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I will present a multi-dimensional problem in periodic composite materials.
Let Ω denotes a bounded open set in RN and ϵ > 0 is a parameter taking its
values in a sequence which tends to zero. Let

Aϵ(x) = (aϵij(x))1≤i,j≤N , a.e. on Ω, (1)

be a sequence suffices to
Aϵ ∈ M(α, β,Ω), (2)

i.e.,

(Aϵλ, λ) ≥ α|λ|2

|Aϵλ| ≤ β|λ|,

for any λ ∈ RN and a.r. on Ω, and Aϵ ∈ L∞(Ω).
Consider the Dirichlet problem{

−div(Aϵ∇uϵ) = f in Ω

uϵ = 0 on ∂Ω,
(3)

where f is given in H−1(Ω).
Introduce the operator

Aϵ = −div(Aϵ∇) = −
N∑

i,j=1

∂

∂xi

(
aϵij

∂

∂xj

)
. (4)

Then, we need to solve this system{
−
∑N

i,j=1
∂

∂xi

(
aϵij

∂uϵ

∂xj

)
= f in Ω

uϵ = 0 on ∂Ω.
(5)

As we all know, set

Y = [0, ℓ1]× [0, ℓ2]× · · · × [0, ℓN ],
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where ℓ1, ℓ2, · · · , ℓN are given positive numbers. It is called the reference period
or cell.

We assume here that aij is positve function in L∞(0, ℓ1) such that{
aij is Y − peridic, ∀i, j = 1, · · · , N
0 < α ≤ aij(x) ≤ β < +∞,

(6)

where α, β ∈ R, and both are positive. Note that

aϵij = aij

(x
ϵ

)
a.e. on RN , ∀i, j = 1, · · · , N, (7)

and
Aϵ(x) = A

(x
ϵ

)
= (aϵij(x))1≤i,j≤N a.e. on RN . (8)

Theorem 1 (Homogenization Direchlet problem) Suppose taht the matrix A
belongs to M(α, β,Ω). Then, for any f ∈ H−1(Ω), there exists a unique solution
u ∈ H1

0 (Ω) of the variational problem{
Find u ∈ H1

0 (Ω) such that
a(u, v) =< f, v >H−1(Ω),H1

0 (Ω), ∀v ∈ H1
0 (Ω),

(9)

where

a(u, v) =

N∑
i,j=1

∫
Ω

∂u

∂xj

∂v

∂xi
dx =

∫
Ω

A∇u∇v dx. (10)

Moreover,
∥u∥H1

0 (Ω) ≤
1

α
∥f∥H−1(Ω), (11)

where ∥u∥H1
0 (Ω) = ∥∇u∥L2Ω.

If f ∈ L2(Ω), the solution satisfies the estimate

∥u∥H1
0 (Ω) ≤

CΩ

α
∥f∥L2(Ω), (12)

where CΩ is the Poincaré constant.

From Theorem 1, it follows that for any fixed ϵ, there exists a unique solution
uϵ ∈ H1

0 (Ω) such that∫
Ω

Aϵ∇uϵ∇v dx =< f, v >H−1(Ω),H1
0 (Ω),∀v ∈ H1

0 (Ω). (13)

Moreover, one has
∥uϵ∥H1

0 (Ω) ≤
1

α
∥f∥H−1(Ω). (14)
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Theorem 2 (Eberlein-Šmuljan) Assume that E is reflective and let xn be a
bounded sequence in E. Then, there exists a subsequence {xnk

} of {xn} and
x ∈ E such that, as k → ∞,

xnk
⇀ x weakly in E.

Theorem 3 • The space W 1,p(O) is a Banach space for the norm

∥u∥W 1,p(O) = ∥u∥Lp(O) +

N∑
i=1

∥ ∂u

∂xi
∥Lp(O).

For 1 ≤ p < ∞, this norm is equivalent to the following one,

∥u∥W 1,p(O) =
(
∥u∥pLp(O) + ∥∇u∥pLp(O)

) 1
p

, (15)

where we have useed the notations

∇u =

(
∂u

∂x1
, · · · , ∂u

∂xN

)
.

and

∥∇u∥Lp(O) =

(
N∑
i=1

∥ ∂u

∂xi
∥pLp(O)

) 1
p

.

• The space W 1,p(O) is separable for 1 ≤ p < +∞ and reflective for 1 <
p < +∞.

• The space H1(O) is a Hilbert space for the scalar product

(v, w)H1(O) = (v, w)L2(O) +

N∑
i=1

(
∂v

∂xi
,
∂w

∂xi

)
L2(O)

, ∀v, w ∈ H1(O). (16)

From Thm. 2 and Thm. 3, it follows that there exists a subsequence {uϵ′} and
an element u0 ∈ H1

0 (Ω) such that

uϵ′ ⇀ u0 weakly in H1
0 (Ω).

Let me introduce the vector

ξϵ = (ξϵ1, · · · , ξϵN ) =

 N∑
j=1

aϵ1j
∂uϵ

∂xj
, · · · ,

N∑
j=1

aϵNj

∂uϵ

∂xj

 = Aϵ∇uϵ, (17)

which satisfies ∫
Ω

ξϵ∇v dx =< f, v >H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω). (18)
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From Aϵ ∈ M(α, β,Ω) and (14), it follows that

∥ξϵ∥L2(Ω) ≤
β

α
∥f∥H−1(Ω). (19)

Again from Thm.2, there exists a subsequence, still denotedd by {ξϵ′}, and an
element ξ0 ∈ L2(Ω), such that

ξϵ
′
⇀ ξ0 weakly in (L2(Ω))N . (20)

Hence, we can pass to the limit in 18 writen for the subsequence ϵ′, to get∫
Ω

ξ0∇v dx =< f, v >H−1(Ω),H1
0 (Ω), ∀v ∈ H1

0 (Ω), (21)

i.e.,
−div(ξ0) = f in Ω.

Theorem 4 (Weak limits of rapidly oscillating periodic functions) Let a ≤ p ≤
+∞ and f be a Y−periodic function in Lp(Y ). Set

fϵ(x) = f
(x
ϵ

)
a.e. on RN . (22)

Then, if p < +∞, as ϵ → 0,

fϵ ⇀ MY (f) =
1

|Y |

∫
Y

f(y) dy weakly in Lp(ω),

for any bounded open subset ω of RN .
If p = +∞, one has

fϵ ⇀ MY (f) =
1

|Y |

∫
Y

f(y) dy weakly* in L∞(RN ).

Obeserve that from Thm.4, it follows that if ϵ → 0,

Aϵ ⇀ MY (A) weakly* in L∞(Ω), (23)

where the matrix (MY (A))ij is defined by

(MY (A))ij =
1

|Y |

∫
Y

aij(y) dy. (24)

As we all know, Aϵ∇uϵ is the product of two weakly convergent sequences. But
in general,

ξ0 ̸= MY (A)∇u0. (25)
Since the coeffiicients of A0 are no longer obtained as algebra formulas from
A, for the general N−dimensional case, the situation is different from the
1−dimentional case.
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In order to study the generalN−dimensional case, we need to introduce some
auxiliary functions which are solutions of periodic boundary value problem in
the reference cell Y . In the sequel, we will state the asymptotic behaviour as
ϵ → 0.

We will take advantage of the two kind of operators, ones is A = −div(A∇),
the functions introduced are χ̂λ and ω̂λ, the other is A∗ = −div(AT∇), the
functions introduced are χλ and ωλ.

Consider the solutions of system
−div(A(y)∇χ̂λ) = −div(A(y)λ) in Y

χ̂λ Y-periodic
MY (χ̂λ) = 0,

(26)

and system 
−div(AT (y)∇χλ) = −div(AT (y)λ) in Y

χλ Y-periodic
MY (χλ) = 0,

(27)

we can write the variational formulation of the two system and do its extension
by periodicity to the whole RN , then, we take ωλ to the new problem which
solved as previously.

Theorem 5 (convergence) Let f ∈ H−1(Ω) and uϵ be the solution of (3), then,
one has {

i) uϵ ⇀ u0 weakly in H1
0 (Ω),

ii) Aϵ∇uϵ ⇀ A0∇u0 weakly in (L2(Ω))N ,
(28)

where u0 is the unique solution in H1
0 (Ω) of the homogenized system{

−
∑N

i,j=1
∂

∂xi

(
a0i,j

∂u0

∂xj

)
= f in Ω,

u0 = 0 on ∂Ω.
(29)

The matrix A0 = (a0ij)1≤i,j≤N is constant, elliptic and given by

A0λ = MY (A∇ω̂λ) ∀λ ∈ RN , (30)

i.e.,
tA0λ = MY (

tA∇ωλ) ∀λ ∈ RN , (31)

Theorem 6 Let f ∈ H−1 and uϵ be the solution of (3). Then, uϵ admits the
following asymptotic expansion

uϵ = u0 − ϵ

N∑
k=1

χ̂k

(x
ϵ

)
+ ϵ2

N∑
k,ℓ=1

θ̂kl
(x
ϵ

) ∂2u0

∂xk∂xl
+ · · ·
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where u0 is solution of (29), χ̂k ∈ Wper(Y ) and θ̂kℓ by
−div(A(y)∇θ̂kℓ) = −a0kℓ −

∑N
i,j=1

∂(aijδkiχ̂ℓ)
∂yi

−
∑N

j=1 akj
∂(χ̂ℓ−yℓ)

∂yj
in Y,

θ̂kℓ Y-periodic,
MY (θ̂

kℓ) = 0.

Moreover, if f ∈ C∞(Ω), ∂Ω is of class C∞ and

χ̂k, θ̂
kℓ ∈ W 1,∞(Y ), ∀k, ℓ = 1, · · · , N

then, there exists a constant C independent of ϵ, such that

∥uϵ −

u0 − ϵ

N∑
k=1

χ̂k

(x
ϵ

)
+ ϵ2

N∑
k,ℓ=1

θ̂kl
(x
ϵ

) ∂2u0

∂xk∂xl

 ∥H1(Ω) ≤ Cϵ1/2.
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