
Project 5
Due on June 30th, 2017

Consider the transport equation:

∂u

∂t
= −∂u

∂x
+ f(x, t), x ∈ [−1, 1], t > 0 (1)

with periodic boundary conditions u(−1, t) = u(1, t), and initial condition

u(x, 0) =

{
1 x ∈ [−1

2
, 1

2
]

0 otherwise

The function f is to be chosen later. In this project you are supposed to
compare several discretizations for equation (1). We define the following:

1. Forward Difference:

D+uk =
uk+1 − uk

∆x

2. Backward Difference:

D−uk =
uk − uk−1

∆x

and

3. Centered Difference:

D0uk =
uk+1 − uk−1

2∆x

Consider the following schemes:

1. Forward Time, Centered Space:

un+1
k − unk

∆t
= −D0u

n
k + f(xk, tn) (2)

2. Leapfrog:
un+1
k − un−1

k

2∆t
= −D0u

n
k + f(xk, tn) (3)

3. Lax-Friedrichs:

un+1
k − 1

2
(unk+1 + unk−1)

∆t
= −D0u

n
k + f(xk, tn) (4)

1

2

1. Find the accuracy of the three methods in space and time.

2. Choose an appropriate function f(x, t) so that u(x, t) = cos(t) sin(πx)
is the actual solution.

3. Using the solution computed in the previous part, show that you recover
the result from the previous question. What happens for the Forward
Time, Centered Space?

4. Explain the behavior of the Forward Time, Centered Space. (Hint:
Von Neumann Analysis).

5. Now set f = 0, and consider the original initial conditions. Solve
the equation up to time T = 1. Plot the solution at time intervals
∆T = 0.1, so that you can get an idea of the actual evolution. Solve
the equation for several values of ∆x and ∆t to make sure your results
don’t change anymore when changing the grid size, or the time step.
Plot the results for the different values to illustrate the convergence of
the method.

Solution.

1. Consider the Forward Time, Centered Space (FTCS) scheme first,

un+1
k − unk

∆t
= −D0u

n
k + f(xk, tn).

We are supposed to compute the local truncation error as follows, to
do this, we need to write the difference scheme in a form that directly
models the derivatives and then substitute the exact solution in it.
Rewrite the difference scheme as

un+1
k − unk

∆t
= −

unk+1 − unk−1

2∆x
+ f(xk, tn).

Substituting the exact solution in the above, the local truncation error
at (xk, tn) is given as

τnk =
u(xk, tn+1)− u(xk, tn)

∆t
+
u(xk+1, tn)− u(xk−1, tn)

2∆x
−f(xk, tn). (5)

Using Taylor series expansions around (xk, tn) we have

u(xk, tn+1) = u(xk, tn)+∆t ut(xk, tn)+
(∆t)2

2
utt(xk, tn)+O((∆t)3) (6)

3

u(xk+1, tn) = u(xk, tn) + ∆xux(xk, tn) +
(∆x)2

2
uxx(xk, tn) +O((∆x)3)

(7)

u(xk−1, tn) = u(xk, tn)−∆xux(xk, tn) +
(∆x)2

2
uxx(xk, tn) +O((∆x)3)

(8)
Substituting (6), (7) and (8) in (5) we get

τnk = ut(xk, tn) +
1

2
utt(xk, tn)∆t+O((∆t)2)

+ ux(xk, tn) +O((∆x)2)− f(xk, tn).

Since u is the exact solution, we have

∂u

∂t
= −∂u

∂x
+ f(x, t).

So, we have

τnk =
1

2
utt(xk, tn)∆t+O((∆t)2) +O((∆x)2) = O(∆t+ (∆x)2).

Thus, the FTCS scheme is consistent and it is first order accurate in
time and second order accurate in space.

We consider the Leapfrog scheme as above next, as a matter of fact,
we consider only the derivative of time, since the order in space is
second as above,

un+1
k − un−1

k

2∆t
= −D0u

n
k + f(xk, tn)

i.e.,
un+1
k − un−1

k

2∆t
= −

unk+1 − unk−1

2∆x
+ f(xk, tn)

Substituting the exact solution in the above, the local truncation error
at (xk, tn) is given as

τnk =
u(xk, tn+1)− u(xk, tn−1)

2∆t
+
u(xk+1, tn)− u(xk−1, tn)

2∆x
− f(xk, tn).

(9)

4

Using Taylor series expansions around (xk, tn) and Substituting the
terms, we also observe that

∂u

∂t
= −∂u

∂x
+ f(x, t).

Thus,
τnk = O((∆t)2 + (∆x)2).

We consider the Lax-Friedrichs scheme as above finally,

un+1
k − 1

2
(unk+1 + unk−1)

∆t
= −D0u

n
k + f(xk, tn)

i.e.,
un+1
k − 1

2
(unk+1 + unk−1)

∆t
= −

unk+1 − unk−1

2∆x
+ f(xk, tn).

The local truncation error at (xk, tn) is given as

τnk =
u(xk, tn+1)− 1

2
(u(xk+1, tn) + u(xk−1, tn))

∆t
+
u(xk+1, tn)− u(xk−1, tn)

2∆x
−f(xk, tn).

(10)
Using Taylor series expansions around (xk, tn) we have

u(xk, tn+1) = u(xk, tn) + ∆t ut(xk, tn) +
(∆t)2

2
utt(xk, tn) +O((∆t)3)

u(xk+1, tn) = u(xk, tn) + ∆xux(xk, tn) +
(∆x)2

2
uxx(xk, tn) +O((∆x)3)

u(xk−1, tn) = u(xk, tn)−∆xux(xk, tn) +
(∆x)2

2
uxx(xk, tn) +O((∆x)3)

Substituting these extensions in (10) and noting that

∂u

∂t
= −∂u

∂x
+ f(x, t)

and then, we get

τnk =
∆t

2
utt(xk, tn)− (∆x)2

2(∆t)
uxx(xk, tn)

+O(
(∆x)2

∆t
) +O((∆t)2) +O((∆x)2).

5

Also letting the Courant number r = ∆t
∆x

be constant, then ∆x
∆t

= 1
r

and
we have

τnk =
∆t

2
utt(xk, tn)− ∆x

2r
uxx(xk, tn)

+O(
(∆x)2

r
) +O((∆x)2) +O((∆t)2)

= O(∆t+ ∆x).

In conclusion, the accuracy is as follow

Scheme τ(∆x,∆t)
FTCS O(∆t+ (∆x)2)

Leapfrog O((∆t)2 + (∆x)2)
Lax-Friedrichs O(∆t+ ∆x)

2. Consider u(x, t) = cos(t) sin(πx) solves the transport equation:

∂u

∂t
= −∂u

∂x
+ f(x, t), x ∈ [−1, 1], t > 0

with periodic boundary conditions u(−1, t) = u(1, t) = 0, and initial
condition

u(x, 0) =

{
1 x ∈ [−1

2
, 1

2
]

0 otherwise

Then,

f(x, t) =
∂u

∂t
+
∂u

∂x
= π cos(t) cos(πx)− sin(t) sin(πx).

We note that f(x, t) satisfy with f(−1, t) = f(1, t).

3. Using the solution computed in the previous part, show that you recover
the result from the previous question. What happens for the Forward
Time, Centered Space?

The result for exact solution is as follows,

6

Figure 1: Do a plot of the exact solution up to time T = 1.

We deserve the numerical solution of three scheme, and we compare
the error between them. We consider firstly the Lax-Friedrichs scheme,
the matlab code is as follows,

%

% project 5

% LaxFriedrichs scheme

% Question 3 find the order

clear,clc

intervals=10^3;r=0.5;

% parameters

m=intervals-1;

h = 2/(m+1);

k = r*h;

T = 1;

% spatial mesh

x =-1:h:1;

% temporal mesh

nsteps = floor(T/k);

t=(0:k:nsteps*k)’;

% initial condition

u=zeros(nsteps+1,m+2);

u(1,:)=sin(pi*x);

% f(x,t)=pi*cos(t)*cos(pi*x)-sin(t)*sin(pi*x)

f(1:nsteps+1,1:m+2)=pi*(cos(t))*cos(pi*x)...

7

-sin(t)*sin(pi*x);

% periodic BC:

u(2,1)=1/2*(1-r)*u(1,2)+1/2*(1+r)*u(1,m+1)+k*f(1,1);

u(2,m+2)=1/2*(1-r)*u(1,2)+1/2*(1+r)*u(1,m+1)+k*f(1,m+2);

% interior x-points

u(2,2:m+1)=1/2*(1-r)*u(1,3:m+2)+1/2*(1+r)*u(1,1:m)+k*f(1,2:m+1);

u(3,1)=1/2*(1-r)*u(2,2)+1/2*(1+r)*u(2,m+1)+k*f(2,1);

u(3,m+2)=1/2*(1-r)*u(2,2)+1/2*(1+r)*u(2,m+1)+k*f(2,m+2);

u(3,2:m+1)=1/2*(1-r)*u(2,3:m+2)+1/2*(1+r)*u(2,1:m)+k*f(2,2:m+1);

for n=4:nsteps+1

u(n,1)=1/2*(1-r)*u(n-1,2)...

+1/2*(1+r)*u(n-1,m+1)+k*f(n-1,1);

u(n,m+2)=1/2*(1-r)*u(n-1,2)...

+1/2*(1+r)*u(n-1,m+1)+k*f(n-1,m+2);

u(n,2:m+1)=1/2*(1-r)*u(n-1,3:m+2)...

+1/2*(1+r)*u(n-1,1:m)+k*f(n-1,2:m+1);

end

%plot

figure(1)

[X,T]=meshgrid(x,t);

mesh(X,T,u),hold on,

xlabel(’x’),ylabel(’t’),zlabel(’u’)

title(’numerical solution for LaxFriedrichs,Xie Changjian,2017/6/10’)

% exact solution

uk=zeros(nsteps+1,m+2);

uk(1:nsteps+1,1:m+2)=cos(t)*sin(pi*x);

%

figure(2)

[X,T]=meshgrid(x,t);

mesh(X,T,uk),hold on,

xlabel(’x’),ylabel(’t’),zlabel(’u’)

title(’exact solution,Xie Changjian,2017/6/10’)

%

figure(3)

plot(x,u(nsteps+1,:),’k--’),hold on,grid on

plot(x,uk(nsteps+1,:),’k.-’),hold on

legend(’num’,’exact’),hold on

xlabel(’x’),ylabel(’u’),

8

title(’the last time step’),

% find the error

format long

err=norm(u(nsteps+1,:)-uk(nsteps+1,:),inf)

%

figure(4)

% the last time step solution, find the order of err

dt=[10^(-3) 2*10^(-3) 4*10^(-3) 8*10^(-3) 10*10^(-3)];

dx=[2*10^(-3) 4*10^(-3) 8*10^(-3) 16*10^(-3) 20*10^(-3)];

err=[0.010565993093511 0.020958237147591 0.041232508570666 0.079814562078617 0.098168334690265];

loglog(dt,err,’k*-’),hold on,grid on

xlabel(’dt’),ylabel(’err’),hold on

title(’the plot of dt and err’)

figure(5)

loglog(dx,err,’k-s’),hold on,grid on

xlabel(’dx’),ylabel(’err’),hold on

title(’the plot of dx and err’)

% find the slope_dt

r=sum((log(dt)).^2);

s=sum(log(dt));

t=sum(log(dt).*(log(err)));

p=sum(log(err));

slope_dt=(p*s-5*t)/(s^2-5*r);

% solve Cx=d

C=[sum((log(dt)).^2),sum(log(dt));sum(log(dt)),5];

d=[sum((log(dt)).*(log(err)));sum(log(err))];

xxx=C\d;

slope_dt=xxx(1);

intercept_dt=xxx(2);

slope_dt=vpa(slope_dt),intercept_dt=vpa(intercept_dt)

% find the slope_dx

r=sum((log(dx)).^2);

s=sum(log(dx));

t=sum(log(dx).*(log(err)));

p=sum(log(err));

slope_dx=(p*s-5*t)/(s^2-5*r);

% solve Cx=d

C=[sum((log(dx)).^2),sum(log(dx));sum(log(dx)),5];

9

d=[sum((log(dx)).*(log(err)));sum(log(err))];

xx=C\d;

slope_dx=xx(1);

intercept_dx=xx(2);

slope_dx=vpa(slope_dx),intercept_dx=vpa(intercept_dx)

As for Lax-Friedrichs, the result for numerical solution is as follows,

Figure 2: Do a plot of the numerical solution for Lax-Friedrichs scheme up to time
T = 1.

The table of the error as the grid size ∆x and the time step ∆t is as
follow,

the grid size ∆x the time step ∆t the mesh ratio r err
2× 10−3 10−3 0.5 0.010565993093511
4× 10−3 2× 10−3 0.5 0.020958237147591
8× 10−3 4× 10−3 0.5 0.041232508570666
16× 10−3 8× 10−3 0.5 0.079814562078617
20× 10−3 10× 10−3 0.5 0.098168334690265

Then, we can get the log-log plot of ∆x and error as follow,

10

10-3 10-2 10-1

dx

0.02

0.03

0.04

0.05

0.06

0.07

0.08
0.09

er
r

the plot of ∆x and err

Figure 3: The order of error w.r.t ∆x for Lax-Friedrichs scheme.

We can also get the log-log plot of ∆t and error as follow,

10-3 10-2

dt

0.02

0.03

0.04

0.05

0.06

0.07

0.08
0.09

er
r

the plot of ∆t and err

Figure 4: The order of error w.r.t ∆t for Lax-Friedrichs scheme.

11

We compute the order of error as follows,

slope ∆t intercept ∆t slope ∆x intercept ∆x
0.96823425 2.146484834 0.96823425144 1.4753559925

Then, we deserve the Lax-Friedrichs scheme is first order accurate in
time and space.

In the following, we consider the Leapfrog scheme, since the matlab
code is similar as above, we omit the detail, and we give the result of
numerical solution for Leapfrog as follows,

Figure 5: Do a plot of the numerical solution for Leapfrog scheme up to time
T = 1.

As for Leapfrog scheme, the table of the error as the grid size ∆x
and the time step ∆t is as follow,

the grid size ∆x the time step ∆t the mesh ratio r err
2× 10−3 10−3 0.5 1.140976606284205× 10−5

4× 10−3 2× 10−3 0.5 4.563919983568976× 10−5

8× 10−3 4× 10−3 0.5 1.825673885328394× 10−4

16× 10−3 8× 10−3 0.5 7.009488164758659× 10−4

20× 10−3 10× 10−3 0.5 0.001141284591331

Then, we can get the log-log plot of ∆x or ∆t and error as follow,

12

10-3 10-2 10-1

dx

10-5

10-4

10-3

10-2

er
r

the plot of ∆x and err

Figure 6: The log-log plot of ∆x and error

10-3 10-2

dt

10-5

10-4

10-3

10-2

er
r

the plot of ∆t and err

Figure 7: The log-log plot of ∆t and error

We compute the order of error as follows,

slope ∆t intercept ∆t slope ∆x intercept ∆x
1.99131846 2.37760200396 1.9913184609 0.99732522719

Then, we deserve the Leapfrog scheme is second order accurate in time
and space. We note that the ratio of mesh r ≤ 1 for the first two
schemes, i.e., when r ≤ 1, the Lax-Friedrichs and Leapfrog scheme are
stable and convergent.

In the following, we consider the FTCS scheme, since the matlab
code is similar as above, we also omit the detail, and if we set the
relationship ∆t < (∆x)2, and the ratio of mesh is enough small, then,
we give the result of numerical solution for FTCS as follows,

13

Figure 8: Do a plot of the numerical solution for FTCS scheme up to time T = 1,
here we take ∆x = 2

160 and ∆t = 1
8000 .

As for FTCS scheme, if∆t < (∆x)2, the table of the error as the grid
size ∆x and the time step ∆t is as follow,

the grid size ∆x the time step ∆t the mesh ratio r err
2
6

0.1 0.3 0.398868102631832
2
20

0.005 0.05 0.029113597636520
2
40

0.00125 0.025 0.007199212990779
2
80

1
3200

0.0125 0.001793286258749
2

160
1

8000
0.01 4.486758421282655× 10−4

Then, we can get the log-log plot of ∆x or ∆t and error as follow,

14

10-2 10-1 100

dx

10-4

10-3

10-2

10-1

100

er
r

the plot of ∆x and err

Figure 9: The log-log plot of ∆x and error

10-4 10-3 10-2 10-1

dt

10-4

10-3

10-2

10-1

100

er
r

the plot of ∆t and err

Figure 10: The log-log plot of ∆t and error

We compute the order of error as follows,

slope ∆t intercept ∆t slope ∆x intercept ∆x
0.99437936 1.54901452143 2.063645688059 1.286822705

Thus, the FTCS scheme is the first order accurate in time and the
second order accurate in space.

If the relationship doesn’t meet, i.e., ∆t > (∆x)2, the result is as
follows,

15

Figure 11: Do a plot of the numerical solution for FTCS scheme up to time T = 1,
here we take ∆x = 0.004 and ∆t = 0.002.

We deserve the plot of the last time step as follows,

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

u

×108 the last time step

num
exact

Figure 12: Do a plot of the numerical solution for FTCS scheme at the last time
t = T , here we take ∆x = 0.004 and ∆t = 0.002.

Consider the FTCS as follows,

un+1
k − unk

∆t
= −

unk+1 − unk−1

2∆x
+ f(xk, tn). (11)

⇒ un+1
k = − ∆t

2∆x
(unk+1 − unk−1) + unk + ∆t f(xk, tn)

= −r
2

(unk+1 − unk−1) + unk + ∆t f(xk, tn).

16

We will also consider weaker norms such as ‖ · ‖1,h and ‖ · ‖2,h, where

‖u‖1,h = h
∑
k

|uk|

‖u‖2,h = (h
∑
k

|uk|2)
1
2 .

we take multiply the unk on both side of (11), then we get

2unk(un+1
k − unk) + r(unk+1 − unk−1)unk = 2∆t f(xk, tn)unk .

⇒ (un+1
k)2 = (unk)2 +(un+1

k −unk)2−r(unk+1−unk−1)unk +2∆t f(xk, tn)unk .
(12)

⇒ ‖un+1‖2
2,h = ‖un‖2

2,h + h
∑
k

(un+1
k − unk)2

− rh
∑
k

(unk+1 − unk−1)unk + 2h∆t
∑
k

f(xk, tn)unk

= ‖un‖2
2,h + h

∑
k

(un+1
k − unk)2 + 2h∆t

∑
k

f(xk, tn)unk

≥ ‖un‖2
2,h.

Since the boundary condition exists, it follows that∑
k

(unk+1 − unk−1)unk = unm+1u
n
m − un1un0 = 0.

We note that

f(x, t)u(x, t) =
π

2
cos2(t) sin(2πx)− 1

2
sin(2t) sin2(πx)

and ∑
k

sin(2πxk) = 0.

then ∑
k

f(xk, tn)unk ≥ 0.

Thus, the FTCS scheme is not strongly stable, that is, the result is not
convergent but blow up.

17

4. Using Von Neumann Analysis to explain the behavior of the Forward
Time, Centered Space.

Let us approximate the initial condition by the discrete Fourier se-
ries and apply any of the numerical schemes studied till now to this
approximate initial condition. Then the solution at any time tn can be
written as

unk =

N
2
−1∑

j=−N
2

αj(γj)
n eikjh,

where γj ∈ C is called the amplification coefficient of the k-th frequency
(or harmonic). If |γj| > 1, then the numerical solution is likely to blow
up with time.

As for FTCS scheme, Consider first time step,

u1
k = u0

k −
r

2
(u0

k+1 − u0
k−1) + ∆t f(xk, tn)

=

N
2
−1∑

j=−N
2

αj e
ikjh[1 +

r

2
(e−ijh − eijh)] + ∆t f(xk, tn).

But
γj = 1 +

r

2
(e−ijh − eijh) = 1− ir sin(jh),

⇒ |γj| = [1 + r2 sin2(jh)]
1
2 ≥ 1.

Hence, the FTCS scheme is not strongly stable.

However if we write the FTCS scheme as follows, note that f(xk, tn)
is a constant and it is known. So, we may as well set f = 0.

un+1
k − unk = −r

2
(unk+1 − unk−1). (13)

Substituting (13) into (12), we get

⇒ (un+1
k)2 = (unk)2 +

(
r

2

)2

(unk+1 − unk−1)2 − r(unk+1 − unk−1)unk . (14)

18

Summing up over all the equations

‖un+1‖2
2,h = ‖un‖2

2,h + h

(
r

2

)2∑
k

(unk+1 − unk−1)2

≤ ‖un‖2
2,h + h

(
r

2

)2

2
∑
k

[(unk+1)2 + (unk−1)2]

= ‖un‖2
2,h + r2‖un‖2

2,h assume r2 < ∆t

≤ (1 + ∆t)‖un‖2
2,h if ∆t < h2.

This yields

‖un‖2
2,h ≤ (1 + ∆t)n‖u0‖2

2,h ≤ eT‖u0‖2
2,h ∀n s.t. n∆t ≤ T,

which shows stability of FTCS scheme since

‖un‖2,h ≤ e
T
2 ‖u0‖2,h.

Von Neumann stability tells us that if there exist β ≥ 0 and a positive
integer m such that, for suitable choices of ∆t and h, we have |γk| ≤
(1 + β∆t)

1
m , then the scheme is stable with respect to ‖ · ‖2,h with a

stability constant CT = e
βT
m . In particular, if β = 0 (i.e., |γk| ≤ 1),

then the scheme is strongly stable.

5. Consider f = 0, and the original initial conditions

u(x, 0) =

{
1 x ∈ [−1

2
, 1

2
]

0 otherwise

In the following, we solve the equation up to time T = 1. Plot the
solution at time intervals ∆T = 0.1, so that you can get an idea of
the actual evolution. Solve the equation for several values of ∆x and
∆t to make sure your results don’t change anymore when changing the
grid size, or the time step. Plot the results for the different values to
illustrate the convergence of the method.

The matlab code for Leapfrog is that:

%

% project 5

19

% Leapfrog scheme

% Question 5

clear,clc

intervals=10;r=0.5;

% parameters

m=intervals-1;

h = 2/(m+1);

k = r*h;

T = 1;

% spatial mesh

x = [-1:h:1];

% temporal mesh

nsteps = floor(T/k);

% initial condition

u=zeros(nsteps+1,m+2);

for i=1:m+2

if(x(i)>=-1/2)&&(x(i)<=1/2)

u(1,i)=1;

else

u(1,i)=0;

end

end

% periodic BC:

u(2,1)=u(1,1)-r*(u(1,2)-u(1,m+1));

u(2,m+2)=u(1,m+2)-r*(u(1,2)-u(1,m+1));

% interior x-points

u(2,2:m+1)=u(1,2:m+1)-r*(u(1,3:m+2)-u(1,1:m));

u(3,1)=u(1,1)-r*(u(2,2)-u(2,m+1));

u(3,m+2)=u(1,m+2)-r*(u(2,2)-u(2,m+1));

u(3,2:m+1)=u(1,2:m+1)-r*(u(2,3:m+2)-u(2,1:m));

for n=4:nsteps+1

u(n,1)=u(n-2,1)-r*(u(n-1,2)-u(n-1,m+1));

u(n,m+2)=u(n-2,m+2)-r*(u(n-1,2)-u(n-1,m+1));

u(n,2:m+1)=u(n-2,2:m+1)-r*(u(n-1,3:m+2)-u(n-1,1:m));

end

%plot

t=0:k:nsteps*k;

figure(1)

20

[X,T]=meshgrid(x,t);

surf(X,T,u),hold on,

xlabel(’x’),ylabel(’t’),zlabel(’u’)

title(’numerical solution for Leapfrog,Xie Changjian,2017/6/10’)

the result for ∆t = 0.1 is as follows,

-1
1

-0.5

0

1

0.5u

1

numerical solution for Leapfrog,Xie Changjian,2017/6/10

0.5

t

0.5

1.5

x

2

0
-0.5

0 -1

Figure 13: The solution at the time interval ∆t = 0.1. Do a plot of the numerical
solution up to time T = 1.

21

-1
1

-0.5

0

1

0.5u

1

0.5

t

0.5

1.5

x

2

0
-0.5

0 -1

Figure 14: The grid size is ∆x =
0.2, the time step ∆t = 0.1.

-0.5
1

0

0.5

1

u

1

0.5

t

1.5

0.5

x

2

0
-0.5

0 -1

Figure 15: The grid size is ∆x =
0.1, the time step ∆t = 0.05.

-0.5
1

0

1

0.5u

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 16: The grid size is ∆x =
0.05, the time step ∆t = 0.025.

-0.5
1

0

1

0.5u

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 17: The grid size is ∆x =
0.025, the time step ∆t = 0.0125.

-0.5
1

0

1

0.5u

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 18: The grid size is ∆x =
0.0125, the time step ∆t =
0.00625.

Figure 19: The grid size is ∆x =
0.00625, the time step ∆t =
0.003125.

As for the ratio of mesh |r| ≤ 1, from these above six figures, we
know the result don’t change anymore when changing the grid size
or the time step, if the stability condition doesn’t meet, the result of
Leapfrog isn’t convergent, we can do the same Von Neumann analysis.

22

The Leapfrog numerical scheme is convergent.

The code of Lax-Friedrichs scheme is as follows,

%

% project 5

% LaxFriedrichs scheme

% Question 5

clear,clc

intervals=10;r=0.5;

% parameters

m=intervals-1;

h = 2/(m+1);

k = r*h;

T = 1;

% spatial mesh

x = [-1:h:1];

% temporal mesh

nsteps = floor(T/k);

% initial condition

u=zeros(nsteps+1,m+2);

for i=1:m+2

if(x(i)>=-1/2)&&(x(i)<=1/2)

u(1,i)=1;

else

u(1,i)=0;

end

end

% periodic BC:

u(2,1)=1/2*(1-r)*u(1,2)+1/2*(1+r)*u(1,m+1);

u(2,m+2)=1/2*(1-r)*u(1,2)+1/2*(1+r)*u(1,m+1);

% interior x-points

u(2,2:m+1)=1/2*(1-r)*u(1,3:m+2)+1/2*(1+r)*u(1,1:m);

u(3,1)=1/2*(1-r)*u(2,2)+1/2*(1+r)*u(2,m+1);

u(3,m+2)=1/2*(1-r)*u(2,2)+1/2*(1+r)*u(2,m+1);

u(3,2:m+1)=1/2*(1-r)*u(2,3:m+2)+1/2*(1+r)*u(2,1:m);

for n=4:nsteps+1

23

u(n,1)=1/2*(1-r)*u(n-1,2)+1/2*(1+r)*u(n-1,m+1);

u(n,m+2)=1/2*(1-r)*u(n-1,2)+1/2*(1+r)*u(n-1,m+1);

u(n,2:m+1)=1/2*(1-r)*u(n-1,3:m+2)+1/2*(1+r)*u(n-1,1:m);

end

%plot

t=0:k:nsteps*k;

figure(1)

[X,T]=meshgrid(x,t);

mesh(X,T,u),hold on,

xlabel(’x’),ylabel(’t’),zlabel(’u’)

title(’numerical solution for LaxFriedrichs,Xie Changjian,2017/6/10’)

The result for ∆t = 0.1 is as follows,

0
1

0.2

0.4

1

u

0.6

numerical solution for LaxFriedrichs,Xie Changjian,2017/6/10

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 20: The solution at the time interval ∆t = 0.1. Do a plot of the numerical
solution up to time T = 1.

24

0
1

0.2

0.4

1

u

0.6

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 21: The grid size is ∆x =
0.2, the time step ∆t = 0.1.

0
1

0.2

0.4

1

u

0.6

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 22: The grid size is ∆x =
0.1, the time step ∆t = 0.05.

0
1

0.2

0.4

1

u

0.6

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 23: The grid size is ∆x =
0.05, the time step ∆t = 0.025.

0
1

0.2

0.4

1

u

0.6

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 24: The grid size is ∆x =
0.025, the time step ∆t = 0.0125.

0
1

0.2

0.4

1

u

0.6

0.5

t

0.8

0.5

x

1

0
-0.5

0 -1

Figure 25: The grid size is ∆x =
0.0125, the time step ∆t =
0.00625.

Figure 26: The grid size is ∆x =
0.00625, the time step ∆t =
0.003125.

As for the ratio of mesh |r| ≤ 1, from these above six figures, we
know the result don’t change anymore when changing the grid size or
the time step. If the stability condition doesn’t meet, the result of
Leapfrog isn’t convergent, we can do the same Von Neumann analysis.

25

The Lax-Friedrichs numerical scheme is convergent when |r| ≤ 1.

The code of FTCS scheme is as follows,

%

% project 5

% FTCS scheme

% Question 5

clear,clc

intervals=10;r=0.5;

% parameters

m=intervals-1;

h = 2/(m+1);

k = r*h;

T = 1;

% spatial mesh

x = [-1:h:1];

% temporal mesh

nsteps = floor(T/k);

% initial condition

u=zeros(nsteps+1,m+2);

for i=1:m+2

if(x(i)>=-1/2)&&(x(i)<=1/2)

u(1,i)=1;

else

u(1,i)=0;

end

end

% periodic BC:

u(2,1)=u(1,1)-r/2*(u(1,2)-u(1,m+1));

u(2,m+2)=u(1,m+2)-r/2*(u(1,2)-u(1,m+1));

% interior x-points

u(2,2:m+1)=u(1,2:m+1)-r/2*(u(1,3:m+2)-u(1,1:m));

u(3,1)=u(2,1)-r/2*(u(2,2)-u(2,m+1));

u(3,m+2)=u(2,m+2)-r/2*(u(2,2)-u(2,m+1));

u(3,2:m+1)=u(2,2:m+1)-r/2*(u(2,3:m+2)-u(2,1:m));

for n=4:nsteps+1

u(n,1)=u(n-1,1)-r/2*(u(n-1,2)-u(n-1,m+1));

u(n,m+2)=u(n-1,m+2)-r/2*(u(n-1,2)-u(n-1,m+1));

26

u(n,2:m+1)=u(n-1,2:m+1)-r/2*(u(n-1,3:m+2)-u(n-1,1:m));

end

%plot

t=0:k:nsteps*k;

figure(1)

[X,T]=meshgrid(x,t);

mesh(X,T,u),hold on,

xlabel(’x’),ylabel(’t’),zlabel(’u’)

title(’numerical solution for FTCS,Xie Changjian,2017/6/10’)

The result for ∆t = 0.1 is as follows,

-0.5
1

0

1

0.5u

numerical solution for FTCS,Xie Changjian,2017/6/10

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 27: The solution at the time interval ∆t = 0.1. Do a plot of the numerical
solution up to time T = 1.

27

-0.5
1

0

1

0.5u

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 28: The grid size is ∆x =
2
6 , the time step ∆t = 0.1.

-0.5
1

0

0.5

1

u

1

0.5

t

1.5

0.5

x

2

0
-0.5

0 -1

Figure 29: The grid size is ∆x =
2
20 , the time step ∆t = 0.005.

-0.5
1

0

1

0.5u

0.5

1

t

0.5

x

1.5

0
-0.5

0 -1

Figure 30: The grid size is ∆x =
2
40 , the time step ∆t = 0.00125.

Figure 31: The grid size is ∆x =
2
80 , the time step ∆t = 1

3200 .

Figure 32: The grid size is ∆x =
2

160 , the time step ∆t = 1
8000 .

Figure 33: The grid size is ∆x =
2

200 , the time step ∆t = 1
2×104

.

As for ∆t < (∆x)2, and the ratio of mesh r is enough small, it requires
the time step strictly, we know the result don’t change anymore when
changing the grid size or the time step. Then, the result is stable and
convergent. But if the stability condition doesn’t meet, the result of
FTCS scheme is not convergent but blow up.

