
Homework 1
Due on Monday, March 23th, 2017

Completed by Changjian Xie

Consider the propoties of weak convergence, as a consequence of the princi-
ple of uniform boundedness, every weakly convergent sequence is bounded.
The norm is weakly lower-semicontinuous, if xn converges weakly to x, then
‖x‖ ≤ lim inf

n→∞
‖xn‖. Let {xn} be a sequence weakly convergent to x in E.

(i) {xn} is a bounded sequence in E, i.e., there exists a constant C indepen-
dent of n such that

∀n ∈ N, ‖xn‖E 6 C.

(ii) The norm on E is lower semi-continuous with respect to the weak con-
vergence, i.e.,

‖x‖E ≤ lim inf
n→∞

‖xn‖E.

Proof.

(i) Let {xn} be a sequence in E, such that

xn ⇀ x weakly in E.

Hence, for any x′ ∈ E ′, one has < x′, xn >E′,E−→< x′, x >E′,E .
For x fixed in E, set the map

f : x′ ∈ E 7−→< x′, x >E′,E .

Then, f ∈ E ′′. Notice that from ‖x‖E = ‖f‖E and the definition
of weak convergence, one has f(xn) → f(x). For any fn ∈ E ′ and
x′′ ∈ E ′′, we finally get

x′′(fn) = f(xn)→ f(x) = x′′(f).

Observe that {x′′n} ⊂ E ′′ and from the principle of uniform boundedness
for metric space, we have {x′′n} a bounded sequence in E.
Since ‖x′′n‖E = ‖xn‖E, which implies {xn} a bounded sequence in E.
The following lemma plays an important role in the proof of (ii):
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Lemma. Suppose that X ,Y are both Banach space, An ∈ L (X ,Y ),
where n = 1, 2, · · · for any x ∈ X , {An(x)} is covergent sequence in
Y , we can prove the result, i.e., there exists A ∈ L (X ,Y ), such that
An is strongly covergent to A, moreover,

‖A‖ ≤ lim
n→∞

‖An‖.

In fact, for any x ∈ X , {An(x)} is covergent sequence in Y , thus, we
can define

Ax = lim
n→∞

Anx,

observe that {Anx} is bounded in Y , i.e.,

sup
n≥1
‖Anx‖ <∞, ∀x ∈X .

From the principle of uniform boundedness, there exists M > 0, such
that ‖An‖ ≤M , where n ≥ 1 however,

‖Ax‖ = lim
n→∞

‖Anx‖ ≤ lim
n→∞

‖An‖‖x‖ ≤M‖x‖, ∀x ∈X .

Then,
A ∈ L (X ,Y ) and ‖A‖ ≤ lim

n→∞
‖An‖.

Notation. The lemma is similar to Banach-Steinhass Theorem. This
inequality holds strictly, whenever the convergence is not strong. For
example, infinite orthonormal sequences converge weakly to zero, as
demonstrated below.

(ii) From the definition of weak convergence, we know that

lim
n→∞

< f, xn >= lim
n→∞

f(xn) = f(x) =< f, x >, ∀f ∈ E ′.

There exists a natural map J : E ′ 7→ E ′′, such that x̂n = J xn, x̂ = J x.
Then,

‖x̂n‖ = ‖xn‖,
‖x̂‖ = ‖x‖,
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and

< x̂n, f > = < f, xn >,

< x̂, f > = < f, x >,

From the lemma, it is easy to obtain

| < x̂, f > | = lim
n→∞

| < x̂n, f > | ≤ lim
n→∞

‖x̂n‖‖f‖.

This proves
‖x̂‖ ≤ lim

n→∞
‖x̂n‖.

Consequently,
‖x‖ ≤ lim

n→∞
‖xn‖.

i.e.,
‖x‖E ≤ lim inf

n→∞
‖xn‖E.

In particular, if we take account of Hilbert space, we can prove (ii)
easily.
In deed, we can choose an orthonormal basis ek and observe that∑

k≤p

‖x, ek‖2 = lim
n→∞

‖xn, ek‖2.

Now, The sequence on the right is bounded by ‖xn‖2 is independently
of p, so ∑

k≤p

‖x, ek‖2 ≤ lim inf
n→∞

‖xn‖2.

From the definition of lim inf , we take p→∞ to conclude that

‖x‖2 ≤ lim inf
n→∞

‖xn‖2.

Then,
‖x‖ ≤ lim inf

n→∞
‖xn‖.
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Example. The Hilbert space L2[0, 2π] is the space of the square-
integrable functions on the interval [0, 2π] equipped with the inner
product defined by

〈f, g〉 =

∫ 2π

0

f(x) · g(x) dx,

the sequence of functions f1, f2, . . . defined by fn(x) = sin(nx)
converges weakly to the zero function in L2[0, 2π], as the integral∫ 2π

0
sin(nx) · g(x) dx tends to zero for any square-integrable function

g on [0, 2π] when n goes to infinity, i.e., 〈fn, g〉 → 〈0, g〉 = 0. We can
take advantage of Matrix Lab to draw the first 4 functions in the se-
quence fn(x) = sin(nx) on [0, 2pi]. As n→∞, fn converges weakly to
f = 0.

0 1 2 3 4 5 6 7

x(0-2*pi)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y(
-1

-1
)

Due on 2017/3/20,made by Changjian Xie

f1=sinx
f2=sin2x
f3=sin3x
f4=sin4x

Figure 1: Consider fn(x) = sin(nx) on [0, 2pi] with respect to n = 1, 2, 3, 4,
we deserve the curves and note that n larger, fn converges weakly to f = 0.
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