
Homework 2
Due on Monday, March 23th, 2017

Completed by Changjian Xie

Consider there are many sets of functions which are dense in Lp−spaces.
First of all, recall the notion of dense set in metric space. A subset A of a
topological space X is dense in X if for any point x in X , any neighborhood
of x contains at least one point from A , i.e., A has non-empty intersection
with every non-empty open subset of X . Ω is the open set in RN , f(x)
defined in Ω which is measurable function. Its function value only take a
limited number of real numbers, this function is called a simple function
defined on Ω. Some lemmas in Lebesgue integral theory are proved without
proof.
To begin with, the following lemmas are essential to the theorem.

Lemma 1. Let Ω an open set in RN , f(x) defined in Ω which is non-negative
measurable function. Then, there exists a sequence of non-negative monoton-
ically increasing simple function {Sn(x)} which convergent to f(x).

Lemma 2. Let Ω an bounded open set in RN , f(x) defined in Ω which is
almost everywhere bounded measurable function. Then, for any ε > 0, there
exists a function g(x) ∈ C0(Ω) which subject to

sup
x∈Ω
|g(x)| ≤ sup

x∈Ω
|f(x)|,

µ({x ∈ Ω|f(x) 6= g(x)}) < ε,

where µ(G) denote by Lebesgue measure of G.

Lemma 3. Ω is a area of RN , µ(Ω) is a infinite number, for 1 ≤ p < q ≤ ∞.
Then,

1. if f ∈ Lq(Ω), it follows that f ∈ Lp(Ω) and

‖f ;Lp(Ω)‖ ≤ (µ(Ω))
1
p
− 1

q ‖f ;Lq(Ω)‖, (1)

2. if f ∈ L∞(Ω), it follows that

lim
p→∞
‖f ;Lp(Ω)‖ = ‖f ;L∞(Ω)‖, (2)
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3. if for any p ∈ [1,∞), f ∈ Lp(Ω), and there exists a constant K with

‖f ;Lp(Ω)‖ ≤ K, ∀p ∈ [1,∞), (3)

it follows that f ∈ L∞(Ω), and

‖f ;L∞(Ω)‖ ≤ K. (4)

Proof.

1. For p <∞, from Hölder inequality, one has

‖f ;Lp(Ω)‖p =

∫
Ω

|f |pdx

≤ [

∫
Ω

(|f |p)
q
pdx]

p
q [

∫
Ω

dx]1−
p
q

= ‖f ;Lq(Ω)‖p(µ(Ω))1− p
q .

Note that the term is infinite number of right hand above the formula, hence,
we can take power as 1

p
, then we obtain (1). Next, we consider q = ∞, it

follows that

‖f ;Lp(Ω)‖ = [

∫
Ω

|f |pdx]
1
p ≤ ‖f ;L∞(Ω)‖(µ(Ω))

1
p ,

2. if f ∈ L∞(Ω), q in the right hand of (1) takes ∞. We take q → ∞, one
has

lim
p→∞
‖f ;Lp(Ω)‖ ≤ ‖f ;L∞(Ω)‖. (5)

In addition, from the definition of function norm in L∞(Ω), for all ε > 0,
there exists a set A with µ(A) > 0, it follows

|f(x)| > ‖f ;L∞(Ω)‖ − ε, x ∈ A. (6)

Then, ∫
Ω

|f |pdx ≥
∫
A

|f |pdx ≥ (‖f ;L∞(Ω)‖ − ε)pµ(A).

we can take power as 1
p
, then

[

∫
Ω

|f |pdx]
1
p ≥ (‖f ;L∞(Ω)‖ − ε)(µ(A))

1
p .
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Thus, one has

lim
p→∞

[

∫
Ω

|f |pdx]
1
p ≥ ‖f ;L∞(Ω)‖ − ε.

Due to ε is arbitrary, it follows that

lim
p→∞

[

∫
Ω

|f |pdx]
1
p ≥ ‖f ;L∞(Ω)‖. (7)

From (5) and (7), we obtain (2).

3. If f(x) doesn’t belong to L∞(Ω) or doesn’t satisfy (4), anyway, we always
find a subset A in Ω with µ(A) > 0 and constant K1 > K, it follows that

|f(x)| > K1, ∀x ∈ A. (8)

The next process is same as the one which (6) deduce (7). From (8), one has

lim
p→∞

[

∫
Ω

|f(x)|pdx]
1
p ≥ K1 > K. (9)

Clearly, (9) is contrary to (3). Hence, one has (4).

Lemma 4. C0(Ω) is dense in Lp(Ω), for 1 ≤ p <∞.

Proof. Let f ∈ Lp(Ω), we denote by f1 = max(0, f), f2 = max(0,−f), then
f1 and f2 are both non-negative function in Lp(Ω), moreover, f = f1− f2. If
we have found two sequences {g1n} and {g2n} in C0(Ω), they are convergent
to f1 and f2 respectively, then from the Minkowski inequality, it follows that

‖f − (g1n − g2n)‖p ≤ ‖f1 − g1n‖p + ‖f2 − g2n‖p.

Consequently, the sequence {gn} = {g1n−g2n} in C0(Ω) convergent to Lp(Ω).
So, we consider the non-negative function in Lp(Ω). It’s easy to know that
there exists monotonically increasing function sequences as the following that

0 ≤ s1(x) ≤ s2(x) ≤ · · · ≤ sn(x) ≤ · · · ≤ f(x), ∀x ∈ Ω,

with
lim
n→∞

sn(x) = f(x).

Obviously, sn(x) ∈ Lp(Ω) and

0 ≤ (f(x)− sn(x))p ≤ (f(x))p.
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From Lebesgue theorem, we obtain

lim
n→∞

∫
Ω

(f(x)− sn(x))pdx =

∫
Ω

lim
n→∞

(f(x)− sn(x))pdx = 0.

Then, for any ε > 0, there exists simple function sn0(x) which satisfies

‖f − sn0‖p ≤
ε

2
. (10)

May as well let suppsn(x) a bounded set, then, there exists g(x) ∈ C0(Ω)
with

|g(x)| ≤ ‖sn0(x)‖∞, ∀x ∈ Ω,

note that

µ({x ∈ Ω|sn0(x) 6= g(x)}) < ε

4 max(|sn0(x)|∞, 1)
.

Then,

[

∫
Ω

|g − sn|pdx]
1
p ≤ max

x∈Ω
|g − sn|µ({x ∈ Ω|sn0(x)

≤ 2‖sn0‖∞
ε

4 max(|sn0(x)|∞, 1)
≤ ε

2
.

From Minkowski inequality, it follows that

‖f − g‖p ≤ ‖f − sn0‖p + ‖sn0 − g‖p ≤ ε. (11)

In general, for each ε > 0, there exists g(x) ∈ C0Ω which satisfies (2).

We consider C∞0 (RN), let γ =
∫
|x|<1

exp(− 1
1−|x|2 )dx, we define

j(x) =

{ 1
γ

exp(− 1
1−|x|2 ), |x| < 1,

0, otherwise,

with j(x) ∈ C∞0 (RN),
∫
RN j(x)dx = 1, j(x) ≥ 0, suppj(x) = {x ∈ RN | |x| ≤

1} . For any real number δ > 0, we construct the function as

jδ(x, y) = δ−Nj(
x− y
δ

), (12)
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it follows that ∫
RN

jδ(x, y)dy = 1.

For f ∈ L1(Ω), we construct

f̃ =

{
f, x ∈ Ω,

0, otherwise,

then, f̃ ∈ L1(RN). We define

Jδf(x) =

∫
RN

f̃(x− δy)j(y)dy =

∫
RN

f̃(y)jδ(x, y)dy, (13)

where Jδ is called by regularized operator. The properties of function Jδ as
following that

Lemma 5.

1. If f ∈ L1(Ω), then Jδf ∈ C(∞)(RN);

2. If K ⊂⊂ Ω, f ∈ L1(Ω) and f(x) = 0, x ∈ Ω \ K, for δ < dist(K,Γ),
then Jδf ∈ C∞0 (Ω);

3. If f ∈ Lp(Ω), 1 ≤ p <∞, then Jδf(x) is convergent to f , with

‖Jδf ;Lp(Ω)‖ ≤ ‖f ;Lp(Ω). (14)

4. If f ∈ C(Ω)∩L1(Ω), then Jδf(x) is uniformly convergent to f in K ⊂⊂ Ω.

Theorem 1. C∞0 (Ω) is dense in Lp(Ω), for 1 ≤ p <∞.

Proof. From lemma 4 and 5, we can obtain theorem 1. In brief, the progress
as following that:

(1) if u ∈ Lp(Ω) , where 1 < p < ∞, uδ(x) construct as above, then from
Young inequality, it follows that

‖uδ‖p ≤ ‖u‖p.

(2) From Lusin theorem, we prove C0
0(Ω) that dense in Lp(Ω).

(3) For u ∈ Lp(Ω), we need to find uδ ∈ C∞0 (Ω) which subject to

‖uδ − u‖p < ε,

next, we can prove for three steps:
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step 1. we need to find ϕ ∈ C0
0(Ω) which satisfies with ‖u− ϕ‖p < ε

3
,

step 2. we need to find ϕδ ∈ C∞0 (Ω) which satisfies with ‖ϕ− ϕδ‖p < ε
3
,

step 3. we need to find uδ ∈ C∞0 (Ω) which satisfies with ‖ϕδ−uδ‖p < ε
3
.
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