
Project 4
Due on Monday, June 9th, 2017 (Three weeks)

Consider the following time-dependent equation:

∂u

∂t
= ε2

∂2u

∂x2
+ (1− u2)u+ f(x, t), x ∈ [−1, 1], t > 0 (1)

with boundary conditions u(−1, t) = −1, u(1, t) = 1, and initial condition

u(x, 0) = cos

(
5π
x− 1

2

)
.

The function f is to be chosen later. Discretizing the right hand side with
second order centered differences, and defining

D+D−ui =
ui+1 − 2ui + ui−1

∆x2
, (2)

we get (
ε2
∂2u

∂x2
+ (1− u2)u

)
(xi) = ε2D+D−ui + (1− u2

i )ui (3)

Consider the following fully implicit discretization:

3un+1
i − 4uni + un−1

i

2∆t
= ε2D+D−u

n+1
i + (1− (un+1

i )2)un+1
i + f(xi, tn+1) (4)

1. Show that the numerical scheme is second order accurate in time and
space.

2. Choose an appropriate function f(x, t) so that u(x, t) = cos(t) cos(5π(x−
1)/2) is the actual solution, with boundary conditions u(−1, t) = − cos(t),
and u(1, t) = cos(t).

3. Using the solution computed in the previous part, show that the nu-
merical scheme is second order in time and space by implementing the
method, using Newton’s method to solve the nonlinear system of equa-
tions, using ε = 1.

4. Now set f = 0, and consider the original boundary and initial condi-
tions. Solve the equation up to time T = 1. Plot the solution at time

1



2

intervals ∆T = 0.1, so that you can get an idea of the actual evolu-
tion. Use ε = 0.005. Solve the equation for several values of ∆x and
∆t to make sure your results don’t change anymore when changing the
grid size, or the time step. Plot the results for the different values to
illustrate the convergence of the method.

Solution.

1. Show that the numerical scheme is second order accurate in time and
space.

Consider the fully implicit numerical scheme as follows,

3un+1
i − 4uni + un−1

i

2∆t
= ε2D+D−u

n+1
i + (1− (un+1

i )2)un+1
i + f(xi, tn+1)

i.e.,

3un+1
i − 4uni + un−1

i

2∆t
= ε2

un+1
i+1 − 2un+1

i + un+1
i−1

∆x2

+ (1− (un+1
i )2)un+1

i + f(xi, tn+1).

The local truncation error at (xi, tn+1) is given as

τn+1
i =

3u(xi, tn+1)− 4u(xi, tn) + u(xi, tn−1)

2∆t

− ε2u(xi+1, tn+1)− 2u(xi, tn+1) + u(xi−1, tn+1)

∆x2

− (1− u2(xi, tn+1))u(xi, tn+1)− f(xi, tn+1). (5)

Using Taylor series expansions around (xi, tn+1) we have

u(xi, tn) = u(xi, tn+1)−∆t ut(xi, tn+1) +
(∆t)2

2
utt(xi, tn+1) +O((∆t)3)

(6)

u(xi, tn−1) = u(xi, tn+1)−2∆t ut(xi, tn+1)+
(2∆t)2

2
utt(xi, tn+1)+O((∆t)3)

(7)

u(xi+1, tn+1) = u(xi, tn+1) + ∆xux(xi, tn+1) +
(∆x)2

2
uxx(xi, tn+1)

+
(∆x)3

3!
uxxx(xi, tn+1) +O((∆x)4) (8)



3

u(xi−1, tn+1) = u(xi, tn+1)−∆xux(xi, tn+1) +
(∆x)2

2
uxx(xi, tn+1)

− (∆x)3

3!
uxxx(xi, tn+1) +O((∆x)4) (9)

Substituting (6), (7), (8) and (9) in (5) we get

τn+1
i = ut(xi, tn+1) +O((∆t)2)− ε2uxx(xi, tn+1)

+O((∆x)2)− (1− u2(xi, tn+1))u(xi, tn+1)− f(xi, tn+1).

Since u is the exact solution, we have

∂u

∂t
= ε2

∂2u

∂x2
+ (1− u2)u+ f(x, t),

so, we have
τn+1
i = O((∆t)2 + (∆x)2).

Thus, the fully implicit numerical scheme is consistent and it is second
order accurate in time and space. If we choose ∆t = ∆x then the
scheme will be second order overall in both space and time. If we make
∆t� ∆x then it is wasteful in the sense that the dominant error will
be O(∆x2).

2. Choose an appropriate function f(x, t) so that u(x, t) = cos(t) cos(5π(x−
1)/2) is the actual solution, with boundary conditions u(−1, t) = − cos(t),
and u(1, t) = cos(t).

Consider u(x, t) = cos(t) cos(5π(x− 1)/2) solves the equation:

∂u

∂t
= ε2

∂2u

∂x2
+ (1− u2)u+ f(x, t), x ∈ [−1, 1], t > 0

with boundary conditions u(−1, t) = − cos(t), and u(1, t) = cos(t).
Then,

f(x, t) =
∂u

∂t
− ε2∂

2u

∂x2
− (1− u2)u

= − sin(t) cos(
5π(x− 1)

2
) +

(
25ε2π2

4
− 1

)
cos(t) cos(

5π(x− 1)

2
)

+ cos3(t) cos3(
5π(x− 1)

2
).



4

3. Using the solution computed in the previous part, show that the nu-
merical scheme is second order in time and space by implementing the
method, using Newton’s method to solve the nonlinear system of equa-
tions, using ε = 1.

To construct the algorithm that led to an appropriate fixed-point method
in the one dimensional case, we found a function φ with the property
that

g(x) = x− φ(x)f(x)

gives quadratic convergence to the fixed point p of the function g. From
this condition Newton’s method evolved by choosing φ(x) = 1

f ′(x)
, as-

suming that f ′(x) 6= 0.

A similar approach in the n dimensional case involves a matrix

A(x) =


a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)
· · · · · · · · · · · ·

an1(x) an2(x) · · · ann(x)


where each of the entries aij(x) is a function from Rn into R. This

requires that A(x) be found so that

G(x) = x−A(x)−1F(x)

gives quadratic convergence to the solution of F(x) = 0, assuming that
A(x) is nonsingular at the fixed point p of G.

Define the matrix J(x) by

J(x) =


∂f1

∂x1
(x) ∂f1

∂x2
(x) · · · ∂f1

∂xn
(x)

∂f2

∂x1
(x) ∂f2

∂x2
(x) · · · ∂f2

∂xn
(x)

· · · · · · · · · · · ·
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)


An appropriate choice for A(x) is, consequently, A(x) = J(x). The

function G is defined by

G(x) = x− J(x)−1F(x)



5

and the functional iteration procedure evolves from selecting x(0) and
generating, for k ≥ 1,

x(k) = G(x(k−1)) = x(k−1) − J(x(k−1))−1F(x(k−1)).

This is called Newton’s method for nonlinear systems, and it is gener-
ally expected to give quadratic convergence, provided that a sufficiently
accurate starting value is known and that J(p)−1 exists. The matrix
J(x) is called the Jacobian matrix.

A weakness in Newton’s method arises from the need to compute and
invert the matrix J(x) at each step. In practice, explicit computation
of J(x)−1 is avoided by performing the operation in a two step man-
ner. First, a vector y is found that satisfies J(x(k−1))y = −F(x(k−1)).
Then the new approximation, x(k), is obtained by adding y to x(k−1).
Algorithm for Newton’s Method is as follows.

To approximate the solution of the nonlinear system F(x) = 0 given
an initial approximation x:

INPUT number n of equations and unknowns; initial approximation x = (x1, . . . , xn)T ,
tolerance (TOL); maximum number of iterations N .

OUTPUT approximate solution x = (x1, . . . , xn)T or a message that the number
of iterations was exceeded.

Step 1 Set k = 1.

Step 2 While (k ≤ N) do Steps 3− 7.

Step 3 Calculate F(x) and J(x), where J(x)ij = (∂fi(x)
∂xj

) for 1 ≤ i, j ≤ n.

Step 4 Solve the n× n linear system J(x)y = −F(x).

Step 5 set x = x + y.

Step 6 If ‖y‖ < TOL then OUTPUT(x);(the procedure was successful), STOP.

Step 7 Set k = k + 1.

Step 8 OUTPUT (Maximum number of iterations exceeded); (The procedure
was unsuccessful).STOP.



6

One option for solving this nonlinear system is to use the Newton’s
method. Typically one applies the method by solving the linear system

J(x(k))(x(k+1) − x(k)) = −F(x(k)).

A disadvantage to Newton’s method is that the Jacobian changes at
each iteration so a different linear system must be solved for each k.
The advantage is that if it converges, it typically converges quadrati-
cally so rapid convergence is achieve. If explicit formulas for the partial
derivatives are not available then finite differences can be used to esti-
mate the derivatives.

Bringing the known terms to the right hand side of the equation,
using ε = 1, and letting λ = ∆t

∆x2 produces the difference scheme

−2λun+1
i+1 + (3 + 4λ)un+1

i − 2λun+1
i−1 − 2∆t(1− (un+1

i )2)un+1
i

= 4uni − un−1
i + 2∆tfn+1

i . (10)

Note that this is a nonlinear difference equation due to the term (1 −
(un+1

i )2)un+1
i , so the difference equations cant be written as a linear

system Ax = f . Consequently we must use the above Newton’s method
to linearize this problem and we expect that we will have to perform an
iteration at each time step to solve these nonlinear equations. To use
the Newton method we must be able to compute the Jacobian. Recall
that Newtons method will converge in one iteration for a linear system
so in that case the Jacobian is just the same as the coefficient matrix.
This means that all of the linear terms in our equation will be the same
as in the linear case.

The (k − 1)-step iteration Jacobian matrix for system (10) is that

J(x
(k−1)

) =


3 + 4λ− 2∆t[1− 3(x

(k−1)
0 )2] −2λ 0 · · · 0

−2λ 3 + 4λ− 2∆t[1− 3(x
(k−1)
1 )2] −2λ · · · 0

· · · · · · · · · · · · · · ·
0 · · · −2λ 3 + 4λ− 2∆t[1− 3(x

(k−1)
m )2] −2λ

0 · · · 0 −2λ 3 + 4λ− 2∆t[1− 3(x
(k−1)
m+1 )2]



To solve the above difference scheme using the Newton’s Method, we
enclose the code as follows,

%

% project 4

% full implicit scheme



7

% Question 3 newton_method

clear,clc

intervals=2*10^4;k=1/10;

% parameters

m=intervals-1;

h=2/(m+1);

r=k/(h^2);

T=1;

% spatial mesh

x=(-1:h:1)’;

% temporal mesh

nsteps=floor(T/k);

% initial condition

u=zeros(m+2,nsteps+1);

f=zeros(m+2,nsteps+1);

F=zeros(m,nsteps+1);

u(2:m+1,1)=cos(5*pi*(x(2:m+1)-ones(m,1))/2);

u(2:m+1,2)=cos(k)*cos(5*pi*(x(2:m+1)-ones(m,1))/2);

% boundary condition

u(1,:)=-cos((0:nsteps)*k)’;

u(m+2,:)=cos((0:nsteps)*k)’;

% f(x,t)

f(1:m+2,3:nsteps+1)=-cos(5*pi*(x-1)/2)*sin((2:nsteps)*k)+...

(25*pi^2/4-1)*cos(5*pi*(x-1)/2)*cos((2:nsteps)*k)...

+(cos(5*pi*(x-1)/2)).^3*(cos((2:nsteps)*k)).^3;

% preceed the iterations

for n=2:nsteps

F(1,n)=-2*r*u(3,n)+(3+4*r)*u(2,n)-...

2*r*u(1,n+1)-2*k*(1-(u(2,n)).^2).*(u(2,n))...

-4*u(2,n)+u(2,n-1)-2*k*f(2,n+1);

F(m,n)=-2*r*u(m+2,n+1)+(3+4*r)*u(m+1,n)-...

2*r*u(m,n)-2*k*(1-(u(m+1,n)).^2).*(u(m+1,n))...

-4*u(m+1,n)+u(m+1,n-1)-2*k*f(m+1,n+1);

F(2:m-1,n)=-2*r*u(4:m+1,n)+(3+4*r)*u(3:m,n)-...

2*r*u(2:m-1,n)-2*k*(ones(m-2,1)-(u(3:m,n)).^2).*(u(3:m,n))...

-4*u(3:m,n)+u(3:m,n-1)-2*k*f(3:m,n+1);

% Jacobi matrix

a=-2*r*ones(m,1);



8

b(1:m)=(3+4*r)*ones(m,1)-...

2*k*(ones(m,1)-3*(u(2:m+1,n)).^2);

J=spdiags([a,b’,a],[-1,0,1],m,m);

% next time step

u(2:m+1,n+1)=u(2:m+1,n)+J\(-F(1:m,n));

end

%

% plot numerical solution

t=0:k:nsteps*k;

figure(1)

[T,X]=meshgrid(t,x);

mesh(T,X,u),hold on,

xlabel(’t’),ylabel(’x’),zlabel(’u’)

title(’numerical solution,Xie Changjian,2017/6/10’)

% exact solution

uk=zeros(m+2,nsteps+1);

uk(1:m+2,1:nsteps+1)=cos(5*pi*(x-1)/2)...

*cos((0:nsteps)*k);

% plot actual solution

figure(2)

[T,X]=meshgrid(t,x);

mesh(T,X,uk),hold on,

xlabel(’t’),ylabel(’x’),zlabel(’u’)

title(’exact solution,Xie Changjian,2017/6/10’)

% plot the last time step solution

figure(3)

plot(x,u(:,nsteps+1),’k--’),hold on,grid on

plot(x,uk(:,nsteps+1),’k.-’),hold on

legend(’num’,’exact’),hold on

xlabel(’x’),ylabel(’u’),

title(’the last time step iteration’),

% find the error

format long

err=norm(u(:,nsteps+1)-uk(:,nsteps+1),inf)

figure(4)

% the final time step solution, find the order of err

dt=[1/10 1/20 1/40 1/80 1/160]; %dx=2/10^4;

err=[3.030871473064245*10^(-4) 7.641035586880562*10^(-5)...



9

1.916788730826902*10^(-5) 4.829755135271618*10^(-6)...

1.244429739699626*10^(-6)];

loglog(dt,err,’k*-’),hold on,grid on

xlabel(’\Deltat (log)’),ylabel(’err (log)’)

title(’the order of err w.r.t \Deltat’),

% slope_dt=1.9839954399069232859886824371642

% intercept_dt=-3.5374209204112583293522220628802

% dt data fitting

r=sum((log(dt)).^2);

s=sum(log(dt));

t=sum(log(dt).*(log(err)));

p=sum(log(err));

slope_dt=(p*s-5*t)/(s^2-5*r);

% Cx=d

C=[sum((log(dt)).^2),sum(log(dt));sum(log(dt)),5];

d=[sum((log(dt)).*(log(err)));sum(log(err))];

xxx=C\d;

slope_dt=xxx(1);

intercept_dt=xxx(2);

slope_dt=vpa(slope_dt),intercept_dt=vpa(intercept_dt)

figure(5)

dx=[2/40 2/80 2/120 2/160 2/200];%dt=1/10^4;

err=[0.012386398597796 0.003090139709516...

0.001374115855245 7.725349703339157*10^(-4)...

4.942946686625760*10^(-4)];

loglog(dx,err,’k-s’),hold on,grid on

xlabel(’\Deltax (log)’),ylabel(’err (log)’)

title(’the order of err w.r.t \Deltax’),

% slope_dx=2.0012961525522112715691491757752

% intercept_dx=1.6038148252019415185287698477623

% dt data fitting

r=sum((log(dx)).^2);

s=sum(log(dx));

t=sum(log(dx).*(log(err)));

p=sum(log(err));

slope_dx=(p*s-5*t)/(s^2-5*r);

% Cx=d

C=[sum((log(dx)).^2),sum(log(dx));sum(log(dx)),5];



10

d=[sum((log(dx)).*(log(err)));sum(log(err))];

xx=C\d;

slope_dx=xx(1);

intercept_dx=xx(2);

slope_dx=vpa(slope_dx),intercept_dx=vpa(intercept_dx)

The numerical solution is the following result,

Figure 1: Using the space interval ∆x = 10−4, the time interval ∆t = 0.1. Do a
plot of the numerical solution using Newton’s method, up to time T = 1.

We can also do the actual solution as follows,

Figure 2: The actual solution u(x, t) = cos(t) cos(5π (x−1)
2 ).



11

From the calculation, we can also deserve the order of space and time
using the grid encryption, i.e., if we know that the error is e(∆x,∆t) =
O(∆xp + ∆tq). In order to find the spatial discrete format convergence
order p, we adopt grid successive encryption method. When we use
different sizes of grid computing, we can get the error function with the
grid size of the relationship, we use the step (∆x,∆t), 1

2
(∆x,∆t), 1

4
(∆x,∆t)

to compute the result. We deserve e(∆x), e(1
2
∆x), e(1

4
∆x), due to

e(∆x) = C(∆xp), then

e(∆x)

e(1
2
∆x)

=
C∆xp

C(∆x
2

)p
,

so, we estimate the accurate p as follows,

p =
log(e(∆x)/e(1

2
∆x))

log(2)
.

we take ∆x = 0.1,∆t = 10−4, we deserve the error e(∆x) = 0.050568895517941,
then we take ∆x = 0.1

2
,∆t = 10−4, then, the error is e(∆x

2
) = 0.012386398597796.

Then, we deserve that

p =
log(e(∆x)/e(1

2
∆x))

log(2)
= 2.029493490464663 ≈ 2.

we take ∆x = 10−4,∆t = 0.1, we deserve the error e(∆t) = 3.030871473064245×
10−4, then we take ∆x = 10−4,∆t = 0.1

2
, then, the error is e(∆t

2
) =

7.641035586880562× 10−5. Then, we deserve that

q =
log(e(∆t)/e(1

2
∆t))

log(2)
= 1.987892590009570 ≈ 2.

Then the numerical scheme is second order in time and space.

In order to observe clearly, we list the table and give the log-log plot
of the error as the function of the grid size or the time step as follows,

For fixed ∆x = 2
104 , the relationship between the error and the time

step is as follows,

∆t 1
10

1
20

1
40

1
80

1
160

err 3.03087× 10−4 7.641× 10−5 1.9167887× 10−5 4.82× 10−6 1.24× 10−6



12

For fixed ∆t = 1
104 , the relationship between the error and the grid

size is as follows,

∆x 2
40

2
80

2
120

2
160

2
200

err 0.012386 0.0030901397 0.001374 7.7253497× 10−4 4.9429× 10−4

For fixed ∆x = 2
104 , the log-log plot of the error as the function of

grid size is as follows,

10-2 10-1

∆x (log)

10-4

10-3

10-2

10-1

er
r 

(lo
g)

the order of err w.r.t ∆x

Figure 3: Do a log-log plot of the error and the grid size.

For fixed ∆t = 1
104 , the log-log plot of the error as the function of

time step is as follows,

10-3 10-2 10-1

∆t (log)

10-6

10-5

10-4

10-3

er
r 

(lo
g)

the order of err w.r.t ∆t

Figure 4: Do a log-log plot of the error and the time step.



13

4. Consider the difference scheme as follows,

3un+1
i − 4uni + un−1

i

2∆t
= ε2D+D−u

n+1
i + (1− (un+1

i )2)un+1
i + f(xi, tn+1)

i.e.,

−2λε2un+1
i+1 +(3+4λε2)un+1

i −2λε2un+1
i−1−2∆t(1−(un+1

i )2)un+1
i = 4uni−un−1

i +2∆tfn+1
i .

Now we set f = 0, and consider the original boundary and initial
conditions, i.e., we consider the boundary conditions u(−1, t) = −1,
u(1, t) = 1, and initial condition

u(x, 0) = cos

(
5π
x− 1

2

)
.

Solve the equation up to time T = 1. We Plot the solution at time
intervals ∆T = 0.1, so that you can get an idea of the actual evolution.
Here, we use ε = 0.005 and we solve the equation for several values
of ∆x and ∆t to make sure our results don’t change anymore when
changing the grid size, or the time step. We plot the results for the
different values to illustrate the convergence of the method.

The matlab code is as follows,

%

% project 4

% full implicit scheme

% Question 4

clear,clc

intervals=10^4;k=1/10;

% parameters

m=intervals-1;

h=2/(m+1);

r=k/(h^2);

T=1;

epsilon=0.005;

% spatial mesh

x=(-1:h:1)’;

% temporal mesh



14

nsteps=floor(T/k);

% initial condition

u=zeros(m+2,nsteps+1);

F=zeros(m,nsteps+1);

u(2:m+1,1)=cos(5*pi*(x(2:m+1)-ones(m,1))/2);

u(2:m+1,2)=cos(5*pi*(x(2:m+1)-ones(m,1))/2);

% boundary condition

u(1,:)=-ones(nsteps+1,1);

u(m+2,:)=ones(nsteps+1,1);

% preceed iterations

for n=2:nsteps

F(1,n)=-2*r*(epsilon)^2*u(3,n)+(3+4*r*(epsilon)^2)*u(2,n)-...

2*r*(epsilon)^2*u(1,n+1)-2*k*(1-(u(2,n)).^2).*(u(2,n))...

-4*u(2,n)+u(2,n-1);

F(m,n)=-2*r*(epsilon)^2*u(m+2,n+1)+(3+4*r*(epsilon)^2)*u(m+1,n)-...

2*r*(epsilon)^2*u(m,n)-2*k*(1-(u(m+1,n)).^2).*(u(m+1,n))...

-4*u(m+1,n)+u(m+1,n-1);

F(2:m-1,n)=-2*r*(epsilon)^2*u(4:m+1,n)+(3+4*r*(epsilon)^2)*u(3:m,n)-...

2*r*(epsilon)^2*u(2:m-1,n)-2*k*(ones(m-2,1)-(u(3:m,n)).^2).*(u(3:m,n))...

-4*u(3:m,n)+u(3:m,n-1);

% Jacobi matrix

a=-2*r*(epsilon)^2*ones(m,1);

b(1:m)=(3+4*r*(epsilon)^2)*ones(m,1)-...

2*k*(ones(m,1)-3*(u(2:m+1,n)).^2);

J=spdiags([a,b’,a],[-1,0,1],m,m);

% next time step

u(2:m+1,n+1)=u(2:m+1,n)+J\(-F(1:m,n));

end

%

% plot numerical solution

t=0:k:nsteps*k;

figure(1)

[T,X]=meshgrid(t,x);

mesh(T,X,u),hold on,

xlabel(’t’),ylabel(’x’),zlabel(’u’)

title(’numerical solution,Xie Changjian,2017/6/28’)

the result for ∆t = 0.1 is as follows,



15

Figure 5: The solution at the time interval ∆t = 0.1. Do a plot of the numerical
solution up to time T = 1.

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 6: The grid size is
∆x = 2

20 , the time step
∆t = 1

10 .

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 7: The grid size is
∆x = 2

200 , the time step
∆t = 1

10 .

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 8: The grid size is
∆x = 2

2000 , the time step
∆t = 1

10 .

Figure 9: The grid size
is ∆x = 2

2×104 , the time

step ∆t = 1
10 .



16

From these above four figures, we know the result don’t change anymore
when changing the grid size.

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 10: The grid size
is ∆x = 2

20 , the time
step ∆t = 1

10 .

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 11: The grid size
is ∆x = 2

20 , the time
step ∆t = 1

100 .

-1
1

-0.5

0.5 1

0u

0.8

0.5

x

0 0.6

t

1

0.4-0.5
0.2

-1 0

Figure 12: The grid size
is ∆x = 2

20 , the time
step ∆t = 1

103 .

Figure 13: The grid size
is ∆x = 2

20 , the time
step ∆t = 1

104 .

From these above four figures, we know the result don’t change any-
more when changing the time step.

In conclusion, we deserve that the full implicit scheme is uncondi-
tionally stable, then, it’s convergent to the exact solution. As we all
know, the Newton’s method is quickly convergent by the rate of square.
We can obtain the actual solution by the mesh refinement. Then, we
compare the numerical solution with the exact one. As k →∞,

‖u(k+1) − uexact‖∞
‖u(k) − uexact‖2

∞

is exsist.

Then, the accuracy of the above numerical scheme is high, and we
can think of any other scheme for this above famous equation, and do
some discussions.


