Homework 2 Due on Monday, March 23th, 2017

Completed by Changjian Xie

Consider there are many sets of functions which are dense in L^p -spaces. First of all, recall the notion of dense set in metric space. A subset \mathscr{A} of a topological space \mathscr{X} is dense in \mathscr{X} if for any point x in \mathscr{X} , any neighborhood of x contains at least one point from \mathscr{A} , i.e., \mathscr{A} has non-empty intersection with every non-empty open subset of \mathscr{X} . Ω is the open set in \mathbb{R}^N , f(x)defined in Ω which is measurable function. Its function value only take a limited number of real numbers, this function is called a simple function defined on Ω . Some lemmas in Lebesgue integral theory are proved without proof.

To begin with, the following lemmas are essential to the theorem.

Lemma 1. Let Ω an open set in \mathbb{R}^N , f(x) defined in Ω which is non-negative measurable function. Then, there exists a sequence of non-negative monotonically increasing simple function $\{S_n(x)\}$ which convergent to f(x).

Lemma 2. Let Ω an bounded open set in \mathbb{R}^N , f(x) defined in Ω which is almost everywhere bounded measurable function. Then, for any $\varepsilon > 0$, there exists a function $g(x) \in C_0(\Omega)$ which subject to

$$\sup_{x \in \Omega} |g(x)| \le \sup_{x \in \Omega} |f(x)|,$$
$$\mu(\{x \in \Omega | f(x) \neq g(x)\}) < \varepsilon,$$

where $\mu(G)$ denote by Lebesgue measure of G.

Lemma 3. Ω is a area of \mathbb{R}^N , $\mu(\Omega)$ is a infinite number, for $1 \leq p < q \leq \infty$. Then,

1. if $f \in L^q(\Omega)$, it follows that $f \in L^p(\Omega)$ and

$$||f; L^{p}(\Omega)|| \le (\mu(\Omega))^{\frac{1}{p} - \frac{1}{q}} ||f; L^{q}(\Omega)||,$$
 (1)

2. if $f \in L^{\infty}(\Omega)$, it follows that

$$\lim_{p \to \infty} \|f; L^p(\Omega)\| = \|f; L^{\infty}(\Omega)\|,$$
(2)

3. if for any $p \in [1, \infty)$, $f \in L^p(\Omega)$, and there exists a constant K with

$$\|f; L^{p}(\Omega)\| \le K, \quad \forall p \in [1, \infty),$$
(3)

it follows that $f \in L_{\infty}(\Omega)$, and

$$\|f; L^{\infty}(\Omega)\| \le K.$$
(4)

Proof.

1. For $p < \infty$, from Hölder inequality, one has

$$\begin{split} \|f;L^p(\Omega)\|_p &= \int_{\Omega} |f|^p dx \\ &\leq \left[\int_{\Omega} (|f|^p)^{\frac{q}{p}} dx\right]^{\frac{p}{q}} \left[\int_{\Omega} dx\right]^{1-\frac{p}{q}} \\ &= \|f;L^q(\Omega)\|^p (\mu(\Omega))^{1-\frac{p}{q}}. \end{split}$$

Note that the term is infinite number of right hand above the formula, hence, we can take power as $\frac{1}{p}$, then we obtain (1). Next, we consider $q = \infty$, it follows that

$$||f; L^{p}(\Omega)|| = \left[\int_{\Omega} |f|^{p} dx\right]^{\frac{1}{p}} \le ||f; L^{\infty}(\Omega)|| (\mu(\Omega))^{\frac{1}{p}},$$

2. if $f \in L_{\infty}(\Omega)$, q in the right hand of (1) takes ∞ . We take $q \to \infty$, one has

$$\overline{\lim}_{p \to \infty} \|f; L^p(\Omega)\| \le \|f; L^\infty(\Omega)\|.$$
(5)

In addition, from the definition of function norm in $L^{\infty}(\Omega)$, for all $\varepsilon > 0$, there exists a set A with $\mu(A) > 0$, it follows

$$|f(x)| > ||f; L^{\infty}(\Omega)|| - \varepsilon, \qquad x \in A.$$
(6)

Then,

$$\int_{\Omega} |f|^p dx \ge \int_{A} |f|^p dx \ge (||f; L^{\infty}(\Omega)|| - \varepsilon)^p \mu(A).$$

we can take power as $\frac{1}{p}$, then

$$\left[\int_{\Omega} |f|^{p} dx\right]^{\frac{1}{p}} \ge \left(\|f; L^{\infty}(\Omega)\| - \varepsilon\right) (\mu(A))^{\frac{1}{p}}.$$

Thus, one has

$$\lim_{p \to \infty} \left[\int_{\Omega} |f|^p dx \right]^{\frac{1}{p}} \ge \|f; L^{\infty}(\Omega)\| - \varepsilon.$$

Due to ε is arbitrary, it follows that

$$\lim_{p \to \infty} \left[\int_{\Omega} |f|^p dx \right]^{\frac{1}{p}} \ge \|f; L^{\infty}(\Omega)\|.$$
(7)

From (5) and (7), we obtain (2).

3. If f(x) doesn't belong to $L^{\infty}(\Omega)$ or doesn't satisfy (4), anyway, we always find a subset A in Ω with $\mu(A) > 0$ and constant $K_1 > K$, it follows that

$$|f(x)| > K_1, \qquad \forall x \in A.$$
(8)

The next process is same as the one which (6) deduce (7). From (8), one has

$$\lim_{p \to \infty} \left[\int_{\Omega} |f(x)|^p dx \right]^{\frac{1}{p}} \ge K_1 > K.$$
(9)

Clearly, (9) is contrary to (3). Hence, one has (4).

Lemma 4. $C_0(\Omega)$ is dense in $L^p(\Omega)$, for $1 \leq p < \infty$.

Proof. Let $f \in L^p(\Omega)$, we denote by $f_1 = \max(0, f)$, $f_2 = \max(0, -f)$, then f_1 and f_2 are both non-negative function in $L^p(\Omega)$, moreover, $f = f_1 - f_2$. If we have found two sequences $\{g_{1n}\}$ and $\{g_{2n}\}$ in $C_0(\Omega)$, they are convergent to f_1 and f_2 respectively, then from the Minkowski inequality, it follows that

$$||f - (g_{1n} - g_{2n})||_p \le ||f_1 - g_{1n}||_p + ||f_2 - g_{2n}||_p$$

Consequently, the sequence $\{g_n\} = \{g_{1n} - g_{2n}\}$ in $C_0(\Omega)$ convergent to $L^p(\Omega)$. So, we consider the non-negative function in $L^p(\Omega)$. It's easy to know that there exists monotonically increasing function sequences as the following that

$$0 \le s_1(x) \le s_2(x) \le \dots \le s_n(x) \le \dots \le f(x), \quad \forall x \in \Omega,$$

with

$$\lim_{n \to \infty} s_n(x) = f(x).$$

Obviously, $s_n(x) \in L^p(\Omega)$ and

$$0 \le (f(x) - s_n(x))^p \le (f(x))^p.$$

From Lebesgue theorem, we obtain

$$\lim_{n \to \infty} \int_{\Omega} (f(x) - s_n(x))^p dx = \int_{\Omega} \lim_{n \to \infty} (f(x) - s_n(x))^p dx = 0$$

Then, for any $\varepsilon > 0$, there exists simple function $s_{n_0}(x)$ which satisfies

$$\|f - s_{n_0}\|_p \le \frac{\varepsilon}{2}.\tag{10}$$

May as well let $supps_n(x)$ a bounded set, then, there exists $g(x) \in C_0(\Omega)$ with

$$|g(x)| \le ||s_{n_0}(x)||_{\infty}, \qquad \forall x \in \Omega,$$

note that

$$\mu(\{x \in \Omega | s_{n_0}(x) \neq g(x)\}) < \frac{\varepsilon}{4 \max(|s_{n_0}(x)|_{\infty}, 1)}$$

Then,

$$\begin{split} \left[\int_{\Omega} |g - s_n|^p dx\right]^{\frac{1}{p}} &\leq \max_{x \in \Omega} |g - s_n| \mu(\{x \in \Omega | s_{n_0}(x) \\ &\leq 2 \|s_{n_0}\|_{\infty} \frac{\varepsilon}{4 \max(|s_{n_0}(x)|_{\infty}, 1)} \leq \frac{\varepsilon}{2} \end{split}$$

From Minkowski inequality, it follows that

$$||f - g||_p \le ||f - s_{n_0}||_p + ||s_{n_0} - g||_p \le \varepsilon.$$
(11)

In general, for each $\varepsilon > 0$, there exists $g(x) \in C_0\Omega$ which satisfies (2). \Box

We consider $C_0^{\infty}(\mathbb{R}^N)$, let $\gamma = \int_{|x|<1} \exp(-\frac{1}{1-|x|^2}) dx$, we define

$$j(x) = \begin{cases} \frac{1}{\gamma} \exp(-\frac{1}{1-|x|^2}), & |x| < 1, \\ 0, & otherwise, \end{cases}$$

with $j(x)\in C_0^\infty(R^N),$ $\int_{R^N}j(x)dx=1,$ $j(x)\geq 0,$ $suppj(x)=\{x\in R^N|\quad |x|\leq 1\}$. For any real number $\delta>0,$ we construct the function as

$$j_{\delta}(x,y) = \delta^{-N} j(\frac{x-y}{\delta}), \qquad (12)$$

it follows that

$$\int_{\mathbb{R}^N} j_\delta(x, y) dy = 1.$$

For $f \in L^1(\Omega)$, we construct

$$\tilde{f} = \left\{ \begin{array}{cc} f, & x \in \Omega, \\ 0, & otherwise, \end{array} \right.$$

then, $\tilde{f} \in L^1(\mathbb{R}^N)$. We define

$$J_{\delta}f(x) = \int_{\mathbb{R}^N} \tilde{f}(x - \delta y) j(y) dy = \int_{\mathbb{R}^N} \tilde{f}(y) j_{\delta}(x, y) dy,$$
(13)

where J_{δ} is called by regularized operator. The properties of function J_{δ} as following that

Lemma 5.

- 1. If $f \in L^1(\Omega)$, then $J_{\delta}f \in C^{(\infty)}(\mathbb{R}^N)$; 2. If $K \subset \subset \Omega$, $f \in L^1(\Omega)$ and f(x) = 0, $x \in \Omega \setminus K$, for $\delta < dist(K, \Gamma)$, then $J_{\delta}f \in C_0^{\infty}(\Omega)$;
- 3. If $f \in L^p(\Omega)$, $1 \le p < \infty$, then $J_{\delta}f(x)$ is convergent to f, with

$$\|J_{\delta}f;L^{p}(\Omega)\| \leq \|f;L^{p}(\Omega).$$
(14)

4. If $f \in C(\Omega) \cap L^1(\Omega)$, then $J_{\delta}f(x)$ is uniformly convergent to f in $K \subset \subset \Omega$.

Theorem 1. $C_0^{\infty}(\Omega)$ is dense in $L^p(\Omega)$, for $1 \le p < \infty$.

Proof. From lemma 4 and 5, we can obtain theorem 1. In brief, the progress as following that:

(1) if $u \in L^p(\Omega)$, where $1 , <math>u_{\delta}(x)$ construct as above, then from Young inequality, it follows that

$$\|u_{\delta}\|_p \le \|u\|_p.$$

(2) From Lusin theorem, we prove $C_0^0(\Omega)$ that dense in $L^p(\Omega)$.

(3) For $u \in L^p(\Omega)$, we need to find $u_{\delta} \in C_0^{\infty}(\Omega)$ which subject to

$$\|u_{\delta} - u\|_p < \varepsilon,$$

next, we can prove for three steps:

step 1. we need to find $\varphi \in C_0^0(\Omega)$ which satisfies with $||u - \varphi||_p < \frac{\varepsilon}{3}$, step 2. we need to find $\varphi_{\delta} \in C_0^{\infty}(\Omega)$ which satisfies with $||\varphi - \varphi_{\delta}||_p < \frac{\varepsilon}{3}$, step 3. we need to find $u_{\delta} \in C_0^{\infty}(\Omega)$ which satisfies with $||\varphi \delta - u_{\delta}||_p < \frac{\varepsilon}{3}$. \Box