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Magnetic recording devices and computer storages

Spinvalues1

Magnetoresistance random access
memory (MRAM)

Domain walls 2

Racetrack memories

1Science@Berkeley Lab: The Current Spin on Spintronics
2http://www2.technologyreview.com/article/412189/tr10-racetrack-memory/
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Methodology for detecting the orientation

Tunnel magnetoresistance 3

Julliere’s model:

Constant tunneling

matrix

Gaint magnetoresistance 4

I Albert Fert and Peter Grüberg:
2007 Nobel Prize in Physics

I Polarization and scattering

3http://ducthe.wordpress.com/category/spintronics/
4http://physics.unl.edu/
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Methodology for rotating the orientation

Spin transfer torque (STT) 5

I Two layers of different thickness:
different switching fields

I The thin film is switched, and the
resistance measured

Current-driven domain wall motion 6

I Applied current supplies spin
transfer torques

5http://www.wpi-aimr.tohoku.ac.jp/miyazaki labo/spintorque.htm
6http://physics.aps.org/articles/v2/11
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Micromagnetics: Landau-Lifshitz model

Basic quantity of interest:

m : Ω −→ R3; |m| = 1

Landau-Lifshitz energy functional:

FLL[m] =
Ku

Ms

∫
Ω
φ (m) dx+

Cex

Ms

∫
Ω
|∇m|2 dx

− µ0

2
Ms

∫
Ω
hs ·m dx− µ0Ms

∫
Ω
he ·m dx

Continuum theory.

Domain structure ←→ Local minimizers.
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φ (m): Anisotropy Energy: Penalizes deviations from the easy
directions. For uniaxial materials φ(m) =

(
m2

2 +m2
3

)
.

Cex
Ms
|∇m|2: Exchange energy: Penalizes spatial variations.

−µ0Mshe ·m: External field (Zeeman) energy.

−µ0

2 Mshs ·m: Stray field (self-induced) energy.

The stray field, hs = −∇u is obtained by solving the
magnetostatic equation:

∆u = div m, x ∈ Ω, ∆u = 0, x ∈ Ω
c

with jump boundary conditions

[u]∂Ω = 0,

[
∂u

∂ν

]
∂Ω

= −m · ν.
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Landau-Lifshitz equation

Torque balance

mt = −m× h + αm×mt,

or equivalently,

mt = − 1

1 + α2
m× h− α

1 + α2
m× (m× h),

where

h = −δFLL

δm
= −Q(m2e2 +m2e3) + ε∆m + hs + he

and the second term is the Gilbert damping term.

α << 1: Damping coefficient
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Model problem

mt = −m×∆m + αm×mt,

or
mt = −m×∆m− αm× (m×∆m)

with the Neumann boundary condition and the constraint |m| = 1.
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Literature review: Mathematical aspect

1 Existence of weak solutions: [Alouges and Soyeur, 1992] in 3D
whole space and [Guo and Hong, 1993] in 2D bounded domain;

2 Nonuniqueness of weak solutions: [Alouges and Soyeur, 1992];

3 Local existence and uniqueness; global existence and uniqueness
with small-energy initial data of strong solutions: [Carbou and
Fabrie, 2001a] in 3D whole space; [Carbou and Fabrie, 2001b] in
2D bounded domain.
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Literature review: Numerical aspect

Review articles: [Kruźık and Prohl, 2006; Cimrák, 2008]

Finite element: [Bartels and Prohl, 2006; Alouges, 2008; Cimrák,
2009];

Finite difference: [E and Wang, 2001; Fuwa et al., 2012; Kim and
Lipnikov, 2017];

Linearity of the discrete system:

Explicit scheme: [Jiang et al., 2001; Alouges and Jaisson, 2006];

Fully implicit scheme: [Prohl, 2001; Bartels and Prohl, 2006; Fuwa
et al., 2012];

Semi-implicit scheme: [Wang, Garcia-Cervera, and E, 2001; E and
Wang, 2001; Gao, 2014; Lewis and Nigam, 2003; Cimrák, 2005].
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Continued...

Time marching

Splitting method: [Wang, Garcia-Cervera, and E, 2001];

Mid-point method: [Bertotti et al., 2001, d’Aquino et al., 2005];

Runge-Kutta methods: [Romeo et al., 2008];

Geometric integration methods: [Jiang, Kaper, and Leaf, 2001];

Convergence analysis

1st order in time + 2nd order in space: [Alouges, 2008];

2nd order in time + 2nd order in space: [Bertotti et al., 2001,
d’Aquino et al., 2005, Bartels and Prohl, 2006, Fuwa et al., 2012];

I Unconditional stability;
I Nonlinear solver at each time step (unavailable theoretical

justification of the unique solvability);
I Step-size condition k = O(h2) with k the temporal stepsize and h

the spatial stepsize;
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Spatial discretization

xi = ih, i = 0, 1, 2, · · · , Nx, with x0 = 0, xNx = 1;

x̂i = xi−1/2 = (i− 1/2)h, i = 1, · · · , Nx;

mn
i ≈m(x̂i, t

n);

∆hmi = mi+1−2mi+mi−1

h2 ;

Third order extrapolation for boundary condition:

m1 = m0, mNx+1 = mNx .

x0 x1 xi−1 xi xi+1 xNxx− 1
2

x 1
2

· · · xi− 1
2

xi+ 1
2

· · ·xNx− 1
2

xNx+ 1
2

ghost point ghost point

Figure 1: Illustration of the 1-D spatial mesh.
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Semi-implicit projection methods [Xie, Garćıa-Cervera,
Wang, Zhou, and Chen, submitted, 2019]

mt = −m×∆m + αm×mt:(
1− αm̂n+2

h ×
) 3

2m
n+2,∗
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×∆hm
n+2,∗
h ,

m̂n+2
h = 2mn+1

h −mn
h;

mt = −m×∆m− αm× (m×∆m):

3
2m

n+2,∗
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×∆hm
n+2,∗
h

− αm̂n+2
h ×

(
m̂n+2

h ×∆hm
n+2,∗
h

)
;

A projection step: mn+2
h =

mn+2,∗
h

|mn+2,∗
h |

.
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1D test: Accuracy
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Figure 2: Accuracy of BDF2, GSPM and IMEX2. They are all second-order
accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are

second-order accurate in time.
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1D test: Efficiency
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Figure 3: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error
‖mh −me‖∞. For a given tolerance of error, costs of these schemes in the

increasing order are: BDF2 < IMEX2 < GSPM.
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3D test: Accuracy
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Figure 4: Accuracy of BDF2, GSPM and IMEX2. They are all second-order
accurate in space. GSPM is first-order accurate in time. BDF2 and IMEX2 are

second-order accurate in time.
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3D test: Efficiency
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Figure 5: CPU time (in seconds) of BDF2, GSPM and IMEX2 versus error
‖mh −me‖∞. For a given tolerance of error, costs of BDF2≈ IMEX2<GSPM when

hx = hy = hz = 1/16 in 3D.
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Mumag standard problem 1

Ask for simulating hysteresis loops.7

Geometry: 1× 2× 0.02 micron rectangle

Material parameters: To mimic permalloy

Exchange constant: Cex = 1.3× 10−11 J/m

Saturation magnetization: Ms = 8.0× 105 A/m

Anisotropy constant: Ku = 5.0× 102 J/m3

Permeability of vacuum: µ0 = 4π × 10−7 N/A2

Damping parameter: α = 0.1

Uniaxial, with easy axis nominally parallel to
the long edges of the rectangle.

7https://www.ctcms.nist.gov/∼rdm/mumag.org.html
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Setup for our simulations

The film of size: 1 µm× 2 µm× 200 Å;

The cell of size: 20 nm× 20 nm× 20 nm;

Timescale: k = 1 ps;

# of field states: 133 for x− loop (or y− loop).

For hysteresis loops simulation: the applied field H0 (begin from
500 Oe) approximately parallel (canting angle +1◦) along y−
(long) axis and x− (short) axis.
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Semi-implicit projection methods for full LL equation

mt = −m× h + αm×mt:(
1− αm̂n+2

h ×
) 3

2
mn+2,∗
h − 2mn+1

h + 1
2
mn
h

k
= −m̂n+2

h ×
(
ε∆hm

n+2,∗
h + f̂

n+2

h

)
,

m̂n+2
h = 2mn+1

h −mn
h,

f̂
n+2

h = 2fn+1
h − fnh,

fnh = −Q(mn
2e2 +mn

3e3) + hns + hne ;

mt = −m× h− αm× (m× h):

3
2m

n+2,∗
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×
(
ε∆hm

n+2,∗
h + f̂

n+2

h

)
− αm̂n+2

h ×
(
m̂n+2

h × (ε∆hm
n+2,∗
h + f̂

n+2

h )
)

;

A projection step: mn+2
h =

mn+2,∗
h

|mn+2,∗
h |

.
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Magnetization profile

mo96a:
(a) H0//y-axis (b) H0//x-axis

BDF2:
(c) H0//y-axis (d) H0//x-axis

Figure 6: The in-plane magnetization components are represented by arrows.
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Magnetization profile (cont’d)

mo96a:
(a) mx
(H0//y-axis)

(b) my
(H0//y-axis)

(c) mx
(H0//x-axis)

(d) my
(H0//x-axis)

BDF2:
(e) mx

(H0//y-axis)
(f) my

(H0//y-axis)
(g) mx

(H0//x-axis)
(h) my

(H0//x-axis)

Figure 7: The x- and y- magnetization components are visualized by the gray value.
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Hysteresis loop

mo96a:
(a) H0//y-axis (b) H0//x-axis

BDF2:
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 m
x
 up

(c) H0//y-axis

-50 -25 0 25 50

0
 H (mT)
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0.0
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M
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0

BDF2; Field parallel to 1 m (short) axis

 m
x

 m
y
 down

 m
y
 up

(d) H0//x-axis
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Semi-implicit projection methods revisited

Lack of numerical stability of Lax-Richtmyer type;

Separation of the time-marching step and the projection step:

3
2m̃

n+2
h − 2m̃n+1

h + 1
2m̃

n
h

k
= −m̂n+2

h ×∆hm̃
n+2
h

− αm̂n+2
h × (m̂n+2

h ×∆hm̃
n+2
h ),

m̂n+2
h = 2mn+1

h −mn
h,

mn+2
h =

m̃n+2
h

|m̃n+2
h |

;

Two sets of approximations m̃n
h and mn

h.
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1D test

me =
(
cos(x2(1− x)2) sin t, sin(x2(1− x)2) sin t, cos t

)T
Table 1: Accuracy of our method on the uniform mesh when h = k and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

5.0D-3 3.867D-5 4.115D-5 1.729D-4
2.5D-3 7.976D-6 1.053D-5 4.629D-5
1.25D-3 2.135D-6 2.648D-6 1.177D-5
6.25D-4 5.765D-7 6.627D-7 2.949D-6
3.125D-4 1.447D-7 1.657D-7 7.370D-7

order 1.991 1.990 1.972
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Definitions

Inner product and ‖ · ‖2 norm

〈fh, gh〉 = hd
∑
I∈Λd

fI · gI ,

‖fh‖2 = (〈fh,fh〉)1/2;

Discrete ‖ · ‖∞ norm: ‖fh‖∞ = maxI∈Λd ‖fI‖∞;

Average: fh = hd
∑
I∈Λd

fI ;

Discrete H−1
h -norm: ‖fh‖2−1 = 〈(−∆h)−1fh,fh〉.
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Preliminary estimates

Inverse inequality:
‖enh‖∞ ≤ h−d/2‖enh‖2, ‖∇henh‖∞ ≤ h−d/2‖∇henh‖2;

Summation by parts: 〈−∆hfh, gh〉 = 〈∇hfh,∇hgh〉;
Discrete Gronwall inequality: Let {αj}j≥0, {βj}j≥0 and {ωj}j≥0

be sequences of real numbers such that

αj ≤ αj+1, βj ≥ 0, and ωj ≤ αj +

j−1∑
i=0

βiωi, ∀j ≥ 0.

Then it holds that

ωj ≤ αj exp

{
j−1∑
i=0

βi

}
, ∀j ≥ 0.
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Discrete gradient acting on cross product

Lemma

For grid functions fh and gh over the uniform numerical grid, we have

‖∇h(f × g)h‖22 ≤ C
(
‖fh‖2∞ · ‖∇hgh‖22 + ‖gh‖2∞ · ‖∇hfh‖22

)
,

〈(fh ×∆hgh)× fh, gh〉 = 〈fh × (gh × fh),∆hgh〉 ,
〈fh × (fh × gh), gh〉 = −‖fh × gh‖22.
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Unconditional unique solvability

Theorem

Given ph, p̃h and m̂h, the numerical schemes(3

2
Ih −

3

2
αm̂h × Ih + km̂h ×∆h

)
mh = ph,(3

2
Ih + km̂h ×∆h + αkm̂h × (m̂h ×∆h)

)
mh = p̃h,

are uniquely solvable.

Denote qh = −∆hmh. Then

mh = (−∆h)−1qh+C∗qh
with C∗qh

=
2

3

(
p̃h+km̂h × qh+αkm̂h × (m̂h × qh)

)
and

G(qh) :=
3

2
((−∆h)−1qh + C∗qh

)− p̃h − km̂h × qh − αkm̂h × (m̂h × qh) = 0.
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Proof

Observe that

A :=
3

2
αm̂h × Ih + km̂h × (−∆h)

= km̂h ×
(
−∆h +

3α

2k
Ih

)
=: kMS.

Ih: identity matrix; M : antisymmetric matrix;
S = −∆h + 3α

2k Ih: symmetric positive definite matrix;
S = CTC with C being nonsingular;
|λI −MS| = |λI −MCTC| = |λI − CMCT |;
(CMCT )T = −CMCT ;

Lemma (spectral lemma for antisymmetric matrices)

Each eigenvalue of the real skew-symmetric matrix is either 0 or purely
imaginary number.
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Continued ...

By the lemma, det(3
2Ih −

3
2αm̂h × Ih + km̂h ×∆h) 6= 0 since the

matrix has 3
2 as real parts, and thus the corresponding linear system of

equations has a unique solution.
For any q1,h, q2,h with q1,h = q2,h = 0, we denote q̃h = q1,h − q2,h

〈G(q1,h)−G(q2,h), q1,h − q2,h〉

=
3

2k

(
〈(−∆h)−1q̃h, q̃h〉+ 〈C∗q1,h

− C∗q1,h
, q̃h〉

)
− 〈m̂h × q̃h, q̃h〉 − α〈m̂h × (m̂h × q̃h), q̃h〉

≥ 3

2k

(
〈(−∆h)−1q̃h, q̃h〉+ 〈C∗q1,h

− C∗q2,h
, q̃h〉

)
=

3

2k
〈(−∆h)−1q̃h, q̃h〉 =

3

2k
‖q̃h‖

2
−1 ≥ 0.
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Continued ...

Moreover, for any q1,h, q2,h with q1,h = q2,h = 0, we get

〈G(q1,h)−G(q2,h), q1,h − q2,h〉 ≥
3

2k
‖q̃h‖2−1 > 0, if q1,h 6= q2,h,

and the equality only holds when q1,h = q2,h.

Lemma (Browder-Minty lemma [Browder, 1963, Minty, 1963])

Let X be a real, reflexive Banach space and let T : X → X ′ (the dual

space of X) be bounded, continuous, coercive (i.e., (T (u),u)
‖u‖X → +∞, as

‖u‖X → +∞) and monotone. Then for any g ∈ X ′ there exists a
solution u ∈ X of the equation T (u) = g. Furthermore, if the operator
T is strictly monotone, then the solution u is unique.

By the Browder-Minty lemma, the semi-implicit scheme admits a
unique solution.
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Optimal rate convergence analysis [Chen, Wang and Xie,
submitted, 2019]

Theorem

Let me ∈ C3([0, T ];C0) ∩ L∞([0, T ];C4) be a smooth solution with the
initial data me(x, 0) = m0

e(x) and mh be the numerical solution with
the initial data m0

h = m0
e,h

and m1
h = m1

e,h. Suppose that the initial
error satisfies
‖m`

e,h−m`
h‖2 + ‖∇h(m`

e,h−m`
h)‖2 = O(k2 +h2), ` = 0, 1, and k ≤ Ch.

Then the following convergence result holds as h and k goes to zero:

‖mn
e,h −mn

h‖2 + ‖∇h(mn
e,h −mn

h)‖2 ≤ C(k2 + h2), ∀n ≥ 2,

in which the constant C > 0 is independent of k and h.
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Idea of the proof

Initial error: e0
h and e1

h;

Alternative estimate: Using discrete Gronwall inequality and
another lemma to evaluate ẽh and ∇hẽh; Again by the lemma to
estimate eh and ∇heh. Illustrated by the following schematic:

‖ẽ2
h‖, ‖∇hẽ2

h‖ ‖ẽ3
h‖, ‖∇hẽ3

h‖ ‖ẽ4
h‖, ‖∇hẽ4

h‖ · · ·

‖e0
h‖, ‖∇he0

h‖ ‖e1
h‖, ‖∇he1

h‖ ‖e2
h‖, ‖∇he2

h‖ ‖e3
h‖, ‖∇he3

h‖ · · ·

To guarantee the assumptions in the recursive demonstration.

Changjian Xie (Soochow) Second-order Methods for LL Equation September 21, 2019, CSIAM 2019, Foshan 39 / 54



Sketch of the proof

Step 1: Construction of an approximate solution m:

m = me + h2m(1),

in which the auxiliary field m(1) satisfies

∆m(1) = Ĉ with Ĉ =
1

|Ω|

∫
∂Ω

∂3
νme ds,

∂zm
(1) |z=0= − 1

24
∂3
zme |z=0, ∂zm

(1) |z=1=
1

24
∂3
zme |z=1 .

Then

me(x̂i, ŷj , ẑ0) = me(x̂i, ŷj , ẑ1)− h3

24
∂3
zme(x̂i, ŷj , 0) +O(h5),

m(1)(x̂i, ŷj , ẑ0) = m(1)(x̂i, ŷj , ẑ1) +
h

24
∂3
zme(x̂i, ŷj , 0) +O(h3),

m(x̂i, ŷj , ẑ0) = m(x̂i, ŷj , ẑ1) +O(h5),

∆hmi,j,k = ∆me(x̂i, ŷj , ẑk) +O(h2), ∀1 ≤ i, j, k ≤ N.
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Step 2: Error function evolution system for

ẽnh = mn
h − m̃n

h, enh = mn
h −mn

h,

3
2
ẽn+2
h − 2ẽn+1

h + 1
2
ẽnh

k
= −

(
2mn+1

h −mn
h

)
×∆hẽ

n+2
h −

(
2en+1
h − enh

)
×∆hm

n+2
h

− α
(
2mn+1

h −mn
h

)
×
(
(2mn+1

h −mn
h)×∆hẽ

n+2
h

)
− α

(
2mn+1

h −mn
h

)
×
(
(2en+1

h − enh)×∆hm
n+2
h

)
− α

(
2en+1
h − enh

)
×
(
(2mn+1

h −mn
h)×∆hm

n+2
h

)
+ τn+2

with ‖τn+2‖2 ≤ C(k2 + h2).

Discrete L2 error estimate: Inner product with ẽ`+2
h

‖ẽ`+2
h ‖22 − ‖ẽ`+1

h ‖22 + ‖2ẽ`+2
h − ẽ`+1

h ‖22 − ‖2ẽ`+1
h − ẽ`h‖22

≤Ck(‖∇hẽ`+2
h ‖22 + ‖ẽ`+2

h ‖22 + ‖e`+1
h ‖22 + ‖e`h‖22) + Ck(k4 + h4).

Remark: Discrete Gronwall inequality is not applicable due to the
presence of H1

h norms of the error function.
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Discrete inner product with −∆hẽ
`+2
h

‖∇hẽ`+2
h ‖22 − ‖∇hẽ`+1

h ‖22 + ‖2∇hẽ`+2
h −∇hẽ`+1

h ‖22 − ‖2∇hẽ`+1
h −∇hẽ`h‖22

≤Ck
(
‖∇hẽ`+2

h ‖22 + ‖∇he`+1
h ‖22 + ‖∇he`h‖22 + ‖e`+1

h ‖22 + ‖e`h‖22
)

+ Ck(k4 + h4).

Combination of both

‖ẽ`+2
h ‖22 − ‖ẽ`+1

h ‖22 + ‖2ẽ`+2
h − ẽ`+1

h ‖22 − ‖2ẽ`+1
h − ẽ`h‖22

+ ‖∇hẽ`+2
h ‖22 − ‖∇hẽ`+1

h ‖22 + ‖∇h(2ẽ`+2
h − ẽ`+1

h )‖22 − ‖∇h(2ẽ`+1
h − ẽ`h )‖22

≤Ck
(
‖∇hẽ`+2

h ‖22 + ‖ẽ`+2
h ‖22 + ‖∇he`+1

h ‖22 + ‖∇he`h‖22 + ‖e`+1
h ‖22 + ‖e`h‖22

)
+ Ck(k4 + h4).
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Lemma

Consider mh = me + h2m(1) with me the exact solution and |me| = 1

at a point-wise level, and ‖m(1)‖∞ + ‖∇hm(1)‖∞ ≤ C. For any

numerical solution m̃h, we define mh = m̃h

|m̃h|
. Suppose both numerical

profiles satisfy the following W 1,∞
h bounds

|m̃h| ≥
1

2
, at a point-wise level,

‖mh‖∞ + ‖∇hmh‖∞ ≤M, ‖m̃h‖∞ + ‖∇hm̃h‖∞ ≤M,

and we denote the numerical error functions as eh = mh −mh,
ẽh = mh − m̃h. Then the following estimate is valid

‖eh‖2 ≤ 2‖ẽh‖2 +O(h2), ‖∇heh‖2 ≤ C(‖∇hẽh‖2 + ‖ẽh‖2) +O(h2).
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Using the Lemma

‖ẽ`+2
h ‖22 − ‖ẽ`+1

h ‖22 + ‖2ẽ`+2
h − ẽ`+1

h ‖22 − ‖2ẽ`+1
h − ẽ`h‖22

+ ‖∇hẽ`+2
h ‖22 − ‖∇hẽ`+1

h ‖22 + ‖∇h(2ẽ`+2
h − ẽ`+1

h )‖22 − ‖∇h(2ẽ`+1
h − ẽ`h )‖22

≤Ck
(
‖∇hẽ`+2

h ‖22 + ‖∇hẽ`+1
h ‖22 + ‖∇hẽ`h‖22 + ‖ẽ`+2

h ‖22 + ‖ẽ`+1
h ‖22 + ‖ẽ`h‖22

)
+ Ck(k4 + h4).

Discrete Gronwall inequality

‖ẽnh‖22 + ‖∇hẽnh‖22 ≤ CTeCT (k4 + h4), for all n : n ≤
⌊
T

k

⌋
,

‖ẽnh‖2 + ‖∇hẽnh‖2 ≤ C(k2 + h2).
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Lemma

Assume the numerical error function:

‖ekh‖∞ + ‖∇hekh‖∞ ≤
1

3
, ‖ẽkh‖∞ + ‖∇hẽkh‖∞ ≤

1

3
, for k = `, `+ 1.

Such an assumption will be recovered by the convergence analysis at
time step t`+2. Then numerical solutions mh and m̃h:

‖mk
h‖∞ = ‖mk

h − ekh‖∞ ≤ ‖mk
h‖∞ + ‖ekh‖∞ ≤ C +

1

3
,

‖∇hmk
h‖∞ = ‖∇hmk

h −∇he
k
h‖∞ ≤ ‖∇hmk

h‖∞ + ‖∇hekh‖∞ ≤ C +
1

3
,

‖m̃k
h‖∞ ≤ C +

1

3
, ‖∇hm̃k

h‖∞ ≤ C +
1

3
(similar derivation).

Inverse inequality with time step constraint k ≤ Ch

‖ẽnh‖∞ ≤
‖ẽnh‖2
hd/2

≤ C(k
2 + h2)

hd/2
≤ 1

6
,

‖∇hẽnh‖∞ ≤
‖∇hẽnh‖2
hd/2

≤ C(k
2 + h2)

hd/2
≤ 1

6
.

Changjian Xie (Soochow) Second-order Methods for LL Equation September 21, 2019, CSIAM 2019, Foshan 45 / 54



Convergence estimate for enh:

‖enh‖2 ≤ 2‖ẽnh‖2 +O(h2) ≤ C(k2 + h2),

‖∇henh‖2 ≤ C(‖∇hẽnh‖2 + ‖ẽnh‖2) +O(h2) ≤ C(k2 + h2).

Verification of assumptions.

|m̃h| ≥
1

2
, at a point-wise level,

‖mh‖∞ + ‖∇hmh‖∞ ≤M, ‖m̃h‖∞ + ‖∇hm̃h‖∞ ≤M,

‖enh‖∞ ≤
1

6
, ‖∇henh‖∞ ≤

1

6
,

‖ẽnh‖∞ ≤
1

6
, ‖∇hẽpnh‖∞ ≤

1

6
.
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Numerical examples

Homogenous Neumann boundary condition

1 1-D example with a forcing term and the given exact solution

2 1-D example without the exact solution

3 3-D example with a forcing term and the given exact solution

Changjian Xie (Soochow) Second-order Methods for LL Equation September 21, 2019, CSIAM 2019, Foshan 48 / 54



Example 1

me =
(
cos(x2(1− x)2) sin t, sin(x2(1− x)2) sin t, cos t

)T
Table 2: Accuracy of our method on the uniform mesh when h = k and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

5.0D-3 3.867D-5 4.115D-5 1.729D-4
2.5D-3 7.976D-6 1.053D-5 4.629D-5
1.25D-3 2.135D-6 2.648D-6 1.177D-5
6.25D-4 5.765D-7 6.627D-7 2.949D-6
3.125D-4 1.447D-7 1.657D-7 7.370D-7

order 1.991 1.990 1.972
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Example 2

Table 3: Temporal accuracy of our method on the uniform mesh when h = 1D − 4 and
α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

5.0D-3 2.949D-5 3.250D-5 1.633D-4
2.5D-3 8.116D-6 8.429D-6 4.393D-5
1.25D-3 2.125D-6 2.114D-6 1.118D-5
6.25D-4 4.851D-7 5.190D-7 2.791D-6
3.125D-4 1.129D-7 1.196D-7 6.875D-7

order 2.012 2.019 1.976

Table 4: Spatial accuracy of our method on the uniform mesh when k = 1D − 4 and
α = 0.01.

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/32 0.00546 0.00577 0.01336
1/33 6.101D-4 6.430D-4 0.00160
1/34 6.782D-5 7.146D-5 1.820D-4
1/35 7.527D-6 7.930D-6 2.036D-5
1/36 8.271D-7 8.714D-7 2.243D-6
order 2.001 2.002 1.980
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Example 3
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(e) Exact magnetization profile
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(f) Numerical magnetization profile

Figure 8: Profiles of the exact and the numerical magnetization in the xy−plane with
z = 1/2 when k = 1/256, hx = hy = hz = 1/32, and α = 0.01.
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Table 5: Temporal accuracy in the 3-D case when hx = hy = hz = 1/32 and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/16 1.685D-3 1.098D-3 1.211D-3
1/32 4.411D-4 2.964D-4 3.082D-4
1/64 1.128D-4 7.730D-5 7.772D-5
1/128 2.966D-5 2.024D-5 2.051D-5
1/256 8.311D-6 5.693D-6 5.812D-6

order 1.922 1.906 1.932
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Conclusion

What we have done

1 Two second-order semi-implicit schemes for LL equation;

2 Benchmark problem from NIST;

3 Unique solvability for two schemes;

4 Convergence analysis for one of the schemes.

To-do list

1 Generalization of the technique for other implicit scheme;

2 Current-driven magnetization dynamics [Chen, Garćıa-Cervera,
and Yang, 2015];

3 Application to Landau-Lifshitz-Maxwell equations.

Thank you
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