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@ Background and motivation
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Magnetic recording devices and computer storages

e Spinvalues!

Magnetoresistance random access
memory (MRAM)

Racetrack memories

!Science@Berkeley Lab: The Current Spin on Spintronics
2http://www2.technologyreview.com/article/412189/tr10-racetrack-memory /
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M dology for detecting the orientation
3

e Tunnel magnetoresistance
Julliere’s model:
Constant tunneling

o ._.'T" output
= |
61:92 844 6666 matrix
_ TMR < CaeCe _ 2RP
“ (G 1-PP;
P - ng -n P - n%—n;
n, +n; N+

o Gaint magnetoresistance

Antiparallel Parallel
magnetizations  magnetizations

Ferromagnet (Co)

Nonmagnetic metal (Cu)

Femomagnet ol » Albert Fert and Peter Griiberg:
Hasiaiae 2007 Nobel Prize in Physics

Ry
» Polarization and scattering

Rt
Magnetic field

3http://ducthe.wordpress.com/category /spintronics/

“http://physics.unl.edu/
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Methodology for rotating the orientation

e Spin transfer torque (STT) ®

Ferro1 Spacer Ferro2

electron flow

\ g oo » Two layers of different thickness:
b=/ P T’ z??? different switching fields
5 s, |8 \s, b &

B » The thin film is switched, and the

resistance measured
e Current-driven domain wall motion ©

[y, =

“Applied field

! » Applied current supplies spin
Ay &

%},, 7 transfer torques

ettt g

Shttp://www.wpi-aimr.tohoku.ac.jp/miyazaki_ labo/spintorque.htm
Shttp://physics.aps.org/articles/v2/11
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Micromagnetics: Landau-Lifshitz model

Basic quantity of interest:

m:Q—R |m|=1

Landau-Lifshitz energy functional:

Ky

Fulm) = 3 /Q¢<m> dz +

Co )
= /Q Vm2 do

- M]Ms/hs-mdx—qus/he-mda:
2 Q Q

e Continuum theory.

@ Domain structure <— Local minimizers.
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e ¢ (m): Anisotropy Energy: Penalizes deviations from the easy
directions. For uniaxial materials ¢(m) = (m% + m%)

° %Z‘\Vmﬁ: Exchange energy: Penalizes spatial variations.
o —uoMsh, - m: External field (Zeeman) energy.
o — 2 Mh, - m: Stray field (self-induced) energy.

o The stray field, hy = —Vu is obtained by solving the
magnetostatic equation:

Au=divm, ze€Q, Au=0 ze°

with jump boundary conditions

ou
[ulan = 0, [] =—-m-v.
o | 50
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Landau-Lifshitz equation

e Torque balance

m; = —m X h +am X my,

or equivalently,

my = — m x (m x h),

x h —
T+a2™ 1+ a2
where

_0FLL

h = om

= —Q(maez + maoe3) + eAm + hg + h,

and the second term is the Gilbert damping term.

o a << 1: Damping coefficient
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Model problem

m; = —m X Am + am X my,

or
m;=—m X Am —am x (m x Am)

with the Neumann boundary condition and the constraint |m/| = 1.
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Literature review: Mathematical aspect

Q@ Existence of weak solutions: [Alouges and Soyeur, 1992] in 3D
whole space and [Guo and Hong, 1993] in 2D bounded domain;

@ Nonuniqueness of weak solutions: [Alouges and Soyeur, 1992];

© Local existence and uniqueness; global existence and uniqueness
with small-energy initial data of strong solutions: [Carbou and
Fabrie, 2001a] in 3D whole space; [Carbou and Fabrie, 2001b] in
2D bounded domain.
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Literature review: Numerical aspect

Review articles: [Kruzik and Prohl, 2006; Cimrék, 2008]

o Finite element: [Bartels and Prohl, 2006; Alouges, 2008; Cimrak,
2009];

e Finite difference: [E and Wang, 2001; Fuwa et al., 2012; Kim and
Lipnikov, 2017];
Linearity of the discrete system:
e Explicit scheme: [Jiang et al., 2001; Alouges and Jaisson, 2006];
e Fully implicit scheme: [Prohl, 2001; Bartels and Prohl, 2006; Fuwa
et al., 2012];

e Semi-implicit scheme: [Wang, Garcia-Cervera, and E, 2001; E and
Wang, 2001; Gao, 2014; Lewis and Nigam, 2003; Cimrak, 2005].
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Time marching

Splitting method: [Wang, Garcia-Cervera, and E, 2001];

e Mid-point method: [Bertotti et al., 2001, d’Aquino et al., 2005];
e Runge-Kutta methods: [Romeo et al., 2008];

o Geometric integration methods: [Jiang, Kaper, and Leaf, 2001];

Convergence analysis
e 1st order in time + 2nd order in space: [Alouges, 2008];

e 2nd order in time + 2nd order in space: [Bertotti et al., 2001,
d’Aquino et al., 2005, Bartels and Prohl, 2006, Fuwa et al., 2012];
» Unconditional stability;
» Nonlinear solver at each time step (unavailable theoretical
justification of the unique solvability);
» Step-size condition k = O(h?) with k the temporal stepsize and h
the spatial stepsize;
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Outline

e Semi-implicit projection methods
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Spatial discretization

e x;=1th,i=0,1,2,--- | Ng, with 29 =0, xn, = 1;
o :f,‘l::cz_l/gz(z—l/Q)h,z:l, ,Nx,

n ~ . ny.
o m! =~ m(z;,t");
My =2, +M0
h2

?

Apm; =

@ Third order extrapolation for boundary condition:

mi = My, my,+1 = mMmpy,.

ghost point ghost point
c : ; ; ; ; : o
ry - 1'1;1:131-_% €Ty ZEH_% Ti+1 ”-:L'Nm_%l'NmZL'Nm_i_%

Nl

Figure 1: Tllustration of the 1-D spatial mesh.
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Semi-implicit projection methods

o m; = —m X Am + am X my:

sm
n+2 2% _ ~ n+2 n+42,%
(1 —amy, ) k: =—my " X Apmy, T,
~nt+2 n+1 n,
m,"" =2m," —my;
e m;=—-mxAm —am x (m x Am):
3 n+2% n+1 1...n
My, 2my 4 amy .

o n+2 n+2,x
=-—m;"" x Apym,,

k
aﬁzZ“ (ﬁl}l‘“ x Ay, m"Jr2 *> :

. mpta*
@ A projection step: 7712+2 = b

Changjian Xie (Soochow) Second-order Methods for LL Equation ~ September 21, 2019, CSIAM 2019, Foshan



Accuracy

IMEX2: 2.000

102

h

Figure 2: Accuracy of BDF2, GSPM and IMEX2. They are all second-order
accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are
second-order accurate in time.
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1D test: Efficiency

CPU time (seconds)

10! . .
7 10° 10° 10

[l — me||o

Figure 3: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error
|[mp — me||. For a given tolerance of error, costs of these schemes in the
increasing order are: BDF2 < IMEX2 < GSPM.
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3D test: Accuracy

10° T 102 T T
_810* _810°
o o
g g
| |
= =
S S
= 10% = 10*
IMEX2: 2.030
S' 5
10° 10
10" 10° 10°

Figure 4. Accuracy of BDF2, GSPM and IMEX2. They are all second-order
accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are
second-order accurate in time.
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3D test: Efficiency
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Figure 5: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error
[[mp — me||oc. For a given tolerance of error, costs of BDF2~ IMEX2<GSPM when
he = hy = h. = 1/16 in 3D.
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Outline

© Benchmark problem from NIST
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Mumag standard problem 1

Ask for simulating hysteresis loops.”

o Geometry: 1 x 2 x 0.02 micron rectangle

o Material parameters: To mimic permalloy

"Permalloy” rectangle Exchange constant: Ce, = 1.3 x 1071 J/m
\ Saturation magnetization: M, = 8.0 x 10° A/m
1 um
\ Anisotropy constant: K, = 5.0 x 10* J/m?
ili . _ -7 2
e Permeability of vacuum: pg =47 x 107" N/A

Damping parameter: o« = 0.1

Uniaxial, with easy axis nominally parallel to
the long edges of the rectangle.

"https:/ /www.ctcms.nist.gov/~rdm/mumag.org.html
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Setup for our simulations

The film of size: 1 ym x 2 pm x 200 A;

The cell of size: 20 nm x 20 nm x 20 nm;

Timescale: k =1 ps;
# of field states: 133 for z— loop (or y— loop).
For hysteresis loops simulation: the applied field Hy (begin from

500 Oe) approximately parallel (canting angle +1°) along y—
(long) axis and x— (short) axis.
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Semi-implicit projection methods for full LL equation

e my=-—-mxh+aoam x my:
3 n—+2,% n+1 n
sm —2m;" + m R o s amt2
(1 —amj™x) 22 p =-mp T x (eApmp T+ F),
m2+2 = 2m"+1 —my,
n+2 n+1 n
.fh 2f -fh7
fin=—-Q(mzes + myes) + h + h;
e my=-mxh—amx (mxh):
3, n42% n+1 1
°m —2m; " +sm +2
2% 2 h _ ~ +2 n+42,x rk
k: = —mp " x (eApmy T+ f )
R 2, n+2
— g (1t (edmy 2 4 £ )
n+42,%

" m
o A projection step: m}** = W
h
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Magnetization profile (cont'd)

mo96a: ! l

(a My b my C My d My
(Ho //y-asis) (Ho//y azis)  (Ho//w-azis) (HU//T azis)

- ——

- .
BDF2:

() ma (f) my (8) ma (h) my
(Ho//y-asis) (Ho//y-avis) (Ho//a-avis) (Ho//a-asis)

Figure 7: The z- and y- magnetization components are visualized by the gray value.
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Hysteresis loop

Submission mog6a, Field parallel to 2 pm (long) axis Submission mo96a; Field parallel to 1 um (short) axis

1o T
n——

Z oo
=
0.5
e myddcvn ————————
" =) up
“io
5o ES Zs0 25 o 25 50
g H(mT)

(a) Ho//y-azis (b) Ho//x-azis

BDF2; Field parallel to 2 um (long) axis o BDF2; Field parallel to 1 um (short) axis
’ "
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oy

2

o
£ w0
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BDF2: T e
(c¢) Ho//y-axis (d) Ho//z-azis
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Semi-implicit projection methods revisited

e Lack of numerical stability of Lax-Richtmyer type;

e Separation of the time-marching step and the projection step:

3.5 n+2 ~ n+1 1.~n
sm —2m +5m R .
2°""h h 2 "h _ — 2 Ahmn+2
k h h
~ n+2 A n+42 ~ n+2
—ampT x (myTE x Apmyp ™),
~n+2 n+1 n
m," " =2m," —my,
~ n+2
nt2 _ My
my = e
[y

e Two sets of approximations m;) and m}.
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m. = (cos(z?(1 — z)?) sint, sin(2?(1 — z)?) sint, cos t)T

Table 1: Accuracy of our method on the uniform mesh when h = k and o« = 0.01.

3.867D-5

2.5D-3 7.976D-6 4.629D-5
1.25D-3 2.135D-6 1.177D-5
6.25D-4 5.765D-7 2.949D-6

1.447D-7
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Outline

@ Main theoretical results
@ Unconditional unique solvability
e Optimal rate convergence analysis
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@ Inner product and || - |2 norm
(frrgn) = he Z fr-97,
TeAy
1 Fall2 = (s F))%;
e Discrete || - ||oc norm: || f} /o0 = maxzen, || fzlloo;

Average: f), = h ZIeAd I
Discrete H}jl—norm: ||fh||2_1 = ((—Ah)_lfh, fn)-
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Preliminary estimates

o Inverse inequality:
lelloo < ™2 llefll2,  IVheplloc < B2 Vaegl2;

e Summation by parts: (—Anf1,9n) = (Vufn. Vign);

e Discrete Gronwall inequality: Let {c;}j>0, {8;};>0 and {w;};>0
be sequences of real numbers such that

j—1
aj <aojyr, B520, and wj <o +Zﬁiwi7 Vi > 0.
i=0

Then it holds that

-1
wj < ajexp{25i}7 V3 > 0.
=0
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Discrete gradient acting on cross product

Lemma

For grid functions f;, and g;, over the uniform numerical grid, we have

194(F % @)l < C(IFulZ - Vgl + lgnliZe - IVasnl3),

(Fr % Angp) < Fr,gn) = (Fn % (gn X Fr)s Angp)
(Frx (Frxgn)sgn) = —Fn x gul3.
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Unconditional unique solvability

Theorem

Given py,, p;, and my,, the numerical schemes

(g[h = ;amh X Iy, + kmy, X Ah)mh = Dp,

3 . . . -
(5[]l + kmy, X Ay, + akmy, X (mh X Ah))mh = Py,

are uniquely solvable.

Denote g5, = —Apmy,. Then

: . 2/(— = S -
my, = (—Ah)_lqh—i—C(*]h with Cg = g(ph—i—kzmh X qp,+akmy, x (my, x qh))
and

3 _ . . N N .
G(qy) = 5((—Ah) g, +C ) = Dy — kv, X g, — akiy, x (g x qp,) = 0.
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Observe that

A= §Oz1’hh x Ip, + kmy, X (—Ah)

2
3a
= kn —A —1
mp X ( n+ ok h)
=: kMS.

Ij: identity matrix; M: antisymmetric matrix;
S=-A,+ 3—2‘] n: symmetric positive definite matrix;
S = CTC with C being nonsingular;

M — MS| =N - MCTC| = |\ - CMCT];
(cmMchT = —cMmCT,

Lemma (spectral lemma for antisymmetric matrices)

FEach eigenvalue of the real skew-symmetric matriz is either 0 or purely
imaginary number.
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By the lemma, det(%[ — %om%h x I + kmy, x Ap) # 0 since the
matrix has % as real parts, and thus the corresponding linear system of
equations has a unique solution.

For any q, j, g5 with gy ;, = @5, = 0, we denote q;, = q; 5, — qo ),

(Glay,n) = G(@20):91,n — Ga,n)

= o ({80 @ @) + (Cay , — Ca o))

— (Mn X @y, q,) — a{mn X (Ma X qy,), ay)
(a0 3,0, +(Ca, , ~ Cq,,a0)

3 L 3
= 5 ((=An) 'q,,q,) = ﬂ”qh”al > 0.

>
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Moreover, for any q 1, g9, With gy, =g, ), =0, we get

(G(arn) —G(aap), @1 — q2p) = H(Ih|| 1 >0, ifqy, #qop,

— 2k
and the equality only holds when q; ;, = g5 .

Lemma (Browder-Minty lemma [Browder, 1963, Minty, 1963])

Let X be a real, reflevive Banach space and let T : X — X' (the dual

(1( ”) W +00, as
u
llu|lx — +00) and monotone. Then for any g € X' there exists a

solution uw € X of the equation T'(u) = g. Furthermore, if the operator

T is strictly monotone, then the solution u is unique.

space of X ) be bounded, continuous, coercive (i.e.,

By the Browder-Minty lemma, the semi-implicit scheme admits a
unique solution.
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Optimal rate convergence analysis

Theorem

Let m, € C3([0, T]; C°) N L>([0,T]; C*) be a smooth solution with the
initial data m.(x,0) = m?(x) and m;, be the numerical solution with
the initial data m% = mgﬁh and m}ll = m;,h. Suppose that the initial
error satisfies

e ), —mf o + [Va(me ), —mf)ll2 = O(K2 +h?), £=0,1, and k < Ch.
Then the following convergence result holds as h and k goes to zero:

lmg, — mipllz + [IVa(me ), — mp)ll2 < C(k* + h?), Vn > 2,

in which the constant C > 0 is independent of k and h.
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|dea of the proof

o Initial error: 62 and e,ll;

e Alternative estimate: Using discrete Gronwall inequality and
another lemma to evaluate e, and Vjéj; Again by the lemma to
estimate e;, and Vjey,. Illustrated by the following schematic:

Iexll, IVnenll ekl [IVaeill  llenll [Vreill
1 1 2 2 3 3
lenll, IVnenll - llenll, [Vhenll - llerll, IVnerll - llenll, [ Vaerll

o To guarantee the assumptions in the recursive demonstration.
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Sketch of the proof

Step 1: Construction of an approximate solution m:

m =m.+h’m?,

in which the auxiliary field m() satisfies

1

AmY =C  with ¢ = — m. ds,
12 Joa
0 m(l> | —0= —i83m | =0 0 m(l) | =1= i637)’& | =1
z z= 24 z e |z=0Uy z z= 24 z e |z= .
Then
PR I h? s P 5
me(xi:ijzo) = me(xi:ij Zl) - ﬂazme(mhijo) + O(h )7

PR R h AN
m(l)(xi,yj,zo) = m(l)(mi,yhzl) + ﬂag’me(xi,yﬁo) + O(h?’),
m(&:, 35, 20) = m(#s, 95, 21) + O(h%),
Ahmi,j,k = Ame(i‘ivﬁﬁék‘) + O(h2)7 V1 S ’i7j,k S N.
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Step 2: Error function evolution system for
~n n ~n n n n
€p =M, — My, €p =M, — My,
3 =n+ ~n—+1 1=n
§eh —2e;," + 5,
k

— (2m”+1 — mZ) X Ahéz+2 — (2«22+1 - eZ) X Ahmz+2
—a (QTn"Jrl —mj) X x ((2mpt! —mj) x A;f””)
(an+1 — mZ) ((262+1 —ep) X Apm n+2)

(2671+1 ez) ((2mn+l _mh) % Ahmz+2) + 7_7L+2

with [|[77F2||l2 < C(k? + h?).

e Discrete L? error estimate: Inner product with ee+2
-0 -0 -0 -0 0
lent?II3 — llen 113 + 12, — &, |15 — l12e, — &nll3

< CE(IVrey 13 + 117213 + len™ 13 + llehll2) + Ch(k* + h*).

Remark: Discrete Gronwall inequality is not applicable due to the
presence of H ,1 norms of the error function.
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@ Discrete inner product with Ahe“Q

IVhen 25 — IVaent 13 + 12Vhes™ — Vaer |13 — 2Vie, ™ — Vaésr 3
<Ck(|lvh~“2\|2 +IVaen 5 + IVherlls + lle™ 13 + Heﬁ\lz) + Ck(k* + hY).

e Combination of both

257215 — Neg " I3 + 1281 - &5+

€ HQ
+Vaer 25 = IVaer 113 + I Vn(28, — & 13 — V(28" — & )13
<Ck(||v;r“2||2 115213 + I Vnel 3 + 11V nekl3 + ek I3 + lleh )

+ Ck(k* + h").

o

||2 —énll2
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Lemma

Consider m;, = m, + 2mY with m. the ezact solution and lme| =1
at a point-wise level, and |mM | + thm(l)Hoo <C. For any
numerical solution my, we define my, = \%Zl' Suppose both numerical
profiles satisfy the following Wi’oo bounds

- 1 . .
|| > 2 at a point-wise level,

||mh,Hoo A th,mh,Hoo S ]\/[, ‘|7h}7Hoo a4 ththoo S ]V[,

and we denote the numerical error functions as e;, = m; — my,,
ey, = my, —my,. Then the following estimate is valid

lenllz < 2[|énllz + O(h®), |[Vhenll2 < C(IVaénllz + [[€nll2) + O(R%).
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e Using the Lemma

1847213 — [ttt |3 + (264 — &3 —
+ VRt (3 — (Va2 + [Va (286 — &it |3 — | Va(2est! — & )3
<Ch(IVneI3 + IVneh™ I3 + IIVa&hII3 + 1217213 + 125713 + 15 13)

+ Ck(k* + n*).

128, — &3

e Discrete Gronwall inequality

T
eI+ IVhh13 < CTeCT (1 %), foraltmin < |7 ],

l&pllz + IV nehllz < C(K + h2).
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Lemma
Assume the numerical error function:

- 1
leklloo + IVnerlloo < 3, l1€Rlloe + I VaBhlloo < 5, fork=0,0+1.

Such an assumption will be recovered by the convergence analysis at
time step t“2. Then numerical solutions my, and my,:

g oo = llmy; — eflleo < llmglleo + llerlleo < €+ 3

IVami oo = ||thh Vienlloo < thmhlloo + | Vrerllo < C . 3’

gl < C+ g, [Viamg|leo < C+ g (similar derivation,).

o Inverse inequality with time step constraint k < Ch
eille _ CO+ 1) _ 1

”éhHOO < hd/2 = hd/2 < 67
[Vienlla _ C(K*+h%) _ 1
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e Convergence estimate for e}:

lerllz < 2llef ]2 + O(h?) < C(k* + h?),
IVherllz < CUIVreRllz + [[€4]]2) + O(h%) < C(K* + h?).

Verification of assumptions.

1
|my,| > 57 at a point-wise level,

1 1
lefllo < 5 17hERlloo < )

- 1
IVhepplloo < =

- 1
< — .
€5l < . <!
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© Numerical examples
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Numerical examples

Homogenous Neumann boundary condition
1 1-D example with a forcing term and the given exact solution
2 1-D example without the exact solution

3 3-D example with a forcing term and the given exact solution
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Example 1

m. = (cos(z?(1 — z)?) sint, sin(2?(1 — z)?) sint, cos t)T

Table 2: Accuracy of our method on the uniform mesh when h = k and o = 0.01.

3.867D-5

2.5D-3 7.976D-6 4.629D-5
1.25D-3 2.135D-6 1.177D-5
6.25D-4 5.765D-7 2.949D-6

1.447D-7
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Example 2

Table 3: Temporal accuracy of our method on the uniform mesh when h = 1D — 4 and
a = 0.01.

2.949D-5 3.250D-5 1.633D-4

2.5D-3 8.116D-6 8.429D-6 4.393D-5
1.25D-3 2.125D-6 2.114D-6 1.118D-5
6.25D-4 4.851D-7 5.190D-7 2.791D-6

1.129D-7 1.196D-7 6.875D-7

Table 4: Spatial accuracy of our method on the uniform mesh when k = 1D — 4 and
a = 0.01.

0.00546 0.00577 0.01336

1/33 6.101D-4 6.430D-4 0.00160
1/34 6.782D-5 7.146D-5 1.820D-4
1/3° 7.527D-6 7.930D-6 2.036D-5

8.271D-7 8.714D-7 2.243D-6
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Example 3
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(e) Exact magnetization profile
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(f) Numerical magnetization profile

Figure 8: Profiles of the exact and the numerical magnetization in the zy—plane with
z=1/2 when k = 1/256, hy = hy = h, = 1/32, and a = 0.01.
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Table 5: Temporal accuracy in the 3-D case when h, = hy =h. =1/32 and o = 0.01.

1.685D-3 1.098D-3 1.211D-3

1/32 4.411D-4 2.964D-4 3.082D-4
1/64 1.128D-4 7.730D-5 7.772D-5
1/128 2.966D-5 2.024D-5 2.051D-5

8.311D-6 9.693D-6 5.812D-6
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Conclusion

What we have done
@ Two second-order semi-implicit schemes for LL equation;
@ Benchmark problem from NIST;
© Unique solvability for two schemes;
@ Convergence analysis for one of the schemes.
To-do list
@ Generalization of the technique for other implicit scheme;

@ Current-driven magnetization dynamics [Chen, Garcia-Cervera,
and Yang, 2015];

© Application to Landau-Lifshitz-Maxwell equations.

Thank you
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