Hw $\sharp 6$-The multi-dimensional case for periodic composite materials

CHANGJIAN XIE

October 23, 2017

I will present a multi-dimensional problem in periodic composite materials. Let Ω denotes a bounded open set in R^{N} and $\epsilon>0$ is a parameter taking its values in a sequence which tends to zero. Let

$$
\begin{equation*}
A^{\epsilon}(x)=\left(a_{i j}^{\epsilon}(x)\right)_{1 \leq i, j \leq N}, \text { a.e. on } \Omega, \tag{1}
\end{equation*}
$$

be a sequence suffices to

$$
\begin{equation*}
A^{\epsilon} \in M(\alpha, \beta, \Omega), \tag{2}
\end{equation*}
$$

i.e.,

$$
\begin{aligned}
\left(A^{\epsilon} \lambda, \lambda\right) & \geq \alpha|\lambda|^{2} \\
\left|A^{\epsilon} \lambda\right| & \leq \beta|\lambda|,
\end{aligned}
$$

for any $\lambda \in R^{N}$ and a.r. on Ω, and $A^{\epsilon} \in L^{\infty}(\Omega)$.
Consider the Dirichlet problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A^{\epsilon} \nabla u^{\epsilon}\right)=f \text { in } \Omega \tag{3}\\
u^{\epsilon}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where f is given in $H^{-1}(\Omega)$.
Introduce the operator

$$
\begin{equation*}
\mathcal{A}_{\epsilon}=-\operatorname{div}\left(A^{\epsilon} \nabla\right)=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}^{\epsilon} \frac{\partial}{\partial x_{j}}\right) . \tag{4}
\end{equation*}
$$

Then, we need to solve this system

$$
\left\{\begin{array}{l}
-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j}^{\epsilon} \frac{\partial u^{\epsilon}}{\partial x_{j}}\right)=f \text { in } \Omega \tag{5}\\
u^{\epsilon}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

As we all know, set

$$
Y=\left[0, \ell_{1}\right] \times\left[0, \ell_{2}\right] \times \cdots \times\left[0, \ell_{N}\right],
$$

where $\ell_{1}, \ell_{2}, \cdots, \ell_{N}$ are given positive numbers. It is called the reference period or cell.

We assume here that $a_{i j}$ is positve function in $L^{\infty}\left(0, \ell_{1}\right)$ such that

$$
\left\{\begin{array}{l}
a_{i j} \text { is } Y \text { - peridic, } \forall i, j=1, \cdots, N \tag{6}\\
0<\alpha \leq a_{i j}(x) \leq \beta<+\infty
\end{array}\right.
$$

where $\alpha, \beta \in R$, and both are positive. Note that

$$
\begin{equation*}
a_{i j}^{\epsilon}=a_{i j}\left(\frac{x}{\epsilon}\right) \text { a.e. on } R^{N}, \forall i, j=1, \cdots, N, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\epsilon}(x)=A\left(\frac{x}{\epsilon}\right)=\left(a_{i j}^{\epsilon}(x)\right)_{1 \leq i, j \leq N} \text { a.e. on } R^{N} . \tag{8}
\end{equation*}
$$

Theorem 1 (Homogenization Direchlet problem) Suppose taht the matrix A belongs to $M(\alpha, \beta, \Omega)$. Then, for any $f \in H^{-1}(\Omega)$, there exists a unique solution $u \in H_{0}^{1}(\Omega)$ of the variational problem

$$
\left\{\begin{array}{l}
\text { Find } u \in H_{0}^{1}(\Omega) \text { such that } \tag{9}\\
a(u, v)=<f, v>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \quad \forall v \in H_{0}^{1}(\Omega),
\end{array}\right.
$$

where

$$
\begin{equation*}
a(u, v)=\sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} A \nabla u \nabla v d x \tag{10}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)} \leq \frac{1}{\alpha}\|f\|_{H^{-1}(\Omega)} \tag{11}
\end{equation*}
$$

where $\|u\|_{H_{0}^{1}(\Omega)}=\|\nabla u\|_{L^{2} \Omega}$.
If $f \in L^{2}(\Omega)$, the solution satisfies the estimate

$$
\begin{equation*}
\|u\|_{H_{0}^{1}(\Omega)} \leq \frac{C_{\Omega}}{\alpha}\|f\|_{L^{2}(\Omega)}, \tag{12}
\end{equation*}
$$

where C_{Ω} is the Poincaré constant.
From Theorem 1, it follows that for any fixed ϵ, there exists a unique solution $u^{\epsilon} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} A^{\epsilon} \nabla u^{\epsilon} \nabla v d x=<f, v>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \forall v \in H_{0}^{1}(\Omega) . \tag{13}
\end{equation*}
$$

Moreover, one has

$$
\begin{equation*}
\left\|u^{\epsilon}\right\|_{H_{0}^{1}(\Omega)} \leq \frac{1}{\alpha}\|f\|_{H^{-1}(\Omega)} \tag{14}
\end{equation*}
$$

Theorem 2 (Eberlein-Šmuljan) Assume that E is reflective and let x_{n} be a bounded sequence in E. Then, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ and $x \in E$ such that, as $k \rightarrow \infty$,

$$
x_{n_{k}} \rightharpoonup x \text { weakly in } E .
$$

Theorem 3 - The space $W^{1, p}(O)$ is a Banach space for the norm

$$
\|u\|_{W^{1, p}(O)}=\|u\|_{L^{p}(O)}+\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p}(O)} .
$$

For $1 \leq p<\infty$, this norm is equivalent to the following one,

$$
\begin{equation*}
\|u\|_{W^{1, p}(O)}=\left(\|u\|_{L^{p}(O)}^{p}+\|\nabla u\|_{L^{p}(O)}^{p}\right)^{\frac{1}{p}} \tag{15}
\end{equation*}
$$

where we have useed the notations

$$
\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \cdots, \frac{\partial u}{\partial x_{N}}\right) .
$$

and

$$
\|\nabla u\|_{L^{p}(O)}=\left(\sum_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{L^{p}(O)}^{p}\right)^{\frac{1}{p}}
$$

- The space $W^{1, p}(O)$ is separable for $1 \leq p<+\infty$ and reflective for $1<$ $p<+\infty$.
- The space $H^{1}(O)$ is a Hilbert space for the scalar product

$$
\begin{equation*}
(v, w)_{H^{1}(O)}=(v, w)_{L^{2}(O)}+\sum_{i=1}^{N}\left(\frac{\partial v}{\partial x_{i}}, \frac{\partial w}{\partial x_{i}}\right)_{L^{2}(O)}, \quad \forall v, w \in H^{1}(O) \tag{16}
\end{equation*}
$$

From Thm. 2 and Thm. 3, it follows that there exists a subsequence $\left\{u^{\epsilon^{\prime}}\right\}$ and an element $u^{0} \in H_{0}^{1}(\Omega)$ such that

$$
u^{\epsilon^{\prime}} \rightharpoonup u^{0} \text { weakly in } H_{0}^{1}(\Omega)
$$

Let me introduce the vector

$$
\begin{equation*}
\xi^{\epsilon}=\left(\xi_{1}^{\epsilon}, \cdots, \xi_{N}^{\epsilon}\right)=\left(\sum_{j=1}^{N} a_{1 j}^{\epsilon} \frac{\partial u^{\epsilon}}{\partial x_{j}}, \cdots, \sum_{j=1}^{N} a_{N j}^{\epsilon} \frac{\partial u^{\epsilon}}{\partial x_{j}}\right)=A^{\epsilon} \nabla u^{\epsilon} \tag{17}
\end{equation*}
$$

which satisfies

$$
\begin{equation*}
\int_{\Omega} \xi^{\epsilon} \nabla v d x=<f, v>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \forall v \in H_{0}^{1}(\Omega) \tag{18}
\end{equation*}
$$

From $A^{\epsilon} \in M(\alpha, \beta, \Omega)$ and (14), it follows that

$$
\begin{equation*}
\left\|\xi^{\epsilon}\right\|_{L^{2}(\Omega)} \leq \frac{\beta}{\alpha}\|f\|_{H^{-1}(\Omega)} \tag{19}
\end{equation*}
$$

Again from Thm.2, there exists a subsequence, still denotedd by $\left\{\xi^{\epsilon^{\prime}}\right\}$, and an element $\xi^{0} \in L^{2}(\Omega)$, such that

$$
\begin{equation*}
\xi^{\epsilon^{\prime}} \rightharpoonup \xi^{0} \text { weakly in }\left(L^{2}(\Omega)\right)^{N} \tag{20}
\end{equation*}
$$

Hence, we can pass to the limit in 18 writen for the subsequence ϵ^{\prime}, to get

$$
\begin{equation*}
\int_{\Omega} \xi^{0} \nabla v d x=<f, v>_{H^{-1}(\Omega), H_{0}^{1}(\Omega)}, \forall v \in H_{0}^{1}(\Omega) \tag{21}
\end{equation*}
$$

i.e.,

$$
-\operatorname{div}\left(\xi^{0}\right)=f \text { in } \Omega
$$

Theorem 4 (Weak limits of rapidly oscillating periodic functions) Let $a \leq p \leq$ $+\infty$ and f be a Y-periodic function in $L^{p}(Y)$. Set

$$
\begin{equation*}
f_{\epsilon}(x)=f\left(\frac{x}{\epsilon}\right) \text { a.e. on } R^{N} . \tag{22}
\end{equation*}
$$

Then, if $p<+\infty$, as $\epsilon \rightarrow 0$,

$$
f_{\epsilon} \rightharpoonup \mathcal{M}_{Y}(f)=\frac{1}{|Y|} \int_{Y} f(y) d y \text { weakly in } L^{p}(\omega)
$$

for any bounded open subset ω of R^{N}.
If $p=+\infty$, one has

$$
f_{\epsilon} \rightharpoonup \mathcal{M}_{Y}(f)=\frac{1}{|Y|} \int_{Y} f(y) d y \text { weakly* in } L^{\infty}\left(R^{N}\right)
$$

Obeserve that from Thm.4, it follows that if $\epsilon \rightarrow 0$,

$$
\begin{equation*}
A^{\epsilon} \rightharpoonup \mathcal{M}_{Y}(A) \text { weakly* in } L^{\infty}(\Omega) \tag{23}
\end{equation*}
$$

where the matrix $\left(\mathcal{M}_{Y}(A)\right)_{i j}$ is defined by

$$
\begin{equation*}
\left(\mathcal{M}_{Y}(A)\right)_{i j}=\frac{1}{|Y|} \int_{Y} a_{i j}(y) d y \tag{24}
\end{equation*}
$$

As we all know, $A^{\epsilon} \nabla u^{\epsilon}$ is the product of two weakly convergent sequences. But in general,

$$
\begin{equation*}
\xi^{0} \neq \mathcal{M}_{Y}(A) \nabla u^{0} . \tag{25}
\end{equation*}
$$

Since the coefficients of A^{0} are no longer obtained as algebra formulas from A, for the general N-dimensional case, the situation is different from the 1-dimentional case.

In order to study the general N-dimensional case, we need to introduce some auxiliary functions which are solutions of periodic boundary value problem in the reference cell Y. In the sequel, we will state the asymptotic behaviour as $\epsilon \rightarrow 0$.

We will take advantage of the two kind of operators, ones is $\mathcal{A}=-\operatorname{div}(A \nabla)$, the functions introduced are $\hat{\chi}_{\lambda}$ and $\hat{\omega}_{\lambda}$, the other is $\mathcal{A}^{*}=-\operatorname{div}\left(A^{T} \nabla\right)$, the functions introduced are χ_{λ} and ω_{λ}.

Consider the solutions of system

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A(y) \nabla \hat{\chi}_{\lambda}\right)=-\operatorname{div}(A(y) \lambda) \text { in } Y \tag{26}\\
\hat{\chi}_{\lambda} \text { Y-periodic } \\
\mathcal{M}_{Y}\left(\hat{\chi}_{\lambda}\right)=0
\end{array}\right.
$$

and system

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A^{T}(y) \nabla \chi_{\lambda}\right)=-\operatorname{div}\left(A^{T}(y) \lambda\right) \text { in } Y \tag{27}\\
\chi_{\lambda} \text { Y-periodic } \\
\mathcal{M}_{Y}\left(\chi_{\lambda}\right)=0
\end{array}\right.
$$

we can write the variational formulation of the two system and do its extension by periodicity to the whole R^{N}, then, we take ω_{λ} to the new problem which solved as previously.

Theorem 5 (convergence) Let $f \in H^{-1}(\Omega)$ and u^{ϵ} be the solution of (3), then, one has

$$
\left\{\begin{array}{l}
\text { i) } u^{\epsilon} \rightharpoonup u^{0} \text { weakly in } H_{0}^{1}(\Omega), \tag{28}\\
\text { ii) } A^{\epsilon} \nabla u^{\epsilon} \rightharpoonup A^{0} \nabla u^{0} \text { weakly in }\left(L^{2}(\Omega)\right)^{N}
\end{array}\right.
$$

where u^{0} is the unique solution in $H_{0}^{1}(\Omega)$ of the homogenized system

$$
\left\{\begin{array}{l}
-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i, j}^{0} \frac{\partial u^{0}}{\partial x_{j}}\right)=f \text { in } \Omega, \tag{29}\\
u^{0}=0 \text { on } \partial \Omega
\end{array}\right.
$$

The matrix $A^{0}=\left(a_{i j}^{0}\right)_{1 \leq i, j \leq N}$ is constant, elliptic and given by

$$
\begin{equation*}
A^{0} \lambda=\mathcal{M}_{Y}\left(A \nabla \hat{\omega}_{\lambda}\right) \quad \forall \lambda \in R^{N} \tag{30}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
{ }^{t} A^{0} \lambda=\mathcal{M}_{Y}\left({ }^{t} A \nabla \omega_{\lambda}\right) \quad \forall \lambda \in R^{N} \tag{31}
\end{equation*}
$$

Theorem 6 Let $f \in H^{-1}$ and u^{ϵ} be the solution of (3). Then, u^{ϵ} admits the following asymptotic expansion

$$
u^{\epsilon}=u_{0}-\epsilon \sum_{k=1}^{N} \hat{\chi}_{k}\left(\frac{x}{\epsilon}\right)+\epsilon^{2} \sum_{k, \ell=1}^{N} \hat{\theta}^{k l}\left(\frac{x}{\epsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{k} \partial x_{l}}+\cdots
$$

where u_{0} is solution of (29), $\hat{\chi}_{k} \in W_{\text {per }}(Y)$ and $\hat{\theta}^{k \ell}$ by

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(A(y) \nabla \hat{\theta}^{k \ell}\right)=-a_{k \ell}^{0}-\sum_{i, j=1}^{N} \frac{\partial\left(a_{i j} \delta_{k i} \hat{\chi} \ell\right)}{\partial y_{i}}-\sum_{j=1}^{N} a_{k j} \frac{\partial\left(\hat{\chi}_{\ell}-y_{\ell}\right)}{\partial y_{j}} \text { in } Y, \\
\hat{\theta}^{k \ell} Y \text {-periodic, } \\
\mathcal{M}_{Y}\left(\hat{\theta}^{k \ell}\right)=0 .
\end{array}\right.
$$

Moreover, if $f \in C^{\infty}(\Omega), \partial \Omega$ is of class C^{∞} and

$$
\hat{\chi}_{k}, \hat{\theta}^{k \ell} \in W^{1, \infty}(Y), \quad \forall k, \ell=1, \cdots, N
$$

then, there exists a constant C independent of ϵ, such that

$$
\left\|u^{\epsilon}-\left(u_{0}-\epsilon \sum_{k=1}^{N} \hat{\chi}_{k}\left(\frac{x}{\epsilon}\right)+\epsilon^{2} \sum_{k, \ell=1}^{N} \hat{\theta}^{k l}\left(\frac{x}{\epsilon}\right) \frac{\partial^{2} u_{0}}{\partial x_{k} \partial x_{l}}\right)\right\|_{H^{1}(\Omega)} \leq C \epsilon^{1 / 2}
$$

