}\right)+1\right. \\
& =\cos \frac{\pi k}{n+1},
\end{aligned}
$$

so $\sigma\left(\mathbf{T}_{\mathbf{J}}\right)=\left\{\mu_{k}\right\}_{k=1}^{n}$.
3. Consider the spectral radius of $\mathbf{T}_{\mathbf{J}}, \rho\left(\mathbf{T}_{\mathbf{J}}\right)$.

$$
\begin{aligned}
\rho\left(\mathbf{T}_{\mathbf{J}}\right) & =\max _{k}\left|\mu_{k}\right| \\
& =\max _{k}\left|\cos \frac{\pi k}{n+1}\right| \\
& =\cos \frac{\pi}{n+1} \\
& \approx 1-\frac{1}{2}\left(\frac{\pi}{n+1}\right)^{2} \\
& <1
\end{aligned}
$$

The approximation is due to $\sin x \sim x$, when $x \rightarrow 0$, from the last inequality, we know that the convergence of Jacobi iteration.
4. Consider The Jacobi iteration can be written as

$$
\mathbf{x}^{(k+1)}=\mathbf{T}_{\mathbf{J}} \mathbf{x}^{(k)}+\mathbf{c},
$$

where $\mathbf{T}_{\mathbf{J}}=\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})$, and $\mathbf{c}=\mathbf{D}^{-1} \mathbf{f}$. Then,

$$
\mathbf{T}_{\mathbf{J}}^{\prime}=(\mathbf{L}+\mathbf{U})^{\prime}\left(\mathbf{D}^{-1}\right)^{\prime}=(\mathbf{L}+\mathbf{U}) \mathbf{D}^{-1}=\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})=\mathbf{T}_{\mathbf{J}}
$$

it is easy to obtain $\mathbf{T}_{\mathbf{J}}$ is symmetric and diagonalizable. If \mathbf{x}^{*} is the (unique) fixed point of (5), then

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq \rho\left(\mathbf{T}_{\mathbf{J}}\right)^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2}
$$

Indeed, for a symmetric matrix $\mathbf{T}_{\mathbf{J}}$, it can be shown that $\left\|\mathbf{T}_{\mathbf{J}}\right\|_{2}=$ $\sqrt{\lambda_{\max }\left(\mathbf{T}_{\mathbf{J}}{ }^{\prime} \mathbf{T}_{\mathbf{J}}\right)}=\rho\left(\mathbf{T}_{\mathbf{J}}\right)$, so we need to show

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq\left\|\mathbf{T}_{\mathbf{J}}\right\|_{2}^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2} .
$$

Observe that $\mathbf{x}^{*}=\mathbf{T}_{\mathbf{J}} \mathbf{x}^{*}+\mathbf{c}$ and $\|\mathbf{A x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$, then

$$
\begin{aligned}
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} & =\left\|\mathbf{T}_{\mathbf{J}} \mathbf{x}^{(k-1)}+\mathbf{c}-\left(\mathbf{T}_{\mathbf{J}} \mathbf{x}^{*}+\mathbf{c}\right)\right\|_{2} \\
& =\left\|\mathbf{T}_{\mathbf{J}}\left(\mathbf{x}^{(k-1)}-\mathbf{x}^{*}\right)\right\|_{2} \\
& \leq\left\|\mathbf{T}_{\mathbf{J}}\right\|_{2}\left\|\mathbf{x}^{(k-1)}-\mathbf{x}^{*}\right\|_{2} \\
& \leq\left\|\mathbf{T}_{\mathbf{J}}\right\|_{2}^{2}\left\|\mathbf{x}^{(k-2)}-\mathbf{x}^{*}\right\|_{2} \\
& \leq \cdots \\
& \leq\left\|\mathbf{T}_{\mathbf{J}}\right\|_{2}^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2}
\end{aligned}
$$

i.e.,

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2} \leq \rho\left(\mathbf{T}_{\mathbf{J}}\right)^{k}\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2} .
$$

5. Consider the formula as above and the spectral radius $\rho\left(\mathbf{T}_{\mathbf{J}}\right)$, we take $\mathbf{x}^{(0)}=0$. Then, the relative error is

$$
\frac{\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{2}}{\left\|\mathbf{x}^{*}\right\|_{2}} \leq \rho\left(\mathbf{T}_{\mathbf{J}}\right)^{k}
$$

We want $\rho^{k} \leq \epsilon$, we take logarithm on both side, it follows that $k \log \rho \leq$ $\log \epsilon$, we note that $\log \rho<0$ due to $\rho<1$, and also $\log \epsilon<0$, therefore,

$$
k|\log \rho| \geq|\log \epsilon| .
$$

Then

$$
k \geq \frac{|\log \epsilon|}{|\log \rho|},
$$

we can set $k=\frac{|\log \epsilon|}{|\log \rho|}$, we need to show $k=C n^{\alpha}$, i.e.,

$$
\log k=\alpha \log n+\log C
$$

So, setting $\epsilon=10^{-r}$, where r is a constant. We consider the relationship between

$$
\log k=\log \frac{|\log \epsilon|}{|\log \rho|}=\log |r|-\log \left|\log \cos \frac{\pi}{n+1}\right| .
$$

and $\log n$, we need to do a work of linear regression using LSM. We list as the following that

n	$\log n$	$\log \left\|\log \cos \frac{\pi}{n+1}\right\|$
10	2.30258509	-3.1857
20	2.99573227	-4.4890
40	3.688879454	-5.8299
80	4.38202663	-7.1923
160	5.075173815	-8.5664
320	5.76832099579	-9.9466

We can draw the graph as follows

Figure 1: Using the values $n=10,20,40,80,160,320$. Do a plot of $\log n$ and $\log \left|\log \cos \frac{\pi}{n+1}\right|$

The first problem transfers into

$$
\log \left|\log \cos \frac{\pi}{n+1}\right|=\log C_{1}+\alpha_{1} \log n
$$

we have implied the method in Project 1, now, I omit the detail and only give the result as follows

α_{1}
-1.9537886863

Thus, we obtain that $\alpha=-\alpha_{1}=1.9537886863$, Iterk $=O\left(n^{\alpha}\right)$ for some α. In fact, we can also do the Taylor extension of the function, then, we deserve the same result.
6. Consider Fix $\epsilon=10^{-3}$ and note that $\mathbf{f}=\mathbf{A u}$. Then, the vector \mathbf{u} is the exact solution. In the following, we solve the system of equations

$$
\mathbf{A x}=\mathbf{f}
$$

using Jacobi's method with $\mathbf{x}^{(0)}=0$.

Jacobi iterative algorithm

To solve $\mathbf{A x}=\mathbf{f}$ given an initial approximation $\mathbf{x}^{(0)}$,
INPUT. The number of equations and unknowns n, the entries $a_{i j}, 1 \leq i, j \leq n$ of the matrix \mathbf{A}, the entries f_{i} of \mathbf{f}, the entries $X O_{i}, 1 \leq i \leq n$ of $\mathbf{X O}=\mathbf{x}^{(0)}$, tolerance TOL; maximum number of iterations N.

OUTPUT. The approximate solution x_{1}, \ldots, x_{n} or a message that the number of iterations was exceeded.

Step 1. Set $k=1$.
Step 2. While $k \leq N$ do Steps $3-6$.
Step 3. For $i=1, \ldots, n$, set

$$
x_{i}=\frac{-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(a_{i j} X O_{j}\right)+f_{i}}{a_{i i}}
$$

Step 4. If $\|\mathbf{x}-\mathbf{X O}\|<T O L$, then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$; (The procedure was successful). STOP.

Step 5. Set $k=k+1$.
Step 6. For $i=1, \ldots, n$, set $X O_{i}=x_{i}$.
Step 7. OUTPUT (Maximum number of iterations exceeded); (The procedure was successful). STOP.
Using the values $n=10,20,40,80,160,320$. Do a log-log plot of the number of Jacobi iterations necessary for the error to satisfy

$$
\left\|\mathbf{x}^{(k)}-\mathbf{u}\right\|_{2} \leq \epsilon\|\mathbf{u}\| .
$$

We obtain that

n	iter k
10	223
20	821
40	3135
80	12243
160	48377
320	192314

The matlab code of Jacobi function file as following that

```
function [x, iter]=myjacobi(a,xexact,x0,tol)
    b=a*xexact;
    n=length(x0);
    u0=x0;
    x=x0;
    iter = 0;
    error=1;
    while error > tol
        for i=1:n
        x(i) = a(i,1:i-1)*x0(1:i-1)+a(i,i+1:n)*x0(i+1:n);
        x(i)=(b(i)-x(i))/a(i,i);
        end
        error=norm(x-xexact)/norm(u0-xexact);
        x0=x;
        iter = iter + 1;
    end
end
```

The matlab code of Jacobi iteration as following that
\%
\% Project 2
\% Jacobi method
\%

```
clear
results=[];
for k=0:5,
    n=10*2^k;
    h=1./(n+1);
    %
    % Define Grid
    %
    x=zeros(n,1);
    for i=1:n,
        x(i) = i*h;
    end
    %
    % Initialization
    %
    sol = sin(pi*x);
    e=ones(n,1)/h^2;
    a=spdiags([-e 2*e -e], -1:1, n, n);
    f = a *sol;
    %
    % Iteration starts here
    %
    tol = 1.e-4;
    u0 = zeros(n,1);
    u1 = zeros(n,1);
    error=norm(u0-sol)/norm(sol);
    iter = 0;
    while error > tol
        u1(1) = (h^2*f(1)+u0(2))/2.;
        for i=2:n-1
            u1(i) = (h^2*f(i)+u0(i+1)+u0(i-1))/2.;
        end
        u1(n) = (h^2*f(n)+u0(n-1))/2.;
```

```
            u0 = u1;
            error=norm(u0-sol)/norm(sol);
            iter = iter + 1;
        % fprintf('Iteration %d, Error: %16.10g\n', iter, norm(u1-sol));
        end
    results=[results; n error iter];
    fprintf('Iterations for n=%d: %d\n', n, iter);
end
%%
loglog(results(:,1),results(:,3),'0-'),hold on,grid on
title({['Log-Log plot of the number of Jacobis
iterations'];['Due on 2017/4/20, Changjian Xie']})
xlabel('n');
ylabel('#the number of Jacobi Iterations')
```

Do a log-log plot of the number of Jacobi iterations as follows

Figure 2: Using the values $n=10,20,40,80,160,320$. Do a log-log plot of the number of Jacobi iterations necessary for the error to satisfy $\left\|\mathbf{x}^{(k)}-\mathbf{u}\right\|_{2} \leq$ $\epsilon\|\mathbf{u}\|$.

Theoretically this is the expected number of iterations. Indeed, we know the result is linear of $\log k$ and $\log n$. Then, Obviously, $k=O\left(n^{\alpha}\right)$, from task (5), of course, it's true.
7. Repeat the previous part with Gauss-Seidel's method.

G-S iterative algorithm

To solve $\mathbf{A x}=\mathbf{f}$ given an initial approximation $\mathbf{x}^{(0)}$,
INPUT. The number of equations and unknowns n, the entries $a_{i j}, 1 \leq i, j \leq n$ of the matrix \mathbf{A}, the entries f_{i} of \mathbf{f}, the entries $X O_{i}, 1 \leq i \leq n$ of $\mathbf{X O}=\mathbf{x}^{(0)}$, tolerance TOL; maximum number of iterations N.

OUTPUT. The approximate solution x_{1}, \ldots, x_{n} or a message that the number of iterations was exceeded.

Step 1. Set $k=1$.
Step 2. While $k \leq N$ do Steps $3-6$.
Step 3. For $i=1, \ldots, n$, set

$$
x_{i}=\frac{-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} X O_{j}+f_{i}}{a_{i i}}
$$

Step 4. If $\|\mathbf{x}-\mathbf{X O}\|<T O L$, then OUTPUT $\left(x_{1}, \ldots, x_{n}\right)$; (The procedure was successful). STOP.

Step 5. Set $k=k+1$.
Step 6. For $i=1, \ldots, n$, set $X O_{i}=x_{i}$.
Step 7. OUTPUT (Maximum number of iterations exceeded); (The procedure was successful). STOP. The matlab code of G-S function file as following that

```
function [x, iter]=mygs(a,xexact,x0,tol)
    b=a*xexact;
    n=length(x0);
    x=x0;
    iter = 0;
    error=1;
    while error > tol
        for i=1:n
        x(i) = a(i,1:i-1)*x(1:i-1)+a(i,i+1:n)*x(i+1:n);
        x(i)=(b(i)-x(i))/a(i,i);
    end
    error=norm(x-xexact)/norm(x0-xexact);
    iter = iter + 1;
```

end
end
The matlab code of G-S iteration as following that

```
%
% Project 2
% Gauss-Seidel method
%
clear
results=[];
for k=0:5,
    n=10*2^k;
    h=1./(n+1);
    %
    % Define Grid
    %
    x=zeros(n,1);
    for i=1:n,
        x(i) = i*h;
    end
    %
    % Initialization
    %
    sol = sin(pi*x);
    e=ones(n,1)/h^2;
    a=spdiags([-e 2*e -e], -1:1, n, n);
    f = a *sol;
    %
    % Iteration starts here
    %
    tol = 1.e-4;
    u = zeros(n,1);
error=norm(u-sol)/norm(sol);
```

```
    iter = 0;
    while error > tol
        u(1) = (h^2*f(1)+u(2))/2.;
        for i=2:n-1
            u(i) = (h^2*f(i)+u(i+1)+u(i-1))/2.;
        end
        u(n) = (h^2*f(n)+u(n-1))/2.;
        error=norm(u-sol)/norm(sol);
        iter = iter + 1;
    % fprintf('Iteration %d, Error: %16.10g\n', iter, norm(u1-sol));
    end
    results=[results; n error iter];
    fprintf('Iterations for n=%d: %d\n', n, iter);
end
%%
loglog(results(:,1),results(:,3),'o-'),hold on,grid on
title({['Log-Log plot of the number of Gauss-Seidels
iterations'];['Due on 2017/4/20, Changjian Xie']})
xlabel('n');
ylabel('#the number of Gauss-Seidels Iterations')
%% The same graph
clf
loglog(results(:,1),results(:,3),'o-'),hold on,grid on
xlabel('n');
ylabel('#the number of Iterations'),
title({['Log-Log plot of the number of
iterations'];['Due on 2017/4/20, Changjian Xie']}),
hold on
%% after the fisrt one
% note that the output result of J and G-s is different
loglog(results(:,1),results(:,3),'s-.'),hold on,
legend('Jacobis Iterations','Gauss-Seidels Iterations')
```

We obtain that

n	iter k
10	112
20	411
40	1568
80	6122
160	24189
320	96157

Do a log-log plot of the number of G-S iterations as follows

Figure 3: Using the values $n=10,20,40,80,160,320$. Do a $\log -\log$ plot of the number of G-S iterations necessary for the error to satisfy $\left\|\mathbf{x}^{(k)}-\mathbf{u}\right\|_{2} \leq \epsilon\|\mathbf{u}\|$.

We can draw together as follows.

Figure 4: Using the values $\mathrm{n}=10,20,40,80,160,320$. Do a log-log plot of the number of Jacobi and G-S iterations necessary for the error to satisfy $\left\|\mathbf{x}^{(k)}-\mathbf{u}\right\|_{2} \leq \epsilon\|\mathbf{u}\|$.

We can get the result from above graph that G-S iterations is a bit better than Jacobi iterations.

