Second-order Semi-implicit Projection Methods for Landau-Lifshitz Equation

Changjian Xie

School of Mathematical Sciences, Soochow University

Joint work with

Jingrun Chen (Soochow University) Carlos García-Cervera (UC, Santa Barbara) Cheng Wang (University of Massachusetts) Zhennan Zhou (Peking University)

September 21, 2019, CSIAM 2019, Foshan

Outline

- [Semi-implicit projection methods](#page-13-0)
- [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

Outline

[Background and motivation](#page-2-0)

- [Semi-implicit projection methods](#page-13-0)
- [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

Magnetic recording devices and computer storages

 \bullet Spinvalues¹

• Domain walls 2

Magnetoresistance random access memory (MRAM)

Racetrack memories

¹Science@Berkeley Lab: The Current Spin on Spintronics ²http://www2.technologyreview.com/article/412189/tr10-racetrack-memory/

Changjian Xie (Soochow) [Second-order Methods for LL Equation](#page-0-0) September 21, 2019, CSIAM 2019, Foshan

Methodology for detecting the orientation

• Tunnel magnetoresistance ³

• Gaint magnetoresistance 4

Julliere's model: Constant tunneling

matrix
 $TMR = \frac{G_{AP} - G_P}{G_{CP}} = \frac{2P_L P_R}{1 - P_c P_R}$ $P_{L} = \frac{n_{L}^{\uparrow} - n_{L}^{\downarrow}}{n_{L}^{\uparrow} + n_{L}^{\downarrow}}$ $P_{R} = \frac{n_{R}^{\uparrow} - n_{R}^{\downarrow}}{n_{R}^{\uparrow} + n_{R}^{\downarrow}}$

- \blacktriangleright Albert Fert and Peter Grüberg: 2007 Nobel Prize in Physics
- Polarization and scattering

³http://ducthe.wordpress.com/category/spintronics/ ⁴http://physics.unl.edu/

Methodology for rotating the orientation

• Spin transfer torque (STT) ⁵

- \blacktriangleright Two layers of different thickness: different switching fields
- \blacktriangleright The thin film is switched, and the resistance measured

• Current-driven domain wall motion ⁶

 \blacktriangleright Applied current supplies spin transfer torques

⁵http://www.wpi-aimr.tohoku.ac.jp/miyazaki labo/spintorque.htm 6 http://physics.aps.org/articles/v2/11

Micromagnetics: Landau-Lifshitz model

Basic quantity of interest:

$$
\boldsymbol{m}:\Omega\longrightarrow\mathbb{R}^3;\;\;|\boldsymbol{m}|=1
$$

Landau-Lifshitz energy functional:

$$
F_{\text{LL}}[\boldsymbol{m}] = \frac{K_u}{M_s} \int_{\Omega} \phi(\boldsymbol{m}) \, dx + \frac{C_{\text{ex}}}{M_s} \int_{\Omega} |\nabla \boldsymbol{m}|^2 \, dx
$$

$$
- \frac{\mu_0}{2} M_s \int_{\Omega} \boldsymbol{h}_s \cdot \boldsymbol{m} \, dx - \mu_0 M_s \int_{\Omega} \boldsymbol{h}_e \cdot \boldsymbol{m} \, dx
$$

• Continuum theory.

Domain structure ←→ Local minimizers.

- $\phi(m)$: Anisotropy Energy: Penalizes deviations from the easy directions. For uniaxial materials $\phi(\mathbf{m}) = (m_2^2 + m_3^2)$.
- $\mathcal{C}_{\mathbf{ex}}$ $\frac{C_{\text{ex}}}{M_s}|\nabla m|^2$: Exchange energy: Penalizes spatial variations.
- \bullet $-\mu_0 M_s h_e \cdot m$: External field (Zeeman) energy.
- $-\frac{\mu_0}{2}M_s\boldsymbol{h}_s\cdot\boldsymbol{m}$: Stray field (self-induced) energy.
- The stray field, $h_s = -\nabla u$ is obtained by solving the magnetostatic equation:

$$
\Delta u = \text{div } \boldsymbol{m}, \quad \boldsymbol{x} \in \Omega, \quad \Delta u = 0, \quad \boldsymbol{x} \in \overline{\Omega}^c
$$

with jump boundary conditions

$$
[u]_{\partial\Omega}=0,\quad \left[\frac{\partial u}{\partial\nu}\right]_{\partial\Omega}=-\boldsymbol{m}\cdot\nu.
$$

Torque balance

 $\bm{m}_t = -\bm{m} \times \bm{h} + \alpha \bm{m} \times \bm{m}_t,$

or equivalently,

$$
\mathbf{m}_t = -\frac{1}{1+\alpha^2}\mathbf{m} \times \mathbf{h} - \frac{\alpha}{1+\alpha^2}\mathbf{m} \times (\mathbf{m} \times \mathbf{h}),
$$

where

$$
\boldsymbol{h}=-\frac{\delta F_{\rm LL}}{\delta \boldsymbol{m}}=-Q(m_2\boldsymbol{e}_2+m_2\boldsymbol{e}_3)+\epsilon \Delta \boldsymbol{m}+\boldsymbol{h}_{\rm s}+\boldsymbol{h}_{\rm e}
$$

and the second term is the Gilbert damping term.

 $\alpha \ll 1$: Damping coefficient

$$
\boldsymbol{m}_t = -\boldsymbol{m} \times \Delta \boldsymbol{m} + \alpha \boldsymbol{m} \times \boldsymbol{m}_t,
$$

or

$m_t = -m \times \Delta m - \alpha m \times (m \times \Delta m)$

with the Neumann boundary condition and the constraint $|m| = 1$.

- ¹ Existence of weak solutions: [Alouges and Soyeur, 1992] in 3D whole space and [Guo and Hong, 1993] in 2D bounded domain;
- ² Nonuniqueness of weak solutions: [Alouges and Soyeur, 1992];
- ³ Local existence and uniqueness; global existence and uniqueness with small-energy initial data of strong solutions: Carbou and Fabrie, 2001a] in 3D whole space; [Carbou and Fabrie, 2001b] in 2D bounded domain.

Review articles: [Kruzík and Prohl, 2006; Cimrák, 2008]

- Finite element: [Bartels and Prohl, 2006; Alouges, 2008; Cimrák, 2009];
- Finite difference: [E and Wang, 2001; Fuwa et al., 2012; Kim and Lipnikov, 2017];
- Linearity of the discrete system:
	- Explicit scheme: [Jiang et al., 2001; Alouges and Jaisson, 2006];
	- Fully implicit scheme: [Prohl, 2001; Bartels and Prohl, 2006; Fuwa et al., 2012];
	- Semi-implicit scheme: [Wang, Garcia-Cervera, and E, 2001; E and Wang, 2001; Gao, 2014; Lewis and Nigam, 2003; Cimrák, 2005].

Time marching

- Splitting method: [Wang, Garcia-Cervera, and E, 2001];
- Mid-point method: [Bertotti et al., 2001, d'Aquino et al., 2005];
- Runge-Kutta methods: [Romeo et al., 2008];
- Geometric integration methods: [Jiang, Kaper, and Leaf, 2001];

Convergence analysis

- 1st order in time $+$ 2nd order in space: [Alouges, 2008];
- 2nd order in time + 2nd order in space: [Bertotti et al., 2001, d'Aquino et al., 2005, Bartels and Prohl, 2006, Fuwa et al., 2012];
	- \blacktriangleright Unconditional stability;
	- \triangleright Nonlinear solver at each time step (unavailable theoretical justification of the unique solvability);
	- Step-size condition $k = \mathcal{O}(h^2)$ with k the temporal stepsize and h the spatial stepsize;

Outline

[Background and motivation](#page-2-0)

- 2 [Semi-implicit projection methods](#page-13-0)
	- [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

Spatial discretization

- $x_i = ih, i = 0, 1, 2, \cdots, N_x$, with $x_0 = 0, x_{N_x} = 1$;
- $\hat{x}_i = x_{i-1/2} = (i 1/2)h, i = 1, \cdots, N_x;$
- $\boldsymbol{m}_{i}^{n} \approx \boldsymbol{m}(\hat{x}_{i},t^{n});$ $\Delta_h\boldsymbol{m}_i=\frac{\boldsymbol{m}_{i+1}-2\boldsymbol{m}_{i}+\boldsymbol{m}_{i-1}}{h^2};$
- Third order extrapolation for boundary condition:

 $\boldsymbol{m}_1 = \boldsymbol{m}_0, \quad \boldsymbol{m}_{N_x+1} = \boldsymbol{m}_{N_x}.$

Semi-implicit projection methods Xie, García-Cervera,

$$
\bullet \ \bm{m}_t = -\bm{m} \times \Delta \bm{m} + \alpha \bm{m} \times \bm{m}_t:
$$

$$
(1 - \alpha \hat{m}_h^{n+2} \times) \frac{\frac{3}{2} m_h^{n+2,*} - 2 m_h^{n+1} + \frac{1}{2} m_h^n}{k} = - \hat{m}_h^{n+2} \times \Delta_h m_h^{n+2,*},
$$

$$
\hat{m}_h^{n+2} = 2 m_h^{n+1} - m_h^n;
$$

$$
\bullet \ \bm{m}_t = -\bm{m} \times \Delta \bm{m} - \alpha \bm{m} \times (\bm{m} \times \Delta \bm{m}):
$$

$$
\begin{aligned} \frac{\frac{3}{2}\boldsymbol{m}_h^{n+2,*}-2\boldsymbol{m}_h^{n+1}+\frac{1}{2}\boldsymbol{m}_h^n}{k} &=-\hat{\boldsymbol{m}}_h^{n+2}\times\Delta_h\boldsymbol{m}_h^{n+2,*}\\ &-\alpha\hat{\boldsymbol{m}}_h^{n+2}\times\left(\hat{\boldsymbol{m}}_h^{n+2}\times\Delta_h\boldsymbol{m}_h^{n+2,*}\right); \end{aligned}
$$

A projection step: $m_h^{n+2} = \frac{m_h^{n+2,*}}{|m_h^{n+2,*}|}.$

1D test: Accuracy

Figure 2: Accuracy of BDF2, GSPM and IMEX2. They are all second-order accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are second-order accurate in time.

1D test: Efficiency

Figure 3: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error $\|\mathbf{m}_h - \mathbf{m}_e\|_{\infty}$. For a given tolerance of error, costs of these schemes in the increasing order are: BDF2 < IMEX2 < GSPM.

3D test: Accuracy

Figure 4: Accuracy of BDF2, GSPM and IMEX2. They are all second-order accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are second-order accurate in time.

3D test: Efficiency

Figure 5: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error $\|\mathbf{m}_h - \mathbf{m}_e\|_{\infty}$. For a given tolerance of error, costs of BDF2≈ IMEX2<GSPM when $h_x = h_y = h_z = 1/16$ in 3D.

Outline

[Background and motivation](#page-2-0)

[Semi-implicit projection methods](#page-13-0)

3 [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

Ask for simulating hysteresis loops.⁷

- Geometry: $1 \times 2 \times 0.02$ micron rectangle
- Material parameters: To mimic permalloy

Exchange constant: $C_{ex} = 1.3 \times 10^{-11}$ J/m Saturation magnetization: $M_s = 8.0 \times 10^5$ A/m Anisotropy constant: $K_u = 5.0 \times 10^2 \text{ J/m}^3$ Permeability of vacuum: $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$ Damping parameter: $\alpha = 0.1$

Uniaxial, with easy axis nominally parallel to the long edges of the rectangle.

⁷https://www.ctcms.nist.gov/∼rdm/mumag.org.html

- The film of size: $1 \mu m \times 2 \mu m \times 200$ Å;
- The cell of size: $20 \text{ nm} \times 20 \text{ nm} \times 20 \text{ nm}$;
- Timescale: $k = 1$ ps;
- $\bullet \#$ of field states: 133 for x– loop (or y– loop).
- For hysteresis loops simulation: the applied field H_0 (begin from 500 Oe) approximately parallel (canting angle $+1^{\circ}$) along y-(long) axis and $x-$ (short) axis.

Semi-implicit projection methods for full LL equation

$$
\bullet \ \bm{m}_t = -\bm{m} \times \bm{h} + \alpha \bm{m} \times \bm{m}_t:
$$

$$
\begin{aligned} & \big(1-\alpha \hat{\boldsymbol{m}}_{h}^{n+2}\times\big)\, \frac{\frac{3}{2}\boldsymbol{m}_{h}^{n+2,*}-2\boldsymbol{m}_{h}^{n+1}+\frac{1}{2}\boldsymbol{m}_{h}^{n}}{k}=-\hat{\boldsymbol{m}}_{h}^{n+2}\times\big(\epsilon\Delta_{h}\boldsymbol{m}_{h}^{n+2,*}+\hat{\boldsymbol{f}}_{h}^{n+2}\big),\\ & \hat{\boldsymbol{m}}_{h}^{n+2}=2\boldsymbol{m}_{h}^{n+1}-\boldsymbol{m}_{h}^{n},\\ & \hat{\boldsymbol{f}}_{h}^{n+2}=2\boldsymbol{f}_{h}^{n+1}-\boldsymbol{f}_{h}^{n},\\ & \boldsymbol{f}_{h}^{n}=-Q(\boldsymbol{m}_{2}^{n}\boldsymbol{e}_{2}+\boldsymbol{m}_{3}^{n}\boldsymbol{e}_{3})+\boldsymbol{h}_{s}^{n}+\boldsymbol{h}_{e}^{n}; \end{aligned}
$$

$$
\bullet \ \bm{m}_t = -\bm{m} \times \bm{h} - \alpha \bm{m} \times (\bm{m} \times \bm{h}) \colon
$$

$$
\begin{aligned} &\frac{3}{2}\bm{m}_h^{n+2,*}-2\bm{m}_h^{n+1}+\tfrac{1}{2}\bm{m}_h^n=-\hat{\bm{m}}_h^{n+2}\times\left(\epsilon\Delta_h\bm{m}_h^{n+2,*}+\hat{\bm{f}}_h^{n+2}\right)\\ &-\alpha\hat{\bm{m}}_h^{n+2}\times\left(\hat{\bm{m}}_h^{n+2}\times(\epsilon\Delta_h\bm{m}_h^{n+2,*}+\hat{\bm{f}}_h^{n+2})\right); \end{aligned}
$$

A projection step: $m_h^{n+2} = \frac{m_h^{n+2,*}}{|m_h^{n+2,*}|}.$

Magnetization profile

Figure 6: The in-plane magnetization components are represented by arrows.

Magnetization profile (cont'd)

Figure 7: The x- and y- magnetization components are visualized by the gray value.

(d) $H_0//x-axis$

Semi-implicit projection methods revisited

- Lack of numerical stability of Lax-Richtmyer type;
- Separation of the time-marching step and the projection step:

$$
\begin{aligned} \tfrac{3}{2}\tilde{\boldsymbol{m}}_h^{n+2}-2\tilde{\boldsymbol{m}}_h^{n+1}+\tfrac{1}{2}\tilde{\boldsymbol{m}}_h^n=-\hat{\boldsymbol{m}}_h^{n+2}\times\Delta_h\tilde{\boldsymbol{m}}_h^{n+2}\\-\alpha\hat{\boldsymbol{m}}_h^{n+2}\times(\hat{\boldsymbol{m}}_h^{n+2}\times\Delta_h\tilde{\boldsymbol{m}}_h^{n+2}),\\ \hat{\boldsymbol{m}}_h^{n+2}=2\boldsymbol{m}_h^{n+1}-\boldsymbol{m}_h^n,\\ \boldsymbol{m}_h^{n+2}=\frac{\tilde{\boldsymbol{m}}_h^{n+2}}{|\tilde{\boldsymbol{m}}_h^{n+2}|}; \end{aligned}
$$

Two sets of approximations $\tilde{\boldsymbol{m}}_h^n$ and \boldsymbol{m}_h^n .

$$
\boldsymbol{m}_e = \left(\cos(x^2(1-x)^2)\sin t, \sin(x^2(1-x)^2)\sin t, \cos t\right)^T
$$

Table 1: Accuracy of our method on the uniform mesh when $h = k$ and $\alpha = 0.01$.

k.	$\ \overline{\boldsymbol{m}}_h-\overline{\boldsymbol{m}}_e\ _\infty$	$\ \boldsymbol{m}_h-\boldsymbol{m}_e\ _2$	$\ \boldsymbol{m}_h-\boldsymbol{m}_e\ _{H^1}$
$5.0D-3$	3.867D-5	$4.115D - 5$	1.729D-4
$2.5D-3$	7.976D-6	$1.053D - 5$	$4.629D - 5$
$1.25D - 3$	$2.135D - 6$	2.648D-6	1.177D-5
$6.25D - 4$	5.765D-7	6.627D-7	$2.949D - 6$
3.125D-4	1.447D-7	$1.657D - 7$	7.370D-7
order	1.991	1.990	1.972

Outline

[Background and motivation](#page-2-0)

[Semi-implicit projection methods](#page-13-0)

[Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

• Inner product and $\|\cdot\|_2$ norm

$$
\langle \boldsymbol{f}_h, \boldsymbol{g}_h \rangle = h^d \sum_{\mathcal{I} \in \Lambda_d} \boldsymbol{f}_{\mathcal{I}} \cdot \boldsymbol{g}_{\mathcal{I}},
$$

$$
\|\boldsymbol{f}_h\|_2 = (\langle \boldsymbol{f}_h, \boldsymbol{f}_h \rangle)^{1/2};
$$

- Discrete $\|\cdot\|_{\infty}$ norm: $\|\boldsymbol{f}_h\|_{\infty} = \max_{\mathcal{I}\in\Lambda_d} \|\boldsymbol{f}_{\mathcal{I}}\|_{\infty}$;
- Average: $\overline{f}_h = h^d \sum_{\mathcal{I} \in \Lambda_d} f_{\mathcal{I}};$
- Discrete H_h^{-1} $\frac{1}{h}$ -norm: $\|\boldsymbol{f}_h\|_{-1}^2 = \langle (-\Delta_h)^{-1} \boldsymbol{f}_h, \boldsymbol{f}_h \rangle.$

Preliminary estimates

- Inverse inequality: $\|\boldsymbol e_h^n\|_\infty \leq h^{-d/2}\|\boldsymbol e_h^n\|_2, \quad \|\nabla_h\boldsymbol e_h^n\|_\infty \leq h^{-d/2}\|\nabla_h\boldsymbol e_h^n\|_2;$
- Summation by parts: $\langle -\Delta_h \boldsymbol{f}_h, \boldsymbol{g}_h \rangle = \langle \nabla_h \boldsymbol{f}_h, \nabla_h \boldsymbol{g}_h \rangle;$
- Discrete Gronwall inequality: Let $\{\alpha_i\}_{i>0}$, $\{\beta_i\}_{i>0}$ and $\{\omega_i\}_{i>0}$ be sequences of real numbers such that

$$
\alpha_j \leq \alpha_{j+1}, \quad \beta_j \geq 0, \quad \text{and} \quad \omega_j \leq \alpha_j + \sum_{i=0}^{j-1} \beta_i \omega_i, \quad \forall j \geq 0.
$$

Then it holds that

$$
\omega_j \leq \alpha_j \exp\left\{\sum_{i=0}^{j-1} \beta_i\right\}, \quad \forall j \geq 0.
$$

Lemma

For grid functions f_h and g_h over the uniform numerical grid, we have

$$
\|\nabla_h(\boldsymbol{f}\times\boldsymbol{g})_h\|_2^2 \leq C\Big(\|\boldsymbol{f}_h\|_{\infty}^2\cdot\|\nabla_h\boldsymbol{g}_h\|_2^2 + \|\boldsymbol{g}_h\|_{\infty}^2\cdot\|\nabla_h\boldsymbol{f}_h\|_2^2\Big),
$$

$$
\langle(\boldsymbol{f}_h\times\Delta_h\boldsymbol{g}_h)\times\boldsymbol{f}_h,\boldsymbol{g}_h\rangle = \langle\boldsymbol{f}_h\times(\boldsymbol{g}_h\times\boldsymbol{f}_h),\Delta_h\boldsymbol{g}_h\rangle,
$$

$$
\langle\boldsymbol{f}_h\times(\boldsymbol{f}_h\times\boldsymbol{g}_h),\boldsymbol{g}_h\rangle = -\|\boldsymbol{f}_h\times\boldsymbol{g}_h\|_2^2.
$$

Unconditional unique solvability

Theorem

Given p_h , \tilde{p}_h and \hat{m}_h , the numerical schemes

$$
\begin{aligned} \big(\frac{3}{2}I_h-\frac{3}{2}\alpha\hat{\boldsymbol{m}}_h\times I_h+k\hat{\boldsymbol{m}}_h\times\Delta_h\big)\boldsymbol{m}_h&=\boldsymbol{p}_h,\\ \big(\frac{3}{2}I_h+k\hat{\boldsymbol{m}}_h\times\Delta_h+\alpha k\hat{\boldsymbol{m}}_h\times(\hat{\boldsymbol{m}}_h\times\Delta_h)\big)\boldsymbol{m}_h&=\tilde{\boldsymbol{p}}_h, \end{aligned}
$$

are uniquely solvable.

Denote $q_h = -\Delta_h m_h$. Then $\boldsymbol{m}_h=(-\Delta_h)^{-1}\boldsymbol{q}_h\!+\!C^*_{\boldsymbol{q}_h} \quad\text{with }\, C^*_{\boldsymbol{q}_h}=\frac{2}{3}$ 3 $\left(\overline{\widetilde{\boldsymbol{p}}_h}\!\!+\!\!k\overline{\hat{\boldsymbol{m}}_h\times\boldsymbol{q}_h}\!\!+\!\alpha k\overline{\hat{\boldsymbol{m}}_h\times(\hat{\boldsymbol{m}}_h\times\boldsymbol{q}_h)}\right)$ and $G(\boldsymbol{q}_h) := \frac{3}{2}((-\Delta_h)^{-1}\boldsymbol{q}_h + C^*_{\boldsymbol{q}_h}) - \tilde{\boldsymbol{p}}_h - k \hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h - \alpha k \hat{\boldsymbol{m}}_h \times (\hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h) = \boldsymbol{0}.$

Proof

Observe that

$$
A := \frac{3}{2}\alpha \hat{m}_h \times I_h + k \hat{m}_h \times (-\Delta_h)
$$

= $k \hat{m}_h \times \left(-\Delta_h + \frac{3\alpha}{2k}I_h\right)$
=: kMS .

- \bullet I_h : identity matrix; M : antisymmetric matrix;
- $S=-\Delta_h+\frac{3\alpha}{2k}$ $\frac{3\alpha}{2k}I_h$: symmetric positive definite matrix;
- $S = C^TC$ with C being nonsingular;
- $|\lambda I MS| = |\lambda I MC^TC| = |\lambda I CMC^T|;$
- $(CMC^T)^T = -CMC^T;$

Lemma (spectral lemma for antisymmetric matrices)

Each eigenvalue of the real skew-symmetric matrix is either 0 or purely imaginary number.

By the lemma, $\det(\frac{3}{2}I_h - \frac{3}{2})$ $\frac{3}{2}\alpha \hat{\boldsymbol{m}}_h \times I_h + k \hat{\boldsymbol{m}}_h \times \Delta_h) \neq 0$ since the matrix has $\frac{3}{2}$ as real parts, and thus the corresponding linear system of equations has a unique solution.

For any $q_{1,h}$, $q_{2,h}$ with $\overline{q_{1,h}} = \overline{q_{2,h}} = 0$, we denote $\tilde{q}_h = q_{1,h} - q_{2,h}$

$$
\langle G(\mathbf{q}_{1,h}) - G(\mathbf{q}_{2,h}), \mathbf{q}_{1,h} - \mathbf{q}_{2,h} \rangle
$$

\n
$$
= \frac{3}{2k} \Big(\langle (-\Delta_h)^{-1} \tilde{\mathbf{q}}_h, \tilde{\mathbf{q}}_h \rangle + \langle C^*_{\mathbf{q}_{1,h}} - C^*_{\mathbf{q}_{1,h}}, \tilde{\mathbf{q}}_h \rangle \Big)
$$

\n
$$
- \langle \hat{\mathbf{m}}_h \times \tilde{\mathbf{q}}_h, \tilde{\mathbf{q}}_h \rangle - \alpha \langle \hat{\mathbf{m}}_h \times (\hat{\mathbf{m}}_h \times \tilde{\mathbf{q}}_h), \tilde{\mathbf{q}}_h \rangle
$$

\n
$$
\geq \frac{3}{2k} \Big(\langle (-\Delta_h)^{-1} \tilde{\mathbf{q}}_h, \tilde{\mathbf{q}}_h \rangle + \langle C^*_{\mathbf{q}_{1,h}} - C^*_{\mathbf{q}_{2,h}}, \tilde{\mathbf{q}}_h \rangle \Big)
$$

\n
$$
= \frac{3}{2k} \langle (-\Delta_h)^{-1} \tilde{\mathbf{q}}_h, \tilde{\mathbf{q}}_h \rangle = \frac{3}{2k} ||\tilde{\mathbf{q}}_h||_{-1}^2 \geq 0.
$$

Continued ...

Moreover, for any $\mathbf{q}_{1,h}$, $\mathbf{q}_{2,h}$ with $\overline{\mathbf{q}_{1,h}} = \overline{\mathbf{q}_{2,h}} = 0$, we get

$$
\langle G(\boldsymbol{q}_{1,h}) - G(\boldsymbol{q}_{2,h}), \boldsymbol{q}_{1,h} - \boldsymbol{q}_{2,h} \rangle \ge \frac{3}{2k} \|\tilde{\boldsymbol{q}}_h\|_{-1}^2 > 0, \quad \text{if } \boldsymbol{q}_{1,h} \ne \boldsymbol{q}_{2,h},
$$

and the equality only holds when $q_{1,h} = q_{2,h}$.

Lemma (Browder-Minty lemma [Browder, 1963, Minty, 1963]) Let X be a real, reflexive Banach space and let $T: X \to X'$ (the dual space of X) be bounded, continuous, coercive (i.e., $\frac{(T(u),u)}{\|u\|_X} \to +\infty$, as $||u||_X \to +\infty$) and monotone. Then for any $g \in X'$ there exists a solution $u \in X$ of the equation $T(u) = q$. Furthermore, if the operator T is strictly monotone, then the solution u is unique.

By the Browder-Minty lemma, the semi-implicit scheme admits a unique solution.

Optimal rate convergence analysis [Chen, Wang and Xie,

Theorem

Let $m_e \in C^3([0,T];C^0) \cap L^{\infty}([0,T];C^4)$ be a smooth solution with the initial data $\boldsymbol{m}_e(\boldsymbol{x},0) = \boldsymbol{m}_e^0(\boldsymbol{x})$ and \boldsymbol{m}_h be the numerical solution with the initial data $\boldsymbol{m}_h^0=\boldsymbol{m}_{e,h}^0$ and $\boldsymbol{m}_h^1=\boldsymbol{m}_{e,h}^1$. Suppose that the initial error satisfies $\|\boldsymbol{m}_{e,h}^{\ell}-\boldsymbol{m}_h^{\ell}\|_2+\|\nabla_h (\boldsymbol{m}_{e,h}^{\ell}-\boldsymbol{m}_h^{\ell})\|_2= \mathcal{O}(k^2+h^2),\, \ell=0,1,\text{ and } k\leq \mathcal{C}h.$

Then the following convergence result holds as h and k goes to zero:

 $\|\bm{m}_{e,h}^n - \bm{m}_h^n\|_2 + \|\nabla_h (\bm{m}_{e,h}^n - \bm{m}_h^n)\|_2 \leq \mathcal{C}(k^2 + h^2), \quad \forall n \geq 2,$

in which the constant $\mathcal{C} > 0$ is independent of k and h.

- Initial error: e_h^0 and e_h^1 ;
- Alternative estimate: Using discrete Gronwall inequality and another lemma to evaluate \tilde{e}_h and $\nabla_h \tilde{e}_h$; Again by the lemma to estimate e_h and $\nabla_h e_h$. Illustrated by the following schematic:

 $\lVert \tilde{\boldsymbol e}_h^2\rVert, \lVert \nabla_h \tilde{\boldsymbol e}_h^3\rVert, \lVert \nabla_h \tilde{\boldsymbol e}_h^3\rVert \qquad \lVert \tilde{\boldsymbol e}_h^4\rVert, \lVert \nabla_h \tilde{\boldsymbol e}_h^4\rVert \qquad \cdots$ $\uparrow \quad \searrow \quad \uparrow \quad \searrow \quad \uparrow$ $\|\boldsymbol e_h^0\|, \|\nabla_h \boldsymbol e_h^0\| \rightarrow \|\boldsymbol e_h^1\|, \|\nabla_h \boldsymbol e_h^1\| \rightarrow \| \boldsymbol e_h^2\|, \|\nabla_h \boldsymbol e_h^2\| \rightarrow \|\boldsymbol e_h^3\|, \|\nabla_h \boldsymbol e_h^3\| \qquad \cdots$

To guarantee the assumptions in the recursive demonstration.

Sketch of the proof

Step 1: Construction of an approximate solution m :

 $\boldsymbol{\underline{m}}=\boldsymbol{m}_e+h^2\boldsymbol{m}^{(1)},$

in which the auxiliary field $m^{(1)}$ satisfies

$$
\Delta \mathbf{m}^{(1)} = \hat{C} \text{ with } \hat{C} = \frac{1}{|\Omega|} \int_{\partial \Omega} \partial_{\nu}^{3} \mathbf{m}_{e} \, \mathrm{d}s,
$$

$$
\partial_{z} \mathbf{m}^{(1)} \mid_{z=0} = -\frac{1}{24} \partial_{z}^{3} \mathbf{m}_{e} \mid_{z=0}, \quad \partial_{z} \mathbf{m}^{(1)} \mid_{z=1} = \frac{1}{24} \partial_{z}^{3} \mathbf{m}_{e} \mid_{z=1}.
$$

Then

$$
\mathbf{m}_{e}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{0}) = \mathbf{m}_{e}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{1}) - \frac{h^{3}}{24} \partial_{z}^{3} \mathbf{m}_{e}(\hat{x}_{i}, \hat{y}_{j}, 0) + \mathcal{O}(h^{5}),
$$

$$
\mathbf{m}^{(1)}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{0}) = \mathbf{m}^{(1)}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{1}) + \frac{h}{24} \partial_{z}^{3} \mathbf{m}_{e}(\hat{x}_{i}, \hat{y}_{j}, 0) + \mathcal{O}(h^{3}),
$$

$$
\mathbf{m}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{0}) = \mathbf{m}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{1}) + \mathcal{O}(h^{5}),
$$

$$
\Delta_{h} \mathbf{m}_{i,j,k} = \Delta \mathbf{m}_{e}(\hat{x}_{i}, \hat{y}_{j}, \hat{z}_{k}) + \mathcal{O}(h^{2}), \quad \forall 1 \leq i, j, k \leq N.
$$

Step 2: Error function evolution system for

$$
\begin{aligned} \tilde{\boldsymbol{e}}_h^n &= \boldsymbol{\underline{m}}_h^n - \tilde{\boldsymbol{m}}_h^n, \quad \boldsymbol{e}_h^n = \underline{\boldsymbol{m}}_h^n - \boldsymbol{m}_h^n, \\ \frac{ \frac{3}{2} \tilde{\boldsymbol{e}}_h^{n+2} - 2\tilde{\boldsymbol{e}}_h^{n+1} + \frac{1}{2} \tilde{\boldsymbol{e}}_h^n}{k} &= -\left(2\boldsymbol{m}_h^{n+1} - \boldsymbol{m}_h^n \right) \times \Delta_h \tilde{\boldsymbol{e}}_h^{n+2} - \left(2\boldsymbol{e}_h^{n+1} - \boldsymbol{e}_h^n \right) \times \Delta_h \underline{\boldsymbol{m}}_h^{n+2} \\ &\quad - \alpha \left(2\boldsymbol{m}_h^{n+1} - \boldsymbol{m}_h^n \right) \times \left(\left(2\boldsymbol{m}_h^{n+1} - \boldsymbol{m}_h^n \right) \times \Delta_h \tilde{\boldsymbol{e}}_h^{n+2} \right) \\ &\quad - \alpha \left(2\boldsymbol{m}_h^{n+1} - \boldsymbol{m}_h^n \right) \times \left(\left(2\boldsymbol{e}_h^{n+1} - \boldsymbol{e}_h^n \right) \times \Delta_h \underline{\boldsymbol{m}}_h^{n+2} \right) \\ &\quad - \alpha \left(2\boldsymbol{e}_h^{n+1} - \boldsymbol{e}_h^n \right) \times \left(\left(2\underline{\boldsymbol{m}}_h^{n+1} - \underline{\boldsymbol{m}}_h^n \right) \times \Delta_h \underline{\boldsymbol{m}}_h^{n+2} \right) + \tau^{n+2} \end{aligned}
$$

with $\|\tau^{n+2}\|_2 \le C(k^2 + h^2)$.

Discrete L^2 error estimate: Inner product with $\tilde{e}_h^{\ell+2}$ h

$$
\begin{aligned}\n\|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 - \|\tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|2\tilde{\boldsymbol{e}}_h^{\ell+2} - \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 - \|2\tilde{\boldsymbol{e}}_h^{\ell+1} - \tilde{\boldsymbol{e}}_h^{\ell}\|_2^2 \\
\leq Ck(\|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\boldsymbol{e}_h^{\ell+1}\|_2^2 + \|\boldsymbol{e}_h^{\ell}\|_2^2) + Ck(k^4 + h^4).\n\end{aligned}
$$

Remark: Discrete Gronwall inequality is not applicable due to the presence of H_h^1 norms of the error function.

Discrete inner product with $-\Delta_h \tilde{e}_h^{\ell+2}$ h

 $\|\nabla_h \tilde{\bm{e}}_h^{\ell+2}\|_2^2 - \|\nabla_h \tilde{\bm{e}}_h^{\ell+1}\|_2^2 + \|2\nabla_h \tilde{\bm{e}}_h^{\ell+2} - \nabla_h \tilde{\bm{e}}_h^{\ell+1}\|_2^2 - \|2\nabla_h \tilde{\bm{e}}_h^{\ell+1} - \nabla_h \tilde{\bm{e}}_h^{\ell}\|_2^2$ $\leq \mathcal{C}k \Big(\|\nabla_h \tilde{\bm{e}}_h^{\ell+2}\|_2^2 + \|\nabla_h \bm{e}_h^{\ell}\|_2^2 + \|\nabla_h \bm{e}_h^{\ell}\|_2^2 + \|\bm{e}_h^{\ell+1}\|_2^2 + \|\bm{e}_h^{\ell}\|_2^2 \Big) + \mathcal{C}k(k^4 + h^4).$

• Combination of both

$$
\begin{split}\n&\|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 - \|\tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|2\tilde{\boldsymbol{e}}_h^{\ell+2} - \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 - \|2\tilde{\boldsymbol{e}}_h^{\ell+1} - \tilde{\boldsymbol{e}}_h^{\ell}\|_2^2 \\
&+ \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 - \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|\nabla_h (2\tilde{\boldsymbol{e}}_h^{\ell+2} - \tilde{\boldsymbol{e}}_h^{\ell+1})\|_2^2 - \|\nabla_h (2\tilde{\boldsymbol{e}}_h^{\ell+1} - \tilde{\boldsymbol{e}}_h^{\ell})\|_2^2 \\
&\leq Ck \bigg(\|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\nabla_h \boldsymbol{e}_h^{\ell+1}\|_2^2 + \|\nabla_h \boldsymbol{e}_h^{\ell}\|_2^2 + \|\boldsymbol{e}_h^{\ell+1}\|_2^2 + \|\boldsymbol{e}_h^{\ell}\|_2^2\bigg) \\
&+ Ck(k^4 + h^4).\n\end{split}
$$

Lemma

Consider $\mathbf{m}_h = \mathbf{m}_e + h^2 \mathbf{m}^{(1)}$ with \mathbf{m}_e the exact solution and $|\mathbf{m}_e| = 1$ at a point-wise level, and $||\mathbf{m}^{(1)}||_{\infty} + ||\nabla_h \mathbf{m}^{(1)}||_{\infty} \leq C$. For any numerical solution $\tilde{\bm{m}}_h$, we define $\bm{m}_h = \frac{\tilde{\bm{m}}_h}{|\tilde{\bm{m}}_h|}$. Suppose both numerical profiles satisfy the following $W_h^{1,\infty}$ $\int_h^{1,\infty}$ bounds

$$
|\tilde{\boldsymbol{m}}_h| \geq \frac{1}{2}, \quad at \; a \; point\text{-}wise \; level,
$$

$$
\|\boldsymbol{m}_h\|_{\infty} + \|\nabla_h \boldsymbol{m}_h\|_{\infty} \leq M, \quad \|\tilde{\boldsymbol{m}}_h\|_{\infty} + \|\nabla_h \tilde{\boldsymbol{m}}_h\|_{\infty} \leq M,
$$

and we denote the numerical error functions as $e_h = \underline{m}_h - m_h$, $\tilde{\mathbf{e}}_h = \mathbf{m}_h - \tilde{\mathbf{m}}_h$. Then the following estimate is valid

 $\|\boldsymbol e_h\|_2\leq 2\|\tilde{\boldsymbol e}_h\|_2+\mathcal O(h^2),\quad \|\nabla_h\boldsymbol e_h\|_2\leq \mathcal C(\|\nabla_h\tilde{\boldsymbol e}_h\|_2+\|\tilde{\boldsymbol e}_h\|_2)+\mathcal O(h^2).$

Using the Lemma

$$
\begin{split}\n&\|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 - \|\tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|2\tilde{\boldsymbol{e}}_h^{\ell+2} - \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 - \|2\tilde{\boldsymbol{e}}_h^{\ell+1} - \tilde{\boldsymbol{e}}_h^{\ell}\|_2^2 \\
&+ \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 - \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|\nabla_h (2\tilde{\boldsymbol{e}}_h^{\ell+2} - \tilde{\boldsymbol{e}}_h^{\ell+1})\|_2^2 - \|\nabla_h (2\tilde{\boldsymbol{e}}_h^{\ell+1} - \tilde{\boldsymbol{e}}_h^{\ell})\|_2^2 \\
&\leq Ck \bigg(\|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|\nabla_h \tilde{\boldsymbol{e}}_h^{\ell}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell+2}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell+1}\|_2^2 + \|\tilde{\boldsymbol{e}}_h^{\ell}\|_2^2\bigg) \\
&+ Ck(k^4 + h^4).\n\end{split}
$$

Discrete Gronwall inequality

$$
\begin{aligned}\n\|\tilde{\boldsymbol{e}}_h^n\|_2^2 + \|\nabla_h \tilde{\boldsymbol{e}}_h^n\|_2^2 \leq C T e^{CT} (k^4 + h^4), \quad \text{for all } n : n \leq \left\lfloor \frac{T}{k} \right\rfloor, \\
\|\tilde{\boldsymbol{e}}_h^n\|_2 + \|\nabla_h \tilde{\boldsymbol{e}}_h^n\|_2 \leq C(k^2 + h^2).\n\end{aligned}
$$

Lemma

Assume the numerical error function:

$$
\|\mathbf{e}_h^k\|_{\infty} + \|\nabla_h \mathbf{e}_h^k\|_{\infty} \leq \frac{1}{3}, \ \ \|\tilde{\mathbf{e}}_h^k\|_{\infty} + \|\nabla_h \tilde{\mathbf{e}}_h^k\|_{\infty} \leq \frac{1}{3}, \quad \text{for } k = \ell, \ell + 1.
$$

Such an assumption will be recovered by the convergence analysis at time step $t^{\ell+2}$. Then numerical solutions \boldsymbol{m}_h and $\tilde{\boldsymbol{m}}_h$:

$$
\begin{aligned}\n\|\boldsymbol{m}_h^k\|_{\infty} &= \|\boldsymbol{\underline{m}}_h^k - \boldsymbol{e}_h^k\|_{\infty} \le \|\boldsymbol{\underline{m}}_h^k\|_{\infty} + \|\boldsymbol{e}_h^k\|_{\infty} \le \mathcal{C} + \frac{1}{3}, \\
\|\nabla_h \boldsymbol{m}_h^k\|_{\infty} &= \|\nabla_h \boldsymbol{\underline{m}}_h^k - \nabla_h \boldsymbol{e}_h^k\|_{\infty} \le \|\nabla_h \boldsymbol{\underline{m}}_h^k\|_{\infty} + \|\nabla_h \boldsymbol{e}_h^k\|_{\infty} \le \mathcal{C} + \frac{1}{3}, \\
\|\tilde{\boldsymbol{m}}_h^k\|_{\infty} &\le \mathcal{C} + \frac{1}{3}, \quad \|\nabla_h \tilde{\boldsymbol{m}}_h^k\|_{\infty} \le \mathcal{C} + \frac{1}{3} \quad \text{(similar derivation)}.\n\end{aligned}
$$

• Inverse inequality with time step constraint $k \leq Ch$

$$
\begin{aligned} \|\tilde{\boldsymbol e}_h^n\|_\infty &\leq \frac{\|\tilde{\boldsymbol e}_h^n\|_2}{h^{d/2}} \leq \frac{\mathcal{C}(k^2+h^2)}{h^{d/2}} \leq \frac{1}{6},\\ \|\nabla_h \tilde{\boldsymbol e}_h^n\|_\infty &\leq \frac{\|\nabla_h \tilde{\boldsymbol e}_h^n\|_2}{h^{d/2}} \leq \frac{\mathcal{C}(k^2+h^2)}{h^{d/2}} \leq \frac{1}{6}. \end{aligned}
$$

Convergence estimate for e_h^n :

 $||e_h^n||_2 \leq 2||\tilde{e}_h^n||_2 + \mathcal{O}(h^2) \leq \mathcal{C}(k^2 + h^2),$ $\|\nabla_h\boldsymbol e_h^n\|_2\leq \mathcal{C}(\|\nabla_h\tilde{\boldsymbol e}_h^n\|_2+\|\tilde{\boldsymbol e}_h^n\|_2)+\mathcal{O}(h^2)\leq \mathcal{C}(k^2+h^2).$

Verification of assumptions.

$$
\begin{aligned}\n|\tilde{\boldsymbol{m}}_h| &\geq \frac{1}{2}, \quad \text{at a point-wise level,} \\
\|\boldsymbol{m}_h\|_{\infty} + \|\nabla_h \boldsymbol{m}_h\|_{\infty} &\leq M, \quad \|\tilde{\boldsymbol{m}}_h\|_{\infty} + \|\nabla_h \tilde{\boldsymbol{m}}_h\|_{\infty} \leq M, \\
\|\boldsymbol{e}_h^n\|_{\infty} &\leq \frac{1}{6}, \quad \|\nabla_h \tilde{\boldsymbol{e}}_h^n\|_{\infty} \leq \frac{1}{6}, \\
\|\tilde{\boldsymbol{e}}_h^n\|_{\infty} &\leq \frac{1}{6}, \quad \|\nabla_h \tilde{\boldsymbol{e}}_h^n\|_{\infty} \leq \frac{1}{6}.\n\end{aligned}
$$

Outline

[Background and motivation](#page-2-0)

- [Semi-implicit projection methods](#page-13-0)
- [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

Homogenous Neumann boundary condition

- 1 1-D example with a forcing term and the given exact solution
- 2 1-D example without the exact solution
- 3 3-D example with a forcing term and the given exact solution

$$
\boldsymbol{m}_e = \left(\cos(x^2(1-x)^2)\sin t, \sin(x^2(1-x)^2)\sin t, \cos t\right)^T
$$

Table 2: Accuracy of our method on the uniform mesh when $h = k$ and $\alpha = 0.01$.

k.	$\ \overline{\boldsymbol{m}}_h-\overline{\boldsymbol{m}}_e\ _\infty$	$\ \boldsymbol{m}_h-\boldsymbol{m}_e\ _2$	$\ \boldsymbol{m}_h-\boldsymbol{m}_e\ _{H^1}$
$5.0D-3$	3.867D-5	$4.115D - 5$	1.729D-4
$2.5D-3$	7.976D-6	$1.053D - 5$	$4.629D - 5$
$1.25D - 3$	$2.135D - 6$	2.648D-6	1.177D-5
$6.25D - 4$	5.765D-7	6.627D-7	$2.949D - 6$
3.125D-4	1.447D-7	$1.657D - 7$	7.370D-7
order	1.991	1.990	1.972

Table 3: Temporal accuracy of our method on the uniform mesh when $h = 1D - 4$ and $\alpha = 0.01$.

Table 4: Spatial accuracy of our method on the uniform mesh when $k = 1D - 4$ and $\alpha = 0.01$.

(e) Exact magnetization profile

(f) Numerical magnetization profile

Figure 8: Profiles of the exact and the numerical magnetization in the xy−plane with $z = 1/2$ when $k = 1/256$, $h_x = h_y = h_z = 1/32$, and $\alpha = 0.01$.

Table 5: Temporal accuracy in the 3-D case when $h_x = h_y = h_z = 1/32$ and $\alpha = 0.01$.

k _i	$\ \pmb m_h-\pmb m_e\ _\infty$	$\ \pmb m_h-\pmb m_e\ _2$	$\ \pmb m_h-\pmb m_e\ _{H^1}$
1/16	1.685D-3	1.098D-3	1.211D-3
1/32	4.411D-4	2.964D-4	3.082D-4
1/64	1.128D-4	7.730D-5	7.772D-5
1/128	$2.966D - 5$	2.024D-5	$2.051D - 5$
1/256	8.311D-6	5.693D-6	5.812D-6
order	1.922	1.906	1.932

Outline

[Background and motivation](#page-2-0)

- [Semi-implicit projection methods](#page-13-0)
- [Benchmark problem from NIST](#page-20-0)

[Main theoretical results](#page-29-0)

- [Unconditional unique solvability](#page-33-0)
- [Optimal rate convergence analysis](#page-37-0)

5 [Numerical examples](#page-46-0)

[Conclusion](#page-52-0)

What we have done

- ¹ Two second-order semi-implicit schemes for LL equation;
- ² Benchmark problem from NIST;
- **3** Unique solvability for two schemes;
- ⁴ Convergence analysis for one of the schemes.

To-do list

- **Generalization of the technique for other implicit scheme;**
- Current-driven magnetization dynamics [Chen, García-Cervera, and Yang, 2015];
- ³ Application to Landau-Lifshitz-Maxwell equations.

Thank you