
Project 3
Due on Friday, May 19th, 2017 (Three weeks)

Consider the following ordinary differential equation for u:

u(x)− u′′(x) = f(x) x ∈ [0, 1], (1)

with periodic boundary conditions, i.e.,

u(0) = u(1)

u′(0) = u′(1). (2)

In this problem we want to approximate the solution to this equation numer-
ically using the Fast Fourier Transform (FFT). Since we do not know what
the solution is, you need to make sure that your program is giving the right
answer.

(i) Consider u(x) = cosh(sin(2πx)), and compute f(x) so that u is the
solution to equation (1).

(ii) Approximating the second derivative using second order centered differ-
ences, one gets:

uj −
uj+1 − 2uj + uj−1

h2
= fj, j = 0, · · · , n− 1, (3)

u(n) = u(0), (4)

u(−1) = u(n− 1). (5)

Show that the following vectors are eigenvectors of the resulting matrix,
and find the corresponding eigenvalues:

vkj = e−2πijk/n, j = 0, · · · , n− 1. (6)

(iii) Based on (ii), uj can be approximated as

uj =
n−1∑
k=0

cke
−2πijk/n, j = 0, · · · , n− 1,

where ck are coefficients to be determined. Solve the system of equa-
tions (3) using the FFT, for n = 2l, l = 6, 7, 8, 9. An intrinsic function

1

fft in matlab can be used to conduct the discrete fourier transform.
Compute the error of your algorithm, and show that the solution ob-
tained is second order accurate.

Solution.

(i) Consider u(x) = cosh(sin(2πx)), where x ∈ [0, 1]. If we change the
interval [0, 1] to [−π, π], we can get u(x) = cosh(sin(x)), where x ∈
[−π, π]. Noting that

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
.

(sinhx)′ = coshx, (coshx)′ = sinhx.

Thus,

u′(x) = sinh(sin(x)) cos(x),

u′′(x) = cos2(x) cosh(sin(x))− sinh(sin(x)) sin(x).

Then,

f(x) = u(x)− u′′(x)

= cosh(sin(x))− cos2(x) cosh(sin(x)) + sinh(sin(x)) sin(x)

= sin2(x) cosh(sin(x)) + sinh(sin(x)) sin(x).

We also note that u(x) is a periodic function with period L = 1
2
, since

cosh(sin(2π(x+
1

2
))) = cosh(sin(2πx+ π))

= cosh(− sin(2πx))

= cosh(sin(2πx))

= u(x).

It is easy to check u(x) satisfy with periodic boundary conditions, i.e.,

u(0) = u(1)

u′(0) = u′(1).

2

(ii) Approximating the second derivative using second order centered differ-
ences, one gets:

uj −
uj+1 − 2uj + uj−1

h2
= fj, j = 0, · · · , n− 1,

u(n) = u(0),

u(−1) = u(n− 1).

The method is similar to project 2, consider the matrix

A =

1 + 2

h2
− 1
h2

0 · · · 0 − 1
h2

− 1
h2

1 + 2
h2

− 1
h2

· · · · · · 0
0 − 1

h2
1 + 2

h2
− 1
h2
· · · 0

· · · · · · · · · · · · · · · − 1
h2

− 1
h2

0 · · · · · · − 1
h2

1 + 2
h2

n×n

According to the definition of an eigenvalue and an eigenvector of the
matrix, it is easy to check the vector v(k) given by

v
(k)
j = e−2πijk/n, j = 0, · · · , n− 1,

is an eigenvector of the matrix A, for each k = 0, 1, . . . , n− 1,

ω = e−ih = e−
2πi
n ,

is the n-th root of unity with i the imaginary unit. Noting that ω−1 =
ω̄. Then,

e−
2πijk
n = ωkj, 0 ≤ j, k ≤ n− 1,

v(k) = (1, ωk, ω2k, · · · , ω(n−1)k)T , 0 ≤ k ≤ n− 1,

where (·)T denotes the transpose of a matrix or a vector.

When ` 6= 0, n − 1, where ` denotes the index of rows, we can take
the `-th component of Av(k), i.e., we need to show that

(Av(k))` = − 1

h2
ω(`−2)k + (1 +

2

h2
)ω(`−1)k − 1

h2
ω`k

(?)
= λkv

(k)
` = λkω

(`−1)k,

3

after simplification,

(1 +
2

h2
− λk)ω`k =

1

h2
(ω(`+1)k + ω(`−1)k)

⇒ λk = 1 +
2

h2
− 1

h2
(ωk + ω−k) = 1 +

2

h2
− 1

h2
(ωk + ωn−k).

Let us check the first and the last component, for ` = 0, we need to
show

(Av(k))0 = 1 +
2

h2
− 1

h2
ωk − 1

h2
ω(n−1)k

= 1 +
2

h2
− 1

h2
ωk − 1

h2
ω−k (due to ωn = 1)

= λk

= λkv
(k)
0 .

for ` = n− 1, we need to show

(Av(k))n−1 = − 1

h2
− 1

h2
ω(n−2)k + (1 +

2

h2
)ω(n−1)k

(?)
= λkv

(k)
n−1 = λkω

(n−1)k,

⇒ (1 +
2

h2
− λk)ω(n−1)k =

1

h2
(ωnk + ω(n−2)k)

⇒ λk = 1 +
2

h2
− 1

h2
(ωk + ω−k)

Therefore, the vectors v(k) with components

vkj = e−2πijk/n, j = 0, · · · , n− 1,

and the corresponding eigenvalue

λk = 1 +
2

h2
− 1

h2
(ωk + ω−k), k = 0, . . . , n− 1,

are the eigenpairs of A.

4

(iii) Based on (ii), uj can be approximated as

uj =
n−1∑
k=0

cke
−2πijk/n, j = 0, · · · , n− 1,

i.e., u = Fc, where

F =

1 1 · · · 1
1 ω · · · ωn−1

· · · · · · · · · · · ·
1 ωn−1 · · · ω(n−1)2

n×n

Suppose we have u = (u0, u1, . . . , un−1)
T , define the Discrete Fourier

Transform (DFT) of u as c = (c0, c1, . . . , cn−1)
T 4= û, where

ck =
n−1∑
j=0

uje
2πijk/n, j = 0, · · · , n− 1.

We simplify the system (3) as follows,

(h2 + 2)uj − uj+1 − uj−1 = h2fj.

Replacing uj =
∑n−1

k=0 cke
−2πijk/n in the differential equation as above,

we obtain that

(h2 + 2)
n−1∑
k=0

ûkω
jk −

n−1∑
k=0

ûkω
(j+1)k −

n−1∑
k=0

ûkω
(j−1)k = h2

n−1∑
k=0

f̂kω
jk.

Combining terms and doing an algebraic manipulation then results in
this:

n−1∑
k=0

ûkω
jk(h2 + 2− ωk − ω̄k) =

n−1∑
k=0

h2f̂kω
jk.

Taking the inverse DFT of both sides and dividing by h2 + 2−ωk− ω̄k,
which we assume is never 0, we find that

ûk = h2(h2 + 2− ωk − ω̄k)−1f̂k.

5

Thus, we have found the DFT of u. Inverting this then recovers u itself.
In the following, we will discuss methods for fast computation of the
DFT and its inverse.

Let us consider the DFT of a periodic sequence u with period n = 2m.
The ûk are calculated via

ûk =
2m−1∑
j=0

ujω̄
jk.

Splitting the sum above into a sum over even and odd integers yields

ûk =
m−1∑
j=0

u2jω̂
2jk +

m−1∑
j=0

u2j+1ω̂
(2j+1)k

=
m−1∑
j=0

u2jŴ
jk + ω̂k

(m−1∑
j=0

u2j+1Ŵ
jk
)
,

where W := e
2πi
m = ω2. If we call an intrinsic function fft in matlab,

then the program is that

%

% Project 3

% FFT method

%

clear

f =@(x) cosh(sin(x))...%convert [0,1] to [-pi,pi], we need to make change.

-cos(x).*cos(x).*cosh(sin(x))...

+sinh(sin(x)).*sin(x); % define the right hand function

L=[6 7 8 9];

n = 2.^L;

figure(1)

for j=1:4

xk = -pi*ones(n(j),1)+(0:n(j)-1)’*2*pi/n(j); % grid points

h(j)=2*pi/n(j);

w=exp(-1i*h(j));

fk=fft(f(xk));

for k=1:n(j)

6

uk(k)=h(j)*h(j)*fk(k)/(h(j)*h(j)+2-w.^(k-1)-w.^(n(j)-k+1));

end

u=ifft(uk);

subplot(2,2,j),

plot(xk,u,’k.-’),hold on,grid on

y =@(x) cosh(sin(x));%exact solution

yk=y(xk);

plot(xk,yk,’k--’),hold on

error(j)=norm(u’-yk);

end

format long

error,h

figure(2)

loglog(h,error,’ks-’),hold on,grid on

xlabel(’h’),ylabel(’error of fft’),hold on,

title({[’Log-Log plot of the error’];

[’Due on 2017/5/12, Changjian Xie’]}),

hold on

%calculate the slope as follow

r=sum((log(h)).^2);

s=sum(log(h));

t=sum((log(h)).*log(error));

p=sum(log(error));

alpha=(p*s-6*t)/(s^2-6*r)

the result is as follows,

7

-4 -2 0 2 4
0.8

1

1.2

1.4

1.6

-4 -2 0 2 4
0.8

1

1.2

1.4

1.6

-4 -2 0 2 4
0.8

1

1.2

1.4

1.6

-4 -2 0 2 4
0.8

1

1.2

1.4

1.6

Figure 1: Using the values n = 2L, where L = 6, 7, 8, 9. Do a plot of the
numerical solution using FFT, compared with the exact solution.

0.02 0.03 0.04 0.05 0.06 0.07 0.080.09

h

10-4

10-3

10-2

er
ro

r
of

 ff
t

Log-Log plot of the error
Due on 2017/5/12, Changjian Xie

Figure 2: Using the values n = 2L, where L = 6, 7, 8, 9, and h = 2π
n

. Do a
Log-Log plot of the error.

8

The result of error is as follows,

h error
0.098174770424681 0.003970390361341
0.049087385212341 0.001402338801571
0.024543692606170 0.000495677469557
0.012271846303085 0.000175237330099

We obtain the slope of straight line as follows using Least Square
Method (LSM), that is, the order of error is that

α1

2.025709101424918

Remark

If we have only the data {(xj, yj)}2m−1j=0 , and we don’t know the exact
analytical solution. We can do the interpolating trigonometric polyno-
mial using FFT, the following is the detail.

We need to transform [0, 1] to [−π, π] by zj = 2π(xj − 1
2
), where

xj ∈ [0, 1], zj ∈ [−π, π], then we get point {zj, u(1
2

+
zj
2π

)}. We observe

that xj = j
n
, zj = −π+ (2j

n
)π, so it doesn’t matter change zj to xj, i.e.,

xj = −π+ (j
m

)π, j = 0, 1, 2, . . . , 2m− 1, then we transform [0, 1] to the
interval [−π, π], we get

u2m = u(x2m) = u(π) = 1 = u0 = 1,

u−1 = u(x−1) = u(−π +
−1

m
π) = cosh(sin(

−1

m
)),

u2m−1 = u(x2m−1) = cosh(sin(2π − 1

m
π)),

yj = u(xj) = cosh(sin(
j

m
π)),

where xj ∈ [−π, π], j = 0, 1, . . . , 2m−1, h = xj+1−xj = 1
m
π = 2π

n
. For

these data {(xj, yj)}2m−1j=0 , we determine the form of the discrete least

squares polynomial of degree n on the 2m data points {(xj, yj)}2m−1j=0 ,

where xj = −π+(j
m

)π, for each j = 0, 1, 2, . . . , 2m−1. The interpolat-
ing trigonometric polynomial in Tm on these 2m data points is nearly

9

the same as the least squares polynomial. This is because the least
squares trigonometric polynomial minimizes the error term

E(Sm) =
2m−1∑
j=0

(yj − Sm(xj))
2,

and for the interpolating trigonometric polynomial, this error is 0,
hence minimized, when the Sm(xj) = yj, for each j = 0, 1, . . . , 2m− 1.
This requires the interpolating polynomial to be written as

Sm(x) =
a0 + am cosmx

2
+

m−1∑
k=0

(ak cos kx+ bk sin kx),

if we want the form of the constants ak and bk to agree with those of
the discrete least squares polynomial; that is,

ak =
1

m

2m−1∑
j=0

yj cos kxj, for k = 0, 1, . . . ,m,

bk =
1

m

2m−1∑
j=0

yj sin kxj, for k = 1, . . . ,m− 1.

Instead of directly evaluating the constants ak and bk, the fast Fourier
transform procedure computes the complex coefficients ck in

1

m

2m−1∑
k=0

cke
ikx,

where

ck =
2m−1∑
j=0

yje
ikπj
m , k = 0, 1, . . . , 2m− 1, (7)

i.e. yj = uj =
∑2m−1

j=0 cke
−ikπj
m . Once the constants ck have been

determined, ak and bk can be recovered by using Eulers Formula,

eiz = cos z + i sin z.

10

For each k = 0, 1, . . . ,m, we have

1

m
ck(−1)k =

1

m
cke
−iπk =

1

m

2m−1∑
j=0

yje
ikπj
m e−iπk

=
1

m

2m−1∑
j=0

yje
ik(−π+πj

m
)

=
1

m

2m−1∑
j=0

yj(cos k(−π +
πj

m
) + i sin k(−π +

πj

m
))

=
1

m

2m−1∑
j=0

yj(cos kxj + i sin kxj).

So, given ck we have

ak + ibk =
(−1)k

m
ck. (8)

For notational convenience, b0 and bm are added to the collection, but
both are 0 and do not contribute to the resulting sum. The operation-
reduction feature of the fast Fourier transform results from calculating
the coefficients ck in clusters, and uses as a basic relation the fact that
for any integer n,

enπi = cosnπ + i sinnπ = (−1)n.

Supposem = 2p for some positive integer p. For each k = 0, 1, . . . ,m?1
we have

ck + cm+k =
2m−1∑
j=0

yje
ikπj
m +

2m−1∑
j=0

yje
i(m+k)πj

m =
2m−1∑
j=0

yje
ikπj
m (1 + eπij),

but

1 + eiπj =

{
2, if j is even,
0 if j is odd,

so there are only m nonzero terms to be summed. If j is replaced by
2j in the index of the sum, we can write the sum as

ck + cm+k = 2
m−1∑
j=0

y2je
ikπ(2j)
m ,

11

that is

ck + cm+k = 2
m−1∑
j=0

y2je
ikπj
m
2 . (9)

In a similar manner,

ck − cm+k = 2e
ikπ
m

m−1∑
j=0

y2j+1e
ikπj
m
2 . (10)

There are 2m coefficients c0, c1, . . . , c2m−1 to be calculated. Using the
basic formula (7) requires 2m complex multiplications per coefficien-
t, for a total of (2m)2 operations. Equation (9) requires m complex
multiplications for each k = 0, 1, . . . , 2m − 1 and (10) requires m + 1
complex multiplications for each k = 0, 1, . . . ,m − 1. Using these e-
quations to compute c0, c1, . . . , c2m−1 reduces the number of complex
multiplications from (2m)2 = 4m2 to

m ·m+m(m+ 1) = 2m2 +m.

The sums in (9) and (10) have the same form as the original and m is
a power of 2, so the reduction technique can be reapplied to the sums
in (9) and (10). Each of these is replaced by two sums from j = 0 to
j = m

2
− 1. This reduces the 2m2 portion of the sum to

2[
m

2
· m

2
+
m

2
· (m

2
+ 1)] = m2 +m.

So a total of
(m2 +m) +m = m2 + 2m

complex multiplications are now needed, instead of (2m)2.

Applying the technique one more time gives us 4 sums each with m
4

terms and reduces the m2 portion of this total to

4[(
m

4
)2 +

m

4
(
m

4
+ 1)] =

m2

2
+m,

for a new total of m2

2
+ 3m complex multiplications. Repeating the

process r times reduces the total number of required complex multipli-
cations to

m2

2r−2
+mr.

12

The process is complete when r = p+1, because we then have m = 2p

and 2m = 2p+1 . As a consequence, after r = p + 1 reductions of this
type, the number of complex multiplications is reduced from (2m)2 to

(2p)2

2p−1
+m(p+ 1) = 2m+ pm+m = 3m+m log2m = O(m log2m).

Because of the way the calculations are arranged, the number of
required complex additions is comparable.

Consider the following algorithm of Fast Fourier Transform:

Fast Fourier Transform

To compute the coefficients in the summation

1

m

2m−1∑
k=0

cke
ikx =

1

m

2m−1∑
k=0

ck(cos kx+ i sin kx), where i =
√
−1,

for the data {(xj, yj)}2m−1j=0 , where m = 2p, and xj = −π + jπ
m

for
j = 0, 1, . . . , 2m− 1:

INPUT m, p; y1, y2, . . . , y2m−1.

OUTPUT complex numbers c0, . . . , c2m−1; real numbers a0, . . . , am; b1, . . . , bm−1.

Step 1 Set

M = m;

q = p;

ς = e
πi
m .

Step 2 For j = 0, 1, . . . , 2m− 1, set cj = yj.

Step 3 For j = 1, . . . ,M , set

ξj = ζj;

ξj+m = −ξj.

Step 4 Set K = 0; ξ0 = 1.

13

Step 5 For L = 1, 2, . . . , p+ 1 do Steps 6− 12.

Step 6 While K < 2m− 1 do Steps 7− 11.

Step 7 For j = 1, 2, . . .M do Steps 8− 10.

Step 8 Let K = kp · 2p + kp−1 · 2p−1 + · · ·+ k1 · 2 + k0;
(Decompose k).
set

K1 =
K

2q
= kp · 2p−q + · · ·+ kq+1 · 2 + kq;

K2 = kq · 2p + kq+1 · 2p−1 + · · ·+ kp · 2q.

Step 9 Set

η = cK+MξK2 ;

cK+M = cK − η;

cK = cK + η.

Step 10 Set K = K + 1.

Step 11 Set K = K +M .

Step 12 Set

K = 0;

M =
M

2
;

q = q − 1.

Step 13 While K < 2m− 1 do Steps 14− 16.

Step 14 Let K = kp · 2p + kp−1 · 2p−1 + · · ·+ k1 · 2 + k0; (Decompose k).
set j = k0 · 2p + k1 · 2p−1 + · · ·+ kp−1 · 2 + kp.

Step 15 If j > K then interchange cj and ck.

Step 16 Set K = K + 1.

14

Step 17 Set

a0 =
c0
m

;

am = Re(e−iπm
cm
m

).

Step 18 For j = 1, . . . ,m− 1 set

aj = Re(e−iπj
cj
m

);

bj = Im(e−iπj
cj
m

).

Step 19 OUTPUT(c0, . . . , c2m−1; a0, . . . , am; b1, . . . , bm−1);
STOP.

15

