Second-order Semi-implicit Projection Methods for Landau-Lifshitz Equation

Changjian Xie

School of Mathematical Sciences Soochow University, Suzhou, China

Joint work with
Jingrun Chen (Soochow University)
Cheng Wang (University of Massachusetts)

December 8, 2018, Nanjing

Outline

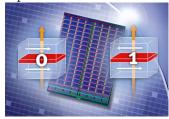
- Background and motivation
- Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- Mumerical examples
- Conclusion

Outline

- Background and motivation
- 2 Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- 4 Numerical examples
- Conclusion

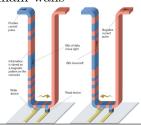
Magnetic recording devices and computer storages

• Spinvalues¹



Magnetoresistance random access memory (MRAM)

• Domain walls ²



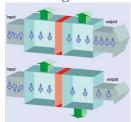
Racetrack memories

¹Science@Berkeley Lab: The Current Spin on Spintronics

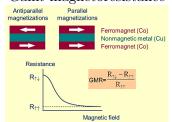
²http://www2.technologyreview.com/article/412189/tr10-racetrack-memory/

Methodology for detecting the orientation

• Tunnel magnetoresistance ³



• Gaint magnetoresistance ⁴



Julliere's model: Constant tunneling matrix

$$\begin{split} TMR &\equiv \frac{G_{AP} - G_P}{G_{AP}} = \frac{2P_L P_R}{1 - P_L P_R} \\ P_L &= \frac{n_L^\uparrow - n_L^\downarrow}{n_L^\uparrow + n_L^\downarrow} \quad P_R = \frac{n_R^\uparrow - n_R^\downarrow}{n_R^\uparrow + n_R^\downarrow} \end{split}$$

- ► Albert Fert and Peter Grüberg: 2007 Nobel Prize in Physics
- ▶ Polarization and scattering

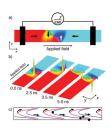
³http://ducthe.wordpress.com/category/spintronics/

⁴http://physics.unl.edu/

Methodology for rotating the orientation

• Spin transfer torque (STT) ⁵

- ► Two layers of different thickness: different switching fields
- ► The thin film is switched, and the resistance measured
- Current-driven domain wall motion ⁶



► Applied current supplies spin transfer torques

 $^{^5 \}rm http://www.wpi-aimr.tohoku.ac.jp/miyazaki_labo/spintorque.htm$

⁶http://physics.aps.org/articles/v2/11

Micromagnetics: Landau-Lifshitz model

Basic quantity of interest:

$$\boldsymbol{m}:\Omega\longrightarrow\mathbb{R}^3;\ |\boldsymbol{m}|=1$$

Landau-Lifshitz energy functional:

$$F_{LL}[\boldsymbol{m}] = \frac{K_u}{M_s} \int_{\Omega} \phi(\boldsymbol{m}) dx + \frac{C_{ex}}{M_s} \int_{\Omega} |\nabla \boldsymbol{m}|^2 dx$$
$$- \frac{\mu_0}{2} M_s \int_{\Omega} \boldsymbol{h}_s \cdot \boldsymbol{m} dx - \mu_0 M_s \int_{\Omega} \boldsymbol{h}_e \cdot \boldsymbol{m} dx$$

- Continuum theory.
- Domain structure \longleftrightarrow Local minimizers.

Landau-Lifshitz equation

• Torque balance

$$\boldsymbol{m}_t = -\boldsymbol{m} \times \boldsymbol{h} + \alpha \boldsymbol{m} \times \boldsymbol{m}_t,$$

or equivalently,

$$m_t = -\frac{1}{1+\alpha^2} m \times h - \frac{\alpha}{1+\alpha^2} m \times (m \times h),$$

where

$$\mathbf{h} = -\frac{\delta F_{\mathrm{LL}}}{\delta \mathbf{m}} = -Q(m_2 \mathbf{e}_2 + m_2 \mathbf{e}_3) + \epsilon \Delta \mathbf{m} + \mathbf{h}_{\mathrm{s}} + \mathbf{h}_{\mathrm{e}}$$

and the second term is the Gilbert damping term.

• $\alpha << 1$: Damping coefficient

Model problem

$$m_t = -m \times \Delta m + \alpha m \times m_t,$$

or

$$m_t = -m \times \Delta m - \alpha m \times (m \times \Delta m)$$

with the Neumann boundary condition and the constraint |m| = 1.

Literature review: Numerical aspect

Review articles: [Kruzík and Prohl, 2006; Cimrák, 2008]

- Finite element: [Bartels and Prohl, 2006; Alouges, 2008; Cimrák, 2009];
- Finite difference: [E and Wang, 2001; Fuwa et al., 2012; Kim and Lipnikov, 2017];

Linearity of the discrete system:

- Explicit scheme: [Jiang et al., 2001; Alouges and Jaisson, 2006];
- Fully implicit scheme: [Prohl, 2001; Bartels and Prohl, 2006; Fuwa et al., 2012];
- Semi-implicit scheme: [Wang, Garcia-Cervera, and E, 2001; E and Wang, 2001; Gao, 2014; Lewis and Nigam, 2003; Cimrák, 2005].

Continued...

Time marching

- Splitting method: [Wang, Garcia-Cervera, and E, 2001];
- Mid-point method: [Bertotti et al., 2001, d'Aquino et al., 2005];
- Runge-Kutta methods: [Romeo et al., 2008];
- Geometric integration methods: [Jiang, Kaper, and Leaf, 2001];

Convergence analysis

- 1st order in time + 2nd order in space: [Alouges, 2008];
- 2st order in time + 2nd order in space: [Bertotti et al., 2001, d'Aquino et al., 2005, Bartels and Prohl, 2006, Fuwa et al., 2012];
 - ▶ Unconditional stability;
 - Nonlinear solver at each time step (unavailable theoretical justification of the unique solvability);
 - ▶ Step-size condition $k = \mathcal{O}(h^2)$ with k the temporal stepsize and h the spatial stepsize;

Outline

- Background and motivation
- Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- 4 Numerical examples
- Conclusion

Spatial discretization

- $x_i = ih$, $i = 0, 1, 2, \dots, N_x$, with $x_0 = 0$, $x_{N_x} = 1$;
- $\hat{x}_i = x_{i-1/2} = (i-1/2)h, i = 1, \dots, N_x;$
- $\boldsymbol{m}_i^n \approx \boldsymbol{m}(\hat{x}_i, t^n);$
- Third order extrapolation for boundary condition:

$$m_1 = m_0, \quad m_{N_x+1} = m_{N_x}.$$

ghost point ghost point
$$x_{-\frac{1}{2}}^{\bigcirc} x_0 \quad x_{\frac{1}{2}}^{\bigcirc} x_1 \quad \cdots \quad x_{i-1} x_{i-\frac{1}{2}}^{\bigcirc} x_i \quad x_{i+\frac{1}{2}} x_{i+1} \quad \cdots \quad x_{N_x-\frac{1}{2}} x_{N_x} x_{N_x+\frac{1}{2}}$$

Figure 1: Illustration of the 1-D spatial mesh.

Semi-implicit projection methods [Xie, Garcia-Cervera, Wang, Zhou, and Chen, in progress, 2018]

• $m_t = -m \times \Delta m + \alpha m \times m_t$:

$$(1 - \alpha \hat{\boldsymbol{m}}_{h}^{n+2} \times) \frac{\frac{3}{2} \boldsymbol{m}_{h}^{n+2} - 2 \boldsymbol{m}_{h}^{n+1} + \frac{1}{2} \boldsymbol{m}_{h}^{n}}{k} = -\hat{\boldsymbol{m}}_{h}^{n+2} \times \Delta_{h} \boldsymbol{m}_{h}^{n+2},$$

$$\hat{\boldsymbol{m}}_{h}^{n+2} = 2 \boldsymbol{m}_{h}^{n+1} - \boldsymbol{m}_{h}^{n};$$

• $m_t = -m \times \Delta m - \alpha m \times (m \times \Delta m)$:

$$\frac{\frac{3}{2}\boldsymbol{m}_{h}^{n+2} - 2\boldsymbol{m}_{h}^{n+1} + \frac{1}{2}\boldsymbol{m}_{h}^{n}}{k} = -\hat{\boldsymbol{m}}_{h}^{n+2} \times \Delta_{h}\boldsymbol{m}_{h}^{n+2} - \alpha\hat{\boldsymbol{m}}_{h}^{n+2} \times (\hat{\boldsymbol{m}}_{h}^{n+2} \times \Delta_{h}\boldsymbol{m}_{h}^{n+2});$$

• A projection step: $\boldsymbol{m}_h^{n+2} = \frac{\boldsymbol{m}_h^{n+2}}{|\boldsymbol{m}_h^{n+2}|}$.

1D test: Accuracy

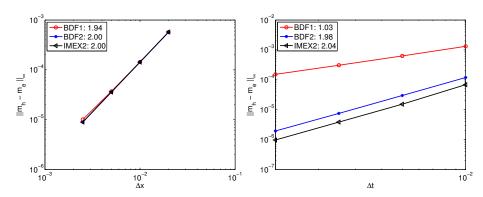


Figure 2: Accuracy of BDF1, BDF2, and IMEX2. They are all second-order accurate in space. BDF1 is first-order accurate in time. BDF2 and IMEX2 are second-order accurate in time.

1D test: Efficiency

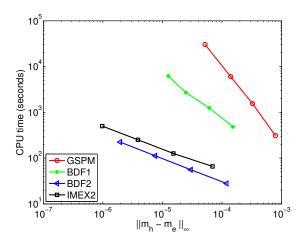


Figure 3: CPU time (in seconds) of GSPM, BDF1, BDF2, and IMEX2 versus error $\|\boldsymbol{m}_h - \boldsymbol{m}_e\|_{\infty}$. For a given tolerance of error, costs of these schemes in the increasing order are: BDF2 < IMEX2 < BDF1 < GSPM.

Semi-implicit projection methods revisited

- Lack of numerical stability of Lax-Richtmyer type;
- Separation of the time-marching step and the projection step:

$$\begin{split} &\frac{\frac{3}{2}\tilde{\boldsymbol{m}}_{h}^{n+2} - 2\tilde{\boldsymbol{m}}_{h}^{n+1} + \frac{1}{2}\tilde{\boldsymbol{m}}_{h}^{n}}{k} = -\hat{\boldsymbol{m}}_{h}^{n+2} \times \Delta_{h}\tilde{\boldsymbol{m}}_{h}^{n+2} \\ &- \alpha\hat{\boldsymbol{m}}_{h}^{n+2} \times (\hat{\boldsymbol{m}}_{h}^{n+2} \times \Delta_{h}\tilde{\boldsymbol{m}}_{h}^{n+2}), \\ &\hat{\boldsymbol{m}}_{h}^{n+2} = 2\boldsymbol{m}_{h}^{n+1} - \boldsymbol{m}_{h}^{n}, \\ &\boldsymbol{m}_{h}^{n+2} = \frac{\tilde{\boldsymbol{m}}_{h}^{n+2}}{|\tilde{\boldsymbol{m}}_{h}^{n+2}|}; \end{split}$$

• Two sets of approximations $\tilde{\boldsymbol{m}}_h^n$ and \boldsymbol{m}_h^n .

1D test

$$\mathbf{m}_e = (\cos(x^2(1-x)^2)\sin t, \sin(x^2(1-x)^2)\sin t, \cos t)^T$$

Table 1: Accuracy of our method on the uniform mesh when h = k and $\alpha = 0.01$.

k	$\ m{m}_h - m{m}_e\ _{\infty}$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _2$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{H^1}$
2.0D-2	4.990D-5	5.865D-5	1.060D-4
1.0D-2	1.262D-5	1.434D-5	2.666D-5
5.0D-3	3.167D-6	3.545D-6	6.762D-6
2.5D-3	7.927D-7	8.813D-7	1.699D-6
1.25D-3	1.983D-7	2.197D-7	4.257D-7
6.25D-4	4.961D-8	5.484D-8	1.065D-7
order	1.996	2.012	1.991

Outline

- Background and motivation
- 2 Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- 4 Numerical examples
- Conclusion

Unconditional unique solvability

Theorem

Given \mathbf{p}_h , $\hat{\mathbf{m}}_h$, the numerical scheme

$$\frac{\frac{3}{2}\tilde{\boldsymbol{m}}_h - \boldsymbol{p}_h}{k} = -\hat{\boldsymbol{m}}_h \times \Delta_h \tilde{\boldsymbol{m}}_h - \alpha \hat{\boldsymbol{m}}_h \times (\hat{\boldsymbol{m}}_h \times \Delta_h \tilde{\boldsymbol{m}}_h)$$

is uniquely solvable.

Denote $\mathbf{q}_h = -\Delta_h \tilde{\mathbf{m}}_h$. Then

$$\tilde{\boldsymbol{m}}_h = (-\Delta_h)^{-1} \boldsymbol{q}_h + C_{\boldsymbol{q}_h}^* \quad \text{with } C_{\boldsymbol{q}_h}^* = \frac{2}{3} \left(\overline{\boldsymbol{p}_h} + k \overline{\hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h} + \alpha k \overline{\hat{\boldsymbol{m}}_h \times (\hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h)} \right)$$

and

$$G(\boldsymbol{q}_h) := \frac{\frac{3}{2}((-\Delta_h)^{-1}\boldsymbol{q}_h + C_{\boldsymbol{q}_h}^*) - \boldsymbol{p}_h}{k} - \hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h - \alpha \hat{\boldsymbol{m}}_h \times (\hat{\boldsymbol{m}}_h \times \boldsymbol{q}_h) = \boldsymbol{0}.$$

Continued ...

Lemma (Browder-Minty lemma [Browder, 1963, Minty, 1963])

Let X be a real, reflexive Banach space and let $T: X \to X'$ (the dual space of X) be bounded, continuous, coercive (i.e., $\frac{(T(u),u)}{\|u\|_X} \to +\infty$, as $\|u\|_X \to +\infty$) and monotone. Then for any $g \in X'$ there exists a solution $u \in X$ of the equation T(u) = g. Furthermore, if the operator T is strictly monotone, then the solution u is unique.

By the Browder-Minty lemma, the semi-implicit scheme admits a unique solution.

Optimal rate convergence analysis

Theorem

Let $\mathbf{m}_e \in C^3([0,T];C^0) \cap L^{\infty}([0,T];C^4)$ be a smooth solution with the initial data $\mathbf{m}_e(\mathbf{x},0) = \mathbf{m}_e^0(\mathbf{x})$ and \mathbf{m}_h be the numerical solution with the initial data $\mathbf{m}_h^0 = \mathbf{m}_{e,h}^0$ and $\mathbf{m}_h^1 = \mathbf{m}_{e,h}^1$. Suppose that the initial error satisfies

 $\|\boldsymbol{m}_{e,h}^{\ell} - \boldsymbol{m}_{h}^{\ell}\|_{2} + \|\nabla_{h}(\boldsymbol{m}_{e,h}^{\ell} - \boldsymbol{m}_{h}^{\ell})\|_{2} = \mathcal{O}(k^{2} + h^{2}), \ \ell = 0, 1, \ and \ k \leq \mathcal{C}h.$ Then the following convergence result holds as h and k goes to zero:

$$\|\boldsymbol{m}_{e,h}^n - \boldsymbol{m}_h^n\|_2 + \|\nabla_h(\boldsymbol{m}_{e,h}^n - \boldsymbol{m}_h^n)\|_2 \le C(k^2 + h^2), \quad \forall n \ge 2,$$

in which the constant C > 0 is independent of k and h.

Idea of the proof

$$\|\tilde{e}_{h}^{2}\|, \|\nabla_{h}\tilde{e}_{h}^{2}\| \quad \|\tilde{e}_{h}^{3}\|, \|\nabla_{h}\tilde{e}_{h}^{3}\| \quad \|\tilde{e}_{h}^{4}\|, \|\nabla_{h}\tilde{e}_{h}^{4}\| \quad \cdots \\ \uparrow \quad \qquad \uparrow \quad \uparrow \quad \\ \|e_{h}^{0}\|, \|\nabla_{h}e_{h}^{0}\| \, \longrightarrow \, \|e_{h}^{1}\|, \|\nabla_{h}e_{h}^{1}\| \, \longrightarrow \, \|e_{h}^{2}\|, \|\nabla_{h}e_{h}^{2}\| \, \longrightarrow \, \|e_{h}^{3}\|, \|\nabla_{h}e_{h}^{3}\| \quad \cdots$$

Blue arrow (Lemma)
Red arrow (Discrete G

Red arrow (Discrete Gronwall Inequality)

Dashed arrow (Combine these terms)

Lemma

Consider $\underline{\boldsymbol{m}}_h = \boldsymbol{m}_e + h^2 \boldsymbol{m}^{(1)}$ with \boldsymbol{m}_e the exact solution and $|\boldsymbol{m}_e| = 1$ at a point-wise level, and $\|\boldsymbol{m}^{(1)}\|_{\infty} + \|\nabla_h \boldsymbol{m}^{(1)}\|_{\infty} \leq \mathcal{C}$. For any numerical solution $\tilde{\boldsymbol{m}}_h$, we define $\boldsymbol{m}_h = \frac{\tilde{\boldsymbol{m}}_h}{|\tilde{\boldsymbol{m}}_h|}$. Suppose both numerical profiles satisfy the following $W_h^{1,\infty}$ bounds

$$|\tilde{\boldsymbol{m}}_h| \geq \frac{1}{2}$$
, at a point-wise level,
 $\|\boldsymbol{m}_h\|_{\infty} + \|\nabla_h \boldsymbol{m}_h\|_{\infty} \leq M$, $\|\tilde{\boldsymbol{m}}_h\|_{\infty} + \|\nabla_h \tilde{\boldsymbol{m}}_h\|_{\infty} \leq M$,

and we denote the numerical error functions as $\mathbf{e}_h = \underline{\mathbf{m}}_h - \mathbf{m}_h$, $\tilde{\mathbf{e}}_h = \underline{\mathbf{m}}_h - \tilde{\mathbf{m}}_h$. Then the following estimate is valid

$$\|e_h\|_2 \le 2\|\tilde{e}_h\|_2 + \mathcal{O}(h^2), \quad \|\nabla_h e_h\|_2 \le \mathcal{C}(\|\nabla_h \tilde{e}_h\|_2 + \|\tilde{e}_h\|_2) + \mathcal{O}(h^2).$$

Verification of assumptions.

$$\begin{split} |\tilde{\boldsymbol{m}}_h| &\geq \frac{1}{2}, \quad \text{at a point-wise level,} \\ \|\boldsymbol{m}_h\|_{\infty} + \|\nabla_h \boldsymbol{m}_h\|_{\infty} &\leq M, \quad \|\tilde{\boldsymbol{m}}_h\|_{\infty} + \|\nabla_h \tilde{\boldsymbol{m}}_h\|_{\infty} \leq M, \\ \|\boldsymbol{e}_h^n\|_{\infty} &\leq \frac{1}{6}, \quad \|\nabla_h \boldsymbol{e}_h^n\|_{\infty} \leq \frac{1}{6}, \\ \|\tilde{\boldsymbol{e}}_h^n\|_{\infty} &\leq \frac{1}{6}, \quad \|\nabla_h \tilde{\boldsymbol{e}}_h^n\|_{\infty} \leq \frac{1}{6}. \end{split}$$

Outline

- Background and motivation
- 2 Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- 4 Numerical examples
- Conclusion

Numerical examples

Homogenous Neumann boundary condition

- 1 1-D example with a forcing term and the given exact solution
- 2 1-D example without the exact solution
- 3 3-D example with a forcing term and the given exact solution

Example 1

$$\mathbf{m}_e = (\cos(x^2(1-x)^2)\sin t, \sin(x^2(1-x)^2)\sin t, \cos t)^T$$

Table 2: Accuracy of our method on the uniform mesh when h = k and $\alpha = 0.01$.

$\begin{array}{ c c c c c c }\hline k & & & & & & & & & & & & & & & & & & $				
1.0D-2 1.262D-5 1.434D-5 2.666D-5 5.0D-3 3.167D-6 3.545D-6 6.762D-6 2.5D-3 7.927D-7 8.813D-7 1.699D-6 1.25D-3 1.983D-7 2.197D-7 4.257D-7 6.25D-4 4.961D-8 5.484D-8 1.065D-7	k	$\ m{m}_h - m{m}_e\ _{\infty}$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _2$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{H^1}$
5.0D-3 3.167D-6 3.545D-6 6.762D-6 2.5D-3 7.927D-7 8.813D-7 1.699D-6 1.25D-3 1.983D-7 2.197D-7 4.257D-7 6.25D-4 4.961D-8 5.484D-8 1.065D-7	2.0D-2	4.990D-5	5.865D-5	1.060D-4
2.5D-3 7.927D-7 8.813D-7 1.699D-6 1.25D-3 1.983D-7 2.197D-7 4.257D-7 6.25D-4 4.961D-8 5.484D-8 1.065D-7	1.0D-2	1.262D-5	1.434D-5	2.666D-5
1.25D-3 1.983D-7 2.197D-7 4.257D-7 6.25D-4 4.961D-8 5.484D-8 1.065D-7	5.0D-3	3.167D-6	3.545D-6	6.762D-6
6.25D-4 4.961D-8 5.484D-8 1.065D-7	2.5D-3	7.927D-7	8.813D-7	1.699D-6
	1.25D-3	1.983D-7	2.197D-7	4.257D-7
order 1.996 2.012 1.991	6.25D-4	4.961D-8	5.484D-8	1.065D-7
2.012	order	1.996	2.012	1.991

Example 2

Table 3: Temporal accuracy of our method on the uniform mesh when h = 5D - 5 and $\alpha = 0.01$.

1_	II II		II II
k	$\ m{m}_h - m{m}_e\ _{\infty}$	$\ {m m}_h - {m m}_e\ _2$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{H^1}$
4.0D-2	5.778D-4	5.284D-4	0.00168
2.0D-2	1.456D-4	1.347D-4	4.095D-4
1.0D-2	3.652D-5	3.399D-5	1.010D-4
5.0D-3	9.147D-6	8.535D-6	2.523D-5
2.5D-3	2.287D-6	2.136D-6	6.640D-6
order	1.996	1.988	1.999

Table 4: Spatial accuracy of our method on the uniform mesh when k = 1D - 4 and $\alpha = 0.01$.

h	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{\infty}$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _2$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{H^1}$
$1/3^2$	0.00546	0.00577	0.01336
$1/3^{3}$	6.101D-4	6.430D-4	0.0016
$1/3^{4}$	6.783D-5	7.147D-5	1.821D-4
$1/3^{5}$	7.536D-6	7.940D-6	2.038D-5
$1/3^{6}$	8.363D-7	8.811D-7	2.268D-6
order	1.999	2.000	1.978

Example 3

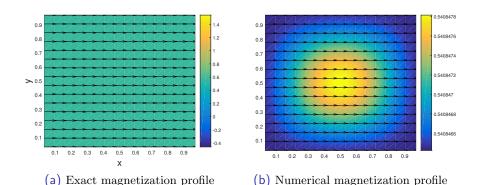


Figure 4: Profiles of the exact and the numerical magnetization in the xy-plane with z = 1/2 when k = 1/16, $h_x = h_y = h_z = 1/16$, and $\alpha = 0.01$.

Table 5: Temporal accuracy in the 3-D case when $h_x = h_y = h_z = 1/16$ and $\alpha = 0.01$.

k	$\ m{m}_h - m{m}_e\ _{\infty}$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _2$	$\ oldsymbol{m}_h - oldsymbol{m}_e\ _{H^1}$
1/8	0.00360	0.00237	0.00233
1/16	9.983D-4	6.544D-4	6.612D-4
1/32	2.583D-4	1.691D-4	1.708D-4
1/64	6.256D-5	4.077D-4	4.164D-5
1/128	1.234D-5	7.846D-6	8.663D-6
order	2.047	2.059	2.018

Outline

- Background and motivation
- 2 Semi-implicit projection methods
- Main theoretical results
 - Unconditional unique solvability
 - Optimal rate convergence analysis
- 4 Numerical examples
- Conclusion

Conclusion

What we have done

- Several second-order semi-implicit schemes for LL equation;
- Convergence analysis for one of the schemes.

To-do list

- Benchmark problem from NIST (in progress);
- @ Generalization of the technique for other implicit scheme;
- Ourrent-driven magnetization dynamics [Chen, Garcia-Cervera, and Yang, 2015].

Thank you for your attention!