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Magnetic recording devices and computer storages

Spinvalues1

Magnetoresistance random access
memory (MRAM)

Domain walls 2

Racetrack memories

1Science@Berkeley Lab: The Current Spin on Spintronics
2http://www2.technologyreview.com/article/412189/tr10-racetrack-memory/
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Methodology for detecting the orientation

Tunnel magnetoresistance 3

Julliere’s model:

Constant tunneling

matrix

Gaint magnetoresistance 4

I Albert Fert and Peter Grüberg:
2007 Nobel Prize in Physics

I Polarization and scattering

3http://ducthe.wordpress.com/category/spintronics/
4http://physics.unl.edu/
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Methodology for rotating the orientation

Spin transfer torque (STT) 5

I Two layers of different thickness:
different switching fields

I The thin film is switched, and the
resistance measured

Current-driven domain wall motion 6

I Applied current supplies spin
transfer torques

5http://www.wpi-aimr.tohoku.ac.jp/miyazaki labo/spintorque.htm
6http://physics.aps.org/articles/v2/11
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Micromagnetics: Landau-Lifshitz model

Basic quantity of interest:

m : Ω −→ R3; |m| = 1

Landau-Lifshitz energy functional:

FLL[m] =
Ku

Ms

∫
Ω
φ (m) dx+

Cex

Ms

∫
Ω
|∇m|2 dx

− µ0

2
Ms

∫
Ω
hs ·m dx− µ0Ms

∫
Ω
he ·m dx

Continuum theory.

Domain structure ←→ Local minimizers.
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Landau-Lifshitz equation

Torque balance

mt = −m× h + αm×mt,

or equivalently,

mt = − 1

1 + α2
m× h− α

1 + α2
m× (m× h),

where

h = −δFLL

δm
= −Q(m2e2 +m2e3) + ε∆m + hs + he

and the second term is the Gilbert damping term.

α << 1: Damping coefficient
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Model problem

mt = −m×∆m + αm×mt,

or
mt = −m×∆m− αm× (m×∆m)

with the Neumann boundary condition and the constraint |m| = 1.
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Literature review: Numerical aspect

Review articles: [Kruźık and Prohl, 2006; Cimrák, 2008]

Finite element: [Bartels and Prohl, 2006; Alouges, 2008; Cimrák,
2009];

Finite difference: [E and Wang, 2001; Fuwa et al., 2012; Kim and
Lipnikov, 2017];

Linearity of the discrete system:

Explicit scheme: [Jiang et al., 2001; Alouges and Jaisson, 2006];

Fully implicit scheme: [Prohl, 2001; Bartels and Prohl, 2006; Fuwa
et al., 2012];

Semi-implicit scheme: [Wang, Garcia-Cervera, and E, 2001; E and
Wang, 2001; Gao, 2014; Lewis and Nigam, 2003; Cimrák, 2005].
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Continued...

Time marching

Splitting method: [Wang, Garcia-Cervera, and E, 2001];

Mid-point method: [Bertotti et al., 2001, d’Aquino et al., 2005];

Runge-Kutta methods: [Romeo et al., 2008];

Geometric integration methods: [Jiang, Kaper, and Leaf, 2001];

Convergence analysis

1st order in time + 2nd order in space: [Alouges, 2008];

2st order in time + 2nd order in space: [Bertotti et al., 2001,
d’Aquino et al., 2005, Bartels and Prohl, 2006, Fuwa et al., 2012];

I Unconditional stability;
I Nonlinear solver at each time step (unavailable theoretical

justification of the unique solvability);
I Step-size condition k = O(h2) with k the temporal stepsize and h

the spatial stepsize;
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Spatial discretization

xi = ih, i = 0, 1, 2, · · · , Nx, with x0 = 0, xNx = 1;

x̂i = xi−1/2 = (i− 1/2)h, i = 1, · · · , Nx;

mn
i ≈m(x̂i, t

n);

∆hmi = mi+1−2mi+mi−1

h2 ;

Third order extrapolation for boundary condition:

m1 = m0, mNx+1 = mNx .

x0 x1 xi−1 xi xi+1 xNxx− 1
2

x 1
2

· · · xi− 1
2

xi+ 1
2

· · ·xNx− 1
2

xNx+ 1
2

ghost point ghost point

Figure 1: Illustration of the 1-D spatial mesh.
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Semi-implicit projection methods [Xie, Garcia-Cervera,
Wang, Zhou, and Chen, in progress, 2018]

mt = −m×∆m + αm×mt:(
1− αm̂n+2

h ×
) 3

2m
n+2
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×∆hm
n+2
h ,

m̂n+2
h = 2mn+1

h −mn
h;

mt = −m×∆m− αm× (m×∆m):

3
2m

n+2
h − 2mn+1

h + 1
2m

n
h

k
= −m̂n+2

h ×∆hm
n+2
h

− αm̂n+2
h ×

(
m̂n+2

h ×∆hm
n+2
h

)
;

A projection step: mn+2
h =

mn+2
h

|mn+2
h | .
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1D test: Accuracy
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Figure 2: Accuracy of BDF1, BDF2, and IMEX2. They are all second-order
accurate in space. BDF1 is first-order accurate in time. BDF2 and IMEX2 are

second-order accurate in time.
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1D test: Efficiency
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Figure 3: CPU time (in seconds) of GSPM, BDF1, BDF2, and IMEX2 versus error
‖mh −me‖∞. For a given tolerance of error, costs of these schemes in the

increasing order are: BDF2 < IMEX2 < BDF1 < GSPM.
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Semi-implicit projection methods revisited

Lack of numerical stability of Lax-Richtmyer type;

Separation of the time-marching step and the projection step:

3
2m̃

n+2
h − 2m̃n+1

h + 1
2m̃

n
h

k
= −m̂n+2

h ×∆hm̃
n+2
h

− αm̂n+2
h × (m̂n+2

h ×∆hm̃
n+2
h ),

m̂n+2
h = 2mn+1

h −mn
h,

mn+2
h =

m̃n+2
h

|m̃n+2
h |

;

Two sets of approximations m̃n
h and mn

h.
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1D test

me =
(
cos(x2(1− x)2) sin t, sin(x2(1− x)2) sin t, cos t

)T
Table 1: Accuracy of our method on the uniform mesh when h = k and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

2.0D-2 4.990D-5 5.865D-5 1.060D-4
1.0D-2 1.262D-5 1.434D-5 2.666D-5
5.0D-3 3.167D-6 3.545D-6 6.762D-6
2.5D-3 7.927D-7 8.813D-7 1.699D-6
1.25D-3 1.983D-7 2.197D-7 4.257D-7
6.25D-4 4.961D-8 5.484D-8 1.065D-7
order 1.996 2.012 1.991
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Unconditional unique solvability

Theorem

Given ph, m̂h, the numerical scheme

3
2m̃h − ph

k
= −m̂h ×∆hm̃h − αm̂h × (m̂h ×∆hm̃h)

is uniquely solvable.

Denote qh = −∆hm̃h. Then

m̃h = (−∆h)−1qh+C∗qh
with C∗qh

=
2

3

(
ph+km̂h × qh+αkm̂h × (m̂h × qh)

)
and

G(qh) :=

3
2 ((−∆h)−1qh + C∗qh

)− ph

k
− m̂h × qh − αm̂h × (m̂h × qh) = 0.
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Continued ...

Lemma (Browder-Minty lemma [Browder, 1963, Minty, 1963])

Let X be a real, reflexive Banach space and let T : X → X ′ (the dual

space of X) be bounded, continuous, coercive (i.e., (T (u),u)
‖u‖X → +∞, as

‖u‖X → +∞) and monotone. Then for any g ∈ X ′ there exists a
solution u ∈ X of the equation T (u) = g. Furthermore, if the operator
T is strictly monotone, then the solution u is unique.

By the Browder-Minty lemma, the semi-implicit scheme admits a
unique solution.
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Optimal rate convergence analysis

Theorem

Let me ∈ C3([0, T ];C0) ∩ L∞([0, T ];C4) be a smooth solution with the
initial data me(x, 0) = m0

e(x) and mh be the numerical solution with
the initial data m0

h = m0
e,h

and m1
h = m1

e,h. Suppose that the initial
error satisfies
‖m`

e,h−m`
h‖2 + ‖∇h(m`

e,h−m`
h)‖2 = O(k2 +h2), ` = 0, 1, and k ≤ Ch.

Then the following convergence result holds as h and k goes to zero:

‖mn
e,h −mn

h‖2 + ‖∇h(mn
e,h −mn

h)‖2 ≤ C(k2 + h2), ∀n ≥ 2,

in which the constant C > 0 is independent of k and h.
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Idea of the proof

‖ẽ2
h‖, ‖∇hẽ

2
h‖ ‖ẽ3

h‖, ‖∇hẽ
3
h‖ ‖ẽ4

h‖, ‖∇hẽ
4
h‖ · · ·

‖e0
h‖, ‖∇he

0
h‖ ‖e1

h‖, ‖∇he
1
h‖ ‖e2

h‖, ‖∇he
2
h‖ ‖e3

h‖, ‖∇he
3
h‖ · · ·

Blue arrow (Lemma)
Red arrow (Discrete Gronwall Inequality)
Dashed arrow (Combine these terms)
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Lemma

Consider mh = me + h2m(1) with me the exact solution and |me| = 1

at a point-wise level, and ‖m(1)‖∞ + ‖∇hm
(1)‖∞ ≤ C. For any

numerical solution m̃h, we define mh = m̃h

|m̃h|
. Suppose both numerical

profiles satisfy the following W 1,∞
h bounds

|m̃h| ≥
1

2
, at a point-wise level,

‖mh‖∞ + ‖∇hmh‖∞ ≤M, ‖m̃h‖∞ + ‖∇hm̃h‖∞ ≤M,

and we denote the numerical error functions as eh = mh −mh,
ẽh = mh − m̃h. Then the following estimate is valid

‖eh‖2 ≤ 2‖ẽh‖2 +O(h2), ‖∇heh‖2 ≤ C(‖∇hẽh‖2 + ‖ẽh‖2) +O(h2).
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Verification of assumptions.

|m̃h| ≥
1

2
, at a point-wise level,

‖mh‖∞ + ‖∇hmh‖∞ ≤M, ‖m̃h‖∞ + ‖∇hm̃h‖∞ ≤M,

‖enh‖∞ ≤
1

6
, ‖∇he

n
h‖∞ ≤

1

6
,

‖ẽnh‖∞ ≤
1

6
, ‖∇hẽ

n
h‖∞ ≤

1

6
.
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Numerical examples

Homogenous Neumann boundary condition

1 1-D example with a forcing term and the given exact solution

2 1-D example without the exact solution

3 3-D example with a forcing term and the given exact solution
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Example 1

me =
(
cos(x2(1− x)2) sin t, sin(x2(1− x)2) sin t, cos t

)T
Table 2: Accuracy of our method on the uniform mesh when h = k and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

2.0D-2 4.990D-5 5.865D-5 1.060D-4
1.0D-2 1.262D-5 1.434D-5 2.666D-5
5.0D-3 3.167D-6 3.545D-6 6.762D-6
2.5D-3 7.927D-7 8.813D-7 1.699D-6
1.25D-3 1.983D-7 2.197D-7 4.257D-7
6.25D-4 4.961D-8 5.484D-8 1.065D-7
order 1.996 2.012 1.991
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Example 2

Table 3: Temporal accuracy of our method on the uniform mesh when h = 5D − 5
and α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

4.0D-2 5.778D-4 5.284D-4 0.00168
2.0D-2 1.456D-4 1.347D-4 4.095D-4
1.0D-2 3.652D-5 3.399D-5 1.010D-4
5.0D-3 9.147D-6 8.535D-6 2.523D-5
2.5D-3 2.287D-6 2.136D-6 6.640D-6
order 1.996 1.988 1.999

Table 4: Spatial accuracy of our method on the uniform mesh when k = 1D − 4 and
α = 0.01.

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/32 0.00546 0.00577 0.01336
1/33 6.101D-4 6.430D-4 0.0016
1/34 6.783D-5 7.147D-5 1.821D-4
1/35 7.536D-6 7.940D-6 2.038D-5
1/36 8.363D-7 8.811D-7 2.268D-6
order 1.999 2.000 1.978
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Example 3
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(a) Exact magnetization profile
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(b) Numerical magnetization profile

Figure 4: Profiles of the exact and the numerical magnetization in the xy−plane
with z = 1/2 when k = 1/16, hx = hy = hz = 1/16, and α = 0.01.
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Table 5: Temporal accuracy in the 3-D case when hx = hy = hz = 1/16 and
α = 0.01.

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/8 0.00360 0.00237 0.00233
1/16 9.983D-4 6.544D-4 6.612D-4
1/32 2.583D-4 1.691D-4 1.708D-4
1/64 6.256D-5 4.077D-4 4.164D-5
1/128 1.234D-5 7.846D-6 8.663D-6

order 2.047 2.059 2.018
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Conclusion

What we have done

1 Several second-order semi-implicit schemes for LL equation;

2 Convergence analysis for one of the schemes.

To-do list

1 Benchmark problem from NIST (in progress);

2 Generalization of the technique for other implicit scheme;

3 Current-driven magnetization dynamics [Chen, Garcia-Cervera,
and Yang, 2015].
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Thank you for your attention!
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