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Preface

The scientific field of applied and computational mathematics has evolved and
expanded at a very rapid rate during the last few decades. Many subfields have
matured, and it is therefore natural to consider publishing an encyclopedia for the
field. Traditional encyclopedias are, however, becoming part of history. For fast,
simple, and up-to-date facts they cannot compete with web search engines and
web-based versions of the Wikipedia type. For much more extensive and complete
treatments of topics, traditional monographs and review articles in specialized
journals are common. There is an advantage with web-based articles as in Wikipedia,
which constantly evolves and adapts to changes. There is also an advantage with
articles that do not change, have known authors, and can be referred to in other
publications. With the Encyclopedia for Applied and Computational Mathematics
(EACM), we are aiming at achieving the best of these two models.

The goal with EACM is a publication with broad coverage by many articles, which
are quality controlled through a traditional peer review process. The articles can be
formally cited, and the authors can take credit for their contributions. This publication
will be frozen in its current form, obviously on paper as well as on the web. In
parallel there will be an electronic version, where the authors can make changes
to their articles and where new articles will be added. After a couple of years, this
dynamic version will result in a publication of a new edition of EACM, which can be
referenced while the dynamic electronic version continues to evolve. The length of
the articles is also chosen to fill the gap between the common shorter web versions
and more specialized longer publications. They are here typically between 5 and 10
pages. A few are introductory overviews and a bit longer than the average article.

An encyclopedia will never be complete, and the decision to define the first edition
at this time is based on a compromise between the desire of covering the field well
and a timely published version. This first edition has 312 articles with the overall
number of 1,575 pages in 2 volumes. There are few contributions with animations,
which will appear in the electronic version. This will be expanded in the future.

The above discussion was about the “E” in EACM. Now we turn to rest of the
acronym, “ACM.” Modern applied and computational mathematics is more applied,
more computational, and more mathematical than ever. The exponential growth of
computational power has allowed for much more complex mathematical models,
and these new models are typically more realistic for applications. It is natural
to include both applied and computational mathematics in the encyclopedia even
though these two fields are philosophically different. In computational mathematics,
algorithms are developed and analyzed and may in principle be independent from
applications. The two fields are, however, now very tightly coupled in practice.
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vi Preface

Almost all applied mathematics has some computational components, and most
computational mathematics is directly developed for applications.

Computation is now mentioned as the third pillar of science together with the
classical theory and experiments. Scientific progress of today is often based on
critical computational components, which can be seen in the growing contribution
from computations in recent Nobel Prizes. The importance of mathematical modeling
and scientific computing in engineering is even more obvious. The expression
“Computational Science and Engineering” has emerged to describe a scientific field
where computations have merged with applications.

Classical fields of applied mathematics, for example, asymptotic analysis and
homogenization, are today not so often used for achieving quantitative results.
They are, however, very important in mathematical modeling and in deriving and
understanding a variety of numerical techniques for multiscale simulations. This is
explained in different settings throughout EACM.

We mentioned above that modern applied and computational mathematics are
more mathematical than ever. In the early days, this coupling was natural. Many
algorithms that are used today and also discussed in this encyclopedia have the names
of Newton and Gauss. However, during the century before the modern computer,
mathematics in its pure form evolved rapidly and became more disconnected from
applications. The computational tools of pen and paper, the slide rule, and simple
mechanical devices stayed roughly the same. We got a clear division between pure
and applied mathematics. This has changed with the emergence of the modern
computer. Models based on much more sophisticated mathematics are now bases
for the quantitative computations and thus practical applications. There are many
examples of this tighter coupling between applied and computational mathematics
on the one hand and what we regard as pure mathematics on the other.

Harmonic analysis is a typical example. It had its origin in applied and compu-
tational mathematics with the work of Fourier on heat conduction. However, only
very special cases can be studied in a quantitative way by hand. In the years after this
beginning, there was substantial progress in pure directions of harmonic analysis. The
emergence of powerful computers and the fast Fourier transform (FFT) algorithm
drastically changed the scene. This resulted, for example, in wavelets, the inverse
Radon transform, a variety of spectral techniques for PDEs, computational informa-
tion, and sampling theory and compressed sensing. The reader will see illustrative
examples in EACM. Partial differential equations have also had a recent development
where ideas have bounced back and forth between applications, computations, and
fundamental theory.

The field of applied and computational mathematics is of course not well defined.
We will use the term in a broad sense, but we have not included areas that have their
own identity and where applied and computational mathematics is not what you think
of even if in a strict sense applied and computational mathematics would be correct.
Statistics is the most prominent example. This was an editorial decision. Through
the process of producing the EACM, there has been a form of self-selection. When
section editors and authors were asked to cover an area or a topic closer to the core of
applied and computational mathematics, the success rate was very high. Examples are
numerical analysis and inverse problems. Many applied areas are also well covered,
ranging from general topics in fluid and solid mechanics to computational aspects of
chemistry and the mathematics of atmosphere and ocean science.



Preface vii

In fields further from the core, the response was less complete. Examples of
the latter are the mathematical aspects of computer science and physics, where the
researchers generally do not think of themselves as doing applied and computational
mathematics even when they are. The current encyclopedia naturally does not cover
all topics that should ideally have their own articles. We hope to fill these holes in the
evolving web-based version and then in the future editions.

Finally, I would like to thank all section editors and authors for their outstanding
contributions and their patience. I also hope that you will continue to improve EACM
in its dynamic form and in future editions. Joachim Heinze and Martin Peters at
Springer initiated the process when they came with the idea of an encyclopedia.
Martin Peters’ highly professional supervision of the development and publication
process has absolutely been critical. I am also very grateful for the excellent support
from Ruth Allewelt and Tina Shelton at Springer.

Austin, USA Björn Engquist
September 2015
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Fribourg/Pérolles, Switzerland
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Ansgar Jüngel Institut für Analysis und Scientific Computing, Technische
Universität Wien, Wien, Austria

Rajiv K. Kalia Department of Computer Science, Department of Physics and
Astronomy, and Department of Chemical Engineering and Materials Science,
University of Southern California, Los Angeles, CA, USA

Erich L. Kaltofen Department of Mathematics, North Carolina State University,
Raleigh, NC, USA

George Em Karniadakis Division of Applied Mathematics, Brown University,
Providence, RI, USA

Boualem Khouider Department of Mathematics and Statistics, University of
Victoria, Victoria, BC, Canada

Isaac Klapper Department of Mathematical Sciences and Center for Biofilm
Engineering, Montana State University, Bozeman, MT, USA

Rupert Klein FB Mathematik and Informatik, Freie Universität Berlin, Berlin,
Germany

Peter Kloeden FB Mathematik, J.W. Goethe-Universität, Frankfurt am Main,
Germany

Matthew G. Knepley Searle Chemistry Laboratory, Computation Institute,
University of Chicago, Chicago, IL, USA
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Zentrum, Zürich, Switzerland

Javier Segura Departamento de Matemáticas, Estadı́stica y Computación,
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Gabriel Turinici Département MIDO, CEREMADE, Université Paris-Dauphine,
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APosteriori Error Estimates
of Quantities of Interest

Serge Prudhomme
Department of Mathematics and Industrial
Engineering, École Polytechnique de Montréal,
Montréal, QC, Canada

Synonyms

Adjoint-based method; Dual-weighted residual
method; Goal-oriented error estimation

Short Description

A posteriori error estimation for quantities of interest
is concerned with the development of computable es-
timators of approximation errors (due to discretization
and/or model reduction) measured with respect to user-
defined quantities of interest that are functionals of the
solutions to initial boundary-value problems.

Description

A posteriori error estimation for quantities of interest
is the activity in computational sciences and engineer-
ing that focuses on the development of computable
estimators of the error in approximations of initial-
and/or boundary-value problems measured with re-
spect to user-defined quantities of interest. The use
of discretization methods (such as finite element and
finite volume methods) to approximate mathematical

problems based on partial differential equations neces-
sarily produces approximations that are in error when
compared to the exact solutions. Methods to estimate
discretization errors were proposed as early as the
1970s [3] and initially focused on developing error esti-
mators in terms of global (energy) norms (subdomain-
residual methods, element residual methods, etc., see
[1,4,22] and references therein). One issue in those ap-
proaches is that they provide error estimates in abstract
norms, which fail to inform the users about specific
quantities of engineering interest or local features of
the solutions. It is only in the mid-1990s that a new type
of error estimators was developed, usually referred to
as dual-weighted residual [6,8,9] or goal-oriented error
estimators [15, 18], based on the solution of adjoint
problems associated with user-defined quantities of in-
terest. In this case, the user is able to specify quantities
of interest, written as functionals defined on the space
of admissible solutions, and to assess the accuracy of
the approximations in terms of these quantities.

Model Problem, Quantities of Interest,
and Adjoint Problem

For the sake of simplicity in the exposition, we con-
sider a linear boundary-value problem defined on an
open bounded domain � � R

d ; d D 1; 2, or 3, with
boundary @�. Assume that the boundary is decom-
posed into two parts, �D and �N , on which Dirichlet
and Neumann boundary conditions are prescribed, re-
spectively. Let U and V be two Hilbert spaces. The
weak formulation of an abstract linear problem reads:

Find u 2 U such that B .u; v/ D F .v/ ;8v 2 V (1)

© Springer-Verlag Berlin Heidelberg 2015
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2 A Posteriori Error Estimates of Quantities of Interest

where B.�; �/ is a bilinear form on U � V and F.�/ is
a linear form on V . We suppose that B.�; �/ and F.�/
satisfy the hypotheses of the generalized Lax-Milgram
Theorem to ensure that there exists a unique solution
to the above problem.

The goal of computer simulations is not necessarily
to accurately approximate the solution u everywhere
in the domain, but rather to predict certain quantities
of the solution u. Quantities may be local averages
of the solution, point-wise values (if u is sufficiently
smooth), or local values of the gradient of u in some
given direction. Let us suppose that the quantity of
interest can be formulated as the linear functional Q:
U ! R such that

Q.u/ D
Z
�

k� .x/ u .x/ dx C
Z
�N

kN .x/ u .x/ ds

(2)

where k� and kN represent two kernel functions
(sometimes referred to as extractors) defined on �

and �N , respectively, that are introduced in order to be
able to consider local quantities. For example, the local
average of u in a subdomain ! � � can be evaluated
by choosing k� as the characteristic function:

k� .x/ D 1

j!j

(
1 ifx 2 !
0 otherwise

with
Z
�

k� .x/ dx D 1
(3)

Most quantities of interest frequently encountered in
applications can be written in the above form.

With a given quantity of interest, let us introduce the
following problem in weak form:

Find z 2 V such that B .v; z/ D Q.v/ ;8v 2 U (4)

This problem is called the dual or adjoint problem
and its solution z 2 V is referred to as the adjoint
solution, the dual solution, the influence function, or
the generalized Green’s function. We emphasize here
that the adjoint solution z to Problem (4) is unique
as long as the linear quantity Q.�/ is bounded. A
fundamental observation using the primal problem (1)
with v D z and the adjoint problem (4) with v D u is
that

Q.u/ D B .u; z/ D F .z/ (5)

Example 1 (Green’s function) Let � D .0; 1/ � R.
We consider the problem of finding u that satisfies
�.Ku0/0 D f in �, where K is a two-by-two tensor

and u0 denotes the first derivative of u, subjected to
the Dirichlet boundary condition u D 0 on @�. We
suppose that one is interested in evaluating u.x0/; x0 2
�. In this case, U D V D H1

0 .�/ and

Q .u/ D u .x0/ D
Z
�

ı .x � x0/ u .x/ dx (6)

F .v/ D
Z
�

f .x/ v .x/ dx (7)

B .u; v/ D
Z
�

u0 .x/ v0 .x/ dx (8)

where ı is the Dirac function. For this quantity of
interest, the adjoint solution z is called the Green’s
function (often denoted by G.x; x0/) and allows one
to calculate u at point x0 in terms of the loading term
f , i.e.,

u .x0/ D Q.u/ D F .z/ D
Z
�

f .x/G .x; x0/ dx (9)

The strong form of the adjoint problem reads in this
case: �.KT z0/0 D ı.x � x0/ in �, subjected to the
boundary condition z D 0 on @�. We observe here
that the differential operator associated with the adjoint
problem is the same as that of the primal problem
whenever the tensor K is symmetric.

Goal-Oriented Error Estimation

We suppose that the solution u of the primal problem
cannot be computed exactly and must be approximated
by a discretization method such as the finite difference
or finite element methods. Denoting by h and p the
size and polynomial degree of the finite elements, let
Uh;p � U and V h;p � V be conforming finite element
subspaces of U and V , respectively, with dimUh;p D
dimV h;p . Using the Galerkin method, a finite element
approximation uh;p to the primal problem (1) is given
by the following discrete problem:

Find uh;p 2 Uh;p such that

B
�
uh;p; vh;p

� D F �vh;p� ; 8vh;p 2 V h;p (10)

We denote by e 2 U the error in uh;p, i.e., e D u �
uh;p , and suppose that one is interested in evaluating
the quantityQ.u/: In other words, we aim at estimating
the error quantity:



A Posteriori Error Estimates of Quantities of Interest 3

A

E D Q.u/�Q �
uh;p

�
(11)

Using the adjoint problem (4) and the primal problem
(1), the error in the quantity of interest can be repre-
sented as

E D B .u; z/� B �uh;p; z�

D F .z/ � B �uh;p; z� WD R
�
uh;pI z� (12)

where R
�
uh;pI �� is the residual functional associated

with the primal problem. From the discrete problem
(10), one can also straightforwardly derive the so-
called orthogonality property

R
�
uh;pI vh;p� D F �uh;p�

� B �uh;p; vh;p� D 0; vh;p 2 V h;p

(13)

which states that the solution uh;p is in some sense the
“best approximation” of u in Uh;p .

From the error representation (12), it is clear that
the error in the quantity of interest could be obtained if
the adjoint solution z were known. Unfortunately, the
adjoint problem (4) cannot be solved exactly and only
on rare occasions is an analytical solution available.
The idea is thus to compute a discrete (finite element)
approximation Qz of the adjoint solution z. If one consid-
ers the finite element solution zh;p on space QV D V h;p ,
with test functions Qv 2 QU D Uh;p (i.e., using the same
finite element spaces as for uh;p), i.e., by solving the
problem

Find zh;p 2 V h;p such that

B
�
vh;p; zh;p

� D Q �
vh;p

�
; 8vh;p 2 Uh;p (14)

then it is straightforward to show from the orthogonal-
ity property that R

�
uh;pI zh;p� D 0. In other words,

such an approximation of the adjoint solution would
fail to bring sufficient information about the error in
the quantity of interest. It implies that the adjoint needs
to be approximated on a discretization vector space
finer than V h;p . In practice, one usually selects QV D
V h=2;p; QV D V h;pC1, or even QV D V h=2;pC1 (and
similarly for QU ) to get the approximation:

Find Qz 2 QV such that B . Qv; Qz/ D Q. Qv/ ;8Qv 2 QU
(15)

An estimate of the error is then provided by

E D R
�
uh;pI Qz�CR

�
uh;pI z � Qz� � R

�
uh;pI Qz� WD �

(16)

Remark 1 Some error estimators have been proposed
that consider the approximate solution zh;p to (14)
and estimate the error " � z � zh;p in order to get
E � R

�
uh;pI "� or simply, E � B.u � uh;p; "/. See

for example [15, 17–19].

Remark 2 The goal-oriented error estimation proce-
dure presented so far can be easily extended to linear
initial boundary-value problem. In this case, the adjoint
problem is a problem that is solved backward in time.
In order to capture errors due to the spatial and tempo-
ral discretization, the adjoint problem is approximated
by halving the mesh size and time step.

Adaptive Strategies

The estimator � D R
�
uh;pI Qz� can be used for mesh

adaptation. Let �h;p Qz be a projection of Qz on V h;p .
Thanks to the orthogonality property, the estimate is
equivalent to � D R

�
uh;pI Qz � �h;p Qz�. The objective is

then to decompose � into element-wise contributions.
Recalling the definition of the residual, one has

� D R
�
uh;pI Qz � �h;p Qz�

D F �Qz � �h;p Qz� � B �uh;pI Qz � �h;p Qz� (17)

Because F.�/ and B.�; �/ are defined as integrals over
the whole computational domain �, they can be
decomposed into a sum of contributions FK.�/ and
BK.�; �/ on each element of the mesh. It follows that

� D
X
K

FK
�Qz � �h;p Qz� � BK �uh;pI Qz � �h;p Qz�

WD
X
K

�K (18)

The quantities �K define contributions on each element
K to the error in the quantity of interest. The represen-
tation of these contributions is not unique as one can
actually integrate by parts the terms BK to introduce
interior residuals (with respect to the strong form of
the differential equation inside each element) and jump
residuals (with respect to solution fluxes across the
interfaces of the elements). We do not present here
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the details of the different representations as these are
problem-dependent.

One can use the contributions �K to determine
refinement indicators in an adaptive mesh refinement
(AMR) strategy. Actually, there exist several methods
for element marking, such as the maximum strategy,
the fixed fraction strategy, the equidistribution strategy,
etc. In the case of the maximum contribution method,
one considers the refinement indicator �K on each
element K; 0 � �K � 1, as:

�K WD j�K j
maxK j�K j (19)

All elements such that �K � ˛ can then be marked for
refinement (with respect to h, p; or to h and p), where
˛ is a user-defined tolerance chosen between zero and
unity. In practice, the parameter is usually chosen to be
˛ D 0:5.

One area of active research in AMR deals with the
theoretical analysis of adaptive methods, the objective
being to show whether the adaptive methods ensure
convergence and provide optimal meshes [13, 14].

Extension to Nonlinear Problems

Goal-oriented error estimators, originally defined for
linear boundary-value problems and linear quantities
of interest, have been extended to the case of nonlinear
problems and nonlinear quantities of interest. Let u 2
U be the solution of the nonlinear problem:

Find u 2 U such that B .uI v/ D F .v/ ;8v 2 V
(20)

where B.�I �/ is a semilinear form, possibly nonlinear
with respect to the first variable. Suppose also that one
is interested in the nonlinear quantity of interest Q.u/
and that uh;p is a finite element approximation of the
solution u to (20). Then, by linearization,

E D Q.u/�Q �
uh;p

�

D Q0�uh;pI u � uh;p
�C�Q

D B 0�uh;pI u � uh;p; z
�C�Q

D B.uI z/� B�uh;pI z�C�Q ��B

D F .v/ � B�uh;pI z�C�Q ��B

WD R
�
uh;pI z�C�Q ��B

(21)

where we have assumed thatQ andB are differentiable
with respect to u, i.e.,

Q0 �uh;pI v� D lim
�!0

Q
�
uh;p C �v� �Q �

uh;p
�

�

B 0 �uh;pI v; z� D lim
�!0

B
�
uh;p C �vI z�� B �uh;pI v�

�
(22)

and �Q and �B denote higher-order terms due to
the linearization of Q and B , respectively. In the
above error representation, we have also introduced the
adjoint problem:

Find z 2 V such that

B 0 �uh;pI v; z� D Q0 �uh;pI v� ; 8v 2 U (23)

It is important to note that the adjoint problem is a
linear problem in z, which makes it easier to solve than
the primal problem. Proceeding as in the linear case,
one can solve for an approximate solution Qz 2 QV to the
adjoint problem and derive the error estimator �

E D Q.u/�Q �
uh;p

�

D R
�
uh;pI Qz�CR

�
uh;pI z � Qz�C�

� R
�
uh;pI Qz� WD �

(24)

As before, the estimator � can be decomposed into
element-wise contributions �K for mesh adaptation.

Concluding Remarks

Goal-oriented error estimation is a topic that, to date, is
fairly well understood. It has actually been extended to
modeling error estimation, where the modeling error
is the difference between the solutions of two differ-
ent models [10, 16], and has been applied to numer-
ous applications of engineering and scientific interests
(solid mechanics [21], fluid mechanics [19], wave
phenomena[5], Cahn-Hilliard equations [23], multi-
scale modeling [7, 20], partial differential equations
with uncertain coefficients [2, 11, 12] etc.). The main
challenge in goal-oriented error estimation essentially
lies in the determination of approximate solutions of
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the adjoint problem that provide for accurate and re-
liable error estimators while being cost-effective from
a computational point of view. Another challenge in
the case of nonlinear problems is the design of adap-
tive methods that simultaneously control discretization
errors and linearization errors.
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6 A Priori and A Posteriori Error Analysis in Chemistry

Definition

For a numerical discretization chosen to approximate
the solution of a given problem or for an algorithm
used to solve the discrete problem resulting from the
previous discretization, a priori analysis explains how
the method behaves and to which extent the numer-
ical solution that is produced from the discretiza-
tion/algorithm is close to the exact one. It also allows
to compare the numerical method of interest with
another one. With a priori analysis though, there is
no definite certainty that a given computation provides
a good enough approximation. It is only when the
number of degrees of freedom and the complexity of
the computation is large enough that the convergence
of the numerical method can be guaranteedly achieved.
On the contrary, a posteriori analysis provides bounds
on the error on the solution or the output coming out of
the simulation. The concept of a posteriori analysis can
even contain an error indicator that informs the user
on the strategy he should follow in order to improve
the accuracy of its results by increasing the number
of degrees of freedom in case where the a posteriori
estimation is not good enough.

Overview

Computational chemistry is a vast field including
a variety of different approaches. At the root, the
Schrödinger equation plays a fundamental role since
it describes the behavior of matter, at the finest level,
with no empirical constant or input. However, almost
no simulation is based on the resolution of this equation
since it is exceedingly expensive to solve for more than
about ten atoms. The reason is that the wave function
that describes at this level the state of matter is a
time-dependent function of 3 � .N C M/ variable
when a molecule with M nucleons and N electrons all
around is to be simulated. Many approaches have been
proposed to circumvent this impossibility to build a
numerical simulation well suited for these equations.
The first element takes into account the fact that the
understanding of the state of the matter at the ground
state, i.e., at the state of minimal energy, is already
a valuable information out of which the calculation
of excited states or unsteady solutions comes as
a second step. This allows to get rid of the time
dependency in these solution. The second element,

known as the Born-Oppenheimer approximation, is
based on a dimensional analysis that allows somehow
to decouple, among the particles that are in presence,
the heaviest ones (the nucleons) from the lightest ones
(the electrons); see the entry �Born–Oppenheimer
Approximation, Adiabatic Limit, and Related Math.
Issues. In this approximation, the behavior of the
electrons is considered, given a fixed state of the
nuclei, while the analysis of the behavior of the
nucleons is done in a frame where the interaction
with the electron is replaced by a potential in which
the nucleons evolve. As for the analysis of the behavior
of the electrons, the density functional theory is
nowadays widely used since the seminal work of
Hohenberg and Kohn [12] that establishes a one-to-
one correspondence between the ground state electron
density and the ground state wave function of a many-
particle system. This is the archetype of ab initio
approximations for electronic structures. Another
approach is the Hartree-Fock and post-Hartree-Fock
approximation, where the electronic wave function is
sought as minimizing the ground state Schrödinger
equation under the constraint of being a (sum of)
Slater determinant(s) of one-particle orbitals. Invented
by Dirac and Heisenberg, these determinants appear as
a simple way to impose the antisymmetric property of
the exact solution, resulting from the Pauli exclusion
principle. Time dependance can be restored in these
models to give rise to time-dependent Hartree or
Hartree-Fock approximations.

When the behavior of the electrons is understood,
the analysis of the nucleons can then be based on
molecular mechanics or dynamics, where the quantum
electronic information is aggregated into force fields
and the charged nuclei move in these force fields.

Whatever model approximation is used, from ab
initio approaches to empirical ones where models are
added on the top of the Schrödinger equation, the prob-
lems are still challenging for the computation. Indeed,
the complexity due to the number of variables of the
N C M –body wave function solution of the linear
Schrödinger model is replaced by complex and large
nonlinearities in the resulting equations, the precise
formula of which is actually not known in the DFT
framework (we refer to �Density Functional Theory).
The most common implementation is based on the
Kohn-Sham model [14]. Note that the most accurate
DFT calculations employ semi-empirical corrections,
whose functional form is usually derived from a lot of

http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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know-how and depends on parameters that need to be
properly tuned up.

The a priori and a posteriori analysis allows at this
stage to quantify the quality of the actual model that
is chosen as a surrogate to the Schrödinger equations.
Let us denote as IF.U / D 0 the Schrödinger model
and U the associated solution for conveniency and by
F.u/ D 0 the chosen model with associated solution u,
that is, a (set of) function(s) in three variables and from
which informations about U can be reconstructed.
This first stage of (modeling) approximation is com-
plemented with a second step related to numerical
implementations on computer that actually involves
two associated stages of approximation. The first one,
standard for approximating solution of partial differ-
ential equations, corresponds to the discretization of
functions of three variables in IR by discrete functions
depending on a finite (and generally high) number of
degrees of freedom the most common candidates are
found in the family of finite element or spectral (plane
waves) discretizations when variational framework is
present (generally preferred as it represents well the
minimization of the associated energy traducing the
ground state that is searched) or in the family of finite
difference discretizations. We denote by Fı.uı/ D 0

the associated discretization with uı being a function
belonging to a finite dimensional space. The a priori
and a posteriori analysis allows here to quantify the
quality of the numerical discretization for the particular
model that is considered. The second stage associated
with approximation is related to the algorithms that are
used in order to solve the finite dimensional problem
that comes out of the discretization method. An exam-
ple that illustrates this feature is provided by the way
the nonlinearities of the model are treated since com-
puters can only solve a linear system of finite dimen-
sion. Classically, this imply the use of iterative solvers,
based on fixed point strategies. In order to illustrate
this point, we first have to indicate that the problem
to be solved is nonlinear. This can be done by writing
the problem under the form Fı.uı/ D F.uıI uı/; the
iterative solver then consists in computing uı as the
limit, when the iteration parameter k tends to infinity,
of ukı solution of the fixed point iterative procedure
F.ukı I uk�1

ı / D 0. In order to provide a precise enough
approximation in a small enough time, the algorithm
that is used for these iterations must be smart enough
and stopped at the right number of iterations so that the
ukı is close enough to its limit uı. Here again, a priori

and a posteriori analysis allows to be confident in the
convergence of the algorithm and the stopping criteria.

Numerical analysis is involved in the three stages
above in the approximation process and requires differ-
ent pieces of analysis. All this is quite recent work and
only very partially covered. We present in the follow-
ing sections some details of the existing results. We re-
fer also to �Numerical Analysis of Eigenproblems for
Electronic Structure Calculations for a particular focus
on a priori error analysis for nonlinear eigenproblems.

Error on theModel

On the a priori side, the number of existing work
is very small. In [11] for instance, the author con-
siders the approximation by Hartree Fock (we refer
to �Hartree–Fock Type Methods) and post-Hartree-
Fock approaches of the Schrödinger equation (we refer
to � Post-Hartree-Fock Methods and Excited States
Modeling) – CI (configuration interaction) and MC-
SCF (multiconfiguration, self-consistent field) meth-
ods. It is proven that such an approach, even if it is
based on an expansion on many Slater determinant, is
never exact. However, MC-SCF methods approximate
energies correctly and also wavefunctions, in the limit
where the number K of Slater determinants goes to
infinity. An actual quantification of the decay rate of the
difference between the MC-SCF energy based on K
Slater determinants and the exact quantum-mechanical
ground state energy as K becomes large is quoted as
an open question in this entry and is still as far as we
know. For a more complete analysis, where the excited
states are also considered, see [17].

Another piece of a priori analysis is presented
in [9] and deals with the convergence of the time-
dependent Hartree problem, in which the solution
to the Schrödinger equation is searched as a sum
of K tensorial products known as the MCTDH
approximation. The a priori analysis of the difference
between the exact solution u.t/ (to the Schrödinger
equation) and the discrete solution uK.t/ states
that the error is upper bounded by the sum of the
best approximation error (of u.t/ by a sum of K
tensorial products) and a linear in time growing
contribution ct" where " measures in some sense the
best approximation error in the residual (Schrödinger
equation) norm (close to a H2-type norm). We refer to
[9] for the precise statement of the analysis.

http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
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As far as we know, there exists currently no result
of a posteriori type in the literature on the evaluation
of the error on the model. Yet, we can remind that
such an a posteriori analysis exists in other contexts
(see, e.g., [4] for a coupling of two models: one full
and one degenerated that are used in different regions)
leading to the idea that this is a feasible mathematical
and numerical tool that would be very helpful in the
present context.

Error on the Discretization

The analysis of the discretization error is certainly the
one that has been the most considered in the literature,
even if the current results in the chemistry field are
mostly very recent and still partial.

There are essentially three types of discretizations
differing from the basis sets that are chosen to approx-
imate the molecular orbitals or the density functional
and from the formulation of the discrete problem:
(i) those based on a strong formulation of the equations
(finite difference methods; see, e.g., the entry �Finite
Difference Methods) where we are not aware of any
full numerical analysis justification, (ii) those based
on variational approximations either with universal
complete basis sets (finite element; see, e.g., the entry
� Finite Element Methods for Electronic Structure,
plane wave, wavelets methods [13]) or (iii) with linear
combination of ad hoc atomic orbitals (LCAO, e.g., of
Gaussian basis sets, reduced basis methods [7,19]). For
the two first approaches, the universality of the discrete
approximation spaces allows to state that there exists a
discrete function (e.g., the best fit, i.e., the projection
in some appropriated norm) that is as close to the exact
solution as required, at least whenever the dimension of
the discrete space goes to infinity (known, e.g., for the
Hartree-Fock approximation as the Hartree-Fock limit)
and provided some regularity exists on the solution.
The challenge is then to propose a discrete method able
to select a unique solution in the discrete space that is
almost as good as the best fit. This challenge is actually
quite simple to face in case of a linear problem, but is
very difficult if the problem is nonlinear – and as we
explained above, the problem in the current context are
almost always nonlinear.

For the last type of discretization, the basis set is
problem dependent and is only built up to approximate
the solution of the very problem under consideration.

There are then two challenges: (i) does the best fit in
this ad hoc discrete space eventually approximate well
the exact solution and (ii) does the discrete method
propose a fair enough approximation and again how
does it compare with the best fit.

Most of the works related to the a priori convergence
analysis deal with the second type of approximation
above. A summary of these results focusing on the
particular case of the computation of the ground state
for electronic structures (resulting in the approximation
of eigenstates for a nonlinear eigenvalue problem) is
presented in the above quoted entry �Numerical Anal-
ysis of Eigenproblems for Electronic Structure Cal-
culations and states a complete enough convergence
analysis with optimal rate on both the energies and
wave functions, provided that the numerical integration
rules that are used to compute the integrals stemming
out of the variational formulation are computed with a
good enough accuracy. We shall thus mainly focus here
on the existing results that are not detailed in the above
cited entry.

For LCAO variational approximations, the choice of
the basis defining the discrete space is generally taken
as follows: (i) to any atom A of the periodic table, a
collection of nA linearly independent AO is associated,˚
	An
�
1�n�nA ; (ii) the discrete basis associated to a given

molecule is built up by gathering all AO relative to the
atoms in the system, e.g., for the molecule A-B, one
chooses

˚

�
� D ˚

	A1 .x � NxA/; � � � ; 	AnA.x � NxA/I 	B1
.x � NxB/; � � � ; 	BnB .x � NxB/g ; where NxA, NxB denote
the respective positions in IR3 of the atoms A and
B. After the paper of Boys’ [2], the polynomial
Gaussian basis sets have become of standard use for
the variational approximations of the solution of the
Hartree-Fock equations. What is remarkable – even
though a large amount of know-how is required in
order to define the proper AOs – is that actually
very few AOs are required to yield a very good
approximation of the ground state of any molecular
system. There exists very few papers dedicated to
the a priori convergence; most of the current studies
are restricted to the particular case of hydrogenoid
solutions, i.e., the solution of the Hydrogen atom,
whose analytic expression is known. An example is
given by the papers [16] and [3] where exponential
convergence is proven. By analogy, these results are
extrapolated on molecules, looking at the shape of the
cusps that the solution exhibit, and explain somehow
the good behavior of these approximations; currently,

http://dx.doi.org/10.1007/978-3-540-70529-1_414
http://dx.doi.org/10.1007/978-3-540-70529-1_248
http://dx.doi.org/10.1007/978-3-540-70529-1_258
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no complete analysis exists as far as we are aware
of. Based on these results related to the best fit, the
numerical analysis of the variational approximation
of the ground state for Hartree-Fock or Kohn-Sham
equations can proceed. This analysis uses the general
paradigm of definition of explicit lower and upper
bounds for outputs depending on the solution of a
partial differential equation and is explained in [20]
for the a posteriori analysis, and latter in [8] for the
a priori analysis: optimal results are proven, under a
hypothesis stating a kind of local uniqueness of the
ground state solution.

In a different direction, another problem recently
analyzed deals with the approximation of the electronic
structure on perturbed lattices of atoms. This model
leads to the analysis of the spectrum of perturbations of
periodic operators either for the Schrödinger equations
or the Dirac equations. The periodic operator has a
spectrum that is composed of bands (that can be ana-
lyzed by Bloch-Floquet theory); the perturbed operator
has a spectrum that is composed of the same bands
with possibly eigenvalues in the gaps. These localized
eigenvalues are of physical interest, and the numerical
methods should be able to approximate them well.
The problem is that, very often, reasonable enough
approximations produce discrete eigenvalues that have
nothing to do with exact eigenvalues. These are named
as spurious eigenvalues and analyzed in [1, 5, 18] from
an a priori point of view. Some constructive approaches
have been proposed in these papers to avoid the phe-
nomenon of spurious eigenvalues and get optimal a
priori convergence rate for the approximation of true
eigenstates both for the wave functions and associated
energies.

Error on the Algorithm

Most of the algorithms used for solving the above
problems after a proper discretization has been imple-
mented are iterative ones, either to solve a linear prob-
lem through a conjugate gradient algorithm or to solve
an eigenvalue problem through a QR or a simple power
algorithm (see, e.g., the entry � Fast Methods for Large
Eigenvalues Problems for Chemistry) or finally to take
into account the nonlinearities arising in the problem
being solved by a fixed point procedure. These iterative
algorithms may eventually converge (or not) after a
large enough number of iterations. From the practical

point of view, the correct number of iterations is not
known and very few analysis is done in this direction.
From the a priori point of view, the only analysis
we are aware of is the self-consistent field (SCF)
algorithms that has been, for years, the strategy of
choice to solve the discretized Hartree-Fock equation
(see e.g., � Self-Consistent Field (SCF) Algorithms).
In practice, though, the method has revealed successes
and failures both in convergence and in convergence
rates. A large amount of literature has proposed various
tricks to overcome the lack of robustness of the original
Roothaan algorithm. It is reported that this algorithm
sometimes converges toward a solution to the HF
equations but frequently oscillates between two states.
The definitive answer to the questions raised by these
convergence problems has been given by a series of
papers of Cancès and coauthors among which [6, 15].
An interesting cycle of order 2 has been identified in
the behavior of the algorithm in frequent cases explain-
ing why the algorithm oscillates between two states,
none of which being a solution of the original nonlinear
problem. The simple addition of a penalty term in the
same spirit as a basic level shift or DIIS algorithms
allows to avoid this oscillating behavior and corrects
definitively the fixed point algorithm. This mathemati-
cal analysis has been a very important success in the
community of computational chemists and has been
implemented as a default method in classical softwares.

The above results are almost the only ones existing
in this category. We are still at the very beginning
of this kind of analysis focussing on the algorithms,
the variety of which is even larger than the variety of
discrete schemes.

Conclusion

We have presented some results on the a priori and
a posteriori analysis focussing on approximations on
the model, on the discretization strategy, and on the a
chosen algorithm to simulate the solutions to problems
in chemistry. Most of the results are partial only, and
we are quite far from a full a posteriori analysis that
would tell the user, after he performed a given dis-
cretization with a given number of degrees of freedom
resulting in a discrete problem solved with a given
algorithm using a fixed number of iterations, how far
the discrete solution coming out from the computer is
from the exact solution and we are even farther from a

http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_256
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procedure able to tell what should be done in order to
improve the accuracy: either to increase the number of
degrees of freedom or the increase number of iterations
or change the model. This procedure though exists for
a totally different context as is explained in [10]. This
is certainly a direction of research and effort to be done
by applied mathematicians that will lead to future and
helpful progress for the reliability of approximations in
this field.
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Synonyms

Artificial; Computational; Free-Space; Nonreflective;
Open or Far-Field Boundary Conditions; Sponge
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Summary

Absorbing boundaries and layers are used to limit the
computational domain in the numerical approximation
of partial differential equations in infinite domains,
such as wave propagation problems or computational
fluid dynamics.

In a typical seismic problem, the wave equation
Lu D f must be solved in the subsurface with data
g on the surface; the solution u is sought in the domain
DS in magenta in Fig. 1. The domain in blue is a com-
putational layer LC ; their union is the computational
domainDC .

http://arxiv.org/pdf/1011.3634v2
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Absorbing Boundaries and
Layers, Fig. 1 Absorbing
layer (courtesy of
L. Métivier [19])

DS LC

In the theory of absorbing boundaries, the original
equation is solved in DC , and a special boundary
condition is imposed on its boundary to simulate the
entire subsurface, which amounts to reducing as much
as possible the reflection of waves inside the domain of
interestDS . Note that in the early history of the theory,
the computational domain and the domain of interest
were the same. The layer strategy is to modify the
equation inside the computational layer, using LC v D
f instead, with simple boundary condition at the exte-
rior border. In both cases, the modified problem in the
computational domain is required to fulfill important
properties:
1. Well posedness: For any data g, there exists a

unique solution v, with estimates in some norms:

kvk1 � C.kf k2 C kgk3/:

2. Transparency: For a given ", one can choose either
the absorbing boundary conditions or the size of the
layer, such that

ku � vkDS � ":

3. Simplicity: The additional amount of code writing
due to the layer should be limited.

4. Cost: The layer should be as small as possible.
Regarding item 4, note that Dirichlet boundary condi-
tions for the wave equation would act as a wall, thus
producing a 100 % error after a time T equal to twice
the size of the domain.

Absorbing Boundaries

The question emerged in the mid-seventies, with an
illustrating idea for the wave equation by the geophysi-
cist from Berkeley W.D. Smith [23]. It relies on the
plane wave analysis, which will be a useful tool all
throughout. Consider the wave equation in R

2,

@t tu � @11u � @22u D 0: (1)

Suppose one wants to reduce the computational do-
main to R

2� D fx; x1 < 0g. The plane waves are
solutions of (1), of the form u D Aei.!t�k � x/, with
the dispersion relation !2 D jkj2 D k21 C k22 . The
waves propagating toward x1 > 0 are such that
their group velocity �rk!�e1 is positive, i.e., k1

!
>

0. Place a fixed boundary � at x1 D 0 (Dirichlet
boundary condition u D 0), and launch a plane wave
from x1 < 0 toward � . By the Descartes’ law, it is
reflected into uR D �Aei.!tCk1x1�k2x2/: the reflection
coefficient is equal to �1. Replace the fixed boundary
by a free one (Neumann boundary condition @1u D 0).
Now the reflected wave is uR D CAei.!tCk1x1�k2x2/:
the reflection coefficient is equal to 1. Perform the
computation twice – once with Dirichlet, then with
Neumann – and add the results to eliminate the re-
flection. This ingenious idea is of course too simple: if
more than one boundary is required to be nonreflecting,
more elementary computations have to be made. For
instance, eight computations have to be made at a
three-dimensional corner. Furthermore, the argument
is no longer exact when the velocity is variable in
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the domain. However, it launched the Holy Grail for
30 years.

The breakthrough came with the plasma physicist
E.L. Lindmann [18], who paved the way for much
of the subsequent work in the subject. His analysis
was purely discrete but will be presented below at the
continuous level.

Consider again a plane wave traveling to the right,
impinging the boundary � , where a boundary condi-
tion is defined via an operatorG.@2; @t /:

@tuCG.@2; @t /@1u D 0: (2)

The reflected wave is RAei.!tCk1x1�k2x2/, where R is
defined by the boundary condition,

i!�ik1G.�ik2; i!/CR.i!Cik1G.�ik2; i!// D 0:

Define G0.ik2; i!/ D
 
1 �

�
k2

!

�2!� 1
2

. Then by the

dispersion relation, the reflection coefficient is equal to

R D G �G0
G CG0 . If G 	 1, the boundary operator is the

transport operator in the x1 direction and is transparent
to the waves at normal incidence, i.e., if k2 D 0,
R D 0. This condition will be referred to as first-order
absorbing and can be generalized in

@tuC 1

sin �0
@1u D 0; (3)

which is transparent to the waves impinging the bound-
ary at incidence angle �0. With some more caution, G0
would be the symbol of the Neumann to Dirichlet map
for the wave equation and the half-space R2C. Choosing
G to beG0 eliminates all reflections. A similar analysis
can be made for spherical boundaries as well and led,
together with fast integral methods, to some successful
tools by H.B. Keller and followers (see [11] for a
review).

However, in the physical variables, G0 is an inte-
gral operator in time and space, therefore numerically
costly. It is then worthwhile trying to get approxima-
tions to G0, which starts by an approximation of the
square root. E.L. Lindmann was the first to notice that
a Taylor series expansion would lead to an unstable
boundary condition and proposed a continuous fraction
approximation:

.1� X/� 1
2 � a0 C

NX
jD1

ajX

1 � bjX ;

G.ik2; i!/ D a0 C
NX
jD1

aj k
2
2

!2 � bj k22
: (4)

Substituting into (2) leads to the absorbing boundary
condition

@tuC @1uC
NX
jD1

Gj @1u D 0;

where each Gj operates on functions ' defined on � �
.0; T /, Gj' D  j solution of

@t t j � bj @22 j D aj @22';

with the initial conditions  j D @t j D 0. The
coefficients .aj ; bj /were found such as to optimize the
reflection coefficient over all angles of incidence.

The idea of approximation was developed further,
but with a Padé approximation of G�1

0 instead of G0,
by B. Engquist and A. Majda in [7, 8]. Their first two
approximations, named 15ı and 45ı, respectively, in
the geophysical literature, at the boundary x1 D 0 for
the half-space x1 < 0, were

@tuC c@1u D 0; @t tuC c@t1u � 1
2
@22u D 0: (5)

In those two papers, an entire theory, in the frame
of the theory of reflection of singularities, permitted
an extension to hyperbolic systems (elastodynamics,
shallow water, Euler), variable coefficients, and curved
boundaries. For instance, the extension of (3) to a
circle of radius R is, with a derivative @r in the radial
direction,

@tuC @ruC 1

2R
u D 0 in 2D;

@tuC @ruC 1

R
u D 0 in 3D:

Among the approximations, those that generate
well-posed initial boundary value problems were
identified in [25]. Various extensions to other type



Absorbing Boundaries and Layers 13

A

of problems, mainly parabolic (advection-diffusion,
Stokes, Navier-Stokes), followed in the 1990s; see,
for instance, [13, 24]. There is not much extra cost
compared to Dirichlet since the boundary conditions
are local in time and space.

R. Higdon [15] found an expression for the absorb-
ing boundary conditions as a product of first order-
operators (3) that is very useful on the discrete level.
Another concept of far-field boundary condition was
developed by A. Bayliss and E. Turkel, based on
asymptotic expansions of the solution at large distances
[3]. They proposed a sequence of radiation operators
for the wave equation in the form

nY
jD1

�
LC 2j � 1

r

�
u;

and showed well-posedness and error estimates.
At these early times, no layer was used. It is only

in [10, 12] that optimized layers were introduced. The
evanescent waves are damped in the layer of width ı,
and the coefficients in (4) are chosen to minimize the
error in the domain of interest over the time length T ,
generalizing (5) to

@tuC ˛0@1 D 0; u@t tuC ˛1@t1u� ˇ1@22u D 0: (6)

The coefficients are given by

� D 2ı

T
; ˛0 D 1p

�
; ˛1 D

p
2�

1
4p

1C � ; ˇ1 D
1

1C � :

Only a small and balanced error remains when
optimized absorbing conditions are used, as shown in
Table 1 where the error in the domain of interest caused
by the truncation is measured in the L2 norm in space
at time t D T .

Absorbing Layers

M. Israeli and S. Orszag introduced and analyzed in
1981 the sponge layers for the one-dimensional wave
equation [17]. They added in a layer of width ı, what
they called a Newtonian cooling .x/.@tu C @xu/ to
the equation. The right-going waves cross the interface
without seeing it, while the left-going waves, reflected
by the exterior boundary of the layer, are damped.
This strategy was coupled with an absorbing boundary
condition at the end of the layer. For more complicated
equations, the numerical performance of such layers
with discontinuous coefficient  is not as good as one
would hope. One reduces reflections at the interface for
the right-going waves by choosing .x/ > 0, vanishing
to order k > 0 at the origin:

.x/ D A.k C 1/.k C 2/
�x
ı

�k ı � x
ı

: (7)

That reduces the rate of absorption and thereby in-
creases the width of the layer required. A WKB anal-
ysis shows that the leading reflection by such layers
of incoming wave packets of amplitude O.1/ and
wavelength " is O."kC1/ [17]. In practice k is chosen
equal to 3.

At that time it was difficult to see how to extend the
strategy to higher dimension, so absorbing boundary
conditions were more widely employed than sponge
layers. . . whose revenge came 15 years later. In 1994,
the electrical engineer Bérenger found the Grail, the
perfectly matched layers for Maxwell’s system [5, 6].
The striking idea was to design a “lossy medium” in
the layer, so that no reflection occurs at the interface,
for all frequencies and all angles of incidence, and
furthermore the transmitted wave is damped in the
layers. Interesting interpretations involving a complex
change of coordinates are very useful for harmonic
problems [21].

The first paper deals with the transverse electric
modes (supposing no source term):

Absorbing Boundaries and Layers, Table 1 Comparison of the error caused by the truncation of the domain by the various
methods

Error First Order Second Order

at t D T Dirichlet Orthogonal Optimized Orthogonal Optimized

L2 100 % 22 % 21 % 10 % 5 %



14 Absorbing Boundaries and Layers

"0 @tE1 � @2H3 C E1 D 0;
"0 @tE2 C @1H3 C E2 D 0;
�0 @tH3 C @1E2 � @2E1 C �H3 D 0:

(8)

In the last equation, the magnetic component H3 is
broken into two subcomponents,H31 and H32, and the
equation itself is doubled, giving rise to a 4�4 system:

"0 @tE1 � @2.H31 CH32/C 2E1 D 0;
"0 @tE2 C @1.H31 CH32/C 1E2 D 0;
�0 @tH31 C @1E2 C �

1 H31 D 0;
�0 @tH32 � @2E1 C �

2 H32 D 0:
(9)

The parameters .1; 2; �
1 ; 

�
2 / characterize the PML.

They are in this first stage, piecewise constant, and
assembled along the famous picture in Fig. 2 (noting
that the vacuum is PML(0; 0; 0; 0)).

Bérenger showed by an argument resembling a
plane wave analysis, which under the assumptions
j ="0 D �

j =�0, the interfaces were transparent
(perfectly matched) to waves at all incidences and
wavenumbers. Furthermore, he exhibits an apparent
reflection coefficient (due to the perfect conductor
condition at the exterior border of the layer),
R.�/ D e�2. cos �="0c/ı, showing that the layer is
indeed absorbing. He however noticed that in practical
computations, the absorption coefficient  needs to
be continuous, and he uses polynomial values (7) of
Israeli and Orszag. Figure 3 with the same colorbar
as in Fig. 4, shows the superior performances of the
Berenger’s layers.

This method experienced a huge success in the com-
putational world due not only to the features presented
above but also to the ease of implementation, especially
at the corner, where absorbing boundary conditions
were difficult to implement. These properties offset the
extra cost due to the addition of a new equation in 2D
(and even more in 3D). An intense activity followed,
concerning the mathematical analysis of the PML and
the extension to other systems such as Euler equations
and elastodynamics. The perfectly matched model for
the general hyperbolic problem below is built in two
steps.

L.@t ; @x/ U WD @tU C
dX
kD1

Ak @kU D 0 ;

.t; x/ 2 R
1Cd ; U.t; x/ 2 C

N : (10)

The first step is a splitting of the system. The split
system involves the unknown .U 1; U 2; : : : ; U d / 2
.CN /d :

@tU
j C Aj @j .U

1 C U 2 C : : : U d / D 0 ;

j D 1; : : : ; d : (11)

The second step is the insertion of a damping j .xj /
supported in fXj � xj � Xj C ıj g, in the j equation:

@tU
j C Aj @j .U 1CU 2C: : : U d /C j .xj / U j D 0 :

(12)

Note, for comparison, that the sponge layer of Israeli
and Orszag generalizes into

PML (s+
1 , s 1

+∗, s+
2
 , s 2

+∗)

PML (s+
1 , s 1

+∗ , 0, 0)

PML (s+
1 , s 1

+∗, s−
2 , s 2

−∗)

PML (0, 0, s−
2 , s 2

−∗)

PML (s−
1 , s

−
1
∗, s−

2 , s
−
2
∗)

PML (s−
1 , s

−
1
∗, 0, 0)

vacuum

Wave source

Outgoing wave

Perfect conductor

PML (0, 0, s+
2 , s

+
2
∗)

PML (s−
1 , s

−
1
∗ , s+

2 , s
+
2
∗)

Absorbing Boundaries and Layers, Fig. 2 The PML technique by Bérenger [5]
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@tU C
dX
lD1

Al @lU C
X
j

j .xj /�C.Aj /U D 0 ;

(13)
introducing the notation �C.Aj / for the spectral pro-
jector on the eigenspace corresponding to strictly posi-
tive eigenvalues of Aj .

S. Abarbanel and D. Gottlieb realized quite soon
in [1] that for Maxwell’s system, (11) was a weakly
hyperbolic problem, which means that the Cauchy
problem has a unique solution but with a loss of deriva-
tives, i.e., keU .t; �/kL2.R2/ � .1 C C t/keU .0; �/kH1.R2/.
It is then possible that a zero-order perturbation of (11)
would lead to ill-posed Cauchy problems. An example
of such a situation is given in [14]. Alternatively, if L
is strongly well posed (i.e., the Cauchy problem has
a unique solution in L2 with no loss of derivative)
and if L1.0; @/ is elliptic (i.e., detL1.0; 	/ ¤ 0 for
all real 	), then eL is strongly well posed for any
absorption .1.x1/; : : : ; d .xd // in .L1.R//d . This is
the case for the wave equation or the linear elastody-
namic system. The analysis of the Maxwell PML relies
on the construction of an augmented system and the
construction of a symmetrizer. In two dimensions, it
requires each absorption to be in W 1;1.R/ [20] and in
three dimensions in W 2;1.R/ [14]. In the latter, there
exists a constant C such that, for any initial data eU 0

in H2.R3/, the system (12) has a unique solution in
L2.R3/ with

keU .t; �/k.L2.R3//9 � CeC t
		eU 0

		
.H2.R3//9

:

Even though discontinuous damping coefficients are
replaced in the computation by polynomials, it is
amazing to notice that the question of well-posedness
for the problem described in Fig. 2 with discontinuous
coefficients is still an open problem in three
dimensions.

Once well-posedness is proved, the perfect match-
ing follows by a change of variables. A good def-
inition of perfection was given in [2]. Coming to
absorption, the situation is contrasted. For Maxwell’s
equations, Bérenger proved its layer to be absorb-
ing. Other cases were shown to exhibit amplification:
Euler equations linearized around a nonzero mean
flow in [16], anisotropic elasticity in [4]. In those
papers, an analysis involving group and phase veloc-
ity was performed, and other layers were proposed.
These analyses were extended to nonconstant absorp-
tion in [14].

Other Issues and Applications

The need to bound the computational domain arises for
stationary problems, elliptic problems in mechanics,
and harmonic problems in scattering, for instance.
In that case, other tools are available, like integral equa-
tions, coupling between finite elements and boundary
elements, multipoles, and infinite elements.

The concept of absorbing boundary condition is
closely related to paraxial equations used in geo-
physics or underwater acoustics to approximate waves
in a preferred direction [25]. It is also related to opti-
mized Schwarz domain decomposition methods [9,10].
Perfectly matched layers were also used for domain de-
composition in relation with harmonic problems [22].
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Introduction

Cell locomotion is essential in numerous processes
such as embryonic development, the immune response,
and wound healing. Movement requires forces, which

are generated by utilizing the chemical free energy in
ATP to build actin networks and power myosin motor
contraction. In solution, actin monomers (G-actin) as-
semble into two-stranded filaments (F-actin), bundles
of filaments and gels. The helical F-actin filament is
asymmetric, with a barbed or plus end and a pointed
or minus end, and this leads to asymmetric reaction
kinetics at the two ends. In solution, G-actin primarily
contains ATP, but a G-ATP monomer that is incorpo-
rated in a filament subsequently hydrolyzes its bound
ATP into ADP-Pi-actin and releases the phosphate
Pi to yield G-ADP. As a result maintenance of actin
structures at steady state requires a constant energy
supply in the form of ATP. All three G-actin types
bind to filament tips, but with different kinetic rates. In
vivo, the structures formed range from microspikes and
filopodia, to larger pseudopodia and broad lamellipo-
dia, and their type is tightly controlled by intracellular
regulatory molecules and extracellular mechanical and
chemical signals.

Three basic processes involved in cellular move-
ment are (1) controlled spatio-temporal remodeling
of the actin network, (2) construction and destruction
of “traction pads” – called focal complexes or focal
adhesions (FAs) – that are complexes of integrins and
other proteins that transiently assemble for force trans-
mission to the substrate, and (3) generation of forces to
move the cell body over these traction pads. Four zones
of actin networks that occur in motile cells are (1) the
lamellipodium (LP), a region of rapid actin turnover
that extends 3–5�m from the leading edge of the
cell, (2) the lamellum (LM), a contractile network that
extends from behind the leading edge to the interior
of the cell, (3) the convergence zone, in which the
retrograde flow in the LP meets the anterograde flow
in the cell body, and (4) the actin network in the cell
body, which contains the major organelles (cf. Fig. 1).

To produce directed cell movement, spatio-temporal
control of the structure of the actin subnetworks and
their interaction with the membrane and FAs is neces-
sary, and as many as 60 actin-binding proteins, grouped
by their function as follows, may be involved.
1. Sequestering proteins that sequester actin monomers

to prevent spontaneous nucleation and end-wise
polymerization of filaments (thymosin-ˇ4) or
interact with actin monomers to affect nucleotide
exchange (profilin, cofilin, and twinfilin).

2. Crosslinking proteins such as ˛-actinin that cross-
link the actin filaments. Others such as vinculin,
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Actin Cytoskeleton, Multi-scale Modeling, Fig. 1 The
lamellipodium and lamellum at the leading edge of a cell. The
convergence zone and cell body lie proximal to the lamellum.
F-actin is stained green and activated myosin is stained blue.
Sites of adhesion to the substrate are in red (From [1], with
permission)

talin, and zyxin link the cell cortex to the plasma
membrane.

3. Severing proteins such as ADF/cofilin and gelsolin
that sever F-actin to generate more filament ends for
network growth or disassembly.

4. Other proteins cap filament ends to regulate addition
or loss of actin subunits (capping protein, gelsolin,
Arp2/3), nucleate filament growth (Arp2/3, formin),
or enhance subunit dissociation (cofilin).
The LP actin network consists of short, branched

F-actin whose formation is promoted by Arp2/3, which
nucleates new filaments de novo or initiates branches
from preexisting filaments [2], while filament severing
and depolymerization at the pointed end is promoted
by ADF/cofilin. Sequestering proteins such as twin-
filin or ˇ-thymosins bind G-actin to prevent filament
growth, while others such as profilin enhance nu-
cleotide exchange. These and capping proteins control
the G-actin pool so as to produce short, stiff filaments
at the leading edge. The dynamic balance between
these processes produces a zone 
1–3�m wide of
rapid network formation at the leading edge, followed
by a narrow band of rapid actin depolymerization [3].

The LM is a zone immediately distal to the LP
containing longer, less dense, and more bundled fila-
ments. Actin polymerization and depolymerization in
the LM is localized at spots that turn over randomly,
and retrograde flow is slow [4]. Lamella also contain
myosin II and tropomyosin, which are absent from the

LP [3], and the actin and myosin form bundles called
stress fibers. Contraction of stress fibers attached to the
FAs at the junction between the LP and LM generates
the force to move the cell body forward in the third step
of migration [5].

To understand the interplay between the various
subnetworks and the regulatory proteins governing the
dynamics of the cytoskeleton, which is the name given
to the actin network and all its associated proteins,
mathematical models that link molecular-level behav-
ior with macroscopic observations on forces exerted,
cell shape, and cell speed are needed. How to formulate
tractable models presents a significant challenge. The
major subproblems involved are (1) understanding the
dynamic control of the different structures in the actin
network, (2) modeling the construction and disassem-
bly of FAs and stress fibers, and analyzing how the
level of motor activity and the adhesiveness of the
substrate determine the cell speed, and (3) analyzing
whole-cell models of simple systems to understand
how the mechanical balance between components pro-
duces stable steady states of actin turnover, motor
activity, and cell shape and how these respond to chem-
ical and mechanical signals. Models for actin dynamics
and the cytoskeleton, some of which are discussed
below, range from stochastic models of single filaments
to continuum models for whole cell movement. (See
[6,7] for a more detailed explanation of cell movement,
[8, 9] for texts on the mechanics of polymers and
motors, [10, 11] for further details about the cytoskele-
ton, [12] for the biophysics of force transduction via
integrins, and [13] for a more comprehensive review of
mathematical modeling.)

Single Filament Dynamics

To understand some of the issues we consider a sim-
plified description of a single filament in a pool of
fixed monomer concentration, ignoring the distinction
between monomer types, and the fact that a growing
filament has two strands. The rate of monomer addition
is higher at the plus or barbed end than at the minus or
pointed end. At each end the reaction

F1 C Fn�1
kC
�! �
k�

Fn (1)
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occurs, where Fn is the filament consisting of n actin
subunits and F1 the G-actin monomer. If we neglect
all processes but addition or release at the ends, the
time rate change of filament length (l) measured in
monomers is governed by the equation

dl

dt
D kCc � k�; (2)

where the rates are now the sum of the rates at the
two ends. Therefore, there is steady state length if
the monomer concentration is c D k�=kC 	 Kd .
There is also a critical concentration c˙ for each end
of a filament at which the on- and off-rates for a
given form of the monomer are equal. Above this the
end grows, while below that it shrinks. G-ATP has
a much higher on-rate at the plus end than at the
minus end, and therefore the critical concentration cC
is lower than the critical concentration c� for the minus
end. The equilibrium constants are the same at both
ends for G-actin-ADP (G-ADP), and hence the critical
concentrations are the same, but since G-ATP is the
dominant form of the monomer in vivo, its kinetics
dominate the growth or decay of the filament. At the
overall critical concentration there is net addition of
monomers at the plus end and loss at the minus end,
and the filament is said to “treadmill.”

The preceding description is simplified in that the
structure of the filament is ignored and the dynamics
are treated deterministically. We remedy this in two
steps: first we describe the stochastic analog of the
preceding and then consider the filament structure.
Suppose that a single filament of initial length l0
polymerizes in a solution of volume Vo, free monomer
mo, and total monomer count N D lo C mo. Let
q.n; t/ be the probability of having n monomers in
the monomer pool at time t , and let p.n; t/ be the
probability of the filament being of length n at time t .
The evolution equation for q.n; t/ is

dq.0; t/

dt
D �� q.0; t/C � q.1; t/

dq.n; t/

dt
D � q.n � 1; t/ � .�C n�/ q.n; t/

C .nC 1/� q.nC 1; t/
.1 � n � N � 1/

dq.N; t/

dt
D � q.N � 1; t/�N� q.N; t/

where � D k�; � D kC=.NA � Vo/ and NA is
Avogadro’s number. The steady-state monomer distri-
bution is

q1.n/ D lim
t!1 q.n; t/ (3)

D 1

nŠ

�
�

�

�n
=

 
NX
kD0

1

kŠ

�
�

�

�k!

and p1.n/ D q1.N � n/. The mean is

M1 D
NX
nD0

n q1.n/ (4)
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and as N ! 1 this tends to a Poisson distribution
with mean �=�, which is the monomer number at
the critical concentration in the preceding deterministic
analysis.

Next suppose that the monomers are of two types –
G-ATP and G-ADP – and consider the initial condition
of a pure G-ADP filament tethered at the pointed
end. When the G-ATP is below the critical concen-
tration, the filament tip switches between the ATP-
capped state and the ADP-exposed state. The filament
comprises two parts: the ATP-cap and the ADP-core
portion of length m and n, respectively, and we let
p.m; n; t/ be the probability of this state. Denote the
ATP on- and off-rates as ˛ and ˇ, and the ADP off-rate
by � . The master equation for the filament state is then

dp.m; n; t/

dt
D ˛ p.m � 1; n; t/C ˇ p.mC 1; n; t/

� .˛ C ˇ/ p.m; n; t/ .m � 1/
dp.0; n; t/

dt
D �˛ p.0; n; t/C ˇ p.1; n; t/

C � p.0;mC 1; t/ � � p.0; n; t/:

Analysis of this model leads to the length distribution,
various moments, and the distribution of the lifetime
of an ATP cap. It also leads to an explanation of
two experimental observations: (1) the elongation rate
curve is piecewise linear in that the slopes are different
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below and above the critical concentration; and (2) the
measured in vitro diffusion constant is 30–45 times
higher than the prediction according to earlier deter-
ministic analysis [14].

Bulk Filaments in Solution

New phenomena arise when new filaments can be
generated from monomers via nucleation in a closed
system. The filaments now interact via the monomer
pool, and because nucleation of a new filament is
energetically less favorable than addition to an existing
one, the tendency is to produce longer rather than more
filaments. The evolution starting with a pure monomer
pool involves the sequence

Nucleation! Growth! Monomer/polymer

equilibrium! Length redistribution:

The system is constrained by a maximal length,N , for
the filaments, and thus, a deterministic description of
filament growth leads to

dc1

dt
D �2.kC

1 c
2
1 � k�

1 c2/�
NX
iD3
.kC
i�1c1ci�1 � k�

i�1ci /

(5)

dcn

dt
D .kC

n�1c1cn�1 � k�
n�1cn/

� .kC
n c1cn � k�

n cnC1/ for n 2 .3;N � 1/
(6)

dcN

dt
D kC

N�1c1cN�1 � k�
N�1cN : (7)

The on-rates, kC
i .i D 1; 2; 3:::/, are equal and

denoted kC, and the off-rates, k�
i .i D 3; 4; 5:::/

are equal and denoted k�, but each differs from those
of nucleation steps, k�

1 ; k
�
2 . The flow of monomers

between the different pools is shown in Fig. 2. The
first two nucleation steps are fast reactions, and equi-
librate on time scales estimated as .k�

1 C 4kC
1 c1/

�1 

O.10�6s/ and .k�

2 C 9.k�
1 =k

C
2 /k

C
2 c1/

�1 
 O.10�3s/,
respectively [15]. The trimers then elongate and in this
stage, the actin flux is via the trimer to filament step.
Because of the high nucleation off-rates, one finds that
the monomer pool is above the critical concentration
when nucleation stalls. After the establishment of the

Actin Cytoskeleton, Multi-scale Modeling, Fig. 2 A
schematic of the network for nucleation and filament growth
(From [15] with permission)

filament population, individual filaments elongate until
the monomer pool equilibrates with filaments (
30 s).
The dynamics of bulk filaments can be rewritten as

dci

dt
D kCc1ci�1 � k�ci � kCc1ci C k�ciC1 (8)

D �.kCc1 � k�/.ci � ci�1/C kCc1 C k�

2

.ciC1 � 2ci C ci�1/ .i � 4/ (9)

and from this one sees that the dynamics involves
two processes: convection of the filament distribution,
represented in the first term, which dominates when
c1 >> k�=kC, and diffusion represented by the
second term. Before establishment of the monomer–
polymer equilibrium, convection dominates diffusion,
and one observes in the computational results that
the maximum of the length distribution increases at
a predictable speed [15]. Later in the evolution, the
unimodal distribution eventually evolves, albeit very
slowly, into an exponential steady state distribution. If
one assumes that the monomer pool is approximately
constant in this phase one has the linear system

dc

dt
D Ac C � (10)

where c D .c2; c3; : : : ; cN /
T , � D .kC

1 c
2
1 ; 0; : : : ; 0/

T ,
andA is an .N�1/�.N�1/matrix. A spectral analysis
of A shows that the slowest mode relaxes on a time
scale of order of N2, which for N D 2; 000 is of order
106 s [15]. This exceptionally slow relaxation provides
a possible explanation for why different experiments
lead to different conclusions concerning the steady
state distribution.
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Models of Force Generation and
Membrane Protrusion

The basic problem in polymerization models is to
understand how a monomer can attach to a filament
abutting a surface. Mogilner and Oster [16] proposed
the elastic Brownian ratchet (EBR) model in which the
thermal motion of the polymerizing filaments collec-
tively produce a directed force. This model requires
untethered filament ends at a surface for the free
energy of monomer addition to generate force, and
treats the actin filament as a flexible wire, whose end
is fluctuating due to thermal fluctuations (see Fig. 3).
When bent away from the surface, a subunit can bind
to the filament and lengthen it. The restoring force of
the filament straightening against the surface delivers
the propulsive force. Given the measured stiffness of
actin filaments, it was found that the length of the
flexible actin filament (i.e., the “free” length beyond
the last crosslinking point) must be quite short, in the
range 30–150 nm. Beyond this length, thermal energy
is taken up in internal bending modes of the filament,
and pushing is ineffective. These considerations imply
a requirement for the cell to balance the relative rates
of branching, elongation, and capping. Theoretical cal-
culations suggest that the cell tunes these parameters to
obtain rapid motility and that it uses negative feedback

Actin Cytoskeleton, Multi-scale Modeling, Fig. 3 A model
for the thermal vibration of a filament anchored in a rigid
network (From [16])

via capping to dynamically maintain the number of
barbed ends close to optimal levels [17].

The EBR model assumes filaments are untethered
at the tip to permit the intercalation of monomers.
However, most biomimetic assays on beads indicate
a strong attachment of the actin tail to the moving
surface, and suggest that at least a portion of filaments
should be tethered to the surface. To account for these
experimental findings, the EBR model was modified to
allow tethering of filaments, and in this model, three
classes of filaments are involved in force generation
[18]. It is assumed that new filaments are nucleated via
the NPF-Arp2/3 complex pathway, and that initially,
these newly formed filaments attach to the surface and
allow no polymerization. In addition, the attachment
may be under stress and thus exert retarding force at the
surface. After detachment, the filaments polymerize at
the surface and exert forces on the surface as in the
EBR model, or they can be capped.

On the other hand, Dickinson and colleagues pro-
posed an alternative mechanism for the force genera-
tion [19]. In this model surface-bound, clamp motors
anchor the filament to the surface and promote the
processive elongation of the filament. The detailed
mechanism is described as the “Lock, Load, and Fire”
mechanism, in which an end-tracking protein remains
tightly bound (“locked” or clamped) onto the end of
one subfilament of the double-stranded growing actin
filament. After binding to specific sequences on tracker
proteins, profilin-ATP-actin is delivered (“loaded”) to
the unclamped end of the other strand, whereupon
ATP within the currently clamped terminal subunit of
the bound strand is hydrolyzed (“fired”), providing
the energy needed to release that arm of the end-
tracker, which then can bind another profilin-ATP-actin
to begin a new monomer-addition round. The last step
triggers advance of the clamp to the terminal subunit in
preparation for a new polymerization cycle.

Both models capture two main features of actin-
driven motility. First, filament growth against an
obstacle can produce substantial protrusive forces, and
in both the filament network is attached to the surface.
However, there also are clear differences between
them. First, the tethered ratchet model uses the free
energy released by monomer polymerization as the
sole energy source for protrusion, whereas the LLF
model utilizes both energy released by ATP-hydrolysis
and the monomer binding energy for propulsion.
As a result, the LLF model can produce work at
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a lower monomer concentration. Second, the first
model predicts a force-velocity relationship in which
the velocity is force-sensitive at small loads but less
sensitive at larger loads, whereas the reverse obtains
for the LLF model. It is quite likely that both models
apply to cellular motility – the tethered Brownian
ratchet model may be closer to reality in lamellipodia
containing dendritic actin networks, whereas the
LLF may better describe the extension of filopodia
composed of bundles of parallel filaments – only
further experiments can determine this.

Integration of Signaling, Network
Dynamics, and Force Generation

The dendritic nucleation model has been proposed as
a unified description of actin dynamics in whole cells
[20]. The model involves elongation at free barbed
ends, ATP-hydrolysis and Pi release, capping of barbed
ends as the filament array moves away from the leading
edge, and pointed-end uncapping and disassembly,
presumably from the pointed end. The network dynam-
ics are regulated by several actin-binding proteins as
described below [21, 22].
1. The Arp2/3 complex is activated upon binding

to WASP that is activated by the small GTPase
CDC42.

2. Active Arp2/3 nucleates actin-filament assembly
and caps the free pointed end of the filaments, or
it binds to the side of a filament and then nucleates
filament growth or captures the barbed ends of a
preexisting filament. Growth of filaments is rapid
and the lag in Pi dissociation leads to filaments in
the leading edge that are composed predominantly
of ATP- and ADP-Pi-actin and do not bind to
ADF/cofilin (ADC).

3. Capping of the barbed ends by capping proteins pre-
vents their further elongation. At the rear of lamel-
lipodia, two mechanisms, filament severing and
uncapping of pointed ends by removal of Arp2/3,
could contribute to the rapid depolymerization. Sev-
ering by ADC is likely to occur at junctions between
regions of filaments that are saturated with ADC and
naked F-actin. The depolymerization is enhanced
by Aip1.

4. ADC enhances depolymerization of ADP-actin
from free filament ends in the rear of lamellipodia.

5. The complex of ADC and ADP-actin that dissoci-
ates from the filament ends is in equilibrium with
ADC and G-ADP.

6. The nucleotide exchange on actin monomer is a
slow process, further inhibited by ADC, whereas
profilin enhances this rate.

7. ATP-actin monomers are sequestered by ˇ-
thymosins to prevent spontaneous nucleation, but
provide a pool of ATP-actin for assembly.

Details can be found in the original literature.

Summary

The foregoing gives a brief glimpse into the complexity
of actin networks, but these are just one component
of the machinery involved in cell motility. Two basic
modes of movement are used by eukaryotic cells –
the mesenchymal mode and the amoeboid mode. The
former, which was described earlier, can be charac-
terized as “crawling” in fibroblasts or “gliding” in
keratocytes. This mode dominates in cells such as
fibroblasts when moving on a 2D substrate. In the
amoeboid mode, which does not rely on strong adhe-
sion, cells are more rounded and employ shape changes
to move – in effect “jostling through the crowd” or
“swimming.” Leukocytes use this mode for movement
through the extracellular matrix (ECM) in the absence
of adhesion sites. Recent experiments have shown that
numerous cell types display enormous plasticity in
locomotion in that they sense the mechanical properties
of their environment and adjust the balance between
the modes accordingly [23]. Thus pure crawling and
pure swimming are the extremes on a continuum of
locomotion strategies, but many cells can sense their
environment and use the most efficient strategy in
a given context. Heretofore, mathematical modeling
has primarily focused on the mesenchymal mode, but
a unified description for locomotion in a 3D ECM
that integrates signaling and mechanics is needed. As
others have stated – “the complexity of cell motil-
ity and its regulation, combined with our increasing
molecular insight into mechanisms, cries out for a
more inclusive and holistic approach, using systems
biology or computational modeling, to connect the
pathways to overall cell behavior” [24]. This remains
a major challenge for the future, and some early steps
to address this challenge are given in [25, 26] and
references therein.
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Synonyms

Adaptive grid refinement; Adaptive regridding; Adap-
tive remeshing

Short Definition

A major challenge when solving a PDE in numerical
simulation is the need to improve the quality of a given
computational mesh. A desired mesh would typically
have a high proportion of its points in the subdomain(s)
where the PDE solution varies rapidly, and to avoid
oversampling, few points in the rest of the domain.
Given a mesh, the goal of an adaptive mesh refinement
or remeshing process is to locally refine and coarsen
it so as to obtain solution resolution with a minimal
number of mesh points, thereby achieving economies
in data storage and computational efficiency.
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Basic Principles of Adaptive Refinement

A ubiquitous need for mesh adaptivity for a wide
array of science and engineering problems has led
to the development of a profusion of methods. This
has made mesh adaptivity both an extremely active,
multifaceted area of research and a common stumbling
block for the potential user looking for a method which
matches their particular needs. Standardization of tech-
niques and terminology has only occurred within in-
dividual problem domains. Nevertheless, certain basic
principles often apply in describing various adaptivity
approaches.

Fundamental to any mesh refinement algorithm
is the strategy for specifying the individual mesh
elements (or cells). More precisely, the size, shape,
and orientation of each element must be specified.
Two complementary adaptive principles for doing this
are equidistribution and alignment. While the first has
been used in the mesh adaptivity community since
first introduced by de Boor for solving ODEs in 1973,
an understanding of alignment in multidimensions
is relatively recent [3]. Normally, the element sizes
are determined by explicitly using some sort of
equidistribution process: sizes are equalized relative
to a user-specified density function �, i.e., mesh
sizes are inversely proportional to the magnitude
of � in the elements. Common choices of � are
some measure of the approximate solution error or
some physical solution features such as arc length or
curvature.

There are a wide range of algorithmic approaches
for determining element shape and orientation. Some
generate isotropic meshes, where the element aspect
ratio (the ratio of the radii of its circumscribed and
inscribed spheres) is kept close to one. These can be
preferred when they can resolve the solution without
using an undue number of mesh points. Anisotropic
meshes are favored when there is a need for better
alignment of the mesh with certain solution directions,
such as those arising due to boundary or interior layers
and sharp interfaces.

A convenient mathematical framework for
analyzing many mesh adaptivity methods utilizes a
solution-dependent, positive definite monitor function
M (whether or not M is explicitly used in the
adaptive process or not). M imposes a metric on the
physical domain, and one views the goal of the mesh
adaptation to be to generate an M -uniform mesh [3].

For such a mesh, the element sizes are (i) constant, and
consequently equidistributed in � D det.M/

1
2 , and (ii)

equilateral. The latter condition can be precisely stated
in terms of an alignment condition, with the elements’
orientations along directions of the eigenvectors of M
and lengths reciprocally proportional to the square root
of the singular values of M .

Some Refinement Strategies

M. Berger and her co-workers pioneered development
of some of the first sophisticated dynamic regridding
algorithms, which they called local adaptive mesh
refinement or AMR methods. Employed originally for
computational fluid dynamics applications, usage has
expanded into many other application areas. Beginning
with a coarsely resolved base-level regular Cartesian
grid, individual elements are tagged for refinement us-
ing a user-supplied criterion (such as requiring equidis-
tribution of a mass density function over cells) and
structured remeshing done to preserve local uniformity
of grids. It is an adaptive strategy well suited for use
with finite difference methods. These and the subse-
quent structured adaptive mesh refinement (SAMR)
techniques aim at preserving the high computational
performance achievable on uniform grids on a hierar-
chically adapted nonuniform mesh [4].

Another popular class of adaptive methods for
solving PDEs is hp-methods. These finite element
and finite volume methods naturally handle irregularly
shaped physical domains and compute on an
unstructured, or irregular, mesh (where the mesh
elements cover the domain in an irregular pattern).
With h-refinement, elements are added and deleted
but in an unstructured manner, normally using an
a posteriori error estimate as the density function.
The p-refinement feature permits the approximation
order on individual elements to change. There is an
extensive literature on these well-studied methods
(e.g., see [2] and the article hp-version FEMs).

Moving mesh methods, which are designed specif-
ically for time-dependent PDEs, use a fixed number
of mesh points and dynamically relocate them in time
so as to adapt to evolving solution structures. Since
mesh connectivity does not change, they are often
amenable to use with finite difference methods. When
used with finite element or finite volume methods,
they are called r-adaptive (or relocation) methods.
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A

The adaptivity strategy and analysis focus on how to
optimally choose mesh point locations. In [3] they are
viewed within a framework of M -uniform meshes,
and Huang’s strategy for choosing M to minimize the
standard interpolation error bound is developed for im-
portant standard cases. This treatment applies for both
isotropic error bounds, where M is basically a scalar-
valued matrix function I , and anisotropic bounds,
where the level of mesh anisotropy and mesh alignment
are precisely tied together. Fortuitously, there are often
close relationships between this analysis for moving
mesh methods and the other important types of adap-
tive mesh methods, particularly h-adaptive methods.
Final comments: For computational PDEs, adaptive
mesh refinement is part and parcel of a successful
algorithm since computing an accurate solution is
codependent upon computing a suitable mesh. In
other areas, such as geometric modeling in computer
graphics and visualization where a surface mesh is
used to represent a given shape, adaptive remeshing is
often subordinate to fast processing techniques for the
modeling, editing, animation, and simulation process.
(For a survey of recent developments in remeshing of
surfaces focusing mainly on graphics applications, see
[1].) One of the many remaining challenges in the field
is ultimately to find common features of adaptive mesh
refinement and common terminology between such
disparate areas.
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Description

Finite-difference methods have been extremely
important to the numerical solution of partial
differential equations. An ADI method is one
of them with extraordinary features in structure
simplicity, computational efficiency, and flexibility
in applications.

The original ADI idea was proposed by D. W. Peace-
man and H. H. Rachford, Jr., [12] in 1955. Later, J.
Douglas, Jr., and H. H. Rachford, Jr., [3] were able
to implement the algorithm by splitting the time-
step procedure into two fractional steps. The strategy
of the ADI approach can be readily explained in a
contemporary way of modern numerical analysis.
To this end, we let D be a two-dimensional spacial
domain and consider the following partial differential
equation:

@u

@t
D FuC Gu; .x; y/ 2 D; t > t0; (1)

where F ; G are linear spacial differential operators.
Assume that an appropriate semidiscretization of (1)
yields the following system:

v0 D Av C Bv; t > t0; (2)

where A; B 2 C
n�n; AB ¤ BA in general, and

v 2 C
n approximates u on D. Let v.t0/ D v0 be an

http://dx.doi.org/10.1007/978-3-540-70529-1_148
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initial vector given. Then for arbitrary � > 0; the exact
solution of (2) can be provided by the variation-of-
constant formula [7]

v.tC�/ D e�Av.t/C
Z �

0

e.��	/ABv.tC	/d	; t � t0:

An application of the left-point rule and [0/1] Padé
approximant to the above equation, dropping all
truncation errors, offers the fully discretized scheme

w.t C �/ D .I � �A/�1w.t/
C�.I � �A/�1Bw.t/

D .I � �A/�1.I C �B/w.t/; t � t0;
(3)

where w approximates v: By the same token, from the
exact solution of (2),

v.t C 2�/ D e�Bv.t C �/

C
Z �

0

e.��	/BAv.t C � C 	/d	; t C � � t0;

we acquire that

w.tC2�/ D .I ��B/�1.IC�A/w.tC�/; tC� � t0:
(4)

Let �t D 2� be the temporal step and denote w` D
w.t/; w`C1=2 D w.t C �/; w`C1 D w.t C 2�/: The
ADI method for solving (1) follows immediately from
(3), (4),

�
I � �t

2
A

�
w`C1=2 D

�
I C �t

2
B

�
w`; (5)

�
I � �t

2
B

�
w`C1 D

�
I C �t

2
A

�
w`C1=2; t � t0:

(6)

Example 1 Suppose that

F D a.x; y/ @
2

@x2
; G D b.x; y/ @

2

@y2
; .x; y/ 2 D;

(7)

and homogeneous Dirichlet boundary conditions are
used. Let Dh be a uniform mesh region superimposed
over D with a constant step size h > 0 and w˛;ˇ D
w.x˛; yˇ/ be a mesh function defined on Dh: If finite
differences

ujC1;k � 2uj;k C uj�1;k
h2

;
uj;kC1 � 2uj;k C uj;k�1

h2

are used for approximating spacial derivatives intro-
duced by (7), then the ADI method for solving (1) is
a collection of

.1C 2�j;k/w`C1=2j;k � �j;kw`C1=2jC1;k � �j;kw`C1=2j�1;k

D .1 � 2�j;k/w`j;k C �j;kw`j;kC1

C �j;kw`j;k�1; .xj ; yk/ 2 DhI (8)

.1C 2�j;k/w`C1j;k � �j;kw`C1j;kC1 � �j;kw`C1j;k�1

D .1 � 2�j;k/w`C1=2j;k C �j;kw`C1=2jC1;k

C �j;kw`C1=2j�1;k ; .xj ; yk/ 2 Dh; (9)

where

�j;k D �t

2h2
aj;k; �j;k D �t

2h2
bj;k; t � t0;

are generalized CFL numbers. Note that, while (8)
is implicit in the x direction and explicit in the y
direction, (9) is alternatively implicit in the y direction
and explicit in the x direction. In fact, both equations
can be solved as tridiagonal systems since there exists
a permutation matrix P such that A D PBP> for
corresponding matrices A; B in (2). This alternative
direction, or split, procedure has significantly reduced
the complexity and amount of computations of the
given problem [3, 17].

Further, in circumstances when D is rectangular, A
is block diagonal with same-sized tridiagonal blocks
and B is block tridiagonal with same-sized diagonal
blocks under a properly formulated v. Furthermore,
A; B commute if a; b are constants.

Finally, we may have noticed that with (7), (1) con-
nects to many important partial differential equations
in applications. For instance, it is a diffusion equation
when a; b > 0 or a paraxial Helmholtz equation if a D
b D �i=.2�/ with i D p�1 and � � 1; .x; y/ 2 D:
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A

Example 2 Consider (7) and homogeneous Dirichlet
boundary conditions. Let Dp;q be a nonuniform mesh
region superimposed over D: If we approximate the
spacial derivatives introduced by finite differences

2

pj C pj�1

�
ujC1;k � uj;k

pj
� uj;k � uj�1;k

pj�1

�
;

2

qk C qk�1

�
uj;kC1 � uj;k

qk
� uj;k � uj;k�1

qk�1

�
;

where p˛ D x˛C1 � x˛; qˇ D yˇC1 � yˇ; then

.1C �C
j;k C ��

j;k/w
`C1=2
j;k � �C

j;kw`C1=2jC1;k � ��
j;kw`C1=2j�1;k

D .1 � �C
j;k � ��

j;k/w
`
j;k C �C

j;kw`j;kC1

C ��
j;kw`j;k�1; .xj ; yk/ 2 Dp;q I (10)

.1C �C
j;k C ��

j;k/w
`C1
j;k � �C

j;kw`C1j;kC1 � ��
j;kw`C1j;k�1

D .1 � �C
j;k � ��

k;j /w
`C1=2
j;k C �C

j;kw`C1=2jC1;k

C ��
j;kw`C1=2j�1;k ; .xj ; yk/ 2 Dp;q; (11)

are equivalent to (5) and (6), where

�C
j;k D

�t

pj .pj C pj�1/
aj;k;

��
j;k D

�t

.pj C pj�1/pj�1
aj;k;

�C
j;k D

�t

qk.qk C qk�1/
bj;k;

��
j;k D

�t

.qk C qk�1/qk�1
bj;k; t � t0;

are again generalized CFL numbers. Note that (10) is
again implicit in the x direction and explicit in the y
direction and (11) is implicit in the y direction and
explicit in the x direction.

Example 3 Consider the two-dimensional advection-
diffusion equation

@2u

@t
D r.aru/; 0 � x; y � 1; (12)

where r is the gradient vector and a > 0 is a function
of x and y: There is no need to expand the equation to
meet the format of (1). Instead, it is often more appro-
priate to semidiscretize (12) directly for (2). Assume
that homogeneous Dirichlet boundary conditions are
used. A continuing central difference operation on a
uniform spacial mesh Dh yields

v0
k;j D

1

h2



ak�1=2;j vk�1;j C ak;j�1=2vk;j�1

CakC1=2;j vkC1;j C ak;jC1=2vk;jC1

� �ak�1=2;j C ak:j�1=2 C akC1=2;j

C ak;jC1=2
�
vk;j

�

D 1

h2



ak�1=2;j vk�1;j �

�
ak�1=2;j C akC1=2;j

�
vk;j

C akC1=2;j vkC1;j
�

C 1

h2



ak;j�1=2vk;j�1 �

�
ak:j�1=2 C ak;jC1=2

�
vk;j

C ak;jC1=2vk;jC1
�

k; j D 1; 2; : : : ; n:

The arrangement leads to the semidiscretized system
(2) where block tridiagonal matrices A; B contain
the contribution of the differentiation in the x and y
variables, respectively [7].

Remark 1 The same ADI method can be used if a
linear nonhomogeneous equation, or nonhomogeneous
boundary conditions, is anticipated. In the situation, we
only need to replace (2) by

v0 D Av C Bv C �; t > t0;

which has the solution

v.t C �/ D e�Av.t/

C
Z �

0

e.��	/AŒBv.t C 	/C �.t C 	/�d	; t � t0:
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By the same token, we have

v.t C 2�/ D e�Bv.t C �/

C
Z �

0

e.��	/B ŒAv.t C � C 	/

C�.t C � C 	/�d	; t C � � t0:

The integral equations lead to the ADI method

w.t C �/ D .I � �A/�1.I C �B/w.t/
C 1; t � t0;

w.t C 2�/ D .I � �B/�1.I C �A/w.t C �/
C 2; t C � � t0;

where

 1 D
Z �

0

e.��	/A�.t C 	/d	;

 2 D
Z �

0

e.��	/B�.t C � C 	/d	: (13)

Integrals  1;  2 can be evaluated exactly in many
cases, say, when � is a constant vector.

Remark 2 The same ADI method can be extended
for the numerical solution of certain nonlinear, or
even singular, partial differential equations. In the
particular case if semilinear equations are considered,
then the only additional effort needed is perhaps
to employ suitable numerical quadratures for (13)
(Fig. 1).

Remark 3 The same ADI strategy can be used for
solving partial differential equations consisting of mul-
tiple components, such as multidimensional problems.
As an illustration, we consider

@u

@t
D FuC GuCHu; .x; y/ 2 D; t > t0:

Note that operators F ; G; H need not to be dimen-
sional. Given any � > 0; its solution can be written
as

v.t C �/ D e�Av.t/C
Z �

0

e.��	/A.B C C/v.t C 	/d	; t � t0;

v.t C 2�/ D e�Bv.t C �/C
Z �

0

e.��	/B.C C A/v.t C � C 	/d	; t C � � t0;

v.t C 3�/ D e�C v.t C 2�/C
Z �

0

e.��	/C .AC B/v.t C 2� C 	/d	; t C 2� � t0;

where A; B; C are due to semidiscretizations involv-
ing F ; G, and H: The rest of discussions is similar to
those before.

Remark 4 The ADI method can be used together with
some highly effective numerical strategies, such as
temporal and spacial adaptations, and compact finite-
difference schemes. Detailed discussions can be found
in numerous recent publications [15, 16].

Remark 5 The ADI method can be modified for solv-
ing other types of differential equations such as

@2u

@t2
D FuC Gu;

FuC Gu D �;

Maxwell’s equations, and stochastic differential equa-
tions in various applications. A large number of in-
vestigations and results can be found in the latest
publications [7, 15].

Remark 6 We note that A; B in (2) are not necessary
matrices. They can be more general linear or nonlinear
operators. This leads to an exciting research field of
operator splitting, in which important mathematical
tools, such as semigroups, Hopf algebra, and symplec-
tic integrations [1, 7, 10], play fundamental roles.

Remark 7 Basic ideas of the ADI method have been
extended well beyond the territory of traditional finite-
difference methods. The factored ADI strategy for
Sylvester equations in image processing is a typical
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ADI Methods, Fig. 1 The blow-up profile of a singular nonlin-
ear reaction-diffusion equation solution [15] obtained by using
the ADI method (16) on exponentially graded nonuniform spa-

cial meshes with a temporal adaptation (Courtesy of Q. Sheng
and M. A. Beauregard, Baylor University)

example. Interested reader may wish to continue ex-
ploring the latest discussions for the ADI finite element
method, ADI spectral and collocation methods, ADI
finite-difference time-domain (ADI-FDTD) methods,
as well as domain decompositions.

Accuracy and Stability

Because of the ways of derivations, it is natural to
conjecture that each of (5) and (6), or, equivalently,
(3) and (4), is of first-order accuracy locally. The
prediction can in fact be verified by using the fol-
lowing straightforward analysis. Consider (3). Recall
that

.I � �A/�1 D I C �AC �2A2 C �3A3 C �4A4 C � � �

under proper constraints. Substituting the above into
(3), we acquire that

w.t C �/ D 

I C �.ACB/C �2 �A2 C AB� (14)

C�3 �A3 CA2B�C � � ��w.t/; t � t0:

On the other hand, a direct integration of the linear
Schrödinger equation (2) yields

v.t C �/ D e�.ACB/v.t/; t � t0: (15)

For a local error analysis, we set w.t/ D v.t/ in (14).
It follows from (14), (15) that

".t C �/ D w.t C �/ � v.t C �/

D �2

2

�
A2 CAB � BA � B2

�
v.t/

C�
3

3Š

�
5A3 C 5A2B � ABA � BA2

�AB2 � B2A� BAB � B3
�
v.t/

CO.�4/:

Therefore, (3) is of the first order [13]. Note that the
accuracy remains as is even when A; B commute.
However, (3) becomes a second-order scheme if B D
cA; where c 2 C; since in the case it reduces to a
Crank-Nicolson method [7].

Verifications of (4) and variations are similar.
Nevertheless, a continuing operation of (3) and (4)

pair is of second order. To see this, we substitute (3)
into (4) to yield

w.t C 2�/ D .I � �B/�1.I C �A/ (16)

.I � �A/�1.I C �B/w.t/; t � t0;

which is the standard Peaceman-Rachford splitting
[7, 12, 13]. Thus,
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w.t C 2�/ D 

I C �.B C A/C �2 �B2 C BA�

C �3 �B3 C B2A
�C � � ��

� 
I C �.AC B/C �2 �A2 C AB�

C �3 �A3 C A2B�C � � ��w.t/

D 

I C 2�.AC B/C 2�2.AC B/2

C 2�3 �A3 C A2B CBA2

C B2AC BAB C B3
�C � � ��w.t/:

Let w.t/ D v.t/ and replace � by 2� in (15). It follows
immediately from the above that

".t C 2�/ D w.t C 2�/� v.t C 2�/

D 2�3

3

�
A3 C A2B � 2ABAC BA2

C B2ACBAB � 2AB2 C B3
�
v.t/

CO.�4/; t � t0:

Therefore, the Peaceman-Rachford splitting is second
order. This accuracy cannot be further improved even
when B D cA:

Similar to other numerical methods, the numerical
stability of the ADI method depends on the properties
of A; BI the functional space; and the norm used. All
these can be traced back to the original differential
equation problem involving (1) and the discretization
utilized. In a general sense, the stability of an ADI
scheme is secured if the inequality,

kM k � 1; (17)

holds for certain norms, where M D .I � �A/�1
.I C �B/; .I � �B/�1.I C �A/, or .I � �B/�1
.I C �A/.I � �A/�1.I C �B/ in case if (3), (4), or
(16) is utilized.

If a Cauchy problem is considered, then verifica-
tions of (17) can be straightforward via either matrix

spectrum or Fourier analysis. A typical proof of the
unconditional stability when (7) is involved can be
found in [6]. Stability analysis of the ADI method
for boundary value problems is in general more so-
phisticated. Approaches via the two aforementioned
major tools are also different [7]. Asymptotic and non-
conventional stability definitions have also been pro-
posed for particular ADI applications, such as highly
oscillatory wave equations and nonlinear problems
[15, 16].

If the linear partial differential equation problem
is well posed, then the convergence of its ADI
numerical solution follows from the Lax equivalence
theorem [7].

Closely Related Issues

I. The LOD Method. The introduction and original
analysis of this method are due to E. G. D’Yakonov, G.
I. Marchuk, A. A. Samarskii, and N. N. Yanenko [4,
9, 20]. Recall the semidiscretized system (2). Needless
to say, its solution (15) can be approximated via the
exponential splitting [13]:

e2�.ACB/ D e2�Ae2�B CO.�2/; � ! 0; (18)

that is,

v.t C 2�/ � e2�Ae2�Bv.t/; t � t0:

Thus, an application of the [1/1] Padé approximant
leads immediately to the local one-dimensional, or
LOD, method:

w.t C 2�/ D .I � �A/�1.I C �A/ (19)

.I � �B/�1.I C �B/w.t/; t � t0:

The above may look like another Peaceman-Rachford
splitting by a first glance, but they are fundamen-
tally different. Nevertheless, (19) can be reformu
lated to

�
I � �t

2
B

�
w`C1=2 D

�
I C �t

2
B

�
w`I (20)
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A

�
I � �t

2
A

�
w`C1 D

�
I C �t

2
A

�
w`C1=2; t � t0;

(21)

in a same way for (5) and (6). Although each of the
above is a second-order Crank-Nicolson method in its
respective direction, their combination, (19), is of first-
order accuracy due to the limitation of (18). In other
words, while in the ADI method, two first-order one-
dimensional solvers (3) and (4) form a second-order
two-dimensional solver (16); two second-order one-
dimensional solvers in the LOD approach generate a
first-order two-dimensional method (19). However, this
does not reduce any popularity of the LOD method,
partially due to its distinguished computational ad-
vantages as demonstrated in (20) and (21). It can be
readily proven that the LOD method is unconditionally
stable if all eigenvalues of A; B lie in the left half
of the complex plane [7, 13]. This also leads to the
convergence.

Naturally, many questions about the LOD method
emerge. One of them is: can it be of a higher order?
The answer is affirmative. But how? This leads to the
fascinating field of exponential splitting.

II. The Exponential Splitting. Let A 2 C
n�n:

Assume that A D A1 C A2 C � � � C Am and AkAj ¤
AjAk; 1 � k; j � m; k ¤ j:We wish to approximate
e�A by a convex combination of the products of matrix
exponentials,

R.�/ D
KX
kD1

�k

J.k/Y
jD1

e˛k;j �Ar.k;j / ;

1 � r.k; j / � m; �k � 0; (22)

without tapping into the Baker-Campbell-Hausdorff
[5] or Lie-Trotter [19] formula. The function R serves
as a foundation to a number of extremely important
splitting methods, in addition to the LOD scheme (19)
based on (18). The most well-known specifications of
(22) include the Strang’s splitting [10, 17],

e2�.A1CA2C���CAm/ D e�A1e�A2e�A3 � � � e�Am�1e2�Am

e�Am�1 � � � e�A2e�A1 CO.�3/;
(23)
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ADI Methods, Fig. 2 Global error estimate [14] of the
first-order exponential splitting with five distinctive pairs of
random matrices whose eigenvalues lie in the left half of the
complex plane. These matrices are frequently used in statistical

computations. A logarithmic scale is used in the y direction in
the second frame (spectral norm used, courtesy of Q. Sheng,
Baylor University)
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and the parallel splitting [13, 14],

e2�.A1CA2C���CAm/ D 1

2

�
e2�A1e2�A2 � � � e2�Am

C e2�Ame2�Am�1 � � � e2�A1�
CO.�3/; (24)

as � ! 0: Both formulas are of second order. For more
general investigations, we define

".�/DR.�/ � e�.A1CA2C���CAm/ D O ��pC1� ; � ! 0:

It is shown by Q. Sheng [13] in 1989 that

p � 2 if ˛k;j � 0; 1 � j � J.k/; 1 � k � K:
(25)

This result was later reconfirmed by M. Suzuki [18]
and several others [1, 10, 11] independently. The
statement (25) reveals an accuracy barrier for all

splitting methods based on (22). More specifically
speaking, the maximal order of accuracy for exponen-
tial splitting methods is two, as far as the positivity
constraints need to be observed. These constraints,
unfortunately, are often necessary for the stability
whenever diffusion operatorsA; A1; A2; : : : ; Am are
participated.

Inspired by a huge potential in applications in-
cluding the HPC and parallel computations, a wave
of studies for more effective local and global error
estimates of the exponential splitting has entered a new
era since the preliminary work in 1993 [2, 8, 14].

Now, let us go back to the LOD method. A straight-
forward replacement of (18) by either (22) or (23)
yields a second-order new scheme. The additional
computational, as well as programming, cost incurred
is only at a minimum (Fig. 2).
III. Connections Between ADI and LOD Methods.
Recall (16). Applying the formula twice, we acquire
that

w.t C 4�/ D 

.I � �B/�1.I C �A/.I � �A/�1.I C �B/�2 w.t/

D .I � �B/�1.I C �A/.I � �A/�1.I C �B/.I � �B/�1
�.I C �A/.I � �A/�1.I C �B/w.t/; t � t0:

Thus,

.I C �B/w.t C 4�/ D .I C �B/.I � �B/�1.I C �A/.I � �A/�1.I C �B/.I � �B/�1
�.I C �A/.I � �A/�1.I C �B/w.t/; t � t0:

Since .I C �A/.I � �A/�1; .I C �B/.I � �B/�1 are
second-order [1/1] Padé approximants of e2�A; e2�B ,
respectively, denote w0.	/ D .I C �B/w.	/ and drop
all truncation errors. We obtain that

w0.t C 4�/ D e2�Be2�Ae2�Be2�Aw0.t/

D �
e2�Be2�A

�2
w0.t/; t � t0: (26)

The above exponential splitting can be comprised in
a symmetric way. To this end, we may let w1.	/ D
e�Aw0.	/: It follows from (26) immediately that

w1.t C 4�/ D e�Ae2�Be2�Ae2�Be�Aw1.t/

D �
e�Ae�B

� �
e�Be2�Ae�B

�
�
e�Be�A

�
w1.t/; t � t0: (27)

Both (26) and (27) indicate repeated applications of
LOD strategies or particular settings of R in (22).
These formulas are important to not only applied and
computational mathematics but also modern quantum
and statistical physics [10, 14, 18].
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Synonyms

Adjoint differentiation; Back propagation; Time rever-
sal

Definition

Adjoint methods are iterative methods for inverse prob-
lems of partial differential equations. They make use
of the adjoint of the Fréchet derivative of the forward
map. Applying this adjoint to the residual can be
viewed as time reversal, back propagation, or adjoint
differentiation.

Overview

Inverse problems for linear partial differential equa-
tions are nonlinear problems, but they often have a
bilinear structure; see [9]. This structure can be used
for iterative methods. As an introduction, see [11].

Wave Equation Imaging

As a typical example that has all the relevant features,
we consider an inverse problem for the wave equation.
Let ˝ be a domain in Rn; n > 1 and T D Œ0; t1�. Let
uj be the solution of

@2uj
@2t
D f�uj in ˝ � T; (1)

@uj
@�
D qj on @˝ � T; (2)

u D 0 for t < 0: (3)
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Here qj represents a source, and � is the exterior
normal on @˝ , and j D 0; : : : ; p � 1. The problem
is to recover f from the values gj D uj j@˝�T . Such
problems come up, e.g., in ultrasound tomography; see,
e.g., [11], chapt. 7.4.

Let uj D uj .f / be the solution of (1,2,3) and put
Rj .f / D uj .f /j@˝�T . Then the problem amounts to
solving the nonlinear system

Rj .f / D gj ; j D 0; : : : ; p � 1 (4)

for f . A natural way to solve this system is the
Kaczmarz method; see [11], chapter 7. For linear
problems such as X-ray CT, it is known as ART; see
[8]. The Kaczmarz method is an iterative method with
the update

f  f � ˛R0
j .f /

�.Rj .f /� gj /: (5)

Here j is taken mod p, and ˛ is a relaxation parameter.
Going through all the p equations once is called one
sweep. R0

j is the Fréchet derivative and R0�
j its adjoint.

For this to make sense, we have to consider Rj as an
operator between suitable Hilbert spaces. In [7] it has
been shown that under natural assumptions (e.g., f
positive), Rj is a differentiable operator from H2.˝/

intoH1=2.@˝ � T / withHs the usual Sobolev spaces.
In order to compute R0

j .f /, we replace f; u in
(1,2,3) by f C h; u C w with h;w small and ignore
higher order terms. We get for w

@2w

@t2
D f�wC h�u in @˝ � T; (6)

@w

@�
D 0 on @˝ � T; (7)

w D 0 for t < 0: (8)

And we have

R0
j .f /h D wj@˝�T (9)

For the computation of the adjoint – as an operator
from L2.˝ � T / into L2.@˝ � T / – we make use of
Green’s second identity in the form

Z
˝

Z
T

�
1

f

@2w

@t2
��w

�
zdtdx �

Z
˝

Z
T

�
1

f

@2z

@t2
��z

�
wdtdx D (10)

Z
@˝

Z
T

�
@z

@�
w � z

@w

@�

�
dtdx C

�Z
˝

�
@w

@t
z� w

@z

@t

�
dx

t1
0

: (11)

This holds for any functions w; z on ˝ � T . Choosing
for w the solution of (6,7,8) and for z the solution of the
final value problem

@2z

@t2
D f�z in ˝ � T; (12)

@z

@�
D g on @˝ � T; (13)

z D 0 for t < t1 (14)

we obtain

Z
˝

h

f

Z
T

�uj zdtdx D
Z
@˝

Z
T

wgdtdx; (15)

or, using inner products,

�
h;
1

f

Z
T

�uj zdt

�
L2.˝/

D .R0
j .f /h; g/L2.@˝�T /:

(16)

Hence

.R0
j .f //

�g D 1

f

Z
T

�uj zdt: (17)

It is this final value structure of the adjoint which
suggests the names time reversal and back propagation.

In order to show what can be achieved, we recon-
struct a breast phantom [2] that is frequently used in ul-
trasound tomography. We simulated data for 32 sources
with a central frequency of 100 kHz and reconstructed
by the adjoint method with 3 resp. 6 sweeps; see Fig. 1.

The method can also be used in the frequency
domain, i.e., for the inverse problem of the Helmholtz
equation [10]. For the corresponding electromagnetic
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Adjoint Methods as Applied to Inverse Problems, Fig. 1 Reconstruction of breast phantom from 32 sources at 100 kHz. Left:
after 3 sweeps. Middle: after 6 sweeps. Right: original

inverse problem which involves the Maxwell equa-
tions, the method has been used in [6, 12].

Optical and Impedance Tomography

The adjoint method as explained above can be used for
a variety of inverse problems. In optical tomography
[1] the forward problem is

div.ruj /� .�C i!/uj D 0 in ˝; (18)

@u

@�
D qj on @˝: (19)

 is the diffusion coefficient, � the attenuation, and
! the frequency of the source qj . The problem is to
recover ; � from gj D uj j@˝ , all other quantities
being known. We put f D .; �/> and Rj .f / D
uj j@˝ . We then have to solve the nonlinear system
Rj .f / D gj ; j D 0; : : : ; p � 1 for f . Very much in
the same way as in the case of ultrasound tomography
we find thatR0

j .f /h D wj@˝; h D .h1; h2/>, where w
is the solution of

div.rw/ � .�C i!/w
D �div.h1ruj /C h2uj in ˝; (20)

@w

@�
D 0 on @˝: (21)

Under natural assumptions, such as  > 0, it follows
from the elliptic regularity of the problem that this
is in fact the Fréchet derivative of Rj .f / viewed as

an operator from H2.˝/ � H1.˝/ into L2.@˝/; see
[3]. Exactly as in the ultrasound case, we see that the
adjoint of R0

j .f /, as an operator from L2.˝/� Ł2.˝/
into L2.@˝/, is given by .R0

j .f //
�.g./ D .rNuj �

rz; Nuj z/> where z is the solution of

div.rz/� .� � i!/z D 0 in ˝; (22)

z D g on @˝: (23)

A special case is impedance tomography [4,5](� D
0; ! D 0).
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Synonyms

Advancing Front Techniques (AFT)

Short Definition

Advancing front methods are commonly used for tri-
angulating a given domain in two dimensions (2D) or
three dimensions (3D).

Description

Basic Algorithm
The concept of the advancing front methods was first
proposed by Lo [1], Peraire et al. [2], and Löhner [3]

for discretizing 2D domains with isotropic triangles.
It was then extended to 3D domains for creating
isotropic tetrahedra. The typical advancing front meth-
ods require the following steps [4]:
1. Discretize the boundaries of the domain to be

meshed as a set of edges in 2D (faces in 3D), which
is called as the initial front in the advancing front
methods (Fig. 1a). The initial front forms closed
curve(s) (surface(s) in 3D) that encloses the domain
to be triangulated. Elements will be created one by
one on the front by adding new points in the interior
of the domain.

2. Select the shortest edge (the smallest face in 3D)
as a base of the triangle (tetrahedron in 3D) to be
generated.

3. Determine the ideal position for the vertex of the
triangle (tetrahedron in 3D) based on several local
and global parameters including user-specified pa-
rameters. This enables the generation of elements
in variable size with desired stretching.

4. Select other possible candidates for the vertex from
the points already generated by defining a searching
circle (sphere in 3D) that contains the base and the
ideal point.

5. Select the best candidate passing several validity
and quality criteria, such as no intersection of new
edges (faces in 3D) with the front and positive area
(volume) of the element to be created. Create a new
triangle (tetrahedron in 3D) using the point and then
update the front so that it surrounds the remainder of
the domain that needs to be meshed.

6. Continue steps 2 through 5 until the front becomes
empty (Fig. 1e).

Consequently, the size and quality of elements
near the initial front can be controlled easily by
the advancing front methods. The connectivity of
the boundary edges (and the boundary faces in
3D) is naturally preserved, while the Delaunay
triangulation does not. However, the advancing
front methods tend to create lower-quality ele-
ments than Delaunay triangulation methods. Node
smoothing and edge or face swapping are essential
at the end of the mesh generation process to
improve the quality of elements (Fig. 1f). The
advancing front method can also be combined
with a Delaunay triangulation method to pro-
duce better-quality elements (see the entry on
Delaunay triangulation).
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Advancing Front Methods,
Fig. 1 Various stages of
advancing front method
applied for letter i in 2D: (a)
boundary points and edges
(initial front); (b) two, (c) 99,
(d) 116 and (e) 156 triangles
created; (f) final mesh after
node smoothing

Advancing Front Methods,
Fig. 2 Mesh generation
around a two-element airfoil:
(a) triangular, (b) hybrid, and
(c) anisotropic meshes
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Advancing Layers Method
The advancing front methods can be extend to create
hybrid (Fig. 2b) or anisotropic (Fig. 2c) meshes for
high Reynolds number viscous flow simulations,
which require high spatial resolution in the direction
normal to no-slip walls, to resolve boundary layers
well [5–10]. This type of the advancing front methods
is usually called as the advancing layers method [5]
or advancing normals method [9]. Hybrid meshes in
3D consist of triangular-prismatic and/or hexahedral
layers on the no-slip walls, tetrahedra in the remainder
of the domain, and a small number of pyramids
to connect quadrilateral faces with triangular ones.
Hybrid meshes can be easily converted to anisotropic
meshes by subdividing elements into right-angle
simplexes.
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Synonyms

Cellular automata (or automaton); Individual-based
models

Acronyms

ABM: Agent-based model
Abs: Antibodies
CTL: Cytotoxic T lymphocyte
IR: Immune response
NK: Natural killer cells
ODE: Ordinary differential equation
Th: Helper T cell

Short Definition

Agent-based models (or ABMs) of infectious diseases
and/or immunological systems are computer models
for which the key units of the modeled system –
pathogens, target cells, immune cells – are explicitly
represented as discrete, autonomous agents charac-
terized by a set of states (e.g., infected, activated).
Transition of an agent between states or its movement
through space (if applicable) obeys a set of rules
based on the agent’s current internal states (e.g., if
the cell has been alive for 3 h then it transitions to
the dead state), that of its neighbors (e.g., if the cell’s
neighbor is infected, then it has a 20 % chance of
transitioning to the infected state), and/or its perception
of its external environment (e.g., if the concentration of
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interferon around the cell is above some threshold, it
will not produce virus). The discrete, rule-based, and
agent-centric nature of ABMs makes them the most
natural representation of disease and immune systems
elements. The value of the application of ABMs to
the study of infectious diseases and immunology is in
the insights it can provide on the impact of discrete,
few, localized interactions on the overall course and
outcome of a disease and/or the activation decision of
an immune response.

Description

ABMs as Natural Descriptions of the Immune
Response and Infectious Diseases
Agent-based models (or ABMs) are computer models
whose formulation consists of a set of rules control-
ling the local interactions of explicitly represented
autonomous agents with each other and/or with their
environment. Because the formulation of the ABM is
done only at the level of individual agents, the overall
dynamics of the system is not explicitly specified in the
model. Rather, it is an emergent property which comes
about as a result of the cumulative local interactions
between the many individual agents of the system,
acting autonomously, with little or no information
about the global state of the system. For this reason, the
overall dynamics of an ABM are sometimes surprising.
An ABM approach is not suitable for all problems, but
the immune system, and its interaction with pathogens,
lends itself naturally to an ABM description.

The immune response (IR) to an infectious dis-
ease comprises a variety of agents (e.g., cytotoxic T
lymphocytes, dendritic cells, plasma B cells), each
with different rules governing their interactions with
each other (e.g., a helper T cell activating a B cell)
and/or with their environment (e.g., local cytokine
concentrations upregulating the expression of receptors
on the surface of T cells). The IR to a pathogen is
not centrally controlled, and information about the
system-wide damage inflicted by the pathogen or its
overall control by the IR is not reported and ana-
lyzed in a single centralized decision-making location.
Instead, the IR is initiated through the local, stochastic
interactions of a few agents based on partial local
information, which can trigger a cascade of events that
will activate different sets, or branches, of the IR (e.g.,
a cellular versus a humoral adaptive IR). Despite its

decentralized nature, the immune system can mount an
efficient, organism-wide response to a pathogen, and
is capable of complex behavior such as learning (i.e.,
the recognition of new pathogens) and memory (i.e.,
the more rapid and effective response to previously
encountered pathogens).

While ABMs may be the most natural way to
describe the IR to an infectious disease, they are not
always the simplest or wisest choice. The ease with
which one can exhaustively incorporate biological de-
tails in an ABM can lead to complicated models with
a large number of parameters. Ordinary differential
equation (ODE) models, usually requiring a smaller
number of parameters, have been more widely applied
to the study of the IR and infectious diseases (a good
overview is presented in Nowak and May [7]). Ulti-
mately, the modeling approach and the level of detail in
implementation should be determined by the question
one wishes to address. Typically, ABMs are best suited
to address questions where the dynamics of interest is
driven by the local, stochastic interactions of a discrete
number of agents. This is often the case in modeling
the very early and very late events of an infection
where cell and pathogen numbers are small, mean-field
kinetics does not apply, and small, local fluctuations
can make the difference between infection resolution
and exponential growth.

The Main Agents of the Immune Response
A brief overview of the major agents of the IR is
presented here to facilitate comprehension of their im-
plementation in an ABM. For a comprehensive account
of the key elements of the IR, their function, and
their interactions, one should consult an immunology
textbook (see for example, Kindt et al. [5]). The IR
is divided into two types of responses: the innate and
the adaptive response. The cells and molecules that
make up the innate IR include the physical barriers
comprising the skin and the mucus linings, the danger
or damage signals secreted by affected cells in the
form of eicosanoid and cytokines, and a wide range
of cells such as natural killer (NK) cells, mast cells,
dendritic cells, macrophages, and neutrophils, which
express receptors that recognize patterns common to a
wide range of microorganisms. Because the innate IR
reacts to all pathogens in the same generic way, it does
not recognize specific pathogens, and therefore cannot
recall previous encounters. In contrast, the adaptive
immune response is designed to specifically recognize
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a pathogen, and previous exposures lead to a more
rapid and effective response against the pathogen. The
main cellular components of the adaptive IR are the
B (for bone) and T (for thymus) lymphocytes, and
their specificity for a restricted set of pathogens is
dictated by the specific antigen receptors they express.
Not all receptors of the adaptive IR are constructed
in the same way, but the recognizable parts of the
antigen (the epitopes) and the recognizing part of the
receptors consist of a string of amino acids whose
sequence and environment defines their folded shape.
The compatibility between an antigen’s epitope and
a B or T cell receptor is called the affinity, and is
a function of how well the antigen and receptor fit
together, as with a lock and key. The B cells expressing
receptors that recognize the pathogen respond to it
by secreting large amounts of their receptors, called
antibodies (Abs), which can bind the pathogen and
both mark it for removal by the innate IR, and block it
from causing further infection (e.g., by forming a virus-
Ab complex). The T lymphocytes that recognize the
pathogen are responsible for either secreting cytokines
that direct the type of IR which will be made to the
pathogen (this is done by helper T lymphocytes, or
Th cells), or for killing pathogen-infected cells (this is
done by cytotoxic T lymphocytes, or CTLs). The CTL
response is referred to as the cellular adaptive response,
whereas the response made by the Abs, and the B cells
which secreted them, is called the humoral adaptive
response. B and T cells with a sufficient affinity for the
pathogen will be activated by its presence and undergo
a rapid expansion to control the pathogen. After the
infection is cleared, a portion of these cells will differ-
entiate into memory cells which stay around to make
a more rapid and effective response to the pathogen
when it is encountered again. Thus, memory of previ-
ously encountered pathogens is stored in a distributed
fashion by our immune system via the memory B and
T lymphocyte populations. The memory is encoded as
a bias in numbers favoring those cells able to recognize
the more commonly encountered pathogens.

ABM Representation of the Immune Response
and Infectious Diseases
In choosing a representation for the interactions be-
tween the different agents of the IR, or their interaction
with a pathogen, the level of details required is set by
the problem to be addressed. If one wishes to look
at the issue of immune evasion of a virus through

mutation, the dynamics of T cells competing for anti-
gen recognition, the process of immunodominance, or
affinity maturation, it can be necessary to explicitly
represent the affinity between, for example, the antigen
and a T cell receptor. The explicit representation of
the amino acids which make up the antigen’s epitope
or the receptor, and their explicit folding and shape
matching would be too numerically intensive to permit
larger-scale simulations of several interactions, and
this level of sophistication is typically unnecessary.
Instead, for simplicity and efficiency, epitopes and
receptors are often represented using strings of binary
digits.

Within the framework of a binary string repre-
sentation, the affinity of a receptor for the antigen’s
epitope can be expressed in a number of ways as a
function of the number of similar (binary XNOR) or
dissimilar (binary XOR) sites between the two strings,
and can also consider different alignments, i.e., the
number of similar or dissimilar bits as the epitope is
shifted with respect to the receptor. An example of the
representation of the different agents of the adaptive IR
and antigen as well as the computation of their affinity
is illustrated in Fig. 1.

If fluctuations in quantities such as infected cells or
virus concentration over time is the kinetic of interest,
there is likely no need to explicitly represent the affinity
of the adaptive IR for the pathogen. Instead, an easy
simplification is to represent in the ABM only those
cells which will actively participate in, and affect,
infection kinetics, i.e., those whose affinity satisfies a
minimum threshold. The affinity of each cell for the
pathogen can then either be randomly assigned from,
say, a normal distribution of affinities, or fixed to the
average value of affinity for all cells.

There is also much flexibility in choosing the
appropriate level of details to represent smaller
molecular agents such as pathogens, antibodies, and
cytokines. These can be represented as individual
agents performing a random walk (akin to lattice
Boltzmann diffusion) on the simulation grid, able to
individually interact, bind with other agents, and form
complexes. Alternatively, these entities can be modeled
as discrete quantities or continuous concentrations
over space whose amount at each site changes
locally as more are released or taken up by various
agents, and which diffuse through space according
to a finite-difference approximation to the diffusion
equation.
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A

MHC II 137

Receptor 57

Receptor 186

Antigen 198 218

B

T

MHC II 137

Receptor 57

BEndocytosis and processing of Ag peptide by APC

MHC II-peptide 141

Agent-Based Models in Infectious Disease and Immunol-
ogy, Fig. 1 Example of bit string representation of receptors
and epitopes. Here, T and B cell receptors and the B cell’s MHC
II are represented by 8-bit strings. The MHC II (or major his-
tocompatibility complex II) is found on antigen-presenting cells
and is responsible for binding and presenting processed antigens
to T cells for recognition. The antigen (Ag) is represented by

two 8-bit strings, with short and long blocks representing 0s
and 1s, respectively. The antigen’s bare 8-bit string is used as
an epitope for recognition by the B cell receptor. The antigen’s
boxed 8-bit string is used to represent an antigen peptide which
is processed, and presented on the MHC II of the B cell. (This
example representation is modeled after the IMMSIM simulator
and the image is modified from Seiden and Celada [8].)

Example: Influenza Infection Within a Host
Let us consider the implementation of an ABM for the
spread of an influenza infection within a host. We will
focus our attention on a small patch of the upper respi-
ratory tract. Since the lung predominantly consists of a
single layer of cells everywhere except in the trachea,
we will represent this patch as a two-dimensional,
hexagonal grid with each lattice site corresponding to
one susceptible epithelial cell. Furthermore, since the
respiratory tract epithelium is folded into a cylinder,
we will apply toroidal boundary conditions to our
grid such that cells moving (or molecules diffusing)
off one edge appear at the opposite edge. We will
also implement a simplified cellular IR in the form
of CTLs which can move from site to site, activate
and proliferate upon encounter with infected cells, kill
infected cells, and undergo programmed contraction.
We will represent influenza virions (virus particles) as
a field across the simulation grid by storing the local
virus concentration at each grid site, and solving the
diffusion equation over each grid site, Vi;j , using the
finite-difference approximation

V tC�t
i;j D

�
1 � 4DV�t

.�x/2

�
V t
i;j C

2DV�t

3 .�x/2

X
V t

nei;

where
P
V t

nei is the sum of the virion concentration at
all six honeycomb neighbors of site .i; j / at time t ,
DV is the virions’ diffusion coefficient, �t the size of
your time steps, and �x the diameter of one cell or
grid site (this equation is derived in Beauchemin et al.
[2]).

Thus, the model comprises two types of discrete
agents, the susceptible epithelial cells and the CTLs,
and one continuous field, the influenza virions. The
evolution of the system will be governed by the set of
rules illustrated in Fig. 2.

Once agents and fields have been defined, and
rules have been established for their evolution and
interactions, it is a matter of implementing the
model, and letting it evolve according to the rules.
Gaining a better understanding of the dynamics of
this system as the parameter values characterizing
each rule (e.g., p, c, vCTL) are varied over their
biologically plausible range is achieved by running
a large number of simulations, paying attention to
both the average behavior, and outlier cases. One may
wish to consider performing a sensitivity analysis
to characterize how choices in parameter values can
affect the model’s kinetics, as discussed in Bauer
et al. [1].
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Platforms for the Implementation of ABMs of
Immunology and Infectious Diseases
The implementation of an ABM can be accomplished
in any programming language, but there are also a
number of environments specifically designed for this
type of model. The construction of a comprehensive
immune simulator is a laborious affair, and interested
researchers may wish to utilize one of many which
already exist. Ultimately, what constitutes an ideal plat-
form will depend on the problem at hand, the desired
information, and the available time and computational
power. Thankfully, there are many options available.

For those interested in immune simulators, IMM-
SIM and its derivatives are a good place to start. In
IMMSIM, receptors and epitopes are represented as
binary strings. In its original version IMMSIM imple-
ments Th and B cells, antigen presenting cells, Abs,
and antigens, representing only the humoral adaptive
response (see [8] for a comprehensive description of
the simulator). It can simulate the expansion of Th and
B cell populations based on a simulated continuous
input or a set initial quantity of antigen. It was later
extended to include CTLs, epithelial cells, generic
cytokines, as well as a more virus-like antigen capable
of infecting cells, and replicating within them. Since
its creation, IMMSIM has been translated into different
languages, and expanded in various directions by sev-
eral researchers, resulting in IMMSIM23, IMMSIM3,
IMMSIM++, IMMSIM-C, C-IMMSIM, and ParIMM.
Other immune simulators followed, such as PathSim
Visualizer, CAFISS, and SIMMUNE. These simulators
were used to investigate a wide range of IR processes
such as affinity maturation, hypermutation, rheumatoid
factor, the transition process between immune and dis-
ease states, vaccine efficiency, and HIV escape mutant
selection.

For the implementation of the spread of an infec-
tious disease within an individual with no particular
emphasis on receptor specificity, many simulation plat-
forms are also readily available, including MASyV,
CyCells, and SIS-I and SIS-II. For those wishing to
develop their own ABM simulation of immunology or
infectious disease, some programming environments
can greatly facilitate the task, with some particularly
suitable for those with limited programming experi-
ence. Among the most popular are NetLogo, StarLogo,
and Repast.

For reviews of some of these simulators, and the
studies to which they were applied, interested readers

may wish to refer to Bauer et al. [1], Forrest and
Beauchemin [4], Louzoun [6], and Chavali et al. [3].
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The fluctuation response relation is the relationship
between statistical characteristics of an unperturbed
system and its response to external perturbation

Chaotic system is the system that shows exponential
sensitivity to initial conditions

Description

By general definition, “the climate” is the ensemble
of states passed by the Earth climate system (system
consisting of the atmosphere, the hydrosphere, the
cryosphere, the land surface, and the biosphere) in
sufficiently long time period. In particular, the World
Meteorological Organization (www.wmo.int) uses 30-
year time interval in the definition of the Earth climate.
Because of the complexity, the Earth climate system
could not be replicated in the laboratory and the major
way of its exploration is based on numerical modeling.
This leads to an assumption that there exists some ideal
model of the climate system. Let us write equations of
this ideal model in the form of dynamical system

d˚

dt
D G.˚; t/; ˚.0/ D ˚0;˚ 2 RN : (1)

In practice, the nonlinear operator Gdescribing the
evolution of the real climate system is unknown (due to
the system complexity and lack of the physical knowl-
edge) and the system dimensionalityN is supposed to
be very large. System (1) with initial condition ˚0
defines a trajectory ˚.t/ D S.t; ˚0/: The full system
state at a given moment and system trajectory ˚.t/ are
also unknown (because of the limited resolution of the
observing system), and we have at our disposal just its
lower dimensional projection ˚K.t/; .k � N/ avail-
able in the form of different dataset products covering
approximately 60 years of the system evolution.

Instead of the ideal climate system (1), scientists
deal with some climate model based on the laws of
the hydro- and thermodynamics and parameterizations
of physical processes that could not be resolved in a
model explicitly:

d'

dt
D g.'; t/ ' 2 Rn: (2)

Comparing statistical characteristics of f˚K.t/; t 2
Œtini; tfin�g with that of f'.t/g, one can estimate the

quality of a model and tune a model so that it will
approximate f˚K.t/g better. This strategy is widely
accepted in climate research (as an example, one can
mention AMIP, CMIP, and many other projects devoted
to the model intercomparison [29]).

Now let us suppose that the system is subject to
some additional forcing due to the natural (volcanic
eruptions, solar variations, etc.) or anthropogenic im-
pact. As a result, instead of (1) we will have to deal
with perturbed climate system

d˚ 0

dt
D G.˚ 0; t/C ıF.t/ ˚ 2 RN ; (3)

and perturbed model

d' 0

dt
D g.' 0; t/C ıf .t/ ' 0 2 Rn: (4)

The major question is how we can estimate new
climate f˚ 0K.t/g. When the question is to evaluate the
system response to a known forcing, the most straight-
forward way is to run a model with ıf .t/ D ıF.t/ and
analyze model output using some statistical method.
This strategy, for instance, is widely used by IPCC
[12] for the prediction of climate changes due to the
human activity. When we are interest in the problem of
finding most dangerous impact on the system resulting
in the largest possible system response, the above
approach may not be practical as we need to check a
huge number of test forcings. For a specific climate
model and limited set of perturbations, this crude force
method could be successful though (an example of
this approach aimed to study the sensitivity properties
of the HADCM3 climate model is the “climatepredic-
tion.net” project).

In the same time, it should be pointed out that in
general there is no advance guarantee that the sensitiv-
ity of the system (2) could be any close to that of the
system (1) (equations of (1) are unknown and could
be very different from equations of (2)). The simple
example in [19] shows that predictability barriers be-
tween (1) and (2) could exist despite the fact that ap-
proximating system reproduces some basic statistical
characteristics of the true model exactly. This is why
the question of what properties a climate model should
have to predict the Earth climate system sensitivity
correctly is very nontrivial from mathematical point
of view [5, 19, 20, 22]. Results described in this entry

http://www.wmo.int
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suggest that to get a good approximation of the climate
system sensitivity, models should reproduce not only
basic statistical characteristics but also lagged covari-
ances, important periodic processes, and the structure
of unstable and stable manifolds of the climate system.

Deterministic Dynamics,
Fluctuation-Response relation

Let us consider a case of constant in time forcing
f .u; t/ 	 f .u/: This is a typical numerical exper-
iments when atmospheric model is used with con-
stant boundary conditions (i.e., “perpetual January”
experiment). Instead of (2) we now have a system of
autonomous ODE:

du

dt
D f .u/: (5)

The useful way to describe the ensemble of the
system states is to introduce probability density �.u; t/
giving the probability of the system to be inside some
set A as P.u.t/ 2 A/ D R

A �.u; t/du. From the phys-
ical viewpoint it is natural to expect that there exists
an equilibrium probability density �st.u/ giving a time-
independent way for estimation of the system statisti-
cal characteristics. Let �.u/ be some state-dependent
characteristic of the system. Its average value, by the
definition, is < � >D R

�.u/�st .u/du. Response of
the < � > to a perturbation of the system right-hand
side ıf could be determined [22] as

ı < � > .t/ D
Z t

0

R.t � s/dsıf ;

R.t � s/ D �
Z
du�.u.t//Œr�st.u.t � s//�T :

(6)

R.t � s/ is called the response operator and it
relates changes of the observable to the changes of
external forcing. It is important that the system is
perturbed around its stationary density �st.u/ and �st.u/
is differentiable.

From (6) it is clear that response of the system
depends on equilibrium density and dynamics of
unperturbed system only. As a result a data-driven
algorithm for the estimation of the climate sensitivity
could be constructed. The largest problem here is a

calculation of r�st because neither system stationary
density nor its gradient is known. A possible approach
suggested in [3] is to use nonparametric estimate to
approximate r�st. In other words one may try to

approximate �st as �st � 1

m

mP
iD1

N.u; ui ; h/ using

available data fuig. In a simplest case one may
use isotropic Gaussian kernels (i.e., N.u; ui ; h/ D
c exp

�
� .u � ui /T .u � ui /

2h2

�
;rN D �u � ui

h2
N ).

The choice for bandwidth parameter h depends on
the system dimensionality, and amount of available
data and should be made experimentally. As a result
one may estimate (6) without any assumption on the
form of the system equilibrium density. This strategy
may not work however for highly dimensional systems
because of the data requirements.

Response relation (6) could be simplified further if
the form of the equilibrium density is known. In an im-
portant case of Gaussian probability density �st.u/ D
c0 exp.�.C.0/�1u; u// (assuming zero average state
for simplicity), equation (6) could be rewritten as

ı < � > .t/ D
Z t

0

R.s/dsıf ;

R.s/ D .
Z
�.u.s C �//u.�/T �st.u/du/C.0/�1:

(7)

In (7) C.0/ D R
uuT �stdu is the covariance matrix of

the system and c0 is density normalization.
The relation (7) was first obtained by Kraichnan

[15] for the so-called regular systems (systems pre-
serving phase volume and having quadratic integral of
motion). As it will be shown later, the relations (6)
and (7) are valid for much wider class of systems.
C. Leith suggested that the Earth’s atmosphere dynam-
ics is reasonably close to the dynamics of the regular
system and proposed to use (7) for the estimation of the
climate system sensitivity [17]. Method, indeed, was
successfully used for a number of systems including
atmospheric general circulation models [11, 24].

Practical implementation of (7) is very straightfor-
ward. One has to calculate a long system trajectory (or
take a long enough dataset) and construct the system
covariance matrix C.0/ and cross-covariance between
the system state and a system observable. The only
sources of difficulties here is the inversion of C.0/ that
could be numerically unstable when C.0/ is estimated
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with numerical error. If the calculation ofC.0/ is based
on a data sample of length T , then according to the
central limit theorem, the error in C.0/ will be propor-
tional to 1=

p
T . From this we see that the shorter the

dataset, the greater the errors will be. Furthermore, as
suggested by the division by C.0/ in (7), the smaller
the eigenvalues of C.0/, the larger will be the errors in
R. Given these considerations, it is not surprising that
one can expect a much more accuracy when using the
state vectors of reduced dimensionality for calculations
in (7). Further discussion on the dimension reduction
procedure could be found in [11, 23].

Chaotic Dissipative Dynamics, Short-Time
FDR

The widely accepted fact now is that a typical atmo-
spheric system based on Navier-Stokes type of equa-
tions is dissipative (i.e., it is contracting phase space)
and chaotic (system trajectories are sensitive with re-
spect to initial conditions) [6]. The system energy is
bounded and system evolves in a bounded set. These
two facts guarantee (for finite-dimensional systems)
the existence of a nontrivial invariant attracting fractal
set (that is called “the attractor”) inside the system
phase space. This type of behavior is well known for
the Lorenz’63 system [18]. Many atmospheric systems
also have this attractor existence property [5].

In spite of the attractor fractality, a physical invari-
ant measure �on the attractor still could be introduced
in similar way [6] as

�.u0/ D limt!1
Z t

0

�.S.�; u0//d�=t 	
Z
�d�;

where S.�; u0/ is a system trajectory with initial con-
dition u0. In an important ergodic case, �.u0/ does
not depend on u0 for almost all initial conditions and
the averages over all typical trajectories are the same
coinciding with the average over the measure.

Response formula (6) does not work for dissipative
chaotic systems (system contracts phase space volume
and support of the measure is a fractal). Instead, it
should be replaced [1] by

ı < � > .t/ D
Z t

0

R.s/dsıf ;

R.s/ D lim
�!1

1

�

Z �

0

@�.S.s; u.t 0///
@u.t 0/

dt 0:

Calculation of @�.S.s; u.t 0///=@u.t 0/ requires the
knowledge of the system tangent propagatorT .t; t0/ 	
Œ@S.t; u/=@u�t0 being the fundamental solution of the
linearized dynamics

dT

dt
D
�
@f .u/

@u


T ; T .t0/ D E T;E 2 Rnxn:

Finally we have

ı < � > .t/ D
Z t

0

R.s/dsıf ;

R.s/ D lim�!1
1

�

Z �

0

r�.u.s//@S.s; u.t
0//

@u.t 0/
dt 0:

(8)

Relation (8) is called the short-time fluctuation-
dissipation relation and could be used to estimate
response of the system for sufficiently small t . Because
of the system chaoticity and existence of positive Lya-
punov exponents, norm of T .t/ grows exponentially
and calculations are unstable at large t . Example of
this approach could be found in [1,2]. Similar approach
based on the adjoint integrations of the tangent linear
system was proposed in [7] with the same drawback of
numerical instability at large t .

Chaotic Dissipative Dynamics, AxiomA
Response Formula

The linear relationship between a system response and
an external forcing means that the system invariant
measure must be smooth with respect to changes
of the system parameters (forcing). For a general
dissipative chaotic system, it cannot be guaranteed
in advance. However, there exists a special class
of systems having this property – the Axiom A
systems [14]. The tangent space of an Axiom A
system at every point u0 could be divided into the
sum of expanding .Eu.u0//, contracting .Es.u0//,
and neutral .En.u0// subspaces invariant with respect
to the tangent propagator T .t/. T .t/ exponentially
expands vectors from Eu.u0/ and exponentially
contracts vectors from Es.u0/. Subspaces Eu.u0/ and
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Es.u0/ correspond to positive and negative Lyapunov
directions, respectively. Neutral subspace En.u0/ is
one dimensional and is parallel to the direction of
motion f .u/ (direction responsible for the only zero
Lyapunov exponent of the system). Eu.u0/; Es.u0/,
and En.u0/ must have nonzero angles and be smooth
with respect to u0.

For models of atmospheric dynamics, it is not pos-
sible to verify Axiom A property directly. More likely,
atmospheric systems have much weaker chaotic prop-
erties being the systems with nonzero Lyapunov expo-
nents. Nevertheless, it is reasonable to expect that for
typical multidimensional chaotic atmospheric systems,
elements of Axiom A theory may still work (at least for
macroscopic observables). This is the statement of the
so-called chaotic hypothesis [8].

For Axiom A systems, a generalized response
formula could be obtained. Decomposing the
tangent space into expanding and neutral-contracting
subspaces on can split ıf at every point of the
phase space as ıf D ıf u C ıf s where ıf u 2
Eu.u0/; ıf s 2 En.u0/ [ Es.u0/. It could be shown
[26, 27] that R.t/ D Ru.t/CRs.t/ W

Ru.t/ D � lim�!1
1

�

Z �

0

r�.u.s//divu.Pu.u.t 0///dt 0;

(9)

and

Rs.s/ D lim�!1
1

�

Z �

0

r�.u.s//@S.s; u.t
0//

@u.t 0/
Ps.u.t 0//dt 0;

(10)

where Pu.u0/;Ps.u0/ are correspondent projectors and
divu denotes divergence operator acting on expanding
part of the tangent space. Now (9) does not contain
numerical instability at large t as short-time FDT (8)
and (9, 10) give a stable way for determination of the
response operator. It should be pointed out however
that (10) requires numerically expensive differentiation
of the Pu.u0/. More practical approach would be to ap-
proximate (10) via quasi-Gaussian expression (7) that
leads to hybrid response algorithm of [1] (provided, of
course, that the system measure on expanding direc-
tions is close to a Gaussian one). This hybrid approach
was successfully applied to geophysical systems in [2].

Chaotic Dissipative Dynamics, Shadowing

Because the tangent space of the Axiom A system is di-
vided into strongly expanding and strongly contracting
subspaces, the system trajectories are structurally sta-
ble with respect to the small perturbations of the system
parameters [14]. Every typical trajectory of perturbed
system could be closely traced (or shadowed) by the
trajectory of original system. It is possible to determine
shadowing trajectory numerically. This gives another
method for the construction of the system response
operator [28].

Let u.t; u0/ be a trajectory of unperturbed sys-
tem. Let us first apply a smooth transformation to
the system phase space u1.u/ D u C ".u/ with
small " and smooth .u/. It could be shown [28] that
u1.u.t; u1.u0/// will satisfy to the modified system of
equations

du1
dt
D f .u1/C "ıf .u1/CO."2/ (11)

with

ıf .u1/ D d.u1/= dt � @f =@u1 .u1/ 	 ˝..u1//:
(12)

Operator ˝ relates a change of the system right-
hand side with a change of coordinates in the phase
space. Difference between < �.u/ > and < �.u1/ >
may be estimated as follows (note that u1.t/ and u.t/
stay close all the time):

ı < � >D lim
t!1

Z t

0

.�.u/� �.u1//d� =t

� " < @� =@u .u/ >D " < @� =@u ˝�1ıf .u/ > :
(13)

Recall that u1.t/ is the solution of (11), so up to the
second order in ıf (13) gives an expression for the
response operator provided that ˝ is invertable. Cor-
responding algorithm consists in calculation of coordi-
nate transformation .u/ for given ıf from (12). Let
us decompose .u/ and ıf using covariant Lyapunov
basis ei .u/:
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ıf .u/ D
nX
iD1

fi .u/ei .u/ .u/ D
nX
iD1

i .u/ei .u/;

(14)

where, by the definition of covariant Lyapunov vectors
[16],

d

dt
ei .u.t// D @f

@u
ei .u.t// � �iei .u.t// (15)

and �i are correspondent Lyapunov exponents. Substi-
tution of (14) and (15) into (12) gives the following:

ıf .u/ D
nX
iD1

fi .u.t//ei .u.t//

D
nX
iD1

�
di .u.t//

dt
� �ii .u.t//

�
ei .u.t//:

(16)

Now i .u/ corresponding to a positive and negative
Lyapunov exponents could be obtained by integrating
the system

di .u.t//

dt
D �ii .u.t//C ıfi .u.t// (17)

backward and forward in time, respectively. In the
direction of the zero Lyapunov exponent, one has

to solve “time compressed” equation
di .u.t//

dt
D

ıfi .u.t//� < ıfi.u.t// > [28].
Correspondent numerical strategy could be

described as follows [28]. One has to calculate
covariant Lyapunov vectors and Lyapunov exponents
(several effective methods are described in [16]),
produce decomposition of ıf along trajectory into
positive and negative covariant Lyapunov subspaces,
and solve correspondent system (17). The method
requires correct inversion of “shadowing” operator,
meaning that covariant Lyapunov vectors must form a
basis in the tangent space of the system in every point
(i.e., no zero tangencies between Lyapunov vectors are
allowed).

Chaotic Dissipative Dynamics, UPO
Expansion

Another useful property of Axiom A system consists in
the fact that the set of unstable periodic orbits (UPOs)
is dense on the attractor of the system [14]. Any
arbitrary trajectory of the system can be approximated
with any prescribed accuracy by periodic orbits, and
all system statistical characteristics could be calculated
using UPOs. Let us rewrite trajectory average for
discrete time as

� � 1

V

I�1X
iD0

vi�.S.i; u0//; V D
I�1X
iD0

vi : (18)

Here I is the number of measurements assumed to be
large enough, vi is the weight of the measurement at
time i (in most typical cases, all weights are equal to
one), and V is the total weight of the measurements (V
is equal to I when all measurements are equivalent).

The UPOs of the system are embedded into the
system attractor and the system trajectory evolves in
the phase space passing from one orbit to another. As a
result trajectory average (18) could be obtained by the
averaging along the orbits. From the physical point of
view, it is clear that orbits visited by a system trajectory
more frequently must have larger weights in this ap-
proximation. Consequently, we obtain approximation
formula (19) that looks almost the same as (18) [27]:

� � 1

W

I.T /X
iD1

wi�.u
i /; W D

I.T /X
iD1

wi : (19)

Here ui is a periodic point of the system with period
T (i.e., ui D S.T; ui //I UPO with period T has T
periodic points; I.T / is the total number of periodic
points of the system with period equal to T and wi
is the weight of a periodic point depending on orbit
instability characteristics (all periodic points of the
same UPO have the same weights). The number of
periodic points I.T / should not be small to get decent
approximation. For the Axiom A systems, this pro-
cedure could be theoretically justified [14, 27], so the
trajectory averaging (18) and the UPO expansion (19)
are equivalent. According to the theory [27], weights
wi must be calculated as
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wi D 1= exp
�
T
X

j
�iCj

�
; (20)

where �iCj are positive Lyapunov exponents of the
orbit containing i th periodic point. Relations (19)
and (20) give another method for calculation of the
system response operator.

Indeed, for the perturbed system, we have similar
UPO expansion formula

� 0.ıf / � 1

W 0
I.T /X
iD1

w0
i�.u

0i /; W 0 D
I.T /X
iD1

w0
i ; (21)

where “prime” symbols denote periodic points and its
weights for the perturbed system. Since the system
is assumed to be structurally stable, no bifurcations
appear under small changes of the external forcing
and orbits of the perturbed system depend implicitly
on the forcing perturbation ıf: As a result one can
numerically estimate the changes of all periodic points
with respect to ıf . In the same way, the expression
for the approximate response operatorV is obtained
by formal differentiation of (21) with respect to ıf at
ıf D 0:

ı� � @

@.ıf /

0
@ 1

W 0

I.T /X
iD1

w0
i �.u

0i /

1
A ıf 	 V ıf

V D� N�
W 2

@W 0

@.ıf /

C 1

W

I.T /X
iD1

�
@w0

i

@.ıf /
�.ui /C wi

@�.u0i /
@.ıf /

�

To calculate operator V , it is necessary to ap-
proximate numerically all the derivatives entering this
expression. Most numerically expensive part of this
procedure constitutes in determination of the changes
of UPO Lyapunov exponents (appearing in (20)) due
to the change of the forcing. Method also requires the
knowledge of the system tangent propagator. Set of
UPOs giving decent approximation of the system tra-
jectory also must be known. In spite of its complexity,
this method could be used for the atmospheric and
oceanic models of intermediate complexity [9, 13].

Stochastic Dynamics,
Fluctuation-Response Relation

Another way to describe climate system is to represent
it with the help of dynamical-stochastical equation
[19, 22]

d'

dt
D g.'; t/C �.'/ PW ˚ 2 RN : (22)

PW is a Gaussian white noise and< ��T >D 2� . Non-
linear operator of the system is supposed to be a con-
stant in time or time periodic with period T .g.'; t/ D
g.'; t C T // reflecting annual and diurnal cycles.
Noise term is responsible for unresolved small-scale
processes or stochastic parameterizations in the model.

Probability density of the system could be obtained
from the corresponding Fokker-Plank equation [21,25]

@�

@t
D �div.g.'; t/�/C divr.� �/: (23)

Let �per
st .'; t/ be a time-periodic solution of the

Fokker-Plank equation. Let us estimate the average
value of �.'/ for times t D t0 C iT; t0 2 Œ0; T �; i D
1 : : :1. By the definition we have

< �.'/ >t0 D limI!1
PI

iD0 �.'.t0 C iT //
I

D
Z
�.'/�

per
st .'; t

0/d'

Similar to the case of deterministic dynamics con-
sidered in Chapter 1, one can obtain response relation
[21].

ı < � > .t/ D
Z t

0

R.t � s/dsıf;R.t � s/

D �
Z
du�.'.t//Œr�per

st .'.t � s/; t � s/�T : (24)

Obviously, (24) has exactly the same form as (6)
in a constant-in-time forcing case. The derivation
of (24) requires an existence of attracting time-
periodic or stationary solution for the Fokker-
Plank equation (23). In a quasi-Gaussian case
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�
per
st .'; s/ � c0 exp.�.Cs.0/�1'; '// giving a time-

periodic version of fluctuation-dissipation relation (7)
.t0 D .t � s/ mod T / as:

ı < � > .t/ D
Z t

0

R.t � s/dsıf ; R.t � s/

D
Z
�

per
st .'; t

0/du�.'.t//'.t � s/T Ct0.0/�1:
(25)

Practical implementation of (24) and (25) is anal-
ogous to that of (6) and (7). One needs to calculate
a long system trajectory, estimate a set of covariance
matrices Ct.0/ for every date of the system period, and
calculate correspondent cross-covariances. The time-
periodic case requires more data for a comparable
accuracy (as we need to calculate Ct.0/ for every
date): still, it could be successfully applied for complex
atmospheric models [10].
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Introduction

Hyperbolic partial differential equations (PDEs) are
mathematical models of wave phenomena, with appli-
cations in a wide range of scientific and engineering
fields such as electromagnetic radiation, geosciences,
fluid and solid mechanics, aeroacoustics, and general
relativity. The theory of hyperbolic problems, includ-
ing Friedrichs and Kreiss theories, has been well de-
veloped based on energy estimates and the method
of Fourier and Laplace transforms [8, 16]. Moreover,
stable numerical methods, such as the finite difference
method [14], the finite volume method [17], the finite
element method [6], the spectral method [4], and the
boundary element method [11], have been proposed
to compute approximate solutions of hyperbolic prob-
lems. However, the development of the theory and
numerics for hyperbolic PDEs has been based on the
assumption that all input data, such as coefficients, ini-
tial data, boundary and force terms, and computational
domain, are exactly known.

There is an increasing interest in including uncer-
tainty in these models and quantifying its effects on
the predicted solution or other quantities of physical
interest. The uncertainty may be due to either an
intrinsic variability of the physical system (aleatoric
uncertainty) or our ignorance or inability to accurately
characterize all input data (epistemic uncertainty). For
example, in earthquake modeling, seismic waves prop-
agate in a geological region where, due to soil spa-
tial variability and the uncertainty of measured soil
parameters, both kinds of uncertainties are present.
Consequently, the field of uncertainty quantification
(UQ) has arisen as a new scientific discipline. UQ is the

science of quantitative characterization, reduction, and
propagation of uncertainties and the key for achiev-
ing validated predictive computations. The numerical
solution of hyperbolic problems with random inputs
is a new branch of UQ, relying on a broad range of
mathematics and statistics groundwork with associated
algorithmic and computational development and aim-
ing at accurate and fast propagation of uncertainties
and the quantification of uncertain simulation-based
predictions.

The most popular method for solving PDEs in
probabilistic setting is the Monte Carlo sampling; see,
for instance, [7]. It consists in generating indepen-
dent realizations drawn from the input distribution and
then computing sample statistics of the correspond-
ing output values. This allows one to reuse available
deterministic solvers. While being very flexible and
easy to implement, this technique features a very slow
convergence rate.

In the last few years, other approaches have been
proposed, which in certain situations feature a much
faster convergence rate. They exploit the possible reg-
ularity that the solution might have with respect to
the input parameters, which opens up the possibility
to use deterministic approximations of the response
function (i.e., the solution of the problem as a function
of the input parameters) based on global polynomials.
Such approximations are expected to yield a very fast
convergence. Stochastic Galerkin [3,10,22,32,38] and
stochastic collocation [2, 26, 27, 37] are among these
techniques.

Such new techniques have been successfully applied
to stochastic elliptic and parabolic PDEs. In particular,
it is shown that, under particular assumptions, the
solution of these problems is analytic with respect to
the input random variables [2, 25]. The convergence
results are then derived from the regularity results. For
stochastic hyperbolic problems, the analysis was not
well developed until very recently; see [1,23,24]. In the
case of linear problems, there are a few works on the
one-dimensional scalar advection equation with a time-
and space-independent random wave speed [13,31,36].
Such problems also possess high regularity properties
provided the data live in suitable spaces. The main
difficulty however arises when the coefficients vary in
space or time and are possibly non-smooth. In this
more general case, the solution of linear hyperbolic
problems may have lower regularity than those of ellip-
tic, parabolic, and hyperbolic problems with constant
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random coefficients [1, 23, 24]. There are also recent
works on stochastic nonlinear conservation laws; see,
for instance, [18, 19, 28, 34, 35].

In the present notes, we assume that the uncertainty
in the input data is parameterized either in terms of
a finite number of random variables or more gen-
erally by random fields. Random fields can in turn
be accurately approximated by a finite number of
random variables when the input data vary slowly in
space, with a correlation length comparable to the size
of the physical domain. A possible way to describe
such random fields is to use the truncated Karhunen-
Loéve [20,21] or polynomial chaos expansion [39]. We
will address theoretical issues of well-posedness and
stochastic regularity, as well as efficient treatments and
computational error analysis for hyperbolic problems
with random inputs. We refer to [1, 23, 24] for further
details.

Problem Statement

In this section, for simplicity, we consider the lin-
ear second-order scalar acoustic wave equation with
random wave speed and deterministic boundary and
initial conditions. We motivate and describe the source
of randomness and address the well-posedness of the
problem. For extensions to the system of elastic wave
equations, see [1, 23].

Let D be a convex bounded polygonal domain in
R
d , d D 2; 3, and .�;F ; P / be a complete probability

space. Here,� is the set of outcomes, F � 2� is the -
algebra of events, and P W F ! Œ0; 1� is a probability
measure. Consider the stochastic initial boundary value
problem (IBVP): find a random function u W Œ0; T � �
ND � � ! R, such that P -almost everywhere in �,

i.e., almost surely (a.s), the following holds

ut t .t; x; !/� r �
�
a2.x; !/ru.t; x; !/

� D f .t; x/
in Œ0; T � �D ��;

u.0; x; !/ D g1.x/; ut .0; x; !/ D g2.x/
onft D 0g �D ��;

u.t; x; !/ D 0 on Œ0; T � � @D ��:
(1)

Here, the solution u is the displacement, and t and x D
.x1; : : : ; xd /

> are the time and location, respectively,
and the data

f 2 L2..0; T /IL2.D//; g1 2 H1
0 .D/; g2 2 L2.D/;

(2)
are compatible.

The only source of randomness is the wave speed
a which is assumed to be bounded and uniformly
coercive,

0 < amin � a.x; !/ � amax <1;
almost everywhere in D; a.s: (3)

Assumption (3) guarantees that the energy is conserved
and therefore the stochastic IBVP (1) is well posed
[24].

In many wave propagation problems, the source of
randomness can be described or approximated by only
a small number of uncorrelated random variables. For
example, in seismic applications, a typical situation is
the case of layered materials where the wave speeds
in the layers are not perfectly known and therefore
are described by uncorrelated random variables. The
number of random variables is therefore the number of
layers. In this case, the randomness is described by a
finite number of random variables. Another situation is
when the wave speeds in layers are given by random
fields, which in turn are approximated by a truncated
Karhunen-Loéve expansion. Hence, the number of ran-
dom variables corresponds to the number of layers
as well as the number of terms in the expansion. In
this case, the randomness is approximated by a finite
number of random variables. This motivates us to make
the following finite dimensional noise assumption on
the form of the wave speed,

a.x; !/ D a.x; Y1.!/; : : : ; YN .!//;
almost everywhere in D; a.s; (4)

where N 2 NC and Y D ŒY1; : : : ; YN � 2 R
N is a

random vector. We denote by �n 	 Yn.�/ the image
of Yn and assume that Yn is bounded. We let � DQN
nD1 �n and assume further that the random vector

Y has a bounded joint probability density function
� W � ! RC with � 2 L1.� /. We note that by using a
similar approach to [2,5], we can also treat unbounded
random variables, such as Gaussian and exponential
variables.

The finite dimensional noise assumption (4) im-
plies that the solution of the stochastic IBVP (1)
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can be described by only N random variables, i.e.,
u.t; x; !/ D u.t; x; Y1.!/; : : : ; YN .!//. This turns the
original stochastic problem into a deterministic IBVP
for the wave equation with an N -dimensional param-
eter, which allows the use of standard finite difference
and finite element methods to approximate the solution
of the resulting deterministic problem u D u.t; x; Y /,
where t 2 Œ0; T �, x 2 D, and Y 2 � . Note that the
knowledge of u D u.t; x; Y / fully determines the law
of the random field u D u.t; x; !/.

Here, as an example of form (4), we consider a
random speed a given by

a.x; !/ D a0.x/C
NX
nD1

an.x; !/ IDn.x/;

an.x; !/ D Yn.!/ ˛n.x/; ˛n 2 C1.Dn/;

(5)

where I is the indicator function. In this case, D
is a heterogeneous medium consisting of N non-
overlapping sub-domains fDngNnD1, fYngNnD1 are
independent random variables, and f˛ngNnD1 are smooth
functions defined on sub-domains. The boundaries
of sub-domains, which are interfaces of speed
discontinuity, are assumed to be smooth.

The ultimate goal is the prediction of statistical
moments of the solution u or statistics of some given
quantities of physical interest. As an example, we
consider the following quantity,

Q.Y / D
Z T

0

Z
D

u.t; x; Y / �.x/ dx dt

C
Z
D

u.T; x; Y /  .x/ dx; (6)

where u solves (1) and the mollifiers � and  are given
functions of x.

Nonintrusive Numerical Methods

There are in general three types of methods for
propagating uncertainty in PDE models with random
inputs: intrusive, nonintrusive, and hybrid methods.
Intrusive methods, such as perturbation expansion,
intrusive polynomial chaos [39], and stochastic
Galerkin [10], require extensive modifications in
existing deterministic solvers. On the contrary, non-
intrusive methods, such as Monte Carlo and stochastic

collocation, are sample-based approaches. They rely
on a set of deterministic models corresponding to a set
of realizations and hence require no modification to the
existing deterministic solvers. Finally, hybrid methods
are a mixture of both intrusive and nonintrusive
approaches.

Nonintrusive (or sample-based) methods are attrac-
tive in the sense that they require only a deterministic
solver for computing deterministic models. In addition,
since the deterministic models are independent, it is
possible to distribute them onto multiple processors
and perform parallel computation.

The most popular nonintrusive technique is the
Monte Carlo method. While being very flexible and
easy to implement, this technique features a very slow
convergence rate. The multilevel Monte Carlo method
has been proposed to accelerate the slow convergence
of Monte Carlo sampling [12]. Quasi-Monte Carlo
methods can be considered as well that aim at achiev-
ing higher rates of convergence [15].

The stochastic collocation (SC) method is another
nonintrusive technique, in which regularity features
of the quantity of interest with respect to the input
parameters can be exploited to obtain a much faster
or possibly spectral convergence. In SC, the problem
(1) is first discretized in space and time, using a
deterministic numerical method. The obtained semi-
discrete problem is then collocated in a set of � col-
location points fY .k/g�kD1 2 � to compute the ap-
proximate solutions uh.t; x; Y .k//, where h represent
the discretization mesh/grid size. A global polynomial
approximation is then built upon those evaluations,

uh;�.t; x; Y / D
�X

kD1
uh.t; x; Y .k// Lk.Y /;

for suitable multivariate polynomial bases fLkg�kD1
such as Lagrange polynomials. Finally, using the Gauss
quadrature formula, we can easily approximate the
statistical moments of the solution. For instance,

EŒu.:; Y /� � EŒuh;�.:; Y /� D
Z
�

uh;�.:; Y / �.Y / dY

D
�X

kD1
uh.:; Y

.k//

Z
�

Lk.Y / �.Y / dY

�
�X

kD1
uh.:; Y

.k// �k:
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A key point in SC is the choice of the set of colloca-
tion points fY .k/g, i.e., the type of computational grid
in the N -dimensional stochastic space. A full tensor
grid, based on Cartesian product of mono-dimensional
grids, can only be used when the number of stochastic
dimensions N is small, since the computational cost
grows exponentially fast with N (curse of dimension-
ality). Alternatively, sparse grids can reduce the curse
of dimensionality. They were originally introduced by
Smolyak for high-dimensional quadrature and inter-
polation computations [30]. In the following, we will
briefly review the sparse grid construction.

Let j 2 Z
NC be a multi-index containing nonnegative

integers. For a nonnegative index jn in j, we introduce
a sequence of one-dimensional polynomial interpolant
operators Ujn W C0.�n/ ! Pp.jn/.�n/ of degree p.jn/
on p.jn/C 1 suitable knots. With U�1 D 0, we define
the detail operator

�jn WD Ujn � Ujn�1:

Finally, introducing a sequence of index sets I.`/ �
Z
NC, the sparse grid approximation of u W � ! V at

level ` reads

u�.`;N /.:; Y / D
X

j2I.`/

NO
nD1

�jn Œu�.:; Y /: (7)

Furthermore, in order for the sum (7) to have some
telescopic properties, which are desirable, we impose
an additional admissibility condition on the set I [9].
An index set I is said to be admissible if 8 j 2 I,

j � en 2 I for 1 � n � N; jn � 1;

holds. Here, en is the n-th canonical unit vector.
To fully characterize the sparse approximation op-

erator in (7), we need to provide the following:
• A level ` 2 N and a function p.j / representing

the relation between an index j and the number of
points in the corresponding one-dimensional poly-
nomial interpolation formula Uj .

• A sequence of sets I.`/. Typical examples include
total degree and hyperbolic cross grids.

• The family of points to be used, such as Gauss or
Clenshaw-Curtis abscissae, [33].
The rate of convergence for SC depends on the

stochastic regularity of the output quantity of interest,

which may be the solution or some given functional of
the solution. For example, a fast spectral convergence
is possible for highly regular outputs. We will discuss
this issue in more details in the next section.

Stochastic Regularity and Convergence of
Stochastic Collocation

As extensively discussed in [1, 23, 24], the error in
the stochastic collocation method is related to the
stochastic regularity of the output quantity of interest
(the solution or a given functional of the solution).
It has been shown that, under particular assumptions,
the solution of stochastic, elliptic, and parabolic PDEs
is analytic with respect to the input random variables
[2,25]. In contrast, the solution of stochastic hyperbolic
PDEs may possess lower regularity. In this section,
first, we will convey general stochastic regularity prop-
erties of hyperbolic PDEs through simple examples.
Then, we state the main regularity results followed by
the convergence results for SC.

Examples: General Stochastic Regularity
Properties
Example 1 Consider the 1D Cauchy problem for the
scalar wave equation,

utt.t; x; y/ � y2 uxx.t; x; y/ D 0; in Œ0; T � � R;

u.0; x; y/ D g.x/; ut .0; x; y/ D 0; on ft D 0g � R;

with g 2 C1
0 .R/. The wave speed is constant and

given by a single random variable y. We want to
investigate the regularity of the solution u with respect
to y. For this purpose, we extend the parameter y into
the complex plane and study the extended problem in
the complex plane. It is well known that if the ex-
tended problem is well posed and the first derivative of
the resulting complex-valued solution with respect to
the parameter satisfies the so-called Cauchy-Riemann
conditions, the solution can analytically be extended
into the complex plane, and hence u will be analytic
with respect to y. We therefore let y D yR C i yI ,
where yR; yI 2 R, and apply the Fourier transform
with respect to x to obtain

Ou.t; k; y/ D Og.k/
2

�
e�i y k t C ei y k t�;
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where Ou and Og are the Fourier transforms of u and g
with respect to x, respectively. Hence,

jOu.t; k; y/j 
 j Og.k/j ejyI j jkj t :

Therefore, the Fourier transform of the solution
Ou.t; k; y/ grows exponentially fast in time, unless the
Fourier transform of the initial solution Og.k/ decays
faster than e�jyI j jkj t . In order for the Cauchy problem
to be well posed, g needs to belong to the Gevrey
space Gq.R/ of order q < 1 [29]. For such functions,
we have j Og.k/j � C e�� jkj1=q for positive constants
C and �, and hence the problem is well posed in the
complex strip †r D f.yR C i yI / 2 C W jyI j � rg.
Note that G1.R/ is the space of analytic functions. If
g 2 G1.R/, the problem is well posed only for a finite
time interval when t � �=r . This shows that even if
the initial solution g is analytic, the solution u is not
analytic with respect to y for all times in †r .

Example 2 Consider the 1D Cauchy problem for the
scalar wave equation in a domain consisting of two
homogeneous half-spaces separated by an interface at
x D 0,

ut t .t; x; Y /�
�
a2.x; Y / ux.t; x; Y /

�
x
D 0;

in Œ0; T � � R;

u.0; x; Y / D g.�x/; ut .0; x; Y / D a� g0.�x/;
on ft D 0g � R;

with g 2 C1
0 .0;1/. The wave speed is piecewise

constant and a function of a random vector of two
variables Y D Œy�; yC�,

a.x; Y / D
�
y�; x < 0;

yC; x > 0:

By d’Alembert’s formula and the interface jump con-
ditions at x D 0,

u.t; 0�; Y / D u.t; 0C; Y /; y2� ux.t; 0
�; Y /

D y2C ux.t; 0
C; Y /; (8)

the solution reads

u.t; x; Y / D

8̂
ˆ̂̂<
ˆ̂̂̂
:

g.y� t � x/C y
�

�y
C

y
�

Cy
C

g.y� t C x/;
x < 0;

2y
�

y
�

Cy
C

g
�
y

�

y
C

.yC t � x/
�
;

x > 0:

(9)

Clearly, the solution (9) is infinitely differentiable with
respect to both parameters y� and yC in .0;C1/.
Note that the smooth initial solution u.0; x; Y /, which
is contained in one layer with zero value at the in-
terface, automatically satisfies the interface conditions
(8) at time zero. Otherwise, if for instance the initial
solution crosses the interface without satisfying (8), a
singularity is introduced in the solution, and the high
regularity result does not hold any longer.

In the more general case of multidimensional het-
erogeneous media consisting of sub-domains, the inter-
face jump conditions on a smooth interface ‡ between
two sub-domainsDI andDII are given by

Œu.t; :; Y /�‡ D 0; Œa2.:; Y / un.t; :; Y /�‡ D 0:
(10)

Here, the subscript n represents the normal derivative,
and Œv.:/�‡ is the jump in the function v across the
interface ‡ . In this general case, the high regularity
with respect to parameters holds provided the smooth
initial solution satisfies (10). The jump conditions are
satisfied for instance when the initial data are contained
within sub-domains. This result for Cauchy problems
can easily be extended to IBVPs by splitting the prob-
lem to one pure Cauchy and two half-space problems.
See [24] for more details. We note that the above high
stochastic regularity result is valid only for particular
types of smooth data. In real applications, the data
are not smooth. Let us now consider a more practical
datum.

Example 3 Consider the 1D Cauchy problem for the
scalar wave equation in a domain consisting of two
homogeneous half-spaces separated by an interface at
x D 0,

utt.t; x; y/�
�
a2.x; y/ ux.t; x; y/

�
x
D0; in Œ0; T � �R;

u.0; x; y/ D g.x/; ut .0; x; y/ D 0; on ft D 0g � R;

with g 2 H1
0 .R/ being a hat function with a narrow

support suppg D Œx0 � ˛; x0 C ˛�, with 0 < ˛ �
1, located at x0 < ˛. The wave speed is piecewise
constant and a function of a random variable y,
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a.x; y/ D
�
1; x < 0;

y; x > 0:

Similar to Example 2, we can obtain the closed form of
the solution as

u.t; x; y/ D

8̂
ˆ̂<
ˆ̂̂:

1
2
g.t C x/; x < x0 � t

12 g.�t C x/C 1�y
2 .1Cy/ g.�t � x/; x0 � t < x < 0

1
1Cy g

�
�t C x

y

�
; 0 < x < x0 C y t

0; x > x0 C y t

Since g 2 H1
0 , there is only one bounded derivative

@yu, and higher bounded y-derivatives do not exist.
However, if we consider a quantity of interest Q.y/
as in (6) with mollifiers �; 2 C1

0 .R/ vanishing at
x < 0, we can employ integration by parts and shift the
derivatives on g to the mollifiers. Therefore, although
the solution u has only one bounded y-derivative, the
quantity of interest Q is smooth with respect to y.

Remark 1 Immediate results of the above three exam-
ples are the following:
1. For the solution of the 1D Cauchy problem for the

wave equation to be analytic with respect to the
random wave speed at all times in a given complex
strip †r with r > 0, the initial datum needs to live
in a space strictly contained in the space of analytic
functions, which is the Gevrey space Gq.R/ with
0 < q < 1. Moreover, if the problem is well
posed and the data are analytic, the solution may
be analytic with respect to the parameter in †r only
for a short time interval.

2. In a 1D heterogeneous medium with piecewise
smooth wave speeds, if the data are smooth and
the initial solution satisfies the interface jump con-
ditions (10), the solution to the Cauchy problem is
smooth with respect to the wave speeds. If the initial
solution does not satisfy (10), the solution is not
smooth with respect to the wave speeds.

3. In general, the solution u has only finite stochastic
regularity. The stochastic regularity of functionals
of the solution (such as mollified quantities of in-
terest) can however be considerably higher than the
regularity of the solution.

General Results: Stochastic Regularity
We now state some regularity results in the more
general case when the data satisfy the minimal assump-
tions (2). See [23, 24] for proofs.

Theorem 1 For the solution of the stochastic IBVP (1)
with data given by (2) and a random piecewise smooth
wave speed satisfying (3) and (5), we have

@Y u 2 C0.0; T IL2.D//; 8Y 2 �:

Theorem 2 Consider the quantity of interest Q.Y /
in (6) and let the smooth mollifiers �; 2 C1

0 .D/

vanish at the discontinuity interfaces. Then with the
assumptions of Theorem 1, we have

Q 2 C1.� /:

In practical applications, quantities of interest, such
as Arias intensity, spectral acceleration, and von Mises
stress, are usually nonlinear in u. In such cases, the high
stochastic regularity property might not hold. However,
one can perform a low-pass filtering (LPF) on the low
regular solutions or quantities of interest by convolving
them with smooth kernels such as Gaussian functions,

Kı.x/ D 1

.
p
2 � ı/d

exp

�
� jxj

2

2 ı2

�
; x 2 R

d :

(11)
Here, the standard deviation ı is inversely proportional
to the maximum frequency that is allowed to pass. For
instance, the filtered solution is given by the convolu-
tion

Qı.u/.t; x; Y / D .u ? Kı/.t; x; Y /

D
Z
D

Kı.x � Qx/ u.t; Qx; Y / d Qx: (12)

The filtered solution (12) is of a type similar to
the quantity of interest (6) with smooth mollifiers.
However, the main difference here is the boundary
effects introduced by the convolution. Therefore,
in the presence of a compactly supported smooth
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kernel K 2 C1
0 .D/ as mollifier, the quantity (12) will

have high stochastic regularity on a smaller domain
x 2 Dı � D with dist.@Dı; @D/ � d > 0. We choose
d so thatKı.x0/ with jx0j D d is essentially zero. This
implies that for any x 2 Dı , the support of Kı.x � Qx/
is essentially vanishing at @D.

We note that by performing filtering, we introduce
an error ju � Qı.u/j which is proportional to O.ı2/.
This error needs to be taken into account. We refer
to [1] for a more rigorous error analysis of filtered
quantities.

Convergence Results for Stochastic Collocation
In order to obtain a priori estimates for the total error
jju � uh;�jjW˝L2�.� /, with W WD L2.0; T IL2.D//, we
split it into two parts

" WD jju�uh;�jj � jju�uhjjC jjuh�uh;�jj DW "I C "II :

(13)

The first term "I controls the convergence of the de-
terministic numerical scheme with respect to the mesh
size h and is of order O.hr /, where r is the minimum
between the order of accuracy of the finite element
or finite difference method used and the regularity
of the solution. Notice that the constant in the term
O.hr / is uniform with respect to Y . The second term
"II is derived as follows from the stochastic regularity
results. See [24] for proofs.

Theorem 3 Consider the isotropic full tensor product
interpolation. Then

"II � C ��s=N : (14)

where the constant C D Cs
PN

nD1 maxkD0;:::;s
jjDk

Yn
uh;`jjL1.� IW / does not depend on `.

Theorem 4 Consider the Smolyak sparse tensor prod-
uct interpolation based on Gauss-Legendre abscissae,
and let uh;� be given by (7). Then for the solution uh
with s � 1 bounded mixed Y -derivatives,

"II � C
�
1C log2

�

N

�2N
�

�s log 2
	ClogN ;

	 D 1C log 2 .1C log2 1:5/ � 2:1; (15)

where the constant

C D Cs 1 � C
N
s

1 � Cs jj�jj
1=21 max

dD1;:::;N
max

0�k1;:::;kd�s

jjDk1
Y1
: : : D

kd
Yd

uhjjL2.� IW /;

depends on uh, s, and N , but not on `.

Remark 2 It is possible to show that the semi-discrete
solution uh can analytically be extended on the whole
region †.�; �/ D fZ 2 C

N ; dist.�n;Zn/ � �; n D
1; : : : ; N g, with the radius of analyticity � D O.h/
[24]. This can be used to show that for both full
tensor and Smolyak interpolation, we will have a
fast exponential decay in the error when the product
hp.`/ is large. As a result, with a fixed h, the error
convergence is slow (algebraic) for a small ` and
fast (exponential) for a large `. Moreover, the rate of
convergence deteriorates as h gets smaller.

Remark 3 The main parameters in the computations
include h, �.`/, and possibly ı if filtered quantities
are used. In order to find the optimal choice of the
parameters, we need to minimize the computational
complexity of the SC method, subject to the total error
constraint " D TOL. We refer to [1] for more details.
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Abstract

Modulating capillary growth, or therapeutic angiogen-
esis, has the potential to improve treatments for many
conditions that affect the microvasculature including
cancer, peripheral arterial disease, and ischemic stroke.
The ability to translate angiogenesis-targeting thera-
pies to the clinic as well as tailor these treatments
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to individuals hinges on a detailed mechanistic un-
derstanding of how the process works in the human
body. Mathematical and computational modeling of
angiogenesis have emerged as tools to aid in treatment
design, drug development, and the planning of thera-
peutic regimes. In this encyclopedia entry, we describe
angiogenesis models that have been developed across
biological scales and outline how they are being used
in applications to human health.

Introduction

Angiogenesis, the growth of capillaries from existing
microvasculature, arises in dozens of physiological
and pathological conditions. It is critical to wound
healing and response to exercise. Angiogenesis also
plays a pivotal role in the progression of cancer and
tissue recovery after stroke. As such, angiogenesis has
been the target of numerous therapies. However, so
far, clinical trials and approved drugs targeting angio-
genesis have performed below their potential [1, 2].
In part this is because drugs have been limited in
their targets. Emerging angiogenic treatments are more
likely to be multimodal, targeting multiple molecules
or cells [3]. In addition, the need for tighter control
over the degree, duration, and efficacy of new capillary
growth by proper timing and dosing of therapies has
been recognized. To harness the full therapeutic use of
angiogenesis, a greater quantitative understanding of
the process is needed. Modeling becomes a vital tool
to capture the complexity of angiogenesis and aid in
drug design and development.

Modeling of angiogenesis first emerged in the
1970s, with differential equation-based models of
capillary network formation [4, 5]. In the following
decades, models considered generic growth factors as
stimuli for vessel growth and captured key characteris-
tics that subsequent models have maintained: including
the ability for vessels to form as a function of biochem-
ical, mechanical, and genetic properties [6–8]. As more
knowledge of the molecular players in angiogenesis
appeared from experimental studies, ligand-receptor
and signaling models began to probe the effects of fac-
tors like vascular endothelial growth factor [9, 10], fi-
broblast growth factor [11], matrix metalloproteinases
[12], and hypoxia-inducible factor 1 [13] on angio-
genic potential. Cell-based models arose to address the
need to understand how single cell behavior and cell-

matrix interactions give rise to emergent properties
of whole capillary networks [14–16]. Bioinformatic
approaches have since been harnessed to help predict
molecular compounds to target and analyze high-
throughput imaging data [17–19]. Multiscale modeling
emerged to bridge the gap between models and allow
predictions across time and spatial scales [20, 21].
Broadly, computational modeling of angiogenesis can
be divided into these five methodology categories,
which we discuss in general chronological order of
their appearance in the modeling literature: network-
level modeling, molecular-level modeling, cell-based
modeling, bioinformatics, and multiscale modeling.

Angiogenesis ModelingMethodology

Network-Level Modeling
The first computational models of angiogenesis fo-
cused on the formation of new capillaries at the tissue
or network level. Experimental observations in the
early 1970s showed that capillary formation in tumors
was a function of an uncharacterized molecule coined
“tumor angiogenic factor” or TAF [22]. The effect of
this vascular stimulus on the growth of capillaries in
melanoma was modeled in 1976 by Deakin [23]. The
following year, Liotta et al. published a partial differ-
ential equation model of the diffusion of vessels and
tumor cells within a growing tumor [5]. Differential
equations lent themselves well to characterizing the
observed phenomenon, as researchers recognized that
as the tumor grew, the concentration of vessels changed
in time as a function of factors in the microenvironment
and location within the tumor. Continuous, determinis-
tic approaches captured the main features being quan-
tified experimentally: vessel growth, tumorigenesis as
a function of vessel density, and vessel growth as a
function of TAF levels.

As experimental knowledge grew in the following
decades, angiogenesis models become more mech-
anistically detailed. Current capillary network mod-
els frequently contain three main categories of stim-
uli guiding directional changes in neovascularization:
chemotaxis, haptotaxis, and a random and/or baseline
contribution. They also allow vasculature density to in-
crease through growth and decrease through apoptosis.
Mathematically, the motility stimuli can be expressed
through basic governing equations that conserve mass
[6], e.g.,
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@n

@t
D Jchemotaxic C Jhaptotaxic C Jrandom

@n

@t
D  .c/ nrc C ”.m/nrm�Dnrn

where n is the endothelial cell or vessel density per unit
area; c is the TAF concentration;  is the chemotactic
constant or function denoting the sensitivity of the cells
to TAF; � is the haptotactic constant or function; m is
the concentration of the matrix fibers (e.g., fibrin or
collagen), and dn is the cell random motility coeffi-
cient. Along with capillary growth dynamics, scaling
factors and scale-independent properties of capillary
networks have also been explored computationally
[24]. Fractal analysis is one technique researchers have
used, with applications to correlating tumor grades to
fractal dimensions of the vasculature network [25–30].

Molecular-Level Modeling: Reaction Diffusion
Modeling

Receptor-ligand models In the 1980s, experimental
studies identified the molecule vascular endothelial
growth as a potent angiogenic or TAF factor [31, 32],
and new models incorporated this knowledge. The
first angiogenic growth factors explored experimen-
tally were also those that were first studied computa-
tionally: FGF [11,33,34] and VEGF [9,35,36]. Most of
these models employ reaction-diffusion equations. A
series of ODEs describe the binding of multiple ligands
to their respective receptors. Kinetic rates are estimated
from literature where available. A simplified example
of a receptor-ligand kinetic model is shown for the Dll4
ligand, its receptor Notch, and their bound complex:

Dll4C Notch
k1
$
k�1

Dll4 � Notch

dŒDll4�

dt
D �k1 ŒNotch� ŒDll4�C k�1 ŒDll4 � Notch�

k1 and k�1 are the forward and reverse binding rates,
respectively, and brackets indicate concentration. This
is also bounded by the limit that the total amounts of
Dll4 and Notch remain constant. Factors may present
in the interstitial fluid surrounding a tissue or cell or
be bound to the local matrix. Transport by diffusion
of the growth factors throughout the microenvironment

to the cell membrane is often considered. By the mid-
1990s, it was broadly accepted that a balance of many
proangiogenic and antiangiogenic factors determined
the degree of angiogenesis [37], and these compounds
are present in varying levels based on tissue location
and disease state. Furthermore, multiple receptors and
ligand combinations in the same family yield divergent
effects on angiogenesis [38]. Modeling at the receptor-
ligand level added the quantitative predictions of when
the angiogenic balance was tipped and how targeting
a particular receptor or ligand changed the balance
of growth factors present in tissues [11]. Results of
ligand-receptor models have predicted how intracoro-
nary delivery of bFGF distributes in the myocardium
[33]: how VEGF signals in healthy skeletal muscle
[39], peripheral arterial disease [40], and breast cancer
[41]; and how matrix metalloproteinases degrade the
local collagen matrix surrounding activated vascular
cells [12, 42].

Intracellular signalingmodels
Discovery of intracellular pathways associated with
hypoxia-induced angiogenesis led to computational
models at the subcellular level. Hypoxia-inducible fac-
tor 1 (HIF1), discovered in 1992 by Gregg Semenza
[43], is a potent transcription factor that activates hun-
dreds of genes including vascular endothelial growth
factor and other angiogenic-associated molecules. Ac-
cumulation of HIF1 at low levels of oxygen has been
referred to as an angiogenic switch – rapidly turning
on the signaling pathways associated with neovas-
cularization [44–47]. Subsets of this pathway have
been modeled computationally [45, 46, 48–50, 100].
Like the receptor-ligand interaction models, the intra-
cellular signaling models have predominantly taken
the form of chemical kinetic reactions, modeled by a
series of ordinary differential equations, where kinetic
rates are obtained from experimental data or estimates.
Michaelis-Menten kinetics with substrate saturation
and reversibility assumptions help simplify the set of
possible equations and kinetic rates. Results of these
models have predicted the effect of reactive oxygen
species on HIF1 levels in cancer and ischemia [51], the
induction of VEGF signaling by HIF1 in tumor cells
[50], and the transcriptional changes during hypoxia
[46, 49].

Additionally, models have looked at integrating
receptor-ligand binding on the cell membrane
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with intracellular signaling. A stochastic Boolean
representation has been employed to study signaling
transduction and crosstalk between the VEGF,
integrin, and cadherin receptors [35]. Proliferation
and migration signaling pathways have also begun to
be modeled in the context of microvascular formation,
as has the molecular regulation of endothelial cell
precursor differentiation activity during angiogenesis
[101, 102].

Cell-BasedModeling
Cell-based modeling covers a range of computational
techniques, all focusing on the cell as the main func-
tional unit of the model. One of the first cell-based
computational models relevant to angiogenesis was a
1991 stochastic differential equation model by Stokes,
Lauffenburger, and Williams that described the migra-
tion of individual endothelial cells, including chemo-
taxis, persistence, and random motion [52]. Subsequent
models have considered how the microvascular cells
interact with each other and their environment to form
capillaries and eventually a full capillary network.
Here, we briefly present three approaches to model
angiogenesis processes at the cell level: agent-based
programming, cellular automata, and cellular Potts
modeling.

Agent-based programming
Agent-based programming originated in the 1940s and
sprung from areas as diverse as game theory, ecology,
and economics [53]. Agents are defined conceptually
as individual entities or objects. In the computer code,
they are represented as data structures with a number
of unique characteristics: Agents interact with their
environment, and they are capable of modifying their
surroundings. They also interact with one another and
can influence each other’s behaviors. They carry a
computational genome, or a sequence of instructions
(referred to as rules). Rules guide the agents’ response
to other agents and their environment. Agents may
move on discrete or continuous grids.

In the larger context of biology, agent-based pro-
gramming has been applied to study diverse phenom-
ena including angiogenesis in mesenteric tissue [54],
membrane transport [55, 56], inflammatory response
[57, 58], and tumor growth [59, 60]. Angiogenesis
models employing agents have allowed the explo-
ration of cell behavioral patterns, chemotaxis, receptor

signaling, and network phenotype. In these models,
each cell is represented by a single agent or multi-
ple agents. Recent work has used agents to represent
sections of cells and to allow for detailed movement,
filopodia extension, elongation, or directional cues for
cells [15, 61, 62].

Agent rules require listing the factors that influence
cell behavior as events, with direct counterparts
in biology. Rules may be algebraic or differential
equations, Boolean, or a series of logical statements.
An example rule for cell behavior would be the extent
of cell migration as a function of a specific growth
factor or whether a cell changes state from quiescent
to active [15]. Developing rules is an iterative process,
much like perfecting in vitro or in vivo experiments.
As more knowledge is gained, the current assumptions
may change, and a cycle of improvements is needed to
keep pace with current biological information. Agent-
based microvasculature models have been applied
diversely, including a study assessing the effect of
stem cell trafficking through the endothelium [63]; an
experimentally coupled model of the formation and
selection of tip cells in angiogenesis [61, 64]; and a
simulation studying the coupled processes of endothe-
lial migration, elongation, and proliferation [15].

Cellular automata
Cellular automata are classified as a subset of agents.
They also follow rules. However, unlike with agents,
the rules are restricted to simple discrete changes –
i.e., they are state changes of the automaton and refer
only to individual automaton, and not grouped entities.
While agents can adapt, change form and state, interact
with each other, and modify their environment, cellular
automata can change state but generally do not adapt
in form or function. When a rule embodies a continu-
ous algebraic or differential equation, then agents are
generally used rather than cellular automata. That said,
in the literature there is a blurry line between agents
and automata, and in angiogenesis models, they have
sometimes been used interchangeably [54, 65, 66].

Potts model
A third means of cell-based modeling, the cellular
Potts model, was developed in 1992 by James Glazier
and Francois Graner. A main principle behind the
cellular Potts model is the idea of energy minimization.
Analogous to agents or automata, in the cellular Potts
model, a cell lattice or grid is updated one pixel at a
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Angiogenesis, Computational Modeling Perspective, Fig. 1
Molecular, cellular, and capillary network processes explored by
angiogenesis computational and mathematical models. During

angiogenesis hypoxic cells secrete growth factors that drive the
migration and proliferation of microvascular endothelial cells

time in response to rules. The rules are probabilistic
and always include a calculation and minimization
of the effective energy function (Hamiltonian) that
governs lattice updates. In application to a vascular
cell during angiogenesis, energy minimization can be
based on properties such as adhesion, proliferation,
chemotaxis, cell state, and signaling. Cellular Potts
models have recently been applied to study sprouting,
contact inhibition and endothelial migration patterns
[67–70].

Agents, automata, and Potts models each has ben-
efits for modeling cell behavior. The latter two apply
more restrictions to what can be modeled, either by
energy or state changes – however, generally they are

easier to define and characterize. Agents have few re-
strictions on design and provide a versatile framework
for modeling biology. However, universal methods to
define and analyze features of biological agent-based
models and their rules have yet to be well established,
as they have for differential equations [71].

Bioinformatics
With the advent of systems biology experimental tech-
niques like gene and protein arrays, and the develop-
ment of public databases, comes the ability to obtain
quantitative data in a high-throughput manner. This has
provided high-dimensional preclinical and clinical data
on molecules that regulate angiogenesis [103]. Making
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use of this knowledge, angiogenesis researchers have
developed algorithms to study matrix-related proteins
[17, 18] and probe intracellular pathways in patient
cell samples [72]. While the bioinformatic algorithms
vary considerably, they generally involve a search for a
pattern: e.g., a string of amino acid sequences, a degree
of connectivity, or pairs of expression levels. They also
must compensate for a false discovery rate and retain
the statistical relevancy of the original experimental
data.

Multiscale Modeling
Together, the above models have helped illuminate
how diverse stimuli induce angiogenesis, on multiple
biological levels. Angiogenesis involves thousands of
proteins, hundreds of genes, multiple cell types, and
many tissues involving changes in both space and
time [21]. To accurately characterize how these factors
interact, multiscale modeling becomes essential [73].
Integrating models in a flexible manner is an ongo-
ing challenge for angiogenesis modelers. Techniques
to parameterize [74], coarse-grain, modularize [21],
and distribute [75] models have helped advance the
field. Recent multiscale models have been applied
to characterize angiogenesis in a heterogeneous brain
cancer environment [76], effects of exercise on skeletal
muscle angiogenesis [21,62], and monocyte trafficking
[77].

Conclusions and Therapeutic Applications

All of the five methods described have been employed
to predict the effects of existing therapy or test a
new mechanistic hypothesis that could be a target for
therapeutic development. We highlight a few examples
in Table 1. Together these techniques offer a suite of
tools to study physiological and pathological angio-
genesis in silico [104, 105]. Increasingly, angiogenesis
modeling is being integrated with wet lab experiments
or clinical work, with the ultimate goal of better un-
derstanding cellular function and human health. In
summary, mathematical and computational modeling
allow researchers to characterize the complex sig-
naling, biological function, and structures unique to
angiogenesis – offering a powerful tool to understand
and treat diseases associated with the microvasculature
(Fig. 1).
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Angiogenesis Modeling

Angiogenesis is the process of the development of new
blood vessels from a preexisting vasculature. In early
development, angiogenesis occurs both in the yolk sac
(Fig. 1) and in the embryo after the primary vascular



68 Angiogenesis, Mathematical Modeling Perspective

Angiogenesis, Mathematical Modeling Perspective, Fig. 1
Sprouting angiogenesis (white arrows) in the 3-day-old quail
yolk sac (Reprinted by permission from Macmillan Publishers
Ltd: Nature [13], copyright (2010))

plexus is formed by vasculogenesis [13]. Later, an-
giogenesis continues to support the development of
organs after birth [5]. In adults, sprouting angiogenesis
takes place during wound healing and pathological
conditions, such as tumor-induced angiogenesis and
ocular and inflammatory disorders [4].

Angiogenesis is a very complex process involv-
ing proliferation and movement of endothelial cells
(ECs), degradation and creation of extracellular matrix,
fusion (anastomosis) of vessels, as well as pruning
and remodeling [13], with all of these features being
driven by complex signaling processes and nonlinear
interactions. The neovasculature eventually remodels
itself into a hierarchical network system in space,
which may take on abnormal characteristics such as
tortuous, leaky vessel distributions under pathological
conditions (e.g., tumor growth). Readers are referred to
Figg and Folkman [4] for biological details.

To better understand angiogenesis, both continuum,
fully discrete, and continuum-discrete mathematical
models have been developed. Generally, there are two
modeling approaches. One approach focuses on blood
vessel densities rather than vessel morphology. In this
case, continuum conservation laws are introduced to
describe the dynamics of the vessel densities and an-
giogenic factors. Alternatively, the other approach in-
volves modeling the vessel network directly with the

vessels consisting of cylindrical segments connected
at a set of nodes. Mechanisms such as branching and
anastomosis have been modeled as well as vascular
endothelial cell (EC) proliferation and migration via
chemotaxis up gradients of angiogenic factors. Models
have been developed to obtain the details of blood flow
and network remodeling.

In 1998, Anderson and Chaplain [1] developed a
continuum-discrete mathematical model that describes
vessel sprouting, branching, and anastomosis in the
context of tumor-induced angiogenesis. Later, Levine
et al. [7] modeled capillary formation involving pro-
teolytic enzymes, angiogenesis factors, and different
states of receptors on the ECs using reinforced ran-
dom walks. Godde and Kurz [6] computed the blood
flow rate inside a discrete vessel model and simulated
vascular remodeling during angiogenesis responding to
biophysical, chemical, and hemodynamic factors (i.e.,
wall shear stress). McDougall et al. [10] also modeled
blood flow and vascular remodeling but in the context
of the Anderson-Chaplain 1998 model. These studies
relied on the fundamental vessel physiology studies by
Pries et al. [12]. At the microscopic level, Bentley et al.
[2] studied tip cell selection using discrete cell-based
models.

Zheng et al. [16] developed the first model cou-
pling tumor growth and angiogenesis by combining the
continuum model analyzed by Cristini et al. [3] with
the Anderson-Chaplain angiogenesis model, treating
neovasculature as a source of oxygen regardless of
the flow rate. Later, Macklin et al. [9] extended this
work by incorporating the effects of blood flow and
vessel remodeling. Welter et al. [15] studied vascular
tumor growth accounting for both venous and arteriole
vessels. Owen et al. [11] developed a multiscale model
of angiogenesis and tumor growth combining a cellular
automaton model for tumor growth that incorporates
intracellular signaling of the cell cycle and production
of proangiogenic factors with a model for a developing
vascular network. See the review by Lowengrub et al.
[8] for a more complete collection of references.

Movement of ECs

The neovasculature grows by the development of
sprouts, movement of tip ECs, and proliferation of
ECs behind the tip cell. Accordingly, Anderson and
Chaplain assumed that the motion of an individual
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Angiogenesis, Mathematical Modeling Perspective, Fig. 2
Schematic of the development of a neovascular network. (a) EC
movement is constrained on the grid. The sprout endothelial tip
cell located at a node in a Cartesian grid may move to one of the
four orthogonal neighbors (filled circles) with a probability of
P1; P2; P3; P4 or remain at the current node with a probability
of P0. (b) The vessel network formed by tip cell movement;
EC proliferation and anastomosis form a network of straight

segments connected at nodes. The flow through the network
is obtained by solving the mass conservation equations at the
nodes (From McDougall et al. [10], reprinted from Vol 241,
Mathematical modelling of dynamic adaptive tumour-induced
angiogenesis: Clinical implications and therapeutic targeting
strategies, Pages 26, Copyright (2010), with permission from
Elsevier)

endothelial cell located at the tip of a capillary sprout
governs the motion of the whole sprout. This was
later confirmed by an experimental study [5]. In the
Anderson-Chaplain model, the vasculature is defined
on a Cartesian grid (Fig. 2), and the tip cell movement
is governed by three factors: random movement,
chemotaxis up gradients of angiogenic promoters
(e.g., vascular endothelial cell growth factor, VEGF),
and haptotaxis up gradients of cellular adhesion sites,
which are assumed to be proportional to the density
of extracellular matrix. In this model, a continuum
EC density, n, is introduced and obeys the mass
conservation equation:

@n

@t
D Dnr2n � r � .
T nrT / � r � .�nrE/ (1)

where Dn is the random motility coefficient. The
parameter 
T is the chemotactic coefficient depending
on the proangiogenesis factor VEGF concentration T ,
� is the haptotactic coefficient, and E is the density
of the extracellular matrix (ECM) density. Anderson
and Chaplain then developed a stochastic model to

obtain an explicit vessel representation by discretizing
Eq. (1) and introducing probabilities for EC motion:
P0 for remaining stationary, P1 for moving right, P2
for moving left, P3 for moving up, and P4 for moving
down. See Fig. 2.

The probabilities Pi arise from the finite difference
approximation of Eq. (1). For example,

P1 D 1
P

�
D�t

�x2
C �t

.2�x/2

�

T .Ti;j /

�
TiC1;j � Ti�1;j

�

C� �EiC1;j �Ei�1;j ��� (2)

where NP is a normalizing factor. Similar formulas are
obtained for Pi D 2; 3; 4 and P0 D 1 � .P1 C
P2 C P3 C P4/. The movement of individual ECs
now follows this stochastic equation. EC proliferation
is modeled by division of cells trailing the tip EC.
Further, branching at sprout tips and loops formed by
anastomosis are incorporated via rules in the discrete
system.
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Blood Flow and Vascular Remodeling

During angiogenesis, new sprouts anastomose and ex-
pand the vascular network. At the same time, the newly
formed networks remodel themselves, stimulated by
mechanical forces and chemical factors. The wall shear
stress, which depends on the blood viscosity, the blood
flow rate, and the interaction of pro- and antiangiogenic
proteins are vital factors for both the development and
maintenance of the vascular bed. Furthermore, these
effects are nonlinearly coupled. In most angiogenesis
models, the vessels are assumed to consist of cylin-
drical segments connected at vessel nodes. Between
two connected vessel nodes p and q, a Poiseuille-like
expression can be determined for the flow rate:

Qpq D
�R4pq�Ppq

8�Lpq
(3)

whereRpq is the radius of the vessel segment,�Ppq D
.Pp � Pq/ is the pressure drop, � is the apparent
viscosity, and Lpq is the length of the vessel segment.
Assuming that blood is a non-Newtonian fluid, the
apparent viscosity � D �.R;H/ where H is the
hematocrit, which is the volume fraction of red blood
cells (RBC) in the blood [12]. The pressure and flow
rate in the system are determined by solving the con-
servation equations:

0 D
X
q

Qpq D
X
q

�R4pq.Pp � Pq/
8�L

(4)

The wall shear stress can be calculated by

�pq D 4�

�R3pq
jQpqj (5)

which is strongly related to the sprouting and remod-
eling of vascular network. In particular, over a time
interval �t , the radius is adapted according to

�R D �kwSwss C kpSp C kmSm C kcSc � ks
�
R�t

(6)

where Swss represents the stimulation by wall shear
stress, Sp represents the stimulation by intravascular
pressure, Sm represents the stimulation of metabolites
(e.g., oxygen) which is related to blood flow rate
and hematocrit, and Sc represents the stimulation due

to cell-cell signaling from the ECs in the network
along vessel wall. The coefficient ks is the shrinking
tendency, and kw, kp , km, kc are the sensitivities’
responses to the different stimuli. Furthermore, vessels
with small flow rates or under extremely high pressures
may be pruned from the system [6, 9–12].

Application to Vascular Tumor Growth

Angiogenesis models can be used to study vascular
tumor growth (see references given earlier) and treat-
ment of chemotherapy [14]. Given the flow rate in
the interconnected vascular network, the distribution
of RBCs (hematocrit), which carry oxygen, nutrients,
and chemical species transported in the blood, may be
computed by solving transport equations in the vascu-
lar network. The oxygen and nutrients supplied by the
developing neovasculature provide sources of growth-
promoting factors for the tumor. The hypoxic tumor
cells release proangiogenic factors (e.g., VEGF) which
provide a source of T and thus affect the development
and remodeling of the vascular network. Zheng et al.
[16] and later Macklin et al. [9] modeled this by solving
quasi-steady diffusion equations for T

0 Dr � .DTrT /� �TdecayT � .�TbindingT /Btips.x; t/

C �Tprod; (7)

whereDT is the diffusion coefficient of proangiogenic
factors, Btip is the indicator function of the sprout
tips (i.e., =1 at sprout tips), and �Tdecay, �Tbinding, and
�Tprod denote the natural decay, binding, and produc-
tion rates of proangiogenic factors. Typically, �Tprod DN�TprodBhypoxic.x; t/ where Bhypoxic is the indicator func-

tion for the hypoxic tumor cells and N�Tprod is a rate.
Analogously, the oxygen concentration  can be as-
sumed to satisfy

0 D r � .Dr/ � �./ C �pre C �neo; (8)

where D is the diffusion coefficient of oxygen and
�./ is the uptake rate. Oxygen is supplied by pre-
existing, �pre, and by newly developing vessels, �neo.
The extravasation of oxygen by the neovasculature can
be modeled as [9]:
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Angiogenesis, Mathematical Modeling Perspective, Fig. 3
Tumor-induced angiogenesis and vascular tumor growth. The
tumor regions (red-proliferating region, blue-hypoxic region
with produce VEGF, brown-necrotic region) and the oxygen,
mechanical pressure, and hematocrit level are shown. Around
day 48, the hypoxic regions in the tumor release proangiogenic
factors which trigger the beginning of angiogenesis; the new
vessels from the boundary at the top of the domain grow down-

ward to supply the tumor with oxygen and growth-promoting
factors. At the later stages (around day 82.5), the extravasation of
oxygen decreases because of the increased mechanical pressure
generated by the growing tumor (From Macklin et al. [9],
reprinted with kind permission from Springer Science+Business
Media: Journal of Mathematical Biology, Multiscale modelling
and nonlinear simulation of vascular tumour growth, Vol 58,
Page 787, 2008)

�neoD �


neoBneo.x; t/.
H

HD

�Hmin/
C

.1 �c.Pvessel; P //.1 � /; (9)

where �


neo is a constant, Bneo.x; t/ is the indicator
function of the neovasculature (i.e., = 1 at vessel
locations), H is the hematocrit, HD and Hmin reflect
the normal and minimum levels of H , P is the solid
pressure, and Pvessel is the intravascular pressure. The
function c.Pvessel; P / models the suppression of ex-
travasation by the stress generated by the solid tumor.
A sample simulation of the progression of a vascular-
ized tumor shown in Fig. 3 illustrates the development
of a complex vascular network, the heterogenous de-
livery of oxygen, and the morphological instability of
the growing tumor.

Future Directions for Angiogenesis
Modeling

Thus far, angiogenesis models have tended to
focus on the mesoscale, with limited description
of the biophysical details of cell-cell interactions,
biochemical signaling and mechanical forces, and
mechanotransduction-driven signaling processes. An
important future direction for angiogenesis modeling
involves the development of multiscale models that are
capable of describing the nonlinear coupling among
intracellular signaling processes, cell-cell interaction,
and the development and functionality of a neovascular
network.

Acknowledgements The authors thank Hermann Frieboes
for the valuable discussions. The authors are grateful for
the partial funding from the National Science Foundation,



72 Applications to Real Size Biological Systems

Division of Mathematical Sciences, and the National Institutes
of Health through grants NIH-1RC2CA148493-01 and NIH-
P50GM76516 for a National Center of Excellence in Systems
Biology at UCI.

References

1. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and dis-
crete mathematical model of tumour-induced angiogenesis.
Bull. Math. Biol. 60, 857–899 (1998)

2. Bentley, K., Gerhardt, H., Bates, P.A.: Agent-based simula-
tion of notch-mediated tip cell selection in angiogenic sprout
initialisation. J. Theor. Biol. 250, 25–36 (2008)

3. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of
tumor growth. J. Math. Biol. 46, 191–224 (2003)

4. Figg, W.D., Folkman, J.: Angiogenesis: An Integrative
Approach from Science to Medicine. Springer, New York
(2008)

5. Gerhardt, H., Golding, M., Fruttiger, M.: Vegf guides an-
giogenic sprouting utilizing endothelial tip cell filopodia. J.
Cell Biol. 161, 1163–1177 (2003)

6. Godde, v., Kurz, H.: Structural and biophysical simulation
of angiogenesis and vascular remodeling. Dev. Dyn. 220,
387–401 (2001)

7. Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M.: Mathe-
matical modeling of the onset of capillary formation initiat-
ing angiogenesis. Math. Biol. 42, 195–238 (2001)

8. Lowengrub, J.S., Frieboes, H.B, Jin, F., Chuang, Y.-L.,
Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear
modeling of cancer: bridging the gap between cells and
tumors. Nonlinearity 23, R1–R91 (2010)

9. Macklin, P., McDougall, S., Anderson, A.R.A., Chaplain,
M.A.J., Cristini, V., Lowengrub, J.: Multiscale modelling
and nonlinear simulation of vascular tumour growth. J.
Math. Biol. 58, 765–798 (2009)

10. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.:
Mathematical modelling of dynamic adaptive tumour-
induced angiogenesis: clinical implications and therapeutic
targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

11. Owen, M.R., Alarcón, T., Maini, P.K., Byrne, H.M.: Angio-
genesis and vascular remodelling in normal and cancerous
tissues. J. Math. Biol. 58, 689–721 (2009)

12. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adap-
tation and stability of microvascular networks: theory and
simulations. Am. J. Physiol. Heart Circ. Physiol. 275,
H349–H360 (1998)

13. Risau, W.: Mechanisms of angiogenesis. Nature 386 (1997)
14. Sinek, J.P., Sanga, S., Zheng, X. Frieboes, H.B., Ferrari, M.,

Cristini, V.: Predicting drug pharmacokinetics and effect in
vascularized tumors using computer simulation. Math. Biol.
58, 485–510 (2009)

15. Welter, M., Barthab, K., Riegera, H.: Vascular remodelling
of an arterio-venous blood vessel network during solid
tumour growth. J. Theor. Biol. 259, 405–422 (2009)

16. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation
of tumor necrosis, neo-vascularization and tissue invasion
via an adaptive finite-element/level-set method. Bull. Math.
Biol. 67, 211–259 (2005)

Applications to Real Size Biological
Systems

Christophe Chipot
Laboratoire International Associé CNRS, UMR 7565,
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Synonyms

High-Performance Computer Simulations of Molecu-
lar Assemblies of Biological Interest

Short Definition

Arguably enough, structural biology and biophysics
represent the greatest challenge for molecular dynam-
ics, owing to the size of the biological objects of
interest and the time scales spanned by processes of
the cell machinery wherein they are involved. Here,
molecular dynamics (MD) simulations are discussed
from a biological perspective, emphasizing how the en-
deavor to model increasingly larger molecular assem-
blies over physiologically relevant times has shaped
the field. This entry shows how the race to dilate the
spatial and temporal scales has greatly benefitted from
groundbreaking advances on the hardware, computa-
tional front, as well as on the algorithmic front. The
current trends in the field, boosted by cutting-edge
achievements, provide the basis for a prospective out-
look into the future of biologically oriented numerical
simulations.

Description

Grasping the function of sizable molecular objects, like
those of the cell machinery, requires at its core the
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knowledge of not only the structural aspects of these
organized systems but also their dynamical signature.
Yet, in many circumstances, the intrinsic limitations
of conventional experimental techniques thwart access
to the microscopic detail of these complex molecu-
lar constructs. The so-called computer revolution that
began some 40 years ago considerably modified the
perspectives, enabling their investigation by means of
numerical simulations that rely upon first principles –
this constitutes the central idea of the computational
microscope [22], a concept coined by Klaus Schul-
ten, and subsequently borrowed by others [11], of
an emerging instrument for cell biology at atomic
resolution.

In reality, as early as the end of the 1950s, Alder
and Wainwright [1] had anticipated that such com-
putational experiments, initially performed on small
model systems, in particular on a collection of hard
spheres, could constitute a bridge between macro-
scopic experimental observations and its microscopic
counterpart. This tangible link between two distinct
size scales requires a periodic spatial replication of
the simulated sample, thus emancipated of undesirable,
spurious edge effects. Ideally, the complete study of
any molecular assembly would necessitate that the
time-dependent Schrödinger equation be solved. In
practice, however, the interest is focused primarily on
the trajectory of the nuclei, which can be generated
employing the classical equations of motion by virtue
of the Born-Oppenheimer approximation.

Ten years after the first MD simulation of Alder and
Wainwright, the French physicist Loup Verlet [36] put
forth a numerical integration scheme of the Newtonian
equations, alongside with an algorithm for the gener-
ation and the bookkeeping of pair lists of neighboring
atoms, which facilitates the computation of interatomic
interactions – both are still utilized nowadays under
various guises (see entry � Sampling Techniques for
Computational Statistical Physics).

Cornerstone of molecular-mechanics simulations,
the potential energy function is minimalist and limited
in most cases to simple harmonic terms and trigono-
metric series to describe the geometric deformation of
the molecule, and to the combination of Coulombic and
Lennard-Jones potentials for computing the interaction
of atoms that are not bonded chemically [6]. The
underlying idea of a rudimentary force field is to dilate
the time scales by reducing to the bare minimum the
cost incurred in the evaluation of the energy at each

time step – this is certainly true for atomic force fields;
this is even more so for the so-called coarse-grained
approaches. Keeping this idea in mind is of paramount
importance when one ambitions to reach the micro-
and possibly the millisecond time scale (Fig. 1).

Whether in the context of thermodynamic equilib-
rium or of nonequilibrium, numerous developments
have boosted molecular dynamics to the status of a
robust theoretical tool, henceforth an unavoidable com-
plement to a large range of experimental methods. The
reader is referred to entries � Sampling Techniques
for Computational Statistical Physics and �Large-
Scale Computing for Molecular Dynamics Simulation,
which outline the algorithms that arguably represent
milestones in the history of numerical simulations.

The true revolution in the race for expanding time
and size scales remains, however, that which accom-
panied the advent of parallel architectures and spatial-
decomposition algorithms [6], reducing linearly the
computer time with the number of available processors
(see entry �Large-Scale Computing for Molecular Dy-
namics Simulation). This unbridled race for the longest
simulation or that of the largest molecular construct has
somewhat eclipsed the considerable amount of work
invested in the enhanced representation of interatomic
forces, notably through the introduction of polariz-
abilities or distributed multipoles, or possibly both –
increasing accordingly the cost of the computation,
the inevitable ransom of a greater precision. It also
outshined the tremendous effort spent in characterizing
the error associated to the numerical integration of the
equations of motion [13], a concept generally ignored
in simulations nearing the current limits of molecular
dynamics, either of time or of size nature.

MD Simulations of Biological Systems:
A Computational Challenge
MD simulations require a discrete integration of the
classical equations of motion with a time step limited
by the fastest degrees of freedom of the molecular
assembly – in fully atomistic descriptions of biolog-
ical systems, the vibration of those chemical bonds
involving hydrogen atoms imposes increments on the
order of 1 fs to guarantee energy conservation (see en-
try �Molecular Geometry Optimization: Algorithms).
Millions to billions of integration steps are, therefore,
necessary to access biologically relevant time scales.
As has been alluded to in the introduction, it is crucial
that the cost incurred by an energy evaluation be as

http://dx.doi.org/10.1007/978-3-540-70529-1_268
http://dx.doi.org/10.1007/978-3-540-70529-1_268
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http://dx.doi.org/10.1007/978-3-540-70529-1_279
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Applications to Real Size Biological Systems, Fig. 1
Inversely related time and size scales currently amenable to
classical molecular dynamics. Up-to-date massively parallel,
possibly dedicated architectures combined with scalable MD
programs open the way to new frontiers in the exploration of
biological systems. From left to right – water, the fundamental
ingredient of the cell machinery; the bovine pancreatic trypsin
inhibitor, an enzyme, the breathing of which can be monitored
on the millisecond time scale; the ˇ2-adrenergic receptor, a
G protein-coupled receptor, target of adrenaline, involved in
vasoconstriction and vasodilation processes; the ribosome, the

intricate biological device that decodes the genetic material
and produces proteins; a 64-million atom model of the hu-
man immunodeficiency virus-1 (HIV-1) capsid formed by about
1,300 proteins. By combining cryo-electron-microscopy data
with molecular dynamics simulation, a full atomic-resolution
structure of the capsid was obtained, which is currently the
largest entry of the protein data bank. Shown here are the hexam-
eric (gold) and pentameric (green) assembly units of the HIV-1
capsid. For clarity, the aqueous or the membrane environment of
the latter biological objects has been omitted

low as possible. On the other hand, in the framework
of pairwise additive potentials, the theoretical compu-
tational effort varies as N2, the square of the number
of particles forming the molecular construct. In prac-
tice [33], using a spherical truncation for the short-
range component of electrostatic interactions and a dis-
cretization scheme to solve the Poisson equation and,
thus, determine their long-range contribution in the
reciprocal space, the actual cost reduces to N logN .

Concomitant with the emergence of parallel com-
puter architectures, the need of greater computational
efficiency to tackle large biological systems prompted
the alteration of serial, possibly vectorial MD codes
and the development of novel strategies better suited to
the recent advances on the hardware front. This impe-
tus can be traced back as early as the late 1980s, with,
among other pioneering endeavors, the construction of
a network of transputers and the writing of one of the
first scalable MD programs, EGO [17].

As novel, shared-memory and nonuniform-
memory-access architectures became increasingly
available to the modeling community, additional
effort was invested in harnessing the unprecedented
computational power now at hand. The reader
is referred to entry �Large-Scale Computing for

Molecular Dynamics Simulation for further detail
on parallelization paradigms, chief among which
spatial-decomposition schemes form the bedrock of
such popular scalable MD codes as NAMD [28],
LAMMPS [29], Desmond [4], and GROMACS [20].

From the perspective of numerical computing, the
millions of idle personal computers disseminated in
households worldwide represent a formidable compu-
tational resource, which could help address important
challenges in science and technology. Under these
premises, the Space Sciences Laboratory at the Uni-
versity of California, Berkeley, realized that if the
computer cycles burnt by flying toasters and other
animated screen savers were to be channeled to scien-
tific computing, a task that would require hundreds of
years to complete could be executed within a handful
of hours or days. The successful distributed comput-
ing effort incepted by the Search for ExtraTerrestrial
Intelligence (SETI) program in 1999, SETI@home,
relies in large measure upon the latter assumption.
Following the seminal idea of SETI@home, Graham
Richards [30] proposed in 2001 to utilize dormant
computers for drug discovery in an endeavor coined
Screensaver Lifesaver, which applies grid computing
over 3.5 million personal computers to find new leads

http://dx.doi.org/10.1007/978-3-540-70529-1_279
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of cancer-fighting potential. Extension to molecular
dynamics of these early experiments of distributed
computing forms the conceptual basis for such popular
ventures as folding@home endowed with a world-
wide array of personal computers donating computing
cycles to tackle challenging problems of biological
relevance, like ab initio protein folding [32].

Some 20 years down the road after the inception of
massively parallel MD programs targeted at large ar-
rays of central processing units (CPUs), numerical sim-
ulations are, yet again, the theater of another revolution
triggered by the advent of general-purpose graphics
processing units (GPUs). The latter have become in-
expensive multiple-core, generic processors capable
of handling floating-point operations in parallel, and
produced at a reduced cost as a consequence of their
massive use in consumer electronics, notably in video-
gaming consoles. While blockbuster programs like
NAMD [28] and GROMACS [20] have been rapidly
adapted to hybrid, CPU/GPU architectures, novel MD
codes like HOOMD-blue [2] are being designed for
graphics cards only.

Since the pioneering simulations carried out on an
array of transputers [17], new attempts to contrive
a dedicated supercomputer consisting of specialized
processors for molecular dynamics are put forth. The
boldest and probably most successful endeavor to this
date is that of D. E. Shaw Research and the develop-
ment of the Anton supercomputer [31] in their Man-
hattan facilities. In its first inception, Anton featured
128 processors, sufficient to produce a trajectory of
17�s for a hydrated protein consisting of about 24,000
atoms. In its subsequent version harboring 512 pro-
cessors, Anton can tackle significantly larger molec-
ular assemblies, like membrane proteins. It is fair to
recognize that the introduction of this new generation
of dedicated supercomputers has cornered the compe-
tition of brute-force simulations by accessing through
unprecedented performance time scales hitherto never
attained.

A crucial aspect of MD simulations is the analysis
of the trajectories, from whence important conclusions
on the function of the biological system can be drawn.
Generating configurations at an unbridled pace over in-
creasingly longer time scales for continuously growing
molecular assemblies raises a heretofore unsuspected
problem – the storage of a massive amount of data and
their a posteriori treatment [14]. As an illustration, the
disk space necessary to store on a picosecond basis the

Cartesian coordinates of a 1-ms simulation of a small
protein immersed in a bath of water – representing a
total of about 10,000 atoms, would roughly amount to
240 TB. An equivalent disk space would be required to
store the velocities of the system at the same frequency.
A practical option to circumvent this difficulty consists
in performing on the fly a predefined series of analyses,
which evidently implies that the trajectory ought to
be regenerated, should a different set of analyses be
needed. More than the computational speed, storage
and handling of gigantic collections of data have be-
come the rate-limiting step of MD simulations of large
biological objects over physiologically relevant time
scales.

Brute-Force Molecular Dynamics to Address
Biological Complexity
Advances on both the hardware and the software fronts
have opened the way to the unbiased, realistic descrip-
tion through time and at atomic resolution of complex
molecular assemblies. In practice, novel computer ar-
chitectures endowed with large arrays of processors
have virtually abolished the obstacle that the size of
the biological objects amenable to molecular dynamics
represents. Over the past decade, access to appreciably
larger, faster computers has pushed back the size-
scale limit to a few millions atoms, thereby allowing
such intricate elements of the living world as the
ribosome or the capsid of a virus to be modeled. The
size scale is quickly expanding to about 100 million
atoms, notably with the unprecedented simulation of a
chromatophore [26] – a pseudo-organelle harboring the
photosynthetic apparatus of certain bacteria and one of
the most intricate biological systems ever investigated
by means of numerical simulations, or the capsid of
the human immunodeficiency virus-1 (HIV-1) formed
by about 1,300 proteins [38].

From the perspective of large molecular constructs,
the time scale remains a major methodological and
technological lock-in. Current MD simulations span
the micro- and, under favor circumstances, the mil-
lisecond time scale. Though the number of atoms
forming the biological object and the accessible time
scale are inversely related, recent computing platforms
have made size scales of tens to hundreds of thousand
atoms and time scales on the order of 100�s concomi-
tantly attainable – an unprecedented overlap of scales
compatible with the biological reality.
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Among the many successes gleaned from numerical
simulations, deciphering from first-principle key
events in the folding pathway of small proteins
undoubtedly represents the largest step toward a long-
standing holy grail of modern structural biology [24].
While brute-force molecular simulations have proven
suitable to fast-folders self-organizing into simple
secondary-structure motifs, like the triple ˛-helix
pattern of the renowned villin headpiece [14], they
have also pinpointed noteworthy shortcomings in
common, multipurpose macromolecular force fields.
Of particular interest are the so-called ˇ-sheet
proteins, the final fold of which results from the
lateral association of ˇ-strand by means of a network
of hydrogen bonds. Central to the formation of
this network are the directionality and the strength
of the hydrogen bonds, two facets of minimalist
potential energy functions that are often believed to
be inaccurately parameterized. Tweaking and fine-
tuning the force field has helped overcome the barrier
raised by the inherently approximate and, hence,
incomplete nature of the latter, albeit at the risk of
perturbing what appears to be a subtle, intertwined
construct, likely to result in undesirable butterfly
effects (Fig. 2).

Membrane transport is yet another area of structural
biology that has greatly benefited from advances in
MD simulations. Whereas experiment by and large
only offers a fragmentary, static view of the proteins
responsible for conveying chemical species across the
cell membrane, numerical simulations provide a de-
tailed, atomic-level description of the complete trans-
port pathway. Repeated brute-force, unbiased simula-
tions of the spontaneous binding of adenosine diphos-
phate to the mitochondrial ADP/ATP carrier [9] – the
commonly accepted preamble to the conformational
change of the latter, have supplied a consistent picture
of the association pathway followed by the nucleotide
toward its host protein. They have also revealed how
the electrostatic signature of the internal cavity of the
carrier funnels the substrate to the binding site [9] and
how subtle, single-point mutations could impair the
function of the protein, leading in turn to a variety of
severe pathologies.

Expanding their time scale to the microsecond
range, MD simulations have, among others, shed light
on the key events that underlie the closure of the
voltage-gated potassium channel Kv1.2 [21]. They
have also offered a detailed view of the conformations

Applications to Real Size Biological Systems, Fig. 2 Typical
time scales spanned by biological processes of the cell ma-
chinery. From top to bottom – translational and orientational
relaxation of water on the picosecond time scale, that is, about
three orders of magnitude slower than bond vibrations in the
molecule; spontaneous binding of zanamivir or Relenza, an
inhibitor of neuraminidase in the A/H1N1 virus; folding of the
villin headpiece subdomain, a fast-folding protein formed by
35 amino acids; conformational transition in the mitochondrial
transporter of adenosine di- and triphosphate. Binding of the
nucleotide to the internal cavity of the membrane protein is
believed to be the antechamber to the transition [9], wherein
the carrier closes on one side of the mitochondrial membrane,
as it opens to the other side. For clarity, the aqueous or the
membrane environment of the latter biological objects has been
omitted. An alternative to brute-force MD simulations, which
still cannot reconcile the biological time and size scales, consists
in addressing the collectivity of the process at hand through a
selection of relevant order parameters, or collective variables

that are essential for the opening and closure of the
bacterial Gloeobacter violaceus pentameric pH-gated
ion, or GLIC channel involved in signal-transduction
processes [27].

Closely related to the spontaneous binding assays
in the mitochondrial carrier, extensive, microsecond-
time-scale simulations have been performed to map
the association pathway delineating the formation of
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protein/ligand complexes. Among the different ex-
amples published recently, two studies [5, 12] pro-
vide a cogent illustration of the current limitations
of MD and of what one can expect to extract from
brute-force simulations. Central to drug discovery is
the question of how a ligand binds to its target pro-
tein.

The first study [12] delves into the mechanism
whereby known therapeutic agents associate with
the ˇ1– and ˇ2–adrenergic receptors, two membrane
proteins pertaining to the family of G protein-coupled
receptors, a class of proteins involved in a wide variety
of physiological processes. While long trajectories
undoubtedly help dissect how binding proceeds
from the recognition of the drug by the protein,
its entry into the internal cavity, to the moment
it is eventually locked in place, they also provide
little information about the thermodynamics of the
phenomenon.

In sharp contrast, the complete sequence of events
that describe the paradigmatic benzamidine to trypsin
binding process was reconstructed by generating nu-
merous 100-ns trajectories, about one third of which
were reactive, leading to the native enzyme/inhibitor
complex [5]. On the basis of this collection of simu-
lations, not only thermodynamic but also kinetic data
were inferred, quantifying with an appreciable preci-
sion an otherwise qualitative picture of the binding
process. The reader is referred to entry �Calculation
of Ensemble Averages for an overview of the methods
aimed at the determination of averages from numerical
simulations.

That definitive conclusions cannot be drawn from
a single observation justifies the generation of an en-
semble of trajectories, from whence general trends can
be inferred. In the inexorable race for longer MD sim-
ulations, it ought to be reminded that it is sometimes
preferable to have access to n trajectories of length
l rather than to a single trajectory of length nl . The
former scenario supports a less questionable, more de-
tailed view of the slow processes at play while offering
a thermodynamic basis for quantifying it. Yet, should
the purpose of the ensemble of trajectories be the
determination of thermodynamic, possibly kinetic ob-
servables, brute-force simulations may not be the best-
suited route and alternate approaches, either of pertur-
bative nature or relying upon collective variables [19],
ought to be preferred (see entry �Computation of Free
Energy Differences).

Preferential Sampling and the Simulation of
Slow Processes
Over the past 30 years, an assortment of methods
has been devised to enhance, or possibly accelerate,
sampling in numerical simulations [7,23]. These meth-
ods can be roughly divided into two main classes,
the first of which addresses the issue of slow pro-
cesses by acting on the entire molecular assembly
with the objective to accelerate sampling of its low-
energy regions. In the second class of methods, coined
importance-sampling methods [7, 23], biases are ap-
plied to a selection of order parameters, or collec-
tive variables, to improve sampling in the important
regions, relevant to the slow process of interest, and
at the expense of other regions of configurational
space. Detail of these two classes of methods can be
found in entry �Computation of Free Energy Differ-
ences.

Success of collective-variable-based methods de-
pends to a large extent upon the validity of the underly-
ing hypothesis, which supposes a time-scale separation
of the slow degrees of freedom, in connection with the
reaction coordinates, and all other, hard, fast degrees
of freedom. In other words, the modeler is left with
the complicated task of either selecting a few relevant
order parameters, or including a large number of vari-
ables to describe the transition space.

The key here is intuition and the astute choice
of an appropriate reaction-coordinate model, appre-
ciably close to the true committor function. Intuition
may, however, turn out to be insufficient. In the pro-
totypical example of a wide-enough channel lined
with amino moieties, translocation of negative ions
is intuitively described by a single order parameter
– the distance separating the anion from the cen-
ter of mass of the channel projected onto the long
axis of the latter. Though intuitive, this model of
the reaction coordinate is ineffective, as the negative
charges are likely to graze the wall of the pore and
bind tightly to the amino groups, thereby impeding
longitudinal diffusion. The epithet ineffective ought
to be understood here as prone to yield markedly
uneven sampling along the chosen order parameter – a
manifestation of quasi-non-ergodicity, which remains
of utmost concern for finite-length simulations. Under
such circumstances, the common remedies consist in
increasing the dimensionality and, hence, the collec-
tivity of the model reaction coordinate, and forcibly
sampling the slow degrees of freedom, which act as
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barriers orthogonal to the chosen order parameter.
Spawning replicas that will explore the reaction co-
ordinate in parallel valleys represents a possible route
to achieve the latter option. The reader is referred to
entry �Computation of Free Energy Differences for
additional detail.

Merging intuition and practical considerations, in
particular cost-effectiveness, explains why the vast
majority of preferential-sampling computations resort
to the crudest, one-dimensional representation of the
committor function. Under a number of circumstances,
however, it might be desirable to augment the di-
mensionality of the model reaction coordinate. As
early as 2001, for instance, employing a stratification
version of umbrella sampling, Bernèche and Roux [3]
tackled the mechanism of potassium-ion conduction
in the voltage-gated channel KcsA. Their free-energy
calculations brought to light two prevailing states,
wherein either two or three potassium ions occupy the
selectivity filter. The highest free-energy barrier toward
ion permeation was estimated to be on the order of
2–3 kcal/mol, suggesting that conduction is limited by
self-diffusion in the channel.

Over 10 years later, it was cogently demonstrated
in a proof of concept involving a simple peptide
that multidimensionality represents a compelling,
albeit costly, option to lift conformational degeneracy
and discriminate between key states of the free-
energy landscape [19]. In an adaptive-biasing-force
calculation [8, 18] of the folding and diffusion of a
nascent-protein-chain model, this idea was applied to
describe by means of highly collective variables two
processes that are inherently concomitant [15].

Armed with the appropriate toolkit of order param-
eters with the desired degree of collectivity [28], mod-
eling the complex, concerted movements of elements
of the cell machinery is now within reach. Not too
surprisingly, the current trend is to model collective
motions and possibly quantify thermodynamically the
latter – even though the order parameter utilized is of
rather low collectivity – a general tendency expected
to pervade in the coming years with increasingly more
sophisticated biological objects.

The investigation of the free-energy cost of
translocon-assisted insertion of membrane pro-
teins [16] cogently illustrates how the choice of the
method impacts our perception of the problem at hand
and how it ought to be addressed. To understand why

experiment and theory supply for a variety of amino
acids appreciably discrepant free energies of insertion
– for instance, membrane insertion of arginine requires
14–17 kcal/mol [10] according to MD simulations,
but only 2–3 kcal/mol according to experiment – a
two-stage mechanism invoking the translocon, an
integral membrane protein that conveys the nascent
peptide chain as it is produced by the ribosome, has
been put forth. In an attempt to reconcile theoretical
and experimental estimates, the thermodynamics of
translocating from water to the hydrophobic core
of a lipid bilayer an arginine residue borne by an
integral, pseudo-infinite poly-leucine ˛-helix, was
measured, yielding a net free-energy change of about
17 kcal/mol [10].

The latter calculation raises two issues of concern
– a conceptual one and a fundamental one. Concep-
tually, since the focus is primarily on the end points
of the free-energy profile delineating translocation,
a tedious, poorly converging potential-of-mean-force
calculation is unwarranted and ought to be replaced
by a perturbative one [7] (see entry �Computation of
Free Energy Differences). Fundamentally, aside from
the potential function of the translocon, the translo-
cation process ignores the role of the background
˛-helix, the contribution of which should be mea-
sured in a complete thermodynamic cycle. Doing so,
it is found that the translocon not only reduces the
cost incurred by charged amino-acid translocation but
also reduces the gain of hydrophobic-amino-acid inser-
tion [16].

Not a preferential-sampling method per se, MD
flexible fitting [34] is a natural extension of molecular
dynamics to reconcile crystallographic structures with
their in vivo conformation usually observed at low
resolution with electron microscopy. The algorithm in-
corporates the map supplied by the latter as an external
potential defined on a three-dimensional grid, ensuring
that high-density regions correspond to energy minima.
Atoms of the biological object of interest, thus, un-
dergo forces that are proportional to the gradient of the
electron-microscopy map. This method has recently
emerged as popular, promising complement to cryo-
electron-microscopy experiments fueled by a series of
success stories, which began with atomic models of the
Escherichia coli ribosome [37] in different functional
states imaged at various resolutions by means of cryo-
electron microscopy.

http://dx.doi.org/10.1007/978-3-540-70529-1_267
http://dx.doi.org/10.1007/978-3-540-70529-1_267
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A Turning Point in Structural Biology
With 55 years of hindsight since the pioneering simula-
tion of Alder and Wainwright [1], it is rather legitimate
to wonder about the future of molecular dynamics –
which new, uncharted frontiers can we reasonably ex-
pect to attain within the coming years? What the recent,
avant-garde simulations, either brute-force, unbiased,
or sampling selected collective variables, have taught
us is that nothing is set in stone forever. What lies
today at the bleeding edge will undoubtedly become
obsolete tomorrow. The future of MD simulations
and, more generally, of numerical simulations is in-
timately connected to that of computer architectures
and the underlying technological challenges that their
improvement represents.

It still remains that between the first simulation of
a protein, the bovine pancreatic trypsin inhibitor, by
McCammon et al. [25], and the recent simulations of
protein NTL9 over a handful of milliseconds [24], the
time scale has dilated by a factor of a billion within a
matter of less than 35 years. Notwithstanding its dura-
tion of 8 ps, which one might find anecdotal today in
view of the current standards banning subnanosecond
investigations, the former simulation [25] did represent
a turning point in the field of computational structural
biology by establishing an everlasting connection be-
tween theoretical and computational chemistry and bi-
ology.

Conversely, the latter simulation [24] demonstrates
the feasibility of in silico folding of complex ter-
tiary structures by dissecting each and every step of
the folding pathway. Collateral effect of an artifac-
tual behavior of the force fields or biological real-
ity, micro- and millisecond simulations suggest that
proteins breathe, unfolding and refolding unceasingly.
While this result per se is not revolutionary, it, nonethe-
less, paves the way to the ab initio prediction of the
three-dimensional structure of proteins and conceiv-
ably protein assemblies – an endeavor that is still today
subservient to possible inaccuracies of the potential
energy function, but will be associated tomorrow to
a more rigorous description of interatomic interac-
tions.

The 58 residues of the bovine pancreatic trypsin
inhibitor simulated for the first time in 1977 [25] rep-
resent less than a 1,000 atoms. Also less than 35 years
later, with its first simulation of a chromatophore,
the research group of Klaus Schulten has expanded

the size scale amenable to brute-force molecular dy-
namics by a factor of 100,000. Some might question,
beyond the unprecedented technological prowess, the
true biological relevance of a computation limited to
a few nanoseconds for such a complex molecular
construction – what take-home message can we pos-
sibly draw on the basis of thermal fluctuations around
a structure presumably at thermodynamic equilibrium?
However questionable to some, this heroic effort ought
to be viewed beyond a mere computational perfor-
mance, heralding the forthcoming accessibility to the
atomistic description of complete organelles by means
of numerical simulations.

It is, however, interesting to note that over an iden-
tical period of time, time and size scales have not
evolved similarly. Even with a modest number of
processors, tackling the micro- and, armed with pa-
tience, the millisecond time scale has been feasible for
several years, assuming a sufficiently small molecu-
lar assembly. Yet, only with the emergence of mas-
sively parallel architectures, in particular the petas-
cale supercomputer Blue Waters, can large molecular
assemblies of several millions of atoms be tackled.
Molecular dynamics on the millisecond time scale
or on the million-atom size scale still constitutes at
this stage a formidable technological challenge, which,
nonetheless, reveals a clear tendency for the years to
come. As the first petaflop supercomputers become
operational, the scientific community speculates on the
forthcoming exascale machines and the nature of the
molecular systems these novel architectures will be
capable of handling.

Assuming that in the forthcoming decades the
evolution of molecular dynamics will closely follow
the trend imparted by Moore’s law, Wilfred van
Gunsteren [35] optimistically predicts that in about
20 years, simulating on the nanosecond time scale a
complete bacteria, Escherichia coli, will be within
reach, and a full mammal cell some 20 years
further down the road. However encouraging, these
extrapolations based on current performances on
the hardware and software fronts bring to light an
appreciable gap between time and size scales, which
will be evidently difficult to fill, hence, suggesting
that there is still a long way to go before brute-force,
unbiased simulations of biological macro-objects are
able to supply a chronologically and dynamically
relevant information.
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While there is a consensus that the potential role
of molecular dynamics in structural biology was
rather poorly prognosticated by the most pessimistic
biologists – then and to a certain extent still now,
bridging the gap between experimentally observed
macroscopic and numerically simulated microscopic
objects admittedly remains out of reach. In lieu of
bleeding-edge brute-force, unbiased molecular dynam-
ics, perhaps should alternate, preferential-sampling
approaches be favored, capable of reconciling time and
size scales, provided that the key degrees of freedom
of the biological process at play are well identified.
Perhaps is the massive increase of the computational
resources envisioned in the coming years also an
opportunity for a top-down revision of minimalist
macromolecular force fields – are less approximate
and, hence, more general and more reliable potential
energy functions conceivable, even if this implies
revising our ambitions in terms of time and size scales?
Or is the discovery of new, uncharted frontiers in
spatial and temporal scales, at the expense of accuracy,
our ultimate objective?

Acknowledgements Image of the HIV virus capsid courtesy of
Juan R. Perilla and Klaus J. Schulten, Theoretical and Com-
putational Biophysics Group, University of Illinois Urbana-
Champaign.
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Short Definition

Controlling biological processes involves unique chal-
lenges not encountered in the control of traditionally
engineered systems. Real-time continuous feedback is
generally not available and realizable control actions
are limited; in addition, mathematical models of bi-
ological processes are highly uncertain, often simple
abstractions of complex biochemical and gene regula-
tory networks. As a result, there have been minimal
efforts to apply control theory at the cellular level.
Model predictive control is especially well suited to
control cellular processes as it naturally accommodates
the slow system sampling and controller update rates
necessitated by experimental limitations. This control
strategy is also known to be robust to model uncertain-
ties, measurement noise, and output disturbances. The
application of model predictive control to manipulate
the behavior of cellular processes is an emerging area
of research and may help rationalize the design and
development of new cell-based therapies.
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Description
Over the last half century, cell-based therapies have
found increasing use in the design of substitute bi-
ologics to treat and cure disease. While organ and
tissue transplantation has been a successful method for
improving the health and quality of life for tens of thou-
sands of Americans, the number of patients requiring
a transplant outpace the donor availability such that
the transplant waiting list grows by approximately 300
people every month [8]. One goal of tissue engineering
is to produce biologically engineered substitutes for
donor-supplied organs and tissue. Of particular impor-
tance to the design of substitute biologics are strategies
to direct and control cell fate. Currently, most cell-
based therapy research approaches the control of cell
fate via hypothesis-driven experiments [5] which are
generally expensive and exhaustive. A more rational
approach will be vital to accelerate the development
of these potentially curative therapies, shifting the
paradigm from experimentally interrogating cell re-
sponses to rationally engineering cell population be-
havior [5].

Model Predictive Control

The inherent complexity of the intracellular signal-
ing events that direct cell function limits the ability
of intuition and exploratory experimental approaches
to efficiently control cell fate. A control-theoretic,
model-based approach is better equipped to handle this
complexity by capitalizing on data from measurable
cell states to inform quantitative predictions regarding
the state of the entire cell system. However, most of
the modern theoretical control strategies that have been
developed address very different types of problems
than those associated with biological systems. Model
predictive control (MPC) is well suited for solving
control problems relating to cellular processes as it
can be applied to uncertain systems with infrequent
sampling and explicit consideration of constraints. In
general, MPC determines the optimal input sequence
for a linear system [1]. However, because mathematical
models of cellular processes are rarely linear, non-
linear MPC (NMPC) is frequently employed. With
NMPC, the nonlinear system model can be directly
utilized in the control input calculation. The general
NMPC problem can be formulated as a constrained
optimization problem (see (1)), with the mathematical

model of the process dx=dt D f .x .t/ ; u .t/ Ip/
used to predict the plant behavior over a finite pre-
diction horizon; the controller action, u .t/, is selected
so that the difference between the predicted system
trajectory and the desired (reference) trajectory is min-
imized subject to constraints on the controller and state
dynamics.

min
u.t/

'.x.t/;u.t/; p/subject to:
g.x.t/;u.t/I p/ D 0

h.x.t/;u.t/I p/ < 0

dx
dt D f .x.t/;u.t/I p/

uL � u.t/ � uH
xL � x.t/ � xH

(1)

where x 2 <nx is the state vector, u 2 <nu is
the control vector, p 2 <np are the time-independent
parameters, and f : <nx � <nu � <np ! <nx is
assumed to be a smooth vector function describing the
system dynamics. g:<nx � <nu � <np ! <nx and
h: <nx � <nu � <np ! <nx are the equality and
inequality constraints, respectively, and uH , uL, xH ,
and xL are upper and lower bounds for the input and
state variables respectively.

A sampled-time MPC formulation is frequently
employed in which samples are collected at discrete
intervals. At each sampling point, the difference be-
tween the system and reference trajectories is mini-
mized within the prediction horizon (Hp/ by selecting
a sequence of piecewise-constant inputs in the control
horizon (Hu/. The first element of this input sequence
is applied to the system for one sampling period. The
horizon windows are then shifted ahead, and the sys-
tem output is sampled at the next step. This feedback
is incorporated into the optimization to determine the
next input sequence. A schematic of sampled-time
MPC is shown in Fig. 1.

AdaptiveModel Predictive Control

Heterogeneity-driven plant-model mismatch is a
unique challenge for the control of cellular processes.
Even for a group of genetically homogeneous cells
in an identical environment, individual cells will
exhibit striking phenotypic heterogeneity due to the
stochastic activation of the regulatory control processes
that govern cell function [12]. As a consequence of
batch-to-batch cell heterogeneity, every experiment
will exhibit unique dynamics. This is especially
problematic when designing control strategies for these
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Biological Processes, Fig. 1
Sampled-time model
predictive control algorithm.
An optimal input sequence is
calculated for the control
horizon such that the system
trajectory is driven to the
reference trajectory within the
prediction horizon. The first
element of this sequence is
implemented, and the horizon
windows shift

Reference Trajectory

System Trajectory

Control Input

k k+Hp

Time

Prediction Horizon
Control Horizon

systems since the supporting mathematical models
typically rely on parameters fit to data describing
average cell behavior. The result is intrinsic plant-
model mismatch error.

Adaptive MPC, which is an extension of traditional
MPC, can help address this problem. In adaptive MPC,
the model parameters are refit to the plant feedback
data as it becomes available at each sample time. The
newly identified parameter set is used to support the
next control input selection (see Fig. 2). The benefit of
adaptive MPC is that the model parameters can vary
in response to the observed data. The recurrent plant
measurements serve to constrain the model parameter
uncertainty such that the controller predictions more
closely reflect the plant behavior. This can help to
alleviate plant-model mismatch.

Sensitivity and Identifiability Analyses

When applying adaptive MPC, it is necessary to know
which parameters can be identified from the measured
data. Attempting to identify unidentifiable parameters
will waste time and computational effort by searching
areas of the parameter space which cannot be reduced.
Important tools for this process include sensitivity and
identifiability analyses. A global sensitivity analysis
(SA) varies parameters simultaneously to capture the
effect of parameter interactions on the model output.
An example is the extended FAST global SA [10],
which varies each parameter according to a given
angular frequency:

pi D 1

2
C 1

�
arcsin .sin .!i s C 'i // ;

where !i is the angular frequency (chosen to be lin-
early independent among each other), �i is a random
phase shift, and s 2 .��; �/ is a scalar variable.
Using the above transformation, the model output can
be expressed as a Fourier series with respect to s, and
the extended FAST sensitivity indices are calculated
from the Fourier coefficients. A sensitivity matrix can
be created from the indices for use in an identifiability
analysis.

Identifiability analysis (IA) quantifies the estima-
bility of the model parameters and generates an
identifiable parameter set that only includes sensitive
parameters that are not correlated with one another.
The parameter with the highest SA coefficient is the
most identifiable parameter, and an orthogonalization
is performed on the sensitivity matrix to adjust for
parameter correlations [13]. The columns of the
sensitivity matrix are “regressed” on the column of
the most identifiable parameter. The second most
identifiable parameter has the highest coefficient value
in the resulting residual matrix. This procedure is
repeated, ranking all parameters by identifiability. The
IA results provide valuable information about which
parameters can be identified for adaptive control.

Brief Literature Survey of Cellular Process
Model Predictive Control
To date, the majority of biological applications of MPC
have focused on the production of microorganisms
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Applied Control Theory for Biological Processes, Fig. 2
Implementation of adaptive nonlinear model predictive control.
At each sampling point, the states of the cellular system are
measured. This data is appended to the previous measurement

set, and the model parameters are refit to the newly expanded
data set. The best-fit parameters are used by the model predictive
controller to select the next control input. The selected control
input is applied to the cellular system

or biomass production for pharmaceutical applications
in bioreactors [3, 14]. In contrast, relatively few have
applied control theory to direct specific cellular re-
sponses. Most applications involve a theoretical (simu-
lated) controller implementation. One example investi-
gated the application of light pulses for circadian phase
entrainment [2]. The pulses were scheduled using non-
linear model predictive control applied to a biologi-
cally inspired mammalian circadian model. The light
input sequence was chosen to decrease the resynchro-
nization time of the circadian rhythm while accounting
for the natural daily light-dark cycles. The simulated
results indicated that with the controller-scheduled
light pulses, the circadian system could recover in just
a fraction of the natural recovery time. Other work
employed the reaction-diffusion-convection equation
as a generic description of the cellular uptake rate
of growth factors [6]. The authors used four different
control strategies to force the uptake rate to track
several time-varying reference trajectories, concluding
that model predictive control was especially well suited
for the problem. NMPC has also been used to control
pattern formation in bacterial chemotaxis [7]. Control

was applied to a nonlinear reaction-diffusion model
of bacterial chemotaxis, with the influx of chemoat-
tractant manipulated at two spatial boundaries. The
control strategy successfully stabilized the population
at specific spatiotemporal distributions.

A few notable MPC works that interface experimen-
tally with cellular systems include Simon and Karim,
who applied model predictive control to a kinetic
model of CHO cell cultivation in a fed-batch biore-
actor [11]. By manipulating the flow rates of glucose,
glutamine, and asparagine, experimental results show
the ability to control the apoptotic cell concentration
at a constant set point to within 10 %. Similar work
has focused on enhancing cell growth by controlling
the glucose concentration in a fed-batch bioreactor [4].
An open-loop feedback optimal controller (effectively
an adaptive model predictive controller) manipulated
the nutrient concentrate feed rate to achieve a constant
glucose target within 9 %. Our previous work also
experimentally applied model predictive control, but
rather than cell growth, our target was cell differ-
entiation [9]. Control was realized through periodic
boluses of a differentiation-inducing agent, and the
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target percentage of differentiated cells was achieved
within 10 %. In an effort to decrease this error and more
tightly control the differentiation dynamics, we sought
to apply an adaptive model predictive control scheme.

Illustration of Adaptive Nonlinear Model
Predictive Control with Selective
Parameter Identification

To illustrate adaptive NMPC, a control strategy was
derived to direct HL60 cell differentiation into gran-
ulocytes using periodic boluses of dimethyl sulfoxide
(DMSO). The HL60 cell differentiation model was first
introduced in Noble and Rundell [9]. It is a system of
nonlinear ordinary differential equations that describes
how the population of HL60 cells progresses through
discrete maturation stages over time upon exposure
to a differentiation-inducing factor. Each maturation
stage is defined by expression of a specific cell-surface-
localized cluster of differentiation (CD) marker and
is experimentally distinguishable using flow cytometry
(see Fig. 3).

Adaptive model predictive control is used to calcu-
late a sequence of DMSO boluses to reach and sustain a
cell population containing a fixed percentage of mature
granulocytes. Recurrent state measurements are used
to identify experiment-specific parameters. Sensitivity
and identifiability analyses provide insight into which
parameters are most important to identify accurately to
achieve the control objective. Results are shown in the
second and third columns of Table 1, with the sensitive
and identifiable parameters indicated by shaded boxes.

Simulated experiments demonstrate and rapidly as-
sess the controller’s ability to direct differentiation and
to identify the batch-specific model parameters using
noisy feedback data. In these simulated experiments,
the plant represents the population of differentiating
cells, with the parameters randomly perturbed from
their nominal values. Mock flow cytometry data was
created by adding realistic levels of Gaussian noise
to the simulated feedback data. A sample simulated
experiment showing the adaptive NMPC-derived cell
dynamics is shown in Fig. 4a. The upper plot shows
the time-course trajectory of the percentage of granu-
locytes as directed by the model predictive controller.
The lower plot shows the MPC-derived control strat-
egy. Figure 4b shows the time-course evolution of
parameter identification for kb and kd .

To illustrate that selective parameter identifi-
cation is preferred, we performed 100 simulated
experiments (each with different plant parameters).
The experiments were simulated twice identifying
either all model parameters or only the identifiable
parameters, and the results were examined based
on the identification of model parameters and the
performance of the controller.

The accuracy of parameter identification was mea-
sured by the percent error of the identified value with
respect to the plant value at the final sampling point.
The first column of Table 1 summarizes the parameter
identification results for all 100 simulated experiments
by the percent error mean and standard deviation for
each identified parameter. When only � and kb are
identified, there is dramatic improvement in the identi-
fication accuracy; the percent error standard deviation
decreasing by nearly two-third for each parameter.

The controller performance was evaluated based on
the difference between the actual and desired steady-
state granulocyte level. The final three sampled points
were averaged to estimate the steady state of the exper-
iment. When adapting only the identifiable parameters,
97 % of experiments achieved the target to within
˙3 %, while the remaining three experiments had er-
ror within ˙4 % (results not shown). The controller
exhibited markedly worse performance for the case
when all parameters were adaptively identified. While
91 % of experiments achieved the target to within
˙3 %, the remaining experiments exhibited more se-
vere errors, ranging from more than 5 % under the
target to more than 8 % over the target. This suggests
that the controller performance can be improved by
identifying only the sensitive and identifiable param-
eters as this key subset is more accurately identified
when the remaining parameters are fixed, even when
fixed at incorrect values. While the unidentified pa-
rameters cause some degree of plant-model mismatch,
the model output is not sensitive enough to those
parameter errors to be detrimental to the controller
performance.

Concluding Remarks

The control of cellular processes is uniquely hindered
by the complexities of cell function and the limitations
of experimental practice. Nonlinear model predictive
control is especially well suited to control these highly
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Applied Control Theory for Biological Processes, Fig. 3
States of the HL60 differentiation model. Cells begin to dif-
ferentiate according to a concentration- and duration-dependent
transition rate, �(c,£). Because only undifferentiated HL60 cells
can proliferate, a constant birth rate, kb , is associated with the

first state. Cells can die in any phase according to a constant,
phase-independent death rate, kd . The addition of DMSO will
predominately produce granulocytes (x3/, while the addition of
1,25D will predominately produce monocytes (x4/
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Applied Control Theory for Biological Processes, Fig. 4
Representative simulated experiment and parameter identifica-
tion results. (a) The upper plot shows the time-course trajectory
of the percentage of granulocytes (solid line). The trajectory
reaches the target percentage (dashed line) by day 14 and
subsequently sustains the desired level within ˙3 %. The lower
plot shows the MPC-derived control inputs given as a %v/v.
(b) Representative time-course parameter evolution for the sim-

ulated experiment shown in Fig. 3. The upper plot shows kb , the
birth rate, and the lower plot shows kd , the death rate for the
case when all model parameters were adaptively identified. In
both cases, the evolution of the controller parameter is the solid
line, and the actual (and unknown) plant value is the dashed line.
All plant parameters were identified to within ˙10 % by the end
of the experiment (some results not shown)

nonlinear and uncertain systems while adaptive non-
linear model predictive control can provide improved
closed-loop performance with the online identification
of the sensitive and identifiable model parameters. The
application of modern control theory to predictably
direct cellular systems may help rationalize the design

of experimental strategies for the efficient development
of cell-based therapies. Such an approach has the po-
tential to identify alternative and nonintuitive strategies
to guide experiment design, altering the design from
comprehensive and time-consuming experiments to
deliberate and effective ones.



Approximation of Manifold-Valued Functions 87

A

Applied Control Theory for Biological Processes, Table 1 Comparison of results for adaptive parameter identification

Parameter ID Avg. % Errora

(ranked by increasing standard
deviation)

Sensitivity analysisb (ranked by
decreasing sensitivity)

Identifiability analysisc (ranked
by decreasing identifiability)

Set of parameters
identified

Ranked
params Avg. % error

Ranked
params

Sensitivity
coeff.

Ranked
params Residual

All params ID � 9.2 ˙ 9.7 kb 0.5665 � 1.8774
kb 16.2 ˙ 14.9 km 0.4856 kb 1.4568
kd 14.7 ˙ 16.0 � 0.3736 k3 1:71 � 10�3

k3 18.4˙ 17.5 k3 0.1264  8:08 � 10�4

k3 18.4˙ 17.5 k3 0.1264  8:08 � 10�4

k4 7.4 ˙ 27.8 ki 0.0331 km 7:87 � 10�5

km 29.2˙ 28.8  0.0055 ki 1:42 � 10�5

ki 20.8 ˙ 34.1 k4 0.0036 k4 1:44 � 10�10

 27.7 ˙ 36.4 kd 0.0024 kd 1:64 � 10�11

Two params ID � 0.15˙ 3.4
kb 0.04 ˙ 5.5

aSuccess of parameter identification described by percent error mean and standard deviation (ranked by increasing standard
deviation)
bResults of sensitivity analysis (ranked by decreasing sensitivity)
cResults of identifiability analysis (ranked by decreasing identifiability)
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Definition

Computational methods for the approximation of a
function, mapping a real interval to a manifold, from a
finite number of samples of the function. The approxi-
mants map the same real interval to the same manifold.

Description

In recent years many modern sensing devices produce
data on manifolds. An important example of such data
is orientations of a rigid body as a function of time,
which can be regarded as data sampled from a function
mapping a real interval to the Lie group of orthogonal
matrices. The classical computation methods for the
approximation of univariate real-valued functions from
samples, such as polynomial or spline interpolation,
are linear and cannot cope with manifold-valued data.
The available methods for manifold-valued data are
different adaptations of the linear methods.

Historical Remark
Contrary to the development of classical approxi-
mation methods and numerical analysis methods for
real-valued functions, the development in the case of
manifold-valued functions, which is rather recent, was
mainly concerned in its first stages with advanced
numerical and approximation processes, such as
geometric integration of ODE on manifolds (see [3]),
� Subdivision Schemes on manifolds (see, e.g., [7–9]),
and wavelet-type approximation on manifolds (see,
e.g., [2,4]). All these research topics have been studied
before the basic constructive approximation theory of
manifold-valued functions is well understood.

Adaptation Methods
There are several different methods for the adapta-
tion of a sampled based linear approximation operator
to manifold-valued samples. Here we present three
“popular” methods, all “intrinsic” to the manifold and
independent of the ambient Euclidean space.
• The Log-Exp Mappings

For the manifolds of matrix Lie groups, the
method consists of three steps: to project the sam-
ples into the corresponding Lie algebra, to apply the
linear operator to the projected samples in the Lie
algebra, and to project the approximant back to the
Lie group.

There are several computational difficulties
in the realization of this “straightforward” idea,
mainly in the projection to the Lie algebra by the
logarithm of a matrix, and also in the computation
of the exponential map, pulling back from the
algebra to the group (see, e.g., [6]). Yet in the
case of the manifold of symmetric positive-definite
(SPD) matrices of a fixed order, the difficulties
mentioned above are not encountered (see, e.g.,
[5]).

A similar idea applies for general manifolds and
local approximations, where the approximant at a
given point depends only on samples in the neigh-
borhood of the point. An example of a local approx-
imation is the refinement step in a � Subdivision
Schemes. In such a setting, the exp-log method
applies, with the Lie algebra replaced by the tangent
space at a point on the manifold (see, e.g., [4,9]). An
inherent difficulty in this approach is the choice of
the location of the tangent space.

• Repeated Binary Geodesic Averages
Linear sampled based approximation operator of

the form

A.f /.t/ D
nX

jD1
aj .t/f .tj /;

nX
jD1

aj .t/ D 1
(1)

can be rewritten in terms of repeated weighted bi-
nary averages in several ways [7], with the weights
in the averages depending on t . An example of
such a representation is the de Casteljau algorithm
for the evaluation of the approximating Bernstein
polynomials. Using one of these representations of
A.f /, and replacing each average between num-
bers, by the geodesic average between two points
on the manifold, one gets an adaptation of A to the
manifold.

This adaptation method requires the computation
of weighted geodesic averages of pairs of points on
the manifold. For two points p; q on the manifold,
the weighted geodesic average .1 � w/p ˚ wq can
be defined as the point g.w/ on the geodesic curve
g.s/ satisfying g.0/ D p, g.1/ D q. On a smooth
manifold, this average is well defined for weights in
the interval Œ0; 1� and even in a small neighborhood
of this interval.

http://dx.doi.org/10.1007/978-3-540-70529-1_483
http://dx.doi.org/10.1007/978-3-540-70529-1_483
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On the manifold of SPD matrices of a fixed
order, such an average has an explicit expression.
For two SPD matrices A;B ,

.1�w/A˚wBDA.A�1B/wDA1
2.A� 1

2 BA� 1
2 /wA

1
2 ;

which is well defined for any real weight w. In [5]
approximation methods for SPD-valued functions,
based on this “geometric average,” are investigated.

• Riemannian Center of Mass
The sum in linear approximation operators of the

form (1) can be interpreted as a weighted affine
average of the samples, f .tj /; j D 1; : : : ; n, with
weights aj .t/; j D 1; : : : ; n.

For samples in a Riemannian manifold M

and for a given t in the interval of definition
of A, such an affine average is replaced by
the weighted Riemannian center of mass of the
samples, argminf 2M

Pn
jD1 aj .t/dist.f; f .tj //2;

with dist.�; �/ the metric on the manifold. This
Riemannian center of mass defines A.t/. The
Riemannian center of mass can be computed by
iterations (see, e.g., [1], where it is used in the
definition of finite elements on a Riemannian
manifold). Subdivision schemes with this method
of adaptation have been investigated (see, e.g., [8]).

The generality of this adaptation method makes
it a potential basis for a general theory of approxi-
mation of manifold-valued functions.
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Synonyms

Atomistic/continuum hybrid methods; Quasicontin-
uum methods

Short Definition

Computational schemes for coarse-graining atomistic
models of solids, by concurrent coupling of atomistic
descriptions of regions of interests with finite element
discretizations of continuum descriptions of elastic
bulk behavior.

Description

The literature on atomistic-to-continuum coupling
methods (hereafter referred to as a/c methods) contains
a wide variety of different formulations. This entry
focuses on the most important concepts and challenges
for the transition from nonlocal discrete atomistic
models to local continuous models of crystalline solids
and on the typical approximation errors committed
in these various approaches, with the quasicontinuum
method chosen to give a uniform presentation of the
issues.
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Atomistic Models
We consider a finite atomistic body consisting of atoms
of the same species, indexed by a set � (the reference
configuration). Over time the body may occupy dif-
ferent configurations, which are described by discrete
maps y W �! R

d :

The energy in empirical molecular interaction mod-
els is typically given by the sum

Ea.y/ WD
X
	2�

Ea
	 .y/

of its localized site energies

Ea
	 .y/ WD Ea�fy.�/ � y.	/g�2�/:

Ea
�fy.�/ � y.	/g�2�/ generally depends only on � 2

� such that jy.�/ � y.	/j < rcut: For example, in the
embedded atom model (EAM), the site energy takes
the form:

Ea
	 .y/ WD

X
�¤	

� .jy.�/ � y.	/j/

CF
�X
�¤	

� .jy.�/ � y.	/j/
�
;

where � is a Lennard-Jones type interaction, � W RC !NR is a model for the density of electrons belonging to
the nucleus y.�/ at y.	/; and F. N�/ W RC ! NR is a
model for the energy required to insert a nucleus into a
sea of electrons with density N�:

We first consider the case of zero-temperature stat-
ics, that is, we seek local minimizers of Ea, possibly
subject to external loads or boundary conditions. It is
generally expected, though rigorously established in
few cases, that the ground state of the energy is a
lattice. We assume throughout this entry that it is in fact
a Bravais lattice AZd , A 2 R

d�dC , and it is therefore
convenient to also assume that � � AZd .

ContinuumModels
In the absence of defects (see next section), crys-
talline solids deform essentially elastically, that is, the
atomistic configurations y are locally close to Bravais
lattices. This can be quantified by interpolating the
atomistic configuration y with a smooth deformation
field x 7! y.x/, x 2 ˝  �, where ˝ is the con-
tinuous reference configuration. Upon firstly replacing

finite differences y.�/�y.	/ by directional derivatives
@��	y.	/ and secondly sums by integrals, we obtain the
approximation:

Ea.y/D
X
	2�

Ea�fy.�/�y.	/g� �X
	2�

Ea�f@��	y.	/g�

�
Z
˝

W.@y/ DW Ec.y/ (1)

where W.F / WD 1
det AE

a.fF�g�2AZdnf0g/ is the
Cauchy–Born stored elastic energy per unit volume
of the homogeneous crystal F.AZd /.

From its construction, it follows that Ec is exact
under homogeneous deformations; hence, it is the op-
timal continuum approximation among models where
the stored energy density may depend only on the
deformation gradient. It is therefore the most widely
used continuum model of crystal elasticity. In some
situations, for example, when elastic fields are close
to the ground state, one may replace the Cauchy–Born
model with a linearized elasticity model or with other
approximate stored energy densities.

Accuracy of the Cauchy–Born Approximation
1. Energy error: The Cauchy–Born energy is formally

a second-order accurate approximation to the atom-
istic energy [5]:

ˇ̌
Ec.y/ � Ea.y/

ˇ̌
. k@2yk2

L2.˝/
C k@3ykL1.˝/

for smooth fields y, (2)

where k � kLp denotes the usual Lebesgue norm on
˝I that is, if y varies slowly relative to the atomic
scale, then Ec.y/ is an accurate approximation to
Ea.y/.

After rescaling y  �y; 	  �	, E�  �dE�,
where � is the atomic spacing, (2) becomes jEc.y/�
Ea.y/j . �2.k@2yk2

L2.˝/
C k@3ykL1.˝//; hence,

we call it a second-order error estimate. Similarly,
terms of the form k@2ykL2 become �k@2ykL2 after
rescaling, and are hence understood to be of first
order.

2. Deformation error: Second-order energy consis-
tency (2) does not, in general, imply that minimizers
of Ec approximate minimizers of Ea. However, in
the case of the Cauchy–Born approximation, under
the action of macroscopic dead load external forces,
there exist local minimizers ya of Ea and yc of Ec,
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such that a second order a posteriori error estimate
holds [26]:

		@ya � @yckL2.˝/ . k@2yck2
L4.˝/

C k@3yckL2.˝/:
(3)

3. Prediction of lattice instability (bifurcation points
of the energy): The error estimate (3) requires con-
sistency (accuracy of the forces) and linear stability
(positive definiteness of the hessian r2Ec.y/). The
accurate prediction of lattice instabilities is impor-
tant since it is the mechanism for the nucleation
and evolution of defects such as cracks and dislo-
cations. Classical results from physics suggest that
a deformation y that is stable in the atomistic model
is also stable in the Cauchy–Born model, but that
the opposite is false: If a linear instability occurs
in the atomistic model, then the Cauchy–Born ap-
proximation may remain stable. It may therefore be
necessary to augment the Cauchy–Born model with
a microscopic test of lattice stability.

4. Global stability: The non-convexity of atomistic
interaction laws creates analytical challenges re-
lated to local and global minimizers and the well-
posedness of the Cauchy–Born model, which are
discussed by Blanc et al. [3].

Crystal Defects and Motivation for A/C Methods
The deformation field in the neighborhood of a dislo-
cation curve is singular:

j@2yj 
 r�2 and j@3yj 
 r�3; (4)

where r is the distance to the dislocation curve. It thus
follows that:

ˇ̌
Ec.y/ � Ea.y/

ˇ̌ D O.1/ since k@2yk2
L2.˝/

D O.1/
(5)

(where the definition of Ec should exclude a small
neighborhood of the dislocation curve). To obtain an
accurate approximation of a solution with a defect,
atomistic-to-continuum approximations use the atom-
istic description in a region˝a surrounding the defect,
coupled to a continuum approximation in the bulk
region˝c WD ˝ n˝a.

The aim of a/c methods is to construct an energy Eac

with substantially reduced computational cost, which
is at least first-order accurate at general deformations:ˇ̌
Eac.y/ � Ea.y/

ˇ̌
. k@2ykL1.˝c/, and at minimizers:

k@yac � @yakL2 . k@2yakL2.˝c/.

The error in the energy or deformation for a singu-
larity given by (4) can then be made arbitrarily small
by taking the atomistic core ˝a sufficiently large.

Energy-BasedMethods

The Energy-Based QuasicontinuumMethod
To construct the quasicontinuum energy (QCE) of
Tadmor et al. [23], we choose a subset �a � � which
defines the region of the atomistic body that we wish to
model atomistically. Next, we construct a triangulation
T of ˝ with nodes NT such that �a � NT . For each
node � 2 NT ; we assign an associated volume ˝�

(obtained, e.g., via a Voronoi tesselation; cf. Fig. 2)
chosen in such a way that vol.˝	/ D det.A/ for all
	 2 �a. For a deformation field yh W ˝ ! R

d that
is continuous and piecewise affine with respect to the
triangulation T , we can define the Cauchy–Born site
energy:

Ec
� .yh/ WD

Z
˝�

W.@yh/ for all � 2 NT :

With this notation, we can define the QCE energy
functional as:

Eqce.yh/ WD
X
	2�a

Ea
	 .yh/C

X
�2NT n�a

Ec
� .yh/: (6)

Upon defining effective volumes vT WD vol.T n
[�2�a˝�/ (see Fig. 2), one may rewrite Eqce in the
computationally more efficient form:

Eqce. yh/ D
X
	2�a

Ea
	 .yh/C

X
T2T

vTW.@yhjT /: (7)

Accuracy of QCE
1. Energy consistency: Since the Cauchy–Born

approximation (1) is exact under homogeneous
deformations, and the total volume in the
definition of Eqce is preserved, Eqce is exact under
homogeneous deformations, and consequently
first-order accurate under general deformations:
jEqce.Ihy/ � Ea.y/j . kh@2ykL1.˝c/. We note that
the coarsening error is of first order only and hence
dominates the second-order error committed by the
Cauchy–Born approximation.
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Atomistic to Continuum Coupling, Fig. 1 Micro-crack (deformed configuration in atomic units) in a 2D triangular lattice with
EAM-type interaction, computed using an atomistic-to-continuum coupling method

Atomistic to Continuum Coupling, Fig. 2 The nodes NT
of the triangulation T are represented by filled red (atomistic)
circles and blue (continuum) circles. The area of a triangle T 2
T is represented by the dark gray area

2. Ghost forces: Due to the abrupt transition between
the atomistic and Cauchy–Born models, which
causes an asymmetry in the interaction, QCE forces
are not exact under homogeneous deformations
yF WD Fx:

@Eqce

@y.	/
.yF / ¤ 0 for y.	/ in a rcut-width

neighborhood of the a/c interface:

These errors in the forces, usually called ghost
forces, are the dominant component in the error
committed by the QCE approximation. As a con-
sequence, minimizers of the QCE method are only
zeroth-order accurate:

k@yqce
h
�@yakL2 . k@W.@ya/kL2.˝ int/Ckh@2yakL2.˝c/;

(8)
where ˝ int;˝c � ˝ are suitably chosen interface
and continuum regions.

3. Approximation of lattice instability: Since the in-
consistency of QCE is concentrated in the interface,
one expects that the deformation fields are more
accurate in the atomistic core region, and that the
QCE method can therefore accurately predict cer-
tain classes of bifurcation points. However, Dobson
et al. [6] gave an example of an instability which the
QCE method is unable to predict accurately.

The Blended Quasicontinuum Energy
To reduce the error due to ghost forces in atomistic-to-
continuum methods, Xiao and Belytschko [27], Prud-
homme et al. [19], and Badia et al. [1] proposed a
less abrupt transition between atomistic and continuum
models by introducing a blending between the models.
A formulation of the blending method by Van Koten
and Luskin [24], as a natural extension of the QCE
method (6), is obtained by defining a blending func-
tion ˇ W ˝ ! Œ0; 1�, and the blended QCE energy:
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Ebqce.yh/ WD
X
	2�a

ˇ.	/Ea
	 .yh/C

X
�2NT

.1�ˇ.�//Ec
� .yh/:

(9)
An alternative formulation of the BQCE energy is [15]:

Ebqce.yh/ D
X
	2�a

ˇ.	/Ea
	 .yh/C

Z
˝

.1 � ˇ/W.@yh/;

where the integral can be approximated using quadra-
ture. Choosing ˇ D 
˝a yields the QCE method ( 7).

Accuracy of the BQCE Method
1. Ghost forces and choice of blending function:

Blending does not remove but reduces the effect
of the ghost force if the blending function is chosen
appropriately [24]. In particular, upon enlarging
the blending region, the ghost forces can be made
arbitrarily small. More precisely, BQCE minimizers
are expected to satisfy the error estimate:

k@ybqce
h � @yakL2 . k@2ˇ � @W.@ya/kL2.˝ int/

Ckh@2yakL2.˝c/; (10)

which shows that the optimal blending function
should minimize k@2ˇkL2 (here ˇ is to be identi-
fied with a smooth interpolant) and can potentially
reduce the L2 error of the strain (10) by k�3=2,
compared to the QCE error estimate, where k is the
width of the blending interface. For flat interfaces,
cubic spline functions are quasi-optimal.

2. Approximation of lattice instability: Similarly as
for the ghost forces, the blending function also
controls the stability of the BQCE energy. The 1D
analysis of Van Koten and Luskin [24] suggests
that, for increasing width of the blending region, the
BQCE method can approximate bifurcation points
to arbitrary accuracy.

Energy-Based Ghost-Force Removal
Blending methods partially overcome the issue
of ghost forces at a/c interfaces; however, large
blending regions are required to obtain highly
accurate approximations. An alternative approach
proposed by Shimokawa et al. [22] is to remove
the ghost forces altogether by choosing a narrow
interface region �i � �a, a modified site-energy
E i
	.yh/ D E i.	I fyh.�/ � yh.	/g�2�/, and to define an

a/c hybrid energy:

Eac.yh/ WD
X

	2�an�i

Ea
	 .yh/C

X
	2�i

E i
	.yh/

C
X

�2NT n�a

Ec
� .yh/: (11)

The interface site potential should be constructed so
that the energy and forces are exact under homoge-
neous deformations:

(EC) Local energy consistency: E i
	.y

F / D Ea
	 .y

F /

for all F 2 R
d�dC , 	 2 �i;

(FC) Force consistency: rEac.yF / D 0 for all F 2
R
d�dC .

For general multi-body potentials, the only approach
known to date is the geometric reconstruction tech-
nique originally proposed by Shimokawa et al. [22]
and extended by Weinan et al. [25] and Ortner and
Zhang [18] as follows: To construct E i one prescribes
the functional form

E i.	I fg�g�2�/ D Ea.fP2�C	;�;gg�2�/;

and then determines the parameters C	;�; so that
conditions (EC) and (FC) are satisfied. This has been
shown to be feasible for flat interfaces [25], and for
interfaces with corners in 2D nearest-neighbour inter-
actions [18].

For 2D pair interactions in general domains,
Shapeev [20] offered an alternative construction.
A construction of a/c methods of the type (11),
satisfying (EC) and (FC) for general interface
geometries and general interactions, is still open.

Accuracy of Consistent a/c Methods
In 1D and 2D, it has been shown that methods of
the type (11) satisfying (EC) and (FC) are first-order
accurate: k@yac � @yakL2 . kh@2yakL2 , provided that
Eac is also stable [17]. This represents a substantial
improvement in accuracy over the QCE and BQCE
methods. The stability of methods of the type (11) is
still open.

Force-BasedMethods

Force-Based a/c Coupling
A popular alternative to formulating a/c hybrid energy
functionals is to construct a/c approximations based
on coupling forces. In the most basic variant of this
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approach, one designates each finite element node to
be treated either atomistically or with the continuum
model, and assigns forces accordingly:

F�.yh/ WD
(
� @Ea.yh/

@yh.�/
; for � 2 �a;

� @Ec.yh/

@yh.�/
; for � 2 NT n�a:

(12)

One then solves the nonlinear system F.yh/ D 0,
subject to boundary conditions.

There exist numerous variants of the basic formula-
tion (12), for example, [10, 21].

Accuracy of the Force-Based a/c Method
Our discussion of accuracy is restricted only to the ba-
sic formulation (12). Because there is no modification
of the atomistic or continuum forces at the a/c interface,
there is no loss of accuracy in the force fields over the
pure Cauchy–Born model. However, F is not linearly
stable in the H1-norm [7]. In 1D only, stability may
be shown in W 1;1, which results in the uniform error
estimate [7]:

k@yac
h � @yakL1 . kh@2yakL1.˝c/; (13)

where we remark again that the coarsening error dom-
inates the modeling error, which is in fact of second
order (as the Cauchy–Born error). A stability analysis
of (12) in 2D and 3D is still open.

Iterative Solution of Force-Based a/c Coupling
The iterative solution of the force-based approximation
(12) cannot be obtained from the minimization of
an energy since the system (12) is nonconservative.
The lack of coercivity of the linearized force-based
equations also raises questions about the convergence
of several popular solution methods [8]. See [16] for a
survey of iterative solution techniques for (12).

Extensions

Overlapping Methods andWeak Coupling
The quasicontinuum methods described above couple
nonoverlapping atomistic and continuum regions by
imposing strong compatibility of the atomistic and
continuum degrees of freedom at the interface. Alter-
natively, many atomistic-to-continuum methods cou-
ple overlapping (handshake) atomistic and continuum
regions by utilizing penalty or Lagrange multiplier

terms in the interfacial region to impose weak com-
patibility of the atomistic and continuum degrees of
freedom [1, 19, 27].

Multilattices
Most crystalline materials of technological interest are
composed of interpenetrating lattices or multilattices.
The QCE method (6), the BQCE method (9), and
the force-based a/c method (12) can be extended to
multilattices; however, there exist no theoretical results
on these methods at present.

QuantumMechanics
The increased accuracy of quantum mechanics (QM)-
based molecular interaction models such as density
function theory (DFT) is often required near defects.
Since QM-based models cannot usually be written as
the sum of localized site energies, new approaches
are needed for coupling them to continuum models.
Energy-based methods have been proposed, for exam-
ple, by Garcia-Cervera et al. [11] and Gavini et al. [12].

In the case of quantum mechanics the force-based
approach can be given by:

F�.yh/ WD

8̂
<̂
ˆ̂:

� @Eqmqc.yh/

@yh.�/
; for � 2 �qm;

� @Ea.yh/

@yh.�/
; for � 2 �a n�qm;

� @Ec.yh/

@yh.�/
; for � 2 NT n�a;

(14)

where�qm � �a are nodes with forces computed from
a quantum mechanics–based energy Eqmqc.yh/; see [2]
for a comprehensive review.

Finite-Temperature Equilibriumand Dynamics
The extension of the QCE energy (7) to finite tem-
perature equilibrium and dynamics requires that the
thermal energy of the constrained atoms be added
to the Cauchy–Born stored elastic energy. The hot-
QC energy [9] uses the local harmonic approximation
[4] to construct a Cauchy–Born stored elastic free
energy W.F; �/ and corresponding finite temperature
extension of QCE ( 7):

Eqce.yh; �/ D
X
	2�a

Ea
	 .yh/C

X
T2T

vTW.@yhjT ; �/:

(15)
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To reach time scales for defect motion, an acceler-
ated dynamics method such as hyperdynamics may be
used [13].

The bridging scale approach to dynamics utilizes
a two-scale decomposition in which the coarse scale
is simulated using a continuum model, while the fine
scale is simulated using an atomistic model [14]. The
bridging domain method blends molecular and contin-
uum Hamiltonians [27].
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Backward Differentiation Formulae
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Synonyms

Extended backward differentiation formulae; Linear
multistep methods

Definition

Backward differentiation formulae (BDF) are linear
multistep methods suitable for solving stiff initial value
problems and differential algebraic equations. The ex-
tended formulae (MEBDF) have considerably better
stability properties than BDF.

Review of Stiffness

We derive BDF and MEBDF suitable for solving
stiff initial value problems and differential algebraic
equations. In this section, we will be concerned with a
special class of multistep methods for the approximate
numerical integration of first-order systems of ordinary
differential equations of the form

dy

dx
D f .x; y/; y.a/ D ya: (1)

As we will see, the methods we will consider are also
very efficient for the numerical solution of differential
algebraic equations of the form

F.x; y; y0/ D 0 (2)

for the important case where (2) has index 1. It is often
the case that systems of the form (1) are stiff, and
such problems need special attention if they are to be
solved efficiently. An intuitive idea of what stiffness
is has been given, for example, by [1, p. 73]. They
formulate a definition of stiffness by considering initial
value problems having solutions with both very fast
and very slow decay rates. In particular, they focus their
attention on a problem of the form (1) having a solution

y.x/ D e�x C e�1;000 x: (3)

The important property displayed by (3) is that the
term e�1;000x decays very rapidly compared with the
e�x term so that after a very short time (3) is well ap-
proximated by the much more slowly varying solution
e�x . We might expect to be able to take relatively large
integration steps once the term e�1;000x has become
negligible, but this is not the case unless the numerical
integration method has excellent stability properties.
Based on these ideas, Ascher, Mattheij, and Russell
give the following definition of stiffness: “An ODE
system of the form (1) defined on an interval Œa; b�
is said to be stiff in the neighborhood of a solution
y if there exists a component of the vector y whose
variation is very large compared with Œb � a��1.”

© Springer-Verlag Berlin Heidelberg 2015
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Stability Concepts for MultistepMethods

In this section, we will explain what BDF are and
show that BDF, and a modification of them known
as MEBDF, can be very efficient for the numerical
solution of stiff ordinary differential equations and
for differential algebraic equations of index 1. BDF
methods have become very popular due perhaps to
the fact that they were among the first methods to be
proposed for stiff differential equations and also that
there are several very powerful BDF codes available for
the solution of stiff equations. In particular we mention
DIFSUB, DASSL, LSODE, VODE, MEBDFI, and
variants of these codes. We now consider the important
concept of A-stability which plays a central role in the
derivation of numerical methods for solving stiff dif-
ferential systems. In particular we consider the linear
multistep method:

kX

jD0
˛j ynCj D h

kX

jD0
ˇj fnCj ; (4)

where h is the step size, xn D a C nh, yn is the
approximation to y.xn/, fnCj D f .xnCj ; ynCj /, and
˛j and ˇj are constants to be chosen. It is usual to
examine the stability of a numerical method of the
form (4) by applying it to the so-called Dahlquist test
equation:

y0 D �y ; (5)

where � is a complex constant with negative real
part. Following this approach and applying (4)–(5), we
obtain

kX

jD0
.˛j � h�ˇj /ynCj D 0 ; (6)

If we now try ynCj = AqnCj , where A is a constant, as
a solution of this equation, we obtain

kX

jD0
.˛j � h�ˇj /q

j D �.q/ � h��.q/ D 0 ; (7)

where �.q/ and �.q/ are called the “generating poly-
nomials” of the multistep method (4). The solution of
the difference equation (6) is stable if and only if all
roots of (7) are of magnitude � 1 in modulus with

multiple roots being strictly less than 1 in modulus.
This now leads us to give the following definition of
stability. The set

S D fh� 2 C s.t. all roots qi of (7) satisfy

jqi j � 1 with jqi j < 1 if qi is a multiple rootg

is called the region of absolute stability of (4). In
addition, the multistep method (4) is said to be A-stable
if S � C�.

It is clear that A-stability is a very desirable property
for a numerical method to possess when integrating
stiff differential systems. For this reason, we now
investigate the integration of stiff differential systems
using linear multistep methods of the form (4). Our
hope is to be able to derive high-order A-stable for-
mulae. However, this hope is immediately dashed by
the following theorem of Dahlquist which has become
known as the second Dahlquist barrier. The paper
by Dahlquist referred to in Theorem 1 is one of the
most influential papers ever written in the field of the
numerical solution of stiff ODEs.

Theorem 1 [5] An A-stable linear multistep method
must be of order p � 2: If the order is 2, then the
error constant satisfies c � �1=12: The trapezium rule
is the only A-stable linear multistep method of order 2
with c D �1=12:
The error constant c associated with a method of the
form (4) is defined in, for example, [7, p. 262], and for
a pth order method, it is

c D 1

�.1/.p C 1/Š

0

@
kX

jD0
.˛j j

pC1 � .p C 1/ˇj j
p

1

A :

Thus, in order to be able to derive higher-order linear
multistep methods with “reasonable” regions of abso-
lute stability, either we need to weaken the stability
requirement to something less severe than A-stability
or else we need to derive more powerful integration
methods. We consider first how we might weaken the
stability requirement of our integration method. Two
stability definitions which are widely used in place
of A-stability are A.˛/-stability due to [9] and stiff
stability due to [6]. The most widely used of these
two stability concepts is A.˛/-stability, and we now
define this.
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Backward Differentiation Formulae, Table 1 Value of ˛ for
k-step BDF methods

k 1 2 3 4 5 6

˛ 90ı 90ı 86:03ı 73:35ı 51:84ı 17:84ı

Definition 1 [9] A convergent linear multistep
method is A.˛/ � stable, 0 < ˛ < �=2 if
S � S˛ D f�I jarg.��/j < ˛;� ¤ 0g:
Furthermore, a numerical method is said to be
A.0/-stable if it is A.˛/-stable for some small value
of ˛ > 0. The question as to what is the highest order
of accuracy that can be obtained by A.˛/-stable linear
multistep methods has been considered in some detail
by [7, p. 250]. However, what is more important to
us is that there do exist high-order A.˛/-stable linear
multistep methods with ˛ reasonably large.

Backward Differentiation Formulae

One particular class of methods which has high order
and good stability is the backward differentiation for-
mulae (BDF) which are defined as

kX

jD0
˛j ynCj D hfnCk : (8)

Note that this is of the form (4) with ˇi = 0 for 0 �
i � k � 1 and ˇk D 1. These formulae are A.˛/
stable up to order 6, and the stability of these formulae
is summarized in Table 1, where k is the order of the
method and ˛ is its region of A.˛/ stability.

If we take k D 1 in (8), we have

ynC1 D yn C hfnC1 ; (9)

and this is the A-stable backward Euler method which
has order 1. Taking k D 2 in (8) we obtain

3

2
ynC2 � 2ynC1 C 1

2
yn D hfnC2 ; (10)

and this is A-stable with order 2. An alternative way
of writing BDF is to use backward differences (see [7,
p. 246]), and this yields the formula

kX

jD1

1

j
rj ynC1 D hfnC1:

Finally we can derive BDF as collocation methods
by considering the polynomial q.x/ passing through
.xi ; yi / for i D n � k C 1; : : : ; n C 1 and satisfying
q0.xnC1/ D f .xnC1; ynC1/. This is important because
it is applicable for variable step implementations as
well as for fixed steps. We also mention very briefly
that it is possible to get high-order, extremely stable,
multistep methods by considering second derivative
formulae. However, these methods do of course have
the problem that they are generally very expensive to
implement. However, if the second derivative is slowly
varying or indeed if the problem is linear, then second
derivative methods may well be useful, and the reader
is referred to [7, p. 265] and [3].

Modified Extended Backward
Differentiation Formulae

Rather than weakening the stability requirement from
A-stability to A.˛/-stability, another approach which
will allow high-order A-stable multistep methods to
be derived is to strengthen the numerical method. A
class of numerical methods which is suitable for the
approximate numerical integration of stiff systems is
modified extended backward differentiation formulae
(MEBDF). These have the form

kX

jD0
Ǫj ynCj D h Ǒ

kfnCk C h Ǒ
kC1fnCkC1 ; (11)

where Ǫk = 1 and the other coefficients are chosen
so that (11) has order k C 1. This formula needs
a very careful implementation because to compute
ynCk, we need past values yn; ynC1; : : : : : : ; ynCk�1 as
well as the “super future” value ynCkC1. The way in
which (11) is implemented is as follows:
1. Compute NynCk as the solution of the BDF

kX

jD0
˛j ynCj D hˇkfnCk where ˛k D 1

and where ˛i and ˇk are the BDF coefficients
appearing in (8) properly scaled.
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2. Compute NynCkC1 as the solution of the kth order
BDF advanced by one step:

ynCkC1C˛k�1 NynCkC
k�2X

jD0
˛j ynCjC1 D hˇkfnCkC1

(12)
3. Compute NfnCkC1 D f .xnCkC1; NynCkC1/ :
4. Compute ynCk using

kX

jD0
Ǫj ynCj D hˇkfnCk C h. Ǒ

k � ˇk/ NfnCk

Ch Ǒ
kC1 NfnCkC1:

A stability analysis of this procedure has been carried
out by [4] and by [7]. As can be seen from [7, p. 270],
MEBDF are A-stable up to and including order 4 and
are A.˛/-stable up to order 9. Codes based on MEBDF
are very efficient for the integration of stiff differential
systems.

Application to DAEs

Another important class of problems that can be solved
very efficiently by multistep methods is differential
algebraic equations. We illustrate the general case by
considering the backward Euler method. The problem
to be solved is the DAE

F.x; y; y0/ D 0 ; (13)

where we assume that the problem has index 1

(for a discussion of index, the reader is referred
to [6, p. 452]). The idea now is to approximate the
derivative term in (13) using the approximation

y0
n � yn � yn�1

h
: (14)

Substituting this approximation into (13), we have

F
�
xn; yn;

yn � yn�1
h

�
D 0 : (15)

We can now solve this generally nonlinear problem
for yn using a standard iteration scheme usually based
on Newton iteration. It is straightforward to obtain
higher-order methods by making a more accurate ap-
proximation to the derivative. This is done using the
approximation

y0
n D 1

h

kX

iD0
˛iyn�kCi (16)

which is a standard backward differentiation formula
using a fixed stepsize. Substituting (16) into (13), our
problem becomes

F

 
xn; yn;

1

h

kX

iD0
˛iyn�kCi

!
D 0: (17)

This equation can now be solved for yn using a stan-
dard Newton iteration scheme. The proof of con-
vergence of BDF is quite complicated, but it can
be summarized as follows [2, p. 51]. Consider the
DAE (13) and assume that it is a uniform index 1
DAE on the interval Œx0; x0 C X�. Then the numerical
solution of (13) using a k-step BDF with a fixed
stepsize h for k < 7 converges to O.hk/ if all
initial values are correct to order O.hk/ accuracy and
if the Newton iteration on each step is solved to
O.hkC1/ accuracy. This shows the good performance
of BDF on index 1 problems. For higher index prob-
lems, the situation is, however, much more compli-
cated.

It is straightforward to extend MEBDF to deal with
DAEs, and in this case, we have the advantage that we
are able to solve problems written in Hessenberg form
[2] with index � 3.

The easiest way of explaining the MEBDF approach
is to consider the one step case. The multistep case
follows in a very similar way. We consider again the
DAE (13). We first make the approximation

y0
n � yn � yn�1

h
; (18)

and substituting this into (13), we have

F

�
xn; Nyn; 1

h
. Nyn � yn�1/

�
D 0 ; (19)

and we solve for Nyn in the usual way using a Newton
based iteration. We now advance one more step to
obtain

F.xnC1; NynC1; Ny0
nC1/ D 0 ; (20)
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and we approximate Ny0
nC1 by . NynC1 � Nyn/=h. Substi-

tuting this into (20), we have

F.xnC1; NynC1;
1

h
. NynC1 � Nyn/ D 0 : (21)

The solution of (21) gives the approximation NynC1
to ynC1. We now have first-order approximations Nyn
and NynC1 to yn and ynC1, respectively, and we now
compute a second-order approximation to yn using the
second-order MEBDF:

yn � yn�1 D h

�
�1
2

Ny0
nC1 C 1

2
Ny0
n C y0

n

�
: (22)

From (22), it follows that

y0
n D 1

h
.yn � yn�1/C 1

2
. Ny0
nC1 � Ny0

n/ : (23)

Substituting this into (13), we have

F

�
xn; yn;

1

h
.yn � yn�1/C 1

2
. Ny0
nC1 � Ny0

n/

�
D 0 :

(24)

Note that the quantities Ny0
nC1 and Nyn have already been

computed so we can solve (24) for yn.
This approach using MEBDF has proved to be very

efficient for the integration of differential algebraic
equations with index � 3 written in Hessenberg form,
and some powerful codes are now available for the
solution of this problem.

Codes
Finally in this section, we consider which quality
multistep codes are available for solving stiff initial
value problems and differential algebraic equations
efficiently. The codes we will recommend are high-
quality codes, based on multistep methods, which are
very efficient and which have had a tremendous amount
of usage (and testing). We regard it as being very
important that the reader can download a code to solve
his problem with a minimum amount of effort on
his part, and the way in which this can be done is
fully explained on the web page below. The codes we
recommend that are available and fully described on
the web site Test Set for IVP Solvers [8] Codes that we
would recommend a user to try are:

• Vode for ODEs
• BIMD, GAMD, MEBDFDAE, for ODEs and DAEs
• DASSL, MEBDFI, for ODEs, DAEs, and implicit

equations.
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Short Definition

Markov chain Monte Carlo (MCMC) is a collection of
computational methods for simulating from posterior
distributions.

Description

Markov chain Monte Carlo (MCMC) methods are a
collection of computational algorithms designed to
sample from a target distribution by performing Monte
Carlo simulation from a Markov chain whose equilib-
rium distribution is equal to the target distribution. The
output of the algorithm is then used to estimate features
of the required distribution, where the quality of the
estimate is determined by the number of iterations of
the algorithm. Surprisingly, it took several decades be-
fore the statistical community embraced Markov chain
Monte Carlo (MCMC) as a general computational tool
in Bayesian inference, where it may be quite difficult
to compute the normalizing constant of the (possibly
high-dimensional) posterior distribution required for
routine calculations. The usual reasons that are ad-
vanced to explain why statisticians were slow to catch
on to the method include lack of computing power
and unfamiliarity with the early dynamic Monte Carlo
papers in the statistical physics literature. We argue that
there was a deeper reason, namely, that the structure of
problems in the statistical mechanics and those in the
standard statistical literature are different. To make the
methods usable in Bayesian computations, one must
exploit the power that comes from the introduction of
judiciously chosen auxiliary variables and collective
moves.

Prehistory

The origin of MCMC can be traced to the early 1950s
when physicists were faced with the need to numer-
ically study the properties of many particle systems.
Metropolis et al. [8] introduced the first Markov chain
Monte Carlo method in this context by making se-
quential moves of the state vector by changing one
particle at a time. (For more details, see Tanner and
Wong [15] and Tanner [13].) In subsequent develop-
ment, this method was applied to a variety of physical
systems such as magnetic spins, polymers, molecular

fluids, and various condense matter systems (reviewed
in Binder [1]), but all these applications share the
characteristics that n is large and the n components are
homogeneous in the sense each takes value in the same
space (say, 6-dimensional phase space or up/down spin
space) and interacts in identical manner with other
components according to the same physical law. These
characteristics made it difficult to recognize how the
method can be of use in a typical Bayesian statistical
inference problem where the form of the posterior
distribution is very different from the Boltzmann distri-
butions arising from physics. For this reason, although
the probability and statistical community was aware
of MCMC very early on Hammersley and Handscomb
[5] and had in fact made key contributions to its
theoretical development (Hastings [6]), the method was
not applied to Bayesian inference until the 1980s.

Latent Variable Methods in Likelihood
Inference: The EMAlgorithm

During the 1960s and 1970s, statisticians developed
an approach to maximum likelihood computation that
is quite effective in many popular statistical models.
The approach was based on the introduction of latent
variables into the problem so as to make it feasible
to compute the MLE if the latent variable value were
known. Equivalently, if one regards the latent variable
as “missing data,” then this approach relies on the
simplicity of inference based on the “complete data” to
design an iterative algorithm to compute the maximum
likelihood estimate and the associated standard errors.
This development culminated in the publication of the
extremely influential paper of Dempster, Laird, and
Rubin [2]. A review of earlier research treating specific
examples was presented in that paper, as well as the
associated discussion. The high impact of Dempster
et al. stems from its compelling demonstration that
a wide variety of seemingly unrelated problems in
standard statistical inference, including multinomial
sampling, normal linear models with missing values,
grouping and truncation, mixture problems, and hier-
archical models, can all be encompassed within this
latent variable framework and thus become computa-
tionally feasible using the same algorithm (called the
EM algorithm by Dempster et al.) for MLE inference.

Because of its influence in later MCMC methods
on the same set of problems, we briefly review a
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simplified formulation of the EM algorithm: Let y be
the observed data vector and p�.y/ be the density of
y, and we are interested in the inference regarding � .
Two conditions are assumed for the application of the
EM. First, it is assumed that although the likelihood
L.� jy/ D p�.y/ may be hard to work with, one can
introduce a latent (i.e., unobserved) variable z so that
the likelihood L.� jy; z/ D p�.y; z/ based on the value
of y and z becomes easy to optimize as a function of
� . In fact, for simplicity, we assume that p�.y; z/ is an
exponential family distribution. The second condition
is that for any fixed parameter value � , it is possible to
compute the expectation of the sufficient statistics of
the exponential family, where the expectation is over z
under the assumption that z is distributed according to
its conditional distribution p�.zjy/. We will see below
that these conditions are closely related to the ones un-
der which the most popular form of MCMC algorithm
for Bayesian computation, namely, the Gibbs sampler,
is applicable.

Bayesian Computation in the 1980s

The early 1980s was an active period in the develop-
ment of Bayesian computational methods. In addition
to the traditional approach that relied on the use of
conjugate priors to obtain analytically tractable pos-
terior distributions, significant progress was made in
numerical approximations to the posterior distribution.
We now briefly review the main approaches.

In many problems, it is easy to evaluate the joint
posterior density up to a constant of proportional-
ity. The difficulty is to obtain posterior moments and
marginal distributions of selected parameters of inter-
est. Numerical integration methods were developed to
obtain these quantities from the joint posterior. In par-
ticular, Smith et al. [11] advocated the use of Gaussian
quadrature which would be the correct choice in large
sample situations when the posterior is approximately
normal. Alternatively, Kloek and van Dijk [7] proposed
the use of importance sampling to carry out the inte-
gration and applied the method systematically in the
context of simultaneous equation models. Many novel
variations were experimented with in both approaches,
including the important idea of adaptation where a
preliminary integration was used to guide the choice
of parameters (grid points, importance function, etc.)
in a second round of integration.

Another influential work was Tierney and Kadane
[16] which uses the technique of Laplace approxima-
tion to obtain accurate approximations for posterior
moments and marginal densities, albeit in contrast to
the other approaches, the accuracy of this approxima-
tion is determined by the sample size and not under the
control of the Bayesian analyst.

These efforts demonstrated that accurate numerical
approximation to marginal inference can be obtained in
problems with moderate dimensional parameter space
(e.g., Smith et al. [11] report success on problems with
up to 6 dimensions). On the other hand, a review of
the writings of leading Bayesian statisticians in this
period reveals no awareness of the promise the MCMC
approach that would soon emerge as a dominate tool
in Bayesian computation. In fact, among more dog-
matic Bayesians, the use of Monte Carlo was met
with resistance and viewed as antithetical to Bayesian
principles [10].

Formulation of the Gibbs Sampler

In 1984, Geman and Geman published a paper on
the topic of Bayesian image analysis [4]. Beyond its
immediate and large impact in image analysis, this
paper is significant for several results of more gen-
eral interest, including a proof of the convergence of
simulated annealing and the introduction of the Gibbs
sampler.

The authors began by drawing an analogy between
images and statistical mechanics systems. Pixel gray
levels and edge elements were regarded as random
variables, and an energy function based on local char-
acteristics of the image was used to represent prior in-
formation on the image such as piecewise smoothness.
Because interaction energy terms involved only local
neighbors, the conditional distribution of a variable
given the remaining components of the image depends
only on its local neighbors and is therefore easy to
sample from. Such a distribution, for the systems of
image pixels, is similar to the canonical distribution in
statistical mechanics studied by Boltzmann and Gibbs,
and it is thus called a Gibbs distribution for the image.

Next, the authors analyzed the statistical problem
of how to restore the image from an observed image
which is a degradation of true image through the pro-
cesses of local blurring and noise contamination. They
showed that the posterior distribution of true image
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given the observed data is also a Gibbs distribution
whose energy function still involves only local interac-
tions. Geman and Geman proposed to generate images
from this posterior distribution by iteratively sampling
each image element from its conditional distribution
given the rest of the image, which is easy to do because
of the distribution is still Gibbs. They call this iterative
conditional sampling algorithm the Gibbs sampler. For
the history of Bayesian computation, this was a pivotal
step – although similar algorithms were already in
use in the physics literature, to our knowledge this
work represented the first proposal to use MCMC to
simulate from a posterior distribution. On the other
hand, because the Gibbs model for images is so similar
to the (highly specialized) statistical physics models, it
was not apparent that this approach could be effective
in traditional statistical models.

Introduction of Latent Variables and
Collective Moves

The use of iterative sampling for Bayesian inference
in traditional statistical models was first demonstrated
in Tanner and Wong [14]. The problems treated in
this work, such as normal covariance estimation with
missing data and latent class models, were of the
type familiar to mainstream statisticians of the time.
A characteristic of many of these problems was that
the likelihood is hard to compute (thus not amenable
to MCMC directly). To perform Bayesian analysis on
these models, the authors embedded them in the setting
of the EM algorithm where a latent variable z can be
introduced to simplify the inference of the parameter
� . They started from the equations

p.� jy/ D
Z
p.� jy; z/p.zjy/d z (1)

p.zjy/ D
Z
p.zj�; y/p.� jy/d� (2)

Recall that the conditions needed for the EM to
work well are that p�.y; z/ is simple to work with as
a function of � and p�.zjy/ is easy to work with as a
function of z. The first condition usually implies that
the complete data posterior p.� jy; z/ is also easy to
work with. Thus, (1) can be approximated as a mixture
of p.� jy; z/ over a set of values (mixture values)
for z drawn from (2). Similarly, (2) is approximated

as a mixture of p.zj�; y/ over mixture values for �
drawn from (1). This led the authors to propose an
iterated sampling scheme to construct approximations
to p.� jy/ and p.zjy/ simultaneously. In each step
of the iteration, one draws a sample of values with
replacement from the mixture values for z (or �) and,
then conditional on each such z, draws � (or z) from
p.� jy; z/ (or p.zj�; y/).

This computation is almost identical to a version of
the Gibbs sampler that iterates between the sampling
of p.� jy; z/ and p.zj�; y/. In fact, if the sampling
from the mixture values for z (or �) were done without
replacement rather than with replacement, as suggested
by Morris [9], then one would have exactly a popula-
tion of independently run Gibbs samplers. The authors
also noted the connection to the equilibrium distribu-
tion of a Markov chain. In any case, a prominent aspect
of its relevance lies in the explicit introduction of the
latent variable z which may or may not be part of the
data vector or the parameter vector of the original sta-
tistical model, to create an iterative sampling scheme
for the Bayesian inference of the original parameter � .
Tanner and Wong referred to this aspect of the design
of the algorithm as “data augmentation.” A judicious
choice of latent variables can allow one to sample from
the posterior p.� jy/ in cases where direct MCMC
methods, including the Gibbs sampler, may not even be
applicable because of difficulty in evaluating p.� jy/.

As a discussant of Tanner and Wong [14] and
Morris [9] makes several key observations of great
relevance to MCMC Bayesian computing. In addition
to suggesting a version of data augmentation that is the
same as parallel Gibbs sampling, he emphasizes that
(just as in the EM context) the augmentation is not
limited to missing data, but can be done with parame-
ters as well: “and to emphasize that their ‘missing data’
concept can be used to include unknown parameters or
latent data.” As an illustration of the data augmentation
algorithm, Morris [9] presents what we would now call
the Gibbs sampler for a three-stage hierarchical model
with k C 1 parameters. At the first level of his model,
yi j�i are distributed independently as N.�i ; Vi /, for
i D 1; : : : ; k (Vi known). At the second stage, �i jA
are i id N.0;A/, i D 1; : : : ; k. At the final stage,
A is distributed as a completely known distribution.
Morris then says: “Let initial values A.1/; : : : ; A.m/

be given. The posterior distribution of � given .y; A/
is normally distributed and the P step samples �.j /i

� N..1 � B
.j /
i /yi ; Vi .1 � B

.j /
i // for i D 1; : : : :; k;
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j D 1; : : : ; m, independently, with B.j /
i D Vi=.Vi C

A.j // : : :.” For the A parameter, he writes: “The I step
(1.5), therefore, samples new values A.1/; : : : ; A.m/

according to A.j / � .� C jj�.j /jj2/=	2kCq for j D
1; : : : ; m, with 	2kCq sampled independently for each

j; jj� jj2 denoting the sum of squares.”
Interestingly, at about the same time, Swendsen and

Wang [12] also introduced the use of latent variables
(called auxiliary variables) in the setting of statistical
mechanics system. This work deals with the Potts
model of spins on a lattice. The authors introduced
bond variables between spins and then alternate be-
tween the sampling of the two types of variables,
spins and bonds. By conditioning on the bonds, they
were able to make more global changes of the spin
configuration, by simultaneously updating a whole
cluster of spins that are connected by active bonds
(i.e., a collective move). In this way, they were able to
dramatically reduce the correlation time of the result-
ing Markov process for simulating a two-dimensional
Ising model. Justifiably, this work is widely regarded
as a breakthrough in dynamic Monte Carlo methods in
statistical physics.

MCMC Bayesian computation arose in the 1980s
from two independent sources: the statistical physics
heritage as represented by Geman and Geman [4] and
the EM heritage as represented by Tanner and Wong
[14]. A synthesis of these two traditions occurred in
the important work of Gelfand and Smith [3]. Like
the former, they employed the Gibbs sampling version
of MCMC. Like the latter, they focused on traditional
statistical models and relied on the use of latent vari-
ables to create iterative sampling schemes. Their paper
provided many examples to illustrate the ease of use
and effectiveness of iterative sampling and clarified the
relation between the data augmentation algorithm and
the Gibbs sampler.

Conclusion

Since the early 1990s, mainstream statisticians began
to adapt the use of MCMC in their own research,
and the results in these early applications quickly
established MCMC as a dominant methodology in
Bayesian computation. However, it should be noted
that in any given problem there could be a great many
ways to formulate a MCMC sampler. In simulating

an Ising model, for example, one can try to flip each
spin conditional on the rest or flip a whole set of spins
connected by (artificially introduced) bonds that are
sampled alternatively with the spins. The effectiveness
of the Swendsen and Wang [12] algorithm in the Ising
model does not simply stem from the fact that it
is a Gibbs sampler, but rather depends critically on
the clever design of the specific form of the sam-
pler. Likewise, a large part of the success of MCMC
was based on versions of Gibbs samplers that were
designed to exploit the special structure of statistical
problems in the style of the EM and data augmentation
algorithms. Thus, the emergence of MCMC in main-
stream Bayesian inference has depended as much on
the introduction of the mathematically elegant MCMC
formalism, as the realization that the structure of many
common statistical models can be fruitfully exploited
to design versions of the algorithm that are feasible and
effective for these models.
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What is the Belousov-Zhabotinsky
Reaction?

The Belousov–Zhabotinsky (BZ) reaction [4, 25] is an
oscillating chemical reaction, the BZ reaction involves
the oxidation of an organic acid such as malonic acid
with a solution of acidified bromate in the presence of
a one-electron transfer redox catalyst, such as ferroin
[Fe(phen)2C3 ] or a light-sensitive ruthenium bipyridyl
complex [Ru(bipy)2C3 ]. The change in the redox be-
havior of the catalyst is usually accompanied by a
change of color, e.g., the ferroin (orange) is oxidized to
ferritin (blue). See an excellent overview of history of
BZ reaction and systematic introduction into chemical
kinetics of the reaction in( [9]).

How to Experiment with the Light
Sensitive BZ Reaction

The catalyst-free BZ reaction mixture is freshly pre-
pared in a 30 mL continuously fed stirred tank reac-
tor (CSTR), which involved the in situ synthesis of
stoichiometric bromomalonic acid from malonic acid
and bromine generated from the partial reduction of

sodium bromate. This CSTR in turn continuously fed a
thermostatted open reactor with fresh catalyst-free BZ
solution in order to maintain a nonequilibrium state.
The final composition of the catalyst-free reaction
solution in the reactor was 0.42 M sodium bromate,
0.19 M malonic acid, 0.64 M sulfuric acid, and 0.11 M
bromide. The residence time in the reactor is 30 min.

A stock solution of sodium silicate solution is
prepared by mixing 222 mL of sodium silicate solution
with 57 mL of 2 M sulfuric acid and 187 mL of
deionized water [22, 24]. The catalyst Ru(bpy)3SO4

is recrystallized from the chloride salt with sulfuric
acid [13]. Pre-cured solutions for making gels were
prepared by mixing 2.5 mL of the acidified silicate
solution with 0.6 mL of 0.025 M Ru(bpy)3SO4 and
0.65 mL of 1.0 M sulfuric acid solution.

The solution is transferred into a 25 cm long,
0.3 mm deep Perspex mold which was covered with
glass microscope slides. After gelation, the adherence
to the Perspex mold is negligible, leaving a thin gel
layer on the glass slide. After 3 h, the slides are
carefully removed and placed into 0.2 M sulfuric
acid solution for an hour. They were then washed
in deionized water to remove by-products.

An alternative method allowing a larger reactive
area involves the use of thin layer chromatography
plates which are pre-coated with a silica gel layer on
a glass substrate. These are cut into 5�5 cm pieces
and placed in 0.9 mL of 0.025 M Ru(bpy)3C3 solution
and 12 mL of deionized water in a Petri dish for 12 h.
Figure 1 shows this substrate demonstrating the effect
of blue LED light on waves in the light-sensitive BZ
reaction.

A diagrammatic representation of a typical experi-
mental setup is shown in Fig. 2. A projector is used to
illuminate the computer-controlled image. Images are
captured using a digital camera. The open reactor is
surrounded by a water jacket thermostated at 22 Cı.

Peristaltic pumps were used to pump the reaction
solution into the reactor and remove the effluent.

Typical light levels used for the experiments
are as follows: black (zero light level), the light
level at which the reaction oscillates; dark grey
(0.035 mW/cm2), the light level at which the reaction
is excitable and chemical waves are able to propagate
freely; white (maximum light intensity: 3.5 mW/cm2),
the light level at which the reaction is rendered
unexcitable and no waves propagate; and finally
the light level (1.35 mW/cm2) corresponding to the
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Belousov–Zhabotinsky Reaction, Fig. 1 Light controls wave
behavior in the light-sensitive BZ reaction (a) showing circu-
lar waves in the excitable light-sensitive BZ reaction; (b) the
reaction is subsequently illuminated with a blue LED (355 nm)

causing spontaneous splitting of the circular waves to form spiral
waves; (c) subsequent strong illumination with the LED causes
a circular region of the gel to become unexcitable
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Belousov–Zhabotinsky Reaction, Fig. 2 Experimental setup:
a light-sensitive catalyst (Ru(bpy)2C3 )-loaded silica gel (D) is
immersed in catalyst-free BZ reaction solution in a thermostated
(G) Petri dish (E). A peristaltic pump (F) is used to continuously
feed the reactor with thermostatted reaction solution and to
remove effluent (J). The reaction solution reservoir (H) is kept in

an ice bath. The heterogeneous network on the surface of the gel
(D) is constructed by the projection (B) of a heterogeneous light
pattern generated by a computer (A) through a 455 nm narrow
bandpass interference filter, lens pair, and mirror assembly (C).
Images are captured by a digital camera (I) connected to the
computer (A)

weakly excitable (sub-excitable) region of the reaction,
where unbounded wave fragments can propagate over
relatively large distances prior to annihilation.

The light pattern was projected onto the catalyst-
loaded gel through a 455 nm narrow bandpass interfer-
ence filter and 100/100 mm focal length lens pair and
mirror assembly.

Captured images are processed to identify chemical
wave activity. This is done by differencing successive
images on a pixel-by-pixel basis to create a black and
white thresholded image representing chemical activity
(see Fig. 3).

Waves are initiated by setting the light intensity to
black within a specific area on the gel surface. This

oscillating region is able to initiate waves periodically.
The waves are then directed using low light channels
into a weakly excitable reaction zone (controlled by
projecting a light intensity of 1.35 mW/cm2) such that
only small wave fragments are able to propagate (see
Fig. 3a).

By initiating two or more fragments at specific
locations around the edge of the sub-excitable reaction
zone, the interactions and collisions of wave fragments
could be studied (see Fig. 3b). The collision of frag-
ments can be interpreted as logical operations within
a collision-based computing framework [1]. Extending
this collision-based approach has realized arithmetic
circuits embedded in the BZ reaction [17].
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Belousov–Zhabotinsky
Reaction, Fig. 3 (a) Wave
fragment moves across
sub-excitable reaction zone.
(b) Collision of two fragments
travelling east-west across
sub-excitable reaction zone,
resulting in two daughter
fragments travelling
north-south

Qualitative Modelling

Simple models with a reduced number of variables
are commonly used for qualitative modelling of phe-
nomena related to the BZ reaction. In order to re-
produce quantitatively the time evolution observed in
experiments, a model should consider a larger number
of reagents. Qualitative models of BZ reaction are
based on the FKN reaction scheme [9, 12]. For the
ferroin-catalyzed variant of BZ reaction, the basic set
of considered reactions reads

BrO�
3 C Br� C 2HC ! HBrO2 CHOBr (1)

HBrO2 C Br� CHC ! 2HOBr (2)

HC CHBrO2 C BrO�
3 ! 2BrO:

2 CH2O (3)

2BrO:
2 CH2O ! HC CHBrO2 C BrO�

3 (3r)

BrO:
2 C Fe.phen/2C3 CHC ! HBrO2

C Fe.phen/3C3 (4)

2HBrO2 ! HOBr C BrO�
3 CHC (5)

Br� CHOBr CHC ! Br2 CH2O (6)

Br2 CH2O ! Br� CHOBr CHC (6r)

Br2 CMA ! Br� C BrMACHC (7)

HOBr CMA ! BrMACH2O (8)

Fe.phen/3C3 C BrMA ! Br� C Fe.phen/2C3
C products (9)

Fe.phen/3C3 CMA ! Fe.phen/2C3 C products
(10)

where MA and BrMA denote malonic and bromoma-
lonic acid.

It can be noticed that the model based on
reactions (1–10) is far from being complete because
it treats the reaction products in a crude manner
and does not describe their influence with the other
reagents.

A typical experiment with ferroine-catalyzed BZ re-
action starts with the solutions of sulfuric acid, malonic
acid, bromate, bromide, and a catalyst.

For concentrations of these reagents commonly
used in experiments with chemical oscillations, we
can assume that the initial concentrations of HC,
Br�, and BrO�

3 ions come from the dissociation of
H2SO4, bromate, and bromide, respectively. The sum
of concentrations of Fe.phen/2C3 and Fe.phen/3C3
is equal to the concentration of catalyst used in
experiment(C ).

The concentration of some reagents, like water
(55M), BrO�

3 , or HC, is usually quite high, and
their changes during the time evolution are small if
compared with the initial values, so we can treat them
as constants. Such simplification reduces the number
of model variables to 8.

If we assume that the mass action law applies to
reactions listed above, then the reaction scheme can
be easily transformed into a set of kinetic equations
describing the time evolution of concentrations of
reagents involved. This assumption is not obvious as
it sounds because none of these reactions proceeds
directly and the notation summarizes many elemen-
tary steps. If we accept the mass action law, then
the time evolution of a homogeneous system with
the BZ reaction is described by the following set of
equations:
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dx=dt D k1 � A � y � h02 � k2 � h0 � y � x
� k3 � h0 � A � x C k3r � ŒH2O� � w2

C k4 � h0 � w � .C � z/ � 2k5 � x2
dy=dt D �k1 � A � y � h02 � k2 � h0 � y � x

� k6 � p � y � h0C k7 � u �m
C k9 � b � z

d z=dt D k4 � h0 � w � .C � z/ � k9 � b � z

� k10 � z �m
dp=dt D k1 � A � y � h02 C 2k2 � h0 � y � x

C k5 � x2 � k6 � p � y � h0 � k8 � p �m
du=dt D k6 � p � y � h0 � k6r � u � ŒH2O�

� k7 � u �m
dw=dt D 2k3 � h0 � A � x � 2k3r � ŒH2O� � w2

� k4 � h0 � w � .C � z/

dm=dt D �k7 � u �m � k8 � p �m � k10 � z �m
db=dt D k7 � u �mC k8 � p �m � k9 � z � b

where the symbols denote (see [8])CDŒFe.phen/2C3 �C
ŒFe.phen/3C3 �, A D ŒBrO�

3 �, h0 D ŒHC�, x D
ŒHBrO2�, y D ŒBr��, z D ŒFe.phen/3C3 � (so
C � z D ŒFe.phen/2C3 �), p D ŒHOBr�, u D ŒBr2�,
w D ŒBrO:

2�, m D ŒMA�, and b D ŒBrMA�. Further
reduction of the model can be done assuming that
concentrations of malonic and bromomalonic acids
remain constant during the time evolution and the
ration of their concentrations does not depend on
concentrations of other reagents [8]. However, if
we accept such assumption, then the model does not
explain the changes in period observed in BZ droplets
typically after 20 min of evolution.

The reaction rate constants for all processes can be
found in the literature [6,10,18,26,27]. A careful look
shows that values of some rate constants like k1 D
2ŒM�3s�1� or k5 D 3; 000ŒM�1s�1� are the same in all
papers, whereas the others like k4 differ by a few orders
of magnitude. Recently used set of reaction rates [8] is
the following: k1 D 2ŒM�3s�1�, k2 D 2	106ŒM�2s�1�,
k3 D 42ŒM�2s�1�, k3r � ŒH2O� D 2 	 108ŒM�1s�1�,
k4 D 5 	 106ŒM�2s�1�, k5 D 3; 000ŒM�1s�1�, k6 D
5 	 109ŒM�2s�1�, k6r � ŒH2O� D 10Œs�1�, k7 D
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Belousov–Zhabotinsky Reaction, Fig. 4 Periods of oscilla-
tion as a function of concentration of catalyst. The experimental
results (triangles) are compared with calculations based on the
model (1–10). The dashed line has been calculated using the rate
constants given in [8]. The solid line shows results obtained with
the optimized set of rate constants given in the text. Triangles
with the tip up and down mark the lower and the upper boundary
of period observed in experiment

29ŒM�1s�1�, k8 D 9:3ŒM�1s�1�, k9 D 1ŒM�1s�1�,
and k10 D 0:05ŒM�1s�1�.

The periods of oscillations predicted by such model
are illustrated by a dashed line in Fig. 4. We have
recently adjusted the rate constants minimizing the
errors between calculated and observed periods for
a large class of experimental conditions. The new
set of rates is the following: k1 D 2:0ŒM�3s�1�,
k2 D 1:8 	 106ŒM�2s�1�, k3 D 48ŒM�2s�1�, k3r �
ŒH2O� D 2:8 	 108ŒM�1s�1�, k4 D 1:1 	 106ŒM�2s�1�,
k5 D 3; 000ŒM�1s�1�, k6 D 6:6 	 109ŒM�2s�1�,
k6r � ŒH2O� D 9:4Œs�1�, k7 D 40ŒM�1s�1�,
k8 D 7:1ŒM�1s�1�, k9 D 0:25ŒM�1s�1�, and
k10 D 0:053ŒM�1s�1�. The periods calculated with
the modified set of rates are illustrated with a solid line
on the Fig. 4. Here, as well as in many other cases,
the optimized set of rates gives much better agreement
with experiments than the other set of rate constants
that can be found in the literature.

The model based on eight variables can be
simplified. At the beginning of a typical experiment,
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concentrations of malonic and bromomalonic acids are
large, and they do not change significantly within a
single period. Thus, one can assume that they remain
constant during the time evolution and that the ratio of
malonic and bromomalonic acid concentrations does
not depend on concentrations of other reagents [8]
or depend on concentration of bromate only [15]. If
we accept such assumption, then the model reduces
to six variables, but it fails to explain the changes
in period observed in BZ droplets after 20 min of
evolution. The further reduction can be done because
the time evolution of p.D ŒHOBr�/, u.D ŒBr2�/, and
w.D ŒBrO:

2�/ is faster than the other variables. As the
result we obtain equations

@x

@t
D 
1h0Nx�
2h0x2�2˛�
1

ˇ
h0xyC2˛�
1�

ˇ
h0Ny

(11)
@y

@t
D qˇ

M �K
h0

z

1 � z
� �h0xy � ��h0NyCM �K

(12)
@z

@t
D h0N

C
x � ˛

K �M
Ch0

z

.1 � z/
(13)

where symbols K;M , and N denote concentrations
of bromate, malonic acid, and bromide, respectively.
The values of all parameters of the model –
˛; ˇ; �; 
1; 
2; �, and q – depend on the rate constants
of reactions (1–10) only, and they are not related
to concentrations of any reagents used to initiate an
experiment [15]. The variable y in the model based
on Eqs. (11)–(13) is faster than the other. Assuming
that its relaxation is instantaneous, we can reduce the
model to two variables, x and z, and the evolution
equations are the following:

@x

@t
D 
1h0Nx � 
2h0x

2 � 2˛
1M

�K
�
1

ˇ
C q

1

h0

z

1 � z

�
x � �N

x C �N
(14)

@z

@t
D h0N

C
x � ˛

K �M
Ch0

z

.1 � z/
(15)

Mathematically, these equations are equivalent to the
Oregonator model.

The model parameters can be found by comparing
the periods of oscillations observed in experiment with
the calculated values. For the three-variable model
(Eqs. (11)–(13)), good match was found for ˛ D 1:1 �
10�4, ˇ D 200, � D 6; 000, 
1 D 4; 300, 
2 D 8; 800,

� D 2:5 � 10�5, and q D 0:6 [15]. In the case of two-
variable model (Eqs. (14) and (15)), a good agreement
is obtained for ˛ D 2:6 � 10�4, ˇ D 200, 
1 D 4; 000,

2 D 5; 800, � D 2:1 � 10�5, and q D 0:88 [15].

Two-Variable Oregonator

There is also a simple model of BZ reaction: a two-
variable Oregonator equation [11, 23]. The equation
adapted to a light-sensitive BZ reaction with applied
illumination [5, 19] is as follows:

@u

@t
D 1




�
u � u2 � .f v C �/

u � q

u C q

�
CDur2u

@v

@t
D u � v

where variables u and v represent local concentrations
of bromous acid HBrO2 and the oxidized form of the
catalyst ruthenium Ru(III), 
 sets up a ratio of time
scales of the variables u and v, q is a scaling parameter
depending on reaction rates, f is a stoichiometric co-
efficient, and � is a light-induced bromide-production
rate proportional to the intensity of illumination (an
excitability parameter – a moderate intensity of light
will facilitate the excitation process, a higher intensity
will produce excessive quantities of bromide, which
suppresses the reaction). The catalyst is immobilized
in a thin layer of gel; therefore, there is no diffusion
term for v.

To integrate the system, we can use an Euler method
with five-node Laplacian operator, time step t D
10�3, and grid-point spacing x D 0:15, with the
following parameters: � D �0CA=2,A D 0:0011109,
�0 D 0:0766, 
 D 0:03, f D 1:4, and q D 0:002.
When adjusting parameters of the model, we took
into account that a decrease in 
 results in unbounded
growth of excitation activity, while by increasing f we
may roughly control the outcomes of wave collision.

The Oregonator equation is proved particularly use-
ful in computer and further experimental laboratory
implementation of collision-based circuits [1]. A pres-
ence of sustainable propagating wave fragment at a
given space domain represents the truth value of a
logical variable corresponding to the wave’s trajec-
tory (momentarily a wire); absence of the fragment
is false. When two or more wave fragments collide,
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Belousov–Zhabotinsky Reaction, Fig. 5 Implementation of
hx; y; zi ! hxy; yz; xyz; xyz; xyz; xyzi interaction gate. Over-
lay of images of wave fragments taken every 0.5 time units. The
following combinations of the input configuration are shown: (a)
x D 1, y D 1, z D 0; north-south wave collides with east-west

wave. (b) x D 1, y D 1, z D 1; north-south wave collides with
east-west wave and with west-east wave. (c) x D 1, y D 0,
z D 1; west-east and east-west wave fragments pass near each
other without interaction. (d) x D 0, y D 1, z D 1; north-south
wave collides with east-west wave. (e) Scheme of the gate

they change their velocity vectors and new trajectories
of the fragments represent results of logical computa-
tion [2]. An example of an interaction logical gate is
shown in Fig. 5.

Very Fast Prototyping: Cellular Automata

Cellular automata are regular uniform networks of
locally connected finite-state machines, called cells.
A cell takes a finite number of states. Cells are lo-
cally connected: every cell updates its state depending
on states of its geographically closest neighbors. All
cells update their states simultaneously in discrete
time steps. All cells employ the same rule to calcu-
late their states. Cellular automata are discrete sys-
tems with non-trivial yet computationally discoverable
behavior [21].

Since their inception in [16], cellular automaton
models of excitation became a usual tool for study-
ing complex phenomena of excitation wave dynamics
and chemical reaction-diffusion activities in physical,
chemical, and biological systems [7]; see classical
cellular automaton models of BZ media in [14, 20].

Cellular automaton models of reaction-diffusion
excitable systems are of particular importance because
by using them, we can – without too much effort – map

already-established architectures of massively parallel
computing devices onto novel material base of
chemical systems and design nonclassical and nature-
inspired computing architectures [2]. For example,
over 10 years ago, a range of mobile localizations
was discovered in two-dimensional automaton models
of excitable medium, and these localizations are
demonstrated to be indispensable in implementing
architecture-less computing schemes.

A classical state transition scenario for an excitable
cell is as follows. Transition from resting state 0
to excited state C is determined by excited neighbors,
and transitions from C to refractory state � and
from � to 0 are unconditional, i.e., happen
independently on neighbors’ states. A resting cell can
take excited state if a number of its excited neighbors
exceed certain threshold or a number of neighbors
belong to certain interval; sometimes, even number
of refractory neighbors can be taken into account.
There may be varieties of modifications where every
cell gradually excites (like a summator) and also
a cell can have several degrees of refractoriness
and return to its resting state in many steps. Also,
topology of connections can be made less uniform and
transformed, without loss of locality, to architecture
of proximity graphs: see overview of automata models
in [3] (Fig. 6).
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Belousov–Zhabotinsky Reaction, Fig. 6 Excitation dynamics on automaton networks. (a) Excitable Delaunay automata.
(b) Excitable cellular automata with retained excitation. (c) Excitable cellular automata with retained excitation. See details in [3]

References

1. Adamatzky, A. (ed.): Collision-Based Computing. Springer,
London (2002)

2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-
Diffusion Computers. Elsevier, Amsterdam/Boston (2005)

3. Adamatzky, A.: Reaction Diffusion Automata:
Phenomenology, Localisations, Computation. Springer,
Berlin/Heidelberg (2012)

4. Belousov, B.P.: A periodic reaction and its mechanism. In:
Sbornik Referatov po Radiatsioanoi Medicine 145 (1958)

5. Beato, V., Engel, H.: Pulse propagation in a model for the
photosensitive Belousov–Zhabotinsky reaction with exter-
nal noise. In: Schimansky-Geier, L., Abbott, D., Neiman, A.
Van den Broeck, C. (eds.) Noise in Complex Systems and
Stochastic Dynamics. Proceedings of the SPIE, vol. 5114,
pp. 353–362 (2003)

6. Chen, G.: A mathematical model for bifurcations in a
Belousov-Zhabotinsky reaction. Physica D 145, 309–329
(2000)

7. Chopard, B., Droz, M.: Cellular Automata: Modelling of
Physical Systems. Cambridge University Press, Cambridge
(1990)

8. Delgado, J., Li, N., Leda, M., Gonzalez-Ochoa, H.O.,
Fraden, S., Epstein, I.R.: Coupled oscillators in a 1D emul-
sion of Belousov-Zhabotinsky droplets. Soft Matter 7, 3155
(2011)

9. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear
Chemical Dynamics. Oxford University Press, New York
(1998)

10. Eager, M.D., Santos, M., Dolnik, M., Zhabotinsky, A.M.,
Kustin, K., Epstein, I.R.: Dependence of wave speed on
acidity and initial bromate Concentration in the Belousov-
Zhabotinsky reaction-diffusion system. J. Chem. Phys. 98,
10750–10755 (1994)

11. Field, R.J., Noyes R.M.: Oscillations in chemical systems.
IV. Limit cycle behavior in a model of a real chemical
reaction. J. Chem. Phys. 60, 1877–1884 (1974)

12. Field, R.J., Koros, E., Noyes, R.M.: J. Am. Chem. Soc. 94,
8649–8664 (1972)

13. Gao, Y., Försterling, H-D.: Oscillations in the bromoma-
lonic acid/bromate system catalyzed by [Ru(bipy)3]2C. J.
Phys. Chem. 99, 8638–8644 (1995)

14. Gerhardt, M., Schuster, H., Tyson, J.J.: A cellular excitable
media. Physica D 46, 392–415 (1990)

15. Gorecki, J., Szymanski, J., Gorecka, J.N.: J. Phys. Chem.
A.: Realistic parameters for simple models of the Belousov-
Zhabotinsky reaction. 115, 8855–8859 (2011)

16. Greenberg, J.M., Hastings S.P.: Spatial patterns for discrete
models of diffusion in excitable media, SIAM J. Appl. Math.
34, 515–523 (1978)

17. Holley, J., Jahan, I., de Lacy Costello, B., Bull,
L., Adamatzky, A.: Logical and arithmetic circuits in
Belousov–Zhabotinsky encapsulated disks. Phys. Rev. E 84,
056110 (2011)

18. Keki, S., Magyar, I., Beck, M.T., Gaspar V.: Modeling the
oscillatory bromate oxidation of ferroin in open systems.
J. Phys. Chem. 96, 1725–1729 (1992)

19. Krug, H.J., Pohlmann, L., Kuhnert, L.: Analysis of the mod-
ified complete oregonator (MCO) accounting for oxygen-
and photosensitivity of Belousov–Zhabotinsky systems.
J. Phys. Chem. 94, 4862–4866 (1990)

20. Markus, M., Hess, B.: Isotropic cellular automata for mod-
elling excitable media. Nature 347, 56–58 (1990)

21. Toffoli, T., Margolus, N.: Cellular Automata Machines.
MIT, Cambridge (1987)

22. Toth, R., Stone, C., De Lacy Costello, B., Adamatzky,
A., Bull, L.: Experimental validation of binary collisions
between wave fragments in the photosensitive Belousov–
Zhabotinsky reaction. Chaos Solitons Fractals 41, 1605–
1615 (2009)

23. Tyson, J.J., Fife P.C.: Target patterns in a realistic model
of the Belousov–Zhabotinskii reaction. J. Chem. Phys. 73,
2224–2237 (1980)

24. Wang, J., Kádár, S., Jung, P., Showalter, K.: Noise driven
Avalanche behaviour in sub-excitable media. Phys. Rev.
Lett. 82, 855–858 (1999)

25. Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc.
Acad. Sci. USSR 157, 392–95 (1964)

26. Zhabotinsky, A.M., Buchholtz, F., Kiyatkin, A.B., Ep-
stein, I.R.: Oscillations and waves in metal-ion-catalyzed
bromate oscillating reactions in highly oxidized states.
J. Phys. Chem. 97, 7578–84 (1993)

27. Zhao, J., Chen, Y., Wang, J.: Complex behavior in cou-
pled bromate oscillators J. Chem. Phys. 122, 114514
(2005)
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Definition

Computer-aided geometric design (CAGD) is the de-
sign of geometric shapes using computer technology
and is used extensively in many applications, such as
the automotive, shipbuilding, and aerospace industries;
architectural design; and computer animation. A popu-
lar way of modelling geometry in CAGD is to represent
the outer surface, or curve, of the object as a patchwork
of parametric polynomial pieces. Bézier curves and
surfaces are a representation of such polynomial pieces
that makes their interactive design easier and more
intuitive than with other representations. They were
developed in the 1960s and 1970s by Paul de Casteljau
and Pierre Bézier for use in the automotive industry.

Curves

A Bézier curve, of degree n, on some interval Œa; b�, is
a parametric polynomial p W Œa; b� ! R

d given by the
formula

p.t/ D
nX

iD0
ciBn

i .u/; t 2 Œa; b�;

where u is the local variable, u D .t � a/=.b � a/; the
points ci 2 R

d are the control points of p; and Bn
i is

the Bernstein (basis) polynomial

Bn
i .u/ D

 
n

i

!
ui .1 � u/n�i ; u 2 Œ0; 1�:

The Euclidean space will often be R
2 or R

3. The
polygon formed by connecting the sequence of control
points c0; c1; : : : ; cn is known as the control polygon of
p. The shape of p tends to mimic the shape of the poly-
gon, making it a popular choice for designing geometry
in an interactive graphical environment. Figure 1 shows
a cubic Bézier curve and its control polygon. The cubic
Bernstein polynomials are

Bézier Curves and Surfaces, Fig. 1 A cubic Bézier curve
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Bézier Curves and Surfaces, Fig. 2 The cubic Bernstein poly-
nomials

B3
0 .u/ D .1 � u/3; B3

1 .u/ D 3u.1� u/2;

B3
2 .u/ D 3u2.1 � u/; B3

3 .u/ D u3;

shown in Figure 2.
Various properties of Bézier curves follow from

properties of the Bernstein polynomials. One is the
endpoint property: p.a/ D c0 and p.b/ D cn. Another
is that since the Bn

i are nonnegative and sum to one,
every point p.t/ is a convex combination of the control
points and p lies in the convex hull of the control points.
Similarly, p lies in the bounding box

Œx1; y1� � Œx2; y2� � 	 	 	 � Œxd ; yd �;
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where, if the point ci has coordinates c1i ; : : : ; c
d
i ,

xk D min
0�i�n c

k
i and yk D max

0�i�n c
k
i ; k D 1; : : : ; d:

Bounding boxes are useful for visualization and for
detecting intersections between pairs of objects and
self-intersections.

Due to the recursion formula,

Bn
i .u/ D uBn�1

i�1 .u/C .1 � u/Bn�1
i .u/;

one can evaluate (compute) p.t/ for some t 2 Œa; b�

using de Casteljau’s algorithm. After the initialization
c0i D ci , i D 0; 1; : : : ; n, we compute

cri D .1 � u/cr�1i C ucr�1iC1;

for r D 1; : : : ; n, and i D 0; 1; : : : ; n � r , the last
point being the point on the curve: p.t/ D cn0 . This
can be viewed as the following triangular scheme,
here arranged row-wise, with each row being computed
from the row above:

c00 c01 c02 	 	 	 c0n
c10 c11 	 	 	 c1n�1
: : : . .

.

cn�1
0 cn�1

1

cn0

Derivatives of p can be computed by expressing them
as Bézier curves of lower degree:

p0.t/ D dp
dt

D n

.b � a/

n�1X

iD0
ciBn�1

i .u/;

where  is the forward difference, ci D ciC1 � ci ,
and more generally,

p.r/.t/ D drp
dtr

D n.n � 1/ 	 	 	 .n � r C 1/

.b � a/r

�
n�rX

iD0
rciBn�r

i .u/:

Complex curves are often modelled by joining several
Bézier curves together. If q W Œb; c� ! R

d is another
Bézier curve,

q.t/ D
nX

iD0
diBn

i .v/; t 2 Œb; c�; v D t � b
c � b

;

then p and q join with Ck continuity at t D b, i.e.,
q.r/.b/ D p.r/.b/ for all r D 0; 1; : : : ; k, if and only if

rd0
.c � b/r

D rcn�r
.b � a/r ; r D 0; 1; : : : ; k:

Tensor-Product Surfaces

A tensor-product Bézier surface in R
d is a parametric

polynomial p W D ! R
d of degreem�n, given by the

formula

p.s; t/ D
mX

iD0

nX

jD0
ci;j Bm

i .u/B
n
j .v/; .s; t/ 2 D;

whereD is a rectangle,D D Œa1; b1� � Œa2; b2�, and

u D s � a1

b1 � a1
; v D t � a2

b2 � a2
:

The Euclidean space is usually R
3. The control net of

p is the network of control points ci;j 2 R
d and all line

segments of the form Œci;j ; ciC1;j � and Œci;j ; ci;jC1�.
On each of the four sides of D, the surface p is a

Bézier curve whose control polygon is one of the four
boundaries of the control net of p. At the four corners
of D, the surface p equals one of the corners of the
control net. Like Bézier curves, these surfaces have the
convex hull and bounding box properties. The point
p.s; t/ can be evaluated by applying de Casteljau’s
algorithm to the rows of points in the control net, in
each of the two directions, using m steps with respect
to u and n steps with respect to v. These m C n steps
can be applied in any order.

Triangular Surfaces

A triangular Bézier surface, of degree n, is a polyno-
mial p W T ! R

d , in the form

p.t/ D
X

jijDn
ciB

n
i .u/; t 2 T;
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where T 
 R
2 is a triangle, with vertices a1; a2; a3 2

R
2; i D .i; j; k/; jij D i C j C k; u D .u; v;w/, and

the values u; v;w � 0 are the barycentric coordinates
of the point t with respect to T , i.e., the three values
such that

u C v C w D 1;

ua1 C va2 C wa3 D t;

and Bn
i is the Bernstein polynomial

Bn
i .u/ D nŠ

i Šj ŠkŠ
ui vjwk:

For example, with n D 3, there are 10 such polynomi-
als:

B3
003

B3
102 B3

012

B3
201 B3

111 B3
021

B3
300 B3

210 B3
120 B3

030

given by the formulas

w3

3uw2 3vw2

3u2w 6uvw 3v2w
u3 3u2v 3uv2 v3

The points ci 2 R
d are the control points of p, which,

together with all line segments that connect neighbor-
ing points, form the control net of p. Two control points
are neighbors if they have one index in common and
the other two indices differ by one. A point that is
not on the boundary has six neighbors. On each of
the three sides of T , the surface p is a Bézier curve
whose control polygon is the corresponding boundary
polygon of the control net of p. At the corners of T ,
the surface equals one of the corner control points.
Triangular Bézier surfaces have the convex hull and
bounding box properties. There is a de Casteljau’s
algorithm for evaluating p, and there are formulas for
derivatives and conditions for joining pairs of such
triangular surfaces together with a certain order of
continuity.

Figures 3 and 4 show a biquadratic surface, where
m D n D 2, and a quadratic surface, where n D 2,
with their control nets.

Bézier Curves and Surfaces, Fig. 3 Biquadratic surface

Bézier Curves and Surfaces, Fig. 4 Quadratic surface
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In order to establish a connection between the
noninvasive potential measurements on the body
surface (electrocardiograms or body surface maps,



116 Bidomain Model: Analytical Properties

see, e.g., [28]) and the current cardiac sources, a
description of the bioelectric activity of the heart
at both cellular and tissue levels is required. From
the macroscopic point of view, the cardiac tissue is
represented by an anisotropic functional by-syncytial
structure called bidomain model and constitutes the
basis of the forward problem of electrocardiography.

In the bidomain model the syncytial structure of
the cardiac tissue, although consisting of a discrete
collection of cells connected by intercellular junctions
and imbedded in an interstitial matrix, is replaced by
two continuous media filling the same space occupied
by the tissue and representing the intracellular and the
interstitial (or extracellular) space (conducting media),
respectively. Moreover, these two superimposed con-
tinuous conducting media, coexisting at every point of
the tissue, are separated by a distributed continuous
cellular membrane, see Ref. [15]. This average repre-
sentation of a by-syncytium structure was introduced
in the cardiac modeling framework by Tung [29] and
by Geselowitz-Miller [19], called bidomain model,
and subsequently used in [9, 13, 22, 24] to describe
macroscopic potential fields, i.e., spatial averages over
larger dimension compared with the size of a my-
ocyte.

Let ˝H and �H D @˝H denote the heart muscle
domain and the epicardial and endocardial surface,
respectively. In [23], it has been shown that the quasi-
static assumption applies for describing current flows
of electrophysiological origin. In the bidomain tis-
sue representation, the outflow from the intracellular
medium must equal the inflow to the extracellular one
and must match the active current crossing the mem-
brane. Hence, setting ji;e the intra- and extracellular
current densities, mathematically the current conserva-
tion law implies the following bidomain relationships:

div ji D �Jm C I iapp ; div je D Jm C I eapp (1)

where Jm, I e;iapp denote the transmembrane and the
applied extracellular and intracellular currents per unit
volume, respectively.

We must couple the bidomain current balance (1)
with the description of the current conduction in the
extra-cardiac medium in order to establish a connection
between the noninvasive potential measurements on
the body surface and the bioelectric cardiac sources.
The body surface �0 D @˝0 n�H of the extra-cardiac
body volume ˝0 is insulated, being embedded in

the air; moreover, no current sources lie outside the
working myocardium. Imposing current conservation
law on the heart interface �H and zero intracellular
current flux, we have:

div j0 D 0 in ˝0; nT j0 D 0 on �0; and

nT .ji C je// D nT j0; nT ji D 0 on �H (2)

where j0 denotes the current density and n a normal
unit vector to �H or �0.

The interconnected cells constitute fiber-like arrays,
thus, at a macroscopic level, the tissue is arranged
as cardiac fibers. In the ventricular wall, the trans-
mural fiber rotates counterclockwise proceeding from
epi- to endocardium; moreover, this fiber structure
has an additional laminar organization modeled as a
set of muscle sheets running radially from epi- to
endocardium, see, e.g., [14, 18]. At each point x,
we can define a triplet of orthonormal principal axes
fal .x/; at .x/; an.x/g, with al .x/ parallel to the local
fiber direction, at .x/ and an.x/ tangent and orthogonal
to the radial laminae, respectively, and both being
transversal to the fiber axis.

Denoting by �i;el .x/; �
i;e
t .x/; �

i;e
n .x/ the conduc-

tivity coefficients of the intra- and extracellular media
measured along the corresponding directions al ; at ; an,
the anisotropic conductivity tensors �i .x/ and �e.x/
related to the orthotropic anisotropy of the media are
given by:

�i;e.x/ D �i;el al .x/ aTl .x/C �i;et at .x/ aTt .x/

C�i;en an.x/ aTn .x/: (3)

The electrical behavior of the cellular membrane
is represented by a circuit consisting of a capaci-
tor connected in parallel with resistors, modeling the
various ionic channels regulating the selective ionic
fluxes through the membrane. The bioelectric activity
of the cellular membrane of a myocyte at point x is
described by the time course of the transmembrane
potential v.x; t/ D ui .x; t/�ue.x; t/ across the cellular
membrane surface, of the gating w 2 Rm variables
regulating the conductances of the various ionic fluxes,
and of the intracellular concentrations c 2 Rs of the
various ions. The total transmembrane current Jm per
unit volume of tissue is given by:

JmDˇ .Cm@tvCIion.v;w; c// ;
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@tw�R.v;w/D0; @t c�S.v;w; c/D0 (4)

where ˇ denotes the ratio of membrane area per tissue
volume, Iion the ionic membrane current, Cm the
membrane capacity (capacitance) per unit area of the
surface membrane, and @t the partial derivative @

@t
. The

dynamics of the gating variables w is given by a first-
order kinetic model, while the ionic concentrations
c satisfy differential equations associated to ion chan-
nels, pumps, and exchanger currents that are carrying
the same ionic species, see, e.g., the review paper [25].

Denoting by ui .x; t/, ue.x; t/, and u0.x; t/ the
intracellular, extracellular, and extracardiac potentials,
respectively, and by �0.x/ the conductivity coefficient
of the extracardiac medium, the related current den-
sities are given by ji;e D ��i;e.x/rui;e and j0 D
��0.x/ru0. Then, from (1), (2), and (4) it follows that
the anisotropic bidomain model in terms of the po-
tential unknowns ui .x; t/, ue.x; t/, and u0.x; t/ gating
w.x; t/ and ion concentrations c.x; t/ variables can be
written as:

8
ˆ̂̂
<̂

ˆ̂̂
:̂

ˇ Cm@t .ui � ue/� div .�i .x/rui /C ˇ Iion.ui � ue;w; c/ D I iapp in ˝H

�ˇ Cm@t .ui � ue/ � div .�e.x/rue/ � ˇ Iion.ui � ue;w; c/ D I eapp in ˝H

@tw � R.ui � ue;w/ D 0; @tc � S.ui � ue;w; c/ D 0 in ˝H:

(5)

8
<

:
nT �i .x/rui D 0; ue.x; t/ D u0.x; t/;nT �e.x/rue D nT �0.x/ru0 on �H

div �0.x/ru0.x; t/ D 0 in ˝0; nT �0.x/ru0.x; t/ D 0 on �0
(6)

The first two evolution equations are coupled
through the potential difference v D ui � ue in
both the evolution term and the reaction ionic current
term, yielding a degenerate evolution structure. This
degeneracy becomes more evident considering the
equivalent bidomain formulation expressed in terms of
the transmembrane and extracellular potentials v.x; t/

and ue.x; t/. Adding the two evolution equations of the
system (5) and substituting ui D v C ue, we obtain
an elliptic equation in the unknown .v; ue; u0/, which,
coupled with the first evolution equation of (5), gives
the following equivalent formulation of the anisotropic
bidomain model:

(
ˇ .Cm @tv C Iion.v;w; c// � div .�i .x/rv/� div .�i .x/rue/ D I iapp in ˝H:

@tw �R.v;w/ D 0; @tc � S.v;w; c/ D 0 in ˝H:
(7)

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

nT �i .x/.rue C rv/ D 0 on �H

�div ..�i .x/C �e.x//rue/� div .�i .x/rv/ D I iapp C I eapp in ˝H

ue.x; t/ D u0.x; t/ on �H; nT �e.x/rue D nT �0.x/ru0 on �H

div �0.x/ru0.x; t/ D 0 in ˝0; nT �0.x/ru0.x; t/ D 0 on �0

(8)

In this formulation, v and w; c act as the differential
evolution variables, while ue behaves as a stationary
variable, indicating the degeneracy of the evolution
problem. Thus, the system must be supplemented by

the initial conditions only for the differential variables,
(i.e., v.x; 0/ D v0.x/; w.x; 0/ D w0.x/; c.x; 0/ D
c0.x/ in ˝H/: moreover, I e;iapp must satisfy the com-
patibility condition

R
˝H
.I eapp C I iapp/ dx D 0.
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Simplified membrane models of FitzHugh-Nagumo
[12] (FHN) type, with only one or two gating variable
w, have been proposed later and employed for analyti-
cal and numerical studies, see, e.g., [27].

The bidomain model can be derived formally by
taking the average of a cellular model on a periodic
structure as shown in [20] or by applying the two-
scale method as performed in [10]. Moreover, the
averaged bidomain model was rigorously justified,
using homogenization techniques in the framework
of � �convergence theory, as a limit problem of the
cellular mathematical model in [21] for FHN-type
models.

Existence of a weak global solution of a variational
formulation of the bidomain model (5), for simplified
FNH-type models, was obtained first in [10] and sub-
sequently in [4] using a different technique. Moreover,
error estimates for semi-discrete schemes were derived
in [26] and [2]. We remark that the evolution system (5)
uniquely determines v, while the potentials ui and
ue are defined only up to the same additive time-
dependent constant relating to the reference potential.
Existence results for local and global solutions of the
bidomain model for a class of simplified membrane
models have been obtained in [5, 6] using the formula-
tion of the bidomain model (7) and (8). Well-posedness
results for the cellular periodic models and for the
averaged bidomain model have been obtained recently
in [30, 31] for more complex ionic current membrane
dynamics, for instance the Luo-Rudy Phase I ventricu-
lar model [25].

In order to reduce the high computational costs
required by the large-scale simulations of the bidomain
model, reduced or approximated models have been
developed such as the monodomain and eikonal mod-
els. The derivation of the monodomain model, consist-
ing of a single parabolic reaction-diffusion equation
associated to a bulk conductivity tensor, was developed
in [7, 11] from the bidomain model. During the excita-
tion phase of the heart beat, a moving activation layer
sweeps the working myocardium and eikonal models
were developed for describing the configuration and
motion of the excitation wavefronts. Eikonal equa-
tions capturing the asymptotic behavior of traveling
wavefront solutions of the evolution system (5) were
derived formally in [3,9,16] and have allowed the sim-
ulation of the anisotropic 3-D propagation of the ex-
citation wavefronts in large volumes of cardiac tissue,
since they do not require a fine spatial and temporal

resolution, see Refs. [8, 17]. A partial rigorous charac-
terization of the anisotropic curvature term appearing
in the eikonal models was obtained for the stationary
bidomain model in [1].
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Overview

The bidomain model is considered to be the most
accurate description of cardiac bioelectric activity at
the tissue and organ scale. The model explicitly con-
siders current flow in both the intra- and extracellular
domains which comprise the myocardium. The model
equations state that the sources of intracellular and
extracellular potential field are the currents entering
or leaving the respective domains through the cell
membrane. Mathematically, the bidomain equations in
the elliptic-parabolic form are expressed as

@s

@t
D F.t; s; v/; (1)

r 	 .�i rv/C r 	 .�i ru/ D @v

@t
C Iion.s; v/;

(2)

r 	 ..�i C �e/ru/C r 	 .�i rv/ D Ie; (3)

where �i and �e are intracellular and extracellular
conductivity tensors, u and v are extracellular and
transmembrane potentials, s is a state vector governing
cellular dynamics, Iion is the net ionic current across
the cell membranes, and Ie is an extracellularly applied
stimulus current. Since cardiac tissue is orthotropic,
there are three distinct eigenvalues of the tensors �i

and �e , reflecting the conductivity along the eigenaxes
� D f; s; n where f is along the fibers, s is transverse
to the fibers within a laminar sheet, and n is orthogonal
to the sheets. Experimental evidence suggests that the
myocardium is characterized by unequal anisotropy
ratios, where both spaces are anisotropic, but to dif-
ferent degrees. That is, the tensors cannot be related by
a scalar and �i ¤ ˛�e holds. Nonetheless, in many
cases �i D ˛�e is assumed. Such a bidomain model
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with equal anisotropy ratios reduces to the less general
monodomain model [18] given by

r 	 .�mrv/ D @v

@t
C Iion.s; v/; (4)

where the eigenvalues of �m are the harmonic mean

�m� D �i��e�

�i� C �e�
(5)

between the spaces along each eigenaxis, �.
Of major importance are the nonlinear terms in

(1) and the ionic currents Iion which govern cellular
dynamics and temporal evolution of v. Key concepts
required to understand cardiac bioelectricity are rest-
ing potential, excitability, and refractoriness. A cell
remains quiescent at the resting potential, vr , in ab-
sence of stimulation, except for specialized pacemaker
cells which spontaneously depolarize and thus dic-
tate the cardiac rhythm. A cell at rest responds to
a stimulus by a change in v. If the departure, �v,
from vr is subthreshold, cells behave linear-passively
with v returning to rest after the end of stimulation.
For suprathreshold�v, cells behave nonlinear-actively
by responding with a larger, longer-lasting excursion
of v, referred to as an action potential (AP), where
the duration of the AP is referred to as action po-
tential duration (APD). No new excitations can be
elicited during an ongoing AP, since cells are in re-
fractory state. This is an important natural mechanism
of preventing reentrant excitations, that is, wavefronts
propagate unidirectionally, and they cannot return to
their site of origin. Under pathological circumstances
or secondary to electrical accidents, reentrant circuits
may arise (arrhythmias), which can degenerate into
highly disorganized activation patterns (fibrillation)
and, eventually, lead to sudden cardiac death.

Bidomain modeling has made major contributions
to our current understanding of cardiac electrophysiol-
ogy and helped greatly to improve the interpretation
of experimental data. The most important bidomain
contributions are related to (i) providing a mechanistic
link between extracellularly applied electric fields and
polarization of the heart, which is of critical importance
in the context of electrical therapies, and (ii) the rela-
tionship between activation and repolarization in the
tissue with electric fields in a bounded volume con-
ductor surrounding the heart. The latter is referred to

as the forward problem of electrocardiography, which
is of particular importance due to the omnipresence of
extracellular potential traces, such as the electrocardio-
gram, in clinical routine.

Extracellularly Applied Electric Fields and Tissue
Polarization
From a therapeutical point of view, it is of pivotal
importance to understand how extracellularly applied
electric currents traverse the heart to influence its
polarization. Early computational studies based on
the assumption of equal anisotropy ratios predicted
that unipolar stimuli induce a unipolar �v only in
the immediate vicinity of a stimulus site, along tis-
sue boundaries, and around structural discontinuities.
These perturbations of v would level off monotonically
within a radius of �1–5 mm, equivalent to a few
electrotonic space constants, leaving the bulk of the
heart largely unaffected. These model predictions were
in disagreement with experimental observations and,
thus, motivated the development of the more general
bidomain model with unequal anisotropy ratios [11].
Sepulveda et al. [22] used such a model to demonstrate
in a seminal study that�v secondary to the delivery of
a strong unipolar stimulus can be much more complex
than previously anticipated. Their results demonstrated
that the tissue response involved the simultaneous
occurrence of both positive (depolarizing) and negative
(hyperpolarizing) effects in close proximity.

A necessary condition for the formation of such
“virtual electrode polarizations” (VEP), as they were
termed since polarizations arose distant from any phys-
ical electrodes, is that anisotropy ratios are unequal. A
theoretical concept termed activating function [19] has
proved to be useful for analyzing the etiology of VEPs.
Rearranging (2) yields

Iion.s; v/C @v

@t
� r 	 .�i rv/ D r 	 .�i ru/ ; (6)

where the activating function, S , in its most general
form is the term on the right-hand side [24]. When a
stimulus is applied to tissue at rest, all terms on the left-
hand side of (6) are zero. The extracellularly applied
stimulus establishes a potential field u which drives the
initial change in membrane potential v. Expanding S

S D r 	 .�i ru/ D �i W r .ru/C .r 	 �i / 	 ru (7)
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reveals that the sufficient conditions for S being
nonzero are either spatial nonuniformity in applied
electric field or nonuniformity in tissue architecture.

Pacing
When an electric current is applied through a unipolar
electrode, excitation may occur near the anode as well
as near the cathode during both the onset (make) as
well as the end (break) of the stimulus. These excitation
processes are governed by four distinct mechanisms:
cathode make (CM), anode make (AM), cathode break
(CB), and anode break (AB) [20]. Except for CM
excitation which can be explained with basic laws of
electricity in 1D, multidimensional active bidomain
models are necessary to gain insights in all other
cases. Figure 1 shows transmembrane potentials v
in a 2D sheet of tissue at various instants after the
administration of a unipolar current stimulus of con-
stant strength. In the CM case, tissue under physical
cathode is directly depolarized (Fig. 1a). A virtual
anode (VA) forms, but is too small to be visible or
influence wavefront dynamics. During AM excitation
the tissue under the physical anode is strongly hyper-
polarized. A teardrop-shaped area of depolarization, a
“virtual cathode” (VC), forms adjacent to the anode
in the direction along the fibers, inducing wavefront
propagation as soon as �v is suprathreshold (Fig. 1b).
Break excitations occur in tissue which is refractory
but sufficiently close to regaining excitability. Both
CB and AB excitations are governed by the same
mechanism. A VC and a VA form in close proximity.
At the break of the shock, the voltage gradient between
VA and VC suffices to initiate a wavefront propagating
into the VA. While the wavefront propagates in the
VA, tissue surrounding the VA recovers excitability
and, thus, allows the wavefront to propagate beyond
the boundaries of the VA (Fig. 1c, d). With equal
anisotropy ratios, no break excitations occur, since no
VEPs of opposite polarity arise (Fig. 1c�).

Shock-Induced Arrhythmogenesis and Defibrillation
Electrical defibrillation therapy, that is, the application
of a strong electric shock to the heart, is the only known
therapy to terminate otherwise lethal cardiac rhythm
disturbances. It has been suggested that the mecha-
nisms underlying cardiac defibrillation and cardiac vul-
nerability to electric shocks are closely linked [9]. That
is, an electric shock can terminate arrhythmias, but
it can also induce arrhythmias if administered during

the “vulnerable window” within the normal cardiac
cycle [25] and if the shock is of a given strength,
bound by a minimum and a maximum strength, termed
the lower and upper limits of vulnerability (LLV and
ULV) [9]. This suggestion is now supported by the
correlation between ULV and defibrillation threshold
(DFT) [4]. For a defibrillation shock to succeed, it must
extinguish existing fibrillatory activity throughout the
myocardium (or in a critical mass of it), as well as not
initiate new fibrillatory wavefronts.

Conceptually, defibrillation can be considered to
be a two-step process. First, the applied field drives
currents that traverse the myocardium and cause com-
plex VEP patterns (Fig. 2a). Secondly, postshock active
membrane reactions are invoked that eventually result
either in termination of fibrillation in the case of shock
success, or in reinitiation of fibrillatory activity in the
case of shock failure (Fig. 2b, c). The formation of VEP
patterns is governed by the exact same mechanisms
as elucidated above for electrical pacing, albeit the
field strengths applied with defibrillation shocks are
significantly higher. In line with (Fig. 6), bidomain
models used to analyze the etiology of shock-induced
VEP patterns revealed that shape, location, polarity,
and intensity of VEPs are determined by both tissue
structure as well as the configuration of the applied
field [14, 24]. VEPs can be classified either as “surface
VEPs” which penetrate the ventricular wall over a few
cell layers only, or as “bulk VEPs,” where polarizations
arise throughout the ventricular wall [8]. The presence
of unequal anisotropy ratios is a necessary condition
for the formation of bulk VEPs in the far field, distant
from any stimulus sites or tissue boundaries.

The cellular response depends on VEP magnitude
and polarity as well as on preshock state of the tissue.
APD can be either extended (by positive VEP) or
shortened (by negative VEP) to a degree that depends
on VEP magnitude and shock timing, with strong
negative VEP completely abolishing (de-exciting) the
action potential, thus creating postshock excitable
gaps [7].

According to VEP theory, mechanisms for shock
success or failure are multifactorial depending mainly
on postshock VEP pattern as well as timing and speed
of propagation of shock-induced wavefronts (Fig. 2b,
c). Whether the depolarization of the postshock ex-
citable gap is achieved in time critically depends on
number and conduction velocity of postshock acti-
vations (as initiated by make and break mechanisms
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Bidomain Model: Applications, Fig. 1 Shown are four dis-
tinct mechanisms of exciting cardiac tissue by extracellular cur-
rent injection: (a) cathode-make (CM), (b) anode-make (AM),
cathode-break (CB) [with unequal (c) and equal (c�) anisotropy
ratios], and (d) anode-break (AB) stimulations. Time instants

are relative to the start (CM, AM) or the end of the stimulus
(CB, AB). Stimulus durations were 10 ms and 20 ms for make
and break stimuli, respectively. The dynamics of the excitation
process is shown in the corresponding movies. Arrows in upper
panel of (a) indicate fiber (f ) and sheet (s) orientation
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Bidomain Model: Applications, Fig. 2 Shock success and
failure according to VEP hypothesis of defibrillation in a 2D
sheet using two small electrodes. (a) Postshock distribution of v
(PAN: physical anode; PCA: physical cathode; AN: anode; CA:
cathode; VCA: virtual cathode; VAN: virtual anode). (b) Shock
success mainly depends on the eradication of AN and VAN in

time by a combined effect of anode-break (AB), cathode-break
(CB), and other break excitations occurring along the boundaries
of VAN and VCA. (c) Defibrillation success and failure due to
different coupling intervals: Failed shock was delivered 100 ms
later, relative to the successful one

illustrated in Fig. 1), and the available time window
which is bounded by the instant at which refrac-
tory borders enclosing the excitable regions recover
excitability. All factors depend, ultimately, on shock

strength. Increasing shock strength results in higher
voltage gradients across borders between regions of
opposite polarity, leading to more break excitations
[5] which start to traverse the postshock excitable gap
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earlier [23] and at a faster velocity [5], as well as
extending refractoriness to a larger degree [13].

Although defibrillation therapy, as administered to-
day via implantable devices, has proved to be efficient
and reliable in preventing sudden cardiac death [1], it
is far from ideal. There are numerous known adverse
effects secondary to the administration of strong elec-
tric shocks; the most prominent are linked to electro-
poration [6] (i.e., the formation of pores in the cellular
membrane that allow the free and indiscriminate re-
distribution of ions, enzymes, and large molecules
between intracellular and interstitial spaces), but also
psychological effects play an important role, since con-
scious patients perceive shock delivery as extremely
painful. Therefore, current research in defibrillation
aims at achieving safe defibrillation with significantly
reduced shock energies [15] where antifibrillatory pac-
ing [10], resonance drift pacing [16] or the application
of optimal control theory to the bidomain equations are
considered as possible strategies [17].

Bath Loading Effects and the Forward Problem
of Electrocardiography
In most scenarios of practical relevance, the heart is
immersed in a bounded volume of conductive fluid,
referred to as bath. The presence of a bath is important
in two regards: (i) a bath exerts a significant influence
upon wavefront propagation in the heart, which is
referred to as bath loading and (ii) electric currents
between sources and sinks in the heart flow through the
bath and generate the potential field u where predicting
u from a given source distribution v is referred to as
the forward problem. The bidomain model is ideally
suited for investigating both bath loading and forward
problem. In terms of bath loading, besides more subtle
observations such as directionally dependent variations
in upstroke velocity [12], the most striking effect is
the acceleration of wavefronts close to the tissue-bath
interface relative to those propagating in deeper layers.
These differences in conduction velocity, # , induce a
characteristic “V-shaped” wavefront profile (Fig. 3a).
Insight into the underlying mechanism is gained by
considering (4) and (5). Since the interstitial conduc-
tivity, �e� , is shunted with the higher bath conductivity,
�b , along the tissue-bath interface, that is, �e� � �b , the
effective load sensed by myocytes along the interface
is reduced, which is reflected in a higher velocity due to
the proportionality #� / p

gm� . The exact morphology
of the “V” profile is governed by the ratio �e�=�b.

Physiologically, bath loading plays an important role
at the organ scale by influencing upon wavelength,
� D # � APD, and thus upon susceptibility to and
maintenance of arrhythmias (Fig. 3c).

Conclusion

Active bidomain models are considered to be among
the most complete description of cardiac bioelectricity.
They play an important role in characterizing the elec-
trophysiological behavior of the heart in general, but
are particularly relevant for investigating biophysical
mechanism underlying the membrane response to the
application of electric fields and bath loading effects.
For other applications such as studies of wavefront
propagation, monodomain models can be considered to
be sufficiently accurate; only subtle differences arise,
which are of lesser importance when considering the
high uncertainty in bidomain parameters [21]. Typi-
cally, studies of bath loading effects require full-blown
bidomain models as well, although recent insights sug-
gest that a computationally cheaper augmented mon-
odomain model is adequate as well both as a source
model [3] as well as for predicting extracellular poten-
tial fields and signals such as the ECG [2].
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Bidomain Model: Computation

Joakim Sundnes
Simula Research Laboratory, Lysaker, Norway

Overview

The bidomain model was originally derived by Tung
[19] and can be written as a system of nonlinear
ordinary and partial differential equations (ODEs and
PDEs). Several alternative formulations exist, but the
one most frequently used for computations is written
in terms of the variables ue; v, and s, which represent
respectively the extracellular potential, the transmem-
brane potential, and a vector of cellular state variables.
The equations of the model read

@s

@t
D F .t; s; v/ ; (1)

r 	 .�irv/C r 	 .�irue/ D ˇ.Cm
@v

@t
C Iion.s; v//;

(2)

r 	 ..�i C �e/rue/C r 	 .�irv/ D 0; (3)

n 	 .�ir.v C ue// D 0; (4)

n 	 .�erue/ D 0: (5)

Here, (1) is a system of ODEs that describes the
electrochemical state of the cells, typically membrane
conductance properties and intracellular ion concen-
trations. The actual bidomain model is given by (2)
and (3), which describe the dynamics of the electri-
cal potentials in the intra- and extracellular domains.
The zero-flux boundary conditions expressed in (4)
and (5) reflect an insulated heart or tissue sample,
but the model can easily be extended to include a
surrounding conductor. The nonlinear term Iion.v; s/

describes the ionic current across the cell membrane,
while the constants Cm and ˇ are the cell mem-
brane capacitance and the ratio of cell membrane
area to tissue volume. Finally, the symmetric tensors
�i and �e represent the anisotropic tissue conduc-
tivities of the intra- and extracellular space, respec-
tively.

In spite of substantial progress being made over
the last decades, accurate solutions of the bidomain
model remain a formidable computational challenge.
The main reason for this is the rapid dynamics of the
electrical activation of the cells, as described by (1) and
the term Iion in (2). Fast transients in cell electrical po-
tentials lead to steep gradients in tissue potentials and,
consequently, high-resolution requirements in space
and time.

Computational Methods

Discretization in Space and Time
A number of alternative techniques have been em-
ployed for discretization of the bidomain equations,
with the majority of approaches based on either fi-
nite difference (FD) or finite element (FE) methods
in space, and low-order finite difference methods
in time.

http://dx.doi.org/10.1109/TBME.1986.325670
http://dx.doi.org/10.1109/10.476124
http://dx.doi.org/10.1109/10.563303
http://dx.doi.org/10.1016/S0006-3495(89)82897-8
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Spatial Discretization
The goal of spatial discretization is to turn (1)–(5) into
a system of differential-algebraic equations (DAEs) on
the form

@s

@t
D F .t; s; v/ ; (6)

M

�
@v

@t
C Iion.s; v/

�
D Av C Bu; (7)

0 D BT v C Cu: (8)

Here v; u, and s are vector quantities representing
nodal values of the respective continuous fields in (1)–
(4), M is a mass matrix, and A;B;C are discrete
matrix forms of the diffusion operators in (2) and (4).
The discrete operators are typically obtained through
the application of FD and FE discretization techniques.

The simplicity and computational efficiency of FD
methods have ensured widespread application for the
bidomain equations, see [3] for an overview. However,
FE methods have a clear advantage in handling compli-
cated geometries and enforcing no-flux boundary con-
ditions like (4) and (5). Consequently, most bidomain
simulations on realistic anatomical geometries have
been based on the FE method, see [9] for an overview.
The finite volume method is widely used for fluid flow,
and has also seen successful applications for solving
the bidomain model [18]. The finite volume method
shares the geometric flexibility with the FE method,
and has additional advantages such as increased matrix
sparsity. In addition to these three standard techniques,
there are also examples of hybrid techniques combin-
ing FE with FD methods [2].

Time Discretization
The system (6)–(8) is a DAE system of index 1, which
may be solved with a variety of numerical techniques.
The most frequently seen method in the literature is
to solve the three equations in a sequential manner.
For each time step (6) is integrated first, then (7) is
solved for v while holding u and s fixed at the latest
known values, and finally the updated v is inserted
in (8) which is then solved for u. The advantage of
this approach is that the coupled system is reduced to
very familiar parts, for which there is a wide variety
of readily applicable solution schemes. A downside
of the approach is that it is difficult to extend beyond
first-order accuracy. Fully coupled solutions of (6)–(8)

are still rare in the literature, but there are examples
of second-order accurate methods based on alterna-
tive splitting schemes. Through the application of, for
instance, Strang splitting, the coupled nonlinear DAE
system above may be reduced to a system of nonlinear
ODEs and a linear DAE system, and solutions of these
subsystems may be combined to give second-order
accuracy in time (see [13, 17]).

Common to all the splitting techniques is that the
solution of the cell model is a separate step. In spite
of the huge volume of available general-purpose ODE
solvers, substantial efforts have been invested in de-
riving customized ODE solvers for these systems. A
widely used example is the Rush-Larsen scheme [15]
and its variations, which combines the simplicity of
a forward Euler scheme with significantly improved
accuracy and stability. Simplicity of the ODE schemes
is an important consideration, due to requirements
imposed by the coupling to the bidomain PDEs. How-
ever, standard solvers, in particular implicit Runge-
Kutta methods, have been shown to be applicable and
efficient.

Solving Linear Systems
Because of the strict spatial discretization requirements
mentioned above, the discretized bidomain model in-
cludes huge linear systems, with up to tens of mil-
lions of unknowns. The solution of these systems
remains the main bottleneck in computations and,
consequently the main bottleneck for research based
on the bidomain model. A variety of techniques have
been used in the past, including classical direct and
iterative solvers. Sparse direct solvers [5] still hold
some popularity, but the state-of-the-art solvers are
based on various multilevel iterative solvers. Multigrid
methods were introduced for the bidomain model in
the late 1990s [8], and order optimal convergence was
later shown analytically and through numerical tests
[10, 16]. More recently, these solvers have come to
widespread use in the field, partly thanks to the avail-
ability of high-performance third-party software tools
(see e.g., [1, 7]).

Adaptive Methods
Adaptive methods stand out as particularly attractive
for reducing the computational complexity of the bido-
main model. The reason is that the strict temporal and
spatial resolution requirements discussed above only
apply in a small region around the activation wavefront.
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In all other regions, the potential variations are smooth
and far less demanding to resolve. During normal heart
activity (sinus rhythm), the activation wavefront will
only occupy a small volume of the tissue, and for the
majority of the heart cycle, it is not there at all. These
facts have motivated a number of numerical meth-
ods with adaptivity in space and time. Time adaptive
methods have a long history (see e.g., [15]), while
space adaptive methods have appeared later. To this
date, most space adaptive methods have been based on
detecting the location of the wavefront by tracking po-
tential differences between computational nodes, and
then refining the mesh in this region. Several methods
of this kind have been developed, both for normal heart
activity and the more challenging case of reentrant
arrhythmia [6]. However, the methods have not seen
widespread application in the research community,
possibly due to the difficulty of efficiently combining
adaptive mesh refinement with parallel solvers.

Parallel Solvers
Bidomain solvers that exploit parallel hardware date
back to the early 1990s, and their importance is cur-
rently rising due to the multicore paradigm. More
recent contributions have to a large extent been based
on the popular PETSc library [1] for solving linear sys-
tems, in combination with various multilevel precon-
ditioners (see e.g., [4, 12]). The increasing popularity
of utilizing graphics processors (GPUs) in scientific
computing is also starting to make an impact on com-
putational tools for the bidomain model [14].

Key Research Findings

Computational software for the bidomain model has
improved considerably over the last decade and has
led to an increasing volume of biomedical research
based on the model. The improvements result from a
gradual adoption of efficient numerical methods from
other branches of applied mathematics, and increas-
ingly efficient implementations of these methods. From
this gradual improvement, it is difficult to extract a
list of key findings that stand above the rest. However,
one result that can be identified as particularly impor-
tant is the development of order-optimal linear system
solvers. Solving huge linear systems continues to be
a considerable challenge in the field, but the applica-
tion of efficient solvers has dramatically increased the

ability to employ the bidomain model in biomedical re-
search. The increasing availability of efficient parallel
solvers, both for clusters and multicore architectures,
continues this trend.

Growing use of bidomain solvers also calls for
increasing attention to consolidation, verification, and
benchmarking of methods and software. The study [11]
is a very welcome initiative in this direction.
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Bifurcations: Computation

Rüdiger Seydel
Mathematisches Institut, Universität zu Köln, Köln,
Germany

For real t and a vector function y.t/, we study the
model problem

Py D f .y; �/ ; (1)

where y.t/ 2 IRn, f .y; �/ 2 IRn, and � is a real
parameter. The overdot refers to the derivative of y.t/.
Stationary (constant) solutions satisfy

f .y; �/ D 0 : (2)

Equations (1) or (2) may result from discretizations of
other equations. Solutions of (1) or (2), if they exist,

[y]

λ

bifurcation point

branch B

branch A

Bifurcations: Computation, Fig. 1 Idealization

depend on �. For convenience write Y WD .y; �/.
Solutions of (2), f .Y / D 0, form curves in IRnC1.
Provided these continua satisfy the full-rank condition

rank .fY / D rank .fy j f�/ D n ; (3)

they can be extended. (The subscripts in (3) denote
first-order partial derivatives.) Similarly, in a proper
sense, periodic solutions of (1) form continua. The con-
tinua of solutions are called branches. For a graphical
illustration of branches (Fig. 1), depict a scalar measure
Œy� of the vector y over the parameter �. Choose, for
instance, the kth component

Œy� WD yk for some index k; 1 � k � n :

For periodic solutions of (1), read this as the maximum
value of yk.t/.

Branches may intersect for some parameter value
�0 in a solution vector y0. Then the tuple .y0; �0/ is
called bifurcation point. Important examples include
turning points and Hopf bifurcations. Turning points
of (2) satisfy (3) although fy is singular (simplest
example: 0 D �˙ y2). For Hopf bifurcation, branch B
consists of periodic solutions of (1) not satisfying (2).
But approaching the bifurcation, their amplitude tends
to zero, thereby reaching branch A with (2) in the limit.
Another bifurcation is the pitchfork (simplest example:
0 D �y ˙ y3).

In theory, a bifurcation diagram consists of contin-
uous curves (Fig. 1). But numerical reality is different.
Only a limited number of solutions for selected param-
eter values can be approximated (crosses in Fig. 2). The
discretized world consists of chains of solutions, and
one must take care that no bifurcation and emanating
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Bifurcations: Computation, Fig. 2 Numerical reality

“new” branch is overlooked. The main tasks of compu-
tational bifurcation are:
• Branch tracing (approximating branches).
• Detect and locate bifurcations.
• Branch switching (generate the new branch).
Branch tracing is also called continuation or path
following.

Computation of Branches

Continuation methods are usually of the predictor-
corrector type (Fig. 3). Let the discrete selection of
solutions on the branch be numbered by j , and assume
that the j th solution is calculated, and j C 1 would
be next. Nonlinear equations are solved iteratively (say
by Newton’s method), which requires an initial guess
(predictor) NY at some distance � , possibly close to the
branch. This can be provided by a tangent to the branch
or by a secant; the latter needs also solution j � 1. The
iteration that approaches the branch is the corrector.
“Addresses” of the solutions on the branch are specified
by a parameterization, which controls the interplay
between predictor and corrector. Further a step-length
control is needed to make the continuation efficient.

Bifurcation Test Functions

Along the branch a test function �.y; �/ should indi-
cate bifurcation points. To this end, define � such that
�.y0; �0/ D 0 holds. Then � is evaluated during branch
tracing, checking for zeros of � . Straightforward exam-
ples of test functions include
• �.y; �/ WD det.fy.y; �// This � indicates a

singularity of the Jacobian matrix fy , which is

[y]

λ

j+1, next

σ

Y

j, present

Bifurcations: Computation, Fig. 3 Predictor-corrector ap-
proach

necessary for turning points and bifurcations of
stationary solutions.

• �.y; �/ WD maxf˛1; : : : ; ˛ng where ˛k C iˇk
(k D 1; : : : ; n/ denote the eigenvalues of fy . A
zero of this test function indicates a loss of stability,
which usually goes along with a birth of limit
cycles, i.e., a branch of periodic solutions emerges
(Hopf bifurcation).

Computation of Bifurcation Points

An indirect method of calculating bifurcation points
applies a zero-finding method to approximate zeros of
� . To increase accuracy, the continuation step length
is decreased in a neighborhood of .y0; �0/. Direct
methods for calculating bifurcation points set up an
extended equation F.Y / D 0 such that only bifur-
cation points are solutions. To get Y0 WD .y0; �0/,
only F.Y / D 0 needs to be solved, say, by a Newton
method. To fix the idea, think of

F.Y / WD
�
f .y; �/

�.y; �/

�
D 0

for a proper choice of test function � .
A singularity of fy is characterized by a zero eigen-

value, fy.y0; �0/h D 0 for a vector h ¤ 0, which can
be enforced by requesting hk D 1 for some k. This
leads to the branching system

F.y; �; h/ WD
0

@
f .y; �/

fy.y; �/h

hk � 1

1

A D 0 : (4)
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Bifurcations: Computation, Fig. 4 Branch switching

In view of (3), this system of 2nC1 scalar equations is
well posed for turning points. For pitchfork points, (3)
does not hold, but symmetry breaking can be exploited.
The analogy of fy.y0; �0/h D 0 for Hopf points,
which are characterized by a pair of purely imaginary
eigenvalues ˙iˇ of fy.y0; �0/, can be written with
complex w as

fy.y0; �0/w D iˇw with wk D 1 : (5)

With w D h C ig this is split into two real systems,
which leads to a branching system analogous to (4)
consisting of 3n C 2 scalar equations. For large n, it
is worth to take advantage of the block structure and
break up the systems appropriately.

Branch Switching

Branch switching means to calculate one solution on
the emanating branch. Thereafter the “new” branch can
be traced by continuation methods. The one starting so-
lution is obtained with a predictor-corrector approach
similar as used for continuation (Fig. 4).

For turning points, no such method is needed, be-
cause the other half-branch can be obtained by path-
following methods. For Hopf bifurcation, information
on nearby small-amplitude oscillations is provided by
w and ˇ > 0 from (5),

Ny.t/ WD y0 C � 	 .h cosˇt � g sinˇt/; N� WD �0;

0 � t � NT ;

with the approximation NT WD 2�=ˇ of the period
T . For small � > 0, NY WD . Ny; N�/ is a predictor of

a small-amplitude periodic orbit. It is reasonable to
formulate a corrector iteration that is selective, leading
to the new branch rather than back to the old branch.
For pitchfork points this is achieved by exploiting
symmetry breaking. Similar strategies work for period-
doubling bifurcations.

For theory on bifurcation see Guckenheimer and
Holmes [3], or Wiggins [6]; a practical bifurcation
analysis with examples and applications is provided
by Seydel [5]. More background on computational
bifurcation can be found in Kuznetsov [4] and Govaerts
[2]; an often used computer program is from Doedel
et al. [1].
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Synonyms

Microbial biofilms; Microbial mats

Short Definition

There is perhaps no universally applied definition of a
biofilm; rather, the term is often set according to utility.
For definiteness, consider the following, quoting from
Characklis & Marshall [2]:

Microbial cells attach firmly to almost any surface sub-
merged in an aquatic environment. The immobilized
cells grow, reproduce, and produce extracellular poly-
mers which provide structure to the assemblage termed
a biofilm. A biofilm consists of cells immobilized at a
substratum and frequently embedded in an organic matrix
of microbial origin.

However, other microbial systems are also sometimes
called biofilms, including communities growing on air-
water interfaces (or just suspended in flocs in water),
communities that are sometimes or even mostly in dry
environments, and communities that are not entirely
immobilized. A biofilm model, for purposes here, is a
mathematical description of some aspect or aspects of
the behavior of a microbial biofilm community.

Description

Biofilms
Though microbes in their planktonic state (i.e., as
freely drifting or self-propelled organisms, from the
Greek planktos meaning “wandering”) may be more
familiar, it is believed that many single-celled organ-
isms live in sessile or largely sessile communities that
are generally associated with a wet or damp surface.
These communities form, see Fig. 1, when microbes
encounter and adhere to a surface, first reversibly and
then later irreversibly, amassing with other microbes
through some combination of surface mobility and
surface growth. When a critical density is achieved,
chemical signaling, called quorum sensing, may trig-
ger qualitatively different gene expression patterns,
causing in turn the nascent community members to
begin expressing biofilm phenotype characteristics [8].
The changes are significant; estimates of gene expres-
sion differences have ranged between 20 % and 70 %:

“A biofilm is a multicellular community that differs
from a planktonic cell as much as an oak tree differs
from an acorn” [3]. At maturity, a biofilm can contain
cell densities of 1015–1016 cells/L (as compared to cell
densities of generally less than 1010 cells/L for natural
planktonic cultures and somewhat more for laboratory-
grown ones), and, also unlike planktonic communities,
proximal microorganisms in biofilms can expect to
remain so for long times. These properties suggest that
physical and chemical microbe–microbe interactions,
as well as competition for space, are particularly im-
portant in biofilms. Biological interactions in biofilms,
in the form of horizontal gene transfer (transfer of
genetic material from one organism to another), are
believed to be facilitated by close packing as well.

Biofilms, possibly the most wide-spread form of
life, are to be found in among many other places, water
and wastewater treatment facilities, water distribution
systems, and industrial systems (cooling, storage, and
processing). They can form and flourish in stagnant
or turbulent flows as well as in merely intermittently
damp environments. Biofilms are found naturally and
safely in many systems in the human body, including
skin, digestive and respiratory tracts, and lower por-
tions of the urinary tract. But they can also provide
protected havens for pathogenic organisms, resulting in
chronic or recurring infections that are difficult to erad-
icate, particularly in already compromised individuals
such as hospital patients [1].

Among the most distinctive of biofilm characteris-
tics is the excretion of a variety of extracellular poly-
meric substances (EPS), including polysaccharides,
proteins, nucleic acids, and lipids, all of which together
form a self-encasing matrix. This matrix, typically
making up 50 % or more of total biofilm dry weight,
is believed to perform a number of different functions,
including providing mechanical stability (biofilms be-
have like viscoelastic polymeric materials), provid-
ing chemical protection from the outside environment
(EPS often includes negatively charged components
and thus tends to adsorb cations), and providing a
trap for nutrients as well as possibly even serving
itself as a nutrient reserve [4]. EPS makeup is poorly
characterized currently, as different biofilm inhabitants
can produce different contributions depending on their
species characteristics and local environments.

Indeed, many different microorganisms are known
to inhabit biofilms. Photoautotrophs (organisms that
use sunlight-derived energy to convert water and
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Biofilm Structure and Function, Modeling, Fig. 1 Left
panel: Cartoon representation of biofilm formation and devel-
opment, courtesy of the Montana State University Center for
Biofilm Engineering, P. Dirckx. Right panel: Live-dead stained

image of a Staphylococcus epidermidis biofilm, courtesy of P.
Stewart, P. Perry, W. Davison, B. Pitts, and P. Dirckx, Montana
State University Center for Biofilm Engineering

Biofilm Structure and
Function, Modeling, Fig. 2
Cartoon representation of a
biofilm with locally dominant
species layered according to
their principal electron
acceptor. The graph plots
local redox potential (a
measure of the tendency to
gain electrons through
chemical reaction). See
Gerlach & Cunningham [5]
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–
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carbon dioxide into organic material) such as algae and
cyanobacteria can drive ecology, as in some cases can
chemoautotrophs (organisms that oxidize inorganic
chemicals to provide energy for carbon fixation) such
as those that form the base of deep ocean black smoker
ecosystems. Heterotrophs (organisms that rely on
organic carbon rather than fixing carbon dioxide) can
rely on autotrophs, when present, or obtain their carbon
from the environment or from other heterotrophs. The
stable, closely packed structure of a biofilm allows
consortia of mostly or entirely heterotrophic microbes
to efficiently extract resources from an external source
in assembly line style, with each species taking up
products of the previous species up the line and, in
turn, having its own byproducts removed by the next
species down the line.

The spatial organization of these assembly lines is
determined largely by physical and chemical factors
[11]. Typical biofilms reach thicknesses of tens to

hundreds of microns, though in some cases thicknesses
of centimeters are observed. The outer layers of these
communities have access, and are accessible, to the
outside environment, and shield the inner layers via
diffusion-reaction barriers. In fact, there can be a series
of such layers. Resident microbes take advantage of
local sources of essential nutrients (e.g., carbon, nitro-
gen, phosphorus, etc.), as well as chemical energy path-
ways in the form of electron donors and acceptors. Ex-
cepting photosynthesis, available energy is determined
by energy release occurring during electron transfer
from donor to acceptor, and in many cases, the electron
acceptor component is limiting, leading to a series of
layers in each of which the most favorable remaining
acceptor is depleted, Fig. 2, e.g., oxygen in the top
layer, followed by nitrate in a second layer underneath,
followed by sulfate in a third layer underneath the sec-
ond, etc. Where all favorable exogenous electron ac-
ceptors are depleted, microbes can turn to fermentation
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(use of endogenously, self-produced molecules as
electron acceptors) in the lowest regions. Additionally,
decay of microorganisms, particularly deeper within
the biofilm, can provide nutrient sources. Note that
as microbes turn to less and less favorable energy
pathways, it can be expected that microbial activity
slows.

Ecology and kinetics of biofilm communities are
principally determined by local environmental condi-
tions such as, in addition to those already mentioned,
pH, salinity, and temperature. Other stress factors also
can be important as well, including mechanical stress
(e.g., fluid shear or hydrostatic pressure), chemical
stress (e.g., presence of inhibitory metal ions), preda-
tory stress (e.g., from grazing protozoa), parasitical
stress (e.g., from bacteriophages), and host defensive
stress (e.g., from immune system responses). Tempo-
rally varying environmental conditions also play a role,
e.g., alternating drying and wetting. All of these factors
play a role in biofilm structure and function: convert-
ing available chemical free energy (and sometimes
light energy) from a variety of sources into biomass.
Altogether, biofilm communities are generally hetero-
geneous environments with, apparently, complicated
ecologies including competitive, cooperative, parasitic,
and predatory interactions, as well as the potential for
exchanges of genetic material even between organisms
that are not closely related [10].

Biofilm systems strongly couple physical, chemi-
cal, and biological processes. Mathematical modeling
provides a controlled laboratory where it is possible
to test and to generate hypotheses about consequences
and significances of these couplings in ways that are
difficult otherwise. Engineering applications often fo-
cus on the relation between input chemistry to output
chemistry as well as effects and control of biofouling.
Environmental microbiology applications often focus
on understanding of community structure and function.
Medical applications often focus on efficacy and in-
sight for therapeutic strategies.

Biofilm models come in a number of different
forms, including discrete-based types (e.g., cellular
automata or individual based), continuum types
(e.g., conservation law based), and mixed discrete-
continuum types [6, 12]. Generally, model variables
consist of a list of dissolved chemical species, a list
of microbial species (plus possibly inorganic species
such as free water, mineralized solids, etc.), with all
as functions of space x and time t . The designation

“species” is used in a general way here, i.e., not
exclusively referring to biological species.

Mass Balances
The foundation of most biofilm models is a set of
mass transport laws indicating how chemical species
are transported and reacted within a domain divided be-
tween bulk fluid and biofilm, see Fig. 1, as well as how
microbials and inorganics distribute and grow/decay
within the biofilm subdomain. Chemicals can be nutri-
ents, byproducts, antimicrobial agents, etc. Both con-
tinuum and discrete-based models often use continuous
mass balance equations for dissolved chemical species,
so that, specifically in the case of a list of Nc dissolved
species concentrations cj .x; t/, j D 1; : : : ; Nc , each
species satisfies an equation of the form

@cj

@t
C r 	 .ucj /„ ƒ‚ …

advection

D r 	 .Djrcj /„ ƒ‚ …
diffusion

� rj„ƒ‚…
reaction

(1)

where u is bulk fluid velocity (zero within the biofilm
subdomain),Dj .x/ is diffusivity of chemical species j
(which differs inside and outside the biofilm), and rj is
a reaction term which depends on chemical, microbial,
and inorganic species concentrations. Boundary con-
ditions are typically set to be no-flux (i.e., @cj =@n D
0) on any solid surface. On other boundaries, e.g.,
inflow regions, boundary conditions will depend on the
set up. In many instances, the quasistatic assumption
@cj =@t D 0 is appropriate as the advective-diffusive-
reactive processes in (1) often equilibrate much faster
than other biofilm processes.

Discrete and continuum models differ in treatment
of microbial species. Discrete models typically track
individual organisms, each of which occupies its own
given region of space. Continuum models, which are
described here, rather superimpose volume fractions
of each species at a given location in space, i.e., at a
particular location, any or all species may be simulta-
neously present, each with its own particular volume
fraction. Implicit in this treatment is a sort of averag-
ing: volume fractions at a location x really represent an
average over a microscale region consisting of a small
neighborhood of x.

Consider then a list of Nb species volume fractions
Xj .x; t/, j D 1; : : : ; Nb , X1 C X2 C : : : XNb D 1,
where each species can be an actual species, or a
phenotype, or inactive or dead biomaterial, or even
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inorganics such as water or mineral. Each volume
fraction satisfies an equation, similar to (1), of
the form

@

@t
.�jXj /Cr 	 .uj �jXj /„ ƒ‚ …

advection

Dr 	 .�jr.�jXj //„ ƒ‚ …
diffusion

C �j gj„ƒ‚…
growth

(2)

where uj is the velocity of species j , �j is the den-
sity of species j relative to volume fraction, gener-
ally assumed to be constant, and �j is the species
j diffusion constant, often assumed to be zero as
microbial diffusion is believed to be small at least for
non-motile species. The rates gj , functions of both
substrates and species, are growth or decay sources
in a general sense. For example, if the Xj s are phe-
notype volume fractions, then these functions can in-
clude rates of conversion from one phenotype to an-
other.

Material Transport
The species specific velocities uj in (2) require addi-
tional determining equations. The simplest such deter-
mination is to set

u1 D u2 D 	 	 	 D uNb � u: (3)

In that case, (2) (with �j divided out) can be summed
over j , using X1 CX2 C : : : XNb D 1, to obtain

r 	 u D r 	
0

@
NbX

jD1
�jrXj

1

AC
NbX

jD1
gj (4)

with u D 0 at the substratum. When diffusive transport
is neglected, this equation indicates that velocity is
determined by growth-generated pressure. Indeed, in-
troducing a pressure p, and supposing that u D ��rp
with frictional coefficient �, then

r2p D ���1
NbX

jD1
gj :

Thus, the assumption (3) connects implicitly to a
frictional force balance. Such a balance may be
reasonable in circumstances where only growth-
generated stresses are significant. When fluid shear
stress interactions are important, however, a more

complicated force balance is to be expected. Even
in the absence of fluid shear, though, other internal
stresses may be as large as those generated by growth,
the charged, polymeric nature of the biofilm matrix,
not to mention stresses involving cells themselves,
might very well be important in determining local
force balance and hence in determining the species
velocities uj .

Active and Reactive Layers
One of the important features of biofilm function is
a general tolerance for chemical stress [7, 9]. A key
component of this tolerance is the active (or reactive)
layer, a sharply defined region often found near the
interface between biofilm and bulk fluid, see Fig. 3.
Within the active layer, a favorable substrate (often
oxygen) is utilized and depleted, with the result that
organisms underneath this layer are deprived and hence
less active. Less activity results in more tolerance of
those antimicrobials that require microbial activity for
efficacy. Reactive antimicrobials (e.g., oxidants like
hydrogen peroxide), on the other hand, whose activity
may be independent of microbial activity, are them-
selves depleted as they react with biomaterial. Thus,
their concentrations drop steeply below a reactive layer
in which they are depleted.

The occurrence and structure of active layers can
be observed and understood using one-dimensional
(1D) continuum biofilm models. In the 1D case, where

Biofilm Structure and Function, Modeling, Fig. 3
Microscopic cross-section of a Pseudomonas aeruginosa
biofilm stained for protein-synthetic activity (green) and
counterstained for biomass independent of activity (red). Protein
synthesis is highly stratified and localizes along the top of the
biofilm adjacent to the source of oxygen and nutrients. Image
courtesy of Karen Xu and Phil Stewart, Center for Biofilm
Engineering, Montana State University
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variation occurs only in the vertical (transverse to
substratum) z-direction, (1) reduces to

@

@z

�
Dj

@

@z
cj

�
D rj (5)

under the typical assumptions of fast equilibration, and
insignificance of advection in comparison to diffusion
within the biofilm. Diffusivity is typically assumed
to be piecewise constant, with a single jump across
the biofilm-bulk fluid interface, requiring continuity
of substrate concentration cj and concentration flux
�Dj .@cj =@z/ across the interface. Supposing for sim-
plicity a single limiting substrate (e.g., oxygen) with
concentration c D c.z; t/ that reacts only in the biofilm
and a single microbial species (with volume fraction
X.z; t/ D 	.z; t/ where 	 is the characteristic function
of the biofilm region), then (5) reduces to a single
equation that can be written in the form

d2c

d z2
D
�
0 z > L
D�1

bi r.c/ z � L
(6)

where z D L.t/ is the location of the biofilm-bulk fluid
interface and Dbi is the diffusivity of the limiting
substrate in the biofilm. At the interface z D L,
concentration and concentration flux are continuous,
i.e., cjLC D cjL� and �Daq.dc=d z/jLC D
�Dbi.dc=d z/jL� whereDaq is the substrate diffusivity
in the bulk fluid region z > L. Boundary conditions
consist of a no-flux condition at the substratum
(.dc=d z/j0 D 0) together with, typically, a prescription
on substrate or substrate flux at an upper boundary
z D H where either H is a fixed (in time) height
or H D H.t/ is a moving boundary that is set to
be a fixed height above L.t/, i.e., H.t/ � L.t/ D
constant. The case of prescribed substrate at z D H

amounts to a Dirichlet condition c.H; t/ D C0.t/.
When substrate flux is prescribed, a balance condition
Daqdc=d zjH D Daqdc=d zjH � Dbidc=d zj0 DR H
0
d=d z.D.z/dc=d z/d z D R L

0
r.c/d z applies.

(Recall that D.z/dc=d z is continuous across the
biofilm-bulk fluid interface even if diffusivity D.z/
is not.)

The substrate usage rate r.c/ is frequently approxi-
mated by Monod-type kinetics (r.c/ D ˛c.K C c/�1)
or first-order kinetics (r.c/ D ˛c). Using the latter for
simplicity, and setting c.H; t/ D C0, H D L.t/ C h,
for definiteness, then the solution of (6) is

c.z; t/ D C0

1C .Dbi=Daq/h

q
˛D�1

bi tanh

�q
˛D�1

bi L

�

cosh

�q
˛D�1

bi z

�

cosh

�q
˛D�1

bi L

�

for 0 � z � L.t/. For L large, in particular forq
˛D�1

bi L  1,

c.z; t/ � C0

1C .Dbi=Daq/h

q
˛D�1

bi

e
p
˛D�1

bi .z�L/; (7)

up to exponentially small corrections, for 0 � z �
L.t/. This large L limit corresponds to a thick biofilm,
one for which limiting substrate does not penetrate
in significant quantity to the bottom. Note, first, that
concentration decays quickly below a layer of depth

roughly 1=
q
˛D�1

bi (the active layer) so that, below
this layer, activity is limited by low substrate concen-
tration. Second, if c is interpreted to be concentration
of a reactive antimicrobial, rather than that of a sub-
strate, the same analysis predicts that antimicrobial will
be largely depleted within a reactive layer of depth

roughly 1=
q
˛D�1

bi (˛ being antimicrobial reaction rate
in this instance) and that reactive antimicrobial will fail
to penetrate a thick biofilm to the bottom.

With a single microbial species, (2) and (3) reduce
to du=d z D g.c/ so that u.z/ D R z

0
g.c.z0//d z0 and

thus that

dL

dt
D u.L.t// D

Z L

0

g.c.z0//d z0: (8)

Aside from the solution L.t/ D 0, (8) can have
another, non-zero, equilibrium if g is smooth, mono-
tone increasing, and if g < 0 for c close to zero.
(Recall from (8) that c is exponentially small below
the active layer.) In this case, growth in the active
layer is balanced by decay below. Alternatively, a
term of the form ��L2 is sometimes added to the
righthand side of (8) in order to model erosive loss.
(The quadratic exponent is meant to account for the
fact that biofilm thickness seems to roughly equilibrate,
possibly because of increasing mechanical weakness
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with increasing size.) With erosion, equilibrium can be
attained even for strictly non-negative g.

The combination of solutions (7) and (8) indicates
that in a thick biofilm, most of the growth occurs in,

approximately, the layer z 2 ŒL�1=
q
˛D�1

bi ; L�; below
this layer, limiting substrate is sparse and microbes are
relatively inactive and hence protected. The existence
of a stable, tolerant, and relatively inactive microbial
population in mature, thick biofilms has important
implications in industrial and medical contexts. On
the one hand, these populations can be recalcitrant
to treatment via chemical attack (much more so than
planktonic populations), frequently to the point of re-
quiring mechanical treatment, e.g., removal of infected
medical devices, and pigging of industrial piping. On
the other hand, though inactive, they can still provide
a reservoir of organisms able at any moment to go
forth into the environment and colonize new sites
and hosts.

Summary
Fossil evidence places the earliest biofilms at billions
of years ago when environmental conditions were
harsh and limiting. The fact that the biofilm form
of life has persisted and indeed flourished (biofilms
for example are still important components of all
geochemical cycles) is a tribute to its efficiency,
effectiveness, and resilience. From the microbial point-
of-view, biofilms form a protected, anchored commu-
nity where resources can be processed efficiently and
organisms can proliferate, release, and eventually seek
out new, favorable locations to colonize, including,
sometimes, locations that from our own medical,
industrial, and public health points-of-view may be
undesirable. But it is important to realize, despite the
sometimes inconvenience to us, that microbes are using
the biofilm phenotype as a means to exploit resource
opportunities. How the physics, chemistry, and biology
combine in this reality is as of yet only partially
explained; modeling is likely essential for better
understanding.
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Synonyms

Resampling with replacement
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Short Definition

A method for assigning accuracy of a given statistical
procedure based on resampling with replacement from
the original sample.

Description

In order to explain the basic ideas of bootstrapping,
we assume that x D .x1; : : : ; xn/ is a vector of
independent and identically distributed real random
variables sampled from an unknown probability distri-
bution F . Based on this sample, we wish to estimate
some quantity of interest � , i.e., some functional g
of the distribution function F . Thus, we may write
� D g.F /. The quantity � could, e.g., be the median
of the distribution F , in which case g.F / would be
the solution to the equation F.x/ D 0:5. We then
assume that we have constructed a suitable estimator,
O� D h.x/. The question now is how accurate is O�?
Obviously, if we knew the distribution F , we could
compute the resulting distribution for O� which could be
used to quantify this accuracy. More realistically, if F
can be assumed to belong to some known parametric
class F , it is often possible to obtain an estimate
of the distribution of O� by plugging in estimates for
all the unknown parameters of F . This approach,
however, has some serious weaknesses and limitations.
Most importantly, the calculation of the distribution
rests upon the crucial assumption that the class F
is known, which may not be realistic in practice.
Secondly, the fact that we have to plug in estimates
for the unknown parameters, instead of the true pa-
rameter values, may alter the resulting distribution
significantly especially for small sample sizes. In fact,
in most cases, it may not even be possible to derive
any exact analytical expression for the distribution
of O� .

We now describe how these issues can be han-
dled using bootstrapping. Contrary to the parametric
approach considered above, bootstrapping in its most
basic form is based on the completely nonparametric
empirical distribution OF defined as:

OF .x/ D 1

n

nX

iD1
I.xi � x/; for all x 2 R: (1)

The empirical distribution assigns a probability mass
of 1=n to each element of the sample set fx1; : : : ; xng,
assuming for simplicity that all these are distinct, and is
a strongly consistent estimator for the true probability
distribution F . Thus, if n is large enough, the empirical
distribution OF will provide a good estimate for the true
probability distribution F . Moreover, sampling from
this distribution is easy: simply generate a random
integer i from the set f1; : : : ; ng and choose the cor-
responding sample value xi as the result.

Bootstrap methods depend on the notion of a boot-
strap sample, i.e., a random sample x�

1 ; : : : ; x
�
n of

the same size as the original sample, drawn from
OF . It is emphasized that this sample is obtained by

sampling with replacement from the original sample
set fx1; : : : ; xng. Thus, the bootstrap sample consists
of members of the original set, some appearing zero
times, some appearing once, and some appearing mul-
tiple times.

Now, letting x� D .x�
1 ; : : : ; x

�
n / be the vector

corresponding to the bootstrap sample, we may also
compute the resulting bootstrap replication of O� :

O�� D h.x�/: (2)

Again, assuming that n is large, O�� will have roughly
the same distribution as O� . Hence, by generating a
large number of bootstrap samples, and computing the
resulting values of O��, an estimate of the distribution
of O�� and thus of the distribution of O� as well can be
obtained. More specifically, let O��

1 ; : : : ;
O��
N denote N

bootstrap replications of O� . We may then assess the
accuracy of the estimator O� by computing, e.g., the em-
pirical standard error of the N bootstrap replications:

SEN . O��/ D
vuut 1

N � 1

NX

jD1

� O��
j � N��

N

�2
; (3)

where N��
N D PN

jD1 O��
j =N . As the number of bootstrap

samples increases, SEN . O��/ tends to a limit often
referred to as the ideal bootstrap estimate of SEF . O�/.
That is,

lim
N!1 SEN . O��/ D SE OF . O��/ (4)

Since generating bootstrap samples and computing the
resulting bootstrap replications can be done very fast,
N can be chosen sufficiently large so that SEN . O��/ �
SE OF . O��/. Still regardless of the size of N , we are still
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stuck with the original sample fx1; : : : ; xng. If for some
reason we started out with an original sample where OF
is not a good approximation to F , this bias will affect
all the bootstrap samples as well. Thus, consistency of
the estimate SEN . O��/ requires both N and n to go to
infinity.

References and Recommended Reading

While the example presented in the previous section
demonstrates the main ideas, the set of possible appli-
cations of bootstrapping includes virtually all statistical
inference problems, e.g., correlation estimation, re-
gression analysis, two-sample hypothesis testing, mul-
tivariate problems, etc. The main advantage with boot-
strap methods is their simplicity and flexibility. On
the other hand, a disadvantage is that these methods
sometimes have a tendency to be too optimistic since a
lot of trust is put on the original sample as a basis for
the resampling.

The classical paper introducing bootstrapping is
Efron [4]. In Efron [5], the focus is on estimates of
standard errors similar to the example described in the
previous section. For a popular description of boot-
strapping and its applications, see Diaconis and Efron
[3]. For a more complete coverage of the different
variations and applications, we recommend Efron and
Tibshirani [6] as well as Chernick [1] and Davison and
Hinkley [2].

While we have limited our attention to the nonpara-
metric version of bootstrapping, which is based on the
empirical distribution OF , the same ideas can be applied
in parametric settings as well. Thus, if it is reasonable
to assume that F belongs to some known parametric
class F , one may estimate all unknown parameters us-
ing traditional techniques and then generate bootstrap
samples by sampling from the resulting parametric
distribution instead.

Another nonparametric approach is to replace the
empirical distribution OF by a smoothened distribution.
The traditional way of doing this is by using kernel
density estimates. This means that a small amount of
zero-centered noise is added to each resampled obser-
vation. The effect of this is that the resulting distri-
bution of the bootstrap replications becomes smoother
which sometimes may be an advantage. Still this tech-
nique does not eliminate possible bias in the original
sample.

Bootstrapping can also be adapted to a Bayesian
framework using a scheme that creates new datasets
through reweighting the initial data. For more details
on this, we refer to Rubin [7].
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Introduction

In this entry, we describe Adiabatic Approximations
and Born–Oppenheimer Approximations. The two are
closely related. In [17] Stefan Teufel refers to the
Adiabatic Approximation, where the quantum Hamil-
tonian depends explicitly on time, as “time–adiabatic.”
He calls the more complicated Born–Oppenheimer
Approximation “space–adiabatic” because the slow
time dependence arises via a space variable effectively
depending slowly on time.

Throughout this entry, we shall describe results that
can be proved rigorously. There are also very interest-
ing related numerical and computational issues in this
subject (See �Quantum Time-Dependent Problems).

http://dx.doi.org/10.1007/978-3-540-70529-1_257
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The QuantumMechanical Adiabatic
Approximation

In adiabatic quantum mechanics, one wishes to
solve the time-dependent Schrödinger equation
(� Schrödinger Equation for Chemistry) when the
Hamiltonian varies slowly. One seeks approximate
solutions on the same time scale over which the
Hamiltonian varies. That is, one wishes to solve

i
@�

@s
D H.
s/ �; for s 2 Œ0; T=
�;

where 
 is small. It is convenient to rescale time to t D

s and rewrite the problem as

i 

@ 

@t
D H.t/  ; for t 2 Œ0; T �:

The Traditional Quantum Adiabatic Theorem
The first results [3] on this problem dealt with the situ-
ation whereH.t/ was a matrix that depended smoothly
on t and had an isolated, non-degenerate eigenvalue
E.t/. The phase of the associated normalized eigen-
vector ˚.t/ was chosen so that h˚.t/; ˚ 0.t/ i D 0,
and then one could show that there were solutions of
the form

 .
; t/ D e� i
R t
0 E.r/ dr=
 ˚.t/ C O.
/;

where theO.
/ error was measured in the Hilbert space
norm.

The first mathematically rigorous proof of this result
in an infinite-dimensional Hilbert space was due to
Kato [12]. Several other authors have proven this and
various generalizations that we describe below.

Geometric Phases
One fascinating aspect of this subject occurs when
H.t/ D eH.�.t//, where �.t/ is a curve in a multi-
dimensional space, and the Hamiltonian function eH.	/
depends on the multi-dimensional parameters. As a
simple example, consider

eH.x; y/ D
�
x y

y �x
�

and
�.t/ D �

cos.t/; sin.t/
�
:

In this situation, one can choose E.t/ D 1 and

˚.t/ D
�

cos.t=2/
sin.t=2/

�
:

The traditional adiabatic theorem applies, and

 .
; t/ D e� i t=
 ˚.t/ C O.
/:

However, H.2�/ D H.0/, but ˚.2�/ ¤ ˚.0/. One
easily sees that ˚.2�/ D �˚.0/. The minus sign is
an additional phase factor that one might not a priori
anticipate. This phenomenon was originally noticed by
chemist Longuet-Higgins [14] in the 1960s.

Much later, Michael Berry studied a generalization
of this example. He chose

eH.x; y; z/ D
�

x y C iz
y � iz �x

�

and let � be a simple curve on the unit sphere that
encircled some region on the sphere. For that situation,
if the time interval is Œ0; 2�� with �.2�/ D �.0/, then
there is a similar phase factor, but it has the value ei! ,
where ! is half the area on the sphere surrounded by � .
The Longuet-Higgins phase (minus sign) corresponds
to the special case where � goes once around the
equator of the sphere.

Higher Order Approximations
One generalization of the traditional Adiabatic Ap-
proximation is its extension to arbitrarily high order in
powers of 
. For the situation we have been consider-
ing, one can prove that

 .
; t/ D e� i
R t
0 E.r/ dr=


 
˚.t/ C

NX

nD1

n  n.t/

!

C O
�

NC1� ;

where N is an arbitrary positive integer, and the
formulas for  n.t/ are quite explicit.

If H.t/ satisfies an analyticity condition, then one
can choose N to depend on 
 in such a way that the
error term is minimized. One finds that N typically
behaves like the greatest integer less than c=
, and that

http://dx.doi.org/10.1007/978-3-540-70529-1_232
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doing this “optimal truncation” of the series leads to
an approximation  �.
; t/ that differs from the exact
solution to the Schrödinger equation by a norm error
of order e��=
 , where � > 0 when t is kept in a fixed
compact interval.

Further Generalizations with a Gap
In the situation above, one could consider the or-
thogonal projection PA.t/ D j˚.t/ih˚.t/j and the
orthogonal projection P.
; t/ D j�.
; t/ih�.
; t/j,
where �.
; t/ is the exact solution to the Schrödinger
equation with �.
; 0/ D ˚.0/. From the results
described above, it is easy to show that

kP.
; t/ � PA.t/ k � C 
;

for t 2 Œ0; T �. So, if the system starts in the range of
PA.0/, it is in the range of PA.t/ up to an error that is
bounded by C 
 at each time t 2 Œ0; T �.

This result generalizes to the situation where
the spectrum of H.t/ is composed of two subsets
�.H.t// D S1.t/ [ S2.t/, where S1.t/ and S2.t/

depend smoothly on t and the distance between the
two sets is bounded below by some constant c > 0 for
t 2 Œ0; T �. In this situation, let PS1.t/ be the spectral
projection for H.t/ corresponding to the set S1.t/.
If the initial condition for the Schrödinger equation
is in the range of PS1.0/, then the solution at time
t 2 Œ0; T � lies in the range of PS1.t/ up to an error
that is bounded by C 
. This result has applications,
for example, in condensed matter systems where S1.t/
might be an isolated band in the spectrum ofH.t/, and
PS1.t/ would have infinite rank.

As one might expect, these results have also been
extended to arbitrarily high orders in powers of 
 [2].

Adiabatic TheoremsWithout a Gap
Prior to roughly the year 2000, it was expected that all
quantum mechanical adiabatic theorems would require
the presence of a gap in the spectrum of H.t/. That
expectation turned out to be false. Avron and Elgart
[1] and Bornemann [5] gave the first results without
a gap hypothesis. Roughly speaking, let P.t/ be a
spectral projection for H.t/ that depends smoothly on
t 2 Œ0; T �. If the initial condition at time 0 for the
Schrödinger equation is in the range of P.0/, then the
solution at time t 2 Œ0; T � is in the range of P.t/
up to an error that tends to zero as 
 tends to zero. It
is important to note that there is no result here about

how quickly the error tends to zero as 
 tends to zero.
One loses the more precise error bound when there is
no gap.

Adiabatic Theorems with Level Crossings
Another situation that has been studied is the one in
which H.t/ has two eigenvalues E1.t/ and E2.t/ that
are isolated from the rest of the spectrum by a gap
that is bounded below by c > 0 for t 2 Œ0; T �.
Suppose E1.1/ D E2.1/, but that E1.t/ ¤ E2.t/

when t ¤ 1. Assume further that E1 and E2 are
analytic functions of t , and that they are both non-
degenerate for t ¤ 1. Consider an initial condition that
is a normalized eigenvector ˚1.0/ that corresponds to
E1.0/. If

E1.t/ � E2.t/ D k .t � 1/ C O
�
.t � 1/2

�
;

with k ¤ 0, then for times after t D 1 the solution to
the Schrödinger equation equals

e� i
R t
0 E1.s/ ds=
 ˚1.s/ C c 
1=2 e� i

R t
0 E2.s/ ds=
 ˚2.s/

C O.
/;

where the value of c depends on other aspects ofH.t/.
Similar results with transitions of order 
1=.nC1/ can
be obtained [7] if E1.t/ � E2.t/ D k .t � 1/n C
O
�
.t � 1/nC1�.

Adiabatic Theorems with Avoided Crossings
There are physical situations of interest where two iso-
lated levels do not cross, but come close to one another
at some time. This situation was first considered in
the physics literature by Landau [13] and Zener [18].
They obtained formulas for the transition amplitude
between the two levels that is called the Landau–
Zener formula. If H.t/ has no 
 dependence and is
analytic in time, then this transition amplitude is expo-
nentially small in 1=
. Precise mathematical statements
about these transitions were first obtained by Alain
Joye [11].

Suppose one allows the Hamiltonian function to
depend on both t and 
 so that the gap between the
two levels is ˛ 
1=2 C O.
/. Suppose further that the
structure of H.t; 
/ is generic. Then one can prove
[8] that the original Landau–Zener formula correctly
describes the transition amplitude. However, since the
two levels are getting very close together at the avoided
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crossing when 
 is small, the transition amplitude in
this case approaches a constant in absolute value as 

tends to zero.

Vidian Rousse [16] has examined situations where
the gap behaves like 
p for p near 1=2. For p < 1=2

there is no transition to leading order. For p > 1=2

the transition amplitude has absolute value 1 to leading
order. The value p D 1=2 is the critical value.

Time-Dependent Born–Oppenheimer
Approximations

The original work [4] of Born and Oppenheimer in
1927 dealt with the time-independent Schrödinger
equation for molecules. Shortly after their work, it
was appreciated that a similar result would describe
dynamics of molecules. To the best of our knowledge,
the first precise statement of what is meant in the time-
dependent case was not made until 1980 [6]. A rough
synopsis is that the electrons in a typical molecular
system behave adiabatically and generate an effective
potential in which the nuclei move semiclassically.

The fundamental physical fact underlying Born–
Oppenheimer approximations is that nuclei have much
greater masses than electrons. If the mass of an electron
is 1, then the mass of a nucleus is very close to some
integer multiple of 1836. There are two conventions in
the mathematical literature concerning this small mass
ratio. In one convention it is proportional to 
2. In the
other, it is proportional to 
4. We shall adopt the second
convention here.

The time-dependent Schrödinger equation for a
molecular system can be written as

i 
2
@ 

@t
D � 
4

2
�X  C h.X/ ;

where a particular choice of time scaling has been
made, the variable X describes the positions of all the
nuclei, and h.X/ is an operator in the electron vari-
ables that depends parametrically on X . The full wave
function  is a function of t , X , and the electronic
variables x. A basic assumption of Born–Oppenheimer
approximations is that h.X/ has an isolated, non-
degenerate eigenvalue E.X/ that defines a “potential
energy surface.” For each fixed X , one solves the
“electron structure problem,”

h.X/ ˚.X; x/ D E.X/ ˚.X; x/:

As in the adiabatic approximation, the phase of
˚.X; x/ must be chosen correctly, and the choice
may have to be time-dependent (See [9], � Solid State
Physics, Berry Phases and Related Issues). However,
often h.X/ is a real differential operator, and ˚.X; x/
can be chosen to be a time-independent real function.

One can then prove that the Schrödinger equation
has solutions of the form

 .
; X; x; t/ D �.
; X; t/ ˚.X; x/ C O.
/;

where the dynamics of � is determined from the
classical mechanics phase space flow for the nuclei
moving in the effective potential E.X/. The electrons
are said to move adiabatically because they stay in the
state ˚.X; x/ to leading order for each t .

There are two main approaches to proving this
result. One uses “semiclassical wave packets” to han-
dle the nuclei, while the other uses Fourier Integral
operator techniques. With the Fourier Integral Operator
techniques, one can separately handle the adiabatic
approximation for the electrons and the semiclassical
approximation for the nuclei (See [15, 17]).

As with the Adiabatic Approximation, this result
has been generalized in numerous ways: Finite degen-
eracy of the electron eigenvalueE.X/ can be handled.
The expansion can be extended to arbitrary order if
the full potential energy function is smooth or made
up of Coulomb potentials. Optimal truncation of the
asymptotic expansion yields exponentially accurate
approximations. In some very restricted situations,
leading order non-adiabatic correction terms can be
found, but they are of order exp.�C=
2/. Further-
more, propagation through electronic level crossings
and propagation through avoided crossings have been
studied (See [10]).
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Boundary Control Method
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PDMI, Saint-Petersburg, Russia

Introduction

The BC-method (Belishev’1986, [1]) is an approach
to inverse problems based on their relations to control
theory. It solves a wide class of inverse problems of
acoustics, electrodynamics, elasticity theory, heat con-
ductivity, quantum mechanics, impedance tomography,
and problems on graphs; one of its principal results

is reconstruction of Riemannian manifolds via their
dynamical or spectral boundary data [2,4]. The method
is available for constructing numerical algorithms
[4, 8, 11].

Basic results are exposed in the reviews [2, 4]; the
paper [3] is an elementary introduction to the method.
The article exhibits a variant of the BC-method, which
determines coefficients of the wave equation �ut t �
div aru C qu D 0 from the dynamical (time-domain)
data given on a portion of the boundary.

Notation Latin indexes run over 1; : : :; n, Greek ones
over 1; : : :; n � 1; summation over repeating indexes
is in use. For a square matrix kbij k, one denotes
kbijk WD kbij k�1; Dxi WD @

@xi
and . /t WD @

@t

are the derivatives. Everywhere “smooth” means “Ck-
smooth” with a relevant finite k. All functions, spaces,
etc., are real. “BCm” is “BC-method.”

Inverse Problem

Dynamical system By ˛T one denotes a dynamical
system of the form:

ut t �Lu D 0 in ˝ � .0; T / (1)

ujtD0 D ut jtD0 D 0 in ˝ (2)

u D f on � � Œ0; T � ; (3)

where ˝ 
 R
n is a (possibly unbounded) domain

with the smooth boundary � ; 0 < T < 1; L WD
��1 	Dxi a

ijDxj � q
; �; aij ; q are smooth functions
of x 2 ˝ provided � > 0, ��1 is bounded, and
aij �i �j � c

Pn
pD1 �2p with c D const > 0; f is a

boundary control; u D uf .x; t/ is a solution (wave),
which is smooth for smooth f ’s vanishing near t D 0.

The input/output correspondence in ˛T is
realized by a response operator RT W f 7!	
�ia

ijDxj uf

 j��Œ0;T � defined on smooth f ’s

vanishing near t D 0, where � D f�1; : : : ; �ng is
the unit outward Euclidean normal on � .

By hyperbolicity of Eq. (1), the waves propagate in
˝ with a finite (variable) velocity; the propagation
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Boundary ControlMethod, Fig. 1 Ray coordinates

is governed by the travel time metric g: ds2 D
gij dxidxj , gij WD ��1aij . Fix an open subset � 
 � ;
let ˝s

� WD fx 2 ˝ j distg.x; �/ < sg be its g-
metric neighborhood of radius s (Fig. 1a; contoured by
1234561).

If a control f acts from � (i.e., satisfies suppf 

� � Œ0; T �), then the finiteness of the propagation
velocity yields

supp uf . 	 ; t/ 
 ˝
t

� t > 0 ; (4)

whereas the response RT f on � is determined by the

coefficients �; aij ; q in ˝
T
2
� (does not depend on their

behavior in ˝n˝ T
2
� ). As a result, a partial response

operator RT� f WD .RT f /j��Œ0;T � defined on controls

acting from � is determined by �; aij ; q in ˝
T
2
� . Re-

spectively, �; aij ; q in ˝T
� determine R2T� .

Setup By such a character of dependence of the re-
sponse on the coefficients, the relevant setup of the
inverse problem is: given the operator R2T� to recover
�; aij ; q in ˝T

� . However, this problem is not solved
uniquely. Indeed, any change of coordinates fxi g !
fx0j g in ˝ provided xi D x0i in a neighborhood of
� transfers the system ˛T to a system ˛0T , which is
governed by another operator L0 of the same structure
asL, whereasRT D R0T holds. Hence, the systems ˛T

and ˛0T are indistinguishable for the external observer,
which gets the response operator as a result of mea-
surements at � . In such a situation, the BCm reveals
what can be recovered uniquely.

Main result Let a tubeBT
� WD fx 2 ˝ j distg.x; �/ D

distg.x; � / < T g be a subdomain covered by the

g-geodesics (rays) emanating from the points of �
into ˝ g-orthogonally to the boundary (Fig. 1a;
shaded). Let � and T be such that the ray field is
regular in the tube. For a point x 2 BT

� , define its
ray coordinates (rc) �x 2 � and �x 2 Œ0; T / by
distg.x; �/ D distg.x; �x/ D �x . Let x.�; �/ 2 BT

� be
the point with the given rc �; � ; in local coordinates
�1; : : : ; �n�1 on � , one writes x.�1; : : : ; �n�1; �/.

The map i W BT
� 3 x 7! f�x; �xg 2 �T

� WD � �
Œ0; T /, which realizes the passage from the Cartesian
to ray coordinates, induces the metric g� WD i�g
on �T

� (Fig. 1b; shaded), its length element in local
coordinates taking the specific form

ds2 D d�2 C g�˛ˇ. O�; �/ d�˛d�ˇ ; (5)

where g�˛ˇ D
h
@xi

@�˛
@xj

@�ˇ
gij .x. 	 //

i
. O�; �/ ; O� WD

f�1; : : : ; �n�1g.
The BCm establishes that the partial response oper-

atorR2T� determines the metric g� in�T
� . In particular,

if local coordinates are chosen, the elements g�˛ˇ are
recovered uniquely. Since BT

� can be regarded as a
Riemannian manifold endowed with the g-metric, this
result means that the manifold fBT

� ; gg is determined
by R2T� up to isometry. Moreover, the BCm provides a
procedure that constructs an isometric copy f�T

� ; g�g
of fBT

� ; gg.

BCmDevices

Wave products With the system ˛T , one asso-
ciates:
• An outer spaceFT

� WD ff 2 L2 .� � Œ0; T �/ j supp
f 
 � � Œ0; T �g with the product .f; g/FT

�
DR

��Œ0;T � f g d� dt (d� is the Euclidean surface

element). An inner space HT
� WD fy 2

L2;� .˝/ j suppy 
 ˝
T

� g with the product
.u; v/HT

�
D R

˝
u v �dx (dx is the Euclidean volume

element)
• A control operator W T W FT

� ! HT
� ; W

T f WD
uf . 	 ; T /

• A connecting operator CT W FT
� ! FT

� ; C
T WD

.W T /�W T

The relation

CT D 2�1.ST /�I 2T R2T� ST (6)
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holds, where the operator ST W FT
� ! F2T

� extends
controls from � � Œ0; T � to � � Œ0; 2T � as odd (with
respect to t D T ) functions of time; I 2T W F2T

� ! F2T
�

is the integration .I 2T f /. 	 ; t/ WD R t
0
f . 	 ; s/ ds. Since

�
uf . 	 ; T /; ug. 	 ; T /�HT

�
D �

W Tf;W T g
�
HT
�

D �
CTf; g

�
FT
�
; (7)

the representation (6) enables the external observer,
which operates at the boundary and is provided with
the operator R2T� , to find the products of the waves
uf . 	 ; T / and ug. 	 ; T /, although the waves are located
into the domain ˝ unreachable for direct measure-
ments and are invisible for the observer. Such an option
is one of the key points of all variants of the BCm.

Controllability In control theory, the following prop-
erty of the system ˛T is referred to as a local approx-
imate boundary controllability. For any �; T; " > 0,
and a function y 2 HT

� , one can find a control f 2
FT
� such that the inequality ky � uf . 	 ; T /kHT

�
< "

holds. So, the set of waves is rich enough for approx-
imating functions in the subdomain ˝T

� , which the
waves fill at the moment t D T . This property is
derived from the fundamental Holmgren-John-Tataru
uniqueness theorem [2] and motivates the name of
the BC-method. Controllability is a fact of affirmative
character for inverse problems. By general principles
of system theory, the better is a system controllable,
the richer is the information about its structure, which
can be extracted from external measurements.

Controllability provides existence of the wave ba-
sises in the filled domains. Fix s 2 .0; T �; let FT;s

� WD
ff 2 FT

� j suppf 
 � � ŒT � s; T �g be the subspace
of delayed controls (T � s is the delay; s is the action
time). By (4), for f 2 FT;s

� the wave uf . 	 ; T / is
supported in the smaller subdomain ˝s

� 
 ˝T
� , i.e.,

belongs to the subspace Hs
� WD fy 2 HT

� j suppy 

˝
s

�g. Let a system of controls ffkg1
kD1 
 FT;s

� be
complete, i.e., its linear span is dense in FT;s

� . Ap-
plying the Schmidt process, one can construct a new
system fhskg1

kD1 
 FT;s
� , which is complete and CT -

orthogonal: .C T hsk; h
s
l /FT

�
D ıkl . By (7), the system of

the corresponding waves fuskg1
kD1; usk WD W T hsk satis-

fies .usk; u
s
l /HT

�
D ıkl ; by controllability, it is complete

in the subspace Hs
� . Hence, fuskg1

kD1 is an orthogonal
normed basis in Hs

� consisting of waves. Wave basises
is a main device of numerical BC-algorithms [8, 11].

The (orthogonal) projection P s in HT
� onto Hs

� ,
which cuts off functions in ˝T

� onto the subdomain
˝s
� , can be represented through the wave basis: P s DP
k�1. 	 ; usk/HT

�
usk. Applying this projection to a wave

uf . 	 ; T / D W Tf , one represents

P sW T f D
1X

kD1
.uf . 	 ; T /; usk/HT

�
usk D h see (7)i

D
1X

kD1
.C T f; hsk/FT

�
W T hsk :

The projection P s? WD I � P s cuts off functions on the
subdomain ˝T

� n˝s
� . The latter representation leads to

the relation

.W T /�P s
?W

Tf D CT f �
1X

kD1
.C T f; hsk/FT

�
C T hsk ;

(8)

which plays an important role in solving the inverse
problem. The reason is that its right-hand side is
determined by the operator R2T� (through (6)).

Geometrical optics Geometrical optics formulas de-
scribe propagation of singularities of solutions to the
hyperbolic equations. Let XT;s be the projection in
FT
� onto FT;s

� that cuts off controls on the subset
� � ŒT � s; T � (Fig. 2; contoured by 78327). For
a smooth f D f .�; t/, the control XT;sf is sup-
ported on this subset and has a jump at t D T � s

(Fig. 2; line 78), the amplitude of the jump being
equal to f . 	 ; T � s/. Discontinuous controls produce

t=0

t=T

t=T-s

Boundary ControlMethod, Fig. 2 Propagation of jump
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discontinuous waves. The wave uX
T;sf has a jump

located on the part f.x; t/ j x 2 BT
� ; t D T � s C

�xg of the characteristic surface of Eq. (1) (Fig. 2;
contoured by 78567). By (Fig. 4), the wave W TXT;sf

is supported in ˝s
� , whereas the jump at its forward

front in BT
� (2; line 56) is described by the formula

lim
�!s�0

�
W TXT;sf

�
.x.�; �// Dˇ� 1

2 .�; s/f .�; T � s/ ;

.�; s/ 2 �T
� ; (9)

where ˇ is a factor of geometric nature; in local
coordinates, it takes the form ˇ D �.x. O�;s//J. O�;s/

�.x. O�;0//J. O�;0/ ; J WD
jdet k @xi

@�k
. O�; s/kj (here �n � �).

Integrating by parts, one derives from (9) the dual
formula

lim
t!T�s�0

h�
W T

��
P s?y

i
.�; t/

D !.�/ ˇ
1
2 .�; s/ y .x.�; s// ; .�; s/ 2 �T

�

for a smooth y 2 HT
� ; here ! WD ��1. O�/� .x. O�; 0//

J. O�; 0/, � WD d�
d� is the density of the Euclidean

surface measure on � in rc. Taking y D uf . 	 ; T / D
W T f , one arrives at the key amplitude formula

lim
t!T�s�0

h�
W T

��
P s

?W
Tf
i
.�; t/

D !.�/ ˇ
1
2 .�; s/ uf .x.�; s/; T / ; (10)

where .�; s/ runs over�T
� D i.BT

� / that is the range of
the rc.

Solving Inverse Problem

Wave images A functioneuf .�; � I t/ WD Œ!ˇ
1
2 �.�; �/uf

.x.�; �/; t/ of the variables .�; �/ 2 �T
� is said to be an

image of the wave uf . 	 ; t/. The image is determined
by the part of the wave uf . 	 ; t/jBT� .

Passing to the rc in (1) with regard to the form (5) of
the metric g�, one derives the equation, which governs
the evolution of wave images:

Qut t �D2
� Qu �M� Qu D 0 in �T

� � .0; T / ; (11)

where

control f

wave uf (· ,T) image uf (· ,· ; T)

re
pr

es
en

tat
ion

 (1
3)

Boundary ControlMethod, Fig. 3 Visualization

M� D g�˛ˇ. O�; �/D2
�˛�ˇ

Cm˛. O�; �/D�˛ Cm0. O�; �/
(12)

in local coordinates.
Combining (10) with (8), one gets the key represen-

tation

Quf .�; sIT /D lim
t!T�s�0Œ C

T f�
1X

kD1
.C T f; hsk/FT

�
C T hsk �

.�; t/; .�; s/ 2 �T
� (13)

that enables the external observer to visualize (on the
set �T

� ) the images of invisible waves via the inverse
data (see Fig. 3; the objects above the waved line are
invisible for the observer).

Determination of metric Given the operatorR2T� , the
external observer can recover the metric g� on �T

� by
means of the following procedure.

Step 1 Find CT by (6). For every s 2 .0; T /, con-
struct a complete CT -orthogonal system fhskg1

kD1 

FT;s
� .

Step 2 Choose a smooth f 2 FT
� vanishing near

t D 0. Findeuf andeuftt by (13). Determineeuft t D
euftt and D2

�euf , then find ˚Œf � WDeuft t �D2
�euf .

Step 3 Choose local coordinates �1; : : : ; �n�1. Find
˚Œfp� for a rich enough finite set of controls
ffpgNpD1 and use Eqs. (11) in the form M�eufp D
˚Œfp� as a linear algebraic system with respect to
the unknown coefficients of M� (see (12)). Solving
the system, get g�˛ˇ in �T

� . By (5), the metric is
recovered.

Special cases Under additional assumptions on the
form of the wave equation (1), its coefficients can be
recovered uniquely.
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• If aij

�
are given (so that the metric g is given), then

all geometric objects (the tube BT
� , the map i, the

factor !ˇ
1
2 , etc.) are known. By this, the external

observer can recover wave images Quf , return to the
waves uf D .!�1ˇ� 1

2 Quf /ıi inBT
� , and then extract

the function q

�
jBT� from the wave equation (1).

• If aij D aıij (with an unknown function a),
i.e., the metric g is conformal Euclidean, then one
can recover the metric g� by solving the relevant
Cauchy problems for the (elliptic) Yamabe equation
in �T

� , and determine the map i�1 W �T
� ! BT

� [6].
Thereafter, one recovers wave images Quf j�T� , trans-
fers them to waves uf jBT� , and finds the functions a

�

and q

�
in BT

� from (1).

• In the case of aij D ıij and q D 0, there is a
sampling procedure, which provides the uniqueness
of determination of � from R2T� (or the partial
spectral data on �) not only in the tube BT

� but
the whole domain ˝T

� filled with waves [2]. The
procedure is simplified if the response R2T f on
controls f 2 FT

� is measured not only on � but the

bigger part � \˝T

� of the boundary [3]. Numerical
reconstruction of � via R2T (˝ 
 R

2) by the use
of (13) is implemented in [8]. For a bounded˝ and
large enough T > infft > 0 j ˝t

� � ˝g, there is L.
Pestov’s version of the BC-procedure that provides
stronger and more stable numerical results [11].
For the one-dimensional variant of BCm, see [5].

Ultimate results on the Maxwell system are obtained
in [10]. Recent progress in the BCm is related with
its connections to C*-algebras and noncommutative
geometry [7, 9].
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Short Definition

The boundary element method (BEM) is a numerical
technique for solving boundary integral equations.

Description

Boundary value problems (BVPs) are commonly
represented by partial differential equations (PDEs)
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describing the behavior of the main variable of the
problem (temperature in heat transfer problems,
displacements in elasticity problems) inside and on
the boundary of the domain under consideration.
Alternatively, BVPs can also be represented by integral
equations relating only boundary values of the main
variables and functions of their derivatives (heat flux
in heat transfer problems, surface forces in elasticity
problems).

Integral equation representations of BVPs generally
require a fundamental solution of the original PDE.
These are also called free-space Green’s functions and
can be viewed as solutions of a very simple physical
problem, that of a point source (or point load) in
an infinite space. This requirement introduces both
advantages and disadvantages. The main advantage is
that accuracy is normally high as the test functions
for the numerical solution will be exact solutions of
the differential equation, rather than polynomials as
in typical domain discretization techniques. The main
disadvantage is the restriction placed on the range of
applications, as fundamental solutions are normally
only available for linear equations.

The boundary element method (BEM) can
be viewed as a general numerical technique for
solving boundary integral equations. One of the
main advantages of the BEM, when compared to
other general methods of solution, in particular the
finite element method (FEM), is that discretizations
are restricted only to the boundaries, making data
generation and meshing much easier, particularly for
moving boundary or unbounded problems.

Historically, the application of integral equations
to formulate BVPs of potential theory can be traced
back to the early 1900s, when Fredholm [1] demon-
strated the existence of solutions to such equations.
Vector integral equations analogous to the Fredholm
integral equations of potential theory were introduced
by Kupradze [2], in the context of the theory of elas-
ticity. Other important contributions were presented by
Muskhelishivili [3] and Mikhlin [4], who discussed the
formal theory and applications of integral equations
with both scalar and vector integrals, particularly those
with singularities.

Due to the difficulty of finding analytical solutions
to integral equations, their use was, to a great extent,
confined to theoretical investigations of the existence
and uniqueness of solutions of problems in mathe-
matical physics. The earliest applications of integral

equation formulations using a digital computer are due
to Massonet [5], for elasticity problems, and Smith and
Pierce [6], for potential flow.

Boundary integral equation formulations for the so-
lution of several engineering problems were presented
in the 1960s, e.g., [7–14]. These initial applications
adopted simple discretization procedures and were not
aimed at developing general numerical techniques to
parallel the FEM. An important development in the
late 1960s was the paper by Lachat and Watson [15],
in which isoparametric elements for three-dimensional
elasticity problems were implemented for the first time
in the context of the BEM, showing that some of the
powerful algorithms developed for the FEM could also
be applied to the BEM.

Several books on the BEM have been published to
date, most of which are introductory books concentrat-
ing on potential theory and elastostatics, e.g., [16–20].
Recent books also concentrate on the computational
aspects of the method [21,22]. BEM books that provide
a comprehensive coverage of the many applications of
the method, including nonlinear problems, are those
of Banerjee and Butterfield [23], Brebbia et al. [24],
Banerjee [25], Wrobel and Aliabadi [26], and, to a
certain extent, Kane [27] and Bonnet [28].

Boundary Integral Equation for Potential
Problems

The starting point for the formulation of a boundary in-
tegral equation for potential problems described by the
two-dimensional Laplace equation is Green’s second
identity
Z

V

.�r2 �  r2�/dV D
Z

S

�
�
@ 

@n
�  @�

@n

�
dS

(1)

which is valid for any two regular functions � and
 . We will now assume function � to be a potential
function, i.e., r2� D 0, and take  to be the funda-
mental solution �� of the Laplace equation, given in
two-dimensional form by

��.x; y/ D � 1

2�
ln.r/ (2)

in which r is the distance between the source point y
and the field point x. The domain V of definition of the
problem is bounded by a closed surface S .
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As the function �� has a singularity at the source
point y, it is necessary to exclude this point from the
domain V by removing a circle of radius 
 centered
at y. Applying Green’s second identity to the new
region V � V
 , bounded externally by S and internally
by S
, will give

Z

V�V

.�r2�� � ��r2�/dV D

Z

S

.�q� � ��q/dS

C
Z

S


.�q� � ��q/dS


(3)

where, for simplicity, we call q D @�

@n
and q� D @��

@n
.

Both functions � and �� now satisfy the Laplace equa-
tion in the new region V � V
 , and the domain integral
then vanishes; the original region V is recovered by
taking the limit when 
 �! 0.

The first surface integral involves the term �q� and
is normally referred to as the double-layer potential.
Initially, the value of � at the source point, �.y/, is
subtracted from and added to the value at the field
point, �.x/, to give

Z

S


�.x/q�.x; y/dS
 D
Z

S


Œ�.x/ � �.y/�q�.x; y/dS


C �.y/

Z

S


q�.x; y/dS
 (4)

We concentrate now on the second integral on the
right-hand side of (4). The normal derivative of �� is
given by

q�.x; y/ D @��

@n
D @��

@r

@r

@n
D � 1

2�r

@r

@n
(5)

As the distance vector r points from the source point to
the field point and the normal vector r points outward
the domain V (and thus inward the circle enclosed by
S
), the term @r

@n
is equal to �1. This gives

q�.x; y/ D 1

2�r
(6)

Writing the integral now in polar coordinates, assum-
ing that dS
 D 
d� gives the following limiting result

lim

!0

Z

S


q�.x; y/dS
 D lim

!0

2�Z

0

1

2�


d� D 1 (7)

Using the same reasoning to evaluate the limit of the
first integral on the right-hand side of (4) and assuming
that the function �.x/ is continuous at x D y gives
that

lim

!0

Z

S


Œ�.x/ � �.y/�q�.x; y/dS
 D 0 (8)

Thus

lim

!0

Z

S


�.x/q�.x; y/dS
 D �.y/ (9)

The same procedure is now applied to evaluate the limit
of the integral involving the term ��q (the single-layer
potential). This gives

lim

!0

Z

S


��.x; y/q.x/dS


D � lim

!0

2�Z

0

1

2�
ln.
/q.x/
d� D 0 (10)

where the continuity of the normal derivative q D @�

@n

could even be relaxed, i.e., the normal derivative could
be discontinuous as long as the discontinuity was finite.
Taking (9) and (10) into consideration, the limit of the
integral over S
 in (3) is of the form

lim

!0

Z

S


Œ�.x/q�.x; y/ � ��.x; y/q.x/�dS
 D �.y/

(11)
and the following integral equation is obtained from (3)

�.y/ D
Z

S

Œ��.x; y/q.x/ � �.x/q�.x; y/�dS (12)

The above equation is known as Green’s third identity,
or Green’s representation formula.

To obtain a boundary integral equation relating only
boundary values, the limit is taken when the source
point y tends to the boundary S . Again, it is necessary
to exclude the point y before taking the limit; however,
if point y belongs to a smooth part of the boundary,
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a semicircle will suffice. The same procedure as for an
internal point can now be adopted, the only difference
being on the upper integration limit in (7) and (10),
which is now � instead of 2� . Taking the limit when

 �! 0 gives

lim

!0

Z

S


Œ�.x/q�.x; y/ � ��.x; y/q.x/�dS
 D 1

2
�.y/

(13)

and the following boundary integral equation is
obtained

1

2
�.y/ D

Z

S

Œ��.x; y/q.x/ � �.x/q�.x; y/�dS (14)

for every point y on a smooth part of the boundary.
The boundary integral equation (14) can be general-

ized in the form

c.y/�.y/ D
Z

S

Œ��.x; y/q.x/ � �.x/q�.x; y/�dS

(15)

for any point y on the boundary S , since the idea
of excluding the source point y is still valid for any
boundary shape; the only change is in the upper limit
of the integrals in (7) and (10), which is now the angle
˛ subtended at point y. The free coefficient c.y/ in (15)
is then given by

c.y/ D ˛

2�
1 � c.y/ � 0 (16)

The Boundary Element Method

The boundary integral equation (15) can only be solved
analytically for very simple problems. In this case,
solutions are obtained by the Green’s function method
(e.g., Morse and Feshbach [29]). We describe below a
numerical technique, the BEM, which can be used to
solve (15) for any practical problem.

The application of the BEM requires two types of
approximation. The first is geometrical, involving a
sub-division of the boundary S into N small segments
or elements Sj , such that

NX

jD1
Sj � S (17)

Taking the above into account, (15) can be written in
the form

c.y/�.y/ D
NX

jD1

Z

Sj

h
��.x; y/q.x/��.x/q�.x; y/

i
dS

(18)

It can be seen that, within a certain level of approx-
imation, the above permits any complex geometry to
be modeled using a sufficient number of simple geo-
metrical segments. For two-dimensional problems, the
most common type of geometrical element is a straight
line, although polynomials of higher order, arcs of
circle, splines, etc., can also be used to approximate
the geometry.

The second approximation required by the BEM
is functional, which is necessary because although
the integrations along the entire boundary have been
reduced to a summation of integrals over each element,
we do not know how the functions � and q vary within
each element. Therefore, we approximate the variation
of � and q within each element by writing them in
terms of their nodal values at some fixed points in the
element, called nodal points or, simply, nodes, using
suitable interpolation functions.

Similarly to the geometry, different interpolation
functions (and corresponding number of nodes) can
be used to represent the variation of � and q within
each element. The simplest possible approximation
is piecewise constant, which simply assumes that �
and q are constant within each element and equal
to their values at the midpoint. By introducing this
approximation into (18), we obtain

c.y/�.y/D
NX

jD1
qj

Z

Sj

��.x; y/dS�
NX

jD1
�j

Z

Sj

q�.x; y/dS

(19)

with �j and qj the values of � and q at node j (the
midpoint of element Sj ). Note that, in the case of
constant elements, the number of nodes is equal to the
number of elements.

Equation 19 is still valid at any boundary point y.
However, because the continuum problem has been
reduced to a discrete one, with a finite number N
of unknowns, it is only necessary to generate the
same number of equations. These can be generated
by applying (19) to a number N of collocation points
along the boundary, i.e.,
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ci �i D
NX

jD1
qj

Z

Sj

��
ij dS �

NX

jD1
�j

Z

Sj

q�
ij dS (20)

with i D 1; : : : ; N . The collocation points are usually
the nodal points of the boundary elements.

Calling

Gij D
Z

Sj

��
ij dS Hij D ci ıij C

Z

Sj

q�
ij dS (21)

with ıij the Kronecker delta, (20) can be written in the
form

NX

jD1
Hij �j D

NX

jD1
Gij qj (22)

for any collocation point i . The application of (20) at
allN collocation nodes produces a system of equations
of the form

H ˆ D GQ (23)

where H and G are square matrices of influence
coefficients, and ˆ and Q are vectors containing the
nodal values of the potential function and its normal
derivative, respectively. Once the boundary conditions
of the problem are applied to the system (23), the
matrices can be reordered in the form

AX D F (24)

in which all unknowns have been collected into vector
X , and vector F is the “load” vector. The system
matrix A is, in general, full and non-symmetric. The
solution of the system (24) will produce the unknown
boundary values.

Boundary Element Formulations for
General Problems

The previous formulation for potential problems can
be extended to other problems described by linear
PDEs, such as the Navier equations of elasticity, the
Helmholtz equation for scalar wave propagation in
the frequency domain, and the Stokes equations of
creeping flow. Free-space Green’s functions for these
and other equations, together with the correspond-
ing boundary integral equations, are available in the

literature (e.g., in [24–26]). These Green’s functions
have the same order of singularity as for the Laplace
equation, thus the above numerical procedures also
apply to their BEM formulations.

The BEM can also be applied to different types
of nonlinear problems and is most efficient when the
nonlinearities appear along the boundary. Examples
are the cases of nonlinear boundary conditions in heat
transfer [26], micro-fluid mechanics [30], electrochem-
istry [26], fracture mechanics problems including crack
propagation [26], and several moving boundary prob-
lems (e.g., [31, 32]). BEM techniques are also popular
for optimization and inverse analysis, as discussed
in [26] and [33].
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Synonyms

Boundary value techniques; Linear multistep formulas
with boundary conditions

Definition

Boundary value methods are linear multistep methods
used with a fixed number of initial and final conditions
that allow us to generate stable discrete boundary value
schemes for the solution of initial and boundary value
ordinary differential equations.

Overview

We describe the class of boundary value methods
(BVMs) for the numerical solution of the ordinary
differential equation:

y0.x/ D f .x; y.x// ; x 2 Œa; b� (1)

that could be subject to either initial (y.a/ D ya) or
boundary (g.y.a/; y.b// D 0) conditions; f W Œa ; b��
IRd ! IRd is a sufficiently smooth function. In order
to find a numerical solution, the continuous problem
is approximated by a discrete one defined on the grid
� D Œx0; x1; : : : ; xN � with hi D xi � xi�1; 1 � i � N ,
x0 D a, xN D b. If yi is an approximation to y.xi /,
and fi D f .xi ; yi /, a general linear multistep formula
(see entry �Multistep Methods), with constant stepsize
hi D h, can be written as:

kX

jD0
˛j yn�kCj D h

kX

jD0
ˇj fn�kCj ; n D k; : : : ; N;

(2)
where ˛j and ˇj are real parameters, h is the stepsize
of integration, ˛k ¤ 0, and j˛0j C jˇ0j > 0 (see
[4], Chap. 4). Usually a linear multistep method for the

http://dx.doi.org/10.1007/978-3-540-70529-1_128
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solution of an initial value problem (IVP) is used with
k starting values in a step-by-step fashion. This means
that given the approximations yn�j ; j D 1; : : : ; k for
some integer n, we compute the approximation yn
using (2). As only y0 D ya is given by the problem,
y1; : : : ; yk�1 should be computed using auxiliary for-
mulas. All the classical results about convergence and
stability of this class of methods are applied to this so-
called forward-step approach.

The original idea of integrating initial value prob-
lems through “boundary value techniques” is due to
Fox [6]. Following this line, Axelsson and Verwer [2]
proved convergence of order two for a simple BVM
based on the mid-point rule. Their results are strongly
related to the Miller algorithm for the stable solution
of recurrence relations [3, 13] and to the iterative
algorithms of Cash [5]. “One of the aims of this
boundary value approach is to circumvent the well
known Dahlquist-barriers on convergence and stability
which are a direct consequence of the step-by-step
application” (Axelsson and Verwer [2]).

A systematic analysis of the linear multistep formu-
las subject to boundary conditions has been made by D.
Trigiante and his collaborators, and a complete descrip-
tion can be found in Brugnano and Trigiante [4]. For
every classical subclass of linear multistep formulas,
a corresponding subclass of boundary value methods
has been derived, in particular we have the general-
ized backward differentiation formulas (GBDFs), the
generalized Adams methods (GAMs), the extended
trapezoidal rules (ETRs), and the top order methods
(TOMs). Moreover, a new subclass based on B-spline
collocation called BS has been analyzed in Mazzia
et al. [11]. We note that all of the BVM classes contain
A-stable methods of high order.

Discrete Problem and Block BVMs
A k-step BVM, with constant stepsize hi D h, is
defined by the following equations:

kX

jD0
˛j yn�k1Cj D h

kX

jD0
ˇj fn�k1Cj ;

n D k1; : : : ; N � k2; (3)

where k is the number of steps of the linear multistep
formulas, k1 is the number of initial conditions, and
k2 D k � k1 is the number of final conditions. If we

choose k2 D 0, we obtain the classical linear multistep
formulas.

In order to be of practical interest, the linear mul-
tistep formulas must be associated with k1 � 1 initial
and k2 final additional conditions. The first k1 � 1

conditions could be derived, for initial value problems,
using a forward approach; the last k2 must be computed
by using appropriate discretization schemes.

Another way to use the linear multistep formulas
in a boundary value approach is to use appropriate
discretization schemes for both the initial and the final
conditions. The resulting discretization scheme is in
the class of finite difference methods that are usually
applied for the numerical solution of boundary value
problems (BVPs) [1]. The numerical scheme on the
grid � of N C 1 mesh points generates the following
discrete problem that could be used for solving both
initial and boundary value problems:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

y0 D y.x0/ or g.y.a/; y.b// D 0;
kX

iD0
˛
.n/
i yi D hn

kX

iD0
ˇ
.n/
i fi ;

n D 1; : : : ; k1 � 1;

(additional initial methods)
kX

iD0
˛
.n/
i yn�k1Ci D hn

kX

iD0
ˇ
.n/
i fn�k1Ci ;

n D k1; : : : ; N � k2;

(main methods)
kX

iD0
˛
.n/
i yN�kCi D hn

kX

iD0
ˇ
.n/
i fN�kCi ;

n D N C 1 � k2; : : : ; N:
(additional final methods)

(4)

The coefficients ˛.n/i ; ˇ
.n/
i ; i D 0; : : : ; k, and n D

1; : : : ; N are computed using a variable coefficient
technique. The integer k1 depends on the chosen
method. This technique, which is extremely efficient
for the numerical solution of boundary value problems,
has some drawbacks for general initial value problems.
High nonlinearity of the function f can produce
severe obstacles in the management of the system
(4). The main problem is that the iterative methods for
finding the zero of the nonlinear system (4) require
a computational effort that depends on the number
of mesh points N . A natural strategy to prevent this
situation is to bound N in order to handle systems
of relatively small dimensions. In this way, a finite
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number of contiguous time blocks are defined to cover
the entire integration interval, and each block is solved
using a finite number of steps. This technique defines
the so-called block boundary value methods that are
described in Brugnano and Trigiante ([4], Chap. 11),
where the relation with classical Runge-Kutta schemes,
general linear methods (GLMs), and the block one-step
methods of Shampine and Watts [14] is also discussed.
Results concerning convergence and stability of block
boundary value methods are presented in Iavernaro
and Mazzia [8].

The Codes GAM and GAMD
A particular family of block BVMs, namely the block
generalized Adams methods (block GAMs), has been
implemented in a code, called GAM for the solution
of (1) subject to initial conditions. This code has now
been extended to the solution of differential algebraic
equations of the form:

My0.x/ D f .x; y.x// ; x 2 Œa; b� ; (5)

where M is a constant singular matrix and the code
which is applicable to (5) is called GAMD and is
available on the Web site Test set for IVP solvers [9].
The generalized Adams methods have the form:

yn � yn�1 D h

kX

jD0
ˇj fn�k1Cj ; n D k1; : : : ; N � k2;

(6)

where k1 D .kC1/=2 for odd k and k1 D k=2 for even
k. That is, they have all the ˛j’s, apart from ˛k1 and
˛k1�1, zero and the coefficients ˇj are chosen in order
to have a method of order k C 1. If k1 D k, we obtain
the standard Adams methods; if k1 < k, the formulas
use k2 D k � k1 “future” values for the approximation
of yn ([4], Chap. 6).

In the block implementation, the additional initial
and final methods are chosen using a different value
of k1, the last method is the standard Adams formula
of the same order. As an example, we describe the
method of order 3 (k D 2; k1 D 1; k2 D 1), used with
a block of size 4 and constant stepsize (implemented
in the code GAMD). This is defined by the following
equations:

yn � yn�1 D h

12
.5fn�1 C 8fn � fnC1/;

ynC1 � yn D h

12
.5fn C 8fnC1 � fnC2/;

ynC2 � ynC1 D h

12
.5fnC1 C 8fnC2 � fnC3/;

ynC3 � ynC2 D h

12
.�fnC1 C 8fnC2 C 5fnC3/:

Given yn�1, we compute, solving one nonlinear sys-
tem, the quantities ynCj ; j D 0; : : : ; 3. The computa-
tional effort is therefore of the same type as is the case
with an implicit Runge-Kutta method. The properties
of the methods depend on the size of the block and
on the stepsize used. The size of the block is usually
chosen in order to have a good procedure to control the
error and change the order and the stepsize of the block
scheme. The implementation techniques have been
analyzed in Iavernaro and Mazzia [7] where an ex-
haustive section of numerical tests has been included.
Numerical tests related to the code GAMD can be also
found in [9]. There are a number of properties that
make block BVMs attractive: the ease of obtaining, at
each step of the integration procedure, a representation
of the local truncation error that allows the definition of
an effective order changing rule (see [7]); the existence
of high order A-stable methods (block GAMs are an
example); and the possibility of performing the code
on parallel machines.

The Code TOM
The code TOM is designed for the numerical solution
of two-point BVPs. An important property that a nu-
merical scheme for the solution of BVPs should satisfy
is “Time Reversal Symmetry” (see [4], Chap. 9). That
is, it “must provide the same discrete approximation
on the interval Œa; b� when the variable x of the con-
tinuous problem is transformed into � D a C b � x

and the boundary conditions are changed accordingly.”
This property is important because BVPs have both
increasing and decreasing modes in the solution, and
the numerical methods should integrate forward and
backward without a preferential direction in time. The
BVMs that have the time reversal symmetry property
are symmetric schemes, that is, schemes for which
˛i D �˛k�i and ˇi D ˇk�i , with k odd and
k1 � 1D k2. For this reason, the code TOM implements
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symmetric BVMs generating, once the initial mesh has
been defined, a discrete problem of the form (4). The
most important classes of symmetric BVMs are the Top
Order Methods and the BS methods. The Top Order
Methods are derived by imposing the condition that
the general k-step linear multistep formulas (3) have
the highest possible order 2k. A complete description
of these methods with their stability properties can be
found in Brugnano and Trigiante ([4], Sect 7.4). The
BS methods are derived by imposing the condition
that the numerical solution of the general k-step linear
multistep formulas (3) is the same solution given by the
collocation method using the B-spline basis. The coef-
ficients are computed solving special linear systems,
and the boundary equations are derived using the not-
a-knot condition on the spline extension. An important
property of the BS methods is that they easily provide
a continuous extension using the B-spline basis which
has the derivatives globally continuous up to order k,
where k is the number of steps of the method. The
stability features have been studied in Mazzia et al. [11]
and the convergence properties of the continuous ex-
tension have been studied in Mazzia et al. [12], where
an economical strategy for the computation of the
spline coefficients has been introduced. As an example,
using constant stepsize, system (4) for the order 4 BS
method, k D 3; k1 D 2; k2 D 1 is:

g.y0; yN / D 0;
1

2
y2 � 1

2
y0 D h

6
.f2 C 4f1 C f0/;

1

6
yiC1 C 1

2
yi � 1

2
yi�1 � 1

6
yi�2 D

h

24
.fiC1 C 11fi C 11fi�1 C fi�2/;

i D 2; : : : ; N � 1;
1

2
yN � 1

2
yN�1 D h

6
.fN C 4fN�1 C fN /:

The most important computational aspects to be dealt
with, in order to construct a robust code for the solution
of BVPs, are the mesh selection strategy and the effi-
cient solution of nonlinear equations. The code TOM
implements a hybrid mesh selection strategy based
on conditioning (see [4] and [10] for more details),
and the nonlinear equations are solved using a quasi-
linearization strategy [12], that is, a sequence of linear
differential equation is solved to a prescribed toler-
ance. It is very efficient for the solution of singularly

perturbed problems and gives output information about
the conditioning and the stiffness of the problem.
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Boussinesq Equations
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Oslo, Norway

The Boussinesq equations described here are model
equations for propagation of long waves and should
not be confused with equations for stratified flow,
where the effect of stratification is retained only in the
buoyancy term, which are also sometimes named the
Boussinesq equations.

The Boussinesq equations are named after the
French scientist J. Boussinesq who derived a version
of the equations to find solutions for solitary waves on
a water surface [1]. Later, Boussinesq equations have
been presented in many different versions, and there is
no strict consensus concerning the use of “Boussinesq
equations” in relation to a single set of equations or
group of equations.

There are several basic assumptions for simpli-
fied descriptions for waves, such as small amplitude,
slowly varying medium, narrow band in the spectrum,
and large wavelength. For surface gravity waves, the
simplest form of long-wave equations is the shal-
low water equations which require that the waves are
much longer than the depth. This implies that the
pressure distribution is hydrostatic. The Boussinesq
equations extend the shallow water equations by in-
cluding the leading correction to hydrostatic pressure
due to the vertical acceleration, while nonlinearity is
retained, either approximately or fully. If we confine
ourselves to constant depth, h, and ignore effects like
viscosity, a common form of the Boussinesq equa-
tions for surface gravity waves may be expressed
as

@�

@t
D �r 	 f.hC �/vg ; (1)

@v
@t

C v 	 rv D �gr�C h2

3
r2 @v
@t
; (2)

where � is the surface elevation and v is the
depth-averaged horizontal velocity. Equation (1)
is the continuity equation (volume conservation),
while (2) is the momentum equation. The above
equation set is distinguished from the shallow

water equations by the last term on the right-
hand side of (2) which comes from the non-
hydrostatic part of the pressure and is denoted as
the dispersion term (see below). This particular
Boussinesq formulation was employed by Pere-
grine [4] in a study of the undular bore, presenting
the first numerical solutions of Boussinesq-type
equations.

Instead of the averaged velocity, v, the Boussinesq
equations may be expressed in terms of the velocity
at a specified vertical position or by a velocity
potential. This will lead to equations that may differ
in appearance as well as properties. In the last two
decades, it has also been common to optimize the
properties of the Boussinesq equations both through
the choice of variables and by inclusion of more
terms. Different varieties are sometimes associated
with specific names (e.g., Serre equations, Green-
Naghdi equations). If we assume unidirectional wave
propagation, the Boussinesq equations will lead to
the Korteweg-de Vries equation, which has played
a major role in the development of nonlinear wave
theory.

The shallow water equations and the Boussinesq
equations may be derived from the full theory for
potential flow, or the Euler equations of motions, as the
first and second level of approximation in a long-wave
perturbation scheme, respectively. Compared to the
more general descriptions, equations in the long-wave
realm, such as the Boussinesq equations, display a
much simpler structure. The equations are depth
integrated (averaged), which reduce the number
of dimensions by one and nonuniform geometry,
corresponding to a surface elevation or nonuniform
depth, enter the formulations only through variable
coefficients as shown in (1) and (2). As a consequence,
the Boussinesq equations are much more efficiently
modeled with numerical techniques than the more
general Euler equations of motion, for instance. The
presence of the rightmost term in (2) violates the purely
hyperbolic properties of the shallow water equation
and yields wave dispersion, in the sense that the
propagation speed is dependent on the wavelength.
For a periodic wave, the equation set (1) and (2)
prescribes the phase velocity within 5 % error for
wavelengths down to 3.3 times the depth. There
are improved Boussinesq equations in use which
may describe significantly shorter waves accurately,
while the KdV equation, for instance, displays poorer
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dispersion properties. The shallow water equations
((1) and (2) without the rightmost term of the latter)
predict a constant phase velocity equal to

p
gh

which require that the wavelength is larger than
11 times the depth to be within 5 % of the correct
result.

Unlike the closely related KdV equation, the
Boussinesq equations have not been an important
starting point for analytical analysis of nonlinear
waves. Since they may include nonlinearity, dispersion,
and variable depth, the Boussinesq equations are
a pragmatic option for numerical modeling in
oceanography and coastal engineering for cases
where the shallow water equations are inadequate
and the more general mathematical frameworks
are too demanding. Important examples are swells
and wind-generated waves in shoaling water and
certain kind of tsunami, in particular such that
are generated by slides. The Boussinesq equations
are generally solved by finite difference or finite
element techniques, and several standard models
are available, both as commercial and free soft-
ware.

There is a rich literature on Boussinesq-type
equations. A brief physical motivation for the
application of the Boussinesq equations is found
in Peregrine [5], while more modern and powerful
formulations can be found in Madsen [3] and Lynett
and Liu [2], for instance.

References
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Synonyms

Butcher series

Short Definition

Given a d -dimensional system of autonomous differ-
ential equations

d

dt
y D f .y/; (1)

where f is a smooth map from an open set U 
 R
d

to R
d , and a real parameter h, a B-series Bhf .˛; y/ is

a series in powers of h, indexed by rooted trees, of the
form

Bhf .˛; y/ D y C h˛. / f .y/C h2˛. / f 0.y/f .y/

Ch3
�
˛. / f 0.y/f 0.y/f .y/

C1

2
˛. /f 00.y/.f .y/; f .y//

�
C 	 	 	 ;

where f 0.y/ represents the Jacobian matrix of f .y/
with respect to y, and f 00.y/.z1; z2/ represents the
second Fréchet derivative of f at y acting on the
vectors z1; z2 2 R

d . Each B-series is determined

by its coefficients ˛. /; ˛. /; ˛. /; ˛. /; : : :, given as
a sequence of real numbers indexed by rooted trees

u 2 T D f ; ; ; ; 	 	 	 g. Usually, the parameter
h represents the step-length of a one-step numerical
integrator for the system (1).

For each sequence of coefficients ˛ W T ! R, the
B-series Bhf .˛; 	/ represents a family of (formal) near-
to-identity maps from U 
 R

d to R
d . In particular, for

any solution y.t/ of (1), y.t C h/ can be expanded as
a B-series Bhf .˛; y.t// with ˛. / D 1, ˛. / D 1=2,

˛. / D 1=6, ˛. / D 1=3, and more generally, ˛.u/ D
1=uŠ, where the factorial (also called density) uŠ of a
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rooted tree u is a positive integer to be defined below
in (13).

One step of y� D  hf .y/ of a Runge-Kutta method
applied to the system (1) can be expanded as a B-series
Bhf .˛; y/ whose coefficients ˛.u/ are uniquely deter-
mined from the parameters of the method. For instance,
one step y� D  hf .y/ of the implicit midpoint rule,
implicitly defined by y� D y C h f .1

2
.y C y�//, can

be expanded as Bhf .˛; y/ with ˛. / D 1, ˛. / D 1=2,

˛. / D 1=4, ˛. / D 1=4, and more generally, ˛.u/ D
21�juj, where juj denotes the number of vertices of the
rooted tree u 2 T . Besides Runge-Kutta methods,
many other numerical integrators of interest can also be
expanded as B-series (the so-called B-series methods).

In addition to B-series representing near-to-identity
maps, it is also useful to consider B-series without the
y term. Both types of B-series are usually treated in
a unified way by including an additional coefficient
˛.e/ 2 R for the “empty tree” e in the definition of
B-series,

Bhf .˛; y/ D ˛.e/ y C h˛. / f .y/

Ch2˛. /f 0.y/f .y/C 	 	 	

where ˛ W T [ feg ! R. In practice, one typically
considers B-series with either ˛.e/ D 1 (in which
case, Bhf .˛; y/ represents a near-to-identity map) or
˛.e/ D 0 (corresponding to B-series representing
vector fields).

The subscript hf in Bhf .˛; y/ is often dropped
from the notation, provided that it is clear from the
context. A fundamental result on B-series says that
the composition B.ˇ;B.˛; y// of two B-series is, if
˛.e/ D 1, again a B-series B.˛ˇ; y/ whose coeffi-
cients ˛ˇ.u/ can be obtained as polynomials of the
coefficients of the B-series B.˛; y/ and B.ˇ; y/. For
instance,

˛ˇ. / D ˛. /ˇ.e/C ˇ. /;

˛ˇ. / D ˛. /ˇ.e/C ˛. /ˇ. /C ˇ. /;

˛ˇ. / D ˛. /ˇ.e/C ˛. /ˇ. /C ˛. /ˇ. /C ˇ. /;

˛ˇ. / D ˛. /ˇ.e/C 2˛. /ˇ. /C˛. /2ˇ. /Cˇ. /:

(2)

That composition rule endows the set G of functions
˛ W T [ feg ! R with ˛.e/ D 1 corresponding
to near-to-identity B-series with a group structure (the
so-called Butcher group), whose neutral element 11 is

defined as 11.e/ D 1 and 11.u/ D 0 for all u 2 T
(so that Bhf .11; y/ � y). The inverse of ˛ 2 G
is well defined thanks to the triangular nature of the
composition formulae (2).

Description

Introduction
The concept of B-series was introduced by Hairer and
Wanner in [16], following the pioneering fundamental
work of John Butcher [2, 3] on the algebraic study of
order conditions of Runge-Kutta methods: In [2], the
expansion in powers of the step-length h of one step of
a Runge-Kutta method was analyzed in detail, and in
[3], some related algebraic structures were discovered,
in particular, a group structure G on the set RT of maps
˛ W T ! R (the so-called Butcher group), with a
subgroup GRK being isomorphic to the group (under
composition) of (equivalence classes of) Runge-Kutta
integration schemes. In [16], B-series (associated to
an arbitrary map ˛ 2 R

T [feg) were defined, where
it is shown that, (regardless of whether the B-series
correspond to Runge-Kutta methods or not,) the com-
position of two B-series with ˛.e/ D 1 can be obtained
in terms of the composition law in the Butcher group.
More specifically, that for each ODE (1), the definition
of B-series Bhf .˛; y/ with ˛.e/ D 1 gives a group
homomorphism from the Butcher group on R

T to the
group of formal near-to-identity maps ˚h W Rd ! R

d .
It should be mentioned (as noted in [11]) that the

Butcher group is actually a group scheme, and thus
equivalent to a commutative Hopf algebra. In the past
few years, such a Hopf algebra turned out to have far-
reaching applications in several areas of mathematics
and physics. The interested reader should consult [1]
for a nice exposition of the different contexts where
such algebraic structure appears.

B-series and its generalizations play a central role
in the numerical analysis of ordinary differential equa-
tions as they may represent most numerical methods
for solving the initial value problem associated with
(1). They are a convenient tool to derive the order con-
ditions of most families of numerical integration meth-
ods, and analyse several aspects of the accuracy and
qualitative features of numerical integrators. The class
of methods that can be expanded as B-series, include,
in addition to Runge-Kutta schemes, multi-derivative
Runge-Kutta methods, Rosenbrock methods, and other
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classes of methods requiring partial derivatives of f
can also be expanded as B-series.

The concept of B-series is a powerful tool that has
been successfully used in different contexts: The order
of convergence of the iterative solution of implicit
Runge-Kutta methods [20], enhancement of integrators
by processing techniques [5], symplectic integrators
[6, 13, 25], conservation of first integrals and volume
preservation [8, 9, 12, 19]. It is worth noting that the
applicability of B-series is not restricted to one-step
methods: B-series are very useful in the derivation
of order conditions of general linear methods (see
for instance [17], Sect. III.8). Although B-series are
not at all required for the order conditions of linear
multistep methods, they possess an underlying one-
step method [21] that can be expanded as a B-series,
which is useful to study their long term behavior [15].

Order Conditions of Runge-Kutta Methods and
B-Series
Consider a Runge-Kutta (RK) method with s stages
specified by a RK tableau

a11 	 	 	 a1s
:::
: : :

:::

as1 	 	 	 ass
b1 	 	 	 bs

(3)

of real constants.
When applied to the system (1), the method corre-

sponding to (3) advances the numerical solution from
time tk�1 to time tk D tk�1 C h through the relation
yk D  hf .yk�1/, where

 hf .y/ D y C h

sX

iD1
bif .Yi /; (4)

and the vectors Yi (the so-called internal stages) are
determined by the relations

Yi D y C h

sX

jD1
aij f .Yj / (5)

for i D 1; : : : ; s. Such a RK method is said to be of
order r � 1 if for any solution y.t/ of and arbitrary
smooth system of ODEs (1),

 hf .y.t// � y.t C h/ D O.hrC1/ as h ! 0:

It is convenient to write bi D asC1;i , i D 1; : : : ; s,
so that the expansion of  hf .y/ D YsC1 in powers of
h can be obtained simultaneously with the expansions
of Yi , i D 1; : : : ; s. It is straightforward to get that

Yi D y C h
� sX

jD1
aij

�
f .y/C h2

� sX

j;kD1
aij ajk

�

f 0.y/f .y/C O.h3/:

as h ! 0. By substitution of the above expression into
the multivariate Taylor expansion

f .Yi / D f .y/C f 0.y/.Yi � y/

C1

2
f 00.y/.Yi � y; Yi � y/C 	 	 	 ; (6)

one arrives at

f .Yi / D f .y/C h
� sX

jD1
aij

�
f 0.y/f .y/

Ch2
� sX

j;kD1
aij ajk

�
f 0.y/f 0.y/f .y/

Ch2

2

� sX

jD1
aij

�2
f 00.y/.f .y/; f .y//

CO.h3/;

and finally, by substitution of f .Yi / into (5), one
obtains

Yi D y C h
� sX

jD1
aij

�
f .y/

Ch2
� sX

j;kD1
aij ajk

�
f 0.y/f .y/

Ch3
0

@
� sX

j;k;lD1
aij ajkakl

�
f 0.y/f 0.y/f .y/

C1

2

� sX

j;k;lD1
aij ajkajl

�
f 00.y/.f .y/;

f .y//

1

AC O.h4/:
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Proceeding this way, one can obtain truncated expan-
sions in powers of h of higher order, which can be
represented as

Yi D y C
n�1X

kD1
hk
X

u2Tk

˚i .u/

�.u/
F.u/.y/C O.hn/; (7)

where Tk denotes the set of rooted trees with k vertices,
and for each rooted tree u 2 T , �.u/ is a positive
integer acting as a normalization factor (to be appro-
priately chosen later on in (8)), and the so-called ele-
mentary differential F.u/ of u is a map from U 
 R

d

to R
d obtained from f and its partial derivatives:

F. /.y/ D f .y/, F. /.y/ D f 0.y/f .y/, F. /.y/ D
f 0.y/f 0.y/f .y/, F. /.y/ D f 00.y/.f .y/; f .y//,
and more generally the elementary differentials F.u/
for arbitrary rooted trees u 2 T are defined as follows:
Let us denote by u D Œu1 	 	 	 um� the rooted tree that is
obtained by grafting the root of each u1; : : : ; um 2 T D[

k�1
Tk to a new root. The elementary differential F.u/

associated to the rooted tree u D Œu1 	 	 	 um� evaluated
at y 2 U 
 R

d is given by

F.u/.y/ D f .m/.y/.F.u1/.y/; : : : ; F .um/.y//;

where f .m/.y/.z1; : : : ; zm/ denotes the mth order
Fréchet derivative of f at y 2 U 
 R

d acting on
the vectors z1; : : : ; zm 2 R

d .
It is straightforward to check that substitution of

(7) in the multivariate Taylor expansion (6) gives the
expansion

f .Yi / D
nX

kD1
hk�1 X

u2Tk

˚ 0
i .u/

�.u/
F.u/.y/C O.hn/;

where ˚ 0
i . / D 1 and for each rooted tree with

more than one vertex, u D Œu1 	 	 	 um�, ˚ 0
i .u/ D

�.u/˚i .u1/ 	 	 	˚i.um/, where, for an arbitrary choice
of the normalization factors �.u/, �.u/ is a rational
number for each rooted tree u. The normalization
factors �.u/ in the standard definition of B-series are
uniquely determined by requiring that �.u/ D 1 for
all rooted trees u 2 T , which gives �. / D 1,
and if u1; : : : ; um 2 T are distinct rooted trees and
l1; : : : ; lm � 1,

�.Œul11 	 	 	 ulmm �/ D l1Š 	 	 	 lmŠ�.u1/l1 	 	 	�.um/lm : (8)

The positive numbers �.u/ thus defined, the so-called
symmetry coefficients, have a simple combinatorial
interpretation: Given a rooted tree u 2 Tn, fix an
arbitrary labeling of its vertices from 1 to n. Then the
symmetry coefficient �.u/ is the number of permuta-
tions of .1; : : : ; n/ that leave that labeled rooted tree

invariant. In particular, we have �. / D �. / D �. / D
1, and �. / D 2.

We have now the elements and the motivation to
define a B-series: Given ˛ 2 R

T [feg, the B-series
Bhf .˛; y/ is defined as the following formal series

Bhf .˛; y/ D ˛.e/ y C
1X

nD1
hn
X

u2Tn

˛.u/

�.u/
F.u/.y/

D ˛.e/ y C
X

u2T

hjuj

�.u/
˛.u/ F.u/.y/; (9)

where juj denotes the number of vertices of the rooted
tree u.

From the preceding discussion, we have that
Yi ; f .Yi /;  hf .y/ corresponding to a RK method given
by (4) and (5) can be expanded as B-series:

Yi D Bhf .˚i ; y/; hf .Yi / D Bhf .˚
0
i ; y/;

 hf .y/ D Bhf

 
sX

iD1
bi˚

0
i ; y

!
;

where ˚i.e/ D ˚ 0
i . / D 1, ˚ 0

i .e/ D 0, and for u D
Œu1 	 	 	 um�,

˚i.u/ D
sX

jD1
aij ˚

0
j .u/; ˚ 0

i .u/ D ˚i.u1/ 	 	 	˚i.um/:
(10)

Clearly, the arguments followed above to expand
hf .Yi / in terms of the B-series expansion Bhf .˚i ; y/
of Yi also apply when replacing Bhf .˚i ; y/ by an
arbitrary B-series Bhf .˛; y/ provided that ˛.e/ D 1,
that is,

hf .Bhf .˛; y// D Bhf .˛
0; y/; (11)

where

˛0.e/ D 1; ˛0.Œu1 	 	 	 um�/ D ˛.u1/ 	 	 	˛.um/: (12)

In particular, since for any solution y.t/ of (1) it holds
that
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y.t C h/ D y.t/C h

Z 1

0

f .y.t C sh//ds;

(12) implies that y.tCh/ can be expanded as a B-series
y.tCh/ D Bhf .˛; y.t//, where ˛.e/ D 1, and ˛.u/ D
˛0.u/=juj. That is, ˛.u/ D 1=uŠ, where

Š D 1; uŠ D juj u1Š 	 	 	 umŠ; where u D Œu1 	 	 	 um�:
(13)

This leads to the order conditions of RK methods: the
RK method (4) and (5) is of order n if and only if n is
the largest positive integer satisfying that

sX

iD1
bi˚

0
i .u/ D 1=uŠ for all u 2

n[

kD1
Tk;

where the coefficients ˚ 0
i .u/ are recursively given by

(10) in terms of the parameters aij of the method.

Composition of B-Series
The fundamental theorem of composition of B-series
due to Hairer and Wanner [16] can be stated as follows:
Given ˛; ˇ 2 R

T [feg with ˛.e/ D 1, there exists ˛ˇ 2
R

T [feg such that for any system (1),

Bhf .ˇ;Bhf .˛; y// D Bhf .˛ˇ; y/; (14)

where the coefficients ˛ˇ.u/ for rooted trees u 2 T can
be obtained as ˛.u/ˇ.e/ C ˇ.u/ plus a sum of terms
of the form ˛.wm/ 	 	 	˛.w1/ˇ.v/ (with jvj C jw1j C
	 	 	 C jwmj D juj, v;w1; : : : ;wm 2 T ) obtained by
considering all possible ways of pruning the rooted tree
u, where v is the rooted tree that remains after pruning,
and w1; : : : ;wm corresponds to the subtrees that are
removed. In (2), the coefficients ˛ˇ.u/ for rooted trees
with juj � 3 are displayed.

We next give some additional notation that will be
useful to write the coefficients ˛ˇ.u/ from the values
of ˛ and ˇ in terms of partially ordered sets (posets)
representing rooted trees. The diagrams representing
rooted trees in a plane determines a poset U of its
vertices having only one minimal vertex (the root of
U ). Actually, the set of rooted trees can be defined as a
subset of isomorphism classes of finite posets. Given
two subsets V and W of a poset U , we will write
V � W if there is no pair .x; y/ 2 V � W such that
x < y in the poset U . Given a poset U , we write

.V1 � V2 � 	 	 	 � Vm/ 
 U (15)

if V1; : : : ; Vm are subposets of U satisfying Vi � ViC1
and, as a set, U is the disjoint union of V1; : : : ; Vm. In
particular, we have that .; � U / 
 U and .U � ;/ 

U . Otherwise, if the poset U represents a rooted tree
u and .W � V / 
 U , then the poset W represents
a collection of rooted trees w1; : : : ;wm (obtained from
u after a pruning process), and V represents a rooted
tree v (the rooted tree that remains from u after being
pruned). The coefficients ˛ˇ.u/ in (14) can now be
written as follows: Given a rooted tree u, let U be a
poset representing it, then

˛ˇ.u/ D
X

.W�V /	U
˛.W /ˇ.V /; (16)

where ˇ.V / D ˇ.v/ if the poset V represents the
rooted tree v, and ˛.W / D ˛.w1/ 	 	 	˛.wm/ if the poset
W represents the forest with m (possibly repeated)
rooted trees w1; : : : ;wm.

It can be shown [3] that the subset of ˛ 2 R
T [feg

with ˛.e/ D 1 has a group structure G, the so-called
Butcher group, whose neutral element 11 is defined as
11.e/ D 1 and 11.u/ D 0 for all u 2 T . The definition of
B-series Bhf .˛; y/ for ˛ 2 G gives a group homomor-
phism from the Butcher group on R

T to the group of
formal near-to-identity maps ˚h W Rd ! R

d .

Changes of Variables and Preservation of First
Integrals
Consider a change of coordinates y D C. Oy/, so that
the ODE system (1) reads in the new variables

d

dt
Oy D Of . Oy/; where Of . Oy/ D C 0. Oy/�1f .C. Oy//;

where C 0. Oy/ denotes the Jacobian matrix of C. Oy/.
The question arises of whether B-series Bhf .˛/ are
covariant with respect to that change of variables, in
the sense that, for each ˛ 2 G,

Bhf .˛; C. Oy// � C.B
h Of .˛; Oy//: (17)

The answer to that question is positive provided that
the change of variables y D C. Oy/ is an affine map.
However, the set of elements ˛ 2 G satisfying (17) for
arbitrary smooth vector fields f and arbitrary smooth
change of variables y D C. Oy/ is very restricted: They
are such that
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˛.u/ D �juj

uŠ
8u 2 T ; (18)

for some � 2 R, that is, for any solution y.t/ of (1),
Bhf .˛; y.t// coincides with the expansion in powers of
h of y.tC�h/. Moreover, it can be proven that, if for a
given ˛ 2 G, (17) holds for arbitrary smooth vector
fields f and arbitrary quadratic change of variables
y D C. Oy/, then ˛ is of the form (18).

The covariance property (17) for affine changes of
variables in particular implies that if the original (1)
has some linear first integral, then it is preserved by
any near-to-identity B-series: That is, if I.y/ D dT y

is such that dT f .y/ � 0, then for all ˛ 2 G,
dT Bhf .˛; y/ � y.

More general first integrals I.y/ of the original
system (1) are not preserved by arbitrary B-series. The
only B-series that preserve arbitrary first integrals of
(1) are those satisfying (18). This is also so if one
only requires the preservation of arbitrary cubic first
integrals [9].

Although quadratic first integrals I.y/ D dT y C
yTQy of the original system (1) are not preserved
by arbitrary B-series, there is a subset GS 
 G
(actually, a subgroup of G) such that, for all ˛ 2 GS ,
I.Bhf .˛; y// � y provided that I.y/ is a quadratic
first integral of (1). In order to define the subgroup
GS 
 G, let us first introduce a binary operation ı on
T , the so-called Butcher product, by setting ı u D Œu�
and Œu1 	 	 	 um� ı u D Œu1 	 	 	 umu� (thus, for u0; u00 2 T ,
u D u0 ı u00 is the rooted tree obtained by grafting u00 to
the root of u0). Then,

GS D f˛ 2 G W 8.u; v/ 2 T � T ; ˛.u ı v/C ˛.v ı u/

D ˛.u/˛.v/g: (19)

Such a subgroup GS includes the elements ˛ 2 G
satisfying (18), but it is not limited to them. It can
be seen that the set GS can be identified with the
set of maps FT ! R, where FT is the set of so-
called non-superfluous free trees [6]. Free trees are
trees with no vertex distinguished as root, and a free
tree is superfluous if it can be obtained from two copies
of some rooted tree by adjoining their roots with a new
edge.

Modified Equations for B-Series Methods
Given ˛ 2 G representing an integration method
that, when applied to the ODE (1) with solution
y.t/ for a given initial value y.0/ D y0, provides
the approximations yn � y.hn/ at t D nh in a
step-by-step manner as

ynC1 D Bhf .˛; yn/; n D 0; 1; 2; : : : ; (20)

motivated by the aim of analyzing the errors jjy.nh/�
ynjj, we seek a modified ODE of the form

d Qy
dt

D Qf . QyIh/; Qy.0/ D y0; (21)

where the right-hand side of the ODE admits an expan-
sion in powers of h of the form

Qf .yIh/ D f0.y/C hf1.y/C h2f2.y/C 	 	 	 ; (22)

whose solution Qy.t/ satisfies that

Qy.nh/ D yn for all n: (23)

The long-term behavior of the errors jjy.nh/ � ynjj D
jjy.nh/ � Qy.nh/jj could then be studied by analyzing
the evolution of the distance jjy.t/ � Qy.t/jj between
the solutions of the original equation and the modified
equation with the same initial value.

The modified ODE is expected to be a perturbation
of the ODE (1) parametrized by the discretization
parameter h. In particular, if  hf .y/ is a r th order one-
step method for (1), then Qf0.y/ D f .y/ and Qfj .y/ D
0, j D 1; : : : ; r � 1.

Such a modified ODE (21) and (22) can be derived
as follows: If Qy.t/ satisfies (23) for the numerical
solution (20) given by a one-step method represented
by a given ˛ 2 G, so that

Qy.nh/ D Bhf .˛
n; y0/; for all n; (24)

then, application of polynomial interpolation with
nodes t D nh, n D 0; : : : ; N , for an arbitrarily high
positive integerN can be used to show that the solution
of (21) can be expanded in powers of h as

Qy.t/ D Bhf .�.t=h/; y0/

D y0 C �.t=h/. / f .y0/C h�.t=h/. / f 0.y0/f .y0/
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Ch2
�
�.t=h/. / f 0.y0/f 0.y0/f .y0/

C1

2
�.t=h/. / f 00.y0/.f .y0/;f .y0//

�
C	 	 	 ;

where for each u 2 T , �.�/.u/ is a polynomial of
degree juj in � uniquely determined by the conditions

�.0/.u/ D 0; �.1/.u/ D ˛.u/; �.2/.u/

D ˛2.u/; : : : ; �.juj/ D ˛juj.u/: (25)

A similar interpolatory argument can be used to show
that

�.�/�.� 0/ D �.� C � 0/ (26)

for arbitrary real numbers � and � 0. Indeed, the coef-
ficient for a given rooted tree u of both �.�/�.� 0/ and
�.� C � 0/ are polynomials in the two variables � and
� 0, so that the fact that �.n/�.n0/ D ˛n˛n

0 D ˛nCn0 D
�.n C n0/ for arbitrary non-negative integers n and n0
implies (26) for all � and � 0.

Application of the linear operator d
d� 0

ˇ̌
� 0D0 on both

sides of (26) shows that � W R ! G satisfies the initial
value problem

d

d�
�.�/ D �.�/ˇ; �.0/ D 11: (27)

(11 being the neutral element of the Butcher group G,
with 11.u/ D 0 for all u 2 T ,) where ˇ.e/ D 0, and for
all u 2 T ,

ˇ.u/ D d

d�

ˇ̌
ˇ̌
�D0

�.�/.u/: (28)

From (27) one gets that Qy.t/ D Bhf .�.t=h/; y0/ is the
solution of the modified equation (21) with

Qf .yIh/ D h�1Bhf .ˇ; y/ (29)

D ˇ. / f .y/C hˇ. / f 0.y/f .y/

Ch2
�
ˇ. / f 0.y/f 0.y/f .y/

C1

2
ˇ. / f 00.y/.f .y/; f .y//

�
C 	 	 	 ;

as Bhf .�.0/; y0/ D Bhf .11; y0/ D y0 and

d

dt
Qy.t/ D d

dt
Bhf .�.t=h/; y0/

D 1

h
Bhf .�.t=h/ˇ; y0/ D 1

h
Bhf .ˇ; Qy.t//:

It can be shown that the interpolating conditions
(25) imply the following explicit formula for �.t/.u/
for u 2 T : Adopting the notation (15) used in the com-
position formula (16), given a posetU representing the
rooted tree u,

�.�/.u/ D
jujX

mD1

�.� � 1/ 	 	 	 .� �mC 1/

mŠ

X

.Vm�


�V1/	U
˛.V1/ 	 	 	˛.Vm/;

where in the inner summation only non-empty posets
V1; : : : ; Vm are considered. This, together with (28),
implies that ˇ.e/ D 0, and

ˇ.u/ D
jujX

mD1

.�1/mC1

m

X

.Vm�


�V1/	U
˛.V1/ 	 	 	˛.Vm/:

(30)
In particular,

ˇ. / D ˛. /; ˇ. / D ˛. / � 1

2
˛. /2;

ˇ. / D ˛. /� ˛. / ˛. /C 1

3
˛. /3;

ˇ. / D ˛. /� ˛. / ˛. /C 1

6
˛. /3:

The explicit formula (30) for the coefficients ˇ.u/ of
the modified equations is closely related to the one
originally introduced in [13]. An alternative recursive
approach was considered in [7], which only makes use
of the composition formula (16) and the abstract initial
value problem (27): The coefficients for �.�/ and ˇ
can be recursively obtained from the coefficients of ˛
by considering for each u 2 T ,

˛.u/ D ˇ.u/C
Z 1

0

.�.�/ˇ � ˇ/.u/ d�;

�.�/.u/ D
Z �

0

.�.� 0/ˇ/.u/ d� 0:

(Observe that, since ˇ.e/ D 0, .�.�/ˇ � ˇ/.u/ only
depends on coefficients �.�/.v/ and ˇ.v/ with jvj <
juj.)
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It should be stressed that the series in powers of
h (22) of the right-hand side of the modified ODE
(21) is in general divergent, even when the B-series
expansion (20) of the integration method is convergent
(for real analytic f , and sufficiently small h). For rigor-
ous results based on modified equations, one typically
considers a truncated version

d Qy
dt

D
NX

kD1
hk�1 X

u2Tk

ˇ.u/

�.u/
F.u/. Qy/; Qy.0/ D y0;

(31)

of (21) and estimates the distances jj Qy.nh/ � ynjj
between the numerical solution and the solution of the
truncated modified ODE.

It is interesting to note that, given an arbitrary ˇ 2
R

T [feg with ˇ.e/ D 0, there is a unique solution
� W R ! G of the initial value problem (27), which
may be denoted by �.�/ D exp.�ˇ/. In particular,
the exact solutions y.t/ of (1) admit the expansion
y.t/ D Bhf .exp.t=h ı/; y.0//, where ı 2 R

T [feg is
defined as

ı.u/ D
�
1 if u D ;

0 otherwise,
(32)

so that f .y/ D h�1Bhf .ı; y/. Considering the ODE
(27) for ˇ D ı, one gets that, for each u 2 T with
u D Œu1 	 	 	 um�, u1; : : : ; um 2 T ,

d

d�
�.�/.u/ D �.�/.u1/ 	 	 	�.�/.um/; �.0/.u/ D 0;

which leads to �.�/.u/ D exp.�ı/.u/ D � juj=uŠ, where
the factorial uŠ of the rooted tree u is defined in (13).

Preservation of Geometric Properties of
B-Series Methods
If a given B-series method represented by some ˛ 2
G is applied to a system (1) having some geometric
properties, then it would be desirable that the corre-
sponding modified equation (29) and (30) also shares
that property.

For instance, if (1) is divergence-free (so that
its flow is volume preserving in phase space), then
one would like that the modified equation of a given
B-series method is also divergence-free. In this sense,
as shown independently in [19] and [8], given ˛ 2 G,
if the modified equation (21) given by (29) and (30) is

divergence-free for arbitrary divergence-free systems
(1), then ˛ is necessarily of the form (18), that is,
it belongs to the one-parameter group fexp.�ı/ W
� 2 Rg 
 G (precisely as in the case of ˛ 2 G
preserving cubic invariants, or being covariant with
respect to quadratic changes of variables), where
ı 2 R

T [feg given in (32) corresponds to the B-series
expansion of the right-hand side of the original ODE
system (1).

A particular case of divergence-free systems are
Hamiltonian systems, that is, 2d -dimensional systems
(1) with f .y/ D J�1rH.y/, where H W U 
 R

2d !
R is the Hamiltonian function, and

J D
�
0d Id

�Id 0d

�
:

The modified equations corresponding to a one-step
method  h is Hamiltonian if and only if  h is a
symplectic map for each h, and the B-series method
represented by ˛ 2 G is symplectic when applied
to arbitrary Hamiltonian systems if and only if [6]
˛ 2 GS , where GS is the subgroup of G defined in
(19). If instead of requiring that the modified ODE
of a B-series method ˛ 2 G applied to an arbitrary
Hamiltonian systems is Hamiltonian, we require the
milder condition that the modified system of equations
is divergence-free, then [8] we also have that ˛ 2 GS .
Another property shared by all Hamiltonian systems
is that the Hamiltonian function H.y/ (the energy of
the system) is a first integral. One may wonder for
which ˛ 2 G it is guaranteed that the energy of
the original system is a first integral of the modified
equations for arbitrary Hamiltonian systems. In turns
out [9, 12] that this requirement is equivalent to ˛

belonging to another subgroup GH of G. As shown
in [9], GH \ GS D fexp.� ı/ W � 2 Rg, so there
is no B-series method (apart from the exact solution
method) that is simultaneously energy-preserving and
volume-preserving when applied to arbitrary Hamilto-
nian systems.

Although B-series methods ˛ 2 GS do no preserve
the energy exactly when applied to Hamiltonian sys-
tems, they feature a near-conservation of the energy:
Since the modified system (21) (and thus also its
truncated version (31)) is in this case Hamiltonian,
with a nearby Hamiltonian function (that is a pertur-
bation of order O.hr / for r th order methods) that is
preserved exactly, the original Hamiltonian function
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is nearly conserved (up to an error of order O.hr /)
along the solutions of the truncated modified ODE
(31). Rigorous results for the near energy-preservation
of the numerical solution [18] are obtained by choos-
ing appropriate h-dependent truncation indices N D
N.h/ in (31). We can conclude that, when numerically
solving Hamiltonian systems by B-series integrators,
methods ˛ 2 Gs will be more appropriate than methods
˛ 2 GH in most practical situations, since the for-
mer automatically gives rise to symplectic (and thus
volume-preserving) maps that preserve all quadratic
first integrals of the original Hamiltonian system, and
in addition nearly preserves the energy over long in-
tegration intervals, while the later only guarantees the
exact preservation of the energy.

It is interesting to note that, given ˛ 2 GS , there
exists � 2 G such that ��1˛� 2 GH , and thus, the
B-series method ˛ is (formally) conjugate to an energy-
preserving method [9]. Hence, N̨ D ��1˛� is energy
preserving and conjugate to a method � N̨��1 2 GS that
is symplectic and preserving quadratic first integrals.
In this sense, an energy-preserving method that is
conjugate-to-symplectic would have similar favorable
properties than symplectic methods. It is important to
note that such a � 2 G will in general give rise to
divergent B-series Bhf .�; y/ even when Bhf .˛; y/ is
convergent (which is the case when ˛ corresponds to
a Runge-Kutta method, f is real analytic, and h is
sufficiently small).

Cross-References

�Composition Methods
�Nyström Methods
�Order Conditions and Order Barriers
�Runge–Kutta Methods, Explicit, Implicit
� Splitting Methods
� Symmetric Methods
� Symplectic Methods
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Short Definition

Burgers equation is the scalar partial differential equa-
tion

ut D �uxx � uux; (B)

where x 2 X � R, t � 0, and u W X � R
C ! R.

The parameter � � 0 is typically referred to as the
viscosity, due to the connection between this equation
and the study of fluid dynamics. When � > 0, it is often
referred to as the viscous Burgers equation, and when
� D 0 it is often referred to as the inviscid Burgers
equation. The constant �1 in front of the term uux is
due to convention – its exact value is not important,
as long as it is nonzero, since it can be adjusted by
rescaling space and time.

Description

Origin and Motivating Application
Burgers equation was proposed as a model of turbulent
fluid motion by J. M. Burgers in a series of several

articles, the results of which are collected in [2]. Al-
though (B) is a special case of the system he originally
described, it is this equation that has come to be known
as Burgers equation. It is important in a variety of
applications, perhaps most notably as a simplification
of the Navier-Stokes equation, which models fluid dy-
namics. In addition, (B) is used as a prototypical PDE
to rigorously develop, in a relatively simple setting,
many of the fundamental tools used to analyze general
classes of PDEs. For example, when � D 0 Burgers
equation is one of the simplest nonlinear conservation
laws, and when � > 0 it is one of the simplest nonlinear
dissipative PDEs, due to the resulting decay of energy.
With the addition of stochastic forcing, it has played
an important role in the theoretical development of
stochastic PDEs [11].

Moreover, Burgers equation appears as a normal
form, meaning that it describes the behavior, at least
qualitatively, of a much larger class of equations. For
example, it arises in the study of �Pattern Formation
and Development, in the context of modulations of
spatially periodic waves [4]. Furthermore, the diffusion
wave and viscous rarefaction wave, described below,
can be used to characterize the large-time behavior of
more general scalar viscous conservation laws [9]. This
is related to the fact that the term uux is critical, in the
sense that it lies on the boundary between nonlinear
terms that cause blowup and those whose effect can be
absorbed by the diffusive decay induced by the term
uxx [1].

Behavior of Solutions
The behavior of solutions to (B) and the mathematical
tools used in its analysis depend upon whether one
considers the inviscid (� D 0) or viscous (� > 0)
case. Only the key properties are summarized here.
Technical details are avoided to the extent possible,
and the focus is on the domain X D R, which is the
most widely studied. For a concise yet more detailed
account of both the inviscid and viscous cases, within
the context of conservation laws, see [9]. For more
information on the rigorous PDE theory that is relevant
for the two cases, see [5] and [6], respectively.

Inviscid Case
When � D 0, Burgers equation is a nonlinear hyper-
bolic conservation law. A key property of solutions is
that they can develop discontinuities and, as a result,

http://dx.doi.org/10.1007/978-3-540-70529-1_78
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the derivatives that appear in (B) are not well defined in
the usual sense. Therefore, to make the following state-
ments rigorous, the theory of weak solutions, meaning
functions that solve an integral form of Burgers equa-
tion, is required.

For a large class of initial data, the resulting behav-
ior is determined by phenomena referred to as shocks
and rarefaction waves. The simplest such setting is if
the initial data is given by

u.x; 0/ D
(

u� if x < 0

uC if x > 0;

which is known as the Riemann problem. The Lax
entropy condition then states that, if u� > uC, the
solution is then given by the discontinuous shock

u0shock.x; t/ D
(

u� if x < st

uC if x > st
; s D 1

2
.uC C u�/;

where the speed s is determined in relation to
the size of the discontinuity and the nonlinearity by
the Rankine-Hugoniot condition. If instead u� < uC,
the solution is the continuous rarefaction wave

u0rarefaction.x; t/ D

8
<̂

:̂

u� if x < u�t
x=t if u�t < x < uCt:
uC if uCt < x

When u� D uC the solution is constant. If the initial
condition is more complicated, then the solution will
evolve toward an appropriate combination of shocks
and rarefaction waves, and may also involve another
explicit solution known as an N-Wave, due to its
resemblance of an (upside-down) N.

Viscous Case
When � > 0, (B) is an example of a nonlinear
dissipative equation. For a large class of initial data
solutions exist and are smooth. Roughly speaking, their
behavior will be determined by whether or not the
initial data is localized: limx!˙1 u.x; 0/ D 0. If this
holds with sufficiently fast convergence, the solution
will approach as t ! 1 the explicit solution known as
the Burgers kernel, or diffusion wave

G.x; t IM/ D
Mp
4��t

e� x2

4�t

1 � 1
2�

R x
�1

Mp
4��t

e� y2

4�t dy
;

M D 2�
�
1 � e� 1

2�

R
R

u.x;0/dx
�
;

which is essentially a nonlinear Gaussian. Similarly
if limx!˙1 u.x; 0/ D u1, then the solution will
approach the sum of a diffusion wave and the con-
stant u1. If instead limx!˙1 u.x; 0/ D u˙ with
sufficiently fast convergence, the solution will ap-
proach a smooth version of the rarefaction wave or
the shock, with the Lax entropy condition again deter-
mining which will emerge. The viscous shock is given
explicitly by

u�shock.x; t I x0/ D .uC C u�/=2� ..uC � u�/=2/

tanh
	
.uC � u�/.x � st � x0/=.4�/



; u� > uC;

where the speed s is as defined above and the position
x0 is chosen so that

R
R
Œu.x; 0/ � u�shock.x; 0I x0/�dx D

0. An explicit formula for the viscous rarefaction
wave also exists, but it is more involved [9]. In all
cases, the fact that mass is conserved,

R
R

u.x; t/dx DR
R

u.x; 0/dx, plays an important role in the dynamics.
One way to derive these, as well as other, results is

via the change of variables

U.x; t/ D e� 1
2�

R x
�1

u.y;t/dy;

u.x; t/ D �2�@x logŒU.x; t/�;

which is referred to as the Hopf-Cole (or Cole-Hopf)
transformation [3, 7]. As long as the transformation is
well defined, U will solve the heat equation, Ut D
�Uxx, and thus have the explicit solution U.x; t/ D
.4��t/�1=2

R
R

expŒ�.x � y/2=.4�t/�U0.y/dy. Invert-
ing the transformation leads to an explicit formula for
the solution to (B). In some cases, it may be useful to
alter the change of variables slightly, for example, by
adjusting the domain of integration in the definition
of U or using the related transformation U.x; t/ D
u.x; t/e� 1

2�

R x
�1

u.y;t/dy .

Vanishing Viscosity Limit
In certain situations, it is of interest to determine how
solutions to the viscous equation are related to those of
the inviscid equation. For example, if u�.x; t/ denotes
the solution to (B) for viscosity �, in what sense, if at



Burgers Equation 167

B

all, does lim�!0 u�.x; t/ D u0.x; t/? This is poten-
tially relevant because solutions to the viscous equation
are unique, whereas they are not in the inviscid case.
Since any real system would have at least some dissi-
pation, the physically relevant inviscid solutions should
be those that can be approximated by viscous solutions
[10]. In addition, when � is positive but small, the
qualitative behavior of solutions is initially determined
by the inviscid equation, and the viscous dynamics in
some sense only appears after an exponentially long
time [8].
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Short Definition

Calcium dynamics is a term entailing the rigorously
regulated spatiotemporal fluctuations of intracellular
calcium concentration, which enable the use of calcium
ions for diverse signalling purposes.

Description

Ubiquitous Calcium
Calcium ions .Ca2C/, together with phosphatase ions,
are the most important signal messengers in eukaryotic
cells. Ca2C is responsible for regulating a huge vari-
ety of cellular processes ranging, for example, from
motility to transcription, which in the larger scale
enable/regulate muscle contraction and interpretation
of genetic rules in the DNA, respectively [1].

Calcium Transport
Cells utilize a large portion of their energy for
maintaining steep gradients between the Ca2C
concentrations (in the range of) in the three
principal compartments: (1) external (millimolar), (2)
cytosolic (100 nanomolar), and (3) intracellular stores
(millimolar). This tightly regulated homeostasis is the
groundstone for effective use of Ca2C as a signalling
ion. That is, based on the steep gradients, Ca2C
concentration can be adjusted rapidly and locally, using
the wide variety of transport mechanisms presented in
Fig. 1.

The low cytosolic Ca2C level is achieved by bal-
ancing the external leak of Ca2C by constant removal
via pumps and exchangers in the plasma membrane.
The brief bursts of Ca2C, which are responsible for
cell activation, are initiated by opening of either Ca2C
channels in the plasma membrane or Ca2C release
channels in the membrane of intracellular Ca2C stores,
depending on the cell type. For the cell to return
to its resting state and to be ready for next activa-
tion, the cytosolic Ca2C concentration needs to be
restored to the resting level by pumping Ca2C back
either to the external space or intracellular stores. The
relative contribution of these mechanisms to influx
and efflux of calcium to and from the cytosol varies,
depending on the cell type and, for example, level of
activity.

In addition to active transport, Ca2C concentration
is also affected by Ca2C binding and unbinding pro-
teins (buffers), both in cytosol and intracellular stores.
Buffers have different Ca2C affinities, that is, tenden-
cies to bind Ca2C, and are either mobile or immobile,
thus affecting both Ca2C diffusion and local Ca2C
concentration gradients.

© Springer-Verlag Berlin Heidelberg 2015
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Calcium Dynamics, Fig. 1 Intracellular Ca2C homeostasis
is the result of balancing entry and removal, red and blue
arrows, respectively, of both extracellular Ca2C and Ca2C

stored in the intracellular stores as well as binding to and
unbinding from Ca2C buffers. The main Ca2C transport mech-
anisms are the sarcolemmal Ca2C channel (CC), plasma
membrane Ca2C-ATPase (PMCA), sarco(endo)plasmic reticu-
lum Ca2C-ATPase (SERCA), and sarco(endo)plasmic reticulum
Ca2C release unit (CARU)

Mathematical Description
A key feature of cellular calcium dynamics is
prominent spatial heterogeneity, which is affected
significantly by the cellular morphology and specific
localization of the abovementioned Ca2C transport
mechanisms. Accordingly, a principal division can
be made between lumped compartmental (ordinary
differential equations) and spatially distributed
(partial differential equations) deterministic modelling
approaches of calcium dynamics. The fundamental
challenge of the compartmental approach is the lack
of corresponding distinct anatomical structures inside
the cells. Thus, these compartmental parameters need
to derived from experimental data by some indirect

estimation procedure. Whereas in the latter case,
the intracellular space is explicitly resolved, which
allows, at a significantly higher computational cost,
for example, for an exact treatment of diffusive Ca2C
transport.

For the example presented in Fig. 1, the differ-
ential equations describing the changes in intracellu-
lar Ca2C concentration in the bulk cytoplasmic and
sarco(endo)plasmic reticulum compartments can be
written as:

dcintra

dt
D JCARU C JCC � Jbuffer � JSERCA � JPMCA;

(1)

dcstore

dt
D ˛.JSERCA � JCARU/ � Jbuffer; (2)

where Jx is the Ca2C flux via transport mechanisms
x and ˛ is the volume ratio of the bulk intracellular
compartment and sarco(endo)plasmic reticulum.

For the principles of formulating equations for Ca2C
transport mechanisms and diffusion, the reader is ad-
vised to read, for example, Hille [2] and Gouaux and
MacKinnon [3].
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Short Definition

Macroscopic properties of materials can be computed
from the laws of statistical physics as averages of some
functions of the phase-space variables with respect
to a probability measure describing the state of the
system. These probability measures are the least biased
probability measures consistent with the constraints
on the system (number of particles, volume, energy;
fixed exactly or in average). Numerically, these high-
dimensional integrals are approximated as ergodic av-
erages over discrete trajectories. The error analysis
distinguishes two sources of approximation: systematic
errors (bias) related to the finiteness of the time step
used for the integration of the dynamics and the finite-
ness of the number of iterations, and statistical errors
related to the variance of the random variables at hand
(when this is relevant).

Description

A major aim of molecular simulation, probably the
most important, is to compute macroscopic quanti-
ties or thermodynamic properties, typically through
averages of some functions of the variables of the
system. In this case, molecular simulation is a way to
obtain quantitative information on a system, instead
of resorting to approximate theories, constructed for
simplified models, and giving only qualitative answers.
Sometimes, these properties are accessible through
experiments, but in some cases, only numerical com-
putations are possible since experiments may be un-
feasible or too costly (for instance, when high pressure
or large temperature regimes are considered or when
studying materials not yet synthesized). More gener-
ally, molecular simulation is a tool to explore the links
between the microscopic and macroscopic properties
of a material, allowing to address modeling questions
such as “Which microscopic ingredients are necessary
(and which are not) to observe a given macroscopic
behavior?”

There are many textbooks in the physics and chem-
istry literature presenting methods to actually approx-
imate numerically average properties predicted by the
laws of statistical mechanics [1,17,24,26]. Mathemati-
cally oriented textbooks on the other hand are currently
not so numerous (see however [19,20] for Hamiltonian
dynamics and [21] in the canonical case).

Computation of Macroscopic Properties
The macroscopic state of a system is described, within
the framework of statistical physics, by a probability
measure � on the phase space EDD � R

3N . Macro-
scopic features of the system are then computed as av-
erages of an observableA with respect to this measure:

E�.A/ D
Z
E
A.q; p/�.dq dp/: (1)

The measure � is therefore called the macroscopic
state of the system. A statistical description through
a probability measure � is convenient since the full
microscopic information is both unimportant (what
matters are average quantities and not the positions of
all particles composing the system) and too large to be
processed. Note however that not all thermodynamic
properties can be written as averages such as (1).
Famous examples are the entropy and the free energy
(see �Computation of Free Energy Differences).

An example of an observable is the bulk pressure P
in an argon fluid, which is well described by a Lennard-
Jones potential. For particles of masses mi , described
by their positions qi and their momenta pi , it is given
by P D E�.A/ with

A.q; p/ D 1

3V
NX
iD1

� jpi j2
mi

� qi � @V
@qi

.q/

�
;

where V is the physical volume of the box occupied by
the fluid, and the potential energy function V is given
in �Molecular Dynamics.

We present more thoroughly in the next sections
two very commonly used thermodynamic ensembles,
namely, the microcanonical ensemble and the canon-
ical ensemble. These ensembles describe respectively
isolated systems, and systems at a fixed tempera-
ture (in contact with a so-called thermostat or energy
reservoir). Other thermodynamic ensembles are also
mentioned for the sake of completeness. The use of
one ensemble rather than the other is motivated by
modelling choices or numerical convenience. For suf-
ficiently large systems, the choice of the ensemble
does not matter in view of the equivalence of ensem-
bles [25].

In all cases, the high-dimensional integrals (1),
which cannot be computed with standard quadrature

http://dx.doi.org/10.1007/978-3-540-70529-1_267
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rules, are approximated by ergodic averages of the
form

lim
N!C1

1

N

NX
nD1

A.qn; pn/; (2)

the discrete dynamics .qn; pn/ depending on the en-
semble at hand. An important issue is how well (2)
(when truncated to a finite N in actual numerical
simulations) approximates the ensemble average.

The Microcanonical Ensemble
The thermodynamic ensemble naturally associated
with the Hamiltonian dynamics is the microcanonical
ensemble, which describes isolated systems at constant
energy. This ensemble is also often termed NVE
ensemble, the capital letters referring to the invariants
of the system, namely, the number of particles, the
volume of the simulation box, and the energy.

Microcanonical Probability Measure
The microcanonical probability measure is the normal-
ized uniform probability measure on the set S.E/ D
f.q; p/ 2 E

ˇ̌
ˇ H.q; p/ D Eg of configurations at the

given energy level E .
It is helpful to provide an explicit construction of

the microcanonical measure. The building block is
the measure ıH.q;p/�E.dq dp/, where the conditioning
relies on level sets of constant total energy. Consider
a given energy level E , some small energy variation

�E > 0, and define N�E.E/ D f.q; p/ 2 E
ˇ̌
ˇ E �

H.q; p/ � E C �Eg. Then, the following integral of
a given test function A expresses the fact that the set
N�E.E/ is endowed with a uniform measure:

˘E;�E.A/ D 1

�E

Z
N�E.E/

A.q; p/ dq dp:

In the limit �E ! 0, a measure supported on the
submanifold S.E/ is recovered. It is defined through
the expectations of any observable A as

Z
S.E/

A.q; p/ ıH.q;p/�E.dq dp/

D lim
�E!0

1

�E

Z
N�E.E/

A.q; p/ dq dp: (3)

The construction highlights the fact that the regions
where jrH j is large have a lower weight in the average
since the volume of the infinitesimal domain included
in N�E.E/ and centered at .q; p/: 2 S.E/ is propor-
tional to jrH.q; p/j�1. This observation is consistent
with results obtained with the co-area formula [2, 12],
which state that

ıH.q;p/�E.dq dp/ D �S.E/.dq dp/
jrH.q; p/j ; (4)

where �S.E/.dq dp/ is the area measure induced by
the Lebesgue measure on the manifold S.E/ when the
phase space is endowed with the standard Euclidean
scalar product.

The microcanonical measure is obtained by a suit-
able normalization:

�mc;E.dq dp/ D Z�1
E ıH.q;p/�E.dq dp/;

where the partition function used in the normalization
is assumed to be finite.

Computing Average Properties
Practitioners often see microcanonical averages as er-
godic limits over Hamiltonian trajectories. Notice first
that, for all energy levelsE , the measure�mc;E.dq dp/

is invariant by the flow �t of the Hamiltonian dynam-
ics. 8̂

<
:̂
dq.t/

dt
D rpH.q.t/; p.t//;

dp.t/

dt
D �rqH.q.t/; p.t//;

An intuitive way to understand this equality is to realize
that

1

�E

Z
N�E.E/

f .Q;P / dQdP

D 1

�E

Z
N�E.E/

f ı �t .q; p/ dq dp (5)

by the change of variables .Q;P / D �t .q; p/, and then
to use (3) to obtain the result in the limit �E ! 0. In
view of the preservation of the microcanonical measure
by the Hamiltonian flow, the following ergodicity as-
sumption can therefore be considered: Thermodynamic
integrals of the form (1) are computed as trajectorial
averages
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Z
S.E/

A.q; p/�mc;E.dq dp/

D lim
T!C1

1

T

Z T

0

A.�t .q; p// dt; (6)

where �t is the flow of the Hamiltonian dynamics for
any initial condition .q0; p0/ such thatH.q0; p0/DE .

Ergodicity can be rigorously shown for completely
integrable systems and their perturbations (see for
instance [3]). In general, however, no convergence
result can be stated, and examples of non-ergodicity
can easily be found. Such problems arise when there
are additional (spurious) invariants of the dynamics
besides the energy.

Numerically, average properties are computed ac-
cording to (2) using a relevant discretization of the
Hamiltonian dynamics. This requires very stable algo-
rithms allowing a longtime integration of the Hamil-
tonian dynamics with a very good preservation of the
energy, such as the Verlet algorithm (see �Molecular
Dynamics)

8̂
ˆ̂<
ˆ̂̂:

pnC1=2D pn � �t

2
rV.qn/;

qnC1 D qn C�t M�1pnC1=2;

pnC1 D pnC1=2 � �t

2
rV.qnC1/:

The numerical analysis of microcanonical sampling
methods based on these properties (in the very par-
ticular case of completely integrable systems) can be
read in [9, 10]. There exist also stochastic methods
based on constrained diffusion processes to sample the
microcanonical measure, see [13,14]. The aim of these
methods is to destroy all invariants of the dynamics,
except the energy.

The Canonical Ensemble
In many physical settings, systems in contact with
some energy thermostat are considered, rather than
isolated systems with a fixed energy. In this case, the
energy of the system fluctuates, but the temperature (a
notion to be defined) is fixed. The microscopic con-
figurations are distributed according to the so-called
canonical measure. The canonical ensemble is also
often termed NVT ensemble, since the number of parti-
cles, the volume, and the temperature are fixed.

Canonical Probability Measure
The canonical probability measure � on E reads

�.dq dp/ D Z�1
� exp.�ˇH.q; p// dq dp; (7)

where ˇ D 1=.kBT / (T denotes the temperature
and kB the Boltzmann constant). The normalization
constant

Z� D
Z
E

exp.�ˇH.q; p// dq dp

in (7) is called the partition function. Appropriate
methods to sample (7), based either on ergodic prop-
erties of deterministic or stochastic dynamics, are pre-
sented in � Sampling Techniques for Computational
Statistical Physics.

The expression (7) of the canonical probability
measure can be obtained by maximizing the statistical
entropy under the constraint that the energy is fixed
in average. Such a derivation is performed in [4] for
instance. The constraint that the average energy of the
system is fixed formalizes the idea that the system
under study exchanges energy with the thermostat or
energy reservoir to which it is coupled.

Consider a measure which has a density �.q; p/

with respect to the Lebesgue measure. The constraints
on the admissible functions �.q; p/ are

� � 0;

Z
E
�.q; p/ dq dp D 1;

Z
E
H�.q; p/ dq dp D E (8)

for some energy level E . The first two conditions
ensure that � is the density of a probability measure,
while the last one expresses the conservation of the
energy in average. The statistical entropy is defined as

S.�/ D �
Z
E
�.q; p/ ln �.q; p/ dq dp: (9)

It quantifies the amount of information missing, or the
“degree of disorder” as is sometimes stated in a more
physical language. We refer to Chap. 3 in [4] for a
description of the properties of S.

The canonical measure is recovered as the solution
to the following optimization problem

http://dx.doi.org/10.1007/978-3-540-70529-1_56
http://dx.doi.org/10.1007/978-3-540-70529-1_268
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sup
n
S.�/; � 2 L1.E/; � � 0;

Z
E
� D 1;

Z
E
H� D E

o
:

(10)

Formally, the Euler-Lagrange equation satisfied by an
extremum reads S0.�/C �C �H D 0, where �; � are
the Lagrange multipliers associated with the last two
constraints in (10) (normalization and average energy
fixed). It can then be shown that the canonical measure
is indeed the unique maximizer of (10), see Sect. 4.2
of [4].

Other Thermodynamic Ensembles
The Boltzmann-Gibbs probability measure (7) can be
seen as the phase space probability measure maximiz-
ing the statistical entropy among the set of phase space
probability measures compatible with the observed
macroscopic data. The derivation performed for an
average energy fixed may be performed for any average
thermodynamic quantity, leading to other thermody-
namic ensembles (see for instance [21, Sect. 1.2.3.3]).
The choice of the ensemble amounts to choosing which
quantities are fixed exactly or in average. For in-
stance,
• Isobaric-isothermal ensembles .NPT ) are charac-

terized by the fact that the energy and the volume of
the system are fixed in average only. The Lagrange
multiplier associated with the volume constraint is
ˇP , where P is the pressure.

• In the grand canonical ensemble (�VT), the volume
is fixed exactly, but the number of particles and
the energy are fixed in average only. The Lagrange
multiplier associated with the number constraint is
ˇ�, where � is the chemical potential.

Computation of Ensemble Averages: Numerical
Analysis

Ergodic Averages and Error Estimation
The practical computation of the ensemble average,
based on (2), requires numerical techniques to sample
configurations .qn; pn/ according to the probability
measure � at hand or possibly according to a
measure Q� very close to �, the difference between �
and Q� originating from numerical errors. Almost
all methods generate a sequence of microscopic
configurations .qn; pn/n�1 from a time-discrete
dynamics, so that the successive configurations are not
independent.

When the underlying numerical method is a Markov
chain, the convergence of OAN to some limiting average
is granted by a law of large numbers. Such a result
holds under weak conditions, namely, irreducibility
and invariance of a probability measure Q� for the
Markov chain [22]. It reads:

lim
N!C1

OAN D
Z
E
A.q; p/ Q�.dq dp/ D E Q�.A/ a:s:

(11)

for Q�-almost all initial conditions .q0; p0/. When the
underlying method is deterministic (discretization of
the plain Hamiltonian dynamics in the microcanonical
case or of Nosé-Hoover-like methods in the canonical
case for instance), convergence results such as (11)
are usually very difficult to prove. The discussion
of this point is very similar to the above discussion
on the ergodicity of the Hamiltonian dynamics (see
� Sampling Techniques for Computational Statistical
Physics).

Error estimates for the estimator

OAN D 1

N

N�1X
nD0

A.qn; pn/

can be obtained by decomposing the error into two
components: (1) a systematic error (bias) which can be
observed for deterministic or stochastic methods, (2) a
statistical error (variance) which arises if and only if
the methods at hand have some intrinsic randomness
or if the initial configurations are randomly distributed.
More precisely, the following equality holds:

E

�ˇ̌ OAN � E�.A/
ˇ̌2� D

�
E. OAN / � E�.A/

�2

CE

�ˇ̌ OAN � E. OAN /
ˇ̌2�

: (12)

The first term is the square of the bias, while the second
one is the square of the statistical error. Typically,
the statistical error dominates the bias when stochastic
dynamics are used. The statistical error can however be
reduced by appropriate techniques, such as importance
sampling.

Bias and Consistency
The bias can be further decomposed as

ˇ̌
ˇE. OAN /� E�.A/

ˇ̌
ˇ �

ˇ̌
ˇE. OAN / � E Q�.A/

ˇ̌
ˇ

C ˇ̌
E Q�.A/� E�.A/

ˇ̌
: (13)

http://dx.doi.org/10.1007/978-3-540-70529-1_268
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The first quantity is the finite sampling bias, which is
related to the fact that the initial conditions are not
sampled according to the stationary measure of the
discrete dynamics. The second quantity is the perfect
sampling bias, which vanishes for Metropolis-based
methods, and otherwise depends on the order of the
discretization method for discretizations of continuous
dynamics. For example, for a Euler discretization of the
continuous overdamped Langevin dynamics (which is
ergodic for the canonical measure), the bias is typically
of order �t under appropriate assumptions on the
potential. It is possible to reduce this bias by Romberg
extrapolation, see [5, 6, 27]. For deterministic dynam-
ics, recent progresses on backward analysis allowed
to understand the time-step discretization errors, for
Hamiltonian dynamics and Nosé-Hoover-type dynam-
ics (see [7] and references therein).

Statistical Error and Variance
The statistical error can be estimated, thanks to a
central limit theorem (which requires some additional
conditions on the dynamics, see for instance [11, 22]):

p
N
ˇ̌
ˇbAN � E Q�.A/

ˇ̌
ˇ �����!
N!C1 N .0; �2/; (14)

where convergence occurs in law. The so-called
asymptotic variance �2 is the limit asN goes to C1 of
the variance of

p
N bAN . It may be written as the sum of

the intrinsic variance (which would be obtained if the
samples were independent and identically distributed)
and an additional variance arising from the correlation
between the sampled configurations:

�2 D Var Q�.A/C 2

C1X
nD1

E Q�
h�
A.q0; p0/� E Q�.A/

�

�
A.qn; pn/ � E Q�.A/

�i
: (15)

Expectations such as E Q�Œf .q0; p0/ g.qn; pn/	 in the
right-hand side of the above equality should be
understood as an expectation over all values .q0; p0/
distributed according to Q� and all possible realizations
of the dynamics. It is often the case that �2 � Var Q�.A/
(and actually, �2 is much larger than Var Q�.A/),
but there is no general rule since the correlation
term (the infinite sum in (15)) has no sign a priori.

The variance (15) can be estimated using repeated
independent realizations or with block averaging [15,
16, 18] (in which case, only one single long trajectory
is needed).
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Fundamental Properties

The Camassa–Holm (CH) equation for the unknown
function u D u.t; x/ reads

ut � uxxt C 2
ux C 3uux � 2uxuxx � uuxxx D 0;

x 2 R; t 2 Œ0;1/; (1)

for a nonnegative constant 
. Equivalent formulations
include

utCuuxCPx D 0; P�Pxx D u2C2
uC 1

2
u2x; (2)

and

mtC2
uxC2muxCmxu D 0; m D u�uxx: (3)

The CH equation was first studied in detail in the
seminal paper [4] (see also [5]), although it first ap-
peared in [15]. Generalizations to more than one space
dimension and to systems have been studied. The most
commonly studied system reads [11]

ut C uux C Px D 0;

P � Pxx D u2 C 2
u C 1

2
u2x C 1

2
�2;

�t C .u�/x D 0: (4)

The CH equation was first derived in the setting of
water waves, where it is required that 
 > 0. However,
there has been some discussions concerning regions of
validity, see [4, 13, 22]. The CH equation appears as a
geodesic in the group of diffeomorphism for a right-
invariant metric derived from the H1-norm [1, 12, 23].
This approach allows for a generalization in several
dimensions [20, 21]. In this formalism, m D u � uxx
is the momentum and the corresponding Hamiltonian
equation is the one given by (7).

The CH equation is formally completely integrable
in the sense that the consistency requirement  xxt D
 txx of the solution of the system

 xx D
�
1

4
C �mC 2�


�
 ;

 t D
�
1

2�
� u

�
 x C 1

2
ux (5)

is equivalent to the CH equation [7].
The CH equations has a bi-Hamiltonian struc-

ture [10]

mt D � �@x � @3x
� ıH2Œm	

ım
;

H2Œm	 D 1

2

Z �
u3 C uu2x C 2
u2

�
dx; (6)

and

mt D �.2
@x Cm@x C @xm/
ıH1Œm	

ım
;

H1Œm	 D 1

2

Z
mu dx: (7)
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Formally the CH equation has infinitely many
conserved, i.e., time independent, quantities; the first
ones read

Z
R

u dx;
Z
R

�
u2 C u2x

�
dx;

Z
R

�
u3 C uu2x

�
dx;

(8)

and allow for a hierarchy of completely integrable
equations. Their algebro-geometric solutions have
been analyzed in [16].

If u satisfies (1), then v.t; x/ D u.t; x�
t/C
 will
satisfy (1) with 
 D 0; thus we see that the value of

 changes the decay properties at infinity. Numerical
methods have been analyzed rigorously, see, e.g., [6].

Multipeakon Solutions
For 
 D 0, the CH equation has a distinguished class
of special stable [14] solutions denoted multipeakons
given by

u.t; x/ D
nX
iD1

pi .t/e
�jx�qi .t/j; (9)

where the pi .t/; qi .t/ satisfy the explicit system of
ordinary differential equations

Pqi D
nX

jD1
pj e

�jqi�qj j;

Ppi D
nX

jD1
pipj sgn .qi � qj /e�jqi�qj j:

These equations will in general only have finite time of
existence. However, the solution (9) is not smooth even
with continuous functions .pi .t/; qi .t//, and it has to
be interpreted as a weak solution. Peakons interact in
a way similar to that of solitons of the Korteweg–de
Vries equation, and wave breaking, in the sense that
the derivative ux becomes unbounded, while the H1-
norm remains finite, may appear when at least two
of the qi ’s coincide. If all the pi .0/ have the same
sign, the peakons move in the same direction, there
will be no wave breaking, and one has a unique global
solution. Higher peakons move faster than the smaller
ones, and when a higher peakon overtakes a smaller,
there is an exchange of mass, but no wave breaking
takes place. Furthermore, the qi .t/ remain distinct, and
thus there is no collision. However, if some of pi .0/

have opposite sign, wave breaking or collision may
incur. For simplicity, consider the case with n D 2

and one peakon p1.0/ > 0 (moving to the right) and
one antipeakon p2.0/ < 0 (moving to the left). In
the symmetric case (p1.0/ D �p2.0/ and q1.0/ D
�q2.0/ < 0), the solution will vanish pointwise at
the collision time t� when q1.t�/ D q2.t

�/, that is,
u.t�; x/ D 0 for all x 2 R. At least two scenarios
are possible; one is to let u.t; x/ vanish identically for
t > t�, and the other possibility is to let the peakon
and antipeakon “pass through” each other in a way
that is consistent with the CH equation. In the first
case, the H1-norm of u decreases to zero at t�, while
in the second case, it remains constant except at t�.
Clearly, the well-posedness of the equation is a delicate
matter in this case. The first solution could be denoted
a dissipative solution, while the second one could be
called conservative.

The Cauchy Problem

The Cauchy problem where one augments the CH
equation with initial data ujtD0 D u0 has received ex-
tensive attention due to the property of wave breaking.
Both the periodic case and the full-line case with or
without decay at infinity have been studied. The case
with 
 D 0 is most studied. Due to lack of space, we
here focus on the decaying case on the full line with

 D 0. The phenomenon of wave breaking has already
been encountered in the context of multipeakons. As a
typical result, we here mention the following [9]: Let
u0 2 H3. There exists a maximal time T D T .u0/ and
a unique solution u 2 C.Œ0; T /IH3/\ C1.Œ0; T /IH2/

with ujtD0 D u0. If m0 D u0 � u0;xx is integrable and
nonnegative, then T D 1. If, on the other hand, u0 is
odd and u00.0/ < 0, then T < 1.

The continuation past blow-up is a delicate
issue as we have seen in the case of multipeakons.
Two distinct cases have been discussed. In the
conservative case [2, 18], one includes the energy
density in the solution concept. Consider the set
D of pairs .u; �/ with u 2 H1 and � � 0 a
finite Radon measure with absolutely continuous
part �ac D .u2 C u2x/ dx. Then there exists a
continuous semigroup T WD � Œ0;1/ ! D such
that for a given .Nu; N�/ 2 D, the function u is a
weak solution of the Camassa–Holm equation when
we let .u.t/; �.t// D Tt.Nu; N�/. Moreover, � is a
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weak solution of the following transport equation
for the energy density �t C .u�/x D .u3 � 2P u/x.
The total mass, �.t/.R/, is independent of time.
A Lipschitz metric has been analyzed in this
case [17].

In the dissipative case [3, 19], the situation is as
follows. There exists a semigroup Tt such that for any
initial data u0 in H1, u.t; x/ D Tt .u0/ is a weak
solution of the CH equation satisfying ux.t; x/ � 2

t
C

ku0kH1 .
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Synonyms

Computational biology of cancer; Mathematical mod-
eling in oncology

Cancer Initiation and Progression,
Modeling

The usage of mathematical and computational tools to
study the initiation and progression of cancer. Mathe-
matical models provide an essential tool that comple-
ments experimental observation in the study of cancer
initiation and progression. The complex nature of in-
teractions that occur in carcinogenesis renders a rigor-
ous understanding of the processes which is difficult
to achieve by verbal arguments alone. Mathematical
models take us beyond verbal or graphical reasoning
and provide a solid framework upon which to build
experiments and generate hypotheses.

The field of cancer modeling originated in the
1950s, with the works of Fisher and Holloman [2]
and Nordling [3], followed by a hallmark work by
Armitage and Doll in 1954 [7] who proposed that
the remarkable regularity observed in the age-specific
mortality rates for many cancers could be explained
by a multistage model of carcinogenesis. The idea is
that cancer develops as a series of mutation events,
or “hits,” each followed by a period of clonal growth
and a subsequent stagnation. The dynamics predicted
by the mathematical model was compared to the
available incident statistics to uncover the total number
of “hits” involved in the process of carcinogenesis.
This approach received a thorough mathematical
development in the work by Moolgavkar and his group,
[8], which used the data on the incidence of colorectal
cancers in the Surveillance, Epidemiology, and End
Results (SEER) registry. Another important result
involving the multistage carcinogenesis model was the
discovery by Knudson [19] of two hits responsible
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for the generation of retinoblastoma [20], which lead
to the subsequent discovery of an important class of
genes involved in cancer, called “tumor suppressor
genes.”

In the following years, mathematical modeling of
carcinogenesis has become a growing field of research,
see [1]. Different models address different aspects
of cancer initiation and progression and use different
mathematical and computational tools.

Ordinary Differential Equations (ODEs)

Deterministic modeling of growth and differentiation
of cell populations is one of the oldest and best devel-
oped topics in biomathematics. It involves modeling of
growth, differentiation, and mutation of cells in tumors.
In the simplest case, one can model cellular growth fol-
lowed by saturation with the following logistic ODE:

Px D rx.1 � x=k/; x.0/ D 1

where dot is the time derivative, x D x.t/ is the
number of cancer cells, r is the growth rate, and
k is the carrying capacity. This equation describes
the logistic growth of cancerous cell population, see
also Gompertzian growth models [17]. Cancer cell
population heterogeneity can be taken into account,
such that different cells compete with each other and
with surrounding healthy cells for nutrients, oxygen,
and space. Each cell reproduction (happening with
intensity ri for each type) has a chance to result in
producing a different type. Suppose that type i can
mutate into type .iC1/ only, according to the following
simple diagram: x0 ! x1 ! : : : ! xn�1 ! xn. The
dynamics is described by the following initial value
problem:

Pxi D ri .1 � ui /xi � �xi ; 0 � i � n; xi .0/ D Oxi ;

where xi is the number of cells of type i , with the
corresponding growth rate, ri , and ui is the probability
that a cell of type .i C 1/ is created as a result of a
division of a cell of type i . There are totally n types,
and the competition is modeled by the term � in a
variety of ways, e.g., by setting � D .1=N /

Pn
iD0 rixi ,

where N D Pn
iD0 Oxi is the total number of cells in

the system, which is assumed to be constant in this
model. The above equation is called the quasispecies

equation. These were introduced by Manfred Eigen in
1971 as a way to model the evolutionary dynamics of
single-stranded RNA molecules in in vitro evolution
experiments. In a more general case, the mutation
network [18] can be more complicated, allowing mu-
tations from each type to any other type. This is done
by introducing a mutation matrix with entries, uij , for
mutation rates from type i to type j , see, e.g., [22]
and [23].

Methods of population dynamics and evolutionary
game theory are applied to study cancer. First devel-
oped by ecologists and evolutionary biologists, these
methods have been used to understand the collective
behavior of a population of cancer cells. Gatenby
and coworkers used this methodology to study cancer
growth [21] and evolution [23], by using equations
similar to predator-prey systems in ecology. Moore and
Li [24] used a similar approach to describe chronic
myelogenous leukemia (CML) and T-cell interaction.

The method of ODEs has advantages and draw-
backs. Among the advantages is its simplicity. The
drawbacks include the absence of detail. For instance,
no spatial interactions can be described by ODEs, thus
imposing the assumption of “mass-action”-type inter-
actions. Stochastic effects are not included, restricting
applicability to large systems with no “extinction”
effects.

Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs) can be a very
useful tool when studying tumor growth and inva-
sion into surrounding tissue [25]. In many models,
the growth of a tumor is described as a mechanistic
system, for instance, as a fluid (with a production term
proportional to concentration of nutrients) [26], or as a
mixture of solid (tumor) and liquid (extracellular fluid
with nutrients) phases [13, 27]. As an example, we
describe the system used in Franks et al. [28]. These
authors viewed avascular tumor as a coherent mass
whose behavior is similar to that of a viscous fluid.
They used n.x; t/, m.x; t/, and �.x; t/ to describe the
concentration of tumor cells, dead cells, and surround-
ing material, respectively. The nutrient concentration is
c.x; t/, and the velocity of cells is denoted by v.x; t/.
Applying the principle of mass balance to different
kinds of material, they arrived at the following system:
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PnC r � .nv/ D .km.c/ � kd .c//n (1)

PmC r � .mv/ D kd .c/n (2)

P�C r.�v/ D 0 (3)

Here, we have production terms given by the rate of
mitosis (kd .c/) and cell death (kd .c/), which are both
given empirical functions of nutrient concentration.
The nutrients are governed by a similar mass transport
equation:

Pc C r.cv/ D Dr2c � �km.c/n;

where D is the diffusion coefficient and �km.c/n

represents the rate of nutrient consumption. In order
to fully define the system, we also need to use the mass
conservation law for the cells, modeled as incompress-
ible, continuous fluid, n C m C � D 1. A constitutive
law for material deformation must be added to define
the relation between concentration (stress) and veloc-
ity. Also, the complete set of boundary conditions must
be imposed to make the system well defined.

Avascular growth is relevant only when studying
very small lesions, or tumor spheroids grown in vitro.
To describe realistically tumorigenesis at later stages,
one needs to look at the vascular stage and consider
mechanisms responsible for angiogenesis, see, e.g.,
[29] and [30]. Mechanistic models of tumor growth
of this kind were used, among others, in Araujo and
McElwain [31] to study the phenomenon of vascular
collapse, and in Stoll et al. [32] to address the question
of the precise origin of neovascularization.

Integro-differential equations are at the next level of
complexity with respect to PDE modeling. They can be
used to describe nonlocal effects or inhomogeneity of
the population of cells, such as age structure, see [4].

The method of partial differential equations, applied
to mechanistic modeling of tumor growth, is signifi-
cantly more powerful than the method of ODEs, as it
allows for a dynamic description of spatial variations
in the system. There exists a large, well-established ap-
paratus of mathematical physics, fluid mechanics, and
material science which aids the analysis. A limitation
of PDEs which comes from the very nature of differen-
tial equations is that they describe continuous function.
If the cellular structure of an organ is important, then
one needs to use different methods, described next.

Stochastic Modeling

The need for stochastic modeling arises because many
of the phenomena in biology have characteristics of
random variables. One process where the stochastic
nature of events can be seen very clearly is accumu-
lation of mutations. This process is central to cancer
progression, and therefore developing tools describing
this process is of vital importance for modeling. In
the simplest case, one can envisage a process of cell
division as a binary (or branching) process, where at
regular instances of time, each cell divides into two
identical cells with probability 1 � u, and it results
in creating one mutant and one wild-type cell with
probability u. We further assume that a mutant cell
can only give rise to two mutant daughter cells. We
start from one wild-type cell and denote the number
of mutants at time n as zn. The random variable zn can
take nonnegative integer values (i.e., the state space is
f0g [ I ). This is a simple branching process, which is
a discrete state space, discrete time process. One could
ask the question: what is the probability distribution of
the variable zn? Possible modifications of this process
can come from the existence of several consecutive
mutations, a possibility of having one or both daughter
cells mutate as a result of a cell division, or from
distinguishing different kinds of mutations. Paper [33]
addressed the question of cancer initiation by studying
the accumulation of somatic mutation during the em-
bryonic (developmental) stage, where cells divide in
the binary fashion, similar to the branching process.
Two recessive mutations to the retinoblastoma locus
are required to initiate tumors. In this paper, a math-
ematical framework was developed for somatic mo-
saicism in which two recessive mutations cause cancer.
The following question was asked: given an observed
frequency of cells with two mutations, what is the
conditional frequency distribution of cells carrying one
mutation and therefore susceptible to transformation
by a second mutation? Luria–Delbruck-type analysis
was used to calculate a conditional distribution of
single somatic mutations.

Another important process used to describe
carcinogenesis is the birth and death process. Suppose
that we have a population of cells, whose number
changes from time t to time tC�t , where�t is a short
time interval, according to the following rules: with
probabilityL�t a cell reproduces, creating an identical
copy of itself; with probability D�t a cell dies;
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all other events have vanishingly small probability.
The number of cells, X.t/, can take positive integer
values, and it depends on the continuous time variable.
One modification to the above rules is to include
mutations to the system, where instead of L�t , the
probability to reproduce faithfully is L.1 � u/�t , and
the probability to create a mutant is Lu�t . Further,
one could describe a chain of mutations, and study the
evolution of the number of cells of each type. This
approach was developed by Moolgavkar’s seminal
work on multistage carcinogenesis [34].

In the birth-death-type processes, the population of
cells may become extinct, or it could grow indefinitely.
Another type of processes that are very common in
tumor modeling correspond to constant population
size. An example is the Moran process. Whenever a
cell reproduces (with the probability weighted with the
cell’s fitness), another cell is chosen to die to keep
a constant population size. To study the processes of
emergence and invasion of malignant cells, one must
include a possibility of mutations (or sequences of
mutations), which lead to a change of fitness in cells.
Models of this kind are relevant for the description
of cellular compartments [35] or organs of adult or-
ganisms. Frank and Nowak [36] discussed how the
architecture of renewing epithelial tissues could affect
the accumulation of mutations.

Stem cell dynamics can be studied by means of
stochastic modeling. Nowak [37] employed a linear
process of somatic evolution to mimic the dynamics of
tissue renewal. A different constant population model
was employed by Calabrese et al. [39] and Kim [38],
where precancerous mutations in colon stem cell com-
partments (niches) were studied.

The models described above are often amenable to
analysis, but they are usually nonspatial. Stochastic
spatial dynamics is captured by the next class of
models.

Cellular Automaton (CA) and Agent-Based
(AB) Models

CA models are based on a spatial grid, where lo-
cal rules of interaction among neighboring nodes are
given, which have a deterministic or stochastic nature.
Each grid point may represent an individual cell, or a
cluster of cells. For example, a node could represent
a healthy cell, a cancer cell, or a dead cell. Starting
with an initial distribution, updates of the grid are

performed based on the local rules. A live cell can
die, or migrate to a neighboring spot, or reproduce to
fill an empty space nearby. The biological information
enters into the definition of local update rules, and
the observed dynamics of the system describes the
consequences of the local assumptions for the global
microevolution of the tumor. Models of this kind are
used to describe various aspects of tumor growth,
such as three-dimensional brain tumor growth [41], the
effect of inhomogeneous environment on tumor growth
in the context of the acid-mediated tumor invasion
hypothesis [40], and tumor angiogenesis [6].

The CA framework can be extended to create a class
of hybrid AB models. In such models, while cells are
treated discrete entities, a number of other biologi-
cal components of interest are modeled as continuum
variables, thus avoiding the need to transform these
variables into unrealistic integer states (as in a more
traditional CA model) [16]. Such complex models that
often involve modeling on different scales [13, 14] are
applied to different aspects of tumor biology such as
tumor cell migration, and cellular agglomeration.

The cellular automaton approach gives rise to a new
class of behaviors which can hardly be seen in contin-
uous, PDE-based models. It allows to track individual
cells, and reproduce the dynamics of emerging struc-
tures, such as tumor vasculature. A drawback of this
approach is that it is almost universally numerical. It is
difficult to perform any analysis of such models, which
leaves the researcher without an ability to generalize
the behavioral trends.

Model Validation and Robustness

Because of an empirical nature of this kind of mod-
eling, model validation and robustness analysis are
necessary. The idea is as follows. If the number of
equations involved in the modeling is in the tens, and
the number of coefficients is in the hundreds, one
could argue that almost any kind of behavior can be
reproduced if the parameters are tuned in the right way.
Therefore, it appears desirable to reduce the number of
unknown parameters and also to design some sort of a
measure for reliability of the system. Latin hypercube
sampling on large ranges of the parameters can be
employed, which is a method for systems with large
uncertainties in parameters [24]. This involves choos-
ing parameters randomly from a range and solving
the resulting system numerically, trying to identify the
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parameters to which the behavior is the most sensitive.
Structural identifiability analysis is another method,
which determines whether model outputs can uniquely
determine all of the unknown parameters [26]. This
is related to (but is not the same as) the confidence
with which we view parameter estimation from ex-
perimental data. In general, questions of robustness
and reliability are studied in mathematical control
theory.
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Overview

The fundamental problem of pattern formation, for
example, how to specify body axes, limbs, and dig-
its during development, comes down to interpreting
a common set of genetic instructions differently at
different locations in space [14] (see Fig. 1 for an
illustration). In all multicellular animals, this process
is orchestrated by morphogens, molecules that are
produced at discrete sites and disperse to form inspec-
tion ration gradients. Such gradients establish patterns
because cells are preprogrammed to do very different
things at different morphogen concentrations. Each

Cell Biology Modeling Development, Fig. 1 An illustration
for a morphogen system at tissue scale: different colors of cells
representing different fates of the cell

cell responds to morphogens by reading their con-
centrations, and interprets them through intracellular
machineries. A morphogen system usually consists
of a region of morphogen-responsive cells, a region
of morphogen-producing cells, and a set of boundary
conditions [4]. The objective of morphogen-responsive
cells is to generate an intracellular signal, the amount
of which reflects the level of morphogen receptor
occupancy, to instruct cells to perform their functions
or to obtain their fates.

A morphogen system often contains: (1) regulated
morphogen transport – some families of morphogens
(Wnts, Hhs) undergo lipid modifications that presum-
ably make them less diffusible and others may un-
dergo active transport (via transcytosis, argosomes,
cytonemes, etc); (2) multiple morphogen species –
several BMP gradients utilize multiple types of BMP
monomers; (3) multiple morphogen receptor type; (4)
nonreceptor binding sites – polypeptide morphogens
bind to cell surface proteins and/or proteoglycans other
than receptors; (5) secreted competitive inhibitors; (6)
co-receptors – cell surface molecules affect morphogen
signaling by acting as co-receptors; (7) extracellular
enzymes – enzymes cleave inhibitors and co-receptors;
(8) feedback regulation – feedback regulation of mor-
phogens, receptors, and nonreceptor binding sites; (9)
complex feedback loops in intracellular signaling; and
many other regulations and components [4].

Here we present a set of basic modeling tools based
on a continuum approach for a description of several
fundamental biological processes during development.



184 Cell Biology Modeling Development

This approach has been successfully applied to study-
ing many morphogen systems [4].

Models

Biochemical reaction in a biological system is usually
modeled through the rate equation which is derived
through a mass balance of the reactants in terms of re-
action rate and concentration of reactants. For a typical
reaction that uses m molecules P and n molecules Q
to produce one molecule R without intermediate steps
during reaction, written as mP C nQ ! R, the rate of
such reaction based on the law of mass action is given
by:

rŒP 	mŒQ	n (1)

where Œ 	 stands for concentration of each species and r
is called the rate coefficient or rate constant of reaction
and its value depends on the properties of the reactants
and environment of the reactions. Equation 1 will be
used repeatedly for modeling biochemical reactions in
this section.

Ligand–Ligand Interactions
If the number of cells in a developmental system is
large and the interest of study is at the tissue scale, the
living tissue (e.g., part of an embryo) may be modeled
as a continuous media. The interactions among free

diffusible morphogens A and B , often called ligands
(see Fig. 2), that undergo Brownian motions in extra-
cellular space of the tissues may simply be described
based on the rate (1) and principle of diffusions:

@ŒA	

@t
D DA�ŒA	 � ionŒA	ŒB	 C ioff ŒAB	

�idegŒA	C VA (2)

@ŒB	

@t
D DB�ŒB	 � ionŒA	ŒB	 C ioff ŒAB	

�jdegŒB	C VB (3)

@ŒAB	

@t
D DAB�ŒAB	C ionŒA	ŒB	 � ioff ŒAB	

�wdegŒAB	 (4)

where AB is a new complex produced by binding
between A and B , ion is the reaction rate, ioff is the
reaction dissociation rate, ideg, jdeg, and wdeg are the
degradation rates for each species, DA, DB , and DAB

are the diffusion coefficients, respectively, VA and VB
are the synthesis rates of each morphogen that may be
spatially localized, and � is the Laplacian operator.

Ligand–Receptor Interaction
The free morphogen communicates with cells usually
through receptors of cells in plasma membrane.
Ligands bind to receptors and dissociate from

Cell Biology Modeling Development, Fig. 2 Ligand–ligand interactions in the extracellular space at multicellular scale:
diffusion, local production of ligands, and binding and formation of new complex
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them according to the rate equation similar to the
ligand–ligand interaction. This interaction may be
described as:

@ŒA	

@t
D DA�ŒA	 � konŒA	ŒR	C koff ŒAR	

�idegŒA	C VA (5)

dŒR	

dt
D �konŒA	ŒR	C koff ŒAR	

�k1degŒR	C VR (6)

dŒAR	

dt
D konŒA	ŒR	 � koff ŒAR	 � k2degŒAR	 (7)

where DA is the diffusion coefficient of the ligand,
kon is the binding rate, koff is the disassociation rate,
ideg, k1deg, and k2deg are the degradation rates, VA is the
synthesis rate of the ligand, and VR is the synthesis rate
of the receptor.

Ligand–Nonreceptor Interaction
It is known that many morphogens bind to cell surface
proteins and/or proteoglycans other than receptors (See
Fig. 3). Nonreceptors, referring to this class of cell
surface proteins, usually take away the ligands from
the extracellular space and prevent the action of mor-
phogens. The model for ligand–nonrecptor interaction
is similar to (5)–(7) except that the complex formed
between the free morphogen and nonreceptor does not
directly activate the patterning signal pathway within
the cell.

Intracellular Signal Transduction
Binding of a ligand to a cell-surface receptor stimu-
lates a series of events inside the cell, with different
types of receptor stimulation of different intracellular
responses. Through binding, the ligand initiates the
transmission of a signal across the plasma membrane
by inducing a change in the shape or conformation
of the intracellular part of the receptor, often leading
to the activation of an enzymatic activity contained
within the receptor or exposing a binding site for other
signaling proteins within the cell. For example, the
extracellular ligand-receptor complex AR results in
the activities of its intracellular part ARin leading to
activation of protein G (See Fig. 3). This process may
be modeled as:

Cell Biology Modeling Development, Fig. 3 Ligand–cell in-
teractions at single cell scale: ligand-receptor binding, ligand-
nonreceptor binding

dŒARin	

dt
D k1ŒAR	 � k�1ŒARin	 (8)

dŒG	

dt
D k2ŒARin	 � k�2ŒG	 (9)

where ki , i D �2;�1; 1; 2 are rate constants. Often
the morphogen signal pathway may interact with com-
ponents in other pathways. For example, protein E
from the other pathway binds with G leading to loss of
active G:

dŒG	

dt
D k2ŒARin	�k3ŒG	ŒE	Ck4ŒGE	�k�2ŒG	 (10)

where k3 is the on rate and k4 is the off rate. The
equations for ŒE	 and ŒGE	 are omitted.

One of the key steps during signal transduction
is transcription: a protein, called transcription factor,
binds to specific DNA sequences to control a copy
of genetic information from DNA to mRNA. This
function may be achieved by one transcription factor
alone or binding with other transcription factors in
a complex, through promoting (as an activator) or
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blocking (as a repressor) a function of RNA to specific
genes. Assume thatG is a transcriptional factor andW
is the mRNA encoding information from a certain gene
through the transcriptional factor G; a simple linear
model for an activator then takes the form:

dŒW 	

dt
D rtransŒG	 � r2ŒW 	 (11)

where rtrans is the transcription rate and r2 is the
degradation rate.

Feedback Regulations
Many intracellular signaling molecule activities may
involve feedback regulation, that is, concentration of
a protein or mRNA depends on its downstream re-
sponses. Assume that in (11) the transcriptional rate
rtrans is proportional to the promoter activity that may
depend onW , the product ofG; such feedback may be
modeled through a Hill function;

rtrans D Hill.W / (12)

where

Hill.x/ D amin C amax � amin

1C .x=�/m
(13)

where amin is the minimal value of the Hill function,
amax is its maximal value, � is the half maximal
effective concentration of x allowing such regulation,
and m is the Hill exponent that controls the slope
of the response. For small m, the Hill function is a
graded function of x; for large m, the Hill function
has an ultrasensitive response. When m > 0, the Hill
function is a decreasing function representing negative
feedback. When m < 0, the Hill function is an
increasing function representing positive feedback.

Feedback regulations may also occur to regulate
properties of ligand, receptor, and nonreceptor, for
example, through synthesis or degradation of receptor,
ligand, and nonreceptor. In the case that feedback is on
the synthesis of receptor through mRNA, W , one may
write:

VR D Hil l.W / (14)

where the parameters in the Hill function are usually
different from regulation to regulation.

Parameters
Although the diffusion coefficient of morphogen
may be estimated experimentally, the exact values
are difficult to obtain due to the complexity of
extracellular environment and other aspects of the
in vivo developmental system [6]. The individual
reaction rate, such as kon and koff , is usually difficult
to measure; however, the ratio of kon=koff may be
estimated through in vitro experiments. The effective
synthesis rate and degradation rate may be estimated
based on experimental observation on the net influx
and outflux of the mass observed in experiments.
Usually a range for each parameter may be estimated
instead of individual specific values. The parameters
in the feedback regulations are difficult to obtain, in
particular, � , the half maximal effective concentration,
directly depends on the solution of the system while its
value also affects the solution. Overall, exploration
of a developmental system using a large set of
parameters within biological plausible ranges is an
effective approach of using models to characterize
their properties qualitatively and quantitatively for
testing biological hypotheses.

An Example
One of the developmental systems which has been
studied using modeling is the dorsoventral axis pattern-
ing during early Drosophila embryo development [10].
Several zygotic genes are involved in the regulatory
network of the developmental system. Among them,
decapentaplegic (Dpp) promotes dorsal cell fates such
as amnioserosa and inhibits development of the ventral
central nervous system; another gene Sog promotes
central nervous system development. In this system,
Dpp is produced only in the dorsal region while Sog is
produced only in the ventral region. For the wild-type,
the Dpp activity has a sharp peak around the midline
of the dorsal with the presence of its “inhibitor” Sog.
Intriguingly, mutation of Sog results in a loss of ventral
structure as expected, but, in addition, the amnioserosa
is reduced as well. It appears that the Dpp antagonist,
Sog, is required for maximal Dpp signaling [1].

An integrated modeling and experiment study was
performed for robustness and temporal dynamics of
the morphogens under various genetic mutations [10].
The model [10] used a one-dimensional geometry
of the perivitelline space of the Drosophila embryo.
An analytical study for the one-dimensional model
was also carried for steady states [9]. To examine an
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experimental observation on overexpression of the re-
ceptors along the anterior-posterior axis of the embryo
[10], a two-dimensional model was developed [7] for
the Dpp activities outside the area of elevated receptors
in a Drosophila embryo. For the sake of analytical
study, the two-dimensional model investigated in Lan-
der et al. [7] is a simplified version of the models
presented below.

Let ŒL	; ŒS	; ŒLS	; ŒR	; and ŒLR	 denote the
concentration of Dpp, Sog, Dpp-Sog complexes, free
receptors, and Dpp-receptor complexes, respectively.
Following the modeling principle in sections
“Ligand–Ligand Interactions” to “Parameters,” the
Dpp-Sog system is governed by the following reaction-
diffusion equations:

@ŒL	

@T
D DL

�
@2ŒL	

@X2
C @2ŒL	

@Y 2

�
� konŒL	ŒR	

Ckoff ŒLR	 � jonŒL	ŒS	 C .joff C �jdeg/

ŒLS	C VL.X; Y /

@ŒR	

@T
D �konŒL	ŒR	 C koff ŒLR	 � k1degŒR	

CVR.X; Y /
@ŒLR	

@T
D konŒL	ŒR	 � .koff C k2deg/ŒLR	

@ŒLS	

@T
D DLS

�
@2ŒLS	

@X2
C @2ŒLS	

@Y 2

�
C jonŒL	ŒS	

�.joff C jdeg/ŒLS	

(15)

@ŒS	

@T
D DS

�
@2ŒS	

@X2
C @2ŒS	

@Y 2

�
� jonŒL	ŒS	

Cjoff ŒLS	C VS.X; Y / (16)

in the domain 0 < X < Xmax and 0 < Y < Ymax.
X axis is the anterior-posterior axis of the embryo,
and Y axis is the dorsal-ventral axis. The boundary
conditions for ŒL	, ŒLS	, and ŒS	 are no-flux at
X D 0 and X D Xmax, and periodic at Y D 0

and Y D Ymax. VR.X; Y /, VL.X; Y /, and VS.X; Y /
are the synthesis rates for receptors, Dpp, and Sog,
respectively; DL;DLS;DS are diffusion coefficients;
� is the cleavage rate for Sog; and other coefficients

are on, off, and degradation rate constants for the
corresponding biochemical reactions [10].

Another similar model for BMP gradients is the
dorsal-ventral patterning of the zebrafish embryo, in
which a three-dimensional approximation of the ze-
brafish embryo shape was developed [15]. Numerical
simulations have to be utilized for studying those
models.

Numerical Methods

The model described above takes the general form:

@u
@t

D D�u C F.u/; (17)

where u 2 Rm represents the morphogen species,
D 2 Rm�m is the diffusion constant matrix, � is
the Laplacian, and F.u/ describes the biochemical
reactions.

This system is usually very stiff due to the dras-
tically different timescales associated with the reac-
tions among the different extracellular and intracellular
molecules in a developmental system. For such stiff
systems, typical temporal explicit schemes require very
small time-step sizes and typical implicit temporal
schemes require solving large nonlinear systems, re-
gardless of choices of spatial discretization. As a result,
simulations for long time dynamics of morphogen sys-
tem are computationally prohibitive using a standard
numerical approach.

A class of semi-implicit temporal schemes based on
an integration factor approach is particularly suitable
for solving this type of stiff reaction-diffusion equa-
tions [11, 12]. In this implicit integration factor (IIF)
method, the diffusion terms are treated exactly while
the reactions are treated implicitly leading to excellent
stability conditions without any extra computational
costs. As a result, large time-step sizes can be used
in the IIF method even for very stiff systems. To use
this method, one first discretizes the spatial variables
in the Laplacian operator to reduce the PDE system to
a system of ODEs:

ut D Cu C F.u/ (18)

where Cu is a finite difference approximation of D�u.
Let N denote the number of spatial grid points for the
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approximation of the Laplacian �u, then u.t/ 2 RN �m
and C is a .N �m/�.N �m/matrix representing a spatial
discretization of the diffusion.

The IIF method, in principle, can be constructed for
any order of accuracy (see [11,12] for a list of methods
in different order). The second order IIF method takes
a simple form:

unC1 D eC�t
�

un C �t

2
F.un/

�
C�t

2
F.unC1/: (19)

This method is unconditionally stable, that is, no stabil-
ity constraint is imposed on the time-step size for the
stability reason. This method can also be utilized with
spatially adaptive mesh refinement [8]. The second
order one as shown in (19) has been applied to sev-
eral developmental systems and the simulations have
shown excellent efficiency and accuracy [8, 11, 12].

Discussions

One of the major questions in developmental system is
how morphogen gradient and developmental patterning
achieve robustness and precision [5]. Mathematical
modeling and computational analysis can be used for
investigating a large, diverse, and growing number
of robustness strategies among which some of them
are difficult for experimental tests. One example is
a study [5] of self-enhanced morphogen clearance
strategy whose usefulness is found to come less from
its ability to increase robustness to morphogen source
fluctuations than from its ability to overcome noise
leading to robust establishment of threshold positions.

Another interesting question is dynamics of mor-
phogen gradients [3]. A mathematical model of the gra-
dient in dorsoventral patterning constrained its param-
eters by experimental data suggests that the patterning
gradient is dynamic and, to a first approximation, can
be described as a concentration profile with increasing
amplitude and constant shape [3].

Modeling may also be used to identify a specific
role of particular feedback regulation in cellular re-
sponses of a morphogen system. Through exploring the
capability of models with nine different mechanisms
for signal transduction with feedback along with eight
combinations of geometry and gene expression pre-
patterns to reproduce proper BMP signaling output
in wild-type and mutant embryos [13], the modeling

study shows one particular positive feedback coupled
with experimentally observed embryo geometry pro-
vides best agreement with experiments, leading to
insights into mechanisms that guide developmental
patterning [13].

As more modeling and computation are successfully
employed for better understanding of developmen-
tal patterning in recent years, several key elements
and complexity in morphogen system have yet been
well addressed in modeling morphogen patterning.
Growth [2], which is usually intimately linked with
morphogens that pattern the tissue, requires more so-
phisticated modeling and computational techniques.
Noises, which present in both spatial and temporal
form existing in extracellular environment and during
intracellular interactions, demand new machineries in
stochastic differential equations. Cell–cell communica-
tions, such as Notch-Delta signaling, necessitate effi-
cient multi-scale and hybrid modeling techniques that
couple discrete cells, continuum of morphogens, and
intracellular signal transductions. All of these provide
great opportunity for the development of new model-
ing techniques, mathematical tools and concepts, and
computational methods.
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Synonyms

Cell motion; Invasion; Metastases

Definition

Study of the mechanisms activated during the motion
and the organization of cells and their description
through mathematical models.

Description

Migration is the process initialized by cell polarization
with the formation of a front and a rear end and final-
ized by the periodic extension of protrusions at the cell
front and retraction at its trailing end. In most cases,

polarization of migrating cells is induced by the recep-
tion of certain diffusible molecules called chemoattrac-
tants. The response to such chemical cues is a directed
migration along the gradient of the chemical concen-
tration toward the maximum concentration of chemoat-
tractant. This phenomenon is called chemotaxis.

In addition to the response to diffusible chemoat-
tractants, cell migration is also regulated by the
environment the cell lives in, e.g., the network of
fibrous proteins like collagen, fibronectin, and elastin,
called extracellular matrix (ECM), that is present in
many tissue, by the adhesive interactions with the
ECM and by nondiffusible molecules, like ligands
bound to the ECM.

There are different types of motions: Cell can
migrate as single entities, interacting very briefly with
other migrating cells, or can move adhering with other
cells to form migrating clusters (see Fig. 1). A moving
single cell can have different migration strategies that
are usually identified as amoeboid or mesenchymal
motion. The former corresponds to a path finding strat-
egy within the extracellular matrix with a high morpho-
logical adaptation of the cell body and the formation
of few adhesion sites. The latter corresponds to a path
generating strategy involving the formation of many
adhesion bonds, the production of some proteins called
metalloproteinases that degrade the ECM fibers. Cell
clusters always move using a mesenchymal motion [7].

More basic information on the biology of cell mi-
gration can be found at http://www.cellmigration.org/
science/index.shtml

Overview

From the biological and the mathematical modeling
point of view, understanding how cells move is not only
a fascinating subject by itself but is also fundamental
to describe many physiological phenomena, such as
cell organization during embryonic development,
fibroblast recruitment in wound healing, migration
of cells of the immune system toward inflammatory
sites, axon guidance, angiogenesis, i.e., the formation
of a vascular network from existing vessels. Cell
migration is also a crucial step in pathologies like
tumor development and invasion, abnormal immune
response, chronic inflammatory diseases, rheumatoid
arthritis, atherosclerosis, and other vascular diseases.
Understanding the mechanisms underlying cell

http://www.cellmigration.org/science/index.shtml
http://www.cellmigration.org/science/index.shtml
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Cell Migration, Biomechanics, Fig. 1 Motion of ovary tumor cells across the mesothelial layer and invading the surrounding
tissue by a cellular Potts model

migration is also important to emerging areas of
biotechnology which focus on cellular transplantation
and the manufacture of artificial tissues.

Despite the difficulties involved in testing and mod-
eling living matter, there has always been a big interest
in studying and trying to describe the mechanics of
biological tissues and of cells, in particular. Any new
discovery on the subcellular mechanisms driving cell
motion has represented a stimulus to deduce a related
mathematical model so thet their evolution went along
the biological understanding of the process. In this
respect, very different mathematical models have been
developed which can be roughly classified according
to the scale at which they operate and the level of
microscopic detail required by the description, so that
one has models operating at the macroscopic scale, at
the cellular scale, and at the subcellular scale.

Macroscopic Models

The most celebrated model describing from the
macroscopic point of view chemotactic phenomena
is the Patlak-Keller-Segel model [10]
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<̂
ˆ̂̂̂
ˆ̂:

@n

@t
C

chemotaxis‚ …„ ƒ
r � .�nrc/ D
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r � .Krn/ C
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� �

death‚…„ƒ
ın ;

@c

@t
D

diffusion‚…„ƒ
Dr2cC

production‚…„ƒ
 �

decay‚…„ƒ
�c ;

(1)

that describes the diffusion of both the concentra-
tion c of the chemical factor determining chemotaxis
and the density n of a population of cells with a
convective term with a velocity along the chemical
gradient.

The model gained its popularity not only because
it was able to describe many biological phenomena,
but also because it presented interesting mathematical
problems like the blowup of the solution in finite
time under certain conditions. Roughly speaking, the
blowup of the solution is due to the fact that if the cells
produce themselves the chemical factor responsible for
chemotaxis, then while they move up its concentration
gradient they will enhance the concentration gradient,
and so in a catalytic way the cells will concentrate
in points. Looking at the problem from a different
perspective, from the modeling point of view the other
emerging need was to regularize such a successful
model to avoid the blowup of the solution. Several
solutions were proposed taking into account of sev-
eral phenomena neglected in the original model (see,
for instance, the review by Hillen and Painter [9]),
such as
• The volume filling concept, mainly consist-

ing in modifying the chemotactic term so
that cells are less sensitive to chemotactic
cues when the space occupied by the cells
increases.

• The nonlocal sampling concept, mainly consisting
in replacing the gradient in the chemotactic term
with an operator that integrates the concentration of
the signal over a region of sensitivity of the cell with
a finite sampling radius.
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• Mechanically derived models, mainly consisting
in deriving the first equation of the Patlak-Keller-
Segel model starting from a mass balance equation
introducing a relation between the velocity of the
cells and the compression they feel because of the
presence of other cells, so that cells that feel too
compressed move toward regions with less cells
where they feel less pressed. This brings a nonlin-
earity in the random motility term that is able to
avoid the blowup of the solution.
In some cases cell migration is also influenced by

a resistance to change the direction of motion, a sort
of inertia that is called cell persistence. Including this
phenomenon is important in the description of the
motion of keratocytes, of cell scattering processes, or
of the formation of vascular networks. In particular,
in this last case the production of the chemoattractant
by endothelial cells, their chemotactic response, and
cell persistence are all key ingredients of the process,
so that the basic model can be written as Gamba
et al. [8]
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(2)

In reality, also the mechanical interaction with the
substrate plays a relevant role so that the drag term
is replaced in Tosin et al. [13] by a more complex
mechanical interaction with the substrate. This model
was able to reproduce the structure of the capillary
plexus shown in Fig. 2.

In addition to chemotaxis, there are also other
“taxis” that can be described in a similar way. Ex-
amples are the preferred motion of cells toward stiffer
regions of the substrate (sometimes called durotaxis or
mechanotaxis) and the motion of cells toward region
with higher concentration of extracellular matrix (often
called haptotaxis). A celebrated model containing both
haptotaxis and chemotaxis in response to vascular
endothelial growth factor produced by hypoxic tumor

cells is the one developed by Chaplain and coworkers
(Anderson et al. [4]: Preziosi [11]) to describe tumor
induced angiogenesis
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where m is the ECM concentration. A discretized
version of this model gives rise to the vascular
structures shown in Fig. 3.

Cell-Scale Models

The role of ECM in cell migration is more important
than a simple substrate either slowing down the cells as
in (2) or influencing their motion through its concentra-
tion, as in (3), because of the fundamental role played
by the interaction of the cell with the ECM fibers. It
is, for instance, found that cell speed have a bimodal
dependence on cell density because if there are not
enough fibers they have difficulties in finding the ropes
to pull to move and if there are too many fibers they
attach too much and in three-dimensional setups they
have difficulties in squeezing through the dense mesh
of the ECM network.

In addition, it is shown that cells preferentially
move along the ECM fibers, a phenomenon called
contact guidance, so that the overall motion of the cell
population is not only influenced by the density of
fibers but also by their direction.

In order to describe more closely the motion
of ensemble of cells in the ECM network some
kinetic models were deduced (see Chap. 11 of
Chauviere et al. 2009) to describe the evolution
of a density distribution function. The density
and orientation of fibers can be described via a
distribution function m.x;n/ where n represents the
fiber orientation, so that the fiber density is given by

M.x/ D
Z
S2

C

m.x;n/ dn ;
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a b

Cell Migration, Biomechanics, Fig. 2 Experiments (left) and simulation of capillary plexus formation by endothelial cells using
model (2)

Cell Migration, Biomechanics, Fig. 3 Vascular network pro-
duced by the discretization of the angiogenesis model (3)

where S2C is the unit hemisphere, while the orientation
of the fiber network can be described by the orientation
tensor

D.x/ D 3

M.x/

Z
S2

C

m.x;n/ n ˝ n dn :

The cell population is described through the proba-
bility density p.t; x; v/ so that

�.t; x/ D
Z

R3
p.t; x; v/ dv ;

is the density of cells and

U.t; x/ D 1

�.t; x/

Z
R3

vp.t; x; v/ dv ;

the mean velocity. The evolution of p is then given by
a kinetic model like

@p

@t
.t; x; v/Cv �rp.t; x; v/D Jm.t; x; v/CJc.t; x; v/ ;

where Jm and Jc are the collisional operators that
describe how cell velocity changes with the interaction
with the other cells and with the ECM, following in this
last case the direction of its fibers.

Other popular models to describe the behavior of
a population of cells at the cellular scale are the so-
called Cellular Potts models (CPM) and Individual
Cell-Based Models (IBM).

The CPM is a discrete lattice Monte Carlo general-
ization of the Ising’s model, based on an energy min-
imization principle (see Part II of Anderson et al. [4]
for more details). Typically, the CPM represents a
collections of biological cells on a numerical grid,
associating an integer index to each site to identify the
space a cell occupies at any instant. The collection of
lattice sites with the same index represents a cell, which
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can also have an additional attribute, a cell type. The
borders between sites with different spins define cell
membranes.

Cell motion is then obtained by a random replace-
ment of cell sites that are more or less likely to occur
according to an effective energy H . The functional
H contains a variable number of terms, such as cell
attributes (e.g., volume, surface), true energies (e.g.,
cell-cell adhesions), terms mimicking energies (e.g.,
response to external chemical stimuli)

H D Hadhesion CHshape CHchemotaxis CHpersitence C :::

The cells, and the entire system, gradually and
iteratively rearrange to reduce the effective energy of
the configuration using a modified Metropolis algo-
rithm for Monte Carlo dynamics. This implements the
natural exploratory behavior of migrating cells, via
thermal-like membrane fluctuations and extension of
pseudopodia. Procedurally, a lattice site is selected at
random and assigned the state from one of its unlike
neighbors, which has also been randomly selected. The
Hamiltonian of the system is computed before and after
the proposed update: ifH is reduced as the result of the
copy, the change is accepted, otherwise it is accepted
with a probability that decreases exponentially with the
energy increase that such an unfavorable choice would
give. Figure 1 gives an example of a CPM describing
the motion of a single cell or of a cell cluster through
the mesothelial layer.

In Individual-Based Models, a cell is represented by
an elastic sphere of radius R and a possible substrate
by an impenetrable plane (see Part III of Anderson
et al. [4], Chap. 14 of Chauviere et al. [5] for more
details). If a cell gets in contact with the substrate
or with other cells, it adheres. As a result of the
contact, the shape of the cell changes by flattening
at the contact area. Consequently, the volume of the
cell changes as well. The dynamics of each individual
cell is modeled by Langevin equations in a friction
dominated regime. Thus, in the absence of an external
stimulus the cells perform a random movement. For
instance, the displacement of cell i is modeled by

cell�cell friction‚ …„ ƒX
j

Ci;j

�
wi � wj

�C
cell�ECM friction‚…„ƒ

Ci;swi D Fdet
i C Fst

i

On the right hand side, Fdet
i summarizes the

deterministic forces related to the total interaction
energy between two cells i and j defined by the
sum overall individual energy contributions, that
depend on the distance between the cells and the
radius of both cells. Thus, cell-cell contacts can
equilibrate via cell displacements or changes in the
cell radius R. The total interaction energy between
a cell and the substrate is defined analogously.
The term Fst

i denotes the stochastic force with
zero mean and delta-correlated autocorrelation
function that models the random component of cell
movement.

Subcellular-Scale Models

With the improvement of the experimental tech-
niques an ever increasing attention is paid to
the subcellular mechanisms driving cell motion,
starting from the initial stages leading to cell
polarization that according to some models is
related to a symmetry breaking of the distribu-
tion of specific molecules inside the cell (e.g.,
PIP3, PI3K, PTEN), leading to a sort of phase
separation inside the cell. Once initiated, po-
larization is maintained by a set of feedback
loops involving PI3K, microtubules, Rho family
GTPases, integrins, and vesicular transport. The
mathematical study of networks of chemical
reactions presenting feedback loops has shown
that their presence is often related to saddle-node
bifurcation giving rise to a bistable scenario, so
that according to the stimulus the cell can suddenly
jump from an active to an inactive state and vice
versa.

As already discussed, after polarization, migration
requires a reorganization of the cytoskeleton to form
protrusive structures like lamellipodia, pseudopodia,
and filopodia. This implies the polymerization of mi-
crotubules and of actin filaments, extending at the
front. The actin filaments are either cross-linked by
proper adhesion molecules forming a network or align
to form bundles, called stress fibers, that end in fo-
cal adhesion points consisting of a cluster of pro-
teins (integrins and their cytoplasmic partners) that
attach to the substrate on which the cell is migrating.
Integrins are also responsible for the conversion of
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mechanical stimuli into intracellular signaling events,
a process called mechanotransduction, that can acti-
vate specific protein pathways and gene expression,
influence proliferation or death, and determine cell
shape by modifying its cytoskeleton. Many models
have been deduced to describe the kinetics of micro-
tubule and actin filaments, the cross-linking adhesion
between actin filaments in the lamellipodium, and
the dynamics of its protrusion (see Alt et al. [1],
Alt et al. [2], Chaps. 4 and 5 in Chauviere et al. [5]).
Although the global picture is now understood pretty
well, this is not enough to describe how cells use
the cytoskeleton to move, because a key ingredient
is still lacking from the picture and from the related
models: the action of myosin, the molecular motor
able to generate contractile forces between actin fila-
ments.

An attempt of including the effects of myosin
in a model of cell migration has been recently
attempted by Stolarska et al. [12]. Mimicking what
is also done to describe the mechanics of heart and
muscles, they distinguish an active and a passive
process in the deformation of a cell. The former
stems from actin polymerization and from the action
of myosin contractile forces, the latter from the
passive material properties of the cell. Together these
produce local deformations in the form of extensions
and contractions, and a passive resistance to these
forces and external forces. Active processes are
incorporated into the continuum mechanics model
by postulating a multiplicative decomposition of the
total deformation gradient into a passive and an active
part.

Forgetting the subcellular mechanisms of traction,
some attention has been paid on studying how
the force generated internally is transferred to
the ECM through the adhesion complexes, and
in particular how much cells pull on the ECM
while migrating and, more in details, where they
exert their force. This is an inverse problem. In
fact, considering, for instance, a two-dimensional
experiment, having measured the deformation of
the substrate on which the cell migrates, one would
like to know the time and space dependence of the
forces the cell is exerting by knowing that, of course,
adhesion sites can be only activated below the cell
body.

It is possible to measure the displacement, for in-
stance, putting several fluorescent beads in the upper

layer of the gel on which the cell is moving. From
that, Dembo and Wang [6] suggest to evaluate the
cellular traction by maximizing the total Bayesian
likelihood of the markers displacement predicted on
the basis of the Boussinesq solution for the linear
elastic halfplane with pointwise traction. The problem
can be also formulated as an inverse problem min-
imizing the distance between the measured and the
computed displacement under penalization of the force
magnitude [3]. The derivation of the cost function leads
to two sets of elastic-type problems: the direct and
the adjoint one. The unknown of the adjoint equation
is exactly the shear force exerted by the migrating
cells.
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Birkhäuser (2011)

5. Chauviere, A., Preziosi, L., Verdier, C.: Cell Mechanics:
From Single Scale-Based Models to Multiscale Modeling.
Chapman-Hall/CRC, Boca Raton (2010)

6. Dembo, M., Wang, Y.L.: Stresses at the cell-to-substrate
interface during locomotion of fibroblasts. Biophys. J. 76,
2307–2316 (1999)
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Short Definition

A cell-based model is a simulation model that predicts
collective behavior of cell-clusters from the behavior
and interactions of individual cells. The inputs to a
cell-based model are cell behaviors as observed in
experiments or deriving from single-cell models, in-
cluding the cellular responses to cues from the mi-
croenvironment. The cell behaviors are encoded in a set
of biologically plausible rules that the simulated cells
will follow. The outputs of a cell-based model are the
patterns and behaviors that follow indirectly from the
cell behaviors and the cellular interactions. Cell-based
models resemble agent-based models, but typically
contain more biophysically detailed descriptions of the
individual cells.

Description

Computational and mathematical modeling are becom-
ing central tools in developmental biology, the study of
embryonic and postembryonic development of multi-
cellular animals and plants, and are instrumental in un-
raveling cellular coordination. A good computational
model lays down the biological knowledge in a struc-
tured framework, in particular the interactions between
the system components. It then predicts the structures

and dynamics the interactions between biological com-
ponents produce, and in this way helps shape new
biological hypotheses. Discrepancies between the bi-
ological system and the model point at gaps in our
understanding, and suggest new experiments whose
results will refine our models. Thus, a systematic cycle
between model and experiment produces true insights
in biological mechanisms, not just in the molecules that
are part of the process.

Cell-based models start from the premise that cell
behavior is central to unraveling biological develop-
ment. What a cell can do (e.g., move, secrete a signal,
etc.) depends of course on what genes it expresses or
has access to. However, what it actually does depends
also on its microenvironment: what signals does it
receive from neighboring cells and from the structural
proteins these cells secrete? How flexible is the sur-
rounding tissue, and how does the microenvironment
change in response to the cells manipulations, e.g., se-
cretion of proteolytic enzymes or pulling and pushing
forces?

The collective behavior of tissues then follows (a)
the behavior of the constituent individual cells, (b)
the shapes and patterns produced by these individual
behaviors, and (c) the responses of the cells to the new
environment they have produced collectively.

Cell-based models are instrumental in predicting the
collective cell behavior following from individual cell
behaviors. The inputs to a cell-based model are the
experimentally observed cell behaviors and the cellular
responses to cues from the microenvironment. These
are encoded in a set of biologically plausible rules that
the simulated cells will follow. The outputs of the cell-
based model are the patterns that follow indirectly from
the cell behaviors, e.g., a vascular network [17]. These
model outputs result from the cellular coordination
that follows nontrivially from the cell behaviors and
the responses of the cells to the microenvironment they
themselves produce. Cell-based methods have been
successful in unraveling processes in developmental
biology and in biomedicine (reviewed in Merks and
Glazier [19]).

Collective and individual cell motility are the main
driving forces of animal morphogenesis. The cells in
a developing animal swarm, migrate, mix or sort out
and divide – thus developing animal tissues essentially
behave as living clays in which biological form and
pattern arise primarily through cell motility. Hence,
most computational techniques focus on providing
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Cell-Based Modeling, Fig. 1
Schematic depiction of
common cell representations
in cell-based modeling
methodologies. The same
configuration of three cells is
shown in a single-particle,
lattice-based model (e.g.,
lattice gases), in a
multiparticle lattice-based
model (e.g., the Cellular Potts
model), in a single-particle,
off-lattice model, and in a
multiparticle off-lattice
model. Single-particle,
off-lattice models describe
cells either as point particles
or as ellipsoids. Multiparticle,
off-lattice models can
describe the boundaries of the
cells or the cells’ interiors

Single-particle Multiple-particle
Lattice-based

O
ff-lattice

Ellipsoids

Point particles
Mass particles

Boundary particles

a b

c-1 c-2 d-2 d-1

descriptions of cell motility, and on the forces the
individual cells exert on each other.

Cell-based modeling methodologies for animal de-
velopment differ in the level of detail by which they
describe the cells and by the level of detail by which
the positions of the cells can be described. Figure 1
schematically depicts the main mathematical repre-
sentations of cells in common use. Single-particle
methods describe cells as point particles or as spherical
particles. Multiparticle methods use a collection of
particles to describe a cell and can therefore include
more detail on the shape and motility of the cells.
A further distinction is made between lattice-based
methods in which the particles live on the coordinates
of a lattice, and off-lattice methods that use real num-
bers to describe the particle coordinates.

From a computational perspective, these methods
differ in the way the cells are represented in memory
and in the algorithms used, and therefore each has
its own advantages and disadvantages. In lattice-based
methods determining the neighbors of cell is straight-
forward (just look at adjacent lattice sites), while in-
serting a cell during cell division is difficult because
the surrounding tissue must be shifted over the whole
lattice. In an off-lattice method finding neighbors is
challenging – in a naive algorithm the positions of all

cells would need to be compared with each other –
while moving a cell or part of the tissue is easier than
in a lattice-based algorithm.

Single-Particle Methods
Single-particle methods can describe cells as points
on a lattice (Fig. 1a), off lattice, as points with real
coordinates with the cell boundaries represented by
their Voronoi planes (Fig. 1c-1) or as spherical or
ellipsoid particles (Fig. 1c-2). An example of a lattice-
based, single-particle cell-based simulation system are
lattice gases. Lattice gases have been originally de-
veloped for fluid dynamics simulations. Because they
model the movement of particles over a lattice and their
change of direction due to collisions, they can be ap-
plied more generally as agent-based systems and have
been used to model cellular interactions and pattern
formation in bacterial and animal systems. Deutsch
and coworkers have used lattice gases for modeling
invasion of tumors (Fig. 2a; [10]), and for modeling
myxobacterial slime molds [4], a unicellular organism
that aggregates to form mushroom-like fruiting bodies
to sporulate.

A limitation of lattice gases is that they cannot
straightforwardly represent the shape of individual
cells. Therefore Alber and coworkers have taken the
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Cell-Based Modeling, Fig. 2 Applications of cell-based mod-
eling in developmental biology: (a) lattice-gas cellular automata
model of tumor invasion, with isotropic particles [10]; (b) three-
dimensional lattice-gas cellular automata model of fruiting body
formation in myxobacteria, with elongated particles [32]; (c) cel-
lular Potts model of vascular tumor growth [29]; (d) Delaunay-
Object-Dynamics of germinal center dynamics [3], scale bar

100�m; (e) cell-based, off-lattice model of hepatic tissue expan-
sion during liver regeneration (modified after [11]); (f) cell-based
model of plant tissue growth [20]; (g) cell-fluctuation-free model
of cell sorting using a finite-element method [13]; (h) cluster
of cells modeled in biomechanical detail, with the subcellular
element model [25]

lattice-gas approach one step further and explicitly
represent the rod shaped cells in their lattice-gas model,
where the interaction rules of the bacteria depend on
the relative cell orientation. Their model shows that
motile, rod-shaped myxobacteria can aggregate and
form fruiting bodies (Fig. 2b) due to direct contact
dependent interactions causing traffic jams [31].

Lattice gases are a useful for sparse cellular systems
with highly motile, swarming cells, in which the shape
of individual cells does not need to be described in
detail. In most plant or animal or plant tissues the
cells partially or completely tesselate the space, and in
such cases more detailed descriptions of the tissues are
required. Off-lattice, point methods describe tissues as
a set of points in space, where the cells and the contact
area between cells is given by a Voronoi tesselation
[26]. This method, called Delaunay-Object-Dynamics,

models cell motility by moving the points and updating
the Voronoi tesselation, and cell division is modeled
by duplicating the points. The method has later been
extended so it can represent both sparse and dense
tissues. In this model of tumor spheroid growth spheres
represent isolated cells, and Voronoi tesselations de-
scribe denser parts of the tissues (Fig. 2d; [27]).

The cell-based models by Drasdo and coworkers
[6, 8, 11] and Palsson and Othmer [23] represent cells
as spheres or ellipsoids. In these methods the forces
the cells exert on each other and on their surroundings
result in cell movements, often combined with random
motility component. They have been applied to a range
of problems including the development of the cellular
slime mold Dictyostelium discoideum [23] and liver
development (Fig. 2e; [11]). For a detailed review of
this class of off-lattice models, see Galle et al. [9].
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Multiple-Particle Methods
A disadvantage of single-particle methods is that they
often necessarily simplify cell shape to spheres, ellip-
soids, or Voronoi regions, and that cell motility is sim-
plified as translation of the center of mass of the cell.
In reality, most animal cells move by stochastically
extending and retracting membrane sections called
pseudopods. A detailed description of the stochastic
membrane ruffling that drives animal cell motility is
required for understanding morphogenetic processes.
For example, cells in embryonic tissues can sort out de-
pending on how strongly they adhere to one another, a
process called differential-adhesion-driven cell sorting
[33]. Such cell sorting requires a accurate description
of stochastic cell movement. Cell-based methods that
describe biological cells as collections of particles or
in terms of cell perimeter can describe such stochastic
cell motility in much more detail.

Cellular Potts Model
The Cellular Potts model (CPM), also known as the
Glazier-Graner-Hogeweg model, is a lattice-based
Monte Carlo approach that describes biological cells
as spatially extended patches of identical lattice
indices (Fig. 1b). Intercellular junctions and cell
junctions to the ECM determine adhesive (or binding)
energies. The CPM algorithm simulates pseudopod
protrusions by iteratively displacing cell interfaces,
with a preference for displacements that reduce the
local effective energy of the configuration. Cells
reorganize to favor stronger rather than weaker cell-
cell and cell-ECM bonds and shorter rather than longer
cell boundaries. Further contributions to the effective
energy regulate cell volumes, surface areas, cortical
tension, cell shape, and chemotaxis. The Cellular
Potts model has been successfully applied to a wide
range of biological problems, including the life cycle
of the cellular slime mold Dictyostelium discoideum
[16], blood vessel development [17], vascular tumor
growth [29], early chick development [36], and T-cell
migration patterns in lymph nodes [2].

Off-Lattice Multiparticle Methods
More recently, several off-lattice multiparticle methods
have been introduced. Alber and coworkers use a
coarse-grained approach to model rod-shaped, motile
myxobacteria as small collections of around three
particles coupled with Hookean springs [37]); an
energy-minimization approach, similar to the Cellular

Potts model, is used to describe cell motion. Typical
multiparticle methods use larger sets of particles to
describe cells. Newman’s subcellular element model
[21] describes cells as 2D or 3D sets of strongly
connected particles (Fig. 1d-1). Cells are connected
via weak bonds and cells can migrate or slide along
one another by randomly constructing and breaking
connections to adjacent cells. Because of the detailed
description of the cells’ cytoskeleton, the method is
suitable for quantitative, rheological descriptions of
the viscoelastic properties of cells (Fig. 2h; [25]). A
similar multiparticle method was introduced by Ramon
and coworkers [14].

Other multiparticle cell-based methods provide
more or less detailed, finite-element descriptions
of the cell boundaries, combined with continuum
descriptions of the cell’s interior (Fig. 1d-2). Honda
and coworkers place vertices at the interfaces between
at least three cells. The viscoelastic properties of the
cell membranes and the resulting motion of the vertices
are described using continuum equations. The method
was recently applied to a model of symmetry breaking
in the early, preimplantation mouse embryo [12]. Odell
et al. [22] and Sherrard et al. [28] have introduced
a similar finite-element model that describes cell
surface tensions and describes the cytoplasm as an
incompressible fluid. Brodland and Clausi [5], Hutson
et al. [13] (Fig. 2g), and Tamulonis et al. [34] add
neighbor changes to such tension-based finite element
models of cell-boundary dynamics. The immersed
boundary method introduced by Rejniak [24] takes a
similar boundary-oriented approach, but resolves both
the cellular boundary and in particular the intracellular
fluid in more detail. The method describes the cell
membrane using a collection of particles connected by
springs; the cytoplasm is modeled as a viscous fluid
modeled in detail by the Navier–Stokes equations that
are solved on a grid.

Plant Development: Symplastic Development
Most cell-based simulation methods focus on simu-
lating collective cell motility in animal development.
In plants and some animal tissues (e.g., in epithelia)
the relative positions of the cells are practically fixed,
and only cell division and changes in cell shape affect
tissue shape. In addition, the rigid cell walls of plant
cells play a key role in regulating cell expansion and
overall tissue mechanics. Therefore questions in plant
development require a different choice of cell-based
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modeling method than animal development. A few
cell-based simulation techniques have specialized on
plant development. vv-Systems is a two-dimensional
rewriting grammar to model cell division; it has been
applied in a number of recent studies on plant de-
velopment (e.g., Smith et al. [30]). vv-Systems often
specify a morphological transformation of the tissue as
a whole. A cell division algorithm then partitions the
resulting space; thus in vv-systems tissue morphogene-
sis is not necessarily driven by collective cell behavior
as in other cell-based methodology. The methods by
Corson et al. [7] and Merks et al. [18] (Fig. 2f)
resemble the off-lattice, animal cell-boundary based
methods by Honda et al. [12], Odell et al. [22], and
Brodland and Clausi [5]. They keep the cells’ relative
positions fixed and describe in detail the biomechanical
responses of the plant cell wall and the adjacent cell
membranes to events in the cells.

Future Developments
Cell-based computational methods can help unravel-
ing how individual cell behavior and cell interactions
drive biological growth and development. They can
simulate biological development in amazing detail.
A limitation of the computational methods used in cell-
based modeling is that making generic statements on
the behavior of a model is hard. The simulations must
be repeated for large range of parameter values before
any generic statement can be made. Recent efforts aim
to develop mean-field approximations of cell-based
models, such that simplified, analytical models can
be derived from cell-based model descriptions (see,
e.g., Byrne and Drasdo [6], Turner et al. [35] and
Lushnikov et al. [15]). Although in such continuum
approximations of cell-based models inevitably details
are lost, they may eventually assist in deriving analyti-
cal approximations of cell-based models.

Another danger in cell-based modeling is that some
observations may result from the biological hypotheses
represented by the model, while other observations
may be the result of model-specific simulation arti-
facts. Therefore it is important to simulate a model
using a range of cell-based modeling methodologies.
To do so currently the user must rebuild his or her
simulation for each of the available cell-based models.
The ongoing cell behavioral ontology (CBO) initia-
tive http://bioportal.bioontology.org/ontologies/39336
aims to provide a well-defined set of terms for describ-
ing the behavior of animal, plant, or bacterial cells.

A biological modeling language derived from the CBO
would make it possible to define the model entirely in
a conceptual language familiar to biologists. This will
make it possible to define a model once, and test it in
all compatible cell-based modeling packages.

Cell-BasedModeling Software
A number of Open Source software packages and
programming libraries are available for constructing
lattice-based or off-lattice cell-based simulations with
relatively little effort.

CompuCell3D (http://www.compucell3D.org) is an
extensive software package for constructing three-
dimensional and two-dimensional cell-based simu-
lations based on the Cellular Potts model. Using an
XML and Python interface, users can easily construct
simulations based on the standard cell behaviors of
the Cellular Potts model, e.g., differential adhesion
and chemotaxis. Its modular architecture makes it
possible to build user-defined cell behaviors using
C++ or Python. The Tissue Simulation Toolkit (http://
sourceforge.net/projects/tst/) is a C++ library for
building two-dimensional Cellular Potts simulations.

Chaste (Cancer, heart and soft-tissue environment;
Pitt-Francis et al. [38]) provides a set of C++ li-
braries for developing off-lattice, single-particle cell-
based simulations of animal tissues. It represents cells
by its centers and connects cells with virtual springs.

L-studio (http://algorithmicbotany.org/virtual
laboratory/) is an extensive suite for modeling plants.
It includes software for building L-systems and vv-
systems simulations of plant tissues.

VirtualLeaf (http://code.google.com/p/virtualleaf/
and Merks et al. [20]) implements a plant-specific,
cell-based methodology for cell-based plant tissue
simulation. Users can define their models by
implementing a C++ model description plugin, using
objects corresponding to biological entities, including
molecules, cells, and cell walls.
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Chebyshev Iteration
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Oxford, UK

Abstract

Chebyshev iteration is a solution method for linear
systems of equations. It is a highly effective method
in the situation where the coefficient matrix and any
employed splitting matrix or preconditioner is symmet-
ric and positive definite and accurate bounds for the
eigenvalues of the preconditioned matrix are available
a priori.

One of the oldest methods for the solution of sys-
tems of linear equations Ax D f is based on splitting
A D M �N and iterating

Mxk D Nxk�1 C f; k D 1; 2; : : : (1)

from some start vector x0. We assume here that A 2
R
n�n and f 2 R

n are given and x 2 R
n (the

solution) is sought; however much of what we describe
applies to other fields, notably C, with the appropriate

modifications (symmetric!Hermitian, etc.). As with
other such fixed point or simple iterations, it is readily
seen that

x � xk D M�1N.x � xk�1/ D .M�1N /2.x � xk�2/

D : : : D .M�1N /k.x � x0/ (2)

and thus that xk ! x as k ! 1 for any x0 if and only
if the eigenvalues of the iteration matrix M�1N D
I � M�1A are all contained in the open unit disc or
equivalently that the eigenvalues of M�1A lie in the
open unit ball centered on one. Notice that (2) can be
written as x � xk D pk.M

�1A/ .x � x0/ for each of
the polynomials pk.s/ D .1 � s/k; k D 0; 1; 2; : : :.

The matrix M is usually called the preconditioner
and of course must be invertible for existence of the
iterates in general.

In the particular (and common) case that A and
M are symmetric and M is positive definite, the
matrixM�1A is self-adjoint in the inner product h�; �iM
defined by hx; yiM D xTMy and so has only real
eigenvalues. A more elementary way to realize this
is based on the definition of M

1
2 D Qƒ

1
2QT via

the diagonalization M D QƒQT and the observa-
tion that M�1A is similar to the symmetric matrix
M

1
2M�1AM� 1

2 D M� 1
2 AM� 1

2 .
The condition for convergence of the iteration (1)

is then that 0 < � < 2 for every eigenvalue � of
M�1A (which we will write as � 2 �.M�1A/). This
necessarily implies that A must be positive definite
but is clearly much more restrictive than that; if we
broaden our perspective slightly and allow for iter-
ations based on more general polynomials than just
p0.s/ D 1; p1.s/ D 1 � s; p2.s/ D .1 � s/2; : : : , then
we can easily get a convergent (and sometimes rapidly
convergent) method.

For each iteration, k, one can imagine taking a
(different) linear combination of the simple iteration
vectors: yk D Pk

jD0 ˛
.k/
j xj with

Pk
jD0 ˛

.k/
j D 1.

Then using (2)

x � yk D
kX

jD0
˛
.k/
j .x�xj /D

2
4 kX
jD0

˛
.k/
j .I �M�1A/j

3
5

.x � x0/ D qk.M
�1A/ .x � x0/

where qk is the degree k polynomial defined by
qk.s/ D Pk

jD0 ˛
.k/
j .1 � s/j . This can be envisaged
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for any set of polynomials so long as qk.0/ DPk
jD0 ˛

.k/
j D 1 for each k. The key realization is that

you can choose polynomials for which qk.M
�1A/

is small so that x � yk is small; precisely if we
(theoretically) expand x � x0 D P

i ˇivi in terms
of eigenvectorsM�1Avi D �ivi , then

x � yk D
X
i

ˇiqk.M
�1A/vi D

X
i

ˇiqk.�i /vi ;

and so if positive real numbers `; u are known such that
` � � � u for all � 2 �.M�1A/, then taking the
standard Euclidean norm, we have

kx � ykk � max
�2�.M�1A/

jqk.�/jkx � x0k

� max
s2Œ`;u	

jqk.s/jkx � x0k:

Taking the Chebyshev polynomials, Tk.t/ D
cos k�; cos � D t for t 2 Œ�1; 1	 and for s 2 Œ`; u	
defining

qk.s/ D Tk.as C b/=Tk.b/

with a D 2=.u � `/; b D .u C `/=.u � `/ gives
precisely the degree k polynomial which minimizes
maxs2Œ`;u	 jqk.s/j for each k D 0; 1; 2; : : :. Here a and
b are simply identified so that as C b 2 Œ�1; 1	 for
s 2 Œ`; u	. Note also that Tk.t/ D cos h k�; cos h � D t

for jt j � 1 defines exactly the same set of Chebyshev
polynomials, so Tk.b/ is perfectly well defined.
The key property of Chebyshev polynomials that
has been used is that they are the smallest possible
polynomials in the maximum absolute value sense
on a known interval. Some elementary manipulations
using Chebyshev polynomials lead to the bound on
convergence

kx � ykkA
kx � x0kA � 2

 p
u � p

`p
u C p

`

!k

where kzk2A D zT Az.
The above is purely a way of thinking about poly-

nomial iteration (with the Chebyshev polynomials);
however calculation of the Chebyshev iterate vectors,
yk; k D 1; 2; : : : , is very simply achieved using an-
other property of the Chebyshev polynomials, namely,
that they are orthogonal polynomials and hence have a
three-term recurrence

TkC1.t/ D 2tTk.t/ � Tk�1.t/; T0.t/ D 1; T1.t/ D t

(in the case of the Chebyshev polynomials, this can
be readily derived using cos .k C 1/� C cos .k �
1/� D 2 cos � cos k�). Some lengthy but simple al-
gebra yields the following algorithm for the iterates y:

set yo D x0; yp D 0;w D 1;

set a D 2=.u � `/; b D .u C `/=.u � `/;

M D b �M=a;
while not converged do

w D 1=.1� w=.4b2//
r D f � A � yo
SolveM z D r

y D w � .z C yo � yp/C yp

yp D yoIyo D y

end

The realization that the Chebyshev polynomials
guarantee the particular external property is due to
Flanders and Shortley [2], though the method was fur-
ther developed and popularized by Golub and Varga [3]
and Varga [6]. A particular situation in which Cheby-
shev iteration is highly attractive arises in finite ele-
ment computations with the so-called mass matrix and
diagonal preconditioner for which a priori eigenvalue
bounds, `; u, can be readily pre-calculated and have
been tabulated by the author in [7]. Such matrices often
arise in block preconditioners for more complicated
problems when the linearity of Chebyshev iteration
with respect to the starting vector is an important
property not shared by the more popular conjugate
gradient method (see [8]).

Our description requires self-adjointness of M�1A;
when this does not hold, eigenvalues can become
complex. In this situation, ellipses in the complex
plane may be employed as eigenvalue inclusion sets,
and Chebyshev polynomials are near optimal also on
these (see [1, 4]). Other regions and sets of orthogo-
nal polynomials are possible. As for simple iterations
with nonsymmetric (or generally non-normal) matri-
ces, however, the eigenvalues only describe eventual
convergence – significant transient growth in kx � xkk
can occur and may prevent practical convergence in
highly non-normal cases [5]. Indeed, the iterative solu-
tion of systems of linear equations with nonsymmetric
coefficient matrices remains one of the least under-
stood areas of numerical analysis.
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Introduction

Chebyshev polynomials, named for the Russian mathe-
matician Pafnuty Chebyshev (1821–1894), are a family
of orthogonal polynomials on the interval [�1,1] and
a special case of Jacobi polynomials. They can be
viewed as the analogue on the real line of trigono-
metric polynomials on the unit circle in the complex
plane and inherit many of the useful approximation
properties and fast algorithms usually associated with
Fourier methods and Fourier series. This makes them
incredibly useful, both as a means of analysis and
as a computational tool. Figure 1 shows the first six
Chebyshev polynomials of the first and second kinds.

Definition

There are two main kinds of Chebyshev polynomial,
typically referred to as those of the first kind and those

of the second kind, denoted by Tn and Un, respectively.
Both kinds may be defined in a number of equivalent
ways. For example, the first-kind polynomials Tn can
be defined as the solution to the differential equation

�
1 � x2

�
y00 � xy0 C n2y D 0;

by the recurrence relations

T0.x/ D 1; T1.x/ D x; TkC1.x/ D 2xTk.x/

�Tk�1.x/; k D 1; 2; : : : ;

or through the trigonometric identity

Tn.x/ D cos .n arccos.x// ; x 2 Œ�1; 1	:

Similar definitions exist for the second-kind polynomi-
als Un.

Properties

Roots and Extrema
The fundamental theorem of algebra guarantees that
the degree n Chebyshev polynomial Tn.x/must have n
roots, and it follows immediately from the trigonomet-
ric definition above that these are given by

xk D cos

 

�
k � 1

2

�
n

!
; k D 1; : : : ; n:

These are often referred to as the n Gauss–Chebyshev
points or Chebyshev points of the first kind. The n roots
of Un.x/ are similarly given by

xk D cos

�
k

nC 1

�
; k D 1; : : : ; n;

and if augmented with x0 D 1 and xnC1 D �1
are known as the n C 2 Chebyshev–Lobatto points,
Chebyshev points of the second kind, or Chebyshev
extrema (see below). Both sets of points have a limiting

density of
�


p
1 � x2

��1
as n ! 1.

Minimax Property
From the trigonometric definition of Tn, it is clear that
�1 � Tn.x/ � 1 for all x in Œ�1; 1	. Furthermore, for
any given n � 1, the scaled Chebyshev polynomial of
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Chebyshev Polynomials, Fig. 1 The first six Chebyshev polynomials of the first (left) and second (right) kind

the first kind, 1
2n�1 Tn.x/, is the polynomial of degree n

with leading coefficient 1 (i.e., monomial) for which
the maximal absolute value on the interval Œ1; 1	 is
minimal. This value is 1=2n�1 and is obtained precisely
n C 1 times at ˙1 and the roots of Un�1. (Proof:
[2, p. 62]).

Orthogonality
The Chebyshev polynomials of the first kind are
orthogonal on Œ�1; 1	 with respect to the weight
1=

p
1 � x2 so that

Z 1

�1
Tj .x/Tk.x/p

1 � x2 dx D
8<
:
 W j D k D 0;

=2 W j D k 6D 0;

0 W j 6D k:

They also satisfy the discrete orthogonality condition

1

n

n�1X
lD0

Tj .xl /Tk.xl / D
8<
:
1 W j D k D 0;

1=2 W j D k 6D 0;

0 W j 6D k;

where the xl are the Chebyshev points of the first kind.

Differentiation and Integration
The integral of the Chebyshev polynomial Tn is given
by

Z y

Tn.x/dx D 1

2

�
TnC1.y/
nC 1

� Tn�1.y/
n � 1

�
:

Its derivative obeys the longer recurrence

T 0
n.x/ D 2n

n�1X0

kD0
.nCk/mod 2D1

Tk.x/ D nUn�1.x/;

where the prime indicates the k D 0 term is halved.
These relationships form the basis of Clenshaw–Curtis
quadrature [1] and Chebyshev spectral methods [4].

Additional Properties
Additional useful properties of Chebyshev polynomi-
als include the product relation

Tj .x/Tk.x/ D 1

2

�
TjCk.x/C Tjj�kj.x/

�

and the nesting property

Tj .Tk.x// D Tjk.x/:
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Abstract

Iterative solution methods to solve linear systems
of equations were originally formulated as basic
iteration methods of defect–correction type, commonly
referred to as Richardson’s iteration method. These
methods developed further into various versions of
splitting methods, including the successive overre-
laxation (SOR) method. Later, immensely important
developments included convergence acceleration
methods, such as the Chebyshev and conjugate
gradient iteration methods, and preconditioning
methods of various forms. A major strive has been
to find methods with a total computational complexity
of optimal order, that is, proportional to the degrees of
freedom involved in the equation.

Methods that have turned out to have been particu-
larly important for the further developments of linear
equation solvers are surveyed.

Introduction

In many applications of quite different types appearing
in various sciences, engineering, and finance,
large-scale linear algebraic systems of equations arise.
This also includes nonlinear systems of equations,

which are normally solved by linearization at each
outer nonlinear iteration step.

Due to their high demand of computer memory
and computer time, which can grow rapidly with in-
creasing problem size, direct solution methods, such as
Gaussian elimination, are in general not feasible unless
the size of the problem is relatively small. Even for
modern computers with many cores, exceedingly large
memories, and very fast arithmetics, it is still an issue
because nowadays one wants to solve more involved
problems of much larger sizes, for instance, to enable
a sufficient resolution of (systems of) partial differen-
tial equation problems with highly varying (material)
coefficients; such as is found in heterogeneous me-
dia. Presently, problems with up to several billions of
degrees of freedom (d.o.f.) are solved. For instance,
if an elliptic equation of elasticity type is discretized
and solved on a 3D mesh with 1,024 mesh points in
each coordinate direction, then an equation of that size
arises.

A basic iteration method to solve a linear system
Ax D b, where A is nonsingular, can be described
either as a defect .rk/ – correction .ek/ method or,
alternatively, as a method to compute the stationary
solution of the evolution equation

dx.t/
dt

D Ax.t/ � b; t > 0; x.0/ D x0; (1)

by time stepping with time-step � , that is,

x.t C �/ D x.t/ � �.Ax.t/ � b/; t D 0; �; : : : : (2)

Letting xk D x.tk/; tk D k�; k D 1; 2; : : : it holds

xkC1 D xk � �rk; (3)

where rk D Axk � b. This method is normally referred
to as Richardson [73] iteration method. The iteration
errors, ek D x � xk , are related recursively as

ekC1 D .I � �A/ek: (4)

Hence,

ek D .I � �A/ke0; k D 0; 1; : : : : (5)

For convergence of the method, that is, ek ! 0,
the parameter � must in general be chosen such that
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� WDk I � �A k< 1, where k � k is a matrix norm,
subordinate to the chosen vector norm. In general, this
is only possible if the real part,Re.�/ of eigenvalues of
A are positive, A is diagonalizable and � < 2= k A k.

Let �.�/ D max j � j denote the spectral radius of
a matrix. If A is self-adjoint, then �.A/ Dk A k2Dp
�.A�A/, where k � k2 denotes the matrix norm

subordinate to the Euclidian vector norm. For general,
nonsymmetric matrices, it has been shown (see, e.g.,
Young [91] and Axelsson [6], p. 162) that there exist
matrix norms that are arbitrarily close to the spectral
radius. These can, however, correspond to an unnatural
scaling of the matrix.

The rate of convergence is determined by the con-
vergence factor �. For symmetric positive definite
matrices, the optimal value of � to minimize � is � D
2=.�1 C�n/, where �1; �n are the extreme eigenvalues
of A.

It is readily shown that for any initial vector, the
number of iterations required to get a relative residual,
k rk k = k r0 k< ", for some "; 0 < " < 1, is at
most kit D dln.1="/= ln.1=�/C 1e, where d e denotes
the integer part. Frequently, � D 1 � cır , where c is a
constant and r is a positive integer. Often, r D 2 and ı
is a small number, typically ı D 1=n, which decreases
with increasing problem size n. This implies that the
number of iterations is proportional to .1=ı/r , which
number increases rapidly when ı ! 0.

As an example, for second-order elliptic diffusion
type of problems in � � <d .d D 2; 3/ using a stan-
dard central difference or a finite element method, the
spectral condition number �n=�1 D O.h�2/, where h
is the (constant) mesh-size parameter. Hence, the num-
ber of iterations is of order O.h�2/ j log " j/; h ! 0.
Since each iteration uses O.h�d / elementary arith-
metic operations, this shows that the total number
of operations needed to reduce the error to a given
tolerance is of order O.h�d�2/. This is in general
smaller than for a direct solution method when d � 2,
but still far from the optimal order, O.h�d /, that we
aim at.

To improve on this, often a splitting of the matrix A
is used.

For � D 1, the splitting A D C � R of A in two
terms whereC is nonsingular can be used. The iterative
method (3) then takes the form

CxkC1 D Rxk C b; k D 0; 1; : : : : (6)

Method (6) is convergent if �.C�1R/ < 1.
Let B D C�1R. If k B k is known and k B k< 1,

we can use the following estimate to get a test when
the iteration error is small enough, i.e., when to stop
the iterations. It holds

Proposition 1 Let k B k< 1; B D C�1R; and xk be
defined by (3). Then

k x�xk k� k B k
1� k B k k xk�xk�1 k; m D 1; 2; : : : :

(7)

The basic iteration method (3) or the splitting
method can be improved in various ways.

Note first that application of the splitting in (6)
requires in general that the matrixR is given in explicit
form, which can make the method less viable.

The most natural way to improve (3) is to intro-
duce an approximation C of A, to be used when the
correction ek in (3) is computed. The relation ek D
��rk; ek D xkC1 � xk;is then replaced by C ek D
��rk . Such a matrix is mostly called preconditioner
since, by a proper choice, it can significantly improve
the condition number K of A, that is,

K.C�1A/ 	 K.A/ (8)

where K.B/ Dk B k k B�1 k. By a proper choice of
C , the basic iterative method becomes applicable also
for indefinite problems.

Clearly, in practice, the matrix C must be chosen
such that the linear systems with C can be solved with
relatively little expense compared to a solution method
for A. Early suggestions to use such a matrix C can be
found in papers by D’Yakonov [39] and Gunn [51].

We shall here only survey some choices of C which
have proven to be useful in practice. It is not our
ambition to present the current state of the art but rather
to describe the unfolding of the field. The presentation
is essentially a shortened version of [10].

SplittingMethods

A comprehensive, early presentation of splitting meth-
ods, and much more on iterative solution methods, is
found in Varga [85].

Definition 1 (a) AmatrixC is said to be monotone if
C is nonsingular and C�1 � 0 (componentwise).
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C

(b) A D C �R is called a regular splitting [85], if C
is monotone and R � 0.

(c) A nonnegative splitting [29], if C is nonsingular
and C�1R � 0.

The following holds; see, for example, [6, 91].

Proposition 2 Let A D C � R be a nonnegative
splitting of A. Then the following properties are equiv-
alent:
(a) �.B/ < 1, i.e., A D C � R is a convergent

splitting.
(b) I � B is monotone.
(c) A is nonsingular and G D A�1R � 0.
(d) A is nonsingular and �.B/ D �.G/= Œ1C �.G/	.

Corollary 1 IfA D C �R is a weak regular splitting,
then the splitting is convergent if and only if A is
monotone.

A splitting method that became popular in the 1950s
is the SOR method. Here A D D � L � U where
D is the (block) diagonal and L;U are the (block)
lower and upper triangular parts ofA, respectively. The
successive relaxation method takes the form

�
1

!
D � L

�
xkC1 D

��
1

!
� 1

�
D C U

	
xk

Cb; k D 0; 1; : : : (9)

where ! 6D 0 is a parameter, called the relaxation
parameter. For ! D 1, one gets the familiar Gauss–
Seidel method [45, 78], and for ! > 1, the successive
overrelaxation (SOR) method [43, 90].

For the iteration matrix in (9),

L! D
�
1

!
D �L

��1 ��
1

!
� 1

�
D C U

�
; (10)

it holds that �.L!/ �j ! � 1 j, where the upper bound
is sharp. Therefore, the relaxation method is divergent
for ! � 0 and ! � 2 (see, e.g., [6, 91]).

An optimal value of ! can be determined as
follows. Assume that A has property .A/, i.e., there
exists a permutation matrix P such that PAPT is
a block tridiagonal matrix. The following Lemma
holds:

Proposition 3 (see Young [90]) Assume that A has
property .A/ and let ! 6D 0. Let � 6D 0 be any
eigenvalue of B WD D�1.LC U /. Then

(a) If � 6D 0 is an eigenvalue of L! and � satisfies

�2 D .�C ! � 1/2=.!2�/; (11)

then � is an eigenvalue of B .
(b) If � is an eigenvalue of B and � satisfies

�C ! � 1 D !��1=2; (12)

then � is an eigenvalue of L! .

Proposition 4 Assume that A has property .A/ and
the block matrix B D I � D�1A has only real
eigenvalues.

Then the SOR method converges for any initial
vector if and only if �.B/ < 1 and 0 < ! < 2. Further,
we have

!opt D 2

1Cp
1 � �.B/2;

(13)

for which the asymptotic convergence factor is given as

min
!
�.L!/D�.L!opt / D !opt � 1 D 1 �

p
1 � �.B/2

1Cp
1 � �.B/2 :

(14)

Proof. For a short proof, see [6].
The eigenvalues of C�1A are in general complex,

and for ! D !opt , it can be shown that they are
distributed around a circle in the complex plane. This
implies that the method cannot be polynomially accel-
erated. Further, the efficiency of the SOR method turns
out to be critically dependent on the choice of !.

A related result as in Proposition 4 has been shown
in [25], see also [6], that holds even if A does not have
property .A/ but is Hermitian. It has a similar form as
a later to be presented result for a symmetric version
of the SOR method, named the SSOR method, where
acceleration is applicable.

Accelerated IterativeMethods

An important approach to improve the rate of con-
vergence of an iterative solution method is to use a
polynomial acceleration method.
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There are two such accelerated iterative solution
methods, the Chebyshev and conjugate gradient iter-
ation methods, that are frequently used.

Consider first the iterative method (3) with variable
time-steps �k ,

xkC1 D xk � �kC
�1rk; rk D Axk � b;

k D 0; 1; : : : : (15)

Here f�kg is a sequence of iteration (acceleration)
parameters. If �k D �; k D 0; 1; : : :, we talk about a
stationary iterative method, otherwise about a nonsta-
tionary or semi-iterative method.

Let ek D x � xk , the iteration error. Then it follows
from (15) that ekC1 D .I � �kC

�1A/ ek; k D
0; 1; : : :, so em D Pm.C

�1A/e0 (and rm D
APm.C

�1A/A�1r0 D Pm.AC
�1/r0). Here Pm.�/ D

…m
kD0.1��k�/, a polynomial of degreem having zeros

at 1=�k and satisfying Pm.0/ D 1.
We want to choose the parameters f�kg such that

k em k is minimized. However, this would mean
that in general the parameters would depend on e0,
which is not known. Also the eigenvalues of C�1A are
not known. We then take the approach of minimizing
k em k = k e0 k for all e0, i.e., we want to minimize
k Pm.C�1A/e0 k, or k rm k = k r0 k for all r0, i.e.,
minimize k Pm.AC�1/r0 k.

The Chebyshev Iterative Method
In case the eigenvalues of C�1A are real and positive
and if a positive lower (a) and (b) an upper bound are
known of the spectrum, then we see that f�kg should
be chosen such that maxa���b j Pm.�/ j is minimized
over the set of polynomials of degree m satisfying
Pm.0/ D 1.

The solution to this minimax problem is well
known:

Pm.�/ D Tm..b C a � 2�/=.b � a//
Tm..b C a/=.b � a//

; (16)

where Tm.z/ D 1
2


�
z C .z2 � 1/1=2�m C .z�

.z2 � 1/1=2
�m� D cos.m arccos z/ are the Chebyshev

polynomials of the first kind. The corresponding values
of �k are the zeros of the polynomial. The method is
referred to as the Chebyshev (one-step) acceleration
method; see, e.g., [2, 85]. It is an easy matter to
show that

1=Tm

�
b C a

b � a
�

� 2%m; where

% D .b1=2 � a1=2/=.b1=2 C a1=2/: (17)

This implies that if the number of iterations satisfies
m � ln %�1 ln.2="/, i.e., in particular if

m � 1

2
.b=a/1=2 ln.2="/; " > 0 ; (18)

then k em k = k e0 k � ". A disadvantage with this
me- thod is that to make it effective, one needs accurate
estimates of a and b and we need to determine m
beforehand. The method cannot utilize any special
distribution of the eigenvalues in the spectrum (as
opposed to the conjugate gradient method; see below).
Furthermore, the method is actually numerically un-
stable (similarly to an explicit time-stepping method
for initial value problems when several of the time
steps are too large). This is due to the fact that k
I � �kC

�1A k is much larger than unity for several
of the values �k .

There is an alternative to the choice (16). Namely,
one can use the three-term form (based on the well-
known three-term form of orthogonal polynomials, in
this case the Chebyshev polynomial), of the Chebyshev
acceleration method:

xkC1 D ˛kxk C .1 � ˛k/xk�1 � ˇkC
�1rk

k D 1; 2; : : : ; (19)

where x1 D x0 � 1
2
ˇ0C

�1r0.
Here the parameters are chosen as ˇ0 D 4=.aC b/,

˛k D a C b

2
ˇk; ˇ�1

k D a C b

2
�
�
b � a
4

�2
ˇk�1

k D 1; 2; : : : : (20)

Hence, there is no need to determine the number of
steps beforehand. More importantly, it has been shown
in [44], see also [2], that this method is numerically
stable. A similar form of the method was proposed
a long time ago; see Golub and Varga [47] and the
references cited therein.

It is interesting to note that the parameters approach
stationary values. If C�1A D I � B and B has
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C

eigenvalues in Œ�%; %	 ; % D %.B/ < 1 (the spectral
radius of B), then

a D 1 � %; b D 1C % and ˛k D a C b

2
ˇk !

2=Œ1C .1 � %2/1=2	; (21)

which is recognized as the parameter !opt of the op-
timal SOR method (see section “Splitting Methods”).
Young [92] has proven that the asymptotic rate of
convergence is retained even if one uses the stationary
values throughout the iterations.

For the case of complex eigenvalues of C�1A with
positive real parts and contained in an ellipse, one may
choose parameters similarly. See [6, 44] for details.
For comments on the optimality of the method, see
[41]. For application of the method for nonsymmetric
problems, see [6, 63].

Perhaps the main thrust since the 70th has been in
using the conjugate gradient method as an acceleration
method. Already much has been written on the subject;
we refer to [46, 54, 55, 72] for an historical account, to
[2, 36] for expositions of the preconditioned conjugate
gradient and PCG method, and to [7, 75, 76] for a
survey of generalized and truncated gradient methods
for nonsymmetric and indefinite matrix problems. The
conjugate gradient algorithm to solve a system of linear
equations, the Ax D b, where A.n � n/ is symmetric
and positive definite, was originally introduced by
Hestenes and Stiefel [55] in 1950.

The advantage with conjugate gradient methods is
that they are self-adaptive; the optimal parameters are
calculated by the algorithm so that the error in energy
norm k el kA1=2D f.el /T Aelg1=2 is minimized. This
applies to a problem where C andA are symmetric and
positive definite (SPD) or, more generally, if C�1A is
similarly equivalent to an SPD matrix. Hence, there is
no need to know any bounds for the spectrum. Since
the method converges at least as fast as the Chebyshev
method, it follows that k x�xm kA1=2� " k x�x0 kA1=2 ,
if

m D int

�
1

2
K1=2 ln.2="/C 1


: (22)

By changing the inner product to .x; Cy/, the CG
method can be readily formulated in preconditioned
form with the symmetric and positive definite matrix
C as preconditioner. The preconditioned method takes
the form as in Algorithm 1.

The CG method is best described as a method to
minimize a quadratic functional

f .x/ D 1

2
xT Ax � bT x C c (23)

over a set of vectors whereA is symmetric and positive
definite. We can rewrite f in the form

f .x/ D 1

2
xT .Ax � b/T A�1.Ax � b/� 1

2
bT A�1b C cI

(24)

so minimizing the quadratic functional is equivalent to
solving the system Ax D b. If A is singular and A�1
in (24) is replaced by a generalized inverse of A, then
the above equivalence still holds if the minimization
takes place on a subspace in the orthogonal comple-
ment to the null-space of A.

The minimization property holds also for the pre-
conditioned version. Given an initial approximation
x.0/ and the corresponding residual r.0/ D Ax.0/�b, the
minimization in the conjugate gradient method takes
place successively on a subspace

Kk D fr.0/; C�1Ar.0/; .C�1A/2r.0/; : : : ;

.C�1A/k�1r.0/g (25)

of growing dimension. This subspace is referred to as
the Krylov set.

As in Fourier-type minimization methods, it is effi-
cient to work with orthogonal (A– orthogonal) search
directions d.k/ which, since A is symmetric, can be
determined from a three-term recursion,

d.0/ D r.0/; d.kC1/ D �C�1Ad.k/ C ˇkd.k/;

k D 1; 2; : : : ; (26)

or equivalently, from

d.kC1/ D �r.kC1/ C ˇkd.k/: (27)

This recursive choice of search directions is done
so that at each step, the solution has smallest error in
the A� norm, k x � x.k/ kAD fe.k/

T
Ae.k/g 12 , where

e.k/ D x � x.k/ is the iteration error. As mentioned,
the minimization takes place over the set of (Krylov)
vectors Kk , and as is readily seen,
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Kk D fx.1/ � x.0/; x.2/ � x.0/ : : : ; x.k/ � x.0/g
D fg.0/; g.1/ : : : ; g.k�1/g D fd.0/; d.1/ : : : ;d.k�1/g:

(28)

To summarize, the CG method possesses the follow-
ing valuable properties:

Theorem 1 Let the CG Algorithm 1 be applied to a
symmetric positive definite matrix A. Then in exact
arithmetic, the following properties hold:
(1) The iteratively constructed residuals g D Ax �

b are mutually orthogonal, i.e., g.k/
T

g.j / D 0;

j < k.
(2) The search directions d are A� orthogonal (or

conjugate) , i.e., d.k/
T

Ad.j / D 0; j < k.
(3) As long as the method has not converged, i.e.,

g.k/ 6D 0, the algorithm proceeds with no break-
down and (28) holds.

(4) The newly constructed approximation x.k/ is
the unique point in x.0/ ˚ Kk that minimizes
k e.k/ kADk x � x.k/ kA.

(5) The convergence is monotone in A� norm, i.e.,
k e.k/ kA<k e.k�1/ kA and e.m/ D 0 will be
achieved for some m � n.

Since the method is optimal, i.e., it gives the small-
est error on a subspace of growing dimension, it ter-
minates with the exact solution (ignoring round-off
errors) in at most m steps, where m is the degree
of the minimal polynomial Qm to A with respect to
the initial residual vector; in other words, Qm has
the smallest degree of all polynomials Q for which
Q.A/r.0/ D 0. Clearly, m � n. Therefore, the CG
method can be viewed also as a direct solution method.
However, in practice, we want convergence to occur to
an acceptable accuracy in much fewer steps than n or
m. Thus, we use CG as an iterative method.

For further discussions of the CG methods, see
[6,11,75]. Often in practice, one observes that the norm
of the error, k x � x.k/ k, can be much larger than
the norm of the iteratively computed residuals. Faster
convergence for the CG method is expected when the
eigenvalues are clustered.

One way to get a better eigenvalue distribution is to
precondition A by a proper preconditioner B . Hence,
in order to achieve a better eigenvalue distribution, it
is crucial in practice to use some form of precondition-
ing, i.e., a matrix B which approximates A in some
sense, which is relatively cheap to solve systems with

and for which the spectrum of B�1 A (equivalently
B�1=2AB�1=2 if B is s.p.d.) is more favorable for the
convergence of the CG method. As it turns out, if B is
symmetric and positive definite, the corresponding pre-
conditioned version, the PCG method, is best derived
by replacing the inner product with .u; v/ D uT Bv. It
takes the following form.

Algorithm 1: Preconditioned conjugate gradient
algorithm

Given x.0/; " Initial guess and
stopping tolerance

Set x.0/; g D Ax � b;
h D ŒB	�1g
ı0 D gT h
d D �h Initial search direction

Repeat until convergence
h D Ad
� D ı0=.dT h/
x D x C �d New approximation
g D g C �h New (iterative) residual
ı1 D gT g
h D ŒB	�1g New pseudoresidual
ı1 D gT h
if ı1 � " then stop
ˇ D ı1=ı0; ı0 D ı1
d D �h C ˇd New search direction

Here ŒB	�1 denotes the action of B�1, i.e., one does
not multiply with the inverse matrix B�1 but normally
solves a linear system with matrix B . Instead of a
left preconditioning, one can use a right precondition-
ing. Then the CG method is applied for the system
AB�1y D b, where x D By. The advantage of using
a right preconditioner is that one computes the true
residuals during the iterations.

A preconditioner can be applied in two different
manners, namely, as B�1A or BA. The first form
implies the necessity to solve a system with B at
each iteration step, while the second form implies a
matrix–vector multiplication with B (a multiplicative
preconditioner). In the latter case, B can be seen as an
approximate inverse of A. One can also use a hybrid
form ˛B�1

1 C ˇB2.
The presentation here is limited to symmetric pos-

itive semidefinite matrices. It is based mainly on the
articles [3, 7, 8, 11]. In order to understand what is
wanted of a good preconditioning matrix, we first
discuss some issues of major importance related to
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the rate of convergence of the CG method. Thereby,
it becomes clear that the standard spectral condition
number is often too simple to explain the detailed
convergence behavior. In particular, we discuss the
sub- and superlinear convergence phases frequently
observed in the convergence history of the conjugate
gradient method.

On the Rate of Convergence Estimates of the
Conjugate Gradient Method
LetA be symmetric, positive semidefinite and consider
the solution of Ax D b by a preconditioned conjugate
gradient method. In order to understand how an effi-
cient preconditioner to A should be chosen, we must
first understand some general properties of the rate of
convergence of conjugate gradient methods.

Rate of Convergence Estimates Based on Minimax
Approximation
As we have seen, the rate of convergence of the CG
method can be based on the minimax approxima-
tion property that leads to the same upper bound on
the residual as for the Chebyshev iterative methods:
the conjugate gradient method is a norm-minimizing
method. For the preconditioned standard CG method,
we have

k ek kAD min
Pk2k

k Pk.B/e0 kA; (29)

where k u kAD fuT Aug 12 ; ek D x � xk is the iteration
error and k denotes the set of polynomials of degree
k which are normalized at the origin, i.e., Pk.0/ D 1.
This is a norm on the subspace orthogonal to the null-
space ofA, i.e., on the whole space, ifA is nonsingular.

Consider the C– inner product .u; v/ D uT Cv and
note that B D C�1A is symmetric with respect to this
inner-product, let v1; v2; : : : ; vn be orthonormal eigen-
vectors, and let �i ; i D 1; : : : ; n be the corresponding
eigenvalues of B . Let

e0 D
nX

jD1
˛jvj (30)

be the eigenvector expansion of the initial vector,
where ˛j D .e0; vi /; i D 1; : : : ; n. Note further
that the eigenvectors are both A� and C� orthogo-
nal. Then, by the construction of the CG method, it
follows

ek D
nX

jD1
˛jPk.�j /vj : (31)

Due to the minimization property (29), there follows
from (29) the familiar bound

k ek kA� min
Pk21k

max
1�i�n
�i >0

j Pk.�i/ jk e0 kA : (32)

Using the C� orthogonality, it is seen that a similar
bound holds for k ek kC .

Estimate (32) is sharp in the respect that for every
k, there exists an initial vector for which equality is
attained. In fact, for such a vector, we necessarily
have that ˛j 6D 0 if and only if ˛j belongs to a set
of k C 1 points (the so-called Haar condition) where
maxi j Pk.�i / j is taken. For such an initial vector, (32)
shows that if the eigenvalues are positive, we have also

k ek kCD min
Pk21k

max
1�i�n j Pk.�i/ jk e0 kC : (33)

The rate of convergence of the iteration error
k ek kA is measured by the average convergence
factor: � k ek kA

k e0 kA
 1
k

: (34)

Inequality (32) shows that this can be majorized
with an estimate of the rate of convergence of a best
polynomial approximation problem (namely, the best
approximation of the function 
 0, of polynomials in
1k ) in maximum norm on the discrete set formed by
the spectrum of B . Clearly, multiple eigenvalues are
treated as single so the actual approximation problem is

min
Pk21k

max
1�i�m j Pk. Q�i / j; (35)

where the disjoint positive eigenvalues Q�j have been
ordered in increasing value, 0 < Q�i < : : : < Q�m,
and m is the number of such eigenvalues. However,
the solution of this problem requires knowledge of the
spectrum, which is not available in general. Even if
it is known, the estimate (35) can be troublesome in
practice, since it involves approximation on a general
discrete set of points. Besides being costly to apply,
such estimates do not give any qualitative insight in the
behavior of the conjugate gradient method for various
typical eigenvalue distributions.
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That is why we make some further assumptions on
the spectrum in order to simplify the approximation
problem. At the same time, we present estimates that
can be used both to estimate the number of iterations
and to give some insight in the qualitative behavior of
the iteration method.

The estimate (18) of the rate of convergence and of
the number of iterations shows that they depend only
on the condition number b

a
and on the eccentricity of

the ellipse, containing the eigenvalues. Therefore, ex-
cept in special cases, this estimate is not very accurate.
When we use a more detailed information of the spec-
trum and the initial error vector, sometimes substan-
tially better estimates can be derived. This holds, for
instance, when there are well-separated small and/or
large eigenvalues. See, e.g., [6,17] for such results. We
mention here briefly another similar minimax result
which holds when we use different norms for the
iteration error vector and for the initial vector.

By (32), we have

k ek kA� min
Pk21k

max
1��j�m j �sjPk.�j / j k e0 kA1�2s :

(36)

If the initial vector is such that Fourier coefficients
for the highest eigenvalue modes are dominating, then
k e0 kA1�2s may exist and take not too large values
even for some s � 1

2
. We consider the most interesting

case where s � 1
2
, for which the following theorem

holds (see [6, 13]).

Theorem 2 Let 1k denote the set of polynomials of
degree k such that Pk.0/ D 1. Then for k D 1; 2 : : :

and for any s � 1
2

such that 2s is an integer, it holds

k ek kA = k e0 k1�2sA � min
Pk21k

max
0�x�1 j xsPk.x/ j

�
�

s

k C s

�2s
: (37)

Remark 1 For s D 1
2
, it holds

max
0�x�1 j x 1

2 Pk.x/ jD 1

2k C 1
:

For Pk.x/ D U2k.
p
1 � x/ and for s D 1, it holds

max
0�x�1 j xPk.x/ jD 1

k C 1
tan



4k C 4
<

1

.k C 1/2
:

ForPk.x/D x�1.�1/k
kC1 tan 

4kC4TkC1
��
1C cos 

2kC2
�

x � cos 
2kC2

�
where Tk.x/ and Uk.x/ are the

Chebyshev polynomials of kth degree of the first and
second kind, respectively.

For other values, (37) is an upper bound only, i.e.,
not sharp. At any rate, it shows that the error k ek kA
converges (initially) at least as fast as

�
s

kCs
�2s

, i.e., as
1

2kC1 for s D 1
2

and as
�

1
kC1

�2
for s D 1.

Note that this convergence rate does not depend
on the eigenvalues, in particular not on the spectral
condition number. As shown, e.g., in [5, 14], after the
initial convergence phase follows normally a linear
convergence rate which eventually gives over in a
superlinear convergence phase.

A somewhat rough but simple and illustrative super-
linear convergence estimate can be obtained in terms of
the so-called K– condition number (see [58, 60]):

K D K.B/ D
�
1

n
tr.B/

�n
= det .B/

D
 
1

n

nX
iD1

�i

!n �
…n
iD1�i

��1
; (38)

where we assume that B is s.p.d.
Note that K

1
n equals the quotient between the arith-

metic and geometric averages of the eigenvalues. This
quantity is similar to the spectral condition number

.B/ in that it is never smaller than 1 and is equal
to 1 if and only if B D ˛I; ˛ > 0 (recall that B is
symmetrizable).

Based on the K� condition number, a superlinear
convergence result can be obtained as follows.

Theorem 3 Let k < n be even and k � 3 ln K . Then

k ek kA
k e0 kA �

�
3 lnK

k

�k=2
: (39)

For further discussions on superlinear rate of con-
vergence, see [14]. Superlinear rate of convergence is
best shown on continuous operator levels and holds, for
instance, if the preconditioned operator is a compact
perturbation of unity; see [15] for further details.

Generalized Conjugate Gradient Methods
The rate of convergence estimates, as given above,
holds for a restricted class of matrices, symmetric or,
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more generally, for normal matrices. For indefinite
but symmetric problems, one can use the MINRES
method; see [70].

To handle more general classes of problems for
which such optimal rate of convergence results as
in (22) holds, one needs more involved methods.
Much work has been devoted to this problem. This
includes methods like generalized minimum residual
(GMRES), (see Saad and Schultz [76]), generalized
conjugate residual (GCR), and generalized conjugate
gradient (GCG) (see [6] and, for further details,
[19]). As opposed to the standard conjugate gradient
method, they require a long version of updates for
the search directions, as the newest search direction
at each stage is in general not automatically (in exact
precision) orthogonal to the previous search directions
but must be orthogonalized at each step. This makes
the computational expense per step grow linearly and
the total expense grow quadratically with the iteration
index. In addition, due to finite precision, there is a
tendency of loss of orthogonality, even for symmetric
problems when many iterations are required. One
remedy which has been suggested is to use the method
only for a few steps, say 10, and restart the method with
the current approximation as initial approximation.

Clearly, however, in this way, the optimal conver-
gence property of the whole Krylov set of vector is
lost. For this and other possibilities, see, e.g., [48].
For further discussions on Krylov subspace iteration
methods, see Greenbaum [49]. See also [57].

Another important version of the generalized conju-
gate gradient methods occurs when one uses variable
preconditioners, i.e., uses a nonlinear form of the con-
jugate gradient method. Such variable preconditioners
are useful in many contexts. For instance, one can
use variable drop tolerance, computed adaptively, in
an incomplete factorization method (see section “Pre-
conditioning Methods”). When the given matrix is
partitioned in two-by-two blocks, it can be efficient to
use inner iterations when solving arising systems for
one, or both, of the diagonal block matrices; see, e.g.,
[9] and the flexible conjugate gradient method in Saad
[74] as further discussed in [79].

Due to space limitations, the above topics cannot be
discussed further in this paper. For the same reason, we
cannot discuss various difficulties arising when solving
singular systems. We mention only that iterative solu-
tion methods for singular, a nearly singular, systems
may stall or suffer a breakdown due to finite precision

computations; see, e.g., [38,82]. For comments on near
breakdowns and related issues, see, e.g., [50, 66, 89].

PreconditioningMethods

There exist two classes of preconditioning methods
that are closely related to direct solution methods. In
this paper, we survey only their main ingredients, but
delete many of the particular aspects.

Incomplete Factorization Methods
Incomplete factorization methods were originally de-
veloped for finite difference grid-based matrices; for
a thorough presentation and many references to early
work, see [56].

The first more matrix-based method is based on
incomplete factorization where some entries arising
during a matrix triangular factorization are neglected
to save in memory. The deletion can be based on some
drop-tolerance criterion or on a, normally a priori,
chosen sparsity pattern. The factorization based on a
drop tolerance takes the following form. During the
elimination (or equivalently, triangular factorization),
the off-diagonal entries are accepted only if they are
not too small. For instance,

aij WD
�
aij � aira�1

rr arj ; if j aij j� "
p
aii ajj

0; otherwise.

Here "; 0 < " 	 1 is the drop tolerance parameter.
Such methods may lead to too much fill-in (i.e., aij 6D
0 in positions where the original entry was occupied
by a zero), because to be robust they may require near
machine-precision drop tolerances. Furthermore, as
direct solution methods, they are difficult to parallelize
efficiently.

An early presentation of such incomplete factor-
ization methods was given by Meijerink and van der
Vorst [65]; see also [52]. One can make a diagonal
compensation of the neglected entries, i.e., add them
to the diagonal entries in the same row, possibly first
multiplied by some scalar �; 0 < � � 1. For dis-
cussions of such approaches, see [11, 17, 52]. This
frequently moves small eigenvalues, corresponding to
the smoother harmonics, to cluster near the origin, in
this way sometimes improving the spectral condition
number of the correspondingly preconditioned matrix
by an order of magnitude (see [6, 52]).
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The incomplete factorization method can readily be
extended to matrices partitioned in block form. Often,
instead of a drop tolerance, one prescribes the sparsity
pattern of the triangular factors in the computed pre-
conditioner, that is, entries arising outside the chosen
pattern are ignored.

The other class of methods is based on approxi-
mate inverses G, for instance, such that minimizes a
Frobenius norm of the error matrix I �GA; see section
“Approximate Inverse Methods” for further details. To
be sufficiently accurate, these methods lead frequently
to nearly full matrices. This can be understood as
the matrices we want to approximate are often sparse
discretizations of diffusion problems. The inverse of
such an operator is a discrete Green’s function which,
as well known, often has a significantly sized support
on a large part of the domain of definition.

However, we can use an additive approximation of
the inverse involving two, or more, terms which is
approximate on different vector subspaces. By defin-
ing in this way the preconditioner recursively on a
sequence of lower dimensional subspaces, it may pre-
serve the accurate approximation property of the full,
inverse method while still needing only actions of
sparse operators.

Frequently, the given matrices are partitioned in a
natural way in a two-by-two block form. For such
matrices, it can be seen that the two approaches are
similar. Consider, namely,

A D
�
A1 A12
A21 A2

	
; (40)

where we assume that A1 and the Schur complement
matrix S D A2 � A21A

�1
1 A12 are nonsingular. (This

holds, in particular, if A is symmetric and positive
definite.) We can construct either a block approximate
factorization of A or approximate the inverse of A on
additive form. As the following shows, the approaches
are related. First, the block matrix factorization of A is

A D
�
A1 0

A21 S

	 �
I1 A

�1
1 A12

0 I2

	
(41)

where I1; I2 denote the unit matrices of proper order.
For its inverse, it holds

A�1 D
�
I1 �A�1

1 A12
0 I2

	 �
A�1
1 0

�S�1A21A�1
1 S�1

	
(42)

or

A�1 D
�
A�1
1 0

0 0

	
C
��A�1

1 A12
I2

	
S�1Œ�A21A�1

1 ; I2	:

(43)

A straightforward computation reveals that A QV 

QV TA QV D S , and hence,

A�1 D
�
A�1
1 0

0 0

	
C QV . QV TA QV /�1 QV T

(44)

D
�
A�1
1 0

0 0

	
C QV A�1

QV QV T ;

where

QV D
��A�1

1 A12
I2

	
: (45)

LetM1 ' A1 be an approximation of A1 (for which
linear systems are simpler to solve than for A1) and let
G1 ' A�1

1 be a sparse approximate inverse. Possibly,
G1 D M�1

1 . Then

M D
�
M1 0

A21 B2

	 �
I1 M

�1
1 A12

0 I2

	
(46)

D
�
M1 A12
A21 A2

	
C
�
0 0

0 B2 C A21M
�1
1 A12 � A2

	

can be used as a preconditioner to A and

B D
�
G1 0

0 0

	
C VB�1

2 V T (47)

is an approximate inverse, where V D
��G1A12

I2

	
and

B2 is an approximation of S . If B2 D V T QAV , where

QA D
�
G�1
1 A12
A21 A2

	
, then

B D
�
G1 0

0 0

	
C V.V T QAV /�1V T

D
�
G1 0

0 0

	
C VS. QA/�1V T ; (48)

where S. QA/ D A2 �A21G1A12. If M1 D G�1
1 , then in

this case
B D M�1: (49)
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Hence, a convergence estimate for one method can
be directly applied for the other method as well. For
further discussions of block matrix preconditioners,
see, e.g., [21, 24, 30, 37]. As can be seen from the
above, Schur complement matrices play a major role in
block matrix factorizations. For sparse approximations
of Schur complement matrices, in particular element-
by-element-type approximations, see, e.g., [26,61,69].
Such block matrix factorizations are applicable also for
saddle point systems, where A2 D 0 but A12 has full
rank; see, e.g., Section “Saddle Point Matrices”.

In various ways, the block matrix partitioning can be
extended to multilevel versions, where one approaches
increasingly smaller-sized approximate Schur comple-
ments for which eventually a direct solution method
can be most efficient to apply. For some presentations,
see, e.g., [22, 23].

Symmetrization of Preconditioners: The SSOR
and ADI Methods
As we have seen, the incomplete factorization methods
require first a factorization step. There exists simpler
preconditioning methods that require no factorization
but have a form similar to the incomplete factorization
methods. We shall present two methods of this type.
As an introduction, consider first an iterative method
of the form

M.xlC1 � xl / D b � Axl ; l D 0; 1; : : : (50)

to solve Ax D b, where A and M are nonsingular. As
we saw in section “Splitting Methods,” the asymptotic
rate of convergence is determined by the spectral radius
of the iteration matrix:

B D I �M�1A: (51)

For a method such as the SOR method (which also
requires no factorization), with optimal overrelaxation
parameter ! (assuming that A has property A or A
is s.p.d.; see section “Splitting Methods”), the eigen-
values of the corresponding iteration matrix B are
situated on a circle. No further acceleration is then
possible.

There is, however, a simple remedy to this,
based on taking a step in the forward direction
of the chosen ordering, followed by a backward
step – i.e., a step in the opposite order to the vector
components.

As we shall see, for symmetric and positive definite
matrices, the combined forward and backward sweeps
correspond to an s.p.d. matrix which, contrary to the
SOR method, has the advantage that it can be used
as a preconditioning matrix in an iterative acceleration
method. This method, called the SSOR method, will be
defined later.

For an early discussion of the SSOR method used
as a preconditioner, see [1]. For discussions about
symmetrization of preconditioners, see [3,6,56]. More
generally, if A is s.p.d, we consider the symmetrization
of an iterative method in the form

xlC1 D xl CM�1.b � Axl /: (52)

For the analysis only, we consider the transformed
form of (52):

ylC1 D .I � A
1
2M�1A

1
2 /yl C Qb; (53)

where

yl D A
1
2 xl and Qb D A

1
2M�1 Qb: (54)

If M is unsymmetric, the iteration matrix I �
A

1
2M�1A1

2 is also unsymmetric. We shall now
consider a method usingM and another preconditioner
chosen so that the iteration matrix for the combined
method becomes symmetric. We shall this the
symmetrization of the method.

Let M1;M2 be two such preconditioning matrices.
Let

Bi D I � QM�1
i ; QMi D A� 1

2MiA
� 1
2 ; (55)

and consider the combined iteration matrix B2B1. As
we shall now see, it arises as an iteration matrix for the
combined method:

M1.xlC
1
2 � xl / D b � Axl ;

(56)

M2.xlC1 � xlC
1
2 / D b � AxlC1=2; l D 0; 1; : : : :

Proposition 5 Let A be s.p.d. and assume that either
of the following additional conditions holds:
(a) M �

2 D M1.

(b) M1; M2 are s.p.d. �.A
1
2M�1

i A
1
2 / < 1; i D 1; 2,

and the pair of matricesM1;M2 commutes.
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Then the combined iteration method (56) converges if
and only if M1 CM2 � A is s.p.d.

It can be seen that B2B1 is symmetric, so the combined
iteration method is a symmetrized version of either of
the simple methods.

Let us now consider a special class of symmetrized
methods. We let A be split as A D DCLCU , where
we assume that D is s.p.d., and let

V D
�
1 � 1

!

�
D C L; H D

�
1 � 1

!

�
D C U;

(57)

OD D . 2
!

� 1/D, where ! is a parameter, 0 < ! < 2.
(Here L and U are not necessarily the lower and upper
triangular parts of A.) Note that

OD C V CH D A; (58)

so this is also a splitting of A. As an example of
a combined, or symmetrized, iteration method, we
consider the preconditioning matrix

C D . OD C V / OD�1. OD CH/ (59)

and show that this leads to a convergent iteration
method

C.xlC1 � xl / D b � Axl ; l D 0; 1; : : : :

This corresponds to choosing M1 D OD� 1
2 . OD C H/

and M2 D . OD C V / OD� 1
2 , and it can be seen that the

conditions of Proposition 5 hold if the conditions in the
next theorem hold.

Proposition 6 Let A D DCLCU , whereD is s.p.d.
Let V;H; OD be defined by (57), and assume that either
(a) or (b) holds, where
(a) U D L�.
(b) L;U are s.p.d. and each pair of matrices L, U, D

commutes. Then the eigenvalues � of the matrix
C�1A, where C is defined in (59), are contained
in the interval 0 < � � 1.

We will now show that the matrix C can also
efficiently be used as a preconditioning matrix, which
for a proper value of the parameter !, and under
an additional condition, can even reduce the order of
magnitude of the condition number. In this respect,
note that when C is used as a preconditioning matrix
for the Chebyshev iterative method, it is not necessary

to have C scaled so that �.C�1A/ � 1, because it
suffices then that 0 < m � �.C�1A/ � M for some
numbersm;M . Hence, the factor 2=! � 1 in OD�1 can
be neglected. It holds [1, 6].

Proposition 7 Let A D D C LC U be a splitting of
A, where A andD are s.p.d. and either (a) U D L� or
(b)L;U are s.p.d. and each pair ofD;L;U commutes.
Then, the eigenvalues of matrix C�1A, where

C D
�
1

!
D C L

�
OD�1

�
1

!
D C U

�
(60)

and 0 < ! < 2; OD D .2=! � 1/D, are contained in
the interval:

Œ.2 � !/=
(
1C !

�
1

!
� 1

2

�2
ı�1 C !�

)
; 1	; (61)

where

ı D min
x6D0

xT Ax
xTDx

� D max
x 6D0

xT .LD�1U � 1
4
D/x

xT Ax
:

(62)

Further, if there exists a vector for which xT .L C
U /xT .LC U /x � 0, then � � �1=4, and if

�. QL QU / � 1

4
; (63)

then � � 0, and if

�. QL QU / � 1

4
CO.ı/; then � � O.1/; ı ! 0: (64)

Here, QL D D� 1
2 LD� 1

2 .

Proposition 7 shows that the optimal value of ! to
minimize the upper bound of the condition number
of C�1A is the value that minimizes the real-valued
function:

f .!/ D 1C !
�
1
!

� 1
2

�2
ı�1 C !�

2 � !
: (65)

It is readily seen (see Axelsson and Barker [11]) that
f .!/ is minimized for

!� D 2

1C 2

q
. 1
2

C �/ı

(66)
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C

min
!
f .!/ D f .!�/ D

r
.
1

2
C �/ı�1 C 1

2
:

In general, ı is not known, but we may know that ı D
O.h2/, for some problem parameter, h ! 0 (such as
for the step length in second-order elliptic problems).
Then, if � D O.1/; h ! 0, we let ! D 2=.1C �h/ for
some � > 0, in which case

f .!/ D O.h�1/ D O.
p
ı�1/; h ! 0: (67)

This means that C�1A has an order of magnitude
smaller condition number than A itself, which latter is
O.ı�1/.

In the second case of methods, the ADI method of
the form (50), we let L denote the off-diagonal part of
the difference operator working in the x-direction and
U off-diagonal part of the difference operator in the
y-direction.D is its diagonal part. Then the matrix

OC D
�
1

!
D C L

��
1

!
D

��1 �
1

!
D C U

�
(68)

is called an alternating direction preconditioning ma-
trix and the corresponding iteration method is called
the ADI (alternating direction iteration) method. In this
method, we solve alternately one-dimensional differ-
ence equations in x- and y-directions. The ADI method
was originally presented in Peaceman and Rachford
[71]; see also Varga [85]; Birkhoff et al. [31]; and
Wachspress [87], for instance.

As it turns out, for the model difference equations,
we get the same optimal value of ! as in (13). The
condition � D O.1/may be less restrictive for the ADI
method, but the condition of commutativity is much
more restrictive, as the following lemma shows.

Proposition 8 Let A; B be two Hermitian matrices of
order n. Then AB D BA if and only if A and B have
a common set of orthonormal eigenvectors.

Approximate InverseMethods

In many applications, it is of interest to compute
approximations of the inverse .A�1/ of a given matrix
A, such that these approximations can be readily used
in various iterative methods. Let G denote an approxi-
mation of A�1.

Methods based on approximate inverses can be
based on explicit methods or implicit methods. In an
explicit method, one computes a sparse matrix G such
that

.GA/ij D ıij ; .i; j / 2 S; (69)

that is,

X
kW.i;k/2S

gikakj D ıij ; .i; j / 2 S: (70)

Here S is a given sparsity pattern. Some observations
can be made from (70):
• The elements in each row of G can be computed

independently.
• Even if A is symmetric, G is not necessarily sym-

metric, because gi;j ; j 6D i and gj;i are, in general,
not equal.
An implicit method requires that A is factored first.

In practice, they are used mainly for band or “enve-
lope” matrices. The algorithm was presented in [59].
It is based on an idea in [81]; see also [40]. Suppose
A D LD�1U is a triangular matrix factorization of
A. If A is a band matrix, then L and U are also band
matrices.

Let
L D I � QL; U D I � QU ; (71)

where QL and QU are strictly lower and upper triangular
matrices correspondingly.

The following lemma holds.

Lemma 1 Using the above notations, it holds that
(i) A�1 D DL�1 C QUA�1.
(ii) A�1 D U�1D CA�1 QL.

Since DL�1 is lower triangular and QU is upper
triangular, using (i) we can compute entries in the
upper triangular part ofA�1 with no need to use entries
of L�1. Similarly, using (ii) we can compute entries of
the lower triangular part A�1 without computing U�1.

Suppose now that A is a block-banded matrix with
a semi-bandwidth p and we want to form A�1 also
as block banded with a semi-bandwidth q W q � p.
The identities (i) and (ii) can be used then for the
computation of the upper and lower parts of A�1. The
algorithm involves only matrix � matrix operations,
and we note that there is no need to compute any
entries outside the bands. If A is symmetric, then it
suffices executing only (i) or (ii). It can be seen that
.A�1/nn D D�1

nn .



218 Classical Iterative Methods

There are two drawbacks with the above algo-
rithm. It requires first the factorization A D LD�1U ,
and even if A is s.p.d, the band matrix part of A�1,
which is computed, need not be s.p.d. but can be
indefinite.

Both the explicit and implicit method can be char-
acterized as methods to compute best approximations
of A�1 of all matrices having a given sparsity pattern,
in some norm. The basic idea is due to Kolotilina and
Yeremin [59, 60]; see also [6]. Recall that the trace

function is defined by tr.A/ D
nP
iD1

ai i ;which also

equals
nP
iD1

�i .A/. Let a sparsity pattern S be given.

Consider the functional

FW .G/ 
k I�GA k2W D t r
�
.I �GA/W.I �GA/T

�
;

(72)

where the weight matrix W is s.p.d. If W 
 I , then
k I �GA kI is the Frobenius norm of I �GA.

Clearly, FW .G/ � 0. If G D A�1, then FW .G/ D
0. We want to compute the entries of G in order to
minimize FW .G/, i.e., to find OG 2 S , such that

k I � OGA kW �k I �GA kW ; 8G 2 S: (73)

The following properties of the trace function will
be used:

tr A = tr AT;

t r.AC B/ D t r.A/C t r.B/: (74)

Then,

FW .G/ D t r.I �GA/W.I �GA/T

D t r.W �GAW �W.GA/T CGAW.GA/T / (75)

D t rW � t rGAW � t r.GAW /T C t rGAWATGT :

Further, as we are interested in minimizing FW with
respect to G 2 S , we consider the entries gi;j as
variables. The necessary condition for a minimizing
point is then

@FW .G/

@gij
D 0; .i; j / 2 S: (76)

From (75) and (76), we get

�2.WAT /ij C 2.GAWAT /ij D 0;

or
.GAWAT /ij D .WAT /ij ; .i; j / 2 S: (77)

Depending on the particular matrix A and the choice
of S and W , (77) may or may not have a solution. We
give some examples where a solution exists.

Example 2 Let A be s.p.d. ChooseW D A�1 which is
also s.p.d. Then (77) implies

.GA/ij D ıij ; .i; j / 2 S; (78)

which is the formula for the previously presented
explicit method which, hence, is a special case of the
more general framework for computing approximate
inverses using weighted Frobenius norm.

Example 3 Let W D .AT A/�1. Then (77) implies

.G/ij D .A�1/ij ; .i; j / 2 S; (79)

which is the relation for the previously presented im-
plicit method. In this case, the entries of G are the
corresponding entries of the exact inverse.

Example 4 Let W D I . Then

FW .G/ D n � t r.GA/ (80)

.GAAT /ij D .AT /ij ; .i; j / 2 S:

This method is also explicit.
We can expect that such methods will be accurate

only if all elements of A which are not used in the
computations are zero or are relatively small. In some
cases, the quality of the computed approximation G
to A�1 can be significantly improved using diagonal
compensation of the entries of A which are outside
S . The best approximation G to A�1 in a (weighted)
Frobenius norm is in general not symmetric and, as we
have seen, not always positive definite. For this reason,
an alternate method has been derived; see [6, 58, 60].
This method turns out to minimize the K – condition
number, i.e., the ratio of the arithmetic and geomet-
ric averages of the eigenvalues of the preconditioned
matrix. The minimization takes place over the choosen
sparsity set of the triangular matrix involved.
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Robustness of Methods and Some Other
Methods

Very ill-conditioned systems arise typically for near-
limit values of some problem parameter (ratio of ma-
terial coefficients, aspect ratio of the domain, nearly
incompressible materials in elasticity theory, etc.). The
condition number can be additionally very large due
to the size of the matrix A (a small value of the
discretization parameter) and also due to an irregular
mesh and/or large aspect ratios of the mesh in partial
differential equation (PDE) problems.

Since one works with finite precision arithmetics,
a problem with iterative solution methods for ill-
conditioned systems is that they may stagnate, i.e.,
there is no further improvement as the method
proceeds. This occurs typically for minimum residual
or minimum A-norm methods. For other type of
methods, even divergence may be observed. Another
problematic issue is the fact that if the residual norm
has taken a small value, this does not necessarily mean
that the error norm is sufficiently small, since

k x � x.k/ k2�k A�1A.x � x.k// k2�k A�1 k2
k r.k/ k2D 1

�min.A/
k r.k/ k2 (81)

and here �min.A/ takes very small values for ill-
conditioned systems. Hence, even if k r.k/ k is small,
k x � x.k/ k may still be large. For ill-conditioned
systems, one sees then typically a reduction of the
residual to some limit value while the errors hardly
decay at all. For studies on the influence of inexact
arithmetics, see, e.g., [50, 68, 84].

This situation can be significantly improved by
using a proper preconditioner. Then

k x � x.k/ k2Dk .B�1A/�1B�1A.x � x.k// k2
. 1

�min.B�1A/
k Qr.k/ k2 (82)

where Qr.k/ D B�1A.x � x.k// D B�1r.k/ is the
so-called preconditioned or pseudoresidual. Here
�min.B

�1A/ � �min.A/ with a proper preconditioner.
Therefore, the importance of choosing a proper
preconditioner is twofold:
1. To increase the rate of convergence while keeping

the expense in solving systems with B low

2. To enable a small error norm when the pseudoresid-
ual is small
Preconditioning methods, such as the modified in-

complete factorization method and multigrid and mul-
tilevel methods, aim at reducing error components cor-
responding both to the large eigenvalues with rapidly
oscillating components and the smaller eigenvalues for
smoother eigenfunctions. In the modified method, this
is partly achieved by letting the preconditioner be exact
for a particular smooth component of the solution, such
as for the constant component vector. It has been shown
(see [6, 11, 52] when applied for elliptic difference
problems) that under certain conditions, the spectral
condition number is reduced from O.h�2/ to O.h�1/.
In multigrid methods, one works on two or more levels
of meshes where the finer grid component should
smooth out the fast, oscillating components in the
iteration error, while the coarser mesh should handle
the smooth components. Using a sufficient number of
levels, under certain conditions, such methods may
reduce the above condition number to optimal order,
O.1/, as h ! 0, while still preserving an optimal order
of computational complexity.

The multigrid method was first introduced for
finite difference methods in the 1960s by Fedorenko
[42] and Bakhvalov [27] and further developed
and advocated by Brandt in the 1970s; see, e.g.,
Brandt [35]. For finite elements, it has been pursued
by, e.g., Braess [32], Hackbusch [53], Bramble
et al. [34], Mandel et al. [62], Mc Cormick [64],
Bramble [33], and Bank et al. [28], among others;
see also [88], among others. For a presentation of
convergence rates for multigrid methods, see, e.g.,
[93].

As it turns out, such standard preconditioning
methods, namely, (modified) incomplete factorization
((M)ILU), [52, 65], multigrid (MG) [53], or Algebraic
Multilevel Iteration (AMLI), [18, 22, 23], may not
be efficient in both and, in particular, in the second
of the above mentioned requirements. This might be
due to the fact that the smallest eigenvalue (in the
preconditioned system) is caused by some problem
parameter which these methods leave unaffected.
More recently, much work has been devoted to
algebraic multigrid methods, to achieve robustness
of the methods solely based on algebraic properties
of the discretized operator; see, e.g., [86] and the
references quoted therein. At any rate, there might
be a demand for new types or new combinations
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of already known preconditioners. To satisfy the
above need, two types of preconditioners have been
constructed:
(a) Deflation methods
(b) Augmented subspace matrix methods

Deflation Methods
The deflation technique is based on a projection matrix.
Assume that A has a number of (very) small eigenval-
ues, say Qm; 0 < �1 � �2 : : : � � Qm, and let W D
fw.i/g; i D 1; : : : ; Qm be their corresponding eigenvec-
tors .Awi D �iwi /. Let V be a rectangular matrix of
order n �m, where m < n (in practice m 	 n) of full
rank, where the m columns of V span a subspace � ,
such that Im� contains the eigenvectors corresponding
to the “bad” subspace W . Hence,m � Qm.

Proposition 9 Let P D AVA�1
V V

T , where AV D
V TAV . Then, the following holds:
(a) P2 D P , i.e., is a projector.
(b) P.AV / D AV .
(c) .I � P/b D 0 if b 2 Im.AV /.
(d) PT V D V .
(e) .I � P/A is symmetric and positive definite and

has a null-space of dimensionm.

Note first that AV is nonsingular since V has a full
rank .D m/. The statements follow now by straightfor-
ward computations.

Proposition 9 shows that P is projection matrix
which maps any vector onto AV . Similarly, PT is a
projection matrix which maps V onto itself. We will
use the matrix P in three slightly different ways to
solve ill-conditioned systems.

We split first the right-side vector b in two compo-
nents:

b D Pb C .I � P/b: (83)

(These components are A�1–orthogonal, i.e., .Pb/T

A�1.I � P/b D 0). We can split the computation of
the solution vector correspondingly.

Let

x.0/ D VA�1
V V

T b : (84)

Then

Ax.0/ D Pb: (85)

Solve

Az D .I � B/b: (86)

The solution x of Ax D b is then

x D x.0/ C z: (87)

Here x.0/ and z are A� orthogonal.
Note that Az D b � Ax.0/. The matrix AV is

normally of small order and the arising system in (84)
can be solved with relatively little expense using a
direct solution method. Furthermore, the system (86)
is well conditioned on the solution subspace, because
(as follows from part (c) of Proposition 9, .I � P/b,
and hence z do not contain components of any of
the first m “small” eigenvectors wi ; i D 1; 2; : : : ; m.
Hence, (86) can be solved by the CG method with a rate
of convergence determined by the effective condition
number �n=�mC1, which is expected to be substantially
smaller than �n=�1.

However, the method requires exact solution of
systems with AV , and for some problems, m is not
that small. Also, it is assumed that the projection
Pb is computed exactly (or to a sufficient accuracy),
which may be infeasible in some applications. There
are techniques, such as using an augmented subspace
correction method, to handle this; see, e.g., [20, 67],
and the references quoted therein.

Saddle Point Matrices
Saddle point matrices arise in various contexts such
as in constrained optimization problems. Consider the

regularized saddle point matrices A D
�
A �BT

B C

	
,

where A and C are symmetric and positive definite.
Often, C is a small perturbation. The unperturbed form

A0 D
�
A �BT

B 0

	
arises after a change of sign with

corresponding second vector.
In general, A has complex eigenvalues (but with

positive real parts). In order to get a matrix with real
eigenvalues, we can precondition A with

B D
�
A �BT

B C CM � BA�1BT

	

D
�
A 0

B C CM

	 �
I1 �A�1BT

0 I2

	
;

where Ii ; i D 1; 2 are identity matrices of proper
order. An application of B�1 involves two solutions
with matrixA and one with CCM . We assume thatM



Classical Iterative Methods 221

C

is symmetric and positive definite that it is an accurate
preconditioner of BA�1BT and that

˛M � BA�1BT � ˇM; aM � C � bM;

where 1 � ˇ � ˛ > 0; 1 � b � a � 0 and a 	
˛; b 	 ˇ. For the eigenvalues � of B�1A, it holds

A
�
x

y

	
D �B

�
x

y

	
;

where � 6D 0, and hence,

.1 � x/.Ax � BT y/ D 0:

Here, � D 1 if y D 0; x 6D 0. If y 6D 0, then � 6D
1; x D A�1BT y, and

�
1

�
� 1

�
.Bx C Cy/ D .M � BA�1BT /y

or

1C 1 � ˇ

ˇ C b
� 1

�
� 1C 1 � ˛

˛ C a
;

that is,

K.B�1A/ D max�

min�
D ˇ C b

˛ C a
� aC 1

b C 1
� ˇ

˛
:

Hence, the condition number is not large. In some
problems, like the Stokes problem,M can be chosen as
a mass matrix (and C is a perturbation corresponding
to a slightly compressible medium). In other problems,
such as Darcy flow for the heterogeneous media, M
can be chosen as a constant coefficient Laplacian
operator.

In practice, it suffices that C is positive definite on
the subspace ker.BA�1BT /. If A is not well condi-
tioned, one can use a regularization, adding the matrix
rBTW �1B toAwhere r � 1 andW is a properly cho-
sen weight matrix. Then the Schur complement matrix
with (2,2) position approaches the identity matrix, as
r ! 1. See [12] and references therein for further
details.

Related to the above, we shortly mention a pre-
conditioning method to solve complex valued systems
efficiently.

Complex-Valued System
In order to avoid complex arithmetics, a complex-
valued system

.AC iB/.x C iy/ D f C ig;

where i D p�1, can be rewritten in the real-valued
form: �

A �B
B A

	 �
x

y

	
D
�
f

g

	
:

We assume that A is symmetric and positive definite.
Letting C D A and M D A, it follows from
section “Saddle Point Matrices,” with corresponding
preconditioner B, that

K.B�1A/ � ˇ C 1

˛ C 1
;

where

˛I � QB QBT � ˇI; and QB D A�1=2BA�1=2:

As has been shown in [16], one can introduce a precon-
ditioning parameter to get the improved bound:

K.B�1A/ � 1C 1=

�
1C 1

.1C ˇ2/1=2
;

�2
< 2:

Domain DecompositionMethods
Since the early work by Schwarz [77], dealing with
an alternating iteration method for overlapping subdo-
mains, used to show existence of solutions to elliptic
partial differential equation problems, much work on
both overlapping and nonoverlapping domain decom-
position methods have appeared. The structure of the
arising operators or matrices is normally given in
saddle point form. For presentations of such methods,
see, e.g., [80, 83], and the references given therein.

References

1. Axelsson, O.: A generalized SSOR method. BIT 13, 443–
467 (1972)

2. Axelsson, O.: Solution of linear systems of equations: iter-
ative methods. In: Barker, V.A. (ed.) Sparse Matrix Tech-
niques. Lecture Notes in Mathematics, vol. 572, pp. 1–51.
Springer, Berlin (1977)

3. Axelsson, O.: A survey of preconditioned iterative methods
for linear systems of algebraic equations. BIT 25, 166–187
(1985)



222 Classical Iterative Methods

4. Axelsson, O.: A generalized conjugate gradient, least square
method. Numer. Math. 51, 209–227 (1987)

5. Axelsson, O.: On the rate of convergence of the conjugate
gradient method. In: Er-xiong, J. (ed.) Numerical Algebra:
Proceedings of 92 Shanghai International Numerical Al-
gebra and Its Application Conference. China Science and
Technology Press, Shanghai (1992)

6. Axelsson, O.: Iterative Solution Methods. Cambridge
University Press, New York (1994)

7. Axelsson, O.: Optimal preconditioners based on rate of
convergence estimates for the conjugate gradient method.
In: Mika, S., Brandner, M. (eds.) Lecture Notes of IMAMM
99, pp. 5–56. University of West Bohemia, Pilsen (1999)

8. Axelsson, O.: Condition numbers for the study of the
rate of convergence of the conjugate gradient method. In:
Margenov, S., Vassilevski, P.S. (eds.) Iterative Methods in
Linear Algebra II, pp. 3–33, IMACS, Piscataway (1999)

9. Axelsson, O.: Stabilization of algebraic multilevel iteration
methods: additive methods. Numer. Algorithms 21, 23–47
(1999)

10. Axelsson, O.: Review article, Milestones in the development
of iterative solution methods. J. Electr. Comput. Eng. 2010,
1–33 (2010)

11. Axelsson, O., Barker, V.A.: Finite Element Solution of
Boundary Value Problems: Theory and Computations. Aca-
demic, Orlando (1984). Reprinted as SIAM Classics in
Applied Mathematics 35, Philadelphia (2001)

12. Axelsson, O., Blaheta, R.: Preconditioning of matrices par-
titioned in two by two block form: eigenvalue estimates and
Schwarz DD for mixed FEM. Numer. Linear Algebra Appl.
17, 787–810 (2010)

13. Axelsson, O., Kaporin, I.: On the sublinear and superlinear
rate of convergence of conjugate gradient methods. Numer.
Algorithms 25, 1–22 (2000)
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Overview

Collocation often, though not always, leads to some
of the best practical numerical methods for a given
differential problem. Moreover, the approach is so
general and intuitive that it is no wonder such methods
have been around for many decades.

To introduce collocation, let us first recall function
interpolation methods. Thus, a given function u.x/

over a domain� is approximated by a simpler function
v.x/ that satisfies the interpolation conditions

v.xi / D u.xi /; i D 1; 2; : : : ; n; (1a)

at n predetermined points x1; : : : ; xn in �. The in-
terpolating function belongs to a linear space V of
dimension n, so it can be written as

v.x/ D
nX
iD1

˛i�i .x/; (1b)

where the predetermined basis functions �1.x/; : : : ; �n
.x/ span V . The coefficients ˛i are determined from
the n interpolation conditions (1a) upon solving a
linear system of n algebraic equations. Typical choices
for V are the space of all polynomials of degree less
than n over�, and the space of piecewise polynomials
of a fixed degree over a subdivision of the domain.

Next, suppose that we are required to approximately
solve a differential problem

Lu D q; in �; (2a)

where L is a linear differential operator involving both
a system of differential equations and appropriate side
conditions so that it is invertible, and q.x/ is a given
source function. A collocation method is now defined
similarly to the interpolation process, by seeking an
approximating function v.x/ 2 V that satisfies

Lv.xi / D q.xi /; i D 1; 2; : : : ; n: (2b)

Using the notation (1b) we can further write our
collocation method as the following linear algebraic
system for the coefficients ˛1; ˛2; : : : ; ˛n:

0
BBB@

L�1.x1/ L�2.x1/ � � � L�n.x1/
L�1.x2/ L�2.x2/ � � � L�n.x2/

:::
:::

: : :
:::

L�1.xn/ L�2.xn/ � � � L�n.xn/

1
CCCA

0
BBB@

˛1
˛2
:::

˛n

1
CCCA

D

0
BBB@

q.x1/

q.x2/
:::

q.xn/

1
CCCA : (3)

http:www/sccm.stanford.edu/pub/sccm/
http:www/sccm.stanford.edu/pub/sccm/
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In case the differential problem is nonlinear the
algebraic equations are also nonlinear. This more
general case can be handled using standard iterative
linearization techniques that invariably relate to
Newton’s method.

Appealing as the general description above is, when
it comes to constructing and assessing such methods
the devil is in the detail: How to choose the collo-
cation points xi? How to ensure good convergence
properties? How to obtain an efficient method? Above
we have been vague even regarding the dimension of
the independent variable x. It turns out that to answer
these questions we need to examine different classes of
problems separately, and we proceed to do so below.

We concentrate on differential equations, but note
that the collocation approach also yields many bread-
and-butter methods used for integral equations. Several
of the essentials mentioned here are directly relevant
also for that latter class of problems, and we refer to [2]
for an exhaustive exposition.

Piecewise Polynomial Collocation for
Boundary Value ODEs

For a detailed description of this material and more,
see [1].

In one space variable we have in the simplest case
an ordinary differential equation (ODE) on an interval
� D Œ0; 1	, say. Consider for concreteness the second
order boundary value problem

d2u

dx2
� u D q; 0 < x < 1; (4a)

du

dx
.0/ D 0; u.1/ D 1: (4b)

If q.x/ is square integrable then the unique solution
u.x/ has a square integrable second derivative. Hence
we include in V only piecewise polynomials that are
likewise smooth. We subdivide the interval by a mesh

0 D t0 < t1 < � � � < tN D 1;

and decree that any v 2 V be in C1Œ0; 1	 and reduce
to a polynomial of degree less than k C 2, for some
k � 2, on each subinterval Œti�1; ti 	; i D 1; 2; : : : ; N .
The dimension of V is then n D .k C 2/N �

2(N-1) D kN C 2. Using two degrees of freedom to
satisfy the boundary conditions (4b) at x D 0 and
x D 1 leaves k degrees of freedom per subinterval,
and we use these to collocate at k points at each
subinterval.

One choice for these k points is as the affine trans-
formation of Gauss points, i.e., the zeros of the kth
Legendre polynomial. With this choice it is possible
to show that if u has 2k bounded derivatives then there
is a generic constant c such that

ju.ti /� v.ti /j � ch2k; 0 � i � N; (5a)

where h D max1�i�N hi and hi D ti � ti�1. For
instance, choosing k D 2 the two Gauss points ˙p1=3
are affinely mapped from Œ�1; 1	 to each mesh subin-
terval Œti�1; ti 	 to give the Gaussian collocation points,
and the resulting Hermite piecewise cubic is fourth
order accurate. For the Gauss-Radau points, where the
rightmost point in Œti�1; ti 	 is ti , the error is bounded
by

ju.ti /� v.ti /j � ch2k�1; 0 � i � N; (5b)

whereas for the Gauss-Lobatto points, where in addi-
tion the leftmost point is restricted to be ti�1, the error
satisfies the expression

ju.ti / � v.ti /j � ch2k�2; 0 � i � N: (5c)

The Gauss and Gauss-Lobatto points are placed
symmetrically in each subinterval whereas the Gauss-
Radau method is one-sided.

These results extend to systems of ODEs with
various orders, so long as k is chosen to be at least
as large as the highest ODE order, and to nonlinear
ODEs. A general-purpose package called COLSYS/
COLNEW, described in [1] and references therein,
implements collocation at Gauss points.

Collocation for Stiff Initial Value ODEs

For a detailed description of this material and more,
see [1, 5].

Initial value ODEs are of course a special case of
boundary value ODEs where all boundary conditions
are given at one value of x, say x D 0. All the



226 CollocationMethods

results quoted above, in particular the convergence
estimates (5), hold here, too. Furthermore, it is con-
venient here to transform any given mixed order ODE
system to a first order one in a standard fashion, so our
prototype problem is

du
dx

D f.x;u/; 0 < x < 1; (6a)

u.0/ D u0; (6b)

with u.x/ 2 IRm for each x and u0 a given initial
value vector. For instance,m D 2 for (4a) expressed as
(6a).

Applying the collocation method described above
to the problem (6), with k chosen to satisfy k � 1,
is straightforward and can be done one interval at a
time, underscoring the great flexibility that initial value
problems have over boundary value ones.

Furthermore, it can be shown that the obtained
class of collocation methods is a subset of the class of
implicit Runge-Kutta methods. The main advantage
of the collocation methods as such is that their
theoretical convergence properties are obtained using
relatively simple, pretty arguments based essentially
on numerical integration. For other, higher order
Runge-Kutta methods, establishing the convergence
order and therefore also method design is more
complex.

The main disadvantage of collocation methods in
the present context is that they are fully implicit. Thus,
they find their use mainly for stiff initial value prob-
lems and differential-algebraic equations. The general-
purpose code RADAU5 described in [5] is based on
Gauss-Radau collocation at k D 3 points per subinter-
val: hence its convergence order by (5b) is 2k� 1 D 5.

Note also that collocation at Gauss points is the
only family of Runge-Kutta methods that is symplectic
when applied to a general Hamiltonian ODE sys-
tem [6].

Collocation in More than One Space
Variable

The general collocation framework applies also
when designing numerical methods for solving
problems involving a partial differential equation
(PDE). The generality and conceptual simplicity
remain appealing, indeed even more so than in the

ODE context. However, elegant convergence theory
is harder to establish, and method specification
on non-rectangular domains can pose a major
challenge.

Consider for concreteness the Poisson problem on a
domain� � IR2, given by

@2u

@x2
C @2u

@y2
D q; .x; y/ 2 �; (7a)

u
ˇ̌
@�

D 0: (7b)

Note that what was called x before is now .x; y/.
This slight notational abuse, as well as the discussion
below, can be directly extended to more than two space
variables.

If � is a rectangle then the one-dimensional piece-
wise constant methodology can be applied one di-
mension at a time in a tensor-product approximation
space, following similar arguments from interpolation
theory. The observed convergence order is often as
expected from the one-dimensional theory, but the fact
that Green’s function is no longer bounded makes
the theory less direct and complete, and only lower
order methods of this sort with smoother approx-
imation spaces are typically considered. Moreover,
the sparsity structure of the system of linear (3) is
now more intricate, as it typically is when moving
away from ODEs. See for instance [3] and references
therein.

What makes these methods less than universally
popular in the present context is the availability of
often more flexible and better justified finite element
alternatives. Rewriting a problem such as (7) first in
variational form, which invariably involves integration
by parts, allows one to use an approximation space
spanned by basis functions that are merely continuous,
i.e., V � C.�/. This allows convenient construc-
tion using triangular and rectangular elements that
are not necessarily aligned with the coordinate axes,
which is a must for a non-rectangular domain �.
The resulting linear algebraic system is sparser, too.
A collocation method, on the other hand, would not
allow integration by parts and thus must require V �
C1.�/, which significantly complicates the selection
of efficient basis functions on general domains. Finite
element theory is generally more accomplished as
well.
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Polynomial and Trigonometric Polynomial
Collocation

For a detailed description of this material and more,
see [4, 7].

Let us first return to the one dimensional case.
Engineers often prefer to work with polynomial rather
than piecewise polynomial collocation for specific ap-
plications, caring more about directly obtaining results
and less about what happens in the limit. But in fact,
to be able to assess such a method for general purposes
we must have error bounds that are arbitrarily small,
and for this we must in turn consider relatively large
polynomial degrees n � 1.

It is well-known that high degree polynomial in-
terpolation at equidistant points is an unreliable pro-
cess. Instead one either resorts to trigonometric poly-
nomials, obtaining the discrete Fourier transform, or
applies polynomial interpolation at Chebyshev points
using Lagrange basis functions. When solving differ-
ential equations, methods obtained along these lines
are called spectral collocation. For Chebyshev col-
location, as compared to interpolation, the additional
aspect of differentiation makes it better to collocate at
the Chebyshev extremum points rather than at the roots
of the Chebyshev polynomial. These are given on the
generic interval Œ�1; 1	 by

xi D cos
� i � 1
n � 1


�
; i D 1; 2; : : : ; n: (8)

Fourier collocation methods work best for smooth
problems with periodic boundary conditions, in which
case they enjoy spectacular spectral accuracy. The
popular Chebyshev collocation methods work for other
boundary conditions too, and also exhibit spectral ac-
curacy. These methods can be made to perform effi-
ciently using the fast Fourier transform (FFT). They are
useful for obtaining very high accuracy, at a level that
is hard to achieve by other means and not often really
necessary in practice, and they are somewhat less
robust than the methods described earlier that employ
low-order piecewise polynomial collocation.

Spectral collocation methods extend to linear prob-
lems in more than one space dimension on rectangular-
type domains in the same way as described earlier, and
they provide popular alternatives to finite element and
finite volume methods in such cases, especially where
no intricate geometry or rough problem coefficients

arise. Note that nonlinear problems pose additional
challenges here. For time-dependent PDEs the time
discretization is usually achieved employing a finite
difference (e.g., Runge-Kutta) method.
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Definition

Computational problems in exact linear algebra in-
clude computing an exact solution of a system of linear
equations with exact scalars, which can be exact ratio-
nal numbers, integers modulo a prime number, or alge-
braic extensions of those represented by their residues
modulo a minimum polynomial. Classical linear alge-
bra problems are computing for a matrix, its rank, de-
terminant, characteristic and minimal polynomial, and
rational canonical form (= Frobenius normal form).
For matrices with integer and polynomial entries, one
computes the Hermite and Smith normal forms. If a
rational matrix is symmetric, one determines if the
matrix is definite.

Algorithms for Dense Matrices

The building block of efficient algorithms for dense
linear algebra is matrix multiplication. Because the
complexity of this problem remains an open question,
the running times of algorithms are stated in terms of a
parameter ! such that two n � n matrices over a ring
can be multiplied together in O.n!/ ring operations.
The standard algorithm has ! D 3, and the best known
estimates by [5] allow ! � 2:376. Most practical
implementations use Strassen–Winograd’s algorithm
which has ! � 2:807.

The complexity of many linear algebra problems
over a field is linked to that of matrix multiplication.
The following shows Winograd’s 1970 reduction of
multiplication to inversion:

2
4 In AIn B

In

3
5

�1

D
2
4 In �A AB

In �B
In

3
5 :

More strikingly, techniques by Baur and Strassen from
1982 and Strassen from 1973 give a reduction of matrix
multiplication to determinant in the arithmetic circuit
model.

Echelon Forms over a Field
The main tool for solving linear algebra problems
over a field K, including determinant and inverse for a
square and nonsingular matrix and null space bases for
a matrix of arbitrary shape and rank, is transformation
to echelon form. For an input matrix A 2 Kn�m, the
classical formulation of this problem asks as output a
nonsingularU 2 Kn�n together withH D UA in (row)
echelon form – nonzero rows in H precede zero rows
and the first nonzero entry in each nonzero row (a pivot
entry) is to the right of the pivot entries in previous
rows. The number of nonzero rows of H is the rank
r of A and the set of column indices containing the
pivot entries is the rank profile of A. There are many
variations, including the Gauss–Jordan canonical form
which has pivot entries in H equal to 1 and entries
above pivots zeroed, and the LSP decomposition of
Ibarra, Moran, and Hui which expressesA as a product
of matrices of special shape. By employing a divide
and conquer approach to recursively reduce to matrix
multiplication, transformation to echelon form costs
O.nmr!�2/ arithmetic operations from K. Dumas et al.
[6] present highly optimized algorithms and implemen-
tations for computing echelon forms and related matrix
decompositions, for a variety of finite fields.

Transformation to echelon form uses O.nmr!�2/
field operations to solve a linear system: given a target
vector b either produce a solution v such that Av D b or
determine that the system is inconsistent. Mulders and
Storjohann [ISSAC 2000] give an algorithm for linear
solving that usesO..nCm/r2/ field operations, which
is o.nm/ when r 2 o.

p
min.n;m//. For computing

the rank, the use of essentially quadratic precondi-
tioners (see below) to achieve generic rank profile
gives a Monte Carlo randomized algorithm that uses
.nm C r!/1Co.1/ field operations, which is .nm/1Co.1/
when r 2 O..nm/1=!/.

Frobenius Form over a Field
For an n�nmatrixA over K, the block diagonal Frobe-
nius form F D T AT�1 D Diag.Cf1 ; Cf2 ; : : : ; Cfl /
is a canonical form for the set of matrices similar to
A. Each diagonal block Cfi is the companion matrix
of a monic fi 2 KŒx	 and fi divides fiC1 for all
1 � i � l � 1. The minimal polynomial of A is fl and

the characteristic polynomial cA.x/
defD det.xI � A/ is

equal to the product f1f2 � � �fl – of which the constant
coefficient is the determinant of A. The problem of
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computing the Frobenius form and invariants has re-
ceived a lot of attention. Making use of Keller-Gehrig’s
1985 algorithm for the characteristic polynomial, Gies-
brecht in 1993 gave a randomized reduction to matrix
multiplication, for sufficiently large fields, for comput-
ing F together with a transformation matrix T such
that F D TAT�1. In 2000 Eberly gave, for the same
problem, a Las Vegas algorithm with running time
O.n! logn/ that works for any field and Storjohann an
O.n!.logn/.log logn// deterministic algorithm. Most
recently, [14] show that if cardinality.K/ � 2n2, the
form itself can be computed in a Las Vegas fashion
using an expected number of O.n!/ field operations,
matching the lower bound for this problem.

Division-Free Algorithms
Consider an n�n input matrixA over an abstract com-
mutative ring R, that is, when no divisions are possible.
Although the characteristic polynomial cA.x/ 2 RŒx	
is well defined over R, the fastest known algorithms
mentioned above to compute it use divisions, and
directly applying Strassen’s 1973 removal of divisions
technique adds a factor of n to their cost. Kaltofen and
Villard [11] give a division-free algorithm for the char-
acteristic polynomial with running time O.n2:697263/.
The same cost estimate holds for division-free com-
putation of the adjoint of A. An open problem is
to obtain a division-free algorithm to compute cA.x/
using n!Co.1/ operations.

Fast Bit Complexity
For linear algebra problems over integer matrices, the
sizes (numbers of digits) of integers involved in the
computation and the answer affect the running time of
the algorithms used. For example, the determinant of
an A 2 Z

n�n can have size at most .n log kAk/1Co.1/,
where kAk denotes the largest entry in absolute value.
Classical methods, such as working modulo a basis of
primes and reconstructing using Chinese remaindering,
require .n!C1 log kAk/1Co.1/ bit operations to compute
detA.

Many problems on integer matrices, such as
diophantine system solving and determining the
structure of finitely presented abelian groups, are
solved by transforming an input matrix to Hermite and
Smith canonical form. The Hermite form H D UA is
in echelon form and the Smith form S D VAW D
Diag.s1; s2; : : : ; sr ; 0; : : : ; 0/ is diagonal with si�1
dividing si ¤ 0 for all 1 < i � r . The transformation

matrices U , V , and W are invertible over Z (i.e., they
have determinant ˙1). In 1983, Domich showed how
to control intermediate expression swell during the
computation by working modulo the determinant,
and fast matrix multiplication is taken advantage
of by Hafner and McCurley in 1989. Since the
transformation matrices to achieve the forms are not
unique, care must be taken to produce ones with good
bounds on the size of entries. Storjohann’s dissertation
from 2000 gives a survey of work up to that date
and describes deterministic algorithms that take as
input an A 2 Z

n�m of rank r , and compute the
Hermite and Smith form, together with transformation
matrices, in time .nmr!�1 log kAk/1Co.1/. Note that
if n D m D r , this cost estimate becomes
.n!C1 log kAk/1Co.1/, with the exponent of n in this
bit complexity estimate 1 higher than that for the
corresponding algebraic cost. Much recent effort has
focused on reducing or eliminating, for a variety of
problems, the commonly occurring C1 in the exponent
of bit complexity estimates. One of the initial efforts
in this direction is Eberly, Giesbrecht, and Villard’s
Monte Carlo algorithm from 2000 for computing the
determinant and Smith form of a nonsingular matrix in

.n2C!=2.log kAk/3=2/1Co.1/ bit operations.

Linear System Solving
Already in 1982, Dixon showed that the algebraic ana-
logue of numerical iterative refinement, combined with
rational number reconstruction, can be used to compute
A�1b for a nonsingular A 2 Z

n�n and b 2 Z
n�1

with a cost that is softly cubic in n instead of quartic.
Storjohann’s high-order lifting technique incorporates
matrix multiplication to compute A�1b in an expected
number of .n! log kAk/1Co.1/ operations.

The general case of the linear solving problem,
when A has arbitrary shape and rank, is more subtle:
a solution vector may not exist, and if solution vectors
do exist they may not be unique and have fractional
entries. The classical approach of transforming A to
echelon form, or to Hermite/Smith form in case a
diophantine solution is desired, solves the problem
completely but currently has cost .nmr!�1d/1Co.1/ bit
operations. Giesbrecht in 1997 introduced the tech-
nique of combining random rational solutions to pro-
duce a diophantine solution, should one exist, and in
the next year Giesbrecht, Lobo, and Saunders show
how to compute certificates of inconsistency. Based on
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these ideas, Mulders and Storjohann in 2004 gave Las
Vegas algorithms with cost .nmr!�2 log kAk/1Co.1/ for
either proving inconsistency or producing a solution
vector v that has a minimal size denominator among
all solution vectors, in particular a diophantine solution
when one exists.

Integer Matrix Invariants and Certificates
Let A 2 Z

n�n. Extensions of the division-free al-
gorithms of Kaltofen and Villard mentioned above
compute the Frobenius form (and hence characteristic
polynomial) and Smith form in a randomized Monte
Carlo fashion in n2:697263.log kAk/1Co.1/ bit operations.
A main open problem is to compute the characteristic
polynomial of A in .n! log kAk/1Co.1/ bit operations.

Storjohann [15] combines fast nonsingular
rational system solving with other ideas to get
an algorithm for computing detA in an expected
number of .n! log kAk/1Co.1/ bit operations (Las
Vegas). This is currently the fastest algorithm for
the determinant. For computing the rank r in
case A is singular, the fastest known Monte Carlo
algorithm uses essentially quadratic preconditioning
and projection modulo a random prime and completes
in .n2 log kAk C r!/

1Co.1/
bit operations. The fastest

known Las Vegas algorithm for rank has expected
running time .n2r!�2 log kAk/1Co.1/.

Freivald’s famous 1979 quadratic time certificate for
matrix product assays the equation BC � D D 0 in a
Monte Carlo fashion by projecting with a random vec-
tor. Kaltofen et al. [12] use the Las Vegas algorithms
mentioned above to obtain randomized algorithms that
certify the rank and determinant of A in a Monte Carlo
fashion in .n2 log kAk/1Co.1/ bit operations.

Lattice Basis Reduction
The seminal 1982 paper of Arjen Lenstra, Hendrik
Lenstra Jr., and László Lovász introduced the famous
LLL lattice basis reduction algorithm: given an A 2
Z
n�m, the LLL algorithm finds a basis for the Z-

lattice generated by the rows of A that consists of
nearly orthogonal (and thus relatively short) vectors.
Originally applied to problems in computer algebra
and algebraic number theory, many more applications
have been discovered in areas such as cryptography and
communications theory. The current state of the art for
LLL-type reduction is an algorithm with cost that is
softly linear in log kAk [13].

Claus-Peter Schnorr has shown there exists a contin-
uum of algorithms between those solving the shortest
vector problem (shown to be NP-hard by Atjai) and
finding an approximation of the shortest vector as
produced by LLL. A survey of recent results is given
by [9].

Matrices with Polynomial Entries
Let degA denote the maximal degree of entries in an
A 2 KŒx	n�m . Because of the natural analogy between
KŒx	 and Z, many of the algorithms supporting com-
plexity results stated above for integer matrices have
analogues over KŒx	 that support the same complexity
bound but now counting field operations from K and
with degA replacing log kAk: these include in par-
ticular nonsingular system solving and determinant in
expected time .n! degA/1Co.1/ field operations.

A nearly optimal Las Vegas randomized algorithm
to compute A�1 is given by [16]. As an application,
given any scalar matrix B 2 Kn�n, the sequence
I; B;B2; : : : ; Bn 2 Kn�n of matrix powers can be
computed using an expected number of .n3/

1Co.1/
field

operations from K by computing .xIn � B/�1. Cur-
rently, the analogous result for integer matrix inversion
has only been established for well-conditioned input.

A concept with many applications for polynomial
matrices that has no natural analogue for integer ma-
trices is minimal approximant bases. Given a matrix
power series G 2 KŒŒx		n�m with m � n and an
approximation order d , these are nonsingular n � n

polynomial matrices M (with minimal row degrees)
such that MG 
 0 mod xd . Beckermann and Labahn’s
algorithm from 1994 is adapted to exploit matrix mul-
tiplication in [8], reducing the cost of computing M
to .n! degA/1Co.1/ field operations from K. As an
application, they give a Las Vegas algorithm with
same cost bound for computing, for a nonsingular
A 2 KŒx	n�n , a row-reduced form: a matrix R and
unimodular matrix U such that A D UR, with degrees
of rows of R minimal among all matrices equivalent to
A under unimodular pre-multiplication.

Parallel Algorithms
There are several theoretical and practical models of
parallel computation over an abstract field. One is
the arithmetic synchronous circuit model, where the
parallel time is the depth of the acyclic computation
digraph with the arithmetic operations performed at
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the bounded fan-in, bounded fan-out vertices. Equality
tests can be allowed in a decision tree model. It was
shown by Csanky in 1976 that many linear algebra
problems, such as the determinant of an n � n integer
matrix, can be computed on an arithmetic circuit of
depth O..logn/2/. In [10], the total size of the circuit
was reduced to n!Co.1/ via Wiedemann’s method (see
below), thus obtaining a processor efficient solution.
Those circuits are valid over any field and have ran-
dom elements as inputs so that with high probability
division by zero is avoided in all vertices that perform
divisions. The construction fails for the characteristic
polynomial. A reference is the book [1].

Algorithms for Sparse Matrices

Exact linear algebra computations with sparse
matrices, i.e., matrices that have many entries equal
0, originated from the matrix problems that arise
in integer factoring algorithms based on Pollard’s
quadratic sieve: there the entries are integers
modulo 2, and initially sparsity-preserving echelon
form methods, which today are known as “super-LU,”
were deployed. Douglas Wiedemann’s 1986 IEEE
Transactions on Information Theory paper on Krylov
space-based iterative algorithms in exact arithmetic has
had a far-reaching impact, as it provides a complexity
model which we describe next.

Sparse and Black Box Algorithms
Black box matrices are represented by a procedure
that performs a matrix-times-vector product. One seeks
algorithms that call the procedure O.n/ times (for
a, say, n � n matrix) and with an additional n2Co.1/
scalar operations in the field of entries to complete
their tasks. In addition, one restricts toO.n/ additional
intermediate storage locations for auxiliary scalars,
excluding the storage that the black box uses. Thus, one
gets an essentially quadratic time, linear space solution
for matrices whose black box procedures run in n1Co.1/
arithmetic operations and whose scalar arithmetic suf-
fers no expression swell, such as matrices with n1Co.1/
nonzero entries over a finite field.

Wiedemann’s approach has at least two drawbacks.
One is that the use of “bidirectional Lanczos-like” iter-
ation that over a finite field can lead to self-orthogonal
vectors (“unlucky projections”). A second is that in
normal situations the exact dimension of the Krylov

subspace can be as large as �.n/, thus requiring many
black box calls. In contrast, numerical methods use the
fact that the approximate dimension of the Krylov sub-
space is small and a good approximation to the solution
is found early. The problem of unlucky projections is
dealt with by preconditioning the black box matrix,
and today we have a wealth of fast preconditioners.
The dimension of the Krylov subspace is reduced by
projecting simultaneously with blocks of ˇ vectors.
The latter can reduce the number of required black
box calls to .1 C �/n or O.n=ˇ/ if parallelism is
utilized.

The algorithms for black box matrices known today
can compute a solution to a linear system, a random
nullspace vector, the minimal polynomial, determinant,
and rank of a black box matrix within the stated
complexity measures. All algorithms are probabilis-
tic, and rank is Monte Carlo. Blocking can also im-
prove the success probabilities. Rank certification in
the black box model constitutes a major open prob-
lem. The best algorithm known for the characteristic
polynomial, by Gilles Villard, has higher asymptotic
complexity.

Black box algorithms apply to matrices over the
rational numbers, either by Chinese remaindering the
solution and subsequently using rational vector recov-
ery or by other modular techniques. For example, the
Smith normal form of a black box integer matrix is
computed by Giesbrecht in 2001 from the characteris-
tic polynomial after preconditioning. The length of in-
termediate integers in sparse rational solvers has been
reduced by Eberly et al. [ISSAC 2007] by blocking,
like was done for the dense algorithms by Kaltofen and
Villard discussed above.

The literature on black box exact linear algebra
computation is quite large. A collection of precondi-
tioners with reference to most literature before 2002
is [4]. The most recent analysis of blocking over finite
fields is [7].

Finally, we mention the open-source LinBox library
(http://www.linalg.org) which provides C++ efficient
implementations for many black box algorithms that
can accommodate the scalar arithmetic in a plug-and-
play generic way.

StructuredMatrix Algorithms
Black box algorithms apply generically to structured
matrices, such as Toeplitz and Vandermonde matrices.
However, the resulting complexity is quadratic in their

http://www.linalg.org
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dimensions, and essentially linear complexity can in
some cases be achieved.

Toeplitz and Hankel Matrices
In 1981 Brent, Gustavson, Yun utilized the con-
nection between Toeplitz/Hankel solving and the
extended Euclidean algorithm for deterministically
computing solutions to nonsingular Toeplitz systems
in O.n.logn/2 loglogn/ arithmetic operations.
Their solution borrows ideas from Israel Gohberg’s
displacement rank representations but allows for
singularity in the arising submatrices. The jumps in
the Padé table, which correspond to sequences of zero
discrepancies in the Berlekamp/Massey algorithm,
amount to drops in the polynomial remainder
degrees that are overcome by embedded polynomial
divisions in the half GCD algorithm. Essentially linear
complexity is achieved by polynomial arithmetic that
utilizes the fast Fourier transform.

Matrices of Small Displacement Rank
The notion of displacement rank generalizes the notion
of Toeplitz matrix. A matrix of displacement rank ˛
has a succinct representation, as a sum of LU products,
where both L and U are Toeplitz. The notion is closed
under inverses, meaning that the inverse has displace-
ment rank � ˛C2. Gohberg’s and Koltracht’sO.˛n2/
solvers could be improved in 1980 independently by
Bitmead and Anderson and by Morf to arithmetic com-
plexity ˛2n1Co.1/ by Strassen-like divide and conquer
techniques. The algorithms does not allow for singular
submatrices. In 1994, Kaltofen introduced random-
ized preconditioning with constant displacement rank
to guarantee nonsingularity with high probability, on
which all subsequent exact algorithms over abstract
fields rely. An arithmetic complexity of ˛!�1n1Co.1/ is
achieved in [2].

The theory of displacement rank applies to other
types of matrices, such as Cauchy and Vandermonde
matrices. For block Toeplitz and Hankel matrices,
the Euclidean algorithm on matrix polynomials can
be used. A scalarization to blocks of polynomials is
Beckermann’s and Labahn’s notion of �-bases, which
can be computed deterministically asymptotically fast
and by which structured linear problems can be solved.

Note added in Proof February 18, 2015: Since
writing the survey in September 2011, major
achievements have been made: Alexander M. Davie,

Andrew J. Stothers, and independently Virginia
Vassilevska Williams have shown that the matrix
multiplication exponent ! < 2:3736898 and François
Le Gall that ! < 2:3728639. Jean-Guillaume Dumas
and Erich L. Kaltofen have given essentially optimal
certificates for the characteristic polynomial of a
dense integer matrix, and as a corollary for positive
semidefiniteness, and for the rank of a sparse matrix
with integer entries. Le Gall’s paper and Dumas-
Kaltofen’s paper appear in the Proceedings of ISSAC
2014, ACM. Wei Zhou, George Labahn, and Arne
Storjohann have given a deterministic algorithm for
inverting a polynomial matrix with scalars in a field
whose running time is .n3s/

1Co.1/
field operations,

where n is the dimension of the matrix and s is the
average column degree (J. Complexity, 2015).
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Composite materials: composites; Homogenization:
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Short Definition

A composite material is an effectively solid, hetero-
geneous mixture of two or more distinct, spatially
separate, and fine-grained constituent materials with
significantly different physical or chemical properties.
In mathematical terms, homogenization of a composite
material is the process of replacing a model of the
mixture by a model of a homogeneous material that
preserves approximately one or more physical proper-
ties of the composite.

Description

The constituent materials of a composite do not dis-
solve or merge completely into each other. Instead,
they can be physically identified and exhibit an in-
terface between them. Naturally occurring composites
include most consolidated porous materials, such as
permeable rocks, wood, bones, and many biological
cells and tissues. Engineered composites are generally
a combination of reinforcing elements and/or fillers
within a matrix binder. Included are laminates com-
posed of many thin, distinct layers (e.g., plywood),
fibrous and particulate materials embedded in a resin
or plastic matrix (e.g., fiberglass and fiberboard), and
others such as concrete and metal matrix composites.

A composite has a complex and discontinuous mi-
crostructure, making it difficult to model its material
properties, such as thermal conductivity, bulk stress
tensor, or, in the case of porous materials, permeability.
A detailed fine-scale microscopic model of the system
that treats the distinct material components directly
is generally intractable. A homogenized macroscopic
model is desired which often has no microstructure,
making it simpler both conceptually and computation-
ally. It generally includes effective (or macroscopic or
homogenized) parameters that represent the material
properties of the fictitious homogeneous material rep-
resenting the composite.
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Homogenization of the microscopic model is ac-
complished by first defining a small parameter � >

0 representing the finest physical scale of the com-
posite material. Since � is small, one lets it tend
to zero and studies the behavior of the model. If it
converges to a limit, the result is the desired macro-
scopic, homogenized model. For further reading, see,
e.g., the references [1]–[5].

Many models involving a composite can be ho-
mogenized, such as those representing steady-state or
evolving heat or fluid flow, electronic or magnetic
current, chemical or nuclear reactions, mechanical de-
formation, or optical response. We illustrate homoge-
nization of the following basic model, which appears
in many contexts. Let ˝ � R

d be a smooth domain in
d D 1, 2, or 3 dimensions. The unknown u� satisfies

� r � a�ru� D f in ˝; (1)

u� D 0 on @˝; (2)

where the given data is f, say in L2.˝/, and a�, a
uniformly bounded and positive rank two tensor (i.e.,
a matrix). For heat flow, u� would be the unknown
temperature, f the external heat source or sink, and a�
the thermal conductivity of the pure materials compris-
ing the composite, and so a� varies spatially on a fine
scale � 	 1. Often, the (heat) flux q� D �a�ru� is the
important quantity of interest. For some homogenized
conductivity tensor a0, homogenization of (1) and (2)
leads to the model

� r � a0ru0 D f in ˝; (3)

u0 D 0 on @˝: (4)

If indeed a0 has no fine-scale structure, this system is
simpler than the original. For example, it can be solved
numerically on a much coarser computational mesh.

Local Periodicity
In some sense, a0 is an averaged version of a�. How-
ever, it is difficult to identify the fine-scale information
in a� that is to be removed and the proper way to
average it out. Homogenization can be achieved when
the coefficient a� is a statistically stationary random
variable. However, perhaps the simplest way to deal
with the problem is to assume that the material has a
separation of scales and a locally periodic microstruc-
ture. The distribution of pure materials within the

composite is assumed to be a coarse-scale, smooth
perturbation of a fine-scale, periodic microstructure. In
mathematical terms,

a�.x/ D a.x; x=�/; (5)

where a.x; y/ is relatively slowly varying in x 2 ˝

and periodic in y 2 Y D .0; 1/d , so that a.x; x=�/
is periodic of period � in the second argument. The
goal of homogenization is to remove the finer scales
represented by y D x=�. There are two approaches:
a more intuitive but nonrigorous method of formal
expansion and a rigorous theory on the limit of the
differential operator as � vanishes.

The Method of Formal Asymptotic Expansion
When a� is assumed to satisfy the local periodicity
condition (5), homogenization of (1) and (2) can be
accomplished easily if one assumes that the solution
will obey a formal (i.e., unproven) two-scale expansion
of the form

u�.x/ D u0.x; x=�/C � u1.x; x=�/

C�2 u2.x; x=�/C � � �

D
1X
nD0

�n un.x; x=�/; (6)

where un.x; y/ is periodic in y 2 Y for all n. It is
important to recognize that

r D rx C ��1ry (7)

by the chain rule. The idea is to substitute (6) (and (7))
into (1), collect terms that are multiplied by � to the
same power, and set each collection to zero, as this
is the only way the formal expansion can hold for
all � > 0.

In our example, the lowest power is ��2, and the
terms are

� ry � a.x; y/ryu0 D 0 for x 2 ˝ and y 2 Y; (8)

which, for each fixed x, is an elliptic partial differential
equation in y 2 Y with periodic boundary conditions.
The solution is a constant in terms of y, which means
that u0.x; y/ D u0.x/ only. That is, the limit as � tends
to zero will provide an approximation u0.x/ to u�.x/
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that has no fine-scale behavior, as we desire. It remains
to find a way to determine u0 itself.

The ��1 terms in the expansion of (1) are

� ry � a.x; y/ryu1 D ry � a.x; y/rxu0; (9)

which relates u1 to u0. Because the equation is linear
and the vector rxu0 is independent of y, u1 can be
expanded in a basis defined by solving for each x 2 ˝
the cell problem

�ry �a.x; y/ry !i D ry �a.x; y/ei for y 2 Y; (10)

with periodic boundary conditions in y on @Y , where
ei is the usual i th basis vector of zeros in all rows
except the i th, which has a one. Then, up to a constant
in y,

u1.x; y/ D
dX
iD1

!i .x; y/
@u0
@xi

.x/ D !.x; y/ � ru0.x/;

(11)
wherein appears the vector ! D .!1; : : : ; !d /.

Finally, the �0 terms in the expansion of (1) are

�rx � a.x; y/Œrxu0 C ryu1	

D f C ry � a.x; y/Œrxu1 C ryu2	: (12)

As one can see, this equation involves u2, and each
successive collection of terms will show that finer
scales influence coarser scales. However, our objective
is to obtain only the limit u0.x/, and so we average this
equation in y 2 Y to finally remove all finer scales. By
periodicity and the divergence theorem, the average of
the right-hand side is simply f , while the average of
the left-hand side is combined with (11) to leave an
equation for u0 only, which is

�rx �
Z
Y

a.x; y/

ru0.x/C ry!.x; y/ � ru0.x/

�
dy

D �
dX
iD1

dX
jD1

@

@xi

 
dX
kD1

Z
Y

aik.x; y/
h
ıkj C @!j

@yk
.x; y/

i
dy

!

� @u0
@xj

.x/ D f .x/: (13)

This is the same as (3), provided we define the homog-
enized conductivity tensor a0 by

a0;ij .x/ D
dX
kD1

Z
Y

aik.x; y/
h
ıkj C @!j

@yk
.x; y/

i
dy:

(14)

We have replaced the model (1) of our composite
material by the model (3) of a homogeneous material
with an effective conductivity given by solving (10)
and (14). The formal accuracy is u� D u0 C O.�/,
which is good provided the microscale, i.e., the lo-
cal periodicity of the composite microstructure repre-
sented by �, is small.

Rigorous Mathematical Homogenization
To complete the theory of homogenization requires a
rigorous justification of the formal results, i.e., some
justification that indeed u� ! u0 as the scale of the
microstructure � ! 0. Better yet is an estimate of the
error or rate of convergence in some norm. We need the
L2 and H2 norms, defined respectively for a function
g as

kgk0D
�Z

˝

jg.x/j2 dx
 1
2

and

kgk2D
�

kgk20 C
dX
iD1

��� @g
@xi

���2
0

C
dX
iD1

dX
jD1

��� @2g

@xi@xj

���2
0

 1
2
:

For the flux q� D �a�ru�, define the first order
corrector by

u1�.x/ D u0.x/C �!.x; x=�/ � ru0.x/; (15)

which is analogous to the first two terms in the formal
expansion (6), using (11), and then define the flux
q1� D �a�ru1� . In some cases, the flux q0 D �a0ru0
is preferred.

Theorem 1 If a� is smooth and locally periodic, and
u0 2 H2.˝/, then there is some constantC , depending
on the solutions ! to the cell problems but not on �,
such that

ku� � u0k0 C ku� � u1�k0 � C� ku0k2: (16)

Moreover, if jru0j is bounded .by kru0k0;1/, then
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kr.u� � u1�/k0 C kq� � q1�k0 C kq� � A�q0k0
� C

˚
�ku0k2 C p

� kru0k0;1
�
; (17)

where the fixed tensor A�.x/ D A.x; x=�/ and

Aij .x; y/ D
dX
kD1

dX
`D1

aik.x; y/

�
�
ık` C @!`.x; y/

@yk

	
.a�1
0 / j̀ : (18)

Properties of the Homogenized Conductivity
We give a partial ordering to symmetric matricesA and
B as follows. We say A � B if

� � A� � � � B� for all � 2 R
d : (19)

Theorem 2 (Voigt-Reuss Inequalities) If a�.x/ D
a.x=�/ is periodic and symmetric, then

aH D
�Z

Y

a�1.y/ dy
�1

� a0 � aA D
Z
Y

a.y/ dy;

(20)

wherein aH and aA are the harmonic and arithmetic
averages of a�.x/ D a.x=�/. Moreover, a0 D aH if
and only if r � a�1 D 0, and a0 D aA if and only if
r � a D 0.

The Rayleigh quotient
� � a�
� � � , for � 2 R

d and � ¤
0, can be used to find the eigenvalues of a symmetric

matrix a; in fact, if a�D��, then
� � a�
� � � D�: There-

fore, the Voigt-Reuss inequalities give estimates of the
eigenstructure and bounds for the eigenvalues of the
homogenized conductivity. Roughly speaking, a0 lies
between the harmonic and arithmetic averages of a.

A laminate or stratified material aligned perpendic-
ular to e1 has an isotropic conductivity a�.x/ D a�.x1/

that is a scalar function of x1 only. In this case, a0
is a diagonal tensor, which when d D 3 is a0 D
diag.aH; aA; aA/. This example shows that the Voigt-
Reuss bounds are sharp, since the conductivity a0 is the
harmonic average of the local microstructure a� when
the flux cuts through the layers, and it is the arithmetic
average when it aligns with the layers.

Often a composite material consists of only two
phases, with a periodic, isotropic conductivity function
taking on the value a1 over some fraction � 2 .0; 1/

of the period and the value a2 over the rest. In this
case, we have a more refined estimate of the trace
of a0 (actually, the average diagonal element tra0=d )
than would follow from the Voigt-Reuss inequalities.
This is the best estimate that does not take into ac-
count the geometric distribution of the two constituent
materials.

Theorem 3 (Hashin-Shtrikman Bounds) If a� is a
scalar periodic function taking on the two values a1 �
a2 with relative volume fractions � and 1 � �, then

a1

�
1C d.1� �/.a2 � a1/

da1 C �.a2 � a1/

	
� tr a0

d

� a2

�
1 � d�.a2 � a1/

da2 � .1 � �/.a2 � a1/
	
: (21)

AbstractG-Convergence
Abstract mathematical theories of homogenization can
be given. For example, let H be a separable Hilbert
space with dual space H�. For � > 0, let a sequence
of linear operators A� W H ! H� be given that are
uniformly bounded, so kA�k � M for some constant
M , and coercive, meaning that there is a constant � >
0 such that

hA�u; uiH � �kuk2H for all u 2 H: (22)

The Lax-Milgram theorem gives the existence of the
bounded inverse operators A�1

� . A bounded, coercive
linear operator A0 W H ! H� is said to be the G-limit
of A� if

A�1
� f * A�1

0 f weakly in H for any f 2 H�:
(23)

Theorem 4 A sequence of linear operators A� , uni-
formly bounded by M and satisfying (22), contains a
subsequence which has a G-limit operator A0. More-
over, A0 also satisfies (22) and has the bound kA0k �
M2=� .

In other words, given f 2 H�, the abstract problem
A�u� D f for u� 2 H homogenizes to A0u0 D f for
u0 2 H and u� * u0 weakly in H .
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Synonyms

Methods for Geometric Numerical Time Integration of
Differential Equations; Splitting Methods; Symplectic
Integrators

Glossary

M a manifold, the phase space of the ODE Px D
f .x/. OftenM is a vector space but other manifolds
such as submanifolds and quotients of vector spaces
also arise.

Geometric numerical integrator a numerical
method for a class of differential equations that
preserves some geometric property of the equations,
typically up to round-off error.

Hamiltonian system a differential equation whose
flow preserves a symplectic form; the simplest ex-
ample are canonical systems Pqi D @H=@pi , Ppi D
�@H=@qi which preserve

P
i dqi ^ dpi , the sum

of the areas of a two-dimensional surface in phase
space projected to the .qi ; pi / planes. HereH is the
Hamiltonian or total energy of the system.

Symplectic integrator a numerical time integrator
that preserves the symplectic form in exact arith-
metic, typically leading to robust long-time be-
haviour over a good range of step sizes. There
are many symplectic integrators apart from com-
position methods, such as symplectic Runge-Kutta
methods (including the implicit midpoint rule).

Introduction

Composition methods are numerical integrators for
initial-value ODEs formed from the composition of
several simpler integrators. Other operations, such as
linear combinations of several values of the vector
field, as in Runge–Kutta and multistep methods, are
not allowed. For the ODE Px D f .x/, x 2 M , a
composition method is a (generally fixed) composition
of maps fromM toM . Composition methods preserve
the phase space M itself and any group properties
shared by the factors, the most important being the
preservation of symplecticity, phase space volume, first
integrals, and/or symmetries. They are a key tool in the
construction of geometric numerical integrators and
form a very general and flexible class of geometric
numerical integrators [7, 11, 14, 16].

The outstanding example is the leapfrog method for
the simple mechanical system Pq D Np, Pp D �rV.q/,
q, p 2 R

n, mass matrix N�1, and potential energy
V WRn ! R is given by

qkC1=2 D qk C 1
2
hNpk;

pkC1 D pk � hrV.qkC1=2/;
qkC1 D qkC1=2 C 1

2
hNpkC1:

(1)

Here (and below) h is the time step. The leapfrog
method (1) is explicit and second order, despite using
only one evaluation of the force �rV per time step
(a second-order Runge–Kutta method needs two). It
does not require the storage of any intermediate values.
It is symplectic, preserving the canonical symplectic
form

P
i dqi ^ dpi , and time reversible. It preserves

linear and angular momentum (where applicable) up to
round-off error. All these features come from its con-
struction as a composition method. Its symplecticity
further implies that the energy error does not grow with
time. Invariant sets such as periodic, quasiperiodic,
and chaotic orbits are well preserved in phase space.
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It is stable for time steps less than T= , where T is
the shortest natural period of the system. It is widely
used in many fields of computational physics, includ-
ing molecular dynamics, celestial mechanics, quantum
mechanics, Hamiltonian PDEs, and complex systems,
being considered to deliver robust and qualitatively
accurate solutions even for relatively large time steps.

Often, the leapfrog method (or its generaliza-
tion (6)) is all that is needed. However, much research
has been done to find the most efficient way to increase
the order and decrease the truncation error while
retaining leapfrog’s desirable properties. The most
efficient method may depend on the particular type
of system at hand; we cover the main specializations
below.

General Systems

Let 'hWM ! M be any 1-step consistent integrator
for the ODE Px D f .x/, x 2 M , with time step
h. Let '�

h WD '�1�h be its adjoint. The parameters
c1; : : : ; cm; d1; : : : ; dm can be chosen so as to make the
composition

'�
cmh

ı 'dmh ı � � � ı '�
c1h

ı 'd1h (2)

have any desired order as an integrator of Px D f . That
is, a time step x0 7! xm is computed by

xi D '�
ci h
.'di h.xi�1//; i D 1; : : : ; m:

Once the basic integrator ' is available, the extension
to '� and hence any composition is extremely sim-
ple and does not add any new complexity. The most
common choice of ' arises in splitting methods which
involve three steps: (i) choosing a set of vector fields fi
such that f D Pn

iD1 fi ; (ii) integrating either exactly
or approximately each fi ; and (iii) composing these
solutions to yield an integrator for f . The pieces fi
should be simpler than the original vector field f ; most
commonly, they can be integrated exactly. Writing the
solution of the ODE Px D f .x/, x.0/ D x0 as x.t/ D
etf .x0/, this yields

'h D ehfn ı � � � ı ehf2 ı ehf1 D ehf C O.h2/: (3)

If the fi lie in the same Lie algebra of vector fields as
f (e.g., of Hamiltonian or volume-preserving vector

fields or of vector fields preserving a symmetry, first
integral, etc.), and then the composition method (3)
is explicit and preserves the appropriate geometric
property automatically. Furthermore,

'�
h D ehf1 ı ehf2 ı � � � ı ehfn (4)

so the entire composition (2) is explicit.
To find fi in Lie algebraL, let f D G.K/whereK

is a generating function for f ; G has domain a simple
function space such as C1.Rk;Rl / and range L. (For
Hamiltonian vector fields, K is the Hamiltonian and
G.K/ D J�1rK .) Then split K D Pn

iD1 Ki and
let fi D G.Ki/. The choice of splitting is problem
dependent; the most common cases are (i) separable
Hamiltonian systems with H D T .p/ C V.q/; (ii)
N -body problems split into a sum of integrable 2-
body problems; (iii) checkerboard splitting for lattice
problems; (iv) linear–nonlinear splitting, especially in
semidiscrete PDEs; and (v) splitting into shears for
polynomial vector fields [15].

The advantages of the composition method (2),
(3) are (i) it is explicit; (ii) it can have any order; (iii)
it is simple to implement; (iv) it has absolutely mini-
mal memory requirements since as no intermediate or
auxiliary values of x need to be stored; (v) it is highly
flexible as there is freedom to choose the fi and the
ci , di ; (vi) it can yield geometric integrators for many
different geometric structures. Other numerical prop-
erties, such as accuracy and stability, can be better or
worse than other integrators. As geometric integrators,
they are often used both for large time steps (to explore
phase space and qualitative dynamics) and small time
steps (to check convergence of specific observables).

The disadvantages of the composition method (2),
(3) are (i) the choice of the fi may depend on f

and may not be completely automatic; (ii) it can be
computationally expensive when the error tolerance
is very small; (iii) there may not be any splitting of
f that preserves all its geometric properties, such as
symmetries; (iv) orders greater than 2 require negative
time steps which can lead to stability restrictions for
dissipative ODEs.

The method  h is time symmetric (or self-adjoint) if

 �h ı  h D id (5)

for all h, i.e., if  �
h D  h. It is easy to find time-

symmetric methods, for if h is any method of order p,
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C

then �1
� 1
2 h
 1

2 h
is time symmetric and of order at least p

(if p is even) or at least pC1 (if p is odd). In general, if
 is an explicit method, then  �1 is implicit. However,
if  is a composition of (explicitly given) flows, then
 is also explicit. Applied to the basic composition (3),
this leads to the explicit generalized leapfrog method of
order 2,

e
1
2 hf1 ı � � � ı e

1
2 hfn ı e

1
2 hfn ı � � � ı e

1
2 hf1 ; (6)

which is widely used in many applications.
The simplest way to increase the order is to itera-

tively apply the following construction. If 'h is a time-
symmetric method of order 2k > 0, then the method

'ın
˛h'ˇh'

ın
˛h; ˛ D �

2n � .2n/1=.2kC1/��1 ; ˇ D 1�2n˛
(7)

is time symmetric and has order 2k C 2. This yields
methods of order 4 containing 3 applications of Eq. (6)
when n D 1, of order 6 containing 9 applications
of Eq. (6) when n D 2, and so on [5, 18, 21]. These
are not the most accurate high-order methods known,
although they are simple to implement, and the fourth-
order method with n D 2 and k D 1 is satisfactory.

There are good methods of orders 4 and 6 of
type (2). For example, a good fourth-order method [3]
has m D 6 and

d1 D c6 D 0:0792036964311957;

d2 D c5 D 0:2228614958676077;

d3 D c4 D 0:3246481886897062;

d4 D c3 D 0:1096884778767498;

d5 D c2 D �0:3667132690474257;
d6 D c1 D 0:1303114101821663: (8)

In the case of a 2-term splitting f D f1 C f2, (2)
becomes

eamhf1 ı ebmhf2 ı � � � ı ea1hf1 ı eb1hf2 ı ea0hf1 : (9)

and the parameters (8) become

a0 D a6 D 0:0792036964311957;

a1 D a5 D 0:353172906049774;

a2 D a4 D �0:0420650803577195;

a3 D 1 � 2.a0 C a1 C a2/;

b1 D b6 D 0:209515106613362;

b2 D b5 D �0:143851773179818;

b3 D b4 D 1

2
� .b1 C b2/: (10)

Another high-order composition, which yields good
methods of orders 8 and 10, is

'a1h ı � � � ı 'amh ı � � � ı 'a1h (11)

where 'h is any time-symmetric method. See [17]
for the best-known high-order methods of this type.
Methods of orders 4, 6, 8, and 10 require at least 3,
7, 15, and 31 's. These have the further advantage that
they can be used with any time-symmetric method 'h,
not just (6). Examples are (i) the midpoint rule xk 7!
xkC1 D xk Chf ..xk C xkC1/=2/, which, although no
longer explicit, does preserve any constant symplectic
or Poisson structure and any linear symmetries, is
time reversible with respect to any linear reversing
symmetry, and is unconditionally linearly stable, none
of which are true for (6); (ii) the partitioned symplectic
Runge–Kutta method .qk; pk/ 7! .qkC1; pkC1/ de-
fined by

pkC1=2 D pk � h
2
Hq.qk; pkC1=2/

qkC1 D qk C h
2

�
Hp.qk; pkC1=2/

CHp.qkC1; pkC1=2/
�

pkC1 D pk � h
2
Hq.qkC1; pkC1=2/;

which is symplectic for canonical Hamiltonian systems
and can be cheaper than the midpoint rule (and reduces
to leapfrog when H.q; p/ D T .p/ C V.q/); and
(iii) the RATTLE method for Hamiltonian systems with
holonomic (position) constraints [12].

The disadvantage that order greater than 2 requires
negative time steps can be overcome if one allows com-
plex coefficients in (2) [4]. Method (7) with n D k D 1

and complex cube root is an example. Composition
methods of order up to 14 whose coefficients have pos-
itive real part are found in [6], and these can be stable
on dissipative systems such as (semidiscretizations of)
parabolic PDEs.
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Correctors

The use of a “corrector” (also known as processing or
effective order) [1, 20] can reduce the local error still
further. Suppose the method ' can be factored as

' D � ı  ı ��1: (12)

Then to evaluate n time steps, we have 'ın D �ı ın ı
��1, so only the cost of  is relevant. Moreover, the
corrector� does not need to be evaluated exactly; it can
be rapidly approximated to any desired accuracy. The
maps ' and  are conjugated by the map �, which can
be regarded as a change of coordinates. Many dynami-
cal properties of interest are invariant under changes of
coordinates; in this case we can even omit � entirely
and simply use the method  . For example, calcula-
tions of Lyapunov exponents, phase space averages,
partition functions, existence and periods of periodic
orbits, etc., fall into this class. Initial conditions are not
invariant under changes of coordinates, so applying �
is important if one is interested in a particular initial
condition, such as one determined experimentally. The
order of ' is called the effective order of  . Methods
of effective order 4, 6, 8, and 10, with  given in (11),
require 3, 5, 9, and 15 factors in  ; the corrector
can greatly reduce the local truncation error at fixed
computational work [1].

Simple Mechanical Systems

These are canonical Hamiltonian systems with Hamil-
tonians of the form kinetic plus potential energy, i.e.,
H D T .q; p/ C V.q/, T D 1

2
pT N.q/p. If T is in-

tegrable, then highly accurate high-order compositions
are available, sometimes called Runge–Kutta–Nyström
methods. These exploit the fact that (i) many higher-
order Poisson brackets of T and V , which would
normally contribute to the truncation error, are identi-
cally zero, and (ii) the potential V may be explicitly
modified to increase the accuracy. Define a product
of two functions of q by W � V WD fW; fV; T gg D
rW TNrV . A modified potential is a function gen-
erated from V by � and linear combinations, i.e., QV D
c0V Cc1V �V Cc2.V �V / �V C : : : : The modified force
�r QV often (e.g., in N -body problems) costs little
more than �rV itself. The use (or not) of modified
potentials and the use (or not) of a corrector gives many

possibilities. The function T .q; p/ can also include
part of the potential, a famous example being the solar
system which can be treated by including all sun–
planet interactions in T and the (much smaller) planet–
planet interactions in V .

A striking example is the Takahashi–Imada method
which is (1) with modified potential V � 1

24
h2V � V .

It has effective order 4 yet uses essentially a single-
force evaluation with a positive time step [19].

A good fourth-order method for simple mechanical
systems with no modified potential and no corrector [3]
is given by Eq. (9) together with m D 7 and

a0 D a7 D 0;

a1 D a6 D 0:245298957184271;

a2 D a5 D 0:604872665711080;

a3 D a4 D 1

2
� .a2 C a3/;

b1 D b7 D 0:0829844064174052;

b2 D b6 D 0:396309801498368;

b3 D b5 D �0:0390563049223486;
b4 D 1 � 2.b1 C b2 C b3/: (13)

Nearly Integrable Systems

Composition methods are superb for near-integrable
systems with f D f1 C "f2, for the error is auto-
matically O."/ and vanishes with ". It is also possible
to expand the error as a Taylor series in h and " and
preferentially eliminate error terms with small powers
of ", which is advantageous if " 	 h. This gives, for
example, a 2-stage method of order O."2h4 C "3h3/,
a 3-stage method of order O."2h6 C "3h4/, and so on
[2,9,13]. This idea combines particularly well with the
use of correctors. For any composition, even standard
leapfrog, for all n there is a corrector that eliminates
the O."hp/ error terms for all 1 < p < n. Thus, any
splitting method is “really” O."2/ accurate on near-
integrable problems. This approach is widely used in
solar system studies [10, 20].

Pseudospectral semidiscretization of PDEs such as
Rq D qxx C f .q/ leads to ODEs of the form Rq D
Lq C f .q/. Although the linear part Pq D p, Pp D Lq

could be split as in the standard leapfrog, it is also
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possible to split the system into linear and nonlinear
parts, solving the linear part exactly. This is the ap-
proach traditionally used for the nonlinear Schrödinger
equation. If the nonlinearity is small, then the system
is near integrable, and often the highly accurate meth-
ods of sections “General Systems”, “Correctors”, and
“Simple Mechanical Systems” can be used.

Preserving Symmetries and Reversing
Symmetries

A diffeomorphism S WM ! M of phase space is a
symmetry of the map (or flow) ' if S ı ' D ' ı S .
A diffeomorphism RWM ! M is a reversing
symmetry of the map ' ifRı' D '�1ıR. Symmetries
map orbits to orbits, while reversing symmetries map
orbits to time-reversed orbits; they both have strong
effects on the dynamics of ' and should be preserved
where possible.

Maps with a given symmetry form a group, so
symmetries are preserved by composition. Factors
with the required symmetries can sometimes be
found by splitting into integrable pieces with all
the required symmetries. For canonical Hamiltonian
systems, a common case is that of the standard splitting
H D T .p/CV.q/ which respects symmetries that are
cotangent lifts of symmetries of the position variables,
i.e., S.q; p/ D .g.q/; .Dg.q//�1T p/. Linear and
affine symmetries are automatically preserved by all
Runge–Kutta methods.

There is no general procedure to preserve arbi-
trary groups of diffeomorphisms (such as symplectic
structure combined with a given symmetry group.)
Despite this, composition can improve the accuracy of
symmetry preservation [8]. Let 'hWM ! M be an
integrator for Px D f .x/ which has a finite group G
of symmetries. Let 'h preserve G to order p. Then the
composition Y

g2G
g ı 'h ı g�1

preserves G to order p C 1. This composition may
be iterated to achieve any desired order. If S is a
symmetry of order 2 (i.e., S ı S D id) and 'h is a
time-symmetric method preserving S to even order p,
then the composition

'ahıSı'bhıSı'ah; 2aCb D 1; 2a2pC1�b2pC1 D 0

is time symmetric and preserves S to order pC 2 (and
has a, b > 0).

In contrast, there is a general procedure to preserve
reversing symmetries. For a reversing symmetry R of
order 2, for any integrator 'h the composition

.R ı '�1
1
2 h

ıR�1/ ı '1
2 h

(14)

is R-reversible. If 'h is given by (3) and each fi is
reversible, then (14) reduces to (6).
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Compressible Flows
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Synonyms

Compressible hydrodynamics; Gas dynamic flow

Glossary/Definition Terms

Boltzmann transport equation A statistical descrip-
tion of particles in thermodynamic nonequilibrium
that exchange momenta and energy via collisions.

Caloric equation of state A state equation that de-
scribes the temperature dependence of internal en-
ergy or heat capacity.

Contact wave A linearly degenerate wave family aris-
ing in the Riemann problem of gasdynamics and
more general solutions of the Euler equations of
gasdynamics that is characterized by continuous
velocity and pressure fields and piecewise discon-
tinuous density and temperature fields.

Chapman-Enskog expansion A perturbed Maxwelli-
an distribution expansion devised [5] and [9]
utilizing Knudsen number as a perturbation
parameter.

Compressible potential A simplification of the Euler
equations of gasdynamics for isentropic irrotational

flow wherein velocity is represented as the gradient
of a potential function.

Clausius-Duhem inequality A statement of the sec-
ond law of thermodynamics that expresses the trans-
port, production due to heat flux, and dissipation of
specific entropy.

Classical solution A solution that possesses enough
differentiability so that all derivatives appearing in
the partial differential equation exist pointwise.

Entropy A thermodynamic quantity representing the
unavailability of energy for conversion into work in
a closed system.

Euler equations of gasdynamics A continuum
system of conservation laws representing the
conservation of mass, linear momenta, and energy
of a compressible fluid while neglecting the effects
of viscosity and heat conduction.

Fourier heat conduction A heat conduction model
that expresses the heat flux as the product of a mate-
rial’s heat conductivity and the negated temperature
gradient.

Homentropic flow A fluid flow that has a uniform and
constant entropy.

Isentropic flow A fluid flow that has constant entropy
associated with particles that may vary from particle
to particle.

Kinetic description of gases Description of a gas as
a large collection of particles.

Knudsen number A dimensionless number defined
as the ratio of the molecular mean free path length
to a representative physical length scale.

Maxwellian distribution A statistical description of
particle velocities in idealized gases where the par-
ticles move freely inside a closed system without
interacting with one another except for collisions in
which they exchange energy and momentum with
each other or with their thermal environment.

Navier-Stokes equations A continuum system of
conservation laws representing the conservation of
mass, linear momenta, and energy of a compressible
fluid including the effects of viscosity and heat
conduction.

Newtonian fluid A fluid in which the viscous stresses
arising from its flow are linearly proportional to the
local strain rate.

Rarefaction wave A wave family with smooth solu-
tion data arising in the Riemann problem of gas-
dynamics and more general solutions of the Euler
equation of gasdynamics. Rarefaction waves have
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a constant entropy and constant Riemann invariants
for all except one Riemann invariant when travers-
ing across the wave.

Riemann problem of gasdynamics A one-dimension-
al solution of the Euler equations of gasdynamics
that begins with piecewise constant initial data.

Shock wave A wave family with piecewise discon-
tinuous solution data arising in the Riemann prob-
lem of gasdynamics and more general solutions of
the Euler equations of gasdynamics. Shock waves
satisfy the Rankine-Hugoniot jump relations and an
entropy inequality.

Symmetric hyperbolic form A first-order system of
conservation laws is in symmetric hyperbolic form
if the quasi-linear form (possibly after a change of
independent variables) has all coefficient matrices
that are symmetric.

Thermodynamic equation of state A state relation-
ship between thermodynamic variables.

Description

Compressible flow describes a fluid in motion with
density that can vary in space and time. The equations
of compressible flow express the conservation of mass,
momentum, and energy. A consequence of the variable
fluid density is a finite propagation speed for infor-
mation signals in the flow field. Propagating waves in
a compressible flow can coalesce in both space and
time resulting in steep gradients and the formation
of shock wave discontinuities. Propagating waves can
also diverge in space and time resulting in rarefaction
wave phenomena.

Overview

The mathematical study of compressible flow and
shock waves dates back to the nineteenth century with
hodograph transformation methods for the nonlinear
equations already in use around the beginning of the
twentieth century [16]. Considerable research activity
was initiated during and after World War II motivated
by the emergence of jet aircraft, high-speed missiles,
and modern explosives. Early textbooks on the sub-
ject of compressible fluid dynamics [7, 15, 23], and
[16] discuss the compressible Euler equations of gas
dynamics for an inviscid fluid as well as forms of
the compressible Navier-Stokes equations for viscous

Compressible Flows, Fig. 1 NASA space shuttle compressible
flow simulation

fluids. Nevertheless, the majority of significant ad-
vancements occurred through the use of various sim-
plifying approximations, e.g., steady-state flow, self-
similarity, irrotationality, homentropic fluid, isentropic
fluid, and adiabatic fluid.

With present-day high-speed computers, the direct
numerical approximation of the compressible Euler
and Navier-Stokes equations is now routinely carried
out for a wide variety of engineering and scientific
applications such as automobile engine combustion,
explosive detonation, nuclear physics, astrophysics,
and aerodynamic performance prediction (see Fig. 1).

A mathematical understanding of compressible flow
has evolved from a number of different perspectives
that are fundamentally related:
• Symmetrization structure. Recast the compress-

ible flow equations in symmetric hyperbolic form
via a change of dependent variables

• Kinetic Boltzmann moment structure. De-
rive the compressible flow equations as mo-
ments of kinetic approximations from statistical
mechanics
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• Wave structure. Represent the structure of com-
pressible flow in terms of fundamental wave decom-
positions

Each of these perspectives is briefly recounted in later
sections of this entry. The symmetrization structure of
the Euler and Navier-Stokes equations plays a central
role in energy analysis and global stability of numerical
methods for approximating them [12]. The existence of
an entropy function and entropy flux pair is sufficient
to guarantee that a change of variable can be found
that symmetrizes these systems [17]. It then becomes
straightforward to verify that these systems satisfy the
second law of thermodynamics as expressed by the
Clausius-Duhem inequality [25].

The kinetic moment theory provides a derivation
of the compressible flow equations as moments of
the Boltzmann transport equation [3, 4]. In addition,
the moment construction provides a linkage between
stability of kinetic systems understood in the sense
of Boltzmann’s celebrated H -theorem and stability
as understood from continuum analysis. The kinetic
moment theory provides a systematic approach for
extending compressible flow to include gas mixtures,
rarefied gas regimes, and extended physical models
such as needed in fluid plasma modeling.

Understanding the wave structure of compressible
flow has played an enormous role in the develop-
ment of numerical methods for systems of conserva-
tion laws. In particular, the Riemann problem of gas
dynamics discussed below is extensively used as a
fundamental building block in finite-volume methods
pioneered by Godunov [10] and extended to high-order
accuracy by van Leer [13]. Numerical flux functions
constructed from approximate solutions of the Rie-
mann problem also arise in the discontinuous Galerkin
finite element method of Reed and Hill [20] as ex-
tended to compressible flow by Cockburn et al. [6].

Models of Compressible Flow

Compressible Euler and Navier-Stokes
Equations
The compressible Euler and Navier-Stokes equations
in d space dimensions and time express the conserva-
tion of mass, momentum, and energy of an inviscid and
viscous fluid, respectively. Let u 2 RdC2 denote a vec-
tor of conserved variables for mass, linear momenta,
and energy. Let f 2 R.dC2/�d denote the inviscid flux

vectors and g 2 R.dC2/�d the viscous flux vectors for
the compressible Navier-Stokes equations. The fluid
density, temperature, pressure, and total energy are
denoted by �, T , p, and E , respectively. The Carte-
sian velocity components are denoted by ui for i D
1; : : : ; d . The compressible Navier-Stokes equations
for a viscous Newtonian fluid and the compressible Eu-
ler equations (g 
 0) of an inviscid fluid are given by

u;t C f .i/
;xi

D g.i/;xi (1)

and

u D
0
@ �

�uj
E

1
A ; f .i/ D

0
@ �ui
�uiuj C ıij p

ui .E C p/

1
A ;

g.i/ D
0
@ 0

� ij
uk�ik � qi

1
A ; j D 1; : : : ; d

with a comma subscript denoting differentiation and an
implied sum on repeated indices. For polytropic � -law
gases, the previous equations may be closed using the
following standard gas models and relations:
• Caloric equation of state for the internal energy
eint assuming a constant specific heat at constant
volume Cv:

eint.T / D CvT

• Thermal equation of state of an ideal gas:

p.�; T / D �RT D �.� � 1/eint.T /

• Total energy:

E D �

�
eint C 1

2
juj2

�
D p

� � 1 C 1

2
�juj2

• Fourier heat conductivity model with thermal diffu-
sivity 
 � 0:

qi D �
T;xi
• Isotropic Newtonian fluid shear stress with viscosity

parameters � � 0 and �C 2=3� � 0:

� ij D � .ui;xj C uj;xi /C � uk;xk ıij
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where R denotes the specific gas constant and � the
adiabatic index.

Compressible Potential Equation
The compressible potential equation is derived from
the compressible Euler equations under the assumption
of irrotational flow. Expressing the velocity as the
gradient of a potential, u D rˆ, insures that the con-
tinuity equation is identically satisfied. The pressure
and density terms in the Euler equations are combined
using the perfect gas law and isentropic flow relations,
thus resulting in the compressible potential equation

@2ˆ

@t2
C @

@t
juj2 C .u � r/ juj2

2
D c2r2ˆ; (2)

with c the local sound speed. For steady two-
dimensional flow, this equation reduces to

�
u21 � c2

� @2ˆ
@x21

C �
u22 � c2

� @2ˆ
@x22

C 2u1u2
@2ˆ

@x1@x2
D 0

(3)
with the local sound speed c calculated from the energy
equation, c2 D c20 � ��1

2
juj2. If juj2 � c2 > 0

is everywhere satisfied, then the flow is supersonic
and this equation is hyperbolic. If juj2 � c2 < 0 is
everywhere satisfied, then the flow is subsonic and this
equation is elliptic. When both conditions exist in a
flow field, the equation undergoes a type change and
the flow is called transonic.

Hodograph Transformation of Compressible
Flow
Even under the simplifying assumptions of two-
dimensional irrotational isentropic steady-state flow,
Eq. (3) remains nonlinear. The task of obtaining exact
solutions of (3) is generally not feasible without
some additional transformation of the equation to
alleviate the complication of nonlinearity. The goal
of hodograph transformation is to convert a nonlinear
partial differential equation into a linear differential
equation by inverting the roles of dependent and
independent variables. Specifically, the following
Legendre transformation:

�.u/Cˆ.x/ D x � u; (4)

of the two-dimensional full potential equation (3)
yields a linear differential equation for �.u/:

.u21�c2/
@2�

@u22
C.u22�c2/

@2�

@u21
�2u1u2

@2�

@u1@u2
D 0: (5)

An even simpler form referred to as Chaplygin’s equa-
tion is obtained in terms of the velocity magnitude q
and the turning angle � by introducing u1 D q cos �
and u2 D q sin � :

@2�

@�2
C q2c2

c2 � q2
@2�

@q2
C q

@�

@q
D 0: (6)

The function �.u/ does not have direct physical
interpretation, so an alternative form using the
two-dimensional compressible stream function,
‰;x1 D ��u2, ‰;x2 D �u1, is constructed using the
Mohlenbrock-Chaplygin transformation [26]:

@2‰

@�2
C q2c2

c2 � q2
@2‰

@q2
C q

c2 C q2

c2 � q2
@‰

@q
D 0: (7)

Analytical solutions of (7) may be obtained using a
separation of variables. Unfortunately, the hodograph-
transformed equations are very difficult to use for
practical engineering problems owing to singularities
arising from the hodograph transformation (e.g., uni-
form flow is mapped to a single point) and the unwieldy
nonlinearity introduced by physically motivated
boundary conditions. Consequently, the hodograph-
transformed equations have been used primarily to
generate analytical solutions for verifying the accuracy
of numerical approximations of the Euler equations.
As a brief example, a particular analytical solution
of (7) using a separation of variables is given by

‰.�I q; �/ D ��=2.q/F.a�; b� I � C 1I �.q// ei�� ; (8)

with F the hypergeometric function, �.q/ D
�

q

qlim

�2
,

a� C b� D � � 1
��1 , a�b� D � �.�C1/

2.��1/ , and qlim a
limiting velocity magnitude. An analytical solution for
the specific value � D �1 was derived by Ringleb [21]
that corresponds to transonic isentropic irrotational
flow in a turning duct. Streamline pairs may be chosen
as boundaries of the domain such that a small region
of supersonic flow occurs that smoothly transitions to
subsonic flow as depicted in Fig. 2.
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Compressible Flows, Fig. 2 Ringleb transonic flow

Symmetrization Structure of
Compressible Flow

The symmetrization theory for first-order conservation
laws begins with a conservation law system in m

dependent variables

u;t C f .i/
;xi

D 0; u;f .i/ 2 Rm (9)

with implied sum on repeated indices, i D 1; : : : ; d .
In addition, the theory assumes the existence of a
scalar entropy inequality equation in divergence form
with uniformly convex entropy and entropy flux pairs
fU.u/; F .i/.u/g W Rm � Rm 7! R � R such that

U;t C F .i/
;xi

� 0: (10)

For this system, we have the following theorem con-
cerning the symmetrization of (9):

Theorem 1 (Mock [17]) Existence of uniformly con-
vex entropy pairs fU;F ig implies that the change of
variable u 7! v with v D .U;u/

T symmetrizes the
conservation law system (9)

u;v„ƒ‚…
SPD

v;t C f .i/
;v„ƒ‚…

Symm

v;xi D 0;

with u;v symmetric positive definite (SPD) and f .i/
;v

symmetric.

Dotting the conservation law system (9) with the
symmetrization variables yields the entropy extension
equation (10) for smooth solutions

v � .u;t C f .i/
;xi
/ D U;t C F .i/

;xi
: (11)

Symmetrization of the Compressible Euler
Equations
The compressible Euler equations are obtained from
the Navier-Stokes equations (1) by setting the right-
hand-side equal to zero, thus simplifying to the diver-
gence form

u;t C f .i/
;xi

D 0: (12)

The thermodynamic entropy for the compressible Eu-
ler and Navier-Stokes equations is given by s D
log

�
p

��

�
. By taking weighted combinations of the

individual Euler equations for the entropy differential
d.�s/, an additional divergence equation for entropy is
obtained:

.�s/;t C .�ui s/;xi D 0; (13)

with an inequality � 0 obtained as a viscosity limit
as shown later in (22). When combined with the
requirement of convexity, U;u;u > 0, Eq. (13) suggests
that suitable entropy pairs for the Euler equations are
given by

fU.u/; F .i/.u/g D fc0�.s0 � s/; c0�ui .s0 � s/g

for chosen constants s0 and c0 > 0. This choice is not
unique and other entropy pairs for the Euler equations
can be found [11]. Under the change of variable u 7! v,
the compressible Euler equations are symmetrized:

u;v„ƒ‚…
SPD

v;t C f .i/
;v„ƒ‚…

Symm

v;xi D 0: (14)

The symmetrization variables for the compressible
Euler equations are readily calculated, i.e., for c0 D 1

and s0 D 0:

v D .U;u/
T D

0
@� � s � ��1

2T
juj2

.� � 1/ ui
T�.� � 1/ 1
T

1
A : (15)
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Finally, dotting the compressible Euler equations
with the symmetrization variables yields the negated
entropy equation (13) as required by the general theory

v �
�

u;t C f .i/
;xi

�
D U;t CF .i/

;xi
D .��s/;t C .��ui s/;xi :

(16)
Use of this identity arises naturally in the energy
analysis of Galerkin projections. Let V denote a
suitable function space for (9) and B.v;w/ the
associated weighted-residual semi-linear form for a
spatial domain � written using the symmetrization
variables as dependent variables. For v 2 V ,

B.v;w/ D
Z
�

w �
�

u;t .v/C f .i/
;xi
.v/
�
dx; 8 w 2 V :

(17)

Then by choosing the particular test function w D v, an
energy associated with the semi-linear form is given by

B.v; v/ D
Z
�

v �
�

u;t .v/C f .i/
;xi
.v/
�
dx

D
Z
�

�
U;t C F .i/

;xi

�
dx: (18)

Symmetrization of the Compressible
Navier-Stokes Equations
The compressible Navier-Stokes equations (1) may be
rewritten in the following form forMij 2 R.dC2/�.dC2/:

u;t C f .i/
;xi

D .Miju;xj /;xi : (19)

When written in this form, the matrices Mij have no
particular structure, i.e., Mij are neither symmetric
nor positive semi-definite. Unlike the Euler equations,
Hughes et al. [12] show that the only suitable entropy
pairs for the compressible Navier-Stokes with Fourier
heat conductivity are given by

fU.u/; F .i/.u/g D fc0�.s0 � s/; c0�ui .s0 � s/g:

Under the change of variable u 7! v, the compressible
Navier-Stokes equations are symmetrized:

u;v„ƒ‚…
SPD

v;t C f .i/
;v„ƒ‚…

Symm

v;xi D .Miju;v„ƒ‚…
SPSD

v;xj /;xi (20)

with u;v symmetric positive definite (SPD), f .i/
;v

symmetric, and Miju;v symmetric positive semi-

definite (SPSD). Choosing c0 D 1 and s0 D 0, the
symmetrization variables for the compressible Navier-
Stokes equations are identical to the symmetrization
variables already given for the Euler equations in
Eq. (15). Finally, dotting the compressible Navier-
Stokes equations with the symmetrization variables

v �
�

u;t C f .i/
;xi

� .Miju;xj /;xi
�

D 0 (21)

reduces for smooth solutions to the entropy balance
equation

.��s/;t C .��ui s/;xi �
�
qi

CvT

�
;xi

D �v;xi � .Miju;v/v;xj � 0: (22)

Setting qi D 0 motivates the � 0 sign in (13) as a
viscosity limit. Substituting � D Cvs and rearranging
terms yields the well-known second law of thermody-
namics, also called the Clausius-Duhem inequality [25]
after Rudolf Clausius and Pierre Duhem:

.��/;tC.�ui�/;xiC
�qi
T

�
;xi

D Cvv;xi �.Miju;v/v;xj � 0:

(23)

A consequence of these inequalities is that for a fixed
domain� with zero heat flux addition and zero flux on
@�, the total entropy in the system is a nondecreasing
quantity

d

dt

Z
�

�� dx � 0: (24)

BoltzmannMoment Structure of
Compressible Flow

The kinetic theory of gases describes a gas as a large
ensemble of particles (atoms or molecules) in random
motion [4]. Rather than tracking the individual motion
of particles with position x 2 Rd and particle velocity
v 2 Rd , the Boltzmann transport equation [2],

@;t f .x; v; t/C vi @;xi f .x; v; t/ D 1

�
C.f /; (25)

describes the evolution of a kinetic distribution func-
tion f .x; v; t/ that carries information about the num-
ber of particles at time t in a differential element
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dx1 : : : dxd dv1 : : : dvd . The parameter � is the Knud-
sen number, a ratio of the mean free path to a character-
istic macroscopic length. Let h�i 
 R

Rd .�/ dv1 : : : dvd
denote an integration over velocity space; C.f / is a
collision operator that is assumed to have mass, linear
momenta, and energy as collision invariants:

hC.f /i D 0; hvi C.f /i D 0; hjvj2 C.f /i D 0;

(26)
and satisfy local entropy dissipation:

hlog.f / C.f /i � 0 for every f: (27)

Multiplying Boltzmann’s transport equation by the
term log.f / and simplifying terms reveals that so-
lutions of Boltzmann’s transport equation satisfy the
entropy balance law

H;t .f /C J .i/;xi .f / D S.f / (28)

with H.f / 
 hf log.f / � f i the kinetic entropy,
J .i/.f / 
 hvi .f log.f / � f /i the kinetic entropy
fluxes, and S.f / 
 hlog.f /C.f /i the kinetic entropy
dissipation. The celebrated Boltzmann H -theorem
states that

S.f / � 0; (29)

with equality if and only if C.f / D 0 which occurs if
and only if the gas is in local thermodynamic equilib-
rium with Maxwellian distribution

fm.�; u; T I x; v; t/ D �

.2T /d=2
e� ju�vj2

2T ; (30)

for given macroscopic quantities �; u; T .

Boltzmann Moment Structure of the
Compressible Euler Equations
The task of solving the Boltzmann transport equation
may be simplified by retaining only a finite number
of velocity moment averages. The resulting moment
equations are obtained by introducing a moment vector
m.v/ 2 RM with polynomial components that span
a velocity subspace and possess translational and ro-
tational invariance. Multiplying (25) by the moment
vector m.v/ and integrating over velocities yields the
moment system

hm.v/ f i;t C hvi m.v/ f i;xi D 1

�
hm.v/ C.f /i: (31)

The compressible Euler equations specialized to a
monatomic gas are obtained by assuming a gas in
local thermodynamics equilibrium (i.e., Maxwellian
distribution function) and retaining d C 2 velocity
moments m.v/ D .1; vi ; jvj2=2/T corresponding to
mass, linear momenta, and energy

u D hm.v/ fmi D
0
@ �

�uj
�. 3

2
T C 1

2
juj2/

1
A ;

f .i/ D hvi m.v/ fmi D
0
@ �ui

�uiuj C ıij p

�ui . 52T C 1
2
juj2/

1
A (32)

with zero right-hand-side collision terms by virtue
of (26).

The compressible Euler equations for a general
� -law (polytropic) gas are obtained as moment ap-
proximations after the following generalizations: (1)
modify the energy moment to include internal energy,
m.v; eint/ D .1; v; jvj2=2 C eıint/

T ; (2) increase the di-
mensionality of the phase space integration to include
internal energy, h�i D R

RC

R
Rd .�/ dv1 : : : dvd deint;

and (3) utilize the generalized Maxwellian for a � -law
gas

fm.�;u;T I v;eint/D �

˛.�; d/ T d=2C1=ı
e�.ju�vj2=2Ceıint/=T

(33)

with ı D .1=.� � 1/ � d=2/�1 and ˛.�; d/ DR
Rd e

�jvj2=2dv1 : : : dvd � R
RC e

�eıintdeint. The nonobvi-
ous energy moment jvj2=2 C eıint has been used [19]
rather than the more standard moment jvj2=2Ceint (see
for example [8]) in order that the classical Boltzmann
entropy is obtained.

In the study of moment closures for M � d C 2,
Levermore [14] has shown that the constrained mini-
mization of kinetic entropy

arg min
f

fHŒf 	 j hm.v/f i D ug;

H Œf 	 D hf log.f /� f i; (34)

is sufficient to deduce that the distribution function f
is of exponential form

f D exp.v.u/ �m.v// (35)
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with v.u/ the symmetrization variables (15). In the
special case of d C 2 moments, f is Maxwellian
and it can be readily verified that the Maxwellian
distribution (33) can be rewritten in the form (35) with
the symmetrization variables v.u/ D .U;u/

T calcu-
lated using the macroscopic entropy function U.u/ D
c0�.s � s0/.

Boltzmann Moment Structure of the
Compressible Navier-Stokes Equations via
Chapman-Enskog Expansion
The compressible Navier-Stokes equations may be
derived as kinetic moments of the Boltzmann equa-
tion corresponding to mass, momentum, and energy
with distribution function f�.x; t; v/ formulated as an
expansion in the Knudsen number parameter � about
the local thermodynamic equilibrium Maxwellian dis-
tribution. A distribution function f� is an approximate
solution of the Boltzmann transport equation of order
p if

@;t f�.x; v; t/C vi @;xi f�.x; v; t/ D 1

�
C.f�/C O.�p/:

(36)
Using a finite expansion of the specific form

f�.��;u�;T�Iv/Dfm.��; u�;T�I v/
�
1C�f .1/

� .��;u�;T�Iv/
C �2f .2/

� .��; u�; T�I v/
�
; (37)

the compressible Navier-Stokes equations may be de-
rived from solutions of order p D 2 using a successive
approximation procedure developed by [5] and inde-
pendently by [9], now referred to as the Chapman-
Enskog expansion. In the Chapman-Enskog procedure,
the distribution functions f .i/

� are successively deter-
mined for increasing i by equating coefficients of equal
powers of � in the (37) expansion of the Boltzmann
transport equation (see Cercignani [3]). Note that in
the limit of incompressible flow, the O.�2/ term is not
needed in (37) to derive the incompressible Navier-
Stokes equations. The Chapman-Enskog expansion not
only provides a derivation of the compressible Navier-
Stokes equations but also provides explicit expressions
for the transport coefficient viscosity � and thermal
diffusivity 
 for a given collision model C.f /. Specif-
ically, the viscosity is calculated from the integral

�.�; T / D 2

15

�Tp
2

Z 1

0

ˇ.�; T; r/r6e�r2=2 dr (38)

and the thermal diffusivity 
 is calculated from the
integral


.�; T / D 1

6

�Tp
2

Z 1

0

˛.�; T; r/.r2 � 5/2r4e�r2=2 dr
(39)

where ˛.�; T; r/ and ˇ.�; T; r/ are positive functions
that depend on the particular choice of collision model
C.f /. When the collision model is homogeneous of
degree two, ˛ and ˇ become proportional to ��1 so that
� and 
 only depend on temperature in agreement with
classical expressions for these transport coefficients.
Existence of the Chapman-Enskog expansion functions
f
.1/
� and f .2/

� is formalized in the following theorem:

Theorem 2 (Bardos et al. [1]) Assume that .��; u�; T�/
solve the compressible Navier-Stokes equations with
viscosity �.�; T / given by (38) and thermal diffusivity

.�; T / given by (39). Then there exist f .1/

� and f .2/
�

such that f� given by (37) is a solution of (36) of order
p D 2.

Wave Structure of Compressible Flow

Understanding the wave structure of compressible flow
has played an important role in the design and con-
struction of numerical methods that properly reflect
the finite propagation speed of waves and the resulting
finite domain of influence of information signals in
the flow field. To insure that these finite domains
of influence are accurately modeled, Godunov [10]
pioneered the use of the Riemann problem of gas
dynamics as a fundamental component in the finite-
volume discretization of the compressible Euler equa-
tions. The Riemann problem of gas dynamics considers
the time evolution of piecewise constant initial data
ul and ur centered at the origin x D 0 with solution
for later time t denoted by uRiemann.ul ;ur I x; t/. The
work of Godunov was later extended to high-order ac-
curacy by van Leer [13]. For a one-dimensional domain
L tessellated with nonoverlapping control volumes,
�xi D xiC1=2 � xi�1=2; i D 1; : : : ; N , such that
L D [1�i�N�xi , the Godunov finite-volume method
in semi-discrete form is given by

d

dt
ui C F iC1=2 � F i�1=2

�xi
D 0; for i D 1; : : : ; N

(40)
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with ui D 1
�xi

R
�xi

u dx the cell-averaged solution
and F iC1=2 a numerical flux function obtained from a
solution of the Riemann problem, i.e.,

F iC1=2 D F .ui ;uiC1/ D f .uRiemann.ui ;uiC1I 0; 0C//
(41)

that is a consistent and conservative approximation
of the true flux f .u/. The development of the Go-
dunov finite-volume method has subsequently moti-
vated a large effort to understand and later approximate
[18, 22] solutions of the Riemann problem.

Riemann Problem of Gas Dynamics
The compressible Euler equations in one space di-
mension simplify from (1) to the following divergence
form:

u;t C f ;x D 0; (42)

with

u D
0
@ ��u
E

1
A ; f D

0
@ �u
�u2 C p

u.E C p/

1
A : (43)

The Jacobian matrix f ;u has m D 3 real and distinct
eigenvalues �1.u/ < � � � < �m.u/. Corresponding to
each eigenvalue �k.u/ is a right eigenvector rk.u/,
k D 1; : : : ; m. For each k, there exist m � 1 Riemann
invariants wj satisfying

rk.u/ � rwj .u/ D 0; j D 1; : : : ; m � 1: (44)

Eigenvalues and Riemann invariants are tabulated in
Table 1 for the Euler equation system (42). Solutions
of the Riemann problem are composed of three wave
families:
1. Classical solution rarefaction waves for which the
m � 1 Riemann invariants are constant throughout
the wave.

2. Genuinely nonlinear shock waves that satisfy the
Rankine-Hugoniot relations,

� Œu.xC; t/ � u.x�; t/	 D Œf .xC; t/ � f .x�; t/	;

for a moving shock wave at location x with speed
� and satisfy the entropy inequality (22) in the limit
of zero viscosity and heat conduction.

Compressible Flows, Table 1 Eigenvalues and Riemann in-
variants for the Riemann problem of gas dynamics

�k Riemann invariants

k D 1 u � c fu C 2
��1

c; sg
k D 2 u fu; pg
k D 3 u C c fu � 2

��1
c; sg

x

t

(1)
ρL

ρ*
L

(2) (3)

uL

pL u*

p*

ρ*
R

u*

p*

ρ
R

u
R

p
R

Compressible Flows, Fig. 3 Riemann problem evolution in the
.x; t /-plane

3. Linearly degenerate contact waves for which the
m� 1 Riemann invariants are constant and the fluid
density is discontinuous. Contact waves propagate
at the fluid velocity so that no material crosses the
contact interface.

A unique global solution of the Riemann problem
exists if and only if ur � ul < 2

��1 .cl C cr /; otherwise,
a vacuum is present in the solution [24].

The global solution of the Riemann problem is
self-similar in the single parameter x=t (see Fig. 3)
with a wave structure of the following composition
form:

ur D Tx3Tx2Tx1ul ; (45)

containing three scalar parameters fx1; x2; x3g. The
transition operator Tx1 consists of either a rarefaction
wave or shock wave, Tx2 consists of a contact discon-
tinuity, and Tx3 consists of either a rarefaction wave
or a shock wave. Solving the Riemann problem is tan-
tamount to finding these three parameters fx1; x2; x3g
given the two solution states ful ;urg; see Smoller [24].
Demanding uniqueness of this solution is sufficient to
select whether Tx1 and Tx3 are rarefaction waves or
else viscosity limit shock waves satisfying an entropy
inequality. Once these parameters are calculated, the
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Compressible Flows, Fig. 4 Riemann problem solution pro-
files at the time t > 0

transition states f��
L; �

�
R; u

�; p�g depicted in Fig. 3 are
directly calculated from (45).

The self-similar structure of the Riemann problem
solution together with the wave family properties out-
lined above are sufficient to construct a global solution
in .x; t/ from the transition states and initial data.
A representative Riemann problem solution is given in
Fig. 4.

Cross-References

�Lattice Boltzmann Methods
�Riemann Problem
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wärmegleichgewicht unter gasmolekülen. Wiener Berichte
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Synonyms

Compressed sensing; Compressive sampling; Sparse
sampling

Definition

Compressive sensing is a mathematical signal
processing theory which exhaustively addresses
the efficient practical recovery of nearly sparse
vectors from the minimal amount of nonadaptive
linear measurements. Usually such evaluations
are provided by the application of a random
matrix which is guaranteed to possess with high-
probability certain spectral properties (e.g., the
null space property or the restricted isometry
property) for optimal recovery via convex opti-
mization, e.g., `1-norm minimization over the set
of admissible competitors, or by greedy algo-
rithms.

Overview

The theory of compressive sensing has been formalized
within the seminal works [5] and [6]. Although
some of the relevant theoretical [8, 14, 15, 17] and
practical [19, 20, 23, 26, 27, 31] aspects of compressed
sensing appeared separately in previous studies,
the main contribution of the former papers was to
realize that one can combine the efficiency of `1
minimization and the spectral properties of random
matrices in order to obtain optimal and practical
recovering of (approximately) sparse vectors from
the fewest linear measurements. In the work [4, 5] of
Candès, Romberg, and Tao, the restricted isometry
property (which was initially called the uniform
uncertainty principle) was found playing a crucial
role in stable recovery. In particular it was shown
that Gaussian, Bernoulli, and partial random Fourier

matrices [4, 22] possess this important property.
Later several other types of random matrices, even
with structures favorable to efficient computation
and to diverse applicability, have been studied [13].
These results require tools from probability theory
and finite dimensional Banach space geometry; see,
e.g., [16, 18]. Donoho [7] approached the problem
of characterizing sparse recovery by `1 minimization
via polytope geometry, more precisely, via the notion
of k neighborliness. In several papers sharp phase
transition curves were shown for Gaussian random
matrices separating regions where recovery fails or
succeeds with high probability; [7, 9, 10], see Fig. 1
below, for an example of such a graphics. These
results build on previous work in pure mathematics by
Affentranger and Schneider [1] on randomly projected
polytopes.

Besides `1 minimization, also several greedy
strategies such as orthogonal matching pursuit [28],
CoSaMP [29], and iterative hard thresholding [2],
which may offer better complexity than standard
interior point methods, found a relevant role as
practical and efficient recovery methods in compressed
sensing.

Compressive sensing can be potentially used in all
applications where the task is the reconstruction of a
signal from devices performing linear measurements,
while taking many of those measurements – in par-
ticular, a complete set of measurements is a costly,
lengthy, difficult, dangerous, impossible, or otherwise
undesired procedure. Additionally, there should be
reasons to believe that the signal is sparse in a suitable
domain. In computerized tomography, for instance,
one would like to obtain an image of the inside of
a human body by taking X-ray images from differ-
ent angles. This is the typical situation where one
wants to minimize the exposure of the patient to a
large amount of measurements, both for limiting the
dose of radiation and the discomfort of the proce-
dure.

Also radar imaging seems to be a very promising
application of compressive sensing techniques [12, 24].
One is usually monitoring only a small number of
targets, so that sparsity is a very realistic assumption.
Further potential applications include wireless
communication [25], astronomical signal and image
processing [3], analog to digital conversion [30],
camera design [11], and imaging [21], to name a
few.
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Compressive Sensing, Fig. 1
Empirical success probability

of recovery of k-sparse
vectors x 2 R

N from
measurements y D Ax,
where A 2 R

m�N is a real
random Fourier matrix. The
dimension N D 300 of the
vectors is fixed. Each point of
this diagram with coordinates
.m=N; k=m/ 2 Œ0; 1	2

indicates the empirical
success probability of exact
recovery, which is computed
by running 100 experiments
with randomly generated
k-sparse vectors x and
randomly generated matrix
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Main Principles and Results

The support of a vector x is denoted supp.x/ D
fj W xj ¤ 0g, and kxk0 WD j supp.x/j denotes its
cardinality. A vector x is called k sparse if kxk0 � k.
For k 2 f1; 2; : : : ; N g,

†k WD fx 2 C
N W kxk0 � kg

denotes the set of k-sparse vectors. Furthermore, the
best k-term approximation error of a vector x 2 C

N in
`p is defined as

�k.x/p D inf
z2†k

kx � zkp;

where kzkp D
�PN

jD1 jzj jp
�1=p

is the `p norm for

1 � p � 2. If �k.x/p decays quickly in k, then x
is called compressible. Note that if x is k sparse, then
�k.x/p D 0.

Taking m linear measurements of a signal x 2 C
N

corresponds to applying a matrix A 2 C
m�N – the

measurement matrix –

y D Ax: (1)

The vector y 2 C
m is called the measurement vector.

The main interest is in the vastly undersampled case

m 	 N . Without further information, it is, of course,
impossible to recover x from y since the linear system
(1) is strongly underdetermined and has therefore in-
finitely many solutions. However, if the additional as-
sumption that the vector x is k sparse or compressible
is imposed, then the situation dramatically changes.
The typical result in compressed sensing reads as
follows.

Assume that A 2 C
m�N be a random matrix

drawn from a suitable distribution with concentration
properties, suitably designed according to practical
uses. For x 2 C

N , let y D Ax and x� be the solution
of the `1-minimization problem

min kzk1 subject to Az D y:

Then

kx � x�k2 � C1
�k.x/1p

k

for

k � C2
m

log.N /˛
;

with high probability, for suitable constantsC1, C2 > 0
and ˛ � 1, independent of x and of the dimensions
m;N .

To illustrate the result, we show in Fig. 1 a
typical phase transition diagram, which describes
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the empirical success probability of exact recovery
of k-sparse vectors x 2 R

N from measurements
y D Ax 2 R

m.
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Analysis. Birkhäuser, Basel (2013)

14. Garnaev, A., Gluskin, E.: On widths of the Euclidean ball.
Sov. Math. Dokl. 30, 200–204 (1984)

15. Gluskin, E.: Norms of random matrices and widths of finite-
dimensional sets. Math. USSR-Sb. 48, 173–182 (1984)

16. Johnson, W.B., Lindenstrauss, J. (eds.): Handbook of the
Geometry of Banach Spaces, vol. I. North-Holland, Ams-
terdam (2001)

17. Kashin, B.: Diameters of some finite-dimensional sets and
classes of smooth functions. Math. USSR Izv. 11, 317–333
(1977)

18. Ledoux, M., Talagrand, M.: Probability in Banach Spaces.
Springer, Berlin/New York (1991)

19. Logan, B.: Properties of high-pass signals. PhD thesis,
Columbia University (1965)

20. Prony, R.: Essai expérimental et analytique sur les lois de
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Short Definition

Free-energy differences are an important physical
quantity since they determine the relative stability of
different states. A state is characterized either through
the level sets of some function (the reaction coordinate)
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or by some parameter (alchemical case). Although
the free energy cannot be obtained from the average
of some observable in the thermodynamic ensemble
at hand, free-energy differences can be rewritten as
ensemble averages (upon derivation or other manip-
ulations), and are therefore amenable to numerical
computations. In a mathematical classification, there
are four main classes of techniques to compute
free-energy differences: free-energy perturbation and
histogram methods (which rely on standard ensemble
averages); thermodynamic integration (projected
equilibrium dynamics); exponential nonequilibrium
averages (projected time-inhomogeneous dynamics);
and adaptive techniques (nonlinear dynamics).

Description

Absolute and Relative Free Energies
Free energy is a central concept in thermodynamics
and in modern studies on biochemical and physical
systems. In statistical physics, it is related to the log-
arithm of the partition function of the thermodynamic
ensemble at hand.

Absolute Free Energies
We consider for simplicity the case of systems at con-
stant temperature and volume, in which case the ther-
modynamic state is described by the canonical measure
on the phase space E D D � R

dN : �Calculation of
Ensemble Averages

�.dq dp/ D Z�1
� e�ˇH.q;p/ dq dp;

Z� D
Z
E

e�ˇH.q;p/ dq dp; (1)

where H.q; p/ is the Hamiltonian of the system, and
ˇ�1 D kBT . The free energy is then

F D � 1
ˇ

ln
Z
E

e�ˇH.q;p/ dq dp: (2)

This definition is motivated by an analogy with macro-
scopic thermodynamics, where

F D U � TS; (3)

U being the internal energy of the system, and S

its entropy. The microscopic definition of the internal

energy is the average energy as given by the laws of
statistical physics:

E�.H/ D Z�1
�

Z
E
H.q; p/ e�ˇH.q;p/ dq dp; (4)

while the microscopic counterpart of the thermody-
namic entropy is the statistical entropy (see [3])

˙ D �kB

Z
E

ln

�
d�

dq dp

�
d�: (5)

Replacing U and S in (3) by (4) and (5), respectively,
we obtain the definition (2).

Relative Free Energies
In many applications, the important quantity is
actually the free-energy difference between various
macroscopic states of the system, rather than the free
energy itself. Free-energy differences allow to quantify
the relative likelihood of different states �Transition
Pathways, Rare Events and Related Questions. A state
should be understood here as either:
1. The collection of all possible microscopic con-

figurations, distributed according to the canonical
measure (1), and satisfying a given macroscopic
constraint �.q/ D z, where � W D ! R

m with m
small. Such macroscopic constraints are for instance
the values of a few dihedral angles in the carbon
backbone of a protein, or the end-to-end distance of
a long molecule.

In this case, the configurations are restricted to
the set ˙.z/ D f.q; p/ 2 E j �.q/ D zg where z is
the index of the state, and the free-energy difference
to compute reads

F.1/� F.0/

D�ˇ�1 ln

0
BB@

Z
˙.1/�R3N

e�ˇH.q;p/ ı�.q/�1.dq/ dp
Z
˙.0/�R3N

e�ˇH.q;p/ ı�.q/.dq/ dp

1
CCA :

(6)

A rigorous definition of the measures ı�.q/�z.dq/

can be given using the co-area formula (see [1, 11]
as well as [20], Chap. 3).

2. The collection of all possible microscopic configu-
rations distributed according to the canonical mea-
sure associated with a Hamiltonian H� depending

http://dx.doi.org/10.1007/978-3-540-70529-1_265
http://dx.doi.org/10.1007/978-3-540-70529-1_266
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on some parameter �. The parameter � is then the
index of the state, and the free-energy difference
reads

F.1/� F.0/ D �ˇ�1 ln

0
BB@

Z
E

e�ˇH1.q;p/ dq dp
Z
E

e�ˇH0.q;p/ dq dp

1
CCA :

(7)

Typically, � is a parameter of the potential energy
function, or the intensity of an external perturbation
(such as a magnetic field for Ising systems).

Alchemical transitions can be considered as a special
case of transitions indexed by a reaction coordinate,
upon introducing the extended variable Q D .�; q/

and the reaction coordinate �.Q/ D �. Besides, the
reaction coordinate case is sometimes considered as a
limiting case of the alchemical case, using the family
of Hamiltonians

H
�

�.q/ D V.q/C 1

2�

�
�.q/� �

�2 C 1

2
pTM�1p;

and letting � ! 0.

Free Energy and Metastability
Besides physical or biochemical applications, free en-
ergies can also be useful for numerical purposes to
devise algorithms which overcome sampling barriers
and enhance the sampling efficiency. Chemical and
physical intuitions may guide the practitioners of the
field toward the identification of some slowly evolv-
ing degree of freedom responsible for the metastable
behavior of the system. This quantity is a function
�.q/ of the configuration of the system, where � W
D ! R

m with m small. The framework to consider is
therefore the case of transitions indexed by a reaction
coordinate. If the function � is well chosen (i.e., if
the dynamics in the direction orthogonal to � is not
too metastable), the free energy can be used as a
biasing potential to accelerate the sampling, relying on
importance sampling strategies. This viewpoint allows
to use free-energy techniques in other fields than the
one traditionally covered by statistical physics, such as
Bayesian statistics for instance [7,12] – with the caveat
however that finding a relevant reaction coordinate may
be nontrivial.

Computational Techniques for Free-Energy
Differences
We present in this section the key ideas behind the
methods currently available to compute free-energy
differences, focusing for simplicity on the alchemical
case (when possible), and refer to [6,20] for more com-
plete expositions. Some of the techniques are suited
both for alchemical transitions and transitions indexed
by a reaction coordinate, but not all of them. Most of
the currently available strategies fall within the follow-
ing four classes, in order of increasing mathematical
technicality:
1. Methods of the first class are based on straightfor-

ward sampling methods. In the alchemical case,
the free-energy perturbation method, introduced
in [28], recasts free-energy differences as usual
canonical averages. In the reaction coordinate case,
usual sampling methods can also be employed,
relying on histogram methods.

2. The second technique, dating back to [16], is ther-
modynamic integration, which mimics the quasi-
static evolution of a system as a succession of
equilibrium samplings (this amounts to an infinitely
slow switching between the initial and final states).
In this case, constrained equilibrium dynamics have
to be considered.

3. A more recent class of methods relies on dynamics
with an imposed schedule for the reaction coordi-
nate or the alchemical parameter. These techniques
therefore use nonequilibrium dynamics. Equilib-
rium properties can however be recovered from the
nonequilibrium trajectories with a suitable exponen-
tial reweighting, see [14, 15].

4. Finally, adaptive biasing dynamics may be used in
the reaction coordinate case. The switching sched-
ule is not imposed a priori, but a biasing term in
the dynamics forces the transition by penalizing
the regions which have already been visited. This
biasing term can be a biasing force as for the
adaptive biasing force technique of [9], or a biasing
potential as for the Wang-Landau method [26, 27],
nonequilibrium metadynamics [13] or self-healing
umbrella sampling [22].

We refer to Fig. 1 for a schematic comparison
of the computational methods in the reaction
coordinate case. All these strategies are based on
appropriate methods to sample canonical measures
� Sampling Techniques for Computational Statistical
Physics.

http://dx.doi.org/10.1007/978-3-540-70529-1_268
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Computation of Free Energy Differences, Fig. 1 Cartoon
comparison of the different techniques to compute-free en-
ergy differences in the reaction coordinate case. (a) Histogram
method: sample points around the level sets are generated. (b)
Thermodynamic integration: a projected dynamics is used to

sample each “slice” of the phase space. (c) Nonequilibrium
dynamics: the switching is imposed a priori and is the same for
all trajectories. (d) Adaptive dynamics: the system is forced to
leave regions where the sampling is sufficient

Methods Based on Straightforward Sampling

Free-Energy Perturbation Free-energy perturbation
is a technique which is restricted to the computation
of free-energy differences in the alchemical case. It
consists in rewriting the free-energy difference as

�F D �ˇ�1 ln
Z
E

e�ˇ.H1�H0/d�0;

where the probability measures �� are defined as

��.dq dp/ D Z�1
� e�ˇH�.q;p/ dq dp:

An approximation of �F is then obtained by generat-
ing configurations .qn; pn/ distributed according to �0
and computing the empirical average

1

N

NX
nD1

e�ˇ.H1�H0/.qn;pn/: (8)

However, the initial and final distributions �0
and �1 often hardly overlap, in which case the estimate
based on (8) is polluted by large statistical errors. There
are two ways to improve the situation:
1. Staging: The free-energy change is decomposed

using n�1 intermediate steps 0 D �0 < �1 < : : : <

�n D 1, the associated free-energy differences
�Fi D F.�iC1/ � F.�i / are computed using an
estimator similar to (8), and the total free-energy
difference is recovered as �F D �F0 C � � � C
�Fn�1.

2. Umbrella sampling [25]: Configurations distributed
according to some probability distribution “in be-
tween” �0 and �1 are sampled, and the free energy
is estimated through some importance sampling
technique from the ratio of partition functions.

Of course, both strategies can be combined.
Finally, let us mention that it is also possible to

resort to bridge sampling, where the free-energy
difference �F is estimated using sample points
from both �0 and �1. In computational chemistry,
the method is known as the Bennett acceptance ratio
(BAR) method [4].

Histogram Methods The idea of histogram methods
is to sample configurations centered on some level
set ˙.z/, typically by sampling canonical measures
associated with modified potentials

V.q/C 1

2�

�
�.q/ � z

�2
;
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where � > 0 is a small parameter, and to construct a
global sample for the canonical measure �.dq dp/ by
concatenating the sample points with some appropriate
weighting factor. This method was recently put on firm
grounds using advances in statistics, and is known as
MBAR (“multistate BAR”) [23].

Once this global sample is obtained, an approxima-
tion of the free energy is obtained by estimating the
probability that the value of the reaction coordinate lies
in the interval Œz; z C �z	. This is done by computing
canonical averages of approximations of ı�.q/�z (such
as bin indicator functions proportional to 1�.q/2Œz;zC�z	).

Thermodynamic Integration
Thermodynamic integration consists in remarking that

F.�/ � F.0/ D
Z �

0

F 0.s/ ds; (9)

and that the derivative

F 0.�/ D

Z
E

@H�

@�
.q; p/ e�ˇH�.q;p/ dq dp

Z
E

e�ˇH�.q;p/ dq dp

is the canonical average of @�H� with respect to the
canonical measure ��. In practice, F 0.�i / is computed
using classical sampling techniques for a sequence
of values �i 2 Œ0; 1	. The integral on the right-
hand side of (9) is then integrated numerically to
obtain the free-energy difference profile. The extension
to transitions indexed by a reaction coordinate re-
lies on projected deterministic or stochastic dynamics
(see [5, 8, 10, 21, 24]).

NonequilibriumDynamics
Free-energy differences can be expressed as a non-
linear average over nonequilibrium trajectories, using
the so-called Jarzynski equality, see (11) below. This
equality can easily be obtained for a system governed
by Hamiltonian dynamics, with initial conditions at
equilibrium, canonically distributed according to �0,
and subjected to a switching schedule� W Œ0; T 	 ! R

with �.0/ D 0 and �.T / D 1. More precisely, we
consider initial conditions .q.0/; p.0//  �0, which
are evolved according to the following nonautonomous
ordinary differential equation for 0 � t � T :

8̂
<
:̂
dq

dt
.t/ D rpH�.t/.q.t/; p.t//;

dp

dt
.t/ D �rqH�.t/.q.t/; p.t//:

(10)

Defining by �� the associated flow, the work per-
formed on the system starting from some initial con-
ditions .q; p/ is

W.q; p/ D
Z T

0

@H�.t/

@�
.��t .q; p//�

0.t/ dt

D H1.�
�
T .q; p// �H0.q; p/:

The last equality is obtained by noticing that

d

dt

�
H�.t/.�

�
t .q; p//

�
D @H�.t/

@�
.��t .q; p//�

0.t/

C
�rqH�.t/.�

�
t .q; p//

rpH�.t/.�
�
t .q; p//

�
� @t��t .q; p//;

and the second term on the right-hand side vanishes in
view of (10). Then,

Z
E

e�ˇW.q;p/ d�0.q; p/DZ�1
0

Z
E

e�ˇH1.��T .q;p// dq dp:

Since ��T defines a change of variables of Jacobian 1,
the above equality can be restated as

E�0.e
�ˇW / D Z1

Z0
D e�ˇ.F.1/�F.0//; (11)

where the expectation is taken with respect to initial
conditions distributed according to �0.

For stochastic dynamics, results similar to (11)
can be obtained, for transitions indexed by a reaction
coordinate or an alchemical parameter, using appropri-
ately constrained dynamics (see [17,21]). Expectations
have to be understood as over initial conditions and
realizations of the Brownian motion in these cases.

In view of the equality (11), it is already clear
that the lowest values of the work dominate the
nonlinear average (11), and the distribution of weights
e�ˇW.q;p/ is often degenerate in practice. This prevents
in general accurate numerical computations, and raises
issues very similar to the ones encountered with
free-energy perturbation (see the discussion in [20],
Chap. 4). Refinements are therefore needed to use
nonequilibrium methods in practice, and equilibrium
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or adaptive methods generically outperform them.
Their interest is therefore rather theoretical except
in situations when the underlying physical system is
itself genuinely out of equilibrium (as in DNA pulling
experiments).

Adaptive Dynamics
Adaptive dynamics may be seen as some adaptive
importance sampling strategy, with a biasing potential
at time t which is a function of the reaction coordinate.
In essence, the instantaneous reference measure for
the system is the canonical measure associated with
H.q; p/ � Ft .�.q//, where Ft is some approximation
of the free energy. The biasing potential converges in
the longtime limit to the free energy by construction of
the dynamics.

The main issue is to decide how to adapt the biasing
potential. There are two strategies to this end: Update
the potential Ft itself (adaptive biasing potential
(ABP) strategies, in the classification of [18]), or
the gradient of the potential (adaptive biasing force
(ABF) strategies). In both cases, the update is done
depending on the observed current distribution of
configurations.

For ABF, this is achieved by adjusting the bi-
asing force in the direction of the gradient of the
reaction coordinate in such a way that the average
force experienced by the system at a given value of
the reaction coordinate vanishes. For ABP, the bias
is increased in undervisited regions and decreased in
overvisited parts of the phase space, until the dis-
tribution of the values of the reaction coordinate is
uniform.

The resulting dynamics are highly nonlinear, and
the mathematical study of their properties is very
difficult in general. At the moment, mathematical con-
vergence results exist only for the ABF method [19]
and the Wang-Landau algorithm [2].
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19. Lelièvre, T., Rousset, M., Stoltz, G.: Long-time convergence
of an Adaptive Biasing Force method. Nonlinearity 21,
1155–1181 (2008)
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Short Definition

Computational complexity is the study of the resources
(mainly computing time) necessary to solve a problem.

Description

One of the most immediate experiences when solving
problems with a computer is the differences, say in
computing time, between different executions. This
occurs between different data for the same problem
(e.g., two different linear systems, both to be solved
for a solution) but also between different problems,
since one feels that one of them is more “difficult” to
solve than the other (e.g., multiplying matrices is easier
than inverting them). The subject of computational
complexity gives a formal framework to study this
phenomenon.

Partially supported by GRF grant CityU 100810.

The Basic Ingredients
A problem is a function ' W I ! O from the input
space I to the output space O . Elements in I are
inputs or instances to the problem. For instance, in the
problem of (real) matrix multiplication, the input space
is the set of all pairs A;B with A 2 IRm�n and B 2
IRn�p (for some m; n; p 2 IN). The output for such an
input is the matrix AB 2 IRm�p .

An algorithm A computing the function ' W I !
O is said to solve this problem. This means that
for each input a 2 I , the algorithm performs a
computation at the end of which it returns '.a/. This
computation is no more than a sequence of some
elementary operations (more on this soon enough), and
the length of this sequence, that is, the number of such
operations performed, is the cost of the computation
for input a, which we will denote by costA .a/.

TwoMain Frameworks
During the last decades, two scenarios for computing
have grown apart: On the one hand, discrete com-
putations, which deal with (basically) combinatorial
problems such as searching for a word in a text, com-
piling a program, or querying a database; and, on the
other hand, numerical computations, which (basically
again) are related to problems in algebra, geometry, or
analysis. A clear distinction between the two can be
made by looking at the nature of the occurring input
spaces.

In discrete computations, inputs (and any other data
present during the computation) can be represented
using bits. That is, they are taken from the disjoint
union f0; 1g1 of vectors of n bits over all possible
n � 1. Using bits we encode letters of the English
alphabet, common punctuation symbols, digits, etc.,
and, hence, words, texts made with those words, inte-
ger, and rational numbers. The size of any such object
is the number of bits used in its encoding. That is,
if the encoding is a 2 f0; 1g1, the only n such that
a 2 f0; 1gn. The elementary operations in this context
are the reading or recording of a bit as well as the
replacement of a 0 by a 1 or vice versa.

In numerical computations, inputs are vectors of
real numbers. That is, they are taken from the disjoint
union IR1 of vectors of n reals over all possible n � 1,
and again, the size of any a 2 IR1 is the only n
such that a 2 IRn. In a digital computer, however, real
numbers cannot be properly encoded. They are instead
approximated by floating-point numbers. (This feature
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introduces an issue of roundoff errors and their prop-
agation which is not crucial in our account; for more
on this see the entrance on conditioning.) Nonetheless,
these numbers are treated as indivisible entities in the
measure that the elementary operations in this setting
are the reading or recording of a real number and
the execution of an arithmetic operation (i.e., one in
fC;�;�; =g) or a comparison (either < or �) between
two reals.

The fact that we have identified a set of elementary
operations for both the discrete and the numerical
settings makes clear our definition of costA .a/ above.

Three Kinds of Analysis
The accurate determination of costA .a/ for a specific
input a is rarely of interest. Rather, we want to be
able to compare the performance of two different
algorithms or, simply, to get an idea of how good is
a given algorithm. That is, we are interested in the
whole of the function costA rather than in a few values
of it. To gauge this function, three types of analysis
are currently used, all of them relying on a single
principle.

The principle is the following. For n 2 IN we
consider the set IKn � IK1 (here IK is either f0; 1g
or IR) and the restriction of costA to IKn. Each form
of analysis associates a quantity gA .n/ (depending on
n) to this restriction, and the goodness, or lack of it,
of an algorithm is given by the asymptotic behavior of
gA .n/ for large n. The difference between the three
types of analysis is in how gA .n/ is defined.

In worst-case analysis one takes gAworst.n/ WD
supa2IKn costA .a/. When IK D f0; 1g, this quantity
is finite. In contrast, for some problems and some
algorithms, in case IK D IR, we may have gAworst.n/ D
1 for some (or even for all) n 2 IN. An often cited
example is the sorting of an array of real numbers, a
problem for which there is a vast number of algorithms.
The cost of an execution, for most of these algorithms,
is the number of comparisons and recordings per-
formed. For instance, for the very popular Quicksort,
we have gQuicksort

worst .n/ D O.n2/. Another example is the
solution of linear systems of equations Ax D b, where
A 2 IRn�n and b 2 IRn, using Gaussian elimination.
For this situation we have gGE

worst.n/ D O.n3/.
In average-case analysis one takes gAavg.n/ WD

IEa�Dn costA .a/ where Dn is a probability measure
on IKn and IE denotes expectation with respect to this

measure. The rationale of this analysis is to focus on
the behavior of an algorithm over an “average” input
instead of a “worst-possible” input. And indeed, in
general, this form of analysis appears to be a more
accurate description of the behavior of the algorithm
in practice. A typical choice for Dn when IK D IR
is the standard Gaussian on IRn. With this choice, for
instance, we have gQuicksort

avg .n/ D O.n log n/. It is
worth noting that for an algorithm A and a size n,
we may have gAworst.n/ D 1 but gAavg.n/ < 1. When
IK D f0; 1g, the typical choice of Dn is the uniform
distribution on f0; 1gn.

A criticism often done to average-case analysis is
the fact that the measure Dn may be too optimistic.
This measure is doubtless chosen because of technical
considerations (ease of computation) more than be-
cause of its accuracy to describe frequencies in real
life (an elusive notion in any case). The third form
of analysis, recently introduced by D. Spielman and
S.-H. Teng with the goal of escaping this criticism, is
smoothed analysis (see [7] for a recent survey). The
idea is to replace the desiderata “the probability that
costA .a/ is large, for a random input a, is small” by
“for all input a the probability that costA .a/ is large,
for a small random perturbation a of a, is small.” In
the case IK D IR, which is the one where smoothed
analysis most commonly occurs, we are interested, for
� > 0, in the function

gAsmoothed.n; �/ WD sup
a2IRn

IE
a�N.a;�2kak2Id/

costA .a/:

Here N.a; �2kak2Id/ is the Gaussian distribution on
IRn centered at a with covariance matrix �2kak2Id.
Smoothed analysis is meant to interpolate between
worst-case analysis (obtained when � D 0) and
average-case analysis (which is approximated when �
is large). Moreover, experience shows that it is quite ro-
bust in the sense that a different choice of measure for
the random perturbation yields similar results (see [4]
for examples of this feature).

Upper and Lower Bounds
The analyses above provide yardsticks for the perfor-
mance of an algorithm A which solves a problem
'. Using the same yardstick for different algorithms
allows one to compare these algorithms (with respect
to their computational cost). A related, but different,
concern would consider not a few algorithms at hand
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but the set of all possible algorithms solving '. The
relevant question is now, which is the smallest cost
(with respect to one of our yardsticks) necessary to
solve '?

The analysis of a particular algorithm for ' provides
an upper bound on this cost. A milder form of our
question is to provide lower bounds as well. The
study of these lower bounds relies on various types
of techniques (and is mostly done for the worst-case
setting). This study is often a frustrating experience
because the gap between provable upper and lower
bounds is exponential. The main reference for lower
bounds .IK D IR/ is [3].

Complexity Classes
An idea that gathered strength since the early 1970s
was to cluster problems with similar cost so that
advances in the study of one of them could lead
to advances in the study of others. We next briefly
describe the best known example of this idea.

We restrict attention to decisional problems, that is,
to problems of the form ' W IK1 ! f0; 1g. We say
that such a problem is decidable in polynomial time
– or that it is in the class PIK – when there exists an
algorithm A solving ' such that gAworst.n/ D nO.1/. We
say that it is decidable in nondeterministic polynomial
time – or that it is in the class NPIK – when there exists
a problem  W IK1 � IK1 ! f0; 1g and an algorithm
A solving  such that:
1. For all a 2 IK1, '.a/ D 1 iff there exists b 2 IK1

such that  .a; b/ D 1.
2. gAworst.n/ D nO.1/.
The class PIK is seen as the class of tractable (in
the sense of efficiently solvable) problems. Obviously,
one has PIK � NPIK, but the converse is unknown.
It is known that problems in NPIK can be solved
in exponential time (i.e., that for some algorithm A
solving them, one has gAworst.n/ D 2O.n/). In order
to decide whether this upper bound can be lowered
to polynomial (i.e., whether PIK D NPIK), a strategy
was to identify a subclass of NPIK, the class of NPIK-
complete problems, that has the property that any such
problem is in PIK iff PIK D NPIK. This allows to
focus the efforts for deciding the truth or falsity of
this equality in the study of lower bounds for a single
problem (any NPIK-complete).

For IK D f0; 1g, the number of problems that
have been established to be NP-complete is very large.
The book [5], despite its age, is an excellent text on

NP-completeness in discrete computations. A recent
textbook in (discrete) complexity is [1].

In the case IK D IR, the standard NPIR-complete
problem consists of deciding whether a polynomial of
degree 4 (in several variables) with real coefficients has
a real zero. A reference for complexity over the reals
is [2].

Deciding whether PIK D NPIK is a major open
problem. It is widely believed that this equality is
false both for IK D f0; 1g and IK D IR (but should
equality hold, the consequences would be enormous).
For IK D f0; 1g, the P vs. NP question is one of
the seven Millennium Prize Problems stated by the
Clay Institute in year 2000. This question is also in
the list of problems proposed by Steve Smale for the
mathematicians of the twenty-first century [6] where
the extension to a more general IK is also mentioned.
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Synonyms

Computational dynamics; Numerical analysis of
dynamical systems

Short Definition

Computational dynamics is concerned with numerical
techniques that are designed to compute dynamically
relevant objects, their stability, and their bifurcations.

Description

In this entry, some of the numerical approaches for
studying the dynamics of deterministic nonlinear dy-
namical systems will be reviewed. The focus will be
on systems with continuous time and not on discrete
dynamical systems generated by iterating nonlinear
maps. Thus, let

Pu D f .u; �/; .u; �/ 2 X � R
m; t > 0 (1)

represent a system of ordinary, partial, or delay
differential equations posed on a finite- or infinite-
dimensional space X , where � denotes additional
system parameters. We assume that (1) has a
solution u.t/ for given initial conditions u.0/ D u0
and are interested in identifying and computing
dynamical objects and structures of (1) by numerical
means.

Common tasks are to find equilibria (stationary,
time-independent solutions) or periodic solutions
of (1). Once an equilibrium or a periodic orbit has been
found for a specific value of the parameter�, it is often
of interest to continue the solution to other parameter
values, assess its stability, and identify the bifurcations
it might undergo as � is changed. Other typical tasks
include the computations of more general invariant
sets such as invariant tori, connecting orbits between
equilibria or periodic orbits, invariant manifolds,
and attractors. For instance, near an equilibrium,
one might be interested in computing center, stable,
and unstable manifolds, either globally or as Taylor
expansions, or in determining the normal form of
the vector field numerically or symbolically. Often it
may also be of interest to probe for chaotic dynamics,

for instance, through the computation of Lyapunov
exponents.

To accomplish these tasks, robust and reliable, yet
fast, algorithms are desired. Ideally, these algorithms
should have a theoretical foundation, including theo-
retical error estimates for the difference between the
actual and computed objects. It is also often desirable
that these algorithms, or appropriate variants of them,
respect or exploit additional structure present in (1), for
example, symmetries and time reversibility, conserved
quantities, symplectic structures such as those afforded
by Hamiltonian systems, or multiple time scales. In
certain circumstances, verified numerical computations
might be feasible that provide a proof that the com-
puted objects indeed exist.

In the remainder of this entry, different computa-
tional approaches will be reviewed. The statements
below should not be interpreted as theorems but rather
as results valid under additional assumptions that can
be found in the listed references.

Direct Numerical Simulations (DNS)
The traditional tool for exploring the dynamics of a
differential equation comprises numerical initial value
problem (IVP) solvers. In their simplest form, namely,
as one-step methods, an IVP solver depends on a
chosen small time step h and associates to each initial
condition u0 an approximation ‰h.u0/ of the solution
u.h/ at time h. We say that an IVP solver has order
p � 1 if there is a constant C0 > 0 such that

ju.h/�‰h.u0/j � C0h
pC1 8 0 < h 	 1:

The explicit Euler method, given by ‰h.u/ WD u C
hf .u; �/, is an example of an IVP solver of order 1.
Given a one-step method ‰h of order p, there is, for
each fixed T > 0, a constant C.T / such that

ju.nh/ �‰n
h.u0/j � C.T /hp 8 0 � n � T

h
;

8 0 < h 	 1

for integers n, so that iterates of the nonlinear map
‰h approximate the solution well over each finite
time interval Œ0; T 	. However, to explore the dynamics
of (1), we are interested in letting T go to infinity, and
the error estimate above is then no longer useful as
C.T / may increase without bound. Under appropriate



264 Computational Dynamics

assumptions on‰h, it can be shown that‰h is the time-
h map of the modified system

Pu D f .u; �/C hpg.u; �; h; t=h/ (2)

for an appropriate function g D g.u; �; h; �/ that
is 1-periodic in � , so that (2) corresponds to adding
a small highly oscillatory perturbation to (1); hence,
solving (1) numerically with the IVP solver means
following the exact solution of the nonautonomous
system (2) for the same initial data. In particular,
asymptotically stable equilibria and periodic orbits
of (1) persist as slightly perturbed asymptotically stable
fixed points and invariant circles, respectively, of the
numerical solver ‰h [8, Sect. 6]. In contrast, a non-
degenerate homoclinic orbit of (1) will typically be-
come a transverse homoclinic orbit of (2), with the
associated complicated chaotic dynamics, although the
chaotic region is exponentially small in the step size h
[8, Sect. 6].

Direct numerical simulations are also useful when
probing for chaotic dynamics, despite the associated
rapid separation of nearby trajectories. If (1) has a
chaotic invariant set that possesses a hyperbolic struc-
ture, then it also has the shadowing property: for
sufficiently small step sizes h, any numerical trajectory
near the hyperbolic chaotic set will lie within order hp

of a genuine trajectory of (1) but for a possibly different
initial condition, and long-term computations faithfully
represent the underlying chaotic dynamics [8, Sect. 7].
To quantify exponential separation of trajectories and
the dimensionality of the underlying dynamics, Lya-
punov exponents are often computed simultaneously
with the trajectory [4].

To apply these ideas to partial differential equations
(PDEs), one would first discretize the PDE in space;
if the underlying domain is unbounded, it would need
to be replaced by a bounded domain together with
appropriate boundary conditions, which could affect
the dynamics, for instance, of traveling waves (see [13,
Sect. 10] and [8, Sect. 18]). The resulting large system
of ordinary differential equations (ODEs) is usually
stiff and requires IVP solvers that can handle multiple
time scales [2]. If the underlying ODE or PDE has
conserved quantities or respects a symplectic structure,
then the results mentioned above do not apply because
none of the objects of interest can be asymptotically
stable; for such systems, care has to be taken to use
solvers such as geometric integrators, which respect

the underlying structure to get meaningful results over
longer time intervals [10].

The main advantages of using direct numerical
simulations to explore the dynamics are that accurate,
reliable, and fast solvers are readily available for a wide
range of problems and that all stable structures can,
in principle, be found in this fashion. On the other
hand, a systematic study of parameter space can be
expensive as the underlying system has to be integrated
for a long time for each parameter value to ensure
that the limiting solution has been reached; another
disadvantage is that this approach finds only stable
solutions and cannot be used to trace out complete
bifurcation diagrams.

Continuation Methods
Finding equilibria u of (1) means solving f .u; �/ D 0

for u. If a sufficiently accurate guess u0 for an equilib-
rium u� at � D �� is known, then we can efficiently
calculate u� with Newton’s method by computing the
iterates

unC1 WD un � fu.un; ��/�1f .un; ��/; n � 0;

since un will converge to u� quadratically in n as n
approaches infinity. More generally, if � 2 R, then the
set f.u; �/ 2 X �R W f .u; �/ D 0g of equilibria of (1)
will typically consist of curves .u�; ��/.s/, which can
be computed efficiently by using continuation or path-
following methods that are based on Newton’s method.
It is useful to write U D .u; �/ and seek solutions of
F.U / D 0 for a smooth function F W RNC1 ! R

N .
The solution set fU W F.U / D 0g will typically
consist of curves, which can be traced out as follows
(see [8, Sect. 4] or [13, Sect. 1]). Starting with a given
solution U0 of F.U0/ D 0, find a vector V0 with jV0j D
1 such that FU .U0/V0 D 0, which exists because
FU .U0/ maps R

NC1 into R
N . Next, choose a small

step size h > 0 and apply Newton’s method to the map
U 7! .F.U /; hU �U0; V0i�h/ with initial guess U0C
hV0; see Fig. 1. Applied to the vector field f .u; �/, the
continuation method will yield a curve .u�; ��/.s/ of
equilibria of (1), regardless of whether these equilibria
are dynamically stable or not. This algorithm will also
continue effortlessly around saddle-node bifurcations
where the solution branch folds back. If the eigenvalues
of the linearization fu.u�.s/; ��.s// along the curve of
equilibria are monitored, then bifurcation points can
be detected at which two curves of equilibria collide
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Fig. 1 A schematic
illustration of continuation
and path-following methods

U0

U1

U∗(s) {U :  U − U0, V0  = h}

or small-amplitude periodic orbits may emerge. At
each bifurcation, one can then attempt to switch onto
another solution branch [8, Sect. 4].

Periodic orbits can be computed similarly: finding
a nontrivial periodic solution u�.t/ of Pu D f .u/ with
period T� is equivalent to seeking a zero .v; T / of the
function

F W C1.Œ0; 1	;Rn/ � R ! C0.Œ0; 1	;Rn/ � R
n � R

.v; T / 7! (3)
�

Pv � Tf .v/; v.1/ � v.0/;
Z 1

0

h Pv0.s/; v0.s/�v.s/i ds

�
;

where v0.s/ WD u0.sT0/ is computed from an initial
guess .u0; T0/ for .u�; T�/. The first two components of
F ensure that u.t/ D v.t=T / is a T -periodic solution
of Pu D f .u/. Since any time-shift of a periodic solution
is again a periodic solution, the integral condition
in the third component selects a specific time-shift
and makes the solution unique; see [8, Sect. 4] or
[13, Sect. 11]. Discretizing the boundary-value prob-
lem (3) and applying Newton’s method allows for the
accurate location of periodic orbits, whether stable
or not. Similarly, if f depends on a one-dimensional
parameter �, then periodic orbits and their periods can
be continued in � and bifurcations identified by simul-
taneously computing their Floquet exponents. Similar
algorithms exist for locating and continuing connect-
ing orbits between equilibria or periodic orbits [8,
Sect. 4].

Continuation methods can also be used to trace
out the locations of saddle-node, Hopf, and other
bifurcations of equilibria or periodic orbits in systems
with two or more parameters; this is achieved
by adding defining equations that characterize
these bifurcations to the system that describes
equilibria or periodic orbits; see [8, Sect. 4] or
[9]. Algorithms have also been developed for
multiparameter continuation, that is, for tracing out

higher-dimensional surfaces of zeros of functions [13,
Sect. 3].

Computing Invariant Manifolds and Sets
Direct numerical simulations and continuation
methods focus on single trajectories. Often, one is
interested in computing larger invariant sets such as
stable or unstable manifolds or the global attractor of a
dynamical system.

Arguably, the most versatile algorithms for comput-
ing such objects are based on set-oriented methods.
Suppose that ˆ is the time-T map of the differential
equation (1) for a fixed parameter value. Given an
open bounded set Q � X , we wish to compute
the maximal attractor A contained in Q, which is
defined as the intersection A D T

k�0 ˆk.Q/ of
all forward iterates of Q under ˆ. Subdivision algo-
rithms can then be used to approximate A numer-
ically. Starting with a collection B0 of sets whose
union is Q, we proceed recursively: given a collection
Bk�1 of subsets of Q, subdivide each element of
Bk�1 into smaller sets to obtain a new collection QBk ;
next, define a new collection Bk by picking those
subsets B of QBk for which there is a QB in QBk such
that ˆ.B/ \ QB ¤ ;. If the diameter of the ele-
ments in Bk converges to zero, then the union of
the elements in Bk converges to the attractor A in
Q [8, Sect. 5]. Numerically, the condition ˆ.B/ \
QB ¤ ; is checked on a finite set of test points in
B; several algorithms and theoretical error analyses
are available for guidance on how to pick these test
points. Subdivision algorithms can also be used to
compute unstable manifolds and invariant measures
[8, Sect. 5].

Various other methods for computing unstable or
stable manifolds exist that are based on computing
geodesic circles, continuing a set of orbits as solutions
to boundary-value problems, or continuing and refining
triangulations or meshes [12].
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Rigorous or Verified Computations
Starting with Lanford’s investigation of universality
in period-doubling cascades and Tucker’s proof of
chaos in the Lorenz equations, various methods
have emerged for rigorous or verified dynamics
computations [14]. Some of these approaches rely
on interval arithmetic, which guarantees error
bounds on floating-point operations; others use
topological methods that can be computed robustly,
such as Conley indices, and yet others use a
combination of rigorous estimates and numerical
computations.

Software
There is a wealth of initial value problem solvers
available in various depositories or as part of
commercial packages such as MATLAB. The focus here
will be on toolboxes that are designed especially for
computational dynamics. AUTO07P [5] is a package
that implements continuation methods for algebraic
and boundary-value problems. Among other features,
AUTO07P accurately locates and continues equilibria,
periodic orbits, and connecting orbits; determines their
stability; locates and continues their bifurcations; and
implements branch-switching routines. XPPAUT [7]
provides a graphical interface to a suite of IVP solvers
that can be used to solve ODEs and delay differential
equations; it also provides a user interface to some of
AUTO07P’s capabilities. DDE-BIFTOOL [6] is a con-
tinuation code for delay differential equations. TRILI-
NOS [11] provides a suite of continuation methods for
large-scale systems through its packages LOCA and
PARACONT. Set-oriented subdivision algorithms have
been implemented in GAIO [3]. Other computational-
dynamics toolboxes are reviewed in [13, Sect. 2],
and additional continuation codes are listed in [9].
Symbolic software packages such as MAPLE or
MATHEMATICA can be used to implement algorithms
for calculating normal forms near equilibria [1].
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Theoretical mechanics is the study of the motion of
bodies under the action of forces. Thus, it embodies
a vast area of mathematical physics and chemistry, as
well as all of classical mechanics, including elements
of quantum mechanics, molecular dynamics, celestial
mechanics, and the theories underlying solid mechan-
ics, fluid mechanics, and much of materials science.
Computational mechanics is the discipline concerned
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with the use of computational methods and devices to
study theoretical mechanics and to apply it to problems
of interest in engineering and applied sciences. It is
one of the most successful branches of computational
science and has been instrumental in enriching our
understanding of countless physical phenomena and in
the study and design of untold thousands of engineer-
ing systems. It has affected virtually every aspect of
human existence in the industrialized world and stands
as one of the most important areas of both engineering
science and science itself.

Although it is not always the case, the term com-
putational mechanics generally brings to mind the use
of mathematical models involving partial differential
equations. There are many exceptions to this rule,
such as modern computational models of molecular
and electronic systems, chemical reactions, and models
of types of biological systems. Because of the more
common use of the term, we shall limit this account of
computational mechanics to the study of models pri-
marily characterized by partial differential equations.
Other types of models within this broad discipline
are dealt with elsewhere in this volume. In particular,
most of the subjects we target fall within the gen-
eral area of computational fluid mechanics, computa-
tional solid mechanics, and computational electromag-
netics characterized by continuum-phenomenological
models.

It is appropriate to comment on the strong
connection between modern and classical mathematics
and mathematical physics and the subject of theoretical
mechanics and computational mechanics. The
structure of the theory of partial differential equations
is basically partitioned into areas motivated by long-
accepted models of physical phenomena. The notion
of the propagation of waves and signals cannot be
understood without knowledge of the properties of
hyperbolic systems and hyperbolic partial differential
equations. The concept of diffusion, while prominent
in the area of mechanics, thermodynamics, and
molecular science, is intrinsically related to properties
of parabolic equations, which dominate the literature
in heat transfer and heat conduction. The study
of the equilibrium of deformable bodies is deeply
rooted in the theory of elliptic partial differential
equations. Even the notion of signals, frequencies,
and equilibrium states corresponding to energy levels
cannot be appreciated without an understanding of
the properties of eigenvalue problems for Hermitian

operators. Thus, computational mechanics and the
mathematical foundations of partial differential
equations are intrinsically interwoven into a fabric
that has made the subject not only challenging
but intellectually rich and enormously useful and
important.

The complete history of computational mechanics
is difficult to trace. Certainly, the numerical algorithms
developed by Newton himself which were applied to
study dynamical events qualify as one of the earliest
examples of computational mechanics, and some also
give credit to Leibniz for discretizing the domain
of solutions to ordinary differential equations in his
study of the brachistochrone problem. In the 1930s
and 1940s, the work of Sir Richard Southwell on
the use of manually operated calculators to obtain
solutions of finite-difference approximations of the
equations of elasticity or potential flow certainty qual-
ifies as a landmark in computational mechanics. But
what we think of as computational mechanics today is
widely associated with the use of digital computers to
solve problems in mechanics. Here the work of John
von Neumann and his colleagues in the 1940s on nu-
merical solutions of problems in fluid mechanics was
perhaps the beginning of computational fluid dynamics
and was launched on versions of the earlier digital
computers, which he also helped design. Certainly,
one of the greatest events in the history of compu-
tational mechanics was the development of the finite
element method. The first complete formulation of the
method, together with significant applications solved
on digital computers, appeared in a paper by John
Turner, Ray Clough, Harold Martin, and L. J. Topp
in 1956, although several of the underlying ideas were
mentioned in the appendix of a 1940 paper by Richard
Courant and many of the algorithms of implementation
were described in work of John Argyris in the early
1950s. The explosion of literature on computational
mechanics began in the mid-1960s, as the speed and
capacity of computers reached a level at which im-
portant applications in science and engineering could
be addressed. The mathematical foundations of the
subject followed the development of numerical math-
ematics, involving mainly work on algorithms, until
the mid-1960s and early 1970s, when the subject was
broadened to encompass areas of approximation theory
and the theory of partial differential equations. The era
of the development of the mathematical foundations
of computational mechanics began in the late 1960s
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and early 1970s and continues today. Its boundaries
have expanded to new and challenging areas, includ-
ing stochastic systems, optimization, inverse analysis,
and applications in chemistry, quantum physics, biol-
ogy, and materials science. As the speed and capacity
of high-performance computers continue to increase
and as new algorithms and methods emerge, com-
putational mechanics continues to be an indispensi-
ble discipline within applied science and engineering
and an area rich in challenges in computational and
applied mathematics and computational science and
engineering.

Most of the subfields of computational mechanics
are based on various discrete approximations of the
conservation and balance laws governing thermome-
chanical and electromagnetic phenomena in material
bodies. For instance, if the motion of a body B carries
it from a reference configuration identified with a fixed
region ˝0 � <3 into a current configuration˝t � <3

at time t , then classical continuum mechanics describes
this via an invertible, orientation-preserving map ' W
˝0 ! ˝ that takes material particle positions x
in ˝0 into spatial position '.x; t/. The principle of
conservation of mass for such a continuum can be
written in either the spatial formulation,

d

dt

Z
˝t

� dx D 0;

or the material formulation,

Z
˝0

�0 dX D
Z
˝t

� dx;

where � is the mass density of point x and time t and
dx, dX are volume elements in ˝t and ˝0; �0 being
the density at time t D 0 in the reference configuration.
The spatial formulation, also referred to as the Eulerian
formulation, leads to the local condition:

@�

@t
C grad � .� v/ D 0;

while the material description, also known as the La-
grangian formulation, leads to the local condition:

�0.x/ D � det F:

Here v D @x=@t is the velocity field, grad denotes
the spatial gradient, and F is the deformation gradient

tensor, F D GRAD ', GRAD being the gradient with
respect to material coordinates.

To these equations, we can add the balance laws of
linear and angular momentum:
Spatial:

�
@v
@ t

C �v � grad v � div T D �b ; T D TTI

Material:

�0
@2 u
@ t2

� DIVF S D �0b0 ; S D ST;

where T is the Cauchy stress tensor, b (and b0) the
body for per unit mass, u the displacement field, and
S the second Piola-Kirchhoff stress tensor. The system
is completed by adding the principle of conservation
of energy and the second law of thermodynamics (the
Clausius-Duhem inequality).

In the chapters that follow, we address several areas
that fall under the use of the spatial equations of motion
to simulate the flow of fluids: Compressible Flows,
Stokes or Navier-Stokes flows, Particulate Flows, and
Dry Particulate Flows. In general, these computational
model classes involve hyperbolic partial differential
equations, and the study of such models is taken up
in chapters: Error Estimates for Linear Hyperbolic
Equations with Random Data and Error Estimates
for Linear Hyperbolic Equations. Computer models
derived from the material form of the balance of
momentum are taken up in our chapters: Linear Elas-
tostatics, Elastodynamics, Composite Materials and
Homogenization, and Structural Dynamics.

By modeling electromechanical events, we add
additional conservation and balance laws: Gauss’s
law of conservation of charge, Faraday’s law, and
the Ampere-Maxwell law of magnetic fields. These
topics are addressed in Electromagnetics-Maxwell’s
Equations.

All of these conservation laws and their correspond-
ing local forms appear as systems of coupled partial
differential equations governing the thermomechanical
behavior and the electromagnetic fields in material
bodies. The systems are not “closed”: there are more
unknowns than there are equations to provide by the
various physical axioms just reviewed. Moreover, the
conservation laws, in principle, apply to every conceiv-
able material, to liquids, gases, and solids. So missing
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in the models are the constitutive equations, which
characterize the medium under study and which, in
general, close the system. These equations define the
principal differences between various fields of mechan-
ics. Other differentiations lie in constraints put on the
solutions of the governing equations, such as those
which reduce the general theories to simplified models,
as, for example, in developing the theories of structural
mechanics or Stokesian flows, addressed here in Stokes
or Navier-Stokes Flows. The challenging applications
in contemporary computational mechanics do not nec-
essarily fit into any classical mechanics framework. No
better examples can be cited than in modern biomed-
ical applications. We include an introduction to one
component in this area in Medical Applications in
Bone Remodeling, Wound Healing, Tumor Growth, and
Cardiovascular Systems.

We observe that the physical axioms underlying
continuum mechanics are stated as global laws. For
instance, the principle of conservation of mass applied
to a fluid occupying a domain˝t at time t leads to the
global condition,

Z
˝t

�
@�

@t
C grad � .v �/

	
dx D 0;

This condition, and the other axioms as well, makes
sense only if the functions appearing in the integrands
are integrable in some well-defined sense. So if˝t and
its class of Borel subsets are equipped with a Lebesgue
measure, the conservation law makes sense if f.�; v/ D
.@t� C grad � .v �// is an L1.˝t/ function. Thus, we
are naturally led to view the conservation laws, and the
complementary constitutive equations, as conditions
on functions and their derivatives that are members of
specific function spaces. Regularity of functions in a
function-space setting is thus a natural consideration
in interpreting the foundational equations of contin-
uum mechanics and electromagnetics. If f.�; v/ is in
Lp.˝t/; 1 � p � 1, for instance, then one can
also state the conservation law as the orthogonality
condition,

Z
˝t

�
@�

@t
C grad � .v �/

�
v dx D 0 8 v 2 Lq .˝t /;

1=pC 1=q D 1:

This is an example of a general “weak” statement of the
problem, which can be put into an abstract framework
suitable for virtually all problems in computational
mechanics.

There are many variants of these methods, and an
enormous literature exists on them. So as a general
rule (although there exist notable exceptions to this),
the various methods used in computational mechanics
differ in how the function spaces underlying the for-
mulation of the problem are approximated. A typical
setting is as follows: one wishes to find a function u in
a space U of trial functions such that

B.uI v/ D F .v/ 8 v 2 V; (1)

where B.� ; �/ is a semilinear form from U � V into <
(or C) and linear in v but possibly nonlinear in u, V
is a suitable space of test functions, and F is a linear
functional on V . In the cases in which U and V are
Banach spaces, which is often the case, B.� ; �/ defines
an operator A from U into the topological dual V 0 of
V , i.e.,

B.uI v/ D hAu; vi ; F .v/ D hF; vi ; (2)

where h�; �i denotes duality pairing on V 0�V . Thus, (1)
is equivalent to the abstract problem:

Find u 2 U such that Au D F inV 0: (3)

Most computational models used in computational
mechanics involve developing sequences of finite-
dimensional subspaces fU ngn�1; fV ngn�1 of the trial
and test spaces U and V , respectively. The discrete
approximations of (1) are then of the form

Find un 2U n such thatB .unI vn/ D F .vn/ 8 vn 2Vn:

(4)

Thus, if f'n
kgn
�D1 and f�n

kgn
kD1 are bases for U n

and V n; the members of these spaces are linear
combinations,

un D
nX

kD1
˛k '

n
k and vn D

nX
kD1

ˇk�
n
k;
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and the discrete problem corresponding to (4) is to find
the ˛k such that

B

 X
k

˛k '
n
k I �n

l

!
D F.�n

l /; 1 � l � n: (5)

Thus, the various methods for the numerical solution
of PDEs generally differ with regard to how the basis
functions 'kn and �kn are constructed.

Successful approximation methods generally
attempt to construct the approximation spaces U n

and V n so that as n ! 1; they fill up to the correct
spaces U and V :

1[
nD1

U n D U I
1[

nD1
V n D V: (6)

Of major importance is the construction of schemes
which fulfill (6) efficiently; i.e., for any u 2 U; v 2 V;
sequences fung 2 U n; fvng 2 V n exist such that
jj u � unjjU ! O and jj v � vnjjV ! O as n ! 1:

We take up detailed discussions of error estimation
and convergence in our chapters: A Posteriori Error
Estimates of Linear Functionals: Quantities of Interest,
Discontinuous Galerkin Methods, Error Estimates for
Linear Hyperbolic Equations, Global Estimates for hp
Methods, and Methods for Elliptic SPDE’s (Stochas-
tic Partial Differential Equations). A great deal of
work has been done on building ingenious methods
for constructing various basis functions, particularly
in the chapters: Discontinuous Galerkin Methods and
Meshless and Mesh Free Methods.

Some argue that not all methods for the numerical
solutions of PDEs are based on developing approxima-
tions of appropriate trial and test spaces. For example,
methods such as the mimetic finite-difference methods
are said to focus on approximating the governing oper-
ator A in (3) rather than the domain or codomain of A.
But even in these methods, the notions of accuracy and
convergence are often studied by relating difference
stencils to various types of finite elements.

In typical settings of mathematical models
characterized by partial differential equations in
computational solid and fluid mechanics and in
electromagnetics and acoustics, the spaces U and
V are Sobolev, Orlicz, or Besov spaces of functions
defined on open domains ˝ � <n or space-time

domains D D ˝ � .0, T/: For a large class of elliptic
problems, the canonical example is

U D V D Wm; p.˝/I m � 0 ; 1 � p � 1;

where Wm, p.˝/ is the Sobolev space of functions
with generalized derivatives of order � m in
L� .˝/: For time-dependent problems, spaces such
as Lp1 .Wm1p2 .˝/, .0; T// are encountered. In many
applications, the spaces H.curl;˝/ and H.div;˝/
are also encountered. The sequences of spaces U n ; V n

are generated by partitioning˝ (orD) into a sequence
of subdomains and thereby defining a sequence of
meshes on which approximations of functions in U
and V are defined. If ˝ D S

k

˝k ;˝i \ ˝k D ¿

for i ¤ k; and hk D dia .˝k/; it is customary to
use as a parameter the maximum cell (element) size,
h D maxk .hk/: Then we can denote by Uh and V h

sequences of new subspaces.
In attempting to cover the huge subject of applied

and computational mathematics relevant to computa-
tional mechanics, we must cope with the issue that
many different numerical approaches and different
modeling techniques are applicable to each applica-
tion area of computational mechanics. Thus, for ex-
ample, finite element, finite volume, finite difference,
boundary integral, fast multipole, spectral, collocation,
Mesh and Mesh Free Methods, Discontinuous Galerkin
Methods, and many more are applicable for the numer-
ical solution of problems in Linear Elastostatics, shell
theory, fluid dynamics, etc. Thus, our approach will
often be to demonstrate various discretization methods
on a few model problems and to then describe specific
formulations of typical applications that spell out par-
ticular modeling issues and complications relevant to
that application.

While great strides have been made in establish-
ing computational mechanics as a fundamental area
of applied and computational mathematics since its
beginning decades ago, many challenges remain – in
further developing its mathematics underpinnings; in
daunting applications to complex physical systems,
biology, and medicine; and in new algorithms that will
enable modeling to be done using contemporary high-
performance computers. It is hoped that the introduc-
tory accounts of the subject’s principal components
given in this encyclopedia will provide a useful entry
point for these future developments.
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Partial differential equations (PDEs) have been im-
mensely successful as a tool for modeling processes
in science and engineering. Such processes tend to
be extremely complicated and must therefore often be
studied in terms of idealized theoretical models. PDEs
constitute a particularly powerful tool when it comes to
expressing the laws of nature in precise mathematical
form suitable for theoretical investigations. Fundamen-
tal physical laws like balance of mass, momentum, and
energy can be described in a completely precise man-
ner using PDEs. Also more phenomenological models
are often conveniently expressed through PDEs.

Modeling Is a Fruitful Approach to Science
and Engineering

A partial differential equation provides a compact
description of a scientific or engineering phenomenon
and thus allows the phenomenon to be studied in
terms of the properties of the solution of the equation.
This offers, of course, an amazing simplification: we
can formulate equations modeling processes inside the
earth where no one has been, or we can create models
of processes in the human body where experiments
are both practically and ethically impossible, or we
can study the formation of black holes – all examples
where insight through physical experiments is impos-
sible. Analysis through the understanding of a model
rather than an understanding of the physical process
directly has therefore evolved to be an indispensable
approach to many fields of science and engineering.
Nevertheless, the power of PDEs as a tool for describ-
ing nature comes at a considerable cost: PDEs tend to

be extremely hard to solve. Historically, the difficulties
in solving PDEs have been a strong limiting factor
for utilizing theoretical models of nature, but with
modern computerized solution techniques, we are able
to overcome the difficulties and take great advantage of
modeling via PDEs.

MoreModel ComplexityMeans Less
Solvability

Traditionally, PDEs were solved using paper and pencil
to do tedious and delicate derivations of analytical
solutions of the equations. Only the very simplest
models could be solved analytically, and therefore, it
used to be extremely important to derive models with
minimal complexity so that analytical tools could be
applied. In fact, only idealized models on idealized
geometries can, in general, be solved in terms of a
closed formula or approximated to relevant degree of
accuracy by series expansions. As a rule of thumb,
solvability is the exception and insolvability (by ana-
lytical means) is the rule. There are other techniques as
well to achieve insight in the problem without finding
the solution itself, but instead derive properties of the
solution. Basically, the degree of realism in a model
increases the complexity of the model, and the amount
of insight and understanding we can deduce from a
model decrease as the model gets more complicated.
This makes a strong case for addressing PDE models
in science and engineering using numerical methods.

PDEs Are Approximated by Discrete
Algebraic Equations

PDEs involve solutions with values at infinitely many
points inside a spatial or spatiotemporal domain. A
computer is ideally suited to handle discrete and finite
quantities like vectors and matrices and less well suited
for handling continuous mathematical objects although
great progress has been made in symbolic computer
algebra. The principal idea of most numerical methods
for PDEs is to turn the continuous mathematical PDE
problem, with infinitely many degrees of freedom, into
a finite-size system of algebraic equations, since these
are readily solved on a computer. Linear PDEs are
turned into linear systems, at each time level, which
can be solved right away, while nonlinear PDEs usually
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result in systems of nonlinear algebraic equations,
which require some technique, like Newton’s method,
for solving nonlinear systems as a (hopefully conver-
gent) sequence of linear systems.

Finite Difference Methods
Numerical methods for PDEs employ a discretization
method to turn the domain and/or the solution into a
mathematical object with a finite number of unknown
parameters. There is a multitude of ways to do the
discretization. The conceptually simplest approach is
the finite difference method, which essentially replaces
the continuous domain by a finite number of points
and approximates derivatives by finite differences. The
points are arranged in a very structured way, most often
as a mesh built of equal-sized intervals, rectangles, or
boxes. Requiring the PDE to be valid at each mesh
point gives a finite set of equations, and when deriva-
tives are approximated by finite differences, a system
of difference equations arises. For each time level,
these algebraic equations may be coupled, as a linear or
nonlinear system, or they may be solved individually.
The former case is known as implicit methods and the
latter as explicit methods. Implicit methods are always
harder to implement.

Solving PDEs was a major motivation for the initial
developments of the computer and was a driving force
for subsequent hardware developments over a period
of at least 50 years. Still, PDE solvers constitute key
benchmarks for compute power [1].

The finite difference method is not only a simple
strategy to compute the solution of PDEs, but it also
represents a powerful tool for analyzing properties of
the solution of a PDE. The popularity of this method
stems from both the ease of understanding and of
implementing the method. The finite difference method
has, however, some serious restrictions, especially with
respect to the geometry of the domain, as the complex-
ity of constructing finite differences increases consid-
erably if the boundary of the domain is curved. Many
techniques have been developed to overcome this prob-
lem (boundary-fitted coordinates being a popular one),
but for complicated domains, it is normally easier to
formulate and implement the finite element or the finite
volume method.

Finite Element Methods
To apply the finite element method, the PDE problem
must first be expressed as an equivalent variational

problem. The spatial domain is approximated by a
mesh consisting of a set of cells, typically triangles
or quadrilaterals in 2D and tetrahedra or deformed
boxes in 3D. A set of (say) triangles can easily ap-
proximate domains with complex-shaped boundaries.
The spatial variation of the solution is most often
assumed to be a simple polynomial over each element.
The finite element method essentially glues the poly-
nomial pieces together, usually in a way that makes
the solution continuous throughout the spatial domain.
For time-dependent PDEs, one normally applies the
finite element method in space and a finite difference
method (or ODE solver) in time, but a one-dimensional
finite element method for the time domain can also be
formulated. As in the finite difference method, the PDE
is turned into a system of algebraic equations where
the unknowns typically are the values of the solution at
points in the mesh (called nodes). These points can, for
example, be the vertices of triangular cells.

Finite Volume Methods
The third major approach for solving PDEs is the finite
volume method. The domain is divided into cells as in
the finite element method. From these cells, volumes
are defined, either as the cells themselves or built of
pieces from neighboring cells. The PDE problem is
equivalently formulated as an integral equation applied
to each volume. Derivatives are approximated by finite
differences, and integrals by simple numerical approx-
imation rules. The finite number of integral equations
and the finite differences lead to a finite-size system
of algebraic equations, where the unknowns are either
point values or averages over a cell.

Similarities and Differences
For many simpler PDEs in simple domains, the finite
difference, element, and volume methods yield sim-
ilar (and sometimes equivalent) algebraic equations.
The finite difference method is clearly the simplest
to understand and implement, but the least general
method. The finite element method comes with a rigor-
ous mathematical framework and much mathematical
insight. This framework can solve and help to analyze
complicated PDEs in complex (spatial) domains. The
most attractive feature of the finite volume method is
that the integral equations over each volume usually
reflect the physics of the problem directly, such as
mass balance, Newton’s second law of motion, or
energy balance. Many prefer this method since it can
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be interpreted to implement the physics in a discrete
sense rather than just approximating a PDE by some
more abstract mathematical technique as in the case
of the finite element method. On the other hand, the
integral conditions will usually not fully specify a finite
volume method, and there is a close link to the so-
called mixed finite element methods [2]. In fact, most
theoretical investigations of finite volume methods
are based on their close similarities to mixed finite
elements, and there exist a number of methods which
belong somewhere between the three families, such as
mimetic finite difference methods [3] and multipoint
flux approximation schemes [4].

Discretization Error
The order of a discretization method measures how
much the error is reduced as we introduce more and
more mesh points. With mathematics, the error E
in the solution is assumed to have the form E D
C1h

p C C2�t
q , where h and �t are the characteristic

sizes of the distances between two spatial and temporal
mesh points, respectively, while C1, C2, p, and q are
constants depending on the discretization method and
the exact solution. The p and q parameters express the
order of the method in space and time. Finite volume
methods are for all practical purposes restricted to
low order, typically first and second order (p and q
being 1 or 2). Finite element methods make it easy to
construct high-order methods, while finite difference
approximations of derivatives get increasingly more
complicated with the order. The vast amount of PDE
computations are carried out with methods of first or
second order.

Convergence and Stability

From a theoretical point of view, a fundamental ques-
tion for a discretization method is whether or not it
generates convergent solutions. In other words, will
the discretization error, that is, the error between the
exact solution of the PDE problem and the computed
solution, tend to zero as the mesh is refined? If there
is no convergence, then the computed solution may
not reflect the properties of the physical phenomenon
we are modeling by the PDE, but merely the choices
of various discretization parameters, such as the spa-
tial mesh and the time step. Such computations are
of course more or less useless for a scientist or an

engineer who wants to gain insight in a physical
process. Therefore, convergence is in many ways the
most fundamental theoretical concept for discretization
methods of PDEs.

If one accepts that only convergent discretization
methods should be used in practical computations, then
a number of other issues arise. First of all, the validity
of this way of thinking assumes that the underlying
PDE problem has a unique solution. The problem of
existence and uniqueness of solutions of PDEs is a
well-understood mathematical problem for a few of the
simplest, and most fundamental, equations arising in
physics, but are unclear for most of the models used
in practical computations by scientists and engineers
today. So a key hidden assumption made in many
computational studies is that there is a unique solution
of the underlying PDE model. The more practical
engineering way to justify this assumption is to observe
that the computed solutions are not too much affected
by variations of the parameters of the discretizations.
But for complex problems, it may indeed be rather
challenging to justify that the hidden assumption is ver-
ified with “engineering accuracy.” In fact, in addition to
existence and uniqueness one also implicitly assumes
that the PDE problem is well posed in certain norm
or function class. For example, small perturbations in
initial or boundary data should lead to small perturba-
tions of the solution in a proper norm. Of course, the
concept of convergence of a discretization method is
also relative to a given norm, and most commonly, this
norm is the same as the norm of well posedness.

Most discretization procedures are derived from a
PDE problem by utilizing rather simple techniques,
like termination an infinite expansion after a few terms
(finite difference methods), or by replacing an infinite
dimensional function space by a finite dimensional
subspace (finite element methods). The concept of
consistency means that these elementary procedures,
going from infinite to finite, will converge under refine-
ment if they are applied to a given smooth function.
However, in a discretization method, the setting is
more complicated, since these finite procedures are
applied to an unknown function, the solution of the
PDE problem. In fact, in the first part of the preceding
century, a fundamental and unexpected discovery was
made: that a consistent discretization of a well-posed
PDE problem need not converge [5–7]. Actually, the
missing ingredients is stability of the discretization.
Stability refers to well posedness of the discretization,
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uniformly with respect to the discretization parameters.
In general, stability will not follow from consistency
of the method and well posedness of the PDE. On the
other hand, in certain settings, stability is equivalent to
convergence for consistent schemes [8, Chap. 3].

Even if a discretization procedure is constructed
by well-established principles, it may not be stable.
Therefore, in most practical computations, a stability
check is necessary, done either by theoretical argu-
ments or by computational tests. In fact, in the early
developments of finite difference methods, stability
criteria were a key topic and highlighted by the Kreiss
matrix theorem [9]. The construction of stable schemes
is also the main difficulty for the derivation of converg-
ing mixed finite element methods, where the stability
criteria are given by the Brezzi conditions [10]. In [11,
Sect. 1.1], there are simple examples of consistent,
but unstable, mixed methods where the effect of these
criteria is illustrated. On the other hand, it is a common
belief that discretization procedures constructed by
the standard approaches to finite differences or finite
elements will indeed be consistent. However, for more
complex problems, this might not be true. For example,
there are situations where a method may be consistent
for a PDE problem defined on one spatial domain, but
fails to be consistent and therefore will not converge,
on a more complicated domain [11, Sect. 2.3.2]. In fact,
in this example, the numerical solutions will converge,
but not to the correct solution of the PDE.

Reducing the Error Increases the
Computational Efforts

When the solution of a partial differential equation is
approximated by the solution of a system of algebraic
equations defined on a computational mesh, the ac-
curacy of the approximation depends critically on the
number of points in the mesh. A rough approximation
is achieved by using a coarse mesh, and a more accu-
rate approximation is obtained by refining the mesh.
The solution of the algebraic system gives point values
of the approximate solutions, and a solution for any
location can be computed using linear interpolation
between nodes.

For example, in a stationary problem on a rectan-
gular domain of N � N D n spatial mesh points, the
formula from the previous paragraph, E D C1h

p , will
then typically have a spatial discretization parameter

h D 1=N D n�1=2. The CPU efforts c in solving such
a problem is proportional to n if we use the very best
methods for solving linear systems. We therefore have
cp=2E D const. With first-order finite element basis
functions, or standard centered, second-order finite
difference or volume methods, p D 2, and the product
of the CPU efforts (c) and the level of accuracy (E)
is constant. Going to higher order in the approxima-
tion (increasing p) can make us reach a target error
with less CPU efforts. On the other hand, higher-
order methods tend to be harder to implement than
first-order methods, especially for finite difference and
finite volume discretizations, and the proportionality
constant c=n for forming and solving linear systems
increases with p. Although this reasoning is done for
a stationary PDE in two space dimensions, the main
conclusions are most often valid: decreasing the error
increases the CPU time, and higher-order methods can
help to reduce this increase in CPU time.

CPU Efforts Increases Linearly with n

Explicit methods have a simple updating formula in
time for the value of the unknowns at each mesh point,
implying that the computational cost is proportional
to the number of mesh points (n) per time level.
For implicit methods, where linear systems, coupling
unknowns at different spatial mesh points, must be
solved, the computational cost is proportional to n˛ ,
where ˛ depends on the method used to solve linear
systems. Naive Gaussian elimination has ˛ D 3, while
the very best methods have ˛ D 1, which is the optimal
value (as the time it takes to just store the solution is
proportional to n).

Linear systems arising from the finite difference,
element, and volume methods are typically sparse.
That is, most of the matrix entries are zero, sometimes
with a special structure of the nonzero elements. Direct
sparse methods, which are variants of Gaussian elimi-
nation taking advantage of the sparse matrix structure,
have in general larger ˛ values than iterative methods.
Therefore, iterative methods are popular as n grows
large since they are then more effective than direct
sparse methods.

The simplest iterative method to solve a linear
system of the form Ax D b is given by
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xkC1 D xk � ˛.Axk � b/: (1)

Here the n�nmatrix A, the coefficient matrix, and the
right-hand side b are known, and the n–vector x is the
unknown, while ˛ is a properly chosen real parameter.
The vectors fxkg are expected to converge to the
solution x as k grows. However, iterative methods have
the disadvantage that they may diverge or converge
very slowly as the problem gets more difficult to solve.
In fact, since differential operators are “unbounded
operators,” the corresponding discretizations will lead
to systems with coefficient matrices with an unbounded
spectrum as the mesh is refined, and, as a further
consequence, iterative methods will converge slowly
for fine meshes. The standard remedy to overcome this
problem is to construct proper preconditioners. More
precisely, the original system AxD b is replaced by
a system of the form BAxDBb, where the n � n

matrix B is referred to as the preconditioner. This
matrix should represent an operator which is easy to
evaluate, but at the same time, the spectral properties
of the new coefficient matrix, BA, should be improved
as compared to the original matrix A, leading to faster
convergence of iterative methods for the precondi-
tioned system.

Over the past 60 years, the problem of efficient
solution of system of algebraic equations derived from
discretizations of partial differential equations has been
under intense investigations, and the progress has been
tremendous. Actually, the algorithmic developments in
this period have increased the computational speed by
a factor that is about the same as the factor produced
by the hardware improvements in the same period. The
important result that the CPU efforts increase linearly
with the size of the system of equations was first
obtained by the geometric multigrid method applied
to elliptic systems (see, e.g., [12]) but can now also
be achieved by the algebraic multigrid method (see
[13]), and other multilevel techniques such as domain
decomposition [14]. All these methods can be seen as
examples where a combination of an iterative method
and a preconditioner is used. In particular, multigrid
methods utilize a sequence of meshes to construct the
preconditioner, while domain decomposition methods
use partitions of the spatial domain for the same pur-
pose. For many problems, more sophisticated iterative
methods than (1) will lead to improved behavior of the
iteration. If the coefficient matrix A is symmetric and
positive definite, then the conjugate gradient method

will, in theory, always converge, while variants of the
minimum residual method may be preferable for indef-
inite and/or nonsymmetric problems. For a review of
iterative methods and construction of preconditioners
for PDE problems, we refer to [15] and references
given there.

Meshes Adapted to the Solution Can
Reduce CPU Efforts

Accurate solutions of partial differential equation re-
quire a very fine mesh when the solution exhibits
complicated behavior. Often, the complexities of the
solution are localized in time and space, and therefore,
at least in principle, it seems reasonable to attempt to
locally refine the mesh wherever (space) and whenever
(time) it is necessary. For example, solutions display-
ing a significant boundary layer effect should have a
mesh that is refined in the vicinity of the boundary,
and solutions with step gradients should be solved on
a mesh that is refined where the gradients are steep,
and so forth. Such discretizations, which adapt the
mesh to the solution, have been developed over many
years and demonstrated to obtain high accuracy with a
limited number of grid points. Although great progress
is made, adaptive methods are still harder to deal with
from an implementational point of view, and these
methods are challenging to use in an optimal manner
in parallel computing.

Elliptic, Parabolic, and Hyperbolic:
stationary, infinite speed, and finite speed

Classical analysis of second-order PDEs usually clas-
sifies the equations into elliptic, parabolic, and hyper-
bolic problems. PDE models of interest in science and
engineering today can rarely be classified precisely
using this technique. However, the nature of elliptic,
parabolic, and hyperbolic problems is still useful if we
take the terms to mean problems where the solution is
independent of time (elliptic), problems where changes
are spread at infinite speed in space (parabolic), and
problems where changes are spread at finite speed in
space and time (hyperbolic). This more general classi-
fication is very important, because the construction of
discretization methods becomes considerably different
for these three classes of PDE problems.
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Some problems are also a mixture of the three
categories. For example, the celebrated Navier-Stokes
equations have nonlinear convection terms which at-
tempt to transport perturbations at finite speed; the
viscous diffusion terms spread perturbations at infinite
speed; and finally, if the equations are solved using a
pressure correction method, that part of the equation
is actually a Poisson problem, which is the primary
example of a stationary PDE. The system as a whole,
however, transports perturbations at infinite speed and
is therefore usually referred to as parabolic, as opposed
to the Euler equations (where the viscous diffusion
terms are neglected) whose solutions display finite
speed of propagation, and opposed to the Stokes prob-
lem (where acceleration terms are neglected), which is
stationary and can be referred to as an elliptic problem.

Complex Geometry

PDE problems are usually defined with respect to
a spatial domain, the physical domain, and a time
interval if the problem is time dependent. We have al-
ready mention in section “Convergence and Stability”
above that a given discretization method may converge
correctly for a PDE problem on one spatial domain,
but converge to the wrong solution on another domain.
Other methods may give fast convergence on some
domains, but slow convergence on others. In fact, it is
well known that properties of the spatial domain affect
the well posedness, and the regularity, of solutions of
PDE problems and that this again effects the behavior
of discrete schemes. For example, it is well known
from vector calculus that if a vector field u is a gradient
of a scalar field, then curl u D 0. Furthermore, on
some simple (i.e., contractable) domains, the opposite
is also true, that is, if curl u D 0, then u is a gradient
of a vector field. However, on more complex domains,
for example, domains with holes, this is well known
not to be true. This will have consequences for the
well posedness of certain PDE problems involving the
curl operator, for example, the Maxwell equations of
electromagnetics. In [11, Sect. 2.3.3], the reader can
find a simple example on how this property also has
consequences for the choice of discretization. A simple
method, which works well on certain domains, fails
to converge to the correct solution on more complex
domains. Therefore, to make robust software which
works well on such problems on a variety of domains,

one has to use discretization techniques which are
unaffected by these phenomena; cf., for example, [16].
The methods defined by discrete exterior calculus [17]
and finite element exterior calculus [11, 18] are nu-
merical methods which address some of these issues,
reflected by properties of the de Rham complex. These
methods are examples of compatible discretizations
methods, which means that at the discrete level, they
reproduce rather than merely approximate certain es-
sential structure of the underlying PDE problem which
is essential for the well posedness. As it is shown
in [11, 18], the stability of these methods is basically
inherited from the PDE problem by construction, and
convergence is obtained independently of the geomet-
ric and topological properties of the domain.

Coupling of Scales Represents a Grand
Challenge

The study of science has to a large degree been a
fight to come to grips with various scales. In physics
there has been great interest in understanding the very
smallest and the very largest scales in nature. The
interplay between scales becomes increasingly impor-
tant, especially in models of biology (see [19]) where
effects observed on living organism of the scale of 1m
depend critically on processes at a molecular scale of
10�9 m; similarly, the temporal processes range from
the nanosecond scale (10�9 s) to a lifetime at the scale
of 109 s.

Random events at the molecular scale tend to sum
up and behave in a deterministic and predictable man-
ner on the macroscopic scale. This effect enables the
application of macroscopic models to accurately repre-
sent phenomena that are clearly driven by effects on the
molecular level; heat conduction is a celebrated exam-
ple. Most of our current understanding of physics and
biology has been achieved through problems where
the scales can be separated. However, a lot of the
most important and less understood problems today
are truly multiscale, in the sense that the microscopic
and macroscopic processes mutually interact with each
other or more generally that multiple scales interact.
Therefore, dealing with several scales in the same com-
putations becomes inevitable. The problem of dealing
with a multitude of spatial and temporal scales in the
same computation is the biggest unsolved problem in
the field of computational PDEs, and progress would
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be of enormous importance, in particular, for the un-
derstanding of biology.

Parallel Computing Demands Algorithms
to Be Revisited and Reimplemented

Serial computing, meaning that all floating-point op-
erations are performed in a sequential manner, was
the common paradigm for solving PDEs until recently.
Speedup of computations was based on improvements
in algorithms and improvements in the compute power
of the single processor. Now, the speed of the latter is
reaching an asymptote, and further improvements in
compute power depend crucially on the utilization of
multiple compute units. This requires the computations
to be done in parallel.

Hardware for parallel computing is now a standard
equipment in most research groups doing large-scale
computations. Personal laptops also feature multiple
computing units. This hardware development has led
to a surge in the applications of parallel computing in
applied mathematics.

Developing parallel algorithms requires a quite dif-
ferent mind-set; algorithms that are optimal on serial
computers may very well turn out to be much less
successful on parallel computers. Similarly, slow serial
algorithms may run fast and be superior in a parallel
computing environment. Algorithms must therefore be
revisited and their implementations must be upgraded.
A very useful class of methods for parallelizing PDE
solvers is referred to as domain decomposition [14,20].
Domain decomposition is founded on the idea that the
solution of a partial differential equation defined on,
for example, a domain put together by two rectangles
can be computed by solving the two problems inde-
pendently and iterate until the solutions can be glued
together to form a solution of the combined problem.
This method is a popular strategy for parallelizing PDE
solvers since it is possible to solve the subdomain
problems in parallel.

Another dramatic change in computational
utilization of hardware is the fact that fetching data
from memory has become much more expensive than
performing arithmetic operations. Roughly speaking,
arithmetic operations are now for free in the field
of computational PDEs, and moving data around in
different kinds of memory is what consumes time in
large-scale applications. Development of algorithms

with smart memory access has therefore become
important.

Software for PDEs Can Be Built from
Well-Tested Components

To a large degree, mathematics is about breaking a
problem down to simpler problems that has already
been solved. The bigger problem is solved by
putting together the solution of already solved pieces.
The same approach is effective when software is
developed. If possible, the software system for solving
the PDEs of interest is broken down to software parts
that already exist. This includes software for mesh
generation, adaptive meshing, solution of linear and
nonlinear systems, time integration, finite element
libraries, visualization, and creation of user interfaces.

There are many well-tested and efficient software
packages available for free, and these are frequently
used when building simulation software that solves
PDEs. There are also many larger frameworks for
convenient expression and implementation of PDE
problems directly; see, for example, [21, 22].

Will the Discrete Approach Render PDEs
Superfluous?

The ability to express models of complicated phenom-
ena in an elegant and compact form has been, and still
is, one of the many great achievements of mathematics.
With the power of modern computers, many have
attempted to simulate microscopic (or mesoscopic)
phenomena directly rather than resorting to macro-
scopic PDE models. An argument for such simulation
strategies is that the physics description at the micro-
scopic (or mesoscopic) level is relatively simple and
better understood, in contrast to the inherent averaging
procedures in the derivation of PDE models. There is
a fear that these averaging procedures may simplify
the physics too much and introduce phenomenological
parameters that are hard to measure or estimate. We
believe that a development towards simulation models
formulated directly in terms of code is unavoidable and
even advantageous in many fields.

However, PDE models have a mathematical ad-
vantage over pure simulation models: much insight
comes from analyzing the PDEs themselves, properties
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of the solutions, and specific solutions to simplified
problems. That is, the PDE models may provide phys-
ical understanding in terms of compact mathemati-
cal expressions. This understanding and the related
expressions are fundamental tools for verifying the
implementation of numerical methods as well as for
analyzing large amounts of data produced by such
methods. PDE models have here an advantage over
purely simulation-based techniques where the insight
at the macroscopic level mainly comes through clever
interpretation of the vast amount of data generated.
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Plasmas and High-Energy-DensityMatter

Recent advances in high-performance computing and
continuing improvements in algorithms and models
have opened an avenue to a deeper understanding of
plasmas and at the same time provided insight into the
accuracy of kinetic theory. Advanced computing ar-
chitectures have allowed researchers to simulate com-
plicated plasma processes with undreamed of fidelity.
Computational plasma physics spans a wide variety
of methods and applications which will be presented
in an overview form. The focus will be on particle-
based, continuum phase-space, and fluid-based meth-
ods relevant for warm dense matter, hot dense matter,
and magnetic fusion plasmas. Unfortunately we do not
cover in any detail gyro-kinetic codes used in modeling
magnetic fusion plasmas.
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Computational Plasma Physics, Fig. 1 The variety of plasma
phenomena as a function of density and temperature. Note the
wide range of conditions and phenomena (From Plasma Science:

Advancing Knowledge in the National Interest (2007), National
Research Council)

Plasmas consist of mobile-charged particles (ions
and electrons) interacting by long-range Coulombic
N-body forces and exhibiting collective effects with
the electric or magnetic fields. This simple definition
describes a wide range of phenomena and density and
temperature ranges that span over ten orders of mag-
nitude. Phenomena as disparate as the magnetosphere,
tokamaks, cores of giant planets, interiors of ther-
monuclear burning stars, inertial confinement fusion
(ICF), and the solar corona are all plasmas (see Fig. 1).
Remarkably, given the simple definition of a plasma,
these phenomena exhibit a wide variety of behavior.
The ionosphere is a relatively collisionless classical
plasma, while the core of giant planets and white dwarf

stars exhibit Fermi degeneracy and strong particle-
particle correlations. Inertial confinement fusion
plasmas involve thermonuclear burn and nonequi-
librium radiative and atomic processes and exhibit
a hybrid quantum-classical nature [2]. At very high
temperatures kT=mc2 � 1, relativistic behavior plays a
role. This is the realm of white dwarf stars, plasma ac-
celerators, and black hole accretion disks. It should not
be surprising then that the numerical methods used to
model this range of phenomena also span a wide range.

The recent availability of new experimental
facilities [57] has evolved in parallel with exciting
developments in computational plasma physics for
high-energy-density plasmas. High-energy-density
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(HED) plasmas [2, 26] are an extreme state of matter
where the pressure is in excess of 1 Mbar. One Mbar
of pressure is equivalent to an energy density of
1012 erg=cm3. The energy density boundary defining
HED is interesting since it is approximately the bulk
modulus of most materials, and hence it defines the
boundary between compressible and incompressible
behaviors. Warm dense matter (WDM) [68], hot dense
matter [2, 26], laser-plasma interaction [53, 57], and
magnetized fusion plasmas [36] are examples of the
diversity of phenomena we encounter in the HED
regime. There are several excellent books available
that cover HED physics [2, 26].

Relevant Formulas and Parameters:
Mapping Out the Plasma Phase Space

In order to better understand the range of conditions
any computational scientist has to confront, it is useful
to consider a few basic length and timescales com-
monly used to better understand properties of plasmas
in the high-energy-density plasma regime. The quanti-
ties we consider are the timescales: plasma frequency
!p D p

.4e2n=m/ and electron-ion equipartition
time �eq [63]. Note that for a plasma consisting of
electrons and ions, there can be disparate frequencies.
The length scales we consider are the ion sphere radius
Rion, Debye length �D , thermal de Broglie wavelength
�dB, and the Landau length �L. Also of use will be
the dimensionless Coulomb coupling parameter �ab

between charged particle species a and b and Fermi
degeneracy‚.

Given an ion particle number density ni (1=cm3),
the mean ion sphere radius is

Rion D .3=4ni /1=3 (1)

Note for plasmas consisting of several ion species,
there can be several ion sphere radii. The plasmas we
consider in this article will be made up of electrons
and ions, and we will assume that they are electrically
neutral. That is, n D ne D Zni where ni is the
ion particle number density, ne is the electron particle
number density, and Z is the effective ionization state
of the ion. The local electrical potential in a plasma
is the result of charged particle screening. Electrons
will tend to “pile up on” or screen a positively charged
ion until the charge of that ion is effectively rendered

neutral. For weakly coupled, nondegenerate plasmas,
the length scale defining the screening distance is the
Debye length [63].

�D D
p

Te=4e2ne (2)

T is the temperature in units of electron volts (eV)
and e2 is the square of the electron charge defined by
1:44�10�7 eV cm. When two charged particles collide,
a classical distance of closest approach can be defined
by the length scale at which the thermal kinetic energy
and Coulomb energy are equal. For an electron and an
ion with an effective ionization < Z >

�L D< Z > e2=T (3)

Quantum processes such as diffraction can play a
role in nearby collisions of charged particles. When
two charged particles collide, an additional length scale
can be defined, the thermal de Broglie wavelength:

�dB D
p
2„2=meT (4)

where „ is defined as Planck’s constant divided by
2 and is given by 6:58 � 10�16 eVs. If �dB > �L
quantum diffraction becomes relevant. This occurs
for temperatures greater than Z2 � 4:33 eV. There-
fore, for hot plasmas where collisions are important,
quantum mechanics needs to be considered. Typically,
this is manifested in the collision integral through the
Coulomb logarithm where the large momentum cutoff
is supplied by 1=�dB. We will see this fact appearing
again when we consider molecular dynamics. Fermi
degeneracy can play a significant role in plasmas. It
is defined as TF =T where TF is the Fermi temperature
[63]. The Coulomb coupling parameter �ab is the ratio
of the average potential energy ZaZbe

2=�D and the
kinetic energy in a plasma T.

�ab D< Z >a< Z >b e
2=TRion (5)

Note that there are separate �ee; �ei; and�ii which
can differ significantly due to < Z >. Weakly coupled
plasmas (� 	 1) have densely populated Debye
spheres. The kinetics is the result of the cumulative ef-
fect of many small-angle collisions, and kinetic theory
is well developed (1=n�3D). In weakly coupled plasmas,
the dynamics of the plasma is dominated by the many-
body kinetic energy term. Typical weakly coupled
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plasmas include burning ICF capsules, tokamaks, and
the solar corona. Moderately and strongly coupled
plasmas (� � 1) are characterized by a sparsely
populated Debye sphere where there are large potential
energy (correlation) terms between the charged parti-
cles. Particle motion is strongly influenced by nearest
neighbor interactions, and large-angle scattering as the
result of a single encounter is important in strongly
coupled plasmas. Theoretical methods are not well
developed in this area and one must often resort to “ab
initio” simulation tools such as MD and AIMD. Typi-
cal moderately to strongly coupled plasmas include the
interiors of the giant planets and the cold fuel in an
ICF capsule. With a little algebra, it can be shown that
ND  .1=�/3=2

Several other quantities are of interest, especially
for plasmas with temperatures in the keV range. If T
is in units of keV, the blackbody photon density n� in
units of 1=cm3 is

n� D 3:13 � 1022T3keV (6)

The pressure in the plasma comes from electrons,
ions, and radiation. That is, the total pressure P D
Pe C Pi C P� . The blackbody radiation pressure
(measured in Mbar) is given by P� D 45:7T4keV, and
the approximate temperature where the radiation and
material pressures are equal occurs for TkeV � 2�

1=3

gm=cc.
In the table below, we summarize the various plasma
parameters for conditions typically seen in inertial

confinement fusion, the center of the giant planets and
tokamak plasmas.

Theoretical Considerations and Plasmas

A brief survey of Table 1 emphasizes the variety
of conditions that any numerical method has to
confront: weakly to strongly coupled, nondegenerate
to degenerate electrons, steady-state electron states to
highly nonequilibrium processes, and collisionless to
collisional. Therefore the set of governing equations
that describe these extreme states of matter will
vary, and the numerical methods associated with
them will also vary. Excellent reviews of the
theoretical treatment of kinetic equations would
include Braginskii [13] and Boyd [12] for classical
systems and Bonitz [8] for quantum systems. The
starting point for any computational plasma physics
approach begins with the governing equations.
In Fig. 2, a summary of the governing equation
hierarchy of plasmas is given. The figure begins with
a fundamental description of the plasma in terms
of the classical or quantum mechanical many-body
Hamiltonian [8, 12]. Each will lead to a time evolving
6N -dimensional phase-space distribution function
F.r1; p1I r2; p2; : : : rN ; pN W t/ which obeys either the
Liouville equation [12, 51] or the quantum many-body
Wigner equation [4, 8] and is related to the particle
number N as follows:

Z
d3r1d 3p1d3r2d 3p2 : : : d 3rNd3pNF.r1; p1I r2; p2; : : : rN ; pN W t/ D N (7)

Reduced distribution functions fs.r1; p1I r2; p2I
: : : rs; ps W t/ can be defined by

fs.r1; p1I r2; p2I : : : rs; ps W t/

D
Z
F.r1; p1I r2; p2; : : : rN ; pN W t/

NY
iDsC1

d ridpi

(8)

Of particular use in plasma physics are the gov-
erning equations associated with the one-particle dis-
tribution function f1.r; p; t/. The set of equations for
f1.r; p; t/ are called kinetic theory, and they also form

the basis for a hydrodynamic description of the plasma.
The kinetic equation describing the spatial and tem-
poral evolution of f1.r; p; t/ is generated from the
classical Liouville equation or the quantum many-body
Wigner equation by applying the reduction operator
shown in (8). The kinetic equation for the one-particle
distribution function is not closed but is instead cou-
pled to the two-particle distribution function. Simi-
larly, each s-particle distribution function is coupled
to the s C 1 distribution function in an infinite chain
of equations refereed to the BBGKY (Bogoliubov-
Born-Green-Kirkwood-Yvon) [8, 12, 51, 55] hierarchy.
In order to make the BBGKY hierarchy tractable,
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Computational Plasma Physics, Table 1 Plasma parameters
as defined in the text. n is particle number density measured
in 1=cm3 and temperature T is measured in keV. All length

scales are in cm. The first row represents ICF burn conditions,
the second row represents WDM conditions, and the last row
represents magnetic fusion conditions

n T �D Rion �dB �L ‚ �

1025 1 7:4 � 10�9 2:9� 10�9 2:2� 10�9 1:4� 10�10 0:17 0:05

1025 0:01 7:4 � 10�10 2:9� 10�9 2:2� 10�8 1:4� 10�8 17 4:8

1015 1 7:4 � 10�4 6:2� 10�6 2:9� 10�9 1:4� 10�10 3:6� 10�8 2:3�10�5

Computational Plasma Physics, Fig. 2 The hierarchy of the-
oretical descriptions of plasmas that computational techniques
need to model. Shown is the evolution of various theoretical

approximations beginning with the classical and quantum many-
body description

closure schemes need to be introduced. The starting
point for all closure schemes is the kinetic equation
for the one-particle distribution function. From now
on, we will suppress time in the function list as it
will always be assumed to be present. For many-body
classical plasmas interacting via a potential V.r/, we
have

@f .r1; p1/

@t
C p1

m
� rr1f .r1; p1/

D R
d3r2d 3p2rrV.r � r1/ � rpf2.r1; p1I r2; p2/

(9)

For many-body quantum systems interacting via a
potential V.r/

@f .r1; p1/

@t
C p1

m
� rr1f .r1; p1/

D i

„
Z

d3x

.2„/3 d
3q d3r2 d

3p2 e
i.p1�q/�x=„

�
h
V
�

r1 � r2 C x

2

�
� V

�
r1 � r2 � x

2

�i

� f2.r1; qI r2; p2/ (10)

This set of equations is the most useful starting point
for a kinetic theory description of plasmas. There are a
number of excellent books dealing with both the clas-
sical and quantum aspects of the kinetic theory of plas-
mas including Balescu [4]; Krall and Trivelpiece [51];
Dendy [23]; Boyd and Sanderson [12]; Swanson [66];
Liboff [55]; Kremp, Schlanges, and Kraeft [52]; and
Bonitz [8]. As Fig. 2 shows, the lowest-order closure
of the BBGKY hierarchy is to set f2.r1; p1I r2; p2/ D
f1.r1; p1/f1.r2; p2/. This closure is the basis for the
Vlasov and Vlasov-Maxwell [23, 51] equations. They
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are closed nonlinear integral-differential equations. It
is appropriate for collisionless plasmas valid for short
times compared to particle collision times. In addition,
the collisional mean-free path is much larger than the
relevant system size. For collisional plasmas where
the particle collision times are relevant, we define the
correlation functions g2 and g3 by

f2.r1; p1I r2; p2/

D f1.r1; p1/f1.r2; p2/C g2.r1; p1I r2; p2/ (11)

f3.r1;p1I r2; p2I r3; p3/Df1.r1; p1/f1.r2; p2/f1.r3; p3/
C f1.r1; p1/g2.r2; p2I r3; p3/

C f1.r2; p2/g2.r1; p1I r3; p3/

C f1.r3; p3/g2.r1; p1I r2; p2/

C g3.r1; p1I r2; p2I r3; p3/
(12)

The weak-coupling approximation implies that
f1f1f1 � jg2jf1 � jg3j. In this case, the BBGKY
hierarchy collapses effectively to an equation for f1
and g2. As far as we are aware, this coupled set of
equations has never been solved numerically. The
reason is computational expense, since in 3D, it would
require solving for both a six-dimensional function and
a 12-dimensional function simultaneously. Instead,
researchers make another series of approximations.
The first is to assume that the timescale for changes
in g2 is much shorter than timescales for f1, that is,
@g2=@t � 0. This is the Bogoliubov hypothesis, and it
allows us to write a single equation for f1. The second
approximation is to assume a spatially uniform plasma.
In summary, a new kinetic equation called the Lenard-
Balescu (LB) equation [3–5, 8, 12, 52, 66] follows
directly from the (1) weak-coupling approximation, (2)
Bogoliubov hypothesis, and the (3) spatial uniformity.
For brevity, we do not write it down but instead
refer the interested reader to the literature. The LB
equation includes dynamic screening of electrons due
to the presence of the dielectric function �.k; !/.
Classically, the LB collision integral is finite for
small wave numbers k due to the presence of �.k; !/.
However, the collision integral still diverges for large
wave numbers k, and some sort of cutoff is required.
The quantum LB equation collision integral is finite
due to the presence of quantum diffraction softening
the Coulomb singularity for small r. A Debye static

screening model e�r=�D=r is equivalent to taking the
dielectric function �.k; !/ ! �.k; 0/ D 1 C k2D=k2

where kD is the Debye wave number. If a static
screening model is assumed, then the LB and Q-LB
equations simplify considerably, and what is left is
the workhorse of most kinetic theory simulations
of plasmas: the Landau-Fokker-Planck equation
[8, 12, 51, 52, 62].

In going from the Liouville equation to kinetic
theory, we have reduced the dimensionality of the
system from 6N to six .r; p/ dimensions. The cost is
having to invoke a closure on the BBGKY hierarchy.
In spite of this reduction in the dimensionality of
the problem, computationally solving the full Landau-
Fokker-Planck equation can still be challenging. This
is especially true for real-world applications where
complex geometries and multiple materials exist. That
is why many computer codes for HED plasmas make
use of a further simplification. If we consider zeroth-
, first-, and second-order momentum moments of the
kinetic equation, a set of equations which depend only
on r and t will result. The moments typically used are
density, momentum, and energy. The set of moment
equations is itself not closed, just as we saw in the
BBGKY hierarchy. An equation of state [2, 26] needs
to be defined which relates the pressure (a second-
order moment) to the lower-order moments. Once this
is done, then the closed system of equations provides a
hydrodynamic description of the plasma [12, 13, 18].

Computational Plasma Physics

Particle-Based Methods
Particle-in-cell (PIC) [6, 22, 30, 43], molecular dy-
namics (MD) [30, 40], and ab initio molecular dy-
namics [30, 40, 69] (AIMD) (traditionally known as
quantum molecular dynamics or QMD) methods have
provided the capability of creating virtual nonequilib-
rium plasmas, whose properties can be investigated
and diagnosed in ways analogous to those an experi-
mentalist uses to study a plasma in a laboratory. The
virtual plasma method also provides insight into the
microphysical foundations of widely accepted theories.
This is because particle-based methods such as molec-
ular dynamics (MD), ab initio molecular dynamics
(AIMD), and particle-in-cell (PIC) are all attempting to
solve the many-body problem through a computational
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representation of the 6N body problem. For MD and
AIMD, strong coupling is not an issue per se; they pro-
vide insight into plasma regimes where current kinetic
theory is not valid. Classic references on particle-based
methods include Hockney and Eastwood [43], Dawson
[22], Birdsall and Langdon [6], and Griebel, Knapek,
and Zumbusch [40]. In addition the review article by
the Cimarron Project [68] discusses the application of
MD to hot dense matter. The books due to Jardin [44]
and Fehske, Schneider, and Weisse [30] and the recent
issue of Journal of Computational Physics [49] are also
useful references.

Particle-in-Cell
Particle-in-cell (PIC) methods have been the
workhorse for plasma simulations for at least 30 years
[6, 43]. The application space for PIC codes is
numerous. The list includes tokamak fusion [24, 56],
plasma-based accelerators [46, 47], ion beams for
heavy-ion inertial fusion energy [37], laser-plasma
interactions [10, 11, 42, 53, 57], and turbulence and
turbulent magnetic reconnection in collisionless
plasmas [7, 11, 16, 21]. The PIC method makes use
of the realization that solving plasma physics problems
is challenging because of the nature of the six-
dimensional phase space. This is the challenge for
mesh-based methods. They have to evolve a set of
six-dimensional functions which takes a great deal of
memory and computing power. Instead, PIC uses a set
of particles to efficiently sample the phase space. Like
the MD and AIMD methods we will see next, it is a
statistical approach. At its core, PIC is a combination
of a particle pusher and a field solver since it uses
the particle positions as source terms in Maxwell’s
equations which in turn yield electric and magnetic
fields which provide the Lorentz force in Newton’s
equations.

PIC follows a set of trajectories or characteristic
curves given by the Vlasov or Maxwell-Vlasov
equations. Therefore, it can be interpreted as a
particle-based method for solving the Vlasov equation.
Specifically, given a set of particle positions and
velocities, charge density and currents are mapped
onto a set of cells or a mesh. Maxwell’s equations are
then solved to obtain the electric and magnetic fields. A
common means of evolving the electric and magnetic
fields is to represent them on a Yee mesh [73] and apply
a finite-difference time-domain (FDTD) update which
is second-order accurate in space and time. Using the

Lorentz force law, the electromagnetic fields are then
used to update the particle positions and velocities.
To push the particles, most codes use a variant due to
Boris [6, 43].

A great deal of effort has been invested in getting
PIC codes to run effectively on massively parallel
architectures [10, 11, 35, 60]. For example, Bowers
[10] and collaborators and Daughton and collaborators
using the VPIC code [21] have carried out peta-scale
computing using 1012 macro-particles on the Road-
runner and Kraken machines. Their calculations point
to the power of large-scale computing. By performing
large, highly resolved 3D simulations, they uncovered
the evolutionary processes governing helical magnetic
structures. Friedman and collaborators [37] have devel-
oped an open-source code called WARP that has been
used extensively to model the electrostatic quadrupole
injector and the high-current experiment at LBNL.
The WARP code includes such advanced features as a
special coordinate system for beam lines and adaptive
mesh refinement (AMR). The OSIRIS Consortium [35]
has a developed state-of-the-art, fully explicit, multi-
dimensional, fully parallelized, fully relativistic PIC
code. Their code includes physics beyond traditional
PIC such as a binary collision model.

Molecular Dynamics
Molecular dynamics (MD) is a discrete particle sim-
ulation method developed in the 1950s by Alder and
Wainwright [1]. The focus of this section is how MD
is used to simulate hot plasmas in which all the ions
and electrons are treated as explicit particles. The
molecular dynamics method is simply the numerical
integration of equations of motion of a set of particles
that are interacting via some potential energy function
V. Typically the equations of motion are the classical
Newton equation:

d2ri
dt2

D � 1

m
riV (13)

and V is a function only of the particle positions.
That is, V D V.r1; r2; : : : rN /. However generalizations
to both the equations of motion and potentials to in-
clude relativistic, quantum, and momentum-dependent
effects can all be explored. The strength of the MD
method is that once the potential energy function V
and the equations of motion have been chosen, the
evolution of the system is completely defined. This
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evolution can be tracked at the smallest relevant time
and length scales, and all particle correlations are
measurable. One might say that a virtual laboratory has
been created where all the finest time and length scales
can be observed. This turns out to be both the strength
and weakness of MD. Time and length scales tend to
be small (femtoseconds and hundreds of angstroms for
HDM).

Applying MD to a plasma requires much more
thought than simply including the electrons as
additional classical particles in the simulation.
Actual electron-electron and electron-proton collisions
involve quantum interference and diffraction effects at
small distances. When selecting the potential energy
function to describe a plasma, it is tempting to simply
treat the electrons and ions as bare Coulomb particles;
unfortunately, this is ill-advised. From a practical point
of view, one is faced with the “Coulomb catastrophe
problem” in which electrons will eventually recombine
into classical bound states that are infinitely deep.
To account for quantum effects at short distances,
code developers use quantum statistical potentials
(QSPs). The use of QSPs was pioneered by Hansen and
coworkers, who investigated a variety of equilibrium
and nonequilibrium plasma properties [45]. By
including quantum diffractive effects, QSPs modify
the Coulomb potential at short distances but retain the
typical 1=r behavior at long distances.

While both PIC and MD are used to simulate
hot plasmas, MD includes all particle-particle colli-
sions, and it attempts to include quantum diffractive
effects through QSPs. Coulomb forces in MD are com-
puted using the particle-particle-particle-mesh method
(PPPM) [43]. In this method, long-range force terms
are calculated with a particle-mesh (PM) technique
(similar to PIC) while short-range force terms are
calculated with explicit particle-particle (PP) inter-
actions. Integrating the equations is most commonly
done with the velocity Verlet algorithm [40]. Though a
relatively low-order method, velocity Verlet preserves
(up to roundoff error) the symplectic [40] symmetry
of Hamilton’s equation (the equations of motion). One
property of symplectic integrators, and the reason ve-
locity Verlet is so popular, is that the long-time energy
drift for a micro-canonical simulation is very small.

The errors associated with MD are threefold: po-
tential energy model (QSP), sampling, and integration
[68]. Advances in high-performance computing have
been one of the big reasons why there has been a recent

resurgence in MD methods. Modern codes can run mil-
lions to even a few billion particles on massively par-
allel machines. This means the statistical error which
goes like 1=

p
N can be made small. Parallelization

strategies for MD are an active area of research [68].
In closing, we note that MD is solving the classical
Liouville equation (see Fig. 1). By using QSP’s we are
approximating the quantum many-body problem by a
classical many-body problem.

QuantumMolecular Dynamics
Ab initio molecular dynamics (AIMD) is a method
where the electrons are not treated explicitly. All of the
aforementioned details concerning MD are applied to
the ions. The application space for AIMD is typically
WDM where the electrons are degenerate and strongly
coupled. AIMD treats the electron dynamics as if they
react instantaneously to the ion motion (known as
the adiabatic Born-Oppenheimer approximation). The
computation of the electronic structure is provided by
solving the Hartree-Fock equations [8] or by solving
the Kohn-Sham equations of density functional the-
ory (DFT) [48]. Of particular note, we mention Car-
Parrinello MD [17], where one transforms the quantum
mechanical separation of the fast electron and slow
ions into a set of ionic and electronic degrees of
freedom with (fictitious) dynamical variables. This re-
formulation of the problem is significant as it keeps the
electrons close to the ground state. The Vienna ab initio
simulation package (VASP) [72] is a widely used code
in the community. In addition, QBOX [41] is another
AIMD code which solves the Kohn-Sham equations
for the electronic structure and uses classical MD for
the ions. A great deal of work has been invested into
the scalability of QBOX on large massively parallel
architectures [41]. Since the solution of the Kohn-
Sham equations has O.N3/ complexity, the electronic
structure calculations tend to be expensive. This means
that large AIMD simulation would be on the order
of 1,000 particles. This is to be contrasted with MD
where millions of particles are routinely performed.
Of course, presumably, with AIMD one is getting an
“ab initio” calculation of the electronic structure, while
with MD we are treating electrons as classical point
particles interacting via QSPs. In addition, it should be
emphasized that MD is nonequilibrium, while AIMD
treats the electrons adiabatically. Recent advances by
Schleife et al. [64] have extended AIMD to nonadia-
batic electron dynamics by solving the time-dependent
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Kohn-Sham equations. They have used their code to
compute charged particle stopping.

Recent advances in high-performance computing
have allowed MD and AIMD to become indispens-
able tools for scientists investigating matter at extreme
conditions. MD tends to be most suitable where tem-
peratures are high and Fermi degeneracy is negligible.
AIMD is challenged at temperatures on the order of
100 eV or more. AIMD is most suitable for investigat-
ing material properties at WDM conditions.

Kinetic Equations: Continuum Phase-Space
Methods
We now move away from particle- to mesh-based
methods for solving kinetic equations. All particle-
based methods suffer from some sort of statistical
noise. There are many problems in plasma physics
where a high-fidelity, deterministic solution of the
particle distribution function is needed. For example,
investigations into properties of the ion distribution
functions during thermonuclear burn require good res-
olution of the ion tail [58]. The numerical approaches
we address in this section are deterministic and they
are mesh based. By a large margin, the development
of numerical methods for kinetic equations has fo-
cused on the Vlasov and Landau-Fokker-Planck (LFP)
equations. Far less work has been done with regard
to numerically solving the classical [61] or quantum
Lenard-Balescu equations. We see this as a ripe area
for algorithmic research and development.

Vlasov
PIC methods are an effective method for solving the
Vlasov and Maxwell-Vlasov equations. However, as
noted above, deterministic solutions are sometimes
needed. Solving the Vlasov and Maxwell-Vlasov equa-
tion on a phase-space grid has involved finite elements
[29], finite differences [67], and spline interpolation
[20] techniques. A conservative numerical scheme for
the Vlasov equation has been developed by Filbet,
Sonnendrucker, and Bertrand [33].

Strozzi and collaborators [65] have developed an
Eulerian Vlasov-Maxwell solver ELVIS. It has been
applied to electrostatic and laser-plasma interaction
problems. The code treats the plasma kinetically in one
longitudinal dimension, either non-relativistically or
relativistically, and includes a Krook relaxation opera-
tor. The Maxwell-Vlasov equation is solved via opera-
tor splitting, with 1D space and momentum advections

performed by solution along characteristics with cubic
spline interpolation.

Landau-Fokker-Planck
The Landau-Fokker-Planck (LFP) [8, 12, 51, 52] equa-
tion describes the time evolution of a particle veloc-
ity distribution in terms of its drift and diffusion in
velocity space. This approach is valid where small
momentum transfers or small-angle collisions are the
dominant transport mechanism, such as in weakly
coupled plasmas. One has to be cautious when it
comes to discretizing the LFP equation. Naive dis-
cretization schemes do not necessarily conserve parti-
cle number, momentum, or energy. Traditionally, the
discretization scheme given by Chang and Cooper
[19] has been employed not only for LFP but also
the Kompaneets equation associated with Compton
scattering. This scheme has the added benefit that it
ensures proper equilibration of distribution functions.
Energy conservation is enforced by proper discretiza-
tion of implicit collision coefficients as derived by
Epperlein [28].

A great deal of work has been devoted to developing
conservative numerical schemes [14,15]. These numer-
ical methods preserve mass, momentum, energy, and
decay of the entropy. That is, they preserve the physical
properties of the LFP equation. Methods based on the
multipole expansion [54], multigrid techniques [15],
and spectral solvers [32, 59] have been developed.
Duclos and collaborators [27] have developed a high-
order non-relativistic 2D3P Vlasov-LFP code. Their
approach makes use of a second-order finite volume
discretization for the transport operator that preserves
energy. A fast multigrid method is then employed
for the LFP collision operator. Researchers have also
pursued simplifying the LFP collision operators by
constructing an expansion of the angular dependence
of the distribution function into spherical harmonics
[70, 71]. Recently, Tzoufras and collaborators [70,
71] have developed OSHUN, a parallel relativistic
2D3P Vlasov-LFP code that incorporates a spheri-
cal harmonic expansion of the electron distribution
function, and applied their code to electron transport
physics. Their approach allows them to consider an
arbitrary level of isotropy and at the same time make
use of a low-momentum space resolution. This al-
lows for a considerable cost saving when it comes to
memory.
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Fluid-Based Methods
In going from the Liouville equation to kinetic theory,
we have reduced the dimensionality of the system
from 6N to six .r; p/ dimensions. The cost is hav-
ing to invoke a closure on the BBGKY hierarchy.
In spite of this reduction in the dimensionality of
the problem, computationally solving the full Landau-
Fokker-Planck equation can still be challenging. This
is especially true for real-world applications where
complex geometries and multiple materials exist. This
is why many computer codes for HED plasmas make
use of a further simplification. If we consider zeroth-
, first-, and second-order momentum moments of the
kinetic equation, a set of equations which depend only
on r and t will result. The moments correspond to
density, momentum, and energy. The set of moment
equations is itself not closed, just as what we saw in
the BBGKY hierarchy. An equation of state [2, 12, 26]
needs to be defined which relates the pressure (a
second-order moment) to the lower-order moments.
Once this is done, then the closed system of equations
provides a hydrodynamic description of the plasma
[12, 51]. Radiation-hydrodynamics is the coupling of
radiation transport to a hydrodynamic description of
the plasma [18]. Computational modeling of stellar
interiors along with inertial confinement fusion cap-
sules is a common application. Magnetohydrodynam-
ics couples Maxwell’s equations to the hydrodynamic
description of the plasma [23, 38].

The computational aspects of fluid-based methods
for plasmas are a vast subject which we cannot do
justice here. Several useful books that dive deeper
into the subject are Bowers and Wilson [9] and Castor
[18] and [38]. Almost all methods used for solving
the radiation-hydrodynamic or magnetohydrodynamic
equations use a one-dimensional, two-dimensional, or
three-dimensional spatial mesh. Three mesh types
are frequently employed: Lagrangian, Eulerian,
and arbitrary Lagrangian Eulerian (ALE) [18].
In addition, adaptive mesh refinement (AMR)
is frequently employed, especially in Eulerian
schemes.
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Dynamics

The origin of dynamics lies in the study of solutions
of initial value problems for systems of differential
equations. The seminal work of Poincaré in the late
1800s made clear that given the complexity of these
systems, they could best be understood by studying

https://www.vasp.at/
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the qualitative structure of sets of solutions. The ex-
plosion of interest in nonlinear systems that began in
the 1960s is due to the advent of the computer that
allows researchers to easily observe the breadth of
dynamic behavior that can be realized. Typically, the
computer is the only tool for studying specific systems,
and thus, the ability to provide computational proofs
concerning the existence and structure of the quali-
tative properties of dynamical systems has particular
relevance.

To put the computational challenges in perspective,
we begin by describing the mathematical framework
for the qualitative theory of dynamics. Solutions to
an ordinary differential equation Px D V.x; �/ de-
fined on a state space X and parameter space ƒ are
described via a flow, which is a continuous function
'WR � X � ƒ ! X satisfying '.0; x; �/ D x and
'.s; '.t; x; �/; �/ D '.s C t; x; �/. Since parameters
are typically assumed to be fixed, given � 2 ƒ one
restricts attention to '�.t; x/ WD '.t; x; �/. Observe
that if one samples at fixed rate of time T > 0,
then the dynamics appears as if it is generated by a
continuous parameterized family of maps f�.�/ WD
'�.T; �/WX ! X . From a computational perspective,
this latter approach is often more useful and thus we
use this framework for most of our presentation. If
the dynamics is generated by a partial or functional
differential equation, then in general one cannot expect
f WX ! X to be invertible. In practice this has limited
conceptual consequences but can significantly increase
the technical challenges; thus, we assume that f is a
homeomorphism.

A set S � X is invariant under f if f .S/ D S .
These are the fundamental objects of study. While gen-
eral invariant sets are too complicated to be classified,
there are well-understood invariant sets which can be
used to describe many aspects of the dynamics. A point
x 2 X is a fixed point if f .x/ D x. It is a periodic point
if there exits N > 0 such that f N .x/ D x. The asso-
ciated invariant set ff n.x/ j n D 1; : : : ; N g is called
a periodic orbit. Similarly, x 2 X is a heteroclinic
point if limn!˙1 f n.x/ D y˙ where y˙ are distinct
fixed points. If yC D y�, then x is a homoclinic
point. Again, the complete set ff n.x/ j n 2 Zg is a
heteroclinic or homoclinic orbit.

Because they are both mathematically tractable
and arise naturally, invariant manifolds play an
important role. For example, periodic orbits for flows
form invariant circles and integrable Hamiltonian

systems give rise to invariant tori. If Nx is a hyperbolic
fixed point, that is the spectrum of Df. Nx/ does not
intersect the unit circle in the the complex plane, then
the sets W s. Nx/ WD fx 2 X j limn!1 f n.x/ D Nxg
and W u. Nx/ WD fx 2 X j limn!�1 f n.x/ D Nxg are
immersed manifolds called the stable and unstable
manifolds, respectively. The concept of stable and
unstable manifolds extends to hyperbolic invariant
sets [39].

Cantor sets also play an important role. Subshifts on
finite symbols arise as explicit examples of invariant
sets with complicated dynamics. For a positive integer
K , let † D fk j k D 0; : : : ; K � 1gZ with the product
topology, and consider the dynamical system generated
by � W† ! † given by �.a/j D ajC1. Observe
that if A is a K � K matrix with 0; 1 entries and
†A WD ˚

a D ˚
aj
� 2 † j Aaj ;ajC1

¤ 0
�
, then †A is an

invariant set for � . If the spectral radius �.A/ of the
matrix A is greater than one, then the invariant set †A
is said to be chaotic. In particular, it can be shown that
†A contains infinitely many periodic, heteroclinic, and
homoclinic orbits, and furthermore, one can impose a
metric d on † compatible with the product topology
such that given distinct elements a;b 2 †A there exists
n 2 Z such that d.�n.a/; �n.b// � 1. Topological
entropy provides a measure of how chaotic an invariant
set is. In the case of subshift dynamics, the entropy is
given by ln.�.A//.

Given that the focus of dynamics is on invariant
sets and their structure, the appropriate comparison of
different dynamical systems is as follows. Two maps
f WX ! X and gWY ! Y generate topologically
conjugate dynamical systems if there exists a home-
omorphism hWX ! Y such that h ı f D g ı h.
Returning to the context of a parameterized family of
dynamical systems, �0 2 ƒ is a bifurcation point if for
any neighborhood U of �0 there exists �1 2 U such
that f�1 is not conjugate to f�0 , i.e., the set of invariant
sets of f�1 differs from that of f�0 . Our understanding
of bifurcations arises from normal forms, polynomial
approximations of the dynamics from which one can
extract the conjugacy classes of dynamics in a neigh-
borhood of the bifurcation point.

The presence of chaotic invariant sets has profound
implications for computations. In particular, arbitrarily
small perturbations, e.g., numerical errors, lead to
globally distinct trajectories. Nevertheless for some
chaotic systems, one can show that numerical trajecto-
ries are shadowed by true trajectories, that is, there are
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true trajectories that lie within a given bound of the nu-
merical trajectory. From the perspective of applications
and computations, an even more profound realization
is the fact that there exist parameterized families of
dynamical systems for which the set of bifurcation
points form a Cantor set of positive measure. This
implies that invariant sets associated to the dynamics
of the numerical scheme used for computations cannot
be expected to converge to the invariant sets of the true
dynamics.

A Posteriori Functional Analytic Methods

Newton’s method is a classical tool of numerical anal-
ysis for finding approximate solutions to F.x/ D 0.
The Newton-Kantorovich theorem provides sufficient
a posteriori conditions to rigorously conclude the ex-
istence of a true solution within an explicit bound of
the approximate solution. INTLAB is a Matlab toolbox
that using interval arithmetic can rigorously carry out
these types of computations for x 2 R

n [60, 61]. Since
fixed points and periodic points of a map f WX ! X

can be viewed as zeros of an appropriate function, this
provides an archetypical approach to computational
proofs in dynamics: establish the equivalence between
an invariant set and a solution to an operator equation,
develop an efficient numerical method for identifying
an approximate solution, and prove a theorem – that
can be verified by establishing explicit bounds – that
guarantees a rigorous solution in a neighborhood of the
approximate solution.

Even in rather general settings, this philosophy
is not new. As an example, observe that x.t/ is
a �-periodic solution of the differential equation
Px D V.x/ if and only if x is a solution of the operator
equation ˆŒx	 D 0 where ˆŒx	.t/ D R �

0
V Œx.t/	 dt .

Representing x in Fourier space and using theoretical
and computer-assisted arguments to verify functional
analytic bounds allows one to rigorously conclude the
existence of the desired zero. This was done as early
as 1963 [14]. By now there are a significant number
of results of this nature, especially with regard to fixed
points for PDEs [53, 57].

The field of computer-assisted proof in dynam-
ics arguably came into its own through the study of
the Feigenbaum conjecture; a large class of unimodal
differentiable mappings �W Œ�1; 1	 ! R exhibit an
infinite sequence of period doubling bifurcations, and

the values of the bifurcation points are governed by a
universal constant ı [34]. This conjecture is equivalent
to the statement that the doubling operator T Œ�	.x/ D
� 1
a
� ı �.�ax/ has a hyperbolic fixed point N� and that

the Frechet derivative at the fixed point DT Œ N�	 has a
single unstable eigenvalue with value ı [18,19]. A good
approximation of the fixed point and the unstable
eigenvalue was determined using standard numerical
methods. Newton-Kantorovich was then used to con-
clude the existence and bounds of a true fixed point
and unstable eigenvalue, where the latter computations
are done using upper and lower bounds to control for
the errors arising from the finite dimensional truncation
and the finite precision of the computer [45, 46].

Examples of invariant sets that can be formulated
as the zero of a typically infinite-dimensional operator
include stable and unstable manifolds of fixed points
and equilibria [10, 11], invariant tori in Hamiltonian
systems [28], hyperbolic invariant tori and their stable
and unstable manifolds [38], existence of heteroclinic
and homoclinic orbits [8, 9], and shadowing orbits for
systems with exponential dichotomies [56]. Thus, for
all these problems, there are numerical methods that
can be used to find approximate solutions. Further-
more, for parameterized families continuation methods
can be used to identify smooth branches of approxi-
mate zeros [43]. In tandem with nontrivial analytic es-
timates, this has been successfully exploited to obtain
computational proofs in a variety of settings: universal
properties of area-preserving maps [32], KAM semi-
conjugacies for elliptic fixed points [27], relativistic
stability of matter against collapse of a many-body
system in the Born-Oppenheimer approximation [33],
computation of stable and unstable manifolds for dif-
ferential equations [40, 70], existence of connecting
orbits for differential equations and maps [21, 22, 70],
existence of chaotic dynamics for maps and differential
equations [6, 65, 68], equilibria and periodic solutions
of PDEs [4, 5, 25], and efficient computation of one
parameter branches of equilibria and periodic orbits for
families of PDEs and FDEs [25, 35, 47, 68, 69].

A Posteriori Topological Methods

An alternative approach to extracting the existence and
structure of invariant sets is to localize them in phase
space and then deduce their existence using a topologi-
cal argument. The common element of this approach is
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to replace the study of f WX ! X by that of an outer
approximation, a multivalued map F WX �!!X whose
images are compact sets that satisfy the property that
for each x 2 X , f .x/ 2 intF.x/ where int denotes
interior. This implies that precise information about the
nonlinear dynamics is lost – at best one has information
about neighborhoods of orbits – however, this is the
maximal direct information one can expect using a
numerical approximation. The central concept in this
approach is the following. A compact set N � X is
an isolating neighborhood under f if Inv.N; f /, the
maximal invariant set inN under f , is contained in the
interior of N . The theoretical underpinnings for these
methods go back to [20, 31, 50], where, for example,
the existence of the stable and unstable manifolds of
a hyperbolic fixed point is proven by studying iterates
of an isolating neighborhood using the contractive and
expansive properties guaranteed by the hyperbolicity.
The first rigorous computational proof using these
types of ideas was the demonstration of the existence
of chaotic dynamics in Hamiltonian systems [16].

To indicate the breadth of this approach, we provide
a few examples of computational implementations. By
definition a homoclinic point to a hyperbolic fixed
point Nx corresponds to an intersection point of the
stable W s. Nx/ and unstable W s. Nx/ manifolds of Nx.
If this intersection is transverse, then there exists an
invariant set which is conjugate to subshift dynamics
with positive entropy [64]. This suggests the follow-
ing computational strategies: find a hyperbolic fixed
point Nx; compute geometric enclosures of W s. Nx/ and
W s. Nx/; verify the transverse intersection; and if one
wants a lower bound on the associated entropy, use
the identified homoclinic points to construct the appro-
priate subshift dynamics. Beginning with the work of
[54], this approach has been applied repeatedly. The
accuracy of the bound on entropy is limited by the
enclosure of W s. Nx/ and W s. Nx/. An efficient imple-
mentation of higher-order Taylor methods [7] that leads
to high precision outer approximations was used to
attain the best current lower bounds on the entropy of
the Henon map at the classical parameter values [55].

A constraint for this strategy is the rapid growth in
cost of approximating invariant manifolds as a function
of dimension. This can be avoided by isolating only
the invariant set of interest using covering relations,
parallelograms which are properly aligned under
the differential of the map. While applications of
this idea to planar maps appear as early as [63],

a general theory along with efficient numerical
implementation has been developed by Capiński
and Zgliczyński [13], Zgliczyński and Gidea [75],
and Gidea and Zgliczyński [37]. In conjunction with
rigorous tools for integrating differential equations
[12], this method has found wide application including
proofs of the existence of heteroclinic and homoclinic
connecting orbits and chaotic dynamics in celestial
mechanics [72,73], uniformly hyperbolic invariant sets
for differential equations [71], and particular orbits in
PDEs [74].

These techniques can also be applied to detect
complicated bifurcations. A family of ODEs in R

3

exhibits a cocooning cascade of heteroclinic tangen-
cies (CCHT) centered at ��, if there is a closed solid
torus T , equilibria x˙ 62 T , and a monotone infinite
sequence of parameters �n converging to �� for which
W u
��
.xC/ and W s

��
.x�/ intersect tangentially in T

and the length of the corresponding heteroclinic orbit
within T becomes unbounded as n tends to infinity. For
systems with appropriate symmetry, a CCHT can be
characterized in terms of the topologically transverse
intersection of stable and unstable manifolds between
the fixed points and a periodic orbit [30] and therefore
can be detected using the abovementioned techniques.
This was used in [44] to obtain tight bounds on param-
eter values at which the Michelson equation exhibits a
CCHT.

Identifying structurally stable parameter values is
important. This is associated with hyperbolic invariant
sets. Let X be a manifold. If N � X is an isolating
neighborhood and Inv.N; f / is chain recurrent, then to
prove that Inv.N; f / is hyperbolic, it is sufficient to
show that there is an isolating neighborhood NN � TX ,
the tangent bundle, under Tf WTX ! TX such that
Inv. NN; Tf / is the zero section over N [17, 62]. This
was used by Arai [1] to determine lower bounds on the
set of parameter values for which the Henon map is
hyperbolic (see Fig. 1).

To efficiently identify isolating neighborhoods, it
helps to work with a special class of outer approxima-
tions. For f WRn ! R

n let X denote a cubical grid
which forms a cover for a compact set X � R

n. For
each cube � 2 X , let F.�/ � X such that f .�/ �
int
�[�02F.�/� 0�. Observe that F can be viewed both as

an outer approximation and as a directed graph. The
latter perspective is useful since it suggests the use of
efficient algorithms from computer science. The con-
struction X and the search for isolating neighborhoods
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can be done in an adaptive manner which in some
settings implies that the computational cost is deter-
mined by the dimension of the invariant set as opposed
to the ambient space R

n [29, 41]. A representative of
any isolating neighborhood can be identified by this
process if the grid and the outer approximation are
computed with sufficiently fine resolution [42].

Given an isolating neighborhood N , the Conley
index can be used to characterize the structure of
Inv.N; f /. To compute this one needs to construct
a pair of compact sets P D .P1; P0/, called
an index pair, on which f induces a continuous
function fP�W .P1=P0; ŒP0	/ ! .P1=P0; ŒP0	/ on the
quotient space [58]. The induced map on homology
fP�WH�.P1=P0; ŒP0	/ ! H�.P1=P0; ŒP0	/ is a
representative for the Conley index. Given an outer
approximation F WX �!!X there are efficient directed
graph algorithms to construct index pairs. Furthermore,
fP� can be computed using F [15, 41, 52].

The first nontrivial computational use of these
ideas was a proof that the Lorenz equations exhibit
chaotic subshift dynamics [51]. Since then Conley
index techniques have been applied in the context
of rigorous computations to a variety of problems
concerning the existence and structure of invariant
sets including chaotic dynamics in the Henon
map [26] and the infinite dimensional Kot-Shaffer
map [23], homoclinic tangencies in the Hénon
map [2], global dynamics of variational PDEs
[24, 49], and chaotic dynamics in fast-slow systems
[36].

Conceptually, partitioning a posteriori methods of
computational proofs in dynamics into functional an-
alytic and topological methods is useful, but for ap-
plications a combination of these tools is often de-
sirable. For example, the proof of the existence of
the Lorenz attractor at the classic parameter values
[67] is based on a posteriori topological arguments.
However, the construction of the rigorous numerical
outer approximation exploits a high-order normal form
computed at the origin, and a-posteriori functional
analytic tools are used in order to obtain rigorous
bounds on truncation errors for the normal form and
its derivative.

Global Topological Methods

The underlying strategy for a posteriori analytic and
topological techniques is to identify a priori a class
of invariant sets, numerically approximate and then
rigorously verify the existence. Since it is impossible
to enumerate all invariant sets, an algorithmic analysis
of arbitrary dynamical systems using a classification
based on structural stability is impossible. An
alternative approach based on using isolating
neighborhoods to characterize the objects of interest
in dynamical systems [20] appears to be well suited
for rigorous systematic computational exploration of
global dynamics. To provide partial justification for
this method, we return to the setting of an outer
approximation F of f defined on a cubical grid X
covering a compact set X 2 R

n. Let S WD Inv.X; f /.
Viewing F as a directed graph, there exist efficient
algorithms for identifying the strongly connected
path components fM.p/ � X j p 2 .P; </g [66]
where the partial ordering is determined by paths
in F . Furthermore, the collection of invariant
sets

˚
M.p/ WD Inv.[�2M.p/�; f /

�
forms a Morse

decomposition of S under f , a finite collection of
mutually disjoint compact invariant subsets of S

with the property that if x 2 S n [M.p/ then its
forward orbit limits in M.p/ and its backward orbit
limits in M.q/ where p < q. Stated differently,
this procedure identifies the locations in phase
space in which recurrent dynamics can occur and
identifies the gradient-like dynamics between these
regions. Furthermore, each M.p/ defines an isolating
neighborhood for M.p/ [42], and thus, the Conley
index can be used to understand the structure ofM.p/.
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Let X � denote a cubical grid with cubes of diameter
� > 0 and set F �.�/ WD f� 0 2 X � j f .�/ \ � 0 ¤ ;g.
As indicated above this defines fM.p�/ � X � j p�g
f2 .P�; <�/g. In [42] it is shown thatR WD \n[p�n2P�n

M.p�n/ is independent of the sequence �n ! 0 and
that R is the chain recurrent set for S . This provides
an algorithmic construction of Conley’s Fundamental
Decomposition Theorem [59] that can be formulated
as follows: R is the minimal invariant subset of S for
which there exists a Lyapunov function V WS ! Œ0; 1	

with the property that V is constant onR and for every
x 2 S n R, V.f .x// < V.x/.

In the case of a parameterized family of maps
f WX � ƒ ! X where � 2 ƒ � R

m,
let Q be a covering of ƒ by compact cubes.
For each Q 2 Q define F �

QWX � �!!X � by
F �
Q.�/ WD f� 0 2 X � j f .�;Q/\ � 0 ¤ ;g. Ap-

plying the same algorithms as above producesn
M.p�Q/ � X � j p�Q 2 .P�Q;</

o
which results in a

Morse decomposition and associated Conley indices
that are valid for all f�, � 2 ƒ. This provides an
algorithmic approach to the rigorous analysis of the
global dynamics of f WX�ƒ ! X in both phase space
and parameter space. This relatively new approach
to computational dynamics of multiparameter
systems has been applied to simple population
models [3, 48].
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Definitions

Computerized tomography (CT) is the process of pro-
ducing an image of a distribution (of some physical
property) from physically obtained approximations of
its line integrals along a finite number of lines of known
locations. Algebraic reconstruction techniques (ART)
form a family of algorithms used in CT. Their distin-
guishing features are (1) they assume that the image
is represented as a linear combination of some known
basis functions and (2) the unknown coefficients in
this linear combination are estimated by an iterative
process in which the approximation of just one of the
line integrals is used in any one iterative step.

Description

In this entry we restrict our attention (except at the end)
to the problem of reconstructing a two-dimensional
object f .r; �/ from one-dimensional projections, as
shown in Fig. 1. The data collection takes place in
M steps. A source and a detector strip are rotated
between two steps of the data collection by a small
angle, but are assumed to be stationary while the
measurement is taken. The detector strip consists of
2N C 1 detectors, spaced equally on an arc whose
center is the source position. The line from the source
to the center of rotation O goes through the center of
the central detector. The support of the object to be
reconstructed is enclosed by the broken circle shown
in Fig. 1. As indicated in Fig 1, any real-number pair,
.`; �/, defines a line, and we use ŒRf 	 .`; �/ to denote
the line integral of f along that line. The operator R is
referred to as the Radon transform [5].

Computerized Tomography, ART, Fig. 1 A standard method
of CT data collection (Reproduced from [2])

The inputs to a reconstruction algorithm are esti-
mates, obtained by a CT scanner (for details see [2]),
of the values of ŒRf 	 .`; �/ for the pairs .`1; �1/ ;
: : : ; .`I ; �I /. Let

Rif D ŒRf 	 .`i ; �i /: (1)

Let yi denote the estimate of Rif and y the I -
dimensional vector whose i th component is yi . The re-
construction problem is given the data y; estimate f:

In the mathematically idealized reconstruction
problem, we seek an expression for the operator
R�1 (the inverse of R). A major class of algorithms,
called transform methods, estimate f based on such
expressions for R�1. A popular example is the filtered
backprojection (FBP) algorithm (see Chapters 8 and 10
of [2]).

In this entry we concentrate on the other major cat-
egory of reconstruction algorithms: the series expan-
sion methods. In a transform method, the continuous
operators in the expression forR�1 are implemented as
discrete ones, operating on functions whose values are
known only for finitely many values of their arguments.
The series expansion approach is basically different.
The problem itself is discretized at the beginning:
estimating f is translated into finding a finite set of
numbers.
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Based on a region that is assumed to con-
tain the support of f , we fix a set of J basis
functions fb1; : : : ; bJ g. These are chosen so that,
for any f whose support is contained in the
assumed region that we may wish to reconstruct,
there exists a linear combination of the basis
functions that is an adequate approximation to
f .

An example of such an approach is the n � n

digitization in which we cover the region by an n � n

array of identical small squares, called pixels. Here
J D n2 and

bj .r; �/ D
�
1; if .r; �/is inside the j th pixel,
0; otherwise.

(2)

Then the n � n digitization of the picture f is the
picture Of defined by

Of .r; �/ D
JX
jD1

xj bj .r; �/; (3)

where xj is the average value of f inside the j th pixel.
In shorthand, Of D PJ

jD1 xj bj .
Another (and usually preferable) way of choos-

ing the basis functions is the following. Generalized
Kaiser-Bessel window functions, which are also known
by the simpler name blobs, form a large family of func-
tions that can be defined in a Euclidean space of any
dimension. Here we restrict ourselves to 2D and define

ba;˛;ı.r; �/ D
8<
:
Ca;˛;ı

�
1 � �

r
a

�2�
I2

�
˛

q
1 � �

r
a

�2�
; if 0 � r � a;

0; otherwise,
(4)

where Ik denotes the modified Bessel function of the
first kind of order k, a stands for the nonnegative
radius of the blob, and ˛ is a nonnegative real number
that controls the shape of the blob. The multiplying
constant Ca;˛;ı is defined in (6.52) of [2]. A blob is
circularly symmetric. It has the value zero for all r � a

and its first derivatives are continuous everywhere. The
“smoothness” of blobs can be controlled by the choice
of the parameters a, ˛, and ı, and they can be made
very smooth.

Any fixed function ba;˛;ı gives rise to basis functions
fb1; : : : ; bJ g by selecting a set G D fg1; : : : ; gJ g of
grid points and defining bj as ba;˛;ı with its center
shifted from the origin to gj . In practice it is advisable
that G be chosen as the hexagonal grid with sampling
distance ı, as defined in (6.51) of [2]. For blobs to
achieve their full potential, the selection of the param-
eters a, ˛, and ı is important; see [2].

Irrespective how the basis functions have been cho-
sen, any picture Of that can be represented as a linear
combination of the basis functions bj is uniquely
determined by the choice of the coefficients xj , 1 �
j � J , in the formula (3). We use x to denote the
vector whose j th component is xj and refer to x as the
image vector.

It is easy to see that, under some mild mathematical
assumptions,

Ri f ' Ri
Of D

JX
jD1

xjRi bj ; (5)

for 1 � i � I . Since the bj are user defined, usually
the Ri bj can be easily calculated by analytical means.
For example, in the case when the bj are defined by (2),
Ri bj is just the length of intersection with the j th pixel
of the line of the i th position of the source-detector
pair. We use ri;j to denote our calculated value of
Ri bj . Since yi is an estimate of Ri f , we get that, for
1 � i � I;

yi '
JX
jD1

ri;j xj : (6)

Let R denote the matrix whose .i; j /th element is
ri;j : We refer to this matrix as the projection matrix.
Let e be the I -dimensional column vector whose i th
component, ei , is the difference between the left- and
right-hand sides of (6). We refer to this as the error
vector. Then (6) can be rewritten as

y D Rx C e: (7)

The series expansion approach leads us to the
discrete reconstruction problem: based on (7),
given the data y; estimate the image vector x: If the
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solution to this problem is x�, then the estimate f � of
f is given by f � D PJ

jD1 x�
j bj .

In (7), the vector e is unknown. The simple ap-
proach of trying to solve (7) by assuming that e is
the zero vector is dangerous: y D Rx may have no
solutions, or it may have many solutions with none
of them any good for the practical problem at hand.
Some criteria have to be developed, indicating which
x ought to be chosen as a solution of (7). One way of
doing this is by considering both the image vector x
and the error vector e to be samples of random vari-
ables. For example (for details, see Section 6.4 of [2]),
if we assume that the vector �X is such that every
component of both x � �X and of e are independent
samples from zero-mean Gaussian random variables
with standard deviations s and n, respectively, then the
Bayesian estimate is the vector x that minimizes (with
t D s=n, the signal-to-noise ratio)

t2 ky �Rxk2 C kx � �Xk2 : (8)

The algebraic reconstruction techniques (ART),
which are the main topic of this entry, are series
expansion methods. All ART methods are iterative
procedures: they produce a sequence of vectors
x.0/; x.1/; : : : that is supposed to converge to x�. The
process of producing x.kC1/ from x.k/ is referred to as
an iterative step.

In ART, x.kC1/ is obtained from x.k/ by considering
a single one of the I approximate equations; see (6). In
fact, the equations are used in a cyclic order. We use
ik to denote k.mod I / C 1; i.e., i0 D 1; i1 D 2; : : : ;

iI�1 D I; iI D 1; iIC1 D 2; : : : ; and we use ri to
denote the J -dimensional column vector whose j th
component is ri;j . An important point here is that this
specification is incomplete because it depends on how
we index the lines for which the integrals are estimated.
Since the order in which we do things in ART depends
on the indexing i for the set of lines for which data are
collected, the specification of ART as a reconstruction
algorithm is complete only if it includes the indexing
method for the lines, which we refer to as the data
access ordering. We return to this point below.

A particularly simple variant of ART is the
following:

x.0/ is arbitrary,
x.kC1/ D x.k/ C c.k/rik ;

(9)

where, using a sequence of real-valued relaxation pa-
rameters �.k/,

c.k/ D �.k/
bik � ˝

rikx
.k/
˛

krikk2
: (10)

It is easy to check that, for k � 0, if �.k/ D 1, then

yik D
JX
jD1

rik;j x
.kC1/
j : (11)

This method has an interesting mathematical
property. Let L D fxjRx D yg. A sequence
x.0/; x.1/; x.2/; : : : generated by (9) and (10) converges
to a vector x� in L, provided that L is not empty and
that, for some "1 and "2 and for all k,

0 < "1 � �.k/ � "2 < 2: (12)

Furthermore, if x0 is chosen to be the vector with zero
components, then kx�k < kxk, for all x in L other
than x�. A proof of this can be found in Section 11.2
of [2].

This result is not useful by itself because the con-
dition that L is not empty is unlikely to be satisfied in
a real tomographic situation. However, as it is shown
in Section 11.3 of [2], it can be used to derive the fol-
lowing ART algorithm that converges to the minimizer
of (8), provided only that (12) holds:

u.0/ is the I -dimensional zero vector,

x.0/ D �X ;

u.kC1/ D u.k/ C c.k/eik ;

x.kC1/ D x.k/ C tc.k/rik ;

(13)

where eik is the I -dimensional vector with ik th compo-
nent 1 and all other components zero and

c.k/ D �.k/
t
�
yik � ˝

rik ; x
.k/
˛� � u.k/ik

1C t2 krikk2
: (14)

Note that both in (9) and in (13), the updating of
x.k/ is very simple: we just add to x.k/ a multiple of the
vector rik : This updating of x.k/ can be computationally
very inexpensive. Consider, for example, the basis
functions associated with a digitization into pixels (2).
Then ri;j is just the length of intersection of the i th
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line with the j th pixel. This has two consequences.
First, most of the components of the vector rik are
zero. Second, the location and size of the nonzero
components of rik can be rapidly calculated from the
geometrical location of the ikth line relative to the
n � n grid using a digital difference analyzer (DDA)
methodology (see Section 4.6 of [2]).

We are now going to illustrate and compare various
reconstruction algorithms. The generation of images
and their projection data, the reconstructions from such
data, the evaluation of the results, and the graphi-
cal presentation of both the images and the evalua-
tion results were done within the software package
SNARK09 [1].

We studied actual cross sections of human heads
(Figs. 4.2 and 4.5(a) in [2]). Based on them we created
a head phantom and used SNARK09 to obtain the
density in each of 243 � 243 pixels. The resulting array
of numbers is represented in Fig. 2a.

A reconstruction is a digitized picture. If it is a
reconstruction from simulated projection data of a test
phantom, we can judge its quality by comparing it with
the digitization of the phantom. Visual evaluation is the
most straightforward way. One may display both the
phantom and the reconstruction and observe whether
all features in which one is interested in the phantom
are reproduced in the reconstruction and whether any
spurious features have been introduced by the recon-
struction process. A difficulty with such a qualitative
evaluation is its subjectiveness, people often disagree
on which of two pictures resembles a third one more
closely.

It appears desirable to use a picture distance mea-
sure that indicates the closeness of the reconstruction
to the phantom. In the following example of such a
measure (r), tu;v and ru;v denote the densities of the
vth pixel of the uth row of the digitized test phantom
and the reconstruction, respectively, and Nt denotes the

Computerized Tomography, ART, Fig. 2 A head phantom (a)
and its reconstructions from the same projection data using ART
with blobs, �.k/ D 0:05, 5I th iteration and efficient ordering
(b), ART with blobs, �.k/ D 0:05, 5I th iteration and sequential

ordering (c), ART with pixels, �.k/ D 0:05, 5I th iteration and
efficient ordering (d), ART with blobs, �.k/ D 1:0, 2I th iteration
and efficient ordering (e), and FBP (f) (Based on figures in [2])
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average of the densities in the digitized test phantom.
We assume that both pictures are n � n.

r D
nX

uD1

nX
vD1

jtu;v � ru;vj=
nX

uD1

nX
vD1

jtu;vj: (15)

Such a global measure cannot possibly reflect all
the ways in which two pictures may differ from each
other. Rank-ordering reconstructions based on such
measures of closeness to the phantom can be mislead-
ing. We recommend instead a statistical hypothesis
testing-based methodology that allows us to evaluate
the relative efficacy of reconstruction methods for a
given task. In Section 5.2 of [2], there is a detailed
discussion of the use of this methodology for the task
of detecting small low-contrast tumors in the brain.
Below we report on the performance of algorithms for
the same task. We do not repeat the details here, but
note that the methodology consists of (a) generation
of random samples from an ensemble of representative
phantoms and simulation of the data collection by a
CT scanner; (b) reconstruction from the data by the
algorithms; (c) assignment of a figure of merit (FOM)
to each reconstruction, in our case we used the image-
wise region of interest (IROI) FOM that measures the
usefulness of the reconstruction for tumor detection;
and (d) calculation of a P-value, which is the proba-
bility of observing a difference in the average values
of the IROI not smaller than what we have actually
observed if the null hypothesis that the reconstructions
are equally helpful in tumor detection were true (the
smallness of the P-value indicates the significance by
which we can reject the null hypothesis).

For all our experiments, the data collection geome-
try is the one described in Fig. 1 with M D 720 and
2N C1 D 345, and we used realistically simulated CT
projection data. The exact method of data collection is
described in Section 5.8 of [2].

We report only on the variant of ART described
by (9) and (10). (The performance of the ART al-
gorithm specified in (13) and (14) is illustrated in
Section 12.5 of [2].) In all cases, we choose x.0/ to
represent a uniform picture, with an estimated average
value of the phantom assigned to every pixel (see
Section 6.3 of [2]).

We first show that the data access ordering can have
a significant effect on the practical performance of the
algorithm. With data collection, such as depicted in

Fig. 1, it is tempting to use the sequential ordering:
access the data in the order g.�N�; 0/; g..�N C
1/�; 0/; : : : ; g.N�; 0/; g.�N�;�/; g..�N C 1/�;

�/; : : : ; g.N�;�/; : : :, : : : ; g.�N�; .M � 1/�/;

g..�N C 1/�; .M � 1/�/; : : : ; g.N�; .M � 1/�/,
where g.n�;m�/ denotes the approximation of the
line integral from the mth source position to the nth
detector. However, this sequential ordering is inferior
to what is referred to as the efficient ordering in which
the order of projection directions m� and, for each
view, the order of lines within the view are chosen so
as to minimize the number of commonly intersected
pixels by a line and the lines selected recently. This can
be made precise by considering the decomposition into
a product of prime numbers of M and of 2N C 1

[3]. The efficient data access ordering translates
into faster initial convergence of ART (illustrated
in Fig. 11.2 of [2] by plotting r of (15) against the
number of times the algorithm cycled through the
data). The reconstructions produced by the efficient
and sequential orderings after five cycles through
the data (i.e., x.5I /) are in Fig. 2b, c, respectively.
Visually there is little difference between them. This
is confirmed by the distance measures in Table 1, r is
only slightly smaller for the efficient ordering than for
the sequential one. However, the statistical evaluation
is unambiguous: the IROI is larger for the efficient
ordering and the associated P-value was found to be
less than 10�9. Thus the null hypothesis that the two
data access orderings are equally good can be rejected
in favor of the alternative that the efficient ordering is
better with extreme confidence.

Next we emphasize the importance of the basis
functions. In Fig. 3 we plot the picture distance mea-
sure r against the number of times ART cycled through
all the data. The two cases that we compare are when
the basis functions are based on pixels (2) and when
they are based on blobs (4). The results are quite

Computerized Tomography, ART, Table 1 Picture distance
measures r and average IROIs for the various algorithms used
in Fig. 2 (Based on Table 11.1 of [2])

Reconstruction in r IROI

Fig. 2b 0.0373 0.1794
Fig. 2c 0.0391 0.1624
Fig. 2d 0.0470 0.1592
Fig. 2e 0.0488 0.1076
Fig. 2f 0.0423 0.1677
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ART with blobs :: Relative Error
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Computerized Tomography, ART, Fig. 3 Values r for ART reconstructions with pixels (light) and blobs (dark), plotted at
multiples of I iterations (Reproduced from [2])

impressive: as measured by r , blob basis functions
are much better. The result of the 5I th iteration of
the blob reconstruction is shown in Fig. 2b, while
that of the 5I th iteration of the pixel reconstruction is
shown in Fig. 2d. The blob reconstructions appear to be
clearly superior. By looking at Table 1, we see a great
improvement in the picture distance measure r . From
the point of view of the IROI, ART with blobs is found
superior to ART with pixels with the P-value less than
10�10.

Underrelaxation is also a must when ART is applied
to real data. In the experiments reported so far, �.k/

was set equal to 0.05 for all k. If we do not use
underrelaxation (i.e., we set �.k/ to 1 for all k), we
get from the standard projection data the unacceptable
reconstruction shown in Fig. 2e. Note that in this case
we used the 2I th iterate; further iterations give worse
results. The reason for this is in the nature of ART:
after one iterative step with �.k/ D 1, the associated
measurement is satisfied exactly as shown in (11) and
so the process jumps around satisfying the noise in the
measurements. Underrelaxation reduces the influence
of the noise. Note in Table 1 that the figure of merit
IROI produced by the task-oriented study for the case

without underrelaxation is much smaller than for the
other cases.

Now we compare the best of our ART reconstruc-
tion (Fig. 2b) with one produced by a similarly care-
fully selected variant of FBP (Fig. 2f); for details of the
FBP choices, see Chapter 10 of [2]. Visually they are
very similar. According to r in Table 1, ART is superior
to FBP, and the same is true according to IROI with
extreme significance (the P-value is less than 10�13).
This confirms the reports in the literature that ART with
blobs, underrelaxation, and efficient ordering generally
outperforms FBP in numerical evaluations of the qual-
ity of the reconstructions.

Figure 1 accurately describes data collection in
early CT scanners, but modern helical CT scanners
are different. Typically, such systems have a single
x-ray source, multiple detectors in a two-dimensional
array, and two independent motions: while the source
and detectors rotate around the patient, the patient is
continuously moved between them, providing a helical
trajectory of the source relative to the patient. Chap-
ter 13 of [2] reports on the performance of ART, using
three-dimensional blobs [4] as the basis functions,
when producing reconstructions from such data.
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Short Definition

The condition of a problem is the sensitivity of its
output with respect to small perturbations of its input.

Description

The Condition Number
The dawn of the digital computer in the 1940s brought
the possibility of mechanically solving mathematical
problems. Paramount among them are linear systems
of equations. The quantities intervening in these com-
putations, however, were systematically rounded off
by the computer, and a possible accumulation of the

Partially supported by GRF grant CityU 100810.

errors thus produced became a matter of concern. At
the end of the decade, John von Neuman and Herman
Goldstine in the USA, and Alan Turing in England
independently endeavored a first understanding of this
phenomenon and wrote their conclusions in [9, 10].
These articles mark the birth of the notion of condi-
tioning, which we next describe with more detail.

A finite-precision algorithm working with a ma-
chine precision "mach, 0 < "mach < 1, replaces, during
the computation, all numbers x by a number Qx such
that Qx D x.1 � ı/ with jıj � "mach. In a digital
computer the number Qx is obtained by keeping in the
representation of x a fixed number of bits (or digits)
in the mantissa. If a 2 IRn is approximated by Qa,
we may define the (normwise) relative error of this
approximation by taking

RelError.a/ D ka � Qak
kak :

Now assume we have a function ' W IRn ! IRm

and an algorithm A meant to compute it. That is,
A actually computes a function 'A which depends
on "mach and which coincides with ' under infinite
precision ("mach D 0). A key question regarding the
accuracy of A is

How big is RelError.'A .a//?

A major step in the development of numerical anal-
ysis is the realization that, most of the times, the answer
to this question relies on two different factors: on the
one hand, the nature of the algorithm A and, on the
other hand, a magnification factor depending solely on
a and ' (a rigorous explanation of this statement can be
given in terms of the so-called backward error analysis,
vigorously pioneered by Wilkinson in the 1960s). The
(normwise) condition number of input a for problem
' is a measure of this magnification factor, namely,
the worst-case magnification in '.a/ of small relative
errors in a. More formally, we define

cond'.a/ D lim
ı!0

sup
RelError.a/�ı

RelError.'.a//
RelError.a/

:

Roughly speaking, the logarithm of the condition num-
ber measures the loss of precision in the computation
of '.a/ derived from errors in a. Indeed, if we are
given an approximation Qa of a with k correct bits

http://www.snark09.com/SNARK09.pdf
http://www.snark09.com/SNARK09.pdf
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(or digits) of mantissa, then the mantissa of '. Qa/ has,
approximately, k � log2.cond'.a// correct bits (for
digits take log10) as an approximation of '.a/.

Occasionally, one may be interested in measuring
relative errors componentwise (instead of normwise
as above). A case where this has proved useful is to
explain the common high accuracy in the solution of
triangular systems of linear equations (see [2] for the
details).

Major Themes in Conditioning

Simple Expressions
The fact that the logarithm of the condition number is
a measure of the loss of precision makes it desirable to
have estimates for the condition number. But a direct
estimate of the latter appears difficult due to the lim sup
in its definition. A natural goal, already present in the
articles [9,10], is therefore to come up with expressions
that either characterize or satisfactorily approximate
condition numbers. Two cases at hand – which will
serve as examples for the rest of this note – are matrix
inversion and linear equation solving.

In case A is a square matrix and '.A/ WD A�1,
one can prove that cond'.A/ D kAkkA�1k. For linear
equation solving, that is, for '.A; b/ WD A�1b, we do
not have such an exact expression, but one can prove
that kAkkA�1k � cond'.A; b/ � 2kAkkA�1k. It
follows that the quantity


.A/ WD kAkkA�1k

measures, maybe up to a small factor, the worst case
magnification in A�1 or in x D A�1b of small errors
in the input A (resp. .A; b/). This quantity is usually
referred to as the condition number of A (without
explicit mention of the problem for which A may be
an input).

Condition and Complexity
For some iterative algorithms, the number of iterations
performed by the algorithm can be bounded in terms
of the condition of the input. For instance, given a
symmetric, positive definite, matrix A 2 IRn�n, a
vector b 2 IRn, an initial point x0 2 IRn, and a
number 0 < ı < 1, the conjugate gradient algorithm
decreases the residual kAx � bkA by a factor of ı in
approximately 1

2

p

.A/j ln ıj iterations.

Condition and RandomData
In a sequel [11] to [10], von Neumann and Goldstine
introduced a theme which, subsequently championed
by Steve Smale (see [8]), would become central in
the foundations of numerical analysis: the probabilistic
analysis of condition numbers. The motivation is clear.
Error (and, we have just seen, complexity) bounds
depend on the condition cond'.a/ of the input a. But
we do not know this quantity and it has been observed
that its computation requires, essentially, to compute
'.a/ (see [5]). A way out from this vicious circle is to
estimate the expectation of log cond'.a/ for random
a. Goldstine and von Neumann did not go that far with

.A/. But Alan Edelman did, proving that for random
n � n matrices (with independent standard Gaussian
entries), one has

E.log 
.A// D lognC C C o.1/; as n ! 1,

with C D 1:537 for real matrices and C D 0:982

for complex matrices [4]. This result produces sharp
estimates on the expected loss of precision for ma-
trix inversion and linear equation solving. Edelman’s
paper also yields estimates for E.log 
.A// when A
is symmetric positive definite and follows a Wishart
distribution.

Condition and Distance to Ill-Posedness
Singular matrices A may be considered as ill-posed
for the problems of matrix inversion or linear equa-
tion solving. The quantity cond'.a/ may not be well
defined (since '.a/ is not), but in most situations a
continuity argument shows that taking cond'.a/ D
1 makes sense. In the case of square matrices, a
remarkable equality occurs:


.A/ D kAk
dist.A;†/

where † is the set of singular matrices and dist is
the distance for either the spectral or the Frobenius
norm. It has been noted by Jim Demmel [3] that
this is an extended phenomenon. For many problems,
the condition number either coincides or is closely
approximated by a relativized inverse of the distance
to ill-posedness. Jim Renegar subsequently used this
idea to define condition for problems where the lim sup
definition above is meaningless (see [6, 7]).
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A recent monograph on conditioning, where all the
above is developed in great length, is [1].

References

1. Bürgisser, P., Cucker, F.: Grundlehren der mathematischen
Wissenschaften, 349, Springer (2013)

2. Cheung, D., Cucker, F.: Componentwise condition numbers
of random sparse matrices. SIAM J. Matrix Anal. Appl. 31,
721–731 (2009)

3. Demmel, J.: On condition numbers and the distance to
the nearest ill-posed problem. Numer. Math. 51, 251–289
(1987)

4. Edelman, A.: Eigenvalues and condition numbers of random
matrices. SIAM J. Matrix Anal. Appl. 9, 543–556 (1988)

5. Renegar, J.: Is it possible to know a problem instance is
ill-posed? J. Complex. 10, 1–56 (1994)

6. Renegar, J.: Some perturbation theory for linear program-
ming. Math. Program. 65, 73–91 (1994)

7. Renegar, J.: Incorporating condition measures into the
complexity theory of linear programming. SIAM J. Optim.
5, 506–524 (1995)

8. Smale, S.: Complexity theory and numerical analysis. In:
Iserles, A. (ed.) Acta Numerica, pp. 523–551. Cambridge
University Press, Cambridge/New York (1997)

9. Turing, A.M.: Rounding-off errors in matrix processes. Q.
J. Mech. Appl. Math. 1, 287–308 (1948)

10. von Neumann, J., Goldstine, H.H.: Numerical inverting
matrices of high order. Bull. Am. Math. Soc. 53, 1021–1099
(1947)

11. von Neumann, J., Goldstine, H.H.: Numerical inverting
matrices of high order, II. Proc. Am. Math. Soc. 2, 188–
202 (1951)

Convergence Acceleration

Avram Sidi
Computer Science Department, Technion – Israel
Institute of Technology, Haifa, Israel

Mathematics Subject Classification

40A05; 40A10; 40A20; 40A25; 40A30; 65B05;
65B10; 65B15

Synonyms
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Definition

Let fAng be a sequence of scalars, and let A D
limn!1An when this limit exists. When applied to
fAng, a convergence acceleration method generates a
new sequence f OAng of approximations to A, such that
each OAn is obtained from a finite number of theAk , and
f OAng converges to A faster than fAng, in the sense that
limn!1



. OAn�A/=.An�A/� D 0. When limn!1An

does not exist, usually there is a scalar A called the
antilimit of fAng to which f OAng may converge in many
cases.

Overview

In many problems of science and engineering, we
are faced with the task of computing limits of some
infinite sequence, whether of scalars or of vectors.
For simplicity, consider a convergent scalar sequence
fAng, and let A D limn!1An. Normally, we have
knowledge of only A0;A1; : : : ; AN for some N , and
we choose AN to be our approximation to A. In
most cases of interest, the sequence fAng converges
very slowly, and hence, AN may be a very poor
approximation to A for moderate N . By applying to
fAng a suitable convergence acceleration method (or
extrapolation method, or sequence transformation), we
can obtain a new sequence f OAng that converges to A
faster than fAng (or accelerates the convergence of
fAng). If OAn is computed from a finite number of the
Ak , then by this we mean

lim
n!1

OAn �A
An �A D 0: (1)

In case fAng diverges, that is, when limn!1An does
not exist, usually there is a quantity A called the an-
tilimit of fAng that is required and that has a meaning
for the problem that gives rise to fAng. A suitable
extrapolation method that accelerates the convergence
of fAng in case of convergence can produce its antilimit
in case of divergence. We illustrate the concepts of
antilimit and convergence acceleration in the next two
paragraphs.
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To illustrate the concept of antilimit, let us
consider the infinite sequence fAn.z/g, where
An.z/ D Pn

kD0.�1/k zkC1

kC1 , n D 0; 1; : : : ; z being
in general complex. Clearly, A.z/ D limn!1An.z/ DP1

kD0.�1/k zkC1

kC1 D log.1 C z/ whenever jzj � 1,
z ¤ �1, and log.1 C z/ is analytic. Now, log.1 C z/
continues to exist as an analytic function also for
jzj > 1, z 62 .�1;�1	, even though fAn.z/g does not
have a limit for such z; log.1Cz/ serves as the antilimit
of fAn.z/g in this case. In words, the antilimit of the
present fAn.z/g in case of divergence is the analytic
continuation of the sum of the series

P1
kD0.�1/k zkC1

kC1
beyond its circle of convergence.

To illustrate the discussion on convergence accel-
eration, let us consider the Euler–Knopp (E, q) trans-
formation, which is a linear convergence acceleration
method. Let An D Pn

iD0 ai , n D 0; 1; : : : : When
applied to fAng, the (E, q) transformation generates the
sequence f OAng, where

OAn D
nX

kD0

1

.1C q/kC1
kX
iD0

 
k

i

!
qk�i ai : (2)

(Note that OAn is determined by A0;A1; : : : ; An only.)
Consider now the case ak D .�1/k zkC1

kC1 of the preced-
ing paragraph. For this case, we have the asymptotic
equality

nX
kD0

.�1/k zkC1

k C 1
� log.1C z/

 .�1/n
1C z

znC2

n
as n ! 1, jzj � 1; z ¤ �1:

(3)

Setting q D z in (2), and noting that
Pk

iD0.�1/i
�
k
i

�
1
iC1

D 1
kC1 , it is easy to see that

OAn.z/ D
nX

kD0

1

k C 1

�
z

1C z

�kC1
:

Clearly, provided jzj < jz C 1j, which is the same as
Re z > �1=2, there holds

lim
n!1

OAn.z/ D
1X
kD0

1

k C 1

�
z

1C z

�kC1

D � log

�
1 � z

1C z

�

D log.1C z/; Re z > �1=2:

Thus, the (E, z) transformation induces convergence in
fjzj > 1g \ fRe z > �1=2g, log.1 C z/ being the
antilimit. In addition, f OAn.z/g converges to log.1 C z/
faster than fAn.z/g in the set fjzj � 1g \ fjz C 1j > 1g
since (3) implies (1). For example, for the convergent
sequence fAn.1/g), we have OAn.1/ D Pn

kD0 1

2kC1
1

kC1 ,
while for the divergent sequence fAn.2/g), we have
OAn.2/ D Pn

kD0. 23 /
kC1 1

kC1 . See Hardy [7], Nietham-
mer [12], and Sidi [28, Chap. 15] for more on the (E, q)
transformation.

Preliminary Classification of Convergence
Acceleration Methods

We divide extrapolation methods into two classes: (i)
Linear methods. (ii) Nonlinear methods. Let f OAng and
f OBng be the sequences generated by an extrapolation
method applied to the sequences fAng and fBng, re-
spectively. The method is linear if it produces the
sequence f˛ OAn Cˇ OBng when applied to f˛AnCˇBng;
otherwise, it is nonlinear. The (E, q) transformation is
a linear method as can be verified easily.

All known nonlinear extrapolation methods possess
a quasilinearity property, in the following sense: If
f OAng is generated by applying a quasilinear method
to fAng, then f˛ OAn C ˇg is the sequence this method
produces from f˛An C ˇg.

Linear convergence acceleration methods are nor-
mally discussed within the general topic of summabil-
ity methods. The methods that are of relevance to us are
those that produce OAn from a finite number of the terms
Ak . Thus, OAn are all of the form OAn D PLn

iD0 �niAi ,
where the �ni and Ln are independent of fAkg. The
method is said to be regular if f OAng converges when
fAng does, and to the same limit. We have already
discussed the Euler–Knopp (E, q) method, which is one
of the most effective linear methods used for summing
slowly convergent alternating series. It is also regular
when q > 0. Most of the linear methods, despite being
regular, are not very effective as acceleration methods,
however. We mention only Cesaro summability since
it is used in overcoming the Gibbs phenomenon that
arises when summing Fourier series of functions with
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finite jump discontinuities. When applied to the se-
quence fAng, this method produces f OAng with

OAn D
Pn

iD0 Ai
nC 1

; n D 0; 1; : : : :

If An are the partial sums of the Fourier series of a
function f .x/ that is piecewise continuously differen-
tiable, then limn!1 OAn D 1

2
Œf .xC/ C f .x�/	 for

every x. For the properties of this method, and other
linear summability methods as well, see Hardy [7], for
example.

In the sequel, we discuss some of the nonlinear
convergence acceleration methods that have proved to
be successful in applications.

Some Common Sequence Classes

Before we discuss the various convergence acceler-
ation (or extrapolation) methods, we introduce sev-
eral sequence classes that arise in applications fre-
quently, namely, EXP, GEXP, b.1//LOG, b.1//LIN, and
b.m//GLIN (integer m > 1). We can then discuss
the convergence acceleration methods as they are be-
ing applied to these classes. (There is no point in
discussing convergence acceleration without reference
to sequence classes that we confront in practice. In
addition, no convergence acceleration method can be
effective on all types of sequences. We do, however,
aim at those methods that are effective on as many
classes of sequences as possible.) (We will introduce
more sequence classes that arise in practice as we
proceed. For a longer list of sequence classes, see
Sidi [28, Appendix H].)

EXP W An  AC
1X
kD1

ak�
n
k as n ! 1I

�k ¤ 1; j�1j > j�2j > � � � ;
lim
k!1�k D 0;

GEXP W An  AC
1X
kD1

Pk.n/�
n
k as n ! 1I

Pk.n/ polynomials in n;

�k ¤ 1; j�1j > j�2j > � � � ;

lim
k!1�k D 0;

b.1//LOG W An  AC
1X
iD0

ˇin
��i as n ! 1;

� ¤ 0; 1; : : : ; ˇ0 ¤ 0;

b.1//LIN W An  AC �n
1X
iD0

ˇin
��i as n ! 1;

j�j � 1; � ¤ 1; ˇ0 ¤ 0;

b.m//GLIN W An  AC
mX
kD1

�nk

1X
iD0

ˇkin
�k�i

as n ! 1; �k ¤ 1 distinct; ˇk0 ¤ 0;

j�1j D � � � D j�mj � 1:

Here are some (and, by no means, all) sources of
sequences in these classes:
1. Sequences in EXP (GEXP) arise from partial sums

of Maclaurin series of functions analytic at the
origin and meromorphic in the complex plane with
simple (in general, multiple) poles.

2. Sequences in b.1//LOG arise from partial sums of
infinite series

P1
nD0 an, where an  P1

iD0 cin��i�1
as n ! 1.

3. Sequences in b.1//LIN arise from partial sums
of infinite (power) series

P1
nD0 an, where an 

�n
P1

iD0 cin��i as n ! 1. This may be the case
when the power series represents a function analytic
at the origin with a branch point at � D 1.

4. Sequences in b.m//GLIN arise from partial sums of
Fourier series or orthogonal polynomial expansions
(on an interval I ) of functions that have generally
algebraic singularities or jump discontinuities in I .
When referring to these in the following sections,

we will be using the same notation introduced in the
present section.

Aitken �2-Process and Lubkin
W -Transformation

We start with two classical, yet simple, methods that
have been used numerous times in the literature.
These are the Aitken �2-process and the Lubkin
W -transformation. Neither the �2-process nor the
W -transformation requires any knowledge of the
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parameters (namely, �k , �, � , �k , and �k in the
preceding section) that are present in the asymptotic
expansions of An�A above. They are defined solely in
terms of the sequence elementsAn. For details of these
two methods and recent results, see [28, Chap. 15].

Aitken �2-Process
The simplest nonlinear acceleration method is the �2-
process of Aitken [1], which, when applied to a se-
quence fAng, produces the sequence f OAng, where

OAn D AnAnC2 � A2nC1
An � 2AnC1 C AnC2

; n D 0; 1; : : : :

Computationally stable forms are

OAn D An � .�An/
2

�2An
D AnC1 � .�An/.�AnC1/

�2An
:

Here �An D AnC1 � An, �2An D �.�An/; : : : :

This method accelerates the convergence of all linearly
converging sequences fAng, namely, those that satisfy

lim
n!1

AnC1 �A
An �A D C; 0 < jC j < 1:

If fAng 2 EXP, then OAn D AC O.�n2/ as n ! 1. If
fAng 2 b.1//LIN, then OAn  AC �n

P1
iD0 ˇ0

i n
��i�2 as

n ! 1; hence, f OAng converges to A faster than fAng.
If j�j D 1 and 0 � Re � < 2, then fAng is divergent,
but f OAng converges to the antilimitA. The method does
not accelerate the convergence of sequences in GEXP
(when degP1 > 0), in b.1//LOG, and in b.m//GLIN.

Lubkin W -Transformation
When applied to fAng, the W -transformation gives

OAn D �2.An=�An/

�2.1=�An/

D An=�An � 2AnC1=�AnC1 C AnC2=�AnC2
1=�An � 2=�AnC1 C 1=�AnC2

;

n D 0; 1; : : : :

Just as the �2-process, the W -transformation too ac-
celerates the convergence of all linearly converging
sequences fAng. If fAng 2 EXP, then OAn D A C
O.�n2/ as n ! 1. If fAng 2 b.1//LIN, then OAn 
A C �n

P1
iD0 ˇ0

i n
��i�3 as n ! 1; hence, f OAng

converges to A faster than fAng. If j�j D 1 and
0 � Re � < 3, then fAng is divergent, but f OAng
converges to the antilimit A. If fAng 2 b.1//LOG, then
OAn  A C �n

P1
iD0 ˇ0

i n
��i�2 as n ! 1; hence,

f OAng converges to A faster than fAng when the latter
converges (i.e., when Re � < 0). If 0 � Re � < 2, then
fAng is divergent, but f OAng converges to the antilimit
A. The method does not accelerate the convergence
of sequences in GEXP (when degP1 > 0) and in
b.m//GLIN.

Iterated �2-Process and Iterated
W -Transformation
Both methods can be iterated as follows: Let C .n/

0 D
An; n D 0; 1; : : :. Apply either method to the sequence
fC .n/

0 g to obtain fC .n/
1 g, where C .n/

1 D OC .n/
0 D OAn.

Apply it to fC .n/
1 g to obtain fC .n/

2 g, where C .n/
2 D

OC .n/
1 , and so on. This mode of application turns out to

be quite powerful within the context of the sequence
classes described above. When the methods work,
the sequences fC .n/

k g1
kD0, with fixed n, have the best

convergence properties.

Shanks Transformation and the Padé
Table

When applied to fAng, the transformation of
Shanks [17] is defined via the linear systems of
equations

Ar D en.Aj /C
nX

kD1
N̨k�ArCk�1; j � r � j C n:

Here en.Aj / is the approximation to the limit or an-
tilimit of fAng and the N̨k are auxiliary unknowns. The
en.Aj / can be obtained recursively with the help of the
�-algorithm of Wynn [36] as follows:

�
.j /
�1 D 0; �

.j /
0 D Aj ; j � 0I

�
.j /

kC1 D �
.jC1/
k�1 C 1

�
.jC1/
k � �.j /k

; j ; k � 0:

Then, en.Aj / D �
.j /
2n for all j and n. Another al-

gorithm that is as efficient as the �-algorithm is the
recent FS/qd-algorithm of Sidi [28, Chap. 21]. Note
that en.Aj / D �

.j /
2n is determined by Ai , j � i �
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j C 2n. The “diagonal” sequences f�.j /2n g1
nD1 (j fixed)

have the best convergence properties. If fAng 2 EXP,
then �.j /2n � A D O.�

j
nC1/ as j ! 1. If fAng 2

b.1//LIN, then �.j /2n � A D O.�j j ��2n/ as n ! 1,
when � ¤ 0; 1; : : : : As shown recently in Sidi [31], if
fAng 2 b.m//GLIN, with m > 1, then convergence of
f�.j /2n g1

jD0, with fixed n, takes place if n is such that
a certain integer-programming problem has a unique
solution; as shown in [31], there are infinitely many
such n. For example, provided �k ¤ 0; 1; : : : ; Re �1 D
� � � D Re �m D Q� , and n D m�, � D 1; 2; : : : ; this
integer-programming problem has a unique solution,
and there holds �.j /2n �A D O.�j j Q��2�/ as j ! 1. In
all these cases, the Shanks transformation accelerates
convergence of fAng. In case fAng diverges, f�.j /2n g1

jD0
(with fixed n) may still converge to A, which now
serves as the antilimit of fAng.

The method is ineffective when applied to
sequences fAng 2 b.1//LOG.

When the Shanks transformation is applied to
fAn.z/g with An.z/ D Pn

kD0 ckzk , n D 0; 1; : : : ;

it gives en.Aj .z// D �
.j /
2n .z/ D fjCn;n.z/, where

fm;n.z/ D Pm;n.z/=Qm;n.z/, Pm;n 2 m, and Qm;n 2
n is the Œm=n	 Padé approximant from the (formal)
power series f .z/ D P1

kD0 ckzk , defined uniquely by
the requirement that f .z/ � fm;n.z/ D O.zmCnC1/ as
z ! 0.

For an up-to-date treatment of the Shanks trans-
formation, see Sidi [28, Chap. 16], and for a survey
of known results and for new results pertaining to
sequences belonging to b.m//GLIN, see [31]. See also
Brezinski and Redivo Zaglia [5, Sect. 2.3]. For a thor-
ough treatment of Padé approximants, see Baker [2]
and Baker and Graves–Morris [3], and for a brief
survey, see [28, Chap. 17].

LevinL- and SidiS-Transformations and
Brezinski �-Algorithm

These transformations are defined as follows:
• L-transformation: This very famous transformation

was introduced by Levin [9]. For this method, we
change the indexing of the An, to start with n D 1

instead of n D 0, and we writeAn D Pn
kD1 ak , n D

1; 2; : : : . With a carefully constructed sequence
f!ng of scalars, and for j D 0; 1; : : : ; and n D
1; 2; : : : ; this transformation is defined via

L.j /n D �n
�
J n�1 AJ =!J

�
�n .J n�1=!J /

D
Pn

iD0.�1/i
�
n
i

�
.J C i/n�1 AJCi =!JCiPn

iD0.�1/i
�
n
i

�
.J C i/n�1 =!JCi

I

J D j C 1:

L.j /n is the approximation to the limit or antilimit
of fAng, and the “diagonal” sequences fL.j /n g1

nD0
with fixed j have the best convergence properties.
Levin proposes three choices for !n. The choice
!n D nan turns out to be effective in all cases where
the L-transformation can be applied successfully.
Note that L.j /2 are the approximations produced by
the Lubkin transformation. For more details on this
method, see [28, Chap. 19].

• S-transformation: This method was introduced
originally by Sidi and used in the M.Sc. thesis of
Shelef [18]. It is described in [28, Chap. 19] in
more detail. Using the same indexing convention
and notation as in the L-transformation and the
same !n, and j D 0; 1; : : : ; and n D 1; 2; : : : ; this
transformation is defined via

S.j /n D �n ..J /n�1 AJ =!J /
�n ..J /n�1=!J /

D
Pn

iD0.�1/i
�
n
i

�
.J C i/n�1 AJCi =!JCiPn

iD0.�1/i
�
n
i

�
.J C i/n�1 =!JCi

I

J D j C 1:

S.j /n is the approximation to the limit or antilimit of
fAng, and the “diagonal” sequences fS.j /n g1

nD0 with
fixed j have the best convergence properties. Here,
.c/k is the Pochhammer symbol defined by .c/k DQk�1
iD0.c C i/, k D 0; 1; : : : .

• �-algorithm: This method is due to Brezinski [4]
and is defined via the following recursive
scheme:

�
.j /
�1 D 0; �

.j /
0 D Aj ; j � 0I

�
.j /
2nC1 D �

.jC1/
2n�1 CD

.j /
2n I

D
.j /

k D 1=��
.j /

k for all j; k � 0;

�
.j /
2nC2 D �

.jC1/
2n � ��

.jC1/
2n

�D
.j /
2nC1

D
.j /
2nC1; j; n � 0:



Convergence Acceleration 309

C

Note that the operator� operates only on the upper
index, namely, on j . Here, the relevant quantities
(i.e., the approximations to the sum of the series)
are the �.j /2n . Note that �.j /2n is determined byAi , j �
i � jC3n. Also, it is known that �.j /2 is the approx-
imation produced by the LubkinW -transformation.
The “diagonal” sequences f�.j /2n g1

nD1 with fixed j
have the best convergence properties. For an up-to-
date account of this method, see [28, Chap. 20].
All three methods accelerate the convergence of

sequences in the classes b.1//LOG and b.1//LIN. Ac-
tually, for fAng 2 b.1//LOG, we have

L.j /n �A D O.j ��n/; S.j /n � A D O.j ��n/;

�
.j /
2n �A D O.j ��2n/ as j ! 1.

The numerical performance of the S-transformation on
sequences in b.1//LOG is quite mediocre, however.

For fAng 2 b.1//LIN, we have

L.j /n � A D O.�j j ��2n/; S.j /n � A D O.�j j ��2n/;

�
.j /
2n � A D O.�j j ��3n/ as j ! 1.

None of these methods accelerate the convergence
of sequences in EXP, GEXP, and b.m//GLIN.

We now introduce a new class of strongly (factori-
ally) divergent sequences analogously to b.1//LOG and
b.1//LIN, which we denote b.1//FACD:

b.1//FACD W An D Pn
kD1 ak;an  .nŠ/r�n

P1
iD0 ein��i

as n ! 1, r D 1; 2; : : : :

The Shanks, L-, and S-transformations and the
�-algorithm all seem to be effective accelerators on
sequences fAng in b.1//FACD in that their “diagonal”
sequences seem to be able to produce good approxi-
mations to some generalized Borel sums of the seriesP1

kD1 ak . However, according to Weniger [34, 35], of
all the methods mentioned, the S-transformation seems
to have the best performance. See also [28, Sect. 19.4].
The S-transformation has been used successfully in
the summation of some perturbation series that arise
in theoretical physics.

It must be mentioned that there is no theory con-
cerning the treatment of sequences in b.1//FACD, with
the exception of sequences of partial sums of Stieltjes
and Hamburger series, for which diagonals of Padé

approximants converge to the corresponding Stieltjes
and Hamburger functions. See [2] and [3].

Richardson Extrapolation and
Generalizations

So far, we have considered the application of con-
vergence acceleration methods to compute limits of
sequences fAng belonging to certain classes. We now
look at the more general problem of computing limits
of functions A.y/ as y ! 0. It is clear that with
any given sequence fAng, we can identify a function
A.y/, such that y $ n�1 and A.n�1/ $ An, and
limy!0 A.y/ $ limn!1An. Generally, y can be
a discrete or continuous variable. There are cases in
which A.y/ is naturally a function of a continuous
variable y. Consider, for example, the infinite-range
integral I Œf 	 D R1

0
f .t/dt , which can be viewed as

I Œf 	 D limx!1 F.x/, where F.x/ D R x
0
f .t/dt ;

hence y $ x�1, A.y/ $ F.y�1/. We treat such cases
in the remainder of this section.

Richardson Extrapolation Process
We start with the well-known case of the Richardson
extrapolation process. Consider a function A.y/ that
has an asymptotic expansion of the form

A.y/  AC
1X
kD1

˛ky
�k as y ! 0; �k ¤ 0 8k;

Re �1 < Re �2 < � � � ; lim
k!1 Re �k D 1

for some ˛k and �k that are independent of y. Clearly,
if Re �1 > 0, then A D limy!0 A.y/; otherwise,
A is the antilimit of A.y/ as y ! 0. The main
assumption here is that (i)A.y/ is known (equivalently,
is computable) for y > 0, but not for y D 0, and
(ii) the �k are known. The ˛k need not be known.
By combining a finite number of the A.yj /, j D
0; 1; : : : ; we can eliminate the powers y�1 ; y�2 ; � � � ;
one by one and compute a two-dimensional table of
approximations A.j /n of high accuracy to A, whether
the limit or antilimit of A.y/ as y ! 0.

For this, we pick an appropriate sequence fyj g1
jD0,

such that y0 > y1 > � � � ; and limj!1 yj D 0. We
then solve the linear systems of equations
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A.yl / D A.j /n C
nX

kD1
N̨ky�kl ; j � l � j C n:

Here the N̨k are additional (auxiliary) unknowns. We
call the sequence fA.j /n g1

jD0 (with n fixed) the nth

column sequence, and we call the sequence fA.j /n g1
nD0

(with j fixed) the j th diagonal sequence. Generally
speaking, the nth column sequence fA.j /n g1

jD0 is at
least as good as the ones preceding it. The diagonal
sequences fA.j /n g1

nD0 have the best performance.
When the yj are chosen as a geometric sequence,

that is, yj D y0!
j , j D 0; 1; : : : ; and ! 2 .0; 1/, then

we can achieve the solution of these equations for the
A
.j /
n by an elegant algorithm a follows:
First, compute A.yj / D A

.j /
0 ; j D 0; 1; : : : . Next,

compute the approximations A.j /n via the recursion
relation

A.j /n D A
.jC1/
n�1 � !�nA

.j /
n�1

1 � !�n
; j D 0; 1; : : : I

n D 1; 2; : : : :

In this case, for the column sequences, we have

A.j /n � A D O.y
�nC1

j / D O.!j�nC1/ as j ! 1;

and provided Re˛kC1 � Re˛k � d > 0, k D 0; 1; : : : ;

for some fixed d , for the diagonal sequences, we have

A.j /n � A D O.e��n/ as n ! 1, 8 � > 0:

Thus, we see that when limy!0 A.y/ exists (that is,
Re �1 > 0), the nth column converges to the limit
A exponentially in j and faster than the columns
that precede it. If limy!0 A.y/ does not exist (that
is, Re �1 � 0), then Re �k > 0 for some k since
limk!1 Re �k D 1, and the nth column sequence,
for every n � k, converges to the antilimit A ex-
ponentially in j , even though limy!0 A.y/ does not
exist. The diagonal sequences always converge to A,
whether A is the limit or the antilimit of A.y/ as y !
0, the convergence being faster than exponentially
in n.

The extrapolation method we have described
here was proposed, with �k D 2k, by Richardson
in [13] and applied by him in [14] and [15].
For an early survey, see Joyce [8]. For details
of the treatment presented here and more recent

developments, generalizations, and applications, see
[28, Chaps. 1, 2, and 14].

Romberg Integration
One source of such functions A.y/ is trapezoidal
rule approximation to one-dimensional integrals of the
form I Œg	 D R b

a
g.x/dx. If we denote these approxi-

mations by T .h/, where h D .b � a/=n, n D 1; 2; : : : ;

and if g 2 C1Œa; b	, then limh!0 T .h/ D I Œg	, and
T .h/ has an asymptotic expansion, called the Euler–
Maclaurin expansion, that is of the form

T .h/  I Œg	C
1X
kD0

ckh
2k as h ! 0I

ck D B2k

.2k/Š
Œg.2k�1/.b/� g.2k�1/.a/	; k D 1; 2; : : : :

Here,Bi are the Bernoulli numbers. Of course, we also
have y D h; hence, y assumes only the discrete values
.b�a/=n, n D 1; 2; : : : ; A.y/ D T .h/,A D I Œg	, and
�k D 2k. When we apply the Richardson extrapolation
process to T .h/ with h0 D b � a and ! D 1=2, hence
hj D .b � a/=2j , j D 0; 1; : : : ; the resulting very
effective approximation scheme is called Romberg in-
tegration. It was proposed by Romberg [16].

Generalized Richardson Extrapolation Process
GREP.m/

We now introduce a comprehensive class of functions
A.y/, which we denote F.m/, m being a positive inte-
ger.

F.m/ W A.y/  AC
mX
kD1

�k.y/

1X
iD0

ˇkiy
irk

as y ! 0I �k.y/ arbitrary; rk > 0:

Here too y can be a discrete or continuous variable.
Needless to say, F.m/ is inclusive and ever growing
since m can be an arbitrary integer. Again, we assume
that A.y/ is known for y > 0, but not for y D 0, and
that we want to compute A, the limit or antilimit of
A.y/ as y ! 0. We assume that the functions �k.y/,
which we shall call “form factors” or “shape functions”
(terminology borrowed from nuclear physics), (The
true asymptotic nature ofA.y/ as y ! 0 is determined
solely by the �k.y/, hence the nuclear physics termi-
nology.) are also known for y > 0, and so are the rk.
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We also construct a very effective method, called
GREP.m/, that is suitable for extrapolating A.y/ to its
limit or antilimit A: The approximations A.m;j /n , n D
.n1; : : : ; nm/, nk � 0 integers, along with the auxiliary
unknowns Ň

ki , are defined to be solutions of the linear
systems

A.yl / D A.m;j /n C
mX
kD1

�k.yl /

nk�1X
iD0

Ň
kiy

irk
l ;

j � l � j CN I N D
mX
kD1

nk;

with the yl chosen by the user such that y0 > y1 > � � � ;
and liml!1 yl D 0.

“Column” sequences fA.m;j /n g1
jD0 with n fixed and

“diagonal” sequences fA.m;j /.�;:::;�/g1
�D0 with j fixed seem

to converge, and this can be proved rigorously under
certain conditions, at least for some cases. Both numer-
ical experience and some theory suggest that the best
approximations to A are provided by the “diagonal”
sequences. For all these developments, see Sidi [19]
and [28, Chap. 4].

W-algorithm: For m D 1, GREP.1/ can be im-
plemented by using the W-algorithm of Sidi [21] as
follows: Using the simpler notation r D r1 and �.y/ D
�1.y/, first let t D yr , a.t/ D A.y/, and '.t/ D �.y/,
and also tl D yrl , l D 0; 1; : : : . Next, set

M
.j /
0 D a.tj /

'.tj /
; N

.j /
0 D 1

'.tj /
; j D 0; 1; : : : :

Next, compute M.j /
n and N.j /

n , n D 1; 2; : : : ; recur-
sively via

M.j /
n D M

.jC1/
n�1 �M

.j /
n�1

tjCn � tj
;

N .j /
n D N

.jC1/
n�1 �N

.j /
n�1

tjCn � tj ; j D 0; 1; : : : :

Finally, set

A.j /n D M
.j /
n

N
.j /
n

; j ; n D 0; 1; : : : :

Here we have let A.1;j /n D A
.j /
n for short.

When r1 D � � � D rm, the “diagonal” sequences
fA.m;j /.�;:::;�/g1

�D0 with j fixed can be computed recursively

and in a very efficient manner by the W.m/-algorithm
of Ford and Sidi [6]. See also [28, Chap. 7 and Ap-
pendix I]. Recall that the “diagonal” sequences have
the best convergence properties.

Before closing, we mention that the class F.1/

contains the sequence classes b.1//LOG and b.1//LIN
as subclasses. Trapezoidal rule approximations T .h/
from simple regular integrals or integrals with
endpoint singularities and product trapezoidal rule
approximations from multidimensional regular or
singular integrals over hypercubes and hypersimplices
are also contained in the classes F.m/ with appropriate
values of m. The asymptotic expansions of T .h/
that result from such integrals are generalizations of
the Euler–Maclaurin expansion above. In addition,
sequences in b.m//GLIN are in F.m/ as well, as can be
seen by their definition, and the analysis of GREP.m/

as applied to sequences in b.m//GLIN is the subject of
the recent paper [29]. In the next section, we visit two
important sources of functions in F.m/ with arbitrarym
and also discuss the corresponding GREP.m/’s.

Finally, since we need both A.y/ and the m shape
functions �k.y/ for applying GREP.m/, and normally
only A.y/ is available, we may be wondering what to
take for the �k.y/. In the D- and d -transformations
we discuss in the next section, we will see that these
functions are readily available in terms ofA.y/; further
convenient ones can be derived in simple ways.

One important advantage of the way we have de-
fined GREP.m/ is the arbitrariness of the yl , which are
being chosen by the user. This helps to deal with nu-
merical stability problems that arise in many situations,
as we will discuss briefly in the last section.

Levin–SidiD- and d-Transformations

In this section, we describe an extrapolation method,
called the D-transformation, for computing infinite-
range integrals of integrands in function classes we
denote B.m/. We also describe an extrapolation method,
called the d -transformation, for summing infinite se-
ries whose element sequences belong to classes we
denote b.m/. Both B.m/ and b.m/ are subclasses of F.m/

with r1 D � � � D rm as we will see soon, and the D-
and d -transformations are GREP.m/’s. Both transfor-
mations can be implemented in the most efficient way
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by the Sidi–Ford W.m/-algorithm. Both of the methods
and the accompanying developments are due to Levin
and Sidi [10]. See also Sidi and Levin [33] and [28,
Chaps. 5 and 6] for later developments and more de-
tails. When applied sequentially, these methods can
be used to compute infinite-range multiple integrals
and infinite multiple series. For this and other devel-
opments concerning multiple integrals and series, see
Levin and Sidi [11] and [28, Sect. 25.12].

D-Transformation for Infinite Integrals

This transformation was developed for computing
infinite integrals of the form

R1
a f .t/ dt; for a � 0,

where the f .x/ belong to a class of functions we
denote B.m/.

Function class B.m/: We define B.m/ to be the class
of functions f .x/ that satisfy linear homogeneous
differential equations of the form

f .x/ D
mX
kD1

pk.x/f
.k/.x/I pk.x/ 

1X
sD0

pksx
ik�s

as x ! 1; ik integer; ik � k:

Most special functions, their sums, and their products,
and much more, seem to belong to B.m/ for some m;
the value of m can be guessed at using some simple
rules of thumb described in [10] and [28].

If the function is integrable at infinity, then, under
certain mild conditions, there holds

F.x/  I Œf 	C
m�1X
kD0

x�kf .k/.x/

1X
iD0

ˇkix
�i

as x ! 1;

where

I Œf 	 D
Z 1

a

f .t/ dt I F.x/ D
Z x

a

f .t/ dt I

�k integer, �k � k C 1:

Picking a sequence fxlg, such that a < x0 < x1 <

� � � ; and liml!1 xl D 1; the D-transformation is
then based on this asymptotic expansion of F.x/ as
x ! 1, and the approximationsD.m;j /

n to I Œf 	, where

n D .n1; : : : ; nm/, are defined via the systems of linear
equations

F.xl / D D.m;j /
n C

mX
kD1

xkl f
.k�1/.xl /

nk�1X
iD0

Ň
kix

�i
l ;

j � l � j CN I N D
mX
kD1

nk:

The finite-range integrals F.xl / can be computed as
the sum F.xl/ D Pl

iD�1
R xi
xi�1

f .t/ dt , with x�1 D a,
by using, for example, a low-order Gaussian quadra-
ture formula for each integral in this sum.

In case f .x/ is not integrable at infinity, I Œf 	 can
still be defined in the sense of Hadamard finite part
and/or as the Abel sum of

R1
a
f .t/ dt ; that is, I Œf 	

serves as the antilimit ofF.x/ as x ! 1. See Sidi [23]
and [27] and also [28, Sect. 5.7]. TheD-transformation
approximates I Œf 	 with high accuracy whether I Œf 	 is
the limit or antilimit of F.x/ as x ! 1.

The asymptotic expansion of F.x/ given above
serves also as the starting point for the development of
very economical methods in case f .x/ is oscillatory
at infinity. The resulting methods, namely, the ND-,
W -, and mW -transformations, all GREP.1/’s, are the
subject of Sidi [20, 22, 24, 26], and [32]. See also [28,
Chap. 11]. They can all be implemented by the W-
algorithm described above. These methods have been
used, among others, in theoretical physics and chem-
istry in the computation of infinite-range oscillatory
integrals that arise in the study of molecular electronic
structures.

d -Transformation for Infinite Series
This transformation was developed for summing (or
accelerating the convergence of) infinite series of the
form

P1
nD1 an, where the fang belong to a class of

sequences we denote b.m/.

Sequence class b.m/: We define b.m/ to be the class
of sequences fang that satisfy linear homogeneous
difference equations of the form

an D
mX
kD1

pk.n/�
kanI pk.n/ 

1X
sD0

pksn
ik�s

as n ! 1; ik integer; ik � k:
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Most special functions, their sums, and their products,
and much more, seem to belong to b.m/ for somem; the
value ofm can be guessed at using some simple rules of
thumb described in [10] and [28]. In particular, ifAn DPn

kD1 ak; n D 1; 2; : : : ; and fAng 2 b.m//GLIN, then
fang 2 b.m/, and this is the situation for Fourier series
and orthogonal polynomial expansions of functions
with algebraic singularities and/or jump discontinu-
ities.

If the series converges, then, under certain mild
conditions, there holds

An�1  S.fakg/C
m�1X
kD0

n�k�kan

1X
iD0

ˇkin
�i

as n ! 1;

where

S.fakg/ D
1X
nD1

anI An D
nX

kD1
ak I

�k integer, �k � k C 1:

Picking a sequence of integers fRlg, such that 1 �
R0 < R1 < � � � ; the d -transformation is then based on
this asymptotic expansion of An as n ! 1, and the
approximations d .m;j /n to S.fakg/ are defined via the
systems of linear equations

ARl D d .m;j /n C
mX
kD1

Rkl �
k�1aRl

nk�1X
iD0

Ň
kiR

�i
l ;

j � l � j CN I N D
mX
kD1

nk:

In case
P1

nD1 an diverges, S.fakg/ can still be
defined as analytic continuation in some parameter, or
in some summability sense; that is, S.fakg/ serves as
the antilimit of fAng as n ! 1. See Sidi [25] and [28,
Sect. 6.7]. The d -transformation approximatesS.fakg/
with high accuracy whether S.fakg/ is the limit or
antilimit of fAng as n ! 1.

In case m D 1 and Rl D l C 1, l D 0; 1; : : : ; the
d -transformation becomes the L-transformation, and
we have d .1;j /n D L.j /n . For arbitrary Rl , this trans-
formation can be implemented by the W-algorithm by
letting tl D 1=Rl , a.tl / D ARl , and '.tl / D RlaRl and
A
.j /
n D d

.1;j /
n in the W-algorithm described above.

We mention that the d -transformation and the trans-
formation of Shanks are the only nonlinear methods
that accelerate the convergence of Fourier series and
orthogonal polynomial expansions.

Dealing with Numerical Instability in
Extrapolation

Before closing, we would like to mention that when
applying convergence acceleration methods in floating-
point arithmetic (or finite-precision arithmetic), we
may encounter numerical stability problems, which
limit the maximum accuracy that can be obtained and
ultimately destroy the accuracy obtained completely.
Thus, the effective treatment of the issue of numerical
stability is crucial when applying convergence accel-
eration methods. It is addressed in detail throughout
[28] and in the recent review paper by Sidi [30]. Some
examples follow.

The L-transformation and the �-algorithm both
suffer when applied to sequences in b.1//LIN when � is
close to 1 in the complex plane. (If � is sufficiently
away from 1, both methods are stable.) To cope
with this problem, we replace the L-transformation
by the d -transformation (with m D 1) with Rl D
b
.l C 1/c, l D 0; 1; : : : ; for some 
 > 1 and not
necessarily an integer. This choice of the Rl has
been called arithmetic progression sampling (APS)
in [28]. The closer � is to 1, the larger should 


be chosen. As for the �-algorithm, it should be
applied to a subsequence fA
ng, with 
 > 1 an
integer.

When applied to sequences in b.1//LOG, both meth-
ods suffer from lack of stability. So far, we do not
know how to overcome this problem when using the �-
algorithm. As for the L-transformation, we can replace
it again by the d -transformation (with m D 1), this
time with R0 D 1 and Rl D maxfb�Rl�1c; lg,
l D 1; 2; : : : ; for some � > 1 and not necessarily
an integer. This choice of the Rl has been called
geometric progression sampling (GPS) in [28]. Now,
since Rl D O.�l / for large l , and since the number
of terms to compute d .1;0/n , for example, is Rn, we
choose � 2 .1; 2/, preferably � < 1:5; so as to
prevent Rl from growing fast with l . For a most
recent application of GPS to infinite-range oscillatory
integrals, see [32].
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The d -transformation, for arbitrarym, can be stabi-
lized efficiently by using APS and GPS, depending on
the asymptotic nature of the An or of the series terms
an. In fact, they have been incorporated in the FOR-
TRAN code that implements the d -transformation (via
the W.m/-algorithm) given in [6] and [28, Appendix I].
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demic Press, New York (1975)

3. Baker, G.A., Jr., Graves-Morris, P.R.: Padé Approximants,
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Short Description

Coupled-Cluster methods applied in quantum chem-
istry reformulate the electronic Schrödinger equation
as a nonlinear equation, enabling the computation of
size-consistent high-precision approximations of the
ground-state solution for weakly correlated systems.

Introduction

The Coupled-Cluster method (CC method) is one of
the most successful and frequently used approaches
for the computation of atomic and molecular electronic
structure, that is, for the solution of the stationary
electronic Schrödinger equation, whenever high accu-
racy is required. In contrast to Hartree–Fock (HF) type
methods or methods from �Density Functional Theory
(see the respective entries in this work), high accuracy
methods have to account in particular for the quantum-
mechanical phenomenon of electronic correlation. If a
preliminarily calculated �Hartree–Fock Type Methods
reference solution – usually provided by a HF calcula-
tion – already is a good approximation to the sought
ground-state wave function, the problem is said to be
weakly correlated. CC as a post-Hartree–Fock method
(also see the entry � Post-Hartree-Fock Methods and
Excited States Modeling) then enables an efficient,
accurate, and size-extensive description of solutions of
the electronic Schrödinger equation. In this context, the
size-extensivity of the CC approach is a key aspect,
reflecting the correct scaling of correlation energy with
respect to the number of electrons.

CC methods were initially developed for the
treatment of many-body quantum systems in nuclear
physics in the 1950s and were used for quantum
chemical calculations since the 1966 initial work by
Paldus and Čı́žek, see [2] for a historical overview.
For further information, compare the excellent
review [1] and the abundance of references therein.
Recent extensions to linear response theory also

allow the size-extensive computation of various
physical and chemical properties like dipole moments,
polarizabilities and hyperpolarizabilities, excitation
energies, etc., see [7]. The CC method reformulates
the electronic Schrödinger equation as a nonlinear
equation by a parametrization via an exponential
excitation operator – a proceeding explained in more
detail in the next two sections.

Electronic Schrödinger Equation and
Basis Sets

Basic definitions. We first collect some basic facts
required to define the Coupled-Cluster method. In
chemistry, CC aims to solve the stationary electronic
Schrödinger equation in its weak formulation, that is,
to compute a wave function � such that

h˚;H� i D E�h˚;� i for all ˚ 2 H
1: (1)

In this, � is obliged to be antisymmetric and to have a
certain Sobolev regularity, so that

� 2 H
1 WD H1.R3 � f˙1

2
g;R/N

\
N̂

iD1
L2.R

3 � f˙1

2
g;R/

withH1.X;R/ denoting the set of real-valued one time
Sobolev differentiable functions on X , and where ^
denotes the antisymmetric tensor product of spaces;
H W H

1 ! H
�1 is the weak Hamiltonian, fixed by

the numbers N;K of electrons and classical nuclei of
the system and by charge Z� 2 N and fixed position
r� 2 R

3 of the latter. In atomic units, it is given by

H D �1
2

NX
iD1

�i �
NX
iD1

KX
�D1

Z�

jri � a�j

C1

2

NX
iD1

NX
jD1
j¤i

1

jri � rj j I

compare the entry by Yserentant in this � Schrödinger
Equation: Computation in Chemistry and in particular
[11] for further information on the weak formulation.

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_356
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Slater determinants. To discretize the above equa-
tion, for example, by Galerkin methods, a basis of H1

has to be constructed. As detailed in the contribution on
Hartree–Fock methods by I. Catto, this may be done by
using a complete one-particle basis set B WD f'p j p 2
Ng � H1.R3 � f˙ 1

2
g;R/; to construct out of each

N distinct indices p1 < : : : < pN 2 N a Slater
determinant

�Œp1; : : : ; pN 	 WD 1p
NŠ

det
�
'pi .xj /

�N
i;jD1;

xi D .ri ; �i /

The set B WD f�Œp1; : : : ; pN 	 j pi < piC1 2 Ig then
is a basis of the space H

1. In second quantization, the
creation operator is defined by ab�Œp1; : : : ; pN 	 D
�Œb; p1; : : : ; pN 	. Its adjoint is the correspond-
ing annihilation operator a

$

b�Œb; p1; : : : ; pN 	 D
�Œp1; : : : ; pN 	 and a$b�Œp1; : : : ; pNC1	 D 0 if b 6D pi ,
i D 1; : : : ; N . With this notation at hand, the
Hamiltonian can be expressed as

H D
X
p;r

hpr a
$
par C

X
p;q;r;s

V r:s
p;qa

$
pa

$
qasar ;

with the one- and two-electron integrals hpr , V p;q
r;s .

For more detailed information on second quantization
formulation of electronic structure problems, compare,
for example, [4].

In practice, the basisB (and thusB) is substituted by
a finite basis set Bd , inducing a Galerkin basis Bd for a
trial space contained in H

1. A Galerkin method for (1)
with Bd as basis for the ansatz space is termed Full-CI
in quantum chemistry. Because Bd usually contains far
too many functions (their number scaling exponentially
with the size of Bd ), a subset BD of Bd is chosen
for discretization. Unfortunately, traditional restricted
CI-methods, like the CISD method described in the
entry �Post-Hartree-Fock Methods and Excited States
Modeling, thereby lose size-consistency, meaning that
for a system AB consisting of two independent sub-
systems A and B , the energy of AB as computed by
the truncated CI model is no longer the sum of the
energies of A and B . In practice, this leads to inaccu-
rate computations with a relative error increasing with
the size of the system. Therefore, size-consistency and
the related property of size-extensivity are essential
properties of quantum chemical methods (see, e.g.,

[4]), which is why the linear parametrization of CI is
replaced by an appropriate nonlinear ansatz, the CC
ansatz.

Formulation of the CC Ansatz

Excitation operators. The determinant �0 WD
�Œ1; : : : ; N 	, formed from the first N basis functions
'i (or occupied orbitals, in quantum chemist’s
language), is the so-called reference determinant
of the ansatz. In practice, the above one-particle
basis Bd is obtained from a preliminary Hartree–
Fock computation, and �0 then is the Hartree–
Fock approximation of the solution of (1); for the
construction and analysis of the CC method, it is only
important that the reference is not orthogonal to �

and that the occupied orbitals 'i (i < N ) are L2-
orthogonal to the virtual orbitals 'a, a > N , so that
the solution � can be then expressed as � D �0˚��,
that is, �� is an orthogonal correction to �0.

CC is formulated in terms of excitation operators

X� WD X
a1;:::;ar
i1;:::;ir

D X
a1
i1

� � �Xar
ir

D a$a1ai1 � � � a$ar air ;
(2)

where r � N , i1 < : : : < ir � N , N C 1 � a1 <

: : : < ar . These X� can also be characterized by their
action on the basis functions �Œp1; : : : ; pN 	 2 B: If
fp1; : : : ; pN g contains all indices i1; : : : ; ir , the opera-
tor replaces them (up to a sign factor ˙1) by the or-
bitals a1; : : : ; ar ; otherwise, Xa1;:::;ar

i1;:::;ir
� Œp1; : : : ; pN 	 D

0: Indexing the set of all excitation operators by a set
M, we have in particular that B D f�0g [ f��j�� D
X��0; � 2 Mg. The convention that 'i?'a implies
two essential properties, namely, excitation operators
commute (X�X� �X�X� D 0), and are nilpotent, that
is,X2

� D 0. Note that these only hold within the single-
reference ansatz described here.

Exponential ansatz. The cluster operator of a co-
efficient vector t 2 `2.M/, t D .t�/�2M is defined
as T .t/ D P

�2M t�X�. The CC method replaces
the linear parametrization � D �0 ˚ P

�2M t�X��0
(of functions normalized by h�0; � i D 1) by an
exponential (or multiplicative) parametrization

�DeT .t/�0De.
P
�2M t�X�/�0D˘�2M.1Ct�X�/�0 :

http://dx.doi.org/10.1007/978-3-540-70529-1_237
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Choosing a suitable coefficient space V � `2.M/

reflecting the H
1-regularity of the solution, it can

be shown that there is a one-to-one correspondence
between the sets f�0 C �� j �0?�� 2 H

1g; f�0 C
T .t/�0 j t 2 Vg, and feT .t/�0 j t 2 Vg:

Coupled-Cluster equations. The latter exponential
representation of all possible solutions �0 C �� is
used to reformulate (1) as the set of unlinked Full-CC
equations for a coefficient vector t 2 V,

h˚�; .H �E/eT.t/�0i D 0; for all ˚� 2 B:

Inserting e�T .t/ yields the equivalent linked Full-CC
equations

h˚�; e�T HeT �0 i D 0 for all � 2 M;

E� D h�0;HeT �0i D h�0; e�T HeT �0i:

For finite resp. infinite underlying one-particle basis
B resp. Bd , both of these two sets of equations are
equivalent to the Schrödinger equation (1) resp. the
linear Full-CI ansatz. For two subsystems A and B
and corresponding excitation operators TA and TB , the
exponential ansatz admits for the simple factorization
eTACTB D eTAeTB . Therefore, aside from other advan-
tages, the CC ansatz maintains the property of size-
consistency.

The restriction to a feasible basis set BD � B

corresponds in the linked formulation to a Galerkin
procedure for the nonlinear function

f W V ! V
0; f .t/ WD �h�˛; e�T .t/HeT.t/�0 i�

˛2M;

(3)

the roots t� of which correspond to solutions eT .t
�/�0

of the original Schrödinger equation. This gives the
projected CC equations hf .tD/; vDi D 0 for all vD 2
VD , where VD D l2.MD/ is the chosen coefficient
Galerkin space, indexed by a subset MD of M. This
is a nonlinear equation for the Galerkin discretization f
of the function f :

f.tD/ WD �h�˛; e�T .tD/HeT.tD/�0 i�
˛2MD

D 0:

(4)

Usually, the Galerkin space VD is chosen based on the
so-called excitation level r of the basis functions (i.e.,

the number r of one-electron functions in which ��
differs from the reference �0, see, e.g., [4]). For exam-
ple, including at most twofold excitations (i.e., r � 2

in (2)) gives the common CCSD (CC Singles/Doubles)
method.

Numerical Treatment of the CC Equations

The numerical treatment of the CC ansatz consists
mainly in the computation of a solution of the nonlinear
equation f.tD/ D 0. This is usually performed by
quasi-Newton methods,

t.nC1/
D D t.n/D � F�1f.t.n/D /; t.0/D D 0 (5)

with an approximate Jacobian F given by the Fock
matrix, see below. On top of this method, it is stan-
dard to use the DIIS method (“direct inversion in the
iterative subspace”), for acceleration of convergence.
Convergence of these iteration techniques is backed by
the theoretical results detailed later. We note that the
widely used Møller–Plesset second-order perturbation
computation (MP2), being the simplest post-Hartree–
Fock or wave function method, is obtained by termi-
nating (5) after the first iteration.

For application of the iteration (5), the discrete CC
function (3) has to be evaluated. Using the properties
of the algebra of annihilation and creation operators,
it can be shown that for the linked CC equation, the
Baker–Campbell–Hausdorff expansion terminates, that
is,

e�THeT D
1X
nD0

1

nŠ
ŒH; T 	.n/ D

4X
nD0

1

nŠ
ŒH; T 	.n/

with the n-fold commutators ŒA; T 	.0/ WD A;

ŒA; T 	.1/ WD AT � TA, ŒA; T 	.n/ WD ŒŒA; T 	.n�1/; T 	.
It is common use to decompose the Hamiltonian
into one- and two-body operators H D F C U ,
where F normally is the Fock operator from the
preliminary self-consistent Hartree–Fock (or Kohn–
Sham) calculation, and where the one-particle basis
set 'p consists of the eigenfunctions of the discrete
canonical Hartree–Fock (or Kohn–Sham) equations
with corresponding eigenvalues �p . The CC equations
(4) then read
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F�;�t� � h��;
4X

nD0

1

nŠ
ŒU; T 	.n/�0i D 0;

for all � 2 MD; (6)

with the Fock matrix F D diag.��/ D diag�Pr
lD1.�al ��il /

�
. The commutators are then evaluated

within the framework of second quantization by
using Wick’s theorem and diagrammatic techniques,
resulting in an explicit representation of f as a fourth-
order polynomial in the coefficients t�, see [3] for a
comprehensible derivation.

Complexity. The most common variants of CC
methods are the CCSD (see above) and for even
higher accuracy the CCSD(T) method, see [1]. In
the latter, often termed the “golden standard of
quantum chemistry,” a CCSD method is converged
at first, scaling with the number N of electrons as
N6; then, the result is enhanced by treating triple
excitations perturbatively by one step of N7 cost in
the CCSDT basis set. While the computational cost for
calculating small- to medium-sized molecules stays
reasonable, it is thereby possible to obtain results that
lie within the error bars of corresponding practical
experiments.

Lagrange Formulation and Gradients

The CC method is not variational, which is a certain
disadvantage of the method. For instance, the com-
puted CC energy is no longer an upper bound for the
exact energy. The following duality concept is helpful
in this context: Introducing a formal Lagrangian

L.t;�/ WD h�0;HeT.t/�0i C
X
�2M

��h��; e�T .t/

HeT.t/�0i; (7)

the CC ground state isE D inft2V sup�2VL.t;�/: The
corresponding stationary condition with respect to t�
reads

@L

@t�
.t;�/ D h�0;HX�eT.t/�0i C

X
�2M

��h��; e�T .t/

ŒH;X�	e
T .t/�0iDE 0.t/C h�; f 0.t/iD0

(8)

for all � 2 M, while the derivatives with respect to
�� yield exactly the CC equations f .t/ D 0 providing
the exact CC wave function � D eT .t/�0. Afterward,
the Lagrange multiplier � can be computed from (8).
Introducing the functions

e� WD e�.t;�/ D �0 C
X
�

��e
�T �.t/�� D e�T �.t/

.1C
X
�

��X�/�0; �.t/ D eT .t/�0 ;

where T � is the adjoint of the operator T , there holds
L.t;�/ D he�.t;�/;H�.t/i together with the duality
he�;� i D 1. As an important consequence, one can
compute derivatives of energy with respect to cer-
tain parameters, for example, forces, by the Hellman–
Feynman theorem. If the Hamiltonian depends on a
parameter !, H D H.!/, then @!E D he�; .@!H/� i
holds for the respective derivatives with respect to
!. Accordingly discrete equations are obtained by re-
placing V;M by their discrete counterparts VD;MD:

The above Lagrangian has been introduced in quantum
chemistry by Monkhorst; the formalism has been ex-
tended in [7] for a linear, size-consistent CC response
theory.

Theoretical Results: Convergence and
Error Estimates

It has been shown recently in [8] that if the reference
�0 is sufficiently close to an exact wave function
� belonging to a non-degenerate ground state and
if VD is sufficiently large, the discrete CC equation
(4) locally permits a unique solution tD . If the basis
set size is increased, the solutions tD converge quasi-
optimally in the Sobolev H1-norm toward a vector
t 2 V parameterizing the exact wave function � D
eT .t/�0. The involved constant (and therefore the qual-
ity of approximation) depends on the gap between
lowest and second lowest eigenvalues and on k�0 �
�kH1 . The above assumptions and restrictions mean
that CC works well in the regime of dynamical or
weak correlation, which is in agreement with practical
experience.

The error jE.t/ � E.tD/j of a discrete ground-
state energy E.tD/ computed on Vd can be bounded
using the dual weighted residual approach of Ran-
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C

nacher: Denoting by .t;�/ the stationary points of the
Lagrangian (7) belonging to the full energy E�, and
by tD the solution of the corresponding discretized
equation f.tD/ D 0; the error of the energy can be
bounded by

jE.t/� E.tD/j .
�
d.t;Vd / C d.�;Vd /

�2

and thus depends quadratically on the distance of
the approximation subspace to the primal and dual
solutions t;� in V. Note that these estimates are
a generalization of error bounds for variational
methods, which allow for error bounds depending
solely on d.t;Vd /2, and an improvement of the
error estimates given in [6]. Roughly speaking, this
shows that CC shares the favorable convergence
behavior of the CI methods, while being superior
due to the size-consistency of the CC approxima-
tion.

Outlook: Enhancements and
Simplifications of the Canonical CC
Method

To reduce the complexity or to remedy other weak-
nesses of the method, various variants of the above
standard CC method have been proposed. We only give
a short, incomplete overview.

Local CC methods. These techniques allow to accel-
erate the CCSD computations drastically by utilizing
localized basis functions, for which the two-electron
integrals V p;q

r;s D R R
.'p.xi /'q.xj /'r.xi /'s.xj //=jri�

rj jdxidxj decay with the third power of the distance
of the support of 'p'q and 'r's. Integrals over distant
pairs can thus be neglected.

Explicitly correlated CC methods. Fast convergence
of CC to the full basis set limit is hampered by the
electron–electron cusp, caused by discontinuous higher
derivatives of the wave function where the coordinates
of two particles coincide. Explicit incorporation of the
electron–electron cusp by an r12� or f12� ansatz [5]
can improve convergence significantly. Recent density
fitting techniques (see [10]) herein allow the efficient
treatment of the arising three-body integrals.

Simplified approaches. The CCSD equation can
be simplified by linearization and/or by leaving out
certain terms in the CC equations. The random phase

approximation (RPA) or electron pair methods like
CEPA methods may be derived this way, and these
approaches may serve as starting point for devel-
oping efficient numerical methods providing almost
CCSD accuracy within a much lower computational
expense.

Multi-reference CC. Multi-reference methods [1]
aim at situations where the reference determinant is
not close to the true wave function, so that classical
CC methods fail. Unfortunately, multi-reference CC in
its present stage is much more complicated, less de-
veloped, and computationally often prohibitively more
expensive than usual Coupled Cluster.

Cross-References

�Density Functional Theory
�Hartree–Fock Type Methods
� Post-Hartree-Fock Methods and Excited States Mod-

eling
� Schrödinger Equation for Chemistry
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Short Definition

Curvelets are highly anisotropic functions in L2.R2/
with compact support in angular wedges in frequency
domain and with effective support shaped according
to the parabolic scaling principle length2 � width
in spatial domain. Generalizing the idea of wavelets,
curvelets are ideally adapted to sparsely represent two-
dimensional functions (images) that are piecewise
smooth with discontinuities along smooth curves
with bounded curvature [2]. The curvelet transform
is a nonadaptive multiscale transform with strong
directional selectivity [3].

Curvelet Transform

The curvelet elements are obtained by rotation, transla-
tion, and parabolic dilation of a suitable basic curvelet
function ' with compact support in frequency domain
bounded away from zero; see Fig. 1 (left). For the scale
a 2 .0; 1	, the location b 2 R

2, and the orientation
! 2 Œ0; 2/, they have the form

'a;b;!.x/ D a�3=4'.DaR!.x � b//; x 2 R
2 (1)

with the dilation matrix Da D diag . 1
a
; 1p

a
/ and with

the rotation matrix R! defined by the angle !. The
continuous curvelet transform �f of f 2 L2.R2/ is
given as

�f .a; b; !/ WD hf; 'a;b;!i D
Z
R
2
f .x/'a;b;!.x/ dx:

Observe that since the scale a is bounded from above
by a D 1, low-frequency functions are not contained in
the system in (1). The curvelet coefficients hf; 'a;b;!i

contain complete information about f (supposed that
Of .�/ vanishes for j�j < 2), i.e., there is a reproducing

formula of the form

f .x/ D 1
.ln 2/

R 2
0

R
R
2

R 1
0

hf; 'a;b;!i 'a;b;!.x/
da

a3=2
db

a1=2
d!
a
:

Discretization and Algorithm

Restricting to dilations aj D 2�j , j D 0; 1; : : :,
rotation angles!j;l D 2l

Nj
, l D 0; 1; : : : ; Nj �1; Nj D

4 � 2bj=2c, and translations bj;lk D R�1
!j;l
.Daj k/, k 2 Z,

the collection .'j;l;k/ with 'j;l;k WD '
aj ;b

j;l

k ;!j;l
forms

(together with a suitable low-pass function) a Parseval
frame of L2.R2/, and each function f 2 L2.R2/ can
be represented as

f D
X
j;l;k

hf; 'j;l;ki'j;l;k

with kf k2
L2

D P
j;l;k jhf; 'j;l;kij2. In particular, the

curvelets 'j;l;k form a tiling of the frequency domain,
where O'j;l;k has its essential support in an angular
wedge; see Fig.1 (right). In order to derive a fast
curvelet transform, one usually transfers the polar
tiling of the frequency domain into a pseudo-polar
tiling based on concentric squares and shears. The
fast curvelet transform is based on the fast Fourier
transform [3]. It is freely available under http://www.
curvelet.org. The curvelet transform has been also
generalized to three dimensions [3].

Applications

Curvelets have been used in various applications in im-
age processing as image denoising, sparsity-promoting
regularization in image reconstruction, contrast en-
hancement, and morphological component separation
[4, 6, 7]. Further applications include seismic explo-
ration, fluid mechanics, solving of PDEs, and com-
pressed sensing [5,6]. Moreover, the curvelet transform
is also of theoretical interest in physics; it accurately
models the geometry of wave propagation and sparsely
represents Fourier integral operators [1].

http://www.curvelet.org
http://www.curvelet.org
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Curvelets, Fig. 1 Example of a basic curvelet ' D '0;0;0 in frequency domain (left) and tiling of the frequency domain into wedges
that determine the support of 'j;l;k (right) (The figures are taken from [6])
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Synonyms

Boundary value problem (BVP); Correction scheme
(CS); Defect correction, DeC, deferred correction;
Defect, residual; Finite element method (FEM);
Full approximation scheme (FAS); Initial value
problem (IVP); Neighboring problem (NP); Ordinary
differential equation (ODE); Original problem (OP);
Partial differential equation (PDE); Truncation error
(TE); [Implicit] Runge–Kutta ([I]RK)

Introduction

Defect correction (DeC) methods (also: “deferred cor-
rection methods”) are based on a particular way to es-
timate local or global errors, especially for differential
and integral equations. The use of simple and stable
integration schemes in combination with defect (resid-
ual) evaluation leads to computable error estimates
and, in an iterative fashion, yields improved numerical
solutions.

In the first part of this entry, the underlying principle
is motivated and described in a general setting, with
focus on the main ideas and algorithmic templates. In
the sequel, we consider its application to ordinary dif-
ferential equations in more detail. The proper choice of

algorithmic components is not always straightforward,
and we discuss some of the relevant issues. There
are many versions and application areas with various
pros and cons, for which we give an overview in
the final sections. Applications to partial differential
equations (PDEs) in a variational context are briefly
discussed.

In this entry, we are not specifying all algorithmic
components in detail, e.g., concerning the required
interpolation and quadrature processes. These are nu-
merical standard procedures which are easy to under-
stand and to realize. Also, an exhaustive survey of
the available literature on the topic is not provided
here.

A word on notation: We use upper indices for
iteration counts and lower indices for numbering along
discrete grids.

Underlying Concepts and General
Algorithmic Templates

Many iterative numerical algorithms are based on the
following principle:
• Compute the residual, or “defect,” d i of a current

iterate ui .
• Backsolve for a correction "i using an approximate

solver.
• Apply the correction to obtain the next iterate

uiC1 WD ui � "i .
Stationary iterative methods for linear systems of equa-
tions are the classical examples (cf., e.g., [14]). For
starting our considerations, we think of a given,

© Springer-Verlag Berlin Heidelberg 2015
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DOI 10.1007/978-3-540-70529-1



324 Defect Correction Methods

original problem [OP] in the form of a system of
nonlinear equations:

[OP] F.u/ D 0; with exact solution u D u�.
(1)

More generally, the mapping F may also represent a
(sufficiently well-behaved) operator between infinite
dimensional spaces; the general considerations below
equally apply in such a more general setting.

Example: Local Linearization and Newton
Iteration
Let an initial approximation u0 to u� be given, with the

defect d0 WD F.u0/ of u0, (2)

the amount by which F.u0/ fails approximate
0 D F.u�/. Replace F.u/ by its local linearization
QF 0.u/ WD F.u0/CDF.u0/ .u�u0/ � F.u/, and solve

for the new approximation u1, i.e.,

QF 0.u1/ D 0 , DF.u0/.u0 � u1/ D d0 :

Iteration leads to the classical Newton method,

QF i .uiC1/ D 0 , DF.ui /.ui � uiC1
„ ƒ‚ …

DW "i
/

D F.ui /
„ƒ‚…

DWd i
; i D 0; 1; 2; : : : (3)

based on the local linearizations QF i .u/ D F.ui / C
DF.ui / .u� ui /. Due to the affine nature of the QF i .u/,
each step (3) takes the form of a linear system for
the Newton correction "i WD ui � uiC1 with defect
d i D F.ui / on the right-hand side, such that uiC1 D
ui � "i . The correction "i is an approximation for the
“exact correction,” the error ei D ui � u�. Simplified,
“quasi-Newton” schemes work in a similar way, but
with approximations J i � DF.ui / which may also
be kept (partially) fixed, e.g., J i � DF.u0/.

Templates for Error Estimation Based on
Nonlinear Approximation
[Quasi-] Newton iteration is rather special concerning
the choice of the QF i in form of local affine approxi-
mations to F . More generally, we may consider any

reasonable linear or nonlinear approximation QF i � F

to be used for iteratively solving [OP].
In view of typical applications of DeC methods, we

assume that QF � F is kept fixed but is admitted to be
nonlinear. Let us first consider a single step of such a
procedure for the purpose of estimating the error of a
given approximation u0 to u�. Consider the defect (2),
and associate u0; d 0 with the so-called neighboring
problem related to (1),

[NP] F.u/ D d0; with exact solution u D u0.
(4)

We invoke two heuristic principles, (A) and (B), for
estimating the error of u0. Originally introduced in [17]
(see also [7]), these are based on the idea that [NP] may
be considered to be closely related to [OP], provided
d0 is small enough.
(A) Let Qu and Qu0 be the solutions of QF .u/ D 0 and

QF .u/ D d0, respectively; we assume that these
can be formed at low computational cost. Con-
sidering the original and neighboring problem
together with their approximations,

[OP]: F.u�/ D 0 [NP]: F.u0/ D d0
QF .Qu/ D 0 QF .Qu0/ D d0

suggests the approximate identity

Qu0 � Qu � u0 � u�: (5)

This leads to the

defect-based error estimator "0 WD Qu0 � Qu
(6)

as a computable estimate for the error e0 WD
u0 � u�. We can use it to obtain an updated
approximation u1 in the form

u1 WD u0 � "0 D u0 � .Qu0 � Qu/:

(B) Consider the truncation error (TE) t� WD QF .u�/,
the amount by which u� fails to satisfy the ap-
proximate equation QF .u/ D 0. With Qd0 WD
QF .u0/, considering the approximate identity

QF .u�/� QF .u0/ � F.u�/ � F.u0/;
i.e., t� � Qd0 � �d0
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D

suggests to choose the

defect-based TE estimator �0 WD Qd0 � d0

D . QF � F /.u0/
(7)

as a computable estimate for the TE. Note that
�d0 D F.u�/ � d0 is the TE of u� with respect
to [NP]. In the case u0 D Qu, i.e., QF .u0/ D 0, we
have �0 D �d0 � t�.

We can use �0 to obtain an updated approxi-
mation u1 as the solution of

QF .u1/ D �0; (8)

which also provides an estimate for the error:
"0 WD u0 � u1 � u0 � u� D e0. Equation (8)
can also be written in terms of the error estimate
as

QF .u0 � "0/ D �0; (9)

approximating the error equation QF.u0� e0/D t�.
If QF .u/ D P u � c is an affine mapping, it is easy to
check that (A) and (B) result in the same error estimate
"0, which can be directly obtained as the solution of the
correction scheme (CS)

P "0 D d0; (10)

similar to (3), and the corresponding TE estimate is
�0 D .P u0 � c/ � d0.

In general, (A) and (B) are not equivalent. The
computational effort amounts to:
(A): Forming the defect d0, and solving two approxi-

mate problems to construct the error estimate "0

(B): Forming the defect d0, and also Qd0, to obtain
the TE estimate �0, and solving one approximate
problem to obtain the error estimate "0

Iterated Defect Correction (IDeC)
Both approaches (A) and (B) are designed for a
posteriori error estimation, and they can also be used to
design iterative solution algorithms, involving updated
versions of [NP] in the course of the iteration. This
leads in a straightforward way to two alternative
versions the method of Iterated Defect Correction
(IDeC).

IDeC (A) : Solve QF .Qu/ D 0 and choose an initial
iterate u0.

For i D 0; 1; 2; : : ::
• Compute d i WD F.ui /
• Solve QF .Qui / D d i
• Update uiC1 WD ui � .Qui � Qu/
The solution Qu of QF .Qu/ D 0 is required in the
initialization step, and it is usually natural to
choose u0 D Qu. The corrections Qu � ui play
the role of successive estimates for the errors
ei D ui � u�.

IDeC (B) : Choose an initial iterate u0, and let
D�1 WD � QF .u0/.

For i D 0; 1; 2; : : ::
• Compute d i WD F.ui /
• UpdateDi WD Di�1 C d i
• Solve QF .uiC1/ D �Di

Again it is natural to choose u0 D Qu, such that
Qd0 D D�1 D 0. Then the Di are simply

accumulated defects,Di D d0C: : :Cd i , and the
�Di play the role of successive approximations
for the TE t� D QF .u�/.

Remarks:
• Nonlinear IDeC is sometimes called a full approx-

imation scheme (FAS), where we directly solve
for an approximation in each step. If QF is affine,
IDeC (A) and IDeC (B) are again equivalent and
can be reformulated as a CS in terms of linear
backsolving steps for the correction "i D Qui � Qu,
as in (10).

• IDeC (B) can also be rewritten in the spirit of (9).
• Note that u� is a fixed point of an IDeC iteration

since d� WD F.u�/ D 0.
For systems of algebraic equations, choosing QF

to be nonlinear is usually not very relevant from a
practical point of view. Rather, such a procedure turns
out to be useful in a more general context, where F
represents an operator between function spaces (typi-
cally a differential or integral operator), and where QF
is a discretization of F . This leads us to the class of
DeC methods for differential or integral equations.

Application to Ordinary Differential
Equations (ODEs)

We mainly focus on IDeC (A), the “classical” IDeC
method originally due to [18]. IDeC (B) can be realized
in a similar way, and we will remark on this where
appropriate.
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A Basic Version: IDeC (A) Based on Forward
Euler
Let us identify the “original problem” F.u/ D 0 with
an initial value problem (IVP) for a system of n ODEs,

u0.x/ D f .x; u.x//; u.a/ D ˛; (11)

with exact solution u�.x/ 2 Rn. This means that our
original problem is given by

[OP] F.u/.x/ WD u0.x/ � f .x; u.x// D 0: (12)

More precisely, the underlying function spaces and the
initial condition u.a/ D ˛ are part of the complete
problem specification.

Furthermore, we identify the problem QF .u/ D 0

with a discretization scheme for (11); at the moment
we assume that a constant stepsize h is used, with
discrete grid points xj D a C j h; j D 0; 1; 2; : : :.
Consider, for instance, the first-order accurate forward
Euler scheme

U 0
jC1 � U 0

j

h
D f .xj ; U 0

j /;

j D 0; 1; 2; : : : ; U 0
0 D ˛; (13)

and associate it with the operator QF acting on
continuous functions u satisfying the initial condition
u.a/ D ˛,

QF .u/.xj / WD u.xjC1/� u.xj /

h
� f .xj ; u.xj // D 0:

(14)

Choose a continuous function u0.x/ interpolating the
U 0
j at the grid points xj . The standard choice is a

continuous piecewise polynomial interpolant of degree
p over p C 1 successive grid points, i.e., piecewise
interpolation over subintervals Ik of length p h. In the
corresponding piecewise-polynomial space Pp, u0.x/
is the solution of QF .u/ D 0. The defect d0 WD F.u0/ is
well defined,

d0.x/ D F.u0/.x/ D .u0/0.x/ � f .x; u0.x//; (15)

and u0.x/ is the exact solution of the neighboring
IVP

[NP] u0.x/ D f .x; u.x//C d0.x/; u.a/ D ˛:
(16)

We now consider a correction step u0 7! u1 of type (A),

Solve QF .Qu0/ D d0;

followed by u1.x/ WD u0.x/ � .Qu0 � u0/.x/:

This means that Qu0 2 Pp is to be understood as the
interpolant of the discrete values QU 0

j obtained by the
solution of

QU 0
jC1 � QU 0

j

h
D f .xj ; QU 0

j /C d0.xj /;

j D 0; 1; 2; : : : ; QU 0 D a;

which is the forward Euler approximation of (16),
involving pointwise defect evaluation at the grid
points xj .

According to our general characterization of
IDeC (A), this process is to be continued to obtain
further iterates ui .x/. If we usem IDeC steps in the first
subinterval I1 D Œa; aCp h�, we can restart the process
at the starting point a C p h of the second subinterval
I2, with the new initial value u.aCp h/ D um.aCp h/.
This is called local, or active mode. Alternatively, one
may integrate with forward Euler over a longer interval
I encompassing several of the Ik and perform IDeC
on I , where each individual ui .x/ is forwarded over
the complete interval. This is called global or passive
mode.

Remarks:
• In general, the exact solution u� is not in the scope

of the iteration, since the ui live in the space Pp.
But there is a fixed point Ou 2 Pp related to u�: It

is characterized by the property Od WD F.Ou/ D 0,
i.e., Ou0.xj / D f .xj ; Ou.xj // for all j . (Technical
detail: Since we are using the forward Euler scheme
Uj 7! UjC1 evaluating f and the d i at x D xj ,
for u 2 P and x an initial point of a subinterval
Ik the derivative u0.x/ is to be understood as the
right-hand limit.) This means that Ou is a so-called
collocation polynomial, and IDeC can be regarded
as an iterative method to approximate collocation
solutions. In fact, this means that, instead of (12),
the system of collocation equations
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[OP] F.Ou/.xj / D Ou0.xj /� f .x; Ou.xj // D 0
at collocation nodes xj

is rather to be considered as the effective original
problem.

• IDeC can be combined in a natural way with grid
adaptation strategies, because the requisite local or
global error estimates are built-in to the procedure.

IDeC Based on Higher Order Schemes QF :
A Bit of Theory
For IDeC applied to IVPs, any basic scheme QF may
be used instead of forward Euler. For example, in the
pioneering paper [18] a classical Runge–Kutta (RK)
scheme of order 4 was used. Using RK in the correction
steps means that in each individual evaluation of the
right-hand side the pointwise value of the current
defect is to be added (RK applied to [NP]). Many
other authors have also considered and analyzed IDeC
versions based on RK schemes.

Despite the natural idea behind IDeC, the conver-
gence analysis is not straightforward. Obtaining a full
higher order of convergence asymptotically for h! 0

requires:
• A sufficiently well-behaved, smooth problem
• A sufficiently high degree p for the local inter-

polants ui .x/
• Sufficient smoothness of these interpolants, in the

sense of boundedness of a certain number of deriva-
tives of the ui .x/, uniformly for h! 0

A theoretical tool to assure the latter smoothness prop-
erty are asymptotic expansions of the global discretiza-
tion error Qu�u� for the underlying scheme, which have
been proved to exist for RK methods over constant
stepsize sequences. A standard convergence result for
IDeC derived in this way is given in [11]; see also [16].
A typical convergence result reads as follows:

If the sequence of grids is equidistant and the under-
lying scheme has order q, then m IDeC steps result
in an error as uk.x/ � u�.x/ D O.hminfp;mqg/ for
h! 0, where p is the degree of interpolation.

The achievable order p is usually identical to the
approximation order of the fixed point Ou 2 Pp, a poly-
nomial of collocation or generalized collocation type.
The assumption on the grids appears quite restrictive.
In fact, this can be relaxed in a natural way in the
sense that the stepsize h has to be kept fixed over each

interpolation interval, which is not a very restrictive
requirement. On the other hand, it is indeed necessary,
as has been demonstrated in [2]. Otherwise the error
Qu�u� usually lacks the required smoothness properties,
despite its asymptotic order.

Naturally, IDeC can also be applied to boundary
value problems (BVPs). For second-order two-point
boundary value problems, the necessary algorithmic
modifications have first been described in [10]. Here,
special care has to be taken at the endpoints of the
interpolation intervals Ik , where an additional defect
term arises due to jumps in the derivatives of the local
interpolants.

Reformulation in Terms of Integral Equations:
IQDeC (A) and “Spectral IDeC” (= IQDeC (B))
An ODE can be transformed into an integral equation.
Taking the integral means of (11) over the interval
spanned by two successive grid points gives

u.xjC1/ � u.xj /

h
D
Z xjC1

xj

f .x; u.x// dx: (17)

Observe that the left-hand side is of the same type as
in the Euler approximation (13). Therefore it appears
natural to consider (17) instead of (11) as the original
problem. In addition, for numerical evaluation the
integral on the right-hand side has to be approximated,
typically by polynomial quadratures using the pC 1
nodes available in the current working interval Ik 3 xj .
The coefficients depend on the location of xj within Ik ;
ignoring this aspect and using Q as a generic symbol
for these quadratures leads to the “computationally
tractable,” modified original problem [OP] replacing
[OP] from (12), defined over the grid fxj g as

[OP] F.u/.xj / WD u.xjC1/ � u.xj /

h

�.Qf /.x; u.x//j D 0;(18)

more precisely, or its effective version restricted to
u 2 Pp. This is to be compared to QF from (14), which
is used in the same way as before. The treatment of
the leading derivative term u0 is the same in (18) and
in (14), which turns out to be advantageous. Equa-
tion 18 leads to an alternative definition of the defect
at the evaluation points xj , namely
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Nd i.xj / WD F.ui /.xj / D ui .xjC1/� ui .xj /

h

�.Qf /.x; ui .x//j : (19)

This may be interpreted in the sense that the original,
pointwise defect d i.x/ is “preconditioned” by apply-
ing local quadrature. All other algorithmic components
of IDeC remain unchanged, with correspondingly de-
fined neighboring problems [NP]. In [2] this version is
introduced and denoted as IQDeC (type (A)).

Variants in the spirit of IQDeC of type (B) have
also received attention in the literature; this is usually
called “spectral defect correction” and has first been
described in [9]. For a convergence proof, see [12].

Remarks:
• With an appropriate choice of defect quadrature,

the fixed point of IQDeC is the same as for IDeC.
In fact, equation Od D F.Ou/ D 0 turns out to be
closely related to a reformulation of the associated
collocation equations Ou0.xj / D f .xj ; Ou.xj // in
the form of an equivalent implicit Runge–Kutta
(IRK) scheme. In other words: The “pointwise,”
or “collocation defect” has been replaced with a
related defect of IRK type.

• There are several motivations for considering
IQDeC. One major point is that, as demonstrated
in [2], its convergence properties are much less
affected by irregular distribution of the xj . In the
forward Euler case, the normal order sequence
1; 2; 3; : : : shows up, in contrast to IDeC. For higher
order QF the precise construction of IQDeC or
spectral IDeC and its convergence behavior is more
involved and subject to recent investigations.

• For a related approach in the context of second-
order two-point boundary value problems, also per-
mitting variable mesh spacing, see [8].

• Another modification can be used to construct su-
perconvergent IDeC methods: In [2] (“IPDeC”) and
in [15], the use of an equidistant basic grid is
combined with defect evaluation at Gaussian nodes,
in a way that the resulting iterates converge to the
corresponding superconvergent fixed point (collo-
cation at Gaussian nodes).

Stiff and Singular Problems
For stiff systems of ODEs, DeC methods have been
used with some success. However, as for any other

method, the convergence properties strongly depend
on the problem at hand. The main difficulty for DeC
is that the convergence rate may be rather poor for
error components associated with stiff eigendirections.
An overview and further material on this topic can be
found in [3] or [9]; see also the numerical example
below. Actually, “stiffness” is paraphrased for quite
a large variety of linear and nonlinear phenomena
and still an active area of research, not only in the
context of DeC. Similar remarks apply to problems
with singularities.

Boundary Value Problems (BVPs) and “Deferred
Correction”
Historically, one of the first applications of a type (B)
truncation error estimator (7) appears in the context
finite-difference approximations to a BVP

u0.x/ D f .x; u.x//; B.u.a/; u.b// D 0; (20)

posed on an interval Œa; b� (with boundary conditions
represented by the function B), or higher order prob-
lems. (A classical text on the topic is [13].) For a finite-
difference approximation of u0.xj /, e.g., as in (13), an
asymptotic expansion of the TE t� is straightforward
using Taylor series and using (20):

t�.xj / D QF .u�/.xj /

D u�.xjC1/� u�.xj /
h

� �u��0.xj /

D 1

2

�

u��00.xj /C 1

6

�

u��000.xj /C : : : (21)

The idea is to approximate the leading term 1
2

�

u��00.xj /
by a second-order difference quotient involving three
successive nodes. This defines an “approximate TE”
associated with an “approximate [OP],” which corre-
sponds to a higher order discretization of (20). The
corresponding TE estimator �0 is obtained by evalu-
ating the approximate TE at a given u D u0. This is
used in the first step of an IDeC (B) procedure (see (7)–
(9)). In this context, updating the (approximate) [OP]
in course of the iteration is natural, involving difference
approximations of the higher order terms in (21), to be
successively evaluated at the iterates ui.

IDeC (B) versions of this type are usually addressed
as deferred correction techniques, and they have been
extensively used, especially in the context of boundary
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value problems. The analysis heavily relies on the
smoothness properties of the error. Piecewise equidis-
tant meshes are usually required. A difficulty to be
coped with is the fact that the difference quotients in-
volved increase in complexity and have to be modified
near the boundary and at points where the stepsize is
changed.

Defect-Based Error Estimation and Adaptivity
In practice, the DeC principle is also applied – in the
spirit of our original motivation – for estimating the
error of a given numerical solution with the purpose
of adapting the mesh. A typical case is described and
analyzed in [4]: Assume that u0 is a piecewise polyno-
mial collocation solution to the BVP (20). Collocation
methods are very popular and have favorable conver-
gence properties; they can be implemented directly or
via some version of IDeC. By definition of u0, its point-
wise defect d0.x/ D .u0/0.x/ � f .x; u0.x// vanishes
at the collocation nodes which are, e.g., chosen in the
interior of the collocation subintervals Ik . Therefore,
information about the quality of u0 is to be obtained
evaluating d0.x/ at other nodes, e.g., the endpoints of
the Ik .

For estimating the global error e0.x/D .u0� u�/.x/,
one can use the type (A) error estimator (6) based
on a low-order auxiliary scheme QF , e.g., an Euler
or box scheme, over the collocation grid. Replacing
the pointwise defect d0 by the modified defect Nd0,
analogously as in (19), is significantly advantageous,
because this version is robust with respect to the lack
of smoothness of u0 which is only a C1 function.
In [4] it has been proved that such a procedure
leads to a reliable and asymptotically correct error
estimator of QDeC type. This method of error
estimation is implemented in the software package
sbvp described in [5]. sbvp is an adaptive collocation
solver especially tuned for singular BVPs.

With an appropriately modified version of Nd0,
closely related to the defect definition from [8], the
QDeC estimator can also be extended to second (or
higher order) problems.

Example: Damped Oscillator
The second-order IVP:

u00.t/C 2� u0.t/C !2u.t/ D �2 cos t;

u.0/ D ˛; u0.0/ D ˇ (22)

describes the deflection of a driven linear, damped os-
cillator. We consider the equivalent first-order system
and consider:
(i) ! D � D 1 (low frequency, critical damping);

collocation (degree p D 4) on piecewise equidis-
tant interior nodes; estimator based on the box
scheme and the modified defect Nd0.

(ii) ! D � D 100 (high frequency, critical damping);
collocation (degree p D 4) over Gauss–Legendre
nodes; estimator based on the box scheme and the
pointwise defect d0. This is a rather stiff situation,
but both integration methods used are A-stable.

The initial data are chosen such that the resulting u.t/
is a smooth, resonant solution (a linear combination of
sin t and cos t). Figure 1 shows the global error e.t/
and its QDeC estimate ".t/ on a mesh of 32 collo-
cation subintervals over Œ0; 2��. For (i), the deviation
".t/ � e.t/ amounts to approximately 1% of the error.
On refining the mesh, one observes e.t/ D O.h4/
and ".t/ � e.t/ D O.h6/ asymptotically for h !
0, which is in accordance with the theory from [4].
For (ii), the size of the collocation error is similar as
for (i); the estimator is approximately following but
underestimating it. Here, using Nd0 instead of d0 turns
out to be less favorable, demonstrating that the correct
handling of stiff problems is not a priori obvious.

Partial Differential Equations (PDEs) and
Variational Formulation

In the context of PDEs, in particular elliptic boundary
value problem, a weak formulation of DeC techniques
is of interest. We will be brief and restrict ourselves
to an abstract, linear variational formulation. Let a.�; �/
be a bounded coercive bilinear form on a Hilbert space
V , and f a continuous linear functional defined on V
(e.g., V D H1.�/ with respect to a domain � 2 Rn).
Given the original problem in variational form,

[OP] Find u 2 V with a.u; v/ D f .v/ 8 v 2 V;
(23)

with solution u D u�, we consider its discrete analog
(e.g., arising from a Galerkin Finite Element (FEM)
discretization) defined on finite-dimensional subspace
Vh � V ,

[OP]h Find uh 2 Vh with
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Defect CorrectionMethods, Fig. 1 Error (red) and its DeC estimate (green), e.g., (22). Left: case (i). Right: case (ii)

a.uh; vh/ D f .vh/ 8 vh 2 Vh; (24)

with solution uh D u�
h . Here, h symbolizes the

underlying mesh spacing. (In practice, a.�; �/ and f .�/
are approximated numerically, but we are neglecting
this aspect.)

Assume that u0h is a given approximation to u�
h , and

we wish to estimate the error e0h WD u0h � u�
h . The

(weak) defect d0h of u0h with respect to the discrete
problem (24) is a linear functional on Vh,

d0h .vh/ WD a.u0h; vh/� f .vh/; vh 2 Vh;

and u0h is the exact solution of the neighboring problem

[NP]h Find uh 2 Vh with

a.uh; vh/Df .vh/C d0h .vh/ 8 vh 2Vh:
(25)

With an approximate form Qa.�; �/, consider the solu-
tions Quh and Qu0h of (24) and (25), respectively, with
a.�; �/ replaced by Qa.�; �/. Then, as in (5), "0h WD Qu0h �
Quh � Quh � u�

h D e0h serves as an error estimate. For
u0h D Quh, we can also determine "0h from the solution of
the CS

Find "0h 2 Vh with Qa."0h; vh/ D d0h .vh/ 8 vh 2 Vh:
(26)

We list some specific techniques. The first and
second are used for handling the large systems of
equations arising after discretization. The third one

is concerned with a posteriori estimation of the dis-
cretization error u�

h�u� (or some related functional).
• Multigrid (multilevel) methods: These are based

on recursive CS or FAS type DeC steps over hi-
erarchical grids, in combination with smoothing
procedures on each level to make the coarse grid
corrections work.

Identify (24) with the problem on the finest dis-
cretization level and consider the analogous prob-
lem on a coarser level associated with a subspace
VH � Vh. For a current iterate u0h and with an
appropriately chosen prolongation operator P W
VH ! Vh, the solution of

Find "0H 2 VH with

a."0H ; vH / D PT d0h .vH / 8 vH 2 VH ;

playing the role of (26), gives rise to the coarse-grid
correction "0h WD P "0H of Galerkin type.

Multilevel methods have become very popular,
in particular as global or local preconditioners for
Krylov-based solvers, cf., e.g., [14].

• Local defect correction methods: These are related
to domain decomposition (Schwarz type) meth-
ods; a globally defined approximate solution u0h is
improved by adding up defect corrections acting
locally on subdomains; this implicitly defines the
approximate form Qa.�; �/. The idea appears in [7,
p. 89]; see also [1]. This can also be combined with
multigrid solvers for the local problems.

• In the context of PDEs, a posteriori error estimates
for the purpose of mesh adaptation are frequently
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based on a norm kdhk of an appropriately defined
defect dh, e.g., of a FEM approximation uh. Solving
back for a direct error estimate as in the ODE
case (cf. the QDeC approach from [4]) is not so
obvious here and is not an established technique.
Rather, local contributions to kdhk are frequently
used as a measure for the local quality of uh over
the computational cells.

This methodology is refined in goal-oriented,
dual-weighted residual (DWR) methods. Consider
a discrete variational problem (24) and assume that
u�
h � u� has been computed. Let the functional
J.u/ represent a quantity of interest which is to be
controlled, e.g., a weighted average of u. Here we
assume that J.u/ is linear, and we wish to estimate
the deviation J.u�

h/ � J.u�/ D J.e�
h /. The idea is

to consider the dual problem

[DP] Find w 2 V with

a.v;w/ D J.v/ 8 v 2 V; (27)

with solution w D w�. The solutions u� and w�
of (23) and (27) are adjoint to each other via the re-
lation J.u�/ D a.u�;w�/ D f .w�/. The analogous
relation holds between the discrete versions u�

h and
w�
h , which leads to

J.e�
h / D J.u�

h/ � J.u�/ D a.u�
h ;w

�
h/ � a.u�;w�/

D f .w�
h / � f .w�/ D f .edual

h /; (28)

where edual
h WD w�

h � w� denotes the discretization
error in approximating (27). Thus, provided the
solution w� of the dual problem (27) is available,
f .edual

h / yields an exact representation for the devi-
ation J.e�

h /.
Practical realization of such a DWR estimate re-

lies on the availability of an efficient and sufficiently
accurate approximation of w�, of a better quality
than w�

h . Several techniques of this type, and the
extension to nonlinear problems, are discussed [6].
In the context of DeC, an option is to consider a
dual neighboring problem [DNP] to [DP], defined
via the defect functional ı�

h .v/ WD a.v;w�
h /� J.v/.

Then, w�
h is the exact solution of

[DNP] Find wh 2 Vh with

a.v;wh/ D J.v/C ı�
h .v/ 8 v 2 V: (29)

If Qw�
h is obtained from a Galerkin approximation

of (29), in the spirit of (24), we may invoke the
type (A) DeC estimator "dual

h WD Qw�
h � w�

h � w�
h �

w� D edual
h , and evaluate f ."dual

h /. However, in order
to make sense, the defect functional ı�

h .v/ has to be
evaluated with higher accuracy, e.g., using a higher
order interpolant of w�

h . Such an interpolation plays
the same role as the interpolation of a given ap-
proximation in the context of conventional IDeC
schemes.

Cross-References
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� Finite Difference Methods
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Synonyms

Delaunay Tessellation

Short Definition

For a set P of points in the n-dimensional Euclidean
space, the Delaunay triangulation is the triangulation
D(P) of P such that no point in P is inside the circum-
scribed n-sphere (e.g., circumcircle in two dimensions

(2D) and circumsphere in three dimensions (3D)) of
any simplex (triangle in 2D and tetrahedron in 3D)
in D(P). This fundamental property of the Delau-
nay triangulation is known as the empty circle prop-
erty. D(P) is also the dual of the Voronoi tessellation
of P.

Description

The Delaunay triangulation introduced by Boris Delau-
nay in 1934 [1] has been useful in many applications,
such as scattered data fitting and unstructured mesh
generation [2–4]. The Delaunay triangulation has been
used for mesh generation because it provides connec-
tivity information for a given set of points (Points are
sometimes referred to as nodes in mesh generation). In
addition, it has a good property in 2D: the minimum
angle of all angles of resulting triangles is minimized
[2]. For better understanding, Fig. 1 shows simple
examples of triangulation of four points. Unfortunately,
this property cannot be extended to 3D (and higher
dimensions) because of the existence of almost-zero-
volume tetrahedra known as slivers, and special care
must be taken to remove such unwanted elements [5].
The Delaunay triangulation does not exist in degener-
ated cases, such as a given set of points on the same
line. In n-dimensions, the Delaunay triangulation is not
unique if nC2 or more points are on the same n-sphere.
For example, a rectangle in 2D can be subdivided
into two triangles by a diagonal, and either of the
two diagonals creates two Delaunay triangles because
the four points of the rectangle are cocircular (e.g.,
Fig. 1c, d).

The Delaunay triangulation, however, does not ad-
dress by itself other two important aspects of mesh
generation [6]: how to generate the points for creat-
ing well-shaped elements and for achieving a smooth
element size transition and how to ensure boundary
conformity of non-convex hulls. The latter problem
is known as constrained Delaunay triangulation [7].
Moreover, the actual implementation of the Delaunay
triangulation needs a method that is not sensitive to
round-off and truncation errors when locating a point
inside or outside of the circumscribed n-sphere of an
existing simplex.

Therefore, typical Delaunay triangulation methods
require the following steps in 3D [6, 8–10]:
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D
Delaunay Triangulation, Fig. 1 (a) Non-Delaunay and (b–d) Delaunay triangles with their circumcircles for points of (a, b) a
quadrilateral and (c, d) a rectangle: the circumcircles of the non-Delaunay triangles in (a) contain other nodes

Delaunay Triangulation, Fig. 2 Delaunay triangulation in 2D
for letter i: (a) boundary points and edges; (b) two triangles cov-
ering the entire meshing domain and boundary points (white) for
reference; (c) Delaunay triangulation with 20 boundary points;

(d) Delaunay triangulation with all boundary points; (e) triangles
after those on the outside removed; (f) Delaunay triangulation
with additional interior points

1. Discretize the boundaries of the domain to be
meshed as a surface mesh, which consists of points
P, edges E, and faces F (Fig. 2a).

2. Create a box as a set of tetrahedra that covers the
entire surface mesh (Fig. 2b).

3. Perform the Delaunay triangulation of P to generate
tetrahedra. This is done by adding P one by one
to the existing tetrahedra and then updating their
connectivity (Fig. 2c).

4. Recover E and then F to obtain the original bound-
ary surface (Fig. 2d). Note that additional points
may have to be added on the boundaries to create
valid tetrahedra.

5. Remove tetrahedra outside of the meshing domain
(Fig. 2e).

6. Generate interior points and add them to the existing
tetrahedral mesh to update it using the Delaunay
triangulation (Fig. 2f).

Those steps should be easily modified for 2D triangu-
lation problems shown in Fig. 2. The points added in
steps 4 and 6 are sometimes called as Steiner points.
The Delaunay triangulation can be combined with an
advancing front method to better control point distri-
bution [11–13], especially for anisotropic or hybrid
mesh generation for high Reynolds number viscous
flow simulations.
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Introduction

The aim of this entry is to provide a concise introduc-
tion to the numerical integration of a class of delay
differential equations. The literature on this subject is
very broad and we apologize for not quoting many
interesting papers, as an exhaustive list of references

is not possible in this short entry. Nevertheless for a
deep knowledge of the subject, we remand the reader
to the recent monographs by Bellen and Zennaro [1]
and by Brunner [3] (the last one is more focused on
integral functional differential equations) and to the
wide bibliographies therein.

Delay differential equations (in short DDEs) pro-
vide a powerful means of modeling many phenomena
in applied sciences. Recent studies in several fields as
physics, biology, economy, electrodynamics (see e.g.,
[5, 9, 12] and their references) have shown that DDEs
play an important role in explaining many different
behaviors. In particular, they become very important
when ODE-based models are not able to describe the
considered phenomena due to the presence of time
lags which determine a memory in the system (as
an example relevant to Maxwell equations see [11]).
In this entry, we give an essential description of the
numerical methods for approximating solutions of a
class of DDEs. For a comprehensive introduction to
the treated subject we refer the reader to the book by
Bellen and Zennaro [1] and to the extensive bibliogra-
phy contained therein. For software issues, we refer the
reader to the last section and for recent results, which
include a new class of so-called functional continuous
numerical schemes, we refer to [2].

A Simple Illustrative Example
Consider the initial value problem for the scalar DDE
with a constant delay � D 1:

(

y0.t/ D� y.t � 1/ for t > 0

y.0/ D 1; y.t/ D 0 for � 1 � t < 0 (1)

whose solution is shown in Fig 1. The solution can
be easily computed by the so-called method of steps
which consistsin solving a sequence of ODEs y0.t/ D
gk.t/, being gk.t/ D �y.t � 1/, for t 2 Œk; k C 1�,
k � 0. Some important features are evident.
1. In order to give a meaning to the Cauchy problem,

it is necessary to provide it by an initial function in
the interval Œ�1; 0�.

2. The solution is not globally smooth but only piece-
wise even if the right-hand side and the initial
function are C1.
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Explicit Delay Differential Equations
We start by considering systems of delay differential
equations in the autonomous (which is not restrictive)
explicit form:

(

y0.t/ D f
�

y.t/; y
�

˛.t; y.t//
�
�

y.t0/ D y0 y.t/ D '.t/;

t 2 .t0; T �
t < t0

;

(2)

where T > t0 is a given constant, y 2 R
d .d � 1/,

'.t/ 2 R
d is a given initial function, f is a real val-

ued vector function, ˛.t; y.t// represents the deviating
argument (often written as ˛.t; y.t// D t � �.t; y.t//
in terms of the delay �.t; y.t// � 0), y

�

˛.t; y.t//
�

de-
notes the solution computed at ˛.t; y.t// � t . The case
of several delays is straightforward. The value '.t0/
may be different from y0, allowing a discontinuity at t0.

Breaking Points
If y0 ¤ '.t0/, the solution is obviously discontinuous
at t0. However, even when y0 D '.t0/ the right-
hand derivative y0.t0/, which is given by the delay
differential equation, is not equal in general to the left-
hand derivative ' 0.t0/. This lack of smoothness at t0
typically propagates along the integration interval. In
fact, as soon as ˛.�; y.�// D t0 for some � > t0,
the function f .y.t/; y .˛.t; y.t//// is not smooth at
�. In general, this creates a further jump discontinuity
in some derivatives of the solution y.t/ at �, which will
be propagated in turn. In the literature, these points are
called breaking points (see e.g., [1, 10]). In the case of
a constant delay ˛.t; y/ D t � � , the breaking points
are �k D t0 C k� for k � 1. A jump discontinuity at
t0 leads in general to a jump discontinuity at �1 in the
first derivative of y.t/; this determines in turn a jump
discontinuity at �2 in the second derivative of y.t/ and
similarly for further points. Observe that only some of
these breaking points are important for the numerical
integration, because discontinuities in a sufficiently

high derivative of the solution are not significant in
terms of the numerical method.

Numerical Integration

Consider a mesh � D ft0; t1; : : : ; tN D T g which
is usually determined adaptively. A general approach
should take into account that in general, the solution
in the past required at mesh points is unknown since
˛.tn; yn/ is not a mesh point. This suggests the follow-
ing strategy:
1. Choose a discrete method for solving ODEs.
2. Choose a continuous extension of the method (see

e.g., [13]) which provides a uniform approximation
	.t/ of the solution y.t/.

3. Compute the relevant breaking points f�j gj�1 (or-
dered in ascending way) and apply subsequently the
method to the problems

(

x0.t/Df
�

x.t/; 	
�

˛.t; x.t//
�
�

x.�k�1/D	.�k�1/
t 2 Œ�k�1; �k�

(3)

Note that this is possible only if the delay does not
vanish; otherwise, breaking points would not be well
separated. If the chosen method is a continuous method
(like a collocation method) step (2) is obtained directly.
In this article, for the sake of brevity, we confine the
discussion to Runge-Kutta (RK) methods.

Continuous Runge-Kutta Methods
For a classical ODE:

�

y0.t/ D g�t; y.t/�; t0 � t � T;
y.t0/ D y0;

an s-stage Runge-Kutta method with coefficients faij g,
abscissæ fcig, and weights fbig (i; j D 1; : : : ; s) has
the form (where hn is the step size):

Y
.n/
i D yn C hn

s
X

jD1
aij g

�

tn C cj hn; Y .n/j

�

;

i D 1; : : : ; s

ynC1 D yn C hn
s
X

iD1
bi g

�

tn C cihn; Y .n/i

�

;
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which provides an approximate solution ynC1 of the
solution y.tnC1/ starting from the knowledge of an
approximate solution yn of the solution y.tn/. The
continuous extension of the method 	.t/ is defined
in each subinterval Œtn; tnC1� of the mesh � by a
continuous quadrature rule of the form:

	 .tn C 
hn/

D yn C hn
s0
X

iD1
bi .
/ g

�

tn C cihn; Y .n/i

�

(4)

where bi.
/ is a polynomial for all i D 1; : : : s0. In
general s0 � s and one has to consider extra stages but
here – for simplicity – we limit ourselves to consider
the case s0 D s. In order to guarantee the global
continuity of the interpolant, we make the assumption
bi .0/ D 0; bi .1/ D bi for i D 1; : : : ; s. For a complete
description of natural continuous extensions of Runge-
Kutta methods, we refer the reader to [1, 13].

Runge-Kutta Methods for Delay Differential
Equations
Methods for approximating numerically the solution of
(2) are obtained by applying a continuous Runge-Kutta
method to (3):

Y
.n/
i D yn C hn

s
X

jD1
aij f

�

Y
.n/
j ; Z

.n/
j

�

;

i D 1; : : : ; s

ynC1 D yn C hn
s
X

iD1
bi f

�

Y
.n/
i ; Z

.n/
i

�

;

where, denoting as ˛.n/j D ˛
�

tnCcj hn; 	
�

tnCcj hn
��

,

Z
.n/
j D

8

ˆ
<

ˆ
:

'
�

˛
.n/
j

�

if ˛.n/j < t0

	
�

˛
.n/
j

�

if ˛.n/j � t0:

Observe the implicit character of the problem in the de-
pendence of ˛.n/j on the stage values fY .n/i gsiD1 through
the current continuous extension 	 (see (4)) when-
ever ˛.n/j 2 Œtn; tnC1�. (This situation is referred as
overlapping.) Also note that in the simple case where
˛.t; y.t// D t � � (with � > 0) we just have ˛.n/j D
tn C cj hn � � .

Implicit, Stiff, and Neutral Problems

We consider next IVPs for implicit delay differential
equations of the form:

8

<

:

M y0.t/D f
�

y.t/; y .˛.t; y.t///
�

;

y.t0/ D y0 y.t/ D '.t/;

(5)

whereM is a constant matrix, possibly singular.
The considered class of problems includes retarded

differential-algebraic systems, stiff and singularly per-
turbed problems, and also neutral delay differential
equations, that is, problems where f depends also on
y0 .˛.t; y.t///. In fact the equation:

y0.t/ D f
�

y.t/; y .˛.t; y.t/// ; y0 .˛.t; y.t///
�

;

can be written as

y0.t/ D z.t/;

0 D f .y.t/; y .˛.t; y.t/// ;
z .˛.t; y.t////� z.t/:

This in turn is equivalent to:

M v0.t/ D F .v.t/; v .˛ .t;M v.t////

where

v D
�

y

z

�

; M D
�

I 0

0 0

�

;

and I is the d 	 d -identity matrix.

Collocation Methods for Implicit Problems
Consider an s-stage implicit Runge-Kutta collocation
method (see [8]) and assume that the method is stiffly
accurate so that bi D asi for i D 1; : : : ; s. One step is
given by:

M
�

Y
.n/
i � yn

�

D hn

s
X

jD1
aij f

�

Y
.n/
j ; Z

.n/
j

�

;

i D 1; : : : ; s (6)

where ynC1 D Y
.n/
s approximates the solution at time

tnChn. In order to determineZ.n/
j which has to provide

an approximation to y .˛.t; y.t/// at t D tnCcj hn, we

recall that ˛.n/j WD ˛.tn C cj hn; Y .n/j /. Here the dense
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D

output 	.t/ is given step-by-step by the collocation
polynomial um.t/ of degree s, which is available for
tm � t � tmC1:

um.tm C #hm/ D
s
X

iD0
Li .#/Y .m/i # 2 Œ0; 1�;

where Y .m/0 WD ym and Li .#/ is the Lagrange poly-
nomial satisfying Li .cj / D ıij with ıij the Kronecker
delta symbol (we add c0 D 0 to the abscissas of the
method). In intervals succeeding to breaking points, the
dense output polynomial can be better replaced by:

vm.tm C #hm/ D
s
X

iD1
Li .#/Y .m/i # 2 Œ0; 1�;

which interpolates the internal stage values but not ym
(see Sect. 2 of [6]). The use of this option is important
in order to improve the accuracy in the presence of a
jump discontinuity in the solution since it allows to also
have a discontinuity in the dense output approximation
of the solution. In fact, one has in general vm.tm/ ¤
ym D um�1.tm/. Whenever ˛.n/j 2 Œtn; tnC1�, that is,
in case the delay is smaller than the current step size,
um.˛

.n/
j / (and also vm.˛

.n/
j /) depend on the unknown

stage values Y .n/1 ; � � � ; Y .n/s . This determines a stronger
coupling of the system of Runge-Kutta equations (6).
The use of the three-stage Radau IIA method as basic
integrator, whose good stability properties have been
widely investigated (see [1]), has led to the code
RADAR5 (see [6] and [7]).

Accurate Computation of Breaking Points
A fundamental issue in order to preserve the expected
precision of a numerical method is that of accurately
computing breaking points. The problem is to find the
zeros of:

ˇ.t I �/ D ˛ .t; u.t// � �; (7)

where � is a previous breaking point and u.t/ is a
suitable approximation to the solution. A natural way
to detect the presence of a breaking point in the current
interval Œtn; tn C hn� is to look for a sign change in
(7) when the step is rejected (see also [4] for explicit

Runge-Kutta methods). Assume a breaking point � has
been detected, that is, ˇ.tnI �/ ˇ.tn C hnI �/ < 0: In
order to obtain an accurate approximation of � (that
is, with the same accuracy of the solution), one can
consider hn as a variable in (6) and impose that � is
approximated by tn C hn. This leads to the augmented
system:

M
�

Y
.n/
i � yn

�

D hn

s
X

jD1
aij f

�

Y
.n/
j ; Z

.n/
j

�

;

i D 1; : : : ; s (8)

˛ .tn C hn; un.tn C hn// D � (9)

for the unknowns Y .n/1 ; : : : ; Y
.n/
s , and hn. Note that

un.t/ is the dense output of the current step and there-
fore depends on the stage values fY .n/i gsiD1. For given
hn, the system (8) is solved by a simplified Newton
iteration which exploits the structure of the system (see
[6]). In order to preserve such structure, the system (8)
and (9) can be efficiently solved by means of a splitting
method. If this converges and the error is small enough,
tn C hn is labeled as a breaking point. Otherwise the
step size is reduced.

Solving the Runge-Kutta Equations
Finally, we discuss the solution of the RK equations
focusing our attention to the particular case when
overlapping occurs (that is, the deviating argument falls
into the current interval Œtn; tn C hn�). The RK system
(6) has the form (for i D 1; : : : ; s):

F
.n/
i

�

Y
.n/
1 ; � � � ; Y .n/s

�

DM
�

Y
.n/
i � yn

�

�hn
s
X

jD1
aij f

�

Y
.n/
j ; Z

.n/
j

�

Y
.n/
1 ; � � � ; Y .n/s

��

D 0

for the unknowns Y .n/1 ; � � � ; Y .n/s . For convenience, in
the sequel, we omit the dependence on n and denote by
f .y; z/ the right-hand side of (5). We are interested in
solving previous system by means of a Newton-based
process. We consider the approximation:

@Fi

@Yk
� M ıik � hn .aik Dk C Eik/;
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where ıik is the Kronecker delta, ˛0 D ˛.tn; yn/ and

Dk WD @f

@y
.yn; zn/C @f

@z
.yn; zn/ 	

0.˛0/
@˛

@y
.yn/;

Eik WD
s
X

jD1
aij

@f

@z
.yn; zn/

@Zj

@Yk
:

We get (with 
j D
�

˛.tn C cj hn; Yj /� tn
�

=hn):

@Zj

@Yk
D Ujk I; Ujk D

�Lk.
j / if 
j > 0

0 otherwise:

(10)

Note that U D O if no overlapping occurs. We compute
the Jacobian of F as:

J D I ˝M � hn A˝
�

@f

@y
C @f

@z
	0.˛0/

@˛

@y

�

�hn A � U ˝ @f

@z
; (11)

where A D faij g is the matrix of the coefficients of
the Runge-Kutta method, @f =@y and @f =@z denote the
matrices of the partial derivatives of f with respect to
the variables y and z respectively, @˛=@y denotes the
row vector of the partial derivatives of ˛ with respect
to y, and the matrix U is given by (10). Based on
the approximation (see [2]) U � � Is; where � �!
min O�2R kU � O� Isk2F, and Is is the s	s identity matrix,
it is possible to take advantage of the tensor structure
of J and transform it (if A is invertible) into block-
diagonal form, in analogy to what is done in the ODE
case [8]. For the three-stage Radau-IIa collocation
method, the LU decomposition of the transformed
Jacobian is about five times less expensive than the pre-
transformed matrix (11).

Software

Here is a list of codes for the time integration of
systems of delay differential equations:
• ARCHI (by Paul), DDE23 (by Shampine and

Thompson), DDVERK (by Hayashi and Enright),
DKLAG6 (by Thompson), DDE-SOLVER (by

Shampine and Thompson), and RETARD (by
Hairer and Wanner) are based on explicit Runge-
Kutta methods.

• SNDDELM (by Jackiewicz and Lo) is based on an
explicit multistep method.

• DDE-STRIDE (by Baker, Butcher and Paul) and
RADAR5 (by Guglielmi and Hairer) are based on
implicit Runge-Kutta methods.

• DIFSUB-DDE (by Bocharov, Marchuk and Ro-
manyukha) is based on BDF formulas.
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Introduction

We solve numerically an initial value problem, IVP, for
a first-order system of ordinary differential equations,
ODEs. That is, we approximate the solution y.t/ of

y0.t/ D f .t; y.t//; t0 � t � tF

that has given initial value y.t0/. In the early days this
was done with pencil and paper or mechanical calcu-
lator. A numerical solution then was a table of values,
yj � y.tj /, for mesh points tj that were generally
at an equal spacing or step size of h. On reaching tn
where we have an approximation yn, we take a step
of size h to form an approximation at tnC1 D tn C h.
This was commonly done with previously computed
approximations and an Adams-Bashforth formula like

ynC1 D yn C h
	

23

12
fn � 16

12
fn�1 C 5

12
fn�2




: (1)

Here fj D f .tj ; yj / � f .tj ; y.tj // D y0.tj /. The
number of times the function f .t; y/ is evaluated is an
important measure of the cost of the computation. This
kind of formula requires only one function evaluation
per step.

The approach outlined is an example of a discrete
variable method [9]. However, even in the earliest
computations, there was a need for an approximation to
y.t/ between mesh points, what is now called a contin-
uous extension. A continuous extension on Œtn; tnC1� is
a polynomial Pn.t/ that approximates y.t/ accurately
not just at end of the step where Pn.tnC1/ D ynC1, but
throughout the step. Solving IVPs by hand is (very)
tedious, so if the approximations were found to be
more accurate than required, a bigger step size would
be used for efficiency. This was generally done by
doubling h so as to reuse previously computed values.
Much more troublesome was a step size that was not

small enough to resolve the behavior of the solution
past tn. Reducing h to h0 amounts to forming a new
table of approximations at times tn � h0; tn � 2h0; : : :
and continuing the integration with this new table
and step size. This was generally done by halving
h so as to reuse some of the previously computed
values, but values at tn � h=2; tn � 3h=2; : : : had to be
obtained with special formulas. Continuous extensions
make this easy because the values are obtained by
evaluating polynomials. Indeed, with this tool, there is
no real advantage to halving the step size. To solve hard
problems, it is necessary to vary the step size, possibly
often and possibly by large amounts. In addition, it
is necessary to control the size of the step so as to
keep the computation stable. Computers made this
practical. One important use of continuous extensions
is to facilitate variation of step size.

Some applications require approximate solutions
at specific points. Before continuous extensions were
developed, this was done by adjusting the step size
so that these points were mesh points. If the natu-
ral step size has to be reduced many times for this
reason, we speak of dense output. This expense can
be avoided with a continuous extension because the
step size can be chosen to provide an accurate result
efficiently and a polynomial evaluated to obtain as
many approximations in the course of a step as needed.
This is especially important now that problem-solving
environments like MATLAB and graphics calculators
are in wide use. In these computing environments, the
solutions of IVPs are generally interpreted graphically
and correspondingly, we require approximate solutions
at enough points to get a smooth graph.

The numerical solution of ODEs underlies contin-
uous simulation. In this context, it is common that a
model is valid until an event occurs, at which time
the differential equations change. An event is said to
occur at time t� if g.t�; y.t�// D 0 for a given event
function g.t; y/. There may be many event functions
associated with an IVP. Event location presents many
difficulties, but a fundamental one is that in solving the
algebraic equations, we must have approximations to
y.t/ at times t that are not known in advance. With
a continuous extension, this can be done effectively
by testing g.tn; yn/ and g.tnC1; ynC1/ for a change of
sign. If this test shows an event in Œtn; tnC1�, it is located
accurately by solving g.t�; Pn.t�// D 0.

In the following sections, we discuss briefly contin-
uous extensions for the most important methods for
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solving IVPs numerically. In the course of this dis-
cussion, we encounter other applications of continuous
extensions. Providing an event location capability for
a wide range of methods was the principal reason
for developing the MATLAB ODE suite [13]. A few
details about this will make concrete our discussion of
some approaches to continuous extensions.

Linear MultistepMethods

Adams-Bashforth formulas are derived by approximat-
ing the integrated form of the differential equation

y.t/ D y.tn/C
Z t

tn

f .x; y.x// dx;

with an interpolating polynomial. Previously computed
slopes fn; fn�1; : : : ; fn�kC1 are interpolated with a
polynomialQ.x/ and then

Pn.t/ D yn C
Z t

tn

Q.x/ dx: (2)

The Adams-Bashforth formula of order k, ABk, is
ynC1 D Pn.tnC1/. The example (1) is AB3. A very
convenient aspect of this family of formulas is that the
polynomial Pn.t/ is a natural continuous extension.
The Adams-Moulton formulas are constructed in the
same way except that Q.x/ also interpolates the un-
known value f .tnC1; ynC1/. This results in implicitly
defined formulas such as AM3

ynC1 D ynCh
	

5

12
f .tnC1; ynC1/C 8

12
fn � 1

12
fn�1




:

The new value ynC1 of an implicit Adams-Moulton
formula is computed by iteration. In practice, this costs
a little less than twice as many function evaluations
as an explicit Adams-Bashforth formula. However, the
Adams-Moulton formulas are more accurate and more
stable, so this is a bargain. The point here, however, is
that a natural continuous extension (2) is available for
these formulas too.

Another important family of formulas is based on
interpolation of previously computed values. The back-
ward differentiation formulas, BDFs, are defined by
a polynomial Pn.t/ that interpolates solution values
ynC1; yn; : : : and satisfies the differential equation at

tnC1, i.e., P 0
n.tnC1/ D f .tnC1; Pn.tnC1//. For instance,

BDF3 is

hf .tnC1; ynC1/ D 11

6
ynC1 � 3yn C 3

2
yn�1 � 1

3
yn�2:

These formulas are implicit, and evaluating them ef-
ficiently is the principal challenge when solving stiff
IVPs. Here, however, the point is that these methods
are defined in terms of polynomials Pn.t/ which are
natural continuous extensions.

The formulas exhibited are linear combinations of
previously computed values and slopes and in the
case of implicit formulas, the value and slope at the
next step. They are representative of linear multistep
methods, LMMs [9]. By using more data, it is possible
to obtain formulas of higher order, but they have seri-
ous defects. The Adams methods and closely related
methods called predictor-corrector methods are very
popular for the solution of non-stiff IVPs, and the
BDFs are very popular for stiff IVPs. All these methods
have natural continuous extensions, which contributes
to their popularity. And, from the derivation outlined,
it is clear that the methods are defined for mesh points
that are not equally spaced. Some popular programs
work with constant step size until a change appears
worth the cost. This is standard for BDFs, including
the ode15s program of Shampine and Reichelt [13].
Other programs vary the step size, perhaps at every
step. This is less common, but is the case for the
Adams-Bashforth-Moulton predictor-corrector method
of ode113 [13]. A continuous extension for other
LMMs can be constructed by interpolation to all the
values and slopes used by the formula (Hermite in-
terpolation). With some care in the selection of step
size, this is a satisfactory continuous extension. Still,
only a very few other LMMs are seen in practice.
One, the midpoint rule, underlies a popular approach
to solving IVPs discussed in the section “Extrapolation
Methods.”

Runge-Kutta Methods

Using previously computed values causes some diffi-
culties for LMMs. For instance, where do these values
come from at the start of the integration? Runge-
Kutta, RK, methods use only information gathered
in the current step, so are called one-step methods.
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An explicit RK formula of three function evaluations,
or stages, has the form

yn;1 D yn;

yn;2 D yn C hˇ2;1fn;1;
yn;3 D yn C h Œˇ3;1fn;1 C ˇ3;2fn;2� ;
ynC1 D yn C h Œ�1fn;1 C �2fn;2 C �3fn;3� :

Here tn;j D tn C ˛j h and fn;j D f .tn;j ; yn;j /. The
coefficients ˛j ; ˇj;k; and�j are chosen primarily to
make ynC1 approximate y.tnC1/ to high order. It is
easy to find coefficients that make a LMM as high
an order as possible because they appear in a linear
way. This is very much more complicated and difficult
with RK methods because the coefficients appear in a
nonlinear way. The higher the order, the more algebraic
equations, the equations of condition, and the number
increases rapidly with the order. It is actually easy to
find formulas of any given order – the trick is to find
formulas of few stages. It is known that it takes at least
k stages to get a formula of order k. In this case, it is
possible to get order 3 with just three stages. Typically
RK formulas involve families of parameters, and that
is the case for this example.

Explicit RK methods are much more expensive in
terms of function evaluations than an explicit Adams
method, but they are competitive because they are more
accurate. However, for this argument to be valid, a
program must be allowed to use the largest step sizes
that provide the specified accuracy. As a consequence,
it is especially inefficient with RK methods to obtain
output at specific points by reducing the step size so
as to produce a result at those points. Event location
is scarcely practical for RK methods without a con-
tinuous extension. Unfortunately, it is much harder to
construct continuous extensions for RK methods than
for LMMs.

An obvious approach to constructing a continuous
extension is to use Hermite polynomial interpolation
to yn; yn�1; : : : and fn; fn�1; : : :, much as with LMMs.
Gladwell [6] discusses the difficulties that arise when
interpolating over just two steps. An important ad-
vantage of RK methods is that they do not require a
starting procedure like the methods of section “Linear
Multistep Methods,” but this approach to continuous
extension does require starting values. Further, con-
vergence of the approximation requires control of the

rate of increase of step size. This approach can be
used at low orders, but a more fundamental difficulty
was recognized as higher-order formulas came into
use. In the case of explicit Adams methods, the step
size is chosen so that an interpolating polynomial
provides an accurate approximation throughout the
step. Runge-Kutta methods of even moderate order use
much larger step sizes that are chosen independent
of any polynomial interpolating at previous steps. In
practice, it was found that the interpolating polynomial
does not achieve anything like the accuracy of the
approximations at mesh points.

The resolution of an important difference between
RK methods and LMMs is crucial to the construction
of satisfactory continuous extensions. This difference
is in the estimation of the error of a step. LMMs can
use previously computed values for this purpose. There
are several approaches taken to error estimates for RK
methods, but they are equivalent to taking each step
with two formulas of different orders and estimating
the error of the lower-order formula by comparison.
RK methods involve a good many stages per step, so
to make this practical, the two formulas are constructed
so that they share many function evaluations. Generally
this is done by starting with a family of formulas and
looking for a good formula that uses the same stages
and is of one order lower. Fehlberg [5] was the first to
introduce these embedded formulas and produce useful
pairs. For example, it takes at least six stages to obtain
an explicit RK formula of order 5. He found a pair of
orders 4 and 5 that requires only the minimum of six
stages to evaluate both formulas. Later he developed
pairs of higher order [4], including a very efficient (7,
8) pair of 13 stages.

Another matter requires discussion at this point.
If each step is taken with two formulas, it is only
natural to advance the integration with the higher-order
formula provided, of course, that other properties like
stability are acceptable. After all, the reliability of the
error estimate depends on the higher-order formula
being more accurate. In this approach, called local ex-
trapolation, the step size is chosen to make the lower-
order result pass an error test, but a value believed to
be more accurate is used to advance the integration. All
the popular programs based on explicit RK methods do
local extrapolation. There is a related question about
the order of a continuous extension. If the formula
used to advance the integration has a local error that
is O.hpC1/, the true, or global, error y.tn/ � yn is
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O.hp/, which is to say that the formula is of order p.
Roughly speaking, for a stable problem and formula,
errors at each step that are O.hpC1/ accumulate after
O.1=h/ steps to yield a uniform error that is O.hp/.
This leads us to the question as to the appropriate order
of a continuous extension. It would be natural to ask
that it has the order of the formula used to advance the
integration, but it is not used to propagate the solution,
so it can be one lower order and still achieve the
global order of accuracy. Because it can be expensive
to obtain a continuous extension at high orders, this is
an important practical matter.

Horn [10] was the first to present a modern ap-
proach to continuous extensions for RK methods. In
her approach, a family of formulas is created, one for
each point in the span of a step. Each member of the
family is a linear combination of the stages used in
the basic formula plus other stages as necessary. By
virtue of reusing stages, it is possible to approximate
the solution anywhere in the span of the step with a
small number of extra stages. In more detail, suppose
that a total of s stages are formed in evaluating the pair
of formulas. For some 0 < 
 < 1, we approximate the
solution at tnC
 D tnC
hwith an explicit RK formula
that uses these stages:

ynC
Dyn C 
h Œ�1.
/fn;1C�2.
/fn;2C : : : �s.
/fn;s � :

This is a conventional explicit RK formula of s stages
with specified coefficients ˛j ; ˇj;k for approximating
y.tn C 
h/. We look for coefficients �j .
/ which
provide an accurate approximation ynC
 . This is com-
paratively easy because these coefficients appear in
a linear way. Although we have described this as
finding a family of RK formulas with parameter 
 ,
the coefficients �j .
/ turn out to be polynomials in

 , so we have a continuous extension Pn.
/. It can
happen that there is enough information available to
obtain approximations that have an order uniform in

 that corresponds to the global order of the method.
For instance, the (4, 5) pair due to Dormand and Prince
[2] that is implemented in the ode45 program of
MATLAB is used with a continuous extension that is
of order 4. We digress to discuss some practical aspects
of continuous extensions of RK formulas with this pair
as example.

Solutions of IVPs are customarily studied in graph-
ical form in MATLAB, so the output of the solvers
is tailored to this. For nearly all the solvers, which

implement a wide range of methods, the default output
is the set ftn; yng chosen by the solver to obtain
accurate results efficiently. Generally this provides a
smooth graph, but there is an option that computes
additional results at a fixed number of equally spaced
points in each step using a continuous extension. The
(4, 5) pair implemented in ode45 must take relatively
large steps if it is to compete with Adams methods,
and correspondingly, a solution component can change
significantly in the span of a step. For this reason,
results at mesh points alone often do not provide a
smooth graph. The default output of this program is not
just results at mesh points but results at four equally
spaced points in the span of each step. This usually
provides a smooth graph. In this context, a continuous
extension is formed and evaluated at every step. The
pair does not involve many stages, so any additional
function evaluations would be a significant expense.
This is why a “free” continuous extension of order 4
was chosen for implementation.

Some of the continuous extensions can be derived in
a more direct way by interpolation [12] that we use to
raise another matter. The yn;j approximate y.tn;j /, but
these approximations are generally of low order. Some
information of high order of accuracy is to hand. After
forming the result ynC1 that will be used to advance
the integration, we can form f .tnC1; ynC1/ for use in a
continuous extension. Certainly we would prefer con-
tinuous extensions that are not only continuous but also
have a continuous derivative from one step to the next.
To construct such an extension, we must have fnC1.
Fortunately, the first stage of an explicit RK formula is
always fn D f .tn; yn/, so the value fnC1 is “free” in
this step because it will be used in the next step. We
can then use the cubic Hermite interpolant to value and
slope at both ends of the step as continuous extension.
Interpolation theory can be used to show that it is an
excellent continuous extension for any formula of order
no higher than 3. It is used in the MATLAB program
ode23 [13]. Some of the higher-order formulas that
have been implemented have one or more intermediate
values yn;j that are sufficiently accurate that Hermite
interpolation at these values, and the two ends of the
step provides satisfactory continuous extensions.

If the stages that are readily available do not lead to
a continuous extension that has a sufficiently high order
uniformly in 0 � 
 � 1, we must somehow obtain
additional information that will allow us to achieve our
goal. A tactic [3] that has proved useful is to observe
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that in addition to the ends of the step, the extension
Pn;s.
/ based on s stages may be of higher order at one
or more points in .0; 1/. If 
� is such a point, we define
tn;sC1 D tn C 
�h and yn;sC1 D ynC
� and evaluate
fn;sC1 D f .tn;sC1; yn;sC1/. If there is more than one
such point, we do this for each of the points. We now
try to find a continuous extension that uses these new
stages in addition to the ones previously formed. If
this new continuous extension has a uniform order that
is acceptable, we are done and otherwise we repeat.
This tactic has resulted in continuous extensions for
some popular formulas of relatively high order. After
Fehlberg showed the effectiveness of a (7, 8) pair of 13
stages, several authors produced pairs that are better in
some respects and more to the point have continuous
extensions. Current information about quality RK pairs
is found at Verner [15]. Included there are (7, 8) pairs
with a continuous extension of order 7 that requires
three additional stages and order 8 that requires four.

Implicit Runge-Kutta, IRK, formulas are exempli-
fied by the two-stage formula

yn;1 D yn C h Œˇ1;1fn;1 C ˇ1;2fn;2� ;
yn;2 D yn C h Œˇ2;1fn;1 C ˇ2;2fn;2� ;
ynC1 D yn C h Œ�1fn;1 C �2fn;2� :

This is a pair of simultaneous algebraic equations
for yn;1 and yn;2, and as a consequence, it is much
more trouble to evaluate an IRK than an explicit RK
formula. On the other hand, they can be much more
accurate. Indeed, if tn;1 and tn;2 are the nodes of the
two-point Gauss-Legendre quadrature formula shifted
to the interval Œtn; tnC1�, the other coefficients can be
chosen to achieve order 4. For non-stiff IVPs, this high
order is not worth the cost. However, IRKs can also be
very much more stable. Indeed, the two-stage Gaussian
formula is A-stable. This makes them attractive for
stiff problems despite the high costs of evaluating the
formulas for such problems. IRKs are also commonly
used to solve boundary value problems for ODEs. IVPs
specify a solution of a set of ODEs by the value y.t0/ at
the initial point of the interval t0 � t � tF . Two-point
boundary value problems, BVPs, specify a solution
by means of values of components of the solution at
the two ends of the interval. More specifically, the
vector solution y.t/ is to satisfy a set of equations,
g.y.t0/; y.tF // D 0. In this context, the formula must
be evaluated on all subintervals Œtn; tnC1� simultane-

ously. This is typically a large system of nonlinear
equations that is solved by an iterative procedure. If
an approximation to y.t/ is not satisfactory, the mesh
is refined and a larger system of algebraic equations
is solved. A continuous extension is fundamental to
this computation because it is used to generate starting
guesses for the iterative procedure.

The IRKs commonly implemented are based on
Gaussian quadrature methods or equivalently collo-
cation. There is a sense of direction with IVPs, so
the formulas for stiff IVPs in wide use are based on
Radau formulas. The lowest-order case is the implicit
backward Euler method ynC1 D ynChf .tnC1; ynC1/, a
formula that happens to be AM1 and BDF1. There is no
preferred direction when solving BVPs with implicit
RK methods, so the symmetric Gauss-Legendre or
Gauss-Lobatto formulas are used. The nodes of the
former do not include an endpoint of the step, and the
nodes of the latter include both. As mentioned above,
the two-point Gauss-Legendre formula is of order 4.
It can be derived by collocation rather like the BDFs.
This particular formula is equivalent to collocation
with a quadratic polynomial Pn.t/ that interpolates
Pn.tn/ D yn and also P.tn;j / D yn;j for j D 1; 2.
The yn;j are determined by the collocation conditions
P 0
n.tn;j / D f .tn;j ; P.tn;j // for j D 1; 2. Although

the formula is of order 4 at mesh points, this quadratic
approximation has a uniform order of 2. This is typical.
Popular codes like COLSYS [1] use Gauss-Legendre
formulas of quite high order for which the uniform
order of approximation by the collocation polynomial
is roughly half the order of approximation at mesh
points. This is not all that one might hope for, but
a convenient continuous extension is very important
and formulas of a wide range of orders are available.
The three-point Gauss-Lobatto formula collocates at
both endpoints of the step and the midpoint. The
underlying cubic polynomial is uniformly of order 4,
which is adequate for solving BVPs in MATLAB. The
collocation conditions imply that the approximation is
C1Œt0; tF �, which is useful in a computing environment
where results are often studied graphically.

ExtrapolationMethods

Extrapolation methods are built upon relatively simple
methods of order 1 or 2 such as the explicit/forward
Euler method and the implicit midpoint rule.
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The construction of extrapolation methods relies on
the theoretical existence of an asymptotic expansion
of the global error of the low-order underlying method
in terms of a constant step size h. For example, let us
consider the explicit/forward Euler method

ykC1 D yk C hf .tk; yk/:

We denote yh.tk C nh/ D ykCn for n D 0; 1; 2; : : :

With initial condition y.tk/ D yk , it can be shown
that for sufficiently smooth f .t; y/, the global error
at t D tk C nh of the explicit Euler method has an
asymptotic expansion of the form

yh.t/ � y.t/ D e1.t/hC e2.t/h2
C : : :C eN .t/hN C EN.t; h/hNC1;

where e1.t/; : : : ; eN .t/ are smooth functions and
EN.t; h/ is bounded for jhj sufficiently small. For
a symmetric method such as the implicit midpoint
rule, all the odd terms e2kC1.t/ vanish. Given a
finite sequence of increasing natural numbers ni for
i D 1; : : : ; I such as ni D i , for a given macro step
size H , we define the micro step sizes hi D H=ni .
By independent applications of ni steps of the explicit
Euler method with constant step size hi , we obtain a
finite sequence Yi1 D yhi .tk C H/ of approximations
to the solution y.tk CH/ of the ODE passing through
y.tk/ D yk . Defining the table of values

Yi;jC1 D Yij C Yij � Yi�1;j
.ni=ni�j / � 1

for i D 2; : : : ; I; j D 1; : : : ; i � 1; (3)

the extrapolated values Yij are of order j , i.e., Yij �
y.tk CH/ D O

�

HjC1�. For symmetric methods, we
replace the term ni =ni�j in (3) by .ni =ni�j /2, and we
obtain Yij � y.tk C H/ D O

�

H2jC1�. If there is no
stiffness, an efficient symmetric extrapolation method
is given by the Gragg-Bulirsch-Stoer (GBS) algorithm
where yh.tk C nh/ for n � 2 with n even is obtained
starting from z0 D yk as follows:

z1 D z0 C hf .tk; z0/; zlC1 D zl�1 C 2hf .tk C lh; zl /
for l D 1; : : : ; n;

yh.tk C nh/ D 1

4
.zn�1 C 2zn C znC1/:

Due to their possible high-order, extrapolation
methods may take large step sizesH . Hence, the use of
a sufficiently high order continuous extension is really
required if an accurate approximation at intermediate
points is needed. A continuous extension can be
obtained by building a polynomial approximation to
the solution. First finite-difference approximations
D
.m/
1i .t/ to the derivatives y.m/.t/ at the left endpoint

t D tk , at the midpoint t D tk C H=2, or/and at the
right endpoint t D tk C H are built for each index
i when possible based on the intermediate values of
f .t; y/ or y. In the presence of stiffness, it is not
recommended to use the intermediate values based on
f .t; y/ since f may amplify errors catastrophically,
and approximations to the derivatives should be
based only on the intermediate values of y in this
situation. The valuesD.m/

1i .t/ are extrapolated to obtain
higher-order approximations. We denote the most
extrapolated value by D.m/.t/. A polynomial P.
/
approximating f .tk C 
H/ is then defined through
Hermite interpolation conditions. For example, for the
GBS algorithm, we consider a sequence of increasing
even natural numbers ni satisfying niC1 � ni mod 4.
We define a polynomial Pd .
/ of degree d C 4 with
�1 � d � 2I satisfying the Hermite interpolation
conditions

Pd.0/ D yk; Pd .1/ D YII ; P 0
d .0/ D Hf.tk; yk/;

P 0
d .1/ D Hf.tk CH;YII /;
P
.m/

d .1=2/ D HmD.m/.tk CH=2/ form D 0; : : : ; d:

For n1 D 4 and d � 2I �4, it can be shown thatPd .
/
is an approximation of order 2I in H to y.tk C 
H/,
i.e., Pd.
/ � y.tk C 
H/ D O.H2IC1/ for 
 2 Œ0; 1�.

If one wants to have a continuous extension with
a certain required accuracy, one also needs to control
its error and not just the error at the endpoint. This
can be done by using an upper bound on the norm
of the difference between the continuous extension
and another continuous extension of lower order. For
example, for the GBS algorithm for d � 0, one can
consider the difference

Pd .
/� Pd�1.
/ D 
2.1 � 
/2.
 � 1=2/dcdC4;

where cdC4 is the coefficient of 
dC4 in Pd.
/. The
function j
2.1 � 
/2.
 � 1=2/d j is maximum on Œ0; 1�
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D

at 
d D 1
2
.1˙pd=.d C 4//, and we obtain the error

estimate

max

2Œ0;1� kPd .
/� Pd�1.
/k � j
2d .1 � 
d /2

.
d � 1=2/d j � kcdC4k;

which can be used in a step size controller.
For more information on continuous extensions for

extrapolation methods, we refer the reader to Hairer
and Ostermann [7] for the extrapolated Euler method
and the linearly implicit Euler method; to Hairer
and Ostermann [7], Hairer et al. [8], and Shampine
et al. [14] for the GBS algorithm; and to Jay [11] for
the semi-implicit midpoint rule.
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Rafael D. Benguria
Departamento de Fı́sica, Pontificia Universidad
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Synonyms

Exchange corrections; Generalized gradient correc-
tions; Kohn–Sham equations; Local density approxi-
mation; Statistical model of atoms; Thomas–Fermi

Definition

Density functional theory (DFT for short) is a power-
ful, widely used method for computing approximations
of ground state electronic energies and densities in
chemistry, material science, and biology. The purpose
of DFT is to express the ground state energy (as well
as many other quantities of physical and chemical
interest) of a multiparticle system as a functional of the
single-particle density � .

Overview

Since the advent of quantum mechanics [20], the
impossibility of solving exactly problems involving
many particles has been clear. These problems are
of interest in such areas as atomic and molecular
physics, condensed matter physics, and nuclear
physics. It was, therefore, necessary from the early
beginnings to introduce approximative methods such
as the Thomas–Fermi model [4, 21], (see J. P. Solovej
�Thomas–Fermi Type Theories (and Their Relation
to Exact Models) in this encyclopedia) and the
Hartree–Fock approximation [5, 6] (see I. Catto
�Hartree–Fock Type Methods in this encyclopedia),
to compute quantities of physical interest in these
areas. In quantum mechanics of many particle systems,

http://people.math.sfu.ca/~jverner/
http://people.math.sfu.ca/~jverner/
http://dx.doi.org/10.1007/978-3-540-70529-1_235
http://dx.doi.org/10.1007/978-3-540-70529-1_236
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the main object of interest is the wavefunction
 2 VN

L2.R3/, (the antisymmetric tensor
product of L2.R3/). More explicitly, for a system
of N fermions,  .x1; : : : ; xi ; : : : ; : : : xj ; : : : xN / D
� .x1; : : : ; xj ; : : : ; : : : xi ; : : : xN /, in view of Pauli
exclusion principle, and

R

RN
j j2 dx1 : : : dxn D 1.

Here, xi 2 R
3 denotes the coordinates of the i -th

particle. From the wavefunction  , one can define the
one-particle density (single-particle density) as

� .x/ D N
Z

R3.N�1/

j .x; x2; : : : ; xN /j2 dx2 : : : dxN ;
(1)

and from here, it follows that
R

R3
� .x/ dx D N , the

number of particles, and � .x/ is the density of parti-
cles at x 2 R

3. Notice that since  is antisymmetric,
j j2 is symmetric, and it is immaterial which variable
is set equal to x in (1).

The purpose of density functional theory (DFT for
short) is to express the ground state energy (as well
as many other quantities of physical and chemical
interest) as functionals of the single particle density
� . The first functionals obtained in this direction
were derived by Thomas [21] and Fermi [4] in atomic
physics. In 1964, Hohenberg and Kohn [7] and in 1965
Kohn and Sham [10] established a whole program in
chemical physics to develop this idea (see also [9]
for a review and [8] for an historical perspective on
the subject). In mathematical physics, there are three
important issues concerning DFT: (1) to study the
mathematical properties (e.g., existence, uniqueness
and regularity of minimizers) of the different density
functional variational principles, (2) to derive their
physical contents, and (3) to determine how close
the corresponding DFT functional (and therefore how
close are the physical estimates derived from it) is with
respect to the original quantum mechanical system. We
illustrate these three goals in the next sections.

DFT in Atomic andMolecular Physics

Consider a system of N electrons of charge -e and
mass m in the presence of K fixed nuclei of charge
Zj e > 0 located at positions Rj 2 R

3, j D 1; : : : ; K .
The Hamiltonian of this system is given by

H D � „
2

2m

N
X

iD1
i � e

N
X

iD1
V .xi /

Ce2
X

1�i<j�N

1

jxi � xj j C U; (2)

where the potential V.x/ due to the fixed nuclei is
given by,

V.x/ D Ce
K
X

jD1

Zj

jx � Rj j : (3)

Here, U is the repulsion energy of the fixed nuclei, and
it is given by

U D e2
X

1�k<`�K

Zk Z`

jRk �R`j : (4)

The HamiltonianH is acting on the Hilbert space H �
VN

L2.R3/. The ground state energy of H is given by

E D inf
 2H

. ;H /

. ; /
: (5)

Let us denote by T , A, and I , respectively, the first
three terms of the Hamiltonian H in (2). It follows at
once from the definition (1) of � that the expectation
value of the electron nuclei attraction, i.e., A, can be
expressed in closed form in terms of � . In fact, if  is
normalized,

. ;A / D �e
Z

R3

V .x/� .x/ dx: (6)

SinceU does not depend on the electronic coordinates,
one also has . ; U / D U , for a normalized  . On
the other hand, neither the expectation of the kinetic
energy of the electrons (i.e., the expectation value of T )
nor the expectation value of the electronic repulsion
(i.e., the expectation value of I ) has a closed form
expression in terms of � . However, there are good
lower bounds of both expectation values in terms of
functionals of �. In fact, as part of their proof of
the stability of matter (i.e., the fact that E.N/=N is
bounded from below) Lieb and Thirring [18] proved
that

. ; T  / � d
Z

R3

� .x/
5=3 dx; (7)
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for any normalized  2 H. In units in which
„2=.2m/ D 1 and e D 1, the best value of d to
date is d D 1:7455. The sharp value is unknown, but it
has been conjectured by Lieb and Thirring that it ought
to be .3=5/dTF D 3.3�2/2=3=5 D 5:7425, based on the
well-known behavior of the ground state energy of an
ideal gas of N electrons in a cubic box of volume V .
Concerning the expectation of the electronic repulsion
I , Lieb and Oxford [16] proved that

. ; I / � e2D.� ; � /� c e2=3
Z

R3

� 
4=3 dx; (8)

where c D 1:68 and

D.�; �/ D 1

2

Z

R3�R3

�.x/
1

jx � yj�.y/ dx dy (9)

is called the direct term. The sharp value of c is
unknown, but Lieb and Oxford proved that c > 1:234.
The first to estimate the difference between the expec-
tation value of I and the direct term was Dirac [3], who
estimated this difference for an ideal gas ofN electrons
in a box of volume V and obtained the expression
�cD e2=3.N=V /4=3, with cD D .3=4/.3=�/1=3 � 0:74.

Thomas–FermiModel and Corrections

The statistical model of atoms and molecules (hence-
forth TF) [4, 14, 21] was the first DFT model to be
introduced. In units in which „2=.2m/ D 1 and e D 1,
it is defined via the functional

E.�/ D 3

5
dTF

Z

R3

�5=3 dx �
Z

R3

V .x/�.x/ dx

CD.�; �/C
X

1�k<`

Zk Z`

jRk � R`j ; (10)

where the meaning of all the terms should be clear from
the discussion in the previous section. In this model,
the actual electronic configuration is characterized by
the density O� that minimizes E.�/ in the functional
space L5=3.R3/ \ L1.R3/, among all functions � � 0,
such that

R

R3
�.x/ dx D N , the number of particles.

It was proven by Lieb and Simon [17] that such a
minimizer exists if and only if N �Pk Zk . (i.e., there
are positive ions and neutral systems but not negative
ions in TF). The minimizer O� satisfies the TF equation

dTF O�2=3 D max.� O�.x/ � �; 0/; (11)

where ��.x/ D V.x/ � R
R3
�.y/jx � yj�1 dy is the

total Coulomb potential created by both the nuclei
and the electronic density �. Here, � D �.N/ is a
Lagrange multiplier introduced to take into account the
restriction on the number of particles, and it turns out to
be minus the chemical potential @E=@N . At neutrality,
� D 0, and ��.x/ � 0 all x. The mathematical
properties of this variational principle were proven in
[17]. Lieb and Simon also proved that in an appropriate
high particle limit, the quotient between E. O�/ and
the infimum of . ;H / goes to 1 (see [17] or [14],
Sect. V, for details).

Physically, the TF model is an effective model,
where the individual electrons “see” all the others
only through an average (or effective) potential �e��.
This idea has been very useful in obtaining many
results in atomic and molecular physics. (For more
details on the Thomas–Fermi model, see J. P. Solovej
�Thomas–Fermi Type Theories (and Their Relation to
Exact Models) in this encyclopedia.)

The Gradient Correction
The TF model is attractive because of its simplicity, is
not satisfactory for atomic problems because it yields
an electron density with incorrect behavior very close
and very far away from the nucleus. Moreover, ac-
cording to Teller’s Lemma (see, e.g., [14], Sect. III.C),
it does not allow the existence of molecules. As we
mention above, also there are no negative ions in TF.
In 1935, Weizsäcker [22] suggested the addition of the
inhomogeneity correction (gradient correction)

cW

Z

R3

.r�/2
�

dx; (12)

where cW D h2=.32�2m/, to the kinetic energy. The
Weizsäcker correction has been derived in many differ-
ent ways. It can be obtained as the first-order correction
to the TF kinetic energy in a quasiclassical approxima-
tion to the Hartree–Fock theory via a steepest descent
computation. The correction to the TF energy that this
additional term yields is of the order Z5=3, which is of
the same order as the exchange correction (see section
below). The mathematical properties of the TF varia-
tional principle with the additional gradient correction
were studied in [2]. Gradient corrections also play a

http://dx.doi.org/10.1007/978-3-540-70529-1_235
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key role in the Kohn–Sham scheme. More recently,
gradient corrections have been used to improve upon
the Lieb–Oxford bound.

The Exchange Correction
Following Dirac [3], one can also correct the TF model
by including the exchange term

� cD
Z

R3

�4=3 dx; (13)

where, as indicated above, cD D .3=4/.3=�/1=3 �
0:74. The mathematical properties of the resulting vari-
ational principle (the so-called Thomas–Fermi–Dirac
or TFD for short) were studied by Benguria in 1979
(see the review [14] for details). The TFD functional is
no longer convex in � (as the TF and the TF plus the
gradient correction are), making it harder to analyze.

The Hohenberg–Kohn Splitting and the
Levy–Lieb Functional

In units in which „2=m D e D 1, the electronic
contribution to the atomic energy (see (2) above) may
be split (this is usually called the Hohenberg–Kohn
splitting) as

HN D H1
N C Vne; (14)

where

H1
N � T C Vee D �

1

2

N
X

iD1
i C

X

1�i<j�N

1

jxi � xj j ;
(15)

and

Vne D �
N
X

iD1
V .xi / D �

N
X

iD1

K
X

jD1

Zj

jxi � Rj j : (16)

Then, the electronic energy (see (5) above) is given as,

EN D inff. ;HN /;  2WN g; (17)

where WN D f 2 VN
H1.R3/; jj jjL2.R3N / D 1g.

Following Levy [12] and Lieb [15] (along the line of
the results of Hohenberg and Kohn [7]), one can rewrite
(17) as

EN D inf

�

FLL.�/�
Z

R3

�.x/V .x/ dx; � 2 RN

�

;

(18)

where RN D f�
ˇ

ˇ 9 2 WN such that � D �g
or, equivalently, RN D f� ˇ

ˇ � � 0;
p
� 2 H1,

R

R3
� dx D N g. Here, the Levy–Lieb functional, in

principle, is defined [12] as

FLL.�/ D inf
 

ˇ

ˇ� D�
. ;H1

N /: (19)

However, as shown by Lieb (see [15]), is better to de-
fine the functional properly as the Legendre transform

FLL.�/ D sup

�

EN.v/ �
Z

R3

� v dx
ˇ

ˇ v 2 L3=2

C L1.R3/
�

; (20)

of the energy functional,

EN.v/ D inf

(

. ; .H1
N C

N
X

iD1
v.xi // /

ˇ

ˇ  2WN

)

:

(21)

The functional FLL.�/ given by (20) and (21) is de-
fined for all densities � 2 L1 \ L3.R3/, and it is
convex and weakly lower semicontinuous, (see [15]).
The functional FLL.�/ (whose origin goes back to
the original paper of Hohenberg and Kohn [7]) is
universal in the sense that it does not depend on the
molecular system under consideration. Unfortunately,
no tractable expression for FLL is known. As I have
remarked above, one can use some approximations
(like the homogeneous noninteracting electron gas in
a box as it was done by Thomas and Fermi) to estimate
this functional. Also, one can use different functional
inequalities to find bounds (in particular, lower bounds
as I have discussed above) on FLL.�/. In particular,
Lieb and Thirring [18] and Lieb and Oxford [16] are
examples of lower bounds for the kinetic energy and
the electronic interaction, respectively. A particular
upper bound of this sort for the kinetic energy gives
rise to the Kohn–Sham scheme. Consider any set of
N functions �i 2 H1.R3/; i D 1; : : : ; N which are
orthonormal in L2.R3/ and denote by ˚ , the Slater
determinant built from such a set. Following (19)
denote
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TLL.�/ D inff. ; T  /;  2WN such that � D �g:
(22)

From here, it follows

TLL.�/ � inff.˚; T˚/;where ˚ is a Slater

determinant such that �˚ D �g; (23)

and this can be computed to yield

inf

(

N
X

iD1

1

2

Z

R3

jr�i j2 dx
ˇ

ˇ �i 2 H1.R3/;

.�i ; �j /L2 D ıij ;
N
X

iD1
j�i j2 D �

)

� TKS.�/;

(24)

so that TLL.�/ � TKS.�/. Here, TKS.�/ is the Kohn–
Sham [10] (KS for short) functional for the kinetic
energy of N electrons.

The Kohn–Sham Equations

Following Kohn and Sham [10], one defines the
exchange–correlation functional as

Exc.�/ � FLL.�/� TKS.�/ �D.�; �/; (25)

where D and TKS are given by (3) and (24), re-
spectively, and FLL.�/ is the Levy–Lieb functional
discussed in the previous section. Next, we introduce
what is called the Local Density Approximation (LDA
for short) by requiring the exchange–correlation func-
tional to be of the form

Exc.�/ D
Z

R3

exc.�.x// dx; (26)

where the function exc.s/ is typically the exchange–
correlation density in a homogeneous electron gas of
density s. In quantum chemistry, the function exc W
RC ! R is usually obtained by interpolation of
asymptotic expansions and benchmark quantum Monte
Carlo calculations on the homogeneous electron gas.
Perhaps the simplest estimate for Exc in the LDA is
(8). Using Slater determinants (as in the discussion at
the end of the previous section), one can approximate
the electronic energy of a system of N electrons by

EKS
N D inffEKS.˚/g; (27)

where ˚ is a Slater determinant built from a set of N
functions, �i 2 H1.R3/; i D 1; : : : N , orthonormal in
L2.R3/, and

EKS.˚/D 1
2

N
X

iD1

	Z

R3

jr�i j2 dx



�
Z

R3

�˚ .x/V .x/ dx

CD.�˚ ; �˚/C
Z

R3

exc.�˚.x// dx;

(28)

with V given by (3), D by (9), and

�˚.x/ D
N
X

iD1
j�i.x/j2: (29)

The mathematical properties of the Kohn–Sham min-
imization problem defined by (27) and (28) above
have been studied by Le Bris [11] and Anantharaman
and Cancès [1]. The Euler–Lagrange equations for
this minimization problem are given by the system of
coupled equations

� 1
2
�i CW˚�i D �i�i ; (30)

i D 1; : : : ; N , where the potential W˚ is given in the
LDA by

W˚ D �V C �˚ 
 1

jxj C
dexc

d�
.�˚ .x//: (31)

This set of coupled Schrödinger equations is the Kohn–
Sham system of equations. The Kohn–Sham equations
(30) and (31) introduced in [10] are self-consistent
equations in the spirit described above (at the end of the
paragraph on TF), i.e., each individual electron satisfies
a Schrödinger-type equation, whose potential in turn
can be constructed in terms of the electronic density.
Here, the effective potential depends on the electronic
density, which is self-consistently determined from the
“orbitals,” �i ; i D 1; : : : ; N . Numerically, one starts
with a trial density �.x/, computes the potential W
given by (31), solves the Schrödinger equations (30)
for the orbitals �i , using (29) computes a new density
�, and iterates. The KS equations are analogous (but
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with a smaller algorithmic complexity) to the
Hartree–Fock equations. (For related matters see
�Hartree–Fock Type Methods, � Self-Consistent
Field (SCF) Algorithms and �Variational Problems
in Molecular Simulation in this encyclopedia.) In
1993, Le Bris [11] proved the existence of solutions
to the Kohn–Sham equations for neutral and positively
charged systems (i.e., for N � PK

iD1 Zi ). In quantum
chemistry, there is a vast literature concerning the
functional Exc.�/ (see, e.g., [13] and references there
in). In the last two decades, effort has been made to go
beyond the LDA approximation, by considering more
general exchange–correlation functionals, depending
not only locally on the electronic density but also on
the gradient of the density, i.e., considering Exc.�/ D
R

R3
exc.�; jr�j/ dx (see, e.g., [19]). Models including

this type of exchange–correlation functionals are
called GGA (for generalized gradient approximation)
models. It is a challenge to find sufficiently simple
and yet effective approximations for Exc.�/. The
Kohn–Sham equations still have problems describing
strongly correlated systems. Also in calculations of
the bandgaps in semiconductors, where the solutions
to the LDA Kohn–Sham equations yield anomalously
small gaps (see, e.g., [23]). Although in this article
I have not discussed models with density matrices
(mixed states), but only single particle densities (pure
states), the analogous KS systems have also introduced
in the more general situation (these are called the
extended KS models). Again, the extended KS models
have been studied in both, the LDA and the GGA,
cases. The mathematical properties of the extended
KS–LDA models have been studied by Anantharaman
and Cancès [1], who proved the existence of a solution
for neutral and positively charged systems. They also
proved a similar result for the spin-unpolarized (closed
shell) KS–GGA model (both the standard and the
extended) for the case of two electrons (i.e., N D 2),
under suitable GGA exchange–correlation functional.
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von Weizsäcker theory of atoms and molecules. Commun.
Math. Phys. 79, 167–180 (1981)

3. Dirac, P.A.M.: Note on exchange phenomena in the Thomas
atom. Math. Proc. Camb. Phil. Soc. 26, 376–385 (1930)

4. Fermi, E.: Un metodo statistico per la determinazione di
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Short Definition

Numerical differentiation provides approximate values
for derivatives at or in between node locations at which
numerical function values are provided. The nodes can
be uniformly or irregularly spaced, in one or more
dimensions.

Description

Equispaced Nodes in 1-D
Finite difference (FD) approximations combine nearby
function values using a set of weights. In the simplest
case, we use the mathematical definition of a derivative

f 0.x/ D lim
h!0

f .x C h/ � f .x/
h

(1)

to arrive at a two-node FD formula. Taylor expansion
of (1) shows that

f .x C h/� f .x/
h

D f 0.x/C h

2Š
f 00.x/C h2

3Š
f 000.x/

C : : : D f 0.x/CO.h1/;

i.e., f 0.x/ � f .xCh/�f .x/
h

is accurate to first order.
The FD weights at the nodes x and x C h are in this
case Œ�1 1�=h. The FD stencil can graphically be
illustrated as

�  weight for f 0, value f1g
� �  weights for f; values f� 1

h
; 1
h
g

" "
x x C h spatial locations

: (2)

The entry in the open circle is applied to an (typically)
unknown derivative value, and the entries in the filled
squares are applied to (typically) known function val-
ues. While the compactness of this approximation is
convenient (it uses only two adjacent function values),
its low order of accuracy – exact only for polynomials
up through degree one – makes it ineffective for prac-
tical computing.

Padé-Based Algorithm for Equispaced Grids
For the case of nodes with uniform spacing h, a particu-
larly short symbolic algebra algorithm was discovered
in 1998 [7]. We generalize the stencil (2) to

entries for f (m)

entries for f

s d

n

Here, the numbers s, d , and n describe the stencil
shape. In the illustration above, these take the values
3/2, 3, and 7, respectively. The weights, one at each
node point, relate nodal values of the mth derivative of
f with the nodal function values of f . In Mathematica
7, the complete code is

t = PadeApproximant[xs(Log[x]/h)m,fx,1,fn,dgg];
CoefficientList[fDenominator[t],Numerator[t]g,x]
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with similar codes in other symbolic languages. The
following are two illustrative applications of this
algorithm:

Example 1 The choices s D 1; d D 0; n D 2; m D 2

describe a stencil of the shape
�

� � � for

approximating the second derivative (since m D 2).
The algorithm produces the output

˚˚

h2
�

; f1;�2; 1g�;
corresponding to the explicit 2nd-order accurate
formula for the second derivative f 00.x/ �
ff .x � h/� 2f .x/C f .x C h/g 1

h2
.

Example 2 The choices s D �2; d D 2; n D 1;

m D 1 describe a stencil of the shape
���

� � for

the first derivative. The output
˚˚

5h
12
;� 4h

3
; 23h
12

�

; f�1; 1g�
is readily rearranged into f .x C h/ D f .x/ C
h
12
.23f 0.x/ � 16f 0.x � h/ C 5f 0.x � 2h//, i.e.,

the third-order Adams-Bashforth method. The Padé
algorithm similarly produces most standard linear
multistep formulas for ODEs.

Table 1 shows the lowest-order centered FD for-
mulas for the first derivative, with similar tables read-
ily generated for higher derivatives. The existence of
infinite order limits (indicated by the bottom line in
the table) provides an approach towards pseudospectral
(PS) methods [6].

Equispaced Nodes in More Than 1-D
On Cartesian lattices, any mixed derivative, such as
@3

@x@y2
, is most easily approximated by a stencil that

amounts to approximating in the two directions in
sequence. Just like in the case of analytic differenti-
ation, the result will not depend on which order the
partial differentiations were carried out. The combined
procedure can directly be formulated in terms of a
multi-D stencil.

Arbitrarily Spaced Nodes in 1-D

Algorithms for Weights in a Single FD Stencil
FD approximations based on equispaced grids are very
accurate when they are centered (extending equally far
to both sides) but tend to lose accuracy when bound-
aries are approached and they have to become increas-
ingly one sided. A common remedy is to gradually
cluster nodes denser as the boundary is approached.
Several weight algorithms are available for such non-
equispaced cases [7, 12], which are both computation-
ally faster and more numerically stable than the direct
approach of creating the linear system that enforces
that a set of (unknown) weights produce the exact result
for monomials of increasing degrees.

Algorithms for DifferentiationMatrices (DMs)
In case one wants to employ global FD stencils (ex-
tending over all the nodes, the case with nonperiodic
PS methods), one typically needs a sequence of weight
sets, providing approximations that are accurate at each
of the nodes xi in turn. Effective algorithms need to
utilize that the many separate cases are all based on the
same node set. The MATLAB “Differentiation Matrix

Differentiation: Computation, Table 1 Weights for centered FD approximations of the first derivative on an equispaced grid
(omitting the factor 1/h)

Order Weights

2 �1
2

0
1

2

4
1

12
�2
3

0
2

3
� 1

12

6 � 1

60

3

20
�3
4

0
3

4
� 3

20

1

60

8
1

280
� 4

105

1

5
�4
5

0
4

5
�1
5

4

105
� 1

280
:
:
: # # # # :

:
: # # # #

Limit � � � 1

4
�1
3

1

2
�1 0 1 �1

2

1

3
�1
4

� � �
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D

Suite” [15] is often used. Once a DM has been calcu-
lated, the derivative approximations at all the nodes are
obtained by a single matrix	 vector multiplication

2

6

4

u.m/.x1/
:::

u.m/.xn/

3

7

5 �
2

4 DM

3

5

2

6

4

u.x1/
:::

u.xn/

3

7

5 :

Irregularly Placed Nodes in 2-D and Higher
Radial basis functions (RBFs) were first proposed in
1971 [9]; for recent surveys, see [2, 3, 8]. In contrast
to multivariate polynomials, interpolation based on
RBFs can in most cases never become singular, no
matter how any number of nodes are scattered in any
number of dimensions. When using RBFs in place of
polynomials for the task of generating FD weights, one
obtains RBF-FD approximations, which recently have
been found to compete very well against lattice-based
FD, FE (finite element), and FV (finite volume) ap-
proximations in a variety of applications [4,13,14]. On
Cartesian lattices and in a certain “flat basis function”
limit, traditional FD methods are recovered. For stable
numerical evaluation of RBF-FD stencils, see [10, 16].

Numerical Differentiation of Analytic Functions
In case that a function f .z/ is known to be analytic
and with function values available in a neighborhood
in the complex plane of the approximation location
(rather than only along the real axis), an additional
opportunity arises. Regular FD formulas need h to be
small for high accuracy. Numerical cancellations then
make approximations of high derivatives (above orders
4 or so) inaccurate. In contrast, Cauchy’s integral
formula (which can be implemented very effectively
via FFTs) allows stable calculations also of derivatives
of high orders [1, 5, 11].
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Diffusion is a general concept that describes the spon-
taneous transport of material, for instance, gas or fluid.
Heat conduction is another form of diffusion in the
sense that the temperature of a certain material changes
in a diffusion-like manner. We shall first discuss some
basic properties of the PDE itself and then describe the
numerical methods.
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Properties of the Differential Equation

Let u denote the state variable that is subject to diffu-
sion, for example, density. Then the diffusion process
is described by the partial differential equation

@u

@t
D r � .dru/ ;

where d > 0 is the diffusion coefficient. The equation
is linear if d is independent of u; otherwise, it is
nonlinear. The simplest case, where d is a constant,
leads to a simplified form of the equation. With Carte-
sian coordinates and in one space dimension, it is

@u

@t
D d @u2

@x2
:

When analyzing the basic properties of the solutions,
this equation is often used as a model.

In numerical computation, it is important to first
understand these properties. Fourier analysis is a good
tool for this purpose. Assume that there is a simple sine
wave sin.!x/ initially at t D 0. Then the solution is

u.x; t/ D e�d!2t sin.!x/ :

The amplitude decreases exponentially with time, and
the damping is stronger for higher wave numbers. If
the solution is nonsmooth initially, a Fourier expansion
will contain strong components with high wave num-
bers. Such a solution will be smoothed out with time.
This is typical for diffusion problems, even in the more
general multidimensional case. Diffusion problems are
therefore easy to solve numerically, since perturbations
are quickly smoothed out.

The diffusion equation requires boundary condi-
tions. As an example, we consider diffusion in the unit
square � D f.x; y/ W 0 � x � 1; 0 � y � 1g
with prescribed values for u on the boundary @�. The
complete initial–boundary value problem is

@u

@t
D @

@x

�

d
@u

@x

�

C @

@y

�

d
@u

@y

�

;

.x; y/ 2 �; t � 0 ;
u.x; y; t/ D g.x; y; t/ ; .x; y/ 2 @� ;
u.x; y; 0/ D f .x; y/ :

(1)

It is important that a problem of this type is stable, that
is, the solution can be estimated in terms of the data.
We introduce the scalar product and norm by

.u; v/ D
Z 1

0

Z 1

0

u.x; y; t/v.x; y; t/ dxdy ;

kuk D .u; u/1=2 :

For homogeneous boundary conditions corresponding
to g � 0, we use integration by parts to obtain an
energy estimate:

d

dt
jjujj2 D 2

Z 1

0

Z 1

0

u
@u

@t
dx dy

D 2
Z 1

0

Z 1

0

u

	

@

@x

�

d
@u

@x

�

C @

@y

�

d
@u

@y

�


dx dy

D �2
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0
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!

;

where d0 D minx;y;t d.x; y; t/. This differential in-
equality shows again the property demonstrated above.
Larger norm of the derivatives forces stronger damping
of the solution. By integrating with respect to time,
we get jju.�; �; t/jj � jjf .�; �/jj, that is, the problem is
stable. Indeed, we have an even stronger estimate

kuk2tDT C 2d0
Z T

0

 








@u

@x









2

C








@u

@y









2
!

dt � jjf jj2 ;

that holds for any T > 0.

Numerical Methods

When computing the numerical solution, we use a
different formulation of (1). The differential equation
is multiplied by a function �.x; y/ and integrated.
In other words, we take the scalar product of the
differential equation with �. We apply the integration
by parts procedure precisely as above and obtain

�

@u

@t
; �

�

D �
�

@u

@x
; d
@�

@x

�

�
�

@u

@y
; d

@�

@y

�

: (2)
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We now define the function space

S D
�

v.x; y/ W kvk2 C






@v

@x







2 C






@v

@y







2

<1;

v.x; y/ D 0 for .x; y/ 2 @˝
�

;

and formulate the problem
• Find the function u.x; y; t/ with u 2 S for any t

such that (2) is satisfied and .u; �/ D .f; �/ for
t D 0 and all functions � 2 S .

(Here the initial condition is also formulated in its
integrated form.)

This is called the weak form of the problem. It is
obviously satisfied by the “classical” solution of (1),
but it also allows for relaxed regularity requirements on
the solution. The integrals exist for piecewise differen-
tiable functions, and we do not have to worry about the
second derivatives.

For the numerical solution v.x; y; t/, we now define
an approximation space SN � S . The subscript N
indicates that the subspace has N degrees of free-
dom, and there are N basis functions �j .x; y/. If
all functions in SN are piecewise polynomials, we
have a finite element space. The numerical solution is
formally defined by
• Find the function

uN .x; y; t/ D
N
X

jD1
cj .t/�j .x; y/ ;

such that (2) is satisfied with u D uN and .uN ; �/ D
.f; �/ for t D 0 and all functions � 2 SN .
This is the Galerkin finite element method. A very

nice consequence of the Galerkin formulation is that
stability follows automatically. We have

d

dt
jjuN jj2 D 2

�

uN ;
@uN
@t

�

D �2
�

@uN
@x

; d
@uN
@x

�

� 2
�

@uN
@y

; d
@uN
@y

�

� �2d0
 








@uN
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2

C








@uN
@y









2
!

:

Here we used (2) with � D uN , which is possible
since uN 2 SN � S . If this requirement is
violated (nonconforming elements), we may still have
a good approximation, but the theory becomes more
complicated.

For nonzero data g, we require that the boundary
condition in (1) is satisfied for the FEM solution uN .
However, the �-functions still belongs to the space SN

as defined above with homogeneous conditions.
With Neumann boundary conditions @u=@nC ˛u D

g, an extra term must be added to (2), but the format of
this article does not allow for further discussion of this
case.

The most elementary finite elements are piecewise
linear functions. In two space dimensions, they are
defined on a mesh composed of triangles with nodes at
the corners. Each basis function is one at a given node
and zero at all other nodes. On each triangle, every
function has the form ax C by C c, which is uniquely
determined by its values at the corner nodes. The
piecewise polynomials are continuous across all edges.
On most of the triangles, they are identically zero. If h
is the typical side length of the triangles, one can prove
that the error jjuN � ujj is of the order h2. For higher
order accuracy, higher order polynomials are used on
each triangle. That requires more nodes associated with
each triangle. Figure 1 shows the location of these
nodes for the quadratic and cubic case.

The introduction of uN .x; y; t/ into the Galerkin
formulation results in a system of ordinary differential
equations

M
dc
dt
D Qc ;

linear quadratic cubic

a b c

Diffusion Equation: Computation, Fig. 1 Nodes for the specification of polynomials on triangles. (a) Linear. (b) Quadratic.
(c) Cubic
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Diffusion Equation: Computation, Fig. 2 FEM computation of temperature distribution. (a) Grid. (b) Temperature after 10 min

where the vector c contains the coefficients cj .t/. The
elements of the matricesM and Q contain integrals of
�i�j and its derivatives. Since each �i is zero in most
of the domain, there is a nonzero overlap with only a
few of the neighboring functions. As a consequence,
the matrices are sparse.

For time discretization, standard difference methods
are used in most cases. The trapezoidal rule and the
backward Euler method are both unconditionally sta-
ble, that is, the choice of time step is governed only by
accuracy considerations.

At each time level tn, a large system of equations
must be solved. For realistic problems in two and
three space dimensions, an iterative solution method
is required. There is an abundance of such methods;
the conjugate gradient methods are very common.
Multigrid methods are also very effective. Starting
from the given fine grid, they solve a number of dif-
ferent systems corresponding to a sequence of coarser
grids.

As a computational example, we choose a
heat conduction problem for a plate, which has
the temperature 20ı C initially. At t D 0, two
edges are suddenly given the temperature 100ı C.
Figure 2 shows the grid and the computed solution
at t D 10 minutes. Note the smooth temperature
distribution despite the severe discontinuity at the
start. The computation was done using the COMSOL
system.

Further Reading

The book [3] contains a basic discussion of scientific
computing and numerical methods.The books [6,7] are
recommended for those who want to learn more about
finite element methods. Solution methods for linear
systems of algebraic equations are thoroughly treated
in the books [1, 5].

Finite element methods are dominating when it
comes to numerical solution of diffusion problems.
However, there are also effective difference methods,
in particular if it is possible to construct a structured
curvilinear grid. Such methods are discussed in [2, 4].
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Synonyms

Matrix factorization

Definition

Direct methods for solving linear algebraic equations
differ from iterative methods in that they provide a
solution to a system of equations in a finite and pre-
determined number of steps. They involve expressing
the matrix as a product of simpler matrices (called
factors) where the solution of equations involving these
matrices is very easy.

Overview

We discuss matrix factorization and consider in partic-
ular the factorization of a matrix A into the product
of a lower triangular matrix L and an upper triangular
matrix U . We examine the complexity, stability, and
efficiency of LU factorization in the case where the
matrix A is dense. We then consider the case when the
matrix is sparse. Finally, we discuss the limitations of
direct methods and discuss an approach by which they
may be overcome.

Matrix Factorizations

We consider the solution of the linear equations

Ax D b (1)

where A is a matrix of order n and x and b are
column vectors of length n. The matrix A and vector
b (the right-hand side) are known and we wish to find
the solution x. In our discussion we will assume that

the entries in the matrix and vectors are real numbers
but mutatis mutandis our remarks apply equally to the
case when the entries are complex numbers.

The class of methods that we will discuss for solv-
ing equation (1) are called direct methods and in-
volve expressing A as the product of simpler matrices
through a technique called matrix factorization. The es-
sential feature is that equations involving these simpler
matrices are easy to solve.

The two main factorizations that are used are the
LU factorization, where L is lower triangular and U
is upper triangular, and theQR factorization, whereQ
is orthogonal and R is upper triangular. The solution
of equations using the LU factorization first solves the
system Ly D b. When using the QR factorization, the
vector y is obtained just by multiplying the right-hand
side byQT . In both cases, the solution of the system is
then obtained through solving a triangular system (with
matrix R or U ) using backward substitution.
LU factorization is by far the most common ap-

proach so we will consider it in the remainder of
this entry. An excellent and standard text for matrix
factorization algorithms is the book by Golub and Van
Loan [6].

We first consider the case when the matrix A is
dense, that is, when there are insufficiently zero entries
for us to take advantage of this fact. We will later treat
the case when A is sparse.

LU Factorization

TheLU factorization of a matrixA of order n proceeds
in n � 1 major steps. At step 1, multiples of the first
equation are subtracted from equations 2 to n where
the multiples are chosen so that variable x1 is removed
from the succeeding equations. At step k (k D 2; n �
1), the reduced equation k is used to remove variable
k from all the later equations. After all major steps
are completed, the remaining system will be upper
triangular with coefficient matrix U . Each major step
corresponds to multiplying the matrix prior to that step
by an elementary lower triangular matrix, Lk , which
is the identity matrix except in column k where the
lower triangular entries correspond to the multiples
used to eliminate variable k from each equation. Thus,
the factorization can be expressed as

Ln�1Ln�2 : : : L2L1A D U: (2)
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As the inverse of these elementary matrices are the
same as the matrix except that the signs of the off-
diagonals are reversed, we have

A D L�1
1 L

�1
2 : : : L�1

n�2L�1
n�1U D LU; (3)

because the product of the n � 1 lower triangular
matrices is lower triangular.

If the matrix is symmetric (A D AT ), the factoriza-
tion can be written as

A D LLT (4)

which is called a Cholesky factorization. Note that this
involves taking square roots for the diagonal entries.
This can cause problems if the matrix is not positive
definite so that an alternative factorization

A D LDLT (5)

is often used whereD is block diagonal with blocks of
order 1 or 2.

Complexity of LU Factorization
The complexity of the factorization is easily obtained
by examining the algorithm described previously. At
major step k, there are n� k minor steps involving the
subtraction of one vector of length n � k from another
so the complexity of step k in terms of number of
arithmetic operations is 2
.n�k/2 plus n�k divisions
to compute the multipliers. When this is summed from
k D 1 to n � 1, the overall complexity becomes

2=3n3 CO.n2/:

In the symmetric case, the complexity is approximately
halved and is 1=3n3 CO.n2/.

It is important to note that this complexity only
refers to the initial factorization. Once this has been
done, the solution is obtained through a single pass on
the triangular factors so that the complexity for doing
this is only twice the number of entries in the factors
and so is

2 
 n2 CO.n/:
A major benefit of direct methods is that, once the
factorization has been performed, the factors can be
used repeatedly to solve any system with the same co-
efficient matrix at the same lower order of complexity.

We note that the abovementioned complexity is only
applicable for dense matrices. We will see later that the
situation is quite different for sparse matrices.

Stability of LU Factorization
The stability of the factorization can be measured using
the backward error analysis of [9] where bounds can be
computed for the matrixE whereACE D NL NU with NL
and NU the computed result for L and U , respectively.

Clearly, if the simple algorithm described earlier is
used, the factorization can fail, for example, if variable
1 does not appear in (1) (entry a11 is zero). However,
even if it were nonzero, it might be very small in
magnitude with respect to other entries in the matrix,
and its use as a pivot would cause growth in the
entries of the reduced matrix and consequent large
entries in E .

To avoid the worst excesses of this, the normal
recourse is to use what is called partial pivoting. At the
beginning of major step k, the rows are interchanged so
that the coefficient of variable k in equation k is larger
or equal in modulus to the coefficient of variable k in
all the remaining equations. In terms of the matrix, we
will choose akk so that

jakkj � n
max
iDk jaikj: (6)

Although this algorithm is not backward stable (in the
sense that jjEjj is guaranteed small), it has been proven
to work well in practice and is the strategy employed
by most computer codes for direct solution. A good
and standard text for error analysis is the book by
Higham [7].

Implementation of LU Factorization
There are several variants of algorithms for implement-
ing LU factorization (also known as Gaussian elimi-
nation) but all have the same complexity. However, the
efficiency (in terms of computer time) can be greatly
influenced by the details of the implementation.

The best current implementations of LU factoriza-
tion make use of the Level 3 BLAS kernels, the most
important of which is GEMM for matrix-matrix multi-
plication. This kernel is often tuned by vendors for their
computer architectures and commonly will perform at
close to the peak performance of the machine. There
are versions of the BLAS ( e.g., the multithreaded
BLAS) that are tuned for parallel architectures. These
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kernels can be used in the LU factorization by per-
forming the factorization by blocks. The effect of this is
to replace computations of the form aij D aij � likukj
by Aij D Aij � LikUkj where the matrix-matrix
multiplies are performed using GEMM.

The effect of using this approach is that when n
is large the speed of the LU factorization approaches
that for GEMM so that the factorization can usually
get quite close to peak machine performance. Indeed
although the actual implementation is often more com-
plicated, this is the flavor of the algorithms used by
vendors in the LINPACK benchmark [3].

We also note that since the kernel of such a factor-
ization technique uses matrix–matrix multiplications,
it is possible to use techniques based on Strassen’s al-
gorithm to effect a dense factorization with complexity
less than O.n3/.

Solution of Sparse Equations

When the matrix is sparse, that is to say when many
entries are zero, the situation is quite different from
that described in previously. This is a very common
occurrence as matrices coming from discretizations of
partial differential equations, structural analysis, large-
scale optimization, linear programming, chemical en-
gineering, and in fact nearly all large-scale problems
are sparse. In such cases, although the underlying al-
gorithm remains the same, the complexity, implemen-
tation, and performance characteristics differ markedly
from the dense case. We indicate this difference in the
remainder of this entry.

Matrix Factorizations for Sparse Systems
When the matrix is sparse, the main concern is to
preserve this sparsity as much as possible. For exam-
ple, if no interchanges are performed and pivoting is
performed down the diagonal on the arrowhead matrix

× ×
× ×

× ×
× ×

× × × × ×

there would be same number of entries in the factors as
in the original matrix. However, if we were to permute
the matrix to the form

× × × × ×
× ×
× ×
× ×
× ×

and then eliminate without interchanges, the resulting
factors would be dense.

This example is extreme but in general permutations
can greatly affect the increase in number of entries
between the original matrix and the factors (the fill-in).

There are many strategies for reducing fill-in in
sparse factorization. One of the earliest was proposed
by Markowitz [8] which is to choose, at stage k,
an entry from the reduced matrix that minimizes the
product of the number of entries in the row and the
number of entries in the column and then to permute its
row and column to position k. The symmetric analogue
of this selects the diagonal entry in the row/column
with the least number of entries. This is called the
minimum degree algorithm and would give an ordering
in the small example above that avoids any fill-in. Of
course, it is necessary to still guard against instability.
Partial pivoting is not an option as it would restrict too
much the ability to preserve sparsity, but a weaker form
of this called threshold pivoting is used, viz,

jakkj � u 
 n
max
iDk
jaikj; (7)

where u is a threshold parameter such that 0 < u � 1.
The benefit of this strategy is that the choice of u can
determine the balance between sparsity preservation
(u near to 0) and stability (u near to 1:0).

There are many variations and modifications to
these simple strategies. Indeed although simple, their
implementation can be anything but. In addition, it
is also possible to perform a priori permutations to
restrict fill-in. These can include orderings like [1] for
narrow bandwidth, orderings to block triangular form,
and nested dissection. Nested dissection can be shown
to be optimal on matrices arising from simple finite-
difference discretizations of Laplace’s equation on a
square domain.

Information on these orderings can be found in the
books [2, 4, 5] which have a full discussion of direct
methods for solving sparse systems.
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Direct Methods for Linear Algebraic Systems, Table 1
Complexity of sparse Gaussian elimination on 2D and 3D grids

Grid dimensions Matrix order Work to factorize Factor storage
k � k k2 O.k3/ O.k2 log k/
k � k � k k3 O.k6/ O.k4/

Complexity and Stability for Sparse Systems
It is not possible to give a simple formula for the
complexity of a sparse factorization. From the previous
discussion this will clearly depend on the ordering but
the structure of the matrix will also influence this.
One simple example for which results exist is for the
factorization of a matrix resulting from a simple finite-
difference discretization of a Laplacian matrix in 2 or
3 dimensions. If the grid has k grid points in each
direction, we show the complexity when the matrix is
factorized using a nested dissection ordering in Table 1.
This has been proved to be the best ordering in an
asymptotic sense for such matrices.

We note the difference between the complexity of
the factorization and the subsequent solution and the
fact that, in the two-dimensional case, this solution
is almost linear in the matrix order. Although these
figures are often used to suggest that direct methods are
only feasible for two-dimensional problems, the shape
of a cube is almost optimally bad, and there are many
3D problems for which direct methods work well, for
example, a narrow pipe geometry.

Some very recent work that effectively makes use of
the structure of the Green’s function has led to direct
factorization algorithms with linear complexity.

As might be expected, the stability of threshold
pivoting is even worse than that of partial pivoting
although in practice it has been found to work well.
It is important, however, to build safeguards in sparse
codes, for example, to perform iterative refinement if
the residual (b �Ax) is large.

Implementation of Sparse Direct Solution
Even more than in the dense case, the implementation
of sparse LU factorization is crucial for the viability of
direct methods. There have been significant advances
in the last few years that have enabled direct solution
methods to be used on problems with over a million
degrees of freedom. For a large class of methods, we
can obtain an ordering based only on the pattern of
the matrix and then, if necessary, perform interchanges
in a subsequent factorization. The original symbolic
analysis can be performed very efficiently, in time

almost proportional to the number of entries in the
matrix. The subsequent numerical factorization can use
dense BLAS kernels so that the efficiency of a sparse
factorization can often reach half of the peak perfor-
mance on a wide range of computer architectures.

There are many codes for sparse factorization and
some are tuned for parallel computers both for shared
memory (including multicore) and for distributed
memory.

Limitations of Direct Methods and
Alternatives

In spite of the abovementioned recent advances in
sparse factorization, the approach can become infeasi-
ble for very large three-dimensional problems normally
because of the number of entries in the factors. In such
cases, direct methods can still be used but either as an
approximate factorization for use as a preconditioner
for iterative methods or on a subproblem of the original
problem. A good example of this would be in a do-
main decomposition approach where a hybrid solution
scheme is used with a direct solver being used on the
local subdomains and an iterative technique on the
boundary. Another example of a hybrid method would
be a block iterative method.

Cross-References

�Classical Iterative Methods
�Domain Decomposition
� Preconditioning
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Synonyms

DG methods; Interior penalty methods; Nonconform-
ing finite element methods

Definition

Discontinuous Galerkin finite element methods are
a class of numerical methods used to approximate
solutions to partial differential equations.

Overview

The Galerkin finite element method has long been
used in the numerical solution of partial differential
equations (PDEs). In these methods, the domain over
which the PDE is defined is discretized into elements;
that is, the domain is covered by a finite number
of geometrical objects, such as intervals in a one-
dimensional domain, triangles or rectangles in a two-
dimensional domain, and tetrahedra, prisms, or hex-
ahedra in a three-dimensional domain. On this set of
elements, the solution to the PDE is approximated in a
space of functions which typically satisfy the following
properties:
• The functions are polynomials of degree at most k

on each element, where k � 1.
• The functions are globally continuous; that is, con-

tinuity between the polynomials is enforced at ele-
ment boundaries.

• The functions satisfy the boundary conditions spec-
ified on the solution to the PDE, strongly in the case
of Dirichlet boundary conditions and weakly in the
case of Neumann boundary conditions.

Thus, in the traditional finite element method, the nu-
merical solution to the PDE is a continuous, piecewise
polynomial defined on a collection of elements.

The discontinuous Galerkin finite element method,
or DG method for short, breaks the continuity
requirement on the numerical solution, allowing
the solution to be discontinuous at inter-element
boundaries, and allows for a weak approximation of
boundary conditions, including Dirichlet boundary
conditions. The perceived advantages of the DG
method are:
• The ability to preserve local conservation proper-

ties, such as conservation of mass,
• The ability to easily refine the mesh locally within

an element without the difficulty of dealing with
hanging nodes (h adaptivity),

• The ability to use different polynomials on each el-
ement (p adaptivity) depending on the smoothness
of the problem,

• The ability to treat boundary and other external
conditions weakly, and

• The method is highly parallelizable, as most of the
work is done at the element level and the stencil
usually involves only neighboring elements.

There has been recent speculation that, because of the
latter property, DG methods may work well on new
computer architectures which use a mixture of CPUs
and GPUs (Graphical Processing Units).

Historical Background
The basic idea behind DG methods can be traced
to a paper by Lions in 1968 [1] for a second-order
elliptic Dirichlet boundary-value problem. The idea
was to approximate the Dirichlet boundary conditions
weakly through adding a penalty term. Nitsche in 1971
[2] formalized this method and proved its conver-
gence. Based on these works, the notion of enforcing
inter-element continuity through penalties was inves-
tigated, leading to the so-called interior penalty (IP)
Galerkin methods for elliptic and parabolic equations.
Despite extensive analysis in the 1970s, IP methods
were never adopted by the computational science com-
munity because they were viewed as being compu-
tationally inefficient on the computers available at
that time. With the advent of more powerful, parallel
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computers, IP methods were revived in the 1990s
for elliptic boundary-value problems and a substan-
tial literature now exists; an excellent summary is
given in [3] with a unified presentation of many well-
known DG and IP methods for elliptic boundary-value
problems.

The DG method was introduced for first-order hy-
perbolic partial differential equations by Reed and
Hill in 1973 [4]. This initial work led to extensive
investigation and application of DG methods for hy-
perbolic conservation laws which continues today. For
hyperbolic PDEs, DG methods can be viewed as an ex-
tension of low-order finite volume methods to higher-
order approximations and very general geometries.

The application of DG methods for problems
which are nearly hyperbolic, for example, advection-
dominated advection-diffusion equations, combines
the ideas of the IP methods for elliptic PDEs with
the DG method for hyperbolic PDEs. We will
discuss the mechanics of the DG method for a
simple advection-diffusion model problem below.
We note that DG methods have been investigated
now for a wide variety of problems, including
compressible and incompressible flows, multiphase
flow and transport in porous media, shallow water
and ocean hydrodynamics, electromagnetics, and
semiconductors, just to name a few.

We conclude this section by noting that there are
several excellent reviews and textbooks on DG meth-
ods in the literature; see, for example, [5–7].

Basic Methodology

In order to explain the basic methodology behind
the DG and related IP methods, we will focus on
a simple one-space-dimensional advection-diffusion
equation with solution c.x; t/ satisfying

ct C f .c/x � �cxx D g; 0 < x < L; t > 0 (1)

where the flux function f could be linear in c, f .c/ D
uc for some given coefficient u, or f .c/ could be non-
linear in c, for example, in Burger’s equation f .c/ D
c2=2. The diffusion coefficient � � 0. We will focus
only on DG discretization in space and comment on the
time discretization in the next section. We assume an
initial condition c.x; 0/ D c0.x/ and we will assume

fairly general boundary conditions

˛0f .c/ � ˇ0�cx D �0; x D 0; t > 0
˛1f .c/ � ˇ1�cx D �1; x D L; t > 0

where the ˛’s and ˇ’s are coefficients which could be
zero or one, although both coefficients can’t be zero
simultaneously.

The interval Œ0; L� is divided into elements Bj D
Œxj�1=2; xjC1=2� of length hj , with xj denoting the
midpoint of the element, j D 1; : : : ; J . We consider a
test space Vh of functions which are in H2 inside each
element, but are not continuous at the interior interface
points xjC1=2. Notationally, let

v�.xjC1=2/ D lim
ı!0�

v
�

xjC1=2 C ı
�

(2)

vC �xjC1=2
� D lim

ı!0C
v
�

xjC1=2 C ı
�

(3)

ŒŒv.xjC1=2/�� D v�.xjC1=2/� vC �xjC1=2
�

(4)

fv.xjC1=2/g D 1

2

�

v�.xjC1=2/C vC.xjC1=2/
�

: (5)

AWeak Formulation
Multiplying (1) by v 2 Vh, integrating over a single
element Bj , and integrating by parts, we arrive at the
weak form of (1):

Z

Bj

Œct v � f .c/vx C �cxvx� dx

C Œf .c/ � �cx� vjxjC1=2
xj�1=2 D

Z

Bj

gvdx: (6)

Summing over all Bj ,

J
X

jD1

Z

Bj

Œct v � f .c/vx C �cxvx�dx

C
J�1
X

jD1
Œf .c/ � �cx�ŒŒv��jxjC1=2

D
Z

Bj

gvdx

CŒf .c/ � �cx�vjxD0 � Œf .c/ � �cx�vjxDL: (7)

Notice that we have not applied any of the boundary
conditions to the test space or to the weak formulation
at this point.



Discontinous Galerkin Methods: Basic Algorithms 363

D

Approximating Spaces and Numerical Fluxes
Next define an approximating space

Wh D fv W v 2 Pk.Bj /; j D 1; : : : ; J g

which is a finite dimensional subspace of Vh, where Pk

denotes the set of all polynomials of degree less than or
equal to k, k � 1. The dimension ofWh is J 
 .kC 1/,
and given a set of basis functions Pj;l , one can write
any function v 2 Wh as

v.x/ D
J
X

jD1

k
X

lD0
vj;lPj;l .x/

for some coefficients vj;l . Typical basis functions are
the set of Legendre polynomials defined on Bj up
through order k. We will approximate c by a function
C inWh; however, we must modify (7) in several ways.

First, note that since C will be discontinuous at
inter-element boundaries, the “flux” terms f .c/ and cx
are not well defined. We will approximate these terms
by “numerical fluxes”:

f .c.xjC1=2// � bf .C�.xjC1=2/; CC.xjC1=2//; (8)

�cx.xjC1=2/ � �fCx.xjC1=2/g C �ŒŒC.xjC1=2/��: (9)

In (9), the second term is the so-called interior penalty
term, since it penalizes the jump in the approximate
solution, where the penalty parameter � > 0 must be
chosen. A simple numerical flux bf .C�; CC/ is the
local Lax-Friedrichs flux given by

bf .C�; CC/ D ff .C /g C �

2
ŒŒf .C /�� (10)

where � D sup jf 0.c/j. Note that if f D uc for some
coefficient u, then

bf .C�; CC/ D
�

C�; u > 0
CC; u < 0

(11)

which is the standard upwind method. For nonlinear
f .c/ and for systems of equations, more sophisticated

numerical fluxes have been proposed and can be found
in the literature. Let

F.C�; CC/ D bf .C�; CC/� �fCxg C �ŒŒC ��

at any interior interface xjC1=2. The boundary con-
ditions may be enforced as follows. We consider the
left boundary x D 0 and the right boundary x D L

analogous:

• If ˛0 D ˇ0 D 1, then

.f .c/ � �cx/jxD0 D �0 � F0:

• If ˛0 D 1 and ˇ0 D 0, then

f .c/jxD0 D �0

and we define F0 D �0 � �Cx jxD0.
• If ˛0 D 0 and ˇ0 D 1, then

��cx jxD0 D �0

and we define F0 D f .C /jxD0 C �0.
Here C and Cx are taken from inside the domain.

We define a boundary flux FL analogously to F0.
Finally, in order to complete the definition of the

DG method, we may add another stabilization term.
This terms is “zero” because it involve jumps in the
true solution, which we assume to be smooth. The final
DG weak form is written as follows:

J
X

jD1

Z

Bj

ŒCtv � f .C /vx C �Cxvx� dx

C
J�1
X

jD1
F.C�; CC/ŒŒv��jxjC1=2

� s
J�1
X

jD1
�ŒŒC ��fvxgjxjC1=2

D
Z

Bj

gvdx C F0vjxD0 � FLvjxDL v 2 Wh:

(12)

The parameter s multiplying the last term on the left
side of the equation can be set to 1 (giving the Sym-
metric Interior Penalty Galerkin method), 0 (giving the
Incomplete Interior Penalty Galerkin method), or �1
(giving the Nonsymmetric Interior Penalty Galerkin
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method). The penalty parameter � must be chosen to
be sufficiently large in the SIPG or IIPG methods for
stability and must be at least positive in the NIPG
method. When examining the error between C and c,
it has been observed that � D O.h�1/, in order to
obtain optimal convergence rates in the energy norm
[3]. Equation 12 can now be integrated in time using
any number of temporal discretization methods.

We remark that another DG formulation, the Local
DG method, or LDG, follows a slightly different path
and rewrites (1) in a mixed form by introducing an
auxiliary variable

� D ��cx:

This method is described in [3].

Time Discretization
The final weak form (12) can be written as a system of
ordinary differential equations

MCt D R.C/ (13)

where C represents a vector of unknowns (the coeffi-
cients of the basis polynomials used to defineC 2 Wh),
M is a mass matrix, and R includes all of the terms
in (12) other than the time derivative term. A typical
method for integrating this system is to use some
type of explicit or implicit/explicit time integration
method. For purely hyperbolic problems where � D
0, the combination of Runge-Kutta methods in time
with DG methods in space led to the Runge-Kutta
Discontinuous Galerkin (RKDG) method [5]. Another
approach would be to solve the stiff terms in the
equation implicitly and the remaining terms explicitly.
Implicit-explicit (IMEX) methods are useful for this
purpose, and we point the interested reader to [8].

Stability Post-processing
For pure advection and advection-dominated prob-
lems, the DG solution may develop oscillations and
eventually become unstable. Controlling or limiting
these oscillations through post-processing methods is
common in any DG software. These methods are also
referred to as slope limiters, flux limiters, or filtering
methods [5, 7].

Current Research

This entry is a simple introduction to a vast area of
research in computational science. DG methods have
reached a certain level of maturity and DG-based
software is now available for a variety of applications.
However, there is still active research in the formula-
tion and analysis of DG methods for more complex
applications where DG methods would seem to have
advantages over traditional finite element and finite
volume methods.

In addition, DG methods are typically expensive to
implement; i.e., for a given level of mesh resolution,
they have more degrees of freedom than traditional
Galerkin methods. Therefore, there are significant
research efforts directed at making DG methods more
efficient, through the use of different approximating
spaces and numerical integration methods, time-
stepping methods, and through the use of parallel
computing. The local nature of the DG method,
combined with the advent of GPUs and hybrid
CPU/GPU technology, may lead to exciting new
research in the efficient implementation of finite
element software based on DG methods.
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Synonyms

Discontinuous Galerkin method (DG); Local discon-
tinuous Galerkin method (LDG); Runge–Kutta discon-
tinuous Galerkin method (RKDG)

Short Definition

The discontinuous Galerkin method is a class of finite
element methods using completely discontinuous basis
functions to approximate partial differential equations.

Description

The discontinuous Galerkin (DG) method is a class
of finite element methods using completely discon-
tinuous basis functions to approximate partial dif-
ferential equations (PDEs). It was first designed for
steady-state scalar linear hyperbolic equations [15] in
1973. Early analysis of the method was performed
in [11, 13]. Runge–Kutta DG (RKDG) method for
solving time-dependent nonlinear hyperbolic conser-
vation laws was designed [3] in 1989. Local DG
(LDG) method for solving time-dependent convection-
dominated PDEs with higher-order spatial derivatives

was initialized [4] in 1998. The main advantage of the
DG method for solving convection-dominated prob-
lems includes its flexibility in accommodating upwind-
ing and nonlinear limiters of high-resolution finite
difference and finite volume methodology, its local
structure and easiness for h-p adaptivity (adaptivity
in local order of accuracy and in mesh refinements),
its nonlinear stability, and its parallel efficiency. DG
methods have also been designed for solving elliptic
equations [1].

Steady-State Hyperbolic Equation
The first DG scheme was designed in [15] for the
neutron transport equation, which is a linear steady-
state scalar hyperbolic equation. We use the following
simple one-dimensional PDE

@x.a.x/u.x// D f .x/; 0 � x � 1I u.0/ D g
(1)

to demonstrate the scheme; here a.x/ > 0 is a
given function. The computational domain Œ0; 1� is
discretized into

0 D x1
2
< x3

2
< � � � < xNC 1

2
D 1

with

Ii D .xi� 1
2
; xiC 1

2
/I xi D xiC 1

2
� xi� 1

2
;

h D max
1�i�N xi :

The finite element space is given by

Vh WD
˚

v W vjIi 2 Pk.Ii /I 1 � i � N
�

;

where Pk.Ii / denotes the set of polynomials of degree
up to k defined on the cell Ii . The DG method for solv-
ing (1) is defined as follows: find the unique function
uh 2 Vh such that, for all test functions vh 2 Vh and all
1 � i � N , we have

� RIi a.x/uh.x/@xvh.x/dx C a
�

xiC 1
2

�

Ouh
�

xiC 1
2

�

vh

�

x�
iC 1

2

�

� a
�

xi� 1
2

�

Ouh
�

xi� 1
2

�

vh

�

xC
i� 1

2

�

D R
Ii
f .x/vh.x/dx: (2)

Here, Ouh is the so-called numerical flux, which is a
single-valued function defined at the cell interfaces
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and in general depends on the values of the numerical
solution uh from both sides of the interface. The choice
of numerical flux is one of the crucial ingredients of
the design of stable and accurate DG methods. For the
simple PDE (1), the choice is simply upwinding

Ouh
�

xiC 1
2

�

D uh
�

x�
iC 1

2

�

; 1 � i � N I

Ouh
�

x1
2

�

D g:

With this choice, the scheme (2) in cell Ii depends
only on the solution in the left neighbor at the interface

uh
�

x�
i� 1

2

�

. Therefore, we can use (2) to explicitly

obtain the solution (which is a polynomial of degree
at most k) in the first cell I1 with the given boundary

condition Ouh
�

x1
2

�

D g. Once this is done, we can

use (2) again to explicitly obtain the solution in the

second cell I2 with the flux Ouh
�

x3
2

�

D uh
�

x�
3
2

�

which

has already been computed. Proceeding in this way, we
can compute the solution in the whole computational
domain cell by cell without solving any large systems.

This method can be easily constructed along the
same lines for multidimensional scalar linear hyper-
bolic equations with given boundary conditions at the
inflow boundary. The finite element space is again
the set of piecewise polynomials on any structured or
unstructured triangulation. The polynomial degree k
does not need to be the same in different cells; hence
this first DG method already has the full flexibility
in h-p adaptivity. Early analysis of the method was
performed in [11, 13], indicating that the method is
at least (k C 1

2
)th order accurate in L2 for arbitrary

triangulations for smooth solutions.

Time-Dependent Nonlinear Hyperbolic
Equations: RKDGMethod
The first DG method described in the previous section
can also be applied to initial-boundary value problems
of linear time-dependent scalar hyperbolic equations,
simply by treating the time variable as one of the
spatial variables and use the DG method in space
and time. However, this DG method is difficult to
design and implement for linear hyperbolic systems
(for which characteristics flow in different directions)
and for nonlinear hyperbolic equations (for which the
flow direction actually depends on the solution itself).

The RKDG method [3] avoids this difficulty nicely,
by using the DG formulation only in the spatial vari-
ables and using an explicit, nonlinearly stable Runge–
Kutta time discretization in time. The resulting scheme
is explicit, just like a finite difference or a finite volume
scheme, without the need to solve any large linear or
nonlinear systems. It has nice stability properties [3,
9, 10] and performs well for multidimensional systems
with discontinuous solutions [5].

Time-Dependent Nonlinear
Convection-Diffusion Equations: LDGMethod
In order to compute problems with physical viscosities,
such as high Reynolds number Navier–Stokes equa-
tions, the DG method has been generalized to handle
higher (than first)-order spatial derivatives. One of the
successful methods is the LDG method [4], which, for
the simple heat equation

@tu D @2xu; (3)

proceeds to first defining an auxiliary variablep D @xu
and rewriting the Eq. (3) into the following first-order
system

@tu � @xp D 0; p � @xu D 0;

then discretizing this first-order system by the usual
DG procedure. Of course, the choice of the numer-
ical fluxes Ouh and Oph can no longer be guided by
the upwinding principle, which applies only to wave
equations. For the heat Eq. (3), it turns out [4] that the
following choice of alternating flux

Ouh
�

xiC 1
2

�

D uh
�

x�
iC 1

2

�

; Oph
�

xiC 1
2

�

D ph
�

xC
iC 1

2

�

would lead to stability and optimal L2 order of ac-
curacy (the other alternating pair is also fine). The
method and the analysis can be easily generalized to
very general nonlinear convection-diffusion equations.

Time-Dependent Nonlinear Equations of Higher
Order: LDGMethod
The LDG method, described in the previous section for
convection-diffusion equations, can also be designed
and analyzed for many higher-order nonlinear wave or
diffusion equations. Examples include the KdV equa-
tions, the Kadomtsev–Petviashvili (KP) equations, the
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Zakharov–Kuznetsov (ZK) equations, the Kuramoto–
Sivashinsky-type equations, the Cahn–Hilliard equa-
tion, and the equations for surface diffusion and Will-
more flow of graphs. We refer to the review paper [18]
for more details.

More Equations and Conclusions
The DG method has various versions, for example,
the hybridizable DG (HDG) methods [7], and has
been designed to solve many more types of PDEs, for
example, elliptic equations [1] and Hamilton–Jacobi-
type equations. We will not list all the details here.
There are several recent reviews, books, and lecture
notes [2, 6, 8, 12, 14, 16, 17] in which more details can
be found.
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Discrete and Continuous Dispersion
Relations

Geir K. Pedersen
Department of Mathematics, University of Oslo, Oslo,
Norway

In a uniform medium, small-amplitude waves may
exist as periodic modes. The frequency and wavelength
then fulfill a relation generally denoted as the disper-
sion relation. A more general solution can be obtained
through Fourier synthesis of such modes. Among other
things, the dispersion relation will determine the dis-
persion of a pulse in the direction of wave advance due
to wavelength dependence of the group velocity.

Wave phenomena are generally described by partial
differential equations, or sometimes integral equations,
derived from the fundamental physical laws. When
the medium for wave propagation is uniform and the
amplitudes are small, harmonic solutions may exist as
separable solutions on the form

	 D A sin.‚/; ‚ D k � r � !t; (1)
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where 	 is some field variable (such as particle excur-
sion, velocity, pressure, temperature, strength of elec-
tromagnetic field) describing the state of the medium,
r is the position vector, t is time, k is the wave-number
vector, and ! is the frequency. The quantity A may
be a constant amplitude or may vary in the direction
normal to k for waves guided by an interface, such as
surface waves in the ocean. The phase function ‚ is
constant in the direction normal to the wave number.
However, (1) is a solution of the underlying equations
only if a dispersion relation

! D !i .k/ (2)

is fulfilled. As indicated by the subscript, i , different
families of modes may exist, owing to different phys-
ical mechanisms. For instance, elastic waves in the
crust of the earth may be associated with compres-
sion (P-waves) or shearing (S-waves) of the medium,
each kind with a different dispersion relation. In the
remainder of this entry we assume the mode number
as implicit. Wave modes of the form (1), including
ranges of values for k and A, may be combined in a
spectrum to provide solutions to, for instance, initial
value problems through Fourier transforms. The rela-
tion (1) then contains all information of the medium
needed to construct the solution, and the dispersion
relation may, in this sense, be regarded as equivalent
to the underlying governing equations. In a strict sense
the harmonic mode is a solution only for a uniform

medium. However, (2) and (1) may be applied locally
also for nonuniform media, provided the wavelength is
short compared to the characteristic length of variation.
This is the basis of ray theory, or geometrical optics
[5, 6].

From (2) phase and group velocities are defined as

c D !

k
and cg D fcg ig D

�

@!

@ki

�

;

respectively, where k D jkj. An observer moving with
speed c in the direction of k will experience a phase
(‚) remaining at a constant value. The group velocity,
cg, defines the propagation speed and direction of wave
properties such as energy. For theories on nonuniform
wave patterns, the group velocity plays an essential
role [6]. Particularly, the energy associated with each
spectral component of an initially confined pulse will
be propagated with the group velocity of that com-
ponent. When cg is dependent on the wave number,
the pulse will then undergo dispersion in the direction
of wave advance. An example is displayed in Fig. 1
(right panel). Otherwise we have cg D ck=jkj and
the waves will be nondispersive. An isotropic medium
is characterized by the frequency depending on the
wavelength only, and not the direction of wave advance
(! D !.k/). As a consequence cg is parallel to k. On
the other hand, for anisotropic waves the group velocity
may be at an angle with the direction of wave advance
(gravity waves in a density stratification, crystal op-
tics). Isotropic dispersion is denoted by normal if the

c /
√
gH

cg /
√
gH

λ/H

c∗√
gH

x−c0t (km)

A0

h

Discrete and Continuous Dispersion Relations, Fig. 1 Left
panel: dispersion relation for surface gravity waves, with asymp-
totes for long and short waves depicted with dashes. Right panel:
the mild effects of dispersion on a tsunami-type signal in deep
ocean (H D 5 km). The dashes show the initial elevation
(divided by two), while the solid line shows the surface elevation
after t D 45min of propagation towards decreasing. The latter

data are shifted c0t D p
gHt to allow for comparison of

the shapes. Dispersion effects are manifest as a stretching and
reduction of the leading pulse and the evolution of short, trailing
waves. These effects may not be important for all tsunamis, and
particularly not for those associated with the largest earthquakes,
such as the mega-disasters of 2004 and 2011
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longer waves (smaller k) are the faster ones, which
leads to cg D c C k dc

dk < c. Correspondingly, for
abnormal dispersion we have dc

dk > 0 and cg > c.
Plane surface, gravity, waves on water of equilib-

rium depthH obey the dispersion relation

!2 D g

k
tanh .kH/ ; (3)

where g � 9:81m=s2 is the constant of gravity. These
waves are sometimes referred to as Airy waves in
honor of the scientist who first presented a compre-
hensive theory [1]. Equation (3) is depicted in Fig. 1
(left panel). For waves much longer than the depth
(kH  1), the phase, and group, velocities become,
approximately, cg D c D pgH , which yields c D
797 km=h forH D 5;000m, which is characteristic for
a tsunami propagating in deep ocean. For wavelength
similar to, or shorter than, the depth, the phase speed
becomes c D p

g=k, while cg D 1
2
c. According to

this, an ocean swell of period 20 s inherits a phase
speed of c D 112 km=h and a wavelength � D
624m. Other examples on dispersive waves are elastic
surface waves and electromagnetic waves in liquids
and solids, yielding color-specific refraction indices
(see, for instance [2]).

When a set of equations is approximated by a
finite difference, volume or element technique, also
the dispersion properties become approximate and de-
pend upon on the resolution (grid increments) and the
method. A further discussion of numerical dispersion
effects is best aided by a simple, yet fundamental,
example.

The standard wave equation for plane waves reads

@2	

@t2
� c20

@2	

@x2
D 0; (4)

where c0 is a constant, owing to medium, x is a
spatial coordinate in the direction of wave propagation,
and t is time. The general solution of (4) is derived
and discussed in any elementary textbook on partial
differential equations and is composed of two systems
of permanent shaped waves, moving in the positive and
negative x direction, respectively, with speed c0. This
implies the dispersion relation

! D c0k; c D c0: (5)

Hence, there is no dispersion and (4) serves as model
equation for nondispersive waves of all kinds of physi-
cal origin, among them accoustic waves. In particular it
describes the asymptotic long wave limit of dispersive
wave classes such as the Airy waves. If we approximate
the solution of (4) by a discrete solution, defined on a
uniform grid ! will depend on the spacings of the grid,
x and t . Then ! D c0k f .kx; c0kt/, where
the function f depends on the discretization method.
Unlike (5) such a relation generally yields waves with
dispersion, denoted as numerical dispersion. One con-
sequence is that any finite pulse eventually will be
dispersed into a wave train in the discrete approxima-
tion, while it translates with unaltered form according
to the partial differential equation. Just as physical
dispersion, the numerical counterpart is accumulative
and may cause artificial disintegration of wave systems
even for fine grids, provided the propagation distance
is long.

The simplest way to solve the wave equation (4)
numerically is to employ the common symmetric finite
difference for the second-order derivatives to employ
a “+” shaped stencil in the x, t plane. Insertion of an
harmonic mode, corresponding to (1), then yields

sin

�

!t

2

�

D ˙c0t
x

sin

�

kx

2

�

: (6)

Important information is offered by the numerical dis-
persion relation (6). First, a right-hand side value larger
than unity implies a non-real frequency and thereby in-
stability. To avoid this, for the whole range of possible
wave numbers (k), we must require c0t=x � 1.
This is the Courant-Friedrichs-Levy condition and may
be related to the maximum, discrete signal speed in
the grid. Moreover, save for c0t=x D 1 when the
numerical method becomes exact; (6) displays normal
dispersion, with properties for long waves (small k)
akin to those of surface gravity waves. Even though
this has inspired attempts to model real dispersion for
long ocean waves by means of numerical dispersion of
the standard wave equations, the solution is generally
degraded by numerical dispersion. Moreover, in mul-
tiple spatial dimensions numerical dispersion will be
anisotropic.

All results cited so far are linear in the sense that
they are valid for asymptotically small amplitudes.
If finite amplitude effects are taken into account, the
propagation speed may be altered, such as for the
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periodic Stokes’s wave where (3) is extended by terms
involving the wave steepness (see, for instance [3]).
Nonlinear effects may also counteract dispersion ef-
fects and inhibit the evolution of a wave train. An ex-
ample to this is the solitary wave (see [4] for overview).
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Introduction

The theory of distributions, or generalized functions,
provides a unified framework for performing standard
calculus operations on nonsmooth functions, measures
(such as the Dirac delta function), and even more
general measure-like objects in the same way as they
are done for smooth functions. In this theory, any dis-
tribution can be differentiated arbitrarily many times, a
large class of distributions have well-defined Fourier
transforms, and general linear operators can be ex-
pressed as integral operators with distributional kernel.
The distributional point of view is very useful since it
easily allows to perform such operations in a certain
weak sense. However, often additional work is required
if stronger statements are needed.

The theory in its modern form arose from the
work of Laurent Schwartz in the late 1940s, although
it certainly had important precursors such as Heavi-
side’s operational calculus in the 1890s and Sobolev’s
generalized functions in the 1930s. The approach of
Schwartz had the important feature of being com-
pletely mathematically rigorous while retaining the
ease of calculation of the operational methods. Dis-
tributions have played a prominent role in the modern
theory of partial differential equations.

The idea behind distribution theory is easily il-
lustrated by the standard example, the Dirac delta
function. On the real line, the Dirac delta is a “function
ı.x/ which is zero for x ¤ 0 with an infinitely high
peak at x D 0, with area equal to one.” Thus, if
f .x/ is a smooth function, then integrating ı.x/f .x/
is supposed to give

Z 1

�1
ı.x/f .x/ D f .0/:

The Dirac delta is not a well-defined function (in
fact it is a measure), but integration against ı.x/ may
be thought of as a linear operator defined on some
class of test functions which for any test function f
gives out the number f .0/. After suitable choices of
test function spaces, distributions are introduced as
continuous linear functionals on these spaces.

The following will be a quick introduction to dis-
tributions and the Fourier transform, mostly avoiding
proofs. Further details can be found in [1–3].

Test Functions and Distributions

Let ˝ � Rn be an open set. We recall that if f is a
continuous function on ˝ , the support of f is the set

supp.f / WD˝ n V; V is the largest open subset in ˝

with f jV D 0:

Some notation: any n-tuple ˛ D .˛1; : : : ; ˛n/ 2 Nn

where N D f0; 1; 2; : : :g is called a multi-index and its
norm is j˛j D ˛1 C � � � C ˛n. We write

@˛f .x/ D
�

@

@x1

�˛1

� � �
�

@

@xn

�˛n

f .x/:
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A function f on ˝ is called C1 or, infinitely differ-
entiable, if @˛f is a continuous function on ˝ for all
˛ 2 Nn. The following test function space will be used
to define distributions.

Definition 1 The space of infinitely differentiable
functions with compact support in ˝ is defined as

C1
c .˝/ WDff W ˝ ! C I f is C1 and supp.f /

is compact in ˝g: (1)

If ˝ is a domain with smooth boundary, then
supp.f / is compact in ˝ if and only if f vanishes
near @˝ . The space C1

c .˝/ contains many functions,
for instance, it is not hard to see that

	.x/ WD
�

e�1=.1�jxj/2 ; jxj < 1;
0; jxj � 1

is in C1
c .R

n/. Generally, if K � V � V � ˝ where
K is compact and V is open, there exists ' 2 C1

c .˝/

such that ' D 1 on K and supp.'/ � V .
To define continuous linear functionals on C1

c .˝/,
we need a notion of convergence:

Definition 2 We say that a sequence .'j /1jD1 con-
verges to ' in C1

c .˝/ if there is a compact setK � ˝
such that supp.'j / � K for all j and if

k@˛.'j � '/kL1.K/ ! 0 as j !1; for all ˛ 2 Nn:

More precisely, one can define a topology on
C1
c .˝/ such that this space becomes a complete

locally convex topological vector space, and a linear
functional u W C1

c .˝/ ! C is continuous if and
only if u.'j / ! 0 for any sequence .'j / such that
'j ! 0 in C1

c .˝/. We will not go further on this
since the convergence of sequences is sufficient for
most practical purposes.

We can now give a precise definition of distribu-
tions.

Definition 3 The set of distributions on˝ , denoted by
D0.˝/, is the set of all continuous linear functionals
u W C1

c .˝/! C.

Examples 1. (Locally integrable functions) Let f be a
locally integrable function in˝ , that is, f W ˝ ! C
is Lebesgue measurable and

R

K
jf j dx <1 for any

compact K � ˝ . (In particular, any continuous or

L1.˝/ function is locally integrable.) We define

uf W C1
c .˝/! C; uf .'/ D

Z

˝

f .x/'.x/ dx:

By the definition of convergence of sequences, uf is
a well-defined distribution. If f1; f2 are two locally
integrable functions and uf1 D uf2 , then f1 D
f2 almost everywhere by the du Bois-Reymond
lemma. Thus a locally integrable function f can be
identified with the corresponding distribution uf .

2. (Dirac mass) Fix x0 2 ˝ and define

ıx0 W C1
c .˝/! C; ıx0.'/ D '.x0/:

This is a well-defined distribution, called the Dirac
mass at x0.

3. (Measures) If � is a positive or complex Borel mea-
sure in˝ such that the total variation

R

K
d j�j <1

for any compactK � ˝ , then the operator

u� W ' 7!
Z

˝

'.x/ d�.x/

is a distribution that can be identified with �.
4. (Derivative of Dirac mass) On the real line, the

operator
ı0
0 W ' 7! �' 0.0/

is a distribution which is not a measure.

We now wish to extend some operations, defined
for smooth functions, to the case of distributions.
This is possible via the duality of test functions and
distributions. To emphasize this point, we employ the
notation

hu; 'i WD u.'/; u 2 D0.˝/; ' 2 C1
c .˝/:

Note that if u is a smooth function, then the duality is
given by

hu; 'i D
Z

˝

u.x/'.x/ dx:

Multiplication by Functions

Let a be a C1 function in ˝ . If u; ' 2 C1
c .˝/, we

clearly have
hau; 'i D hu; a'i:
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Since ' 7! a' is continuous on C1
c .˝/, we may for

any u 2 D0.˝/ define the product au as the distribution
given by

hau; 'i WD hu; a'i; ' 2 C1
c .˝/:

Distributional Derivatives

Similarly, motivated by the corresponding property for
smooth functions, if u 2 D0.˝/ and ˇ 2 Nn is a
multi-index, then the (distributional) derivative @ˇu is
the distribution given by

h@ˇu; 'i WD .�1/jˇjhu; @ˇ'i; ' 2 C1
c .˝/:

(If u is a smooth function, this is true by the integration
by parts formula

Z

˝

u.x/@xj '.x/ dx D �
Z

˝

@xj u.x/'.x/ dx:/

The last fact is one of the most striking features
of distributions: in this theory, any distribution (no
matter how irregular) has infinitely many well-defined
derivatives!

Example 1 1. In Example 4 above, the distribution ı0
0

is in fact the distributional derivative of the Dirac
mass ı0.

2. Let u.x/ WD jxj; x 2 R. Since u is continuous,
we have u 2 D0.R/. We claim this one has the
distributional derivatives

u0 D sign.x/;

u00 D 2ı0:
In fact, if ' 2 C1

c .R/, one has

hu0; 'iD�hu; ' 0iD
Z 0

�1
x' 0.x/ dx�

Z 1

0

x' 0.x/ dx

D
Z

R
sign.x/'.x/ dx D hsign.x/; 'i;

using integration by parts and the compact support
of '. Similarly,

hu00; 'iD�hu0; ' 0iD
Z 0

�1
' 0.x/ dx�

Z 1

0

' 0.x/ dx

D 2'.0/ D h2ı0; 'i:

Homogeneous Distributions

We wish to discuss homogeneous distributions, which
are useful in representing fundamental solutions of
differential operators, for instance. We concentrate on
a particular example following [2, Section 3.2]. If
a > �1, define

fa.x/ WD
�

xa; x > 0;

0; x < 0:

This is a locally integrable function and positively
homogeneous of degree a in the sense that fa.tx/ D
taf .x/ for t > 0. For a > �1 we can define the
distribution xaC WD fa. If a > 0 it has the properties

xxa�1C D xaC;
.xaC/0 D axa�1C :

We would like to define xaC for any real number a as
an element of D0.R/ so that some of these properties
remain valid.

First note that if a > �1, then for k 2 N by repeated
differentiation

hxaC; 'i D �
1

aC 1 hx
aC1
C ; ' 0i D � � �

D .�1/k 1

.aC 1/.aC 2/ : : : .aC k/
hxaCk

C ; '.k/i:

If a … f�1;�2; : : :g we can define xaC 2 D0.R/ by the
last formula.

If a is a negative integer, we need to regularize
the expression xaC to obtain a valid distribution. For
fixed ' 2 C1

c .R/, the quantity F.a/ D hxaC; 'i D
R

fa.x/'.x/ dx can be extended as an analytic func-
tion for complex a with Re.a/ > �1. The previous
formula for xaC with negative a then shows that F is
analytic is C n f�1;�2; : : :g, and it has simple poles at
the negative integers with residues

lim
a!�k.aC k/F.a/ D

.�1/khx0C; '.k/i
.�k C 1/.�k C 2/ : : : .�1/

D '.k�1/.0/
.k � 1/Š :

We define x�kC 2 D0.R/, after a computation, by
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hx�kC ; 'i WD lima!�k.F.a/� '.k�1/.0/

.k�1/Š.aCk//

D 1
.k�1/Š

�

� R1
0
.log x/'.k/.x/ dx C

�
Pk�1

jD1 1j
�

'.k�1/.0/
�

:

Then xxa�1C D xaC is valid for all a 2 R, and .xaC/0 D
axa�1C holds true except for nonpositive integers a.

Schwartz Kernel Theorem

One of the important features of distribution theory is
that it allows us to write almost any linear operator
as an integral operator, at least in a weak sense. If
˝;˝ 0 � Rn are open sets and if K 2 L2.˝ 	
˝ 0/, by Cauchy-Schwarz, one has a bounded linear
operator

T W L2.˝ 0/!L2.˝/; T '.x/ WD
Z

˝0

K.x; y/'.y/ dy:

The function K is called the integral kernel of the
operator T . There is a general one-to-one correspon-
dence between continuous linear operators and integral
kernels.

Theorem 1 If T W C1
c .˝

0/! D0.˝/ is a continuous
linear map, then there is K 2 D0.˝ 	˝ 0/ such that

hT .'/;  i D hK; ˝ 'i;
' 2 C1

c .˝
0/;  2 C1

c .˝/:

Here . ˝'/.x; y/ D  .x/'.y/. Conversely, anyK 2
D0.˝	˝ 0/ gives rise to a continuous linear map T by
the above formula.

Tempered Distributions

In the following, we will give a brief review of the
Fourier transform in the general setting of tempered
distributions. We introduce a test function space de-
signed for the purposes of Fourier analysis.

Definition 4 The Schwartz space S .Rn/ is the set of
all infinitely differentiable functions f W Rn ! C such
that the seminorms

kf k˛;ˇ WD kx˛@ˇf .x/kL1.Rn/

are finite for all multi-indices ˛; ˇ 2 Nn. If .fj /1jD1 is
a sequence in S , we say that fj ! f in S if kfj �
f k˛;ˇ ! 0 for all ˛; ˇ.

It follows from the definition that a smooth function
f is in S .Rn/ iff for all ˇ and N there exists C > 0

such that

j@ˇf .x/j � C hxi�N ; x 2 Rn:

Here and below, hxi WD .1 C jxj2/1=2. Based on
this, Schwartz space is sometimes called the space of
rapidly decreasing test functions.

Example 2 Any function in C1
c .R

n/ is in Schwartz
space, and functions like e�� jxj2 , � > 0, also belong
to S . The function e�� jxj is not in Schwartz space
because it is not smooth at the origin, and also hxi�N
is not in S because it does not decrease sufficiently
rapidly at infinity.

There is a topology on S such that S becomes a
complete metric space. The operations f 7! Pf and
f 7! @ˇf are continuous maps S ! S , if P is any
polynomial and ˇ any multi-index. More generally, let

OM .Rn/ WDff 2 C1.Rn/ I for all ˇ there exist C;

N > 0

such that j@ˇf .x/j � C hxiN g:

It is easy to see that the map f 7! af is continuous
S ! S if a 2 OM .
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Definition 5 If f 2 S .Rn/, then the Fourier trans-
form of f is the function Ff D Of W Rn ! C defined
by

Of .�/ WD
Z

Rn
e�ix��f .x/ dx; � 2 Rn:

The importance of Schwartz space is based on the
fact that it is invariant under the Fourier transform.

Theorem 2 (Fourier inversion formula) The
Fourier transform is an isomorphism from S .Rn/

onto S .Rn/. A Schwartz function f may be
recovered from its Fourier transform by the inversion
formula

f .x/ DF�1 Of .x/ D .2�/�n
Z

Rn
eix�� Of .�/ d�;

x 2 Rn:

After introducing the Fourier transform on nicely
behaving functions, it is possible to define it in a very
general setting by duality.

Definition 6 Let S 0.Rn/ be the set of continuous
linear functionals S .Rn/ ! C. The elements of S 0
are called tempered distributions, and their action on
test functions is written as

hu; 'i WD u.'/; u 2 S 0; ' 2 S :

Since the embedding C1
c .R

n/ � S .Rn/ is con-
tinuous, it follows that S 0.Rn/ � D0.Rn/, that is,
tempered distributions are distributions. The elements
in S 0 are somewhat loosely also called distributions
of polynomial growth. The following examples are
similar to the case of D0.Rn/ above.

Example 3 1. Let f W Rn ! C be a measurable
function, such that for some C;N > 0, one has

jf .x/j � C hxiN ; for a.e. x 2 Rn:

Then the corresponding distribution uf is in
S 0.Rn/. The function f is usually identified with
the tempered distribution uf .

2. In a similar way, any function f 2 Lp.Rn/ with
1 � p � 1 is a tempered distribution (with the
identification f D uf /.

3. Let � be a positive Borel measure in Rn such that

Z

Rn
hxi�N d�.x/ <1

for some N > 0. Then the corresponding distribu-
tion u� is tempered. In particular, the Dirac mass ıx0
at x0 2 Rn is in S 0.

4. The function e�x is in D0.R/ but not in S 0.R/
if � ¤ 0, since it is not possible to define
R

R e
�x'.x/ dx for all Schwartz functions '.

However, e�x cos.e�x/ belongs to S 0 since it is the
distributional derivative (see below) of the bounded
function ��1 sin.e�x/ 2 S 0.

Operations on Tempered Distributions

The operations defined above for D0.Rn/ have natural
analogues for tempered distributions. For instance, if
a 2 OM.Rn/ and u 2 S 0.Rn/, then au is a tempered
distribution where

hau; 'i D hu; a'i:

Similarly, if u 2 S 0.Rn/ then the distributional deriva-
tive @ˇu is also a tempered distribution.

Finally, we can define the Fourier transform of
any u 2 S 0 as the tempered distribution Fu D Ou
with

hOu; 'i WD hu; O'i; ' 2 S :

In fact, this identity is true if u; ' 2 S , and it then
extends the Fourier transform on Schwartz space to the
case of tempered distributions.

Example 4 The Fourier transform of ı0 is the constant
1, since

h Oı0; 'i D hı0; O'i D O'.0/ D
Z 1

�1
'.x/ dx

D h1; 'i:

If u 2 L2.Rn/ then u is a tempered distribu-
tion, and the Fourier transform Ou is another element
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of S 0. The Plancherel theorem (which is the exact
analogue of Parseval’s theorem for Fourier series)
states that in fact Ou 2 L2 and that the Fourier transform
is an isometry on L2 up to a constant. We state
the basic properties of the Fourier transform as a
theorem.

Theorem 3 The Fourier transform u 7! Ou is a bijec-
tive map from S 0 onto S 0, and one has the inversion
formula

hu; 'i D .2�/�nhOu; O'.� � /i; ' 2 S :

The Fourier transform is also an isomorphism from
L2.Rn/ onto L2.Rn/, and

kOukL2 D .2�/n=2kukL2 :

It is remarkable that any tempered distribution has a
Fourier transform (thus, also any Lp function or mea-
surable polynomially bounded function), and there is
a Fourier inversion formula for recovering the original
distribution from its Fourier transform.

We end this section by noting the identities

.@˛u/O D .i�/˛ Ou;
.x˛u/O D .i@� /˛ Ou;

where x˛ D x
˛1
1 : : : x

˛n
n . These hold for Schwartz

functions u by a direct computation and remain true for
tempered distributions u by duality. Thus the Fourier
transform converts derivatives into multiplication by
polynomials and vice versa. This explains why the
Fourier transform is useful in the study of partial
differential equations, since it can be used to convert
constant coefficient differential equations into alge-
braic equations.
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Synonyms

DDM

Definition

Domain decomposition methods are solvers for partial
differential equations that compute the solution by
solving a series of problems on subdomains of the
original domain.

Domain decomposition methods are efficient
(generally iterative) methods for the implicit solution
of linear and nonlinear partial differential equations
(PDEs). Such methods are motivated by four
considerations: complex geometry, coupling of
multiple physical regimes (e.g., fluid and structure), the
divide-and-conquer paradigm, and parallel computing.
Domain decomposition methods may be applied to
all three classes of PDEs – elliptic, parabolic, and
hyperbolic – as well as coupled and mixed PDEs. A
large number of domain decomposition methods have
been developed, including those based on overlapping
and nonoverlapping subdomains. The convergence
analysis of domain decomposition methods is a rich
mathematical topic with both a general, broad abstract
theory and detailed technical estimates. Domain
decomposition methods are closely related to block
Jacobi methods, multigrid methods, as well as other
iterative and direct solution schemes.

Motivating Aspects

Complex Geometry and Multiphysics
The first domain decomposition method is often at-
tributed to H. A. Schwarz in 1870. He used it to
demonstrate the existence of a solution to a Pois-
son problem (�4u D f ) with a Dirichlet boundary
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Ω1

Ω2Γ2 Γ1

Fig. 1 Overlapping Subdomains of Schwarz

condition on a domain that is the overlapping union of
a circle (�1) and rectangle (�2), where no closed-form
solution exists (both circles and rectangles have closed-
form solutions); see Fig. 1. He proposed the following
abstract iteration. Select an initial guess on the interior
boundary �1, and solve the Dirichlet problem on �1.
Then, using the trace of that solution on �2, solve the
Dirichlet problem on �2. Repeat the process with the
latest values on �1. This is the Schwarz alternating
process. The process can be interpreted physically as
having two interleaved tanks with two gates �1 and �2
and letting the residual �4u � f represent water in
the tanks. Solving on �1 can be interpreted as closing
the gate on �1 and pumping all the water out of tank
1. Opening the gate equalizes the water height across
the dual tanks; one then closes the second gate and
removes the water from the second tank. Intuitively,
this iterative process will eventually remove all the
water.

To express the overlapping alternating Schwarz
method algebraically, it is useful to introduce the
restriction operators R1 and R2 that select all the
degrees of freedom interior to each subdomain. The
discrete alternating Schwarz method can then be
written as follows:

unC1=2 D un CRT1 .R1ART1 /�1R1.f �Aun/;

unC1 D unC1=2 CRT2 .R2ART2 /�1R2.f � AunC1=2/:

All the details in the transformations to this form
from the continuum algorithm may be found in
[4, Chapter 2].

Thus, we see the first motivation for domain de-
composition: it provides a method for computing a
PDE solution on a complicated geometric region by
applying PDE solvers on simpler geometric regions.

Ω1

Ω2Γ3

Fig. 2 Nonoverlapping subdomains of capacitance matrix
methods

In the 1970s, an awareness of fast solvers on simple
geometries (e.g., based on fast Fourier transforms and
cyclic reduction) led to the development of capacitance
matrix methods. Consider the L-shaped region in Fig. 2
that is the union of two nonoverlapping rectangles,
�1 and �2. If the values on �3 are known, then the
solutions in�1 and�2 can be computed independently
in parallel. Thus, it is useful to derive an equation
for the values only on �3. This formulation can be
done either at the continuum level or after the PDE
has been discretized into an algebraic equation. For
simplicity, consider the L-shaped region discretized by
using centered finite differences. The resulting alge-
braic equations can be written as

0

@

A11 A13
A22 A23

A31 A32 A
.1/
33 C A.2/33

1

A

0

@

u1
u2
u3

1

A D
0

@

f1
f2
f3

1

A :

Eliminating the first two sets of variables (e.g., with
a block LU factorization) results in the reduced Schur
complement system,

Su3 D .S.1/CS.2//u3 D f3�A31A�1
11 f1�A32A�1

22 f2;

where S.1/ D A
.1/
33 � A31A�1

11 A13 and S.2/ D A
.2/
33 �

A32A
�1
22 A23 are the Schur complements from �1 and

�2, respectively. Note that an application of S requires
the solution of the PDE on each subdomain. This
Schur complement system can be solved by using a
preconditioned Krylov subspace method such as the
conjugate gradient method or the generalized mini-
mum residual (GMRES) method. The preconditioner
of S can be the square root of the negative of a
discretization of the Laplacian on �3, sometimes called
the J operator (or K1=2), which can be applied by
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using a fast Fourier transform. Alternatively, one can
choose S.1/

�1
or S.2/

�1
or the summation of both as

a preconditioner, which is related to the Neumann-
Neumann preconditioners. An efficient application of
S.1/

�1
can be computed by using the relationship

S.1/
�1

v D � 0 I
�

 

A11 A13

A31 A
.1/
33

!�1 �
0

I

�

v;

where the solution of the right-hand-side system rep-
resents solving the subproblem with Neumann bound-
ary conditions along �3. Full details may be found
in [4, Section 4.2.1]. Both the J operator and the
Neumann-Neumann approach result in optimal pre-
conditioners, in the sense that the condition number
(and hence the number of iterations needed for conver-
gence) does not increase with the size of the algebraic
problem. The algorithms as presented are not optimal
in work estimates unless an optimal solver is used for
each of the subdomains.

Both overlapping and nonoverlapping domain de-
composition methods may be extended for use when
different PDE models are used for different parts of
the domain. For example, in fluid-structure interaction,
the nonoverlapping methods are often used with infor-
mation being passed between the domains as Dirichlet
and Neumann boundary conditions along the interface.
For coupling of Navier-Stokes and Boltzmann regimes,
overlapping regions are often used, where the Boltz-
mann representation is converted to the Navier-Stokes
representation in the overlapped region and vice versa
at each iteration.

Divide and Conquer and Parallelism
The other motivator for domain decomposition meth-
ods is to decompose a large problem into a collection
of small problems that may be solved in parallel.
In general, the smaller subproblems are all coupled,
requiring an iterative solution process.

The process is as follows: decompose the entire
computational domain � into several small subdo-
mains �i; i D 1; : : : ; N . For simplicity, consider the
discretized linear problem Ax D b, and denote the
space of degrees of freedom by V . This decomposi-
tion process can also be carried out at the continuum
level and for nonlinear problems with changes only in
notation and more technical details.

Consider a family of spaces fVi ; i D 0; : : : ; N g.
Here, Vi usually are related to the degrees of freedom
on subdomains �i , for i D 1; � � �N , called local
spaces. V0 usually is related to a coarse problem, called
the coarse space. The coarse space provides global
communication across the domain in each iteration
and contains the coarser grid eigenmodes to satisfy
the local null space property. Specifically, the coarse
space includes the null spaces of the local problems
defined on the local spaces Vi , for i D 1; � � �N . The
dimensions of these null spaces are much smaller than
the dimension of V . In addition, assume there exist
rectangular (restriction) matrices Ri that return the
degrees of freedom in spaces Vi : Ri W V �! Vi . Then
V can be written as V D RT0 V0 C

PN
iD1 RTi Vi . This

decomposition is not a direct sum in most cases. Define
the subproblem (simply the original problem restricted
to one domain) Ai D RiAR

T
i and the projection

operator Pi D RTi A
�1
i RiA. When A�1

i is solved only
approximately, the Pi are no longer projections.

Using the decomposition of the space V and the
projection-like operators Pi , the following Schwarz
preconditioned operators are defined:
• Additive operator – Pad D P0 C PN

iD1 Pi D
.
PN

iD0 RTi A�1
i Ri /A

• Multiplicative operator – Pmu D I �…N
iD0.I �Pi/

and symmetric version Pmu D I �…N
iD0.I � Pi / �

…0
iDN�1.I � Pi/

• Hybrid operator – Phy D I � .I � P0/.I �
PN

iD1 Pi /.I � P0/
For the additive operator Pad , one can solve sub-

problemsAi in parallel. For the multiplicative operator
Pmu, these subproblems must be solved sequentially.
However, if the subdomains are colored so that no two
subspaces of a color share degrees of freedom, then all
the subproblems of the same color may be solved in
parallel.

Standard Approaches

Two standard approaches to domain decomposition
methods exist based on whether the subdomains are
overlapped.

Overlapping Domains
Overlapping domains are usually obtained by decom-
posing the computational domain � into nonover-
lapping subdomains �i with diameters Hi . These
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domains are then each extended to a larger region
�0
i by repeatedly adding a layer of elements into �i .

The distance parameter ıi measures the width of the
regions �0

i n �i . If there is a constant c such that

maxNiD1
n

Hi
ıi

o

� 1
c
, the overlap is called generous. The

convergence of the overlapping domain decomposition
method depends on the size of the overlap.

The local spaces Vi are defined as the degrees of
freedom on the extended subdomains�0

i with zeros on
@�0

i , for i D 1; : : : ; N . The restriction matrices Ri
are 0-1 rectangle matrices that extract the degrees of
freedom in Vi from V .

The coarse space V0 is usually not necessary for
parabolic problems but is crucial in order to make the
algorithms converge independently of the number of
the subdomains for elliptic PDEs. The standard coarse
space V0 can be formed by the degrees of freedom
defined on a shape-regular coarse mesh on the domain
�. The original mesh need not be a refinement of this
coarse mesh. The matrix RT0 is the interpolation from
the coarse to a fine mesh. For unstructured meshes,
especially in three dimensions, the construction of R0
might not be straightforward.

Several nonstandard coarse grid spaces have been
introduced for specific circumstances. For example,
some coarse spaces, from nonoverlapping methods
such as face-based and Neumann-Neumann coarse
space, are used for nonconforming finite-element dis-
cretization to make the algorithms independent of the
jump coefficients. Similar coarse spaces are also used
for almost-incompressible elasticity. With such coarse
space, a condition number bound for saddle point
problems was established, which is also independent
of the jump coefficients. Several other coarse spaces
exist, for example, partition of unity and aggregation;
for more details, see [5, Section 3.10].

Nonoverlapping Domains
In the first step of nonoverlapping domain decompo-
sition methods, the original problem A is reduced to
the Schur complement S by eliminating the degrees
of freedom interior to each subdomain. The Schur
complement has a smaller size and a better condition
number compared with that of the original matrix A.
However, it is denser and expensive to form and store.
In practice, therefore, one tries to avoid forming the
global Schur complement, instead storing the subdo-

main local matrices and applying the Schur comple-
ment implicitly as needed.

Depending on how one eliminates the coupling in
the Schur complement and forms the local spaces Vi ,
two primal nonoverlapping domain decomposition
approaches can be distinguished. One approach
eliminates the coupling between all pairs of faces,
edges, and vertices; methods using this approach are
called primal iterative substructuring methods. The
second approach eliminates the coupling between
subdomains, leading to Neumann-Neumann methods.
Finite-element tearing and interconnecting (FETI)
methods are another type of nonoverlapping domain
decomposition methods. These methods iterate on the
dual variable Lagrange multipliers that are introduced
to enforce the continuity of the solutions across the
subdomain interface.

For the primal iterative substructuring methods,
the local spaces Vi are the degrees of freedom related
to individual faces, edges, and vertices. In order to
avoid computing the elements of the global Schur
complement, the local solvers (Si ) can be replaced by
inexpensive inexact solvers. The coarse space can be
vertex based, which gives optimal convergence bounds
for two dimensions but not for three dimensions. Wire-
basket-based and face-based coarse spaces can give
optimal convergence bounds for three-dimensional
problems.

For the Neumann-Neumann methods, the local
spaces Vi contain the boundary degrees of freedom
on each subdomain, and the local solvers are the
local Schur complement S�1

i . For the floating
subdomains, whose boundary have no intersection
with the boundary of the original domain, the
local Schur complements are singular. The coarse
space is spanned by the pseudoinverses of the
counting functions from each subdomain. These
pseudoinverses form a partition of unity and ensure
that the local problems are balancing for floating
domains when the hybrid Schwarz framework is
used. For the additive Schwarz framework, a low-
order term can be added into the local solvers to make
them nonsingular. Balancing domain decomposition
methods by constraints (BDDC) is an advanced version
of the balancing methods. With BDDC algorithms,
the subdomain interface degrees of freedom are
divided into primal and dual parts. The local solvers
have a Neumann condition on the dual variables
but a Dirichlet condition for the primal variables.
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The singularity of the local problems from floating
subdomains is thus removed. The coarse space of
BDDC consists of the functions given by their values
for the primal variables and energy minimal extension
to each subdomain independently. An additive Schwarz
framework is used for BDDC methods.

FETI-DP methods are an advanced version of the
FETI family. They share coarse and local spaces simi-
lar to those of BDDC algorithms, but they do iterations
on the dual variable Lagrange multipliers. It has been
established that the preconditioned BDDC and FETI-
DP algorithms, with the same coarse spaces, have the
same nontrivial nonzero eigenvalues.

Nonlinear Problems: ASPIN
The previous material was premised on solving non-
linear PDEs by using Newton’s method, thus reducing
a nonlinear problem to a series of linear problems.
One can also apply domain decomposition principles
directly to the nonlinear problem.

Discretization of nonlinear PDEs results in nonlin-
ear algebraic equations F.u/ D 0: Additive Schwarz
preconditioned inexact Newton (ASPIN) methods con-
vert this system to a different, better conditioned, non-
linear system F.u/ D 0, which has the same solution
as the original system. The new nonlinear system is
then solved by inexact Newton methods.

The construction of F is based on the decompo-
sition of the computational domain into overlapped
subdomains, as for linear problems. There is no coarse
space V0. The subdomain local nonlinear functions
are defined as Fi D RiF , where Ri are the square
restriction matrices that take the degrees of freedom
not in �0

i zero. For any u 2 V , Pi.u/ 2 Vi is defined
as the solution of the subdomain nonlinear problems:
Fi .u�Pi.u// D 0. The nonlinear functionF is defined
as F.u/ D PN

iD1 Pi .u/. Thus, an evaluation of F
involves a nonlinear solve on each subdomain.

The Jacobian matrix of F can be approximated by
J D PN

iD1 J�1
i J , where J is the Jacobian of the

original function F and Ji D RiJR
T
i . Thus, one sees

that the ASPIN nonlinear system can be interpreted as
a nonlinear preconditioning of the original system.

Analysis: The Schwarz Framework

Proofs for the convergence of additive and multi-
plicative domain decomposition preconditioners are

organized around the following three assumptions. The
hybrid method can be interpreted as an additive method
on the range space of I � P0.
Assumption 1 (Stable Decomposition) There exists
a constant C0 such that for all u 2 V , there exists a
decomposition u DPN

iD0 RTi ui , ui 2 Vi such that

N
X

iD0
uTi Aiui � C2

0 uT Au:

The constantC0 is related to the minimal eigenvalue
of Pad , and this assumption ensures that the spaces
Vi provide a stable splitting of the space V . Note that
the more overlap between the subspaces, the better this
bound will be.

Assumption 2 (Strengthened Cauchy-Schwarz) In-
equality There exist constants 0 � �ij � 1, 1 � i; j �
N such that 8ui 2 Vi ; uj 2 Vj ; i; j D 1; : : : ; N ,

juTi RiARTj uj j � �ij
�

uTi RiAR
T
i ui

�1=2

�

uTj RjAR
T
j uj

�1=2

:

The spectral radius of �, �.�/, measures the orthogo-
nality of the spaces Vi for i D 1; : : : ; N , and it will
appear in the upper bound of the maximal eigenvalues
of Pad . The more orthogonal the subspaces, the better
the constant will be.

Assumption 3 (Local Stability) There exists a con-
stant ! > 0 such that for all ui 2 Vi , i D 0; : : : ; N ,

uTi RiAR
T
i ui � !uTi Aiui :

Here, ! gives a one-sided measure of the approx-
imation properties of the local problem, especially
when Ai is an approximation of RiARTi .

The fundamental theorems of Schwarz analysis are
given by the following two results.

Theorem 1

C�2
0 uTAu � uT APadu � ! .�.�/C 1/ uT Au;

8u 2 V:
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Theorem 2 For symmetric multiplicative operator,

2 � !
.1C 2!2�2.�//C 2

0

uTAu � uT APmuu � uTAu;

8u 2 V:

Convergence proofs for any domain decomposition
method then consist of verifying the three assumptions
and determining the dependency of the constants C2

0 ,
�.�/, and ! on the subdomain size H , the element
size h, and the PDE-specific parameters. Each domain
decomposition method has its own bounds and proof of
convergence. The following two theorems are typical
of the results that may be obtained.

For two-level overlapping Schwarz methods with
standard coarse space V0, let Nc represent the number
of colors needed to color the overlapping regions. One
can easily obtain the estimate �.�/ � Nc for the
upper bound. However, it is much more technically
difficult to obtain the estimateC2

0 � C
�

1C H
ı

�

for the
lower bound. If exact solvers are used for all subspace
problems, the following theorem holds.

Theorem 3

�.Pad / � C
�

1C H

ı

�

;

where �.Pad / is the condition number of the two-
level overlapping Schwarz method and the constant
C depends on Nc but not on the mesh size h, the
subdomain sizeH , or the overlapping constant ı. It has
been proved that this bound is sharp.

For well-designed nonoverlapping domain decom-
position methods, one typically obtains the following
condition number bound.

Theorem 4

�.Pad / � C
�

1C log
H

h

�2

;

where the constant C is independent of h, H , and the
specific coefficients of the PDE. This bound is sharp as
well.

For the analysis of the balancing Neumann-
Neumann methods with hybrid Schwarz framework,
BDDC, and FETI-DP algorithms, the estimate of C2

0

for the lower bound can be obtained easily. However,
the estimate for the upper bound is difficult; it can be
obtained by estimating the so-called jump or average
operators.

Relationship to Other Algebraic Solver
Methods

For the linearized problem, one-level overlapping ad-
ditive Schwarz methods may be considered generaliza-
tions of the block Jacobi method. The key differences
are that the matrix rows and columns are preordered
(at least conceptually, though not necessarily in prac-
tice) so that each diagonal block is associated with
geometric subdomain and the blocks are “extended” to
include degrees of freedom that are coupled to degrees
of freedom associated with the block. This extension
can be done at the geometric level or at the algebraic
level by using information from the sparse matrix data
structure.

Schur complement methods are closely related to
sparse direct solver methods. Substructuring is an
approach to organizing the computations in a sparse
direct solver by using the geometric/mesh informa-
tion to determine an efficient ordering used during
the factorization; this is also closely related to nested
dissection orderings. These orderings result in small
separators that are ordered last and couple the sub-
domains resulting from the substructuring or nested
dissection ordering. A Schur complement domain de-
composition method can then be thought of as a hy-
brid direct-iterative method where the factorization
is stopped at the separators and an iterative method
is used to complete the solution process along the
separators.

Multigrid methods are closely related to two-level
and multilevel domain decomposition methods. In fact,
much of the mathematics used in multigrid analysis is
common to Schwarz analysis, and many mathemati-
cians work in both domain decomposition and multi-
grid methods. Domain decomposition methods are
generally designed with more focus on concurrency,
whereas multigrid emphasizes optimality in terms of
work that needs to be performed. Both approaches
can suffer from the telescoping problem in which a
coarse grid solver requires far fewer compute resources
than do the finer grid solves, resulting in possibly idle
processes during the coarse grid solve.
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Domain Decomposition Research
Community

Domain decomposition has an active research commu-
nity that includes mathematicians, computer scientists,
and engineers. A domain decomposition conference
series has been held since its initiation in Paris in 1987.
The proceedings for these conferences are a rich source
of material for both the practical and the mathematical
aspects of domain decomposition. Information on the
conference series may be found at the domain decom-
position website [1]. Currently, four books have been
devoted to domain decomposition methods [2–5].
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Introduction

Flowing, small-scale, particles (“particulates”) are
ubiquitous in industrial processes and in the natural
sciences. Applications include electrostatic copiers,
inkjet printers, powder coating machines and a variety
of manufacturing processes. The study of uncharged
“granular” or “particulate” media, in the absence of
electromagnetic effects, is wide-ranging. Classical
examples include the study of natural materials, such

as sand and gravel, associated with coastal erosion,
landslides, and avalanches. For reviews, see the texts
of Rietma [6], Pöschel and Schwager [5], Duran [1],
and Zohdi [8]. In the manufacturing of particulate
composite materials, small-scale particles, which are
transported and introduced into a molten matrix, play
a central role. For example, see Hashin [2], Mura [3],
Nemat-Nasser and Hori [4], Torquato [7], and Zohdi
and Wriggers [9].

In this brief introduction, the following topics are
covered:
• The dynamics of a single, isolated, particle
• The dynamics of loosely flowing groups of particles
• The dynamics of a cluster of rigidly bonded

particles.

Dynamics of an Individual Particle

We start with an introduction to the dynamics of a
single particle. A fixed Cartesian coordinate system
will be used throughout this chapter. The unit vectors
for such a system are given by the mutually orthogonal
triad .e1; e2; e3/. The temporal differentiation of a vec-
tor u is given by (Boldface symbols imply vectors or
tensors.)

d

dt
u D du1

dt
e1C du2

dt
e2C du3

dt
e3 D Pu1e1CPu2e2CPu3e3:

(1)

Kinetics of a Single Particle
The fundamental relation between force and accelera-
tion of a mass point is given by Newton’s second law
of motion, in vector form:

d

dt
.mv/ D  ; (2)

where  is the sum (resultant) of all the applied forces
instantaneously acting on mass m. Newton’s second
law can be rewritten as

 D d.mv/
dt

) G.t1/C
Z t2

t1

 dt D G.t2/; (3)

where G.t/ D .mv/jt is the linear momentum. Clearly
if  D 0, then G.t1/ D G.t2/ and linear momentum is

http://www.ddm.org
http://www.ddm.org


382 Dry Particulate Flows

said to be conserved. A related quantity is the angular
momentum, for example, relative to the origin

Ho
defD r 	mv: (4)

Clearly, the resultant moment M implies

M D r 	 D dHo

dt
) Ho.t1/C

Z t2

t1

r 	 
„ƒ‚…

M

dt D Ho.t2/: (5)

Thus, if M D 0, then Ho.t1/ D Ho.t2/, and angular
momentum is said to be conserved.

Multiple Particle Flow

In the simplest particulate flow models, the objects
in the flow are assumed to be small enough to be
considered (idealized) as spherical particles and that
the effects of their rotation with respect to their center
of mass are unimportant to their overall motion. We
consider a group of nonintersecting particles (Np in
total). The equation of motion for the i th particle in
a flow is

mi Rri D  tot
i .r1; r2; : : : ; rNp /; (6)

where ri is the position vector of the i th particle and
where  tot

i represents all forces acting on particle i ,
for example, contact forces from other particles and
near-field interactions. In order to simulate such sys-
tems, one employs numerical time-stepping schemes.
(For more details, in particular on the forces that
comprise  tot , namely contact, friction and near-field
interaction, see Zohdi [8].) For example, expanding the
velocity in a Taylor series about t C �t , we obtain

vi .t Ct/ D vi .t C �t/C dvi
dt
jtC�t .1� �/t

C1
2

d2vi
dt2
jtC�t .1 � �/2.t/2

CO..t/3/ (7)

and

vi .t/ D vi .t C �t/ � dvi
dt
jtC�t�t

C1
2

d2vi
dt2
jtC�t�2.t/2 CO..t/3/:

Subtracting the two expressions yields

dvi
dt
jtC�t D vi .t Ct/ � vi .t/

t
C OO.t/; (8)

where OO.t/ D O..t/2/, when � D 1
2
. Thus,

inserting this into the equation of motion yields

vi .t Ct/ D vi .t/C t

mi

 tot .t C �t/C OO..t/2/:
(9)

Note that adding a weighted sum of (7) and (8) yields

vi .tC�t/ D �vi .tCt/C.1��/vi .t/CO..t/2/;
(10)

which will be useful shortly. Now, expanding the po-
sition of the center of mass in a Taylor series about
t C �t , we obtain

ri .t Ct/ D ri .t C �t/C dri
dt
jtC�t.1 � �/t

C1
2

d2ri
dt2
jtC�t .1 � �/2.t/2

CO..t/3/ (11)

and

ri .t/ D ri .t C �t/� dri
dt
jtC�t�t

C1
2

d2ri
dt2
jtC�t�2.t/2 CO..t/3/:

(12)

Subtracting the two expressions yields

ri .t Ct/ � ri .t/
t

D vi .t C �t/C OO.t/: (13)

Inserting (10) yields

ri .t Ct/ D ri .t/C .�vi .t Ct/C .1 � �/vi .t//
t C OO..t/2/; (14)
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D

and thus using (9) yields

ri .t Ct/ D ri .t/C vi .t/t C �.t/2

mi

 tot
i

.t C �t/C OO..t/2/: (15)

The term  tot
i .t C �t/ can be handled in two main

ways:
•  tot

i .tC�t/ �  tot
i .�ri .tCt/C .1��/ri .t//

or
•  tot

i .t C �t/ � � tot
i .ri .t C t// C .1 �

�/ tot
i .ri .t//.

The differences are quite minute between either of
the above; thus, for brevity, we choose the latter. In
summary, we have the following:

ri .t Ct/ D ri .t/C vi .t/t C �.t/2

mi

�

� tot
i

.ri .t Ct//C .1 � �/ tot .ri .t//
�

C OO..t/2/; (16)

where
• When � D 1, then this is the (implicit) Backward

Euler scheme, which is very stable (very dissipa-
tive) and OO..t/2/ D O..t/2/ locally in time.

• When � D 0, then this is the (explicit) Forward
Euler scheme, which is conditionally stable and
OO..t/2/ D O..t/2/ locally in time.

• When � D 0:5, then this is the (implicit) “Mid-
point” scheme, which is stable and OO..t/2/ D
O..t/3/ locally in time.

For more on time-stepping schemes for these types of
systems, see, for example, Pöschel and Schwager [5]
or Zohdi [8].

Clusters of Particles

In many cases, particles will agglomerate into rigid
clusters. When we consider a collection of particles
that are rigidly bound together, the position vector of
the center of mass of the system is given by

rcm
defD
PNc

iD1 miri
PNc

iD1 mi

D 1

M
Nc
X

iD1
miri ; (17)

whereM is the total system mass andNc is the number
of particles in the cluster. A decomposition of the posi-
tion vector for particle i , of the form ri D rcmCrcm!i ,
where rcm!i is the position vector from the center of
mass to the particle i , allows the linear momentum of
the system of particles (G) to be written as

Nc
X

iD1
mi Pri
„ƒ‚…

Gi

D
Nc
X

iD1
mi.Prcm C Prcm!i / D

Nc
X

iD1
mi Prcm

D Prcm
Nc
X

iD1
mi DMPrcm defD Gcm; (18)

since
PNc

iD1 mi Prcm!i D 0. Furthermore, PGcm D
MRrcm; thus

PGcm DMRrcm D
Nc
X

iD1
 ext
i

defD �EXT ; (19)

where ext
i represents the total external force acting on

the particle i and �EXT represents the total external
force acting on the cluster. The angular momentum of
the system relative to the center of mass can be written
as (utilizing Pri D vi D vcm C vcm!i)

Nc
X

iD1
Hcm!i D

Nc
X

iD1
.rcm!i 	mivcm!i /

D
Nc
X

iD1
.rcm!i 	mi.vi � vcm//

(20)

D
Nc
X

iD1
.mircm!i 	 vi /�

0

B

B

B

B

@

Nc
X

iD1
mircm!i

„ ƒ‚ …

D0

1

C

C

C

C

A

	vcm D Hcm: (21)

Since vcm!i D ! 	 rcm!i , then

Hcm D
Nc
X

iD1
Hcm!i D

Nc
X

iD1
mi.rcm!i 	 vcm!i /

D
Nc
X

iD1
mi .rcm!i 	 .! 	 rcm!i //: (22)
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Decomposing the relative position vector into its com-
ponents,

rcm!i D ri � rcm D Oxi1e1 C Oxi2e2 C Oxi3e3; (23)

where Oxi1, Oxi2, and Oxi3 are the coordinates of the mass
point measured relative to the center of mass, and
expanding the angular momentum expression yields

H1 D !1

Nc
X

iD1
. Ox2i2 C Ox2i3/mi � !2

Nc
X

iD1
Oxi1 Oxi2 mi

�!3
Nc
X

iD1
Oxi1 Oxi3 mi (24)

and

H2 D �!1
Nc
X

iD1
Oxi1 Oxi2 mi C !2

Nc
X

iD1
. Ox2i1 C Ox2i3/mi

�!3
Nc
X

iD1
Oxi2 Oxi3 mi (25)

and

H3 D �!1
Nc
X

iD1
Oxi1 Oxi3 mi � !2

Nc
X

iD1
Oxi2 Oxi3 mi

C!3
Nc
X

iD1
. Ox2i1 C Ox2i2/mi ; (26)

which can be concisely written as

Hcm D I �!; (27)

where we define the moments of inertia with respect to
the center of mass

I11 D
Nc
X

iD1
. Ox2i2 C Ox2i3/mi ; I22 D

Nc
X

iD1
. Ox2i1 C Ox2i3/mi ;

I33 D
Nc
X

iD1
. Ox2i1 C Ox2i2/mi ; (28)

I12 D I21 D �
Nc
X

iD1
Oxi1 Oxi2 mi ; I23 D I32

D �
Nc
X

iD1
Oxi2 Oxi3 mi ; I13 D I31 D �

Nc
X

iD1
Oxi1 Oxi3 mi ;

(29)

or explicitly

I D
2

4

I11 I12 I13
I21 I22 I23
I31 I32 I33

3

5 : (30)

The particles’ own inertia contribution about their re-
spective mass-centers to the overall moment of inertia
of the agglomerated body can be described by the
Huygens-Steiner (generalized “parallel axis” theorem)
formula (p; s D 1; 2; 3)

NIps D
Nc
X

iD1

� NI ips Cmi.jjri � rcmjj2ıps � Oxip Oxis/
�

:

(31)

For a spherical particle, NI ipp D 2
5
miR

2
i , and for p ¤ s,

NI ips D 0 (no products of inertia), Ri being the particle
radius. (If the particles are sufficiently small, each
particle’s own moment of inertia (about its own center)
is insignificant, leading to NIps D PNc

iD1 mi.jjri �
rcmjj2ıps � Oxip Oxis/.) Finally, for the derivative of the
angular momentum, utilizing Rri D ai D acm C acm!i ,
we obtain

PHrel
cm D

Nc
X

iD1
.rcm!i 	miacm!i /

D
Nc
X

iD1
.rcm!i 	mi.ai � acm// (32)

D
Nc
X

iD1
.mircm!i 	 ai /�

 

Nc
X

iD1
mircm!i

!

„ ƒ‚ …

D0
	acm D PHcm; (33)

and consequently

PHcm D d.I �!/
dt

D
Nc
X

iD1
rcm!i 	 ext

i

defD MEXT
cm ;

(34)
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where MEXT
cm is the total external moment about the

center of mass. Equations such as (34) are typically
integrated numerically using techniques similar to the
ones described earlier for individual particles (Pöschel
and Schwager [5] or Zohdi [8]).
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Description

Dynamic programming (DP) is a general-purpose
problem-solving paradigm. It is based on the
proposition that in many situations a problem can be
decomposed into a family of related problems so that
the solution to the problem of interest (target problem)
is expressed in terms of the solutions to these related
problems (modified problems).

Example
To illustrate this idea, consider the network depicted
in Fig. 1, where the numbers on the arcs denote their
lengths. Suppose that the problem of interest is to find
the shortest path from node 1 to node 7, where the
length of a path is equal to the sum of the arcs’ lengths
on that path.

Clearly, the solution to this problem can be worked
out from the solutions to the following three (modified)
problems:
• Determine the shortest path from node 2 to node 7.
• Determine the shortest path from node 3 to node 7.
• Determine the shortest path from node 4 to node 7.

To state this idea formally, let f .n/ denote
the length of the shortest path from node n to
node 7 and d.i; j / denote the length of arc .i; j /.
Then clearly f .1/ is equal to either d.1; 2/ C f .2/,
or d.1; 3/ C f .3/, or d.1; 4/ C f .4/, depending on
which is smaller. We can therefore write

f .1/ D min
x2f2;3;4g

fd.1; x/C f .x/g (1)

Applying the same analysis to other nodes on
the network yields the following typical dynamic
programming functional equation:

f .n/ D min
x2Suc.n/

fd.n; x/C f .x/g ; n D 1; : : : ; 6
(2)

where Suc.n/ denotes the set of immediate successors
of node n. It can be easily solved for n D 6; 5; : : : ; 1

(in this order), observing that by definition f .7/ D 0.
The results are shown in Fig. 2, where the f .n/ values
are displayed (in square brackets) above the nodes and
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Dynamic Programming, Fig. 1 A shortest path problem
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Dynamic Programming, Fig. 2 Optimal solution of the
DP functional equation associated with the shortest path problem

the bold arcs represent the solution to the functional
equation. The optimal (shortest) path is (1,2,4,6,7)
yielding a total length f .1/ D 5.

Principle of Optimality
The rationale behind the proposition to relate the mod-
ified problems to one another, with the view to derive
the dynamic programming functional equation from
this relation, is based on the following argument. Sup-
pose that the objective is to get to node 7 along the
shortest path and that (a) we are at node n and (b) the
next transition is to node m 2 Suc.n/. Then the best
way to reach node 7 from node m is along the shortest
path from nodem to node 7. The point is here that it is
immaterial how nodem was reached. Once the process
is at node m, then the best way to reach node 7 is the
shortest path from nodem to node 7.

This argument puts into action what is known
in dynamic programming as the Principle of
Optimality. This principle was formulated by Richard
Bellman, the father of dynamic programming, as
follows:

PRINCIPLE OF OPTIMALITY. An optimal policy has the
property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first
decision.

Bellman [1, p. 83]

Thus, a dynamic programming model is formulated
in a way ensuring that this principle holds, whereupon
the dynamic programming functional equation can
be viewed as a mathematical transliteration of the
principle.

Methodology

Based on this idea, the plan of attack that dynamic
programming puts forward to tackle problems such
as the above is summed up in the following meta-
recipe:
• Step 1: Embed the target problem in a family of

related problems.
• Step 2: Derive the relationship between the solu-

tions to these problems.
• Step 3: Solve this relationship.
• Step 4: Recover a solution to the target problem

from the solution to this relationship.
One might argue that this approach to problem-

solving had been employed by humans, even if in-
formally, ever since rational planning began. Still, it
was the mathematician Richard E. Bellman (1920–
1984) who develop this approach into a full-blown
systematic theory, which he called dynamic program-
ming. Bellman formulated this approach in terms of a
(generic) sequential decision process. Meaning that in
this setting, the network depicted in Fig. 1 represents
a sequential decision process whose states are repre-
sented by the nodes and the decisions are represented
by the arcs.

To describe this symbolically, let S denote the state
space, i.e., the set of all admissible states, and let
sT 2 S denote the final (target) state. The task is
then to determine the best (optimal) way of reaching
a given target state � from a given initial state � by
implementing a sequence of decisions. The dynamics
of this process is governed by a transition law T

meaning that s0 D T .s; x/ is the state resulting from
applying decision x to state s. In this process, all
decisions are constrained by the requirement that the
decision applied to state s must be an element of some
given set D.s/ � D, where D denotes the decision
space. It is assumed that applying decision x to state s
generates the return r.s; x/. For simplicity assume that
the total return is equal to the sum of returns generated
by the process as it proceeds from the initial state � to
the final state � .

To illustrate the working of Step 1 in the meta-
recipe, let f .s/ denote the optimal total return given
that the initial state is s, namely, define

f .s/ WD max
k

x1;:::;xk

fr.s1; x1/C r.s2; x2/C � � �

C r.sk; xk/g ; s 2 S n f�g (3)
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D

s:t: s1 D s (4)

skC1 D � (5)

snC1 D T .sn; xn/ ; n D 1; 2; : : : ; k (6)

xn 2 D.sn/ ; n D 1; 2; : : : ; k (7)

with f .�/ WD 0.
It should be noted that the max operation is sub-

scripted by k to indicate that the value of k is not
necessarily fixed in advance as it can be contingent
on the initial state s and the decisions made. Also, the
target problem, associated with s D � , is embedded
in a family of modified problems associated with the
other states in S .

Functional Equation
It is straightforward to show that if optimal solutions
exist for all s 2 S , then the following typical dynamic
programming functional equation holds:

f .s/ D max
s2D.s/

fr.s; x/C f .T .s; x//g ; s 2 S n f�g
(8)

As for the solution of an equation of this type,
this will depend on the case considered, for there is
no general-purpose solution method for this task. In
some cases the solution procedure is straightforward,
in others it is considerably complicated; in some it is
numeric, in others it is analytic. For this, and other
reasons, user-friendly software support for dynamic
programming is rather limited.

The Curse of Dimensionality

The most serious impediment obstructing the solu-
tion of dynamic programming functional equations
was dubbed by Bellman: the Curse of Dimension-
ality. Bellman [1, p. ix] coined this colorful phrase
to describe the crippling effect that an increase in a
problem’s “size” can have on the ability to solve the
problem.

It is important to appreciate that this ill does not af-
flict only dynamic programming functional equations.
Still, to see how it affects the solution of dynamic pro-

gramming functional equations, consider a case where
the state space S and the decision space D consist
of a finite number of elements. Assume also that the
functional equation (8) can be solved iteratively by
enumerating the value of s 2 S n f�g in an order such
that the value of f .T .s; x// is known for all x 2 D.s/
when the equation is solved for state s. In short, assume
that for each s 2 S , solving the right-hand side of (8)
is a simple matter.

The factor that determines whether or not this
equation will lend itself to solution is then the number
of admissible states in S , namely, the size of S .

The point to note here is that in various dynamic
programming applications, even a modest increase
in the problem’s size causes a blowout in the size
of S which results in a blowout in the amount of
computation required to solve the functional equation.
As a consequence, exact solutions cannot be recovered
for the functional equation in such cases. A good
illustration of this difficulty would be the genetic job
scheduling problem, where n jobs are to be scheduled
so as to meet certain goals and constraints. Suffice it to
say that in many dynamic programming formulations
of this problem, the size of S is equal to c2n where c is
some constant.

Unsurprisingly, considerable effort has gone into
finding methods and techniques to deal with the com-
putational requirements of dynamic programming al-
gorithms, in response to the huge challenge presented
by the Curse of Dimensionality. This challenge has
also stimulated research into methods aimed at yielding
approximate solutions to dynamic programming func-
tional equations, including heuristic methods (see [5]
and [6]).

Applications

Dynamic programming’s basic character as a
“general-purpose” methodology to problem solving
is manifested, among other things, in its wide
spectrum of application areas: operations research,
economics, sport, engineering, business, computer
science, computational biology, optimal control,
agriculture, medicine, health, ecology, military,
typesetting, recreation, artificial intelligence, and more
(see [2–6]).
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Short Definition

Climate change, or global warming, refers to the
human-caused increase in temperature that has
occurred since industrialization, which is expected
to intensify over the rest of the century. The term
also refers to the associated changes in climatic
features such as precipitation patterns, storm tracks,
overturning circulations, and jet streams. Dynamical
models for climate change use basic physical principles
to calculate changes in climatic features.

Description

Climate Change
Human societies have dramatically changed the com-
position of the atmosphere, raising carbon dioxide lev-
els from a preindustrial value of 280 parts per million
to over 400 parts per million, primarily from fossil
fuel burning and deforestation. Since carbon dioxide
is a greenhouse gas, one expects an increase in global
temperature due to the modified atmospheric composi-
tion, and temperatures have warmed about 0.8 ıC since
the early twentieth century. Independent evidence from
satellite data, ground stations, ship measurements, and
mountain glaciers all show that global warming has oc-
curred [1]. Other aspects of climate that have changed
include atmospheric water vapor concentration, Arctic
sea ice coverage, precipitation intensity, extent of the
Hadley circulation, and height of the tropopause in
accordance with predictions.

General Circulation Models
Because there is considerable interest in predicting
future climate changes over the coming decades, there
is a large international effort focused on climate mod-
eling at high spatial resolution, with detailed treatment
of complex physics. These models, known as general
circulation models or global climate models (GCMs),
incorporate physical effects such as the fluid dynamics
of the atmosphere and ocean, radiative transfer, shallow
and deep moist convection, cloud formation, bound-
ary layer turbulence, and gravity wave drag [2, 3].
More recently, Earth system models have additionally
incorporated effects such as atmospheric chemistry
and aerosol formation, the carbon cycle, and dynamic
vegetation.

Due to the complexity of GCMs, output from these
models can often be difficult to interpret. To make
progress in understanding, there has been a concerted
effort among climate scientists and applied mathemati-
cians to develop a hierarchy of dynamical models, de-
signed to better understand climate phenomena. Held
[4] has provided an argument for the usefulness of hi-
erarchies within climate science. Four different classes
of simplified dynamical models of climate change are
discussed in this entry.

Radiative-Convective Models
The essence of global warming can be elegantly ex-
pressed as a one-dimensional system, with temperature
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D

and atmospheric composition a function of height
alone. The first necessary physical process is radiative
transfer, which includes both solar heating and radia-
tion emitted from the Earth, which is partially absorbed
and reemitted by greenhouse gases. The second nec-
essary ingredient is convection, which mixes energy
vertically within the troposphere, or weather layer, on
Earth. The first radiative-convective calculation of car-
bon dioxide-induced global warming was performed
by Manabe and Strickler in 1964 [5]. Many example
radiative-convective codes are publicly available.

Idealized Dry GCMs
GCMs typically use the primitive equations as their dy-
namical equations, which assume hydrostatic balance
and the corresponding small-aspect ratio assumptions
that are consistent with this. The primitive equations
are

@u

@t
C v � ruC ! @u

@p
D f v

C u v tan.
/

a
� 1

a cos 


@˚

@�
� F�

@v

@t
C v � rv C ! @v

@p
D �f u

� u2 tan.
/

a
� 1
a

@˚

@

� F


@T

@t
C v � rT C ! @T

@p
D �T!

p
CQ

@˚

@lnp
D �RdTv

�vC @!

@p
D 0

where � D longitude, 
 D latitude, p D pres-
sure, u D zonal wind, v D meridional wind, f D
2˝ sin.
/ D Coriolis parameter, a D Earth radius,
˚ D g z D geopotential with g D gravitational
acceleration and z D height, ! D Dp

Dt
D pressure

velocity, T D temperature, Tv D T=.1 � .1 �
Rd=Rv/q/ D virtual temperature (which takes into
account the density difference of water vapor), Rd D
ideal gas constant for dry air, Rv D ideal gas constant
for water vapor, � D R

cp
, and cp D specific heat of

dry air.

Much of the complexity of comprehensive GCMs
comes from parameterizations of Q D heating and F
= momentum sources. A realistic circulation can be
produced from remarkably simple parameterizations
of Q and F. Held and Suarez [6] used “Newtonian
cooling” and “Rayleigh friction” in their dry dynamical
core model:

Q D �T � Teq

�Q

F D � v
�F

The equilibrium temperature Teq is chosen essentially
to approximate the temperature structure of Earth if
atmospheric motions were not present. Rayleigh fric-
tion exists within the near-surface planetary boundary
layer. The relaxation times �Q and �D are chosen to
approximate the typical timescales of radiation and
planetary boundary layer processes. Hyperdiffusion is
typically added as a final ingredient.

The dry dynamical core model can be used to
calculate dynamical responses to climate change by
prescribing heating patterns similar to those experi-
enced with global warming, for instance, warming in
the upper tropical troposphere, tropopause height in-
creases, stratospheric cooling, and polar amplification.
An example of such a study, which examines responses
of the midlatitude jet stream and storm tracks, is Butler
et al. [7].

Idealized Moist GCMs
One of the most rapidly changing quantities in a warm-
ing climate is water vapor. The Clausius-Clapeyron
equation states that there is an approximately 7 % per
degree increase in the water vapor content of the atmo-
sphere at constant relative humidity. Increases in water
vapor are fundamental to many aspects of climate
change. Water vapor is a positive feedback to global
warming from its radiative impact. Precipitation in the
rainiest regions increases. Because there is a release
of latent heat when condensation occurs, temperature
structure, eddy intensity, and energy transports are also
affected by increased water vapor content.

In order to study these impacts of climate change
in an idealized model with an active moisture budget,
Frierson et al. [8] developed the gray-radiation moist
(GRaM) GCM. This model has radiation that is only
a function of temperature, and simplified surface flux
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boundary layer, and moist convection schemes. In ad-
dition to the influences of water vapor listed above, this
model has been used to study the effect on overturning
circulations, precipitation extremes, and movement of
rain bands.

Models with Simplified Vertical Structure
A final class of simplified dynamical models of climate
change are those with simplified vertical structure.
Most famous of these are energy balance models,
reviewed in North et al. [9], which represent the ver-
tically integrated energy transport divergence in the
atmosphere as a diffusion. The simplest steady-state
energy balance model can be written as

S � LCDr2T D 0

where S is the net (downward minus upward) solar
radiation; L D A C BT is the outgoing longwave
radiation, a linear function of temperature T ; and D
is diffusivity. Typically written as a function of lati-
tude alone, the energy balance model can incorporate
climate feedbacks such as the ice-albedo feedback and
can calculate the temperature response due to changes
in outgoing radiation (e.g., by modifying A). More
recently, energy balance models have been used to in-
terpret the results from both comprehensive GCMs and
idealized GCMs such as those described above. This
exemplifies the usefulness of a hierarchy of models
for developing understanding about the climate and
climate change.
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Short Definition

A vector x 2 C
n is called an eigenvector of A 2 C

n�n
if x is nonzero and Ax is a multiple of x, that is, there
is a � 2 C such that

Ax D �x; x ¤ 0: (1)

The complex scalar � is called the eigenvalue of A
associated with the right eigenvector x. The pair .�; x/
is called an eigenpair ofA. The eigenvalues ofA are the
roots of the characteristic polynomial det.�I�A/ D 0,
which has degree n, so A has n eigenvalues, some of
which may be repeated.

An eigensolver is a program or an algorithm that
computes an approximation to some of or all the

eigenvalues of A and in some cases the corresponding
eigenvectors.

Description

No algorithm can calculate eigenvalues of n � n ma-
trices exactly in a finite number of steps for n >

4, so eigensolvers must be iterative. There are many
methods aiming at approximating eigenvalues and op-
tionally eigenvectors of a matrix. The following points
should be considered when choosing an appropriate
eigensolver for a given eigenproblem [2]:

(i) Structure of the matrices defining the problem:
Is the matrix real or complex? Is it Hermitian,
symmetric, or sparse?

(ii) Desired spectral quantities: Do we need to calcu-
late all the eigenvalues or just a few or maybe just
the largest one? Do we need the corresponding
eigenvectors?

(iii) Available operations on the matrix and their cost:
Can we perform similarity transformations? Can
we solve linear systems directly or with an it-
erative method? Can we use only matrix-vector
products?

Eigensolvers do not in general compute eigenpairs
exactly. Condition numbers and backward errors are
useful to get error bounds on the computed solution.
A condition number measures the sensitivity of the
solution of a problem to perturbations in the data,
whereas a backward error measures how far a problem
has to be perturbed for an approximate solution to
be an exact solution of the perturbed problem. With
consistent definitions, we have the rule of thumb that

error in solution <� condition number�backward error:
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An eigensolver is backward stable if for any matrix
A, it produces a solution with a small backward error.
Thus, if an eigensolver is backward stable, then the
error in the solution is small unless the condition
number is large.

There are roughly two groups of eigensolvers: those
for small-to medium-size matrices and those for large
and usually sparse matrices.

Small-to Medium-Size Eigenproblems
Most methods for small-to medium-size problems
work in two phases: a reduction to a condensed form
such as Hessenberg form or tridiagonal form in a finite
number of steps followed by the eigendecomposition
of the condensed form. These methods use similarity
transformations and require O.n2/ storage and O.n3/
operations, so they cannot be used when n is very
large.

Any matrix A 2 Cn�n is unitarily similar to a
triangular matrix T :

U �AU D T; U �U D I: (2)

This is a Schur decomposition of A and it reveals the
eigenvalues of A on the diagonal of T . This decompo-
sition cannot exist over R whenA 2 Rn�n has complex
conjugate eigenvalues. However, any real matrix A is
orthogonally similar to a real quasi-triangular matrix T
with 1 � 1 and 2 � 2 blocks on its diagonal, where the
1 � 1 diagonal blocks display the real eigenvalues and
the 2�2 diagonal blocks contain the complex conjugate
eigenpairs. The eigenvectors of A are of the form Uv,
where v is an eigenvector of T . Note that an eigenvalue
of a nonnormal matrix A (i.e., AA� ¤ A�A) can
have a large condition number when it is very close to
another eigenvalue. Such eigenvalues can be difficult
to compute accurately.

The QR algorithm computes the Schur (or real
Schur) decomposition of a complex (or real)A. It starts
by reducingA to Hessenberg formH in a finite number
of steps using unitary (or orthogonal) transformations,
and then it applies the QR iteration, whose simplest
form is given by

H0 D H; Hk�1 D QkRk (QR factorization);

Hk D RkQk; k D 1; 2; : : : :

Under certain conditions, Hk converges to a (real)
Schur form of A. To make the QR iterations effec-
tive, multishifts implemented implicitly are used as
well as (aggressive) deflation. The QR algorithm is a
backward-stable algorithm [3].

Often in applications, A is Hermitian, that is, A D
A�.D A

T
/, or real symmetric, that is, AT D A

with A 2 Rn�n. Then the Schur decomposition (2)
simplifies to

X�AX D diag.�1; �2; : : : ; �n/ 2 R
n�n;

X�X D In;

that is, A is unitarily diagonalizable and has real
eigenvalues. The columns of X are eigenvectors and
they are mutually orthogonal, and X can be taken real
when A is real. The eigenvalues of A are always well
conditioned in the sense that changing A in norm by
at most � changes any eigenvalue by at most �. To
preserve these nice properties numerically, it is best
to use an eigensolver for Hermitian matrices. Such
eigensolvers start by reducing A to real tridiagonal
form T by unitary similarity transformation,Q�AQ D
T , and then compute the eigendecomposition of T .

There are several algorithms for computing eigen-
values of tridiagonal matrices:

(a) The symmetric QR algorithm finds all the eigen-
values of a tridiagonal matrix and computes the
eigenvectors optionally. It is backward stable.

(b) The divide and conquer method divides the tridiag-
onal matrix into two smaller tridiagonal matrices,
solves the two smaller eigenproblems, and glues the
solutions together by solving a secular equation. It
can be much faster than the QR algorithm on large
problems but requires more storage. It is backward
stable.

(c) Bisection is usually used when just a small subset
of the eigenvalues is needed. The corresponding
eigenvectors can be computed by inverse iteration.
This approach is faster than the QR algorithm and
divide and conquer method when the eigenvalues
are not clustered.

(d) The relatively robust representation algorithm is
based on LDLT factorizations of the shifted tridi-
agonal matrix T � �I for a number of shifts �
near clusters of eigenvalues and computes the small
eigenvalues of T � �I very accurately. It is faster
than the other methods on most problems.
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Large and Sparse Eigenproblems
For large problems for whichO.n2/ storage andO.n3/
operations are prohibitive, there are algorithms that
calculate just one or a few eigenpairs at a much lower
cost. Most of these algorithms proceed by generating a
sequence of subspaces fKkgk�0 that contain increas-
ingly accurate approximations to the desired eigen-
vectors. A projection method is then used to extract
approximate eigenpairs from the largest Kk . The pro-
jection method requires the matrix A and a subspace
Kk of dimension k � n containing an approximate
eigenspace of A. It proceeds as follows:
1. Let the columns of V 2 C

n�k be a basis for Kk and
let W 2 Cn�k be such that W �V D I . (V and W
are bi-orthogonal.)

2. Form Ak D W �AV (projection step).
3. Compute the m desired eigenpairs .e�j ; �j / of Ak ,
j D 1Wm � k.

4. Return .e�j ; V �j / as approximate eigenpairs of A
(Ritz pairs).

If the approximate eigenvectors of A are not satis-
factory, they can be reused in some way to restart
the projection method [4, Chap. 9]. The projection
method approximates an eigenvector x ofA by a vector
ex D V � 2 Kk with corresponding approximate
eigenvaluee�.

Usually, the projection method does a better job
of estimating exterior eigenvalues of A than interior
eigenvalues. If these are not the eigenvalues of interest,
then prior to any computation, we can apply a spectral
transformation that maps the desired eigenvalues to
the periphery of the spectrum, a common example of
which is the shift-and-invert transformation, f .�/ D
1=.� � �/. This transformation yields the matrix .A �
�I /�1, which has eigenpairs

�

.���/�1; x/ correspond-
ing to the eigenpair .�; x/ of A. The eigenvalues of
.A��I /�1 of greatest absolute value correspond to the
eigenvalues of A closest to the shift � . The numerical
methods do not form .A � �I /�1 explicitly but solve
linear systems with A� �I instead. Iterations for large
sparse problems are usually based on matrix-vector
products. When shift-and-invert is used, the matrix
vector products are replaced with linear solvers with
the matrix A� �I .

The power method is the simplest method. From a
given vector x0, it computes and iterates

xkC1 D Axk=kxkk2; k D 1; 2; : : : ;

until xkC1 becomes parallel to the eigenvector asso-
ciated with the largest eigenvalue in absolute value,
which is then approximated by x�

k xkC1=kxkk2. When
shift-and-invert is used, the power method is called
inverse iteration.

Subspace iteration operates on several vectors si-
multaneously as opposed to one vector for the power
method. It approximates the largest eigenvalues in
absolute value together with their corresponding eigen-
vectors.

The Arnoldi method is a projection method. Starting
with a vector v, it builds a matrixQk with orthonormal
columns that form a basis for the Krylov subspace

Kk.A; v/ D spanfv;Av; : : : ; Ak�1vg:

It approximate the eigenvalues of A by the eigenvalues
(the Ritz values) of the Hessenberg matrix Hk D
Q�
kAQk , which are computed with the QR algorithm.

Restart techniques exist to keep memory requirement
and computational overhead low, and a shift-and-invert
spectral transform can be used to target eigenvalues
close to the shift � . Shift-and-invert Arnoldi requires
accurate solution of large systems with A� �I , which
may not be practical when A is too large. The Jacobi-
Davidson method can be used in this case as it requires
less accurate solution to linear systems, which are
preconditioned and solved iteratively.

When A is Hermitian or symmetric, then as for
the Arnoldi method, the Lanczos method builds step
by step a matrix Qk whose columns are orthonormal
and form a basis for the Krylov subspace Kk.A; b/ D
spanfb;Ab; : : : ; Ak�1bg, where b is a given vector.
It approximates the eigenvalues ofA by the eigenvalues
of the symmetric tridiagonal matrix Tk D Q�

kAQk of
smaller size. The Lanczos vectors can suffer from loss
of orthogonality and reorthogonalization is sometimes
necessary. Spectral transformations and restarting tech-
niques can also be used [2].

Generalized Eigenproblems
An eigenproblem defined by a single square matrix
as in (1) is called a standard eigenvalue problem as
opposed to a generalized eigenproblem

Ax D �Bx; x ¤ 0 (3)

defined by two matrices A and B . The main differ-
ences between the standard and generalized eigenvalue
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problems are that when B is singular, there are infinite
eigenvalues and when det.A � �B/ is identically zero
(i.e., A � �B is a singular pencil), any � is an eigen-
value.

The QZ algorithm is an extension of the QR al-
gorithm for regular generalized eigenproblems (i.e.,
det.A��B/ 6� 0) of small to medium size. It computes
the generalized Schur decompositionQ�.A��B/Z D
T � �S , where Q;Z are unitary and T; S are up-
per (quasi-)triangular and whose eigenvalues can be
read off the diagonal entries of T and S . The QZ
algorithm starts by reducing A � �B to Hessenberg-
triangular form and then applies the QZ steps itera-
tively. Implementations of the QZ algorithm return all
the eigenvalues and optionally the eigenvectors. It is a
backward-stable algorithm.

When A and B are Hermitian with B positive
definite, (i.e., B’s eigenvalues are positive), (3) can be
rewritten as a Hermitian standard eigenvalue problem

L�1AL��y D �y; x D L��y;

where B D LL� is the Cholesky factorization of B ,
which can be solved with eigensolvers for the standard
Hermitian problem.

For large sparse problems, inverse iteration and
subspace iteration can be applied to L�1AL��
kept in factored form. There is a variant of the
Lanczos algorithm, which builds a B-orthogonal
matrix Qk of Lanczos vectors such that range.Qk/ D
spanfb;B�1Ab; : : : ; .B�1A/k�1bg for a given vector
b and approximates the eigenvalues of A � �B by
the eigenvalues of the symmetric matrix tridiagonal
matrix Tk D Q�

kAQk . There is also a variant of the
Jacobi-Davidson method that uses B orthogonality.

There are software repository and good online
search facilities for mathematical software such as
Netlib (http://www.netlib.org) and GAMS (http://
gams.nist.gov, developed by the National Institute
of Standards and Technology.) where eigensolvers can
be downloaded. Eigensolvers for small-to medium-
size problems and also some eigensolvers for large
problems are available in almost all linear-algebra-
related software packages such as LAPACK [1] and
MATLAB, (MATLAB is a registered trademark of The
MathWorks, Inc.) as well as general libraries such as
the NAG Library. (http://www.nag.co.uk)
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Short Definition

The eikonal equation is a nonlinear partial differential
equation that describes wave propagation in terms of
arrival times and wave front velocity. Applications
include modeling seismic waves, combustion, com-
putational geometry, image processing, and cardiac
electrophysiology.

Description

Problem Statement
A wave propagation process may be meaningfully
represented by its arrival time �.x/ at every point
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x in space (e.g., shock wave, seismic wave, sound
propagation). The local propagation velocity, which
can be computed as kr�k�1, is often determined by the
physical properties of the medium and therefore may
be assumed to be a known positive scalar field c.x/.
This relation leads to the so-called eikonal equation
[5, 9]:

c kr�k D 1 (1)

whose purpose is to compute arrival times from local
propagation velocity. The zero of arrival time is defined
on a curve �0 as Dirichlet boundary condition � D 0

(the wave front originates from the source �0). The
eikonal equation may also be derived from the (hyper-
bolic) wave equation [6].

The eikonal-diffusion equation is a generalization
that involves an additional diffusive term [11]:

kcr�k D 1C r � .Dr�/: (2)

To account for possible anisotropic material properties,
the propagation velocity c and the diffusion coefficient
D are symmetric positive definite tensor fields.
The boundary condition is � D 0 on �0 and
n � Dr� D 0 on other boundaries (n is normal
to the boundary). The diffusive term creates wave
front curvature-dependent propagation velocity,
smoothens the solution, and enforces numerical
stability. In the context of wave propagation in
nonlinear reaction-diffusion systems (e.g., electrical
impulse propagation in the heart), the eikonal-diffusion
equation may also be derived from the reaction-
diffusion equation using singular perturbation theory
[1].

The objective is to compute the arrival time field
(�) knowing the material properties (c and D) and the
location of the source (�0).

Fast Marching Method for the Eikonal Equation
The fast marching method [9] is an efficient algorithm
to solve (1) in a single pass. Its principle, based on
Dijkstra’s shortest path algorithm, exploits the causal-
ity of wave front propagation. In a structured grid
with space steps �x and �y (the value of a field F
at coordinate .i�x; j�y/ is denoted by Fi;j ), (1) is
discretized as [10]:

max
�

D�x
i;j �;�DCx

i;j �; 0
�2Cmax.D�y

i;j �;�DCy
i;j �; 0/

2

D 1=c2i;j (3)

where the finite difference operators are defined as
D�x
i;j � D .�i;j � �i�1;j /=�x, DCx

i;j � D .�iC1;j �
�i;j /=�x, and similarly for D

�y
i;j and D

Cy
i;j . The

algorithm maintains three lists of nodes: accepted
nodes (for which � has been determined), considered
nodes (for which � is being computed, one grid point
away from an accepted node), and far nodes (for which
� is set to C1). The quadratic equation (3) is used to
determine the values of � in increasing order. At each
step, � is computed at considered nodes from known
values at accepted nodes and the smallest value of �
among those considered becomes accepted. The lists
are then updated and another step is performed until
all nodes are accepted. The efficiency of the method
relies on the implementation of list data structures and
sorting algorithms. The fast marching method can be
extended to triangulated surface [8, 10] by adapting
(3). A Matlab/C implementation (used here) has
been made available on Matlab Central (http://www.
mathworks.com/matlabcentral/fileexchange/6110) by
Gabriel Peyré for both structured and unstructured
meshes.

Newton-BasedMethod for the
Eikonal-Diffusion Equation
When physically relevant (e.g., for cardiac propaga-
tion, see Pernod et al. [7]), the eikonal-diffusion equa-
tion may be used to refine the solution provided by
the fast marching algorithm. In this case, if � is an
approximate solution to (2) satisfying the boundary
conditions, a better approximation � C 	 can be ob-
tained by substituting � C 	 into (2) and finding a
solution 	 up to second order in 	 . This is equivalent to
Newton iterations for nonlinear system solving. Taylor
expansion of (2) leads to the following steady-state
convection-diffusion equation for the correction 	 :

kcr�k � r � .Dr�/ � 1 D r � .Dr	/ � kcr�k�1

r� c�cr	 (4)

with boundary condition n �Dr	 D 0 and 	 D 0 in �0.
This linearized equation can be solved using finite

elements. The procedure is given here for a triangular
mesh composed of a set of nodes i 2 V and a set of
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triangles .ijk/ 2 T , of area ˝ijk , with i; j; k 2 V .
Linear shape functions, denoted by Ni for i 2 V , are
used to reconstruct the scalar fields � D P

i2V �iNi
and 	 D P

i2V 	iNi . These functions are linear in each
triangle; the gradient operator evaluated in triangle
.ijk/ is noted rijk . Similarly, the parameters cijk and
Dijk denote the values of c and D at the center of
gravity of the triangle .ijk/. The application of the
Galerkin finite element approach [2] to (4) leads to
the linear system A.�/ � D f.�/, where the matrix and
the right-hand side are computed as:

Amn.�/ D �
X

.ijk/2T
˝ijkrijkNm � DijkrijkNn

�
X

.ijk/2T

˝ijk

3
kcijkrijk�k�1 �cijkrijk�

�� �
�

cijkrijkNn
�

(5)

fm.�/ D
X

.ijk/ 2 T
m 2 fijkg

˝ijk

3

�

kcijkrijk�k � 1

C3 rijkNm � Dijkrijk�

�

:

(6)

For vertices m 2 �0, the boundary condition 	 D
0 is applied by setting Amn D ımn and fm D 0,
which ensures that A is not singular. An easy and
efficient implementation in Matlab based on sparse
matrix manipulation is possible after reformulation [4].

Practically, the first estimate �0 is given by the fast
marching method (neglecting diffusion). At iteration
n C 1, the correction 	nC1 is obtained by solving the
linear system A.�n/ �nC1 D f.�n/. Then �nC1 D
�n C 	nC1 is updated until the norm of the correction
falls below a given tolerance k	nC1k < tol .

Eikonal Equation: Computation, Fig. 1 Propagation of the
electrical impulse in an anisotropic surface model of the human
atria computed using the eikonal-diffusion equation. (a) Normal
propagation from the sinoatrial node region. Activation time is
color-coded. Isochrones are displayed every 10 ms. White arrows
illustrate propagation pathways. (b) Reentrant propagation sim-

ilar to typical atrial flutter in a model with slower propagation
velocity. The line of block is represented as a thick black line. TV
tricuspid valve, MV mitral valve, LAA left atrial appendage, RAA
right atrial appendage, PVs pulmonary veins, IVC inferior vena
cava, SVC superior vena cava, SAN sinoatrial node
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Extension to Reentrant Waves
The eikonal-diffusion equation, due to its local nature,
is also valid for reentrant wave propagation. In this
case, the wave does not originate from a focal source
but instead is self-maintained by following a closed
circuit. To account for the periodicity of the propaga-
tion pattern and avoid phase unwrapping issue, a phase
transformation 
 D exp.i�/ is applied, where � is
now normalized between 0 and 2� . The transformed
eikonal-diffusion equation reads [3]:

kcr
k D 1C Im r � �
�Dr
� (7)

The boundary condition n � Dr
 D 0 still holds and
the constraint j
j D 1 must be preserved. The star (*)
denotes the complex conjugate and “Im” the imaginary
part. A Newton-based finite element method can be
applied to solve (7) as described in Jacquemet [4].

Examples in Cardiac Electrophysiology
The eikonal approach is illustrated here in a triangular
mesh (about 5,000 nodes) representing the atrial epi-
cardium derived from magnetic resonance images of a
patient. Fiber orientation (anisotropic properties) was
obtained from anatomical and histological data. Prop-
agation velocity was set to 100 cm/s (along fiber) and
50 cm/s (across fiber). �0 was placed near the anatom-
ical location of the sinoatrial node. The diffusion co-
efficient D was set to 10 cm2. The activation map
(arrival times) computed using the eikonal-diffusion
solver (iteration from the solution provided by the
fast marching algorithm) is displayed in Fig. 1a. With
tol D 10�10, 16 iterations were needed.

Figure 1b shows a reentrant activation map corre-
sponding to an arrhythmia called typical atrial flutter,
simulated using the eikonal-diffusion solver extended
for reentrant propagation. The reentrant pathway �

was formed by a closed circuit connecting the two
vena cava. Propagation velocity was reduced by 40 %.
With tol D 10�10, 50 iterations were needed. The
resulting period of reentry was 240 ms, a value within
physiological range.
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Description

Elastodynamics refers to the study of the motion of a
continuum made of an elastic material. Elastic behavior
is the dominant component of the response of many
solid objects to mechanical loads. A continuum made
of an elastic material is a model for such type of solid
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objects. Common materials that display elastic behav-
ior under some conditions, generally small deforma-
tions, include glasses, most metals, many composites,
rubber, and many geological materials.

When an elastic continuum is locally excited, elastic
waves are radiated that travel away from the point of
excitation. Intuitively, the basic phenomena in elas-
todynamics involve small regions of the continuum
exerting forces on neighboring ones and accelerating
and hence deforming them as a result. Thus, the speed
at which elastic waves travel is determined by the mass
density of the continuum and by the relation between
force (stress) and deformation (strain).

Elastodynamics finds its range of applications in
problems involving highly transient phenomena. After
a mechanical load is imposed on an object, elastic
waves are emitted and travel through it, reflecting from
its boundaries. After many transit times of the waves
through the object, static equilibrium is attained, gen-
erally attributed to the presence of dissipative mech-
anisms. Therefore, wave propagation need only be
considered during a short time after the imposed load
changes.

Early interests in elastodynamics stemmed from
applications in geophysics and seismology. Elastic
waves traveling through the Earth’s crust find applica-
tions in earthquake and nuclear explosion monitoring
and analysis, quarrying, and oil and gas exploration.
The most popular engineering application of elastody-
namics is in ultrasonics, involving low-energy waves,
used for imaging (including medical imaging) and for
non-destructive evaluation of structures and devices.
High-energy waves find applications in high-speed
machinery and metal-forming processes, and, of
course, diverse military applications related to
the response of structures to impacts and blast
loads.

Elastic waves are substantially more complex than
electromagnetic or acoustic waves. Even in the most
common and simplest case of an isotropic material, two
types of waves with different wave speeds are found:
the faster pressure or volumetric waves and the shear
waves. When a wave of one type finds a boundary
or interface, it generally spawns reflected or refracted
waves of the other type. Anisotropy can introduce up
to three different wave speeds for each direction of
propagation.

The coordinated interaction of volumetric or shear
waves at boundaries or interfaces adds up to engender

other types of waves, which propagate with their own
effective wave speeds. Along a free surface, the precise
superposition of volumetric and shear waves to satisfy
the traction-free condition on the surface generates
Rayleigh waves or Love waves. Stoneley waves appear
along a material interface as a result of the continuity of
tractions and displacement. In the presence of confined
geometries, such as plates, beams, or rods, the more
complicated boundary conditions give rise to a host
of interesting phenomena. Lamb waves, for example,
are waves that propagate in the direction parallel to
a plate’s surface but are standing waves along its
thickness.

Elastodynamics is a classical subject. We refer the
reader to the books by Achenbach [2] and Graff [5]
for an extensive introduction to wave motion in elastic
solids as well as for a brief historical account. A math-
ematical description of elasticity, including some im-
portant aspects of elastodynamics, can be found in
Marsden and Hughes [7]. For mathematical aspects of
elastostatics instead, prime references are either this
last reference or the book by Ciarlet [4]. The first chap-
ter of Marsden and Hughes [7] is particularly useful
as an overview of the essential features of elasticity.
For an engineering perspective, see Holzapfel [6]. The
introduction of Ciarlet [4] contains a rather extensive
account of classical expositions.

The Elastic Continuum

The description of an elastic continuum begins with the
selection of a reference configuration, an open set� 2
R3. The reference configuration serves the important
functions of:
1. Labeling particles in the continuum: the position of

particles after deformation is described through the
deformation or configuration � 3 X 7! '.X/ 2
R
3, or equivalently, through the displacement field

u.X/ D '.X/� X (see Fig. 1).
2. Indicating neighborhood among particles: strains

are computed as F D rX' or, in Cartesian coordi-
nates, FiJ D @'i=@XJ , a second-order tensor field
known as the deformation gradient.

A deformation should be admissible, namely, it should
be (i) injective to prevent interpenetration, (ii) orien-
tation preserving, and (iii) sufficiently smooth, to have
derivatives defined almost everywhere (e.g.,W 1;1.�/)
and avoid fracture. As a result, detF > 0 almost
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E
Ω

ϕ(Ω,t1)

ϕ(Ω,t2)

X

ϕ(X,t1)

ϕ(X,t2)

u(X,t1)

u(X,t2)

Elastodynamics, Fig. 1 Sketch of a reference configuration �
for an elastic continuum and two deformations at times t1 and
t2 of a motion '. The displacement vectors for a generic point
X 2 � at the two times are also shown

everywhere. A time-dependent family of admissible
deformations '.X; t/ is a motion.

Evidently, there is freedom in the choice of the
reference configuration. When possible, it is customary
to choose it so that the elastic continuum is stress-free
when u � 0.

The continuum is made of an elastic material if
the first Piola-Kirchhoff stress tensor P at each point
X 2 � is a function of the deformation gradient F
only, P.X; t/ D OP .F.X; t//, where OP WR3 ! R3

is the constitutive relation. The more widely known
Cauchy stress tensor is computed from P and F as
� D .detF /�1PF T. An elastic material is hyperelastic
if there exists a real-valued stored energy function
W.F / defined whenever detF >0 such that OP .F / D
@W=@F . The potential energy stored in an elastic
continuum due to its deformation follows as

IelasticŒ' D
Z

�

W.r'/ d�: (1)

The dependence of W on F should be such that,
upon rigidly rotating the material, the value of W
should not change, since the material is not further
strained as a result. More precisely, for each value
of F such that detF > 0, W.X;F / D W.X;QF/

for all Q 2 SO.3/. This is part of the principle of
material frame indifference; see �19 in Truesdell and
Noll [9] for a discussion. It then follows from the polar

decomposition theorem thatW can only depend on the
symmetric part of F or on the right Cauchy-Green
deformation tensor C D F TF . An often adopted
second condition onW is that

W.F / ! C1 as detF ! 0C (2)

to prevent the material from reaching arbitrarily large
compressions.

As an example, consider the stored energy function
of a compressible neo-Hookean material

W.F / D f .detF /C �

2
trace.F TF /; (3)

where the real-valued function f is such that
f .J / ! C1 as J ! 0C; for example, f .J / D
� ln.detF /2=2 � � ln.detF /, with material constants
� > 0 and � > 0.

For elastodynamics, the mass density of the material
is important. The mass density per unit volume in the
reference configuration is denoted with �0.X/. There-
fore, the choice of the reference configuration defines
both W and �0, and both should change accordingly if
the reference configuration is changed.

The Equations of Elastodynamics

The initial value nonlinear elastodynamics problem in
the time interval Œ0; T  is

�0
@2'

@t2
D divXP C �0B in � � .0; T / (4a)

P �N D T on @�� � .0; T /; (4b)

' D ' on @d� � .0; T / (4c)

' D '0 on � � f0g; (4d)

@'

@t
D v0 on � � f0g: (4e)

Equation (4a) is the statement of Newton’s second law
per unit volume in the reference configuration, or the
balance of linear momentum. To avoid possible ambi-
guities, the divergence of the stress tensor is computed
as .divXP /i D PiJ;J for i D 1; 2; 3 (Hereafter, only
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components in a Cartesian basis will be used, and the
summation convention will be adopted: (i) an index
repeated twice in a term indicates sum from 1 to 3 over
it (ii) for a function a.X/, a;i D @a=@Xi ). This term is
the net force per unit volume exerted on the “particle”
at X by neighboring “particles.” The last term contains
the body force per unit mass BW� � .0; T / ! R3.
For example, gravitational force near the Earth would
produce a B.X; t/ D g, where g is the acceleration
of gravity, and position-dependent body forces such
as those arising from an electrostatic field would have
the form B.X; t/ D b.'.X; t/; t/ for some function b.
Dirichlet boundary conditions are imposed on @d� �
@� in (4c), and the imposed values of the deformation
are specified with 'W @d� � .0; T / ! R3. Forces are
imposed on @�� D @�n@d� in (4b), and the imposed
tractions are specified with T W @˝� � .0; T / ! R3.
Both the initial deformation and the initial velocity
field, '0; v0W� ! R3, are prescribed in (4d) and (4e),
respectively. More generally, it is also possible to
have mixed boundary conditions at the same point of
the boundary, at which mutually orthogonal compo-
nents of the deformation and the imposed tractions
are prescribed, for example, in smooth sliding contact
situations.

Hamilton’s Principle
For a hyperelastic materials and conservative body
forces, the equations of elastodynamics can be
obtained from Hamilton’s principle (see, e.g., �5 in
Marsden and Hughes [7]). To this end, consider the
Lagrangian density over� � .0; T /:

L.'; v; F / D 1

2
�0v

2 �W.F /� �0V .'/; (5)

where V W R3 ! R is the potential energy per unit
mass for the body force, so B D �rV . Hamilton’s
principle then seeks a motion ' over Œ0; T  satisfy-
ing (4c) that is the stationary point of the action

SŒ' D
Z

��.0;T /
L
�

'.X; t/;
@'

@t
.X; t/;rX'.X; t/

�

d� dt

C
Z

@���.0;T /
T .X; t/ � '.X; t/ dS dt (6)

among all variations that leave the value of ' fixed on
the Dirichlet boundary and at times 0 and T; namely,

d

d�
SŒ' C �ı'

ˇ

ˇ

ˇ

�D0 D 0; (7)

for all variations ı' that satisfy ı' D 0 on � �
f0; T g [ @�d � .0; T /. If L and ' are smooth enough
(e.g., C2.�/), then (7) implies the Euler-Lagrange
equations:

0 D @L
@'

� divX

�

@L
@F

�

� @

@t

@L
@v

in � � .0; T /
(8a)

0 D T C @L
@F

�N on @�� � .0; T /;
(8b)

where the arguments of the derivatives of the La-

grangian density are
�

'.X; t/;
@'

@t
.X; t/;rX'.X; t/

�

.

After replacing with (5), these equations are
precisely (4a) and (4b).

Conservation properties, such as energy, and lin-
ear and angular momentum could be obtained from
Noether’s theorem. By accounting for the potential
location of discontinuities in the derivatives of ' in
� � .0; T /, the jump conditions across a shock are
obtained. Some of the differential geometry aspects of
this formulation can be consulted in �5 of Marsden and
Hughes [7].

Linear Elastodynamics

The nonlinear elastodynamics problem (4) is very com-
plex, and few exact solutions or even regularity or exis-
tence results have been obtained. Insight into the wave
propagation phenomena has therefore been obtained by
analyzing the linearized problem instead. This problem
is also attractive because it is a good model for every
elastodynamics problem in which the displacement and
displacement gradients are sufficiently small.

The equations of linear elastodynamics describe to
first order the dynamics resulting from small pertur-
bations of the initial conditions or the forcing of a
motion 's that satisfies (4). Often 's is simply a static
solution, namely, R's D 0. For simplicity, we will only
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discuss the linearization around a stress-free reference
configuration ('s.X; t/ D X ) (see �4 of Marsden
and Hughes [7] for a general case). Under these con-
ditions, the linear elastodynamics equations stated in
terms of the components of the displacement field
u are

�0 Rui D .Aijkluk;l /;j C �0Bi in � � .0; T / (9a)

Aijkluk;lNj D T i on @�� � .0; T /; (9b)

ui D 'i � Xi WD ui on @d� � .0; T / (9c)

ui D '0i �Xi WD u0i on � � f0g; (9d)

@ui
@t

D v0i on� � f0g; (9e)

for each i D 1; 2; 3. (In the following, Pu D @u=@t ,
Ru D @2u=@t2 for a function u.X; t/.) The fourth-order
tensor

Aijkl D @2W

@Fij @Fkl
.I / (10)

is the elastic moduli at the stress-free reference con-
figuration, i.e., when F is the identity I . The linear
elastodynamics equations follow directly from (4) by
adopting the linearized stored energy density

Wlinear.F / D 1

2
.Fij � ıij /Aijkl .Fkl � ıkl /

D 1

2
Aijklui;juk;l ; (11)

where ıij are the components of I . The first Piola-
Kirchhoff stress tensor is then Pij D Aijkluk;l , and
�ij D Pij to first order in rXu. If W is twice continu-
ously differentiable at I , the second derivatives in (10)
commute and the moduli have the major symmetry
Aijkl D Aklij . Minor symmetries Aijkl D Ajikl
follow from the material frame indifference of W.
The linearized stored energy density is not material
frame indifferent, but due to the minor symmetries, it
is invariant under infinitesimal rigid rotations, namely,
skew-symmetric displacement gradients. The symme-
tries of Aijkl leave a maximum of 21 different material
constants. For isotropic materials, the elastic moduli
and the stress are

Aijkl D �ıij ıkl C �
�

ıikıjl C ıil ıjk
�

;

Pij D �uk;kıij C �.ui;j C uj;i /; (12)

which involve only the two Lamé constants � > 0

and � > 0. The latter is the shear modulus, and the
two can be used to obtain the Young modulus E D
�.3� C 2�/=.� C �/. Finally, for an isotropic linear
elastic material, (9a) is

�0 Rui D �uk;ki C �.ui;jj C uj;j i /C �0Bi : (13)

It should be mentioned that when linearization is per-
formed at a stressed configuration, the elastic moduli
generally lose the minor symmetries and depend on
the spatial position; it is effectively a continuum with a
different linear elastic material at each point and a body
force that reflects the stresses at 's .

AWord About Solutions
Under some mild assumptions, the solution of the
homogeneous linear elastodynamics problem (9) (B D
0, T D 0, and u D 0) exists and satisfies u 2
C0.Œ0; T ;H1.�// and Pu 2 C0.Œ0; T ; L2.�// (see �6
in Marsden and Hughes [7]). This result holds if � is
compact and has a smooth boundary, u0 2 H1.�/,
v0 2 L2.�/, �0 > 0, and most importantly, the moduli
Aijkl are strongly elliptic, namely, there exists � > 0

such that

Aijkl�i �k�j �l 	 �2�i �i �j �j ; (14)

for all �; � 2 R3. The elastic moduli in (12) triv-
ially satisfy this condition. Solutions can be arbitrarily
smooth, even C1, provided the initial and boundary
conditions are themselves smooth and satisfy some
compatibility conditions. These conditions, as well
as explicit results for the nonhomogeneous, stressed
case and spatially varying mass density and elastic
moduli, follow from the general results for first-order
hyperbolic systems in Rauch and Massey [8] and are
briefly discussed in �6 of Marsden and Hughes [7].

The general problem of existence, uniqueness, and
regularity of solutions for nonlinear elastodynamics
equations (4) is still open. A relatively recent discus-
sion of existing results was provided by Ball [3].
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s-wave pd
p-wave pd reference configuration

Elastodynamics, Fig. 2 Deformation of the reference configu-
ration (middle) by a plane progressive p-wave (left) and s-wave
(right). The wave has the form d expŒ�.p � x � ct/2, and the

corresponding vectors p and d are shown. Both waves are moving
towards the top of the page. The coloring was used solely to
visualize the deformation

Linear Elastic Waves
Equation (9a), which states the balance of linear mo-
mentum for linear elastodynamics, admits solutions in
free space (� D R3) in the form of plane progressive
waves when B D 0. These solutions illuminate how
waves propagate in linear elastic solids.

A plane progressive wave is a displacement field
that has the form

u.x; t/ D d 
.p � x � ct/ (15)

where d 2 R
3 is the polarization vector, p 2 R

3 is a
unit vector that defines the direction of propagation of
the wave, c > 0 is the speed of propagation, and 
 2
C2.R/ is the shape of the wave. For a plane progressive
wave to propagate in a linear elastic material, it should
satisfy (9a), which happens if and only if

.Aijklpj pl/dk D ƒikdk D �0c
2di : (16)

Therefore, the only plane progressive waves that can
propagate have d as an eigenvector of the acoustic
tensorƒ and �0c2 as an eigenvalue. If Aijkl is strongly
elliptic, cf. (14), then ƒ is a symmetric and positive
definite matrix. It has then three mutually orthogonal
polarization vectors and real and positive eigenvalues
and hence real wave speeds. In the particular case of

Elastodynamics, Table 1 Typical representative wave speeds
for some common materials (from Achenbach [2]). Liquids do
not display elastic shear waves

Material �0 [kg/m3] cL [m/s] cT [m/s] � D cL=cT

Air 1.2 340
Water 1,000 1,480
Steel 7,800 5,900 3,200 1.845
Copper 8,900 4,600 2,300 2
Aluminum 2,700 6,300 3,100 2.03
Glass 2,500 5,800 3,400 1.707
Rubber 930 1,040 27 38.5

isotropic materials, c.f. (12), there are two types of
plane progressive waves. The first ones have p D d

and propagate at a speed cL D p

.�C 2�/=�0. These
waves, in which the polarization vector is parallel to
the direction of propagation, are called longitudinal
or p-waves (p for primary, or pressure). The second
type of waves has d ? p and propagates at a speed
cT D p

�=�0. The polarization vector is any vector
in the plane orthogonal to the direction of propagation
of the wave, and hence, these are called transverse or
shear waves, also known as s-waves (s for secondary,
or shear). Snapshots of how a continuum is deformed
under the action of each one of these waves are shown
in Fig. 2. Typical representative wave speeds for some
standard materials are shown in Table 1.
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Helmholtz Decomposition and Free-Space
Solutions
In isotropic materials, p-waves are particular cases of
irrotational, volumetric, dilatational, or pressure waves,
and s-waves are particular cases of rotational or iso-
choric waves. This is because any displacement field u
that satisfies (9a) for an isotropic linear elastic material
can be decomposed as

u D rˆC r �‰ (17)

for a scalar potential ˆW� ! R and a vector potential
‰W� ! R

3 with r � ‰ D 0 that satisfy the wave
equations

0 D 1

c2L

R̂ ��ˆC Bˆ (18a)

0 D 1

c2T

R‰ ��‰C B‰; (18b)

where the same decomposition was adopted for the
body forceB D c2LrBˆCc2Tr �B‰ . The decomposi-
tion (17) is known as the Helmholtz decomposition [2]
or the Hodge decomposition [1]. The vector potential
‰ represents waves that travel at a speed cT , induce
shear deformations, and are isochoric, since r�r�‰ D
0. On the other hand, the vector potential ˆ represents
the waves that travel at speed cL, induce changes in
the mass density of the material, and are irrotational,
because r � rˆ D 0. Since the pressure is computed
from (12) as p D Pii=3 D .� C 2�/�ˆ, (18a) also

governs the propagation of pressure waves. The two
types of waves are completely decoupled in free space.
A number of elementary solutions follow directly from
this perspective, such as radiation of elastic waves from
point or line loads in an infinite medium [2, 5].

The Role of Boundary and Interfaces
The elegant and convenient decoupling of the lon-
gitudinal and transverse waves in (18) is lost when
waves find boundaries or interfaces between materials
of different elastic properties. This is why elastic waves
are more complex than acoustic or electromagnetic
waves. Upon finding an interface, transverse waves
may spawn refracted and reflected longitudinal waves
and conversely. The appearance of these new waves is
needed to satisfy the conditions at the interface. For
example, if the interface is a traction-free boundary
with normal n, then it should happen that P � n D 0

therein at all times. An incident longitudinal wave at an
arbitrary angle will generally not satisfy this condition,
so new waves need to appear to do so. The particular
case of a p-wave incident on a traction-free boundary
is discussed below, to showcase how the boundary
conditions play a role in spawning waves of a different
type. For the more general case, see Achenbach [2] and
Graff [5].

The essential phenomena are typically showcased
with a harmonic plane progressive wave

un D dn cosŒkn.pn � x � cnt/ (19)

x1

x2

θ0 θ1

θ2

p0

p1

p2

d0

d1

d2

Elastodynamics, Fig. 3 A longitudinal (transverse) wave in-
cident on a boundary or interface may spawn both a reflected
longitudinal (transverse) wave and a transverse (longitudinal)
reflected wave. The wave diagram on the left shows the direction
(p) and polarization (d ) vectors for the p-wave incident on the

free-surface x2 D 0 and the two reflected waves. A possible
deformation induced by three waves on an elastic continuum
whose reference configuration is a regularly gridded rectangle
is shown on the right
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traveling through an isotropic linear elastic half-space
x2 < 0 and encountering a flat boundary x2 D 0

(e.g., [2, 5]). Here kn > 0 is the wave number;
.x1; x2; x3/ are the Cartesian coordinates of a point.
The index n D 0 corresponds to the incident wave.
Without loss of generality, it is assumed that the di-
rection of propagation p0 lies on the x1-x2-plane, so
p0 D sin 	0 e1 C cos 	0 e2 for 	0 2 Œ0; �=2

where fe1; e2; e3g is the Cartesian basis see Fig. 3.
A longitudinal incident wave will have d0 D A0p

0,
A0 > 0, and c0 D cL. It is also convenient to
identify two independent families of transverse waves:
the SV-waves in which d0 lies in the x1-x2-plane
and the SH-waves in which d0 lies along the x3-
direction. Both families of waves have c0 D cT and
d0 ? p0.

The traction at the boundary for the incident p-wave
is

P0
12 D �A0k0� sin.2	0/ sin.k0x1 sin 	0 � k0cLt/
P 0
22 D �A0k0

�

�C 2� cos2 	0
�

sin.k0x1 sin 	0 � k0cLt/
P 0
32 D 0:

It follows from here that if P0
12 D P0

22 D 0 for
all x1 and t , then necessarily A0 D 0. Considering
the superposition of the incident wave with a p-wave
reflected from the boundary also leads to trivial solu-
tions. Only by additionally including a reflected SV -
wave is it possible to obtain nontrivial ones. Therefore,
the displacement field induced by the harmonic plane
wave incident on the boundary is u0 C u1 C u2, where
n D 1 labels the reflected p-wave and n D 2 labels
the reflected SV -wave. These are defined with (see [2])
pn D sin 	n e1 � cos 	n e2 for n D 1; 2, d1 D A1p

1,
d2 D A2 e3�p2 D A2.cos 	2 e1Csin 	2 e2/, c1 D cL,
c2 D cT , and

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

k1 D k0; k2 D k0cL=cT D ko�;

	1 D 	0; sin 	2 D ��1 sin 	0;

A1 D sin 2	0 sin 2	2 � �2 cos2 2	2
sin 2	0 sin 2	2 C �2 cos2 2	2

A0; A2 D 2� sin 2	0 cos 2	2
sin 2	0 sin 2	2 C �2 cos2 2	2

A0:

Notable cases are (a) normal incidence (	0 D 0) or
grazing incidence (	0 D �=2), for which there is no
reflected SV -wave, and (b) angle of incidence such
that there is no reflected p-wave, or A1 D 0, but there
is a reflected SV -wave with A2 D � cot 2	0.

Similar results are found for incident SV -waves
or for different boundary conditions on the surface.
Incident SH -waves, on the other hand, only spawn
reflected SH -waves for typical boundary conditions.
For many of these cases, the relation between the
incident and reflected waves can be gracefully depicted
through slowness diagrams (see [2]).

Surface Waves
A mechanical excitation in the bulk of the elastic
continuum, such as an underground detonation or an
earthquake, excites both volumetric and shear waves.
These waves decay in amplitude as they travel away
from the source, since the energy of the perturbation
decays at least with the square of the distance to
the source. When these waves encounter an interface,
they may excite surface waves. Surface waves can
travel along the surface, and their amplitude decays
exponentially away from the surface, so they are also

known as evanescent waves. For example, Rayleigh
waves have the form

u D .d1 e1 C d2 e2/e
bx2 cosŒk.x1 � ct/ (20)

in the coordinate system in Fig. 3, for b > 0. Because
these waves are localized to a small region near the
surface, their energy decay, only inversely with the
distance to the source. Consequently, far away from
the source, the disturbance carried by the surface
waves will be the dominant one. This is why these
waves are of interest in seismology and nondestructive
evaluation.

The speed of propagation of surface waves is gen-
erally different than that of volumetric or shear waves.
For example, the speed c and decay rate b of Rayleigh
waves are obtained after replacing (20) in (9a) with
B D 0 and looking for nontrivial solutions that satisfy
the traction-free condition on the surface (see [2]).
It follows from there that c < cT < cL.

Horizontally polarized or SH -surface waves can
also appear under some circumstances and receive the
name of Love waves. If instead of a free surface there
is a material interface, then disturbances confined to
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a neighborhood of the interface may also propagate;
these are called Stoneley waves.

Wave Guides
Thin structures, such as plates or rods, which are
much larger along one direction than the others, give
rise to waves that are the product of a standing wave
across the thickness, due to the boundary conditions,
and traveling waves along the structure. Because the
wave, and hence the energy, travels along the structure,
these are also called wave guides. In contrast with the
waves from previous sections, the speed of these waves
depends on the wave number; it is a dispersive medium.
These types of waves in solid plates receive the name
of Lamb waves.
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Bichat-Beaujon, Hôpital Beaujon, Clichy, France

Synonyms

Aspartate to Platelets Ratio Index (APRI); Hepatocel-
lularcarcinoma (HCC); Magnetic Resonance Elastog-
raphy (MRE); Magnetic Resonance Imaging (MRI)

Short Definition

Elasticity imaging is a rather recent non invasive imag-
ing modality which provides in vivo data about the
viscoelastic properties of tissue. With manual palpation
being an integral part of many diagnostic procedures,
it is obvious that elasticity imaging has many inter-
esting and promising potentials in medical imaging,
i.e., from lesion/tissue detection and characterization
to therapy follow-up. The general concept of this
method is to displace the material mechanically and
infer from displacement measurements the intrinsic
local viscoelastic properties. Many different techni-
cal realizations exist (static, dynamic, transient) uti-
lizing different imaging modalities (MRI, ultrasound)
which all probe different frequency domains. Since
viscoelastic properties of tissue change strongly with
frequency, care must be taken when interpreting the
data in terms of elastic and viscous component. Here,
we will focus on the dynamic 3D approach via MRI,
i.e., a mono-frequent mechanical excitation and a vol-
umetric assessment of the displacement field. This
allows overcoming several physical difficulties: Firstly
compressional waves can be properly suppressed via
the application of the curl operator, secondly waveg-
uide effects are eliminated, and finally the calculation
of the complex shear modulus does not necessitate
any assumption of the underlying rheological model.
Clinical results on liver fibrosis and on breast cancer
are discussed.

Introduction

From the dawn of time, manual palpation has been
recognized as an important part in many diagnostic
procedures since pathological changes are often ac-
companied with changes in the stiffness of tissue.
Palpation has already been mentioned by Hippocrates
and its importance is unbroken until nowadays. The
aim of palpation is to deduce information about the
internal mechanical properties of soft tissue by ap-
plying an external force. Thus, when considering the
linear regime of small deformations and weak forces,
we intend to measure the material parameter which
links stress to strain. In other words, given a certain
force (i.e., the locally imposed stress), can we predict
the resulting deformation (i.e., the local strain)? In
general, any deformation (ignoring flow effects) can
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be decomposed into a pure compressional component
and a pure shear component [4]. Consequently, an
isotropic material can mechanically be characterized
in the linear regime by a compressional modulus and a
shear modulus. Soft tissue consists approximately 70 %
of water rendering it mechanically incompressible.
However, water is extremely soft in terms of shear. It is
therefore obvious that we need to investigate the shear
stress-strain relationship of tissue in order to probe its
mechanical integrity for disease characterization. The
compressional stress-strain relationship reflects mainly
the properties of water which are far less sensitive
to alterations of the solid matrix. In this context it
is important to realize that when a doctor palpates,
i.e., when he or she exerts a stress on the tissue,
the generated deformation will be pure shear due to
the incompressible nature of tissue. Consequently, the
common saying “this tumour is less compressible” is
misleading, and it should be corrected to “the me-
chanical shear properties of this tumour are elevated
compared to the surrounding tissue.”

The qualitative aspect of manual palpation was
brought to a quantitative imaging technique via the
pioneering work of Ophir [9]. Here, ultrasound speckle
tracking methods were used to image the strain field
which was created by an externally applied static force.
This development triggered a whole new ultrasound
research area with many exciting applications. The
conceptual drawback of this method is the lack of any
force information, i.e., while the strain is locally mea-
sured via ultrasound, the local stress is not accessible
with this approach. Hence, the calculation of the shear
modulus as a local intrinsic property of tissue is only
possible under very specific assumptions (like plane
strain or constant stress) which are rarely met in reality.

Dynamic elastography was developed in order to
overcome the lack of missing local stress information
using now a sinusoidally changing stress source at a
fixed frequency (typically of the order of 10–100 Hz)
[5]. Thereby, mono-chromatic mechanical waves
propagate through the organ of interest which can
be visualized via motion-sensitive imaging methods.
Dealing with monochromatic waves has the big
advantage of controlling time: hence, acceleration and
thereby force, i.e., local stress and strain information,
can be calculated from time series of wave images
(see details below). Lewa was the first one proposing
motion-sensitized MRI sequences for the detection
of propagating mechanical waves in tissue [6]
cumulating shortly later in a Science publication for the

visualization of propagating shear waves via MRI [8].
This triggered the formation of a steadily growing MR
elastography community with different approaches and
different methods for reconstructing the shear modulus
[1, 10, 12, 14]. Many in vivo applications have in the
meantime been developed for different organs (breast
[7, 12, 13], brain [15], liver [2, 3, 11]) with focus on
diffuse diseases (like, fibrosis, demyelination) or focal
lesions. The MR-based approach has the advantage
of volumetric data acquisition with equal motion
sensitivity to all spatial directions. Its disadvantage
compared to the ultrasound-based approach is certainly
the lack of real-time capability. This significant
advantage of ultrasound is balanced by the difficulties
of obtaining volumetric data, reduced SNR, and
very different motion sensitivity for the three spatial
directions.

We will recall the basics of shear modulus recon-
struction in case of dynamic MR elastography and
highlight its fundamental difference to shear wave
speed based methods. Clinical results on liver fibrosis
and breast cancer are presented.

Theory of Mechanical Wave Propagation
The propagation of a monochromatic mechanical wave
in a linear isotropic viscoelastic material is given by

��!2ui
„ ƒ‚ …

force-term

D @xk
�

G�@xkui
�

„ ƒ‚ …

shear-term

C @xi
��

�CG�	 @xkuk
�

„ ƒ‚ …

mixing/compressional-term

;

(1)

with � the density of the material, ! the circular
frequency, and ui the i ’s component of the 3D dis-
placement vector Eu. � refers to the compressional
modulus, G� refers to the shear modulus, and Einstein
convention is assumed for identical indices. Since we
intend to apply this equation to tissue and use vibration
frequencies of the order of 100 Hz, it is important to
keep several physical conditions in mind:
• Tissue is almost incompressible. Thus, � is of the

order of GPa which leads to a speed of sound of ap-
proximately 1,550 m/s in tissue almost independent
of the frequency.

• Shear waves are slow (1–10 m/s) which causes G�
being of the order of kPa, i.e., 6 orders of magnitude
smaller than the compressional modulus �.

• The term @xkuk represents the relative volume
change and is consequently of very small magnitude
in tissue [4].

• Longitudinal waves are not attenuated when operat-
ing at frequencies of the order of 100 Hz. Therefore,
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� is real-valued. Contrarily, shear waves are atten-
uated in this frequency range, and therefore, G� is
complex-valued.

The small magnitude of the @xkuk-term often leads
to the wrong assumption that it might be possible to
simply ignore the entire second term on the right hand
side of Eq. 1. This is however not correct. As can be
seen, when considering the limit of an incompressible
material (i.e., Poisson’s ratio � approaches 0.5), the
small magnitude of the @xkuk-term is balanced by the
large magnitude of the compressional modulus (which
approaches infinity in case of incompressibility) lead-
ing to a so-called finite pressure term, i.e.,

p

� ! 1
@xkuk ! 0D � @xkuk D finite (2)

which is nonzero and finite even when assuming the
material to be incompressible.

Often, the local spatial derivatives of the material
properties are ignored which leads to the following
simplified equation:

��!2ui D G�r2ui C @xi p : (3)

In order to eliminate the unknown pressure component,
we apply the curl operator "rsi@xs to both sides of Eq. 3
leading to a simple Helmholtz-type equation

��!2qr D G�r2qr ; qr D "rsi@xsui : (4)

This equation can be solved analytically at each point
within the imaging volume because Eq and r2Eq can
be obtained from MR elastography data (see below),
for the density � a value corresponding to water is
assumed, and the vibration frequency! is known from
the experimental conditions. It is important to realize
several consequences of Eq. 4:
• The involved derivatives are local: thus, boundary

conditions of the experiment do not invalidate the
correctness of the equation even so they certainly
influence Eq and r2Eq,

• Equation 4 represents the complex-valued local
stress-strain relationship for a monochromatic shear
wave. The obtained values for G� D Gd C iGl
(withGd the so-called dynamic modulus andGl the
so-called loss modulus) are therefore independent
of any rheological model, and its frequency depen-
dence can be obtained by repeating or multiplexing

a monochromatic experiment at different frequen-
cies;

• The calculation of G� is based upon spatial deriva-
tives of the measured displacement fields and NOT
on the measurement of the wave speed. Waveguide
effects therefore do not affect the correctness of
Eq. 4. It is important to keep in mind that the shear

wave speed cs D <
hq

G�
�

i

is a composite variable

which depends on the real and imaginary part ofG�
as well as on geometrical effects. It is therefore only
justified under very specific conditions to assume
that Gd D �

�

�app�
�2 D � c2s holds (with �app the

apparent local shear wavelength).
From these considerations, it is obvious that an un-
biased reconstruction of G� necessitates volumetric
data acquisition (in order to correctly calculate the
r2-term) and at least two of the three motion com-
ponents (in order to get at least one component of
qr D "rsi@xsui ). Nevertheless, it is advised to acquire
all three motion components because Eq. 4 becomes
numerically ill-defined once hitting zero-crossings for
one of the components of Eq. In those cases the other
two components, which are unlikely to also have a
zero-crossing at the same spatial location, can be used
to properly calculate G�. An obvious drawback of the
curl-based reconstruction method is the necessity of
taking 3rd-order spatial derivatives which requires high
values of SNR. This requirement is met because MR
data acquisition time is of the order of several minutes
providing high-quality data.

MR Elastography Data Acquisition and
Reconstruction
The details of the MR elastography (MRE) data acqui-
sition have been described elsewhere [12]. In short, a
mechanical transducer is placed at the surface of the
object under investigation and vibrates sinusoidal at
typical frequencies of �100 Hz. A motion-sensitized
MRI sequence is applied in synchrony (phase-locked)
to the mechanical vibration, thereby providing snap-
shots of the propagating waves at different time points
during the oscillatory cycle. This specific method al-
lows the measurement of all three components of
the displacement vector with equal precision within a
volume. Contrary to ultrasound, MRI is not capable
to acquire the displacement field in real time. The
finite sampling provides in return broadband sensitivity
which can be used to accelerate or improve data acqui-
sition.
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In general, it is obvious from Eq. 4 that finding G�
necessitates the assessment of Eu.Ex; t/ at various times
of the oscillatory cycle in order to calculate its real and
imaginary part via Fourier transformation. Then, Eq. 4
can be rewritten to

��!2



q<
i

q=
i

�

D

r2q<

i
�r2q=

ir2q=
i

r2q<
i

�

�



Gd
Gl

�

;

i 2 Œ1; 2; 3: (5)

Consequently, a reconstruction algorithm ignoring the
complex-valued nature of the displacement field is
prone to provide biased values for G�. There are in
general two different approaches to obtain local maps
for the complex shear modulus:
• The direct approach, i.e., solving Eq. 5 locally with

more or less assumptions in order to simplify things
[12]

• The indirect approach [14], i.e., simulating the ex-
pected displacement field within a small region of
interest based upon an initial guess for the distri-
bution of the viscoelastic parameters and updating
the guess iteratively via �2-minimization between
simulated and measured displacement data

Both approaches have pros and cons: the direct method
is certainly more sensitive to noise while the indirect
is sensitive to boundary conditions. An additional chal-
lenge in case of the indirect method is the proper calcu-
lation of the @xkuk-term in Eq. 1. Its true value in tissue
is so minute (due to the quasi incompressible nature)
that an estimation of the compressional modulus is
easily off by several orders of magnitude (it should be
of the order of GPa to yield the correct speed of sound
in tissue of �1,550 m/s).

MRE Applied to Stage Liver Fibrosis and
Characterize Breast Cancer
Chronic liver diseases typically lead to liver fibrosis.
Recent investigations demonstrate that liver fibrosis is
reversible using effective treatment during the early
phase of disease progression. In this context, the stage
of liver fibrosis plays a major role: it determines firstly
the treatment options and secondly also the prognosis.
The current gold standard for determining the stage of
liver fibrosis is the biopsy. As an invasive procedure, it
is, for instance, not well suited for treatment follow-
up studies, which is however mandatory in order to
separate in the early phase responders from nonrespon-

ders. Moreover, needle biopsy is probing only a tiny
quasi 1D volume of the entire liver and is thus prone to
sampling variability and interobserver variation in the
interpretation of the semiquantitative scoring systems.

Thus, there is a need for noninvasive alternatives
to liver biopsy which should at least be capable to
reliably differentiate between three stages of fibrosis:
none/early, intermediate, and advanced/cirrhotic. An
identification of the intermediate stage is necessary
since patients with hepatitises B and C and nonalco-
holic liver disease should be treated. Late-stage pa-
tients require, for instance, follow-up studies regarding
potential hepatocellular carcinomas.

Various noninvasive methods have been proposed
to assess the stage of liver fibrosis. These methods
include liver imaging methods via MRI or ultrasound
and biochemical scores. The most common score is
the so-called aspartate to platelet ratio index (APRI).
Although those techniques certainly carry diagnostic
value, their accuracy for staging intermediate fibrosis
remains debated.

From clinical experience it is well known that liver
stiffness changes with the grade of fibrosis. Here,
MRE as a novel noninvasive method for measuring
the viscoelastic properties of the liver may play an
important role. Preliminary reports [2, 3, 11] suggest
that MRE is a feasible method to stage liver fibro-
sis. Figure 1 shows a selected example of a patient
with already substantially developed fibrosis (stage
F3 as confirmed by histology) in combination with
a large hepatocellularcarcinoma (HCC). Very good
wave penetration can be observed, henceforth allow-
ing an exploration of the mechanical parameters over
the entire right liver lobe. The HCC can clearly be
differentiated from the surrounding parenchyma as an
area with significantly enhanced elasticity values. The
parenchyma with an average value of Gd D 3:3 kPa
appears – as expected – significantly enhanced when
compared to normal liver tissue with values around
2 kPa. More recent clinical results clearly demonstrate
that MRE can separate those three stages of liver
fibrosis. A large comparative study (MRE, FibroScan,
and APRI) demonstrated the superiority of MRE over
the other two methods (see Fig. 2) and the ability to ef-
ficiently separate between low-grade fibrosis (F0–F1)
and intermediate- to high-grade fibrosis (F2–F4) [3].
Obviously 3D MRE outperforms the 1D Fibroscan ap-
proach which is an expected result after all theoretical
considerations discussed before. Figure 2d shows the
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EElastography, Applications Using MRI Technology, Fig. 1
Liver fibrosis & tumor example. This example shows a patient
with a large hepatocellularcarcinoma (a, red ROI) in combina-
tion with an advanced fibrosis (grade F3). The mechanical trans-
ducer is attached from the ide (blue rectangle) Wave penetration

is very good (b, actually the z-component of the curl is shown)
and the resulting image of Gd (c, in units of [kPa]) clearly shows
the presence of the lesion. Enhanced elasticity values for the liver
parenchyma are recorded .Gd D 3:3 kPa/ compared to normal
liver tissue (�2 kPa)
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Elastography, Applications Using MRI Technology, Fig. 2
Comparison of different methods for liver fibrosis staging.
The “true” grade of liver fibrosis has been determined via liver
biopsy and transformed into the METAVIR score. A comparison
of MRE (a), FibroScan (b) and APRI test (c) on 141 patients

shows the superiority of the 3D MRE approach [3]. When
assuming power-law behavior for the complex shear modulus,
Gd and Gl can be reinterpreted into the previously mentioned
structural parameter ˛. Obviously, disease progression changes
the stiffness but does not change ˛ (d)

ratio of viscosity over elasticity

�

˛ D 2

�
atan

�

Gl

Gd

��

for different grades of fibrosis as a function of a
parameter which is proportional to 1=Gd . Obviously,
disease progression is from low to high values of Gd

(i.e., the tissue stiffens, as seen in the Fig. 2a) while
˛ does not change. Thus, viscosity and elasticity are
increasing in synchrony. This is not what is observed
in breast cancer. Figure 3a shows the experimental
setup for in vivo breast measurements. The patient is
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Elastography, Applications Using MRI Technology, Fig. 3
Results on Breast Cancer Characterization. Schematic of the
experimental setup (a). The transducer is attached from the
side and generates mechanical waves which traverse the breast.
MR subtraction image in case of a ductal invasive carcinoma

(b). Map of Gd [kPa] (c) and map of Gl [kPa] (d). When
assuming power-law behavior for the complex shear modulus,
Gd and Gl can be reinterpreted into the previously mentioned
structural parameter ˛ [13]. Malignant lesion obviously differs
significantly from benign lesion when considering ˛

in prone position with the transducer attached from
the side. This setting allows first performing standard
MR mammography with contrast agent and applying
afterwards MRE as an add-on. A selected example for
a palpable invasive ductal carcinoma is presented in
Fig. 3b. The subtraction image (with/without contrast
agent) shows clearly the presence of a large strongly
enhancing tumor. Figure 3c,d show the corresponding
images of the dynamic modulus and the loss modulus.
Interestingly, the large tumor is barely visible in the
map of Gd but well circumscribed in the image of Gl .
When arranging the measurements of a large group of
benign and malignant lesions similar to Fig. 2d (see
Fig. 3d), it becomes obvious that malignant tumors
populate the high ˛ – low 1=Gd region. The difference
to the data from liver fibrosis might be explained due
to the fact that no strong neovasculature is installed
during the development from low-grade to high-grade
fibrosis which is clearly the case for malignant breast
cancer.

Those very encouraging results should however be
taken with a grain of salt: other pathological effects can
equally enhance the stiffness of the liver (like inflam-
mation). Thus, viscoelastic parameters are certainly a
very interesting biomarker for the characterization of
fibrosis. However, enhanced stiffness of the liver is not
ONLY created by fibrotic effects, and MRE should
rather be seen as one valuable additional physical
parameter within the portfolio of diagnostic liver MRI
or MR mammography.

Discussion and Future Directions
Many MRE research groups are currently exploring the
further potential diagnostic value of the viscoelastic
parameters for disease characterization in the areas of
breast [7, 13], human brain [15], preclinical tumor
characterization and liver tumors characterization.
Overall, viscoelastic parameters are sensitive to
architectural changes of tissue and seem to provide
valuable additional clinical information for tissue
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characterization. As always, many side effects can
influence the mechanical parameters (inflammatory
effects, steatotic effects, fibrotic effects), and it is
therefore most beneficial that MRE can be part of a
broad spectrum of physical parameters which can be
assessed during one MR examination.

More fundamental oriented investigations try to
infer from the scattering processes of shear waves
micro-architectural information about the underlying
medium. This information might be valuable for the
characterization of the efficacy of antiangiogenic treat-
ments at early stages of the therapy. Hence, MRE might
become more than a sophisticated in vivo rheometer: it
might turn into a tool for understanding microscopic
structural properties.
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Definition

An electrical circuit is composed of electrical compo-
nents, which are connected by current-carrying wires
or cables. Using the network approach, such a real
circuit is mathematically modeled by an electrical
network consisting of basic elements (resistors, capac-
itors, inductors, and current and voltage sources) and
electrically ideal nodes.

Description

Such a network model of an electrical circuit is au-
tomatically generated in computer-aided electronics-
design systems. An input processor translates a net-
work description of the circuit into a netlist. The
network equations are generated from the netlist by
combining network topology with basic physical laws
like energy or charge conservation and characteristic
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equations for the network elements. Usually, this au-
tomatic modeling approach tries to preserve the topo-
logical structure of the network and does not look for
systems with a minimal set of unknowns. As a result,
coupled systems of implicit differential and nonlin-
ear equations, shortly, differential-algebraic equations
(DAEs), are generated, which have to be simulated nu-
merically. In the following, we will shortly discuss the
three steps involved in numerical simulation of elec-
trical circuits: modelling, analysis, and numerical inte-
gration. For a detailed discussion of this topic, we refer
to the handbook article [9] and survey papers [7, 8].

Modeling: The Network Approach
In contrast to a field theoretical description based on
Maxwell’s equations, which is not feasible due to the
large complexity of integrated electric circuits, the net-
work approach rests on integral quantities – the three
spatial dimensions of the circuit are only considered by
the network topology. The time behavior of the system
is given by the network quantities, branch currents
I.t/ 2 IRnI , branch voltages U.t/ 2 IRnI , and node
voltages u.t/ 2 IRnu that describe the voltage drop of
the nodes versus the ground node.

Principles and Basic Equations
The network model consists of elements and nodes,
and the latter are assumed to be electrically ideal.
The composition of basic elements is governed by
Kirchhoff’s laws which can be derived by applying
Maxwell’s equations in the stationary case to the net-
work topology.

Kirchhoff’s Current Law (KCL). The algebraic sum of
currents traversing each cut set of the network must be
equal to zero at every instant of time:

A � I.t/ D 0; (1)

with a reduced incidence matrix A 2 f�1; 0; 1gnu�nI ,
which describes the branch-nodes connections of the
network graph.

Kirchhoff’s Voltage Law (KVL). The algebraic sum of
voltages along each loop of the network must be equal
to zero at every instant of time:

A> � u.t/ D U.t/: (2)

Besides these purely topological relations, additional
equations are needed for the subsystems to fix the state
variables uniquely. These so-called characteristic equa-
tions describe the physical behavior of the network
elements.

One-port or two-terminal elements are described by
equations relating their branch current and branch
voltage. The characteristic equations for the basic el-
ements resistor, inductor, and capacitor are derived by
field theoretical arguments from Maxwell’s equations
assuming quasistationary behavior. In doing so, one ab-
stracts on Ohmic losses for a resistor, on generation of
magnetic fluxes for an inductor, and on charge storage
for a capacitor, by neglecting all other effects. The set
of basic elements is completed by independent, that is
purely time-dependent, current and voltage sources.

Interconnections and semiconductor devices are
modeled by companion circuits using multi-ports,
which contain voltage-controlled charge and current-
controlled flux sources to model dynamical behavior.
Voltage-controlled current sources are used to describe
the static current in pn-junctions and channels.

Modified Nodal Analysis
The electrical network is now fully described by both
Kirchhoff’s laws and the characteristic equations.
Based on these relations, the method of modified
nodal analysis (MNA) is commonly used in industrial
applications to generate the network equations:
KCL (1) is applied to each node except ground, and
the branch currents of all voltage-controlled elements
are replaced by their current-defining characteristic
equations. The element equations for all current-,
charge- and flux-controlled elements like voltage
sources and inductors are added. Finally, all branch
voltages are converted into node voltages with the help
of KVL (2). Splitting the incidence matrix A into the
element related incidence matrices AC , AL, AR, AV ,
andAI for charge- and flux-storing elements, resistors,
and voltage and current sources, one obtains from
MNA the network equations in charge/flux-oriented
formulation:

AC Pq C ARr.A
>
Ru; t/C AL|L C AV |V C

AI {.A
>u; Pq; |L; |V ; t/ D 0; (3a)

P
 � A>
Lu D 0; (3b)

A>
V u � v.A>u; Pq; |L; |V ; t/ D 0; (3c)
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q � qC .A>
C u; t/ D 0; (3d)


 � 
L.|L; t/ D 0 (3e)

with node voltages u, branch currents through voltage-
and flux-controlled elements |V and |L, voltage-
dependent charges and fluxes q and 
, voltage-
dependent resistors r , voltage and current-dependent
charge and flux functions qC and 
L, and controlled
current and voltage sources { and v.

At this point the reader may pose the question
why charges and fluxes are introduced to model char-
acteristic equations of energy-storing elements in a
charge/flux-oriented way – and not classically via ca-
pacitors and inductors. The answer to this question
contains modelling, physical, numerical, and software
technical argument, as discussed in detail in Günther
and Feldmann [7].

Why DAE and Not ODEModels?
The charge/flux-oriented formulation of energy-storing
elements and MNA network equations supply us with
a first argument for using differential-algebraic equa-
tions in electrical circuit modeling. More arguments
are revealed by inspecting the ODE approach as an
alternative:

Generating a State-Space Model with a Minimal Set of
Unknowns. Drawbacks of this approach include soft-
ware engineering, modeling, numerical, and designer-
oriented arguments. The state-space form cannot be
generated in an automatic way and may exist only
locally. The use of independent subsystem modeling,
which is essential for the performance of today’s VLSI
circuits, is limited, and the advantage of sparse ma-
trices in the linear algebra part is lost. Finally, the
topological information of the system is hidden for
the designer, with state variables losing their technical
interpretation.

Regularizing the DAE to an ODE Model by Including
Parasitic Effects. It is commonly believed that the DAE
character of the network equations is only caused by a
high level of abstraction, based on simplifying mod-
eling assumptions and neglection of parasitic effects.
So one proposal is to regularize a DAE into an ODE
model by including parasitic effects. However, this will
yield singularly perturbed problems, which will not
be preferable to DAE models in numerical respect.
Furthermore, refined models obtained by including

parasitics may make things worse and lead to problems
which are more ill-posed.

Analysis: The DAE Index of Network Equations
So we are faced with network equations of differential-
algebraic type when simulating electrical circuits. Be-
fore attacking them numerically, we have to reveal the
analytical link between network topology and DAE
index.

Network Topology and DAE Index
In the linear case, the two-terminal elements capaci-
tor, inductor, and resistor are linear functions of the
respective branch voltage with positive scalars defining
the capacitance, inductance, and resistance. In other
words, the elements are strictly passive.

Generalizing this property to the nonlinear case, the
strictly local passivity of nonlinear capacitors, induc-
tors, and resistors corresponds to the positive definite-
ness (but not necessarily symmetry) of the so-called
generalized capacitance, inductance, and conductance
matrices

@qC .w; t/

@w
;

@
L.w; t/

@w
; and

@r.w; t/

@w
:

If this property of positive-definiteness holds, the net-
work is called an RLC network.

Let us first investigate RLC networks with indepen-
dent voltage and current sources. To obtain the per-
turbation index of (3), we perturb the right-hand side
of (3a–3c) by a slight perturbation ı D .ıC ; ıL; ıV /

>.
The corresponding solution of the perturbed system
is denoted by xı WD .uı; | ıL; |

ı
V /

>. Then one can
show that the difference xı � x between perturbed and
unperturbed solution is bounded by the estimate

kxı.t/� x.t/k � C �
�

kxı.0/� x.0/k C max
�2Œ0;t 

kık

C max
�2Œ0;t 

kQ>
CRV

PıCk C max
�2Œ0;t 

k NQ>
V�C PıV k

�

with a constant C and using orthogonal projectorsQC ,
QCRV, and NQV�C onto kerA>

C , ker .ACARAV />, and
ker Q>

C AV [5, 9]. Since Q>
CRVAC D 0 holds, the index

does not rise, if also perturbations q and 
 are allowed
in the charge- and flux-defining equations (3d–3e).

Thus the index of the network equations is one, if
the following two topological conditions hold:
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T1: There are no loops of only charge sources
(capacitors) and voltage sources (no VC loops):
kerQ>

C AV D f0g.
T2: There are no cut sets of flux sources (inductors)

and/or current sources (no LI cut sets):
ker.ACARAV /> D f0g:

In this case, we deal with well-posed problems. How-
ever, we have to cope with ill-posed index-2 problems,
if T1 or T2 is violated.

The results hold also for RLC networks with a rather
large class of nonlinear voltage and current sources,
as shown by Estévez Schwarz and Tischendorf [5]:
The index depends only on the topology; in general,
the index is one, and two only for special circuit
configurations.

Influence of General Sources
Independent charge and flux sources, which may model
˛-radiation or external magnetic fields, can destroy the
positive definiteness of generalized capacitance and in-
ductance matrices: The index may now depend also on
modeling parameters and operation conditions of non-
linear elements [8]. The same effects can be generated
by controlled sources. Higher-index cases may arise,
for example, if independent current/voltage sources
in index-2 configurations are replaced by charge/flux
sources or index-2 problems are coupled via controlled
sources.

Even if the network contains no nonlinear sources,
circuit parameters may have an impact on structural
properties of the network equations such as the DAE
index.

These results have an important practical conse-
quence, since it does not allow to rely only on structural
aspects when trying to cope with higher-index prob-
lems in circuit simulation.

After deriving and analyzing the analytical proper-
ties of the DAE network equations in time domain,
the third step remains to be discussed in numerical
circuit simulation: numerical integration using DAE
discretization schemes tailored to structure and index
of the network equations.

Numerical Time Integration
In the following we describe the conventional approach
based on implicit linear multi-step methods and discuss
the basic algorithms used and how they are imple-
mented and tailored to the needs of circuit simulation.
Special care is demanded of index-2 systems.

Throughout this chapter we will assume that the
network equations correspond to RLC networks, and
the only allowed controlled sources are those which
keep the index between 1 and 2, depending on the
network structure.

To simplify notation, we first rewrite the network
equations (3) in charge/flux-oriented formulation in a
more compact linear-implicit form:

0 D F. Py.t/; x.t/; t/ WD A � Py.t/C f .x.t/; t/; (4a)

0 D y.t/ � g.x.t//; (4b)

with x WD .u; |L; |V /> being the vector of unknown
network variables and y WD .q; 
/>.

The Basic Algorithm
The conventional approach can be split into three
main steps: (a) computation of consistent initial values,
(b) numerical integration of Py based on multi step
schemes, and (c) transformation of the DAE into a non-
linear system and its numerical solution by Newton’s
procedure. Since the third step is usually performed
with methods which are not very specific for circuit
simulation, we will not discuss it further here.

Let us assume for the moment that the network
equations are of index 1 – the index-2 case will be
discussed later.
(a) Consistent Initial Values. The first step in the tran-

sient analysis is to compute consistent initial values
.x0; y0/ for the initial time point t0. In contrast
to performing a steady state (DC operating point)
analysis, i.e., to solve F.0; x0; t0/ D 0 for x0 and
then set y0 WD g.x0/, one can extract the algebraic
constraints using the projectorQC onto ker A>

C :

Q>
C .ARr.A

>
Ru; t/C AL|L C AV |V

CAI {.u; |L; |V ; t// D 0; (5a)

v.u; |L; |V ; t/ � A>
V u D 0: (5b)

If the index-1 topological conditions hold, this
nonlinear system uniquely defines for t D t0 the
algebraic components QCu0 and |V;0 for given
(arbitrary) differential components .I�QC/u0 and
|L;0. The derivatives Py0 have then to be chosen such
that A Py0 C f .x0; t0/ D 0 holds.

(b) Numerical Integration. Starting from consistent
initial values, the solution of the network equations
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is computed at discrete time points t1; t2; : : : ; by
numerical integration with implicit linear multistep
formulas: For a timestep hk from tk�1 to tk D
tk�1 C hk , the derivative Py.tk/ in (4b) is replaced
by a linear �-step operator �k for the approximate
Pyk , which is defined by �k D ˛kg.xk/C rk with a
timestep-depending coefficient ˛k . The remainder
rk contains values of y and Py for � previous time
points.

This direct approach was first proposed by
Gear [6] for backward differentiation formulas
(BDF methods). Since SPICE2 [11], most circuit
simulators solve the network equations either with
the trapezoidal rule (TR) Today, a combination of
TR and BDF schemes, so-called TR-BDF schemes,
are widely used. This name was first introduced in
a paper by Bank et al. [1]. The aim is to combine
the advantages of both methods: large timesteps
and no loss of energy of the trapezoidal rule (TR)
combined with the damping properties of BDF.

(c) Transformation into a Nonlinear System of Equa-
tions. The numerical solution of the DAE sys-
tem (4b) is thus reduced to the solution of a system
of nonlinear equations

F.˛kg.xk/C rk; xk; tk/ D 0; (6)

which is solved iteratively for xk by applying
Newtons’s method in a predictor-corrector scheme.
Starting with a predictor step x.0/k (xk�1 or some
kind of extrapolated value from previous time
point may be a reasonable choice), a new Newton
correction�x.l/k WD x

.l/

k �x.l�1/k is computed from
a system of linear equations

DF .l�1/�x.l/k D �F .l�1/;

F .l�1/ WD F.˛kg.x.l�1/k /C rk; x
.l�1/
k ; tk/:

(7)

Due to the structure of the nonlinear equations, the
JacobianDF .l�1/ is given by

DF .l�1/ D ˛k � F .l�1/
Px C F .l�1/

x with

F .l�1/
Px D A � @g.x

.l�1/
k /

@x
;

F .l�1/
x D @f .x

.l�1/
k ; tk/

@x
:

If the stepsize h is sufficiently small, the regularity
of DF .l�1/ follows from the regularity of the matrix
pencil fA � @g.x/=@x; @f=@xg that is given at least for
index-1 systems.

Element Stamps and Cheap Jacobian
In every Newton step (7), two main steps have to be
performed:
• LOAD part: First, the right-hand side �F .l�1/ of (7)

and the Jacobian DF .l�1/ have to be computed.
• SOLVE part: The arising linear system is

solved directly by sparse LU decomposition and
forward/backward substitution.

A characteristic feature of the implementation in circuit
simulation packages such as SPICE is that modeling
and numerical integration are interwoven in the LOAD
part: First, the arrays for right-hand side and Jacobian
are zeroed. In a second step, these arrays are assembled
by adding the contributions to F and DF element by
element: So-called element stamps are used to evaluate
the time-discretized models for all basic elements.

Adaptivity: Stepsize Selection and Error Control
Variable integration stepsizes are mandatory in circuit
simulation since activity varies strongly over time. A
first idea for timestep control is based on estimating
the local truncation error " Py of the next step to be
performed, that is, the residual of the implicit linear
multistep formulas if the exact solution is inserted.

The main flaw of controlling " Py is that the user
has no direct control on the really interesting circuit
variables, that is, node potentials u and branch cur-
rents |L; |V . An approach to overcome this disadvan-
tage [12] is based on the idea to transform the local
truncation error " Py for Pq and P
 into a (cheap) estimate
for the local error "x WD x.tk/ � xk of x.t/. By
expanding F. Py.t/; x.t/; t/ at the actual time point tk
into a Taylor series around the approximate solution
. Pyk; xk/ and neglecting higher-order terms, one obtains
an error estimate "x for x.tk/, which can be computed
from the linear system

�

˛kA
@g

@x
C @f

@x

�

"x D �A" Py (8)

of which the coefficient matrix is the Jacobian of
Newton’s procedure! Since the local error "x can be
interpreted as a linear perturbation of x.tk/, if F is
perturbed with the local truncation error " Py , the choice
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of "x is justified as an error estimate for numerical
integration. The key motivation to weight the local
truncation error via Newton’s method was to damp
the impact of the stiff components on timestep control
– which otherwise would yield very small timesteps.
While this aspect can be found in the textbooks, a
second aspect comes from the framework of charge-
oriented circuit simulation: Newton’s matrix brings
system behavior into account of timestep control, such
as mapping integration errors of single variables onto
those network variables, which are of particular interest
for the user.

The Index-2 Case
Since most applications of practical interest yield net-
work equations of index 2, numerical integration must
be enabled to cope with the network equations (3) that
are not of Hessenberg type. Fortunately, the fine struc-
ture of the network equations allows for adapting BDF
schemes to such systems, provided that (a) consistent
initial values are available and (b) a weak instability
associated with an index-2 non-Hessenberg system is
fixed.
(a) Computing Consistent Initial Values. The usual

way in circuit simulation to compute initial values
described above for index-1 problems may yield
inconsistent initial values in the index-2 case, since
the hidden constraints – relating parts of the solu-
tion to the time derivatives of the time-dependent
elements – are not observed. A solution to this
problem was developed by Estévez Schwarz [4],
which aims at being as near as possible to the
solution of the standard algorithm for low index:
In a first step, a linear system is setup and solved
for corrections to this solution such that the hidden
constraints are fulfilled; in a second step, these
corrections are added to the initial values found in
the standard algorithm to get consistent ones. The
hidden constraints can be easily derived from the
information provided by an index monitor, devel-
oped by Estévez Schwarz and Tischendorf [5]: It
determines the index, identifies critical parts of the
circuit and invokes special treatment for them in
order to avoid failures of the numerical integration,
and gives hints to the user how to regularize the
problem in case of trouble and which network
variables may be given initial values and which
must not. When the algorithm is applicable, then
the variables to be corrected turn out to be branch

currents in VC loops and node voltages in LI cut
sets.

(b) Fixing the Weak Instability. For a variable-order,
variable-stepsize BDF scheme, März and Tischen-
dorf [10] have shown that if the ratio of two
succeeding stepsizes is bounded and the defect
ık , representing the perturbations in the kth step
caused by the rounding errors and the defects
arising when solving the nonlinear equations nu-
merically, is small enough, then the BDF approach
is feasible and convergent for index-2 network
equations. However, a weakly instable term of
the type

max
k�0

1

hk
kDkıkk

arises in the error estimate of the global error.
Here Dk denotes a projector that filters out the
higher-index components of the defect. In contrast
to index-2 systems of Hessenberg type, where an
appropriate error scaling is a remedy, this instabil-
ity may affect all solution components in our case
and may cause trouble for the timestep and error
control. However, the instability can be fixed by
reducing the most dangerous part of the defect ık ,
that is, those parts belonging to the range of Dk .
This defect correction can be done by generalizing
the back propagation technique, since the projector
can be computed very cheaply by pure graphical
means with the use of an index monitor.

New Challenges
In the last decades, numerical simulation of electri-
cal circuits has reached some level of maturity: The
link between modeling and analytical properties of
network models is well understood and successfully
exploited by numerical integration schemes tailored
to the special structure of network equations. Besides
robustness, efficiency has been drastically improved
by parallelization, domain decomposition (subcircuit
partitioning), and multirate schemes. However, the
ongoing miniaturization of integrated circuits increases
the complexity of circuits (both qualitatively and quan-
titatively) and defines future direction for research:

Quantitative Challenge: A Need for More Speedup [3].
The LOAD part becomes more expensive for refined
MOSFET models. One idea to speed up is to load
devices in parallel by multi-threaded stamping, which
has to avoid access conflicts. The SOLVE part becomes
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the bottleneck if too many parasitics fill up the Ja-
cobian DF . The implemented direct solvers (mainly
sparse LU decomposition) have to be replaced by better
(multi-threaded) ones. To speed up the Newton loop,
the number of matrix evaluations and decompositions
has to be reduced and, at the same time, one has to
avoid costly noncovergence. Some ideas to speed up
time integration are to exploit more multirate tech-
niques and use multi-threading for stepsize control
and explicit schemes for as many steps as possible.
In addition, there is hope to gain additional speedup
by model order reduction techniques (replacing linear
parasitic elements as well as nonlinear subcircuits by
a reduced net with same input-output behavior) and
GPU computing. However, to be successful here de-
mands for substantial progress in nonlinear MOR and
a paradigm shift in algorithm development.

Qualitative Challenge: Refined Network Modelling [2].
In the network approach, all spatially distributed
components are modeled by subcircuits of lumped
basic elements. With ongoing miniaturization, these
companion models lack physical meaning and become
less and less manageable. One alternative modeling
approach is to replace the companion model by a
physically oriented PDE model, which bypasses a
huge number of more or less artifical parameters of the
companion model.

This refined network modeling yields coupled sys-
tems of DAEs and PDEs, PDAEs for short, with a
special type of coupling: The node potentials at the
boundaries define boundary conditions for the PDE
model, and the currents defined by the PDE model en-
ter the network equations as additional current source
terms. This PDAE modeling approach can be extended
to multiphysical problems, for example, coupling the
circuit behavior with thermal effects, but may yield
different coupling structures. Simulating these PDAE
models numerically involves again the whole simu-
lation chain: modeling, analysis (well-posedness and
sensitivity), and numerical approximation.
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Synonyms

H.curl/-conforming elements; Edge elements

Short Definition

Finite element method is a discretization method for
Maxwell equations. Developed originally for elliptic
problems, finite elements must deal with a different
energy setting and linear dependence of Maxwell equa-
tions.

Description

Maxwell Equations
Maxwell equations (Heaviside’s formulation) include
equations of Ampère(with Maxwell’s correction) and
Faraday, Gauss’ electric and magnetic laws, and con-
servation of charge equation. In this entry we restrict
ourselves to the time-harmonic version of the Maxwell
equations which can be obtained by Fourier transform-
ing the transient Maxwell equations or, equivalently,
using ej!t ansatz in time.
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:

r �E D �j!.�H/
Faraday law

r �H D J imp C �E C j!.�E/

Ampère-Maxwell law

r � .�H/ D 0

Gauss magnetic law

r � .�E/ D �imp C �

Gauss electric law

j!� C r � .�E/ D 0

conservation of charge

(1)

The complex-valued unknowns include (phasors of)
electric field E , magnetic field H , and free charge
density �, a total of 7 scalar unknowns in 3D. Material
data are represented by permeability �, permittivity �,
and conductivity � . In the simplest version of Maxwell
equations discussed here �; �; � are real-valued func-
tions of position x:

0 < �min � �.x/ � �max < 1;

0 < �min � �.x/ � �max < 1;

0 � �.x/ � �max < 1 : (2)

In more general versions, �; �; � can be replaced with
tensors, possibly complex valued. In practice, they
will also depend upon the (angular) frequency !. The
load data include impressed (electric volume) current
J imp and impressed (volume) charge �imp that satisfy
themselves the continuity equation:

j!�imp C r � J imp D 0 : (3)

Products B D �H;D D �E; J D �E are the
magnetic and electric flux and the electric current,
respectively. Finally, j denotes the imaginary unit.

For a perfect dielectric, � D 0. When � ! 1, we
have a perfect conductor. Within a subdomain occu-
pied by a perfect conductor, electric field E vanishes.
Perfect conductors are removed from the domain of
interest ˝ � IR3 and replaced with the perfect electric
conductor boundary condition: n � E D 0 where
n denotes the outward normal to domain boundary
� D @˝ . In principle, Maxwell equations are posed
in the whole space IR3 minus the subdomains occupied
by perfect conductors. In real life, conductivity may
be large but remains finite. Upon entering a good
conductor, electric field develops a boundary layer that
decays exponentially into the conductor domain.

The main difficulty with the discretization of
Maxwell equations is that the equations are linearly
dependent: we have seven unknowns and nine scalar
equations. Two scalar equations must be redundant. In
order to see that, we multiply the Gauss electric law by
j! and add it side-wise to the conservation of charge
equation. The free charge density � is eliminated and
we obtain the continuity equation:

j!r � .�E/C r � .�E/ D j!�imp : (4)

The linear dependence of the resulting equations is
now clearly visible: the Gauss magnetic law is obtained
by taking divergence of Faraday law, and by applying
the divergence operator to the Ampère-Maxwell law
and utilizing assumption (3), we obtain the continuity
equation.
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The linear dependence disappears for the static
case (! D 0). The Gauss laws and the conservation
of charge equations become independent and pro-
vide closing equations for formulating electrostatics
and magnetostatics problems. We expect the Maxwell
equations to lose stability as ! ! 0 and this is exactly
what happens.

Variational Formulation
In view of the linear dependence, we restrict ourselves
to the Faraday and Ampère equations only. Standard
variational formulations are obtained by relaxing one
of the equations and leaving the other one in the
strong form. We choose to relax the Ampère law, i.e.,
we multiply it with a (vector-valued) test function F ,
integrate over domain ˝ of interest, and integrate by
parts:

Z

˝

H � r � F C
Z

�

n �H � F �
Z

˝

.j!� C �/E � F

D
Z

˝

J imp � F : (5)

Integrating by parts we arrive naturally at the concept
of “rotated” tangential component n � H D n � Ht

where Ht is the standard tangential component of

vector field H , i.e., H D Ht C Hn with normal
component Hn D .H � n/n. Notice that the boundary
term can be written in a variety of ways as

.n�H/ � F D.n�H/ � Ft D .n�.n�H// � .n�Ft /
D �Ht � .n � F / D �H � .n � F / :

(6)

We request the Faraday law to be satisfied in a strong
way, i.e., pointwise (almost everywhere). It is natural
to use it then to eliminate the magnetic field by repre-
senting it in terms of the curl of the electric field:

� j!H D 1

�
r �E : (7)

Multiplying the relaxed Ampère equation with �j!
and using (7), we obtain the variational identity:

Z

˝

1

�
.r � E/ � .r � F /� j!

Z

�

n �H � F (8)

�
Z

˝

.!2� � j!�/E � F D �j!
Z

˝

J imp � F :

The most popular boundary conditions (BC) include

n � E D n �E0 on �1 (nonhomogeneous version of PEC boundary)

n �H D J
imp
S on �2 (prescribed impressed surface current)

n �H D ˇEt C J
imp
S on �3 (impedance BC)

(9)

where the impressed current J imp
S (a load data) and

impedance (material) constant ˇ are given. The bound-
ary conditions are now built into the formulation by
representing on �2 and �3, n � H in terms of the im-
pressed surface current and electric field. As we do not

know n�H on �1, we eliminate this part of the bound-
ary by setting the tangential component of test function
F to zero (we choose not to test on �1, otherwise n�H
would have remained as an additional unknown). The
final variational formulation looks as follows:

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

n � E D n � E0 on �1
Z

˝

1

�
.r � E/ � .r � F /� j!

Z

�3

ˇEt � Ft �
Z

˝

.!2� � j!�/E � F

D �j!
Z

˝

J imp � F C j!

Z

�2[�3
J

imp
S � F 8F W n � F D 0 on �1

(10)
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The natural energy space for the variational formu-
lation is

H.curl;˝/ WD fE 2 .L2.˝//3 W r �E 2 .L2.˝//3g
(11)

where, as usual, the derivatives are understood in the
distributional sense. With E;F 2 H.curl;˝/ and
conditions (2), all volume integrals are well defined
and finite. Study of traces n�E andEt D �n�.n�E/
for theH.curl;˝/ energy space is much more involved
than for the standard Sobolev space H1.˝/; see [6, 7].

Having developed the variational formulation for
the Ampère and Faraday equations, we return to the

question of linear dependence of the Maxwell system:
does the weak solution satisfy the Gauss magnetic
law? the continuity equation? And if yes, then in what
sense? The answer to the first question is simple.
Having determined electric field E , we compute the
corresponding magnetic field using the strong form
of the Faraday equation (7). Thus, H automatically
satisfies the Gauss magnetic law. To answer the sec-
ond question, we select a special test function in the
variational formulation (10):

F D rq; q 2 H1.˝/; q D 0 on �1 (12)

This leads to the equation

�j!
Z

�3

ˇEt � .rq/t �
Z

˝

.!2� � j!�/E � rq D �j!
Z

˝

J imp � rq C j!

Z

�2[�3
J

imp
S � rq

8q 2 H1.˝/ W n � q D 0 on �1

(13)

Upon integrating (13) by parts and using Fourier’s
lemma, we recover the strong form of the continuity
equation (4). The solution to the variational prob-
lem (10) satisfies thus automatically the strong form
of the Gauss magnetic law and the weak form of the
continuity equation. For perfect dielectrics (� D 0),
solution to (10) loses stability as ! ! 0. Restricting
ourselves for simplicity to the case of homogeneous
PEC boundary conditions only and simply connected
domain˝ , we use the Helmholtz decomposition:

E D E0 C r ;  2 H1
0 .˝/;

Z

˝

�Er
 D 0 8
 2 H1
0 .˝/ (14)

and test with F D r to obtain

� !2
Z

˝

�jr j2 D �j!
Z

˝

J imp � r (15)

Applying Cauchy-Schwarz inequality and utilizing (2),
we obtain

k�1=2r kL2.˝/ � 1

!
k��1=2J impkL2.˝/ (16)

We lose thus the control of the gradient r as ! ! 0.
A remedy for the stability loss is to impose (13) as an
additional constraint through Lagrange multipliers. We
arrive at the stabilized variational formulation in the
form of a mixed problem:

(17)
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

E 2 H.curl;˝/; p 2 H1.˝/; n �E D n � E0; p D 0 on �1

a.E; F /C b.F; p/ D l.F / 8F 2 H.curl;˝/ W n � F D 0 on �1

b.E; q/ D m.q/ 8q 2 H1.˝/ W q D 0 on �1

where the bilinear form a.E; F / and linear form l.F /

correspond to variational formulation (10) and bilinear
form b.E; q/ and linear form m.q/ correspond to the
weak form of the continuity equation (13). The La-

grange multiplierp, known also as the hidden variable,
is zero (we impose a constraint that is automatically
satisfied). This can be easily seen by testing the first
equation with F D rp. The stabilized formulation
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remains uniformly stable as ! ! 0 and can be used to
simulate near DC (direct current) problems with very
small values of !. The more important message though
is that the original variational problem is a mixed
problem in disguise, and its discretization should be
analyzed using Brezzi’s theory.

H.curl/-Conforming Elements and the Exact
Sequence
A simple integration by parts argument reveals that a
vector-valued field, smooth over each element K , is
globally H.curl/-conforming if and only if its tangen-
tial component Et (equivalently n � E) is continuous
across the interelement boundaries. Two families of
H.curl/-conforming elements for simplices (triangles,

tetrahedra) and tensor-product elements (quadrilater-
als, hexahedra) were introduced in ground-breaking
papers by Nédélec [14, 15]. As the 3D prism is a
tensor product of a triangle and 1D interval, Nédélec’s
constructions lead naturally to several families of pris-
matic elements. Critical to the construction of stable
elements for Maxwell’s equations is the exact sequence
property; theH.curl/-conforming elements generating
a FE space Qhp should be a member of a family of
H1-, H.curl/-, H.div/-, and L2-conforming elements
that reproduce the grad-curl-div exact sequence at the
discrete level. The FE spaces Whp � H1.˝/;Qhp �
H.curl;˝/; Vhp � H.div;˝/; Yhp � L2.˝/ below
may correspond to a single element or a whole mesh
over a simply connected domain including various
boundary conditions.

(18)

H1.˝/
r�! H.curl;˝/

r��! H.div;˝/
r��! L2.˝/

# ˘ grad # ˘ curl # ˘ div # P

Whp

r�! Qhp

r��! Vhp
r��! Yhp

Operators ˘ grad; ˘ curl; ˘ div; P denote a family of in-
terpolation operators defined on subspaces of the en-
ergy spaces consisting of sufficiently regular functions
in such a way that they make the diagram commute.
The name of the de Rham diagram is frequently used.

The importance of the exact sequence property was
first noticed by Bossavit [4]; see the book of Monk [12]
for a detailed record on the subject. The importance
of inclusion rWhp � Qhp can already be seen from
our discussion; we tested with F D rq to obtain
the continuity equation (13). Reproducing the same
argument on the discrete level requires that gradients
of H1-conforming space Whp must live within the
H.curl/-conforming space Qhp. A deeper connection
is revealed upon recalling Brezzi’s theory. Stability of
a mixed discretization requires satisfaction of two inf-
sup conditions. The second one, frequently referred to
as LBB (Ladyzhenskaya-Babuška-Brezzi) condition,

sup
F2Qhp

jb.F; p/j
kF kH.curl;˝/

	 ˇkpkH1.˝/ ; (19)

is automatically satisfied if we can select F D rp.

The first Brezzi’s condition, the inf-sup in kernel
condition, requires that

sup
F2V0

ja.E; F /j
kF kH.curl;˝/

	 ˛kEkH.curl;˝/ E 2 V0 (20)

where

V0 WD fE2H.curl;˝/; n�ED0 on �1 W b.E; q/D0
8q 2 H1.˝/ W q D 0 on �1g : (21)

On the continuous level, for a bounded Lipschitz do-
main, space V0 is compactly embedded in L2.˝/

which, in absence of resonance, leads to the satisfac-
tion of condition (20) and the well-posedness of the
problem. The analysis of the discrete inf-sup condi-
tion is more involved (see work of Buffa [5]); the
compactness argument resurfaces in the form of the
so-called discrete compactness property related again
to the de Rham diagram (see, e.g., [2, 3, 13]). The
discrete compactness property implies convergence of
Maxwell eigenvalues, a problem important on its own.
The Maxwell eigenvalue problem reads as follows:
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8

ˆ

<

ˆ

:

E 2 H.curl;˝/; n � E D 0 on �; � 2 IR
Z

˝

1

�
.r � E/ � .r � F / D �

Z

˝

�E � F 8F 2 H.curl;˝/; n � F D 0 on �
(22)

For dielectrics, both continuous and discrete inf-
sup constants can be computed in terms of exact
and discrete eigenvalues, and the discrete stability
analysis is reduced to the convergence analysis for
eigenvalues [10].

Three of out the four Nédélec’s elements satisfy
the exact sequence property, one does not. Without
additional stabilization, elements that do not satisfy
the exact sequence property produce spurious Maxwell
eigenvalues and lead to unstable discretizations of
Maxwell’s equations. Construction of elements satisfy-
ing the exact sequence property remains an active area
of research; see [16, 17].

Pull-Back Maps
In the standard FE technology of parametric elements,
the computations are done on the master element using
a pull-back map. For H1-conforming elements, the
pull-back map reduces simply to a change of variables.
Given a sufficiently regular element map xK mapping
master element OK onto a physical element K in a FE
mesh,

xK W OK 3 � ! x D xK.�/ 2 K ; (23)

the corresponding transformation between the H1 en-
ergy spaces is

H1. OK/3 Ou!uD Ouıx�1
K 2 H1.K/; u.x/D Ou.�.x//:

(24)

The corresponding pull-back maps forH.curl/;H.div/,
and L2 energy spaces are defined in such a way
that they preserve the exact sequence structure. In
simple terms, we compute gradient of (24) to derive
the definition of the pull-back map for the H.curl/
elements and then proceed with the curl and div
operators; see [9], p. 34. The H.curl/;H.div/, and
L2 pull-back maps are defined as follows:

Ei.x/ D OEk.�.x//@�k
@xi

;

Hi .x/ DJ�1.x/
@xi

@�n
.x/ OHn.�.x//;

f .x/ DJ�1.x/ Of .�.x// (25)

where J�1 is the inverse Jacobian of the element
map (23). For the H.div/-conforming elements, the
pull-back map coincides with classical Piola transform
in mechanics, and, for that reason, the pull-back maps
are also frequently called Piola transforms. The pull-
back maps map the exact sequence on the master
element (more generally, a reference domain) onto
the exact sequence on the physical element (physical
domain) and are crucial in the FE technology [9].

Perfectly Matched Layer
Most of practical EM problems are set in the whole
space and the problem has to be truncated to a bounded
domain using absorbing (nonreflecting) boundary con-
ditions. Out of the numerous truncation techniques,
we mention perhaps the most popular and power-
ful technique of perfectly matched layer (PML) of
Bérenger [1]. Chew and Weedon [8] reinterpreted the
PML method as a complex coordinate stretching that
transforms outgoing waves into exponentially decaying
evanescent waves that can be easily truncated with a
homogeneous Dirichlet boundary condition. Construc-
tion of PML for Maxwell problems is again related to
the exact sequence and pull-back maps [11].

A Priori Error Estimation
Once the discrete stability of the FE discretization has
been established, the convergence analysis reduces to
the estimation of best approximation errors through
the interpolation operators ˘ grad; ˘ curl; ˘ div; P men-
tioned above. There are numerous definitions of such
operators, starting with original operators of Nédélec
for the h-adaptive finite elements through the family of
projection-based interpolation operators; see the entry
on �Global Estimates for hp Methods in this volume.

http://dx.doi.org/10.1007/978-3-540-70529-1_538
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Concluding Comments
This entry discusses the most common FE formulation
for time-harmonic Maxwell equations only. An analo-
gous variational formulation in terms of magnetic field
H can be derived by relaxing the Faraday equation and
keeping the Ampère-Maxwell equation in the strong
form. Other variational formulations exist and lead
to different FE methods including powerful discon-
tinuous Galerkin (DG) methods. Maxwell problems
require special solvers (preconditioning, domain de-
composition, multigrid methods), different from those
for elliptic problems. A posteriori error estimation
techniques differ from those for elliptic problems as
well; one has to account for the residual in the implic-
itly satisfied continuity equation [9, 12]. In summary,
one could argue that the whole methodology revolves
around the exact sequence.
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Electro-Mechanical Coupling in Cardiac
Tissue

Joakim Sundnes
Simula Research Laboratory, Lysaker, Norway

Overview

The heart is an electrically activated mechanical pump.
Its rhythmic and synchronized contraction is regulated
by a complex interplay of electrical, chemical, and
mechanical processes. Computational models are in-
creasingly valuable tools for investigating the details of
these interactions, with a substantial potential for use in
biomedical research.

The passive mechanical behavior of the heart can be
modeled using standard theory of large-deformation,
nonlinear, solid mechanics, as described, for instance,
in [4]. The muscle tissue is commonly modeled as
hyperelastic, although experimental evidence suggests
viscoelastic behavior; see, e.g., [2]. Furthermore, it
is commonly assumed that inertia and gravity have
a negligible effect on the deformations of the heart.
These assumptions give rise to a quasi-static equilib-
rium equation, which is coupled to dynamic equations
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describing electrical signal propagation and activation
of the cardiac cells.

A wide range of alternative formulations of coupled
cardiac electromechanics can be found in the literature.
A typical formulation reads as follows:

@s

@t
D f .v; s; C /; (1)

@v

@t
C Iion.v; s; C / D r � .�.C /rv/; (2)

r � .FS/ D 0; (3)

S D Sp C Sa; (4)

Sp D 2
@�

@C
C pC�1; (5)

Sa D JF�1�a.s; C; PC/F�T : (6)

Here (1) is a system of ordinary differential equations
(ODEs) describing the electro-chemical state of the
muscle cells, characterized by the state vector s. Fur-
thermore v is the transmembrane potential, and C is
the left Cauchy-Green deformation tensor. The mon-
odomain model (2) describes electrical signal prop-
agation in the tissue, with the conductivity tensor
� and ionic current Iion generally dependent on the
deformation state of the tissue. Note that (2) is a scaled
version of the model, where Iion is given in units of
pA/pF, and the conductivity tensor M has been scaled
with the cell membrane capacitance and the membrane
surface to volume ratio; see, e.g., [11]. The mechan-
ical part of the problem is given by the equilibrium
equation (3), with constitutive equations (4)–(6). Here
F is the deformation gradient, and S is the second
Piola-Kirchhoff stress tensor, which is split into active
and passive parts Sp; Sa. In line with standard hyper-
elasticity, Sp is given by (5), where � is a given strain
energy function that defines the stress-strain behavior
of the tissue. Incompressibility is assumed, with p

being the hydrostatic pressure. Finally, (6) is the active
contribution to the stress, given as an active Cauchy
stress �a converted to a second Piola-Kirchhoff stress
tensor by means of F and its determinant J . The active
stress depends on the cells’ activation level as given
by the state vector s, as well as the deformation and
rate of deformation, represented by C and its time
derivative PC . Note that all quantities in (1)–(6) refer
to an undeformed reference state of the tissue and
the spatial derivatives in (2) and (3) are performed

with respect to this configuration. The effects of de-
formation are implicitly included in (3) and included
in (2) through the deformation-dependent conductivity
tensor, as described in [8]. The equations must be
complemented with appropriate boundary conditions.

Coupling of Active and Passive Tissue
Mechanics

The mathematical models for cardiac electrophysiol-
ogy and soft tissue mechanics, as given by (2) and (3),
are well established and widely accepted by the re-
search communities. However, the coupling of active
and passive mechanical properties remains a subject of
debate. Two alternative formulations stand out.

Active and Passive Stress
The majority of published computational models for
coupled cardiac electromechanics are based on an
additive split of the stress tensor into a passive and
an active part, as given in (4) above. The mechanical
properties of the tissue are strongly anisotropic, and
the constitutive relations are commonly formulated
relative to a local coordinate system aligned with the
muscle fibers. A large number of different strain energy
functions � can be found in the literature, typically
showing either exponential stress-strain behavior or a
stress that goes to infinity as the strain approaches a
given limit. See, for instance, [5] for an overview of
relevant constitutive models for passive cardiac tissue.

The active part of the stress is also conveniently
formulated in a local fiber coordinate system, which
gives rise to a diagonal active stress tensor, �a D
diag.Ta; ˇTa; �Ta/. Here Ta is the dynamic fiber ten-
sion computed from a model of cardiac cell contrac-
tion; see, for instance, [6,10]. The constants ˇ; � relate
the transverse stress components to the active fiber
stress. Values of ˇ and � found in the literature vary
between 0 and 40 %.

The active stress formulation is attractive because of
its ease of coupling to biophysically detailed models of
cardiac cell contraction. The output value from these
models is typically the fiber tension, either given as a
normalized, dimensionless quantity or in units of stress
(Pa). In either case the fiber tension is conveniently
converted to a Cauchy stress tensor as outlined above.
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Active and Passive Strain
An alternative model for coupled active and passive
tissue mechanics is obtained by introducing the no-
tion of an active strain or active deformation; see,
for instance, [1]. The deformation from the stress-
free resting state to an actively contracting tissue at
equilibrium is conceptually divided in two parts. The
first, defined as the active deformation, takes the tissue
from its unloaded resting state to a new stress-free
state, while the second is a pure elastic deformation
that takes the tissue from this unloaded stress-free
state to an equilibrium configuration that is compatible
with the loading and kinematic boundary conditions.
This leads to a multiplicative decomposition of the
deformation gradient,

F D FeFa; (7)

where F represents the total (visible) deformation, Fa
the active deformation, and Fe the elastic deforma-
tion. This multiplicative decomposition of the defor-
mation field does not allow an explicit decomposition
of stresses into active and passive contributions. In-
stead, since the active deformation is assumed to be
stress-free, the total stress in the tissue is equal to
the elastic stress resulting from the deformation field
Fe . Assuming Fa is known, the elastic deformation
gradient is computed from Fe D FF�1

a , which gives
the corresponding elastic right Cauchy-Green tensor;

Ce D F �T
a CF�1

a :

The elastic stress can be computed by inserting this
deformation field into a standard constitutive relation,
such as (5) if hyperelasticity is assumed.

The active deformation form has been employed
in theoretical studies of heart muscle contraction
(see, e.g., [7]), but has not seen widespread use in
application-oriented research. Compared with the
active stress �a, the active deformation field Fa is not
as trivial to link with biophysical models of cardiac cell
contraction. Based on the known fiber structure of the
tissue, it is very simple to derive qualitative properties
of Fa, but including quantitative and biophysical detail
is not straightforward.

Feedback Mechanisms in Cardiac Tissue
As noted above, there is a two-way coupling between
cardiac electrophysiology and mechanics. Electrical

activation triggers contraction, but the resulting defor-
mation field will also strongly influence the electrical
activity and force development.

Deformation-Force Feedback
The deformation-force feedback is directly related to
the microstructure of the contractile apparatus of car-
diac muscle cells and typically includes two separate
mechanisms: (i) stretching of muscle fibers will change
the amount of overlap between thick and thin filaments
inside the cells and thereby the number of force-
producing crossbridges that can be formed, and (ii) as
the thin and thick filaments move relative to each other,
crossbridges must continuously detach and reattach to
a different binding site, in order to maintain the active
tension. At high shortening velocities, this cycling of
crossbridges limits the amount of tension that can be
developed.

In mechanics terms, mechanism (i) gives rise to
the active tension being strain dependent, while mech-
anism (ii) gives rise to a strain-rate dependence or
viscoelastic behavior.

Mechano-Electric Feedback
In addition to the direct influence on force via the
two mechanisms listed above, the deformation of the
tissue will affect the general electrical and chemi-
cal properties, through a process known as mechano-
electric feedback (MEF). Several different processes
are known contributors to MEF, although their indi-
vidual magnitude and significance remains a subject
of debate and research. Specific mechanisms include
strain-dependent buffering of calcium ions, stretch-
activated ion channels, and deformation-dependent tis-
sue conductivity and cell membrane capacitance. The
most dramatic clinical manifestation of MEF is a rare
condition known as commotio cordis, where a blunt,
non-destructive trauma to the chest leads to a lethal ar-
rhythmia. MEF is also believed to play a role in certain
arrhythmic events following a myocardial infarction.

Computational Methods

Computational models of cardiac tissue electrome-
chanics fall into two main categories. Most earlier
studies were based on computing the electrical ac-
tivation prior to and independent of the mechanical
deformation, commonly referred to as weakly coupled
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simulations. While weakly coupled simulations obvi-
ously neglect all forms of MEF, they may or may
not include the deformation-force feedback of the con-
traction models. More recently, the main focus of the
research community is on strongly coupled simula-
tions, which aim to solve the equations of cardiac
electromechanics in a coupled manner. An obvious ad-
vantage of strongly coupled simulations is that effects
of MEF may readily be included. The most apparent
disadvantage of strongly coupled simulations is the
added complexity of the mathematical model, as is
evident from (1) to (6).

Operator Splitting and Time Discretization
The standard technique to cope with the complexity of
the coupled system is to apply some form of operator
splitting method, which splits the problem into smaller
and more manageable parts. These subproblems are
typically solved sequentially for each time step, and
the critical variables are communicated between the
subproblem solvers for every time step. However, the
main computational challenge of applying operator
splitting for strongly coupled simulations lies not in
capturing MEF or electromechanical coupling in gen-
eral, but in handling the deformation-force feedback.
A naı̈ve approach would be to first integrate the ODE
systems in (1) to time a given time tn, precompute the
active force based on the updated state vector sn and
the previous, known, deformation field, and insert this
into (6) to solve for the new equilibrium configuration.
However, as shown in [9], the strong deformation-
force feedback renders this approach unconditionally
unstable.

The simplest remedy for the strain and strain-rate
dependent instabilities observed in the active stress
is to employ a different splitting scheme, where the
relevant components of the updated state vector sn are
passed to (6) and held fixed over one time step, while
the strain and strain-rate dependence is recomputed
continuously while solving (3) for equilibrium. First
described and analyzed in [9], this approach has been
widely used in the research community. The resulting
stress-strain relation may be viewed as a parameterized
constitutive law,

S D Sp.C /C Sa.C; PC; sn/; (8)

which for every choice of the state vector sn gives the
stress as a function of strain and strain rate.

An alternative approach is to depart from the opera-
tor splitting paradigm and solve the system (1)–(6) with
a fully implicit scheme. This approach was analyzed
for a cardiac fiber model in [12] and employed in a
three-dimensional model in [3].

Employing the dynamic form of (3), which includes
inertia terms, would enable a fully explicit solution
method for the system (1)–(6). When combined with
appropriate damping terms, this is a proven and ac-
curate numerical method for dynamic solid mechanics
computations. Although the stability issues related to
the active stress would have to be addressed, explicit
schemes have obvious advantages for handling the
complex nonlinear equations describing cardiac elec-
tromechanics, in particular for parallel solution meth-
ods on graphics accelerators (GPUs) and similar hard-
ware. This approach has, however, not been explored
in detail by the research community.

Spatial Discretization
Spatial discretization of the monodomain model
(1)–(2) has been based on either finite difference (FD)
or finite element (FE) methods. For the mechanics
problem given by (3)–(6), the preferred solution
method is the FE method, in line with the standard
approach of solid mechanics. Although hybrid
FE-FD methods exist, most solvers for coupled
electromechanics employ the FE method for spatial
discretization of the entire system. Following a suitable
splitting scheme to yield a stress-strain relation of
the form (8), the quasi-static equilibrium equation is
solved using the standard techniques of nonlinear solid
mechanics, as described, for instance, in [4].

Key Research Findings

Models for coupled cardiac electromechanics have
developed steadily over several decades, with valuable
contributions from a number of research groups. The
research field leans heavily on results from general
nonlinear solid mechanics and hyperelasticity, which
form the basis for the mathematical and computa-
tional modeling of passive tissue behavior. A review
of important contributions in this area can be found
in [5]. Naturally, the field also relies on the models of
active tension development in cardiac cells. The cellu-
lar processes of contraction are remarkably complex,
and many of the developed models are not suited
for inclusion in large-scale tissue-level computational
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models. Progress in tissue-level simulations hinges on
development of cell models with the right balance of
biophysical detail and computational simplicity. One
example is [10], which explicitly targets this balance,
and has seen widespread use in the research commu-
nity.

Models of tissue electromechanics have largely
been derived through a fairly pragmatic coupling
of continuum-based passive mechanics models with
the more discrete-natured models of cardiac cell
contraction. The theoretical properties of the resulting
coupled tissue models are not fully established.
Attempts to provide a more uniform, continuum-
based theoretical framework for modeling active tissue
include the active strain approach in [1], but these
attempts have yet to be coupled with biophysical
models of muscle contraction.

In terms of computational methods, the stability
analysis in [9] describes a particularly important char-
acteristic of cardiac tissue, which severely impacts
the choice of numerical method for coupled simula-
tions. Stability related to deformation-force feedback
has been commented by others, but [9] stands out
with a detailed analysis that pinpoints the important
computational challenges. Although carefully chosen
splitting methods are still the predominant method,
fully implicit schemes as described in [3] represent an
interesting alternative.

Finally, it should be noted that most research in
the field is application driven and focuses on the
study of a particular medical phenomenon, rather than
concerning with mathematical details of the models
and numerical methods. It may be argued that the
most valuable research findings are those that uncover
fundamental mechanisms in heart physiology or lead
to improved understanding of clinically relevant cases.
Contributions of this kind are too numerous and diverse
to bring forward here.

Cross-References
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conditions needed for the occurrence of a drastic
transition between epidemiological states, is central
to the study of the transmission dynamics and
control of diseases like dengue, influenza, SARS,
and tuberculosis, to name a few. The quantification of
tipping point phenomena goes back to the modeling
and mathematical work of Sir Ronald Ross [86] and
his “students” [72, 73]. The epidemiological modeling
overview in this entry offers a personal perspective
on the role of mathematical models in the study of
the dynamics, evolution, and control of infectious
diseases. The emphasis is on epidemiological modeling
thinking which refers to the use of contagion models
in the study of the transmission dynamics of infectious
diseases as well as socio-epidemiological processes.
Sir Ronald Ross was awarded the first Nobel Prize
in Physiology or Medicine in 1902 for “his work
on malaria, by which he has shown how it enters
the organism and thereby has laid the foundation
for successful research on this disease and methods
of combating it.” (http://nobelprize.org/nobel prizes/
medicine/laureates/1902/) Ross proceeded to confront
the challenges associated with understanding and
managing malaria patterns at the population level
right after the completion of his fundamental research.
His commitment to use his discoveries to improve
the lives of those housed in malaria-infected areas
brought him into the realm of dynamic mathematical
models. Ross’ writings implicitly emphasized the value
of mathematical models as integrators of multi-level
information. His malaria mathematical framework
led to the development of the mathematical theory
of infectious diseases (an outstanding review of the
field can be found in Hethcote [65]). Ross’ approach
provides a wonderful cross-disciplinary example of the
study of phenomena whose dynamics are intimately
connected to processes across organizational, and
temporal scales. We conclude, nearly a century after
Ross’ seminal contributions to the mathematical theory
of infectious diseases (placed in the appendix of
his 1911 paper), that the field of mathematics has
been enriched by his use of models in addressing
the biggest health challenge of his time (an
excellent contemporary description of Ross’ malaria
model and its analysis is found in Aron and May
[8]).

Malaria, a highly prevalent disease in many parts
of the world, may become established following the
arrival of few infected individuals to a malaria-free

zone. Successful invasions are started by infectious
founding cohorts capable of generating sufficient sec-
ondary infections before recovery (or death) from the
disease. Sufficient is interpreted in many ways: the
initial population of infected individuals manages to
generate a pattern of exponential growth in the number
of secondary infections during the initial phase of
the outbreak or alternatively the average number of
secondary infections generated, within a large disease-
free population, exceeds the critical population thresh-
old (critical population size of infected individuals)
required for the establishment of the disease [4, 15].
The loss of susceptible individuals to infection can
be thought of as a process of resource depletion as
well [46]. Malariologists learned, from the pioneering
work of Ross, that bringing the vector population
below a minimal size is critical to malaria control.
Unfortunately, the consequences of frontal attacks on
malaria, such as those conducted in the past with DDT,
can have unintended serious consequences [52].

The effective use and dissemination of epidemio-
logical thinking suggests that the “contagion” model
is indeed part of our daily culture. For example, the
use of epidemiological models and concepts helped
journalist M. Gladwell [51] understand the reasons
behind the dramatic reductions in car thefts and vio-
lent crimes in NY City in the 1990s. Gladwell sees
“contagion” processes as engines capable of generating
epidemics of criminal activity. In fact, through his use
of epidemiological concepts, he identifies mechanisms
capable of explaining the abrupt decline in criminal
activity experienced over a relatively short period of
time in NY City. “There is probably no other place in
the country where violent crime has declined so far,
so fast,” Gladwell observes. The importance of these
remarks is enhanced by a perspective that sees the
growth of criminal activity as the result of “intense”
interactions between susceptible and criminally active
individuals. The introduction of a dynamic model-
ing framework in epidemiology increases the toolbox
available to researchers that primarily rely on statistical
methods. Contagion models, the generators of time-
dependent patterns of disease spread, can be used
to track a disease over time or evaluate the effec-
tiveness of specific intervention measures. Gladwell’s
arguments support the view that the measures put in
place in NY City (and the nation) were responsible for
reductions in the number and/or in the quality of con-
tacts between criminals and susceptible individuals.

http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
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Gladwell concludes (as Ross had done it in 1911) that
the impact of such contact-reduction measures was
sufficient to result in the dramatic reduction in the size
of the population of criminals (the criminal core). In
other words, the goal of putting policies in place, that
brings the criminal core below the minimal size needed
for the persistence of a sustainable culture of criminal
activity, was achieved in NY City. The term tipping
point, the subject of Gladwell’s popular book [53],
corresponds in this context, to the identification of the
minimal critical size that an “infectious” subpopulation
must maintain to thrive and survive. Related important
theoretical work, in the context of sexuallytransmitted
diseases, was carried out by Hethcote and Yorke [67].
The work of these researchers continues to have a
significant impact on the development of public health
policies in the context, for example, of gonorrhea
and/or HIV/AIDS [19, 66].

The main goal of this entry is to provide an intro-
ductory, limited, and personal perspective on the role
and use of epidemiological models in the study of
infectious diseases and contagion processes in general.
It is our hope that this brief entry will convince the
reader of the value of epidemiological concepts and
models in life and social sciences.

The Basic ContagionModel

W.O. Kermack (a statistician) and A.G. McKendrick (a
medical doctor) applied Sir Ronald Ross’ ideas to the
study of the transmission dynamics of human infec-
tious diseases. Specifically, these researchers applied
Ross’ ideas to diseases whose transmission dynamics
depend on the frequency and intensity of the inter-
actions between susceptible and infected individuals
(handshakes or other forms of close intimate associ-
ations). Their foundational results published in their
1927 article [72] (with extensions in Kermack and

McKendrick [73,74]) continue to play a critical role in
the mathematical theory of infectious diseases. We out-
line some of their ideas, the basic contagion model, and
their threshold result in a rather idealized setting. It is
assumed that the communicable disease under consid-
eration does not cause a significant number of deaths
(measles or chicken pox, or a mild strain of influenza,
or a rhinovirus) and that the time scale of interest is
so short, that the population’s vital dynamics can be
“safely” ignored. The disease’s introduction is assumed
to take place within a population of individuals with
no prior history of infections. Individuals are found
in three stages: uninfected and susceptible; infected
(assumed infectious), and recovered (assumed to be
permanently immune). Table 1 collects the state vari-
ables and parameters of the model. Figure 1 provides
a diagram with the transitions that members of this
population may experience as the disease spreads. It
is assumed that individuals mix at “random,” that is,
the rate of encounters (contacts) between susceptible
and susceptible, infectious and recovered individuals
depends primarily on the frequency of each type.

S I R

S E I T

SIR diagram

TB diagram

Epidemiology Modeling, Fig. 1 Diagrams for SIR and TB
model

Epidemiology Modeling, Table 1 Parameter definitions

State variables Description Parameters Description

S.t/ Susceptible population at time t c Average number of contacts per individual
I.t/ Infected population at time t q Average proportion of contacts with an

infectious individual needed for transmission
R.t/ Recovered population at time t � Per-capita recovery rate
N.t/ Total population size

(N.t/ D S.t/C I.t/C R.t/)
ˇ D cq Per susceptible and per infective transmission rate
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Hence, the average number of effective contacts per
susceptible with infectious individuals is ˇ I

N
. The

average rate of new infections per unit of time, or
the so-called incidence rate, is modeled by ˇS I

N
. The

use of these definitions and assumptions lead to the
following simple version of the Kermack–McKendrick
model:

dS

dt
D �ˇS I

N
;

dI

dt
D ˇS

I

N
� �I; (1)

dR

dt
D �I;

with S.0/ D S0, I.0/ D I0 > 0, and R.0/ D 0.
It quickly follows that d

dt
.S C I C R/ D 0 which

implies that N must be constant. Further, the intro-
duction of a small number of infectious individuals,
given that N is large, leads to the following reasonable
approximation of the model dynamics (at the start of
the outbreak): dI

dt

 .ˇ � �/I [S.0/ 
 N ]. Conse-

quently, I.t/ D e.ˇ��/t I0 accounts for changes in the
infectious class at the start of the outbreak (exponential
growth or decay). This type of approximation (finding
expressions that capture the dynamics generated by a
small number of infectious individuals) is routinely
used to asses, the potential for an epidemic outbreak.
We conclude that if ˇ

�
> 1 the disease will take off (an

epidemic outbreak), while if ˇ

�
< 1 the disease will die

out. ˇ

�
, known as the Basic Reproductive Number or

R0, defines a threshold that determines whether or not
an outbreak will take place (crossing the line R0 D 1).
R0, a dimensionless quantity, is the product of the av-
erage infectious period .1=�/ (window of opportunity)
times the average infectiousness (ˇ) of the members
of the small initial population of infectious individuals
(I0). ˇ measures the average per-capita contribution
of the infectious individuals in generating secondary
infectious, per unit of time, within a population of
mostly susceptibles (S.0/ 
 N ). R0 is most often
defined as the average number of secondary infectious
generated by a “typical” infectious individual after its
introduction in a population of susceptibles [40, 58].
ComputingR0 is central in most instances to the study
of the dynamics and control of infectious diseases
(but see [45]). Hence, efforts to develop methods for
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Epidemiology Modeling, Fig. 2 The s-i phase diagram is
plotted under two different values of R0 (R0 D 1:7; 3:4)

computing R0, in settings that involve the interactions
between heterogenous individuals or subpopulations,
are important [28, 40, 41, 43, 47, 58–61, 96].

Since the population under consideration is con-
stant, the state variables can be re-scaled (e.g., s D
S=N ). Letting s, i , and r denote the fraction of sus-
ceptible, infectious, and recovered, respectively, leads
to the following relationship (derived by dividing the
second equation by the first in Model (1)) between the
s and i proportions:

di

ds
D �1C �

ˇs
: (2)

Figure 2 displays the s-i phase diagram for two dif-
ferent values of R0 (R0 D 1:7; 3:4). For each value of
R0, three different initial conditions are used to simu-
late an outbreak and, in each case, the corresponding
orbits are plotted. The parameter values are taken from
Brauer and Castillo-Chavez [15]. A glance at Model
(1) allows us to show that s.t/ is decreasing and that
limt!0 s.t/ D s1 > 0. The integration of (2) leads to
the relationship:

ln
s0

s1
D R0

h

1 � s1
i

; (3)

where 1 � s1 denotes the fraction of the population
that recovered with permanent immunity. Equation (3)
is referred to as the final epidemic size relation [15,63].
Estimates of the proportions s0 and 1 � s1 can be
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Epidemiology Modeling, Table 2 Parameter definitions

State variables Definitions Parameters Definitions

S Susceptible � Recruitment of new susceptible
E Exposed (asymptomatic and noninfectious) ˇ Transmission rate per susceptible and infectious
I Infectious (active TB) �, d Natural and disease-induced mortalities
T Treated still partially susceptible k, � Per-capita progression and treatment rates
N Total population N D S C E C I C T �ˇ, 0 � � � 1 Transmission rate per treated and infectious

p, 0 � p � 1 Susceptibility to reinfection

obtained from random serological studies conducted
before and immediately after an epidemic outbreak.
Independent estimates for the average infectious period
(1=� ) for many diseases are found in the literature.
The use of priori and posteriori serological studies
can be combined with independent estimates of the
disease’s infectious period to estimate ˇ via (3) (see
[64]). Efforts to develop methods for connecting mod-
els to epidemiological data and for estimating model
parameters have accelerated, in part, as a result of the
2003 SARS outbreak [30]. Estimates of a disease’s
basic reproduction number are now routinely computed
directly from data [32–34,36,37,62]. Efforts to identify
final epidemic size relations like those in (3) have
received considerable attention over the past few years
as well (see [7, 17] and references therein). Most
recently estimates of the basic reproductive number
for A-H1N1 influenza were carried out by modelers
and public health researchers at Mexico’s Ministry
of Health [35]. These estimates helped the Mexican
government plan its initial response to this influenza
pandemic. The value of these estimates turned out to
be central in studies of the dynamics of pandemic
influenza [62].

Backward Bifurcation: EpidemicsWhen
R0 < 1

The question of whether epidemic outbreaks are pos-
sible when R0 < 1 (backward bifurcation) has led
to the study of models capable of sustaining multiple
endemic states, under what appear to be paradoxi-
cal conditions. The study of hysteresis has received
considerable attention in epidemiology particularly,
after relevant theoretical results on mathematical mod-
els of infectious diseases appeared in the literatures
[24, 57, 68]. The model for the transmission dynamics
of tuberculosis (TB) provides an interesting introduc-
tion to the relevant and timely issue of hysteresis

behavior [48]. A brief introduction to the epidemiology
of TB is outlined before the model (in Feng et al.
[48]) is introduced. Tuberculosis’ causative agent is
mycobacterium tuberculosis. This mycobacterium, car-
ried by about one third of the world human population,
lives most often within its host, on a latent state and, as
a result, this mycobacterium often becomes dormant
after infection. Most infected individuals mount effec-
tive immune responses after the initial “inoculation”
[5, 6, 13, 79]. An effective immunological response
most often limits the proliferation of the bacilli and,
as a result, the agent is eliminated or encapsulated
(latent) by the host’s immune system. Tuberculosis was
one of the most deadly diseases in the eighteenth and
nineteenth centuries. Today, however, only about eight
million individuals develop active TB each year (three
million deaths) in the world, a “small” fraction in a
world, where about two billion individuals live with
this mycobacterium [91]. Latently infected individuals
(those carrying the disease in a “dormant” state) may
increase their own re-activation rate as a result of
continuous exposure to individuals with active TB
(exogenous re-activation). The relevance of exogenous
re-activation on the observed TB prevalence patterns at
the population level is a source of debate [48, 90, 93].
The model in Feng et al. [48] was introduced to
explore the role that a continuous exposure to this
mycobacterium may have in accelerating the average
population TB progression rates [21, 23, 48, 90, 93]. It
was shown that exogenous re-activation had indeed the
potential for supporting backward bifurcations [48]. In
order to describe a TB model that supports multiple
positive endemic states, we proceed to divide the host
population in four epidemiological classes: suscepti-
ble, exposed (latently infected), infectious, and treated.
The possible epidemiological transitions of individuals
in this population are captured in the second diagram
in Fig. 1, while the definitions of the parameters and
state variables are collected in Table 2.
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The generation of new E-individuals per unit of
time (E-incidence) comes from two subpopulations
and therefore, it involves the terms: BS D ˇS I

N

and BT D �ˇT I
N

. The generation of new active
cases, the result of reinfection, is modeled by the term
BE D pˇE I

N
. The definitions in Table 2 and the

assumptions just described lead to the following model
for the transmission dynamics of TB under exogenous
reinfection:

dS

dt
D � � BS.t/ � �S;

dE

dt
D BS.t/ � BE.t/ � .�C k/E C BT .t/; (4)

dI

dt
D kE CBE.t/ � .�C � C d/I;

dT

dt
D �I � BT .t/ � �T:

Model (4) indeed allows for the possibility of ex-
ogenous reinfection but only when p > 0. The basic
reproduction number can be computed using various
methods [28, 40, 43] all leading to

R0 D
� ˇ

�C � C d

�� k

�C k

�

: (5)

R0 is the number of E individuals “generated” from
contacts between S and typical I -individuals (when
every body is susceptible, i.e., when S.0/ 
 �

�
) during

the critical window of opportunity, that is, over the av-
erage length of the infectious period, namely, ˇ

�C�Cd .
R0 is computed by multiplying the average infectious
period times the proportion of latent individuals ( k

�Ck )
that manage to reach the active TB-stage. R0 > 1

means that the average number of secondary active
TB cases coming from the S -population is greater
than one, while R0 < 1 corresponds to the situation
when the average number of secondary active TB
cases generated from the S population is less than
one. In the absence of reinfection, one can show that
if R0 � 1 then I.t/ decreases to zero as t ! 1
while if R0 > 1 then I.t/ ! I1 > 0. In the first
case, the infection-freestate .�=�; 0; 0; 0/ is globally
asymptotically stable, while in the latter there exists

a unique locally asymptotically stable endemic state
.S� > 0;E� > 0; I� > 0; T � > 0/. The dynamics
of Model (4) are therefore “ generic” and illustrated
in Fig. 4 (bifurcation diagram and simulations). In the
generic case, the elimination of the disease is feasible
as long as the control measures put in place manage
to alter the system parameters to the point that no
TB outbreak is possible under the new (modified)
parameters. In summary, if the model parameters jump
from the region of parameter space where R0 > 1 to
the region where R0 < 1 then the disease is likely to
die out.

In the presence of exogenous reinfection (p >

0) the outcomes may no longer be “generic.” It was
established (in Feng et al. [48]) that whenever R0 < 1

there exits a p0 2 .0; 1/ and an interval Jp D .Rp; 1/

with Rp > 0 (p > p0) with the property that
whenever R0 2 Jp , exactly two endemic equilibria
exist. Further, only one positive equilibrium is possible
whenever Rp D R0 and no positive equilibria exists if
Rp < R0. The branch of endemic equilibria bifurcating
“backward” from the disease-free equilibrium at R0 D
1 is shown in Fig. 3 (left). Figure 3 (right) illustrates the
asymptomatic behaviors of solutions when p > p0 and
Rp < R0 < 1 (p D 0:4 and R0 D 0:87). A forward
bifurcation diagram of endemic steady states is also
plotted in Fig. 4 (left). Figure 4 is generated from
the model in the absence of exogenous reinfection
(p D 0). Figure 4 (right) displays the asymptomatic
behavior of solutions when R0 D 1:08 under various
initial conditions. The parameter values were taken
from Feng et al. [48]. For an extensive review of TB
models, see Castillo-Chavez and Song [22].

The identification of mechanisms capable of sup-
porting multiple endemic equilibria in epidemic mod-
els was initially carried out in the context of HIV dy-
namics by Huang et al. [24, 45, 68]. These researchers
showed that asymmetric transmission rates between
sexually active interacting populations could lead to
backward bifurcations. Hadeler and Castillo-Chavez
[57] showed that in sexually active populations, with
a dynamic core, the use of prophylactics or the im-
plementation of a partially effective vaccine could
actually increase the size of the core group. Further,
such increases in the effective size of the core may
generate abrupt changes in disease levels, that is, the
system may become suddenly capable of supporting
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0:4): a bifurcation diagram of endemic steady states is displayed
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multiple endemic states (backward bifurcation). In the
next section, control measures that account for the
cost of interventions in an optimal way are introduced
in the context of the TB model discussed in this
section.

Optimal Control Approaches: The Cost
of Epidemics

The use of optimal control in the context of contagion
models has a long history of applications in life and

social sciences. Recent contributions using optimal
control approaches (from influenza to drinking) have
generated insights on the value of investing on specific
public health policies [55, 76–78]. Efforts to assess the
relative effectiveness of intervention measures aimed
at reducing the number of latently and actively TB
infectious individuals at a minimal cost and over finite
time horizons can be found in the literature [69]. We
highlight the use of optimal control in the context
of Model (4). Three, yet to be determined, control
functions (policies): ui .t/ W i D 1; 2; 3 are introduced.
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These three policies are judged on their ability to
reduce or eliminate the levels of latent- and active-
TB prevalence in the population at a reduced cost.
In this TB setup, exogenous reinfection plays a role
and therefore the optimization process must account
for such a possibility. It is important, therefore, to
identify optimal strategies in low-risk TB communi-
ties where the disease is endemic, despite the exis-
tence of effective public health norms (R0 < 1) as
well as in high-risk TB communities, R0 > 1 (the
dominant scenario in parts of the world where TB
is highly endemic). Three controls or time-dependent
intervention policies yet to be computed are introduced
as multipliers to the incidence and treatment rates:
BS.t/ D ˇ.1 � u1.t//SI=N , BE.t/ D pˇ.1 �
u1.t//EI=N , BE.t/ D �ˇ.1 � u2.t//TI=N , and
�u3.t/. The first control, u1.t/, works at reducing
contacts with infectious individuals through policies of
isolation, or social distancing, or through the adminis-
tration (if available) of vaccines or drugs that reduce
susceptibility to infection. The second control, u2.t/,
models the effort required to reduce or prevent the
reinfection of treated individuals. This control is not
identical to u1.t/ since individuals with prior TB bouts
are likely to react differently in the presence of active-
TB cases. The treatment control, u3.t/, models the
effort directed at treating infected individuals. The goal
of minimizing the number of exposed and infectious
individuals while keeping the costs as low as possible
requires access to data that is rarely available. Hence,
the focus here is on the identification of solutions that
only incorporate the relative costs associated with each
policy or combination of policies. The identification
of optimal policies is tied in to the minimization of a
functional J (defined below), over the feasible set of
controls (ui .t/ W i D 1; 2; 3), subject to Model (4) over
a finite time interval Œ0; tf . The objective functional is
given by the expression:

J.u1; u2; u3/ D
Z tf

0

ŒE.t/C I.t/C B1

2
u1
2.t/

CB2

2
u2
2.t/C B3

2
u3
2.t/dt (6)

where the coefficients B1;B2, and B3 model constant
relative cost weight parameters. These coefficients ac-
count for the relative size and importance (including
cost) of each integrand in the objective functional. It is
standard to assume that the controls are nonlinear and

quadratic. The objective, therefore, is to find numeri-
cally the optimal control functions, u�

1 , u�
2 , and u�

3 that
satisfy

J.u�
1 ; u

�
2 ; u

�
3 / D min

˝
J.u1; u2; u3/; (7)

where ˝ D f.u1; u2; u3/ 2 .L2.0; tf //
3jai � ui �

bi ; i D 1; 2; 3g and ai ; bi ; i D 1; 2; 3 are lower and
upper bounds for the controls, respectively. Pontrya-
gin’s maximum principle [50, 85] is used to solve the
optimality system, which is derived and simulated fol-
lowing the approaches in Choi et al. [29], and Lee et al.
[76]. We manage to identify optimal control strategies
through simulations when R0 > 1 and R0 < 1 using
reasonable TB parameters [29]. The optimal controls
and corresponding states are displayed in Figs. 5 and
6 under two distinct scenarios: under a low-risk TB
community (R0 D 0:87) and under a high-risk TB
community (R0 D 1:38). It is observed that the social
distancing control, u1.t/, is the most effective when
R0 < 1, while the relapse control, u2.t/, is the most
effective when R0 > 1. Further, simulation results
suggest that when R0 < 1, the control strategy cannot
work without the presence of u1.t/. Similarly, when
R0 > 1, u2.t/ must be present. With the presence
of u1.t/ when R0 < 1 and the presence of u2.t/
when R0 > 1, the identified optimal control programs
will effectively reduce the number of exposed and
infectious individuals.

Perspective on Epidemiological Models
and Their Use

Epidemiological thinking has transcended the realm
of epidemiological modeling and in the processes, it
has found applications to the study of dynamic social
process where contacts between individuals facilitate
the buildup of communities that can suddenly (tipping
point) take on a life of their own. This perspective
has resulted in applications of the contagion model
in the study of the dynamics of bulimia [54], or in
the study of the spread of specific scientific ideas
[11], or in the assessment of the emergence of new
scientific fields [12]. Contagion models are also being
used to identify population-level mechanisms respon-
sible for drinking patterns [81, 87] or drug addic-
tion trends [92]. Contagion models have also been
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applied to the study of the spread of fanaticism [22]
or the building of collaborative learning communi-
ties [38].

It is still in the context of the study of disease
dynamics and in the evaluation of specific public policy
measures that most of the applications of epidemio-
logical models are found. Efforts to understand and
manage the transmission dynamics of HIV [19, 24,
70, 95] or to respond to emergencies like those posed
by the 2003 SARS epidemic [30], or the 2009 A-
H1N1 influenza pandemic [35, 62], or to assess the
potential impact of widely distributed rotavirus vac-
cines [88, 89] are still at the core of most of the
research involving epidemiological mathematical mod-
els. The events of 9/11/2001 when our vulnerability
to bioterrorism was exposed in fronts that included
the deliberate release of biological agents has brought
contagion and other models to the forefront of our
battle against these threats to our national security
(see [10]).

A series of volumes and books [1,3,9,15,16,20,26,
27,36,39,56,71,94,97] have appeared over the past two
decades that highlight our ever present concern with
the challenges posed by the transmission dynamics
and evolution of infectious diseases. The contagion
approach highlighted here relies primarily on the use
of deterministic models. There is, however, an exten-
sive and comprehensive mathematical epidemiological
literature that has made significant and far-reaching
contributions using probabilistic perspectives [1, 2, 9,
36, 39]. The demands associated with the study of dis-
eases like influenza A-H1N1 or the spread of sexually
transmitted diseases (including HIV) in the context of
social landscapes that change in response to knowl-
edge, information, misinformation, or the excessive
use of drugs (leading to drug resistance) have brought
to the forefront of the use of alternative approaches
including those that focus on social networks, into
the study of infectious diseases [31, 42, 44, 82, 83].
Renewed interest in the characterization and study of
heterogenous mixing patterns and their role on disease
dynamics have also reemerged [14, 18, 25, 75, 80, 84].
Contagion models continue to contribute to our under-
standing of “contact” processes that change in response
to behavioral decisions [49]. It is our hope that this id-
iosyncratic overview has captured the fundamental role
that epidemiological models play and will continue to
play in the study of human process of importance in
life and social sciences.
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Synonyms

Discontinuous Galerkin method (DG); Finite differ-
ence method (FD); Finite element method (FE); Finite
volume method (FV); Ordinary differential equation
(ODE); Partial differential equation (PDE); Strong sta-
bility preserving (SSP); Total variation diminishing
(TVD)

Short Definition

We discuss error estimates for finite difference (FD),
finite volume (FV), finite element (FE), and spectral
methods for solving linear hyperbolic equations, with
smooth or discontinuous solutions.

Description

Hyperbolic equations arise often in computational me-
chanics and other areas of computational sciences,
for example, they can describe various wave propaga-
tion phenomena, such as water waves, electromagnetic
waves, aeroacoustic waves, and shock waves in gas
dynamics. In this entry we are concerned with linear
hyperbolic equations, which take the form

ut C Aux D 0 (1)

together with suitable initial and boundary conditions
in one spatial dimension. Here A either is a constant
matrix or depends on x and/or t , and it is diago-
nalizable with real eigenvalues. Many of the numer-
ical methods we discuss in this entry also work for
nonlinear hyperbolic equations; however, their error
estimates may become more complicated, especially
for discontinuous solutions.

We should mention that linear hyperbolic equations
could also arise in second-order form

ut t D Auxx (2)

with a positive definite matrix A. Equation (2) can
be solved directly or rewritten into the form (1) by
introducing auxiliary variables. In this entry we will
concentrate on the numerical methods for solving (1)
only.

We will first describe briefly several major classes
of numerical methods for solving linear hyperbolic
equations (1). We will then describe their error esti-
mates, starting from the simpler situation of smooth
solutions, followed by the more difficult situation of
discontinuous solutions.

http://dx.doi.org/10.1002/sim.3136
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Four Major Classes of Numerical Methods
We will use the simple model equation

ut C ux D 0 (3)

to describe briefly four major classes of numerical
methods for solving linear hyperbolic equations.

Finite Difference Methods
Finite difference methods are standard numerical meth-
ods for solving hyperbolic partial differential equations
(PDEs); see, for example, [13].

Assuming that we would like to solve (3) over the
interval x 2 Œ0; 1, the finite difference scheme would
start with a choice of grid points 0 D x1 < x2 < � � � <
xN D 1, which are usually assumed to be uniform with
h D xjC1 � xj D 1

N
, and a time discretization 0 D

t0 < t1 < t2 < � � � , which is again assumed to be
uniform with � D tnC1 � tn for simplicity. We can
then write down the scheme satisfied by the numerical
solution unj , which approximates the solution u.xj ; tn/
of the PDE.

The simplest example is the upwind scheme

unC1
j � unj
�

C unj � unj�1
h

D 0; (4)

which is first-order accurate, that is, the error enj D
u.xj ; tn/� unj is of the sizeO.hC�/. Higher order in x
can be achieved by using a wider stencil. For example,
replacing

unj � unj�1
h

in (4) by
unjC1 � unj�1

2h
(5)

would increase the spatial order of accuracy from
one to two. In order to approximate discontinuous
solutions, especially for nonlinear problems, the spatial
discretization is usually required to be conservative,
that is,

uxjxDxj 

Of n

jC 1
2

� Of n

j� 1
2

h
;

where the numerical flux Of n

jC 1
2

D unj for the first-

order scheme (4) and Of n

jC 1
2

D 1
2

�

unj C unjC1
�

for the

second-order approximation (5).
There are usually two approaches to increase the

temporal order of accuracy. The first approach is to use
an ordinary differential equation (ODE) solver, such
as a Runge-Kutta or multistep method. In order to
better approximate discontinuous solutions, a special
class of ODE solvers, referred to as the total variation
diminishing (TVD) or strong stability preserving (SSP)
time discretizations, is usually used; see [12]. The
second approach is to use a Lax-Wendroff procedure
[17], which writes a Taylor expansion in time, converts
time derivatives to spatial derivatives by using the PDE,
and then discretizes these spatial derivatives by finite
differences.

Finite VolumeMethods
Finite volume methods are also standard numerical
methods for solving hyperbolic PDEs; see, for ex-
ample, [18]. Again, assuming that we would like to
solve (3) over the interval x 2 Œ0; 1, the finite volume
scheme would start with a choice of cells Ij D
.xj� 1

2
; xjC 1

2
/ with x1

2
D 0 and xNC 1

2
D 1. The mesh

size hj D xjC 1
2

� xj� 1
2

does not need to be uniform
and we denote h D max1�j�N hj . Time discretization
is still 0 D t0 < t1 < t2 < � � � , which is again assumed
to be uniform with � D tnC1 � tn for simplicity.
We can then write down the scheme satisfied by the
numerical solution Nunj , which approximates the cell

average 1
hj

R

Ij
u.x; tn/dx of the exact solution u of

the PDE. The simplest example is again the first-order
upwind scheme

NunC1
j � Nunj
�

C Nunj � Nunj�1
hj

D 0: (6)

Notice that the finite volume scheme (6) is identical
to the finite difference scheme (4) on a uniform mesh,
if the cell average Nunj in the former is replaced by the
point value unj in the latter. This is not surprising, since
we can easily verify that

1

hj

Z

Ij

u.x; tn/dx D u.xj ; t
n/CO.h2/;
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that is, one can replace cell averages by point values at
cell centers and vice versa up to second-order accuracy.
There is no need to distinguish between finite differ-
ence and finite volume schemes up to second-order
accuracy. However, for schemes higher than second-
order accuracy, finite volume schemes are different
from finite difference schemes. The main advantage of
finite volume schemes over finite difference schemes
is that the former is more flexible for nonuniform
meshes and unstructured meshes (in higher spatial di-
mensions). However, high-order finite volume schemes
are more costly than finite difference schemes in mul-
tidimensions [22].

Finite ElementMethods
Traditional finite element methods, when applied to
hyperbolic equations, suffer from non-optimal conver-
gence for smooth solutions and spurious oscillations
polluted to smooth regions for discontinuous solutions.
The more successful finite element methods for solving
hyperbolic equations include the streamline diffusion
methods [3] and discontinuous Galerkin methods [7].

We will only describe briefly the discontinuous
Galerkin method when applied to the model equa-
tion (3). We use the same notations for the mesh as
in the previous section. The finite element space is
given by

Vh D ˚

v W vjIj 2 Pk.Ij /I 1 � j � N
�

;

where Pk.Ij / denotes the set of polynomials of degree
up to k defined on the cell Ij . The semi-discrete DG
method for solving (3) is defined as follows: find the
unique function uh 2 Vh such that, for all test functions
vh 2 Vh and all 1 � j � N , we have

d

dt

Z

Ij

uh.x; t/vh.x/dx �
Z

Ij

uh.x/@xvh.x/dx

C uh.x
�
iC 1

2

; t/vh.x
�
iC 1

2

/

� uh.x
�
i� 1

2

; t/vh.x
C
i� 1

2

/ D 0:

(7)

Here, the inter-cell boundary value of uh (the so-called
numerical flux) is taken from the left (upwind) side
uh.x�

iC 1
2

; t/, which ensures stability. Time discretiza-

tion can again be realized by using standard ODE
solvers, for example, those in [12], or by space-time
discontinuous Galerkin methods. When we take the
polynomial degree k D 0 and forward Euler time
discretization, the discontinuous Galerkin method (7)
becomes the standard first-order upwind finite differ-
ence (4) or finite volume scheme (6). Thus, the discon-
tinuous Galerkin methods can also be considered as a
generalization of first-order monotone finite difference
or finite volume methods. The main advantages of dis-
continuous Galerkin methods include their flexibility
in unstructured meshes, mesh and order adaptivity, and
more complete stability analysis and error estimates.

Spectral Methods
Another important class of numerical methods for
solving hyperbolic equations is the class of spectral
methods; see, e.g., [14]. Spectral methods seek approx-
imations within a finite dimensional function space
VN containing global polynomials or trigonometric
polynomials of degree up toN . The numerical solution
uN 2 VN is chosen such that the residue

RN D .uN /t C .uN /x

either is orthogonal to all functions in the space VN
(spectral Galerkin methods) or is zero at preselected
collocation points (spectral collocation methods). The
main advantage of spectral methods is their high-order
accuracy. For analytic solutions, the error of spectral
methods can be exponentially small. However, spectral
methods are less flexible for complex geometry. They
are also rather difficult to design for complicated PDEs
and boundary conditions to achieve stability.

Error Estimates for Smooth Solutions
When the solutions of hyperbolic equations are
smooth, it is usually easy to obtain error estimates
for the numerical schemes mentioned in the previous
section.

Finite Difference, Finite Volume, and Spectral
Methods
For finite difference and finite volume schemes, we
would first need to prove their stability. If the problem
is defined on uniform or structured meshes with
periodic or compactly supported boundary conditions,
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standard Fourier analysis can be applied to prove
stability. For other boundary conditions, the theory of
Gustafsson, Kreiss, and Sundström (the GKS theory)
provides a tool for analyzing the stability of finite
difference and finite volume schemes. For unstructured
meshes, the analysis of stability would need to rely on
the energy method in the physical space and can be
quite complicated. We refer to, e.g., [13] for a detailed
discussion of stability of finite difference and finite
volume schemes.

After stability is established, we would be left with
the relatively easy job of measuring the errors locally,
namely, by putting the exact smooth solution u of
the PDE into the finite difference or finite volume
scheme and measuring its remainder (the so-called
local truncation error). The Lax equivalence theorem
provides us with assurance that for a stable scheme,
such easily measured local truncation error and the
global error (the error between the exact solution of the
PDE and the numerical solution) are of the same order.
We again refer to, e.g., [13] for a detailed discussion.

The same approach can also be applied to spectral
methods. The proof of stability can be quite difficult,
especially for collocation methods. We refer to [14] for
more details.

Finite ElementMethods
While the principle of error estimates for finite element
methods is the same as that for finite difference, finite
volume, and spectral methods, namely, stability analy-
sis plus local error analysis, the procedure is somewhat
different. We will again use the discontinuous Galerkin
method as an example to demonstrate the procedure.
First, the error u � uh is decomposed into two parts

u � uh D .u � P u/C .P u � uh/;

whereP u is a suitable projection of the exact solution u
to the finite element space Vh. The estimate for the term
P u �uh, which is within the finite element space Vh, is
achieved by the stability of the discontinuous Galerkin
method. The estimate on the term u � P u, which is
an approximation error and has nothing to do with
the discontinuous Galerkin method, can be obtained
by standard finite element techniques [5]. Comparing
with the error estimates for standard finite element
methods, the analysis for the discontinuous Galerkin

method has the further complication of the inter-cell
boundary terms, which, when not estimated carefully,
may lead to a loss of optimal order in the error analysis.

For linear hyperbolic equations, discontinuous
Galerkin methods can be proved to provide an L2 error
estimate of order at least O.hkC1=2/ when piecewise
polynomials of degree k are used. In many cases the
optimal error estimate O.hkC1/ can be proved as well.
We refer to, e.g., [9, 15, 21, 24] for more details.

Superconvergence
Superconvergence refers to the fact that the error es-
timates can be obtained to be of higher order than
expected, that is, higher thanO.hkC1/ when piecewise
polynomials of degree k are used. We will only discuss
superconvergence results for discontinuous Galerkin
methods for solving linear hyperbolic PDEs.

One approach to obtain superconvergence is
through the so-called negative Sobolev norms. We
recall that the negative Sobolev norm is defined by

kuk�k D max
v2Hk;v¤0

.u; v/

jjvjjk ;

where Hk is the space of all functions with finite k-th
order Sobolev norm defined by

jjvjj2k D
k
X

`D0

Z b

a

�

d`v

dx`

�2

dx;

where .a; b/ is our computational interval. In [8], it
is proved that, for the discontinuous Galerkin methods
solving linear hyperbolic PDEs, we have

ku � uhk�.kC1/ D O.h2kC1/:

That is, we achieve a superconvergence of order 2k C
1 when using the weaker negative norm. Together
with a similar estimate for divided differences of the
numerical solution and a post-processing procedure
[2], we can obtainO.h2kC1/ convergence in the strong
L2 norm for the post-processed solution on uniform
meshes. There are extensive follow-up works after
[8] to explore this superconvergence for more general
situations, for example, with boundaries or with non
uniform meshes.
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Another approach to obtain superconvergence is
through the analysis of the super-closeness of the
numerical solution to a specific projection of the exact
solution or to the exact solution itself at certain quadra-
ture points. The former is analyzed in, e.g., [4,25], with
[25] establishing the superconvergence result

kP u � uhk D O.hkC2/;

where P u is the Gauss-Radau projection of the exact
solution. The latter is analyzed in, e.g., [1], establishing
the superconvergence result

.u � uh/.x
`
j / D O.hkC2/;

where x`j are the Gauss-Radau quadrature points in the
cell Ij .

The superconvergence results, besides being of their
own value in revealing the hidden approximation prop-
erties of the discontinuous Galerkin methods, can also
be used to design effective error indicators for adaptive
methods.

Error Estimates for Discontinuous Solutions
Unlike elliptic or parabolic PDEs, the solutions to
hyperbolic PDEs may be discontinuous. For linear
PDEs such as (1), the discontinuities in the solution
may come from the prescribed initial and/or boundary
conditions.

For such discontinuous solutions, the performance
of high-order accurate schemes, such as the spectral
method and high-order finite difference, finite
volume, and finite element, will degrade dramatically.
Convergence will be completely lost in the strong L1
norm, and it is at most first order in average norms
such as the L1 norm. This problem exists already at the
approximation level, namely, even the approximation
to the discontinuous initial condition cannot be high-
order for finite element and spectral methods. A simple
example is the Fourier spectral solution for the linear
equation (3) and a discontinuous initial condition.
There are significant oscillations for the numerical
solution near discontinuities, which are called the
Gibbs phenomenon, and these spurious oscillations
are polluted throughout the computational domain,
causing first-order convergence even in smooth
regions. Modern non-oscillatory schemes, e.g., the
weighted essentially non-oscillatory (WENO) schemes

[23], can remove these spurious oscillations and
produce sharp, monotone shock transitions. However,
with transition point(s) across the discontinuity, which
cannot be avoided by conservative shock-capturing
schemes, the error measured by the L1 norm still
cannot be higher than first order.

Therefore, when measured by the errors in the
Lp norms, a high-order accurate scheme seems to
have little advantage over a first-order accurate scheme
whenever the solution contains discontinuities. This
would seem to be a major difficulty in justifying
the design and application of high-order schemes for
discontinuous problems.

One possible way to address this difficulty is to
measure the error away from the discontinuities. In
such situations many high-order schemes, for example,
upwind-based finite difference, finite volume, and
discontinuous Galerkin schemes, can achieve the
designed high-order of accuracy. For example, it is
proved in [6, 27] that, for discontinuous Galerkin
methods solving a linear hyperbolic PDE with a
discontinuous but piecewise smooth initial condition,
the designed optimal order of accuracy is achieved
in a weighted L2 norm with the weight used to
exclude a roughly O.h1=2/ neighborhood of the
discontinuities. For many problems in applications,
such high-order accuracy would be desirable and
would justify the usage of high-order schemes.
However, such measurement of error is not global,
leaving open the theoretical issue whether a high-order
scheme produces solutions which are truly globally
high-order accurate. The proof of high-order accuracy
away from the discontinuities is also difficult (see
[6,27]), and for coupled hyperbolic systems, in regions
between characteristics lines, the error may be only
first order even though we measure it away from the
discontinuities [19].

A major contribution of mathematics to the design
and understanding of algorithms in such a situation is
the discovery that many high-order schemes are still
high-order accurate for discontinuous solutions, if we
measure the error in the negative Sobolev norm.

It can be proved, for example, in [16, 19] for finite
difference methods, in [14, 20] for spectral methods,
and in [26] for discontinuous Galerkin methods, that
a high-order scheme is still high-order accurate for a
linear hyperbolic PDE, measured in a suitable negative
norm, for discontinuous solutions of linear hyperbolic
PDEs. For example, a fourth-order accurate scheme
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is still fourth-order accurate measured in the jj � jj�4
norm, and a spectral method is accurate of k-th order
for any k in the negative jj � jj�k norm. This, together
with a post-processing technique, e.g., those in [2, 10,
11, 16, 19], can recover high-order accuracy in strong
norms, such as the usual L2 or L1 norm, in smooth
regions of the solution, for any sequence of numerical
solutions which converges in the negative norm with
high-order accuracy to a discontinuous but piecewise
smooth solution.

Thus, we can conclude that for a linear hyperbolic
PDE with discontinuous but piecewise smooth solu-
tions, a good computational strategy is still to use a
high-order accurate numerical method. The numerical
solutions may be oscillatory and converge poorly in
strong norms, but they do converge in high-order ac-
curacy measured in suitable negative norms. A good
post-processor can then be applied to recover high-
order accuracy in strong norms in smooth regions of
the solution.
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accuracy by post-processing for finite element methods for
hyperbolic equations. Math. Comput. 72, 577–606 (2003)

9. Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence
of the original DG method for the transport-reaction equa-
tion on special meshes. SIAM J. Numer. Anal. 46, 1250–
1265 (2008)

10. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its
resolution. SIAM Rev. 30, 644–668 (1997)

11. Gottlieb, D., Tadmor, E.: Recovering pointwise values
of discontinuous data within spectral accuracy. In: Mur-
man, E.M., Abarbanel, S.S. (eds.) Progress and Supercom-
puting in Computational Fluid Dynamics, pp. 357–375.
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Synonyms

A posteriori error estimation; Adaptive algorithms;
Adaptive finite element methods

Definition

An adaptive finite element method consists of a finite
element method, an a posteriori error estimate, and an
adaptive algorithm. The a posteriori error estimate is
a computable estimate of the error in a functional of
the solution or a norm of the error that is based on the
finite element solution and not the exact solution. The
adaptive algorithm seeks to construct a near optimal
mesh for a certain computational goal and determines
which elements should be refined based on local in-
formation provided by the a posteriori error estimate.
This procedure is repeated until a satisfactory solution
is obtained.

Overview

Adaptive finite elements originate from the works by
Babuška and Rheinboldt [3, 4] in the late 1970s. Since
then this topic has been an active research area, and
significant advances have been achieved by several
contributors including error estimates based on lo-
cal problems [1, 16], error estimates based on dual
problems for stationary and time-dependent problems
[10], dual-weighted residual-based error estimates [6],
and convergence of adaptive finite element methods
[15, 17]. Recent research directions include extensions
to more complex applications and estimates that take
uncertainty in models and parameters into account.
For a more comprehensive review of these matters, we
refer to [2, 5], and [18].

Basic Methodology

Model Problem
Let � � Rd be an open bounded domain with
polygonal boundary @�. Consider the weak problem:
find u 2 V such that

a.u; v/ D l.v/; 8v 2 V (1)

where V is a suitable Hilbert space with norm k � kV .
Here a.�; �/ is a continuous bilinear form and l.�/ is
a continuous linear functional. We assume that a.�; �/
satisfies the following inf-sup condition. There is a
constant ˛ > 0 such that

˛kukV � sup
v2V

a.u; v/

kvkV ; 8u 2 V (2)

Then, by virtue of the Lax-Milgram lemma (1) has a
unique solution u 2 V . Many important differential
equations can be formulated as the variational equa-
tion (1). For example, for Poisson’s equation ��u D
f with homogeneous Dirichlet boundary conditions,
u D 0 on @�, we have a.u; v/ D .ru;rv/, l.v/ D
.f; v/, and V D H1

0 .�/ with norm k � k2V D a.�; �/.
Further, (2) holds with ˛ D 1. Here, .u; v/ D R

�
uv

denotes the L2 inner product. Other equations that can
be formulated in this fashion include the Navier-Lamé
equations for linear elasticity and the Stokes equations
of laminar fluid flow.

Finite Element Method
Let K D fKg be a partition of the domain � into
elements of size hK D diam.K/, and let Vh � V be
a finite dimensional subspace typically consisting of
continuous piecewise polynomials of degree at most p
on this mesh. Replacing V with Vh in (1), we obtain
the finite element method: find uh 2 Vh such that

a.uh; v/ D l.v/; 8v 2 Vh (3)

Introducing a basis f'j gnjD0 for Vh, we have uh D
Pn

jD1 uj 'j , where uj are n unknown coefficients that
can be determined by solving the following linear
system of equations:

Au D b (4)
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where the entries of the n � n matrix A and the n � 1
vector b are given by Aij D a.'j ; 'i / and bi D l.'i /,
respectively.

Energy Norm A Posteriori Error Estimates Based
on Residuals
Let e D u � uh denote the error. Using the inf-sup
condition, we can estimate the error as follows:

˛kekV � sup
v2V

a.e; v/

kvkV � sup
v2V

l.v/ � a.uh; v/

kvkV
� sup

v2V
hR; vi
kvkV D kRkV � (5)

and thus we obtain the abstract a posteriori error
estimate

kekV � ˛�1kRkV � (6)

Here, we introduced the weak residual R 2 V �,
defined by hR; vi D l.v/ � a.uh; v/ for all v 2 V ,
where V � is the dual of V and h�; �i denotes the duality
pairing between V and V �. The dual norm kR.uh/kV �

is not directly computable, due to the supremum, and
therefore we shall seek estimates instead. We consider
two different approaches, where the first is based on a
direct estimate in terms of computable residual quanti-
ties and the second is based on solving local problems.
For simplicity, we restrict our attention to Poisson’s
equation.

Estimates based on explicit residuals
Using Galerkin orthogonality, or (3), followed by ele-
mentwise integration by parts, we obtain

hR.uh/; vi D l.v/ � a.uh; v/ (7)

D l.v � �v/ � a.uh; v � �v/ (8)

D
X

K2K
.f C�u; v � �v/K

� 1
2
.ŒnK � ruh; v � �v/@K (9)

�
X

K2K
kf C�ukKkv � �vkK

C 1
2
kŒnK � ruhk@Kn@�kv � �vk@K

(10)

where �v 2 Vh is a suitable interpolant of v, for in-
stance, the Scott-Zhang interpolant. Also, ŒnK �ruh D
nKC � ruhjKC C nK� � ruhjK� denotes the jump of
the normal derivative across the common edge of any
two adjacent elements KC and K�, with outward unit
normals nKC and nK� , respectively. This term arises
since uh generally only has C0 continuity. Further, we
have the interpolation error estimate

kv ��vk2K ChKkv��vk2@K � Ch2Kkrvk2N.K/ (11)

where N.K/ is the union of all elements that share a
node withK . Combining the above results, we arrive at

hR.uh/; vi � C

 

X

K2K
h2Kkf C�uk2K

C 1
4
hKkŒnK � ruhk2@Kn@�

!1=2

kvkV

(12)

Finally, dividing by kvkV , recalling that ˛ D 1 for
Poisson’s equation, and taking the supremum, we get
the following estimate:

kekV � kR.uh/kV � � C

 

X

K2K
�2K

!1=2

(13)

where �K D hKkf C�ukK C 1
2
h
1=2
K kŒnK �ruhk@Kn@�

is the element residual. See [2, 5] and [18], for further
details.

Estimates Based on Local Problems
A more refined way of estimating the residual (see [1]
and [14]) is to first compute a so-called equilibrated
normal flux †n.uh/ on each edge. This flux is an
approximation of the normal flux n � ru that satisfies
the condition

.f; 1/K C .†nK.uh/; 1/@K D 0; 8K 2 K (14)

Then, we proceed as follows:

hR.uh/; vi D
X

K2K
.f C�u; v/K C .nK � ruh; v/@K

(15)
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D
X

K2K
.f C�u; v/K C .nK � ruh

�†nK.uh/; v/@K (16)

D
X

K2K
.rEK;rv/K (17)

�
X

K2K
krEKkKkrvkK (18)

Here, EK is the solution to an elementwise Neumann
problem, ��EK D f C �uh and nK � ruh D nK �
ruh �†nK .uh/, which is solvable due to (14). We thus
arrive at the a posteriori error estimate

kekV � kR.uh/kV � � C

 

X

K2K
�2K

!1=2

(19)

where �K D krEKkK . Note that in this approach
there is no unknown constant in the estimate, which is
an advantage in practice. There is also an alternative
approach for constructing estimators based on local
problems that avoids constructing an equilibrated flux;
see [16].

Energy Norm Error Estimates Based on
Averaging the Gradient
Suppose that we can compute an approximation rhuh
of the gradient that is more accurate than the directly
evaluated gradient ruh. Then a possible estimator for
kru � ruhk is given by krhuh � ruhk. For instance,
for piecewise linear elements, we can define rhuh as
the L2 projection of the piecewise constant directly
evaluated flux ruh on piecewise linear continuous
functions, computed using a lumped mass matrix for
efficiency. This estimator is known as the ZZ-indicator
and was originally proposed in [19]. It has been shown
that the averaged gradient approach yields reliable
error estimators; see [7].

Adaptive Algorithms
In principle, there are two ways to increase the accu-
racy of a finite element solution uh, namely:
• h-refinement
• p-refinement
h-refinement means using a mesh with locally smaller
elements and p-refinement means increasing the poly-

nomial order of the finite element basis functions
locally. We can also have a combination of h- and
p-refinement, the so-called hp-refinement. Loosely
speaking, h-refinement is efficient when the regularity
of the exact solution is low, whereas it is the opposite
way around with p-refinement. In the following we
shall concentrate on h-refinement and refer to [8] and
the references therein for a thorough discussion of hp-
refinement.

One principle for constructing an adaptive
algorithm is that we seek a mesh such that the
contribution to the error from each element is equal,
the so-called equidistribution of the error. A basic
approach to construct such a mesh is the following
adaptive algorithm:
1. Solve (3) for uh.
2. Compute the element indicators �K .
3. Mark elements for refinement based on f�KgK2K.
4. Refine marked elements.
This procedure is repeated until a stopping criterion is
satisfied. For instance, until

 

X

K2K
�2K

!1=2

� TOL (20)

where TOL is a user-prescribed tolerance. In practice,
other restrictions such as computer memory and com-
puting time may also have to be taken into account. The
marking of elements is carried out using a refinement
criterion. The simplest criterion is to refine element K
if �K > ˇmaxK02K �K0 with 0 � ˇ � 1 a user-defined
parameter. For numerical stability it is important not
to degrade the mesh quality (i.e., element shape) in
successive refinements.

Goal-Oriented A Posteriori Error Estimates
In practice, one is often interested in computing some
specified quantities, for instance, the lift and drag of an
airfoil or the average stress in a mechanical component.
Such quantities may be expressed as functionals of the
solution. In order to derive error estimates for func-
tional values, we use the so-called duality arguments
where an auxiliary dual problem is used to connect
the error in the goal functional to the residual of the
computed solution. The connection is given by a local
weight that typically depends on derivatives of the
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solution to the dual problem, multiplying the local
residual. General references include [5,6,10], and [12].

Let m.u/ be a linear functional on V describing the
quantity of interest and consider the dual or adjoint
problem: find 
 2 V

m.v/ D a.v; 
/; 8v 2 V (21)

Given 
 and choosing v D e in (21), we get the error
representation formula

m.e/ D a.e; 
/ D l.
/� a.uh; 
/ D hR; 
i (22)

Note that this is an equality, which relates the
error to a computable weighted residual. As before
hR.uh/; 
i can be further manipulated using Galerkin
orthogonality and interpolation theory to yield a
posteriori estimates

m.e/ � C
X

K2K
�K!K (23)

Here, �K is the element residual and !K a weight
accounting for the dual information. For Poisson’s
equation the weight takes the form

!K D h�1
K k
 � �
kK C h

�1=2
K k
 � �
k@K

� ChK j
jH2.�/ (24)

where�
 2 Vh is an interpolant, and we finally used an
interpolation error estimate. The product �K D �K!K
defines the element indicator in an a duality-based
adaptive algorithm. The dual weight !K determines
the contribution of the element residual �K to the error
estimate and thus contains information on which parts
of the domain influence the error for a specific goal
functional. An adaptive algorithm based on �K can
therefore generate a mesh that is tailored to efficient
computation of a specific functional. In practice, it is
necessary to, at least approximately, compute the dual
weight, and different approaches have been developed
in the literature; see [5].

In order to derive error estimates in other norms
than the energy norm, a dual problem is often used
in combination with analytical or computational ap-
proaches to estimate the stability properties of the dual
problem.

Duality-based techniques are also applicable to
time-dependent problems. Here the dual problem is
a backward-in-time problem, but the basic principle
remains the same as in the stationary case; see [9, 11],
and [13].
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Euler Equations: Computations

Thomas Sonar
Computational Mathematics, TU Braunschweig,
Braunschweig, Germany

Basic Facts

The Euler equations governing compressible inviscid
fluid flow are usually given in the form of a system of
conservation laws:

@u
@t

C
d
X

kD1

@fk.u/
@xk

D @u
@t

C r � F.u/ D 0 (1)

where d 2 f1; 2; 3g denotes the space dimension
considered, u WD .�; �v; �E/ is the vector of conserved
variables, and fk are the fluxes. From the point of view
of partial differential equations, the unsteady Euler
equations constitute a hyperbolic system. However, if
a steady state is reached, the system is hyperbolic
only in supersonic regions. The properties of the Euler
equations are very well documented in the literature;
see, for instance, [3]. Since the Euler equations are
derived from physical conservation principles, integral
form is most important and is the starting point for
numerical methods. The integral form is called weak
formulation and requires

Z

��.t;tC�t/
u � @'

@t
C

d
X

kD1
fk.u/ � @'

@xk
dx dt D 0 (2)

to hold for all compactly supported test functions '.
We find all kinds of methods in use, namely, finite

volume, finite difference, finite element, and spectral
element methods, where the finite volume method is
the one mostly used in aerodynamics. We therefore
choose the finite volume method as a paradigmatic
discretization method for the Euler equations.

The Finite VolumeMethod

Like any other method, the finite volume method has
to start with a weak formulation of the Euler equations.
One considers a control volume� � Rd with outward
unit normal n and surface measure dS . Then the Euler
equations are integrated over the .d C 1/-dimensional
cylinder .t; t C �t/ � � and apply Gauss’s integral
theorem to obtain

Z

�

.u.x; t C ıt/ � u.x; t// d�C
Z tC�t

t
I

@�

F.u/ � n dS dt D 0: (3)

The link between this weak form and the weak form
(2) is given by Haar’s lemma; see [2]. In particular
Morrey [5] (see also Klötzler [4]) has proved a useful
generalization of this kind for cuboids to be used as
control volumes, while Müller [7] and Bruhn [1] have
extended this result to quite general control volumes.
Introducing the cell average operator

A.�/u.t/ WD 1

j�j
Z

�

u.x; t/ d�;

we can reformulate (3) to result in

d

dt
A.�/u.t/ D � 1

j�j
I

@�

F.u/ � u dS dt D 0 (4)

where j�i j is the measure of �i . We now restrict
ourselves to the two-dimensional case for the sake
of ease of notation. If we cover a domain D � R2

with a conforming triangulation (see [6]) consisting
of triangles �i and if N.i/ WD fj 2 N j �i \ �j
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is an edge of �ig, then (4) can be formulated on a
single triangle as

d

dt
A.�i /u.t/ D � 1

j�j
P

j2N.i/
R

@�i\@�j
P2

`D1 f`.u/nij;` dS: (5)

Here, nij;` is the `th component of the unit normal
vector at the edge�i \�j which points outwards with
respect to �i . In order to tackle the line integral, we
introduce nG Gauss points xij .s�/; � D 1; : : : ; nG , on
the edge �i \�j and Gaussian weights !� . Then (5)
yields

d

dt
A.�i /u.t/ D �

X

j2N.i/

j@�i \ @�j j
2j�j

(

nG
X

�D1

2
X

`D1
!�f`.u.xij .s�/; t//nij;` C O.h2nG /

)

: (6)

In order to derive a numerical method, we introduce
Ui .t/ as an approximation to A.�i /u.t/ and intro-
duce an approximate Riemann solver .ui ;uj I n/ 7!
H.ui ;uj I n/ satisfying the consistency condition 8u W
H.u;uI n/ D P2

`D1 f`.u/n`. There is a multitude of
approximate Riemann solvers available and readily
described in the literature; cp. [3]. It is most simple
to work with piecewise constant cell averages Ui , but
this results in a scheme being first order in space.
Therefore, a recovery step is the most important ingre-
dient in any finite volume scheme. From triangle �i

and a number of neighboring triangles, one constructs
a polynomial pi , defined on �i , with the properties
pi � u D O.hr /; r 	 1 for all x 2 �i at a fixed
time t , and A.�i/pi .t/ D A.�i/Ui .t/ D Ui . The art
to recover such polynomials includes TVD, ENO, and
WENO techniques and is described in some detail in
[6]. Instead of using Ui and Uj as arguments in the
approximate Riemann solver, one employs pi and pj
and arrives at

d

dt
Ui .t/ D �

X

j2N.i/

j@�i \ @�j j
2j�j

(

nG
X

�D1
!�H

�

pi .xij .s�/; t/;pj .xij .s�/; t/; nij;`
�

)

: (7)

The time stepping can now be done with an appropriate
ODE solver.
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Euler Methods, Explicit, Implicit,
Symplectic

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Université de Genève,
Genève, Switzerland

Euler’s methods for differential equations were the first
methods to be discovered. They are still of more than
historical interest, because their study opens the door
for understanding more modern methods and existence
results. For complicated problems, often of very high
dimension, they are even today important methods in
practical use.

Euler’s Legacy

A differential equation Py D f .t; y/ defines a slope Py at
every point .t; y/ where f is defined. A solution curve
y.t/ must respect this slope at every point .t; y.t//
where y is defined.
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Euler Methods, Explicit,
Implicit, Symplectic, Fig. 1
Riccati’s equation with initial
value t0 D �1:5; y0 D
�1:51744754; Euler polygons
for h D 1

4
; 1
8
; 1
16

and 1
32

(left);
Taylor parabolas of order 2
for h D 1

2
; 1
4
; 1
8

and 1
16

(right)
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t1, y1
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Example 1 Some slopes for Riccati’s differential
equation Py D t2 C y2 are drawn in Fig. 1. We set
the initial value y0 D �1:51744754 for t0 D �1:5,
which is chosen such that the exact solution passes
through the origin.

Euler’s Method
Euler, in Art. 650 of his monumental treatise on in-
tegral calculus [3], designs the following procedure:
Choose a step size h and compute the “valores suc-
cessivi” y1, y2, y3; : : : by using straight lines of the
prescribed slopes on intervals of size h:

tnC1 D tn C h; ynC1 D yn C hf .tn; yn/ : (1)

We observe in Fig. 1 (left) that these polygonal lines,
for h ! 0, converge apparently, although slowly, to the
correct solution.

Euler’s Taylor Methods of Higher Order
Some pages later (in Art. 656 of [3]), Euler demon-
strates how higher derivatives of the solution can be
obtained by differentiating the differential equation, for
example,

PyD t2Cy2 ) RyD 2tC2y PyD 2tC2yt2C2y3; etc.,

which allows to replace formula (1) by piece-wise
Taylor polynomials

ynC1 D yn C h Pyn C h2

2Š
Ryn

y1

y2

y3

y4 yn

e1

e2 e3

e4

E1

E2

E3

E4

E5

h h h

t0 t1 t2 t3 t4 tn

y0

ym

Euler Methods, Explicit, Implicit, Symplectic, Fig. 2
Cauchy’s convergence and existence proof

or including additional higher order terms. The nu-
merical solution, displayed in Fig. 1 (right), converges
much faster than the first order method.

Cauchy’s Convergence and Existence
Proof

Before trying to compute the unknown solution of
a differential equation by numerical means, we must
first prove its existence and uniqueness. This research
has been started by Cauchy [1]. Cauchy’s proof is
illustrated in Fig. 2:
• Consider for a small step size h the Euler polygons
y0; y1; : : : ; yn and for a still smaller step size eh
the polygons y0;ey1; : : : ; eym on the same interval.

• Suppose that f .t; y/ is continuous, which makes it
uniformly continuous.
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• Therefore, for any � > 0 there is h so small such
that jf .t; y/ � f .s; z/j < � in compact domains (in
our figure sketched as ellipses).

• For the “local errors” ei we then obtain jei j < h�.
• A Lipschitz condition jf .t; y/�f .t; z/j � Ljy� zj

allows to obtain jEi j � eL.tn�ti /jei j.
• Adding up these errors finally leads to jeym � ynj

� C�, where C depends only on the interval length
tn � t0 and L.

• This means that, for a step size sequence h1; h2,
h3; : : : tending to 0, the Euler polygons form a
Cauchy sequence and must converge.

Later, Cauchy published other convergence proofs
based on Taylor series as well as the so-called Picard–
Lindelöf iteration.

Second Order Equations and Systems

In the case of a higher order equation, Euler (in
Art. 1082 of [4]) applies method (1) component-wise to
the solution and lower order derivatives. For example,
for the Van der Pol equation Ry C �.y2 � 1/ Py C y D 0

this would become

Py D v

Pv D �.1 � y2/v � y

which gives

ynC1 D yn C hvn

vnC1 D vn C h.�.1 � y2n/vn � yn/:

Figure 3 (left) represents such a numerical solution
for a relatively large step size which seems to
work reasonably. However, we observe after step
number 10 a strange instability phenomenon. This
phenomenon becomes more and more serious when
� increases, which means that the equation becomes
stiff.

The same idea applies to systems of equations,
which allows to treat initial value problems for such
systems as well and also to extend Cauchy’s existence
proofs. However, equations of higher dimensions, in
particular describing fast chemical reactions or heat
transfer, are very often extremely stiff, so that the

explicit Euler method yields stable numerical solutions
only for extremely small step sizes.

Implicit Euler Method

Euler, who liked to modify his formulas in all possible
directions, also arrived at the implicit Taylor methods.
The first of these would be

ynC1 D yn C hf .tnC1; ynC1/

or

ynC1 D yn C hvnC1
vnC1 D vn C h

�

�.1 � y2nC1/vnC1 � ynC1
�

in the case of the Van der Pol equation. The polygons
now assume the correct slope (or the correct velocity)
at the end of each integration step. This requires the so-
lution of (a system of) nonlinear equations at each step,
which is usually performed with Newton’s method. In
Fig. 3 (right) are presented 25 steps of the implicit
Euler method, again with step size h D 0:3. We
observe that the instability phenomenon of the explicit
method has disappeared. This turns out to be a general
property and, despite the difficult implementation of
the numerical procedure, the implicit Euler method is
the first of the methods which are applicable to very
stiff problems (see Sect. IV.1 of [6]).

Symplectic Euler Method

This method is important for Hamiltonian problems,
which are of the form

Pp D �Hq.p; q/; Pq D Hp.p; q/;

where the HamiltonianH.p1; : : : ; pd ; q1; : : : qd / rep-
resents the total energy, qi are the position coordinates,
and pi the momenta for i D 1; : : : ; d . Hp and Hq are
the vectors of partial derivatives.

We choose as example the harmonic oscillator with

H D p2

2
C q2

2
, which leads to the equations Pp D �q

and Pq D p, and which we can imagine as a body
attached to an elastic spring. We show in Fig. 4 (left)
some explicit Euler steps
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Euler Methods, Explicit,
Implicit, Symplectic, Fig. 3
Van der Pol oscillator for
� D 1; vectorfield and two
exact solutions with y0 D 0:3

and 2, v0 D 0. 20 steps of
explicit Euler with h D 0:3,
y0 D 1:3; v0 D 0 (left); 25
steps of implicit Euler with
h D 0:3, y0 D 2:5; v0 D 0

(right)
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EulerMethods, Explicit, Implicit, Symplectic, Fig. 4 Explicit
Euler versus symplectic Euler at the harmonic oscillator with
step size h D 0:5 (left); one step of the symplectic Euler method

with step size h D 0:75 applied to an initial set A0 (right; in
dashed lines the exact solution)

qnC1 D qn C hpn; pnC1 D pn � hqn

with step size h D 0:5 and initial values q0 D 0; p0 D
1. In the first step, the position q starts off from q0 D 0

with velocity p0 D 1 to arrive at q1 D 0:5, while the
velocity p1 D p0 D 1 remains unchanged, because at
q0 D 0 there is no force. With this unchanged velocity
the voyage goes on from q1 to q2 D 1, and only here
we realize that the force has changed. This physical
nonsense leads to a numerical solution which spirals
outward. An improvement is obtained by updating the
velocity with the force at the new position, that is, to
use

qnC1 D qn C hpn

pnC1 D pn � hqnC1

or in general

qnC1 D qn C hHp.pn; qnC1/

pnC1 D pn � hHq.pn; qnC1/
(2)

(the lower polygon in Fig. 4).

Symplecticity
Following an idea of Poincaré, we replace the initial
value q0; p0 by an entire two-dimensional set A0 (see
Fig. 4, right). The first formula of (2) transforms this set
into a setA1=2 by a shear mapping, which preserves the
lengths of horizontal strips, hence preserves the area of
the set A. The second formula then moves A1=2 to A1
by a vertical shear mapping. Therefore, the area of A1
is precisely the same as the area of A0. This property,
which is not true for the explicit Euler method, neither
for the implicit, is in general true for the symplectic
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Euler method applied to all Hamiltonian systems. It is
an indicator for the quality of this method, in particular
for long time integrations.

The great importance of this symplectic Euler
method (see [2, 5]), which Euler did not consider,
and of its second order companion, Verlet method,
was only realized during the second half of the
twentieth century, for example, for simulations in
molecular dynamics. The same idea appears already
in Newton’s Principia (1687), where it was used to
justify Newton’s “Theorem 1,” the preservation of the
angular momentum in planetary motion.
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Short Definition

The entry discusses the regularity and decay properties
of the solutions of the stationary electronic Schrödinger
equation representing bound states.

Description

The Electronic Schrödinger Equation
The Schrödinger equation forms the basis of nonrel-
ativistic quantum mechanics and is of fundamental
importance for our understanding of atoms and
molecules. It links chemistry to physics and describes
a system of electrons and nuclei that interact by
Coulomb attraction and repulsion forces. As proposed
by Born and Oppenheimer in the nascency of quantum
mechanics, the slower motion of the nuclei is mostly
separated from that of the electrons. This results in the
electronic Schrödinger equation, the problem to find
the eigenvalues and eigenfunctions of the electronic
Hamilton operator

H D � 1

2

N
X

iD1
�i C V0.x/ C 1

2

N
X

i;jD1
i¤j

1

jxi � xj j (1)

written down here in dimensionless form, where

V0.x/ D �
N
X

iD1

K
X

�D1

Z�

jxi � a� j

is the nuclear potential. The operator acts on functions
with arguments x1; : : : ; xN 2 R3, which are associated
with the positions of the considered electrons. The a�
are the fixed positions of the nuclei and the positive val-
ues Z� are the charges of the nuclei in multiples of the
absolute electron charge. The operator is composed of
three parts: The first part, built up from the Laplacians
�i acting on the positions xi of the single electrons,
is associated with the kinetic energy of the electrons.
The second, depending on the euclidean distance of
the electrons from the nuclei, describes the interaction
of the electrons with the nuclei, and the third one
the interaction of the electrons among each other. The
eigenvalues represent the energies that the system can
attain. This entry is concerned with the mathematical
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properties of the solutions of this eigenvalue problem,
the electronic wavefunctions.

The Variational Form of the Equation
The solution space of the electronic Schrödinger
equation is the Hilbert space H1 that consists of
the one time weakly differentiable, square integrable
functions

u W .R3/N ! R W .x1; : : : ; xN / ! u.x1; : : : ; xN / (2)

with square integrable first-order weak derivatives. The
norm on H1 is composed of the L2-norm k � k0
and the H1-seminorm, the L2-norm of the gradient.
In the language of physics, H1 is the space of the
wavefunctions for which the total position probability
remains finite and the expectation value of the kinetic
energy can be given a meaning. Let D be the space of
the infinitely differentiable functions (2) with bounded
support. The functions in D form a dense subset ofH1.
Let

V.x/ D �
N
X

iD1

K
X

�D1

Z�

jxi � a� j C 1

2

N
X

i;jD1
i¤j

1

jxi � xj j

be the potential in the Schrödinger operator (1). The
basic observation is that there is a constant 	 > 0 such
that for all functions u and v in the space D introduced
above

Z

V u v dx � 	 kuk0krvk0 (3)

holds. The proof of this estimate is based on the three-
dimensional Hardy inequality and Fubini’s theorem.
The expression

a.u; v/ D .Hu; v/

defines, therefore, a H1-bounded bilinear form on
D, where .� ; �/ denotes the L2-inner product. It can
be uniquely extended to a bounded bilinear form on
H1. In this setting, a function u ¤ 0 in H1 is an
eigenfunction of the electronic Schrödinger operator
(1) for the eigenvalue � if the relation

a.u; v/ D � .u; v/ (4)

holds for all test functions v 2 H1. The weak form (4)
of the eigenvalue equation Hu D �u particularly fixes
the behavior of the eigenfunctions at the singularities
of the interaction potential and at infinity. For normed
u, a.u; u/ is the expectation value of the total energy.
One can deduce from the estimate (3) that the total
energy of the system is bounded from below. Hence
one is allowed to define the constant

ƒ D inf
˚

a.u; u/
ˇ

ˇ u 2 D; kuk0 D 1
�

;

the minimum energy that the system can attain. Its
counterpart is the ionization threshold. To prepare its
definition let

˙.R/ D inf
˚

a.u; u/
ˇ

ˇ u 2 D.R/; kuk0 D 1
�

;

where D.R/ consists of those functions in D for which
u.x/ D 0 for jxj � R. One can show that the constants
†.R/ are bounded from above by the value zero. As
they are monotonely increasing inR, one can therefore
define the constant

†� D lim
R!1†.R/ � 0;

the energy threshold above which at least one electron
has moved arbitrarily far away from the nuclei, the
ionization threshold. We restrict ourselves here to the
case that ƒ < †�, that is, that it is energetically more
advantageous for the electrons to stay in the vicinity of
the nuclei than to fade away at infinity. This assumption
implies that the minimum energy ƒ, the ground state
energy of the system, is an isolated eigenvalue of finite
multiplicity and that the corresponding eigenfunctions,
the ground states of the system, decay exponentially.
The condition, thus, means that the nuclei can bind
all electrons, which is surely not the case for arbitrary
configurations of electrons and nuclei, but of course
holds for stable atoms and molecules. The ionization
threshold is the bottom of the essential spectrum of
the Schrödinger operator. This entry discusses the
properties of eigenfunctions for eigenvalues below the
ionization threshold.
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It should be noted that only solutions u 2 H1 of (4)
are physically admissible that have certain symmetry
properties. These symmetry properties result from the
Pauli principle, the antisymmetry of the full, spin-
dependent wavefunctions with respect to the simul-
taneous exchange of the positions and spins of the
electrons. Since the Hamilton operator (1) does not act
on the spin variables and is invariant to the exchange of
the electrons, the complete, spin-dependent eigenvalue
problem can be decomposed into subproblems for the
components of the full, spin-dependent wavefunction.
This leads to modified eigenvalue problems in which
the solution space H1 is replaced by subspaces of
H1 underlying corresponding symmetry conditions.
The results discussed here transfer without changes to
these modified problems. A more detailed discussion
of the eigenvalue problem along the lines given here
can be found in [13]. Comprehensive survey articles
on the spectral theory of Schrödinger operators are [5]
and [10].

Hydrogen-Like Wavefunctions
An exact solution of the electronic Schrödinger equa-
tion is only possible for one particular but very impor-
tant case, the motion of a single electron in the field of a
single nucleus of chargeZ. The knowledge about these
eigenfunctions, the weak solutions of the Schrödinger
equation

� 1

2
�u � Z

jxj u D �u;

is basic for the qualitative understanding of chemistry
and explains the structure of the periodic table to
a large extent. These eigenfunctions have first been
calculated by Schrödinger [9] in his seminal article.
The eigenvalues are

� D � Z2

2 n2
; n D 1; 2; 3; : : :

and cluster at the ionization threshold †� D 0. The
assigned eigenfunctions can be expressed in terms of
polar coordinates and composed of eigenfunctions of
the form

u.x/ D 1

r
f .r/ Y m` .'; 	/;

where the Y m` are the spherical harmonics and the
radial parts f W R>0 ! R the infinitely differentiable,

square integrable functions with square integrable first-
order derivative that can be continuously extended by
the value f .0/ D 0 to r D 0 and that solve, on the
interval r > 0, the radial Schrödinger equation

1

2

�

� f 00 C ` .`C 1/

r2
f

�

� Z

r
f D �f:

The functions satisfying these conditions are the scalar
multiples of the functions

fn`.r/ D exp
�

� Zr

n

��

2
Zr

n

�`C1
L
.2`C1/
n�`�1

�

2
Zr

n

�

;

where the L
.2`C1/
n�`�1.r/ are the generalized Laguerre

polynomials of degree n � ` � 1 with index 2` C 1.
The values n D 1; 2; 3; : : : are the principal quantum
numbers, the values ` D 0; : : : ; n � 1 the angular
momentum quantum numbers, and the values m D
�`; : : : ; ` the magnetic quantum numbers. They clas-
sify the orbitals and explain the shell structure of the
electron hull. The eigenvalues themselves depend only
on the principal quantum number n, a degeneracy that
appears in this form only for the Coulomb potential.
More details on the hydrogen-like wavefunctions can
be found in every textbook on quantum mechanics,
for example in [11]. A treatment starting from the
variational formulation of the eigenvalue problem is
given in [13].

Exponential Decay
The hydrogen-like wavefunctions show a behavior that
is typical for the solutions of the electronic Schrödinger
equation. They are strongly localized around the posi-
tion of the nucleus and are moderately singular there
where the particles meet. The study of the localization
and decay properties of the wavefunctions began in
the early 1970s. A first simple result of this type,
essentially due to O’Connor [8], is as follows. Let � <
†� be an eigenvalue below the ionization threshold
†� and u 2 H1 be an assigned eigenfunction. For
� <

p

2 .˙� � �/, the functions

x ! exp.�jxj/ u.x/; x ! exp.�jxj/ru.x/

are then square integrable, that is, u and ru decay
exponentially in the L2-sense. That is, the speed of
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decay depends on the distance of the eigenvalue �
under consideration to the bottom †� of the essential
spectrum. The given bound is optimal in the sense that
the decay rate � can in general not be improved further.
This can be seen by the example of the hydrogen-like
wavefunctions. The exponential decay of the wave-
functions in the L2-sense implies that their Fourier
transforms are real-analytic, that is, can be locally
expanded into multivariate power series. The given
result is only a prototype of a large class of estimates
for the decay of the wavefunctions representing bound
states. The actual decay behavior of the wavefunctions
is direction-dependent and rather complicated. The in
some sense final study is Agmon’s monograph [1].
Agmon introduced the Agmon distance, named after
him, with the help of which the decay of the eigenfunc-
tions can be described precisely. A detailed proof of the
result above on the L2-decay of the eigenfunctions can
be found in [13]. More information and references to
the literature are given in [5].

Hölder Regularity
It cannot be expected that the solutions of the electronic
Schrödinger equation are smooth at the singular points
of the interaction potential. Their singularities at these
places are, however, less strong as one suspects at
first view. This can again be seen by the example
of the hydrogen-like wavefunctions. The systematic
study of the Hölder regularity of the eigenfunctions
of electronic Hamilton operators began with the work
of Kato [6]. The most recent and advanced results of
this type are due to Hoffmann-Ostenhof et al. [4] and
Fournais et al. [2]. Hoffmann-Ostenhof et al. [4] and
Fournais et al. [2] start from an idea that can be traced
back to the beginnings of quantum mechanics and split
up the wavefunctions

u.x/ D exp.F.x// v.x/

into an explicitly given first part essentially cover-
ing their singularities and a more regular function v.
Choosing

F.x/ D �
X

i;�

Z� jxi � a� j C 1

2

X

i<j

jxi � xj j;

Hoffmann-Ostenhof et al. [4] have shown that v 2 C1;˛
loc

for all ˛ in the open interval 0 < ˛ < 1. That

means, the function v is continuously differentiable on
the whole R

3N and its first order partial derivatives
are Hölder continuous for all indices ˛ in the given
interval. Outside the set of points where more than two
particles (both electrons and nuclei) meet, the expo-
nential factor even completely determines the singular
behavior of the wavefunctions. As has been shown in
[3], the regular part v of the wavefunctions is real-
analytic outside this set. To reach the bound ˛ D 1, the
ansatz has to be modified and an additional term cov-
ering three-particle interactions has to be added to the
function F . With this modification, Fournais et al. [2]
have shown that v 2 C

1;1
loc , that is, that the first-order

derivatives of v become Lipschitz-continuous.

Existence and Decay of Mixed Derivatives
The regularity of the electronic wavefunctions
increases in a sense with the number of electrons, the
reason being that the interaction potential is composed
of two-particle interactions of a very specific form. To
describe this behavior, we introduce a scale of norms
that are defined in terms of the Fourier transforms of
the wavefunctions. Let

Piso.!/ D 1C
N
X

iD1
j!i j2; Pmix.!/ D

N
Y

iD1

�

1C j!i j2
�

:

The !i 2 R3 forming together the variable ! 2 .R3/N
can be associated with the momentums of the electrons.
The expressions j!i j are their euclidean norms, so
that Piso.!/ is a polynomial of degree 2 and Pmix.!/

a polynomial of degree 2N . The norms describing
the smoothness of the solutions are now given by the
expression

jjjujjj 2#;m D
Z

Piso.!/
mPmix.!/

# jbu.!/j2 d!:

They are defined on the Hilbert spaces H#;m
mix that

consist of the square integrable functions (2) for which
these expressions remain finite. For nonnegative in-
teger values m and # , the norms measure the L2-
norm of weak partial derivatives. The parameter m
measures the isotropic smoothness that does not distin-
guish between different directions, and the parameter
# the mixed smoothness in direction of the three-
dimensional coordinate spaces of the electrons. The
spaces L2 and H1 are special cases of such spaces,
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with indices m D 0 and # D 0 respectively m D 1

and # D 0. A function in the space H1;0
mix possesses

weak partial derivatives of orderN in L2.
It has been proved in [12,13] that the physically ad-

missible eigenfunctions of the electronic Schrödinger
operator (1), those with corresponding symmetry prop-
erties, are at least contained in H#;1

mix for # D 1=2.
This result has been improved substantially in [7]. It
has been shown there that the eigenfunctions of the
electronic Schrödinger operator are, independent of the
symmetry properties enforced by the Pauli principle,
contained in

H
1;0
mix \

\

#<3=4

H
#;1
mix:

The bound 3=4 is optimal and can, except for special
cases, neither be reached nor improved further. The
proof is based on a multiplicative splitting of the wave-
functions as in the previous section. It has been shown
in [14] that the eigenfunctions under consideration can
be written as products

u.x/ D exp

�

X

i<j


.xi � xj /
�

v.x/ (5)

of an explicitly given prefactor and a more regular part
v 2 H1;1

mix. There is a lot of freedom in the choice of the
function 
. It needs only to be of the form


.x/ D e
.jxj/; e
0.0/ D 1

2
;

where e
 W Œ0;1/ ! R is an infinitely differentiable
function decaying, together with its derivatives, suffi-
ciently fast at infinity.

The exponential decay of the wavefunctions implies
that there is, for every such wavefunction, a strictly
positive constant � such that the function

x ! exp

�

�

N
X

iD1
jxi j

�

u.x/

is square integrable. This constant depends on the
distance of the eigenvalue under consideration to the
bottom of the essential spectrum. It has been shown
in [14] that these exponentially weighted eigenfunc-
tions admit the same kind of representation (5) as

the eigenfunctions themselves. Thus, they share with
them the described regularity properties [7]. Based on
these regularity and decay properties and taking into
account the symmetry properties of the wavefunctions
enforced by the Pauli principle, the convergence rates
of hyperbolic cross-like or sparse grid-like expansions
of the wavefunctions into correspondingly antisym-
metrized tensor products of three-dimensional Hermite
functions or other eigenfunctions of three-dimensional
Schrödinger-like operators or of certain wavelets can
be studied. Surprisingly these convergence rates, mea-
sured in terms of the number of basis functions in-
volved, do not fall below that for systems of only two
electrons [13].
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5. Hunziker, W., Sigal, I.: The quantum N-body problem. J.
Math. Phys. 41, 3448–3510 (2000)

6. Kato, T.: On the eigenfunctions of many-particle systems in
quantum mechanics. Commun. Pure Appl. Math. 10, 151–
177 (1957)

7. Kreusler, H.-C., Yserentant, H.: The mixed regularity of
electronic wave functions in fractional order and weighted
Sobolev spaces. Numer. Math (to appear)

8. O’Connor, A.: Exponential decay of bound state wave
functions. Commun. Math. Phys. 32, 319–340 (1973)

9. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann.
Phys. 79, 361–376 (1926)

10. Simon, B.: Schrödinger operators in the twentieth century.
J. Math. Phys. 41, 3523–3555 (2000)

11. Thaller, B.: Advanced Visual Quantum Mechanics.
Springer, New York (2004)

12. Yserentant, H.: On the regularity of the electronic Schrö-
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Explicit Stabilized Runge–KuttaMethods

Assyr Abdulle
Mathematics Section, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland

Synonyms

Chebyshev methods; Runge–Kutta–Chebyshev meth-
ods

Definition

Explicit stabilized Runge–Kutta (RK) methods are
explicit one-step methods with extended stability do-
mains along the negative real axis. These methods
are intended for large systems of ordinary differential
equations originating mainly from semi-discretization
in space of parabolic or hyperbolic–parabolic equa-
tions. The methods do not need the solution of large
linear systems at each step (as, e.g., implicit methods).
At the same time due to their extended stability do-
mains along the negative real axis, they have less severe
step size restriction than classical explicit methods
when solving stiff problems.

Overview

For solving time-dependent partial differential
equations (PDEs), a widely used approach is to first
discretize the space variables to obtain a system of
ordinary differential equations (ODEs) of the form

y0 D f .t; y/; y.t0/ D y0; (1)

where y; y0 2 Rn; t 	 0, and f .t; y/ have value
in Rn. The class of problems of interest for explicit

stabilized RK methods are problems for which the
eigenvalues of the Jacobian matrix @f

@y
are known to

lie in a long narrow strip along the negative real
axis. This situation typically arises when discretizing
parabolic equations or hyperbolic–parabolic equations
such as advection–diffusion–reaction equations (with
dominating diffusion).

Solving Large Stiff Systems
ODEs arising from semidiscretization of parabolic or
hyperbolic–parabolic PDEs are usually large, as the
dimension n of the system is proportional to 1=�x;
where�x is the spatial discretization length. Classical
explicit one-step methods, as, for example, the explicit
Euler method

ykC1 D yk C�tf .tk; yk/;

must satisfy the stringent so-called Courant–Friedrich–
Lewy (CFL) condition [11] �t � C.�x/2 in order for
the numerical solution fykgk�0 to remain bounded. The
above CFL condition leads to a numerical method with
a huge number of steps, with step size usually much
smaller than required for accuracy reasons. Classes of
implicit one-step methods such as the implicit Euler
method

ykC1 D yk C�tf .tkC1; ykC1/

are known to be stable for ODEs arising from the
semidiscretization of hyperbolic–parabolic PDEs. But
the good stability properties of implicit methods are
obtained at the cost of solving nonlinear equations at
each step. Although efficient in many situations, this
approach can be expensive especially for large systems.

Linear Stability Analysis of One-Step Methods
The linear stability analysis for one-step methods is
based on the following transformations. By linearizing
the ODE (1) a system w0.t/ D A.t/w.t/ is ob-
tained, where A.t/ represents the Jacobian matrix of
the original system. Next, freezing the time parameter
in A.t/ and finally transforming the linear equation
into diagonal or Jordan form, one is led to consider the
Dahlquist test equation [12]

y0 D �y; � 2 C: (2)



Explicit Stabilized Runge–Kutta Methods 461

E

Applying an RK to (2) gives yk D R.z/ky0; where
R.z/ is a rational function and z D �t�. This ra-
tional function is called the stability function of the
method. As an example, for the explicit or implicit
Euler method, we have

yk D .1C z/yk�1 D .1C z/ky0; (3)

yk D
�

1

1 � z

�k

y0; (4)

respectively. The condition jR.z/j � 1 ensures that
fykgk�0 remains bounded and leads to the definition
of the stability domain of a numerical method

S WD fz 2 CI jR.z/j � 1g: (5)

For example, the stability domain of the explicit Euler
method is a disk of radius 1 in the complex plane
centered in �1, while the stability domain of the
implicit Euler method is the complementary set of a
disk of radius 1 centered in 1.

As the Jacobian of the system of ODEs obtained
from spatial discretization of parabolic problems
has eigenvalues distributed along the negative real
axis with a spectral radius growing proportional to
1=.�x/2 [11], the stability condition for the explicit
Euler method reads �t � C.�x/2. The implicit
Euler is unconditionally stable for this problem,
but this comes at the price of solving large linear
systems of size proportional to .1=.�x//d (d is the
spatial dimension) at each step size. Explicit stabilized
Runge–Kutta methods are a compromise between
the two aforementioned methods in the following
sense: the explicitness of the methods allows to avoid
solving (possibly large) linear systems at each step
size, and the extended stability domains along the
negative real axis allow to avoid the usual step size
restriction encountered with classical explicit methods.
Such methods have been pioneered by Saul’ev [30],
Guillou and Lago [15], and Gentsch and Schlüter [14].
Recent developments include the methods based on
recurrence relation [34, 35], the methods based on
composition [20, 22, 24, 27, 33], and the methods
combining recurrence relation and composition [3, 7].
We also mention the extension of these methods to stiff
stochastic problems [5, 6].

Basic Methodology

Explicit stabilized Runge–Kutta methods are con-
structed in two steps. First, stability polynomials
bounded in a long strip around the negative real axis
are constructed. Second, numerical methods with such
favorable stability functions are constructed.

Optimal Stability Polynomials on the Negative
Real Axis
The basic idea of Saul’ev [30], Guillou and Lago [15],
and Gentsch and Schlüter [14] to overcome the step
size restriction for classical explicit methods is to
consider a composition of (classical) explicit methods
with a super step size. Consider, for example, a se-
quence of explicit Euler methods gh1 ; : : : ; ghs with a
corresponding sequence of step sizes h1; : : : ; hs and
define a one-step method as the composition

y1 D .ghs ı : : : ı gh1/.y0/; (6)

with step size �t D h1 C : : : C hs: Applied to (2),
this method yields the stability function Rs.z/ D
Qs
iD1.1 C hi z=.�t//: Next, given s; optimize the

sequence fhigsiD1, so that

Rs.z/ D 1CzCO.�z2/; jRs.z/j � 1 for z 2 Œ�ls; 0;
(7)

with ls > 0 as large as possible. The first condition is
necessary for method (6) to have first-order accuracy,
and the second condition ensures an optimal stability
region along the negative real axis. Problem (7) can be
reformulated in the following way: find ˛2; : : : ; ˛s 2
R such that Rs.z/ D 1 C z C Ps

iD2 ˛i zi satisfies
jRs.z/j� 1 for z 2 Œ�ls; 0 with ls > 0 as large as
possible. We recall that a Runge–Kutta method is said
to be accurate with order p if and only if

ky.t0 C�t/ � y1k D O
�

.�t/pC1� (8)

for all sufficiently smooth differential equation y0 D
f .t; y/; y.t0/ D y0. Condition (8) implies that the
stability function of a Runge–Kutta method of order
p satisfies

Rs.z/ D 1C z C z2

2Š
C : : :C zp

pŠ
C O

�

zpC1� : (9)
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Explicit Stabilized
Runge–Kutta Methods,
Fig. 1 Shifted Chebyshev
polynomial of degree 5,
R5.z/; z 2 R (upper figure).
Stability domain of
S WD fz 2 CI jR5.z/j � 1g
(lower figure)
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We notice that for p � 2; (9) implies (8) [17,
Sect. II.1].

As noticed in [13, 15, 26, 37], the solution of prob-
lem (7) is given by shifted Chebyshev polynomials
Rs.z/ D Ts.1 C z=s2/ where Ts.�/, the Chebyshev
polynomial of degree s, is given by

T0.z/ D 1; T1.z/ D z;

Tj .z/ D 2zTj�1.z/ � Tj�2.z/; j 	 2: (10)

The equi-oscillation property of Rs.z/, that is, the
existence of s points 0 > x1 > x2 > : : : > xs such
that jRs.xi /j D 1 for i D 1; : : : ; s and Rs.xiC1/ D
�Rs.xi / for i D 1; : : : ; s � 1 is used to show that
Rs.z/ D Ts.1 C z=s2/ is indeed the solution of
problem (7). We notice that these properties are inher-
ited from corresponding properties of the Chebyshev
polynomials. As a consequence, the optimal sequence
of fhigsiD1 is given by hi D ��t=zi , where zi are the
zeros ofRs.z/ and we have jRs.z/j � 1 for z 2 Œ�ls; 0
with ls D 2s2 (see Fig. 1). The fact that the maximal
stability domain on the negative real axis increases
quadratically with the number of stages s is crucial to
the success of stabilized Runge–Kutta methods.

Complexity and Cost Reduction
Assume that the accuracy requirement dictates a step
size of �t and that the Jacobian of problem (1) has
eigenvalues close to the real negative axis with a spec-
tral radius given by ƒ (possibly large). For a classical
explicit Runge–Kutta method, the stability constraint
forces to take a step size �t=N ' C=ƒ which leads
to N D �tƒ=C function evaluations per step size
�t . For example, for the explicit Euler method, this
cost reads N D �tƒ=2. For an explicit stabilized
Runge–Kutta method with a stability interval along the

negative real axis given by ls D C � s2, we can choose
s such that C � s2 D �tƒ, i.e., s D p

�tƒ=C . For
the first-order stabilized Runge–Kutta method, with a
stability function given by Rs.z/ D Ts.1 C z=s2/, we
obtain s D p

�tƒ=2, the square root of the cost of the
explicit Euler method.

Construction of Explicit Stabilized Runge–Kutta
Methods
Given a stability polynomial with optimal stability
around the negative real axis, the goal is now to
construct corresponding Runge–Kutta methods. There
are two main strategies to realize such Runge–Kutta
methods. The first idea (and also the oldest) is, as al-
ready seen, by composition of Euler steps. The second
idea exploits the three-term recurrence relation of the
Chebyshev polynomials. For simplicity we consider
autonomous ODEs, for example, y0 D f .y/, but
emphasize that the methods described below can be
applied to general ODEs by appending the differential
equation t 0 D 1 to the autonomous differential equa-
tion.

Methods by Composition
This approach first proposed by Saul’ev [30] and Guil-
lou and Lago [15] is based on a composition of Euler
steps (6)

gi D gi�1 C hif .gi�1/; i D 1; : : : ; s; y1 D gs;

(11)

where g0 D y0, hi D �i�t , �i D �1=zi , and zi are
the zeros of the shifted Chebyshev polynomials. The
gi are called the internal stages of the method. Without
special ordering of the step sizes, internal instabilities
such as roundoff error can propagate within a single
integration step �t in such a way that makes the
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E

Explicit Stabilized
Runge–Kutta Methods,
Fig. 2 Stability domain for
shifted Chebyshev
polynomials of degree 6.
Undamped polynomial (upper
figure) and damped
polynomial with � D 0:95

(lower figure)
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numerical method useless [18] (recall that we aim at
using a large number of internal stages, e.g., s 	 100).
A strategy to improve the internal stability of the
method (11) based on a combination of large and small
Euler steps has been proposed in [14].

Methods by Recurrence
First proposed by van der Houwen and Sommei-
jer [34], this approach uses the three-term recurrence
relation (10) of the Chebyshev polynomials to define a
numerical method given by

g1 D g0 C �t

s2
f .g0/;

gi D 2�t

s2
f .gi�1/C 2gi�1 � gi�2; i D 2; : : : ; s;

y1 D gs; (12)

where g0 D y0. One verifies that applied to the test
problem y0 D �y, this method gives for the internal
stages

gi D Ti .1C�t�=s2/y0; i D 0; : : : ; s; (13)

and produces after one step y1 D gs D Ts.1Cz=s2/y0:
Propagation of rounding errors within a single step is
reasonable for this method even for large values of s
such as used in practical computation [34].

Damping
It was first observed by Guillou and Lago [15] that
one should replace the stability requirement jRs.z/j �
1; z 2 Œ�ls ; 0 by jRs.z/j � � < 1; z 2 Œ�ls;�;�ı�,
where ı� is a small positive parameter depending on

�. Indeed, for the points xi 2 R� where R.xi / D
Ts.1 C xi =s

2/ D ˙1; the stability domain has zero
width (see Fig. 2). If one sets

Rs.z/ D 1

Ts.!0/
Ts.!0 C !1z/; !0 D 1C �

s2
;

!1 D Ts.!0/

T 0
s .!0/

; (14)

then the polynomials (14) oscillate approximately be-
tween �1 C � and 1 � � (this property is called
“damping”). The stability domain along the negative
real axis is a bit shorter, but the damping ensures that
a strip around the negative real axis is included in the
stability domain (see Fig. 2). Damping techniques also
allow to consider hyperbolic–parabolic problems. By
increasing the value of �; a larger strip around the
negative real axis can be included in the stability do-
mains. This has been considered for explicit stabilized
Runge–Kutta methods in [33, 36]. Recently damping
techniques have also been used to extend stabilized
Runge–Kutta methods for stiff stochastic problems
[4, 6].

Higher-Order Methods

Both problems, constructing optimal stability polyno-
mials and deriving related Runge–Kutta methods, are
considerably more difficult for higher order. First, we
have to find a polynomial of order p; that is, R.z/ D
1C z C : : :C zp

pŠ
C O.zpC1/, and degree s such that
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Rs.z/ D 1C z C : : :C zp

pŠ
C˛pC1zpC1 C : : : C ˛sz

s;

jRs.z/j � 1 for z 2 Œ�lps ; 0; (15)

with lps as large as possible. The existence and unique-
ness of such polynomials with maximal real negative
stability interval, called optimal stability polynomials,
for arbitrary values of p and s have been proved
by Riha [29]. No elementary analytical solutions are
known for these polynomials for p > 1. Lebedev [23]
found analytic expressions for second-order optimal
polynomials in terms of elliptic functions related to
Zolotarev polynomials. Abdulle [1] gave a classifica-
tion of the number of complex and real zeros of the
optimal stability polynomials as well as bounds for the
error constant Cp

s D 1=.p C 1/Š� ˛pC1. In particular,
optimal stability polynomials of order p have exactlyp
complex zeros for even values of p and exactly p � 1

complex zeros for odd values of p. In practice such
polynomials are approximated numerically [2, 18, 19,
21, 25, 28]. As for first-order optimal stability polyno-
mials, higher-order optimal stability polynomials enjoy
a quadratic growth (with s) of the stability region along
the negative real axis

lps ' cp � s2; c2 D 0:82; c3 D 0:49; c4 D 0:34:

(16)

Approximations of lps up to order p D 11 can be found
in [2].

Several strategies for approximating the optimal
stability polynomials have been proposed. The
three main algorithms correspond to the DUMKA
methods (optimal polynomials without recurrence
relation), the Runge–Kutta–Chebyshev (RKC)
methods (nonoptimal polynomials with recurrence
relation), and the orthogonal Runge–Kutta–Chebyshev
(ROCK) methods (near-optimal polynomials with
recurrence relation). The construction of explicit
stabilized Runge–Kutta–Chebyshev methods is then
based on composition (DUMKA-type methods),
recurrence formulas (RKC-type methods), and a
combination of composition and recurrence formulas
(ROCK-type methods). An additional difficulty for
methods of order p > 2 is that the structure of the
stability functions 1CzC: : :C zp

pŠ
CO.zpC1/ guaranties

the order p only for linear problems. Additional order
conditions have to be built in the method to have order
p also for nonlinear problems. Only DUMKA- and
ROCK-type methods exist for p > 2.

DUMKAMethods
DUMKA methods are based on the zeros of the opti-
mal stability polynomials, computed through an iter-
ative procedure [21]. Then, as suggested by Lebedev
in [20, 22], one groups the zeros by pairs (if a zero is
complex, it should be grouped with its complex con-
jugate), considers quadratic polynomials of the form
�

1 � z
zi

� �

1 � z
zj

�

D 1 C 2˛i z C ˇi z2, and represents

them as

gi WD gi�1 C�t˛if .gi�1/
g�
iC1 WD gi C�t˛if .gi /

giC1 WD g�
iC1 ��t

�

˛i � ˇi
˛i

�

.f .gi / � f .gi�1//:
(17)

One step of the method consists of a collection of two-
stage schemes (17). The above procedure allows to
represent complex zeros and almost halves the largest
Euler step. As for first-order explicit stabilized RK
methods, special ordering of the zeros is needed to
ensure internal stability. This ordering is done “exper-
imentally” and depends on the degree of the stability
polynomial [24]. An extension for higher order has
been proposed by Medovikov [27] (order 3 and 4).

RKCMethods
RKC methods rely on introducing a correction to the
first-order shifted Chebyshev polynomial to allow for
second-order polynomials (Fig. 3). These polynomials,
introduced by Bakker [8], are defined by

Rs.z/ D as C bsTs.w0 C w1z/; (18)

where

−60 −40 −30 −20−50 −10
0

0

−1

1

Explicit Stabilized Runge–Kutta Methods, Fig. 3 Second-
order RKC polynomial of degree 9 (bold line). All internal stages
are drawn (thin lines)
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E

as D 1 � bsTs.w0/; bs D T
00

s .w0/

.T
0

s .w0//
2
;

w1 D T
0

s .w0/

T
00

s .w0/
; w0 D 1C �

s2
; � ' 0:15:

Polynomials (18) remain bounded by � ' 1��=3 on
their stability interval (except for a small interval near
the origin). The stability intervals are approximately
given by �0:65 � s2 and cover about 80 % of the
stability intervals of the optimal second-order stability
polynomials. For the internal stages, the polynomials

Rj .z/ D aj C bj Tj .w0 C w1z/; j D 0; : : : ; s � 1;
can be used. To have consistent internal stages, one
must have Rj .0/ D 1 and thus aj D 1 � bj Tj .w0/. It
remains to determine b0; : : : ; bs�1. If one requires the
polynomials Rj .z/ for j 	 2 to be of second order
at nodes t0 C ci�t in the interval Œt0; t0 C �t; that
is, Rj .0/ D 1; .R0

j .0//
2 D R00

j .0/; then Rj .z/ D
1 C bj .Tj .w0 C w1z/ � Tj .w0//; with bj D T

00

j .w0/

.T
0

j .w0//
2

for j 	 2. The parameters b0; b1 are free parameters
(only first order is possible for R1.z/ and R0.z/ is
constant) and the values b0 D b1 D b2 are suggested in
[31]. Using the recurrence formula of the Chebyshev
polynomials, the RKC method as defined by van der
Houwen and Sommeijer [34] reads

g1 D g0 C b1w1�tf .g0/

gi D g0 C �i�t.f .gi�1/ � ai�1f .g0//
C�i .gi�1 � y0/C �i .gi�2 � y0/; i D 2; : : : ; s

y1 D gs; (19)

where

�i D 2biw1
bi�1

; �i D 2biw0
bi�1

; �i D �bi
bi�2

; i D 2; : : : ; s:

ROCKMethods
The orthogonal Runge–Kutta–Chebyshev methods
(ROCK) [2, 3, 7] are obtained through a combination
of the approaches of Lebedev (DUMKA) and van
der Houwen and Sommeijer (RKC). These methods
possess nearly optimal stability polynomials, are built
on a recurrence relation, and have been obtained for
order p D 2; 4. As the optimal stability polynomials of
even order have exactly p complex zeros [1], the idea
is to search, for a given p, an approximation of (15) of
the form

Rs.z/ D wp.z/Ps�p.z/; (20)

where Ps�p.z/ is a member of a family of polynomials
fPj .z/gj�0 orthogonal with respect to the weight func-

tion wp.z/2p
1�z2

. The function wp.z/ is a positive polynomial
of degree p. By an iterative process, one constructs
wp.z/ such that:
• The zeros of wp.z/ are close to the p complex zeros

of (15).
• The polynomialRs.z/ satisfies the pth order condi-

tion, that is,

Rs.z/D wp.z/Ps�p.z/ D 1CzC: : :C zp

pŠ
CO.zpC1/:

The theoretical foundation of such an approximation
is a theorem of Bernstein [9], which generalizes the
property of minimality and orthogonality of Chebyshev
polynomials to more general weight functions. For
p D 2; 4, such families of polynomials (depending
on s) can be constructed with nearly optimal stability
domains. Thanks to the recurrence relation of the
orthogonal polynomials fPj .z/gj�0, a method based
on recurrence formula can be constructed.

Second-order ROCK2 methods. We consider the
polynomials (20) for p D 2 (Fig. 4). The three-term
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Explicit Stabilized Runge–Kutta Methods, Fig. 4 Second-order ROCK polynomial of degree 9 (thin line) with damping � D
0:95. All internal stages are drawn (bold lines). The optimal stability polynomial is displayed in dotted line
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recurrence formula associated with the polynomials
fPj .z/gj�0

Pj .z/ D .˛j z � ˇj /Pj�1.z/ � �jPj�2.z/;

is used to define the internal stages of the method

g1 D y0 C ˛1�tf .g0/;

gi D y0 C ˛i�tf .gi�1/� ˇigi�1 � �igi�2;

i D 2; : : : ; s � 2: (21)

Then, the quadratic factor w2.z/ D 1 C 2�z C �z2

is represented by a two-stage “finishing procedure”
similarly as in [22]:

gs�1 WD gs�2 C�t�f .gs�2/

g?s WD gs�1 C�t�f .gs�1/

gs WD g?s ��t�
�

1 � �

�2

�

�

f .gs�1/� f .gs�2/
�

:

(22)

For y0 D �y, we obtain

gj D Pj .z/g0 j D 0; : : : ; s � 2
gs D w2.z/Ps�2.z/ D Rs.z/y0; (23)

where z D �t�.

Fourth-order ROCK4 methods. We consider the
polynomials (20) for p D 4. Similarly to (21), we use
the three-term recurrence formula associated with the
polynomials fPj .x/gj�0 to define the internal stages
of the method g1; : : : ; gs�4 (Fig. 5).

For the finishing procedure, simply implementing
successively two steps like (22) will only guarantee
the method to be of fourth order for linear problems.

For nonlinear problems, there are four additional order
conditions that are not encoded in the fourth-order
stability polynomials [17, Sect. II.1]. This issue is
overcome by using a composition of a s � 4 stage
method (based on recurrence relation) with a general
fourth-order method having w4.z/ as stability function
such that the resulting one-step method has fourth-
order accuracy for general problems. The Butcher
group theory [10] is the fundamental tool to achieve
this construction. An interesting feature of the ROCK4
methods is that their stability functions include a strip
around the imaginary axis near the origin. Such a prop-
erty (important for hyperbolic–parabolic equations)
does not hold for second-order stabilized Runge–Kutta
methods [3].

Implementation and Example

Explicit stabilized RK methods are usually imple-
mented with variable step sizes, variable stage orders,
a local estimator of the error, and an automatic spectral
radius estimation of the Jacobian matrix of the differen-
tial equation to be solved [3,7,27,32]. A code based on
stabilized Runge–Kutta methods typically comprises
the following steps.
Algorithm
1. Selection of the stage number

Given �tn; the current step size, compute an ap-
proximation of the spectral radius � of the Jacobian
of (1) and choose the stage number s such as s '
q

���tn
cp
; where cp is given by (16).

2. Integration with current stage number and step size
Perform an integration step from yn ! ynC1.

3. Error estimate and step size adjustment
Compute the local error errnC1. If errnC1 � Tol ,
accept the step size and update the integration time
t ! t C �tn, compute a new step size �tnC1 D
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Explicit Stabilized Runge–Kutta Methods, Fig. 5 Fourth-order ROCK polynomial of degree 9 (thin line) with damping � D
0:95. All internal stages are drawn (bold lines). The optimal stability polynomial is displayed in dotted line
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Explicit StabilizedRunge–KuttaMethods, Fig. 6 Integration
of the Brusselator problem with the Dormand–Prince method of
order 5 (DOPRI5) (left figure) and the ROCK4 method (right
figure). A few intermediate stages are also displayed for the
ROCK4 method

�.errn; errnC1;�tn�1;�tn/, and go back to 1. If
errnC1 > Tol , reject the step size, compute a new
step size �tn;new D �.errn; errnC1;�tn�1;�tn/,
and go back to 1.

The function � is a step size controller “with mem-
ory” developed for stiff problems [16], and Tol is a
weighted average of atol (absolute tolerance) and
rtol (relative tolerance). If the spectral radius of the
Jacobian is not constant or cannot be easily approxi-
mated, it is estimated numerically during the integra-
tion process through a power-like method that takes
advantage of the large number of internal stages used
for stabilized Runge–Kutta methods.

Example 2 We consider a chemical reaction, the Brus-
selator, introduced by Prigogine, Lefever, and Nicolis
(see, e.g., [17, I.1] for a description), given by the
following reaction–diffusion equations involving the
concentration of two species u.x; t/; v.x; t/ W � �
.0; T / �! R

@u

@t
D a C u2v � .b C 1/u C ˛�u

@v

@t
D bu � u2v C ˛�v:

A spatial discretization (e.g., by finite differences)
of the diffusion operator leads to a large system of
ODEs. For illustration purpose, we take� D .0; 1/ and
t 2 .0; 10/ (Fig. 6). We choose to compare the ROCK4

method with a classical efficient high-order explicit
Runge–Kutta method, namely, the fifth-order method
based on Dormand and Prince formulas (DOPRI5).
We integrate the problem with the same tolerance for
ROCK4 and DOPRI5 and check that we get the same
accuracy at the end. The cost of solving the problem
is as follows: number of steps (406 (DOPRI5) and 16
(ROCK4)) and number of function evaluations (2438
(DOPRI5) and 283 (ROCK4)).

References

1. Abdulle, A.: On roots and error constants of optimal stabil-
ity polynomials. BIT Numer. Math. 40(1), 177–182 (2000)

2. Abdulle, A.: Chebyshev methods based on orthogonal poly-
nomials. Ph.D. thesis No. 3266, Department of Mathemat-
ics, University of Geneva (2001)

3. Abdulle, A.: Fourth order Chebyshev methods with recur-
rence relation. SIAM J. Sci. Comput. 23(6), 2041–2054
(2002)

4. Abdulle, A., Cirilli, S.: Stabilized methods for stiff stochas-
tic systems. C. R. Math. Acad. Sci. Paris 345(10), 593–598
(2007)

5. Abdulle, A., Cirilli, S.: S-ROCK: Chebyshev methods for
stiff stochastic differential equations. SIAM J. Sci. Comput.
30(2), 997–1014 (2008)

6. Abdulle, A., Li, T.: S-ROCK methods for stiff Ito SDEs.
Commun. Math. Sci. 6(4), 845–868 (2008)

7. Abdulle, A., Medovikov, A.: Second order Chebyshev meth-
ods based on orthogonal polynomials. Numer. Math. 90(1),
1–18 (2001)

8. Bakker, M.: Analytical aspects of a minimax problem.
Technical note TN 62 (in Dutch), Mathematical Centre,
Amsterdam (1971)

9. Bernstein, S.: Sur les polynômes orthogonaux relatifs à un
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Definition

Exponential integrators are numerical methods for stiff
and/or highly oscillatory problems. Typically, they
make explicit use of the matrix exponential and related
functions.

Description

Exponential integrators form a class of numerical
methods for the time integration of stiff and highly
oscillatory systems of differential equations. The basic
idea behind exponential integrators is to solve a nearby
problem exactly and to use this result for the solution
of the original problem. Exponential integrators were
first considered by Hersch [3], see [7, Sect. 6] for more
details on their history.

Below, we consider three typical instances of expo-
nential integrators:

(i) Exponential quadrature rules for linear evolution
equations;

(ii) Exponential integrators for semilinear evolution
equations;

(iii) Exponential methods for highly oscillatory prob-
lems.
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For more methods (exponential multistep and gen-
eral linear methods) and specific applications in sci-
ence and engineering, we refer to the review article [7].

Notations For the numerical solution of the initial
value problem

u0.t/ D F
�

t; u.t/
�

; u.t0/ D u0; (1)

we consider one-step methods that determine for a
given approximation un 
 u.tn/ at time tn and a chosen
step size hn the subsequent approximation unC1 

u.tnC1/ at time tnC1 D tn C hn.

Exponential Quadrature Rules
The solution of the linear evolution equation

u0.t/C Au.t/ D f .t/; u.t0/ D u0; (2)

where �A is the generator of a strongly continuous
semigroup (or simply a matrix) satisfies the variation-
of-constants formula

u.tnC1/ D e�hnAu.tn/Chn
Z 1

0

e�.1��/hnAf .tnC�hn/ d�:

(3)
This representation motivates the following numerical
scheme:

unC1 D e�hnAunChn
s
X

iD1
bi .�hnA/f .tnCci hn/; (4)

which is called an exponential quadrature rule with
weights bi .�hA/ and nodes ci . Expanding f in a
Taylor series at tn in (3) and (4), and comparing both
expansions gives the order conditions

s
X

iD1
bi .z/

c
j�1
i

.j � 1/Š D 'j .z/; j D 1; : : : ; p (5)

for order p (see [7, Sect. 2] for details). Here, 'j .z/
denote the entire functions

'j .z/ D
Z 1

0

e.1�	/z
	j�1

.j � 1/Š d	; j 	 1: (6)

They satisfy 'j .0/ D 1=j Š and the recurrence relation

'jC1.z/ D 'j .z/ � 'j .0/
z

; '0.z/ D ez: (7)

Example 3 For s D p D 2 the order conditions (5)
determine the weights

b1.z/ D c2

c2 � c1
'1.z/ � 1

c2 � c1 '2.z/;

b2.z/ D � c1

c2 � c1
'1.z/C 1

c2 � c1
'2.z/: (8)

The particular choice c1 D 0 and c2 D 1 yields the
exponential trapezoidal rule.

Semilinear Evolution Equations
Consider a semilinear problem of the form

u0.t/C Au.t/ D g.t; u.t//; u.t0/ D u0; (9)

where �A is the generator of a strongly continuous
semigroup (or an N � N matrix). We assume that
(9) has a temporally smooth solution. Parabolic prob-
lems can be written in this form either as an abstract
evolution equation on a suitable function space or
as a system of ordinary differential equations in RN

stemming from a spatial discretization.

Exponential Runge–Kutta Methods
For the solution of the semilinear problem (9) we con-
sider the following class of (explicit) one-step methods

unC1De�hnAun C hn

s
X

iD1
bi .�hnA/g.tn C cihn; Uni /;

Uni De�ci hnAunChn
i�1
X

jD1
aij .�hnA/g.tnCcj hn;Unj /

(10)

with c1 D 0 and Un1 D un. The coefficients aij and
bi are constructed from exponential and related func-
tions or (rational) approximations of such functions.
Method (10) is called an s-stage exponential Runge–
Kutta method, see [6, 7]. For A D 0 it reduces to an
explicit Runge–Kutta method with coefficients bi D
bi.0/ and aij D aij .0/.

Example 4 The well-known exponential Euler method

unC1 D e�hnAun C hn'1.�hnA/g.tn; un/; (11)

is a first-order scheme with one stage (s D 1).
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Example 5 A one-parameter family of second-order
methods with two stages (s D 2) is given by

b1.z/ D '1.z/� 1

c2
'2.z/; b2.z/ D 1

c2
'2.z/;

a21.z/ D c2'1.c2z/: (12)

Exponential Rosenbrock-Type Methods
Exponential Runge–Kutta methods integrate the non-
linearity g in an explicit way. Their step size is thus
determined by the Lipschitz constant of g which results
in small time steps if the linearization is out-dated. A
remedy are Rosenbrock-type methods, see [8, 9, 11].

For the time discretization of the autonomous prob-
lem

u0.t/ D F
�

u.t/
�

; u.t0/ D u0; (13)

exponential Rosenbrock-type methods use a continu-
ous linearization of (13) along the numerical solution
un, viz.

u0.t/ D Jnu.t/C gn
�

u.t/
�

; (14a)

Jn D DF.un/ D @F

@u
.un/;

gn
�

u.t/
� D F

�

u.t/
� � Jnu.t/; (14b)

with Jn denoting the Jacobian of F and gn the nonlin-
ear remainder evaluated at un, respectively. The numer-
ical schemes make explicit use of these quantities.

By applying an exponential Runge–Kutta method
to (13), we get an exponential Rosenbrock-type method

unC1 D un C hn'1.hnJn/F.un/

Chn
s
X

iD2
bi .hnJn/

�

gn.Uni / � gn.un/
�

;

Uni D un C hnci'1.cihnJn/F.un/

Chn
i�1
X

jD2
aij .hnJn/

�

gn.Unj /� gn.un/
�

;

(15)

again with c1 D 0 and consequently Un1 D un.

Example 6 The well-known exponential Rosenbrock–
Euler method is given by

unC1 D un C hn'1.hnJn/F.un/: (16)

It has order 2 and is computationally attractive since it
requires only one matrix function per step.

Exponential Rosenbrock-type methods for non-
autonomous problems are obtained by applying (15) to
the autonomous form of the problem, see [9].

Example 7 The exponential Rosenbrock–Euler
method for non-autonomous problems is given by

unC1 D un C hn'1.hnJn/F.tn; un/C h2n'2.hnJn/vn;

(17a)

with

Jn D @F

@u
.tn; un/; vn D @F

@t
.tn; un/: (17b)

This scheme was already proposed by Pope [10].

Highly Oscillatory Problems
Problems with purely imaginary eigenvalues of large
modulus are challenging for explicit and implicit meth-
ods: whereas the former simply lack stability, the latter
tend to resolve all the oscillations in the solution.
Consequently, both methods have to use small time
steps.

Exponential integrators treat the (linear) oscillations
exactly and can therefore use larger time steps. The
error of the numerical solution is typically bounded
independently of the highest frequencies arising in
the problem. Applications range from Schrödinger
equations with time-dependent potential to Newtonian
equations of motion and semilinear wave equations.
Below, we discuss two types of methods: Magnus inte-
grators and trigonometric integrators. For more details
and other methods, we refer to [2, 7].

Magnus Integrators
Let A.t/ be a time dependent matrix. The exact solu-
tion of the initial value problem

 0.t/ D A.t/ .t/;  .0/ D  0 (18)

can be represented in the form

 .tn C h/ D e�n.h/ .tn/; (19)

where the matrix�n.h/ can be expanded in a so-called
Magnus series
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�n.h/ D
Z h

0

An.�/ d�

� 1

2

Z h

0


Z �

0
An.�/ d�; An.�/

�

d�

C 1

4

Z h

0


Z �

0


Z �

0
An.�/ d�;An.�/

�

d�;An.�/
�

d�

C 1

12

Z h

0


Z �

0
An.�/ d�;


Z �

0
An.�/ d�;An.�/

��

d�

C � � �
(20)

with An.s/ D A.tn C s/ and ŒA;B D AB � BA

denoting the matrix commutator. This representation
motivates us to look for a numerical approximation
 nC1 
  .tnC1/ of the form

 nC1 D e�n n; (21)

where�n is an approximation to�n.hn/. An extensive
review on such Magnus integrators is given in [1].

Example 8 Truncating the series after the first term
and approximating the integral by the midpoint rule
yields the exponential midpoint rule

 nC1 D ehnA.tnChn=2/ n; (22)

which is a second-order scheme.

Example 9 Truncating the series after the second term
and using the Gaussian quadrature rule with nodes
c1;2 D 1=2� p

3=6 yields a fourth-order scheme with

�n D 1

2
hn
�

A.tn C c1hn/CA.tn C c2hn/
�

C
p
3

12
h2n

h

A.tn C c2hn/; A.tn C c1hn/
i

:

(23)

This method requires two evaluations of A and one
commutator in each time step.

Trigonometric Integrators
Let � be a symmetric positive definite matrix with
possibly large norm. For the numerical solution of the
semilinear problem

q00.t/ D ��2q.t/C g.q.t//; q.0/ D q0; q
0.0/ D p0;

(24)

we use its equivalent formulation as a first-order sys-
tem with q0.t/ D p.t/ and apply the variation-of-
constants formula to get

q.t/ D cos.t�/q.0/C��1 sin.t�/p.0/

C
Z t

0

��1 sin
�

.t � s/�
�

g.q.s// ds;

p.t/ D �� sin.t�/q.0/C cos.t�/p.0/

C
Z t

0

cos
�

.t � s/��g.q.s// ds: (25)

Approximating the integrals by the trapezoidal rule
yields a first numerical method

qnC1 D cos.h�/qn C��1 sin.h�/pn

C1

2
h��1 sin.h�/g.qn/; (26)

pnC1 D �� sin.h�/qn C cos.h�/pn

C1

2
h
�

cos.h�/g.qn/C g.qnC1/
�

: (27)

If the solution of (24) has highly oscillatory compo-
nents, the use of filter functions is recommendable. We
therefore consider the more general class of one-step
schemes given by

qnC1 D cos.h�/qn C��1 sin.h�/pn

C1

2
h2�g.˚qn/;

pnC1 D �� sin.h�/qn C cos.h�/pn

C1

2
h
�

�0g.˚qn/C �1g.˚qnC1/
�

;

(28)

where ˚ D 
.h�/, � D  .h�/, �0 D  0.h�/ and
�1 D  1.h�/ with suitable filter functions 
,  ,  0
and  1, see [2, Chap. XIII]. The method is symmetric
if and only if 
 and  are even, and

 .�/ D  1.�/ sinc �;  0.�/ D  1.�/ cos �; (29)

where sinc � D sin �=�. For appropriate initial values,
a symmetric one-step method (28), (29) is equivalent
to the following two-step formulation
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qnC1�2 cos.h�/qnCqn�1 D h2 .h�/ g.
.h�/qn/:

(30)
Geometric properties of these methods are discussed
in [2].

Example 10 The particular choice

 .�/ D sinc2
�

2
; 
.�/ D

�

1C 1

3
sin2

�

2

�

sinc �

yields a method with a small error constant, see [5].

Matrix Functions
The implementation of exponential integrators requires
the numerical evaluation of matrix functions or prod-
ucts of matrix functions with vectors. The efficiency
of the integrators strongly depends on how these ap-
proximations are evaluated. For small scale problems,
a review of current methods is given in [4]. For large-
scale problems, the use of Chebyshev methods, Krylov
subspace methods, Leja interpolation or contour inte-
gral methods is recommended, see [7, Sect. 4].
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Synonyms

Extended finite element method; also related to
partition of unity Finite element method (PUFEM);
closely related to the Generalized finite element
method (GFEM); XFEM

Definition

The extended finite element method is an extension of
the finite element method allowing the introduction of
discontinuous or special approximations inside finite
elements. This introduction is carried out with a so-
called partition of unity technique. The discontinuities
considered may be strong (in the field) or weak (in the
gradient). With the XFEM, the mesh no longer needs
to conform to physical boundaries (cracks, material in-
terface, free surfaces, . . . ). The location of boundaries
are stored independently of the mesh. The level set
representation is particularly well suited in conjunction
with the XFEM.

Overview

The finite element approach is a versatile tool to
solve elliptic partial differential equation like elasticity
models (Laplacian-type operator). The mesh needs
however to conform to physical boundaries across
which the unknown field may be discontinuous. For
instance, crack growth in elastic solids requires the
mesh to follow the crack path, and remeshing at every
stage of propagation is mandatory. The reason for this
is that finite element approximations are continuous
inside each elements. A discontinuity may thus only
appear on the element boundaries. The idea behind the
XFEM is to inject a field discontinuity right inside the
element. In order to introduce discontinuous approxi-
mation inside the element, the XFEM uses the partition
of unity concept. Basically, new degrees of freedom
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are introduced which act on classical approximation
functions multiplied by a discontinuous function across
the boundary that needs to be modeled.

Basic Methodology

A Discontinuity in a 1D Diffusion Equation
We consider the following 1D diffusion problem:

u00.x/ D 0 for x 2 � D .0; 1/; u.0/ D 0; u.1/ D 1;

(1)
for which the solution is obviously u D x. Defining the
space of trial and test functions,

U D fu 2 V; u.0/ D 0; u.1/ D 1g;
U0 D fv 2 V; v.0/ D v.1/ D 0g; (2)

where V is the space with the proper regularity for
the solution, we may express the variational form
associated to the strong form (1),

u 2 U ;
Z 1

0

u0v0 dx D 0; 8v 2 U0: (3)

Let us now discretize the domain using four finite
elements of equal size. The finite element approxima-
tion, uh, has three degrees of freedom as well as test
functions vh:

uh.x/ D
3
X

iD1
uiNi .x/CN4.x/; vh.x/D

3
X

iD1
viNi.x/:

(4)
Finite element approximation functions, Ni , are de-
picted in Fig. 1. The finite element problem is given
below and yields the exact solution:

2

4

2 �1 0

�1 2 �1
0 �1 2

3

5

2

4

u1
u2
u3

3

5 D
2

4

0

0

1

3

5

)
2

4

u1
u2
u3

3

5 D
2

4

1=4

1=2

3=4

3

5 : (5)

We now consider that the field may be discontinuous
at x D xc and enforce zero Neumann boundary
conditions at xC

c and x�
c . If u is a displacement field,

this amounts physically to place a crack at x D xc

N1 N2 N3 N4

u= 0 u= 1

Extended Finite Element Method (XFEM), Fig. 1 The 1D
model problem with four finite elements

N1 N2− N3 N4

u=0 u=1

N2+

Extended Finite Element Method (XFEM), Fig. 2 The 1D
model problem with a discontinuity located at node 2

and enforcing traction free boundary conditions on the
crack lips. The problem now reads

u00.x/ D0 for x 2 �=xc; u.0/ D 0; u.1/ D 1;

u0.x�
c / Du0.xC

c / D 0: (6)

Defining the proper spaces

U c D fu 2 V 0; u.0/ D 0; u.1/ D 1g; (7)

U c0 D fv 2 V 0; v.0/ D v.1/ D 0g; (8)

where V 0 is the space with the proper regularity of
the solution now allowing discontinuity across xc . The
variational principle is now

u 2 U c ;
Z 1

0

u0v0 dx D 0; 8v 2 U c0 : (9)

Regarding the discretization, we first consider a
crack located at node 2 (see in Fig. 2). Trial and test
functions are

uh.x/ Du1N1.x/C u2�N2�.x/C u2CN2C.x/

C u3N3.x/CN4.x/; (10)

vh.x/ Dv1N1.x/C v2�N2�.x/C v2CN2C.x/

C v3N3.x/; (11)
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Extended Finite Element
Method (XFEM), Fig. 3
Enrichment functions for a
discontinuity located at a node
(left) and in between two
nodes (right)

H(x)

N2H(x)

1 2 3

H(x)

N2H(x)

1 2 3 4

N3H(x)

leading to the finite element problem and the exact
solution:

2

6

6

4

2 �1 0 0

�1 1 0 0

0 0 1 �1
0 0 �1 2

3

7

7

5

2

6

6

4

u1
u2�
u2C
u3

3

7

7

5

D

2

6

6

4

0

0

0

1

3

7

7

5

)

2

6

6

4

u1
u2�
u2C
u3

3

7

7

5

D

2

6

6

4

0

0

1

1

3

7

7

5

: (12)

Introducing the Heaviside (in fact generalized since
it goes from �1 to C1) function, depicted in Fig. 3
(left), the finite element approximation (10) may be
rewritten as

uh.x/ Du1N1.x/C u2N2.x/C u3N3.x/CN4.x/

C aN2.x/H.x/; (13)

where we have introduced the average and (half) jump
as new degrees of freedom:

u2 D u2C C u2�
2

; a D u2C � u2C
2

: (14)

We observe that in approximation (13), there are clas-
sical approximation functions N1, N2, N3, and N4 as
well as a so-called enriched approximation function
which is the product of the classical approximation
function N2 and the enrichment function H.x/. One
may assemble the stiffness matrix, and it will give the
proper solution.
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1 0 �1 2
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D
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4
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5

)

2

6
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4
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3

7

7

5

D

2

6
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4

0

1=2

1

1=2

3

7

7

5

: (15)

Note that the upper 3 � 3 matrix is the same matrix as
in (5) for which there was no crack. We now consider
that the crack is no longer located at node 2, but
in between node 2 and 3, the approximation is now
slightly different from (13) and reads

uh.x/ Du1N1.x/C u2N2.x/C u3N3.x/CN4.x/

C aN2.x/H.x/C bN3.x/H.x/: (16)

In the above both nodes 2 and 3 are enriched because
their support is split by the crack. The approximation
functions are drawn in Fig. 3 (right). If one only
enriches node 2 or 3, the jump in u and its derivative
across the discontinuity will not be independent.

Assuming the cut on elements 2-3 is at 1/3 close to
node 2, the stiffness matrix is given below. Note that
since approximation functions are discontinuous, the
integration on element 2-3 is performed in two parts:

2

6

6

6

6

4

2 �1 0 1 0

�1 2 �1 �2=3 �1=3
0 �1 2 �1=3 4=3
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0
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3

7

7

7

7

5

D

2

6

6
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0
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: (17)

A Derivative Discontinuity in a 1D Diffusion
Equation
Consider the following problem:

.a.x/u0.x//0 D0 for x 2 �=xc; a.x/ D 1;
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x 2 .0; xc/; a.x/ D ˛; x 2 .xc; 1/
(18)

u.0/ D0; u.1/ D 1; a.xc�/u0.xc�/

Da.xcC/u0.xcC/: (19)

The solution to this problem is

u D ˛x

1C .˛ � 1/xc ; x 2 .0; xc/;

u Dx C .˛ � 1/xc

1C .˛ � 1/xc ; x 2 .xc; 1/: (20)

The solution is continuous but suffers a derivative jump
at x D xc . The poor regularity of standard finite
element will take this into account without any effort
if the interface xc is placed at a node. If, however,
the interface falls inside an element, an enrichment
is needed. In the XFEM spirit, there are two ways to
proceed.

The first one is to simply consider the approxima-
tion of type (13) and to introduce a Lagrange multiplier
to force the discontinuity at point xc to be zero. Since
the Heaviside enrichment provides both jumps in u and
its derivative, the jump in derivative inside the element
will be modeled.

The second approach consists in replacing the Heav-
iside enrichment in (13) by a so-called ridge enrich-
ment, R.x/, which is depicted in Fig. 4.

Domain Discontinuity in a 1D Diffusion
Equation
Finally, we consider a last important type of discon-
tinuity that may take place inside a finite element:
the case of a domain discontinuity. We consider again
Eq. (1), but the mesh is now too large for the domain as
depicted in Fig. 5.

The finite element approximation over the domain
will again read as (4), but it will now only be integrated
only over the domain .0; 1/ (gray zone). Note that even
though node 4 lies outside the domain of interest, its
area of action intersects the domain of interest. The
degree of freedom associated to node 4 should thus
be kept to define the approximation. The fact that
displacement is prescribed inside the element (u.1/ D
1) may be taken into account by the use of a Lagrange
multiplier.

R(x)

1 2 3 4

Extended Finite Element Method (XFEM), Fig. 4 Ridge en-
richment for jump in the derivative

N1 N2 N3 N4

u=0 u=1

Extended Finite Element Method (XFEM), Fig. 5 A finite
element mesh larger than the domain of interest

Extension to 2D, 3D, and Level Set
Representation
In the previous section, we detailed how the XFEM
was enriching finite elements to account for the pres-
ence of discontinuity. The decision of whether a node
should be enriched is taken by looking at its support.
The support of a node is the set of elements connected
to it. If the finite element approximation is higher order,
degrees of freedom are not only attached to nodes but
also to element edges, faces, or elements themselves,
i.e., mesh entities. The support of a mesh entity is
the domain of influence of the approximation function
associated to this entity. Here is a set of rules to decide
whether an entity should be enriched or not. We use the
term crack and material interface, but the rules below
are more generally valid for the jump in a field or its
derivative:
1. If the support of an entity is split in two parts by a

crack, the entity will be enriched by the Heaviside
function.

2. If the support of an entity is split in two parts by a
material interface and this interface remains perfect
(does not open), the entity may be enriched by the
ridge function, provided at least one element in the
support is split in two parts by the interface.

3. If the support of an entity is split in two parts by a
material interface, the entity may be enriched by the
Heaviside enrichment. Then a Lagrange multiplier
may be introduced to enforce the law for the jump
on the interface (and possibly no jump).

4. Rules 2 and 3 may not be applied at the same time.
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5. If the support of an entity does not intersect with the
domain of interest, the degree of freedom associated
to the entity should be discarded.
A key ingredient in the success of the XFEM is the

use of level set representation of boundaries. A level
set is a signed distance function to the boundaries of
interest. Numerically, they are discretized using nodal
values and classical finite element approximations. The
use of level set dramatically accelerates the search of
entity to be enriched. Enrichment functions may also
be quickly computed from this level set. For instance,
the Heaviside enrichment is simply the sign of the level
set, whereas the ridge enrichment uses the nodal level
set values (
i ) in the following way:

R.x/ D
n
X

iD1
j
i jNi.x/ � j

n
X

iD1

iNi.x/j; (21)

where n is the number of nodes on the element.
Another advantage of the level set representation is

the fact that it opens the possibility to reuse the existing
technology on level set techniques and fast marching
methods to move boundaries.

Crack Modeling
Consider the mesh depicted in Fig. 6. A crack is placed
on the mesh. All nodes surrounded by a little square
share in common the fact that their support is split
in two parts by the crack. These nodes will thus be
enriched by the Heaviside enrichment. Regarding the
nodes of the element where the crack tip is located,
they cannot be enriched by the Heaviside function
because their support is only cut but not fully split by
the crack. These nodes will be enriched by so-called tip

H(x)=1

H(x)=−1

Extended Finite ElementMethod (XFEM), Fig. 6 A 2D mesh
with a crack. Squared nodes are enriched with the Heaviside
function and circled nodes with tip functions

functions. The final approximation of the displacement
field is the classical approximation plus the Heaviside
enrichment plus the tip enrichment:

uh.x/ D
X

i2I
uiNi .x/C

X

j2J
ajNj .x/H.x/

C
X

k2K

4
X

˛D1
bk;˛Nk.x/F˛.x/; (22)

where I is the set of nodes in the mesh, J the set of
squared nodes, andK the set of circled nodes in Fig. 6.
The (vectorial) degrees of freedom are ui , aj , and bk;˛.

The tip enrichment involves the four functions be-
low which are able to capture the asymptotic behavior
of the displacement field (at least for small strain
elasticity). Note that the first mode introduces the
proper displacement discontinuity at the crack tip (	 D
C= � �):

F1.r; 	/ Dp
r sin.	=2/;

F2.r; 	/ Dp
r cos.	=2/;

F3.r; 	/ Dp
r sin.	=2/ sin.	/;

F4.r; 	/ Dp
r cos.	=2/ sin.	/; (23)

where r and 	 are the polar coordinates at the tip of
the crack (Fig. 7). A crack may be located in 2D (and
3D) by two level sets. The first level set, lsn, indicates

Extended Finite Element Method (XFEM), Fig. 7 Two level
sets locating a crack on a 2D mesh. The crack, in red, correspond
to the set of points such that lsn D 0 and lst � 0, whereas the
crack tip corresponds to the point satisfying lsn D lst D 0
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E

the distance to the crack surface, whereas the level
set lst indicates the distance to the front (measured
tangentially to the crack). They are illustrated in Fig. 6.
The polar coordinates are easy to compute using level
set informations

r D
q

ls2n C ls2t ; 	 D arctan.lsn= lst /: (24)
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6. Moës, N., Cloirec, M., Cartraud, P., Remacle,
J.F.: A computational approach to handle complex
microstructure geometries. Comput. Methods
Appl. Mech. Eng. 192(28–30), 3163–3177 (2003).
doi:10.1016/S0045-7825(03)00346-3. http://linkinghub.
elsevier.com/retrieve/pii/S0045782503003463

7. Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.:
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FactorizationMethod in Inverse
Scattering
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Synonyms

Kirsch’s factorization method; Linear sampling
method (ambiguous and to avoid – the name is very
rarely used for the factorization method by now but has
been employed more frequently after the first papers on
the method appeared); Operator factorization method
(rarely used)

Glossary/Definition Terms

Factorization method
Inverse scattering problem
Far field operator
Factorization
Range identity

Definition

The factorization method for inverse scattering pro-
vides an explicit and theoretically sound character-
ization for the support of a scattering object using
multi-static far-field measurements at fixed frequency:
A point z belongs to the scatterer if and only if

a special test function belongs to the range of the
square root of a certain operator that can be straight-
forwardly computed in terms of far-field data. This
characterization yields a fast and easy-to-implement
numerical algorithm to image scattering objects. A cru-
cial ingredient of the proof of this characterization
is a factorization of the measurement operator, which
explains the method’s name. There are basically two
variants of the method leading to different character-
ization criteria: If the far-field operator F is normal,
the above characterization applies for the square root
.F �F /1=4 of F itself; otherwise, one considers the
square root of F] WD jReF j C ImF where ReF and
ImF are the self-adjoint and non-self-adjoint part of
F , respectively.

Overview

The factorization method was first introduced by An-
dreas Kirsch [15, 16] for time-harmonic inverse ob-
stacle and inverse medium scattering problems where
the task is to determine the support of the scatterer
from multi-static far-field measurements at fixed fre-
quency (roughly speaking, from measurements of the
far-field pattern of scattered waves in several directions
and for several incident plane waves). The method
follows the spirit of the linear sampling method and
can be seen as a refinement of the latter technique.
Both methods try to determine the support of the
scatterer by deciding whether a point z in space is
inside or outside the scattering object. When the far-
field operator F is normal, the factorization method’s
criterion for this decision is whether or not special test
functions �z, parametrized by z and explicitly known
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for homogeneous background media, are contained in
the range of the linear operator .F �F /1=4. Indeed,
when the point z is outside the scatterer then, �z is
not contained in the range of .F �F /1=4, whereas �z

belongs to this range when z is inside the scatterer.
The factorization method can be used for imaging
by computing the norm of a possible solution gz to
.F �F /1=4gz D �z using Picard’s criterion for many
sampling points z from a grid covering a region of
interest. Plotting these norms then yields a picture of
the scattering object. If F fails to be normal, a variant
of the method based on F] WD jReF j C ImF provides
analogous analytical results and imaging algorithms.

These algorithms are very efficient compared to
other techniques solving inverse scattering problems
since their numerical implementation basically
requires the computation of the singular value
decomposition of a discretization of the far-field
operator F . A further attractive feature of the method
is its independence of the nature of the scattering
object; for instance, the factorization method yields the
same object characterization and imaging algorithm
for penetrable and impenetrable objects, such that a
mathematical model describing the scatterer does not
need to be known in advance.

The analysis of the factorization method is based
on functional analytic results on range identities for
operator factorizations of the form F D H�TH .
Under appropriate assumptions, these results state,
roughly speaking, that the range of the square root
of F equals the range of H�. Moreover, via unique
continuation results and fundamental solutions, it is
usually not difficult to show that the range of H�
characterizes the scattering object, since the far-field �z

of a point source at z belongs to this range if and only
if z belongs to the scattering object. Combining these
two results hence provides a direct characterization of
the scattering object in terms of the range of the square
root of F .

Differences to the Linear Sampling Method and
Limitations
The fundamental difference between the factorization
method and the linear sampling method is that the latter
one considers an operator equation for the measure-
ment operator itself, while the factorization method
considers the corresponding equation for the square
root of this operator. Due to this difference, the fac-
torization method is able to provide a mathematically

rigorous and exact characterization of the scattering
object that is fully explicit and merely based on the
measurement operator. Note that the linear sampling
method does not share this feature, since, for points
z inside the scatterer, the theorem that is usually em-
ployed to justify that method claims that there exist
approximate solutions to a certain operator equation.
It remains however unclear how to actually determine
or to compute these approximate solutions. Several
variants of the standard version of the linear sampling
method are able to cope with this problem; see, e.g., [4]
or [6].

To obtain a mathematically rigorous characteriza-
tion of the scatterer’s support, the factorization method
however requires the inverse scattering problem under
investigation to satisfy several structural assumptions
that are not required by the linear sampling method (or
other sampling methods). The reason is a functional
analytic result on range identities for operator factor-
izations that is the backbone of the method. First, the
measurement operator F defined on a Hilbert space V
(imagine the far-field operator defined onL2 of the unit
sphere) needs to have a self-adjoint factorization of the
form F D H�TH with a compact operatorH W V !
X and a bounded operator T W X ! X�, where X
is a reflexive Banach space. It is crucial that the outer
operators of this factorization are adjoint to each other.
Second, the middle operator T needs to be a compact
perturbation of a coercive operator: T D T1 C T2 such
that Re hT1�; �iX��X � ck�k2X for all � 2 X and
some c > 0 and such that T2 is compact. There are sev-
eral inverse scattering problems where at least one of
these two conditions is violated. The first one does, for
instance, not hold for near-field measurements when
the wave number is different from zero. The coercivity
assumption for the middle operator is violated, e.g., for
electromagnetic scattering from a perfect conductor,
for acoustic scattering from a scatterer that is partly
sound-soft and partly sound-hard, and for scattering
from an inhomogeneous medium that is partly stronger
scattering and partly weaker scattering than the back-
ground medium. Consequently, providing theory that
does not require either of the two conditions would be
highly desirable.

In the first years after the invention of the method
in [15], the factorization method could only be ap-
plied to far-field inverse scattering problems where
the far-field operator is normal. When the scatterer
is absorbing, the far-field operator fails to be normal,



Factorization Method in Inverse Scattering 481

F

and it was an open problem whether the factorization
method applies to such problems. This problem has
been solved by decoupling real and imaginary parts
of the measurement operator, yielding range identities
for the square root of the auxiliary operator F] D
.Re.F /� Re.F //1=2 C Im .F / that is easily computed
in terms of F (see [12, 20]).

Applications of the Factorization Method in
Inverse Scattering
Even if the factorization method cannot be applied to
all inverse scattering problems, there are many situa-
tions where the method provides the abovementioned
characterization of the support of the scattering object.
To list only a few of them, the method has been suc-
cessfully applied to inverse acoustic obstacle scattering
from sound-soft, sound-hard, or impedance obstacles;
see [12, 15]; to inverse acoustic medium scattering
problems, see [16]; to electromagnetic medium scatter-
ing problems, see [19, 20]; to inverse electromagnetic
scattering problems at low frequency, see [11]; to
inverse scattering problems for penetrable and impen-
etrable periodic structures, see [2, 3, 24]; to inverse
problems in elasticity, see [8]; to inverse scattering
problems in acousto-elasticity, see [21]; to inverse
problems for stationary Stokes flows, see [25]; and
to inverse scattering problems for limited aperture,
see [20, Section 2.3].

Apart from inverse scattering, the factorization
method has been applied to a variety of inverse
problems for partial differential equations. The
monograph of [20] and the review of [14] indicate
a variety of other inverse problems treated by this
method and also further references for the factorization
method in inverse scattering. Finally, we mention that
the factorization method is linked to other sampling
methods as the linear sampling method; see [1, 4], and
the MUSIC algorithm, and see [5, 18].

An Example: Factorization Method for
Inverse Medium Scattering

In this section, we consider a time-harmonic inverse
medium scattering problem and explain in some detail
how the factorization method works. This material is
mostly from [16, 18, 20]. We also indicate why there
exist several variants of the method.

Scattering from an Inhomogeneous Medium
Time-harmonic scattering theory considers waves
U.x; t/ D u.x/ exp.�i!t/ with angular frequency
! > 0 and time dependence exp.�i!t/. If we denote
by c the space-dependent wave speed in R

3, and by c0
the constant wave speed in the background medium,
then the wave equation c2�U � @t tU D 0 reduces to
the Helmholtz equation

�u C k2n2u D 0 in R
3 (1)

with (constant) wave number k D !=c0 > 0 and
space-dependent refractive index n D c0=c. In the
following, we suppose that the refractive index equals
one in the complement of a bounded Lipschitz domain
D with connected complement; the domain D hence
plays the role of the scattering object.

A typical direct scattering problem is the following:
For an incident plane wave ui .x/ D exp.ik x � �/, x 2
R
3, of direction � 2 S

2 WD fx 2 R
3; jxj D 1g, we seek

a total field ut that solves (1). Moreover, the scattered
field us D ut � ui needs to satisfy the Sommerfeld
radiation condition

lim
jxj!1

jxj
�
@

@jxj � ik

�
us D0 uniformly in

Ox D x

jxj 2 S
2: (2)

Sommerfeld’s radiation condition acts as a boundary
condition “at infinity” for the scattered field and guar-
antees uniqueness of solution to scattering problems on
unbounded domains. Physically, this condition means
that the scattered wave is created locally inD and prop-
agates away fromD. The scattering problem to find us

when given ui and n2 is well posed in standard function
spaces under reasonable assumptions on the refractive
index; see [10]. Solutions to the exterior Helmholtz
equation that satisfy the Sommerfeld radiation condi-
tion behave at infinity like an outgoing spherical wave
modulated by a certain angular behavior,

u.x/ Dˆ.x/
�

u1. Ox/CO
�jxj�2�

�
as jxj ! 1;

ˆ.x/ WD eikjxj

4�jxj :

The function u1 2 L2.S2/ is called the far-field pattern
of u.
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In the following, we denote by u1. Ox; �/ the far-
field pattern in the direction Ox 2 S

2 of the scattered
wave caused by an incident plane wave of direction
� 2 S

2. The refractive index n2 is allowed to be real
and positive or complex valued with positive real part
and nonnegative imaginary part (further assumptions
on n2 will be stated where they are required).

Inverse Problem and Factorization
In an inverse medium scattering problem with far-field
data, one seeks to determine properties of the scatterer
from the knowledge of the far-field pattern u1. Ox; �/
for all directions Ox in a given set of measurement
directions and all � in a given set of directions of inci-
dence. Particularly, the factorization method solves the
following inverse scattering problem: Given u1. Ox; �/
for all Ox 2 S

2 and all � 2 S
2, find the supportD of the

scattering object! Recall that D was defined to be the
support of n2 � 1.

A central tool for the factorization method is the far-
field operator F ,

F W L2.S2/ ! L2.S2/ g 7!
Z
S2

u1.�; �/ g.�/ ds.�/:

This is an integral operator with continuous kernel
u1.�; �/, and the theory on integral equations states that
F is a compact operator. By linearity of the scattering
problem, F maps a density g to the far field of the
scattered field for the incident Herglotz wave function

vg.x/ D
Z
S2

g.�/eik � �x ds.�/; x 2 R
3:

The restriction of a Herglotz wave function vg on
the obstacle D yields a bounded linear operator H W
L2.S2/ ! L2.D/, g 7! vg

ˇ̌
D

. Obviously, if we know
fu1. Ox; �/ W Ox; � 2 S

2g for all directions Ox; � 2
S
2, then we also know F . Therefore we reformulate

our inverse scattering problem as follows: Given F ,
determine the supportD of the scatterer!

Theorem 1 (Factorization) The far-field operator
can be factored as

F D H�TH;

where T W L2.D/ ! L2.D/ is defined by Tf D
k2.n2 � 1/ .f C vjD/ and v 2 H1

loc.R
3/ solves �v C

k2n2 v D k2.1�n2/f in R
3, subject to the Sommerfeld

radiation condition (2).

The adjointH� of the Herglotz operator can be used
to characterize the scatterer’s support D: It holds that
the far-field ˆ1. Ox; z/ D exp.ik Ox � z/ of a point source
ˆ.x � z/ D exp.ikjx � zj/=.4�jx � zj/ at z 2 R

3

belongs to the range of H� if and only if z 2 D. Due
to the factorization from the last theorem, one would
now like to link the range of H� with the range of
(some power of) the measurement operator F to obtain
characterization results for the scatterer D.

Two Characterization Results
If the refractive index n2 is real, then F is a normal op-
erator and consequently possesses a complete system
of eigenvectors f�j gj2N with associated eigenvalues
f�j gj2N. Under suitable assumptions, this basis of
eigenvectors allows to prove that the test functions
ˆ1.�; z/ belong to the range of .F �F /1=4 – the square
root of F – if and only if the point z belongs to D.
One key idea of the proof is that the orthonormal
basis f�j gj2N of L2.S2/ transforms into a Riesz basis

f��1=2
j H�j g of a suitable subspace ofL2.D/ due to the

factorization of F . (This is a simplified statement; see
Section 4 in [16] for the precise formulation.) Picard’s
criterion yields the following characterization of the
scatterer:

z 2 R
3 belongs to D if and only if

1X
jD1

ˇ̌hˆ1.�; z/; �j iL2.S2/
ˇ̌2

j�j j < 1: (3)

The main assumptions on n2 for this result are that n2

is real valued, that n2�1 does not change sign, and that
k2 is not an interior transmission eigenvalue; see [7] for
a definition.

If the refractive index takes imaginary values in-
side D, which corresponds to an absorbing scattering
object, then the far-field operator fails to be normal
and the .F �F /1=4-variant of the factorization method
does not work. However Grinberg and Kirsch [12, 18]
showed that, under suitable assumptions, the auxiliary
operator F] D .Re.F /� Re.F //1=2 C Im .F / allows

to prove that the ranges of F 1=2

] and of H� are equal.
Since the test functions ˆ1.�; z/ belong to the range
of H� if and only if z 2 D, one can then conclude
that ˆ1.�; z/ belongs to the range of F 1=2

] if and only
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F
Factorization Method in Inverse Scattering, Fig. 1
Reconstructions of the support of an inhomogeneous medium
using the factorization method (Reproduced from [5]). (a)

The exact support of the scatterer (b) Reconstruction without
artificial noise (c) Reconstruction with 5 % artificial noise

if z 2 D. Denote by f j gj2N the eigenvalues of the
compact and self-adjoint operator F] and by f�j gj2N
the corresponding eigenvalues. Using Picard’s criterion
we reformulate the characterization of D as follows:

z 2 R
3 belongs to D if and only if

1X
jD1

ˇ̌hˆ1.�; z/;  j iL2.S2/
ˇ̌2

j�j j < 1: (4)

The main assumptions for this result are that
Re .n2 � 1/ does not change sign. The assumption
that k2 is not an interior transmission eigenvalue can
be dropped for this variant of the method, but not for
the .F �F /1=4-variant from (3); see [23].

Discretization
The criterion in (3) or (4) suggests the following
algorithm to image the scattering object: Choose a
discrete set of grid points in a certain test domain and
plot the reciprocal of the series in (3) or (4) on this
grid. Of course, in practice one can only plot a finite
approximation to the infinite series afflicted with cer-
tain errors. Nevertheless, one might hope that plotting
the reciprocal of the truncated series as a function of
y leads to large and small values at points z inside and
outside the scatterer D, respectively. However, the ill-
posedness of the inverse scattering problem afflicts this
imaging process, because we divide by small numbers
�j or �j . For instance, if one only knows approxima-
tions �ıj with j�ıj ��j j � ı and �ıj with k�ıj ��j k � ı,

then the difference between
ˇ̌hˆ1.�; z/; �ıj iˇ̌2=j�ıj j and

the corresponding exact value is in general much larger

than the noise level ı > 0. Consequently, one needs
to regularize the Picard series. Several methods are
available: Tikhonov regularization, see [9]; regulariza-
tion by truncation of the series, see [22]; comparison
techniques, see [13]; and noise subspace techniques,
see [5].

Figure 1 shows reconstructions for a two-
dimensional inhomogeneous medium with piecewise
constant index of refraction; n2 equals 10 inside the
inclusion, shown in Fig. 1a, and 1 outside the inclusion.
The wave number is k D 2, and the reconstruction uses
32 incident and measurement directions uniformly
distributed on the unit circle. These examples are
reproduced from [5] where further details can be found.

Key Results on Range Characterizations

The factorization method can be seen as a tool to
pass the geometric information on the scattering object
contained in the inaccessible operatorH� of the factor-
ization F D H�TH to the measurement operator F .
To this end, there are basically three functional analytic
frameworks that can be used. As in the first section,
we assume here that F is a compact operator on a
Hilbert space V , that H W V ! X is compact, and
that T W X ! X� is bounded where X is a reflexive
Banach space.

The first variant of the factorization method, the so-
called .F �F /1=4-variant, requires F to be normal. In
this case F possesses a complete basis of eigenvectors
f�j gj2N such that F�j D �j�j . The vectors  j D
�

�1=2
j H�j satisfy
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hT i ;  j iX��X D �i

j�i jıi;j ; i; j 2 N:

If T is a compact perturbation of a coercive operator,
and if the eigenvalues f�j gj2N satisfy certain geomet-
ric conditions, then Theorem 3.4 in [15] proves that
f j gj2N is a Riesz basis of X . This is the key step to
prove that the range of .F �F /1=4 equals the range of
H�; see [15, Theorem 3.6].

The second variant of the method, the so-called
infimum criterion, was the first step towards the treat-
ment of problems where F fails to be normal. In [17,
Theorem 2.3], it is shown that if there exist positive
numbers c1;2 such that

c1kT  k2X� � jhT ;  iX��X j � c2kT  k2X�

for all  2 X , then an element g 2 V belongs to the
range of H� is and only if

inf fjhF�; �iV j ; � 2 V; hg; �iV D 1g > 0:

The drawback of this characterization is that the cri-
terion whether or not a point belongs to the scatterer
requires to solve an optimization problem. To get an
image of the scattering object, one hence needs to solve
an optimization problem for each sampling point in the
grid.

The third variant of the method relies on the aux-
iliary operator F] D .Re.F /� Re.F //1=2 C Im .F /;
see [12]. For this operator, the equality of the ranges of
F
1=2

] and H� can be shown, e.g., under the conditions
that T is injective, that the real part of T is a compact
perturbation of a coercive operator and that the imagi-
nary part of T is nonnegative; see [23].
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Short Definition

The fast Fourier transform (FFT) is an algorithm
for summing a truncated Fourier series and also for
computing the coefficients (frequencies) of a Fourier
approximation by interpolation.

Fourier Series, Fourier Transforms,
and Trigonometric Interpolation

Since computers cannot manipulate an infinite number
of quantities, Fourier series and Fourier transforms are

always approximated by a trigonometric polynomial.
The tasks of summing the N -term polynomial at each
of N points on a uniform grid, and of calculating each
of its N coefficients (“frequencies”) by interpolation,
are collectively known as the discrete Fourier trans-
form (DFT). The forward and inverse DFT are the
evaluation of

fj D
NX
kD1

ak exp

�
i k

�
2 �j

N

��
j D 1; : : : ; N

(1)
and the inverse

ak D 1

N

NX
jD1

fj exp

�
�i k

�
2 �j

N

��
k D 1; : : : ; N

(2)

The forward DFT is just the summation of the Fourier
series for a function f .x/ on a grid of N uniformly
spaced points. (The series is in complex-valued ex-
ponential form rather the usual cosines and sines.)
The inverse DFT is equivalent to approximating the
usual Fourier coefficients of sophomore mathematics
by trapezoidal rule quadrature. (For nonperiodic f .x/,
the trapezoidal rule has an error proportional to 1=N 2,
but if f .x/ is analytic and f .x/ D f .x C 2�/, the ac-
curacy of both the Fourier series and of the trapezoidal
rule approximation of its coefficients is exponential
in N [3].). The forward and inverse transforms are
so similar that essentially the same algorithm can be
applied to both. This is why we speak of the “FFT” in
the singular instead of the plural. (Briggs and Henson
[4] is a book-length account that greatly (and very
readably) expands on our brief treatment of the FFT.)

Both tasks can be written as a matrix-vector multi-
ply. Let Ef and Ea denoteN -dimensional vectors whose

elements are the fj and ak , respectively. Let EET denote
a square matrix of dimension N whose elements are

Tjk D exp

�
i k

�
2 �j

N

��
; j D 1; 2; : : : N;

k D 1; 2; : : : N (3)

Then
Ef D EET Ea [MMT] (4)

This way of calculating the grid point values (“sam-
ples”) of a function f .x/ from the lowest N terms
of its Fourier series, or calculating the Fourier coef-
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ficients of the trigonometric polynomial that interpo-
lates f .x/ at the N grid points, is called the Matrix
Multiplication Transform (MMT) [3]. The cost is about
6N 2 real floating-point operations where we count
both multiplications and additions equally and where

one complex-valued multiplication is the equivalent of
four real-valued operations and one complex-valued
addition costs as much as two real-valued operations.

The FFT’s achievement is to perform the same
operation very cheaply:

cost of N-pt. complex FFT � 5N log2ŒN � total real operations (5)

For N D 1;024, for example, the MMT cost is about
6;000N floating-point operations, whereas the FFT
price is only 50N , a savings of a factor of 120!

The Curse of Conventions

Library FFT software usually evaluates sums over
positive wave numbers only, as in (1), whereas the
Fourier series in mathematics textbooks and physics
and engineering applications is almost always the sum
over both positive and negative wave numbers:

fj D
N=2�1X
mD�N=2

am exp

�
i m

�
2 �j

N

��
(6)

The two forms are mathematically equivalent because
exp.i Œ2�=N �mj / is invariant to the shiftm ! m˙N ,
but the indexing is altered: am ! am�N form > N=2.

Library software employs positive wave numbers as
in (1) because this makes life easier for the computer
programmer. Unfortunately, this convention requires
the physicist to convert the FFT output into the con-
ventional form (6). Matlab helpfully provides a routine
fftshift, but it is usually necessary to do the conversion
manually. One also must be very careful when taking
derivatives (Chap. 9 of [3]). Some library software
starts the sum at wave number zero whereas others, as
here, begin with wave number one. Be vigilant!

Multidimensional Transforms and Partial
Summation, Alias Factored Summation

Transforms in d dimensions can be performed by con-
structing a complex-valued square matrix of dimension
Nd followed by a matrix-vector multiply, but this costs
about 6N 2d floating-point operations and requires stor-
age of N2d numbers, both very expensive. It is far

cheaper, in both operation count and storage, to apply
the strategy known variously as “partial summation”
or “factored summation,” which are fancy labels or
performing multidimensional transforms as a nested
sequence of one-dimensional transforms [3].

To illustrate the basic idea, the two-dimensional
case is sufficient. Arrange the Fourier coefficients in

an M � N matrix EEa, ordered so that different x wave

numbers correspond to different matrix rows. Let
EET x

and EET y denote the one-dimensional transformation
matrices as defined above of dimensions M � M and
N �N , respectively. Defining T to denote matrix trans-
position without complex conjugation of the elements,
the two-dimensional transform is

EEf D
 

EET y
� EET x EEa

�T!T

[2D MMT, factored summation] (7)

The cost is about 6MN.MCN/ versus 6M2N 2 for the
single-giant-matrix approach. The savings is a factor of
N=2 in two dimensions when M D N and a savings
of a factor of Nd�1=d in d dimensions.

It is important to note that the partial summa-
tion/factored summation trick is not restricted to
Fourier transforms, but is applicable to any tensor
product grid with a tensor product basis. (By a “tensor
product” grid, we mean a lattice of points .xj ; yk/
defined in two dimensions by taking all possible
pairwise combinations of the one-dimensional grids
xj ; j D 1; 2; : : :M and yk; k D 1; : : : N ; similarly, a
tensor product basis consists of all possible pairwise
products �j .x/ k.y/ from a pair of one-dimensional
basis sets.)
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FFT Algorithm

It is unnecessary to describe the FFT in detail because
it is a perfect “black box.” Every numerical library
and all systems like Maple, Mathematica, and Matlab
contain highly optimized FFT routines. Consequently,
it is never necessary for the user to write his own FFT
software. Furthermore, the FFT is a direct, determinis-
tic algorithm with no user-chosen parameters to fiddle
with. The FFT is very “well conditioned” in the sense
that there is little accumulation of roundoff error even
for very large N .

Still, it is worth noting that the algorithmic heart of
the FFT is factored summation. To see this connection,

it is helpful to rewrite the one-dimensional transform in
a form similar to a special case of the two-dimensional
transform: special in that the second dimension (“y”)
has just two basis functions and two grid points.

First, introduce composite indices to split both j
and k into two parts:

j D j 0 C JN=2; j 0 D 1; 2 : : : N=2; J D 0; 1 (8)

k D 2k0 �K; k0 D 1; 2 : : : N=2; K D 0; 1 (9)

where J D 0 corresponds to the first half of index j
and J D 1 corresponds to the second half of index j .
The index K D 0 selects the even values of k while
K D 1 selects odd k. The DFT successively becomes

fj D
NX
kD1

ak exp

�
i k

�
2 �j

N

��
(10)

fj 0CJN=2 D
1X

KD0

N=2X
k0D1

a2k0�K exp

�
i
�
2k0 �K

� �
j 0 C JN=2

� �2 �
N

��
(11)

Qfj 0;J D
1X

KD0

N=2X
mD1

Qam;K exp

�
i .2m �K/ �j 0 C JN=2

� �2 �
N

��
(12)

D
1X

KD0

N=2X
mD1

Qam;K exp

�
i2mj 0 2 �

N
� iKj 0 2 �

N
C i2mJN=2

2 �

N
� iKJN=22 �

N

�

where we have introduced

Qfj 0;J �
�

fj 0 ; J D 0

fj 0CN=2; J D 1
& Qam;K �

�
a2m; K D 0

a2m�1; K D 1
(13)

Observing that exp.�i2mJ.N=2/.2�=N// D
exp.�imJ2�/ is one for all integersm and J and that

exp .�iKj 02 �=N/ is independent of k0 and therefore
can be taken outside the summation yields

Qfj 0;J D exp

�
iKj 0 2 �

N

� N=2X
mD1

1X
KD0

Qam;K exp

�
�i2mj 0 2 �

N

�
exp .i �KJ / (14)

The double summation is identical in form to
two-dimensional transform in which there are just
two basis functions in the second coordinate y,
indexed by K , evaluated at only two points in y,

indexed by J . We can therefore apply factored
summation to evaluate this series as a pair of
one-dimensional sums, saving roughly a factor
of 2.
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The crucial property that allows factored summation
is that the exponential basis functions can be factored
into products by the familiar identity exp.a C b/ D
exp.a/ exp.b/. If N is a power of two, then this
pairwise factorization can be applied again and again.
One does not quite save a factor of 2 at each step
because there are additional operations besides matrix-
vector multiplies, but the reduction in cost from 6N 2

to 5N log2.N / is nonetheless dramatic.
When N is a composite of products of prime num-

bers, i.e., N D 2m13m25m37m4 : : : where the exponents
mj are nonnegative integers, it is still possible to apply
factored summation to obtain a very fast transform.
The “composite prime” FFT is slower than when N
is a power of two, partly because the transform is
inherently less efficient and partly also because the
algorithm must identify the prime factors and their
exponents in N . Consequently, it is very common for
N to be chosen in the formN D 2m in applications, but
there is only a modest loss of efficiency if N D 2mp

where p is another small prime.

FFT on Parallel Computers

The FFT evaluates sums which couple every grid point
and basis function, which would seem bad for par-
allelism. However, intensive applications are usually
multidimensional Fourier transform which, as noted
earlier, are performed by factored summation as a
series of one-dimensional transforms which can be
done in parallel on different processors. Transposing
the data before the next step of factored summation
requires a lot of interprocessor communication [15].
On current architectures, these difficulties have not
precluded very ambitious and highly parallel appli-
cations such as the three-dimensional pseudospectral
flow simulations of Mininni et al. [12].

Variants: Fast Cosine Transform and Parity

When a function f .x/ has the property that it is
equal to its own reflection across the origin, that is,
f .x/ D f .�x/ for all x, the function is said to be
“symmetric with respect to x D 0” or to possess the
property of “even parity”; its Fourier series will contain
only cosine functions. Similarly, a function with the

property that f .x/ D �f .�x/ for all x is said to
be “antisymmetric” or of “odd parity” and its Fourier
series contains only sines. The fast cosine transform
(FCT) and fast sine transform (FST) manipulate pure
cosine and sine series, respectively, more efficiently
than the FFT [14].

As explained in [3], Fourier series consisting only
of odd cosines or only odd sines are common in
applications. Specialized “quarter-wave” transforms
have been developed by Swarztrauber [13] in his
FFTPACK library. Written originally in Fortran (http://
www.netlib.org/fftpack/), C and Java (http://sites.
google.com/site/piotrwendykier/software/jtransforms)
translations are available.

Because the FFT is so valuable in applications,
many variants of the general, complex-valued FFT ex-
ist even though the underlying principles are the same.
The whimsically named “Fastest Fourier Transform in
the West” (FFTW) will time various options to deter-
mine which is best on your particular hardware [8].

Restrictions and Generalizations

The FFT is applicable only when some restrictions
are satisfied. First, the FFT only applies to a basis
of exponentials, or equivalently, the sines and cosines
of an ordinary Fourier series, and also to functions
obtainable from sines and cosines by a smooth change
of coordinate. The latter category includes Chebyshev
polynomials and rational Chebyshev functions [3].
The FFT is not applicable to Legendre, Gegenbauer,
and Jacobi polynomials except for the special case of
Chebyshev polynomials.

The second restriction is that the grid must be
uniformly spaced.

So-called nonuniform FFTs (NUFFTs) remove
these restrictions. For example, [2] proposed an
efficient NUFFT for summing N -term Fourier series
“off-grid,” that is, at irregularly distributed points.
His procedure is to pad the Fourier coefficients
with zeros, take a conventional FFT with 2N or
3N terms, and then apply low-degree polynomial
interpolation to the samples created by the FFT. The
rationale is that most of the error in polynomial
interpolation is in high Fourier wave numbers, but
by construction, these are absent. This procedure is
implicitly used in the US global spherical harmonic
spectral weather forecasting model, which employs

http://www.netlib.org/fftpack/
http://www.netlib.org/fftpack/
http://sites.google.com/site/piotrwendykier/software/jtransforms
http://sites.google.com/site/piotrwendykier/software/jtransforms
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polynomial interpolation for “off-grid” interpolation
at the irregularly spaced departure points in its semi-
Lagrangian time advancement scheme. The high wave
number coefficients are removed by filtering to prevent
so-called aliasing effects, but a fringe benefit of the
filtering is a great improvement in the accuracy of
“off-grid” spectral approximation. Ware’s [16] review
compares a variety of NUFFTs.

As explained in [10], the fast multipole method
(FMM) was originally devised to approximate the
gravitational forces of a cluster of 100,000 stars by
multipole series – a local Taylor expansion – with only
a handful of terms. Boyd [1] and Dutt and Rokhlin [7]
pointed out that the FMM can sum spectral series on
both uniform and nonuniform grids even for basis sets,
such as Legendre polynomials and associated Legendre
functions, for which the FFT is inapplicable.

FMM and closely related treecode algorithms are
still an active research frontier and have been extended
to radial basis functions [11]. Although nominally
NUFFTs claim O.N log2.N // performance, some-
times even anO.N/ cost, these generalized FFTs have
significant disadvantages compared to the original.
First, the proportionality constant in front of the
N log2.N / factor is usually huge compared to the FFT
proportionality factor of 5. Second, NUFFTs require
additional approximations which make them inexact
even in infinite-precision arithmetic and require users
to choose parameters to control the trade-off between
speed and accuracy. Good, robust library software
is much harder to find for NUFFTs than for FFTs.
Nevertheless, these FFT generalizations greatly extend
the range of spectral applications.

History

Gauss invented the FFT in 1805 to calculate the orbit
of an asteroid. It was then forgotten for nearly a century
until Carl Runge, best known for the Runge-Kutta
family of time-integration methods, rediscovered the
FFT in 1903. As reviewed by Carse and Urquhart [5],
Sir Edmund Whittaker’s mathematical laboratory used
printed forms to guide the student calculators, a form
of computer programming for the FFT when comput-
ers were people. The algorithm was then forgotten a
second time. The statistician Irving Good described
forms of both partial summation and FFT in [9], but the
fast Fourier transform exploded only after Cooley and

Tukey’s rediscovery [6]. The explosion has included
not only FFT software and thousands of applications
but also the development of special-purpose chips that
hardwire the FFT for signal processing, data analysis,
and digital music.

Applications

The applications of the FFT are more numerous than
the stars in the galaxy, and we can only mention a
couple. Time series analysis employs the FFT to look
for periodicities in a 100 years of weather data or a
decade of stock market prices, automatically identify-
ing oscillations and cycles.

Another application is to solve partial differential
equations and integral equations by Chebyshev polyno-
mial and Fourier spectral methods [3]. The Chebyshev
polynomials, Tn.x/, are just a Fourier cosine series
in disguise, connected by the identity Tn.cos.t// D
cos.nt/, and so can be manipulated by the fast cosine
transform. Differentiation is most efficient in coeffi-
cient space using d=dx.exp.ikx// D ik exp.ikx/, but
multiplication in a nonlinear term is most efficient us-
ing grid point values of the factors. In time-dependent
problems, the FFT is used to jump back and forth
between the grid point and coefficient (“nodal” and
“modal”) representations at each and every time step.
The global weather forecasting model for the United
States is such a spectral model. However, it is only
one example among a vast number of spectral method
applications.
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Fast Marching Methods

Fast marching methods are computational techniques
to efficiently solve the Eikonal equation given by

jruj D K.x/

where x is a point in Rn, u is an unknown function
of x, and K.x/ is a cost function known at every
point in the domain. This is a first-order nonlinear
partial differential equation and occurs in a spectrum
of scientific and engineering problems, including such
varied applications as wave propagation and seismic
imaging, image processing, photolithography, optics,
control theory, and robotic path planning.

In general, the Eikonal equation is a special form
of the more general first-order static Hamilton–Jacobi
equation given by

H.x; u;Du/ D 0

in which the function H is known, but depends on x,
the unknown function u, and the various first deriva-
tives of u, denoted by Du. Here, we are interested
in the so-called viscosity-solutions, which may be
non-differentiable. To fully specify the Eikonal and
Hamilton–Jacobi equations, boundary conditions are
also provided which provide the solution u on a hy-
persurface in the domain.

Three simple examples are given by:
• The distance equation:

jruj D 1; u D 0 on 	

where 	 is a hypersurface in Rn. The solution u.x/
then gives the Euclidean distance from any point in
Rn to the boundary set 	 .

• The Eikonal equation:

jruj D K.x/; u D 0 on 	

where K.x/ is an isotropic cost function defined at
every point in the domain. Here, isotropic means
that the cost of moving through the point x does
not depend on the direction. The solution u.x/ then
gives the path with the least total cost from any point
in Rnto the boundary set 	 .

• The anisotropic Hamilton–Jacobi equation:

jruj D K.x;ru/; u D 0 on 	

where the cost function K.x;ru/ depends on the
direction of motion through the point x. The solu-
tion u.x/ then gives the path with the least total cost
from any point in Rn to the boundary set 	 .
Because of the nonlinear nature of these equa-

tions, it may seem that any numerical scheme must
fundamentally rely on computing values of the so-
lution at discrete mesh points by iteratively solving
a list of coupled nonlinear equations. Fast marching
methods exploit a fundamental ordering inherent in
the equations themselves, and yield highly efficient
numerical methods that avoid iteration entirely, and
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have computational complexity of O.N logN/, where
N is the total number of grid points in the mesh.

Dijkstra’s Method and Optimal Paths
We begin discussing such efficient methods by first
considering a discrete optimal trajectory problem on
a network. Given a network and a cost associated
with each node, the global optimal trajectory is the
most efficient path from a starting point to some exit
set in the domain. Dijkstra’s classic algorithm [5]
computes the minimal cost of reaching any node on a
network in O.N logN/ operations. Since the cost can
depend on both the particular node, and the particular
link, Dijkstra’s method applies to both isotropic and
anisotropic control problems. The distinction is minor
for discrete problems, but significant for continuous
problems. Dijkstra’s method is a ‘one-pass’ algorithm;
each point on the network is updated a constant number
of times to produce the solution. This efficiency comes
from a careful use of the direction of information
propagation and stems from the optimality principle.

We briefly summarize Dijkstra’s method, since the
flow of logic will be important in explaining fast
marching methods. For simplicity, imagine a rectangu-
lar grid of size h in two space dimensions, where the
cost Kij > 0 is given for passing through a grid point
xij D .ih; jh/. We first note that the minimal total cost
uij of arriving at the node xij can be written in terms of
the minimal total cost of arriving at its neighbors:

uij D min.ui�1;j ; uiC1;j ; ui;j�1; ui;jC1/CKij: (1)

Then, to find the minimal total cost of reaching a grid
point from a given starting point, Dijkstra’s method di-
vides grid points into three classes: Far (no information
about the correct value of u is known), Accepted (the
correct value of u has been computed), and Considered
(adjacent to Accepted). Begin by classifying all initial
starting points as Considered and assigned with an
initial value u = 0. All other points are classified as
Far and assigned an infinite initial value. The algorithm
proceeds by (1) moving the smallest Considered value
into the Accepted set, (2) moving its Far neighbors into
the Considered set, (3) recomputing all Considered
neighbors according to formula 1, and then returning
to (1) until all points become Known. This algorithm
has the computational complexity of O.N log.N //;
the factor of log.N / reflects the necessity of main-
taining a sorted list of the Considered values ui;j

to determine the next Accepted grid point. Efficient
implementation can be obtained using heap-sort data
structures.

Consider now the problem of finding the true
cheapest path in a two-dimensional domain: here,
ui;j represents the cost of reaching and entering
the subdomain of the region represented by the cell
centered at grid point i; j . Executing Dijkstra’s method
to find the optimal (cheapest/shortest) path from a
starting position to an exit set produces a solution to
the PDE max.juxj; juyj/ D h 	 K .

It is easy to see that this produces a solution which
remains on the links between the mesh points. Consider
an easy version of this problem, in which one divides
the unit square in cells, each of whose cost is 1, and
the goal is to find the shortest path from (0, 0) to
(1, 1). As the grid becomes finer and finer, Dijkstra’s
method always produces a stairstep path with total cost
2 and does not converge to the correct answer, which
is a diagonal path with minimal cost

p
2, (see [13]).

As h goes to zero, the true desired solution of this
continuous Eikonal problem is given by the solution

to
ˇ̌
ˇu2x C u2y

ˇ̌
ˇ1=2 D K D 1.

Dijkstra-Like Solvers for Continuous Isotropic
Control
Nonetheless, algorithms which produce convergent ap-
proximations to the true shortest path for continuous
problems can be obtained: the causality property ob-
served above can serve as a basis for Dijkstra-like
methods for the Eikonal PDE. The first such method
was introduced by Tsitsiklis for isotropic control prob-
lems using first-order semi-Lagrangian discretizations
on uniform Cartesian grids [18]. The fast marching
method was developed in [11], uses first-order up-
wind finite differences in the context of isotropic front
propagation to build a Dijkstra-like Eikonal solver.
A detailed discussion of similarities and differences
of these approaches can be found in [17]. Sethian
and collaborators have later extended the fast march-
ing approach to higher-order discretizations on grids
and meshes [14], more general anisotropic Hamilton–
Jacobi–Bellman PDEs [15, 17], and quasi-variational
inequalities [16].

We now briefly discuss the finite difference approx-
imations behind Fast Marching Methods.
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Fast Marching Methods, Fig. 1 Segmented fundus vessels [19] Navigating chemical accessibility space [7] 3D Navier–Stokes
multiphase/multifluid with interface permeability and surface tension under external agitator [9, 10]

Fast Marching Method Update Procedure
We approximate the Eikonal equation

jruj D K.x/

where K.x/ is the cost at point x in the domain. As a
two-dimensional example, we replace the gradient by
an upwind approximant of the form:

"
max.D�x

ij u;�DCx
ij u; 0/2C

max.D�y
ij u;�DCy

ij u; 0/2

#1=2
D Kij; (2)

where we have used standard finite difference notation.
The fast marching method is as follows. Suppose

at some time the Eikonal solution is known at a set
of Accepted points. For every not-yet accepted grid
point with an Accepted neighbor, we compute a trial
solution to the above quadratic Eq. 2, using the given
values for u at accepted points and values of 1 at all
other points. We now observe that the smallest of these
trial solutions must be correct, since it depends only
on accepted values which are themselves smaller. This
“causality” relationship can be exploited to efficiently
and systematically compute the solution as follows:

First, tag points in the boundary conditions as Ac-
cepted. Then tag as Considered all points one grid point
away and compute values at those points by solving
Eq. 2. Finally, tag as Far all other grid points. Then the
loop is:
1. Begin loop: Let Trial be the Considered point with

smallest value of u.
2. Tag as Considered all neighbors of Trial that are not

Accepted. If the neighbor is in Far, remove it from
that set and add it to the set Considered.

3. Recompute the values of u at all Considered neigh-
bors of Trial by solving the piecewise quadratic
Eq. 2.

4. Add point Trial to Accepted; remove from Consid-
ered.

5. Return to top until the Considered set is empty.
This is the fast marching method given in [11]: the key
to efficient implementation lies in a fast heap algorithm
to locate the grid point with the smallest value for u in
set of Considered grid points.

Beyond the Eikonal Equation: Dijkstra-like Solvers
for Continuous Anisotropic Control
The above solvers are special cases of the more general
“Ordered Upwind Methods,” introduced by Sethian
and Vladimirsky in [15–17] for full continuous optimal
control problem, in which the cost function depends on
both position and direction. This corresponds to prob-
lems in anisotropic front propagation, with applications
to such areas as seismic exploration and semiconductor
processing. They showed how to produce the solution
uij by recalculating each uij at most r times, where r
depends only the equation and the mesh structure, but
not upon the number of mesh points.

Building one-pass Dijkstra-like methods for general
optimal control is considerably more challenging than
it is for the Eikonal case, since characteristics no
longer coincide with gradient lines of the viscosity
solution. Thus, characteristics and gradient lines may
in fact lie in different simplexes. This is precisely
why the Eikonal solvers discussed above cannot be
directly applied in the anisotropic (non-Eikonal) case:
it is no longer possible to de-couple the system by
computing/accepting mesh points in ascending order.
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The key idea introduced in [15,16] is to use the local
anisotropy of the cost function to limit the number of
points on the accepted front that must be examined in
the update of each Considered point. Define F1.F2/ to
the maximum (minimum) of the cost functionK.x; Ea/,
where Ea is unit vector determining the motion. Then the
anisotropy ratio F1=F2 can be used to exclude a large
fraction of points on the Accepted Front in the update
of any Considered Point; the size of this excluded
subset depends on the anisotropy ratio. The result
are one-pass Dijkstra-like methods with computational
complexity O..F2

F1
/2N log.N //. See [16] for proof of

convergence to the viscosity solution and [16, 17] for
numerous examples.

Examples
There are a large number of algorithmic extensions
for fast marching methods, including higher-order ver-
sions [14] and parallel implementations. They have
been used in many applications, including as reinitial-
ization techniques in level set methods [1, 4], seismic
inversion [3] and the computation of multiple arrivals
in wave propagation [6], medical imaging [8], and
photolithography development in semiconductor man-
ufacturing. Here, we show three examples. On the left,
variants of fast marching methods are used to segment
out blood vessels in the eye. In the middle, a high-
dimensional version is used to find accessible pathways
through a chemical structure. On the right, they form
part of the core Voronoi step in Voronoi Implicit Inter-
face Techniques to track problems involving multiple
interacting multiphase physics.
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Introduction

The core of most computational chemistry calculations
consists of a large eigenvalue problem which is
to be solved several times in the course of a
complex nonlinear iteration. Other entries in this
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encyclopedia discuss the origin of this problem which
is common in electronic structures for example.
The entries (�Large-Scale Electronic Structure and
Nanoscience Calculations), (�Numerical Analysis of
Eigenproblems for Electronic Structure Calculations),
(�Density Functional Theory), (�Self-Consistent
Field (SCF) Algorithms), (�Finite Difference
Methods), (�Finite Element Methods for Electronic
Structure), (�Numerical Approaches for High-Dimen-
sional PDEs for Quantum Chemistry) discuss various
related aspects of the problem and should be consulted
for details.

Here we focus specifically on the numerical solution
of the eigenvalue problem. Due to the rich variety
of techniques used in computational chemistry, one is
faced with many different types of matrix eigenvalue
problems to be solved. One common feature of these
problems is that they are real symmetric and that the
number of eigenvalues or eigenvectors to be computed
is often large, being of the order of the total number
of valence electrons in the system. Apart from this
feature, the main differences between the problems
arise from the type of discretization as well as the
specific technique used. When plane-wave bases are
used for example, the matrix is typically dense and it
is often not formed explicitly but used in the form of
a matrix-vector product subroutine which is invoked in
the diagonalization routine. When real-space methods
are used, for example, [2, 5, 6, 13], the matrix is sparse
and is either explicitly available using some sparse ma-
trix storage, see, for example, [11] or is again available
in the form of a “stencil” operation, see, e.g., [6]. Real-
space codes benefit from savings brought about by not
needing to store the Hamiltonian matrix, although this
may be balanced by the need to store larger vector
bases.

As was mentioned above, a common difficulty when
solving the (discretized) eigenproblems lies in the
large number of required eigenvalues/vectors to be
computed. This number can in the thousands or tens
of thousands in modern calculations. In addition to
storage, maintaining the orthogonality of the basis
vectors or just the approximate eigenvectors can be
very demanding, often resulting in the most com-
putationally expensive part of diagonalization codes.
Another challenge is that the relative separation of the
eigenvalues decreases as the matrix size increases, and
this has an adverse effect on the rate of convergence of

the eigenvalue solvers. Preconditioning techniques are
often invoked to remedy this.

Among the oldest methods for computing eigen-
spectra is the well-known power method and its block
generalization the subspace iteration developed by
Bauer in the 1960s, see, for example, [10, 11]. Krylov
subspace methods, among which are the Lanczos, and
Arnoldi methods, appeared in the early 1950s but did
not get the attention they deserved for various reasons
until the 1970s and 1980s [10,11]. These are projection
methods, that is, methods for extracting approximate
eigenvectors from selected subspaces. They can be
improved by adding polynomial acceleration shift-
and-invert [10], or implicit restart [8]. Among other
variations to the main scheme of the Krylov approach
are Davidson’s method, Generalized Davidson’s
method [9], or the Jacobi-Davidson approach [3].

Projection Methods and the Subspace
Iteration Algorithm

Numerical algorithms for extracting eigenvalues and
vectors of large matrices often combine a few common
ingredients. The following three can be found in the
most successful algorithms in use today: (1) projection
techniques, (2) preconditioning techniques, and (3) de-
flation and restarting techniques. This sections focuses
on general projection-type methods and will discuss
the subspace iteration algorithm.

Projection Methods and the Rayleigh–Ritz
Procedure
These are techniques for extracting eigenvalues of a
matrix from a given subspace. The general formulation
of a projection process starts with two subspaces K
and L of the same dimension. The subspace K is
the subspace of “approximants,” that is, the approx-
imate eigenvectors will be sought among vectors in
this space. Let m be the dimension of this space.
The subspace K is the subspace of constraints, i.e.,
it determines the constraints that need to be applied
to extract the approximations from K . Since we have
m degrees of freedom, we also need m constraints to
determine eigenvectors, soLwill be of dimensionm as
well. The projection process fill extract an approximate
eigenpair Q�; Qu such that:

http://dx.doi.org/10.1007/978-3-540-70529-1_253
http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_256
http://dx.doi.org/10.1007/978-3-540-70529-1_414
http://dx.doi.org/10.1007/978-3-540-70529-1_248
http://dx.doi.org/10.1007/978-3-540-70529-1_245
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Q� 2 C; Qu 2 KI . Q�I �A/Qu ? L (1)

The special case when L D K is that of Orthogonal
projection methods. The general case, when L ¤ K ,
corresponds to Oblique projection methods, which is
not too common for the symmetric case.

The question which we will address now is the
following. We are given a subspace X which is known
to contain good approximations to some of the eigen-
vectors ofA and we would like to extract these approx-
imations. A good way to do this is via the Rayleigh–
Ritz process, which is a projection method onto the
subspace X and orthogonally to X . In the above
notation, this means that the process uses L D K D
X . We start by building an orthonormal basis Q D
Œq1; : : : ; qm� of X . Then we write an approximation
in the form Qu D Qy and obtain y by writing the
orthgonality conditionQH.A� Q�I/Qu D 0which yields
the projected eigenvalue problem:

QHAQy D Q�y:

Algorithm 1 Rayleigh–Ritz Procedure

1. Obtain an orthonormal basis Q of X
2. Compute C D QHAQ (an m�m matrix)
3. Obtain Schur factorization of C , C D YRY H

4. Compute QU D QY

When X is (exactly) invariant, then this procedure
will yield exact eigenvalues and eigenvectors. Indeed
since X is invariant, .A � Q�I/u D Qz for a certain z.
Then QHQz D 0 implies z D 0 and therefore
.A � Q�I/u D 0. This procedure is often referred to
as subspace rotation in the computational chemistry
literature. Indeed, Q, and QU D QY , are both bases
of the same subspace X .

Subspace Iteration
The original idea of subspace iteration is that of a
projection technique (Rayleigh–Ritz) onto a subspace
if the form Y D AkX , where X is a matrix of size
n �m, representing the basis of some initial subspace.
As can be seen, this is a simple generalization of the
power method, which iterates with a single vector. In
practice, Ak is replaced by a suitable polynomial, for
example, Chebyshev.

One of the main advantages of subspace iteration is
its ease of implementation, especially in the symmetric
case. The method is also easy to analyze mathemat-
ically. On the other hand, a known disadvantage of
the method is that it is generally slower than its rivals
obtained from Krylov subspaces. There are, however,
some important uses of the method in practice. Be-
cause its analysis is rather simple, the method pro-
vides an attractive means for validating results ob-
tained from a given subspace. This is especially true in
the real symmetric (or complex Hermitian case). The
method is often used with polynomial acceleration:
AkX replaced by Ck.A/X , where Ck is typically
a Chebyshev polynomial of the first kind, see, for
example, [11].

Algorithm 2 Subspace Iteration with Projection

Start: Choose an initial system of vectors
X D Œx0; : : : ; xm� and an initial
polynomial Ck .

Iterate: Until convergence Do:
Compute OZ D Ck.A/Xold.
Orthonormalize OZ into Z.
Compute B D ZHAZ and use the QR
algorithm to compute the
Schur vectors Y D Œy1; : : : ; ym� of B .
Compute Xnew D ZY .
Test for convergence. If satisfied stop.
Else select a new polynomial C 0

k0

and continue.
EndDo

If the eigenvalues of A are labeled such that
j�1j � j�2j � � � � j�mj > j�mC1j; � � � , then, in
the symmetric real case and without acceleration
(Ck.t/ D tk) the error for the i -th approximate
eigenvector Qui , with i � m, will behave like
j�mC1=�i jk .

The advantage of this approach when compared
with alternatives in the context of DFT calculations
is that the subspace iteration procedure can exploit
the subspace calculated in the previous Self-Consistent
Field (SCF) iteration. In fact, we can even make the
subspace iteration a nonlinear process, as was sug-
gested in [6]. In other words, the Hamiltonian is up-
dated at each restart of the subspace iteration loop,
instead of waiting for the eigenvalues to all converge.
The savings in computational time with this approach
can be substantial over conventional, general purpose,
techniques.
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Krylov Subspace Methods

Krylov Subspace Methods are projection methods on
Krylov subspaces, that is, on subspace of the form:

Km.A; v1/ D spanfv1; Av1; � � � ; Am�1v1g (2)

where v1 is some initial vector and m is an integer.
This is arguably the most important class of projection
methods today, whether for solving linear systems of
equations or for solving eigenvalue problems. Many
variants of Krylov subspace methods exist depending
on the choice of subspace L as well as other choices
related to deflation and restarting.

Note that Km is the subspace of vectors of the
form p.A/v where p is a polynomial of degree not
exceeding m � 1. If � is the degree of the minimal
polynomial of v, then,Km D K� for allm � � andK�

is invariant under A. In fact dim.Km/ D m iff � � m.

The Lanczos Algorithm
The Lanczos algorithm is one of the best-known tech-
niques for diagonalizing a large sparse matrix A. In
theory, the Lanczos algorithm generates an orthonor-
mal basis v1; v2; : : : ; vm, via an inexpensive three-term
recurrence of the form:

ˇjC1vjC1 D Avj � ˛j vj � ˇj vj�1 :

In the above sequence, ˛j D vHj Avj , and ˇjC1 D
kAvj � ˛j vj � ˇj vj�1k2. So the j th step of the
algorithm starts by computing ˛j , then proceeds to
form the vector OvjC1 D Avj � ˛j vj � ˇj vj�1, and
then vjC1 D OvjC1=ˇjC1. Note that for j D 1, the
formula for Ov2 changes to Ov2 D Av2 � ˛2v2. The
algorithm is a form of the Gram-Schmidt process for
computing an orthonormal basis ofKm.A; v1/. Indeed,
if at step j we form Avj and try to orthogonalize it
against v1; v2; vj�1; vj , we would discover that all the
coefficients required for the orthogonalization are zero
except the ones for vj and vj�1. Of course, this result
holds in exact arithmetic only.

Suppose that m steps of the recurrence are carried
out, and consider the tridiagonal matrix:

Tm D

0
BBB@
˛1 ˇ2
ˇ2 ˛2 ˇ3
: : :

: : :
: : :

ˇm ˛m

1
CCCA :

Further, denote by Vm the n � m matrix Vm D
Œv1; : : : ; vm� and by em the mth column of the m � m

identity matrix. After m steps of the algorithm, the
following relation holds:

AVm D VmTm C ˇmC1vmC1eTm :

In the ideal situation, where ˇmC1 D 0 for a certain
m, AVm D VmTm, and so the subspace spanned by the
vi ’s is invariant under A, and the eigenvalues of Tm
become exact eigenvalues of A. This is the situation
when m D n, and it may also happen for m 
 n, in
highly unlikely cases referred to as lucky (or happy)
breakdowns [10]. In the generic situation, some of the
eigenvalues of the tridiagonal matrix Hm will start ap-
proximating corresponding eigenvalues of A when m
becomes large enough. An eigenvalue Q� ofHm is called
a Ritz value, and if y is an associated eigenvector, then
the vector Vmy is, by definition, the Ritz vector, that
is, the approximate eigenvector of A associated with
Q�. If m is large enough, the process may yield good
approximations to the desired eigenvalues �1; : : : ; �s
of H , corresponding to the occupied states, that is, all
occupied eigenstates.

In practice, orthogonality of the Lanczos vectors,
which is guaranteed in theory, is lost as soon as one of
the eigenvectors starts to converge [10]. A number of
schemes have been developed to remedy this situation
in different ways; see [10] for a discussion. A common
method, called partial reorthogonalization, consists of
modeling loss of orthogonality by building a scalar
recurrence, which parallels the three-term recurrence
of the Lanczos vectors. As soon as loss of orthogonality
is detected by this scalar recurrence, a reorthogonal-
ization step is taken which orthogonalizes the current
vjC1 against all previous vi ’s. This is the approach
taken in the computational codes PROPACK [7] and
PLAN [14]. In these codes, semi-orthogonality is en-
forced, that is, the inner product of two basis vectors
is only guaranteed not to exceed a certain threshold,
which is of the order of

p

 where 
 is the machine

epsilon [4].
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Since the eigenvectors are not individually needed
in electronic structure calculation, one can think of
not computing them but rather to just use a Lanczos
basis Vm D Œv1; : : : ; vm� directly. This does not pro-
vide a good basis in general. A Lanczos algorithm
with partial reorthogonalization can work quite well
although it tends to require large bases. See [1] for
important implementation aspects of a Lanczos proce-
dure deployed within a real-space electronic structure
calculation code.

Implicit Restarts
Implicit restarts techniques consist of combining two
ingredients: polynomial acceleration and implicit de-
flation. The method, due to Lehoucq and Sorensen [8],
exploits the intricate relationship between the QR algo-
rithm for computing eigenvalues of matrices and poly-
nomial filtering within Arnoldi’s procedure. Specifi-
cally, we can restart the Arnoldi algorithm, with v1
replaced by q.A/v1 where q is a polynomial of degree
k, by performing the same m C k steps of a modified
Arnoldi procedure.

Davidson’s Approach
Another popular algorithm for extracting the eigen-
pairs is the Davidson [9] method, which can be viewed
as a preconditioned version of the Lanczos algorithm,
in which the preconditioner is the diagonal of A.
We refer to the generalized Davidson algorithm as a
Davidson approach in which the preconditioner is not
restricted to being a diagonal matrix.

The Davidson algorithm differs from the Lanczos
method in the way in which it defines new vectors
to add to the projection subspace. Instead of adding
just Avj , it preconditions a given residual vector ri D
.A��iI /ui and adds it to the subspace (after orthogo-
nalizing it against current basis vectors). The algorithm
consists of an “eigenvalue loop,” which computes the
desired eigenvalues one by one (or a few at a time),
and a “basis” loop which gradually computes the sub-
space on which to perform the projection. Consider the
eigenvalue loop which computes the i th eigenvalue and
eigenvector of A. If M is the current preconditioner,
and V D Œv1; � � � ; vk� is the current basis, the main
steps of the outer (eigenvalue) loop are as follows:
1. Compute the i th eigenpair .�k; yk/ of Ck D
V T
k AVk.

2. Compute the residual vector rk D .A� �kI /Vkyk .
3. Precondition rk, i.e., compute tk D M�1rk.

4. Orthonormalize tk against v1; � � � ; vk and call vkC1
the resulting vector, so VkC1 D ŒVk; vkC1�.

5. Compute the last column-row of CkC1 D
V T
kC1AVkC1.

The original Davidson approach used the diagonal of
the matrix as a preconditioner, but this works only for
special cases.

For a plane-wave basis, it is possible to construct
fairly effective preconditioners by exploiting the lower-
order bases. By this, we mean that if Ak is the matrix
representation obtained by using k plane waves, we
can construct a good approximation to Ak from Am,
with m 
 k, by completing it with a diagonal matrix
representing the larger (undesirable) modes, see, for
example, [12]. Note that these matrices are not explic-
itly computed since they are dense. This possibility
of building lower-dimensional approximations to the
Hamiltonian, which can be used to precondition the
original matrix, constitutes an advantage of plane-
wave-based methods.

For real-space discretizations, preconditioning tech-
niques are often based on filtering ideas and the fact
that the Laplacian is an elliptic operator. The eigen-
vectors corresponding to the few lowest eigenvalues of
r2 are smooth functions, and so are the corresponding
wave functions. When an approximate eigenvector is
known at the points of the grid, a smoother eigenvec-
tor can be obtained by averaging the value at every
point with the values of its neighboring points. Other
preconditioners that have been tried resulted in mixed
success. For example, the use of shift-and-invert [10]
involves solving linear systems with A � �I , where
A is the original matrix, and the shift � is close to
the desired eigenvalue (s). These methods would be
prohibitively expensive in most situations of interest
in DFT codes given the size of the matrix, and the
number of times that A � �I must be factored given
the usually large number of eigenvalues to be com-
puted.

Real-space algorithms avoid the use of fast Fourier
transforms by performing all calculations in real phys-
ical space instead of Fourier space. Fast Fourier trans-
forms require global communication; as such, they
tend to be harder to implement on message-passing
distributed memory multiprocessor systems. The only
global operation remaining in real-space approaches is
that of the inner products which will scale well as long
as the vector sizes in each processor remain relatively
large.
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Short Definition

The Fast Multipole Method (FMM) is an algorithm for
rapidly evaluating all pairwise interactions in a system
of N electrical charges. While the direct computation
requiresO.N2/ work, the FMM carries out this task in
onlyO.N/ operations. A parameter in the FMM is the
prescribed accuracy " to within which the electrostatic
potentials and forces are computed. The choice of
" affects the scaling constant implied by the O.N/
notation. A more precise estimate of the time required
(in two dimensions) is O.N log .1="// as " ! 0.

More generally, the term “FMM” refers to a broad
class of algorithms with linear or close to linear com-
plexity for evaluating all pairwise interactions between
N particles, given some pairwise interaction kernel
(e.g., the kernels associated with elasticity, gravitation,
wave propagation). An important application is the
evaluation of the matrix-vector product x 7! Ax
where A is a dense N � N matrix arising from the
discretization of an integral operator.

The classical FMM and its descendants rely on
quadtrees or octtrees to hierarchically subdivide the
computational domain. This tree structure enables the
algorithms to adaptively refine the data structure to
nonuniform charge distributions and makes them well
suited for parallel implementations.

Introduction

To introduce the concepts supporting fast summation
techniques like the FMM, we will in this note describe
a bare-bones algorithm for solving the problem ad-
dressed in the original work [10] of Greengard and
Rokhlin, namely, the evaluation of all pairwise interac-
tions between a set ofN electrical charges in the plane.
The basic technique has since [10] was published
been substantially improved and extended. Analogous
fast summation techniques have also been developed
for related summation problems, most notably those

http://sun.stanford.edu/~rmunk/PROPACK/
http://sun.stanford.edu/~rmunk/PROPACK/
http://www.nersc.gov/research/SIMON/planso.html
http://www.nersc.gov/research/SIMON/planso.html


Fast Multipole Methods 499

F

associated with acoustic and electromagnetic scatter-
ing theory. These improvements and extensions are
reviewed in section “Extensions, Accelerations, and
Generalizations.”

Notation

We let fxi gNiD1 denote the locations of a set of electrical
charges and let fqi gNiD1 denote their source strengths.
Our task is then to evaluate the potentials

ui D
NX
jD1

g.xi ;xj / qj ; i D 1; 2; : : : ; N; (1)

where g.x;y/ is the interaction potential of electro-
statics in the plane

g.x;y/ D
( � log jx � y j x ¤ y ;

0 x D y :
(2)

(We omit the common scaling by 1
2�

.) Let � denote a
square that holds all points; see Fig. 1a.

It will be convenient to use a complex notation. We
think of each source location xi as a point in the com-
plex plane and let G denote the complex interaction
potential

G.x;y/ D
( � log.x � y/ x ¤ y;

0 x D y:

We introduce a vector q 2 C
N and a matrix A 2 C

N�N
via

q.i/ D qi ; and A.i; j / D G.xi ; xj /

i; j D 1; 2; 3; : : : ; N:

We then seek to evaluate the matrix-vector product

u D A q: (3)

The real potentials ui defined by (1) are given by real
parts of the entries of u.

The General Idea

The key to rapidly evaluating the sum (1) is that the
kernel g.x;y/ defined by (2) is smooth when x and y

are not close. To illustrate how this can be exploited,
let us first consider a simplified situation where we are
given a set of electrical sources fqj gNjD1 at locations
fyj gNjD1 in one box �� and seek the potentials these
sources induce at some target locations fxi gMiD1 in a

Ω Ω

Ωσ

cσ

Ωτ

cτ

a b

Fast Multipole Methods, Fig. 1 (a) Geometry of the full
N -body problem. The domain � is drawn in black and the
points xi are gray. (b) The geometry described in sections

“The General Idea” and “Multipole Expansions.” The box ��

contains source locations (red) and � contains target locations
(blue)
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different box � . In other words, we seek to evaluate
the sum

ui D
NX
jD1

g.xi ;yj / qj ; i D 1; 2; : : : ; M: (4)

Since g is smooth in this situation, we can approximate
it by a short sum of tensor products

g.x;y/ �
P�1X
pD0

Bp.x/ Cp.y/; when x 2 �; y 2 ��;

(5)

where P is a small integer called the interaction rank.
(How to construct the functions Bp and Cp and how
to choose P will be discussed in section “Multipole
Expansions.”) As a result, an approximation to the sum
(4) can be constructed via the two steps:

Oqp D
X
j2I�

Cp.xj / qj ; p D 0; 1; 2; : : : ; P � 1

(6)
and

ui �
P�1X
pD0

Bp.xi / Oqp; i D 1; 2; : : : ; M: (7)

While evaluating (4) directly requiresM N operations,
evaluating (6) and (7) requires only P.M CN/ opera-
tions. The power of this observation stems from the fact
that high accuracy is achieved even for small P when
the regions �� and � are moderately well separated;
cf. section “Error Analysis.”

Using matrix notation, the approximation (5) im-
plies that the M � N matrix A with entries A.i; j / D
g.xi ;yj / admits an approximate rank-P factorization
A � B C. Then clearly the matrix-vector product Aq
can cheaply be evaluated via Aq � B .Cq/.

In the problem (1), the summation problem that we
are actually interested in, the sets of target locations,
and source locations coincide. In this case, no one
relation like (5) can hold for all combinations of target
and source points. Instead, we are going to cut the
domain up into pieces and use approximations such
as (5) to evaluate interactions between distant pieces
and use direct evaluation only for points that are close.
Equivalently, one could say that we will evaluate the

matrix-vector product (3) by exploiting rank deficien-
cies in off-diagonal blocks of A.

The algorithm will be introduced incrementally.
Section “Multipole Expansions” formalizes the discus-
sion of the case where target and source boxes are
separate. Section “A Single-Level Method” describes
a method based on a single-level tessellation of the
domain. Section “Conceptual Description of a Multi-
level Algorithm” provides a conceptual description of
a multi-level algorithm with O.N/ complexity, with
details given in sections “A Tree of Boxes” and “The
Classical Fast Multipole Method.”

Multipole Expansions

We start by considering a subproblem of (1) corre-
sponding to the interaction between two disjoint sub-
sets �� and � , as illustrated in Fig. 1b. Specifically,
we seek to evaluate the potential at all points in� (the
“target points”) caused by sources in�� . To formalize,
let I� and I be index sets pointing to the locations
inside each box so that, e.g.,

i 2 I� , xi 2 ��:

Our task is then to evaluate the sums

vi D
X
j2I�

G.xi ;xj / qj ; i 2 I : (8)

In matrix notation, (8) is equivalent to the matrix-
vector product

v D A.I ; I� /q.I� /: (9)

We will next derive an approximation like (5) for the
kernel in (8). To this end, let c� and c denote the
centers of �� and � , respectively. Then, for y 2 ��

and x 2 � ,

G.x;y/ D �log
�
x�y

� D�log
�
.x�c� /�.y � c� /

�

D � log
�
x � c�

� � log

�
1 � y � c�

x � c�

�

D � log
�
x � c�

�C
1X
pD1

1

p

.y � c� /
p

.x � c� /
p ; (10)
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where the series converges whenever jy � c� j <

jx � c� j. Observe that the last expression in (10) is
precisely of the form (5) with Cp.y/ D 1

p
.y � c� /

p

and Bp.x/ D .x � c� /
�p . When the sum is truncated

after P � 1 terms, the error incurred is roughly of size�jy � c� j=jx � c� j�P .
We define the outgoing expansion of �� as the

vector Oq� D f Oq�pgP�1
pD0 where

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

Oq�0 D
X
j2I�

qj

Oq�p D
X
j2I�

1

p

�
xj � c�

�p
qj ;

p D 1; 2; 3; : : : ; P � 1:

(11)

The vector Oq� is a compact representation of the
sources in �� . It contains all information needed to
evaluate the field v.x/ D P

j2I� G.x;xj / qj when x

is a point “far away” from�� .
It turns out to be convenient to also define an

incoming expansion for � . The basic idea here is that
for x 2 � , the potential

v.x/ D
X
j2I�

G.x;xj / qj D � log.x � c� / Oq�0

C
1X
pD1

1

.x � c� /p
Oq�p (12)

is a harmonic function on � . In consequence, it has a
convergent expansion

v.x/ D
1X
pD0

�
x � c

�p Ovp:

A simple computation shows that the complex numbers
f Ovpg1

pD0 can be obtained from f Oqpg1
pD0 via

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂̂
:̂

Ov0 D Oq�0 log.c � c� /C
1X
jD1

Oq�j .�1/j
1

.c� � c /j
;

Ovi D � Oq�0
1

i.c� � c /i
C

1X
jD1

Oq�j .�1/j
 
i C j � 1

j � 1

!

1

.c� � c /iCj
:

(13)

The vector Ov D fOvpgP�1
pD0 is the incoming expansion

for � generated by the sources in �� . It is a compact
(approximate) representation of the harmonic field v
defined by (12).

The linear maps introduced in this section can ad-
vantageously be represented via matrices that we refer
to as translation operators. Let N� and N denote the
number of points in �� and� , respectively. The map
(11) can then upon truncation be written

Oq� D Tofs
� q.I� /;

where Tofs
� is a P�N� matrix called the outgoing-from-

sources translation operator with the entries implied
by (11). Analogously, (13) can upon truncation be
written Ov D Tifo

;�
Oq� , where Tifo

;� is the incoming-from-
outgoing translation operator. Finally, the targets-from-
incoming translation operator is the matrix Ttfi

 such
that v D Ttfi


Ov , where v is an approximation to

the field v defined by (12); in other words Ttfi
 .i; p/ D

.xi � c /
p�1. These three translation operators are

factors in an approximate rank-P factorization

A.I ; I� / � Ttfi
 Tifo

;� Tofs
� :

N �N� N � P P � P P �N� (14)

A diagram illustrating the factorization (14) is given as
Fig. 2.

Remark 1 The terms “outgoing expansion” and “in-
coming expansion” are slightly nonstandard. The cor-
responding objects were in the original papers called
“Multipole Expansion” and “Local Expansion,” and
these terms continue to be commonly used, even in
summation schemes where the expansions have noth-
ing to do with multipoles. Correspondingly, what we
call the “incoming-from-outgoing” translation opera-
tor is often called the “multipole-to-local” or “M2L”
operator.

A Single-Level Method

Having dealt with the simplified situation where the
source points are separated from the target points in
section “Multipole Expansions,” we now return to the
original problem (1) where the two sets of points are
the same. In this section, we construct a simplistic
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qσ
A(Iτ,Iσ)

Tσ
ofs

vτ

q̂σ

Tτ,σ

v̂τ

Tτ
tfi

The full vector of sources in σ.
Vector of length Nσ (a long vector).

The full vector of potentials in τ.
Vector of length Nτ (a long vector).

The outgoing expansion for σ.
A compact representation of the sources.
Vector of length k (a short vector).

The incoming expansion for τ.
A compact representation of the potential.
Vector of length k (a short vector).

ifo

Fast Multipole Methods, Fig. 2 The outgoing and incoming
expansions introduced in section “Multipole Expansions” are
compact representations of the sources and potentials in the

source and target boxes, respectively. The diagram commutes to
high precision since A.I ; I� / � Ttfi

 Tifo
;�Tofs

� ; cf. (14)

a b

Fast Multipole Methods, Fig. 3 (a) A tessellation of � into
m � m smaller boxes; cf. section “A Single-Level Method.” (b)
Evaluation of the potential in a box  . The target points in  are

marked with blue dots, the source points in the neighbor boxes
in Lnei

 are marked with red dots, and the centers of the outgoing
expansions in the far-field boxes Lfar

 are marked ˝

method that does not achieve O.N/ complexity but
will help us introduce some concepts.

Subdivide the box� into a grid ofm�m equisized
smaller boxes f�gm2D1 as shown in Fig. 3a. As in
section “Multipole Expansions,” we let for each box
 the index vector I list the points inside � and let
c denote the center of  . The vector Oq denotes the
outgoing expansion of  , as defined by (11).

For a box  , let Lnei
 denote the list of neighbor

boxes; these are the boxes that directly touch  (there
will be between 3 and 8 of them, depending on where

 is located in the grid). The remaining boxes are
collected in the list of far-field boxes Lfar

 . Figure 3b
illustrates the lists.

The sum (1) can now be approximated via three
steps:
(1) Compute the outgoing expansions: Loop over all

boxes  . For each box, compute its outgoing ex-
pansion Oq via the outgoing-from-sources transla-
tion operator:

Oq D Tofs
 q.I /:
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(2) Convert outgoing expansions to incoming expan-
sions: Loop over all boxes  . For each box, con-
struct a vector Ou called the incoming expansion.
It represents the contribution to the potential in 
from sources in all boxes in the far field of  and is
given by

Ou D
X
�2Lfar



Tifo
;�

Oq� :

(3) Compute near interactions: Loop over all boxes  .
Expand the incoming expansion and add the con-
tributions from its neighbors via direct summation:

u.I / D Ttfi


Ou C A.I ; I /q.I /

C
X
�2Lnei



A.I ; I� /q.I� /:

The asymptotic complexity of the method as the
number of particles N grows depends on how the
numberm is picked. If the numberm2 of boxes is large,
then Steps 1 and 3 are cheap, but Step 2 is expensive.
The optimal choice is m2 � N2=3 and leads to overall
complexityO.N4=3/.

Conceptual Description of a Multilevel
Algorithm

To achieve linear complexity in evaluating (1), the
FMM uses a multilevel technique in which the com-
putational domain � is split into a tree of boxes; cf.
Fig. 4. It evaluates the sum (1) in two passes over the

tree, one going upwards (from smaller boxes to larger)
and one going downwards:

The upwards pass: In the upwards pass, the outgoing
expansion is computed for all boxes. For a leaf box
 , the straight forward approach described in section
“Multipole Expansions” is used. For a box  that
has children, the outgoing expansion is computed
not directly from the sources located in the box, but
from the outgoing expansions of its children, which
are already available.

The downwards pass: In the downwards pass, the
incoming expansion is computed for all boxes. This
is done by converting the outgoing expansions con-
structed in the upwards pass to incoming expansions
via the formula (13). The trick is to organize the
computation so that each conversion happens at its
appropriate length scale. Some further machinery
is required to describe exactly how this is done,
but the end result is that the FMM computes the
incoming expansion for a leaf box  from the
outgoing expansions of a set ofO.logN/ boxes that
are sufficiently well separated from the target that
the expansions are all accurate; cf. Fig. 5.

Once the upwards and downwards passes have been
completed, the incoming expansion is known for all
leaf boxes. All that remains is then to expand the
incoming expansion into potentials and adding the
contributions from sources in the near field via direct
computations.

In order to formally describe the upwards and down-
wards passes, we need to introduce two new translation
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Fast Multipole Methods, Fig. 4 A tree of boxes on � with L D 3 levels. The enumeration of boxes shown is simply one of the
many possible ones
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Fast Multipole Methods, Fig. 5 Illustration of how the FMM
evaluates the potentials in a leaf box  marked by its blue
target points. Contributions to the potential caused by sources
in  itself (blue dots) or in its immediate neighbors (red dots)
are computed via direct evaluation. The contributions from
more distant sources are computed via the outgoing expansions
centered on the ˝ marks in the figure

operators (in addition to the three introduced in section
“Multipole Expansions”). Let� be a box containing a
smaller box�� which in turn contains a set of sources.
Let Oq� denote the outgoing expansion of these sources
around the center c� of � . These sources could also be
represented via an outgoing expansion Oq around the
center c of  . One can show that

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

Oq0 D Oq�0 ;

Oqi D � Oq�0
1

i
.c� � c /i C

iX
jD1

Oq�j
 
i � 1
j � 1

!

.c� � c /i�j :

(15)

Analogously, now suppose that a set of sources that are
distant to � give rise to a potential v in  represented
by an incoming expansion Ou centered around c . Then
the corresponding incoming representation Ou� of v
centered around c� is given by

Ou�i D
1X
jDi

Ouj
 
j

i

!
.c� � c /j�i : (16)

Upon truncating the series in (15) and (16) to the firstP
terms, we write (15) and (16) in matrix form using the
outgoing-from-outgoing translation operator Tofo

;� : and

the incoming-from-incoming translation operator Tifi
�; ,

Oq D Tofo
;�

Oq� and Ou� D Tifi
�;

Ou :

Both Tofo
;� and Tifi

�; are matrices of size P � P .

A Tree of Boxes

Split the square � into 4L equisized smaller boxes,
where the integer L is chosen to be large enough that
each box holds only a small number of points. (The
optimal number of points to keep in a box depends
on many factors, but having about 100 points per box
is often reasonable.) These 4L equisized small boxes
form the leaf boxes of the tree. We merge the leaves
by sets of 4 to form 4L�1 boxes of twice the side length
and then continue merging by sets of 4 until we recover
the original box�, which we call the root.

The set consisting of all boxes of the same size
forms what we call a level. We label the levels using
the integers ` D 0; 1; 2; : : : ; L, with ` D 0 denoting
the root and ` D L denoting the leaves.

Given a box  in the hierarchical tree, we next define
some index lists; cf. Fig. 6;
• The parent of  is the box on the next coarser level

that contains  .
• The children of  is the set Lchild

 of boxes whose
parent is  .

• The neighbors of  is the set Lnei
 of boxes on the

same level that directly touch  .
• The interaction list of  is the set Lint

 of all boxes
� such that (1) � and  are on the same level, (2) �
and  do not touch, and (3) the parents of � and 
do touch.

The Classical Fast Multipole Method

We now have all tools required to describe the classical
FMM in detail.

Given a set of sources fqigNiD1 with associated
locations fxi gNiD1, the first step is to find a minimal
square � that holds all points. Next, subdivide � into
a hierarchy of smaller boxes as described in section
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FastMultipoleMethods, Fig. 6 Illustration of some index vectors called “lists” that were introduced in section “A Tree of Boxes.”
For instance, the leftmost figure illustrates that Lnei

35 D f28; 29; 34; 36; 37; 40; 46; 48g (boxes are numbered as in Fig. 4)

“A Tree of Boxes.” Then fix an integer P that deter-
mines the accuracy (a larger P gives higher accuracy
but also higher cost; cf. section “Error Analysis”). The
algorithm then proceeds in five steps as follows:
(1) Compute the outgoing expansions on the leaves:

Loop over all leaf boxes  . For each box, compute
its outgoing expansion Oq via

Oq D Tofs
 q.I /:

(2) Compute the outgoing expansions on all parent
boxes: Loop over all parent boxes  ; proceed
from finer to coarser levels so that when a box is
processed, the outgoing expansions for its children
are already available. The outgoing expansion Oq
is then computed via

Oq D
X

�2Lchild


Tofo
;�

Oq� :

(3) Convert outgoing expansions to incoming expan-
sions: Loop over all boxes  . For each box, collect
contributions to its incoming expansion Ou from
cells in its interaction list,

Ou D
X
�2Lint



Tifo
;�

Oq� :

(4) Complete the construction of the incoming expan-
sion for each box: Loop over all boxes  ; proceed
from coarser to finer levels so that when a box 
is processed, the incoming expansion for its parent

� is available. The incoming expansion Ou is then
constructed via

Ou D Ou C Tifi
;�

Ou� :

(5) Construct the potentials on all leaf boxes: Loop
over all leaf boxes  . For each box compute the
potentials at the target points by expanding the
incoming expansion and adding the contributions
from the near field via direct computation,

u.I / D Ttfi


Ou C A.I ; I /q.I /

C
X
�2Lnei



A.I ; I� /q.I� /:

Observe that the translation operators Tofo
;� , Tifo

;� , and

Tifi
;� can all be pre computed since they depend only

on P and on the vectors c � c� . The tree structure of
the boxes ensures that only a small number of values
of c � c� are encountered.

Remark 2 To describe how the FMM computes the
potentials at the target points in a given leaf box 
(cf. Fig. 5), we first partition the computational box:
� D �near

 [ �far
 . Interactions with sources in the

near-field �near
 D � CS

�2Lnei

�� are evaluated via

direct computations. To define the far-field, we first
define the “list of ancestors” Lanc

 as the list holding
the parent, grandparent, great grandparent, etc., of  .
Then �far

 D S
�2Lanc



S
�2Lint

�
�� . Interactions with

sources in the far-field are evaluated via the outgoing
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expansions of the boxes in the list
S
�2Lanc



S
�2Lint

�
.

These are the boxes marked “˝” in Fig. 5.

Error Analysis

The potentials computed by the FMM are not ex-
act since all expansions have been truncated to P

terms. An analysis of how such errors could propa-
gate through the transformations across all levels is
technically complicated and should seek to estimate
both the worst-case error and the statistically expected
error [5]. As it happens, the global error is in most
cases similar to the (worst case) local truncation error,
which means that it scales roughly as ˛P , where ˛ Dp
2=.4 � p

2/ D 0:5469 � � � . As a rough estimate, we
see that in order to achieve a given tolerance ", we need
to pick

P � log."/= log.˛/:

As P increases, the asymptotic complexity of the
2D FMM is O.P N/ (if one enforces that each leaf
node holdsO.P / sources). In consequence, the overall
complexity can be said to scale as log.1="/N as " ! 0

and N ! 1.

Adaptive Trees for Nonuniform
Distributions of Particles

For simplicity, the presentation in this brief entry
has been restricted to the case of relatively uniform
particle distributions for which a fully populated tree
(as described in section “A Tree of Boxes”) is appro-
priate. When the particle distribution is nonuniform,
locally adaptive trees perform much better. The basic
FMM can readily be adapted to operate on nonuniform
trees. The only modification required to the method
described in section “The Classical Fast Multipole
Method” is that some outgoing expansions need to be
broadcast directly to target points, and some incom-
ing expansions must receive direct contributions from
source points in certain boxes [2].

Note: In situations where the sources are distributed
uniformly in a box, the FMM faces competition from
techniques such as P3M (particle-particle/particle-
mesh). These are somewhat easier to implement and
can be very fast since they leverage the remarkable
speed of FFT-accelerated Poisson solvers. However,

the FMM has few competitors for nonuniform
point distributions such as, e.g., the distributions
arising from the discretization of a boundary integral
equations.

Extensions, Accelerations, and
Generalizations

Extension to R
3

In principle, the FMM described for problems in the
plane can readily be extended to problems in R

3;
simply replace log jx � yj by 1=jx � yj, replace
the McLaurin expansions by expansions in spherical
harmonics, and replace the quadtree by an octtree.
However, the resulting algorithm performs quite poorly
(especially at high accuracies) for two reasons: (1)
the typical number of elements in an “interaction list”
grows from 27 in 2D to 189 in 3D. (2) The number of
terms required in an outgoing or incoming expansion
to achieve accuracy " grows from O.log.1="// in
2D to O.log.1="/2/ in 3D. Fortunately, accelerated
techniques that use more sophisticated machinery for
converting outgoing to incoming expansions have been
developed [11].

The Helmholtz Equation
One of the most important applications of the FMM
is the solution of scattering problems via boundary
integral equation techniques. For such tasks a sum like
(1) needs to be evaluated for a kernel associated with
the Helmholtz equation or the closely related time-
harmonic version of the Maxwell equations. When the
computational domain is not large compared to the
wavelength (say at most a few dozen wavelengths),
then an FMM can be constructed by simple modifi-
cations to the basic scheme described here. However,
when the domain becomes large compared to the scat-
tering wavelength, the paradigm outlined here breaks
down. The problem is that the interaction ranks in this
case depend on the size of the boxes involved and get
prohibitively large at the higher levels of the tree. The
(remarkable) fact that fast summation is possible even
in the short wavelength regime was established in 1992
[18]. The high-frequency FMM of [18] relies on data
structures that are similar to those used in the basic
scheme described here, but the interaction mechanisms
between (large) boxes are quite different. A version of
the high-frequency FMM that is stable in all regimes
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was described in [3]. See also [4]. It was shown in
[6] that close to linear complexity can be attained
while relying on rank deficiencies alone, provided that
different tessellations of the domain are implemented.

Other Interaction Potentials (Elasticity,
Stokes, etc.)
Variations of the FMM have been constructed for most
of the kernels associated with the elliptic PDEs of
mathematical physics such as the equations of elas-
ticity [7], the Stokes and unsteady Stokes equations
[9], the modified Helmholtz (a.k.a. Yukawa) equations
[12], and many more. See [14, 17] for details.

Kernel-Free FMMs
While FMMs can be developed for a broad range
of kernels (cf. section “Other Interaction Potentials
(Elasticity, Stokes, etc.)”), it is quite labor intense
to re-derive and re-implement the various translation
operators required for each special case. The so-called
kernel-free FMMs [8, 19] overcome this difficulty by
setting up a common framework that works for a broad
range of kernels.

Matrix Operations Beyond the Matrix-Vector
Product
The FMM performs a matrix-vector multiply x 7! Ax
involving certain dense N � N matrices in O.N/

operations. It achieves the lower complexity by ex-
ploiting rank deficiencies in the off-diagonal blocks of
the matrix A. It turns out that such rank deficiencies
can also be exploited to perform other matrix opera-
tions, such as matrix inversions, construction of Schur
complements, and LU factorizations, in close to linear
time. The so-called H-matrix methods [13] provide a
general framework that can be applied in many con-
texts. Higher efficiency can be attained by designing
direct solvers specifically for the linear systems arising
upon the discretization of certain boundary integral
equations [16].

Practical Notes and Further Reading

We have provided only the briefest of introductions to
the vast topic of Fast Multipole Methods. A fuller treat-
ment can be found in numerous tutorials (e.g., [1, 15]),
survey papers (e.g., [17]), and full-length textbooks
(e.g., [4, 14]).

Let us close with a practical note. While it is not
that daunting of an endeavor to implement an FMM
with linear or close to linear asymptotic scaling, it is
another matter entirely to write a code that actually
achieves high practical performance – especially for
problems in three dimensions and any problem involv-
ing scattering on domains that are large compared to
the wave-length. This would be an argument against
using FMMs were it not for the fact that the algorithms
are very well suited for black box implementation.
Some such codes are available publicly, and more
are expected to become available in the next several
years. Before developing a new code from scratch, it is
usually worthwhile to first look to see if a high-quality
code may already be available.
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Synonyms

Continuous Baker–Campbell–Hausdorff expansion

Definition

The Fer and Magnus expansions provide solutions to
the initial value problem

dY

dt
D A.t/Y; Y.t0/ D Y0; t 2 R; Y.t/ 2 C

n;

A.t/ 2 C
n�n; (1)

in terms of exponentials of combinations of the coef-
ficient matrix A.t/. Equation (1) is a first-order linear
homogeneous system of differential equations in which
Y.t/ is the unknown n-dimensional vector function. In
general, Y0; Y , and A are complex-valued. The scalar
case, n D 1, has the general solution

Y.t/ D exp

�Z t

t0

dx A.x/

�
Y0: (2)

This expression is still valid for n > 1 if the matrix
A is constant, or the commutator ŒA.t1/; A.t2/� �
A.t1/A.t2/ � A.t2/A.t1/ D 0, for any pair of values
of t , t1, and t2, or, what is essentially equivalent, A.t/
and its primitive commute: ŒA.t/;

R
A.t/dt � D 0.

In the general case, there is no compact formula
for the solution of (1), and the Fer and Magnus pro-
posals endeavor to complement (2) in two different
directions. If we attach a matrix factor to the expo-

nential, Y.t/ D exp
	R t

t0
dx A.x/



M.t; t0/Y0, then

the Fer expansion [1] gives an iterative multiplicative
prescription to find M.t; t0/. Alternatively, if we add
a term to the argument in the exponential, namely,

Y.t/ D exp
	R t

t0
dx A.x/C M.t; t0/



Y0, then the

Magnus expansion [2] provides M.t; t0/ as an infinite
series.

A salient feature of both Fer and Magnus expan-
sions stems from the following fact. When A.t/ 2 g,
a given Lie algebra, if we express Y.t/ D U.t; t0/Y0,
then U.t; t0/ 2 G, the corresponding Lie group. By
construction, the Magnus and Fer expansions live,
respectively, in g and G. Furthermore, this is also true
for their truncation to any order. In many applications,
this mathematical setting reflects important features of
the problem.

TheMagnus Expansion

Magnus proposed an exponential representation of the
solution of (1) in the form

Y.t/ D exp
�
˝.t/

�
Y0; (3)

where ˝.0/ D O , and for simplicity, we have taken
t0 D 0.

The noncommutativity of A.t/ for different values
of t makes the differential equation for ˝.t/ highly
nonlinear, namely,
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˝ 0.t/ D A.t/C
1X
kD1
.�1/k Bk

kŠ

�
k�times‚ …„ ƒ

Œ˝.t/; Œ� � � Œ˝.t/; A.t/�� � � � �: (4)

Here, Bk are Bernoulli numbers, and the prime stands
for derivative with respect to t . In spite of being much
more complicated than (1), it turns out that (4) can be
dealt with by introducing the series expansion

˝.t/ D
1X
nD1

˝n.t/; (5)

which constitutes the Magnus expansion or Magnus
series. Every term ˝k involves k-fold products of
A matrices. By introducing (5) into (4) and equating
terms of the same order in powers of A, we ob-
tain explicit expressions for each ˝k . The first three
terms read

˝1.t/ D
Z t

0

A.t1/ dt1;

˝2.t/ D 1

2

Z t

0

dt1

Z t1

0

dt2 ŒA.t1/; A.t2/� ;

˝3.t/ D 1

6

Z t

0

dt1

Z t1

0

dt2

Z t2

0

dt3 .ŒA.t1/; ŒA.t2/;

A.t3/��C ŒA.t3/; ŒA.t2/; A.t1/��/ : (6)

It is possible to show that the Magnus expansion
converges for values of t such that

Z t

0

kA.s/k ds < �; (7)

in terms of the Euclidean norm.

Magnus Expansion Generator
The generation of explicit formulae for higher-order
terms in the Magnus series becomes quickly a difficult
task [3]. Instead [4], they can be generated in a recur-
sive way by substituting equation (5) into (4). Equating
the terms of the same order, one gets

˝ 0
1.t/ D A.t/;

˝ 0
n.t/ D

n�1X
jD1

Bj

j Š
S.j /n .t/; n � 2; (8)

where the operators S.j /n can be calculated recursively:

S.j /n .t/ D
n�jX
mD1

�
˝m.t/; S

.j�1/
n�m .t/

�
; 2 � j � n � 1;

S.1/n .t/ D Œ˝n�1.t/; A.t/� ;

S.n�1/
n .t/ D

.n�1/�times‚ …„ ƒ
Œ˝1.t/; Œ� � � Œ˝1.t/; A.t/�� � � � �: (9)

After integration, we reach the final result in the
form

˝1.t/ D
Z t

0

A./d;

˝n.t/ D
n�1X
jD1

Bj

j Š

Z t

0

S.j /n ./d; n � 2: (10)

The expression of S.k/n can be inserted into (10), thus
arriving at

˝n.t/ D
n�1X
jD1

Bj

j Š

X
k1C���Ckj Dn�1

k1�1;:::;kj�1

Z t

0

Œ˝k1.s/; Œ˝k2.s/;

Œ� � � Œ˝kj .s/; A.s/��� � � � � ds; n � 2: (11)

Each term ˝n.t/ in the Magnus series is a multiple
integral of combinations of n � 1 nested commutators
containing n operators A.t/. It is worth noticing that
this recursive procedure is well adapted to be imple-
mented in algebraic symbolic languages.

Some Applications of the Magnus Expansion
In practice, one can rarely build up the whole Magnus
series and has to deal with a truncated version of it.
The main advantage of these approximate solutions
is that they still share with the exact solution im-
portant qualitative properties, at variance with other
conventional approximation techniques. For instance,
in classical mechanics, the symplectic character of
the time evolution is preserved at every order of ap-
proximation. Similarly the unitary character of the
time evolution operator in quantum mechanics is also
preserved.

Since the 1960s, the Magnus expansion has been
successfully applied [5] as a perturbative tool in
numerous areas of physics and chemistry, from



510 Fer and Magnus Expansions

atomic and molecular physics to nuclear magnetic
resonance, quantum electrodynamics, and quantum
computing.

The Fer Expansion

Following Fer, we seek a solution of (1) (again with
t0 D 0) in the factorized form

Y.t/ D exp

�Z t

0

dx A.x/

�
M1.t/Y0

� exp
�
F1.t/

�
Y1.t/; M1.0/ D I; (12)

where Y1.t/ � M1.t/Y0. Substitution into (1) yields
the differential equation for the matrixM1.t/ or equiv-
alently for Y1.t/

Y 0
1.t/DA1.t/Y1.t/; Y1.0/DY0; (13)

A1.t/D e�F1.t/A.t/eF1.t/�
Z 1

0

dx e�xF1.t/A.t/exF1.t/:

The above procedure can be repeated to yield a se-
quence of iterated matrices Ak . After n steps, we
have the following recursive scheme, known as the Fer
expansion:

Y.t/ D eF1.t/eF2.t/ � � � eFn.t/Yn.t/; (14)

Y 0
n.t/ D An.t/Yn.t/; Yn.0/ D Y0; n D 1; 2; : : :

with Fn.t/ and An.t/ given by

FnC1.t/ D
Z t

0

An.s/ds; A0.t/DA.t/; nD0; 1; 2 : : : ;

AnC1.t/ D e�FnC1.t/An.t/eFnC1.t/

�
Z 1

0

dx e�xFnC1.t/An.t/exFnC1.t/

D
1X
jD1

.�1/j j

.j C 1/Š

j�times‚ …„ ƒ
ŒFnC1.t/; Œ� � � ŒFnC1.t/;

An.t/�� � � � �; n D 0; 1; 2 : : : (15)

Truncation of the expansion after n steps yields an
approximation to the exact solution Y.t/.

Inspection of the expression of AnC1 in (15) re-
veals an interesting feature of the Fer expansion. If
we substitute A by "A, where " is a real parameter,
then we observe that FnC1 is of the same order in
" as An, and then an elementary recursion shows
that the matrix An starts with a term of order "2

n

(correspondingly, the operator Fn contains terms of
order "2

n�1
and higher). This should greatly enhance

the rate of convergence of the product in (14) to the
exact solution.

It is possible to show that the Fer expansion con-
verges at least for values of t such that

Z t

0

kA.s/kds < 0:8604065; (16)

a bound smaller than the one corresponding to the
Magnus expansion.

An Example

To illustrate the main features of the Magnus and Fer
expansions, the following 2 � 2 complex coefficient
matrix is considered next:

QA.t/ D �i
�

1
2
!0 ˇ ei!t

ˇ e�i!t � 1
2
!0

�
; (17)

where ˇ, !, and !0 are real parameters, ! ¤ !0.
To improve the accuracy and the convergence of the
expansions, a linear transformation is carried out in
advance so as to integrate first the diagonal piece of QA,
namely, QAd � �.i!0=2/ diag.1;�1/. Then one ends
up with system (1) and coefficient matrix

A.t/ D �iˇ
�

0 ei.!�!0/t
e�i.!�!0/t 0

�
; (18)

to which we apply the recursive procedures (9–10) and
(14–15). We compute up to 11 terms of the Magnus se-
ries (5) and the first two iterations of the Fer expansion,
F1 and F2 in (14). These are then applied to the initial
condition Y0 D .1; 0/T for ˇ D 0:4, ! D 4, !0 D 1

to get Y.t/ at the final time tf D 5� . Finally, the lower
component of Y.tf/ is compared with the exact result.
The corresponding absolute errors as a function of t are
depicted in Fig. 1.
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Fer andMagnus
Expansions, Fig. 1 Error in
the solution Y.t/ as a function
of t . The curves have been
obtained by the truncated
Magnus and Fer expansions
applied to (1) with coefficient
matrix (18) for ˇ D 0:4,
! D 4, and !0 D 1. Lines
coded as Mn stand for the
result achieved by the
truncated Magnus expansion
with n terms, whereas F2
corresponds to the Fer
expansion with two terms. F1
and M1 yield the same result
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Note that for both expansions, taking into account
more terms gives more accurate approximations, and
this is so even for values of t outside the (rather
conservative) convergence bounds provided by (7) and
(16): t D �=ˇ D 7:853 and t D 0:8604=ˇ D 2:151,
respectively. On the other hand, Fer’s second-order
approximation already provides results comparable to
the fifth-order Magnus approximation, although it is
certainly more difficult to compute.

Fer andMagnus Expansions as Numerical
Integrators

The Fer and Magnus expansions can also be used
as numerical methods for solving (1). To obtain Y.t/
from Y0, one follows a time-stepping advance proce-
dure. For simplicity, we consider a constant time step,
h D t=N , and with tj D jh; j D 0; 1; 2 : : : ; N ,
we compute approximations yj to the exact values
Y.tj /. To obtain yj , we apply either the Fer or Mag-
nus expansions in each subinterval Œtj�1; tj �; j D
1; 2 : : : ; N to the initial condition yj�1. The process
involves three steps. First, the expansions are truncated
according to the order in hwe want to achieve. Second,
the multivariate integrals in the truncated expansions
are replaced by conveniently chosen approximations.
Third, the exponentials of the matrices have to be
computed. We briefly consider the first two issues,
while assume the user is provided with an efficient
tool to compute the matrix exponential or its action on
a vector.

For the Fer expansion, an analysis shows that
Fk.h/ D O.h2k�1/; k D 1; 2; : : :, and so F1; F2 in (14)
suffice to build methods up to order 6 in h. Whereas for
the Magnus expansion, one gets ˝1 D O.h/; ˝2k D
O.h2kC1/; ˝2kC1 D O.h2kC3/; k D 1; 2; : : :, and
then,˝1;˝2 in (5) suffice to build methods up to order
4 in h.

Next, one has to approximate the integrals in (6)
or (15) using appropriate quadrature rules. It turns out
that their very structure allows one to approximate all
the multivariate integrals up to a given order just by
evaluating A.t/ at the nodes of a univariate quadrature
[6], and this can be done in many different ways.
A procedure to obtain methods which can be easily
adapted for different quadrature rules uses the averaged
(or generalized momentum) matrices

A.i/.h/ � 1

hi

Z tnCh

tn

�
t � t1=2

�i
A.t/dt

D h

kX
jD1

bj

�
cj � 1

2

�i
Aj C O.hpC1/;

(19)

for i D 0; 1; : : :, where t1=2 D tn C h=2 and Aj D
A.tn C cj h/. Here, bj , cj ; j D 1; : : : ; k, are the
weights and nodes of a particular quadrature rule of
order p, to be chosen by the user.

The first order in the Fer and Magnus expansions,
exp.A.0/.h//, leads to a second-order approximation
in the time step h. If the midpoint rule is used,
we obtain
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ynC1 D exp
�
hA.tn C h=2/

�
yn: (20)

Fourth-Order Fer and Magnus Integrators
With A.0/ and A.1/ in (19), one can obtain fourth-
order methods which usually provide a good
balance between good performance and moderate
complexity.

A fourth-order Magnus integrator is given by

ynC1 D exp
�
A.0/ C ŒA.1/; A.0/�

�
yn: (21)

In turn, a fourth-order Fer integrator reads

ynC1 D exp
�
A.0/

�
exp

�
ŒA.1/; A.0/�

C1

2
ŒA.0/; ŒA.0/; A.1/��

�
yn: (22)

As far as the A.n/ matrices are concerned, if, for
example, we choose the Gauss–Legendre quadrature
rule, we have

(
A.0/ ' h

2
.A1 C A2/

A.1/ ' h
p
3

12
.A2 �A1/ where

(
A1 D A

�
tn C . 1

2
�

p
3
6
/h
�

A2 D A
�
tn C . 1

2
C

p
3
6
/h
� (23)

From (21) and (22), there is the possibility of
constructing commutator-free methods. For instance,

ynC1Dexp

�
1

2
A.0/C2A.1/

�
exp

�
1

2
A.0/�2A.1/

�
yn;

(24)
which is also a fourth-order method.

A Numerical Example
We apply the previous numerical schemes to solve (1)
with

A.t/ D ˇ.t/B C �.t/C: (25)

Here, B;C are n � n noncommuting constant matri-
ces and ˇ.t/; �.t/ scalar functions. For the sake of
illustration, we take
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Fer and Magnus Expansions, Fig. 2 Error vs. the number
of steps for the numerical solution of (1) with A.t/ in (25).
M-F-2 stands for the second-order method (20). Fourth-order

methods are coded as M-4, Magnus (21); F-4, Fer (22); CF-4,
commutator-free (24); RK-4, standard Runge-Kutta
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B D 1

ı2n
tridiag.1;�2; 1/; C D �1

2
diag

�
x2j
�
;

ın D 20=n; xj D 10 � jın, and initial conditions
Y.0/D .a1; : : : ; an/

T , with aj D 10 exp
��.xj � 2/2�.

Let f .t/ D 1 � 1
2

sin t and g.t/ D 1 � 1
2

cos t .
Firstly, we consider ˇ.t/ D f .t/; �.t/ D g.t/,
which corresponds to a stiff problem. Next, we take
ˇ.t/ D if .t/; �.t/ D ig.t/, which originate os-
cillatory solutions. We integrate until t D 2, with
n D 100. Figure 2 shows the error in norm of
Y.2/ as a function of the number of steps in double
logarithmic scale. Schemes (21), (22), and (24) are im-
plemented with the quadrature rule (23). The results of
the second-order method (20) and the standard fourth-
order Runge-Kutta (RK-4) method are also included
for comparison.

Further Developments
Although only numerical methods up to order four
have been treated here, higher-order integrators within
these families exist which are more efficient than stan-
dard (Runge–Kutta) schemes for a number of problems
[5, 7]. Methods (20) and (21) have also been used for
the time integration of certain parabolic partial differ-
ential equations previously discretized in space. For the
time-dependent Schrödinger equation, in particular, it
has been shown that these schemes retain their full
order of convergence if the exact solution is sufficiently
regular, even when khA.t/k can be of arbitrary size [8].
The success of Magnus methods applied to the numer-
ical integration of (1) has motivated several attempts
to generalize them for solving nonlinear differential
equations [5].
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Synonyms

Filon-type quadrature

Short Definition

Filon quadrature is an efficient method for the numeri-
cal evaluation of a class of highly oscillatory integrals,
in which the integrand has the form of a smooth
and non-oscillatory function multiplying a highly os-
cillatory function. The latter is most commonly a
trigonometric function with a large frequency. The
method is based on substituting the non-oscillatory
function by an interpolating polynomial and integrat-
ing the result exactly. The most important advantage
of Filon quadrature is that the accuracy and the cost
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of the scheme are independent of the frequency of
the integrand. Moreover, interpolating also derivatives
at a well-chosen set of points leads to an error that
decays rapidly with increasing frequency. However,
one important assumption is that the moment problem
can be solved efficiently, i.e., that polynomials times
the oscillatory function can be integrated either analyt-
ically or numerically by other means.

Description

Model Form
Filon quadrature applies, for example, to oscillatory
integrals of the form

I Œf � D
Z b

a

f .x/ei!g.x/dx; (1)

where f and g are smooth functions of x on a bounded
interval Œa; b�. The complex exponential can be re-
placed by other highly oscillatory functions, with suit-
able modifications to the method. Common examples
include other trigonometric functions, Airy functions,
and Bessel functions. The model form (1) has an
explicit frequency parameter !. This simplifies the
analysis of the scheme for increasing frequency, but
it is not a critical feature when considering Filon
quadrature for a particular oscillatory integral. Rele-
vant properties are that the integrand can be written as
the product of a non-oscillatory function, in this case
f .x/, and an oscillatory function, in this case ei!g.x/,
and that the latter can be explicitly identified. Finally,
unbounded intervals are possible as long as the integral
is convergent or if suitable regularization is applied.

Overview of the Method
Filon quadrature was introduced by L. N. G Filon in
1928 [2]. Modern versions are based on polynomial
interpolation of the non-oscillatory function f . With
interpolation points denoted by xi , i D 1; : : : ; n, this
leads to a quadrature rule of a classical form

I Œf � � Q1Œf � WD
nX
iD1

wi f .xi /; (2)

but with the weights depending on !. They are given
by integrals of the cardinal polynomials of Lagrangian
interpolation, li .x/, which satisfy li .xj / D ıi�j :

wi D
Z b

a

li .x/e
i!g.x/dx: (3)

Composite rules based on piecewise polynomial inter-
polation are obtained by subdividing the interval Œa; b�
and applying (2) repeatedly, typically with small n. In
both cases, convergence can be obtained by ensuring
convergence of the interpolation process.

A generalization based on interpolation of deriva-
tives of f leads to quadrature rules using derivatives
(see [9]):

I Œf � � QŒf � WD
nX
iD1

diX
jD1

wi;j f
.j /.xi /: (4)

Particular choices of quadrature points result in high
asymptotic order of accuracy, in the sense that for
increasing !, it holds that

I Œf � �QŒf � D O .!�s/ ; ! ! 1 (5)

where s > 0 depends on the order of the derivatives
that are interpolated (see section “Convergence Anal-
ysis” below). This property makes Filon quadrature
ideally suited for the efficient and highly accurate
evaluation of highly oscillatory integrals.

Suitable interpolation points to use for the asymp-
totic property (5) to hold are found from the asymptotic
analysis of the oscillatory integral. They generally
include:
• The end points of the integration interval, in this

case a and b
• So-called stationary points of g.x/: zeros of g0.x/

in Œa; b�
• Any point of discontinuity or any kind of singularity

of f and/or g in Œa; b�

Asymptotic Error Analysis
Oscillatory integrals are a classical topic in asymptotic
analysis [18]. Integrals of the form (1), with smooth
functions f and g, admit a Poincaré-type asymptotic
expansion of the form

I Œf � �
1X
kD0

akŒf � !
�bk ; (6)
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where the aks are linear functionals of f and the bks
form a strictly increasing sequence of positive rational
values.

The coefficients ak are independent of !. They
depend on function values and derivatives of f at a
small set of points, with coefficient akC1 depending
on derivatives of one order higher than those of ak
and with a0 most often depending only on function
values of f . Some or all of the coefficients can be
obtained explicitly via the integration by parts, the
method of stationary phase, or the (complex plane)
method of steepest descent [18]. The coefficients bk
are determined by the highest-order stationary point
of g in the interval Œa; b�. A stationary point � is a
root of g, i.e., g0.�/ D 0, and its order corresponds
to the number of vanishing derivatives: � has order r if
g.j /.�/ D 0, j D 1; : : : ; r , and g.rC1/.�/ ¤ 0. Then,
bk D .k C 1/=r . In particular, b0 D 1=r and

I Œf � D O �
!�1=r � :

Whether using derivatives or not, in both cases of
Filon quadrature, the function f is approximated by
a polynomial p and I Œf � � QŒf � D I Œp�. The
integral I Œp� itself admits an asymptotic expansion,
with coefficients depending on values and derivatives
of p at the critical points. If a number of values and
derivatives of p agree with those of f , as is the case
when p interpolates f , then the first few coefficients
of the expansion of I Œf � and I Œp� may agree. We then
have

I Œf � �QŒf � D I Œf � � I Œp� �
1X
kD0

akŒf � p�!�bk

D
1X
kDK

akŒf � p�!�bk ;

with the integer K � 0 depending on the number of
derivatives of f being interpolated. The asymptotic
property (5) of Filon quadrature follows.

In the particular case of an integral without station-
ary points, we have r D 1, and interpolation of values
of f at the points a and b yields an error of Filon
quadrature that scales as O �!�2� for large !. Each
additional derivative interpolated at both end points
increases the asymptotic order by r D 1.

Convergence Analysis
For fixed values of !, the asymptotic expansion (6) in
general diverges. Filon quadrature may converge for
increasing n depending on the (stable) convergence
of the underlying interpolation process. Convergence
can also be achieved via subdivision, but that ap-
proach is suboptimal for large !. For that reason,
most convergent schemes are based on adding known
stable interpolation points to Filon quadrature, such as
the Chebyshev points, achieving spectral convergence
[1, 5, 12].

Analysis of the interpolation error is most
widespread in literature and readily yields an estimate
of the integration error. Yet, the resulting estimates are
usually pessimistic for large !. Optimal convergence
estimates taking into account both large ! and large n
simultaneously have not been described in detail.

Typical in Filon quadrature is the use of derivatives.
The error of interpolation of an increasing number of
derivatives at the end points was analyzed by Melenk
[14].

TheMoment Problem

Successful application of Filon quadrature rests on the
identification of the oscillatory factor of the integrand,
which in the case of model form (1) is simply ei!g.x/.
Furthermore, in order to apply the method, one has
to be able to calculate moments of the oscillator, i.e.,
integrals of polynomials times the oscillator. This is
explicit in expression (3) for the weights of Filon
quadrature. Moments can be explicitly computed for
polynomial functions g at least up to degree 3 in terms
of special functions.

The computation of moments can be avoided by
using moment-free Levin-type methods [15,16]. Alter-
natively, moments can be computed using other highly
oscillatory quadrature methods such as the numerical
method of steepest descent [6].

Origins of the Method
Filon quadrature originated in the work of L. N. G.
Filon in 1928 [2]. He considered an integral of the
form

R b
a sin kx  .x/dx and proposed piecewise cubic

interpolation of  .x/, similar to Simpson’s rule. Ex-
plicit expressions were derived for the weights, and
convergence was achieved by subdividing and thereby
improving the approximation of . Later papers on this
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topic, e.g., by Luke [13], Flinn [3] and Tuck [17], re-
main focused on analyzing and improving convergence
of the interpolation.

The asymptotic analysis of Filon quadrature was
initiated by Iserles [7] and Iserles and Nørsett [9]. This
led to Filon-type quadrature schemes with essentially
arbitrarily high asymptotic order, using derivatives or
suitably scaled finite differences [8]. The use of first-
order derivatives had been proposed earlier, e.g., by
Kim et al. [11], and other schemes had been devel-
oped with favorable asymptotic properties, though typ-
ically without asymptotic analysis – see the review [4]
and references therein. Competitive methods achieving
high asymptotic order were developed concurrently, in-
cluding Levin-type methods [15] and numerical steep-
est descent-based methods [6].

Limitations and Extensions

One limitation of Filon-type quadrature is the assumed
ability to compute moments, which is needed in order
to compute the weights of the quadrature rule (see Sec-
tion “The Moment Problem”). Filon-type quadrature is
easily extended to higher dimensions [10] and to other
types of oscillators. Derivatives in the formulation
can be replaced by finite differences, with asymptotic
order of accuracy maintained if the spacing is inversely
proportional to the frequency [8].
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Introduction

During the last 60 years, there has been a tremendous
development of computer techniques for the solution
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of partial differential equations (PDEs). This entry will
give a basic introduction to finite difference method,
which is one of the main techniques. The idea is to
replace the PDE and the unknown solution function,
by an algebraic system of equations for a finite di-
mensional object, a grid function. We will consider
simple model equations and introduce some basic fi-
nite difference methods. These model problems have
closed form solutions but are suitable for discussing
techniques, properties, and concepts. However, most
phenomena in real life are modeled by partial dierential
equations, which have no closed form solution. For
further reading we refer to [1–5].

Initial Value Problem for PDEs

To begin with we consider the so-called heat equation:

ut D �uxx: (1)

This equation is the simplest possible parabolic PDE.
Here � is a positive constant and u.x; t/ is the sought
solution. Here we think of x as a spatial variable and t
as time. We use the notation ut to denote differentiation
with respect to t . Accordingly uxx denotes differentia-
tion twice with respect to x. Equation (1) can be used
to model diffusive phenomena such as the evolution of
the temperature.

To make the problem complete, we need to spec-
ify the domain. Here we will consider t � 0 and
0 � x � 1. An initial condition at t D 0,

u.x; 0/ D f .x/; (2)

as well as boundary conditions at x D 0; 1 are needed.
To begin with we consider the spatially periodic prob-
lem (with period 1), that is, we extend the solution to
�1 < x < 1 under the condition

u.x; t/ D u.x C 1; t/: (3)

The periodic condition is very useful for understanding
aspects of numerical methods, as well as properties
of the model, which are not related to boundary phe-
nomena. In computations we only need to consider
0 � x � 1.

A Simple Discretization of the Heat Equation
Introduce a grid, which is a set of discrete points in the
domain of the problem, and a grid function

.xj ; tn/ D .jh; nk/ and unj ;

j D 0; 1; 2; : : : ; N; n D 0; 1; : : : :

Here N > 0 is a positive (large) integer and h D
1=N is called the space step. Note that xN D 1.
Correspondingly k > 0 is called the time step. We
want the grid function to approximate the solution to
the PDE at the grid points, that is, unj � u.xj ; tn/. An
obvious choice for the grid function at time level n D 0

is
u0j D f .xj /: (4)

In a finite difference method, the algorithm for com-
puting all other parts of the grid function is based on
replacing the derivatives of the PDE by differences.
A simple example is to use

unC1
j � unj
k

D unjC1 � 2unj C unj�1
h2

: (5)

If the grid function is the restriction to the grid of a
smooth function of x and t , it is straight forward to
use Taylor expansion and convince oneself that the left-
hand side approximates a time derivative and the right-
hand side a second derivative with respect to x.

Combining (5) with the periodicity condition, we
can formulate an algorithm for computing the grid
function at time-level n D 1; 2; : : : ,

unC1
j D unj C k

h2
.unjC1 � 2unj C unj�1/;

j D 1; : : : N; (6)

un0 D unN ; uNC1 D un1: (7)

This is an explicit method, that is, the solution at each
new time level can be computed directly without solv-
ing a system of equations. It is also a 1-step method,
meaning that only one old time level is involved in
each time step. In Fig. 1a we have plotted discrete so-
lutions at three different time levels. Note the diffusive
behavior of the solution. In Fig. 1b we display solutions
at t D 1 for three different discretizations. Here we
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Fig. 1 Numerical solution of
the heat equation with initial
data u.x; 0/ D
e�.10.x�0:5//4 C sin.6�x/. (a)
Solutions at t D 0 (line),
t D 1 (dots), and t D 4.C/.
(b) Solutions at t D 1 with
step sizes, h; k D 0:1; 0:2

(line), h; k D 0:05; 0:1

(dashed), and
h; k D 0:025; 0:05 (dotted).
(c) Discrete solutions with
h; k D 0:0125; 0:025 at
t D 0:5 (dashed) and t D 1

(dotted)
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note that as the discrete solution seems to converge as
h; k ! 0.

Convergence and fast convergence rate of the dis-
crete solution are essential. To be able to discuss this
topic, we introduce the accuracy concept. By applying
a difference approximation to a restriction to the grid of
a smooth solution to the PDE, and performing Taylor
expansion, we can discuss accuracy. For the finite
difference method (5), we define the truncation error
as the remainder, that is,

nj D unC1
j � unj
k

� unjC1 � 2unj C unj�1
h2

D ut � uxx C O.k C h2/ D O.k C h2/:

We say that the order of accuracy is 1 in time and 2 in
space. As long as the truncation error tends to zero as
h; k ! 0, we say that the approximation is consistent.

However, a small truncation error is not the only
concern. In Fig. 1c we have plotted the solutions
obtained by the same method as before with an even
finer grid. Even though the method is consistent, the
result is useless.

Stability
To understand the behavior in Fig. 1c, we need the
important concept of stability. Loosely speaking, a
method is stable if a perturbation in the solution, intro-
duced at some time level, causes a bounded change in

the solution at later time levels. In particular, the bound
needs to be uniform as the grid is refined.

To measure the solution we will use the norm of a
Un, the grid function at time-level n,

kUnk2 D
NX
1

hjunj j2:

This norm is a discrete counterpart to the L2 norm of
a continuous function at t D tn. Usually we want both
temporal and spatial errors to be small, and as accuracy
increases we reduce h and k in a coordinated way. We
shall therefore in the following definition assume that
h D h.k/. In the following we will give the definition
for 1-step methods.

Definition 1 Suppose a numerical method for spec-
ified time k and space step h D h.k/ for a linear
PDE gives approximations unj . The numerical method
is stable if for each time T , there is a constant CT such
that

kUnk � CT kU 0k; 8k > 0; n � T

k
:

For scalar problems with constant coefficients and no
lower-order terms, we require CT D 1.

A fundamental result is the Lax-Richtmyer theorem
stating that a consistent numerical method can only
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converge if the method is stable. Therefore tools for
analyzing stability are essential.

The most straightforward tool is the von Neumann
analysis, where a single frequency initial data is con-
sidered, u0j D a0e

i!hj . Due to linearity the finite
difference method will at later time levels yield unj D
ane

i!hj . For the method above we get a difference
equation for the amplitude coefficients of the following
form:

anC1 D
�
1 � 4�k

h2
sin2

�
!h

2

��
an H)

an D
�
1 � 4�k

h2
sin2

�
!h

2

��n
a0:

The von Neumann condition for stability requires
that the amplitude for all possible frequencies! should
at all later times be bounded by the initial amplitude,
janj � ja0j. In this case the von Neumann condition is
satisfied precisely if

ˇ̌
ˇ̌2�k
h2

ˇ̌
ˇ̌ � 1: (8)

We say that (5) is a stable method under the condi-
tion (8). In Fig. 1a, b the condition is satisfied, while
in Fig. 1c it is violated. We note that stability requires
k � h2 as the grid is refined. This is typical when an
explicit method is used for a parabolic PDE, and the
requirement leads to very many time steps when a fine
spatial grid is used.

A Second-Order Unconditionally Stable Method
for the Heat Equation
Note that the approximation of the time derivative
in (5) is actually a second-order accurate approxima-
tion of the time derivative at .xj ; tn C k=2/. The accu-
racy of the previous method can therefore be improved
by including terms on the right-hand side to achieve
a second-order approximation at the same point.
The resulting approximation, the Crank-Nicolson
method, is

unC1
j � unj
k

D �
1

2

�
unjC1 � 2unj C unj�1

h2

CunC1
jC1 � 2unC1

j C unC1
j�1

h2

!
: (9)

Taylor expanding around .xj ; tn C k=2/ yields a trun-
cation error nj D O.h2 C k2/ for this approximation.

To obtain an algorithm we add initial data (4) and
periodic boundary conditions (7) as before. In this
case the method is implicit, that is, the algorithm for
computing the approximation at each new time level
n C 1 involves solving a linear system of equations.
In one space dimension the system is tri-diagonal and
direct solution is the most efficient approach. In higher
space dimensions the corresponding systems will be
sparse and banded, and iterative solvers are often used.

To analyze the stability of this method, we apply the
von Neumann analysis. The ansatz unj D ane

i!hj in (9)
yields, after collecting terms related to the different
time levels,

.1C ı/ anC1D .1 � ı/ an; ıD2
�
�k

h2
sin

�
!h

2

��2
:

Here ı � 0 for any combination of k > 0; h > 0,
and !. For nonnegative ı we have j1� ıj=j1C ıj � 1,
and thus the method is stable for any combination of
positive k; h. In particular k � h can be used, as
opposed to the k � h2 for explicit methods. Therefore,
it is usually more efficient to use an implicit method
for parabolic PDEs, at least if a sufficiently good linear
solver is available.

Finite Difference Methods for the
Advection Equation

In this section we consider the advection equation,
sometimes called the one-way wave equation,

ut C aux D 0; 0 � x � 1; t � 0: (10)

Here a is a constant, which for ease of notation, we
will assume to be positive. As in the previous section,
we consider the spatially periodic case. This equation
is a model for hyperbolic PDEs.

We will introduce two approximations, the so-called
upwind method and the Lax-Wndroff method. The
upwind method has its name from the fact that when
a > 0 the characteristic curves of the equation have
a positive slope in the x; t plane, indicating that infor-
mation propagates from left to right. We say that the
“upwind” direction is to the left. The approximation of
the spatial derivative uses values to the left. If a > 0
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the upwind direction would be to the right, and a one-
sided spatial difference approximation with bias to the
right must be used instead.

unC1
j D unj � ak

h

	
unj � unj�1



; (11)

unC1
j D unj � ak

2h

	
unjC1 � unj�1




C1

2

�
ak

h

�2 	
unjC1 � unj C unj�1



:

(12)

They are accurate of orders 1 and 2 (in both space
and time), respectively. We apply the von Neumann
analysis by making the ansatz unj D ane

i!hj , yielding

anC1 D
�
1�ak

h
.1 � e�i!h/

�
an;

anC1 D
 
1�i ak

h
sin.!h/C2

�
ak

h
sin

�
!h

2

��2!
an;

respectively. By some trigonometric manipulations, we
find that the two methods are stable precisely if

0 � ak

h
� 1;

ˇ̌
ˇ̌ak
h

ˇ̌
ˇ̌ � 1;

respectively. Note that the sign of a is essential for
the stability of the upwind method. Both methods are

explicit, and the stability conditions require k and h to
decrease at similar rates. This is typical of good explicit
methods for hyperbolic problems and is acceptable
from an efficiency perspective. Therefore, hyperbolic
problems are usually solved by explicit methods.

In Fig. 2 we have plotted solutions for the case a D
1with initial data u.x; 0/ D e�.4.x�0:5//6 at t D 1. Note
that for this problem the exact solution is u.x; 1/ D
u.x; 0/. Note that the second-order method converges
faster.

Extensions

Realistic models are more complicated then the equa-
tions above. However, the idea to replace derivatives
by finite differences is still applicable, and the stability
concept is central. In general high order is better
than low order. In the variable coefficient case, a first
indication of stability of a method can be obtained
by freezing coefficients (Example: consider using the
Lax-Wendroff method for ut D a.x/ux where a0 �
a.x/ � a1. The relevant frozen coefficient problems
are ut D ˛ux where ˛ is constant, a0 � ˛ � a1.), and
requiring the von Neumann stability condition to be
satisfied for each relevant constant coefficient problem.

Initial Boundary Value Problems
Let us replace the periodic condition (7) for the heat
equation by

0
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Finite DifferenceMethods, Fig. 2 Solution at t D 1 of ut Cux D 0 using the Lax-Wendroff method (left) and the upwind method
(right), with h D 0:05 (rings), 0.025 (star with ring), 0.0125 (star), and k D 0:8h. Exact solution is also included (solid)
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u.0; t/ D g.t/; ux.1; t/ D 0: (13)

A discrete version of (13) to be combined with (5)
or (9) is

un0 D g.tn/; unN D unN�1: (14)

For the advection equation (10) with a > 0 a
boundary condition at x D 0 of the form u.0; t/ D
g.t/ completes the model. For the upwind method this
condition is easily introduced in the discrete algorithm
by setting un0 D g.tn/ and then using (11) for j D
1 : : : :N . In the Lax-Wendroff case, the (12) cannot be
used for j D N . A possible approach is to use a lower-
order accurate formula in this point.

Von Neumann analysis is still relevant. If the
method is not von Neumann stable, the discrete
initial boundary value problem cannot be expected
to be stable. A stability theory that explicitly includes
boundary treatment is outside the scope of this entry,
but can be found in [1, 2, 5].

More Finite Difference Approximations
By including more grid function values, we can ap-
proximate higher derivatives or decrease the truncation
error. With five values in the spatial direction, we can,
for example, get

�uiC2 C 8uiC1 � 8ui�1 C un�2
12h

D ux.xi /C O.h4/;
uiC2 � 4uiC1 C 6ui � 4ui�1 C un�2

h4

D uxxxx.xi /C O.h2/:

These formulas can be derived by solving a system
of equations for the coefficients, but they can also be
found in the literature.

In the temporal direction, care has to be taken to
retain stability. For parabolic problems the so-called
backward differentiation formulas yield implicit meth-
ods with good stability properties up to order 6. The
second-and third-order methods in this family are

3unC1
j � 4unj C un�1

j

2h
D ut .xj ; tnC1/C O.k2/;

(15)

11unC1
j � 18unj C 9un�1

j � 2un�2
j

6h

D ut .xj ; tnC1/C O.k3/: (16)

These formulas can then be combined with high-order
spatial implicit approximations at time level n C 1 to
yield high-order methods.

For the advection equation and other hyperbolic
problems, explicit methods are desirable. A common
approach is to combine high-order spatial discretiza-
tion with, for example, explicit Runge-Kutta methods.
For these and other temporal discretizations, see [3].
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Finite Difference Methods in Electronic
Structure Calculations

Jean-Luc Fattebert
Lawrence Livermore National Laboratory, Livermore,
CA, USA

Definition

The finite difference method is a numerical technique
to calculate approximately the derivatives of a function
given by its values on a discrete mesh.

Overview

Since the development of quantum mechanics,
we know the equations describing the behavior
of atoms and electrons at the microscopic level.
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The Schröedinger equation (�Schrödinger Equation
for Chemistry) is however too difficult to solve
for more than a few particles because of the high-
dimensional space of the solution – 3N for N particles.
So various simplified models have been developed.
The first simplification usually introduced is the Born–
Oppenheimer approximation (�Born–Oppenheimer
Approximation, Adiabatic Limit, and Related Math.
Issues) in which atomic nuclei are treated as classical
particles surrounded by quantum electrons. But many
more approximations can be introduced, all the
way up to classical molecular dynamics models,
where interacting atoms are simply described by
parameterized potentials depending only on the
respective atomic positions. The choice of an
appropriate model depends on the expected accuracy
and the physical phenomena of interest.

For phenomena involving tens or hundreds of atoms
and for which a quantum description of the electronic
structure is needed – to properly describe chemical
bonds making/breaking, or hydrogen bonds for in-
stance – a very popular model is �Density Functional
Theory (DFT).

In DFT, the 3N-dimensional Schröedinger prob-
lem is reduced to an eigenvalue problem in a three-
dimensional space, the Kohn–Sham (KS) equations.
The electronic structure is described by N electronic
wave functions (orbitals) which are the eigenfunctions
corresponding to the N lowest eigenvalues of a nonlin-
ear effective HamiltonianHKS .

Another simplification often introduced in DFT is
the use of so-called pseudopotentials (see, e.g., [12]).
These are effective potentials modeling the core of an
atom, that is, the nuclei and the core electrons which do
not participate to chemical bonds, assuming these core
electrons do not depend on the chemical environment.
Besides reducing the number of electronic wave func-
tions to compute, the benefit of using pseudopotentials
is to remove the singularity 1=r of the Coulomb
potential associated to a nuclei. Indeed these potentials
are built in such a way that the potential felt by
valence electrons is as smooth as possible. This opens
the way for various numerical methods to discretize
DFT equations, in particular the finite difference (FD)
method which is the object of this entry.

The FD method (see, e.g., [4]) started being used
in the 1990s as an alternative to the traditional plane
waves (PW) (or pseudo-spectral) method used in the
physics and material sciences communities [1, 3]. The

PW method had been a very successful approach to
deal with DFT calculations of periodic solids. Besides
being a good basis set to describe free electrons or al-
most free electrons as encountered in metallic systems
and being a natural discretization for periodic systems,
its mathematical properties of spectral convergence
help reduce the size of the basis set in practical cal-
culations. With growing computer power, researchers
in the field started exploring real-space discretizations
in order to facilitate distributed computing on large
parallel computers. A simple domain decomposition
leads to natural parallelism in real space: For p pro-
cessors, the domain ˝ is split into a set of p spatial
sub-domains of equal sizes and shapes, and each sub-
domain is associated to a processor. Each processor
is responsible to evaluate operations associated to the
local mesh points and ghosts values are exchanged
between neighboring sub-domains to enable FD stencil
evaluations at sub-domains boundaries [1].

In a FD approach, it is also easy and natural to
impose various boundary conditions besides the typical
periodic boundary conditions. It can be advantageous
to use Dirichlet boundary conditions for the Coulomb
potential for charged systems or polarized systems in
lower dimension. The value at the boundary can be
set by a multipole expansion of the finite system. This
cancels out Coulomb interactions between periodic
images. A real-space discretization also opens the door
to replacing the simple Coulomb interaction with more
complicated equations which model, for example, the
presence of an external polarizable continuum, such as
continuum solvation models [6]. Local mesh refine-
ment techniques can also be used to improve numerical
accuracy [5].

Like PW, a FD approach provides an unbiased
discretization and accuracy can be systematically im-
proved be reducing mesh spacing. Many of the ad-
vantages of real-space algorithms can be translated in
some way into PW approaches. But doing so is not
always natural, appropriate, or computationally inter-
esting. It appears that one of the greatest potential for
real-space methods is inO.N/ complexity algorithms.

The discussion in this entry is restricted to paral-
lelepiped domains. This is appropriate to treat most
solid-state applications where the computational do-
main has to coincide with a cell invariant under the
crystal structure symmetry. For finite systems sur-
rounded by vacuum, this is also a valid approach as
long as the domain is large enough so that boundary

http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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conditions do not affect the results. From a compu-
tational point of view, parallelepiped domains allow
for the use of structured meshes which facilitates code
implementation and improves numerical efficiency, al-
lowing in particular, FD discretizations and matrix-free
implementations.

Equations

For a molecular system composed ofNa atoms located
at positions f ERI gNaID1 in a computational domain˝ , the
KS energy functional (�Density Functional Theory)
can be written (in atomic units)

EKS

h
f i gNiD1; f ERI gNaID1

i
D

NX
iD1

fi

Z
˝

 �
i .r/

�
�1
2

r2

�

� i .r/dr C 1

2

Z
˝

Z
˝

�e.r1/�e.r2/
jr1 � r2j dr1dr2

CEXC Œ�e�C
Z
˝

 �
i .r/.Vext i/.r/dr

CEII
h
f ERI gNaID1

i
: (1)

with the orthonormality constraints

Z
˝

 �
i .r/ j .r/ D ıij : (2)

Equation 1 uses the electronic density �e defined at
each point in space by

�e.r/ D
NX
iD1

fi j i.r/j2 (3)

where fi denotes the occupation of orbital i . In (1),
the first term represents the kinetic energy of the
electrons, the second the electrostatic energy of interac-
tion between electrons. EXC models the exchange and
correlation between electrons. This term is not known
exactly and needs to be approximated (�Density Func-
tional Theory). Exchange and correlation functional of
the type local density approximation (LDA) or general-
ized gradient approximation (GGA) are typically easy
to implement and computationally efficient in an FD
framework. Vext represents the total potential produced
by the atomic nuclei and includes any additional exter-

nal potential. EII is the energy of interaction between
atomic cores.

The ground state of a physical system is repre-
sented by the orbitals that minimize (1) under the
constraints (2). It can be found by solving the asso-
ciated Euler–Lagrange equations – Kohn–Sham (KS)
equations –

HKS j D
�
�1
2

r2 C VH.�e/C �xc.�e/C Vext

�
 j

D 
j j ; (4)

which must be solved for the N lowest eigenvalues

j and corresponding eigenfunctions  j . The Hartree
potential VH represents the Coulomb potential due to
the electronic charge density �e and is obtained by
solving a Poisson problem. �xc D ıExcŒ�e�=ı�e is the
exchange and correlation potential.

From the eigenfunctions  j ; j D 1; : : : ; N , one
could construct the single-particle density matrix

O�.r; r0/ D
X
i

fi i .r/ �
i .r

0/ (5)

For a FD discretization, (5) becomes a finite
dimensional matrix of dimension M given by the
number of nodes on the mesh. Even if this matrix
becomes sparse for very large problems, the number
of nonzero elements is prohibitively large. It is usually
cheaper to compute and store the N eigenfunctions
corresponding to occupations numbers fi > 0

without ever building the single-particle density
matrix.

Finite Differences Discretization
Let us introduce a uniform real-space rectangular grid
˝h of mesh spacing h – assumed to be the same in all
directions for simplicity – that covers the computation
domain ˝ . The wave functions, potentials, and elec-
tronic densities are represented by their values at the
mesh points rijk . Integrals over˝ are performed using
the discrete summation rule

Z
˝

u.r/dr � h3
X

rijk2˝h
u.rijk/:

For a function u.r/ given by its values on a set
of nodes, the traditional FD approximation wi;j;k to

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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the Laplacian of u at a given node ri;j;k is a lin-
ear combination of values of u at the neighboring
nodes

wi;j;k D
pX

nD�p
cn
�
u.xi C nh; yj ; zk/

Cu.xi ; yj C nh; zk/

C u.xi ; yj ; zk C nh/
�

(6)

where the coefficients fcng can be computed from the
Taylor expansion of u near ri;j;k. Such an approxi-
mation has an order of accuracy 2p, that is, for a
sufficiently smooth function u, wi;j;k will converge to
the exact value of the derivative at the rate O.h2p/
as the mesh spacing h ! 0. High-order versions
of this scheme have been used in electronic structure
calculations [3].

As an alternative, compact FD schemes (Mehrstel-
lenverfahren [4]) have been used with success
in DFT calculations [1]. For example, a fourth-
order FD scheme for the Laplacian is based on the
relation

1

6h2

(
24u.r0/� 2

X
r2˝h;

kr�r0kDh

u.r/�
X

r2˝h;

kr�r0kD

p

2h

u.r/

)

D 1

72

�
48.�r2u/.r0/C 2

X
r2˝h;

kr�r0kDh

.�r2u/.r/

C
X

r2˝h;

kr�r0kD

p

2h

.�r2u/.r/

)
CO.h4/; (7)

valid for a sufficiently differentiable function u.r/. This
FD scheme requires only values at grid points not
further away than

p
2h. Besides its good numerical

properties, the compactness of this scheme reduces the
amount of communication in a domain-decomposition-
based parallel implementation. In practice, this com-
pact scheme consistently improves the accuracy com-
pared to a standard fourth-order scheme.

Pseudopotentials on a Mesh
Accurate calculations can be performed on a
uniform mesh by modeling each atomic core with a
pseudopotential. For instance, a separable nonlocal
Kleinman–Bylander (KB) potential Vps.r; r0/ in
the form

.Vps /.r/ D vl .r/ .r/

C
pX
iD1

Z
˝

vnl;i .r/EKB
i v�

nl;i .r
0/ .r0/dr0

(8)

where EKB
i are normalization coefficients. The radial

function vl contains the long range effect and is equal
to �Z=r far enough from the core chargeZ. The func-
tions vnl;i .r/ are the product of a spherical harmonics
Y m` by a radial function which vanishes beyond some
critical radius.

To reduce the local potential vl to a short-range
potential vsl , we use the “standard trick” of adding
to each atom a Gaussian charge distribution (with
spherical symmetry, centered at the atomic position)
which exactly cancels out the ionic charge. The sum
of the charge distributions added to each atom is then
subtracted from the electronic density used to compute
the Hartree potential and leads to an equivalent prob-
lem. The correction added to the local atomic potential
makes it short range, while the integral of the charge
used to compute the Hartree potential becomes 0. Since
the functions vsl and vnl;i are nonzero only in limited
regions around their respective atoms, the evaluation
of the dot products between potentials and electronic
wave functions on a mesh can take advantage of this
property to reduce computational cost. An example of
pseudopotential is represented in Fig. 1.
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Finite Difference Methods in Electronic Structure Calcu-
lations, Fig. 1 Example of norm-conserving pseudopotential:
chlorine. The local potential (before and after adding compensat-
ing Gaussian charge distribution) is shown as well as the radial
parts of the nonlocal projectors l D 0; 1
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With periodic boundary conditions, the total en-
ergy of a system should be invariant under spatial
translations. A finite mesh discretization breaks this
invariance. To reduce energy variations under spatial
translations, the pseudopotentials need to be filtered.
Filtering can be done in Fourier space using radial
Fourier transforms [1]. Filtering can also be done
directly in real space. In the so-called double-grid
method [11], the potentials are first evaluated on a
mesh finer than the one used to discretize the KS
equations before being interpolated onto the KS mesh.

In order to get smoother pseudo-wave functions and
increase the mesh spacing required for a given calcu-
lation, one can relax the norm-conserving constraint
when building pseudopotentials. FD implementations
of the projected augmented wave (PAW) method [10],
and the ultrasoft pseudopotentials [9] were proposed.
While these approaches reduce the requirements on the
mesh spacing, their implementations are much more
complex than standard norm-conserving pseudopoten-
tial methods and they require the use of additional
finer grids to represent some core functions within
each atom.

Real-Space Solvers
Among the various algorithms proposed for solving the
KS equations (�Fast Methods for Large Eigenvalues
Problems for Chemistry), algorithms developed for
PW can be adapted and applied to FD discretizations.
The two approaches use similar number of degrees
of freedom to represent the wave functions and thus
have similar ratios between the number of degrees
of freedom and the number of wave functions to
compute. However, some aspects are quite different
between the two approaches and affect in particular
their implementation.

PW discretizations make use of the fact that the
Laplacian operator is diagonal in Fourier space not
only to solve for the Hartree potential, but also to
precondition steepest descent corrections used to op-
timize wave functions. For FD, the most scalable and
efficient solver for a Poisson problem is the multigrid
method (see, e.g., [2]). Solving a Poisson problem on
a mesh composed ofO.N/ nodes is achieved inO.N/
operations with a very basic multigrid solver.

The multigrid method has also been used as a
preconditioner to modify steepest descent directions
and speed up convergence [1, 7]. Preconditioned
steepest descent directions can be used in combination

with various solvers, either in self-consistent
iterations or direct energy minimization algorithms
(�Self-Consistent Field (SCF) Algorithms). The full
approximation scheme (FAS), a multigrid approach
for solving nonlinear problems, has also been used
in FD electronic structure calculations to directly
solve the nonlinear KS equations using coarse
grid approximations of the full eigenvalue problem
[14].

Forces, Geometry Optimization, and Molecular
Dynamics
Calculating the ground-state electronic structure of a
molecular system is usually only the first step toward
calculating other physical properties of interest. For in-
stance to optimize the geometry of a molecular system
or to simulate thermodynamic properties by molecular
dynamics (�Calculation of Ensemble Averages), the
electronic structure is just a tool to calculate the forces
acting on atoms in a particular configuration.

Knowing the ground-state electronic structure for
a given atomic configuration f ERgNaID1, one can com-
pute the force acting on the ion I by evaluating the
derivative of the total energy with respect to the atomic
coordinates ERI . Using the property that the set f i gNiD1
minimizes the functional E, one shows that

FI D �r ERI EKS.f i gNiD1; f ERgNaID1/

D � @

@ ERI
EKS.f i gNiD1; f ERgNaID1/ (9)

(Hellmann–Feynman forces, [8]). Since the mesh is in-
dependent of the atomic positions, the wave functions
do not depend explicitly on the atomic positions and
the only quantities that explicitly depend on RI are
the atomic potentials. Thus, in practice, the force on
atom I can be computed by adding small variations to
ERI in the x, y, and z directions, and computing finite

differences between the values of EKS evaluated for
shifted potentials but with the electronic structure that
minimizes EKS at RI , that is, without recomputing the
wave functions.

The FD method is not variational: The energy does
not systematically decrease when one refines the dis-
cretization mesh. Energy can converge from below
(see Fig. 2). Usually the energy does not need to
be converged to high precision in DFT calculations.
One typically relies on systematic errors introduced by

http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_256
http://dx.doi.org/10.1007/978-3-540-70529-1_265
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Finite Difference Methods in Electronic Structure Calcula-
tions, Fig. 2 Energies and forces for Cl2 molecule as function
of the distance between the two atoms for two different meshes

discretization which only shifts the energy up or down.
As illustrated in Fig. 2 for the case of a C l2 molecule,
other physical quantities of interest, such as force in
this case, can converge before the energy.

By repeating the process of calculating the elec-
tronic structure, deriving the forces and moving atoms
according to Newton’s equation for many steps, one
can generate molecular dynamics trajectories. As an
alternative to computing the ground-state electronic
structure at every step, the Car–Parrinello molecular
dynamics approach can be used. It was also imple-
mented for a FD discretization [13].

O(N) Complexity Algorithms
Probably the main advantage of FD over PW is the
ability to truncate electronic wave functions in real
space to obtainO.N/ complexity algorithms (�Linear
Scaling Methods). Typical implementation of DFT
solvers require O.N3/ operations for N electronic
orbitals, while memory requirements grow as O.N2/.
The O.N2/ growth comes from the fact that the num-
ber of degrees of freedom per electronic wave func-
tion is proportional to the computational domain size
– one degree of freedom per mesh point – since
quantum wave function live in the whole domain.
The O.N3/ scaling of the solver is due to the fact
that each function needs to be orthogonal to all the
others.

The first step to reduce scaling is to rewrite (1) in
terms of nonorthogonal electronic wave functions

EKSŒf�i gNiD1; f ERI gNaID1�

D
NX

i;jD1
2

Z
˝

S�1
ij �

�
j .r/

�
�1
2

r2

�
�i .r/dr

C1

2

Z
˝

Z
˝

�e.r1/�e.r2/
jr1 � r2j dr1dr2 C EXC Œ�e�

C
NX

i;jD1

Z
˝

S�1
ij �

�
j .r/.Vext�i/.r/dr:

(10)

with

�e.r/ D 2

NX
i;jD1

S�1
ij �

�
j .r/�i .r/ (11)

and Sij D R
˝ �

�
j .r/�i .r/. Here we assume that all the

orbitals are occupied with two electrons.
This formulation does not reduce computational

complexity since, for instance, the cost of orthonormal-
ization is just shifted into a more complex calculation
of the residuals for the eigenvalue problem. However,
the flexibility gained by removing orthogonality con-
straints on the wave functions enables the possibility
of adding locality constraints: One can impose a priori
that each orbital is nonzero only inside a sphere of
limited radius and appropriately located [7]. This
is quite natural to impose on a real-space mesh and
lead to O.N/ degrees of freedom for the electronic
structure. This approach is justified by the maximally
localized Wannier functions’ representation of the elec-
tronic structure (�Linear Scaling Methods). Cutoff
radii of 10 Bohr or less lead to practical accuracy
for insulating system (with a finite band gap). While
other ingredients are necessary to obtain a truly O.N/
complexity algorithm, real-space truncation of orbitals
is the key to reduce computational complexity in mesh-
based calculations.

References

1. Briggs, E.L., Sullivan, D.J., Bernholc, J.: Real-space
multigrid-based approach to large-scale electronic struc-
ture calculations. Phys. Rev. B 54(20), 14,362–14,375
(1996)

2. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Mltigrid
Tutorial, 2nd edn. Society for Industrial and Applied Math-
ematics, Philadelphia (2000)

http://dx.doi.org/10.1007/978-3-540-70529-1_252
http://dx.doi.org/10.1007/978-3-540-70529-1_252


Finite Element Methods 527

F

3. Chelikowsky, J.R., Troullier, N., Saad, Y.: Finite-difference-
pseudopotential method: electronic structure calculations
without a basis. Phys. Rev. Lett. 72(8), 1240–1243
(1994)

4. Collatz, L.: The Numerical Treatment of Differential Equa-
tions. Springer, Berlin (1966)

5. Fattebert, J.L.: Finite difference schemes and block
Rayleigh quotient iteration for electronic structure calcu-
lations on composite grids. J. Comput. Phys. 149, 75–94
(1999)

6. Fattebert, J.L., Gygi, F.: Density functional theory for effi-
cient ab initio molecular dynamics simulations in solution.
J. Comput. Chem. 23, 662–666 (2002)

7. Fattebert, J.L., Gygi, F.: Linear-scaling first-principles
molecular dynamics with plane-waves accuracy. Phys.
Rev. B 73, 115,124 (2006)

8. Feynman, R.: Forces in molecules. Phys. Rev. 56, 340–343
(1939)

9. Hodak, M., Wang, S., Lu, W., Bernholc, J.: Implementa-
tion of ultrasoft pseudopotentials in large-scale grid-based
electronic structure calculations. Phys. Rev. B 76(8), 85108
(2007)

10. Mortensen, J., Hansen, L., Jacobsen, K.: Real-space grid
implementation of the projector augmented wave method.
Phys. Rev. B 71(3), 035109 (2005)

11. Ono, T., Hirose, K.: Timesaving double-grid method for
real-space electronic-structure calculations. Phys. Rev. Lett.
82(25), 5016–5019 (1999)

12. Pickett, W.E.: Pseudopotential methods in condensed matter
applications. Comput. Phys. Rep. 9, 115–198 (1989)

13. Schmid, R.: Car-Parrinello simulations with a real space
method. J. Comput. Chem. 25(6), 799–812 (2004)

14. Wijesekera, N.R., Feng, G., Beck, T.L.: Efficient multiscale
algorithms for solution of selfconsistent eigenvalue prob-
lems in real space. Phys. Rev. B 75(11), 115101 (2007)

Finite Element Methods

Endre Süli
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Synonyms

FEM; Finite element approximation

Definition

The finite element method is a numerical technique
for the approximate solution of differential equations
and variational problems. The approximate solution is

sought as a finite linear combination of compactly
supported, typically piecewise polynomial, basis
functions, associated with a subdivision of the
computational domain into a large number of simpler
subdomains (finite elements).

Overview

The historical roots of the finite element method can
be traced back to a paper by Richard Courant pub-
lished in 1943; cf. [7]. The method was subsequently
rediscovered by structural engineers and was termed
the finite element method. Since the 1960s the finite
element method has been developed into one of the
most general and powerful class of techniques for the
numerical solution of differential equations; see, for
example, [3, 4, 6, 10–13]. Reasons for its popularity
include the potential to approximate large classes of
partial differential equations in general geometries,
the availability of rigorous analysis of stability and
convergence of the method, a wide choice of possible
finite element spaces to obtain stable and accurate
discretizations, and the potential for the development
of adaptive algorithms with error control based on
sharp a posteriori error bounds.

There are two, conceptually different, approaches to
the construction of finite element methods. The first of
these, named after the Russian/Soviet mechanical engi-
neer and mathematician Boris Grigoryevich Galerkin
(1871–1945), is termed the Galerkin principle and is
used in the solution of boundary-value problems for
differential equations. The second approach, bearing
the names of Lord Rayleigh (1842–1919) and Walther
Ritz (1878–1909), is referred to as a the Rayleigh–
Ritz principle and is associated with the finite element
approximation of energy-minimization problems such
as those that arise in mechanics and the calculus of
variations. The two approaches are related in that the
Galerkin principle can be viewed as a stationarity
condition at the minimizer in a variational problem.
The Galerkin principle is however more general than
the Rayleigh–Ritz principle; for example, non-self-
adjoint elliptic boundary-value problems have an as-
sociated Galerkin principle, even though there is no
natural energy functional that is minimized by the
solution of the boundary-value problem. As was noted
by Courant in his 1943 paper cited above, “Since
Gauss and W. Thompson, the equivalence between
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boundary-value problems of partial differential equa-
tions on the one hand and problems of the calculus of
variations on the other hand has been a central point in
analysis. At first, the theoretical interest in existence
proofs dominated and only much later were practi-
cal applications envisaged by two physicists, Lord
Rayleigh and Walther Ritz; they independently con-
ceived the idea of utilizing this equivalence for nu-
merical calculation of the solutions, by substituting
for the variational problems simpler approximating
extremum problems in which but a finite number of
parameters need be determined.” In Courant’s work
the finite number of parameters were obtained via the
Rayleigh–Ritz method with compactly supported basis
functions that were chosen to be piecewise linear over
a triangulation of the domain of definition of the ana-
lytical solution to the problem. This was a significant
innovation compared to earlier efforts by Galerkin. On
the other hand, while Courant adopted the Rayleigh–
Ritz principle as the starting point for the construction
of his method, Galerkin did not associate his technique
with the numerical solution of minimization problems
and viewed it as a method for the approximate solution
of differential equations, by what is now referred to as
the method of weighted residuals.

The Galerkin Principle

Consider a differential equation, symbolically written
as Lu D f , where L is a differential operator whose
domain, D.L/, and range are contained in a Hilbert
space H with inner product .�; �/. Suppose further that
f is a given element in the range of L, and u 2 D.L/
is the unknown solution to the equation that is to be
approximated. It is assumed that u exists and that it
is unique. For any v 2 D.L/, the residual of v is
defined by R.v/ WD f � Lv. Clearly, R.v/ D 0 if
and only if v D u. Equivalently, .R.v/;w/ D 0 for
all w 2 H if and only if v D u. Galerkin’s method
is based on considering a linear subspace Hn of H of
finite dimension n, contained in D.L/, and seeking a
Galerkin approximation un 2 Hn to u by demanding
that .R.un/;w/ D 0 for all w 2 Hn. The last equality,
referred to as Galerkin orthogonality, can be restated
as follows: un 2 Hn satisfies .Lun;w/ D .f;w/ for
all w 2 Hn. Under suitable assumptions on L and Hn,
the Galerkin approximations un 2 Hn, n D 1; 2; : : : ,
thus defined exist and are unique, and the sequence

.un/1nD1 � D.L/ � H converges to u in the norm k � k
of H in the sense that limn!1 ku � unk D 0, where
k � k is defined by kwk WD .w;w/1=2.

A practical shortcoming of Galerkin’s method as
stated above is that, in order to ensure that Lun 2 H,
the linear spaces Hn, n D 1; 2; : : : are required to
be contained in the domain, D.L/, of the differential
operator L, and this leads to excessive demands on the
regularity of the elements of Hn. In the construction
of a finite element method, this difficulty is overcome
by converting the differential equation, in tandem with
the given boundary condition(s), into a weak form.
Suppose, to this end, that ˝ � R

d is a bounded
open set in R

d with a Lipschitz-continuous boundary
@˝ . We shall denote by L2.˝/ the linear space of
square-integrable real-valued functions v defined on
˝ , equipped with the inner product .�; �/ defined by
.v;w/ WD R

˝ v.x/w.x/ dx and the induced norm
kvk WD .v; v/1=2. Let Hm.˝/ denote the Sobolev
space consisting of all functions v 2 L2.˝/ whose
(weak) partial derivatives @˛v belong to L2.˝/ for
all ˛ D .˛1; : : : ; ˛d / such that j˛j WD ˛1 C � � � C
˛d � m, equipped with the norm kvkHm.˝/ WD�P

˛ Wj˛j�m k@˛vk2�1=2; H1
0 .˝/ will denote the set of

all v 2 H1.˝/ that vanish on @˝ . Let a and c be real-
valued functions, defined and continuous on ˝ , such
that c.x/ � 0 for all x 2 ˝ , and there exists a positive
constant c0 such that a.x/ � c0 for all x 2 ˝ . Let b
be a d -component vector function whose components
are real-valued and continuously differentiable on ˝.
Assume, for simplicity, that r � b D 0 on ˝ and
c.x/ � c0 for all x 2 ˝ . For f 2 L2.˝/, we consider
the boundary-value problem

Lu W D �r � .a.x/ru/C b.x/ � ru C c.x/u D f .x/

for x 2 ˝ , with u D 0 on @˝ . (1)

By multiplying the differential equation in (1) with
v 2 H1

0 .˝/, integrating over˝ , integrating by parts in
the first term, and noting that the integral over @˝ that
results from the partial integration vanishes, we obtain
the following weak formulation of the boundary-value
problem (1): find u 2 H1

0 .˝/ satisfying

A.u; v/ D `.v/ 8v 2 H1
0 .˝/; (2)

where, for any w; v 2 H1
0 .˝/,
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a b

Finite Element Methods, Fig. 1 (a) Finite element triangula-
tion of the computational domain˝ . Vertices on @˝ are denoted
by solids dots, and vertices internal to ˝ by circled solid dots.

(b) Piecewise linear nodal basis function associated with an
internal vertex in a triangulation

A.w; v/ WD
Z
˝

a.x/rw � rv C .b.x/ � rw/ v

Cc.x/wv dx and `.v/ D .f; v/:

We shall describe the finite element approximation
of (1), based on (2), in the special case when d D 2

and ˝ is a bounded open polygonal domain in R
2.

Finite Element Approximation

We consider a triangulation of ˝ � R
2, by subdi-

viding ˝ into a finite number of closed triangles Ti ,
i D 1; : : : ;M , whose interiors are pairwise disjoint,
and for each i; j 2 f1; : : : ;M g, i ¤ j , for which
Ti \Tj is nonempty, Ti \Tj is either a common vertex
or a common edge of Ti and Tj (cf. Fig. 1a). Let hT
be the longest edge of a triangle T in the triangulation,
and let h be the largest among the hT . Let Sh denote
the linear space of all real-valued continuous functions
vh defined on˝ whose restriction to any triangle in the
triangulation is an affine function. Let, further, Sh;0 WD
Sh \H1

0 .˝/. The finite element approximation of (2)
is as follows: find uh 2 Sh;0 such that

A.uh; vh/ D `.vh/ 8vh 2 Sh;0: (3)

Let xi , i D 1; : : : ; L, be the vertices in the
triangulation (cf. Fig. 1a), and let N D N.h/

denote the dimension of the finite element space
Sh;0. Let further f'j W j D 1; : : : ; N g denote
the so-called nodal basis for Sh;0, where the basis
functions are defined by 'j .xi / D ıij , i D 1; : : : ; L,
j D 1; : : : ; N . A typical piecewise linear nodal

basis function is shown in Fig. 1b. Thus, there
exists a vector U D .U1; : : : ; UN /

T 2 R
N such

that uh.x/ D PN
jD1 Uj 'j .x/. The substitution of

this expansion into (3) and taking vh D 'k , k D
1; : : : ; N, yield the system of linear algebraic equationsPN

jD1A.'j ; 'k/Uj D `.'k/, k D 1; : : : ; N . By
recalling the definition of A.�; �/, we see that the matrix

A WD
	�A.'j ; 'k/�Nj;kD1


T
of this system of linear

equations is sparse and positive definite. The unique
solution U D .U1; : : : ; UN /

T 2 R
N of the linear

system yields the computed approximation uh to the
analytical solution u on the given triangulation of ˝.

As Sh;0 is a linear subspace of H1
0 .˝/, v D vh is

a legitimate choice in (2). By subtracting (3) from (2),
with v D vh, we can restate Galerkin orthogonality as:

A.u � uh; vh/ D 0 8vh 2 Sh;0: (4)

By the assumptions on the coefficients a, b, and c

stated above, A.v; v/ � c0kvk2
H1.˝/

for all v 2
H1
0 .˝/, and there exists a positive constant c1, such

that A.w; v/ � c1kwkH1.˝/kvkH1.˝/ for all w; v 2
H1
0 .˝/. Thus, by noting (4), we deduce the following

result, known as Céa’s lemma: ku � uhkH1.˝/ �
c1
c0

infvh2Sh;0 ku � vhkH1.˝/; which expresses the fact
that the finite element solution uh 2 Sh;0 is the near-
best approximation to the exact solution u 2 H1

0 .˝/

from the finite element subspace Sh;0; in the special
case when c1=c0 D 1 (which will occur, e.g., if
a D c D c0 D const: > 0 and b D 0),
the finite element solution uh 2 Sh;0 is the best
approximation to the exact solution u 2 H1

0 .˝/

from the finite element space Sh;0 in the norm of
the space H1.˝/. When c1=c0  1, the numerical
solution uh is typically a poor approximation to u in
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the k � kH1.˝/ norm. The approximation and stabil-
ity properties of the classical finite element method
(3) can be improved in such instances by modifying
in a consistent manner the definitions of A.�; �/ and
`.�/ through the addition of “stabilization terms.” The
resulting finite element methods are referred to as
stabilized finite element methods, a typical example
being the streamline-diffusion finite element method;
cf. [11].

Céa’s lemma is a key tool in the analysis of fi-
nite element methods. Assuming, for example, that
u 2 H2.˝/ \ H1

0 .˝/ and denoting by Ih the fi-
nite element interpolant of u defined by Ihu.x/ WDPN

jD1 u.xj /'j .x/, where xj , j D 1; : : : ; N , are the
vertices in the triangulation that are internal to ˝ (cf.
Fig. 1a), by Céa’s lemma, ku � uhkH1.˝/ � c1

c0
ku �

IhukH1.˝/. Assuming further that the triangulation is
shape regular in the sense that there exists a positive
constant c�, independent of h, such that for each tri-
angle in the triangulation, the ratio of the longest edge
to the radius of the inscribed circle is bounded below
by c�, arguments from approximation theory imply
the existence of a positive constant Oc, independent of
h, such that ku � IhukH1.˝/ � OchkukH2.˝/. There-
fore, the following a priori error bound holds: ku �
uhkH1.˝/ � QchkukH2.˝/, with Qc D Oc c1=c0. Thus, as
the triangulation is successively refined by letting h !
0C, the sequence of finite element approximations uh
converges to the analytical solution u in the H1.˝/

norm. It is also possible to derive a priori error bounds
in other norms [4, 6].

Mixed Finite Element Methods and the Inf-Sup
Condition
Many problems in fluid mechanics, elasticity, and
electromagnetism are modeled by systems of partial
differential equations involving a number of dependent
variables, which, due to their disparate physical nature,
need to be approximated from different finite element
spaces. If the finite element method is to have a
unique solution and the method is to be stable, the
choice of the finite element spaces in such mixed finite
element methods in which the approximations to the
various components of the vector of unknowns are
sought cannot be arbitrary and need to satisfy a certain
compatibility condition, called the inf-sup condition
or Babuška–Brezzi condition (or Ladyzhenskaya–
Babuška–Brezzi (LBB) condition); cf. [4, 5].

Nonconforming and Discontinuous Galerkin
Finite Element Methods
There are instances when demanding continuity of the
finite element approximation uh over the entire com-
putational domain ˝ is too restrictive, either because
the analytical solution exhibits steep layers, which are
poorly approximated by continuous piecewise poly-
nomial functions, or, as is the case in certain mini-
mization problems in the calculus of variations that
exhibit a Lavrentiev phenomenon, because the solution
cannot be approached arbitrarily closely by a sequence
of Lipschitz-continuous functions. In nonconforming
finite element methods, the finite element space Sh
in which the approximate solution is sought is still
a subset of L2.˝/, but the interelement continuity
requirement is relaxed, for example, to continuity at
selected points along edges (as is the case for the
affine Crouzeix–Raviart element, for which continu-
ity at midpoints of edges is imposed). In the case
of discontinuous Galerkin finite element methods, no
interelement continuity is generally demanded, and the
fact that the finite element solution, which is then a
discontinuous piecewise polynomial function, is meant
to approximate a continuous analytical solution is en-
coded in the definition of the method through addi-
tional terms that penalize interelement jumps in the
finite element solution.

A Posteriori Error Analysis and Adaptivity
A priori error bounds and asymptotic convergence
results are of little practical use from the point of
view of precise quantification of approximation errors
on specific triangulations. A possible alternative is
to perform a computation on a chosen triangulation
and use the computed approximation to (i) quantify
the approximation error a posteriori, and (ii) identify
parts of the computational domain where the trian-
gulation was inadequately chosen, necessitating local
adaptive refinement or coarsening (h-adaptivity); cf.
[2]. It is also possible to locally vary the degree of
the piecewise polynomial function in the finite element
space (p-adaptivity) and adjust the triangulation by
moving/relocating the grid points (r-adaptivity). The
h-adaptive loop for a finite element method has the
form: SOLVE ! ESTIMATE ! MARK ! REFINE.
In other words, first a finite element approximation
is computed on a certain fixed triangulation of the
computational domain. Then, in the second step, an
a posteriori error bound is used to estimate the error
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Finite ElementMethods, Fig. 2 An hp-adaptive finite element
mesh (top), using piecewise polynomials with degrees 1; : : : ; 6
(indicated by the color coding), in a discontinuous Galerkin
finite element approximation of the compressible Navier–Stokes

equations, and the computed density (middle) and x-momentum
(bottom) for flow around the NACA0012 airfoil, with an angle
of attack of 2ı, Mach number Ma = 0.5, and Reynolds number
Re = 5,000 (By courtesy of Paul Houston)

in the computed solution: a typical a posteriori er-
ror bound for a second-order elliptic boundary-value
problem Lu D f , where L is an elliptic operator

and f is a given right-hand side, is of the form ku �
uhkH1.˝/ � C�jjjR.uh/jjj, where C� is a computable
constant, jjj � jjj is a certain norm, depending on the
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problem, and R.uh/ D f � Luh is the computable
residual, which measures the extent to which the com-
puted numerical solution uh fails to satisfy the partial
differential equation Lu D f (cf. [1]). In the third step,
on the basis of the a posteriori error bound, selected
triangles in the triangulation are marked as those whose
size is inadequate (i.e., too large or too small, relative
to a prescribed local tolerance). Finally, the marked
triangles are refined or coarsened. The process is then
repeated either until a fixed termination criterion is
reached (e.g., C�jjjR.uh/jjj < TOL, where TOL is
a preset global tolerance) or until the computational
resources are exhausted. A similar adaptive loop can
be used in p-adaptive finite element methods, except
that the step REFINE is then interpreted as adjustment
(i.e., increase or decrease) of the local polynomial
degree, which, instead of being a fixed integer over
the entire triangulation, may vary from triangle to
triangle.

Combinations of these strategies are also possible.
Simultaneous h- and p-adaptivity is referred to as
hp-adaptivity; it is particularly easy to incorporate
into discontinuous Galerkin finite element algorithms
thanks to the simple communication at interelement
boundaries (cf. Fig. 2).

Outlook

Current areas of active research in the field of
finite element methods include the construction
and mathematical analysis of multiscale finite
element methods (e.g., homogenization problems
cf. [8]), specialized methods for partial differential
equations with highly oscillatory solutions (e.g., high-
wavenumber Helmholtz’s equation and Maxwell’s
equation), stabilized finite element methods for non-
self-adjoint problems, finite element approximation
of transport problems (semi-Lagrangian, Lagrange–
Galerkin, and moving-mesh finite element methods),
finite element approximation of partial differential
equations on manifolds, finite element methods
for high-dimensional partial differential equations
that arise from stochastic analysis, the construction
and analysis of finite element methods for partial
differential equations with random coefficients, and
the approximation of the associated problems of
uncertainty quantification, as well as finite element

methods for adaptive hierarchical modeling and
domain decomposition.

There has also been considerable progress in the
field of iterative methods, particularly Krylov subspace
methods, and preconditioning associated with the so-
lution of systems of linear algebraic equations with
large sparse matrices that arise from finite element
discretizations (cf. [9]), as well as the development
of finite element software. Free and open-source finite
element packages include the following: CalculiX,
Code Aster, deal.II, DUNE, Elmer, FEBio, FEniCS,
FreeFem++, Hermes, Impact, IMTEK Mathematica
Supplement, OOFEM, OpenFOAM, OpenSees, and
Z88. There are also a number of commercial finite
element packages, including Abaqus, ANSYS, COM-
SOL Multiphysics, FEFLOW, LS-DYNA, Nastran, and
Stresscheck.
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Finite Element Methods for Electronic
Structure

John E. Pask
Lawrence Livermore National Laboratory, Livermore,
CA, USA

Definition

The computation of the electronic wavefunctions and
associated energies or electronic structure of atoms,
molecules, and condensed matter lies at the heart
of modern materials theory. We discuss the solution
of the required large-scale nonlinear eigenvalue
problems by modern finite element and related
methods.

Overview

The properties of materials – from color to hardness,
from electrical to magnetic, from thermal to struc-
tural – are determined by quantum mechanics, in which
all information about the state of a system is contained
in the wavefunction (see entry � Schrödinger Equation
for Chemistry). However, the wavefunction of a col-
lection of M nuclei and N electrons is a function of
3.MCN/ variables (coordinates), which is completely
intractable to store or compute for all but the simplest
systems of a few atoms.

In order to make progress, therefore, approxima-
tions are required. For applications involving more
than a few atoms, some form of Hartree-Fock (HF)
(see entry �Hartree–Fock Type Methods) or density
functional theory (DFT) (see entry �Density Func-

tional Theory) approximation is commonly employed,
reducing the required problem to a nonlinear eigen-
value problem for N three-dimensional eigenfunctions
f�i.x/g and associated eigenvalues f"ig corresponding
to N single-particle orbitals and associated energies
(see entries �Variational Problems in Molecular Sim-
ulation and �Numerical Analysis of Eigenproblems
for Electronic Structure Calculations). The solution
of this problem remains, however, a formidable task.
Large problems can require the solution of thousands
of eigenfunctions with millions of degrees of freedom
each – thousands of times over in the course of a
molecular dynamics simulation. Numerous methods
of solution have been developed over the course of
decades [10]. Here, we discuss one of the more re-
cent developments: the application of modern finite
element [12] and related methods to the solution of
the Kohn-Sham equations [7] of DFT, with the goal
of increasing the range of physical systems which can
be investigated by such accurate, quantum mechanical
means. Due to the correspondence of the resulting
eigenproblems, the methods discussed here apply to
the HF equations as well.

Like standard planewave and Gaussian or
Slater-orbital-based methods [10], the FE method
is a variational expansion approach in which
approximate solutions are obtained by discretizing
the continuous problem in a finite dimensional
basis. Like the planewave method, the FE method
is systematically improvable, allowing rigorous
control of approximation errors by virtue of the
polynomial nature of the basis. This is in marked
contrast to Gaussian or Slater-orbital-based methods
which require careful tuning for each particular
problem and can suffer from ill- conditioning
when pushed to higher accuracies [3]. While the
planewave basis is global, however, with each
function overlapping every other at every point
in the domain, the FE basis is strictly local
(compactly supported), with each function overlapping
only its nearest neighbors. This leads to sparse
matrices and allows for efficient, large-scale parallel
implementation. By virtue of its systematically
improvable basis and strict locality, the FE method
combines significant advantages of both planewave
and finite-difference-based approaches (see entry
� Finite Difference Methods in Electronic Structure
Calculations).
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Finite Element Bases

Finite element bases consist of strictly local piece-
wise polynomials [12]. A simple example is shown
in Fig. 1: a one-dimensional (1D), piecewise-linear
basis on domain ˝ D .0; 1/. In this case, the domain
is partitioned into three elements ˝1–˝3; in practice,
there are typically many more so that each element
encompasses only a small fraction of the domain. The
basis in Fig. 1 illustrates the key properties of all such
nodal bases, whether of higher dimension or higher
polynomial order. The basis functions are strictly local,
i.e., nonzero over only a (typically) small fraction of
the domain. This leads to sparse matrices and effi-
cient parallel implementation. Within each element,
the basis functions are simple, low-order polynomials,
which leads to computational efficiency, generality,
and systematic improvability. The basis functions are
C0 in nature, i.e., continuous but not smooth, greatly
facilitating construction in higher dimensions, in com-
plex geometries in particular. Finally, the basis is car-
dinal, i.e.,

�i .xj / D ıij : (1)

By virtue of this property, an FE expansion f .x/ DP
i ci�i .x/ has the property f .xj / D cj so that

the expansion coefficients have a direct, “real-space”
meaning. This eliminates the need for computationally
intensive transforms, such as Fourier transforms in
planewave-based solution methods [10], and facili-
tates preconditioning such as multigrid in grid-based
approaches [3].

Figure 1a shows a general C0 linear basis, capable
of representing any piecewise linear function (having
the same polynomial subintervals) exactly. To solve
a problem subject to Neumann boundary conditions
f 0.0/ D f 0.1/ D 0, one would use such a basis
in a weak formulation (as discussed below) contain-
ing that condition as a natural boundary condition –
i.e., one contained in the problem formulation rather
than trial space from which the solution is drawn. To
solve a problem subject to Dirichlet boundary condi-
tions f .0/ D f .1/ D 0, as occur in atomic and
molecular calculations, one would employ a basis as

Finite Element Methods for
Electronic Structure, Fig. 1
1D piecewise-linear FE bases.
(a) General. (b) Dirichlet. (c)
Periodic. (d) Bloch periodic

a

b

c

d



Finite Element Methods for Electronic Structure 535

F

in Fig. 1b, omitting boundary functions, thus enforcing
the condition as an essential boundary condition – i.e.,
one contained in the trail space. To solve a problem
subject to periodic boundary conditions, f .0/ D f .1/

and f 0.0/ D f 0.1/, as occur in condensed matter
calculations, one would use a basis as in Fig. 1c. In this
case, since the basis satisfies �i .0/ D �i .1/ but not
�0
i .0/ D �0

i .1/, the value-periodic condition f .0/ D
f .1/ is enforced as an essential boundary condition,
while the derivative-periodic condition f 0.0/ D f 0.1/
is enforced as a natural one [11]. Finally, to solve a
problem subject to Bloch-periodic or Floquet boundary
conditions, f .1/ D eikaf .0/ and f 0.1/ D eikaf 0.0/,
as occurs in solid-state electronic structure, one would
use a basis as in Fig. 1d, i.e., associate functions at
domain boundaries after multiplying by Bloch phase
factor eikxj ; where k is the Bloch wavevector, xj is
the coordinate of the node associated with boundary
function �j , and a is the length of the domain (in this
case, 1). Here again, the value-periodic condition is
enforced as an essential boundary condition, while the
derivative-periodic condition is enforced as a natural
one [13].

Higher-order FE bases are constructed by increasing
polynomial completeness in each element: three
quadratics in each element for quadratic completeness,
four cubics for cubic completeness, etc. And with
higher-order completeness comes the possibility
of higher-order smoothness. For example, with
cubic completeness, one can construct a standard
C0 Lagrange basis, C1 Hermite basis, or C2 B-
spline basis, as shown in Fig. 2. Lagrange bases
are C0 for all polynomial orders p, Hermite bases
are C .p�1/=2, and B-splines are C .p�1/. Note,
however, that with increased smoothness comes
decreased locality: e.g., while one Lagrange function
overlaps six of its neighbors, the others overlap
only three, whereas each Hermite function overlaps
five neighbors and each B-spline function overlaps
six. This difference becomes even more pronounced
in higher dimensions, leading to less sparseness in
discretizations and more communications in parallel
implementations. Moreover, cardinality is lost for
smoother bases, leading to less efficient nonlinear
operations (such as constructing the charge density
and evaluating exchange-correlation functionals in
electronic structure), complications in imposing
boundary conditions, and constraints on meshes in
higher dimensions. However, for sufficiently smooth

problems, such higher-order continuity can yield
greater accuracy per degree of freedom (DOF) [12] and
more accurate derivatives, as required for forces and
certain exchange-correlation functionals in electronic
structure. Both C0 (e.g., [8,11,14]) and smoother (e.g.,
[5, 15, 16]) bases have been employed in electronic
structure. Whether C0 or smoother, however, what is
clear from much work in the area is that traditional
low-order (e.g., linear) FE bases are not sufficient
for electronic structure due to the relatively high
accuracies required, e.g., errors on the order of one
part in 105 as opposed to tenths of percents typical
in engineering applications. Due to the accuracies
required, higher-order bases, which afford higher
accuracy per DOF [12], are generally necessary.

Higher-dimensional FE bases are constructed along
two main lines. Simplest, and most common in the
context of smoother bases is a tensor product of 1D ba-
sis functions: ˚ijk.x; y; z/ D �i.x/�j .y/�k.z/. How-
ever, while simple, and advantageous with respect to
separability, this results in more basis functions per
element than required for a given polynomial com-
pleteness. To reduce DOFs per element, 3D bases can
also be defined directly: e.g., specify n nodes on the
3D element and a 3D polynomial of n terms, then
generate the basis by requiring cardinality at each
node. Standard “serendipity” bases [12] are of this
type, for example. If adaptivity is a prime concern,
as in all-electron calculations where wavefunctions
are highly oscillatory in the vicinity of nuclei, then
tetrahedral elements can be advantageous (e.g., [8,14]).
For smoother, pseudopotential-based calculations, hex-
ahedral (rectangular solid) elements generally afford
a more efficient path to higher orders and accuracies
(e.g., [11, 15]).

Schrödinger and Poisson Equations

We now consider the solution of the Schrödinger
and Poisson equations required in the solution of the
Kohn-Sham equations. We consider a general C0 basis
so that the development applies to smoother bases as
well.

For isolated systems, such as atoms or molecules,
the solution of the required Schrödinger andPoisson
problems is relatively straightforward: a sufficiently
large domain is chosen so that the wavefunctions
vanish on the boundary and the potential either
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Finite Element Methods for Electronic Structure, Fig. 2 1D piecewise-cubic FE bases. (a) C0 Lagrange. (b) C1 Hermite. (c)
C2 B-spline

vanishes or can be determined efficiently by other
means (e.g., multipole expansion). The equations are
then solved subject to Dirichlet boundary conditions.
Condensed matter systems (i.e., solids and liquids) on
the other hand are modeled as infinite periodic systems,
and extra care is required in imposing appropriate
boundary conditions and handling divergent lattice
sums. We consider the latter case here.

In a perfect crystal, the electrostatic potential is
periodic, i.e.,

V.x C R/ D V.x/ (2)

for all lattice vectors R, and the solutions of the
Schrödinger equation satisfy Bloch’s theorem

 .x C R/ D eik�R .x/ (3)

for all lattice vectors R and wavevectors k (see entry
�Mathematical Theory for Quantum Crystals). Hence,
to find solutions in the infinite crystal, we need only
consider a finite unit cell.

Schrödinger Equation
We consider the Schrödinger problem in a unit cell,
subject to boundary conditions consistent with Bloch’s
theorem:

� 1
2
r2 C V ` C OV n` D " in ˝; (4)

http://dx.doi.org/10.1007/978-3-540-70529-1_262
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Finite Element Methods for Electronic Structure, Fig. 3
Parallelepiped unit cell (domain) ˝, boundary 	 , surfaces 	1–
	3, and associated lattice vectors R1–R3

 .x C R`/ D eik�R` .x/; x 2 	`; (5)

r .x C R`/ � On D eik�R`r .x/ � On; x 2 	`; (6)

where  is the wavefunction, " is the energy eigen-
value, OV D V ` C OV n` is the periodic potential, a
sum of local and nonlocal parts, 	` and R` are the
surfaces and associated lattice vectors of the boundary
	 , and On is the outward unit normal at x, as shown
in Fig. 3. (Atomic units are used throughout.) The
nonlocal term arises in pseudopotential-based calcu-
lations [10] wherein the nucleus and core electrons
are replaced by a smooth, effective potential having
smooth valence wavefunctions with the same energies
as the original “all-electron” potential, in order to
facilitate computations. Since core electrons are tightly
bound to the nuclei and largely inert with respect to
chemistry, this is often an excellent approximation and
is widely used. When it is not sufficient, “all-electron”
calculations are necessary, which are more computa-
tionally intensive and in which the above nonlocal term
does not occur. For generality, we retain the nonlocal
term here.

Since the problem is posed in the finite unit cell,
nonlocal operators require special consideration. In
particular, if as is typically the case for ab initio pseu-
dopotentials, the domain of definition is all space (i.e.,
the infinite crystal), the operators must be transformed
to the relevant finite subdomain (i.e., the unit cell). For
a separable potential of the usual form [10]

OV n`.x; x0/D
X
n;a;L

vaL.x��a�Rn/h
a
Lv

a
L.x

0��a�Rn/; (7)

where n runs over all lattice vectors, a runs over atoms
in the unit cell, and L indexes projectors on each atom,
the nonlocal term in (4) is

OV n` D
X
n;a;L

vaL.x � �a � Rn/h
a
L

�
Z
dx0 vaL.x0 � �a � Rn/ .x0/; (8)

where the integral is over all space (R3). Rewriting the
integral over all space as a sum over all unit cells and
using the Bloch periodicity of  , the integral in (8) can
be transformed to the unit cell so that the nonlocal term
in (4) becomes

OV n` D
X
a;L

X
n

eik�RnvaL.x � �a � Rn/h
a
L

�
Z
˝

dx0X
n0

e�ik�Rn0vaL.x
0��a�Rn0/ .x0/:

(9)

Having transformed the relevant operators to the
unit cell, the differential formulation (4)–(6) is then
recast in weak form in order to accommodate the use
of a C0 basis and incorporate the derivative-periodic
condition (6) [11]: find the scalars " 2 R and functions
 2 W such that

Z
˝

	
1
2
rv� � r C v�V ` C v� OV n` 



dx

D "

Z
˝

v� dx 8v 2 W ; (10)

where

W D fw 2 H1.˝/ W w.xCR`/ D eik�R`w.x/; x 2 	`g:

Discretization in a C0 basis then proceeds in the usual
way. Let

 D
nX

jD1
cj �j and v D �i ;
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where f�igniD1 is a complex C0 basis satisfying the
Bloch-periodic condition (5) and fcj g are complex
coefficients so that  and v are restricted to a finite
dimensional subspace Wn � W . From (10) then, we
arrive at a generalized eigenproblem determining the
approximate eigenvalues " and eigenfunctions  DP

j cj �j of the required problem:

X
j

Hij cj D "
X
j

Sij cj ; (11)

Hij D
Z
˝

	
1
2
r��

i � r�j C ��
i V

`�j C ��
i

OV n`�j



dx;

(12)

Sij D
Z
˝

��
i �j dx: (13)

For a separable potential of the usual form (7), trans-
formed to the unit cell as in (9), the nonlocal term in
(12) becomes

Z
˝

dx ��
i

OV n`�j D
X
a;L

f ai
L h

a
L.f

aj
L /�; (14)

f ai
L D

Z
˝

dx ��
i .x/

X
n

eik�RnvaL.x � �a � Rn/: (15)

Since the Bloch-periodic basis f�i g is complex valued,
both H and S are Hermitian for a separable potential
of the form (7). Furthermore, since both FE basis
functions �i and projectors vaL are localized in space,
both H and S are sparse.

Poisson Equation
The Poisson solution proceeds along the same lines
as the Schrödinger solution. In this case, the required
problem is

r2V .x/ D 4��.x/ in ˝; (16)

V.x/ D V.x C R`/; x 2 	`; (17)

On � rV.x/ D On � rV.x C R`/; x 2 	`; (18)

where V.x/ is the potential energy of an electron in
the charge density �.x/ and the domain ˝ , bounding
surfaces	`, and lattice vectors R` are again as in Fig. 3.
The weak formulation of (16)–(18) is then [11]: find
V 2 V such that

�
Z
˝

rv � rV dx D 4�

Z
˝

v�.x/ dx 8v 2 V ; (19)

where V D fv 2 H1.˝/ W v.x/ D v.xCR`/; x 2 	`g.
Subsequent discretization in a real periodic FE basis �j
then leads to a symmetric linear system determining
the approximate solution V.x/ D P

j cj �j .x/ of the
required problem:

X
j

Lij cj D fi ; (20)

Lij D �
Z
˝

r�i .x/ � r�j .x/ dx; (21)

fi D 4�

Z
˝

�i.x/�.x/ dx: (22)

Kohn-Sham Equations

In the pseudopotential approximation [10], the Kohn-
Sham equations of density functional theory are
given by

� 1
2
r2 i .x/C OVeff i .x/ D "i i .x/; (23)

OVeff D V `
I C OV n`

I C VH C Vxc; (24)

V `
I D

X
a

VI;a.x/; (25)

OV n`
I  i D

X
a

Z
dx0V n`

I;a.x; x
0/ i .x0/; (26)

VH D �
Z
dx0 �e.x0/

jx � x0j ; (27)

Vxc D Vxc.xI �e/; (28)

�e D �
X
i

fi 
�
i .x/ i .x/; (29)

where i and "i are the Kohn-Sham eigenfunctions and
eigenvalues, VI;a and V n`

I;a are the local and nonlocal
parts of the ionic pseudopotential of atom a, �e is the
electronic charge density, the integrals extend over
all space (R3), and the summations extend over all
atoms a and states i with occupations fi (see entry
�Density Functional Theory). (For simplicity, we
omit spin and crystal momentum indices and consider
the case in which the external potential arises from
the ions.) The nonlocal part OV n`

I and exchange-

http://dx.doi.org/10.1007/978-3-540-70529-1_234
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correlation potential Vxc are determined by the
choice of pseudopotentials and exchange-correlation
functional, respectively. V `

I is the Coulomb potential
arising from the ions, and VH is that arising from the
electrons (Hartree potential). We retain the nonlocal
term for generality; in all-electron calculations, it is
omitted.

Since the eigenfunctions  i depend on the effective
potential OVeff in (23), which depends on the electronic
density �e in (27) and (28), which depends again on the
eigenfunctions  i in (29), the Kohn-Sham equations
constitute a nonlinear eigenvalue problem (see entry
�Numerical Analysis of Eigenproblems for Electronic
Structure Calculations). They are commonly solved
via “self-consistent” (fixed point) iteration (see en-
try �Self-Consistent Field (SCF) Algorithms). The
process is generally as follows: An initial electronic
charge density �in

e is constructed (e.g., by overlapping
atomic charge densities). The effective potential OVeff

is computed from (24). The eigenstates  i are com-
puted by solving the associated Schrödinger equation
(23). Finally, a new electronic density �e is computed
from (29). If �e is sufficiently close to �in

e , then self-
consistency has been reached; otherwise, a new �in

e is
constructed from �e (and possibly previous iterates),
and the process is repeated until self-consistency is
achieved.

For isolated systems, such as atoms and molecules,
the construction of OVeff is straightforward: all sums and
integrals are finite. In condensed matter systems, how-
ever, modeled by infinite crystals, individual terms di-
verge due to the long-range 1=r nature of the Coulomb

potential, and the sum is only conditionally convergent
[2]; hence, some extra care is required to obtain well-
defined results efficiently. We consider the latter case
here.

In an infinite crystal, V `
I and VH are divergent, and

the total Coulomb potential VC D V `
I C VH within the

unit cell depends on ions and electrons far from the unit
cell due to the long-range 1=r nature of the Coulomb
interaction. Both difficulties may be overcome, how-
ever, by replacing long-range ionic potentials by the
short-ranged charge densities which generate them and
incorporating long-range interactions into boundary
conditions on the unit cell (e.g., [11]). By construction,
the local ionic pseudopotentials VI;a of each atom a

vary as �Za=r (or rapidly approach this) outside their
respective pseudopotential cutoff radii rc;a, where Za
is the effective ionic charge and r is the radial distance.
They thus correspond, by Poisson’s equation, to charge
densities �I;a strictly localized within rc;a (or rapidly
approaching this). The total ionic charge density �I DP

a �I;a.x/ is then a short-ranged sum, unlike the sum
of ionic potentials. Having constructed the ionic charge
density in the unit cell, the total charge density � D
�I C�e may then be constructed and the total Coulomb
potential VC D V `

I C VH may be computed at once by
a single Poisson solution subject to periodic boundary
conditions:

r2VC .x/ D 4��.x/; (30)

whereupon OVeff may be evaluated as in (24).
Having solved the Kohn-Sham equations, the

ground state total energy is then given by

Etot D
X
i

fi

Z
dx �

i .x/.� 1
2
r2/ i .x/�

Z
dx �e.x/V `

I .x/C
X
i

fi

Z
dx �

i .x/ OV n`
I  i .x/

C 1
2

“
dxdx0 �e.x/�e.x0/

jx � x0j C 1
2

X
a;a0¤a

ZaZa0

j�a � �a0 j �
Z
dx �e.x/"xc.xI �e/; (31)

where Za is the ionic charge of atom a at position
�a, "xc is determined by the choice of exchange-
correlation functional, and, as in (25)–(29), the inte-
grals extend over all space, and the summations extend
over all atoms a and a0, and states i with occupations
fi (see entries �Variational Problems in Molecular
Simulation and �Density Functional Theory). In an

infinite crystal, the total energy per unit cell may be
obtained by restricting the integrals over x and summa-
tion on a to the unit cell, while the integral over x0 and
summation on a0 remain over all space. In terms of total
density � and Coulomb potential VC , however, this can
be reduced to a local expression, with all integrals and
summations confined to the unit cell [11]:

http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_256
http://dx.doi.org/10.1007/978-3-540-70529-1_244
http://dx.doi.org/10.1007/978-3-540-70529-1_234


540 Finite Element Methods for Electronic Structure

Etot D
X
i

fi "i C
Z
˝

dx
�
�e.x/V `

eff.x/� 1
2
�.x/VC .x/

��e.x/"xc.xI �e/� � Es; (32)

where Es is the ionic self-energy computed from po-
tentials VI;a and densities �I;a.

Figure 4 shows the convergence of the FE total
energy and eigenvalues to exact values as the number
of elements is increased in a self-consistent GaAs
calculation at an arbitrary k point [11], where “exact”
values were obtained from a well-converged planewave
calculation. FE results are for a series of uniform
meshes from 8�8�8 to 32�32�32 in the fcc primitive
cell using a cubic serendipity basis. The variational na-
ture and optimal convergence of the method are clearly
manifested: the error is strictly positive and rapidly
establishes an asymptotic slope of � �6 on the log-log
scale, indicating an error of order h6, consistent with
analysis for linear elliptic problems [12] predicting an
error of order h2p for a basis of order p. Conditions
under which such optimal rates obtain for nonlinear
elliptic problems also have been recently elucidated
(see entry �Numerical Analysis of Eigenproblems for
Electronic Structure Calculations).

Recent Developments

Over the course of the past decade, the application of
the FE method to electronic structure problems has
matured to the point that FE codes are now competitive
with the most mature and highly optimized planewave
codes in a number of contexts, particularly in large-
scale parallel calculations. However, planewave meth-
ods in condensed matter and Gaussian- or Slater-type
orbital methods in quantum chemistry remain most
widely used in practice. While this is in part due
to the high maturity and optimization of the more
established codes, there is another key reason: FE-
based methods can require an order of magnitude or
more DOFs (basis functions) than standard planewave
or atomic-orbital-based methods to attain the required
accuracies, leading to greater storage requirements
and increased floating point operations. Other such
local, real-space approaches such as finite-difference
(see entry � Finite Difference Methods in Electronic
Structure Calculations) and wavelet-based methods [1]
suffer from the same disadvantage, in the condensed

matter context in particular, where atoms are dis-
tributed throughout the unit cell and periodic bound-
ary conditions apply. The DOF disadvantage can be
mitigated by going to higher-order, e.g., fourth-order
FE [8], 8th or 12th-order finite differences [3], and
seventh-order wavelets [4]. However, as order is in-
creased, locality is decreased, leading to less spar-
sity, higher cost per DOF, and less efficient paral-
lelization. Another issue faced by real-space meth-
ods is preconditioning (see entry � Fast Methods for
Large Eigenvalues Problems for Chemistry). In the
planewave basis, the Laplacian is diagonal and so
is readily invertible to provide efficient precondition-
ing. In real-space representations, such preconditioning
comes at greater cost, e.g., by multigrid (see entry
� Finite Difference Methods in Electronic Structure
Calculations) or other smoothing (see entry � Fast
Methods for Large Eigenvalues Problems for Chem-
istry).

In the context of FE methods, recent progress on
reducing or eliminating the DOF disadvantage alto-
gether has come along three main lines: first, and most
straightforward is reducing DOFs by going to higher
polynomial order, typically via “spectral elements” [6]
to maintain matrix conditioning. This approach af-
fords the additional advantage of producing a standard
rather than generalized discrete eigenproblem, which
is more efficient to solve (see entry � Fast Methods for
Large Eigenvalues Problems for Chemistry). Another
approach has been to build known atomic physics
into the FE basis via partition-of-unity FE techniques
[13], thus increasing efficiency and decreasing size of
the required basis substantially. Initial results along
these lines have shown order-of-magnitude reductions
in DOFs relative to current state-of-the-art planewave
methods. A third direction, related to the previous,
has been to reduce DOFs by building not just known
atomic physics but atomic-environment effects also
into the basis, using a discontinuous Galerkin frame-
work [9] with subdomain Kohn-Sham solutions as a
basis. By virtue of the DG framework, this approach
produces standard rather than generalized eigenprob-
lems also. Initial results along these lines have shown
DOF reductions down to the level of minimal Gaussian
basis sets while retaining strict locality and systematic
improvability.

Given their current competitiveness and continuing
advance along multiple lines, finite element based
electronic structure methods stand to play an increasing

http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_249
http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_249
http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_254
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Finite Element Methods for
Electronic Structure, Fig. 4
Error EFE � EEXACT of finite
element (FE) self-consistent
total energy and Kohn-Sham
eigenvalues at an arbitrary k
point for GaAs in the local
density approximation

role in computational materials science in the years
ahead, as ever larger-scale parallel computers become
available, in particular.
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Definition Terms/Glossary

Finite field Algebraic structure of a field with finitely
many elements

Galois field Alternative name for finite field
Finite prime field Finite field with a prime number

of elements

http://dx.doi.org/10.1063/1.2949547
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Primitive element Generator of the cyclic multi-
plicative group of nonzero elements of a finite field

Normal basis Ordered basis of a finite extension field
consisting of all conjugates of a fixed element

Irreducible polynomial Polynomial that cannot be
factored into polynomials of smaller degrees

Primitive polynomial Minimal polynomial of a
primitive element

Permutation polynomial Polynomial that permutes
the elements of a finite field

Discrete logarithm Analog of the logarithm function
for the multiplicative group of a finite field

Pseudorandom numbers Deterministically gen-
erated sequence that simulates independent and
uniformly distributed random variables

Structure Theory

A finite field is an algebraic structure satisfying the ax-
ioms of a field and having finitely many elements. His-
torically, the first-known finite fields were the residue
class rings Z=pZ of the ring Z of integers modulo
a prime number p. The field Z=pZ is called a finite
prime field. It has p elements and does not contain a
proper subfield. The basic properties of finite prime
fields were already known in the eighteenth century
through the work of Fermat, Euler, Lagrange, and
others. The theory of general finite fields was initiated
by Galois in a famous paper published in 1830. By
the end of the nineteenth century, this theory was well
developed. Finite fields became a crucial structure in
discrete mathematics via many important applications
that were found in the twentieth century. This article
covers fundamental facts about finite fields as well
as a selection of typical applications of finite fields.
Basic resources on finite fields are the books Lidl and
Niederreiter [3] and Shparlinski [6]. Applications of
finite fields are covered in Lidl and Niederreiter [2] and
Mullen and Mummert [4].

The first important issue about finite fields is that of
their cardinality. A finite field F has a prime charac-
teristic p, that is, we have p � a D 0 for all a 2 F:

Furthermore, F contains Z=pZ as a subfield. Since F
can also be viewed as a vector space over Z=pZ of
finite dimension n, say, it follows that the cardinality of
F is pn and hence a prime power. Conversely, for any
prime power q, there exists a finite field of cardinality

q. In fact, finite fields of the same cardinality q are
isomorphic as fields. Thus, we can speak of the finite
field with q elements, and we denote it by Fq . Some
authors honor the pioneering work of Galois by calling
Fq the Galois field with q elements and using the
alternative notation GF.q/, but we will employ the
more common notation Fq .

The finite field Fq can be explicitly constructed for
any prime power q. If q D p for some prime number
p, then Fp is isomorphic to Z=pZ. If q D pn for some
prime number p and some integer n � 2, then Fq is
isomorphic to the residue class ring FpŒx�=f .x/FpŒx�

of the polynomial ring FpŒx� modulo an irreducible
polynomial f .x/ over Fp of degree n. An irreducible
polynomial over Fp of degree n exists for every prime
number p and every positive integer n. The finite
field Fq is also isomorphic to the splitting field of the
polynomial xq � x over its prime subfield Fp. In fact,
Fq consists exactly of all roots of the polynomial
xq � x 2 FpŒx� in a given algebraic closure of Fp.
The cardinality of every subfield of Fq has the form
pd , where the integer d is a positive divisor of n.
Conversely, if d is a positive divisor of n, then there
exists exactly one subfield of Fq with pd elements.

For any finite field Fq , the set F
�
q of nonzero el-

ements of Fq forms a group under multiplication. It
is an important fact that the group F

�
q is cyclic. Any

generator of the cyclic group F
�
q is called a primitive

element of Fq . The number of primitive elements of Fq
is given by �.q�1/, where � is Euler’s totient function.

Bases

Given a finite field Fq , we can consider its extension
field of degree n, which is the finite field Fqn with qn

elements. Then Fqn can also be viewed as a vector
space over Fq of dimension n. Thus, a natural way
of representing the elements of Fqn is in terms of
an ordered basis of Fqn over Fq . Various types of
convenient bases are available for this purpose.

A polynomial basis of Fqn over Fq is an ordered
basis of the form f1; ˛; ˛2; : : : ; ˛n�1g, where ˛ 2 Fqn

is a root of an irreducible polynomial over Fq of degree
n. A normal basis of Fqn over Fq is an ordered basis
of the form fˇ; ˇq; ˇq2 ; : : : ; ˇqn�1g with a suitable
ˇ 2 Fqn . A normal basis exists for every extension
Fqn=Fq. Normal bases are useful for implementing fast
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arithmetic in Fqn . Other types of bases are obtained by
making use of the trace function TrF=K of F D Fqn

overK D Fq , which is defined by

TrF=K.�/ D
n�1X
iD0

�q
i

for all � 2 F:

For any ordered basis A D f˛1; : : : ; ˛ng of Fqn over
Fq , there exists a unique dual basis, that is, an ordered
basis B D fˇ1; : : : ; ˇng of Fqn over Fq which satisfies
TrF=K.˛iˇj / D ıij for 1 � i; j � n, where ıij is the
Kronecker symbol. The dual basis of a normal basis is
again a normal basis. An ordered basis A of Fqn over
Fq is self-dual if A is its own dual basis. The extension
Fqn=Fq has a self-dual basis if and only if either q is
even or both q and n are odd.

Irreducible Polynomials and Factorization

For any finite field Fq , the number of monic irre-
ducible polynomials over Fq of degree n is given
by .1=n/

P
d jn �.n=d/qd , where the sum is over all

positive divisors d of n and � is the Möbius function.
This implies easily that for any positive integer n, there
exists an irreducible polynomial over Fq of degree n. If
f .x/ is an irreducible polynomial over Fq of degree n,
then f .x/ has a root ˛ 2 Fqn and all roots of f .x/ are
given by the n distinct elements ˛; ˛q; ˛q

2
; : : : ; ˛q

n�1

of Fqn . In particular, the splitting field of f .x/ over Fq
is equal to Fqn . Furthermore, the extension Fqn=Fq is a
Galois extension with a cyclic Galois group.

A polynomial over Fq of degree n � 1 is called
a primitive polynomial over Fq if it is the minimal
polynomial over Fq of a primitive element of Fqn .
A primitive polynomial over Fq is automatically monic
and irreducible, but not every monic irreducible poly-
nomial over Fq is primitive. The number of primitive
polynomials over Fq of degree n is given by �.qn �
1/=n.

Any nonconstant polynomial f .x/ over a finite field
Fq can be factored into a product of an element of
F

�
q , which is in fact the leading coefficient of f .x/,

and of finitely many monic irreducible polynomials
over Fq . This factorization is unique up to the order of
the factors. For various applications it is important to
compute this factorization efficiently. No deterministic

polynomial-time algorithm is currently available for
this factorization problem, but several algorithms are
practicable in reasonable ranges for q and the degree
of f .x/. Standard computer algebra packages contain
also factorization algorithms for polynomials over fi-
nite fields. A straightforward argument shows that it
suffices to consider algorithms for monic polynomials
with no multiple roots.

The classical factorization algorithm in this context
is the Berlekamp algorithm. Given a monic polynomial
f .x/ over Fq of degree n � 1 with no multiple roots,
we construct the n � n matrix B D .bij/0�i;j�n�1 over
Fq via the congruences

xiq �
n�1X
jD0

bijx
j .mod f .x// for 0 � i � n � 1:

If I is the n � n identity matrix over Fq and r is the
rank of the matrix B � I , then the number of distinct
monic irreducible factors of f .x/ over Fq is given by
n�r . To determine these irreducible factors, we have to
consider the homogeneous system of linear equations
h.B � I / D 0 with an unknown vector h 2 F

n
q . With

any solution h D .h0; h1; : : : ; hn�1/, we associate a
polynomial h.x/ D h0 C h1x C � � � C hn�1xn�1 2
FqŒx�. The factorization is completed by computing
a certain number of greatest common divisors of the
form gcd.f .x/; h.x/ � c/ for some c 2 Fq .

A factorization algorithm that is particularly ef-
fective for finite fields of small characteristic is the
Niederreiter algorithm. Let f D f .x/ 2 FqŒx�

be as above and consider the differential equation
f qH.q�1/.h=f / D hq , where H.q�1/ is the Hasse-
Teichmüller derivative of order q � 1 and h D h.x/

is an unknown polynomial over Fq . Since H.q�1/
and h 7! hq are Fq-linear operators, the differential
equation can be linearized and is equivalent to the
homogeneous system of linear equations h.N � I / D
0, where N is an n � n matrix over Fq that can be de-
termined from f . If g1; : : : ; gm are the distinct monic
irreducible factors of f over Fq , then the solutions
of the differential equation form the m-dimensional
vector space V.f / over Fq with basis fl1f; : : : ; lmf g,
where li D g0

i =gi is the logarithmic derivative of gi for
1 � i � m. Given an arbitrary basis of V.f /, there
is a systematic procedure for extracting the irreducible
factors g1; : : : ; gm. In the case of great practical interest
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where Fq is of characteristic 2 and f is sparse, the
Niederreiter algorithm has the enormous advantage
over the Berlekamp algorithm that it leads to a sparse
system of linear equations which can be solved much
faster than a general system of linear equations.

There are also probabilistic factorization algorithms
for polynomials over finite fields, the classical algo-
rithm of this type being the Cantor-Zassenhaus algo-
rithm. A detailed discussion of factorization algorithms
for polynomials over finite fields can be found in the
book of von zur Gathen and Gerhard [1].

Permutation Polynomials

A permutation polynomial of Fq is a polynomial f .x/
over Fq for which the induced map c 2 Fq 7! f .c/

is a permutation of Fq . Permutation polynomials are
of interest in combinatorics and also in cryptography
where bijective maps are used for encryption and
decryption. A monomial axn with a 2 F

�
q and n �

1 is a permutation polynomial of Fq if and only if
gcd.n; q � 1/ D 1. For a 2 F

�
q and n � 1, the Dickson

polynomial

Da;n.x/ D
bn=2cX
jD0

n

n � j

 
n� j

j

!
.�a/j xn�2j

is a permutation polynomial of Fq if and only if
gcd.n; q2�1/ D 1. According to Hermite’s criterion, a
polynomial f .x/ over Fq is a permutation polynomial
of Fq if and only if f .x/ has exactly one root in Fq

and for each integer t with 1 � t � q � 2 which is
not divisible by the characteristic of Fq the reduction
of f .x/t modulo xq � x has degree � q � 2. If
f .x/ 2 FqŒx� has degree � 2 and satisfies the property
that every irreducible factor of .f .x/� f .y//=.x � y/
in FqŒx; y� is reducible over some algebraic extension
of Fq , then f .x/ is a permutation polynomial of Fq .

It follows from Hermite’s criterion that if d � 2

is a divisor of q � 1, then there is no permutation
polynomial of Fq of degree d . If d � 2 is an even
integer and q is odd and sufficiently large relative to
d , then there is no permutation polynomial of Fq of
degree d . If f .x/ 2 ZŒx� is a permutation polynomial
of Fp D Z=pZ for infinitely many prime numbers p
when considered modulop, then f .x/ is a composition
of binomials axn C b and Dickson polynomials.

Applications to Cryptology

Finite fields are important in various areas of cryp-
tology such as public-key cryptosystems, symmetric
cryptosystems, digital signatures, and secret-sharing
schemes. A basic map in this context is discrete ex-
ponentiation, where we take a primitive element g
of a finite field Fq and assign to each integer r with
0 � r � q � 2 the element gr 2 F

�
q . This map can

be efficiently computed by the well-known square-and-
multiply algorithm. The inverse map is the discrete log-
arithm to the base g which assigns to each c 2 F

�
q the

uniquely determined integer r with 0 � r � q � 2 and
gr D c. Various cryptographic schemes are based on
the complexity assumption that the discrete logarithm
is hard to compute for many large finite fields Fq .

Historically, the first scheme using discrete expo-
nentiation was Diffie-Hellman key exchange. Here Fq

and g are publicly known. If two participants A and
B want to establish a common key for secret com-
munication, they first select arbitrary integers r and s,
respectively, with 2 � r; s � q�2, and then A sends gr

to B, whereas B transmits gs to A. Now they take grs

as their common key, which A computes as .gs/r and
B as .gr /s . If q is chosen in such a way that the discrete
logarithm to the base g 2 F

�
q is hard to compute, then

this scheme can be regarded as secure.
Further cryptographic schemes based on the dif-

ficulty of computing discrete logarithms include the
ElGamal public-key cryptosystem, the ElGamal dig-
ital signature scheme, the Schnorr digital signature
scheme, the DSS (Digital Signature Standard), and
the Schnorr identification scheme. Finite fields are
also instrumental in other cryptographic applications
such as the AES (Advanced Encryption Standard),
the McEliece public-key cryptosystem, the Nieder-
reiter public-key cryptosystem, the Courtois-Finiasz-
Sendrier digital signature scheme, elliptic-curve cryp-
tosystems, and the Shamir threshold scheme. A de-
tailed discussion of applications of finite fields to
cryptology can be found in the book of van Tilborg [7].

Applications to PseudorandomNumber
Generation

A sequence of pseudorandom numbers is generated
by a deterministic algorithm and should simulate a
sequence of independent and uniformly distributed
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random variables on the interval Œ0; 1�. Pseudorandom
numbers are employed in various tasks of scientific
computing such as simulation methods, computational
statistics, and the implementation of probabilistic algo-
rithms. Finite fields are eminently useful for the design
of algorithms generating pseudorandom numbers.

A general family of such algorithms is that of
nonlinear congruential methods. Here we work with
a large finite prime field Fp and generate a sequence
y0; y1; : : : of elements of Fp by the nonlinear recur-
rence relation ynC1 D f .yn/ for n D 0; 1; : : :, where
f .x/ is a polynomial over Fp of degree at least 2.
Corresponding pseudorandom numbers in Œ0; 1� are
obtained by setting xn D yn=p for n D 0; 1; : : :.
Preferably, the feedback polynomial f .x/ is chosen in
such a way that the sequence y0; y1; : : :, and therefore
the sequence x0; x1; : : :, is purely periodic with least
periodp. A typical choice is f .x/ D axp�2Cb, where
a; b 2 Fp are such that x2 � bx � a is a primitive
polynomial over Fp .

Another general family of algorithms for pseu-
dorandom number generation is that of shift-register
methods. In practice, these methods are based on kth-
order linear recurring sequences over the binary field
F2. For a given k � 2, the largest value of the least
period of a kth-order linear recurring sequence over
F2 is 2k � 1. This value is achieved if and only if the
minimal polynomial of the linear recurring sequence
is a primitive polynomial over F2 of degree k. To
derive pseudorandom numbers in Œ0; 1� from linear
recurring sequences over F2, procedures such as the
digital multistep method and the GFSR (generalized
feedback shift-register) method are employed.

Finite fields that are not prime fields are used in
digital methods for pseudorandom number generation.
Here we consider a finite field F2m with an integer
m � 2 (typically m D 32 or m D 64). A sequence
�0; �1; : : : of elements of F2m is generated by a non-
linear recurrence relation with a feedback polynomial
over F2m . If fˇ1; : : : ; ˇmg is an ordered basis of the
vector space F2m over F2, then we have the unique
representation �n D Pm

jD1 c
.j /
n ˇj for n D 0; 1; : : :

with all c.j /n 2 F2. Now a sequence of pseudorandom
numbers in Œ0; 1� is defined by xn D Pm

jD1 c
.j /
n 2�j for

n D 0; 1; : : : .
Finite fields play a crucial role in the construction

of low-discrepancy sequences, which are sequences
of points in a multidimensional unit cube that are
used for special computational tasks such as numerical

integration and global optimization. We refer to the
book Niederreiter and Xing [5] for a detailed discus-
sion of constructions of low-discrepancy sequences
based on finite fields.
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Synonyms

Conservative finite differences; Control Volume
Method, CV method; Finite Volume Method, FV
method (FVM)

Short Definition

The finite volume method (FVM) is a family of nu-
merical methods that discretely represent conservation
laws. The FVM uses the exact integral form of the
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conservation law on a covering partition of the domain
(usually forming a grid). Different FVMs are distin-
guished by their approximation of the surface integrals
appearing on domain boundaries.

Description

Conservation Laws
Conservation of a quantity u, which in applications
usually denotes mass, components of linear momen-
tum, or energy, is written for a spatial volume !,
assumed to be fixed in time, as

d

dt

Z
!

u dV C
Z
@!

n � q dS D
Z
!

r dV (1)

This integral equation states the physical observation
that for the conserved quantity, the time rate of change
of the quantity (first term) is balanced by the transfer
across the boundary of the volume (second term, where
q is the flux and n is the outward normal vector to the
surface) and the addition or removal of the quantity
by any internal sources or sinks (third term, where
r is the source per volume). For clarity, vectors and
tensors are distinguished from scalars by being typeset
in bold. A mathematical introduction to conservation
laws can be found in, e.g., [7]. The conservation laws
are frequently supplemented by constitutive relation-
ships, particular to the physical application, of which a
common example is advection

q D f .u/ (2)

where f is a known function – in the linear case,
simply f D ug, where g is not a function of u.
Another typical example is diffusive first-order rate
laws (e.g., the laws of Fick and Darcy for mass and
Fourier for energy):

q D ��ru (3)

where � is a positive scalar or symmetric, positive
definite tensor coefficient. For the momentum balance
equation, a typical rate law is that for an incompress-
ible, inviscid and irrotational fluid:

q D
	u � u

2
C p



I (4)

Here, p is the fluid pressure, and the identity tensor is
denoted I .

We will return to these examples later, but recall that
the advective type systems exemplified by Eqs. (1)–(2)
or (1) and (4) are known as hyperbolic conservation
laws, while the system exemplified by Eqs. (1) and (3)
are known as parabolic conservation laws. In the steady
state, parabolic conservation laws are referred to as
elliptic conservation laws.

From the integral form of the conservation law,
one can derive the usual differential form of the con-
servation laws by noting that the integral form holds
for any volume ! and assuming that the solution is
continuous. This allows us to remove the integrals after
application of the generalized Stokes theorem to the
surface integral, to obtain

@u

@t
C r � q D r (5)

We stress that this differential form of the conservation
law is equivalent to the integral form only when all the
terms are well defined. For physical systems involving
discontinuous solutions, Eq. (5) must either be con-
sidered in the sense of distributions or it is necessary
to return to the fundamental conservation principle as
expressed by Eq. (1).

The limited validity of Eq. (5) is the motivation
for constructing discretization methods directly for
Eqs. (1)–(4) and leads to the methods known as finite
volume methods. Alternative approaches include dis-
cretizing Eqs. (2)–(5) using, e.g., finite element or finite
difference methods.

Finite Volume Grids
Finite volume methods represent the integral form
of the conservation equation (1) exactly on a finite
number of volumes, hence the name. Typically, the
volumes are chosen as a nonoverlapping partition of
the domain, and we will only consider this situation
henceforth. Thus, for a domain˝ , we assume that it is
divided intoN volumes !i (in three dimensions, areas,
or line segments in 2D or 1D, respectively) which are
nonoverlapping and whose union is ˝ . We will refer
to the volumes as cells and the edges between two cells
i and j as a face, denoted @!i;j . For convenience, we
will let @!i;j be void if i and j do not have a common
edge. The structure of cells and faces form the finite
volume grid.
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F
Finite Volume Methods, Fig. 1 The domain ˝ shown in
thick solid black line together with the finite volume grid !i
(thinner solid black lines corresponding to faces between cells).
Additionally, cell centers are indicated by gray dots, while a dual
grid is indicated by gray dashed lines

While this construction is sufficient for many ap-
plications, we keep in mind that for some equations,
it may be necessary to refer to a cell center (typically
chosen as some internal point, possibly the centroid),
which is then denoted xi . In the construction of some
methods, it is also convenient to define a dual grid,
which has the cell centers as vertexes, and is typically
constrained such that each face of the finite volume
grid has exactly one edge of the dual grid passing
through it. These notions are all summarized for a
sample two-dimensional grid in Fig. 1.

To construct the finite volume method, we now
return to Eq. (1). Considering this equation for each
cell, such that ! D !i , we obtain

d

dt

Z
!i

u dV C
Z
@!i

ni � q dS D
Z
!i

r dV (6)

Let Ui denote the average of the solution over a cell,
j!i j be the volume of cell, and ni;j be the normal vector
from cell i to j . Then, we can write Eq. (6) as

j!i j dUi

dt
C
X

j

Z
@!i;j

ni;j � q dS D
Z
!i

r dV (7)

Here, it is implied that the sum is taken over all cells
j sharing an edge with cell i . Finally, we introduce the
face flux

Fi;j D
Z
@!i;j

ni;j � q dS (8)

Note that by definition, the face flux is of exactly the
same magnitude regardless of which cell it is evaluated
for, e.g., Fi;j D �Fj;i . This observation is important
in that it is required for the conservation equation to
be handled consistently. Equations (7) and (8) now
provide us with the discrete conservation structure
which is the backbone of all finite volume methods:

j!i j dUi

dt
C
X

j
Fi;j D

Z
!i

r dV (9)

In this equation, the face fluxes Fi;j are inherently
unknown, as they depend on the continuous flux q

through Eq. (8). This situation is equivalent to that
of the conservation laws (1), in that the fundamental
conservation property must be supplemented by a con-
stitutive relationship. By analogy to different physical
systems being distinguished by different constitutive
laws, as evidenced by Eqs. (2)–(4), various finite vol-
ume methods are distinguished by their approximation
of these constitutive laws. In other words, for a given
constitutive law, the finite volume method is defined by
its approximate flux

Fi;j D Fi;j .U / (10)

Here, bold-face U indicates the vector of all solution
variables Ui , and we recall that the flux relationships
are again constrained such that the face flux is unique,
Fi;j D �Fj;i . By analogy to linear (Eqs. (2) and (3))
and nonlinear (Eqs. (2) and (4)) constitutive laws, we
refer to linear and nonlinear finite volume methods by
whether the approximate flux relationship (10) is linear
or nonlinear. Furthermore, it is often desirable that the
flux relationship is in some sense local (equivalently
termed compact), in which case the flux for face @!i;j
will depend either only on cells i and j or possibly
also their immediate neighbors. The latter case allows
for higher-order methods to be constructed.

Approximation of Surface Fluxes
As can be expected from the example constitutive laws
(2)–(4), the form of the discrete flux approximations
(10) in general must be adapted to the particular con-
stitutive law. From the perspective of applications, this
is an attractive feature of finite volume methods, in that
the method can relatively easily be tailored to the par-
ticular application. From a mathematical perspective,
it leads to a wide variety of methods, which are in
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general supported by less unified theoretical develop-
ment than, e.g., the finite element methods. The full
breadth of flux approximations is too comprehensive
to summarize here; therefore, we restrict our attention
to a few particular cases: a generic approach known
as Finite Volume Finite Element methods (FVFE, also
known as Control-Volume Finite Element (CVFE)), as
well as examples of typical specialized methods for the
hyperbolic and parabolic cases.

Finite Volume Finite ElementMethods
A generic approach to define the approximate relation-
ship (10) is to combine a polynomial interpolation of
the solution U together with the appropriate flux rela-
tionship [8]. In this case, let the (possibly nonlinear and
differential) constitutive law be given as an operator

q D N .u/ (11)

Returning to Fig. 1, we now focus our attention to the
nodal values and the dual grid depicted in gray. On this
dual grid, we recognize that we can define piece-wise
polynomial basis functions in the finite element sense.
For the simplest case where the dual grid consists of
simplexes and the polynomials are first order, these
basis functions will be the lowest-order Lagrange basis
functions (piece-wise linear functions). We denote the
basis function which takes the value 1 at xi and zero
at all other cell centers as  i . Associating the (cell
average) solutions Ui with the nodal points xi , we can
now define an interpolation of the solution over the full
domain according to

Ou.x/ �
X

i
Ui i .x/ (12)

Combining Eqs. (8), (11), and (12), we obtain a flux
expression for an arbitrary constitutive law as

Fi;j D
Z
@!i;j

ni;j � N
 X

k

Uk k .x/

!
dS

The FVFE method is attractive in its simple definition
and can naturally be extended to higher-order basis
functions in the approximation Ou. The FVFE method
also provides a useful link to the FE methods and
in particular the Petrov-Galerkin method. However,
the accuracy of the flux approximation relies on reg-
ularity of the solution u. For applications where the

solution is not regular, other approaches are usually
preferred. These include hyperbolic conservation laws,
where discontinuous solutions are common, and also
parabolic conservation laws in cases where the param-
eters of the constitutive laws are discontinuous.

Finite VolumeMethods for Hyperbolic Conservation
Laws
Hyperbolic conservation laws are important in appli-
cations, as both the Euler equations (obtained from
(4), by including equations for conservation of mass
and energy), and also transport problems including oil
recovery and traffic, are modeled by these equations.
These equations are also the field of some of the
earliest and most famous applications of finite volume
methods.

We consider the model problem given by Eq. (2).
Since hyperbolic conservation laws have a strictly
local flux expression, it is sufficient for low-order
methods to consider only the case where the face flux
is approximated as strictly dependent on its neighbor
cells, e.g., Fi;j D Fi;j

�
Ui ; Uj

�
: For simplicity, we

will therefore limit the discussion in this section to
one spatial dimension; multidimensional problems are
commonly treated dimension by dimension. We use
the convention that cells are numbered left to right. In
this case, we have j D i C 1, and several important
schemes are on this form. These include:
• Central difference method:

Fi;j D f .Ui /C f
�
Uj
�

2

This simple method is, unfortunately, uncondition-
ally unstable when used with an explicit time step
(see next section) and is therefore essentially not
used in practice.

• The Lax-Friedrichs method:

Fi;j D f .Ui/C f
�
Uj
�

2
C �x

�
Ui � Uj

�
2�t

This method is motivated by the observation that
the unstable central difference method becomes
conditionally stable with explicit time steps if it
is regularized by a penalty term proportional to
the change in the solution and the ratio of spa-
tial to temporal time step (denoted �x and �t ,
respectively).
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• Upstream weighted method:

Fi;j D

8̂
<
:̂
f .Ui / if

df

du
� 0

f .Uj / if
df

du
< 0

This method is very popular in application where
the derivative of f has constant sign, and has
the same stability properties as the Lax-Friedrichs
method.

• Of great theoretical and practical importance is
Godunov’s method [3]:

Fi;j D f .U �/

Here, the face value of the solution, U �, is found
from the analytical solution of the Cauchy ini-
tial value problem, where the initial condition is
Ui on one side of the face and Uj on the other
side of the face. Due to the fact that the hyper-
bolic conservation law admits a self-similar scal-
ing, this analytical solution will have a constant
value at the face. Godunov’s method is in some
sense an optimal monotone finite volume method,
but determining U � can be difficult for multidi-
mensional problems or systems of conservation
laws.

Many extensions have been developed to these clas-
sical methods. The generalization of the upstream
weighting is given by the Engquist-Osher method.
The simplest higher-order method is the Lax-Wendroff
method. For higher-order methods, it is of great impor-
tance to ensure that they provide monotone approxima-
tions, and important approaches in this regard include
the concept of Total Variation Diminishing (TVD)
methods and the construction of flux limiters. For more
details, see, e.g., [5] for a thorough exposition.

Finite VolumeMethods for Parabolic Conservation
Laws
Parabolic conservation laws typically appear in diffu-
sive problems, and in many applications also in the
formulation of a pressure equation (derived from a
linearization of the conservation of mass). The main
challenge in the flux approximation for parabolic prob-
lems, as idealized by Eq. (3), is the evaluation of the
normal component of the gradient. In one dimension,
this is simply achieved as the expression reduces to the

unique spatial derivative. In multiple dimensions, the
situation is more complicated, and this is the main topic
of development. We highlight two main concepts:
• Two-point flux:

Fi;j D �N� Uj � Uiˇ̌
xj � xi

ˇ̌ ˇ̌@!i;j ˇ̌

The area of the face is denoted
ˇ̌
@!i;j

ˇ̌
and N�

is a suitable average coefficient. In the two-point
flux, the directional derivative is evaluated based on
the solution values Ui , associated to the cell mid-
points. For scalar coefficients �, this approximation
is only consistent if the normal vector of the face
is parallel to the vector xj � xi . In the general
setting, this cannot be guaranteed, and grids can
be constructed where the numerical approximation
converges to the wrong solution. Nevertheless, due
to its simplicity, this approximation is widely used
in practice.

• Multi-point flux:

Fi;j D � ˇ̌@!i;j ˇ̌X
k

ti;j;kUk

The linear weights ti;j;k can be derived in various
ways, affecting the properties of the method.
Typically, constructions aim at ensuring consistency
of the approximation. At the same time, it is
desirable to honor various properties such as
monotonicity and symmetry of the problem, while
keeping the number of nonzero coefficients low [1].

Much of the research into finite volume methods has
emphasized robustness with respect to the heterogene-
ity of the coefficient �. To this aim, extensions of
the multipoint scheme have been developed, including
derivations based on mixed finite volume methods and
solution-dependent determination of the coefficients
ti;j;k.

Implicit and Explicit Time Steps
In principle, any time-stepping algorithm can be asso-
ciated with finite volume spatial discretizations. How-
ever, certain choices are prevalent in the literature and
are integral to the development of the methods.

In particular, for the hyperbolic equations, the desire
for fast, explicit, time steps has been the motivation
behind the development of the conditionally stable
discretizations mentioned earlier and rejection of the
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central difference approximation. Thus, for hyperbolic
equations, the spatial operator is predominantly evalu-
ated at the old time step. This typically leads to time-
step constraints which are linear in the length scale of
the spatial discretization.

For parabolic problems, the time-step constraint of
an explicit discretization is typically quadratic in the
length scale of the spatial discretization. This moti-
vates the use of implicit time discretizations, where
the spatial operator is evaluated at the new, unknown,
time step. Stability concerns are therefore less of an
issue for finite volume discretizations for parabolic
problems.

Main Theoretical Results
Some of the main theoretical results supporting the
development of finite volume methods can be summa-
rized as follows:
• For hyperbolic problems, monotonicity is a key in-

gredient in establishing stability for many methods.
The finite volume structure together with an appro-
priate flux expression ensures the appropriate notion
of consistency. Furthermore, entropy conditions are
usually considered in order to assure convergence
to the appropriate weak solution (see [4] for a
discussion of theoretical issues).

• For parabolic problems, few general tools exist, and
convergence has to be established on a method-by-
method basis, which has successfully been achieved
for the methods described above.

• Finite volume methods for hyperbolic problems can
often be related to discontinuous Galerkin methods
(see, e.g., [2]), while finite volume methods for
parabolic problems can often be related to mixed
finite element methods [6].
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Introduction

The reaction–diffusion equations encountered in
various fields of science have an important role in
modeling physical phenomena. Due to the intricacy in
finding their solutions, numerical analysis of reaction–
diffusion equations has become a central tool in their
consideration. In one space dimension, the nonlinear
reaction–diffusion equations can be written in the
following form:

ut D ˛uxx C f .u/; (1)

where u D u.x; t/ is a space and time-dependent real-
valued function. The term ˛uxx is diffusivity where the
coefficient ˛ is a nonnegative constant and the function
f .u/ describes the reaction of the system. One of the
most popular cases of (1) is given by

ut D ˛uxx C ˇu.1 � u/; �1 < x < 1; t > 0;

(2)

where ˇ is a real parameter. This equation is a simple
and classic case of the nonlinear reaction–diffusion
equation (1). Fisher [1] first proposed the above well-
known equation, encountered in various fields of
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science, as a model for the propagation of a mutant
gene with u.x; t/ displaying the density of advantage.
The equation is generally referred to as Fisher’s
equation being of high importance to describe different
mechanisms. In the model equation, the growth
of the mutant gene population originates from the
diffusion and nonlinear terms. Considering only small
differences, the same physical event similar to the
population is observed on neutrons in a reactor.
Therefore, the Fisher’s equation is also used as a
model for the evolution of the neutron population in a
nuclear reactor. Nowadays, the equation has been used
as a basis for a wide variety of models for different
problems.

As the population density in a habitat is bounded,
the initial condition must satisfy the following
inequality:

0 � u.x; 0/ � 1; �1 < x < 1; (3)

where the unity is used for convenience. The boundary
conditions are taken as

lim
x!˙1 u.x; t/ D 0; t � 0: (4)

When the solution domain is restricted to [a; b], the
above physical boundary conditions are returned into
the following artificial boundary conditions respec-
tively:

u.a; t/ D u.b; t/ D 0; t � 0 (5)

and
u.a; t/ D 1; u.b; t/ D 0; t � 0: (6)

Many researchers have studied the mathematical prop-
erties of the Fisher’s equation. Kolmogoroff et al. [2]
in their pioneering study, also known as KPP equa-
tion, paid their attention to the Fisher’s equation. In
that paper, they showed that for each initial condition
of the form (3), equation (2) has a unique solution
bounded for all times as the initial distribution. Both
Fisher [1] and Kolmogoroff et al. [2] also showed that
a progressive wave solution with minimum speed is
admitted by the problem. Various properties of the
Fisher’s equation have been analyzed using very wide
range of numerical methods [3–10].

In this study, a sixth-order finite difference scheme
in space and a fourth-order Runge–Kutta (RK4)
scheme in time were implemented for computing
solutions of the Fisher equation. The combination

of the present scheme with the RK4 provides an
efficient and highly accurate solution for such realistic
problems.

The FD6 Schemes

Spatial derivatives are evaluated by a sixth-order finite
difference (FD6) scheme. The spatial derivative u0

i at
point i can be approximated by, .R C L C 1/-point
stencil, .RC L/-order finite-difference scheme as

u0
i D 1

h

RX
jD�L

ajCLuiCj ; 1 � i � N; (7)

where h D xiC1 � xi is the spacing of uniform
mesh. The above formula involves .R C L C 1/ con-
stants, a0; a1; a2 : : : ; aRCL, which need to be known at
point i . R and L indicates number of points in the
right-hand side and the left-hand side for the taken
stencil, respectively.R is equal to L for the considered
stencil at internal points, but this is not the case for
the boundary nodes. N is the number of grid points.
The coefficients aj were determined with Taylor series
expansion of (7). Thus, the scheme using seven points,
hereafter referred to as FD6, is of order 6. The coeffi-
cients aj for the first derivatives in the FD6 scheme can
be given at internal and boundary nodes in Ref. [11].
First-order spatial derivative terms can be rewritten into
matrix form as

U 0 D AU (8)

with the system matrix A. The second-order spatial
derivatives are obtained by applying the first-order
operator twice, i.e.,

U 00 D AU 0; (9)

where U D .u1; u2; : : : ; uN /T . For the approximate
solutions of (2) with the boundary conditions (3) and
(4) using the FD6 method, first the interval Œa; b� is
discretised such that a D x1 < x2 < : : : <

xN D b. After application of the FD6 technique to
(2), the equation can be reduced into a set of ordinary
differential equations in time. Then, the governing
equation becomes

dui
dt

D P ui ; (10)
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where P indicates a spatial nonlinear differential
operator. Each spatial derivative on the right-
hand side of (10) was computed using the present
method and then (10) was solved using the
RK4 scheme.

Numerical Illustrations

To show and introduce the physical behavior of the
Fisher’s equation, the FD6-RK4 is utilized with the
initial and boundary conditions. All computations were
carried out using some MATLAB codes, and the pa-
rameter values are ˛ D 0:1, ˇ D 1, h D 0:025, and
�t D 0:0005.

Example 1 The initial pulse profile

u.x; 0/ D sech2.10x/

is taken as the initial condition for our first numerical
experiment. In Fig. 1, the short-time behaviors of
the solution are illustrated. At the beginning of the
process, since the diffusion term uxx is negative and
it has a large absolute value and the reaction term
u.1�u/ is very small, the effect of diffusion dominates
over the effect of reaction. Therefore, the peak value
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Fisher’s Equation, Fig. 1 Solutions at early times

decreases rapidly (see Fig. 1). After the peak reaches
its minimum value, the reaction starts to dominate the
diffusion slowly. Then, the peak value goes up as seen
in Fig. 2.

Example 2 Consider the initial profile

u.x; 0/ D
8<
:
e10.xC1/; x < �1
1; �1 � x � 1

e�10.x�1/; x > 1

for the current test problem. Similar behaviors and
relations between the diffusion and reaction have been
observed as is the case in previous example. In this
case, however, effects of diffusion and reaction are seen
to be very small. Effect of diffusion is dominant near
the corners. As seen in Figs. 3 and 4, the effects of
diffusion near the critical points change the physical
behavior from sharpness to smoothness, and in the
longer term, it can be expected to get smoother and
smoother.

Conclusion

The Fisher’s equation has been successfully intro-
duced and solved by implementing a high-order finite
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difference method. The first test problem is related to
pulse disturbance. The effects of diffusion are observed
much clearer in this problem at the beginning of the
process. The second problem has an initial step profile
having two corners. Carey and Shen [3] observed
oscillations near these sharp points. We have not met
such oscillations and obtained stable solutions. The
presented results are seen to be in agreement with
the literature. The introduction and discussion carried

out here can also be done in two and three space
dimensions.
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Synonyms

Fitzhugh–Nagumo Equation (FHN); Hodgkin–Huxley
Model (HH Model)

Short Definition

The Fitzhugh–Nagumo equation (FHN) is a set of non-
linear differential equations that efficiently describes
the excitation of cells through two variables.

Description

Motivation
Hodgkin and Huxley laid the groundwork for the
constitutive modeling of electrophysiology of excitable
cells with their pioneering quantitative model of elec-
trophysiology developed for the squid giant axon six
decades ago. In this celebrated work [6], the local
evolution of the transmembrane potentialˆ, difference
between the intracellular potential and the extracellu-
lar potential, is described by the differential equation
Cm P̂ C Iion D Iapp where Cm is the membrane
capacitance; Iion WD INa C IK C IL denotes the
sum of the sodium (Na), potassium (K), and leakage
currents (L); and Iapp is the externally applied cur-
rent. The current due to the flow of an individual ion
is modeled by the ohmic law I˛ D g˛.ˆ � ˆ˛/

where g˛ D Og˛.t Iˆ/ denotes the voltage- and time-
dependent conductance of the membrane to each ion
and ˆ˛ are the corresponding Nernst potentials for

˛ D Na, K, L. In the Hodgkin–Huxley (HH) model,
based on the voltage-clamp experiments, the potassium
conductance is assumed to be described by gK D
NgKn4 where n is the potassium activation and NgK
is the maximum potassium conductance. The sodium
conductance, however, is considered to be given by
gNa D NgNam3h with NgNa being the maximum sodium
conductance, m the sodium activation, and h denotes
the sodium inactivation. The evolution of the gating
variables m; n, and h is then modeled by first-order
kinetics equations with voltage-dependent coefficients.
The diagram in Fig. 1 (left) depicts the action potential
ˆ calculated with the original HH model. The time
evolution of the three gating variables m; n, and h

shown in Fig. 1 (right) illustrates dynamics of the
distinct activation and inactivation mechanisms.

The original HH model was significantly simplified
by Fitzhugh [4] who categorized the original four
transient parameters fˆ;m; n; hg as the fast variables
fˆ;mg and the slow variables fn; hg. Since the sodium
activation m evolves as fast as ˆ (see Fig. 1), it
is approximated by its voltage-dependent steady-state
value Om1.ˆ/. Moreover, Fitzhugh observed that the
sum of the slow variables fn; hg remains constant
(Fig. 1 (right)), during the course of an action potential
[7]. These two observations reduced the number of
parameters from four to two, which are the fast action
potential ˆ and the slow gating variable n. The phase-
space analysis of the reduced two-variable system
has indicated that the nullcline of ˆ is cubic, while
the n-nullcline On1.ˆ/ is monotonically increasing.
These observations led Fitzhugh to the generaliza-
tion of these models toward phenomenological two-
variable formulations.
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Formulation and Analysis
The evolution of the above-introduced two variables
fˆ; ng can be motivated by the following second-order
nonlinear equation of an oscillating variable �:

R� C c g.�/ P� C � D 0 (1)

with the quadratic damping factor g.�/ WD �2 � 1 as
suggested by Van der Pol [9]. Through the Liénard’s
transformation

r WD 1

c
Œ P� C c G.�/ � with G.�/ WD

Z �

0

g. Q�/ d Q�

D 1

3
�3 � � ; (2)

the second-order equation (1) can be transformed into
a system of two first-order equations:

P� D c Œ r �G.�/ � and Pr D �1
c
� : (3)

While the fast variable �, the potential, has a cubic
nonlinearity allowing for regenerative self-excitation
through a fast positive feedback, the slow variable r ,
the recovery variable, has a linear dynamics providing
slow negative feedback. By introducing a stimulus I
and two additional terms a and b r , Fitzhugh has recast
the van der Pol equations (3) into what he referred to
as the Bonhoeffer–van der Pol model:

P� D c Œ r�G .�/CI � ; Pr D �1
c
Œ � C b r� a � : (4)

These equations are now being referred to as the
Fitzhugh–Nagumo (FHN) equation. On the experimen-
tal side, Nagumo et al. [8] contributed essentially to
the understanding of (4) by building the corresponding
circuit to model the cell. The graphical representation
of the FHN equation in the phase space is depicted in
Fig. 2 (left) where the trajectories (solid lines) illustrate
the solutions of (4) for different initial points .�0; r0/
(filled circles) and the parameters a D 0:7; b D
0:8; c D 3, and I D 0. While the N-shaped cubic
polynomial (red dashed line) shows the �-nullcline,
on which P� D 0, the line with negative slope (blue
dashed line) denotes the r-nullcline where Pr D 0

in Fig. 2. The intersection point of the nullclines is
called the critical point . N�; Nr/ where both P� D 0 and
Pr D 0 characterizing the resting state. The stability of
the resting state, which is located at ( N� � 1:2; Nr �
�0:625) in Fig. 2 (left), can be analyzed by linearizing
the nonlinear FHN equation (4) about the critical point;
that is,

" P�
Pr

#
D NA

"
��

�r

#
where NA WD

"
c .1� �2/ c

�1=c �b=c

#
N�;Nr

(5)

and �� WD � � N� and �r WD r � Nr. The eigenvalues of
the coefficient matrix NA determine whether the critical
point is stable or unstable. The characteristic equation
of the coefficient matrix can be expressed as �2 � I1�C
I2 D 0 where I1 WD tr. NA/ and I2 WD det. NA/ are the
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Fitzhugh–Nagumo Equation, Fig. 2 The phase space of the FHN equation (4) where the trajectories (solid lines) illustrate the
solutions for distinct initial points .�0; r0/ and the two different values of the stimulus I D 0 (left) and I D �0:4 (right)
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principal invariants of NA. For the given parameters and
the critical point, we have I1 D c .1 � N�2/ � b=c < 0,
I2 D b . N�2 � 1/ C 1 > 0, and � WD I 21 � 4I2 < 0, which
indicate that the critical point is stable [3]. Apparently,
the stability of the resting state of the FHN equation
depends primarily on the stimulus I that shifts the
quadratic �-nullcline vertically, thereby changing the
position of the critical point and its characteristics.
Setting I D �0:4 in (4), the phase-space representation
of the FHN equation becomes Fig. 2 (right). Clearly,
upon addition of the negative stimulus, the �-nullcline
shifts upward and the resting point becomes unstable.
This results in the stable limit cycle, closed trajectory,
which characterizes the limiting response of adjacent
trajectories as time approaches to infinity as depicted
in Fig. 2 (right). A negative criterion, i.e., nonexis-
tence, of the limit cycles can be expressed through
the Bendixson criterion that makes use of the Gauss’
integral theorem on simply connected regions [3]. This
oscillatory behavior that can be generated by the FHN
equation allows us to model pacemaker cells that create
rhythmical electrical impulses as the sinoatrial node in
the right atrium.

Apparently, the FHN equation can be used to model
a broad class of dynamic phenomena where the under-
lying complex mechanisms can be uncovered through
fundamental methods of dynamics. In electrophysiol-
ogy, the FHN equation inspired many researchers [1,2]
to model computationally inexpensive and physiologi-
cally relevant models based on this equation.
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Synonyms

Forward Kolmogorov equation

Definition

The Fokker-Planck equation has the following form
[2, 5]:

@p

@t
C @

@xi
vip � @2

@xi@xj
aij p D 0; (1)

where the drift vi and diffusion coefficients aij are
functions of xi and t . We have adopted the Einstein
summation convention with implicit summation over
equal indices in terms. The scalar, time dependent
solution p is often a probability density function for
the system to be in a certain state x in the state space
˝ . If the dimension of the state space is N , then the
state is a vector with N real elements, x 2 R

N , and
i; j D 1 : : : N; in (1). Usually, the diffusion coefficient
is symmetric with aij D aj i .

Overview

In conservation form, the equation for p.x; t/ is
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F

@p

@t
C @Fi

@xi
D @p

@t
C r � F D 0; (2)

where F is the probability current or flux vector with
the elements Fi depending on p. With p interpreted
as a probability density, it is natural that with certain
boundary conditions on ˝ , the probability is con-
served. Comparing with (1) we find that

Fi D vip � @

@xj
aij p D

�
vi � @

@xj
aij

�
p � aij

@p

@xj
:

(3)

There is a related stochastic differential equation
according to Itô for the random variable vector X with
the elements Xi ; i D 1 : : : N , see [2]. The equation is

dXi D hi .X; t/ dt C gij .X; t/ dWi ; (4)

where Wi is a Wiener process. With

vi D hi ; aij D 1

2
gikgjk; (5)

the relation to (1) is that the probability density func-
tion for X to be x at time t is p.x; t/ solving (1).
Given the Fokker-Planck equation, the corresponding
stochastic equation is not unique since many gij may
satisfy (5).

Numerical Solution

The Fokker-Planck equation can be discretized in space
on a mesh with a finite difference, finite volume, or
finite element method. The advantage with the finite
volume method presented here is that if p in ˝ is
preserved, then the computed solution also has that
property.

Let ˝ be partitioned into K computational cells
!k; k D 1 : : : K; with the boundary sk and normal nk
pointing outward from! and integrate the conservation
form (2) over !k . Then according to Gauss’ integration
formulaZ

!k

@p

@t
d! C

Z
!k

@Fi

@xi
d! D @

@t

Z
!k

p d!

C
Z
!k

r � F d! D wk
@

@t
Npk C

Z
sk

nk � F dS D 0;

(6)

where Npk is the average of p in !k and the size of !k
is wk (the area in two dimensions (2D) and the volume
in three dimensions (3D)). If sk consists of m straight
edges in 2D or flat surfaces in 3D or other faces with a
constant nk in higher dimensions, then the equation for
the time evolution of Npk is

@

@t
Npk C 1

wk

mX
`D1

nk` � Fk`�sk` D 0: (7)

The size of the `:th face of!k is�sk`, the normal nk` is
constant there, and Fk` is the average of F on the face.
This average must be approximated using the averages
of p in the surrounding cells.

A Cartesian mesh in 2D has the cells !ij ; i; j D
1; : : : ;M; with the constant step size�sk` D h and the
averages pij . Then F D .Fx; Fy/

T and n D .nx; ny/
T ,

and the equation for pij is

@

@t
pij C 1

h2

4X
`D1
.nxFx C nyFy/`h

D @

@t
pij C 1

h

�
Fx;iC1=2;j C Fy;i;jC1=2

� Fx;i�1=2;j � Fy;i;j�1=2
� D 0;

(8)

where, e.g., Fx;iC1=2;j is Fx evaluated at the face
between !ij and !iC1;j . An approximation of the flux
function F in (3) is needed at the four edges of the cell
!ij using pij . A simple and stable approximation is
an upwind scheme for the drift term and a centered
scheme for the diffusion term as in [1]. Then on the
face .i C 1=2; j /, the drift term is approximated by

.vxp/iC1=2;j �
�
vx;iC1=2;j pij ; vx;iC1=2;j � 0

vx;iC1=2;j piC1;j ; vx;iC1=2;j < 0
or

.vxp/iC1=2;j �

8̂
<̂
ˆ̂:

vx;iC1=2;j .3pij � pi�1;j /=2;
vx;iC1=2;j � 0

vx;iC1=2;j .3piC1;j � piC2;j /=2;
vx;iC1=2;j < 0:

(9)

The first approximation in (9) is first-order accurate in
h, and the second one is second-order accurate. The
diffusion term is a sum of two derivatives in the x and
y directions in the flux (3). At the face .i C 1=2; j /,
the two terms in Fx to be approximated are

@

@x
axxp C @

@y
axyp: (10)
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A second-order approximation is with qxx;ij D
axx;ij pij ; qxy;ij D axy;ij pij

@

@x
axxp � .qxx;iC1;j � qxx;ij /=h;

@

@y
axyp � .qxy;iC1;jC1 C qxy;i;jC1

� �qxy;i;j�1 C qxy;iC1;j�1
�
/=4h:

(11)

The other derivatives in the diffusive flux are approxi-
mated in a similar manner. The resulting stencil for the
diffusive part of @Fx

@x
C @Fy

@y
in 2D is then

��qxx;iC1;j C qxx;i�1;j � 2qxx;ij C qyy;i;jC1

Cqyy;i;j�1 � 2qyy;ij C 1

2

�
qxy;iC1;jC1 C qxy;i�1;j�1

� �qxy;iC1;j�1 C qxy;i�1;jC1
���
=h2: (12)

Let p be the solution vector at time t with Npk; k D
1 : : : K; as components. Then the discretization of (2)
can be written with a K �K matrix A

@p
@t

C Ap D 0: (13)

There are alternatives how to discretize the time deriva-
tive at the time points tnC1 D tn C �t with the
constant time step�t . For stability, an implicit method
is preferred. With p.tn/ � pn and A.tn/ D An, three
such possibilities are

pnC1 D pn ��tAnC1pnC1;
pnC1 D pn � 1

2
�t.AnC1pnC1 CAnpn/;

pnC1 D 4
3
pn � 1

3
pn�1 � 2

3
�tAnC1pnC1:

(14)

The first scheme is the Euler backward method and is
first-order accurate in �t . The second method is the
trapezoidal method, and the third method is a backward
differentiation formula. These two schemes are of
second order. All methods are unconditionally stable
when the real part of the eigenvalues of a constant A
is nonpositive. There is a system of linear equations
to solve for pnC1 in every time step. Since the system
matrix is sparse, an iterative method such as GMRES
or BiCGSTAB is the preferred choice of method.

The solution p1 of the steady-state problem when
t ! 1 satisfies

A1p1 D 0: (15)

The solution can be computed as the eigenvector of
A1 D limt!1A.t/ with eigenvalue 0. A method to
compute a few eigenvectors and their eigenvalues is the
Arnoldi method in the software package ARPACK [4].

Assume that the conditions at the boundary @˝ of
˝ are such that there is no probability current across
the boundary. Then n � F D 0 at @˝ with the outward
normal n. The total probability in ˝ is constant since
by (6) we have

@

@t

Z
˝

p d˝ C
Z
@˝

n � F dS D @

@t

Z
˝

p d˝ D 0;

(16)

and if the initial probability at t D 0 is scaled such thatR
˝
p.x; 0/ d˝ D 1, then this equality holds true for all

times t > 0. The finite volume discretization inherits
this property.

The sum of the fluxes in (7) over all cells vanishes
because the same term appears in the flux of the cell to
the left of a face and in the flux of the cell to the right
of the face but with opposite signs. Also, the fluxes at
faces on the boundary vanishes. If w is the constant
vector with the sizes of the cells wk , then it follows
from (13) that

KX
kD1

mX
`D1

nk` � Fk`�sk` D wT Ap D 0

and (7) can be written

KX
kD1

wk
@

@t
Npk C

KX
kD1

mX
`D1

nk` � Fk`�sk` D @

@t
wT p D 0:

(17)

The total probability wT p is preserved by the finite
volume discretization as it is in the analytical solu-
tion (16). The size vector w is a left eigenvector of A
with eigenvalue 0. The corresponding right eigenvector
when t ! 1 is p1 in (15).

If the dimension of the state space N is high, then
the Fokker-Planck equation cannot be solved numer-
ically by the finite volume method due to the curse
of dimensionality. The number of unknowns K grows
exponentially withN and quickly becomes too large to
be manageable on a computer. Suppose that the mesh
is Cartesian with M mesh points in each dimension.
Then K D MN and with M D 100 and N D 10,
K will be 1020, and almost a zettabyte of memory is
needed only to store the solution. Then a Monte Carlo
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approximation of p or its moments is possible using
the stochastic differential equation (4). Generate R
realizations of the process by solving (4) numerically,
e.g., by the Euler-Maruyama method, see [3]. Then
for each trajectory, save the position x at t in a mesh,
or update the moments to obtain an approximation of
p.x; t/ or its moments. The convergence is slow and
proportional to 1=

p
R as it is for all Monte Carlo meth-

ods, but for large N it is the only feasible alternative.
The conclusions in [6] for a similar problem is that the
Monte Carlo method is more efficient computationally
if N & 4.

Cross-References

� Finite Volume Methods
�Quasi-Monte Carlo Methods
� Simulation of Stochastic Differential Equations
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Synonyms

Data assimilation; State estimation

Definition

Filtering is a numerical scheme for finding the “best”
statistical estimate of hidden true signals through noisy
observations. For very high-dimensional problems, the
best estimate is typically defined based on the linear
theory, in the sense of minimum variance [21].

Overview

In the past two decades, data assimilation has been
an active research area in the atmospheric and ocean
sciences community with weather forecasting and cli-
matological state reconstruction as two direct applica-
tions. In this field, the current practical models for the
prediction of both weather and climate involve general
circulation models where the physical equations for
these extremely complex flows are discretized in space
and time and the effects of unresolved processes are
parameterized according to various recipes; the result
of this process involves a model for the prediction
of weather and climate from partial observations of
an extremely unstable, chaotic dynamical system with
several billion degrees of freedom. These problems
typically have many spatiotemporal scales, rough tur-
bulent energy spectra in the solutions near the mesh
scale, and a very large dimensional state space, yet real-
time predictions are needed.

Two popular practical data assimilation ap-
proaches that were advocated for filtering such high-
dimensional, nonlinear problems are the ensemble
Kalman filters [15] and the variational methods
[14]. Recently, most operational weather prediction
centers, including the European Center for Medium-
Range Weather Forecasts (ECMWF), the UK Met
Office, and the National Centers for Environmental
Prediction (NCEP), are adopting hybrid approaches,
taking advantage from both the ensemble and
variational methods [12, 20, 34]. Despite some
successes in the weather forecasting application for
assimilating abundant data, collected from radiosonde,
scatterometer, satellite, and radar measurements,
these practical methods are very sensitive to model
resolution, ensemble size, observation frequency,
and the nature of the turbulent signals [26] and are
suboptimal in the sense of nonlinear filtering since they
were based on linear theory. Furthermore, there is an
inherent difficulty in accounting for model error in the

http://dx.doi.org/10.1007/978-3-540-70529-1_433
http://dx.doi.org/10.1007/978-3-540-70529-1_391
http://dx.doi.org/10.1007/978-3-540-70529-1_346
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state estimation of such complex multiscale processes.
This is a prototypical situation in many applications
due to our computational limitation to resolve the
smaller-scale processes. To complicate this issue even
more, in general, some of the available observations
couple information from many spatial scales. For
example, observations of pressure or temperature in
the atmosphere mix slow vortical and fast gravity wave
processes.

Given all these practical constraints, finding the
optimal nonlinear filtered solutions is an extremely dif-
ficult task. Indeed, for continuous-time observations,
the optimal filter solution is characterized by a time-
dependent conditional density function that satisfies
an infinite dimensional stochastically forced partial
differential equation, known as the Kushner equation
[24]. A theoretically well-established approach to ap-
proximate this conditional density is the Monte-Carlo-
based technique called particle filter [4]. However,
it is inherently difficult to utilize this approach to
sample high-dimensional variables [6, 9]. Therefore, it
becomes important to develop practically useful math-
ematical guidelines to mitigate these issues in filtering
high-dimensional nonlinear problems. This is the main
emphasis of the book Filtering Complex Turbulent
Systems [26].

Practical FilteringMethods

Here, we discuss two popular practical methods for
filtering high-dimensional problems: the ensemble
Kalman filter [15] and the variational approaches [14].
These numerical methods were developed to solve the
following discrete-time canonical filtering problem,

umC1 D f .um/; (1)

vm D g.um/C "m; "m 2 N .0;R/; (2)

where um denotes the hidden state variable of interest
at discrete time tm, which is assumed to evolve as
in (1); here, f denotes a general nonlinear dynamical
operator that can be either deterministic or stochastic.
The observation, vm, is modeled as in (2) with an
observation operator g that maps the true solution
um to the observation space and assumed to be cor-
rupted by i.i.d. Gaussian noises, with mean zero and
variance R.

In general, the solutions of the filtering problem
in (1)–(2) are characterized by conditional distri-
butions, p.umjvm/, which are obtained by applying
Bayes’ theorem sequentially,

p.umjvm/ / p.um/p.vmjum/: (3)

Here, p.um/ denotes a prior (or background) distribu-
tion of state u at time tm. If we assume that the prior
error estimate is Gaussian, unbiased, and uncorrelated
with the observation error, then we can write

p.um/ / exp

�
�1
2
.um � Nubm/>.P b

m/
�1.um � Nubm/

�

� exp

�
�1
2
J b.um/

�
; (4)

where Pb
m D EŒ.um � Nubm/.um � Nubm/>� denotes the

prior error covariance matrix at time tm, which charac-
terizes the error of the mean estimates, Nubm. In (3), the
conditional density, p.vmjum/, denotes the observation
likelihood function associated with the observation
model in (2), that is,

p.vmjum// exp
�� 1

2
.vm� g.um//>R�1.vm� g.um//

�

� exp
� � 1

2
J o.um/

�
: (5)

The posterior (or analysis) mean and covariance es-
timates, Nuam and Pa

m, are obtained by maximizing the
posterior density in (3), which is equivalent to solving
the following optimization problem,

min
um

J b.um/C J o.um/; (6)

for um. These posterior statistics are fed into the model
in (1) to estimate the prior statistical estimates at the
next time step tmC1, NubmC1, and Pb

mC1, when observa-
tions become available.

If the dynamical and the observation operators f
and g are linear and the initial statistical estimates
f Nua0; P a

0 g are Gaussian, then the unbiased posterior
mean and covariance estimates are given by the
Kalman filter solutions [21]. For general nonlinear
problems, the minimization problem in (6) is nontrivial
when the state vector um is high dimensional; the
major difficulty is in obtaining accurate prior statistical



Framework and Mathematical Strategies for Filtering or Data Assimilation 561

F

estimates Nubm and Pb
m. The ensemble Kalman filter

(EnKF) empirically approximates these prior statistical
solutions with an ensemble of solutions and uses the
Kalman filter formula to obtain the posterior statistics,
assuming that these ensemble-based prior statistics are
Gaussian [15]. Inplementation-wise, there are many
different ways to generate the posterior ensembles
for EnKF [1, 10, 19]. Alternatively, the variational
approach solves the minimization problem in (6), often
by assuming that the matrix Pb

m D B in (4) to be time
independent [14]. The variational approach solves the
following optimization problem,

min
um0

J b.um0/C
TX
jD0

J o.umj /; (7)

for the initial condition um0 , accounting for observa-
tions at times ftmj ; j D 0; : : : ; T g and constraining
umj to satisfy the model in (1). This method (also
known as the strongly constrained 4D-VAR) is typi-
cally solved with an incremental approach that relies on
linear tangent and adjoint models, and it is sensitive to
the choice of B [33]. To alleviate this issue, many op-
erational centers such as the ECMWF, UK Met Office,
and NCEP are adopting hybrid methods [12,20,34] that
use an ensemble of solutions to estimate Pb

m in each
minimization step.

Notice that both EnKF and 4D-VAR assume Gaus-
sian prior model in (4) and likelihood observation
function in (5) to arrive to the optimization prob-
lems in (6), (7) before approximating the solutions
of these minimization problems. Therefore, it is intu-
itively clear that these Gaussian-based methods, which
can only be optimal for linear problems, are suboptimal
filtering methods for nonlinear problems. Indeed, a
recent comparison study suggested that one should not
take the covariance estimates from these two methods
seriously [25]; at their best performance, only their
mean estimates are accurate.

Model Error

In the presence of model error, the true operators f and
g are unknown. In multiscale dynamical systems, er-
rors in modeling f and g are typically due to the prac-
tical limitation in resolving the smaller-scale processes
and the difficulty in modeling the interaction between

the multiscale processes. For example, the predictabil-
ity of the atmospheric dynamics in the Tropics remains
the poorest, and the difficulties are primarily caused
by the limited representation of tropical convection
and its multiscale organization in the contemporary
convection parameterization [31].

Many practically used methods to mitigate model
error are also Gaussian-based methods. Most of
these methods were designed to estimate only one
of the model error statistics, either the mean or
covariance, imposing various assumptions on the
other statistics that are not estimated. For example,
classical approaches proposed in [13] estimate the
mean model error (which is also known as the forecast
bias), assuming that the model error covariance is
proportional to the prior error covariance from the
imperfect model. An alternative popular approach is
to inflate the prior error covariance statistics, either
with empirically chosen [3, 17] or with adaptive
[2,5,8,18,30] inflation factors. All of these covariance
inflation methods assume unbiased forecast error
(meaning that there is no mean model error). In the 4D-
VAR implementation, model error is accounted under
various assumptions: Gaussian, unbiased, and with
covariance proportional to the prior error covariance
statistics [33]. Such formulation, known as the weak
4D-VAR method, is numerically expensive [16].

Contemporary Approaches to Account for
Model Error

Recently, reduced stochastic filtering approaches to
mitigate model error in multiscale complex turbulent
systems were advocated in [26, 28]. The main conclu-
sion from the studies reported in [26] is that one can
obtain accurate filtered mean estimates with judicious
choices of reduced stochastic models. Several ideas
for simple stochastic parameterization to account for
model error induced by ignoring the smaller-scale
processes were described in idealistic settings as well
as in more complicated geophysical turbulent systems
(see [26] and the references therein). In fact, recent
rigorous mathematical analysis in [7] showed the exis-
tence (and even the uniqueness in a linear setting) of a
reduced stochastic model that simultaneously produces
optimal filter solutions and equilibrium (climate) sta-
tistical solutions. Here, the optimal filtering is in the
sense that the mean and covariances are as accurate
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as the solutions from filtering with the perfect model.
Another important implication based on the study in
[26] is the “stochastic superresolution” [11, 22], which
is a practical method that judiciously utilizes the alias-
ing principle (that is typically avoided in designing
numerical solvers for differential equation) to extract
information from sparse observations of compressed
multiscale processes.

These theoretical results and conceptual studies
have provided many evidences that clever stochastic
parameterization method is an appealing strategy for
accurate practical filtering of multiscale dynamical
systems in the presence of model error. Based
on the author’s knowledge and viewpoint, several
cutting-edge stochastic parameterization methods
that can potentially have high impact in filtering
high-dimensional turbulent systems include: (i) the
stochastic superparameterization [29]; (ii) the reduced-
order modified quasilinear Gaussian algorithm [32];
(iii) the physics-constrained multilevel nonlinear
regression model [18, 27]; (iv) a simple stochastic
parameterization model that includes a linear damping
and a combined, additive and multiplicative, stochastic
forcing [7]; (v) and the Markov chain-type modeling;
see, e.g., the stochastic multi-cloud model for
convective parameterization [23].
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33. Tŕemolet, Y.: Accounting for an imperfect model in 4D-Var.
Quart. J. R. Meteorol. Soc. 132(621), 2483–2504 (2006)

34. Wang, X., Parrish, D., Kleist, D., Whitaker, J.: GSI 3DVar-
based ensemble-variational hybrid data assimilation for
NCEP global forecast system: single resolution experi-
ments. Mon. Weather Rev. 141(11), 4098–4117 (2013)

Front Tracking
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Front tracking is a method to compute approximate
solutions to the Cauchy problem for hyperbolic con-
servation laws, namely,

(
ut C f .u/x D 0; t > 0; x 2 R;

u.x; 0/ D u0.x/:
(1)

Here, the unknown u is a function of space (x) and time
(t), and f is a given nonlinear function. In the above,
space is one dimensional; hyperbolic conservation laws
in several space dimensions are obtained by replacing
the x derivative with a divergence. The unknown u can
be a scalar or a vector, in which case (1) is called a
system of conservation laws. The interpretation of (1)
is that it expresses conservation of u and that the flux

of u at a point .x; t/ is given by f .u.x; t//. Therefore,
the function f is often called the flux function.

Independently of the smoothness of the initial data
u0 and of the flux function f , solutions to (1) will in
general develop discontinuities, so by a solution we
mean a solution in the weak sense, i.e.,

Z 1

0

Z
R

u'tCf .u/'x dxdtC
Z
R

u0.x/'.x; 0/ dx D 0;

(2)

for all test functions ' 2 C1
0 .R � Œ0;1�//. Weak

solutions are not unique, and to recover uniqueness one
must usually impose extra conditions, often referred to
as entropy conditions.

Front tracking has been used both for theoretical
purposes and as a practical numerical method. The
existence of weak solutions for general systems of hy-
perbolic conservation laws was first established using
the random choice method [9], but front tracking was
used to prove the same result in [1] and [20]. Front
tracking has been used as a numerical method both
in one dimension, see, e.g., [13] for scalar equations,
and for systems, see, e.g., [17, 19, 21]. In several space
dimensions, front tracking has been proposed in con-
junction with dimensional splitting, see, e.g., [11, 14].

It should also be mentioned that the name “front
tracking” is also used for a related but different method
where one tracks the discontinuities in u and uses a
conventional method to compute u in the regions where
u is continuous; see [10] for a description of this type
of front tracking.

Weak Solutions and Entropy Conditions
The weak formulation (2) implies that if u has a jump
discontinuity at some .x; t/, which moves with a speed
s, then

�f .u.x; t//� D s�u.x; t/�; (3)

where

�v.x; t/� D lim
"#0
v.x C "; t/� v.x � "; t/:

(3) is called the Rankine–Hugoniot condition. Any
isolated discontinuity satisfying this will be a weak
solution near .x; t/. As an example consider Burgers’
equation, namely, f .u/ D u2=2, with initial data

u0.x/ D
(

�1 x � 0;

1 x > 0:
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In this case, both

u.x; t/ D u0.x/; and

Qu.x; t/ D

8̂<
:̂

�1 x � �t=2;
0 �t=2 < x � t=2;

1 t=2 � x;

are weak solutions to ut C.u2=2/x D 0 taking the same
initial values. Hence weak solutions are not uniquely
characterized by their initial data.

The conservation law (1) is often obtained as a limit
of the parabolic equation

u"t C f .u"/x D "u"xx; (4)

as " # 0. If we multiply this with a �0.u"/, where u 7!
�.u/ is convex, we obtain

� .u"/t C q .u"/x D "
�
�0 �u"x� u"x

�
x

� "�00 .u"/
�
u"x
�2
;

where q0 D �0f 0. If u" ! u as " # 0, using the
convexity of �, we get

�.u/t C q.u/x � 0: (5)

The pair .�; q/ is commonly referred to as an en-
tropy/entropy flux pair. For scalar conservation laws,
the most used entropy condition is that (5) should
hold weakly for all convex functions �. By a limiting
and a density argument, it is sufficient to require
that (5) holds weakly for the so-called Kružkov en-
tropy/entropy flux pairs,

�.u/ D ju � kj ; q.u/ D sign .u � k/ .f .u/� f .k// :

We say that a function satisfying (2) and (5) is an en-
tropy solution. For scalar conservation laws, this gives
well posedness of (1): If u and v are two entropy so-
lutions, then ku.�; t/� v.�; t/kL1.R/ � ku0 � v0kL1.R/.
For an elaboration of this, as well as more accurate
statements, see any introductory text on conservation
laws, e.g., [8, 12, 22].

Front Tracking for Scalar Conservation Laws in
One Dimension
Consider the initial value problem for (1) with the
initial value

u0.x/ D
(

ul x � 0;

ur x > 0;
(6)

where ul and ur are constants. This is called the
Riemann problem for the conservation law. In the
scalar case, it turns out that the entropy solution to
the Riemann problem can be constructed as follows:
If ul < ur , let f^.uI ul ; ur / denote the lower convex
envelope of f in the interval Œul ; ur �, i.e.,

f^.uI ul ; ur / D sup
˚
g 2 C.Œul ; ur �/

ˇ̌
g.u/ � f .u/

and g is convex in Œul ; ur �g :

By construction f 0̂ .u/ is increasing, and thus we can

define its generalized inverse
�
f 0̂ ��1. The entropy

solution to (6) is

u.x; t/ D �
f 0̂ ��1 .x=t/: (7)

If ul > ur , we repeat the above construction with the
upper concave envelope f _ replacing f^.

If the flux function f is piecewise linear and contin-
uous, also the envelopes f^ and f _ will be piecewise
linear and continuous. This makes the construction of
the entropy solution easy. As an example consider the
piecewise linear flux

f .u/ D ju C 1j C ju � 1j � juj ;

and the Riemann problem

u.x; 0/ D
(

�2 x � 0;

2 x > 0:

By taking the convex envelope of the flux function
between u D �2 and u D 2, we find that the entropy
solution is given by

u.x; t/ D

8̂̂
ˆ̂<
ˆ̂̂̂:

�2 x � �t;
�1 �t < x � 0;

1 0 � x < t;

1 t � x;

see Fig. 1. In general, if the flux function is continuous
and piecewise linear, the solution of the Riemann prob-
lem, as a function of x=t , will be piecewise constant
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Front Tracking, Fig. 1 Left, the flux function; right, the solution of the Riemann problem in the .x; t / plane

and will take values in the set where the derivative of
the convex or concave envelope of f is discontinuous.

Now we can define front tracking for scalar conser-
vation laws. Let f ı.u/ be a piecewise linear approx-
imation to f .u/, and let uı0 be a piecewise constant
approximation to u0 such that uı0 takes values in the
set where f ı0

is discontinuous. The discontinuities of
uı0 defines a set of Riemann problems which can be
solved exactly. Piecing together these solutions, we
obtain a function uı.x; t/. This function is defined
until two discontinuities collide at some .x0; t0/, where
t0 > 0 since f ı0

is bounded. At .x0; t0/, we solve
the Riemann problem with ul D uı.x0�; t0/ and
ur D uı.x0C; t0/. This will again give a series of
discontinuities, or fronts, emanating from .x0; t0/. In
this way we can continue the solution up to some
t1 � t0. This process is called front tracking. This
method was first considered in [7].

In [13] it is proved that for any fixed ı > 0, there
are only a finite number of collisions for all t > 0, thus
one can construct the entropy solution to the Cauchy
problem

(
uıt C f

�
uı
�
x

D 0; x 2 R; t > 0;

uı.x; 0/ D uı0.x/;

by a finite number of operations. The convergence of
front tracking is shown by appealing to a general result
regarding continuous dependence of entropy solutions
to scalar conservation laws with respect to the flux
function and the initial data. The relevant bound on the
error then reads

uı.�; t/ � u.�; t/
L1.R/

� uı0 � u0

L1.R/

Ct ju0jBV.R/
f ı � f Lip.�M;M/ ; (8)

where M is a bound on ju0j and u is the exact entropy
solution of (1). If

f ı.u/ D f .iı/C .u � iı/f ..i C 1/ı/� f .iı/
ı

;

for u 2 Œiı; .i C 1/ı/, i 2 Z,

then u0 can be chosen such that error is O.ı/. See Fig. 2
for a depiction of the fronts (discontinuities) of front
tracking if f .u/ D u3=3 and u0.x/ D sin.2�x/ and
ı D 1=10.

Front Tracking for Systems
For general strictly hyperbolic systems, Lax, [18],
proved that if ur is sufficiently close to ur , then the
solution of the Riemann problem consists of n different
waves, each wave can be a shock wave (discontinuity)
or a rarefaction wave (meaning that the solution is
continuous in x=t in some interval). In this case, we
cannot make some approximation to f to get a simple
solution of the Riemann problem.

In order to define front tracking, one must approxi-
mate the solution itself. This is done by approximating
the rarefaction parts of the solution with a step function
in x=t ; the step size is now determined by a parameter
ı. This gives an approximate solution to the Riemann
problem which is piecewise constant in x=t and hence
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can be used in the front tracking algorithm as in the
scalar case.

However, it is not clear that we are able to define
the approximation uı.x; t/ for any t > 0. The reason is
that too many fronts are defined, and explicit examples
show that if one approximates all waves in the exact so-
lution of the Riemann problem, then the front tracking
algorithm will not define a solution for all positive t .

This problem can be avoided by ignoring small
fronts in the approximate solution of the Riemann
problem. Using the Glimm interaction estimate, [9,23],
one can show that when two fronts collide, the new
waves created will be of a size bounded by the product
of the strength of the colliding fronts. A careful anal-
ysis then shows front tracking to be well defined. See
the books [2, 12] for precise statements and results.

This analysis also establishes the existence of weak
solutions by showing that the front tracking approx-
imations converge and that their limits are weak so-
lutions. The approximate solutions obtained by front
tracking for systems have also been shown to be L1

stable with respect to the initial data, first for 2 � 2

systems [3], and then for general n � n systems with
small initial data [4, 5].

Front tracking for systems of equations has also
been used a practical numerical tool, see [17, 19, 21]
and the references therein.

In Fig. 3 we show an example of a front tracking
approximation to the solution of the initial value prob-
lems for the so-called p-system, namely,

�t C .u�/x D 0

.u�/t C �
�u2 C p.�/

�
x

D 0;

where � models the density and u the velocity of a gas.
To close this, the pressure p.�/ is specified as

p.�/ D ��� ; � D .� � 1/2

4�
; � D 1:4:

The computation in Fig. 3 uses the periodic initial
values

�0.x/ D 0:1C cos2.�x/; u0.x/ D cos.�x/:

Several Space Dimensions and Other Equations
In several space dimension, front tracking is more
complicated. The discontinuities are no longer ordered,
and their topology can be complicated.

It is still possible to use front tracking as a building
block for methods using dimensional splitting. For a
conservation law in two space dimensions,
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ut C f .u/x C g.u/y D 0;

this approach consists in letting un.x; y; t/ solve the
one-dimensional conservation law in the time interval
.n�t; .nC 1/�t/

(
@un

@t
C @f .un/

@x
D 0;

un.x; y; n�t/ given,
here y is a parameter.

Then u�t .�; �; .nC 1/�t/ is used as initial value for the
conservation law in the y-direction, namely,

(
@vn

@t
C @g.vn/

@y
D 0; n�t < t < .nC 1/�t

vn.x; y; n�t/ D un.x; y; .n C 1/�t/:

This process is then repeated. To solve the one-
dimensional equations, front tracking is a viable tool,
since it has no intrinsic CFL condition limiting the
time step. For scalar equations, the convergence of
front tracking/dimensional splitting approximations
was proved in [11]. Dimensional splitting can also
be viewed as a large time step Godunov method
and has been used with some success to generate
approximations to solutions of the Euler equations
of gas dynamics in two and three dimensions,
see [14].

Front tracking has also been used and shown to
converge for Hamilton-Jacobi equations in one space
dimension, see [6, 15], and has been used in conjunc-
tion with dimensional splitting for Hamilton-Jacobi
equations in several space dimensions [16].
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Functional Equations: Computation
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Introduction

In the largest meaning, a functional equation is any
equation where the unknown, to be solved for, is a
function f belonging to a suitable function space F
of one or more independent variables x which are
supposed to vary in a fixed domain D. Such a broad
definition includes a huge variety of equations. Among
them, ordinary and partial differential equations, dif-
ferential algebraic equations, and any other equation
whose expressions describe the constraints the solution
f and some derivatives must fulfil at any single fixed
value x of the independent variables in the domain. Its
general form is F.x; f .x// D 0, F being a suitable
algebraic or differential operator.

Time evolution systems described by such equations
are often said to fulfil the principle of causality, that
is, the future state of the system depends solely by the
present. Usually, in the literature these equations are
not included in the class of functional equations which
is instead reserved to equations where, for any fixed
x, the unknown function f is simultaneously involved
also at points other than x. A classical example is the
Cauchy functional equation

f .x/C f .y/ D f .x C y/; .x; y/ 2 R2 (1)

whose solution is a scalar function f W R ! R that
must fulfil the equation for any pair .x; y/ 2 R2 and
the analogue system where f W Rn ! Rm, with
x; y 2 Rn and .x; y/ 2 Rn�Rn. Remark the difference
between the domain of the equation, Rn � Rn, and the
domain of the solution f , Rn.

There exists a long list of functional equations,
often associated with names of famous mathematicians
and physicists such as Abel, Schroeder, d’Alambert,
Jensen, Bellman, and many others, which come from
different areas of theoretical and applied mathematics.
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Despite early examples, in a disguised formulation,
go back to the thirteenth century, functional equations
developed since the seventeenth century together with
the concept of function whose deep understanding has
been cause and effect of its development.

A subclass of functional equations is determined
by the case where the equation still depends on two
or more specified values of the independent variable
which are no longer independent of each other (as x
and y were in the Cauchy equation (1)) but they all are
functions of the same variable x. In other words, the
domain of the equation is now included in the domain
of the solution. To this subclass belong, for example,
the Schroeder equation f .h.x// D cf .x/ and the
Abel equation f .g.x// D f .x/ C 1 where h.x/ and
g.x) are given functions that act as shifts (or deviating
arguments) of x. More complicated dependency of
the variables are found in the “composite equations”
where the shift depends on the sought function itself,
as in the Babbage equation f .f .x// � x D 0 and its
generalization f .f .x// D h.x/, for a given h.

The general form of such equations is F
	
x; f .x/;

f
	
h.x; f .x//




D 0, where F W Rn�Rn�Rn ! Rn

is an algebraic operator, h W Rn � Rn ! Rn is the
shift, and the unknown f belongs to a suitable algebra
of functions.

For these equations, which have been analyzed and
solved chiefly by analytical rather than numerical tools,
we refer the interested reader to J. Acz Kel and J. Dhom-
bres [1] and A. D. Polyanin and A. I. Chernoutsan [20].

Since the pioneeristic papers by V. Volterra at the
beginning of the last century (see the exhausting bib-
liography in H. Brunner [7]), the concept of func-
tional equation extended to equations based on integral
and integrodifferential operators suitable for model-
ing phenomena infringing the mentioned principle of
causality. When the unknown function depends on a
scalar independent time variable x D t , it is worth
distinguishing among the cases where the deviating
argument h.t/ attains values h.t/ � t , h.t/ � t or
both. Usually, the three occurrences are referred to
as retarded�, advanced� or mixed�functional equa-
tions, respectively. Disregarding advanced and mixed
functional equations, often related to the controversial
principle of retro-causality (the present state of the
system depends on the future), let us now consider the

class of retarded functional equations (RFE) that, from
now on, will be written in the following form:

F.t; yt / D 0; (2)

or in the explicit form

y.t/ D G.t; yt /; (3)

where the unknown y is a Rd -valued function of one
real variable, the functional G maps .R �X/ into Rd ,
the state-space X being a suitable subspace of vector-
valued functions .�1; 0� ! Rd , and, according to the
Hale-Krasovski notation, the state yt 2 X (at the time
t) is given by

yt .�/ D y.t C �/; � 2 .�1; 0�:

The class of RFEs naturally extends to the class of
retarded functional differential equations (RFDE) of
the form

Py.t/ D G.t; yt / (4)

and neutral retarded functional differential equations
(NRFDE)

Py.t/ D G.t; yt ; Pyt / (5)

where the right-hand side functional G depends also
on the derivative of the state Pyt D Py.t C �/, the sought
function y.t/ is almost everywhere differentiable, and
the state-space X is now included in LC.�1; 0/, the
set of locally Lipschitz-continuous functions.

The class of RFDEs may be further extended to the
implicit form

M Py.t/ D G.t; yt / (6)

where M is a possibly singular constant matrix. Be-
sides (4), (6) incorporates retarded functional differen-
tial algebraic equations (RFDAE)

8<
:

Py.t/ D G
	
t; yt ; zt



0 D H

	
t; yt ; zt



;
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singularly perturbed problems

8<
:

Py.t/ D G
	
t; yt ; zt




Pz.t/ D H

	
t; yt ; zt



;

and, in particular, NRFDE (5) that can be written as a
(non-neutral) RFDAE of doubled dimension 2d for the
unknown .y.t/; z.t//T

�
I 0

0 0

�� Py.t/
Pz.t/

�
D
 

z.t/

G
	
t; yt ; zt



� z.t/

!

(7)

In order to have well-posedness, the (2)–(6) are
often endowed by suitable initial data y0 D y.0 C
�/; � � 0, which represents the initial state of the
system at the initial time t D 0.

After Volterra, various kinds of retarded functional
and retarded functional differential equations (often
comprehensively identified as Volterra functional equa-
tion) have been being used for modeling many phe-
nomena in applied sciences and engineering where,
case by case, they have been referred to as time-delay
system, time-lag system, hereditary system, system with
memory, system with after effect, etc.

Being any Volterra functional equations (2)–(6)
characterized by the action of the functionals G on
the state yt , we can distinguish between discrete delay
equations, usually called delay differential equations
(DDE) and neutral delay differential equations
(NDDE)

8<
:

Py.t/ D f .t; y.t/; y.t � 1/; : : : ; y.t � r //
0 � t � tf ; DDE

y.t/ D �.t/; t � 0;

(8)

8̂
<̂
ˆ̂:

Py.t/ D f .t; y.t/; y.t � 1/; : : : ; y.t � r /;
Py.t � 1/; : : : ; Py.t � r // 0 � t � tf ;

y.t/ D �.t/; t � 0; NDDE
Py.t/ D P�.t/; t � 0;

(9)

where, for any t , the state yt is involved with a finite
or discrete (countable) set of past points t � i � t

and distributed delay equations where a continuum,

possibly unbounded, set of past points is involved.
The latters are essentially integral equations that can
be further subdivided in the more restricted forms of
Volterra integral equations (VIE) of the first and second
kind

� R t
0
K.t; s; y.s//ds D g.t/ t � 0

g.0/ D 0;
(10)

�
y.t/ D g.t/C R t

0
K.t; s; y.s//ds t � 0

y.0/ D g.0/;
(11)

Volterra integro differential equations (VIDE)

(
Py.t/ D f

	
t; y.t/;

R t
0
K.t; s; y.s//ds



t � 0

y.0/ D y0;

(12)

and equations in more general forms including deviat-
ing arguments in t such as, for example,

8̂
<
:̂

Py.t/ Df
	
t; y.t/; y.t�/; R t

t� K.t; s; y.s//ds



t � 0

y.t/ D�.t/; t � 0;

(13)

and the like, usually called Volterra delay integro dif-
ferential equations (VDIDE) as well as other equations
in nonstandard form (see H. Brunner this encyclope-
dia) which are referred to by the all-inclusive term
Volterra functional equation.

The Numerics of Volterra Functional
Equations

For Volterra functional equations (2)–(5), a big deal of
work has been done since the years 1970–1980 from
the numerical point of view. The most natural tool for
approximating the solution of a functional equation is
global or piecewise polynomial collocation that, being
a continuous method with dense output, provides an
approximation of the whole state yt , as required in the
evaluation of G.t; yt / and G.t; yt ; Pyt /, at any possible
value of the variable t .

The strength of collocation lies in its adaptability
to any kind of equation where it provides accurate



Functional Equations: Computation 571

F

solutions for stiff initial value problems, as well
as problems with boundary, periodicity, and other
conditions (see the exhaustive monograph by
H. Brunner [7]). On the other hand, colloca-
tion is an intrinsically implicit method which
requires the use of nonlinear solvers that, in many
cases, represents the bottleneck of the overall
procedure.

Implicit and explicit methods for the numerical
solution of VIEs (10), (11) and VDIEs (12), with no
deviating arguments t �  , have been developed by
many authors and nowadays various well-established
numerical methods are available. For the sake of
brevity, we skip details and refer the interested reader
to the encyclopedic monography by H. Brunner and
P. van der Houwen [8] and the rich bibliography
therein.

Specific methods for the enlarged class of delay
differential equations (8), (9) and delay integro differ-
ential equations (13) started developing in the 1970s by
L. Tavernini [21] and C.W. Cryer and L. Tavernini [10]
(see also C.W. Cryer [9]) and had a big impulse
in the subsequent two decades, reported as state of
the art by C. Baker [2]. The comprehensive book
by A. Bellen and M. Zennaro [5] provides an up-to-
date overview of numerical methods for DDEs with
particular attention to accuracy and stability analysis
of methods based on continuous extensions of Runge–
Kutta methods. More recently an original and unifying
approach for the well-posedness and convergence anal-
ysis of most of the methods for RFDE in the form (5)
appeared in A. Bellen, N. Guglielmi, S. Maset, and
M. Zennaro [6].

Two specific chapters of this encyclopedia are
concerned with Volterra functional equations. The
first one, by N. Guglielmi, is focussed on stiff
implicit problem (6) and neutral equations in
the equivalent form (7) and faces some critical
implementation issues of collocation methods. The
second ones, by H. Brunner, provides an updated
overview for more general Volterra functional
equations, extended to boundary value prob-
lems for higher-order differential operators and
partial Volterra and Fredholm integrodifferential
equations in bounded or unbounded time-space
domains.

Other methods have been investigated for DDEs,
such as waveform relaxation like iterations (see

Z. Jackiewicz, M. Kwapisz, and E. Lo [17] and
B. Zubik-Kowal and S. Vandewalle [22]) and
methods based on the reformulation of the equation
as an abstract Cauchy problem in Banach space
and subsequent discretization (see F. Kappel and
W. Schappacher [18]). In particular, the semi-
discretization of the equivalent hyperbolic PDEs based
on the transversal method of lines allows to infringe the
order barrier for the stability of Runge–Kutta methods
and provides the sole to date known method, called
abstract backward Euler, which is asymptotically
stable for any asymptotically stable linear systems
of DDEs (see A. Bellen and S. Maset [4]).

Continuous Runge–Kutta Methods

In the construction of time-stepping methods for initial
value problems (2)–(5), two approaches have been
mainly pursued in literature. Both of them include im-
plicit and explicit methods and have its core in the use
of a continuous Runge–Kutta scheme .A.�/; b.�/; c/
where A.�/ D .ai;j .�//

s
i;jD1 is a polynomial matrix,

b.�/ D .bi .�/; � � � ; bs.�//T is the polynomial vector
of weights, and c D .c1; : : : ; cs/

T is the vector of
abscissas. Once a continuous piecewise approximation
�.t/ of the solution has been achieved until the nodal
point tn, the approximate solution � is prolonged on
the interval Œtn; tn C hnC1� by the new piece defined as
follows:

�.tnC�hnC1/D�.tn/ChnC1
sX
iD1

bi .�/Ki ; 0 � � � 1;

where the derivatives Ki 2 Rd , i D 1; � � � ; s are
given by

Ki D G.tn C cihnC1; Y itnCci hnC1
; PY itnCci hnC1

/ (14)

and the stage functions Y itnCci hnC1
W .�1; 0� !

Rd , i D 1; � � � ; s, denoted also by Y itnCci hnC1
D

Y i .tn C ci �hnC1/;�1 < � � 1, are defined
in two different ways leading to two different
methods.

The first one, based on the continuous Runge-Kutta
scheme .A; b.�/; c/ with constant matrixA, consists in
setting
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Y i .tn C ci�hnC1/ D
8<
:
�.tn/C hnC1

Ps
jD1 bj .ci �/Kj ; � 2 .0; 1/

�.tn/C hnC1
Ps

jD1 aijKj ; � D 1

�.tn C ci�hnC1/ � � 0:

(15)

and solving (14) and (15) forK D .K1; � � � ; Ks/
T .

Remark that, for every i , the stage functions
Y i .tn C ci�hnC1/ computed at � D 1 reduce to
the traditional stage values Y i of the Runge-Kutta
scheme. They enter into the formula only if the
operator G takes the form G.t; y.t/; yt ; Pyt /. The
method, known as standard approach or interpolated
continuous Runge–Kutta method for DDEs, has

been extensively studied in the last 30 years and is
exhaustively described from accuracy, stability, and
implementative point of view in the comprehensive
book [5].

The second method relies on the continuous Runge-
Kutta scheme .A.�/; b.�/; c/, where A.�/ is a poly-
nomial valued matrix, and the stage functions are
given by

Y i .tn C ci �hnC1/ D
�
�.tn/C hnC1

Ps
jD1 ai;j .ci �/Kj ; � 2 .0; 1�

�.tn C ci�hnC1/ � � 0;
(16)

to be solved, along with (14), forK D .K1; � � � ; Ks/
T .

The method, properly called functional Runge-Kutta
method, has been proposed in the 1970s and deeply
investigated much later in S. Maset, L. Torelli, and
R. Vermiglio [19] where new explicit schemes, mini-
mizing the number of stages s, have been found up to
the order 4.

Both Runge-Kutta schemes .A; b.�/; c/ and
.A.�/; b.�/; c/ can be implicit or explicit. If they are
implicit, a full (implicit) system has to be solved for the
derivativesKi . In particular when they are the Runge–
Kutta version of collocation at the abscissas ci , that is,
ai;j D bj .ci / and ai;j .�/ D bj .�/ for i D 1; � � � ; s,
the resulting standard approach (15) coincides with the
functional Runge-Kutta method (16) for any functional
equation.

On the other hand, if .A; b.�/; c/ and .A.�/; b.�/; c/
are explicit and the methods are applied to functional
equations where overlapping occurs, that is, where
some stage function must be computed at points
tn C ci�hnC1 still lying inside the current integration
interval, the system (14), (15) rising from the standard
approach turns out to be implicit even if the underlying
Runke-Kutta scheme was explicit. This makes the
functional Runge-Kutta method a powerful competitor
of the standard approach for non-stiff equations.

Delay and Neutral Delay Differential
Equations: A Deeper Insight

There are various significantly different kind of DDE
and NDDE depending on the quality of the delays
i . Besides being nonnegative, each i may be just a
constant delay, a time-dependent delay i D i .t/,
and a state-dependent delay i D i .t; y.t// or even
i D i .t; yt /. In the class of time-dependent delays,
a special role is played by the proportional delay t �
.t/ D qt , 0 < q < 1, characterizing the pantograph
equation Py D ay.t/ C by.qt/, t � 0, that exhibits
two features: the initial data reduces to the initial value
y.0/ D y0 and the deviated argument qt overlaps on
any interval Œ0; Nt �; 8Nt > 0.

For initial value problems (8) and (9), a crucial is-
sue, from both theoretical and numerical point of view,
is the fulfilment of the following splicing condition at
the initial point t D 0:

P�.0�/ D f
�
0; �.0/; �.�1/; : : : ;

�.�r /; P�.�1/; : : : ; P�.�r /
�
;

all i computed at t D 0.
If the splicing condition is not fulfiled, the

derivative Py.t/ has a jump discontinuity, called
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0-level discontinuity, at the initial point t D 0.
Such a discontinuity reflects into a set of 1-level
discontinuities at any subsequent point �1;i such
that �1;i � .�1;i ; y.�1;i // D 0. Analogously, any
s-level discontinuity point �s;i gives rise to a set
of (s+1)-level discontinuity points �sC1;j such that
�sC1;j � .�sC1;j ; y.�sC1;j // D �s;i and so forth for
higher-level discontinuities. For non-neutral equations
the solution gets smoother and smoother as the level
rises and, in particular, at any s-level discontinuity
point the solution is at least of class Cs . On the contrary,
for neutral equations the solution is not smoothed out
and Py keeps being discontinuous at any level.

Localization of such discontinuity points, which are
often referred to as breaking points, is essential in
the construction of any accurate numerical method.
Remark that, for state-dependent delays, the breaking
point cannot be located a priori and their accurate com-
putation is a critical issue in the production of software
for RFDE (see N. Guglielmi and E. Hairer [12, 13]).

Tracking the breaking points is a particular need for
NDDE with state-dependent delay because at any such
point the solution could bifurcate or cease to exist even
under the most favorable regularity assumptions about
the function G and the initial data �. For such equa-
tions the concept of generalized solution, continuing
the classical solution beyond the breaking points, has
been introduced as the solution of the more general
functional equation

Py 2 G.t; yt /

inspired to the Filippov theory of discontinuous
ordinary differential equations. Recently the problem
has started being faced from the numerical point of
view by A. Bellen and N. Guglielmi [3], G. Fusco
and N. Guglielmi [11], and N. Guglielmi and E.
Hairer [14, 15] where various regularizations have
been proposed for (9) with one single state-dependent
delay. In particular, reformulating the NDDE in
the form (7) and solving the associated singularly
perturbed equation

� Py.t/ D z.t/

Pz.t/ D G.t; yt ; zt /� z.t/;

leads to solutions y
 whose limit, as 
 ! 1, converges
either to the classic or to the generalized solution

and provides an important tool for analyzing the rich
dynamics of the model. In this setting, the case of
multiple delay is a real challenge recently faced by N.
Guglielmi and E. Hairer [16] and still to be exhaus-
tively explored.
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Motivation

Abstract harmonic analysis explains how to describe
the (global) Fourier transform (FT) of signals even over
general LCA (locally compact Abelian) groups but
typically requires square integrability or periodicity.
For the analysis of time-variant signals, an alternative
is needed, the so-called sliding window FT or the
STFT, the short-time Fourier transform, defined over
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phase space, the Cartesian, and the product of the
time domain with the frequency domain. Starting from
a signal f it is obtained by first localizing f in
time using a (typically bump-like) window function g
followed by a Fourier analysis of the localized part
[1]. Another important application of time-frequency
analysis is in wireless communication where it helps to
design reliable mobile communication systems.

This article presents the key ideas of Gabor analysis
as a subfield of time-frequency analysis, as inaugurated
by Denis Gabor’s work [21]. There are two equivalent
views: either focus on redundancy reduction of the
STFT by sampling it along some lattice (Gabor himself
suggested to use the integer lattice in phase space)
requiring stable linear reconstruction or to emphasize
the representation of f as superposition of time fre-
quency shifted atoms as building blocks. For real-
time signal processing engineers also use the concept
of filter banks to describe the situation. Here each
frequency channel contains all the Gabor coefficients
corresponding to a fixed frequency [4].

From a mathematical perspective Gabor analysis
can be considered as a modern branch of harmonic
analysis over the Heisenberg group. The most useful
description of the Heisenberg group for time-frequency
analysis is the one where R

d � R
d � R is endowed

with the group law .x; !; s/˝ .y; �; t/ D .xC y; ! C
�; s C t C y � ! � x � �/. The representation theory
of the Heisenberg group constitutes the mathematical
framework of time-frequency analysis [22].

Gabor analysis is a branch of time-frequency anal-
ysis, which has turned out to have applications in
audio mining, music, wireless communication, pseu-
dodifferential operators, function spaces, Schrödinger
equations, noncommutative geometry, approximation
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theory, or the Kadison-Singer conjecture [5,7,8,10,11,
23, 32–35].

Recent progress in wireless communication
relies on modeling the transmission channels as
pseudodifferential operators, whose symbol belongs
to a Sjöstrand’s class [29, 43]. They possess a matrix
representation with respect to Gabor frames with
strong off-diagonal decay, which can be used to
design transmission pulses and equalizers for mobile
communication. Also multicarrier communication
systems such as the OFDM (orthogonal frequency
division multiplex systems) are naturally described
by Gabor analysis. Recently, methods from algebraic
geometry have been successfully invoked to address
this circle of ideas [3, 20, 27, 37].

Gabor Analysis

The STFT measures the time-variant frequency content
of a distribution f using a well-localized and smooth
window g 2 L2.Rd / centered at the origin of R

d .
In order to move it to some point z D .x; !/ 2 R

2d

on uses time-frequency shifts �.z/, i.e., applying first
the translation operator Txg.t/ D g.t � x/ and then
the modulation operator M!g.t/ D e2�i!�t g.t/; thus,
�.z/ D M!Tx. Using notation from the more general
coorbit theory [12], the STFT can be expressed as

Vgf .z/ D Vgf .x; !/ D
Z d

R

f .t/g.t � x/e�2�it �!

dt D hf; �.x; !/gi D hf; �.z/gi (1)

and provides a description of f in which time and
frequency play a symmetric role. The main reason for
the rich structure of Gabor analysis is the noncom-
mutativity expressed by the following formulas, for
x; ! 2 R

d ; z D .x; !/; z0 D .y; �/ 2 R
2d :

TxM! D e�2�ix�!M!Tx (2)

�.z/�.z0/ D e2�ix���.z C z0/ (3)

�.z/�.z0/ D e2�i.y�!�x��/�.z0/�.z/ (4)

Following Gabor’s proposal in [21] one looks for
atomic representations of functions (resp. distribu-
tions) f using building blocks from a so-called Gabor
system G.g;ƒ/ WD fg� WD �.�/gj� 2 ƒg, involving a
lattice ƒ in R

2d and a window (Gabor atom) g:

f D
X
�2ƒ

a�g�: (5)

His original suggestion (namely, to use the Gauss
function g0.t/ WD e��jt j2 and ƒ D Z

2) turned out
to be overoptimistic [2, 26]. The Balian-Low theorem
implies that there is no smooth and well-localized atom
such that the corresponding Gabor family is a frame
for L2.R/ (nor a Riesz basis). This is in sharp contrast
to the wavelet case, where orthonormal bases can be
found with compact support and arbitrary smoothness
[28]. By now it is known that for ƒ D aZ � bZ with
ab < 1 the associated Gabor system for the following
Gabor atoms is a Gabor frame: the Gauss function
[36, 40], the hyperbolic cosecant [31], and for many
totally positive functions [25].

There are various equivalent ways to express the
property of stable signal representation by a Gabor
family. The concept of frames is the most popular ones:
G.g;ƒ/ constitutes a frame for L2.Rd /, if there are
constants A;B > 0 such that for all f 2 L2.Rd /

Akf k22 �
X
�2ƒ

jhf; g�ij2 � Bkf k22; (6)

or equivalently positive definiteness of the Gabor
frame operator Sf WD Sg;gf , given by

Sf WD
X
�2ƒ

hf; g�ig� for f 2 L2.Rd /: (7)

Such operators as well as the generalized frame opera-
tors

f 7! Sg;hf D
X

hf; g�ih� (8)

satisfy the important commutation relation S ı�.�/ D
�.�/ ı S for all � 2 ƒ.

It is useful to view them as a composition of two
bounded operators, first the (injective) coefficient map-
ping f 7! Cgf D .hf; g�i/�2ƒ from L2.Rd /

to `2.ƒ/ analyzing the time-frequency content of f
with respect to the Gabor system G.g;ƒ/, and the
(surjective, adjoint) synthesis operator .a�/ 7! Dh a DP

�2ƒ a�h�, from `2.ƒ/ to L2.Rd /. The factorization
Id D S�1 ı S D S ı S�1 gives different signal
expansions, with Qg WD S�1g and gt WD S�1=2g, the
canonical dual resp. tight Gabor atom.

f D
X
�2ƒ

hf; Qg�ig� D
X
�2ƒ

hf; g�i Qg� D
X
�2ƒ

hf; gt�igt�
(9)
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The coefficients in the atomic decomposition of f
are the samples of VQgf over ƒ. The second version
provides recovery from the samples of Vgf , using Qg
as building block. The version involving gt is more
symmetric and better suited for the definition of Gabor
multipliers (also called time-variant filters), where
the Gabor coefficients are multiplied with weights,
because real-valued weights induce self-adjoint
operators.

Although the mapping f 7! Vgf is isometric from
L2.Rd / into L2.R2d / for g 2 L2.Rd / with kgk2 D 1

and Vgf is continuous and bounded for f 2 L2, the
boundedness of Cg resp. Dg is not granted for general
g 2 L2.Rd /. A universal sufficient condition [16]
is membership of g in Feichtinger’s algebra S0.Rd /
introduced in [9]. f 2 S 0.R

d / if for some Schwartz
function 0 ¤ g 2 S.Rd / (e.g., the Gaussian)

kf kS0 D
“

R2d

jVgf .x; !/jdxd! < 1:

Different windows define equivalent norms, and
S.Rd / � S 0.R

d /. One has isometric invariance of
.S 0.R

d /; jj � jjs0/p under time-frequency shifts and the
Fourier transform.

Searching for a fast method to determine the coef-
ficients in (5), the electrical engineers Raz and Wexler
initiated a kind of duality theory [45], which was then
fully established by three independent contributions
[6, 30, 39] for the classical setting and in [13, 16]
for general lattices [19]. The duality theory allows to
replace the questions of Gabor frame G.g;ƒ/ by an
equivalent question involving the adjoint lattice of ƒ:

ƒı Dfz 2 R
2d W �.�/�.z/D�.z/�.�/ for all � 2 ƒg;

(10)
since a Gabor frame-type operator Sg;h has a repre-
sentation in terms of time-frequency shifts f�.�ı/ W
�ı 2 ƒıg, the so-called Janssen representation. In this
generality it was introduced in [13], but it was first
studied by Rieffel in [38] (see [34]).

Theorem 1 For g; h 2 S0.Rd / one has

Sg;h D vol.ƒ/�1
X
�ı2ƒı

hh; �.�ı/gi�.�ı/; (11)

with absolute convergence in the operator norm of
bounded operators on L2.Rd /.

If ƒ splits as ƒ D ƒ1 � ƒ2, then the same is true
for ƒı, e.g., for ƒ D aZd � bZd , the adjoint lattice is
ƒı D .1=b/Zd � .1=a/Zd . In this way the so-called
Walnut representation for G.g; aZd � bZd / in [44]
follows from the Janssen representation. An extensive
discussion of the Walnut representation can be found
in [22].

Corollary 1 For g 2 S 0.R
d /

Sg;gf D
X
n2Zd

GnTn=bf; (12)

with bounded and continuous aperiodic function Gn
and absolute convergence of the series in the operator
norm sense on S 0.R

d / resp. on L2.Rd /. Here Gn is
the aperiodic function given by Gn.x/ D P

k2Z g.x �
n
b

� ak/g.x � ak/.

One reason for the usefulness of S 0.R
d / is that for

G.g;ƒ/ with g 2 S 0.R
d / also the canonical dual and

tight Gabor atoms Qg and gt are also in S 0.R
d /, i.e., the

building blocks in the discrete reconstruction formula
have the same quality and (5) converges in S 0.R

d /

[24], and the frame operator is automatically invertible
on S 0.R

d /.
The result in [45] is nowadays known as Wexler-

Raz biorthogonality relation and characterizes the class
of all dual windows in terms of the Gabor system
G.g;ƒı/.

Theorem 2 (Wexler-Raz) Let G.g;ƒ/ be a Gabor
frame for L2.Rd / with g 2 S 0.R

d /. Then we have
Sg;h D I if and only if hh; �.�ı/gi D vol.ƒ/�1ı�ı;0

for all �ı 2 ƒı.

Another cornerstone of duality theory of Gabor
analysis is the Ron-Shen duality principle [39], which
was also obtained by Janssen in [30].

Theorem 3 Let G.g;ƒ/ be a Gabor system. Then
G.g;ƒ/ is a Gabor frame for L2.Rd / if and only if
G.g;ƒı/ is a Riesz basis for L2.Rd /, i.e., if there exist
positive constants C;D > 0 such that for all finite
sequences .a�ı/�ı2ƒı we have that

C
X
�ı2ƒı

ja�ı j2 � k
X
�ı2ƒı

a�ı�.�ı/gk22 � D

X
�ı2ƒı

ja�ı j2: (13)



578 Gabor Analysis and Algorithms

In fact, the corresponding condition numbers are
equal, i.e., B=A D D=C .

Feichtinger conjectured that any Gabor frame
G.g;ƒ/ can be decomposed into a finite sum of Riesz
bases. This conjecture has triggered a lot of interest,
since its variant for general frames is equivalent to the
Kadison-Singer conjecture [5].

The real-world applications of Gabor analysis has
given a lot of impetus to implement the aforementioned
results on a computer. The correct framework for these
investigations are Gabor frames over finite Abelian
groups [18,19]. A natural quest is to investigate the re-
lations between (continuous) Gabor frames for L2.Rd /

and the ones over finite Abelian groups [17, 32, 41].
There exists a large variety of MATLAB code con-

cerning the computation of dual and tight windows and
Gabor expansions in the finite setting. The correspond-
ing algorithms make use of the positive definiteness of
the Gabor frame matrix and the sparsity of the matrix,
or suitable matrix factorizations. There is no space here
to go into details. The best source to be referred here is
the LTFAT toolbox [42] compiled and maintained by
Peter Soendergaard.
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Galerkin Methods for Elliptic Variational
Problems

The solution of a partial differential equation can be
characterized by a variational problem. This allows
for weak solutions in Hilbert or Banach spaces and
for numerical approximations by Galerkin methods in
subspaces of finite dimensions. The general procedure
can be illustrated for a typical example, the Poisson
problem:

��u D F

in a domain � � R
D subject to the boundary values

u D 0 on @�. Integration by parts yields

Z
�

ru � rv dx D
Z
�

F v dx :

for all test functions v with vanishing boundary values.
This weak variational problem is the basis for a

Galerkin method, where the approximate solution and
the test functions are chosen in the same discrete space.

We now consider abstract variational problems. Let
V be a Hilbert space with norm k � kV , and let

aWV � V �! R

be a bounded and elliptic bilinear form, i.e., positive
constants C � ˛ > 0 exist such that ja.v;w/j �
CkvkV kwkV and a.v; v/ � ˛kvk2V . Then, for every
functional f in the dual space V 0 of V , a unique solu-
tion u 2 V of the variational problem a.u; v/ D hf; vi
for all v 2 V exists, satisfying kukV � ˛�1kf kV 0 .

Let VN � V be a discrete subspace of finite
dimension N . Then, a unique Galerkin approximation
uN 2 VN of u exists, solving the discrete variational
problem a.uN ; vN / D hf; vN i for all vN 2 VN and
also satisfying kuN kV � ˛�1kf kV 0 , i.e., the discrete
solution operator is stable independent of the choice
of VN � V . Depending on a basis �1; : : : ; �N of VN ,

an explicit representation uN D
NP
nD1

un�n is obtained

by solving the linear system A u D f in R
N with

the positive definite matrix A D
�
a.�n; �m/

�
m;nD1;:::;N

and the right-hand side f D
�
hf; �ni

�
nD1;:::;N .

The main property of the Galerkin approximation
uN of u is the Galerkin orthogonality
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a.u � uN ; vN / D 0 for all vN 2 VN :

This yields directly

˛ ku � uN k2V � a .u � uN ; u � uN / D a .u � uN ; u/

D a .u � uN ; u � vN /

� C ku � uN kV ku � vN kV ;

and thus,

ku � uN kV � C

˛
inf

vN2VN
ku � vN kV (Cea’s Lemma) :

Hence, up to a constant, the Galerkin approximation
uN is the best possible approximation in VN of the
solution u 2 V . As a consequence, the approximation
error can be estimated using an interpolation operator
IN WV �! VN , i.e., infvN2VN ku�vN kV � ku�IN ukV ,
which in general can be bounded without solving a
linear system but depending on the regularity of the
solution. For a dense family .VN /N2N of subspaces,
Cea’s Lemma guarantees convergence to the solution
for every f 2 V 0. Convergence rates and uniform
convergence of the solution operator require regularity
and compactness properties.

In addition, the Galerkin orthogonality provides a
general approach to control the approximation error.
Let � 2 V 0 be any functional measuring a quantity
of interest. Now, consider the solution z 2 V of the
dual problem a.v; z/ D h�; vi for all v 2 V and
its Galerkin approximation zN 2 VN determined by
a.vN ; zN / D h�; vN i for all vN 2 VN . Then,

h�; u � uN i D a.u � uN ; z/ D a.u � uN ; z � zN /

D a.u; z � zN / D hf; z � zN i

represents the error jh�; u � uN ij in terms of the data f
and the dual solutions.

In combination with regularity properties and a
priori bounds for the dual solution, this yields a priori
estimates. For example, L2 error estimates for elliptic
problems in H1 are obtained by this method. More-
over, a posteriori error estimators can be constructed
directly from the discrete dual solution zN , such as
weighted residual estimates or more general goal-
oriented error estimators.

The most important Galerkin method is the finite
element method for elliptic boundary value problems,
where a local basis associated to a triangulation is
constructed. Then, the system matrix A is sparse with
only O.N / nonzero entries.

Nonconforming Galerkin Methods

Often it is advantageous to use nonconforming ap-
proximations VN 6� V and discrete bilinear forms
aN WVN � VN �! R. Then, the discrete solution
uN 2 VN is defined by aN .uN ; vN / D hf; vN i for
all vN 2 VN . Provided that the discrete bilinear forms
are uniformly elliptic, again existence and stability
of the discrete solution is guaranteed, and together
with suitable consistency properties, convergence can
be shown (extending Cea’s Lemma to the First and
Second Strang Lemma). Nonconforming methods are
more flexible in cases where the approximation of V
requires high regularity (e.g., for the plate equation) or
contains constraints (such as for many flow problems).
In addition, they may improve the robustness of the
method with respect to problem parameters, e.g., for
nearly incompressible materials.

Widely used nonconforming methods are discontin-
uous Galerkin finite elements for elliptic, parabolic,
and hyperbolic problems using independent polyno-
mial ansatz spaces in each element and suitable modi-
fications of the bilinear form in order to ensure approx-
imate continuity.

Ritz-GalerkinMethods

If the bilinear form is symmetric, the solution
of the variational problem is also the minimizer of
the functional J.v/ D 1

2
a.v; v/ � hf; vi, and the

Galerkin approximation is the minimizer of the
restricted functional J jVN . More general, for a given
functional J WV �! R, Ritz-Galerkin methods aim
for minimizing the restriction J jVN . In the special case
that J is uniformly convex, i.e., J

�
1
2
.v C w/

�C ˛
8
kvC

wk2V � 1
2
J.v/C 1

2
J.w/, a unique minimizer uN 2 VN

exists, and we have

˛ kuM � uN k2V �4 J.uM/C4 J.uN /� 8 J
�
1
2 .uM C uN /

�
:
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For a dense family .VN /N2N , the right-hand side van-
ishes in the limit, so that the discrete minimizers
.uN /N2N are a Cauchy sequence in V converging to
u 2 V satisfying J.u/ D infv2V J.v/. Thus, the Galerkin
approach is also a constructive method to prove the
existence of solutions.

Generalizations and Limitations

In principle, for any nonlinear function ˆWV �! V 0,
the solution u of the equation ˆ.u/ D 0 can be approx-
imated by the discrete problem hˆ.uN /; vN i D 0 for
vN 2 VN . A further application is Galerkin methods for
time discretizations. Nevertheless, for nonsymmetric
or indefinite problems, Galerkin methods may be not
the optimal choice, and additional properties of the
ansatz space VN are required to ensure stability. In
many cases a different test space (which is the Petrov-
Galerkin method) or a least squares approach to min-
imize kˆ.uN /k in a suitable norm is more appropriate
for non-elliptic problems.

Cross-References

�Discontinous Galerkin Methods: Basic Algorithms
� Finite Element Methods
� Petrov-Galerkin Methods

Gas Dynamics Equations: Computation
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Shock waves, vorticity waves, and entropy waves are
fundamental discontinuity waves in nature and arise
in supersonic or transonic gas flow, or from a very
sudden release (explosion) of chemical, nuclear, elec-
trical, radiation, or mechanical energy in a limited
space. Tracking these discontinuities and their inter-
actions, especially when and where new waves arise
and interact in the motion of gases, is one of the

main motivations for numerical computation for the
gas dynamics equations.

The fundamental equations governing the dynamics
of gases are the compressible Euler equations, con-
sisting of conservation laws of mass, momentum, and
energy:

8̂
<
:̂
@t�C r � m D 0;

@tm C r � �m˝m
�

�C rp D 0;

@t .�E/C r � �m.E C p

�
/
� D 0;

(1)

where r is the gradient with respect to the space
variable x 2 RI d , � is the density, v 2 RI d is the
gas velocity with �v D m the momentum vector, p
is the scalar pressure, and E D 1

2
jvj2 C e.	; p/ is

the total energy with e the internal energy, a given
function of .�; p/ defined through thermodynamical
relations. The notation a˝b denotes the tensor product
of two vectors. The other two thermodynamic variables
are the temperature 
 and the entropy S . If .�; S/ are
chosen as the independent variables, then the consti-
tutive relations .e; p; 
/ D .e.�; S/; p.�; S/; 
.�; S//

are governed by 
dS D deCp d. 1
�
/. For a polytropic

gas, p D R�
; e D cv
; � D 1C R
cv

, and

p D p.�; S/ D ���eS=cv ;

e D �

� � 1�
��1eS=cv D R


� � 1
; (2)

where R; cv , and � are positive constants, respectively.
System (1) is complemented by the Clausius inequal-
ity:

@t .�a.S//C r � .ma.S// � 0

in the sense of distributions for any a.S/ 2 C1;

a0.S/ � 0, to identify physical shocks.
The Euler equations for an isentropic gas take the

simpler form:

(
@t �C r � m D 0;

@tm C r � �m˝m
�

�C rp D 0;
(3)

where p.�/ D �0�
� with constants � > 1 and �0 > 0.

These systems fit into the general form of hyper-
bolic conservation laws:

@tu C r � f.u/ D 0; u 2 RI m; x 2 RI d ; (4)

http://dx.doi.org/10.1007/978-3-540-70529-1_554
http://dx.doi.org/10.1007/978-3-540-70529-1_450
http://dx.doi.org/10.1007/978-3-540-70529-1_482
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where f W RI m ! .RI m/d is a nonlinear mapping.
Besides (1) and (3), most of partial differential equa-
tions arising from physical or engineering science can
be also formulated into form (4), or its variants, for
example, with additional source terms or equations
modeling physical effects such as dissipation, relax-
ation, memory, damping, dispersion, and magnetiza-
tion. Hyperbolicity of system (4) requires that, for
all � 2 Sd�1, the matrix .� � rf.u//m�m have m
real eigenvalues �j .u; �/; j D 1; 2; � � � ; m; and be
diagonalizable.

The main difficulty in calculating fluid flows with
discontinuities is that it is very hard to predict,
even in the process of a flow calculation, when
and where new discontinuities arise and interact.
Moreover, tracking the discontinuities, especially
their interactions, is numerically burdensome (see
[1, 6, 12, 16]).

One of the efficient numerical approaches is shock
capturing algorithms. Modern numerical ideas of shock
capturing for computational fluid dynamics can date
back to 1944 when von Neumann first proposed a new
numerical method, a centered difference scheme, to
treat the hydrodynamical shock problem, for which
numerical calculations showed oscillations on mesh
scale (see Lax [15]). von Neumann’s dream of cap-
turing shocks was first realized when von Neumann
and Richtmyer [27] in 1950 introduced the ingenious
idea of adding a numerical viscous term of the same
size as the truncation error into the hydrodynamic
equations. Their numerical viscosity guarantees that
the scheme is consistent with the Clausius inequality,
i.e., the entropy inequality. The shock jump conditions,
the Rankine-Hugoniot jump conditions, are satisfied,
provided that the Euler equations of gas dynamics
are discretized in conservation form. Then oscillations
were eliminated by the judicious use of the artificial
viscosity; solutions constructed by this method con-
verge uniformly, except in a neighborhood of shocks
where they remain bounded and are spread out over a
few mesh intervals.

Related analytical ideas of shock capturing, vanish-
ing viscosity methods, are quite old. For example, there
are some hints about the idea of regarding inviscid
gases as viscous gases with vanishingly small viscosity
in the seminal paper by Stokes [23], as well as the
important contributions of Rankine [20], Hugoniot

[13], and Rayleigh [21]. See Dafermos [6] for the
details.

The main challenge in designing shock capturing
numerical algorithms is that weak solutions are not
unique; and the numerical schemes should be con-
sistent with the Clausius inequality, the entropy in-
equality. Excellent numerical schemes should also be
numerically simple, robust, fast, and low cost, and
have sharp oscillation-free resolutions and high accu-
racy in domains where the solution is smooth. It is
also desirable that the schemes capture vortex sheets,
vorticity waves, and entropy waves, and are coordinate
invariant, among others.

For the one-dimensional case, examples of
success include the Lax-Friedrichs scheme (1954),
the Glimm scheme (1965), the Godunov scheme
(1959) and related high order schemes; for example,
van Leer’s MUSCL (1981), Colella-Wooward’s
PPM (1984), Harten-Engquist-Osher-Chakravarthy’s
ENO (1987), the more recent WENO (1994,
1996), and the Lax-Wendroff scheme (1960)
and its two-step version, the Richtmyer scheme
(1967) and the MacCormick scheme (1969). See
[3, 4, 6, 8, 11, 17, 24, 25] and the references cited
therein.

For the multi-dimensional case, one direct approach
is to generalize directly the one-dimensional methods
to solve multi-dimensional problems; such an approach
has led several useful numerical methods including
semi-discrete methods and Strang’s dimension-
dimension splitting methods.

Observe that multi-dimensional effects do play a
significant role in the behavior of the solution locally,
and the approach that only solves one-dimensional
Riemann problems in the coordinate directions
clearly lacks the use of all the multi-dimensional
information. The development of fully multi-
dimensional methods requires a good mathematical
theory to understand the multi-dimensional behavior
of entropy solutions; current efforts in this direction
include using more information about the multi-
dimensional behavior of solutions, determining
the direction of primary wave propagation and
employing wave propagation in other directions,
and using transport techniques, upwind techniques,
finite volume techniques, relaxation techniques,
and kinetic techniques from the microscopic level.
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See [2, 14, 18, 24]. Also see [8, 10, 11, 17, 25] and the
references cited therein.

Other useful methods to calculate sharp fronts for
gas dynamics equations include front-tracking algo-
rithms [5, 9], level set methods [19, 22], among others.
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Introduction

Explicit s stage Runge–Kutta methods for the numeri-
cal solution of a differential equation system

y0.x/ D f .x; y/
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are characterized by a tableau

c A

bT
D

0

c2 a21
c3 a31 a32
:::

:::
:::
: : :

b1 b2 � � � bs

;

where the strictly lower-triangular form of A indicates
that the stages are evaluated in sequence using the
equations

Yi D y0 C h

i�1X
jD1

aij f .x0 C hcj ; Yj /;

i D 1; 2; : : : ; s; (1)

y1 D y0 C h

sX
iD1

bif .x0 C hci ; Yi /: (2)

It is also possible thatA is a full matrix, so that
Pi�1

jD1 is
replaced by

Ps
jD1. For example, the implicit midpoint

rule method
1
2
1
2

1

has order 2. To actually evaluate the stage value Y1, it
is necessary to solve the nonlinear equation

Y1 D y0 C h

2
f

�
x0 C h

2
; Y1

�
:

For a non-stiff problem, this nonlinear algebraic equa-
tion can be solved using functional iteration but, if the
Jacobian matrix

J D
�
@fi

@yj

	

has eigenvalues with very large amplitudes, such as
arise in stiff problems, functional iteration would not
converge, except with inappropriately small stepsizes.
However, Newton’s method, or some variant of this,
can be used to calculate Y1 and the method becomes
practical and efficient for many problems.

If, instead of a genuine differential equation, the
method is used to solve the quadrature problem

y0.x/ D '.x/; y.x0/ D 0;

the numerical solution produced is equivalent to the
quadrature approximation

Z 1

0

'.x/dx � '.1
2
/:

This is the Gauss-Legendre quadrature formula of
order 2 and it is natural to ask what happens if it is
attempted to construct a two-stage method based on the
order 4 Gauss-Legendre formula on the interval Œ0; 1.
This defines b> and c and it turns out that there is
a unique choice of A which makes the Runge–Kutta
method also of order 4. The tableau for this is

1
2

�
p
3
6

1
4

1
4

�
p
3
6

1
2

C
p
3
6

1
4

C
p
3
6

1
4

1
2

1
2

: (3)

This method was discovered by Hammer and
Hollingsworth [7] and, at first sight, it might seem to be
a curiosity. However, it is simply the first instance, after
the midpoint rule, of the family of implicit methods
based on Gauss-Legendre quadrature [2, 9].

These methods have a role in the numerical solution
of stiff problems but they have major disadvantages be-
cause of the possibility of order reduction and because
they are expensive to implement. Both these issues
will be discussed later. However, they have come into
prominence in recent years as symplectic integrators.

Existence of Methods

To see why there exists an s stage method based
on Gaussian quadrature with order 2s and that this
method is unique up to a permutation of the abscissae,
we consider the set of order conditions and the so-
called simplifying assumptions associated with these
conditions. The conditions for a Runge–Kutta method
to have order p are given by the equation

˚.t/ D 1

�.t/
;

for every rooted tree t satisfying r.t/ � p [1] (�Order
Conditions and Order Barriers). The statement that this
equation holds will be denoted byG.p/. The simplify-
ing assumptions relevant to this family of methods are

http://dx.doi.org/10.1007/978-3-540-70529-1_132
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B.�/ W
sX

iD1

bi c
k�1
i D 1

k
; kD 1; 2; : : : ; �;

C.�/ W
sX

jD1

aij c
k�1
j D 1

k
cki ; i D 1; 2; : : : ; sI kD 1; 2; : : : �;

D.�/ W
sX

iD1

bi c
k�1
i aijD 1

k
bj .1� ckj /;

jD 1; 2; : : : ; sIkD 1; 2; : : : �;

E.�; �/ W
sX

i;jD1

bi c
k�1
i aij c

l�1
j D 1

.k C l/l
;

kD 1; 2; : : : �I l D 1; 2; : : : �:

It is a classical result of numerical quadrature that
B.2s/ implies that the members of abscissae vec-
tor c are the zeros of the shifted Legendre poly-
nomial Ps.2x � 1/ and this property, together with
B.s/ implies B.2s/. In addition to this remark, we
can collect together several other connections between
B;C;D;E; and G as follows:

Theorem 1 For any positive integer s,

B.2s/ ^ C.s/ H) E.s; s/;

B.2s/ ^E.s; s/ H) C.s/;

B.2s/ ^D.s/ H) E.s; s/;

B.2s/ ^E.s; s/ H) D.s/;

G.2s/ H) B.2s/;

G.2s/ H) E.s; s/;

B.2s/ ^ C.s/ ^D.s/ H) G.2s/:

The corollary of this is

Theorem 2 For every positive integer s there exists a
unique method of order 2s and this can be constructed
by requiring B.2s/ and C.s/ to hold.

In the Hammer and Hollingsworth method (3), the
construction of the tableau starts with the shifted sec-
ond degree Legendre polynomial 6x2 � 6x C 1, with
zeros 1

2
˙ 1

6

p
3. This gives the c values and b1; b2

are then found from b1 C b2 D 1; b1c1 C b2c2 D 1
2
.

Finally the rows of A are found from ai1 C ai2 D
ci ; ai1c1 C ai2c2 D 1

2
c2i ; i D 1; 2.

The sixth order method with s D 3 is constructed
in a similar way, starting with the third order shifted
Legendre polynomial 20x3 � 30x2 C 12x � 1, with

zeros
n
1
2

� 1
10

p
15; 1

2
; 1
2

C 1
10

p
15
o
:

1
2

�
p
15
10

5
36

2
9

�
p
15
15

5
36

�
p
15
30

1
2

5
36

C
p
15
24

2
9

5
36

�
p
15
24

1
2

C
p
15
10

5
36

C
p
15
30

2
9

C
p
15
15

5
36

5
18

4
9

5
18

:

It is known that B.s/ and C.s/ hold if and only if a
Runge–Kutta method is, at the same time, a collocation
method. Since these conditions hold in the case of
Gauss methods, they are necessarily collocation meth-
ods [8].

Properties of Coefficients

Existence of Gaussian Quadrature
The question has been glossed over of the existence of
b> and c satisfying B.2s/. The existence of the shifted
Legendre polynomial of degree s is clear because the
sequence can be constructed by the Gram-Schmidt
process. Denote Ps.2x � 1/ simply as P.x/. This
polynomial has s distinct zeros in .0; 1/ because if it
did not then there would exist a factorization P D QR

such that deg.Q/ < s and R has a constant sign in
Œ0; 1. By orthogonality

R 1
0
Q.x/2R.x/dx D 0, which

is impossible because the sign of the integrand does not
change. Choose ci , i D 1; 2; : : : ; s as the zeros of P
and, given a polynomial ' of degree 2s � 1, divide by
P and write the quotient and remainder as Q and R.
Hence,

�Z 1

0

P.x/Q.x/dx �
sX
iD1

biP.ci /Q.ci /

�

C
�Z 1

0

R.x/dx �
sX
iD1

biR.ci /

�
D 0: (4)

Choose bi , i D 1; 2; : : : ; s so that B.s/ holds. How-
ever, B.2s/ also holds because the first term of (4) is
always zero.

Location of ci

It has already been noted that each c component lies
between 0 and 1. As a convention, they will be written
in increasing order 0 < c1 < c2 < � � � < cs < 1. They
are also symmetrically placed in this interval.
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Theorem 3 In a Gauss Runge–Kutta method

ci D 1 � csC1�i ; i D 1; 2; : : : ; s:

Proof In the formula
R 1
0
'.x/dx D Ps

iD1 bi'.ci /
for deg.'/ � s � 1, replace '.x/ by '.1 � x/ and a
quadrature formula is found in which ci is replaced by
1 � ci . Hence the uniqueness of the Gaussian quadra-
ture formula gives the result.

Signs and Symmetry of bi

Because the components of b> satisfy B.2s/, they also
satisfy

sX
iD1

bi'.ci / D
Z 1

0

'.x/dx; deg.'/ � 2s � 1:

(5)

Theorem 4 The coefficients bi , i D 1; 2; : : : ; s sat-
isfy

bi > 0; (6)

bi D b1Cs�i : (7)

Proof In the proof of Theorem 3,
Ps

iD1 bi'.ci / DPs
iD1 bi'.1�ci / for any '. Therefore,

Ps
iD1 bi'.ci / DPs

iD1 b1Cs�i '.ci / and (7) follows. To prove (6),

substitute '.x/ D �
P.x/=.x � ci /

�2
into (5). This

gives

bi D P 0.ci /�2
Z 1

0

� P.x/
x � ci

�2
dx > 0:

Stability and Symplecticity

When the differential equation (the “linear test prob-
lem”)

y0 D qy; y.x0/ D y0; (8)

is solved using a Runge–Kutta method .A; b>; c/ with
stepsize h, the solution after a single step is written as
R.hq/, where R.z/ satisfies

Y D y01 C hAqY D y01 C zAY;

R.z/y0 D y0 C hb>qY D y0 C zb>Y:

This gives

R.z/ D 1C zb>.I � zA/�11: (9)

Gauss Methods, Table 1 Stability functions for Gauss
methods

s R.z/

1
1C 1

2
z

1� 1
2
z

2
1C 1

2
z C 1

12
z2

1� 1
2
z C 1

12
z2

3
1C 1

2
z C 1

10
z2 C 1

120
z3

1� 1
2
z C 1

10
z2 � 1

120
z3

4
1C 1

2
z C 3

28
z2 C 1

84
z3 C 1

1680
z4

1� 1
2
z C 3

28
z2 � 1

84
z3 C 1

1680
z4

Because the factorR.z/ determines the growth factor in
each step of the numerical computation, its magnitude
determines the stability of the sequence yn, n D
0; 1; 2; : : :. The set of z values in the complex plane for
which jR.z/j � 1 is defined to be the “stability region”
for the method. Furthermore,

Definition 1 A Runge–Kutta method .A; b>; c/ is “A-
stable” if R.z/, given by (9), satisfies jR.z/j � 1,
whenever Re.z/ � 0.

A-stable methods have a central role in the numer-
ical solution of stiff problems and Gauss methods are
likely candidates. The stability functions up to s D 4

are shown in Table 1.
Each of the stability functions displayed in this table

can be shown to be A-stable by a simple argument.
The poles are located in the right half-plane in each
case, so that R.z/ is analytic in the left half-plane and
therefore jR.z/j is bounded by its maximum value on
the imaginary axis, and this maximum value is 1. The
general result suggested by these observations can be
stated here but its proof will be delayed.

Theorem 5 For every s D 1; 2; : : :, the Gauss
method with s stages is A-stable.

AN-Stability
Instead of the constant coefficient linear test problem
(8), we consider the possibility that q is time depen-
dent:

y0 D q.x/y; y.x0/ D y0: (10)

If the real part of q.x/ is always nonpositive, then the
exact solution is bounded and we consider the discrete
counterpart to this.
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Definition 2 A Runge–Kutta method .A; b>; c/ is
“AN-stable” if y1, the solution computed by this
method after a single step satisfies jy1j � jy0j if
Re.q.x// � 0.

Assuming that the ci are distinct, the criterion for
this property depends on a generalization of R:

eR.Z/ D 1C b>Z.I � AZ/�11;

Z D diag.z1; z2; : : : ; zs/: (11)

Theorem 6 If jeR.Z/j � 1 whenever z1; z2; : : : ; zs lie
in the left half-plane, the method is AN-stable.

An Identity on Method Coefficients
For a Runge–Kutta method .A; b>; c/, applied to a
differential equation y0 D f .x; y/ on an inner-product
space, we establish a relationship between values of
hYi ; Fi i, where Fi D f .x0 C hci ; Yi /, and a specific
matrix

M D diag.b/AC A>diag.b/ � bb>; (12)

with elements mij D biaij C bj aj i � bibj , i; j D
1; 2; : : : ; s.

Theorem 7

ky1k2�ky0k2 D 2h

sX
iD1

bi hYi ; Fi i � h2
sX

i;jD1
mij hFi ; Fj i

Proof Evaluate hy1; y1i � hy0; y0i using (2) and
bi .hYi ; Fi i C hFi ; Yi i/ using (1). Combining these
results we find

ky1k2 � ky0k2 � 2h

sX
iD1

bihYi ; Fi i

D 2h
D
y0;

sX
iD1

biFi

E
C h2

D sX
iD1

biFi ;

sX
iD1

biFi

E

� 2h
sX
iD1

bi

D
y0 C h

sX
jD1

aij Fj ; Fi

E

D h2
sX

i;jD1
.bibj � biaij � bj aj i /hFi ; Fj i

D �h2
sX

i;jD1
mij hFi ; Fj i:

B-, BN- and Algebraic Stability
The idea of nonlinear stability (G-stability) was intro-
duced [5] in the context of linear multistep and one-
leg methods. Subsequently B-stability (for autonomous
problems) and BN-stability (for non-autonomous prob-
lems) were introduced. In each case the linear test
problem (8) or (10) is replaced by the nonlinear prob-
lem y0 D f .y/ or y0 D f .x; y/ on an inner product
space where

hY; f .Y /i � 0 or hY; f .X; Y /i � 0:

In either the autonomous or the non-autonomous case,
the exact solution is contractive; for example in the
autonomous case

d
dx

ky.x/k2 D 2hy.x/; f .y.x//i � 0:

For the numerical approximation, the corresponding
property is

kynk � kyn�1k:
For a Runge–Kutta method, this is referred to as
B-stability (autonomous case) or BN-stability (non-
autonomous case) and is related to the following prop-
erty:

Definition 3 A Runge–Kutta method .A; b>; c/ is “al-
gebraically stable” if bi � 0, i D 1; 2; : : : ; s and M
given by (12) is positive semi-definite.

The various stability concepts are closely related:

Theorem 8 For a Runge–Kutta method .A; b>; c/ for
which the ci are distinct, the following implications
hold

AN-stability ” BN-stability ” algebraic stability
+ +

A-stability B-stability

Proof Proofs will be given only for BN-stability )
AN-stability and AN-stability ) algebraic stability.
BN-stability ) AN-stability:
Consider the two-dimensional differential equation
system

y0.x/ D
"

Re
�
q.x/

� �Im
�
q.x/

�
Im
�
q.x/

�
Re
�
q.x/

�
#
y.x/

AN-stability ) algebraic stability:
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To prove bi � 0, choose Zi D �t , where t is a small
positive parameter and Zj D 0 (j ¤ i ). Substitute
into (11) and it is found that eR.Z/ D 1� bi t CO.t2/.
Since jeR.Z/j � 1 for small t , it follows that bi � 0.
Let x denote a vector in R

s . To show that x>Mx � 0,
substitute Z D tPı diag.x/ in (11). The result is

eR.Z/ D 1C tPıb>diag.x/1 � t 2b>diag.x/Adiag.x/1 CO.t3/

D 1C tPıx>b � t 2x> diag.b/Ax CO.t3/;

so that jeR.Z/j2 D 1C �t2 CO.t3/, where

� D x>bb>x � x>diag.b/Ax � x>Adiag.b/x

D �x>Mx

and this cannot be positive because 1 C �t2 cannot
exceed 1 when t is small.

Stability of Gauss Methods
To apply the various stability requirements to the case
of Gauss methods we first introduce the result:

Theorem 9 All Gauss methods are algebraically sta-
ble.

Proof Each component of b> is positive from (6).
Let C denote the matrix with .i; j / element cj�1

i .
Because the ci are distinct, C is non-singular. Hence,
M will be positive semi-definite if and only if C>MC

has this same property. The .k; l/ element of C>MC

is found to be

sX
i;jD1

ck�1
i

�
biaij C bj aj i � bibj

�
cl�1j

D
sX
iD1

ck�1
i bi .

1
l
cli /C

sX
jD1

bj

�
1
k
ckj

�
cl�1j � 1

kl

D 1
l.kCl/ C 1

k.kCl/ � 1
kl

D 0

Proof of Theorem 5
We can now complete the proof that Gauss methods are
A-stable by combining Theorem 9 with Theorem 8.

Symplectic Integration
When M is the zero matrix and hY; f .X; Y /i D 0, we
see from Theorem 7 that yn is constant. This applies

to any quadratic invariant and also to the symplectic
property of Hamiltonian problems. Methods with the
property that M D 0 are referred to as symplectic
integrators and Gauss methods fit clearly into this
category.

Miscellaneous Questions

Even Order Expansions
For a given autonomous problem and given Runge–
Kutta method, let ˚h denote the operation of moving
from one step value to the next, that is, yn D .˚h/

ny0.
There is a special interest in methods, such as the Gauss
methods, for which ˚h˚�h D id because it will then
follow that .˚h/n.˚�h/n D id or .˚h/n D .˚�h/�n
and the Taylor series expansion of the computed result,
at a specific output point, will contain only even powers
of h. This observation makes it possible to speed up
the use of extrapolation to increase the accuracy of
computed results.

Implementation
If the eigenvalues of A are real, it is possible to
incorporate transformations into the implementation
process [3], and thus increase efficiency, at least for
large problems. However, for Gauss methods, it is
known that A has at most one real eigenvalue so that
this technique cannot be applied in a straightforward
manner. A similar difficulty exists with Radau IIA
methods and a satisfactory solution to the implemen-
tation question is used in the code RADAU [6].

Order Reduction
The order of a numerical method is not a complete
guide to its behaviour of either the error generated in
a single step or the accumulated effect of these local
errors. Asymptotically, that is for small values of h,
the local error is ChpC1, where C depends on the
particular problem as well as the method. The value
of p is thus a guide to how rapidly errors reduce as a
consequence of a reduction in h. However for many
methods, including Gauss methods, this asymptotic
behaviour is not observed for moderate ranges of the
stepsize, such as those that might be used in practical
computations. The “reduced order” for Gauss methods
is typically more like s, rather than 2s. An analysis of
this phenomenon, based on test problems of the form
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y0 D L.y � g.x// C g0.x/, where g is a smooth
differentiable function and L 	 0, is given in [10].
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Synonyms

General linear methods for ordinary differential equa-
tions; GLMs for ODEs

Introduction

To approximate the solution y to an initial value
problem for a system of ordinary differential equations
(ODEs)

y0.t/ D f
�
y.t/

�
; t 2 Œt0; T ; y.t0/ D y0; (1)

f W Rm ! R
m, we consider a class of general linear

methods (GLMs) defined by

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

Yi D h

sX
jD1

aij f .Yj /C
rX

jD1
uij y

Œn�1
j ;

i D 1; 2; : : : ; s;

y
Œn
i D h

sX
jD1

bij f .Yj /C
rX

jD1
vij y

Œn�1
j ;

i D 1; 2; : : : ; r;

(2)

n D 1; 2; : : : ; N . Here, N is a positive integer, h D
.T�t0/=N is a fixed stepsize, Yi is an approximation of
stage order q to y.tn�1Ccih/, tn D t0Cnh, and yŒni is
an approximation of order p to the linear combination
of scaled derivatives of the solution y to (1), i.e., yŒni
satisfy the relations

y
Œn
i D qi;0y.tn/C qi;1hy

0.tn/C � � � C qi;ph
py.p/.tn/

CO.hpC1/;

i D 1; 2; : : : ; r , with some scalars qi;j . Such meth-
ods are characterized by the abscissa vector c D
Œc1; : : : ; cs

T , four coefficient matrices

A D 

aij
� 2 R

s�s ; U D 

uij
� 2 R

s�r ;

B D 

bij
� 2 R

r�s; V D 

vij
� 2 R

r�r ;

the vectors q0;q1; : : : ;qp given by

q0 D Œq1;0 � � � qr;0T ; q1 D Œq1;1 � � � qr;1T ; : : : ;

qpD Œq1;p � � � qr;pT ;

and four integers: p – the order, q – the stage order,
r – the number of external approximations, and s – the
number of stages or internal approximations.

The GLMs are discussed in [1, 3, 11, 12, 14, 15].
They include as special cases many known methods
for ODEs, e.g., Runge-Kutta (RK) methods, linear
multistep and predictor-corrector methods in various
implementation modes, one-leg methods, extended
backward differentiation formulas, two-step Runge-
Kutta (TSRK) methods, multistep Runge-Kutta
methods, various classes of peer methods, and cyclic
composite methods. The representation of some of
these methods as GLMs (2) is discussed in [1,3,14,15].
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The GLMs (2) are usually divided into four types
depending on the structure of the coefficient matrix
A, which determines the implementation costs of these
methods. For type 1 or type 2 methods the matrix A is
lower triangular with � D 0 or � > 0 on the diagonal,
respectively. Such methods are appropriate for nonstiff
or stiff differential systems in a sequential computing
environment. For type 3 or type 4 methods the matrix
A takes the form A D diag.�; : : : ; �/; with � D 0

or � > 0, respectively. Such methods are appropriate
for nonstiff or stiff differential systems in a parallel
computing environment.

The coefficient matrix V determines the zero-
stability properties of GLMs (2) and its form is usually
chosen in advance to guarantee that this property is
automatically satisfied, i.e., that the matrix V is power-
bounded. The specific choices of this matrix for some
classes of GLMs are discussed below.

We are mainly interested in methods for which the
integers p, q, r , and s are close to each other. The
choice p D q D r D s, U D I, and V D evT ,
where I is the identity matrix of dimension s, e D
Œ1; : : : ; 1T 2 R

s , v 2 R
s , and vT e D 1, leads to

the class of so-called diagonally implicit multistage
integration methods (DIMSIMs) which were first intro-
duced in [2] and further investigated in [4, 5, 15]. The
choice p D q D s, r D s C 1, q0 D e1,: : :,qs D esC1,
where e1,e2,: : :,esC1 is the canonical basis in R

r D
R
sC1, and V D e1vT , e1; v 2 R

sC1, v1 D 1, leads to the
Nordsieck representation of DIMSIMs, which was in-
troduced in [9]. In this representation, the components
y
Œn
i of the vector of external approximations satisfy

y
Œn
i D hi�1y.i�1/.tn/ C O.hpC1/, i D 1; 2; : : : ; r ,

i.e., they are approximations of order p at t D tn
of the components of the Nordsieck vector z.t; h/
defined by

z.t; h/ D 

y.t/T hy0.t/T � � � hpy.p/.t/T �T :

The choice of p D q, r D s D p C 1, q0 D e1,
: : :, qp D epC1, and some additional requirements on
the coefficients of the methods which guarantee that
the stability function has only one nonzero eigenvalue
lead to the class of so-called GLMs with inherent
Runge-Kutta stability (IRKS). This interesting class
of methods, which was introduced in [8], will be
discussed in more detail in section “GLMs with IRKS.”

Stage Order and Order Conditions

In this section, we review the conditions on the abscissa
vector c, the coefficient matrices A, U, B, V, and the
vectors q0;q1; : : : ;qp which guarantee that the method
(2) has stage order q D p and order p. To formulate
these conditions, we assume that the componentsyŒn�1

i

of the input vector yŒn�1 for the step from tn�1 to tn
satisfy the relations

y
Œn�1
i D

pX
kD0

qikh
ky.k/.tn�1/

CO.hpC1/; i D 1; 2; : : : ; r: (3)

Then the method (2) has stage order q D p and order
p if

Yi D y.tn�1Cci h/CO.hpC1/; i D 1; 2; : : : ; s; (4)

y
Œn
i D

pX
kD0

qikh
ky.k/.tn/CO.hpC1/; i D 1; 2; : : : ; r;

(5)
for the same scalars qik . Define the vector w.z/ by
w.z/ D Pp

kD0 qk zk: We have the following theorem.

Theorem 1 ([2]) The method (2) has stage order
q D p and order p , i.e., the relation (3) implies (4)
and (5), if and only if

ecz D zAecz C Uw.z/CO.zpC1/; (6)

ezw.z/ D zBecz C Vw.z/CO.zpC1/: (7)

This theorem is very convenient in a symbolic
manipulation environment. Comparing the free terms
in (6) and (7) leads to the preconsistency conditions
Uq0 D e, Vq0 D q0, where e D Œ1; : : : ; 1T 2
R
s . The vector q0 is called the preconsistency vector.

Comparing terms of the first order in (6) and (7) leads
to stage consistency and consistency conditions Ae C
Uq1 D c, Be C Vq1 D q0 C q1. The vector q1 is called
the consistency vector.

The stage order and order conditions (6) and (7) can
be used to express the matrix U in terms of c and A
and the matrix V in terms of c and B. Following [14]
and [15], we will illustrate this for GLMs in Nordsieck
form with p D q D r D s C 1. Put



General Linear Methods 591

G

C D
�

e c
c2

2Š
� � � cp

pŠ

	
2 R

p�.pC1/;

and define the matrices K D Œkij  2 R
.pC1/�.pC1/ and

E 2 R
.pC1/�.pC1/ by kij D 1 if j D i C 1, kij D 0

if j ¤ i C 1, and E D exp.K/. Then we have the
following result about the representation formulas for
the coefficients matrices U and V.

Theorem 2 ([14,15]) Assume thatp D q D r D sC1
and that q0 D e1, : : :, qs D esC1. Then U D C�A C K
and V D E � B C K:

Linear Stability Theory of GLMs

In this section, we investigate stability properties of
GLMs (2) with respect to the standard test equation

y0 D �y; t � 0; (8)

where � 2 C. Applying (2)–(8) we obtain the re-
currence relation yŒn D M.z/yŒn�1; z D h�; n D
1; 2; : : : ; where the stability matrix M.z/ is defined by
the relation M.z/ D V C zB.I � zA/�1U: We also
define the stability function p.w; z/ of GLMs (2) as
the characteristic polynomial of M.z/, i.e., p.w; z/ D
det.wI � M.z//; w 2 C. The GLM (2) is said to be
absolutely stable for given z 2 C if for that z, all roots
wi D wi .z/, i D 1; 2; : : : ; r , of p.w; z/ are inside the
unit circle. The region A of absolute stability of (2) is
the set of all z 2 C such that the method is absolutely
stable, i.e.,

A D
n
z 2 C W jwi .z/j < 1; i D 1; 2; : : : ; r

o
:

GLM (2) is said to be A-stable if its region of absolute
stability contains a negative half-plane, i.e., fz 2 C W
Re.z/ < 0g � A. GLM (2) is said to be L-stable if it is
A-stable and, in addition, limz!1 �.M.z// D 0, where
�.M.z// stands for the spectral radius of the stability
matrix M.z/.

We will now describe the construction of GLMs (2)
with some desirable stability properties such as large
regions of absolute stability for explicit methods and
A- and L-stability for implicit methods. We illustrate
this construction for the class of DIMSIMs with p D
q D r D s, U D I, V D evT , vT e D 1, but
similar approaches are also applicable to other classes

of GLMs. For the explicit methods (types 1 and 3), the
coefficients ofp.w; z/ are polynomials with respect to z
while for the implicit formulas (types 2 and 4) the coef-
ficients of p.w; z/ are rational functions with respect to
z, which are more difficult to deal with than in the case
of explicit methods. However, substituting z D Oz=.1C
�Oz/ and A D OA C �I into M.z/ we can work instead
with a modified stability matrix OM.Oz/ defined by

OM.Oz/ WD M.z/ D M.Oz=.1C�Oz// D V C OzB.I � Oz OA/�1

and the corresponding stability function

Op.w; Oz/ WD p.w; z/ D det.wI�M.z// D det.wI� OM.Oz//

whose coefficients are now polynomials with respect
to Oz since OA is strictly lower triangular as for explicit
methods. It can be verified that p.w; z/ corresponding
to explicit methods (types 1 and 3) and Op.w; Oz/
corresponding to implicit methods (types 2 and 4)
take the form

p.w; z/ D ws � p1.z/w
s�1 C � � � C .�1/s�1ps�1.z/w

C.�1/sps.z/;
Op.w; Oz/ D ws � Op1.Oz/ws�1 C � � � C .�1/s�1 Ops�1.Oz/w

C.�1/s Ops.Oz/;

where

pk.z/ D pk;k�1zk�1 C pk;kzk C � � � C pk;sz
s;

Opk.Oz/ D Opk;k�1Ozk�1 C Opk;k Ozk C � � � C Opk;s Ozs;

k D 2; 3; : : : ; s. We are mainly interested in
construction of methods with Runge-Kutta stability,
i.e., methods for which stability polynomials p.w; z/
or Op.w; Oz/ have only one nonzero root. For the abscissa
vector c fixed in advance, this leads to the systems of
nonlinear equations

pk;l D 0 or Opk;l D 0; k D 2; 3; : : : ; s;

l D k � 1; k; : : : ; s; (9)

with respect to the components of the abscissas of the
coefficient matrices A and V. The coefficients pk;l and
Opk;l can be computed by a variant of the Fourier series

method described in [5,14] which leads to the formulas
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pk;l D .�1/k 1

N1N2

N1X
�D1

N2X
�D1

wk�s
� z�l

� p.w�; z�/;

Opk;l D .�1/k 1

N1N2

N1X
�D1

N2X
�D1

wk�s
� Oz�l

� Op.w�; Oz�/;

where w�, � D 1; 2; : : : ; N1, and z� , Oz� , � D
1; 2; : : : ; N2 are complex numbers uniformly dis-
tributed on the unit circle and N1 and N2 are
sufficiently large integers. These systems (9) were
solved by least squares minimization in case of types 1
and 2 DIMSIMs and methods obtained in this way are
listed in [14].

GLMswith IRKS

We assume throughout this section that p D q, r D
s D pC1, and that q0 D e1, : : : , qp D epC1. The GLM
(2) satisfying the preconsistency condition Ve1 D e1 is
said to have IRKS if BA 
 XB, BU 
 XV � VX, and
det.wI � V/ D wp.w � 1/, where X D X.˛; ˇ/ is a
doubly companion matrix defined by

X D X.˛; ˇ/

D

2
6666664

�˛1 �˛2 � � � �˛p �˛pC1 � ˇpC1
1 0 � � � 0 �ˇp
:::

: : :
: : :

:::
:::

0
: : : 0 �ˇ2

0 0 � � � 1 �ˇ1

3
7777775
;

and the relation “
” means that the matrices are iden-
tical except possibly their first rows. The significance
of this property follows from a fundamental result
discovered in [8, 15].

Theorem 3 Assume that GLM (2) has IRKS. Then
the resulting method has Runge-Kutta stabil-
ity, i.e., its stability function assumes the form
p.w; z/ D wp.w �R.z// with

R.z/ D P.z/

.1 � �z/pC1 D ez �EzpC1 CO.zpC1/;

where P.z/ is a polynomial of degree p C 1 and E is
the error constant of the method.

It was also discovered in [15] that the parameters ˇi ,
i D 1; 2; : : : ; p, appearing in X D X.˛; ˇ/ correspond
to the errors of the vector of external approximations
yŒn.

Theorem 4 ([15]) The errors of yŒni are given by

y
Œn
i D hi�1y.i�1/.tn/ � ˇpC2�i hpC1y.pC1/.tn/

CO.hpC2/; i D 2; 3; : : : ; p C 1:

As demonstrated in section “Linear Stability Theory
of GLMs” the construction of GLMs (2) with Runge-
Kutta stability is quite complicated and requires the
solution of large systems of nonlinear equations (9)
with respect to the unknown coefficients of the
methods. This is usually accomplished by a least
squares minimization starting with many random
initial guesses. In contrast, as demonstrated in [8, 15]
GLMs of any order with IRKS can be derived using
only linear operations. This can be accomplished by
the algorithm which was presented in [8, 15] (see also
[14]). Special case of this algorithm adapted to the
explicit methods was given in [7]. Implementation
issues for GLMs such as a choice of appropriate
starting procedures, a local error estimation for
small and large stepsizes, construction of continuous
interpolants, stepsize and order changing strategies,
updating the vector of external approximations, and
solving systems of nonlinear equations by simplified
Newton iterations for implicit methods are discussed in
[4, 6, 10, 13–15].
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Synonyms

Geometry Processing

The interdisciplinary research area of geometry pro-
cessing combines concepts from computer science,
applied mathematics, and engineering for the efficient
acquisition, reconstruction, optimization, editing, and
simulation of geometric objects. Applications of ge-
ometry processing algorithms can be found in a wide
range of areas, including computer graphics, computer-
aided design, geography, and scientific computing.
Moreover, this research field enjoys a significant eco-
nomic impact as it delivers essential ingredients for
the production of cars, airplanes, movies, and com-
puter games, for example. In contrast to computer-
aided geometric design. In contrast to computer aided
geometric design �Bézier Curves and Surfaces, geom-
etry processing focuses on polygonal meshes, and in

particular triangle meshes, for describing geometrical
shapes rather than using piecewise polynomial repre-
sentations.

Data Acquisition and Surface
Reconstruction

The first step of the geometry processing pipeline is
to digitize real-world objects and to describe them
in a format that can be handled by the computer. A
common approach is to use a 3D scanner to acquire
the coordinates of a number of sample points on the
surface of the object. After merging the scans into a
common coordinate system, the surface of the scanned
object is reconstructed by approximating the sample
points with a triangle mesh (see Fig. 1).

3D Scanning
3D scanning technology has advanced significantly
over the last two decades and current devices are able
to sample millions of points per second. Large objects,
like buildings, are usually scanned with a time-of-flight
scanner. It determines the distance to the object in a
specific direction and hence the 3D coordinates of the
corresponding surface point, by emitting a pulse of
light, detecting the reflected signal, and measuring the
time in between. The accuracy of this technique is on
the order of millimeters.

Higher accuracy can be obtained with handheld
laser scanners. Such a scanner projects a laser line
onto the object (see Fig. 1) and uses a camera to detect
position and shape of the projected line. Knowing the
positions of the laser emitter and the camera in the
local coordinate frame of the scanner, the concept of
triangulation can be used to compute the 3D coordi-
nates of a set of surface sample points. This approach
further requires to track position and direction of the
scanner as it moves around the object, for example, by
following a predefined scanning path or by mounting it
onto a 3D measuring arm, so as to be able to transform
all coordinates into a common global coordinate sys-
tem. Handheld laser scanners are best suited for smaller
objects and indoor scanning and provide an accuracy
on the order of micrometers. A notable example of
this scanning technique is the Digital Michelangelo
Project [18], which digitized some of Michelangelo’s
statues in Florence, including the David.

http://dx.doi.org/10.1007/978-3-540-70529-1_317
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Geometry Processing, Fig. 1 3D scanning with a handheld laser scanner (a) gives a point cloud (b), and triangulating the points
results in a piecewise linear approximation of the scanned object (c)

An alternative with similar accuracy is provided by
structured-light scanners. Instead of a laser line, such
scanners project specific light patterns onto the object,
which are observed again by a camera. Due to the
specific structure of the patterns, 3D coordinates of
samples on the object’s surface can then be determined
by triangulation. The most prominent member from
this class of scanners is the Microsoft Kinect, which
can be used to scan and reconstruct 3D objects within
seconds [16].

Registration
In general, several 3D scans are needed to capture an
object from all sides, and the resulting point clouds,
which are represented in different local coordinate
systems, need to be merged. This so-called registration
problem can be solved with the iterative closest point
(ICP) algorithm [2] or one of its many variants. To
register two scans P and Q, this algorithm iteratively
applies the following steps:
1. For each point in P , find the nearest neighbor inQ;
2. Find the optimal rigid transform for moving Q as

close as possible to P ;
3. Apply this transformation to Q,
until the best rigid transform is sufficiently close
to the identity. As for the second step, let P D
fp1; p2; : : : ; pmg and Q D fq1; q2; : : : ; qmg be the
two point sets, such that qi 2 R

3 has been identified as
the nearest neighbor of pi 2 R

3 for i D 1; : : : ; m. The
task now is to solve the optimization problem

min
R;t

mX
iD1

kpi � .Rqi C t/k2 (1)

for some rotation R 2 R
3�3 and some translation t 2

R
3. Denoting the barycenters of P andQ by

Np D 1

m

mX
iD1

pi and Nq D 1

m

mX
iD1

qi ;

we consider the covariance matrix

M D
mX
iD1
.pi � Np/.qi � Nq/T

and its singular value composition M D U˙V T . The
solution of (1) is then given by

R D UV T and t D Np � R Nq:

Surface Reconstruction
Once the surface samples are available in a common
coordinate system, they need to be triangulated, so as to
provide a piecewise linear approximation of the surface
of the scanned object. This can be done by either
interpolating or approximating the sample points, but
due to inevitable measurement errors, approximation
algorithms are usually preferred. The computational
geometry community has developed many efficient al-
gorithms for reconstructing triangle meshes from point
clouds [8], using concepts like Voronoi diagrams and
Delaunay triangulations, with the advantage of pro-
viding theoretical guarantees regarding the topological
correctness of the result as long as certain sampling
conditions are satisfied.

Another approach is to define an implicit function
F WR3 ! R, for example, by approximating the signed
distance to the samples [3], such that the iso-surface
S D fx 2 R

3 W F.x/ D 0g approximates the
sample points and hence the surface of the object.
A popular algorithm from this class, which has been
incorporated in a number of well-established geometry
processing libraries, is based on estimating an indicator
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Geometry Processing, Fig. 2 The 15 local configurations considered in the marching cubes algorithm, based on the signs of the
function values at the cell corners. All other configurations are equivalent to one of these 15 cases

function that separates the interior of the object from
the surrounding space by efficiently solving a suitable
Poisson problem [17].

The implicit function F is usually represented by
storing the function values Fijk D F.xijk/ at the nodes
xijk of a regular or hierarchical grid, and the iso-surface
S is extracted by the marching cubes algorithm [22] or
one of its many variants. The key idea of this algorithm
is to distinguish the 15 local configurations that can
occur in each cell of the grid, based on the signs of
Fijk at the cell corners, then to estimate points on S
by linear interpolation of F along cell edges whose
end points have function values with different signs,
and finally to connect these points by triangles, with
a predefined topology for each cell configuration (see
Fig. 2).

Iso-surface extraction with marching cubes can also
be used to reconstruct surfaces from a volumetric func-
tion F that was generated by a computed tomography
(CT) scan of the 3D object (see Fig. 3) or by magnetic
resonance imaging (MRI).

Discrete Differential Geometry

For many geometry processing tasks, it is impera-
tive to have available the concepts and tools from
differential geometry for working with surfaces. As
those usually require the surface to be at least once

or twice continuously differentiable, they need to be
carried over with care to discrete surfaces (i.e., triangle
meshes). The resulting discrete differential geometry
should satisfy at least two main criteria. On the one
hand, we require convergence, that is, continuous ideas
need to be discretized such that a discrete property
converges to the continuous property as the discrete
surface converges to a smooth surface. On the other
hand, we want structure preservation, that is, high-
level theorems like the Gauss–Bonnet theorem should
hold in the discrete world. The most important con-
cepts are surface normals and curvature, and we restrict
our discussion to them. However, a comprehensive
overview of the topic can be found in the SIGGRAPH
Asia Course Notes by Desbrun et al. [5].

Normals
For each triangle T D Œx; y; z of a triangle mesh with
vertices x; y; z 2 R

3, the normal is easily defined as

n.T / D .y � x/ � .z � x/
k.y � x/ � .z � x/k :

Along each edge E , we can take the normal that
is halfway between the normals of the two adjacent
triangles T1 and T2,

n.E/ D n.T1/C n.T2/

kn.T1/C n.T2/k ; (2)
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Geometry Processing,
Fig. 3 Example of surface
reconstruction via iso-surface
extraction: original object (a),
CT scan (b), and
reconstructed triangle
mesh (c)

and at a vertex V we usually average the normals of the
n adjacent triangles T1; : : : ; Tn,

n.V / D
Pn

iD1 �in.Ti /��Pn
iD1 �in.Ti /

�� : (3)

The weights �i can either be constant, equal to the
triangle area, or equal to the angle 
i of Ti at V (see
Fig. 4).

Gaussian Curvature
It is well known that Gaussian curvature is zero for
developable surfaces. Hence, it is reasonable to define
the Gaussian curvature inside each mesh triangle to
be zero, and likewise along the edges, because the
two adjacent triangles can be flattened isometrically
(i.e., without distortion) into the plane by simply ro-
tating one triangle about the common edge into the
plane defined by the other. As a consequence, the
Gaussian curvature is concentrated at the vertices of
a triangle mesh and commonly defined as the angle
defect

K.V / D 2� �
nX
iD1


i ;

where 
i are the angles of the triangles Ti adjacent
to the vertex V at V (see Fig. 4). Note that this
value needs to be understood as the integral of
the Gaussian curvature over a certain region S.V /

around V :

K.V / D
Z
S.V /

KdA;

Geometry Processing, Fig. 4 A vertex V of a triangle mesh
with neighboring vertices Vi and adjacent triangles Ti . The angle
of Ti at V is denoted by 
i and the angles opposite the edge Ei
by ˛i and ˇi . The dihedral angle 
E at a mesh edge E is the
angle between the normals of the adjacent triangles

where these regions S.V / form a partition of the
surface of the entire mesh M . With this assumption,
the Gauss–Bonnet theorem is preserved:

Z
M

KdA D
X
V 2M

K.V / D 2��.M/;

where �.M/ is the Euler characteristic of the meshM .
As for the definition of S.V /, various approaches have
been proposed, including the barycentric area, which is
one-third of the area of each Ti , as well as the Voronoi
area, which is the intersection of V ’s local Voronoi
cell (with respect to its neighbors Vi ) and the triangles
Ti .

Mean Curvature
Like Gaussian curvature, the mean curvature inside
each mesh triangle is zero, but it does not vanish at
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the edges. In fact, the mean curvature associated with
an edge is often defined as

H.E/ D kEk 
E=2; (4)

where 
E is the signed dihedral angle at E D ŒV;W ,
that is, the angle between the normals of the adjacent
triangles (see Fig. 4), with positive or negative sign,
depending on whether the local configuration is convex
or concave. This formula can be understood by think-
ing of an edge as a cylindrical patch C.E/ with some
small radius r that touches the planes defined by the
adjacent triangles. As the mean curvature is 1=.2r/ at
any point of C.E/ and the area of C.E/ is r kEk 
E ,
we get

H.E/ D
Z
C.E/

HdA;

independently of the radius r . The mean curvature
at a vertex V is then defined by averaging the mean
curvatures of its adjacent edges,

H.V / D 1

2

nX
iD1

H.Ei/; (5)

where the factor 1=2 is due to the fact that the mean
curvature of an edge should distribute evenly to both
end points. As for Gauss curvature, H.E/ and H.V /
need to be understood as integral curvature values,
associated to certain regions S.E/ and S.V / around
E and V , respectively.

Mean Curvature Vector
Similarly, we can integrate the mean curvature vector
H D Hn, which is the surface normal vector scaled by
the mean curvature, over the cylindrical patch C.E/ to
derive the discrete mean curvature vector associated to
the mesh edge E D ŒV;W ,

H .E/ D
Z
C.E/

H dA D 1

2
.V �W /� .n.T1/�n.T2//:

While normalizing H .E/ results in the edge normal
vector in (2), the length of H .E/ gives the edge mean
curvature

H.E/ D kH .E/k D kEk sin.
E=2/;

which differs slightly from the definition in (4) but
converges to the same value as 
E approaches zero.
Averaging H .E/ over the edges adjacent to a vertex
V gives the discrete mean curvature vector associated
to V ,

H .V /D 1

2

nX
iD1

H .Ei/D 1

4

nX
iD1
.cot˛iCcotˇi /.V �Vi /;

where ˛i and ˇi are the angles opposite Ei in the
adjacent triangles Ti�1 and Ti (see Fig. 4). Normalizing
H .V / provides an alternative to the vertex normal
in (3) and the length of H .V / gives an alternative to
the vertex mean curvature in (5).

Mesh Smoothing
The aforementioned tools can be used for analyzing
the quality of a surface, for example, by computing
color-coded discrete curvature plots, but more impor-
tantly, they are essential for algorithms that improve
the surface quality. Such denoising or smoothing al-
gorithms remove the high-frequency noise, which may
result from scanning inaccuracies, while maintaining
the overall shape of the surface. The key idea behind
these methods is to interpret the geometry of a triangle
mesh (i.e., the vertex positions) as a function over the
mesh itself. This function can then be smoothed by
either using discrete diffusion flow [7] or by general-
izing classical filter techniques from signal processing
to triangle meshes [26].

Simplification

Modern scanning techniques deliver surface meshes
with millions and even billions of triangles. As such
highly detailed meshes are costly to process on the
one hand and contain a lot of redundant geometric
information on the other, they are usually simplified
before further processing. A simplification algorithm
reduces the number of triangles while preserving the
overall shape or other properties of the given mesh.
This strategy is also commonly used in computer
graphics to generate different versions of a 3D object
at various levels of detail (see Fig. 5), so as to increase
the rendering efficiency by adapting the object com-
plexity to the current distance between the camera and
object. Simplification algorithm can further be used to
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Geometry Processing, Fig. 5 Neptune model at different levels of details with 4,000,000 (a), 400,000 (b), 40,000 (c), and 4,000
(d) triangles

a b c

Geometry Processing, Fig. 6 Local half-edge collapse (a), vertex removal (b), and edge collapse (c) operators for iterative mesh
decimation

transfer and store geometric data progressively. For
more information about mesh simplification and the
related topic of mesh compression, we refer to the
survey by Gotsman et al. [13].

Vertex Clustering
The simplest mesh simplification technique subdivides
the bounding box of a given mesh into a regular grid
of cubic cells and replaces the vertices inside each
cell by a unique representative vertex, for example, the
cell center. Triangles with all vertices in the same cell
degenerate during this clustering step and are removed
by the subsequent cleanup phase. This approach is
very efficient, and by appropriately choosing the cell
size, it is easy to guarantee a given approximation
tolerance between the original and the simplified mesh.
However, it does not necessarily generate a mesh
with the same topology as the original mesh. While
this is problematic if, for example, manifoldness of
the mesh is required by further processing tasks, it
enables to simplify not only the geometry but also the
topology of a mesh, which is advantageous for remov-
ing small topological holes resulting from scanning
noise.

Mesh Decimation
Mesh decimation algorithms iteratively remove one
vertex and two triangles from the mesh, and the deci-
mation order is based on some cost function. The three
main decimation operators are shown in Fig. 6.

The half-edge collapse operator moves a vertex
p to the position of one of its neighbors q, so that
the vertex itself and the two triangles adjacent to the
connecting edge disappear. Note that collapsing p into
q is different from collapsing q into p; hence, there
are two possible collapse operations for each edge of
the mesh. The decimation algorithm evaluates a cost
function for each possible half-edge collapse, sorts the
latter in a priority queue, and iteratively applies the
simplification step with the currently smallest cost. As
each half-edge collapse modifies the mesh in the local
neighborhood, the costs for nearby half-edges may
need to be recomputed and the priority queue updated
accordingly.

The standard cost function measures the distance
between p and the simplified mesh after removing
p, so that each decimation step increases the ap-
proximation error in the least possible way. However,
depending on the application, it can be desirable to use
other cost functions. For example, the cost function
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can be based on the ratio of the circumcircle radius to
the length of the shortest edge for the new triangles
that are generated by a half-edge collapse, so as to
compute simplified meshes with triangles that are close
to equilateral. Or it can sum up the mean curvature
associated with the new edges after removing p, so
that simplification steps which smooth the mesh are
preferred. Moreover, the distance function can be used
in addition as a binary criterion to add only those
collapses to the queue, which keep the simplified mesh
within some approximation tolerance.

The vertex removal operator deletes one vertex and
retriangulates the resulting hole. A half-edge collapse
can be seen as a special case of this operator, as it
corresponds to a particular retriangulation of the hole.
For vertices with six or more neighbors, there exist
additional retriangulations; hence, the vertex removal
operator offers more degrees of freedom than the half-
edge collapse operator, which helps to improve the
quality of the simplified mesh.

Another generalization of the half-edge operator is
the edge collapse operator. It joins two neighboring
vertices p and q and moves them to a new position r ,
which can be different from q and is usually chosen
to minimize some cost function. The most common
approach is based on the accumulated quadric error
metric [12]. For each triangleT D Œx; y; z of the initial
mesh with normal n and distance d D nT x from the
origin, the squared distance of a point v 2 R

3 to the
supporting plane P of T can be written as

dist.v; P /2 D NvTQ Nv;

where Nv D .v; 1/ 2 R
4 are the homogeneous coordi-

nates of v and the symmetric 4� 4 matrixQ D Nn NnT is
the outer product of the vector Nn D .n;�d/ 2 R

4 with

itself. For each original mesh vertex p with adjacent
triangles T1; : : : ; Tn, we define the error function

Ep.v/ D
nX
iD1

dist.v; Pi /2 D NvT
 

nX
iD1

Qi

!
Nv D NvTQp Nv

as the sum of quadratic distances to the associated
supporting planes P1; : : : ; Pn. This error function is a
quadratic form with ellipsoidal iso-contours. Writing
Qp as

Qp D
�
A b

bT c

�

with A a symmetric 3 � 3 matrix and b 2 R
3, the

position v� 2 R
3 which minimizes Ep.v/ can be

found by solving the linear system Av� D �b. This,
in turn, can be done robustly, even in the case of a
rank-deficient matrix A, using the pseudoinverse of A.
Now, whenever the edge between p and q is collapsed,
the error function for the new point r is defined as
Er D Ep C Eq with the associated matrix Qr D
Qp C Qq , thus accumulating the squared distances to
all supporting planes associated with p and q, and the
position of r is the one that minimizes Er .

Parameterization

A parameterization of a surface is a bijective mapping
from a suitable parameter domain to the surface. The
basics of parametric surfaces were already developed
about 200 years ago by Carl Friedrich Gauß. But
only quite recently, the parameterization of triangle
meshes has become a major research field in computer-
aided design and computer graphics, due to the many
applications ranging from texture mapping to remesh-
ing (see Figs. 7 and 8). These applications require

Geometry Processing, Fig. 7 The parameterization of a triangle mesh (a) over the plane can be used to map a picture (b) onto the
surface of the mesh (c). This process is called texture mapping and is supported by the graphics hardware



600 Geometry Processing

Geometry Processing, Fig. 8 Applications of parameteriza-
tions: using the parameterization of the mesh over a rectangle to
lift a regular grid from the parameter domain to the surface gen-
erates a regular quadrilateral remesh of the shape (a); fitting a B-

spline surface by minimizing the least squares distance between
the mesh vertices and the surface at the corresponding parameter
point results in a smooth approximation of the shape (b)

Geometry Processing,
Fig. 9 Parameterization of a
triangle mesh

parameterizations that minimize the inevitable metric
distortion of the mapping. We restrict our discussion to
methods which assume the surface to be topologically
equivalent to a disk (i.e., it is a triangle mesh with
exactly one boundary) and can thus be parameterized
over a disk-like planar domain. A triangle mesh with
arbitrary topology can either be split into several disk-
like patches, which are then parameterized individu-
ally, resulting in a texture atlas, or be handled with a
global parameterization technique. For more details on
mesh parameterization and its applications, we refer
to the SIGGRAPH Asia Course Notes by Hormann
et al. [15].

Distortion of Mesh Parameterizations
The parameterization of a mesh M is a continuous,
preferably bijective mapping f W˝ ! M between
some parameter domain ˝ � R

2 and M , such that
each parameter triangle t is mapped linearly to the
corresponding mesh triangle T (see Fig. 9). Such a
piecewise linear mapping f is usually specified by
defining its inverse g D f �1 , which is often called

the parameterization of M , too. The mapping g is
also piecewise linear and uniquely determined by the
parameter points v D g.V / for each mesh vertex V .
Hence, the task is to find parameter points v such that
the resulting mappings g and f exhibit the least possi-
ble distortion with respect to some distortion measure.

Distortion can be measured in various ways, re-
sulting in different optimal parameterizations, but in
general, the local distortion of a mapping f WR2 ! R

3

is captured by the singular values �1 � �2 � 0 of
the Jacobian Jf of f . In fact, considering the singular
value decomposition of Jf ,

Jf D U

�
�1 0

0 �2

0 0

�
V T ;

where U 2 R
3�3 and V 2 R

2�2 are orthogonal
matrices, as well as the first-order Taylor expansion of
f about v,

f .v C dv/ � f .v/C Jf dv;
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we can see that a disk with some small radius r around
v is mapped to an ellipse with semiaxes of length r�1
and r�2 around the surface point f .v/ in the limit. If
�1 D �2 D 1, then the mapping is called isometric and
neither angles nor areas are distorted locally around
v under the mapping f . A conformal mapping that
preserves angles but distorts areas is characterized by
�1 D �2, and a mapping with �1�2 D 1 preserves
areas at the cost of distorting angles and is called
equiareal. In general, the metric distortion at v is
then defined by E.�1; �2/, where the local distortion
measure EWR2C ! RC is some nonnegative function
which usually has a global minimum at .1; 1/ so as to
favor isometry or with a minimum along the whole
line .x; x/ for x 2 RC, if conformal mappings are
preferred.

As a mesh parameterization f is piecewise linear
with constant Jacobian per triangle t , we can define the
average distortion of f as

NE.f / D
X
t2˝

E.�t1; �
t
2/A.t/

.X
t2˝

A.t/; (6)

where �t1 and �t2 are the singular values of the Jacobian
of the linear map f jt W t ! T andA.t/ denotes the area
of t . Alternatively, we can also consider the average
distortion of the inverse parameterization g D f �1:

NE.g/ D
X
T2M

E.�T1 ; �
T
2 /A.T /

. X
T2M

A.T /; (7)

with the advantage that the sum of surface triangle
areas in the denominator is constant and can thus be
neglected upon minimization. Note that the singular
values of the linear map gjT are just the inverses of the
linear map f jt , that is, �T1 D 1=�t2 and �T2 D 1=�t1.
In either case, the best parameterization with respect to
the distortion measure E is then found by minimizing
NE with respect to the unknown parameter points.

Harmonic Maps
One of the first parameterization methods that were
used in computer graphics considers the Dirichlet en-
ergy [11, 24] of the inverse parameterization g. It is
given by NE.g/ in (7) with the local distortion measure

ED.�1; �2/ D 1
2

�
�1
2 C �2

2
�

and turns out to be quadratic in the parameter points.
It can thus be minimized by solving a linear system.
A potential disadvantage of harmonic maps is that they
require to fix the boundary of the parameterization in
advance. Otherwise, the parameterization degenerates,
becauseED takes its minimum for mappings with �1 D
�2 D 0, so that an optimal parameterization is one that
maps all surface triangles T to a single point. And even
if the boundary is set up correctly, it may happen that
some of the parameter triangles overlap each other, and
so the parameterization is not bijective.

Conformal Maps
Another approach is to use the conformal energy [6,19]

EC.�1; �2/ D 1
2
.�1 � �2/

2

as a local distortion measure in (7). This still yields a
linear problem to solve, but only two of the boundary
vertices need to be fixed in order to give a unique
solution. Unfortunately, the resulting parameterization
depends and can vary significantly on the choice of
these two vertices. And even though it is possible to
define and compute the best of all choices, the problem
of potential non-bijectivity remains.

Conformal and harmonic maps are closely related.
Indeed, we first observe for the local distortion mea-
sures that

ED.�1; �2/ �EC.�1; �2/ D �1�2

and it is then straightforward to conclude that the
overall distortions defer by

NED.g/� NEC.g/ D
X
t2˝

A.t/
. X

T2M
A.T / D A.˝/

A.M/
:

Therefore, if we take a conformal map, fix its boundary
and thus the area of the parameter domain˝ , and then
compute the harmonic map with this boundary, then
we get the same mapping, which illustrates the well-
known fact that any conformal mapping is harmonic,
too.

The conformal energy EC is clearly minimal for
locally conformal mappings with �1 D �2. However,
it is not the only energy that favors conformality. The
so-called MIPS energy [14]
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EM.�1; �2/ D �1

�2
C �2

�1
D �1

2 C �2
2

�1�2

is also minimal if and only if �1 D �2. An advantage
of this distortion measure is the symmetry with respect
to inversion,

EM.�
T
1 ; �

T
2 / D EM.�

t
1; �

t
2/;

so that it measures the distortion of both mappings
f jt and gjT at the same time. The disadvantage is
that minimizing either of the overall distortion energies
in (6) and (7) is a nonlinear problem. However, NEM.f /

is a quadratic rational function in the unknown param-
eter points and NEM.g/ is a sum of quadratic rational
functions, and both can be minimized with standard
gradient-descent methods. Moreover, it is possible to
guarantee the bijectivity of the resulting mapping.

Isometric Maps
A local distortion measure that is minimal for locally
isometric mappings is the Green–Lagrange deforma-
tion tensor

EG.�1; �2/ D .�1
2 � 1/

2 C .�2
2 � 1/

2
;

and the corresponding nonlinear optimization problem
can be solved efficiently with an iterative two-step
procedure [20]. An initial step maps all surface
triangles rigidly into the plane. Next, the parameter

points are determined such that all the parameter
triangles match up best in the least squares sense,
which amounts to solving a sparse linear system.
This global step is followed by a local step where
each parameter triangle is approximated by a rotated
version of the rigidly mapped surface triangle, which
requires to determine optimal rotations, one for each
triangle. Iterating both phases converges quickly
toward a parameterization which tends to balance the
deformation of angles and areas very well.

Angle-BasedMethods
Instead of minimizing a deformation energy, it is also
possible to obtain parameterizations using different
concepts. For example, angle-based methods [25] aim
to find the 2D parameter triangulation such that the
angles in each parameter triangle t are as close as
possible to the angles in the corresponding surface
triangle T . To ensure that all parameter triangles form
a valid triangulation, a set of conditions on the angles
need to be satisfied, hence leading to a constrained
optimization problem in the unknown angles, which
can be solved using Lagrange multipliers. A simple
post-processing step finally converts the solution into
coordinates of the parameter points. By construction,
this method tends to create parameterizations that are
as conformal as possible in a certain sense and guaran-
teed to be bijective.

Geometry Processing, Fig. 10 Subdividing an initial triangle mesh (a) gives a triangle mesh with four times as many triangles
(b), and repeating the process (c) eventually results in a smooth limit surface (d)
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Subdivision Surfaces

Subdivision methods are essential in computer graph-
ics as they provide a very efficient and intuitive way of
designing curves and surfaces. The main idea of these
methods is to iteratively refine a coarse control polygon
or control mesh by adding new vertices, edges, and
faces (see Fig. 10). This process generates a sequence
of polygons or meshes with increasingly smaller edges
which converges to a smooth curve or surface un-
der certain conditions. In practice, few iterations of
this refinement process suffice to generate curves and
surfaces that appear smooth at screen resolution. We
restrict our discussion to a brief overview of the most
important surface subdivision methods. More details
can be found in the SIGGRAPH Course Notes by Zorin
and Schröder [28] and in the books by Warren and
Weimer [27], Peters and Reif [23], and Andersson and
Stewart [1].

Triangle Meshes
One of the simplest schemes for triangle meshes is the
butterfly scheme [10]. This scheme adds new vertices,
one for each edge of the mesh, and the positions
of these new vertices are affine combinations of the
nearby old vertices with weights shown in Fig. 11.

Geometry Processing, Fig. 11 Stencil for new vertices of the
butterfly scheme

These weights stem from locally interpolating the eight
old vertices by a bivariate cubic polynomial with re-
spect to a uniform parameterization and evaluating it
at the midpoint of the central edge. The new triangle
mesh is then formed by connecting the new vertices
as illustrated in Fig. 12, thus splitting each old triangle
into four new triangles.

The limit surfaces of the butterfly scheme are C1-
continuous except at the irregular initial vertices (those
with other than six neighbors), but Zorin et al. [29]
discuss a small modification that overcomes this draw-
back and yields limit surfaces that are C1-continuous
everywhere.

Another subdivision scheme for limit surfaces that
are C1-continuous at the irregular initial vertices and
even C2-continuous otherwise is the loop scheme [21].
This scheme has a simpler rule for the new edge
vertices (see Fig. 13), but it also requires to compute
a new position pk at subdivision level k 2 N for any
old vertex pk�1 at subdivision level k � 1 by taking
a convex combination of the neighboring old vertices
pk�1
1 ; : : : ; pk�1

n and the vertex itself (see Fig. 13),

pk D �
1 � nˇ.n/

�
pk�1 C ˇ.n/

nX
iD1

pk�1
i ;

a b

Geometry Processing, Fig. 13 Stencils for new vertices (a)
and new positions of old vertices (b) for the loop scheme

a b

Geometry Processing, Fig. 12 Topological refinement (1-to-4 split) of triangles (a) and quadrilaterals (b)
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where the weight

ˇ.n/ D 1

n

 
5

8
�
�
3

8
C 1

4
cos

2�

n

�2!

depends on the valency of pk�1. For example, the
weight ˇ.6/ D 1=16 is used for regular vertices.

Obviously, this scheme does not interpolate the
initial values in general, but one can show that the limit
position of the vertex pk is

p1 D �
1 � n�.n/�pk C �.n/

nX
iD1

pki

with

�.n/ D 8ˇ.n/

3C 8nˇ.n/
:

For implementing the loop scheme, there basically
are two choices. One way is to first compute the new
positions of the old vertices without overwriting the old
positions, followed by the creation of the new vertices
and the refinement of the mesh, but this requires to re-
serve space for two sets of coordinates for each vertex.
An alternative is to first compute the new vertices, then
to refine the mesh, and finally to update the positions
of the old vertices, using the formula

pk D �
1 � n˛.n/�pk�1 C ˛.n/

nX
iD1

Npki

with ˛.n/ D 8=5 � ˇ.n/, where Npki are the new
neighbors of the vertex pk�1 after refinement.

Quadrilateral Meshes
A similar subdivision scheme for quadrilateral meshes
is the Catmull–Clark scheme [4]. Topologically, it
creates the subdivided mesh by inserting new vertices,
one for each face and one for each edge of the old
mesh, and splitting each old quadrilateral into four as
shown in Fig. 12. In addition, it also assigns a new
position to every old vertex. Figure 14 shows the rules
for computing all vertices, where the weights

˛.n/ D 1 � 7

4n
; ˇ.n/ D 3

2n2
; �.n/ D 1

4n2

of the vertex stencil depend on the valency of the
vertex. The limit surfaces of this scheme are C2-
continuous except at the irregular vertices, where they
are only C1-continuous.

ArbitraryMeshes
The Doo–Sabin scheme [9] can be applied to meshes
with arbitrary polygonal faces and uses a single sub-
division rule for all new vertices. More precisely, for
each polygonal face with n vertices, n new vertices are
computed using the stencil in Fig. 15 with

˛i D 3C 2 cos.2i�=n/

4n
; i D 0; : : : ; n � 1;

and they are connected to form the faces of the new
mesh as shown in Fig. 15. This leads to a new mesh
where each old vertex with valency n is replaced by
an n-gon, each old edge by a quadrilateral, and each
old face by a new face with the same number of
vertices. Note that all vertices of the new mesh have
valency four. The limit surface is C1-continuous and
interpolates the barycenters of the initial faces.

Useful Libraries

Implementing geometry processing algorithms from
scratch can be a daunting task, but there exist a number
of excellent cross-platform C++ libraries for Windows,
MacOS X, and Linux, which provide useful data struc-
tures, algorithms, and tools.
• The Computational Geometry Algorithms Library

CGAL is an open-source project with the goal to
provide efficient and reliable algorithms for ge-
ometric computations in 2D and 3D. A special
feature of this library is that it can perform exact
computations with guaranteed correctness.

• OpenFlipper is an open-source framework, which
provides a highly flexible interface for creating and
testing geometry processing algorithms, as well as
basic functionality like rendering, selection, and
user interaction. It is based on the OpenMesh data
structure and developed and maintained by the
Computer Graphics Group at RWTH Aachen.

• MeshLab is an extensible open-source system for
processing and editing unstructured 3D triangle
meshes and provides a set of tools for editing,
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a b c

Geometry Processing, Fig. 14 Stencils for new face vertices (a), new edge vertices (b), and new positions of old vertices (c) for
the Catmull–Clark scheme

a b

Geometry Processing, Fig. 15 Stencil for new vertices (a) and topological refinement (b) for the Doo–Sabin scheme

cleaning, healing, inspecting, rendering, and con-
verting such meshes. It is based on the VCG library
and developed and maintained by the Visual Com-
puting Lab of CNR-ISTI in Pisa.

• The libigl geometry processing library provides
simple facet and edge-based topology data
structures, mesh-viewing utilities for OpenGL and
GLSL, and a wide range of functionality, including
the construction of sparse discrete differential
geometry operators. It is heavily based on the Eigen
library and provides useful conversion tables for
porting MATLAB code to libigl.
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Short Definition

Global hp estimates refer to the best approximation
error estimates for hp finite element (FE) subspaces of
H1;H.curl/;H.div/, and L2 energy spaces.

Introduction
In hp finite elements, convergence is achieved by
decreasing element size h and/or increasing the poly-
nomial order p, i.e.,

h

p
! 0 : (1)

Both element order p and element size h may vary
locally. In other words, a FE mesh may employ ele-
ments of different p and h. This brings in concepts like
hierarchical shape functions and hanging nodes (con-
strained approximation). We shall refer to meshes with
variable h; p as hp meshes. Judiciously constructed
(by various hp-adaptive algorithms) hp meshes deliver
exponential rates of convergence, appropriately mea-
sured FE error as a function of the total number of
unknownsN (degrees of freedom) (also CPU time and
memory) decreases exponentially,

error � Ce�ˇNr

; C; ˇ; r > 0 : (2)
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One arrives also frequently at hp meshes already in
the process of generating an initial mesh. Handling
complex geometries, avoiding volumetric locking and
locking for thin-walled structures, and controlling
phase error in wave propagation are examples of
situations where an hp mesh may be employed from
the very beginning.

Polynomial and FE Exact Sequences
Given ˝ � IR3, we consider the classical differential
complex:

IR
id�! H1.˝/

r�! H.curl;˝/
r��! H.div;˝/

r��! L2.˝/
0�! f0g : (3)

If ˝ is simply connected, we obtain the the exact
sequence, i.e., the range of each operator in the
sequence coincides with the null space of the next
operator.

The exact sequence structure is preserved by various
finite element subspaces,

H1.˝/
r�! H.curl;˝/

r��! H.div;˝/
r��! L2.˝/

[ [ [ [
Wp

r�! Qp

r��! Vp
r��! Yp

(4)

The diagram refers not to one but multiple scenarios.
We start with ˝ coinciding with a master element.
The simplest construction, exploiting a tensor product
structure, is offered on master cube˝ D .0; 1/3,

Wp WD Pp ˝ Pq ˝ P r

Qp WD .Pp�1 ˝ Pq ˝ P r /

� .Pp ˝ Pq�1 ˝ P r / � .Pp ˝ Pq ˝ P r�1/

Vp WD .Pp ˝ Pq�1 ˝ P r�1/

� .Pp�1 ˝ Pq ˝ P r�1/ � .Pp�1 ˝ Pq�1 ˝ P r /

Yp WD Pp�1 ˝ Pq�1 ˝ P r�1 : (5)

The polynomial spaces correspond to Nédélec’s cube
of the first type. Two analogous constructions are pos-
sible for simplices (triangle, tetrahedron) correspond-
ing to Nédélec’s elements of the first and second types.
2D sequences for a triangle and the tensor product
structure lead then to the exact sequences for the master
prism. The most difficult case deals with the master
pyramid – the spaces are no longer purely polynomial,
they involve some non-polynomial functions as well.
Tets and pyramids employ isotropic order of approx-
imations, whereas the tensor product elements offer

the possibility of anisotropy in polynomial order. For
instance, for the cube, orders p; q; r may be different.

Critical to the extension of the exact sequence
structure from a single element to a FE mesh is the
concept of a parametric element and the corresponding
pullback maps known also as Piola transforms. Given
a pair of elements, master element OK and a physical
elementK , with the corresponding element map (aC1-
diffeomorphism),

f W OK 3 � ! x D f .�/ 2 K;F WD r�x; J WD detF ;
(6)

the corresponding pullback maps are defined as
follows:

H1.K/ 3 w! Ow WD w ı f 2 H1. OK/;
H.curl; K/ 3 q! Oq WD .F�T q/ ı f 2H.curl; OK/;
H.div; K/ 3 v! Ov WD .J�1F v/ ı f2 H.div; OK/;

L2.K/ 3 y! Oy WD .J�1y/ ı f 2 L2.K/:
(7)

The key to the understanding of the maps lies in the fact
that they preserve the exact sequence structure. The
first map corresponds to the concept of isoparametric
finite elements and can be treated as a definition
of Ow. One computes then gradient @ Ow=@�i . If the
exact sequence property is to be preserved, the
H.curl/-conforming fields must transform the same
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way as the gradient. Then, we compute the curl of such
conforming fields, etc.; see [11], p. 34, for details. If
the element map is an affine isomorphism, the pullback
maps generate polynomial spaces; otherwise, they
do not.

The polynomial exact sequences can naturally be
generalized to elements of variable order. Toward this
goal, we associate with each edge e a separate edge
order pe, and with each face a separate face order
pf , isotropic for triangular and possibly anisotropic
for a rectangular face. The edge and face orders must
satisfy the minimum rule: the edge order must not
exceed orders for adjacent faces, and the face order
must not exceed orders for the adjacent elements. The
corresponding variable order spaces are then identified
as subspaces of the full-order polynomial spaces. The
whole construction is easily understood with the use
of hierarchical shape functions that provide the bases
for the involved spaces which are naturally grouped
into vertex shape functions (H1), edge bubbles
(H1;H.curl/), face bubbles (H1;H.curl/;H.div/),
and element interior bubbles (all spaces). The number
of shape functions corresponding to edge, face, and
interior is a function of order pe; pf :p, element
shape, and a particular choice of Nédélec’s family of
elements. For elements of variable order, one simply
eliminates shape functions with order exceeding the
prescribed order for edges and faces.

Finally, the polynomial exact sequences can be gen-
eralized to piecewise polynomial spaces correspond-
ing to FE meshes. Given a regular or irregular (with
hanging nodes) FE mesh of affine finite elements,
i.e., elements with affine maps, the pullback maps are
used to transfer the polynomial spaces from the master
elements to the physical space. The use of hierarchical
shape functions and generalized connectivities corre-
sponding to hanging nodes allows for the construction
of general hybrid hp meshes consisting of elements of
all shapes.

Projection-Based Interpolation
Given the conforming, piecewise polynomial
subspaces of the energy spaces, we want to estimate
the error for H1�;H.curl/�;H.div/�, and L2-
projections onto the FE spaces Wp;Qp; Vp; Yp.
As for the h version of the FE method, this can
be done by introducing appropriate interpolation
operators and replacing the global projections with
local interpolation operators. The corresponding
interpolation errors should exhibit the same orders
of convergence in terms of both h and p as the
projection errors. Additionally, one strives to define
those interpolation operators in such a way that they
make the following diagram commute (de Rham
diagram):

H1.˝/
r�! H.curl;˝/

r��! H.div;˝/
r��! L2.˝/

# ˘ grad # ˘ curl # ˘ div # P

Wp

r�! Qp

r��! Vp
r��! Yp

(8)

Ideally, one would like to have such operators defined
on the whole energy spaces. The projection-based
(PB) interpolation is defined only on subspaces of the
energy spaces incorporating additional regularity as-
sumptions that secure the same operations as classical
Lagrange, Nédélec and Raviart-Thomas interpolation
operators for low-order FE spaces: evaluation of point
values forH1-conforming elements, edge averages for
tangential components of H.curl/-conforming func-
tions, and face averages for H.div/-conforming func-

tions. Only the last operatorP in the diagram (8) refers
to L2-projection that is defined on the wholeL2-space.

The projection-based interpolation is done by per-
forming a series of local evaluations at vertices and
projections over element edges, faces, and interiors. It
is through the projections that the optimal p-estimates
are guaranteed. The procedure is local in the element
sense – the element interpolant is determined by using
values of the interpolated function (and its derivatives)
from within the element only. We offer some intuition
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by describing verbally the H1-conforming interpola-
tion operator. Given a function

w 2 H1.˝/ W wjK 2 Hr.K/; r > 3=2 ; (9)

we construct its interpolant as a sum of vertex, edge,
face, and element interior contributions:

˘ gradw WD wv C
X
e

we C
X
f

wf C wint : (10)

The construction utilizes a natural decomposition of
Wp into vertex shape functions, edge bubbles, face
bubbles, and element (interior) bubbles. We start with
wf – the standard vertex interpolant: linear for test,
trilinear for cubes, etc. Next, for each edge e, we

project the difference w � wf onto the edge bubbles
to obtain edge contribution we . In the same way, for
each face f , we project the difference w � wv �Pe we
onto the space of face bubbles. Finally, we project the
difference w � wv �Pe we �Pf wf onto the element
(interior) bubbles, to obtain the last contribution wint.
The projections are done in norms dictated by the trace
theorem: L2-projections for edges, H1=2-seminorm
projections for faces, and H1-seminorm projection in
the interior.

Let ˝ be a master element with the correspond-
ing element polynomial exact sequence with (possibly
variable) order of approximation. The following p-
estimates hold:

kw �˘ gradwkH1.˝/ � C ln2 p p�.r�1/kwkHr .˝/ r >
3
2
; Pp.˝/ � Wp ;

kq �˘ curlqkH.curl;˝/ � C lnp p�rkqkHr .curl;˝/ r > 1
2
; .Pp.˝//3 � Qp; Vp ;

kv �˘ divvkH.div;˝/ � C lnp p�rkvkHr .div;˝/ r > 0; .Pp.˝//3 � Vp; Pp.˝/ � Yp :

(11)

Here C is a constant that is independent of both
the functions and polynomial order p. The proof
of the result is based on discrete Friedrichs’
inequalities and the existence of polynomial-
preserving extension operators. To my best knowledge,
such operators have been constructed so far only

for cubes and simplices. For prisms and pyramids,
therefore, the p-estimates above are still a conjecture
only.

Since the PB interpolation preserves the FE spaces,
a version of the Bramble-Hilbert argument may be used
to generalize the p-estimates to hp-estimates:

kw �˘ gradwkH1.˝/ � C ln2 p
�
h
p

�r�1 kwkHr .˝/ r >
3
2
; Pp.˝/ � Wp ;

kq �˘ curlqkH.curl;˝/ � C lnp
�
h
p

�r kqkHr .curl;˝/ r >
1
2
; .Pp.˝//3 � Qp; Vp ;

kv �˘ divvkH.div;˝/ � C lnp
�
h
p

�r kvkHr .div;˝/ r > 0; .Pp.˝//3 � Vp; Pp.˝/ � Yp :

(12)

For details, see [9, 10] and the literature therein.

Applications
First of all, the hp estimates help establish convergence
of stable hp FE methods. If the method is stable, i.e.,
the actual FE approximation error is bounded by the
best approximation error,

ku � uhpk„ ƒ‚ …
approximation error

� C inf
whp

ku � whpk
„ ƒ‚ …

best approximation error

; (13)

with a mesh-independent stability constantC > 0, then
the hp FE method will converge whenever h=p !
0. The standard Bubnov-Galerkin method is natu-
rally stable for elliptic (coercive) problems and mixed
formulations where the stability is implied by the
exact sequence. To this class belong, e.g., a mixed
formulation for Darcy’s equation and standard vari-
ational formulations for the Maxwell equations. The
hp estimates have been a crucial tool to prove dis-
crete compactness for the hp methods; see [6] and
the literature therein. The hp-estimates can also be
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used to establish convergence of various stabilized
formulations including discontinuous Galerkin (DG)
methods. Finally, the hp estimates provide the back-
bone for the two-grid hp-adaptive strategy discussed
in [8, 11].

Comments
The hp FE method was created by Ivo Babuška
and his school, and it originates from the p version
of the FEM invented by Barna Szabo [18]. First,
multidimensional results on the hp method were
obtained by Babuška and Guo [12]. Over the last
three decades, both Babuška and Guo published a
large number of publications on the subject involving
many collaborators. The concept of projection-
based interpolation discussed here derives from
their work on the treatment of nonhomogeneous
Dirichlet boundary conditions; see, e.g., [3]. Assessing
the regularity of solutions to elliptical problems in
standard Sobolev spaces (used in this entry) leads
to suboptimal convergence results. This important
technical issue led to the concept of countably
normed Besov spaces developed in [1, 2]. The book
by Christoph Schwab [16] remains the main source
of technical results on exponential convergence.
Over the years, the exponential convergence results
have been established also for Stokes [17] and
Maxwell equations [7] and more difficult problems
involving stabilization; see, e.g., [14, 15]. The
exponential convergence results have been extended
to boundary elements (BE); see [4,5,13]. In particular,
Heuer and Bespalov extended projection-based
interpolation concepts to energy spaces relevant
for the BE method. Finally, for information on
three-dimensional hp codes, see Preface in [8]
and the works of Wolfgang Bangerth, Krzysztof
Fidkowski, Paul Houston, Paul Ledger, Spencer
Sherwin, Joachim Schoeberl, Andreas Schroeder, and
Tim Warburton.
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Synonyms

Greedy approximation; Matching pursuit; Projection
pursuit

Definition

Greedy algorithms provide sparse representation (ap-
proximation) of a given image/signal in terms of a
given system of elements of the ambient space. In a
mathematical setting image/signal is considered to be
an element of a Banach space. For instance, a two-
dimensional signal can be viewed as a function of two
variables belonging to a Hilbert space L2 or, more
generally, to a Banach space Lp , 1 � p � 1.
Usually, we assume that the system used for repre-
sentation has some natural properties, and we call it
a dictionary. For an element f from a Banach space
X and a fixed m, we consider approximants which
are linear combinations of m terms from a dictionary
D. We call such an approximant an m-term approx-
imant of f with respect to D. A greedy algorithm
in sparse approximation is an algorithm that uses a
greedy step in searching for a new element to be added
to a given m-term approximant. By a greedy step,
we mean one which maximizes a certain functional
determined by information from the previous steps of
the algorithm. We obtain different types of greedy algo-
rithms by varying the abovementioned functional and

also by using different ways of constructing (choosing
coefficients of the linear combination) the m-term ap-
proximant from previously selected m elements of the
dictionary.

Overview

A classical problem of mathematical and numerical
analysis is to approximately represent a given function.
It goes back to the first results on Taylor’s and Fourier’s
expansions of a function. The first step to solve the
representation problem is to choose a representation
system. Traditionally, a representation system has nat-
ural features such as minimality, orthogonality, simple
structure, and nice computational characteristics. The
most typical representation systems are the trigono-
metric system feikxg, the algebraic system fxkg, the
spline system, the wavelet system, and their multi-
variate versions. In general we may speak of a basis
� D f kg1

kD1 in a Banach space X .
The second step to solve the representation problem

is to choose the form of the approximant to be built
from the chosen representation system � . In a classical
way that was used for centuries, an approximant am is
a polynomial with respect to � : am WD Pm

kD1 ck k . It
was understood in numerical analysis and approxima-
tion theory that in many problems from signal/image
processing it is more beneficial to use an m-term
approximant with respect to � than a polynomial of
order m. This means that for f 2 X we look for an
approximant of the form: am.f / WD P

k2�.f / ck k ,
where �.f / is a set of m indices which is determined
by f .

The third step to solve the representation problem is
to choose a method of construction of the approximant.
In linear theory, partial sums of the corresponding
expansion of f with respect to the basis� is a standard
method. It turns out that greedy approximants are
natural substitutes for the partial sums in nonlinear
theory.

In many applications, we replace a basis by a more
general system which may be a redundant system. This
setting is much more complicated than the first one
(bases case); however, there is a solid justification of
importance of redundant systems in both theoretical
questions and in practical applications (see, for in-
stance, [5, 7, 12]).
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Greedy Algorithms with Respect to Bases

If � WD f ng1
nD1 is a Schauder basis for a Banach

space X , then for any f 2 X there exists a unique
representation f D P1

nD1 cn.f / n that converges in
X to f . Let � be normalized (k kk D 1). Consider
the following reordering of the coefficients (greedy
reordering) jcn1.f /j � jcn2.f /j � : : : : Then, the
mth greedy approximant of f with respect to � is
defined as Gm.f / WD Pm

jD1 cnj .f / nj : It is clear that
Gm.f / is an m-term approximant of f . The above al-
gorithm Gm.�/ is a simple algorithm which describes a
theoretical scheme to create an m-term approximation.
We call this algorithm the Greedy Algorithm (GA).
It is also called the Thresholding Greedy Algorithm
(TGA). In order to understand the efficiency of this
algorithm, we compare its accuracy with the best-
possible accuracy when an approximant is a linear
combination of m terms from � . We define the best
m-term approximation of f with regard to � is given
by

�m.f / WD �m.f; �/ WD inf
ck;�

kf �
X
k2�

ck kk;

where the infimum is taken over coefficients ck and sets
of indices � with cardinality j�j D m. It is clear that
for any f , we always have kf � Gm.f /k � �m.f /.
The best we can achieve with the greedy algorithmGm
is kf �Gm.f /k D �m.f /; or the slightly weaker

kf �Gm.f /k � C�m.f /; (1)

for all elements f 2 X , and with a constant C D
C.X;�/ independent of f andm. WhenX is a Hilbert
space and � is an orthonormal basis, inequality (1)
holds with C D 1.

We call � a greedy basis if (1) holds for all f 2 X
(see [9]). It is known (see [13]) that the univariate Haar
basis and all reasonable univariate wavelet bases are
greedy bases for Lp , 1 < p < 1. Greedy bases are
well studied (see the book [16] and the survey papers
[2, 10, 14, 15, 19]).

In addition to the concept of greedy basis, the
following new concepts of bases were introduced in
a study of greedy approximation: quasi-greedy basis
([9]), democratic basis ([9]), almost greedy basis ([4]),
partially greedy basis ([4]), bidemocratic basis ([4]),
and semi-greedy basis ([3]).

Greedy Algorithmswith Respect to
Redundant Systems

Let H be a real Hilbert space with an inner product
h�; �i and the norm kxk WD hx; xi1=2. We say a set D
of functions (elements) from H is a dictionary if each
g 2 D has norm one .kgk D 1/ and the closure
of span D is equal to H: We begin with a natural
greedy algorithm the Pure Greedy Algorithm (PGA).
This algorithm is defined inductively. To initialize we
define f0 WD f , G0.f / D 0. Each iteration of it
consists of three steps. Then, for each m � 1 we have
the following inductive definition. The first step is a
greedy step:
1. 'm 2 D is any element satisfying jhfm�1; 'mij D

supg2D jhfm�1; gij (we assume existence).
2. At the second step we update the residual fm WD
fm�1 � hfm�1; 'mi'm.

3. At the third step we update the approximant
Gm.f / WD Gm�1.f /C hfm�1; 'mi'm.
The Pure Greedy Algorithm is also known as

Matching Pursuit in signal processing. It is clear that
the PGA provides an expansion of f into a series
with respect to a dictionary D. This expansion is an
example of a greedy expansion. One can visualize the
PGA as a realization of a concrete strategy greedy
orienteering in the game of orienteering. The rules of
the game are the following: The goal is to reach the
given point f starting at the origin 0. A dictionary
D gives allowed directions of walk at each iteration.
Then, PGA describes the strategy at which Gm.f /

is the point closest to f that can be reached from the
pointGm�1.f / by walking only in one of the directions
listed in D.

There are different modifications of PGA which
have certain advantages over PGA itself. As it is clear
from the greedy step of PGA, we need an existence
assumption in order to run the algorithm. The Weak
Greedy Algorithm (WGA) is a modification of PGA
that does not need the existence assumption. In WGA
we modify the greedy step of PGA so that

(1w) 'm 2 D is any element satisfying
jhfm�1; 'mij � tm supg2D jhfm�1; gij; where ftkg,
tk 2 Œ0; 1/, is a given weakness sequence.

The Orthogonal Greedy Algorithm (OGA) and the
Weak Orthogonal Greedy Algorithm (WOGA) are nat-
ural modifications of PGA and WGA that are widely
used in applications. The WOGA has the same greedy
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step as the WGA and differs in the construction of a
linear combination of '1; : : : ; 'm. In WOGA we do
our best to construct an approximant out of Hm WD
span.'1; : : : ; 'm): we take an orthogonal projection
onto Hm. Clearly, in this way we lose a property of
WGA to build an expansion into a series in the case
of the WOGA. However, this modification pays off
in the sense of improving the convergence rate of
approximation.

An idea of relaxation proved to be useful in greedy
approximation. This idea concerns construction of a
greedy approximant. In WOGA, we build an approx-
imant as an orthogonal projection on Hm which is
a more difficult step than step (3) from PGA. The
idea of relaxation suggests to build the mth greedy
approximant Gr

m.f / (r stands here for “relaxation”)
as a linear combination of the approximant Gr

m�1.f /
from the previous iteration of the algorithm and an
element 'rm obtained at the mth greedy step of the
algorithm.

There is vast literature on theoretical study and
numerical applications of greedy algorithms in Hilbert
spaces. See, for instance, [6, 8, 14, 16, 17]. For appli-
cations of greedy algorithms in learning theory see
[16], Chap. 4. Greedy algorithms are also very useful
in compressed sensing. A connection between results
on the widths that were obtained in the 1970s and
current results in compressed sensing is well known.
The early theoretical results on the widths did not con-
sider the question of practical recovery methods. The
celebrated contribution of the work by Candes-Tao and
Donoho was to show that the recovery can be done by
the `1 minimization. While `1 minimization plays an
important role in designing computationally tractable
recovery methods, its complexity is still impractical for
many applications. An attractive alternative to the `1
minimization is a family of greedy algorithms. They
include the Orthogonal Greedy Algorithm (called the
Orthogonal Matching Pursuit (OMP) in signal pro-
cessing) discussed above, the Regularized Orthogonal
Matching Pursuit (see [11]), and the Subspace Pursuit
discussed in [1]. The reader can find further discussion
of application of greedy algorithms in compressed
sensing in [16], Chap. 5.

It is known that in many numerical problems users
are satisfied with a Hilbert space setting and do not
consider a more general setting in a Banach space.
However, application of Banach spaces is justified by
two arguments. The first argument is a priori: The Lp

spaces are very natural and should be studied along
with theL2 space. The second argument is a posteriori:
The study of greedy approximation in Banach spaces
has uncovered a very important characteristic of a
Banach space X that governs the behavior of greedy
approximation: the modulus of smoothness �.u/ of X .
It is known that all spaces Lp , 2 � p < 1 have the
modulus of smoothness of the same order u2. Thus,
many results which are known for the Hilbert space L2
and proven using the special structure of Hilbert spaces
can be generalized to Banach spaces Lp , 2 � p < 1.
The new proofs use only the geometry of the unit
sphere of the space expressed in the form �.u/ � �u2.
The reader can find a systematic presentation of results
on greedy approximation in Banach spaces in [16]
and [15].
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Group Velocity Analysis
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The dynamics of a wave train is governed by two
different celerities, namely, the phase velocity and the
group velocity. Each crest, or trough, moves with the
phase velocity, while the energy moves with the group
velocity. As a consequence, regions with high ampli-
tudes in a wave train move with the group velocity,
while individual crests, moving with the phase velocity,
may move into the high-amplitude sequence and leave
it again. In a nonuniform wave train, the group velocity
also defines the speed at which a given wavelength is
propagated. Hence, it is the differences in the group
velocity which cause dispersion of waves.

A harmonic wave mode may be given as

� D A sin
�
kxx C kyy C kzz � !.kx; ky; kz/t

�
; (1)

where kx , ky , and kz are the components of the wave
number vector, k, in the x, y, and z directions, respec-
tively. The wave number vector is normal to the phase
lines, such as the crests, and has a norm k D 2�=�,
where � is the wavelength. The frequency and the
wave number vector are related through the dispersion
relation

! D !.kx; ky; kz/: (2)

While the phase speed is c D !=k, the components of
group velocity are defined as

c.g/x D @!

@kx
; c.g/y D @!

@ky
; c.g/z D @!

@kz
: (3)

For isotropic media, where ! depends only on the
norm, k, of the wave number vector and not the direc-
tion, the group velocity c.g/ is parallel to k. Moreover,
we find the relation

jc.g/j D c.g/ D c C k
dc

dk
;

which shows that for normal dispersion (phase velocity
increases with wavelength) c.g/ < c, while c.g/ > c

for abnormal dispersion. When c is constant, we have
! D ck and c.g/ D ck=k. Then, phase and group
speeds equal the same constant and the waves are
nondispersive.

For periodic gravity surface waves in deep water,
such as swells, the dispersion relation becomes ! Dp
gk. In this case we have normal dispersion c Dp
g=k and c.g/ D 1

2
c.g/. For such waves the energy

density isE D 1
2
�gA2, whereA is the amplitude of the

vertical surface excursion. For A D 3m this yields an
energy density of 44KJ=m2, which for a wave period
of 20 s yields a flux density of cgE D 0:69MW=m.
Surface waves which are much shorter than 1:7 cm are
dominated by capillary effects, and the phase speed
becomes c D p

T k=�, where T is the surface tension.
In this case c decreases with wavelength and the
group velocity, c.g/ D 3

2
c, is larger than the phase

velocity.
The group velocity is a crucial concept for de-

scription of nonuniform wave systems. It does appear
in the asymptotic stationary-phase approximation,
which goes back to the famous works by Cauchy
and Poisson. A historic review is found in Craik [1],
while recent descriptions are given in many textbooks,
for instance, Mei et al. [2]. Combining harmonic
modes such as (1) the solution for a wave system
evolving from an initial surface elevation take on the
form

�.x; t/ D 1

2�i

1Z

�1
�.k/ei.kx�!.k/t/dk:

For large x and t , the exponent in the integral
oscillates rapidly and the dominant contributions
come from the vicinity of stationary points where
the derivative of the exponent with respect to k
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is zero, which implies cg D x=t . This means
that at a given location, the solution is dominated
by the wavelength with a group velocity that
conveys the energy to this location in the given
time.

A related theory is that of geometrical and physical
optics. Rays are there defined as trajectories traversed
by the group velocity, along which frequency and
wavelength are preserved or are governed by simple
evolution equations. Then the energy flux, or the wave
action flux if a background current is present, is con-
stant in ray tubes. Details are given by, for instance,
Whitham [5] and Peregrine [3].

A celebrated example on the application of optics is
the Kelvin ship-wave pattern [4]. For a point source
generating gravity waves in deep water, the relation
c.g/ D 1

2
c readily implies that the wave pattern is

confined to a wedge of angle 38:94ı behind the source,
as shown in Fig. 1. If the water is shallow, in the sense
that generated waves are not short in comparision to the
depth, this angle is larger. For a moving water beetle or
a straw in a current, the waves generated are so short
that they are dominated by capillary effects. In this case
c.g/ > c and the waves are upstream of the disturbance
but are rapidly damped by viscous effects due to their
short wavelength.

In narrow-band (in wavelength) approximations, the
evolution is most transparently described in a coor-
dinate system moving with a typical group velocity.
Evolution equations for the amplitude may then be
obtained by simplified equations, such as the cubic
Schrödinger equation (see [2]).

c
g t

ct = U cosq t

U t

Group Velocity Analysis, Fig. 1 A sketch of half the wave
system generated by a point source in the surface moving from C
to ı with speed U in time t . Since the wave system is stationary,
c D U cos 
 , where 
 is angle between the direction of wave
advance and the course of the source. The outer semicircle
corresponds to locations reached by such phase speeds from C,
while the waves actually may reach only the inner semicircle due
to c.g/ D 1

2
c. The wedge angle then becomes arcsin.1=3/. Two

types of waves, named transverse and diverging, may emerge as
indicated by the fully drawn curves
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Synonyms

Canonical systems

Definition

Let I be an open interval of the real line R of the vari-
able t (time) and ˝ a domain of the Euclidean space
R
d � R

d of the variables .p; q/, p D .p1; : : : ; pd /,
q D .q1; : : : ; qd /. If H.p; qI t/ is a real smooth func-
tion defined in ˝ � I , the canonical or Hamiltonian
system associated with H is the system of 2d scalar
ordinary differential equations

d

dt
pi D �@H

@qi
.p; qI t/;

d

dt
qi D C@H

@pi
.p; qI t/; i D 1; : : : ; d: (1)

The function H is called the Hamiltonian, d is the
number of degrees of freedom, and ˝ the phase space.
Systems of the form (1) (which may be generalized
in several ways, see below) are ubiquitous in the
applications of mathematics; they appear whenever
dissipation/friction is absent or negligible.

It is sometimes useful to rewrite (1) in the compact
form

d

dt
y D J�1rH.yI t/; (2)

where y D .p; q/, rH D .@H=@p1; : : : ; @H=@pd I
@H=@q1; : : : ; @H=@qd / and

J D
�
0d�d Id�d

�Id�d 0d�d

�
: (3)

Origin of Hamiltonian Systems

Newton’s Second Law in Hamiltonian Form
Consider the motion of a system of N point masses in
three-dimensional space (cases of interest range from
stars or planets in celestial mechanics to atoms in
molecular dynamics). If rj denotes the radius vector
joining the origin to the j -th point, Newton’s equations
of motion read

mj Rrj D Fj ; j D 1; : : : ; N: (4)

In the conservative case, where the force Fj is the
gradient with respect to rj of a scalar potential V , that
is,

Fj D �rrj V .r1; : : : ; rN I t/; j D 1; : : : ; N;

(5)
the system (4) may be rewritten in the Hamiltonian
form (1) with d D 3N by choosing, for j D
1; : : : ; N , .p3j�2; p3j�1; p3j / as the cartesian compo-
nents of the momentum pj D mj Prj of the j -th mass,
.q3j�2; q3j�1; q3j / as the cartesian components of rj ,
and setting

© Springer-Verlag Berlin Heidelberg 2015
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H D T C V; T D 1

2

NX
jD1

1

mj

p2j D 1

2
pTM�1p

(6)

(here M is the 3N � 3N diagonal mass matrix
diag.m1;m1;m1I : : : I mN ;mN ;mN /). The Hamil-
tonian H coincides with the total, kinetic + potential,
mechanical energy.

Lagrangian Mechanics in Hamiltonian Form
Conservative systems S more complicated than the
one just described (e.g., systems including rigid bodies
and/or constraints) are often treated within the La-
grangian formalism [1,3], where the configuration of S
is (locally) described by d (independent) Lagrangian
coordinates qi . For instance, the motion of a point
on the surface of the Earth – with two degrees of
freedom – may be described by the corresponding
longitude and latitude, rather than by using the three
(constrained) cartesian coordinates. The movements
are then governed by the coupled second-order differ-
ential equations

d

dt

@L
@ Pqi � @L

@qi
D 0; i D 1; : : : ; d; (7)

where L D L.q; PqI t/ is the Lagrangian function of
S. For each i D 1; : : : ; d , pi D @L=@ Pqi represents
the generalized momentum associated with the coor-
dinate qi . Under not very demanding hypotheses, the
transformation . Pq; q/ 7! .p; q/ may be inverted (i.e.,
it is possible to retrieve the value of the velocities Pq
from the knowledge of the values of the momenta p
and coordinates q) and then (7) may be rewritten in the
form (1) withH.p; qI t/ D pT Pq�L.q; PqI t/, where, in
the right-hand side, it is understood that the velocities
have been expressed as functions of p and q (this is
an instance of a Legendre’s transformation, see [1],
Sect. 14). The functionH often corresponds to the total
mechanical energy in the system S.

Calculus of Variations
According to Hamilton’s variational principle of least
action (see, e.g., Sect. 13 in [1] or Sects. 2-1–2-3 in
[3]), the motions of the mechanical system S, we have
just described, are extremals of the functional (action)

Z t1

t0

L.q.t/; Pq.t/I t/ dt I (8)

in fact (7) are just the Euler-Lagrange equations associ-
ated with (8). The evolutions of many (not necessarily
mechanical) systems are governed by variational prin-
ciples for functionals of the form (8). The correspond-
ing Euler-Lagrange equations (7) may be recast in the
first order format (1) by following the procedure we
have just described ([2], Vol. I, Sects. IV and 9). In fact
Hamilton first came across differential equations of the
form (1) when studying Fermat’s variational principle
in geometric optics.

The Hamiltonian Formalism in Quantum and
Statistical Mechanics
In the context of classical mechanics the transition
from the Lagrangian format (7) to the Hamiltonian for-
mat (1) is mainly a matter of mathematical convenience
as we shall discuss below. On the contrary, in other
areas, including for example, quantum and statistical
mechanics, the elements of the Hamiltonian formalism
are essential parts of the physics of the situation.
For instance, the statistical canonical ensemble asso-
ciated with (4)–(5) possesses a density proportional
to exp.�ˇH/, where H is given by (6) and ˇ is a
constant.

First Integrals

Assume that, for some index i0, the Hamiltonian H is
independent of the variable qi0 . It is then clear from
(1) that, for any solution .p.t/; q.t// of (1) the value
of pi0 remains constant; in other words the function
pi0 is a first integral or conserved quantity of (1).
In mechanics, this is expressed by saying that the
momentumpi0 conjugate to the cyclic coordinate qi0 is
a constant of motion; for instance, in the planar motion
of a point mass in a central field, the polar angle is
a cyclic coordinate and this implies the conservation
of angular momentum (second Kepler’s law). Similarly
qi0 is a first integral wheneverH is independent of pi0 .

In the autonomous case where the Hamiltonian does
not depend explicitly on t , that is, H D H.p; q/

a trivial computation shows that for solutions of (1)
.d=dt/H.p.t/; q.t// D 0, so that H is a constant
of motion. In applications this often expresses the
principle of conservation of energy.
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Canonical Transformations

The study of Hamiltonian systems depends in an essen-
tial way on that of canonical or symplectic transforma-
tions.

Definition
With the compact notation in (2), a differentiable trans-
formation y� D .p�; q�/ D �.y/, � W ˝ ! R

d �
R
d is called canonical (or symplectic) if its Jacobian

matrix � 0.y/, with .i; j / entry @y�
i =@yj , satisfies, for

each y D .p; q/ in ˝ ,

� 0.y/T J � 0.y/ D J: (9)

The composition of canonical transformations is
canonical; the inverse of a canonical transformation is
also canonical.

By equating the entries of the matrices in (9) and
taking into account the skew-symmetry, one sees that
(9) amounts to d.2d �1/ independent scalar equations
for the derivatives @y�

i =@yj . For instance, for d D 1,
(9) is equivalent to the single relation

@p�

@p

@q�

@q
� @p�

@q

@q�

@p
� 1: (10)

Simple examples of canonical transformations with
d D 1 are the rotation

p� D cos.�/p�sin.�/q; q� D sin.�/pCcos.�/q
(11)

and the hyperbolic rotation p� D exp.�/p, q� D
exp.��/q (� is an arbitrary constant).

Geometric Interpretation
Consider first the case d D 1 where, in view of (10),
canonicity means that the Jacobian determinant � D
det

�
@.p�; q�/=@.p; q/

�
takes the constant value 1. The

fact j � j D 1 entails that for any bounded domainD �
˝ , the areas of D and �.D/ coincide. Furthermore
� > 0 means that � is orientation preserving. Thus,
the triangle with vertices A D .0; 0/, B D .1; 0/,
C D .0; 1/ cannot be symplectically mapped onto
the triangle with vertices A� D .0; 0/, B� D .1; 0/,
C � D .0;�1/ in spite of both having the same area,
because the boundary path A� ! B� ! C � ! A�
is oriented clockwise and A ! B ! C ! A has the

opposite orientation. One may say that, when d D 1,
a transformation is canonical if and only if it preserves
oriented area.

For d > 1 the situation is similar, if slightly more
complicated to describe. It is necessary to consider
two-dimensional bounded surfaces D � ˝ and orient
them by choosing one of the two orientations of the
boundary curve @D. The surface D is projected onto
each of the d two-dimensional planes of the variables
.pi ; qi / to obtain d two-dimensional domains ˘i.D/

with oriented boundaries; then we compute the number
S.D/ D P

i ˙Area.˘i .D//, where, when summing,
a term is taken with the C (resp. with the �) sign if the
orientation of the boundary of ˘i.D/ coincides with
(resp. is opposite to) the standard orientation of the
.pi ; qi / plane. Then a transformation � is canonical
if and only if S.D/ D S.�.D// for each D.

In Euclidean geometry, a planar transformation that
preserves distances automatically preserves areas. Sim-
ilarly, it may be shown that the preservation of the
sum S.D/ of oriented areas implies the preservation of
similar sums of oriented 4–, 6–, . . . , 2d -dimensional
measures (the so-called Poincaré integral invariants).
In particular a symplectic transformation preserves the
orientation of the 2d -dimensional phase space (i.e., its
Jacobian determinant � is > 0) and also preserves
volume: for any bounded domain V � ˝ , the vol-
umes (ordinary Lebesgue measures) of V and �.V /
coincide.

The preceding considerations (and for that matter
most results pertaining to the Hamiltonian formalism)
are best expressed by using the language of differential
forms. Lack of space makes it impossible to use that
alternative language here and the reader is referred to
[1], Chap. 8 (see also [6], Sect. 2.4).

Changing Variables in a Hamiltonian System
Assume that in (1) we perform an invertible change of
variables y D �.z/where � is canonical. A straightfor-
ward application of the chain rule shows that the new
system, that is, .d=dt/z D .�0.z//�1J�1ryH.�.z/I t/,
coincides with the Hamiltonian system .d=dt/z D
J�1rzK.zI t/ whose Hamiltonian function K.zI t/ D
H.�.z/I t/ is obtained by expressing the old H in
terms of the new variables. In fact, if one looks for
a condition on y D �.z/ that ensures that in the z-
variables (1) becomes the Hamiltonian system with
Hamiltonian H.�.z/I t/, one easily discovers the def-
inition of canonicity in (9). The same exercise shows
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that the matrix J in (9) and that appearing in (2) have
to be inverses of one another.

This most important result has of course its counter-
part in Lagrangian mechanics or, more generally, in the
calculus of variations (see [1], Sect. 12D or [2], Vol. I,
Sects. IV and 8): to change variables in the Euler-
Lagrange equations for (8) it is enough to first change
variables in L and then form the Euler-Lagrange equa-
tions associated with the new Lagrangian function.
However, in the Lagrangian case, only the change of
the d coordinates q D �.w/ is at our disposal; the
choice of � determines the corresponding formulae
for the velocities Pq D � 0.w/ Pw. In the Hamiltonian
case, the change y D �.z/ couples the 2d -dimensional
y D .p; q/ with the 2d -dimensional z and the class
of possible transformations is, therefore, much wider.
Jacobi’s method (see below) takes advantage of these
considerations.

Exact Symplectic Transformations
A transformation .p�; q�/ D �.p; q/, .p; q/ 2 ˝ is
said to be exact symplectic if

pdq � p�dq�

D
dX
iD1

0
@pidqi � p�

i

dX
jD1

�
@q�

i

@pj
dpj C @q�

i

@qj
dqj

�1
A

(12)

is the differential of a real-valued function S.p; q/

defined in ˝ .
For (12) to coincide with dS it is necessary but not

sufficient to impose the familiar d.2d � 1/ relations
arising from the equality of mixed second order deriva-
tives of S . It is trivial to check that those relations
coincide with the d.2d � 1/ relations implicit in
(9) and therefore exact symplectic transformations are
always symplectic. In a simply connected domain ˝ ,
symplectic transformations are also exact symplectic;
in a general ˝ , a symplectic transformation is not
necessarily exact symplectic and, when it is not, the
function S only exists locally.

Generating Functions: Hamilton-Jacobi
Theory

Generating functions provide a convenient way of
expressing canonical transformations.

Generating Function S1

Given a canonical transformation .p�; q�/ D �.p; q/,
let us define locally a function S such that dS is
given by (12) and assume that @.q�; q/=@.p; q/ is
non-singular. Then, in lieu of .p; q/, we may take
.q�; q/ as independent variables and express S in
terms of them to obtain a new function S1.q�; q/ D
S.p.q�; q/; q/, called the generating function (of the
first kind) of the transformation. From (12)

@S1

@qi
D pi ;

@S1

@q�
i

D �p�
i ; i D 1; : : : ; d I (13)

the relations in the first group of (13) provided coupled
equations to find the q�

i as functions of .p; q/ and those
in the second group then allow the explicit computation
of p�. For (11) the preceding construction yields S1 D
�.cot.�/=2/.q2 � 2 sec.�/qq� C q�2/, (provided that
sin.�/ ¤ 0), an expression that, via (13) leads back
to (11).

Conversely, if S1.q�; q/ is any given function and
the relations (13) define uniquely .p�; q�/ as functions
of .p; q/, then .p; q/ 7! .p�; q�/ is a canonical
transformation ([1], Sect. 47A).

Other Generating Functions
The construction of S1 is only possible under the
assumption that .q�; q/ may be taken as independent
variables. This assumption does not hold in many
important cases, including that where � is the identity
transformation (with q� D q). It is therefore useful to
introduce a new kind of generating function as follows:
If (12) is the differential of S.p; q/ (perhaps only
locally), then d.p�T q� C S/ D q�T dp� C pT dq. If
@.p�; q/=@.p; q/ is non-singular, .p�; q/ may play the
role of independent variables and if we set S2.p�; q/ D
p�T q�.p�; q/C S.p.p�; q/; q/ it follows that

@S2

@qi
D pi ;

@S2

@p�
i

D q�
i ; i D 1; : : : ; d I (14)

here the first equations determine the p�
i as func-

tions of .p; q/ and the second yield the q�
i explicitly.

The function S2 is called the generating function of the
2nd kind of� . The identity transformation is generated
by S2 D p�T q. For (11) with cos.�/ ¤ 0 (which
ensures that .p�; q/ are independent) we find:

S2 D tan.�/

2

�
q2 C 2 csc.�/qp� C p�2�: (15)
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Conversely if S2.p�; q/ is any given function and
the relations (14) define uniquely .p�; q�/ as functions
of .p; q/, then .p; q/ 7! .p�; q�/ is a canonical
transformation ([1], Sect. 48B).

Further kinds of generating functions exist ([3],
Sect. 9-1, [1], Sect. 48).

The Hamilton-Jacobi Equation
In Jacobi’s method to integrate (1) (see [1], Sect. 47 and
[3], Sect. 10-3) with time-independent H , a canonical
transformation (14) is sought such that, in the new vari-
ables, the Hamiltonian K D H.p.p�; q�/; q.p�; q�//
is a function K D K.p�/ of the new momenta
alone, that is, all the q�

i are cyclic. Then in the new
variables – as pointed out above – all the p�

i are
constants of motion and therefore the solutions of the
canonical equations are given by p�

i .t/ D p�
i .0/,

q�
i .t/ D q�

i .0/C t.@K=@p�
i /p�.0/. Inverting the change

of variables yields of course the solutions of (1) in the
originally given variables .p; q/.

According to (14) the required S2.q
�; q/ has to

satisfy the Hamilton-Jacobi equation

H

�
@S2

@q1
; : : : ;

@S2

@qd
; q1; : : : ; qd

�
D K.p�

1 ; : : : ; p
�
d /:

This is a first-order partial differential equation ([2],
Vol. II, Chap. II) for the unknown S2 called the
characteristic function; the independent variables are
.q1; : : : ; qd / and it is required to find a particular
solution that includes d independent integration
constants p�

1 , . . . , p�
d (a complete integral in classical

terminology). Jacobi was able to identify, via
separation of variables, a complete integral for several
important problems unsolved in the Lagragian format.
His approach may also be used with S1 and the other
kinds of generating functions.

Time-dependent Generating Functions
So far we have considered time-independent canonical
changes of variables. It is also possible to envisage
changes .p�; q�/ D �.p; qI t/, where, for each fixed
t , � is canonical. An example is afforded by (14) if the
generating function includes t as a parameter: S2 D
S2.p

�; qI t/. In this case, the evolution of .p�; q�/ is
governed by the Hamiltonian equations (1) associated
with the Hamiltonian K D H C @S2=@t , where in
the right-hand side it is understood that the arguments
.p; q/ of H and .p�; q/ of S2 have been expressed as

functions of the new variables .p�; q�/ with the help of
formulae (14). Note the contribution @S2=@t that arises
from the time-dependence of the change of variables.

If S2 D S2.p
�; qI t/ satisfies the Hamilton-Jacobi

equation

H

�
@S2

@q1
; : : : ;

@S2

@qd
; q1; : : : ; qd I t

�
C @S2

@t
D 0; (16)

then the new Hamiltonian K vanishes identically and
all p�

i and q�
i remain constant; this trivially determines

the solutions .p.t/; q.t// of (1). In (16) the indepen-
dent variables are t and the qi and it is required to
find a complete solution, that is, a solution S2 that
includes d independent integration constants p�

i . It is
easily checked that, conversely, (1) is the characteristic
system for (16), so that it is possible to determine
all solutions of (16) whenever (1) may be integrated
explicitly ([2], Vol. II, Chap. II).

Hamiltonian Dynamics

Symplecticness of the Solution Operator
We denote by˚H

t;t0
the solution operator of (1) (t , t0 are

real numbers in the interval I ). By definition, ˚H
t;t0

is a
transformation that maps the point .p0; q0/ in ˝ into
the value at time t of the solution of (1) that satisfies
the initial condition p.t0/ D p0, q.t0/ D q0. Thus,
if in ˚H

t;t0
.p0; q0/ we keep t0, p0, and q0 fixed and

let t vary, then we recover the solution of the initial-
value problem given by (1) in tandem with p.t0/ D p0,
q.t0/ D q0. However, we shall be interested in seeing
t and t0 as fixed parameters and .p0; q0/ as a variable
so that ˚H

t;t0
represents a transformation mapping the

phase space into itself. (It is possible for ˚H
t;t0

not to
be defined in the whole of ˝; this happens when the
solutions of the initial value problem do not exist up
to time t .) Note that ˚H

t2;t0
D ˚H

t2;t1
ı ˚H

t1;t0
for each t0,

t1, t2 (the circle ı means composition of mappings). In
the autonomous case where H D H.y/, ˚H

t;t0
depends

only on the difference t � t0 and we write �Ht�t0 instead
of ˚H

t;t0
; then the flow �Ht has the group property:

�HtCs D �Ht ı �Hs , for each t and s.
The key geometric property of Hamiltonian systems

is that ˚H
t;t0

is, for each fixed t0 and t , a canonical
transformation ([1], Sect. 44). In fact the canonicity of
the solution operator is also sufficient for the system to
be Hamiltonian (at least locally).
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The simplest illustration is provided by the har-
monic oscillator: d D 1, H D .1=2/.p2 C q2/.
The t-flow .p�; q�/ D �t .p; q/ is of course given by
(11) with � D t , a transformation that, as remarked
earlier, is canonical. The group property of the flow is
the statement that rotating through � radians and then
through � 0 radians coincides with a single rotation of
amplitude � C � 0 radians.

The Generating Function of the Solution
Operator
Assume now that we subject (1) to the t-dependent
canonical change of variables .p�; q�/ D �H

t0;t
.p; q/

with t0 fixed. The new variables .p�; q�/ remain con-
stant: .p�.t/; q�.t// D �H

t0;t
.p.t/; q.t// D �H

t0;t
ı

�H
t;t0
.p.t0/; q.t0// D .p.t0/; q.t0//. Therefore, the new

Hamiltonian K.p�; q�I t/ must vanish identically and
the generating function S2 of �H

t0;t
must satisfy (16).

Now, as distinct from the situation in Jacobi’s method,
we are interested in solving the initial value problem
given by Hamilton-Jacobi equation (16) and the initial
condition S.p�; qI t0/ D p�T q (for t D t0 the
transformation �H

t0;t
is the identity).

As an illustration, for the harmonic oscillator, as
noted above, �H

t0;t
is given by (11) with � D t0 � t ; a

simple computation shows that its generating function
found in (15) satisfies the Hamilton-Jacobi equation
.1=2/

�
.@S2=@q/

2 C q2
� C @S2=@t D 0.

Symplecticness Constrains the Dynamics
The canonicity of ˚H

t;t0
has a marked impact on the

long-time behavior of the solutions of (1). As a simple
example, consider a system of two scalar differential
equations Pp D f .p; q/, Pq D g.p; q/ and assume that
.p0; q0/ is an equilibrium where f D g D 0. Generi-
cally, that is, in the “typical” situation, the equilibrium
is hyperbolic: the real parts of the eigenvalues �1 and
�2 of the Jacobian matrix @.f; g/=@.p; q/ evaluated at
.p0; q0/ have nonzero real part and the equilibrium is
a sink (<�1 < 0, <�2 < 0), a source (<�1 > 0,
<�2 > 0), or a saddle (<�1 > 0, <�2 < 0).
The situation where �1 and �2 are conjugate purely
imaginary numbers does not arise typically: small
perturbations change it into either a sink or a source.
However, if we restrict the attention to Hamiltonian
systems the situation changes completely: sinks and
sources cannot appear, because in their neighborhood
the flow contracts (expands) area. The case <�1 D 0,
<�2 D 0 is now not exceptional: it persists under small
Hamiltonian perturbations.

Similar considerations apply to periodic orbits, in-
variant tori, etc. To sum up, thanks to symplecticness,
dynamical features that are exceptional for general
systems become the rule for Hamiltonian systems.
Conversely features that are typical for general systems
cannot arise at all in Hamiltonian problems.

Poisson Brackets

Let us present yet another useful tool of the Hamil-
tonian formalism. Although some of the results to be
discussed are valid for general Hamiltonians H D
H.yI t/, for simplicity, we shall assume in the rest
of this Encyclopedia entry that all Hamiltonians are
autonomousH D H.y/.

Definition
If F , G are smooth real functions defined in the phase
space ˝ , their Poisson bracket is the real function

fF;Gg D rF T J�1rG; i:e:;

fF;Gg D
dX
iD1

�
@F

@qi

@G

@pi
� @F

@pi

@G

@qi

�
: (17)

Clearly the operation f�; �g is bilinear and skew-
symmetric, that is, fF;Gg D �fG;F g. It further-
more satisfies Jacobi’s identity: if F , G, and H are
smooth functions then fF; fG;H gg C fG; fH;F gg C
fH; fF;Ggg D 0.

Canonical changes of variables do not alter the value
of the Poisson bracket: if y D �.z/ is canonical, then
the Poisson bracket of the functions F.�.z//, G.�.z//
may be obtained by first computing fF;Gg and then
substituting y D �.z/. In fact a transformation is
canonical if and only if it does not change the value
of the Poisson bracket ([6], Remark 12.1).

Poisson Brackets and Hamiltonian Systems
From (17), (1) may be rewritten as Pyi D fyi ;H g,
i D 1; : : : ; 2d . More generally, if F is any smooth
real function defined in ˝ , the value at a point
y0 2 ˝ of fF;H g coincides with the rate of
change .d=dt/F.�Ht .y

0//tD0. This has two important
implications ([1], Sect. 40):
(a) F is a first integral of (1) if and only if fF;H g � 0.
(b) The differential operator LJ�1rH associated with

the vector field J�1rH in (1) coincides with
F 7! fF;H g. (Recall that, given the system
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Py D f .y/ with vector field f and flow �
f
t , Lf

is, by definition, the differential operator that maps
each real function F into the real function that at y
takes the value .d=dt/F.�ft .y//tD0. By the chain
rule, Lf F D P

i fi .y/.@F=@yi /.)
In turn, (a) together with Jacobi’s identity yield

immediately Poisson’s theorem: The Poisson bracket
of two first integrals of (1) is again a first integral.
An example: if two of the cartesian components of
the angular momentum of a mechanical system are
conserved, so is the third.

Assume next that H is kept invariant by a Hamil-
tonian flow �Ft , that is, H ı �Ft � H . According to
(a), fH;F g � 0, and by skew-symmetry fF;H g � 0.
A new application of (a) shows that F is a first integral
of (1). In this way we have obtained a generalization of
a well-known theorem of Noether [1]: to each group of
symmetries that leave invariant a mechanical system
there corresponds a constant of motion. Here is the
simplest example. The flow of F D p1 is given by
the translations along the q1 axis .p; q/ 7! .p; q1 C
t; q2; : : : ; qd /, so thatH is invariant if and only if q1 is
cyclic. The general result in this paragraph yields, once
again, the known statement “the momentum conjugate
to a cyclic coordinate is a first integral.”

Before we point out some consequences of (b), we
recall ([1], Sect. 39C), that, if f .y/ and g.y/ are vector
fields on the same phase space with operators Lf and
Lg , then LgLf � Lf Lg is the operator Lh associated
with a new vector field h, denoted by h D Œf; g	 and
called the Lie bracket or commutator of f and g. This
notion is relevant in view of the following result: Œf; g	
vanishes identically if and only if the flows �ft and �gt
commute, that is, �ft ı �

g
s D �

g
s ı �

f
t , for each

t and s.
From the Jacobi identity and (b) it is easily con-

cluded that the commutator of the Hamiltonian vector
fields with Hamiltonian functions F , G is again a
Hamiltonian vector field and that the corresponding
Hamiltonian is fF;Gg. In particular the flows �Ft and
�Gt commute if and only if the Hamiltonian vector field
associated with fF;Gg vanishes, that is, if and only if
fF;Gg is (locally) constant.

Integrability: Perturbation Theory

As we have seen in connection with Jacobi’s method,
the possibility of integrating effectively Hamiltonian

system is closely related to the existence of sufficiently
many conserved quantities.

The integrability theorem of Liouville and Arnold
([1], Sect. 49, [4], Chap. X), that we sketch next, ad-
dresses this issue. It is assumed that the system (1)
has d (independent) conserved quantities Fi and that
these are in involution, that is, fFi ; Fj g D 0 if i ¤ j .
Each level set of the form M.a1; : : : ; ad / D fy W
F1.y/ D a1; : : : ; Fd .y/ D ad g is a smooth manifold
invariant by the flow �Ht ; furthermore, it may be proved
that if the level sets M.a1; : : : ; ad / are compact and
connected, then each of them will be (diffeomorphic
to) a d -dimensional torus. In that case it is possible to
compute explicitly (in terms of quadratures) a canon-
ical change of variables p D p.I; ˛/, q D q.I; ˛/

to the so-called action/angle variables .I; ˛/ so that
the new Hamiltonian K is independent of the ˛i and
therefore the equations of motion read

PIi D 0; P̨ i D @K

@Ii
; i D 1; : : : ; d:

The actions Ii are first integrals; their level sets fy W
I1.y/ D b1; : : : ; Id .y/ D bd g coincide with the
invariant tori of the dynamics. Each invariant torus is
parameterized by the d variables ˛i that are angles
(increasing them by 2
 leads to the starting point in
.p; q/). On any fixed torus each ˛i varies at a constant
angular velocity @K=@Ii , so that the motion is quasi-
periodic.

For the harmonic oscillator in non-dimensional
form H D .1=2/.p2 C q2/ the invariant sets are the
circles p2 C q2 D constant; the canonical change of
variables is given by p D p

2I cos˛, q D p
2I sin˛,

so that I D H . (In dimensional variables the action I
would be the ratio of the energyH to the frequency of
oscillation.)

When the hypotheses of the Arnold-Liouville theo-
rem hold, the dynamics of (1) are perfectly understood.
At the other end of the spectrum, the behavior of the
solutions of Hamiltonian systems away from integra-
bility may be bewildering complicated. An intermedi-
ate situation is that where the system, without being
integrable, may be seen as a small perturbation of an
integrable one. The literature contains many important
results on perturbation theory. The most celebrated is
the Kolmogorov-Arnold-Moser (KAM) theorem ([1],
Sect. 49, [4], Chap. X) that ensures that, under suitable
hypotheses, most invariant tori of the unperturbed case
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do not disappear under perturbation. The book [5]
gathers a number of important contributions to the
study of Hamiltonian dynamics.

Extensions

The canonical format (1) is only the simplest and
historically first of a series of Hamiltonian formats that
appear in the applications. Here are more formats:

Changing the Structure Matrix
It is possible ([4], Chap. VII), while keeping the form in
(2), to replace the so-called structure matrix J defined
in (3) by a more general invertible, skew-symmetric
matrix eJ .y/ (note the dependence on y and that the
dimension of the phase space is still necessarily even
as skew-symmetric matrices of odd dimension are
singular). Most of the theory goes through provided
that the associated Poisson bracket (defined as in the
first equality in (17)) satisfies the Jacobi identity. In this
setup it is also possible to define the symplecticness of
a transformation via (9). The matrix eJ .y/ defines then
a noncanonical symplectic structure.

Poisson Structures
Another possibility ([6], Sect. 14.5, [4], Chap. VII) is
to use (2) with J�1 replaced by a non-invertible,
skew-symmetric matrix B.y/. Again B.y/ has to be
chosen in such a way that the Jacobi identity for
the Poisson bracket (defined by the first equality in
(17) with B.y/ in lieu of J�1) holds. Here it is
not possible to generalize the definition in (9), which
would require the inverse of the non-invertible B.y/;
there is no symplectic structure and one speaks of
a Poisson structure. Note that the dimension of the
phase space is not necessarily even. A salient feature of
Poisson structures is the existence of Casimir functions
C such that rC.y/T B.y/ � 0. Since fC;H g D 0

if C is a Casimir function and H arbitrary, Casimir
functions are constants of motion for all systems of the
form Py D B.y/rH.y/, regardless of the choice of
HamiltonianH .

Differential Geometry
So far all variables have been points in Euclidean
spaces. However, symplectic and Poisson structures
may be defined on manifolds [1] and in fact, in many
applications, the problems investigated appear natu-

rally in a manifold context and only a, more or less
arbitrary, choice of local coordinates allows to rephrase
them in a Euclidean setting.

Hamiltonian Partial Differential Equations
Many evolutionary partial differential equations may
also be understood as (infinite dimensional) Hamilto-
nian systems. Typically, each point u in phase space is
a smooth real or vector-valued function of one or more
spatial variables. The real functions F , H , . . . defined
in phase space are functionals and the operator r in
(2) is replaced by the variational derivative ı=ıu. An
example follows, but very many other exist including
the Korteweg-de Vries equation, linear and nonlinear
Schroedinger equations, etc. (see [6], Sect. 14.7). As-
sume that u D .p; q/ with p, q smooth real functions
of the variable x, 0 � x � 1, satisfying homogeneous
Dirichlet boundary conditions. If H is the functional

H.u/ D 1

2

Z 1

0

�
p.x/2 C qx.x/

2
�
dx

then (qxx appears after integrating by parts)

H.u C �eu /
D H.u/C �

Z 1

0

�
p.x/ep.x/� qxx.x/eq.x/� dx

CO.�2/:

Therefore, ıH=ıp D p, ıH=ıq D �qxx and we have
the following Hamiltonian system (note the analogy
with (1) with i replaced by x)

@

@t
p D �ıH

ıq
D qxx;

@

@t
q D ıH

ıp
D p;

where, after eliminating p, we recognize the familiar
wave equation.
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HJ equations

Definition

The Hamilton–Jacobi equation (HJE) is a first-order
nonlinear partial differential equation. The HJE first
appeared in the studies of W. R. Hamilton (1805–1865)
and C. G. J. Jacobi (1804–1851) in the field of classical
mechanics [7]. The interest of mathematicians started
in the 1950s and grew considerably since the 1980s
with the introduction of the theory of viscosity solu-
tions [2,3]. Nowadays, it is encountered in problems of
mechanics, geometry, optics, front propagation, com-
puter vision, optimal control, and differential games.
The general form of the HJE is

@u

@t
.x; t/

CH.x; t; u.x; t/;Dxu.x; t// D 0; x 2 ˝; t > 0 ;

where ˝ is an open domain of Rn, x D .x1; : : : ; xn/,
u W ˝ � .0;C1/ ! R is the unknown, the Hamilto-
nianH W Rn � R

C � R � R
n ! R is given, andDx D�

@
@x1
; : : : ; @

@xn

	
.

The HJE can be also written in an equivalent time-
independent form

bH.y; u.y/;Dyu.y// D 0; y 2 b̋ ;

defining y WD .x; t/, b̋ WD ˝ � .0;C1/, and, for any
p 2 R

nC1,

bH.y; u; p/ WD pnC1
CH.y1; : : : ; yn; ynC1; u; p1; : : : ; pn/ ; y 2 b̋:

Original Formulation in Classical
Mechanics

Consider a system described by the generalized coor-
dinates q D q.t/ 2 R

n, the generalized velocities Pq.t/,
and the Lagrangian function L.q; Pq; t/. The Hamilto-
nianH of the system is

H.q; p; t/ WD p � Pq.q; p; t/ �L.q; Pq.q; p; t/; t/

where pi .t/ D @L
@ Pq .q; Pq; t/, i D 1; : : : ; n are the

coordinates of the generalized momentum and Pq is
written as a function of .q; p; t/. For any .t0; q0/, define

S.x; t/ WD inf


Z t

t0

L.q.s/; Pq.s/; s/ds
�

where the infimum is taken over all C1 trajectories q.�/
starting from q0 at time t0 and ending at x at time t .
Then, the function S.x; t/ is solution of the HJE [5, 7]

@S

@t
.x; t/CH.x;DxS.x; t/; t/ D 0:

Theoretical Results

It is easy to see that the HJE equation can lack of
classical solutions (i.e., of class C1) while can have
multiple weak solutions (i.e., solutions which are a.e.
differentiable and satisfy the equation where differ-
entiable). Consider, for example, the one-dimensional
eikonal equation jDxuj D 1, x 2 Œ�1; 1	, comple-
mented with boundary conditions u.�1/ D u.1/ D 0.
Both functions u1.x/ D �jxj C 1 and u2.x/ D jxj � 1
are weak solutions.

Existence and uniqueness results can be achieved
by means of the notion of viscosity solution [2, 3].
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A continuous function u is a viscosity solution
of H.x; u;Dxu/ D 0, x 2 ˝ � R

n, if, for
any test function � 2 C1.˝/, it follows that
H.x0; u.x0/;Dx�.x0// � 0 at any local maximum
point x0 2 ˝ of u � � and H.x1; u.x1/;Dx�.x1// 	
0 at any local minimum point x1 2 ˝ of
u � �.

If ˝ D R
n, under suitable assumptions on H , it

can be proven that the HJE H.x; u;Dxu/ D 0 has a
unique viscosity solution. If ˝ � R

n, an analogous
result can be proven for the associated boundary-value
problem.

If n D 1, there is an interesting relation between
HJEs and first-order hyperbolic conservation laws
which can be exploited both from the analytical
and numerical point of view. Indeed, if u is a
solution of @u

@t
C H

�
@u
@x

� D 0, then w D @u
@x

is a solution of the conservation law @w
@t

C @
@x

H.w/ D 0.

Explicit Solutions and Hopf–Lax Formula
Explicit solutions of HJEs are available only in a
few special cases: A complete integral of the eikonal
equation jDxuj D 1 is u.xI a; b/ D a � x C b,
for any a 2 R

n, jaj D 1 and b 2 R; the so-
lution of the initial-value problem for the transport
equation

8<
:
@u

@t
C v �Dxu D f; x 2 R

n; t 2 .0;C1/

u.x; 0/ D g.x/; x 2 R
n

with constant velocity v 2 R
n, is

u.x; t/ D g.x � vt/C
Z t

0

f .x C .s � t/v; s/ dsI

more general linear and nonlinear HJEs can be solved
by means of the method of characteristics [5].

A representation formula is available for HJEs of
the form

8<
:
@u

@t
CH.Dxu/ D 0; x 2 R

n; t 2 .0; T 	
u.x; 0/ D g.x/; x 2 R

n:
(1)

Assume H is convex, lim
jpj!1

H.p/=jpj D C1, and g

is Lipschitz continuous and bounded. Then, the unique

viscosity solution of (1) is given by the Hopf–Lax
formula [5]

u.x; t/ D min
y2Rn

n
tL

�x � y
t

	
C g.y/

o

where L is the Legendre transform of H , defined as
L.q/ WD sup

p2Rn
fp � q �H.p/g, q 2 R

n:

Derivation in Optimal Control Theory

Consider the controlled nonlinear dynamical system


 Py.t/ D f .y.t/; ˛.t//; t > 0

y.0/ D x
(2)

where y is the state variable, ˛ is the control variable,
f W R

n � A ! R
n is continuous and Lipschitz

continuous in the state variable uniformly in the control
variable, A is a compact set of Rm, and ˛.�/ 2 A WD
fmeasurable functions Œ0;C1/ ! Ag. Denote the
solution of (2) by yx;˛.t/.

Given a cost functional J.yx;˛/, the value function
u.x/ WD inf˛2A J.yx;˛/ can be characterized as the so-
lution of a HJE by means of the dynamic programming
principle. The associated equation is called Hamilton–
Jacobi–Bellman equation (HJBE) [1]. Once the HJBE
is solved, it is possible to recover the optimal control
˛� 2 A which minimizes the cost functional and then
the corresponding optimal trajectory yx;˛� .t/ for any
x 2 R

n. The optimal control ˛� D ˛�.y/ obtained in
this way has the nice property to be in feedback form,
i.e., it depends directly on the state of the system and
not explicitly on time.

For example, in the minimum time problem, the cost
functional has the form J.yx;˛/ D tT , where tT is the
first time the trajectory yx;˛ hits a given target T � R

n.
Assume that T is closed with compact boundary and
the value function u.x/ is continuous and bounded for
any x 2 R

nnT . Then, u is the unique viscosity solution
of the HJBE [1]

(
sup
a2A

f�f .x; a/ �Dxu.x/g � 1 D 0 ; x 2 R
nnT

u.x/ D 0 ; x 2 @T :
(3)

In the particular case f .y; ˛/ D ˛ and A D fx 2
R
n W jxj � 1g, (3) becomes the eikonal equation,



Hardware-Oriented Numerics for PDE 627

H

u is the distance function of T , and the minimal-time
trajectories to the target are the curves orthogonal to
the level sets of u.

Level Set Method

The level set method [8, 9, 11] allows one to compute
the evolution of a front (interface) by means of a HJE.
It is a powerful mathematical tool for grid generation,
image processing (noise removal, segmentation, shape
from shading), photolithography development, mod-
eling combustion, flame propagation, crystal growth,
two-phase flow, seismic waves, and constructing mini-
mal surfaces.

Denote by�0 a closed (n�1)-dimensional hypersur-
face which defines the front at time t D 0, and let � be
the signed distance function of �0. If the front evolves
in time with velocity v 2 R

n, possibly depending on x,
t , and the front itself, its position at any time t > 0 is
given by �t D fx 2 R

n W u.x; t/ D 0g (i.e., the zero-
level set of u), where u is the solution of the level set
equation

8<
:
@u

@t
C v.x; t; �t / �Dxu D 0 ; x 2R

n; t 2 .0;C1/

u.x; 0/D�.x/ ; x 2R
n:

If the velocity of the front coincides with the exterior
normal to the front itself, we have v D v.Dxu/ D
Dxu

jDxuj , and the HJE associated to the problem turns

out to be the time-dependent eikonal equation @u
@t

C
jDxuj D 0.

Numerical Approximation

Numerical approximation of the HJE is particularly
challenging since solutions are in general not smooth,
the viscosity solution should be carefully selected,
and the computational cost grows exponentially with
respect to the dimension n (curse of dimensionality).
Proposed schemes mainly come from the relationship
with conservation laws (see “Theoretical Results”)
and/or exploit the vanishing viscosity method [4,8,11].
In [4], it is proven that any monotone and consistent
scheme which can be written in differenced form con-
verges to the viscosity solution, and some examples are

given. A largely used upwind finite-difference scheme
for the eikonal equation was proposed in [10]. Semi-
Lagrangian schemes were also proposed [1, 6]. Fast
marching and Fast sweeping methods are two accel-
eration techniques for the above-mentioned schemes.
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Short Definition

The aim of hardware-oriented numerics as a new
discipline in the field of computational science and
engineering is to develop novel numerical and algo-
rithmic techniques which go hand in hand with (long-
term) technology evolution, so that the potentially
contradicting efficiency goals of algorithmically scal-
able, asymptotically optimal numerical performance,
peak FLOP rates, optimal hardware exploitation, and
robustness for a wide range of (PDE) problems are
balanced in a reasonably optimal way [1–3].

Description

Modern academic software packages for general PDE
(partial differential equation) problems, especially in
solid mechanics and fluid dynamics or in life sciences,
are typically based on highly sophisticated numerical
discretization and solution techniques, which must
have the potential to handle very general computational
meshes. Nowadays, particularly in the case of realistic
3D problems with multiscale behavior in space and
time, the combination of highly adaptive finite element
methods (FEM) together with special hierarchical (par-
allel) solvers of multigrid type seems to be one of the
most promising approaches regarding flexible, robust,
and accurate simulation tools. Since the resulting codes
automatically ran faster with each new generation of
processors, hardware aspects used to play only a minor
role in the numerical research during the last years,
so that scientists could concentrate purely on mathe-
matical aspects to improve the numerical efficiency:
The total efficiency with respect to total simulation
time improved more or less due to the automatically
increasing processor speed, at least for “workstation-
scale” problems. Here, total efficiency measures the

time per unknown to solve an actual problem to a
guaranteed accuracy.

Recently, this trend has come to an end, as physical
limitations have led to a paradigm change in the
underlying hardware: Performance improvements
are no longer driven by frequency scaling but by
parallelism and specialization. In fact, single-core
performance already stagnates or even goes down,
commodity processors (CPUs) double their core
count in each hardware generation, and multimedia
processors, in particular graphics processors (GPUs),
offer unprecedented degrees of parallelism and perfor-
mance that can be exploited in numerical simulation
software. Future many-core chip designs will likely be
heterogeneous and contain general and specialized
computing units with nonuniform memory access
characteristics, various levels of caches, and multiple
levels of data and task parallelism within the same
chip.

However, the scientific community had to experi-
ence that it is far from being trivial to realize PDE
solvers on modern hardware architectures with the
goal to maintain high numerical efficiency (with the
described mathematical concepts like FEM, multigrid,
and adaptivity) and to simultaneously achieve high
computational efficiency. Many modern mathematical
approaches with high numerical efficiency cannot ex-
ploit the possible peak performance of the described
modern hardware components so that the total ef-
ficiency is not adequately increasing, despite higher
numerical efficiency and higher available peak FLOP/s
rates.

The first important avenue of research includes the
selection of appropriate data structures, data layouts,
and data scheduling. Operations need to be decoupled
and rescheduled in order to enable parallel execu-
tion on independent sub-data, e.g., to communicate
data over the interconnects while computing on other
data. Since moving data is in general much more
expensive than computing with it, techniques to in-
crease locality like spatial and temporal blocking to
exploit cache hierarchies or to coalesce memory trans-
fers into large, more efficient bulk transactions, are
obligatory. The same holds true for parallelization
techniques, in particular when combining the clas-
sical coarse-grained parallelism on the cluster level
with the medium- and fine-grained parallelism be-
tween and within the different kinds of chips and
compute units. Moreover, the meticulous tuning of
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each application for each new hardware generation is
prohibitively expensive, and techniques are required
that encapsulate the hardware awareness inside the
underlying mathematical components, away from the
applications.

In order to achieve a significant percentage of the
available peak performance without losing numerical
capabilities, it is no longer sufficient to take hardware
characteristics only into account during the implemen-
tation and code optimization, with techniques like the
ones mentioned in the previous paragraph. Rather, this
must be done already during the design and selection
of the numerical ingredients. New strategies are nec-
essary for massive and scalable/future-proof efficiency
enhancement, which means that the algorithms for the
solution process and the discretizations in the frame-
work of a PDE solver toolkit have to be modified.
Illustrative examples include:
• Special adaptive (FEM) discretization techniques:

local mesh adaptivity with hanging nodes leading
to the “optimal” number of unknowns vs. patchwise
adaptive concepts to increase locality

• Corresponding fast iterative solvers: classical
multigrid solvers with strong smoothers of ILU-
type vs. highly scalable domain decomposition-
multigrid approaches, e.g., of ScaRC type with
recursively defined “patch” smoothers, as the

former often scale poorly due to their highly
recursive coupling

• Complete new solution schemes for complex
problems like the incompressible Navier-Stokes
equations: operator-splitting schemes of pressure
correction type with highly efficient tools for the
resulting scalar subproblems vs. fully implicit
monolithic approaches handling all physical
quantities simultaneously

These examples can be easily extended towards other
discretization and solution approaches as well as other
PDE problems.

It is nowadays accepted that in the field of
high-performance simulations of PDE, significant
performance improvements can only be achieved by
hardware-oriented numerics which is a quite young
discipline in the field of computational science and
engineering (CSE). Putting together the examples and
ideas of the previous paragraphs, the core paradigm
of hardware-oriented numerics is that numerical and
algorithmic foundation research must go hand in hand
with (long-term) technology evolution: Prospective
hardware trends enforce research into novel numerical
techniques that are in turn better suited for the
hardware. Only correspondingly modified schemes
that potentially might be less numerically efficient on
a single node (e.g., in terms of convergence rates) are

Hardware-Oriented Numerics for PDE, Fig. 1 Performance
improvements by hardware-oriented numerics. The y-axis de-
picts time to solution in second and is scaled logarithmically

(Measurements provided by Markus Geveler and Dirk Ribbrock,
TU Dortmund)



630 Hartree–Fock Type Methods

able to achieve better overall performance in the user-
relevant “time-to-solution” metric. The ultimate goal
of hardware-oriented numerics is thus to balance these
metrics to achieve robust and ideally predictable close-
to-peak performance (in the meaning of numerical
and computational peak performance). Only with the
combination of the “optimal” numerics and “optimal”
computational algorithms for a given hardware archi-
tecture it is possible to satisfy the aims of hardware-
oriented numerics, namely, to maximize the total
efficiency.

We conclude with a detailed example (which has
been provided by Markus Geveler and Dirk Ribbrock,
see (Fig. 1) that illustrates typical performance results
for a low-order FEM geometric multigrid approach for
Poisson problems on an unstructured “flow-around-
a-cyclinder” grid, on a single node using a high-
end CPU and GPU from the same year. The results
demonstrate the interplay of numerical and hardware-
oriented techniques and the incremental speedups that
can be achieved. We observe a speedup of more than
two by switching to a better numbering technique
for the degrees of freedom, and an additional factor
of 2–4 by employing an unstructured coarse mesh
which is locally refined in a structured way (labeled
(un-)str.in the figure). The improvement obtained by
using a numerically stronger and more robust smoother
in the multigrid scheme is also clearly visible with
an average improvement by another factor up to
2.5. Finally, executing the benchmark on a GPU
instead of a multicore CPU results in additional
speedups of 4–7. Overall, the combined numerical and
hardware-oriented techniques have improved the initial
textbook implementation by an accumulated factor
of 50.
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Short Definition

The Hartree–Fock (HF) method is one of the simplest
theory to approximate the ground-state wave-function
and the ground-state energy of a many-body fermionic
quantum system.

Description

We consider a system of N.	 1/ identical nonrela-
tivistic spin-1=2 (e.g., electrons) in the 3-dimensional
space R

3. In quantum physics, this collection of
particles is described through its electronic wave-
function, namely, a square-integrable function � D
�.x1; � � � ; xN / acting on

�
R
3 � f";#g�N with values

in C, with xi D .ri ; i / 2 R
3 � f";#g where ri is the

position of the i th particle in R
3 and i 2 f";#g

its spin variable. The function j�.x1; � � � ; xN /j2
is the density of probability for finding the N

particles at .r1; � � � ; rN / with spin .1; � � � ; N /. In
particular,

NX
iD1

X
i2f";#g

Z
R3N

j�.x1; � � � ; xN /j2d3r1 � � � d3rN D 1:

We shall use the shorthand
R
dx D P

2f";#g
R
R3

d3r.
To account for the Pauli exclusion principle for
identical particles, the wave-function has to be
antisymmetric with respect to the interchange of
any two electrons’ space-spin coordinates, that is
�.x1; � � � ; xi ; � � � ; xj ; � � � ; xN /D ��.x1; � � � ; xj ; � � � ;
xi ; � � � ; xN / whenever i ¤ j . The set of admissible
wave-functions is then the Hilbert subspace HN WDVN
1 H of L2

�
.R3 � f";#g/N IC�

, which is the
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antisymmetric tensor product of N copies of the one-
body space:

H WD
n
' W R3 � f";#g ! C;

X
2f";#g

Z
R3

j'.r; /j2d3r < 1
o

of square-integrable one-particle wave-functions '.
The simplest elements in the space HN are the

so-called Slater determinants defined as follows. Let
.'i /1�i�N be an orthonormal family of the one-body
space H, that is

R
'i .x/ N'j .x/ dx D ıi;j for any

1 � i ; j � N (with Kronecker’s notation). The
antisymmetrized tensor product of the 'i s, denoted
'1 ^ � � � ^ 'N , is defined by:

'1 ^ � � � ^ 'N .x1; � � � ; xN /D 1p
NŠ

det
�
'i.xj /

	
1�i;j�N

D 1p
NŠ

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ

'1.x1/ '1.x2/ � � � '1.xN /
'2.x1/ '2.x2/ � � � '2.xN /
:::

:::
: : :

:::

'N .x1/ 'N .x2/ � � � 'N .xN /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ
:

It is an element of HN , with norm 1. Each one-particle
wave-function 'i is called a spin-orbital (or, simply, an
orbital). For example, for two particles, such a state is

'1^'2.x1; x2/ D 1p
2

�
'1.x1/ '2.x2/�'2.x1/ '1.x2/

	
.

The first attempt to look for simpler states was due
to Hartree [11] who considered separable functions
�.x1; � � � ; xN / D '1.x1/ � � � � � 'N .xN /. However,
the resulting wave-function was violating Pauli’s prin-
ciple. The approximation was then later improved
independently by Fock [9] and Slater [16], in the late
1920s.

Actually, Slater determinants span the full many-
body space HN , a fact that is used in post-Hartree–Fock
approximations, like both the configuration-interaction
(CI) and the multi-configuration (MC) methods (see
entry �Post-Hartree-Fock Methods and Excited States
Modeling in this encyclopedia).

Hartree–Fock Energy

Whenever the quantum particles interact with each
other, the N -body hamiltonian is of the form:

H D
NX
jD1

hrj C
X

1�k<`�N
W.rk � r`/ (1)

acting on HN , where r1; : : : ; rN are the positions of the
N particles in R

3, and

hr D � „2
2m

r2
r C V.r/

is the one-body operator describing independent parti-
cles (see also entry � Schrödinger Equation for Chem-
istry in this encyclopedia). The two-body interaction
W could in principle depend also on the spin variables
or take the general form W.r;  I r0;  0/. We keep on
considering the above simpler form for simplicity. For
atoms and molecules with fixed classical nuclei located
at points Rk 2 R

3 with charge zk > 0 (Born-
Oppenheimer approximation), V.r/ D � PK

kD1
zkjr�Rk j

andW.rk �r`/ D 1
jrk�r`j are respectively the Coulomb

potential of the external nuclei and the electrostatic
repulsion between the electrons in atomic units. In
nuclear physics, V D 0 and W features the strong
interaction between nucleons (see e.g., [10]). Most of
what we will mention below stays valid in an abstract
setting, in which the Hilbert space H, the one-body
operator h W H ! H, and the two-body operator
W W H2 ! H2 are arbitrary. This is particularly
useful when considering other systems (particles in a
magnetic field, living in a finite domain, on a plane, on
a lattice, etc.). General many-body interactions could
also be considered in the same fashion.

Whenever the quantum system under consideration
is isolated, it will be found in its lowest possible
energy level, the so-called ground state. The ground-
state energy E0.N / of H can be found by minimizing
the energy h�;H� iHN

over all possible states:

E0.N / D inf
�2HNjj� jjD1

h�;H� iHN
: (2)

The ground-state of a N -particle quantum system � ,
that is, a minimizer of ( 2), is an eigenstate of the self-
adjoint operator H . In other words, the wave-function
solves the time-independent Schrödinger equation:

H� D E0.N /� (3)

in HN , where the eigenvalue E0.N / is the bottom
of the spectrum of the self-adjoint operator H (see
entry �Schrödinger Equation for Chemistry in this
encyclopedia).

http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_232
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When the particles interact with each other, the
eigenfunctions of H usually have no simple form,
and there is no straightforward numerical procedure to
compute them. The simplest method to approximate
the ground-state of H (that is, the wave-function �
corresponding to the lowest eigenvalue E0.N /) is
the Hartree–Fock method. A HF ground state �HF

is obtained by minimizing the expectation value of
the hamiltonian in (2) among Slater determinants
only. More precisely, if, say, V; W 2 L2.R3/ C
Lp.R3/, with 3 < p < C1 and if H1.R3 �
f";#g/ denotes the Sobolev space of functions in
H whose spatial gradient is square-integrable, we
define:

EHF
0 .N / D inf

˚hH�;� iHN
j

� D '1 ^ � � � ^ 'N ; 'i 2 H1.R3 � f";#g/;Z
'i N'j dx D ıij

�

D inf
˚
EHF.'1; � � � ; 'N/j'i2H1.R3�f";#g/;Z
'i N'j dx D ıij

�
(4)

with the HF functional EHF being defined on H1.R3 �
f";#g/N by:

EHF.'1; � � � ; 'N / D „2
2m

NX
iD1

Z
jrr'i j2 dx

C
Z
R3

V .r/ �.r/ d3r

C1

2

“
R3�R3

W.r � r0/�.r/ �.r0/ d3rd3r0

�1
2

“
W.r � r0/j�.r;  I r0;  0/j2 dxdx0: (5)

Here �.r;  I r0;  0/ D PN
jD1 'j .r; /'j .r0;  0/ and

�.r/ D P
2f";#g

PN
jD1 j'j .r; /j2 are the one-

particle density matrix and the particle density of the
system, respectively. The first term in (5) is referred
to as the direct term, and it corresponds to the energy
of the self-interaction of the electrons density. The
second one is called the exchange term, it is due
to the Pauli principle, and prevents any electron to
interact with itself. In quantum chemistry, in practice,
it is not the general HF model with spin that is used,

but two alternative models (see [4]): the Unrestricted
Hartree–Fock (UHF) model for open-shells molecules
and the Restricted Hartree–Fock (RHF) model for
closed-shells molecules with an even number of paired
electrons. The mathematical results below are true for
the general Hartree–Fock model and the Hartree–Fock
model without spin. Adaptations to the UHF and the
RHF models can be found in [4].

When W 	 0 and under the condition EHF
0 .N / <

EHF
0 .N � 1/, existence of at least one minimizer

of EHF
0 .N / is ensured in quantum chemistry by the

results of Lieb and Simon [14] (later completed by
Lions [15]), and in Nuclear Physics by Gogny and
Lions [10]. In particular, when V.r/ D � PK

kD1
zkjr�Rk j

is the attractive coulomb potential created by K(	1)
classical nuclei of positive charge zk and located at
points Rk 2 R

3 and W.r/ D 1
jrj is the repul-

sive Coulomb potential between any two electrons,
the strict inequality EHF

0 .N / < EHF
0 .N � 1/ holds

true provided Z D PK
kD1 > N � 1, that is, for

neutral molecules or positively charged ions. Con-
versely, no minimizer exists for negatively charged
ions when N > 2Z C K (see [13, 18]). The HF
ground-state energy provides with a bound from above
of the exact ground-state energy. For an atom the
relative difference between the HF ground-state en-
ergy and the exact ground-state energy goes to 0

asymptotically when the nuclear charge goes to in-
finity. This result is due to Lieb and Simon [14] and
Bach [2].

Hartree–Fock Equations

If .'1; � � � ; 'N / is a minimizer of (4), the corresponding
Hartree–Fock ground-state �HF D '1 ^ � � � ^ 'N does
not solve the Schrödinger equation (3). Instead, Euler-
Lagrange equations translate into a complicated system
of coupled nonlinear equations for the orbitals 'j s. If
we forget the spin dependency for simplicity, the latter
can be written in the form:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

� „2
2m

r2'i C V 'i C
� NX
jD1

j'j j2 ? W
	
'i

�
NX
jD1

�
'i N'j ? W

	
'j D

NX
jD1

�ij 'j

Z
R3

'i N'j d3r D ıij ; 1 � i; j;� N
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where � D
�
�ij

	
1�i;j�N is an Hermitian matrix of

Lagrange multipliers. The HF functional and the or-
thonormality constraints are invariant under transforms
.'1; � � � ; 'N / 7! . Q'1; � � � ; Q'N / with Q'i D PN

jD1 Uij 'j
and .Uij /1�i;j�N any unitaryN �N matrix. Therefore,
we may diagonalize the matrix � and obtain the stan-
dard Hartree–Fock equations for the new (transformed)
minimizer:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

� „2
2m

r2'i C V 'i C
� NX
jD1

j'j j2 ? W
	
'i

�
NX
jD1

�
'i N'j ? W

	
'j D �i'i

Z
R3

'i N'j d3r D ıij ; 1 � i; j;� N:

(6)

Equation 6 can be written in a more compact way as
follows:

hMF 'i D �i 'i ; (7)

where hMF is the mean-field (Fock) operator, which
depends on the 'j s in a self-consistent way. The
precise formula of hMF is:

�
hMF'

�
.r/ D �

h'
�
.r/C '.r/

Z
R3

W.r � r0/�.r0/ d3r0

�
Z
R3

W.r � r0/�.r; r0/'.r0/ d3r0:

The Lagrange multipliers �1; : : : ; �N appearing in (7)
are known to be the N lowest eigenvalues of the
mean-field operator hMF [14, 15]. Therefore, the HF
equation (7) can be interpreted in saying that the many-
body HF ground state �HF D '1^ � � �^'N is the exact
ground state of the mean-field, noninteracting,N -body
Hamiltonian associated with hMF,

0
@ NX
jD1

.hMF/rj

1
A�HF D

0
@ NX
jD1

�j

1
A�HF:

For non-interacting systems, that is W � 0, HF is
exact: The eigenstates of H D PN

jD1 hj are exactly
the Slater determinants made from the eigenstates
'j of the one-body operator h. For interacting
systems, this is not true, however. Additionally,

for repulsive systems (that is, when W is positive
definite, hF;WF i > 0 for all F 2 H2), the no-
unfilled shell theorem of [3] tells us that �N < �NC1.
This means that for any minimizer, the N th energy
level is not degenerate. It is not known whether
any solution to (6) corresponding to the lowest
eigenvalues is indeed a minimizer of the HF functional.
Lions [15] proved the existence of infinitely many
solutions to (6) that can be interpreted as excited
states.

Numerically, HF equations are solved by an iterative
procedure, known as self-consistent fields (SCF) algo-
rithms, based on the density matrix formulation, that
we now introduce (see [5] and entry � Self-Consistent
Field (SCF) Algorithms in this encyclopedia).

Density Matrix Formulation of the
Hartree–Fock Model

The Hartree–Fock energy functional may be rephrased
in a equivalent way in terms of the first-order den-
sity matrix. Here, we forget the spin dependency for
notational simplicity. To any wave-function � in HN
with k k D 1, one associates the first-order (or one-
particle) density operator �� acting on L2

�
R
3
�

with
kernel:

�� .r; r0/ D
Z
R3.N�1/

�.r; r2; � � � ; rN /�.r0; r2; � � � ; rN /

d3r2 : : : d3rN :

The first-order density operator is self-adjoint, that is,
��

� D �� , trace-class with trace N , and such that
0 � �� � 1, in the sense of operators, where 1 is the
identity operator on H. The operator �� admits a com-
plete set of eigenfunctions f'igi�1 in H, named natural
orbitals, corresponding to a sequence of eigenvalues
fni gi�1, named occupation numbers, and satisfying
0 � ni � 1 and

PC1
iD1 ni D N . Therefore, �� may

be decomposed as

�� D
C1X
iD1

ni j'ii h'i j

in physicists’ bra-ket notation. The corresponding elec-
tronic density,

http://dx.doi.org/10.1007/978-3-540-70529-1_256
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��� D
C1X
iD1

ni j'i j2;

is a well-defined integrable function such thatR
R3
�� d3r D N . For HF states � D '1 ^ � � � ^ 'N ,

�2� D �� , and �� D PN
iD1 j'i i h'i j is the projector of

rank N onto the vector space spanned by the 'is. The
HF ground-state energy (7) may be rewritten as:

EHF
0 .N / D inf

˚
Tr.h�/C 1

2
Tr.G.�/�/ j

� D �� D �2; Tr.�/ D N; Tr.h�/ < C1�

where, for any square-integrable function ', we have:

�
G.�/'

�
.r/ D �

�� ? W
�
.r/ '.r/

�
Z
R3

�.r; r0/W.r � r0/'.r0/ d3r0:

Actually, as shown by Lieb [12] (see also Bach [2]),
when the interaction potential W is positive definite,
the above constraint � D �2 may be relaxed, leading to

EHF
0 .N / D inf

˚
Tr.h�/C 1

2
Tr.G.�/�/ j

�2 � � D ��; Tr.�/ D N; Tr.h�/ < C1�
: (8)

In particular, if the infimum of the energy over general
one-particle density matrices (8) is attained, so is the
infimum over projections. The constraint �2 � � is
equivalent to 0 � � � 1, and the minimization
problem (8) may be rephrased in terms of orbitals and
occupation numbers as follows:

EHF
0 .N /

D inf
n
EHF.'1; � � � ; 'N ; � � � In1; � � � ; nN ; � � � / j

(9)

'i 2 H1.R3/;

Z
R3

'i N'j d3r D ıij ; 0 � ni � 1;

C1X
iD1

ni D N
o

(10)

with

EHF.'1; � � � ; 'N ; � � � In1; � � � ; nN ; � � � /

D
1X
iD1

ni

Z
R3

„2
2m

jr'i.r/j2 C V.r/ j'i.r/j2 d3r

C1

2

“
R3�R3

W.r � r0/�.r/ �.r0/ d3rd3r0

�1
2

“
R3�R3

W.r � r0/j�.r; r0/j2 d3rd3r0

Extensions and Conclusion

The counterpart of the Hartree–Fock model in rela-
tivistic quantum physics is the Dirac–Fock model [8];
see also entry �Relativistic Theories for Molecular
Models in this encyclopedia.

Time-dependent Hartree–Fock equations are
also derived to approximate the time-dependent
Schrödinger equation [7]; see also entry �Quantum
Time-Dependent Problems in this encyclopedia.

The Hartree–Fock method is also in use in solid
state physics to describe the ground-state energy of
quantum crystals [6]; see also entry �Mathematical
Theory for Quantum Crystals in this encyclopedia.

The exchange term in the HF energy functional
being non-local leads to many mathematical
difficulties. To circumvent them, some alternative
models are sometimes used, either getting rid of the
exchange term like in the reduced-Hartree–Fock model
[17], or replacing it by a local approximation like inX˛
or Kohn–Sham type models [1]. Alternatively, ground
state energies of molecules may be approximated
by models coming from density functional theory;
see entry �Density Functional Theory and entry
�Thomas–Fermi Type Theories (and Their Relation
to Exact Models) in this encyclopedia.

As a consequence of the mean-field approxi-
mation inherent to HF method, correlation effects
are neglected sometimes leading to deviations
from experimental data. In addition, the HF
method is designed for ground-states. Excited
states, corresponding to higher eigenvalues of the
hamiltonian, are obtained by different models,
such as post-HF models (Multi-configuration
methods, Configuration Interaction, Møller-Plesset
perturbation theory, Coupled Cluster); see the

http://dx.doi.org/10.1007/978-3-540-70529-1_240
http://dx.doi.org/10.1007/978-3-540-70529-1_257
http://dx.doi.org/10.1007/978-3-540-70529-1_262
http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_235
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corresponding entry � Post-Hartree-Fock Methods
and Excited States Modeling in this encyclopedia
and [4].
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Synonyms

Cardiac modeling; Computational electrophysiology;
Virtual heart

Definition

Heart modeling is the computational study of cardiac
function using computational models. Modern cardiac
models integrate processes from the single cell to the
whole organ level and produce results quantitatively
relevant to experimental and clinical findings. In most
cases, the term is applied to the modeling of electrical
activity in the heart, but more recently, there has been
substantial progress in combined modeling of electrical
and mechanical cardiac activity. In a general sense,
cardiac modeling can be viewed as a part of systems
biology/systems physiology/virtual organs, etc.

Introduction

The beating of the heart is controlled by waves of exci-
tation. In a normal beat, these waves follow a relatively
simple path. Each beat is triggered by the sinoatrial
(SA) node; the SA node initiates a wave which propa-
gates first through the upper chambers (atria), then the
lower chambers (ventricles). This causes the heart to
contract, driving blood through the heart and into the
circulatory system.

The normal operation of the heart can be disrupted
in many ways, called cardiac arrhythmias. For instance,
the heart may have an occasional extra beat which is
not triggered by the sinoatrial node (an ectopic beat).
The heart may also beat in an abnormally fast rhythm
(atrial or ventricular tachycardia), or experience dis-
ordered electrical activity which disrupts cardiac con-
traction (fibrillation). This last possibility is the most

http://dx.doi.org/10.1007/978-3-540-70529-1_237
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dangerous; untreated ventricular fibrillation is lethal
within minutes, and is one of the largest causes of death
in the industrialized world.

In most cases, tachycardia and fibrillation arise
not from a single source, but from complex patterns
of excitation. Because of their complexity and the
three-dimensional organization of the heart, it is cur-
rently impossible to record their details in experimen-
tal or clinical studies, and much of our knowledge
of arrhythmias comes from studying models of the
heart.

An ideal heart model should model processes which
occur on all scales, from the level of a single cell to the
level of the whole heart. In the sections that follow, we
describe methods for modeling cardiac cells and tissues
and applications of heart modeling.

Modeling Cardiac Cells
Excitation of a cardiac cell causes rapid changes in the
voltage difference between the inside and outside of the
cell (the transmembrane voltage). The change in the
transmembrane voltage during an excitation is called
an action potential. Changes in the transmembrane
voltage are caused by the flow of ions across the
cell membrane, mostly NaC;KC, and Ca2C. An ionic
model of a cardiac cell describes the flow of ions
through the cell membrane with a system of ODE’s.
Such ODE systems were first developed for nerve
cells [6] and later were extended to cardiac cells [8].
This system of ODEs views the cell membrane as the
electrical circuit in Fig. 1.

In this circuit, the change in the transmem-
brane voltage (Vm) depends on the ionic currents
(INa; IK; : : : ). The ionic currents are governed by
gating variables (gNa; gK; : : : ) which measure the
permeability of the membrane to different ions. The
gating variables typically obey relaxation equations
whose steady-state values (g1� .Vm/) and characteristic
times (��.Vm/) depend on Vm. The corresponding
ODE’s are given by:

Cm
@Vm

@t
D INa C IK C : : :

I� D g�.Vm �E�/ (1)

dg�
dt

D g1� .Vm/ � g�
��.Vm/

Heart Modeling, Fig. 1 A circuit representation of the cell
membrane

Here, Cm and E� are constants, Cm is the capacitance
of the membrane, and E� is the potential at which
there is no flow of a particular ion, called the Nernst
potential.

More complex ionic models may describe 10–15
or even more ionic currents, pumps, etc., resulting in
tens of equations for gating variables and ion concen-
trations. Properties of ionic currents can be measured
using voltage clamp techniques, and there are ionic
models for many different animals, including mice,
rats, guinea pigs, dogs, and humans. Because ionic
models simulate the activity of the ion channels in the
cell membrane, they can model how action potentials
are affected when these channels are blocked or altered
by a genetic mutation, or environmental change. They
are often used to study how different conditions affect
wave propagation, for instance, the effect of drugs or
mutations on the heart, or the effect of ischemia (a
blockage of blood flow to part of the heart).

One disadvantage of ionic models is that the large
number of dependent variables can make them difficult
to simulate and analyze. There are several models, usu-
ally referred as FitzHugh-Nagumo-type models, which
attempt to describe the dynamics of cardiac cells with
only a couple of state variables. These low-dimensional
models are often constructed to reproduce, sometimes
quantitatively, a particular phenomenon of the ionic
model, such as the excitation of a cell, its recovery, the
dependence of the duration of excitation on its period,
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etc.; often, phenomena observed in low-dimensional
models are later seen in complex ionic models.

Tissue andWhole-Heart Models
In most cases, heart arrhythmias arise not from in-
dividual cells, but from the interaction of waves of
activation. One type of arrhythmia may arise from
loops in the heart (for instance, around major blood
vessels entering and exiting the heart); a wave traveling
around such a loop can lead to tachycardia [7]. In the
1940s, Selfridge wrote that similar arrhythmias can
occur even without a physical loop in the heart [10]; for
instance, a spiral-shaped wave may rotate indefinitely
around its center. One way of studying such waves is
through tissue- and whole-heart-level modeling.

Excitation is transmitted from one cardiac cell to
another through gap junctions, electrical connections
between a cell and its neighbors. On the cellular level,
cardiac propagation is nearly discrete: Waves of exci-
tation travel very quickly inside an individual cell, but
experience delays at gap junctions. On larger scales,
this propagation can be homogenized and represented
by a system of partial differential equations.

One difficulty in modeling the heart is that cardiac
tissue is anisotropic. One commonly held view is that
cardiac tissue consists of myocardial fibers which are
arranged in sheets, and the electrical properties of
tissue (and thus the speed of wave propagation) are
related to the fiber structure: Resistivity is lowest along
fibers, is moderate across fibers in a sheet plane, and
highest across the sheets. This is handled in the models
by treating resistivity as a tensor-valued function of
position.

In modeling whole hearts, it is common to treat the
resistivity tensor as a function of fiber direction, which
is much easier to measure. Fiber direction can be mea-
sured using several techniques, including histology and
confocal microscopy, which measure fiber directions
directly but require dissection, and diffusion-tensor
MRI, which measures fiber directions by measuring the
speed of diffusion of water in the tissue.

The two most widely used models for excitation
in cardiac tissue are the monodomain and bidomain
models; the monodomain model just includes the trans-
membrane voltage, Vm, while the bidomain model
models Vm as the difference between the intracellular
and extracellular potentials (Vi and Ve) and allows the
intracellular and extracellular resistivities to differ.

In the monodomain model, which is an extension
of the cable equation [6], the transmembrane voltage is
affected by ionic currents and by diffusion from nearby
cells:

Cm
@Vm

@t
D div.DrVm/ � Iion: (2)

Here, Cm is the membrane capacitance, D is the con-
ductivity matrix of the tissue, and Iion is the total
ionic current, i.e., the sum of the INa; IK, etc. from the
previous section. This is essentially the ionic model of
the previous section with one new term, div.DrVm/,
which models the diffusion of potential through the
tissue. The anisotropy of the tissue is captured in the
value of D.

The bidomain model is more complicated. In the
bidomain model, intracellular potential and extracel-
lular potential are treated separately, though they are
related by a conservation law [5].

Vm D Vi � Ve (3)

Im D Cm
@Vm

@t
C Iion (4)

div.DirVi/ D �div.DerVe/ D Im: (5)

Here, Di and De are conductivity matrices for the intra-
and extracellular spaces. If Di D kDe, the bidomain
model reduces to the monodomain model.

The advantage of the bidomain model is that it
captures phenomena that cannot be simulated with
a monodomain model, especially phenomena which
occur during stimulation and defibrillation. During
defibrillation, a strong external electric field is applied
to the heart. In a homogeneous monodomain model,
this field does not induce a transmembrane voltage
inside cardiac tissue. In the bidomain model, however,
the intracellular and extracellular spaces have different
resistivities and are affected differently by the field,
inducing a transmembrane voltage. This voltage forms
adjacent regions of strong positive and negative polar-
ization which are called virtual electrodes.

A disadvantage of the bidomain model is that it is
more complicated to simulate than the monodomain
model. While a solver for the monodomain model
can simply use (2) and (1) to update Iion and Vm, a
solver for a bidomain model must solve the elliptic
problem (5) at each step. In the absence of external
electrical fields or current injection, the patterns of
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wave propagation obtained using monodomain and
bidomain models are generally almost identical [3].

One of the major problems for numerical solutions
of (2–5) is the large range of spatial scales. A propa-
gating wave has a very sharp upstroke which requires
a grid size on the order of 250� to fully resolve, while
a typical heart may be 
 10 cm in size. A wide variety
of numerical methods have been developed to integrate
(2–5), including explicit, implicit, and semi-implicit
solvers. For a short overview see [3].

Applications

Models have been particularly useful in studying the
heart because of the difficulty of studying arrhythmias
in experiments. Arrhythmias typically have compli-
cated three-dimensional geometry, so electrodes placed
on the surface of the heart do not give a full picture
of heart activity, and it is difficult to measure activity
on the inside of the heart without disrupting heart
function. Models do not have this problem; a model
can be simulated at any resolution and under arbitrary
conditions.

Because of the comparative ease of studying
arrhythmia in models, many important concepts in
cardiology were introduced in modeling studies. For
instance, early studies using models based on cellular
automata illustrated one path along which arrhythmias
can form and develop. An arrhythmia like tachycardia
may start when the propagation of a wave is partially
blocked; spiral-shaped waves (Fig. 2) may form around
the boundary of the wave break. These waves are
roughly periodic, but once they form, heterogeneities
in the heart or other factors may lead them to break
up into small, short-lived, disordered wavelets, a very
dangerous state called fibrillation (Fig. 3). One of the
main goals of heart modeling is to understand this
progression from a healthy rhythm to tachycardia to
fibrillation.

Heart modeling has helped us understand some of
the ways that fibrillation can start and some of the
factors that can maintain it, like dynamical instability.
The dynamics of a cardiac cell are complex, and the
shape and duration of the action potential depends on
many factors, including the length of time since the end
of the previous action potential and the intracellular
Ca2C dynamics. As the frequency of stimulation in-
creases (for instance during tachycardia), this dynam-

Heart Modeling, Fig. 2 A spiral wave in a 2D ionic model of
human cardiac tissue [Ten Tusscher and Panfilov unpublished]

Heart Modeling, Fig. 3 Electrical turbulence in a 2D ionic
model of human cardiac tissue [Ten Tusscher and Panfilov
unpublished]

ical system may undergo a bifurcation. One common
example is T-wave alternans, during which short action
potentials alternate with longer ones. T-wave alternans
can be diagnosed from an ECG, and it is widely used
as a predictor of ventricular tachyarrhythmias and a
criterion for identifying a strategy of treatment for a
patient. Modeling showed that alternans can lead to
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wave breaks and fibrillation. This was confirmed by
experiments which showed that drugs which dampen
dynamical instability by flattening the restitution curve
can terminate fibrillation in animals. Thus, finding
effective drugs to control dynamical instability is an
important direction in pharmacological research.

Modeling also has potential applications in clinical
interventions, where it might one day be used to im-
prove previously ad hoc methods. For example, during
cardiac resynchronization therapy, lead placement and
timing is typically determined empirically, but a model
based on a patient’s individual characteristics could be
used to optimize placement and timing instead. Patient-
specific models could also lead to improvements in
implantable defibrillators and in choosing sites for
ablation, an invasive clinical procedure in which a tiny
part of the heart is destroyed in order to reduce the
incidence of arrhythmias. In order for techniques like
this to become cost-effective, however, there must be
a improvement in outcome to match the increased cost
of constructing such a model, and achieving this sort of
improvement remains a major goal of heart modeling.

Recommended Reading

More information on single cell and tissue models can
be found in the recent reviews [3, 4]. Various aspects
of cardiac modeling, including topics covered here and
additional topics such as ECG modeling and cardiac
mechanics, are covered in Panfilov and Holden [9].
A wide variety of results obtained using modeling are
presented in the special journal issues [1, 2].
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Synonyms

HMMs for ODEs

Short Definition

Numerical algorithms that solve the effective dynami-
cal systems of the given stiff oscillatory or dissipative
ordinary differential equations by exploring the un-
derlying scale separation and efficient sampling tech-
niques.

Description

This entry describes some basic principle for
designing heterogeneous multiscale methods (HMMs)
[2, 7, 16, 17] for initial value problems of stiff ordinary
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differential equations (ODEs). We consider the initial
value problem for ODEs in the general form

d

dt
x D f�.x; t/; (1)

where x W R
C 7! D � R

d , 0 � t � T , and f�
is a smooth function. � 2 .0; �0	 is a small parameter
that parameterizes the time scales. We assume that for
any t > 0 and almost every x 2 D, the Jacobian
@f�=@x has d distinct eigenvalues � satisfying (a)
Re (�) � C1; (b) either 0 < C2 < j�j < C3 or
C4 < �j�j; (c) j�1 � �2j > C5 > 0 for any two
distinct eigenvalues of @f�=@x. Here C1; C2; � � � ; C5
are positive constants that do not depend on �. The
eigenvalues with large imaginary part result in fast
oscillations in the solutions while those eigenvalues
with large negative real part result in fast transients.
Scale separation typically refers to condition (b) and
that T is independent of �. This article focuses mostly
on highly oscillatory problems, since problems with
only fast transients can be computed already accurately
and efficiently by many established implicit methods
which suppress the fast transients. ODEs with highly
oscillatory solutions are much harder to simulate since
the fast modes are present for all times and may interact
to give contributions to the slower modes.

Problems with oscillatory solutions constitute a
broad and active field of scientific computations. One
of the typical computational challenges for solving
these problems arises when the frequencies of the
oscillations are large compared to either the time or the
spatial scale of interest. In such cases, computations
can become exceedingly expensive due to the need for
maintaining stability and accuracy of solutions over a
relatively large domain.

In many applications, only certain slowly changing
effective properties of the given system are of interest.
The model that describes the effective properties of
interest can be computed without the computational
bottleneck encountered in the original oscillatory sys-
tem. In Hamiltonian systems described by actions and
angle variables, the action variables can be well ap-
proximated by its averages over the angles if the angles
are sufficiently fast [5,12]. As an example, consider the
system

d

dt
� D 1

�
!.I /C gI .�; I /;

d

dt
I D gII .�; I /;

where gII is L-periodic in �, and the averaged equa-
tion

d

dt
X D F.X/ WD 1

L

Z L

0

gII .t; X/dt: (2)

It can be shown that if X.0/ D I.0/; then jX.t/ �
I.t/j � C� for 0 < t < T and some constant C:
Hence, reduction in the computational costs is possible
if detailed resolution of the oscillations is computed
only within the short-time periods of the fast angles.

It is often the case that a model for describing
these effective properties are known to exist but that
no explicit form suitable for numerical computation
can be conveniently derived. Heterogeneous multiscale
methods aim at computing the relevant slowly chang-
ing effective properties (the macroscopic model) of a
given stiff problem (the microscopic model). HMMs
often exploit scale separation in the problem by com-
puting solutions of the given system in sufficiently
short-time intervals; the computed solutions are then
carefully averaged in order to evaluate the information
needed in evaluating the macroscopic model. The given
microscopic system is solved with initial data that are
consistent with the values of macroscopic variables in
order to evaluate or derive the information needed by
the numerical scheme at the macroscopic level. In this
fashion, the micro- and macroscopic models are cou-
pled together. See Fig. 1 for diagrams of two HMMs
whose macroscopic models are ODEs. For problems
with fast transients, it is possible to use sufficiently
small steps that resolve the transient, and much longer
time steps afterwards, see the bottom diagram in Fig. 1.

An HMM for initial value problems of stiff ODEs
consists of the following components:
• Macroscopic model: a closed system of equations

with macroscopic variables X that describe the
desired effective properties of the given dynamical
system. Note that the macroscopic model does not
need to be in the same space as the given system.
This article focuses on macroscopic models involv-
ing ODEs

d

dt
X D F.X; t/; X.0/ D X0:
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Heterogeneous Multiscale
Methods for ODEs, Fig. 1
Diagrams of two different
ways in which a
heterogeneous multiscale
method couples the
macroscopic and microscopic
models
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However, in many applications involving molecular
dynamics for solids or fluids, the corresponding
macroscopic model would often include partial dif-
ferential equations.

• Macro-scheme: A discretization of the macroscopic
model using step sizes H � �.

• Micro-scheme: An accurate time discretization
for (1) for short-time intervals.

• Reconstruction operator R W X.t/ 7! x.t/:

• Compression operator: C W x.t/ 7! X.t/, satisfying
C.R.X// D X: The reconstruction and compres-
sion operators define a notion of consistency be-
tween the macroscopic and microscopic variables.

• Evaluation of the macroscopic model: K W x.�/; t 7!
F.X.t/; t/: This component often involves some
averaging or filtering technique.

As an example, an HMM using the Leap-Frog scheme
as the macro-scheme and forward Euler scheme as
the micro-scheme (HMM-LF-FE) is summarized as
follows:
1. Macroscopic evolution using Leap-Frog

XnC1 �Xn�1 D 2H F.Xn; tn/; n D 1; 2 � � � :

2. Microscopic evolutions for each macro-step

xkC1
n � xkn D hf�.x

k
n ; tn C kh/; k D 1; 2; � � � ;M;

x0n WD R.Xn; tn/;

for short-time intervals of size �, using a stable for-
ward Euler scheme and a suitable initial condition
x0n and a step size h sufficiently small.

3. Evaluation of F.Xn; tn/:

F.Xn; tn/ WD K.fxkngMkD1; ff�.xkn ; tn C kh/gMkD1/:

In practice, it is usually important to run the micro-
scopic evolutions (step 2) over a grid which discretizes
each period of the oscillations in the solutions by
at least eight grid points. Too large a step size may
decrease the effectiveness of the evaluation of F in
step 3.

Convergence and Computational Complexity of
an HMM
In the setting of HMMs described above, the focus of
the algorithm is on approximating the solution of the
macroscopic model which is derived from the given
stiff ODEs. The error of an HMM is typically decom-
posed into the sum of the errors in approximating the
macroscopic model and the HMM error. The errors
in approximation of the macroscopic model include
the modeling error and the local truncation error of
the macro-scheme; the modeling error comes from
the fact that the closed macroscopic model could be
an analytical approximation of a macroscopic model
that is not closed, for example. In (2), the difference
between X and I is considered as the modeling error.
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The HMM error in each step can be regarded as
the error in evaluating F via the proposed multiscale
coupling involved in steps 2 and 3.

Naturally, the computational complexity of an
HMM depends on the factor

T

H

�
NR C �

h
CNF

	
„ ƒ‚ …

HMM evaluation of F

; (3)

where NF is the computational complexity for each
application of step 3, NR is that for preparing the
suitable initial data in step 2.

Following the classical numerical analysis theory
for ODEs, for any fixed �, the solutions of any stable
consistent method converge to the analytical solution
as the step size goes to zero. The errors depend on
powers of the eigenvalues of the Jacobian of the ODE’s
right hand side and the step size. This theory is not
directly suitable for describing the convergence of
HMMs: If convergence of an HMM requires the same
computational complexity as that of a conventional
numerical method applied to the given stiff problem,
one questions the need to develop HMMs or other
multiscale algorithms.

Instead, the convergence and computational com-
plexity of HMM style multiscale algorithms may be
more properly discussed by considering the asymptotic
cases when the frequencies of the fastest oscillations
tend to infinity, before the step size is sent to zero. Let
E.t IH; �/ denote the error in the macroscopic vari-
ables at time t , computed with a macro-scheme using
step size H and exact solutions for the microscopic
evolutions. Computational complexity of an HMM can
be assessed for the case

lim
H�!0

sup
0<�<�0.H/

E.t IH; �/ D 0;

with some �0.H/ ! 0 as H ! 0.
An HMM typically achieves a computational cost

that is at least sublinear to (ideally independent of) the
cost for resolving all the fast oscillations in constant
time scale. Of course achieving such complexity re-
quires that fast oscillations are computed only in very
short-time intervals (corresponding to the part �=h in
(3)) and yet the dynamics for the macroscopic variables
is consistently evolved (corresponding to the NF and

NR parts in (3)). The minimization of all these parts
closely hinges upon a good averaging technique.

Averaging Kernels
In a typical HMM, the macroscopic variable and its
time derivatives are approximated by moving averages
of certain functions of the microscopic variable x:
These moving averages are computed by convolving
the functions with a suitable kernel. Take (2) for exam-
ple, in a typical HMM,

F.X.t// D 1

L

Z L

0

gII .t; X/dt � K�  gII .�; I /.t/:

The kernel K� denotes a scaling of K 2 C
q
c .R/, i.e.,

K�.t/ D ��1K.t=�/; which satisfies

Z
R

K.t/trdt D
(
1; r D 0;

0; 1 � r � p:

Such kernels are said to have p vanishing moments.
Some commonly used kernels are

Kexp.t/ D Z˛�Œ�1;1	.t/ exp.˛=.t2 � 1//; (4)

where ˛ is a positive constant, and Z˛ is a normaliza-
tion constant such that jjKexpjjL1.R/ D 1, and

Kcos.t/ D 1

2
�Œ�1;1	.t/.1C cos.
t//:

Let F.t; t
�
/ be L-periodic in the second argument, and

NF be its average in the second argument, i.e.

NF .t/ WD 1

L

Z L

0

F.t; s/ds:

It can be shown that

ˇ̌
ˇ̌ZK�.t � s/F.s; s

�
/ds� NF .t/

ˇ̌
ˇ̌�CK;F �pCCK;g�

�
�

�

�q
;

(5)

where CK;F is a constant depending on K and the
derivatives of F with respect to the first variable, and
CK;g depends on g and the derivatives ofK . Therefore,
the parameter � determines not only support size of the
averaging kernel K�, but also the effectiveness of this
kernel for estimating the moving average NF .t/: In most
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HMM applications, it is important to use a kernel that
has good regularity.

For problems involving multiple nonadditive and
noncommensurate frequencies, averaging over suitable
tori with the correct invariant measures are needed.
In certain cases, the one-dimensional averaging kernel
can be used systematically to perform these more
averagings.

Common Choices of Macroscopic Variables
One of the first task in designing and applying an
HMM to a problem is to determine a closed macro-
scopic system that adequately describes the slowly
changing effective behavior of interest. In the fol-
lowing, some commonly considered macroscopic vari-
ables are listed:
1. Slow solutions of the given microscopic model
For certain stiff ODEs, there exist initial conditions
from which the derivatives of the corresponding so-
lutions in the time interval 0 � t � T are bounded
uniformly for 0 < � < �0: These special solutions are
referred to as slow solutions of the stiff ODE. In this
case, the macroscopic variableX can be the same vari-
able as what is used in the given microscopic system.
An equilibrium of a system is a trivial slow solution.
See [10] for further reading and [4] for an application
to finding slow solutions for stiff mechanical systems.
2. Slow variables of the given system
A smooth function � W U 7! R is said to be slow
along the flow of the given stiff system if there exists a
constant CT , independent of �, such that

sup
x.t/2U;t2Œ0;T 	;�2.0;�0/

j d
dt
�.x.t//j � CT :

Loosely speaking, �.x/ being slow means that the
quantity �.x.t// is a sum of a smooth function N�.t/,
bounded uniformly in �, and an oscillatory functions
of bounded by some constant multiple of �: Thus, a
suitable moving average of the slow variable approx-
imates the limit N�.t/ and therefore can be used as
a macroscopic variable. Following this definition, for
systems of the form

x0 D f .
t

�
; x/; f bounded,

each scalar component x is considered a slow variable.
If the moving averages of slow variables are used to

characterize the effective properties of a stiff dynami-
cal system, it is essential that the resulting macroscopic
model are, to leading order of �; closed.

Another important issue is to make sure that no
“hidden” slow variables are left out in the macroscopic
model [2, 7]. Consider the commonly considered case
in which a set of slow variables are explicitly separated
from the fast ones:

d

dt
x1 D fI .x1; x2/;

d

dt
x2 D 1

�
fII .x1; x2/C g.x1; x2/:

However, the system may have other “hidden” slow
variables that cannot be ignored in approximating
x1.t/. Even if for any fixed value of x1, the trajectories
of x2 are ergodic over certain manifold as � ! 0;

x1 cannot be approximated by simply averaging fI
in the x2 variable. This issue is best illustrated by the
following ODE system:

d

dt
x1 D x22 C x23;

d

dt
x2 D �1

�
x3 C x2;

d

dt
x3 D 1

�
x2 C x3;

with x1.0/ D 0; x2.0/ D 1; and x3.0/ D 0: The
trajectory of the fast variables, i.e., x2 and x3, forms
a slowly expanding spiral: i.e., the distance of the
solution rotates around the origin, rotating with a fast
frequency 2
=�. The distance between x2.t/; x3.t/ to
the origin is et . The slow variable x1.t/ can only be
approximated consistently if for each time step tn the
initial values for the fast variables x2 and x3 used in
each microscopic simulation (step 2 above) lie on the
circle with radius etn : This means that some additional
slow variables that capture the spiral’s expansion have
to be amended to the macroscopic model in order to
consistently model the effective properties associated
with x1.t/. It appears that the vector field defined
by . Px2; Px3/ can be decomposed further into “fast and
slow constituents”: a fast rotational phase and a slowly
changing amplitude. In fact, �.t/ WD x22.t/ C x23.t/

provides the needed information about the right circle
over which microscopic simulations for x2 and x3
should be performed. Since d�

dt
is bounded uniformly
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Heterogeneous Multiscale
Methods for ODEs, Fig. 2
Diagram of a hierarchical
HMM over three separated
time scales

2O(  ) 2O(  )

O( )

in �, the function �.x2; x3/ D x22 C x23 is referred
to as a slow variable, even though this slow variable
does not appear in the given equation. Therefore,
in this setting, x1 and � should be included in the
macroscopic model. Indeed, away from .x2; x3/ D
.0; 0/; the vectors r�.x2; x3/ and .�x3; x2/ form a
basis of R

2. The second vector comes directly from
the dominating terms in the vector field . Px2; Px3/. r�
defines a direction in which the fast variables drift
slowly, and �.x2; x3/ provides a coordinate to quantify
such drift.

In certain problems, it is possible to bypass the
need for a set of explicitly known slow variables. By
comparing short-time solutions of the given micro-
scopic model and those of a modified microscopic
model that does not contain the lower order terms
on the right hand side, the influence of the lower
order terms on the effective dynamics can be extracted.
See [3].

In general, more “hidden” slow variables may be
needed when the fast variables in the given system
lie in higher dimensions. Obviously, the choice of
“hidden” slow variables to be included in the macro-
scopic model is not unique. Nevertheless, the selected
slow variables should be functionally independent in
the sense that their gradients are linearly indepen-
dent in a neighborhood of fast variables’ trajectories
and should span the correct subspace to which the
dynamics of the effective properties of interest be-
long.
3. Moving Averages of x.t/ or Functions of x.t/
HMMs can also be built so that the macroscopic
variables are the moving averages of a few judiciously
chosen polynomials of the microscopic variables. The
moving averages are computed by convolution with
a scaled kernel K�. Often, these moving averages
correspond to certain physical quantities such as the
center of mass of a group of particles and certain notion
of energy of the system, and their incorporation in
the macroscopic model may be interpreted as dynamic
constraint to the multiscale model.

4. Functions Defined in Certain Physical Domain
In applications involving molecular dynamics coupling
to fluids, solids, etc., macroscopic models typically
involve partial differential equations defined over cer-
tain physical domain. The macroscopic variables may
correspond to certain statistical quantities, such as local
particle density and spatially averaged velocity, of the
underlying molecular system.

Hierarchical HMMs for Many Time Scales
If the eigenvalues of the Jacobian @f=@x in (1) can be
grouped into O.1/; O.��1/; and O.��2/; then there
are three separated time scales in the given prob-
lem. It is also possible that, after proper rescaling of
time, the eigenvalues of the Jacobian are all of order
O.��2/; but the slowly changing effective properties
of the system takes place in the O.��1/ and O.1/
time scales. In these cases, efficient HMMs can be
devised by hierarchically apply the two-scale HMMs
described above. See Fig. 2 for an illustration of such
an algorithm. However, additional caution should be
exercised, as the interactions between the oscillations
are more complicated. Due to the averaging effect of
different widely separated frequencies, a variable in the
system can have formally unbounded derivative while
still changes slowly. Consequently, the corresponding
theory for iteratively averaging a variable in different
time scales should be developed.

References and Recommended Reading

On averaging: [11–13]. On general numerical analy-
sis for problems with multiple time scales: [9]. On
slow solutions: [10]. On the Heterogeneous Multiscale
Method framework: [17]. On HMMs for ODEs: [1,
2, 7, 16], for stochastic systems [15], and for a class
of mechanical systems [6]. Other related multiscale
methods: [8, 14].



Hierarchical Matrices 645

H

References

1. Ariel, G., Engquist, B., Kreiss, H.O., Tsai, R.: Multiscale
computations for highly oscillatory problems. In: Engquist,
B., Lötstedt, P., Runborg, O. (eds.) Multiscale Modeling and
Simulation in Science. Lecture Notes in Engineering and
Computer Science, vol. 66, pp. 237–287. Springer, Berlin
(2009)

2. Ariel, G., Engquist, B., Tsai, R.: A multiscale method
for highly oscillatory ordinary differential equations
with resonance. Math. Comput. 78(266), 929–956
(2009)

3. Ariel, G., Engquist, B., Kim, S.J., Li, Y., Tsai, R.: A
multiscale method for highly oscillatory dynamical sys-
tems using a poincar map type technique (2012, Under
review)

4. Ariel, G., Sanz-Serna, J., Tsai, R.: A multiscale technique
for finding slow manifolds of stiff mechanical systems.
Multiscale Model Simul. (2012, Under review)

5. Arnol’d, V.: Mathematical Methods of Classical Mechanics.
Springer, New York (1989)

6. Calvo, M.P., Sanz-Serna, J.M.: Heterogeneous
multiscale methods for mechanical systems with
vibrations. SIAM J. Sci. Comput. 32(4), 2029–2046
(2010)

7. Engquist, B., Tsai, Y.H.: Heterogeneous multiscale methods
for stiff ordinary differential equations. Math. Comput.
74(252), 1707–1742 (2005)

8. Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff
differential equations: problems with gaps in their eigen-
value spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106
(2003). (electronic)

9. Kreiss, H.O.: Problems with different time scales. Acta
Numer. 1, 101–139 (1991)

10. Kreiss, H.O., Lorenz. J.: Manifolds of slow solutions for
highly oscillatory problems. Indiana Univ. Math. J. 42(4),
1169–1191 (1993)

11. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averag-
ing and Homogenization. Texts in Applied Mathematics,
vol. 53. Springer, New York (2008)

12. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Meth-
ods in Nonlinear Dynamical Systems. Applied Mathe-
matical Sciences, vol. 59, 2nd edn. Springer, New York
(2007)

13. Sanz-Serna, J.: Modulated Fourier expansions and hetero-
geneous multiscale methods. IMA J. Numer. Anal. 29(3),
595–605 (2009)

14. Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and struc-
ture preserving multiscale integration of stiff ODEs, SDEs,
and Hamiltonian systems with hidden slow dynamics via
flow averaging. Multiscale Model Simul. 8(4), 1269–1324
(2010)

15. Vanden-Eijnden, E.: Numerical techniques for multi-scale
dynamical systems with stochastic effects. Commun. Math.
Sci. 1(2), 385–391 (2003)

16. Weinan, E.: Analysis of the heterogeneous multiscale
method for ordinary differential equations. Commun. Math.
Sci. 1(3), 423–436 (2003)

17. Weinan, E., Engquist, B.: The heterogeneous mul-
tiscale methods. Commun. Math. Sci. 1(1), 87–132
(2003)

Hierarchical Matrices

Wolfgang Hackbusch
Max-Planck-Institut für Mathematik in den
Naturwissenschaften, Leipzig, Germany

Mathematics Subject Classification

65F05; 65F10; 65F30; 65F50; 15A24; 47A56; 65N22;
65N38

Synonyms

H-matrices

Short Definition

The numerical treatment of large-sized matrices, in
particular, of fully populated matrices suffers from
quadratic or cubic cost concerning storage and matrix
operations. The aim of the technique of hierarchical
matrices is to perform all matrix operations (includ-
ing matrix-matrix multiplication, inversion, and LU
decomposition) in almost linear cost, which means
O.n log� n/ including logarithmic factors.

The set H.k; P / � R
n�n of hierarchical matrices

is characterized by a rank k and a block partition P
(For simplicity, only real square matrices are consid-
ered here. However, rectangular matrices can be treated
as well, and R can be replaced by C.). Figure 1 shows a
typical partition of a matrix into suitable blocks. Each
block b 2 P corresponds to a matrix block of the
form M jb D AbB

T
b ; where Ab and Bb have at most

k columns. Hence, roughly speaking, a hierarchical
matrix is described by the data .Ab; Bb/b2P (By practi-
cal reasons, sufficiently small blocks are treated as full
matrices (see below).). In order to perform the matrix
operations efficiently, P must be the set of leaves of
a certain “block cluster tree,” which gives rise to the
“hierarchical” structure. The constant local rank k can
be replaced by a rank distribution .kb/b2P .

In particularly, matrices arising from boundary
value problems can be exponentially well approxi-
mated by hierarchical matrices. This includes fully
populated matrices like the inverse of finite element



646 Hierarchical Matrices

Hierarchical Matrices, Fig. 1 Typical block partition of a
hierarchical matrix

matrices and the matrices arising in boundary element
methods.

The availability of efficient matrix operations allows
to evaluate matrix functions, e.g., exp.�tA/, and to
solve large-scale matrix equations like the Riccati
equation.

Description

The important facts for the precise construction of
hierarchical matrices are briefly summarized. For a
complete description, compare [5].

Low-rank matrices. The basic building block are
low-rank matrices of the formM D ABT 2 R

n�n with
A;B 2 R

n�k . Provided that k � n; the representation
of M by means of A;B is much more efficient with
respect to storage and operations.

Truncation. The sum of two low-rank matrices of
the form described above has the increased rank 2k.
Therefore, the operations must be followed by a trun-
cation to the previous format. The standard tool for the
approximation by a rank-k matrix is SDV.

Singular value decomposition (SVD). Given any
matrix M 2 R

n�n, the SVD is U†V H with unitary
U; V and † D diagf1; 2; : : :g; 1 	 2 	
: : : 	 0. Set †0 D diagf1; : : : ; k; 0; : : : ; 0g and
M 0 WD U†0V H: Then M 0 is the desired best rank k
approximation of M . In the present application, we
exploit the fact that M D ABT holds with A;B 2
R
n�k . We want to reduce the number of columns

from k to ` < k. Compute the QR decompositions
A D QARA, B D QBRB and the SVD of the small
matrix RART

B D U 0†V 0H 2 R
k�k . Truncate † to

†0 as above. Then M D QAU
0†0V 0HQH

B is the best
approximation of rank l .

Cluster tree T(I). Denote the index set for the row and
columns of the matrix by I: The cluster tree T .I / has
the following properties: (a) the root is I , (b) any vertex
(“cluster”) � 2 T .I / is a subset of I , and (c) either �
is a leaf and satisfies #� � nmax (e.g., nmax D 32 may
be used) or it has two sons � 0 and � 00 with � 0 [ � 00 D �

and � 0 \ � 00 D ;: The set of sons is denoted by S.�/ D
f� 0; � 00g.

The geometric version of the practical generation
of T .I / is as follows. In usual discretization methods,
each i 2 � corresponds to a nodal point x.i/ 2 R

d . De-
termine the bounding box B containing

˚
x.i/ W i 2 ��

.
Divide B along the longest side in two boxes B 0 and
B 00 WD BnB 0. Define the sons of � by � 0 WD fi 2 � W
x.i/ 2 B 0g and � 00 WD �n� 0.

Block cluster tree. The corresponding tree for the
index set I � I is defined as follows: (a) I � I is
the root of T .I � I /; (b) each vertex of T .I � I / is
of the form b D � �  with �;  2 T .I /; and (c) if
b D � �  2 T .I � I / holds with either � or  being
a leaf, also b is a leaf of T .I � J /; otherwise b has the
sons S.b/ WD fb0 D � 0 �  0 W � 0 2 S.�/;  0 2 S./g.

Admissibility condition. Identifying the indices i 2
I with associated nodal points x.i/ 2 R

d , we can define
the diameter diam.�/ and the distance dist.�; / of two
clusters. Having fixed some � > 0, a block b D �� 2
T .I � I / is admissible if

minfdiam.�/; diam./g � � dist.�; /:

For matricesM arising from boundary value problems,
the latter condition ensures that the singular values of
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the matrix block M jb decay exponentially so that the
truncation to the hierarchical format is rather accurate.

Admissible partition P. A partition is a set of disjoint
blocks whose union is I �I . The (minimal) admissible
partition P can be constructed as follows. Start with
P D fI �I g. As long as there is an inadmissible block
b 2 P , which is not a leaf of T .I � I /; replace b by its
sons: P 7! .Pnfbg/[S.b/. For the resulting partition
P , all blocks b 2 P are either leaves of T .I � I / or
admissible.

Definition of H.k;P/. A matrix M 2 H.k; P / is
defined by its blocks .M jb/b2P . If b is admissible, the
low-rank representation .Ab; Bb/ is used, i.e., M jb D
AbB

T
b : Otherwise, M jb is stored as full matrix (note

that it is of size R
p�q with minfp; qg � nmax).

Operations. All operations make use of the tree struc-
ture of T .I � I /. As simplest example we discuss
the matrix-vector multiplication y D Mx. For this
purpose one predefines y WD 0 2 R

I and calls
MVM.y;M; x; I � I /, where MVM is the recursive
procedure

procedure MVM.y;M; x; b/I
fperforms yj� WD yj� CM jbxjg
if b D � �  2 P then yj� WD yj� CM jb � xj
else for all b0 2 S.b/ do MVM.y;M; x; b0/I

Another example is the LU decomposition of M .
Using the sons of I � I; we are led to the block
formulation

�
M11 M12

M21 M22

�
D

�
L11 O

L21 L22

� �
U11 U12
O U22

�
;

which is equivalent to the following four tasks: (i) com-
pute L11 and U11 as factors of the LU decomposition
of A11; (ii) compute U12 from L11U12 D A12, (iii)
compute L21 from L21U11 D A21, and (iv) compute
L22 and U22 as factors of the LU decomposition of
L22U22 D A22 � L21U12. The tasks (ii) and (iii) are
easy and correspond to the backward/forward substi-
tution, while (i) and (iv) lead to a recursion: one LU
decomposition of the large matrix can be reduced to
two LU decompositions of matrices of half size.

Matrix functions. The exponential ofM can be com-
puted, e.g., by the halving rule, which leads to the
recursive function

function EXP.M/I
if kM k � 1 then EXP WD Taylor.M/ else EXP W
D sqr.EXP.M=2//I

where Taylor.M/ is the evaluation of a suitable Taylor
polynomial and sqr is the square function.

H2-Matrices. A subset of H.k; P / are the H2-
matrices, which possess a second hierarchy. Here,
the general set of low-rank matrices is replaced
by a smaller subset which is easier to code. As a
consequence, one can avoid logarithmic factors in the
cost of storage and operations (see [2]).
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Short Definition

Hodgkin-Huxley (HH) equations are a set of four cou-
pled nonlinear ordinary differential equations which
describe the dynamics of the transmembrane electrical
potential of the squid giant axon in response to an
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injected current. They are based on the experimentally
determined voltage-dependent kinetics of NaC and KC
ion currents and accurately describe observed nonlin-
ear phenomena including action potentials, excitability,
and oscillations. HH equations are a cornerstone of bio-
physics which serve as a framework for most studies of
membrane electrophysiology.

Description

Transmembrane Ion Currents
The cell membrane, a thin lipid bilayer, is a good elec-
trical insulator interposed between the intra- and extra-
cellular aquatic, conductive media. The membrane is
populated by ion pumps, which use metabolic energy
to transfer specific ions across the membrane against
their electrochemical gradients. The pumps maintain
a stable set of ion concentrations on both sides of the
membrane giving rise to a potential difference between
the inside and the outside. This potential difference is
a property of all living cells. The membrane is also
studded with discrete ion channels which are proteins
made up of thousands of amino acids and highly selec-
tive for specific ion species. The flux of ions through a
channel is driven by the cross membrane electrochem-
ical gradient. In addition, it is modulated by changes in
the conformational state of the channel protein which
occur, for many channel types, in response to the
membrane potential. Cross membrane electrochemical
gradients drive the ion currents which are modulated
by channels. The ion channels interact through the
membrane potential to give rise to a cell’s capabilities
of signaling and information processing. This is an
example of a much more general phenomenon, that of
interacting proteins performing a biological function.

We define the membrane potential as V D Vin �Vout

where Vin is the potential inside the cell and Vout is
the potential outside. The lipid bilayer forming the
membrane is well approximated as a capacitor, and
the effect of ion channels is represented as electrical
conductivity. Charge conservation leads to the general
form of the HH equations:

C
dV

dt
D �Iion C Iinj.t/; (1)

where C is the membrane capacitance, Iion is the
total ion current (outward taken as positive), and Iinj

is an injected current (inward positive by convention)

which may be supplied by a micro-electrode in an
experimental setup or by synaptic inputs. Having in-
troduced the relevant conservation law, the next step
is to seek what may be called “constitutive” relations
that are needed in order to eventually formulate the
governing equations. Note, firstly, that the ion currents
obey Ohm’s law and have the form Ii D gi .V � Ei/

for the ion species i , where Ei is the Nernst or reversal
potential of the ion. The reversal potential is the value
of the potential difference at which the diffusive flux
due to the concentration difference cancels the elec-
trical drift due to the voltage, so that the ion current
vanishes. Since concentration gradients are maintained
at constant levels by the ion pumps, they are used as
input parameters in the Nernst equation which yields
the value of the reversal potential. The Nernst equation
is based on thermodynamic principles.

The NaC and KC ion channels are active (volt-
age dependent), and their conductances are expressed
as the product of a maximal conductance (which is
attained if all channels are open) and another term
that describes the momentary fraction of channels
which are open. The latter is a function of a set of
channel gating variables which dynamically open and
close at rates that depend on V . For example, the
KC conductance is given as gK D n4 gK where gK

is the maximal conductance, n4 is the instantaneous
fraction of open KC channels, and the variable n is the
gating variable. Although fitting the data was Hodgkin
and Huxley’s primary technique in formulating their
equations, they also provided interpretations in terms
of gating “particles” each of which can be either in
a permissive “on” state or a blocked “off” state. For
example, for KC, each channel is associated with four
particles such that the channel opens only when all four
are independently in the permissive state, hence the
fourth power of n. The gating variable describes the
fraction of such particles that are in permissive states.
Hodgkin and Huxley not only matched the observed
time course of IK, but it can be said that they thereby
predicted the tetrameric structure of the KC channel
discovered decades later.

The switching of a gate between its two possible
states is governed by the voltage-dependent opening
and closing rates ˛n.V / and ˇn.V /, respectively, in
accordance with the first-order kinetics: dn=dt D
˛n.1 � n/ � ˇnn. This is equivalent to

dn=dt D .n1 � n/=�n (2)
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such that the gating variable tends to track the value
of an activation function n1.V / D ˛n=.˛n C ˇn/

with a characteristic time lag �n.V / D 1=.˛n C ˇn/.
The sodium current is represented in a similar way as
gNa Dm3h gNa, wherem and h are the gating variables
for NaC which have their own switching rates. The
voltage dependence of the activation functions and
time constants of the variables m, h, and n in the HH
model are shown in Fig. 1, and the explicit formulas for
their rates are given in the next section. Although no
precise derivation from first principles is available, it
is possible to provide a thermodynamical rationale for
the sigmoidal shapes of the activation functions shown
in the figure.

Dynamical Equations

The molecular structure of ion channels is an active
area of research, but the modeling of the dynamics of
the membrane potential has progressed independently
through the impetus provided by Hodgkin and Hux-
ley’s visionary macroscopic approach summarized in
the previous section. We now describe how the ohmic
formulation of ion currents and their relationship to
the membrane potential via gating variables lead to the
HH equations. Initially, the expression for the active
currents (NaC and KC) and a generic passive “leak”
current, corresponding to the remaining ion species
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Hodgkin-Huxley Equations, Fig. 1 Activation functions (top
panel) and time constants (bottom panel) as a function of
membrane potential

(primarily Cl� and Ca2C), are substituted into (1).
Next, (1) is supplemented by additional equations that
describe the kinetics of the gating variables of the
active currents. The result is a set of four simultaneous
ordinary differential equations:

C
dV

dt
D �m3h gNa.V � ENa/ (3)

�n4 gK.V � EK/� gL.V �EL/C Iinj.t/

dm

dt
D .1 �m/ ˛m.V / �m ˇm.V /

dh

dt
D .1 � h/ ˛h.V /� h ˇh.V /

dn

dt
D .1 � n/ ˛n.V / � n ˇn.V /;

where the voltage-dependent rate functions are

˛m.V / D 0:1.V C 40/=.1� exp.�.V C 40/=10//

˛h.V / D 0:07 exp.�.V C 65/=20/

˛n.V / D 0:01.V C 55/=.1� exp.�.V C 55/=10//

ˇm.V / D 4 exp.�.V C 65/=18/

ˇh.V / D 1=.1C exp.�.V C 35/=10//

ˇn.V / D 0:125 exp.�.V C 65/=80/.

The following parameter values are chosen to match
the data: gNa D 120ms/cm2, gK D 36ms/cm2,
gL D 0:3ms/cm2, ENa D 50mV, EK D �77mV,
EL D �54:4mV. Membrane potential and time are
respectively in units of mV and ms. The injected
current is in �A/cm2. The gating variables, m, h, and
n, range in the unit interval. The NaC current is inward
and depolarizing, while the KC current is outward and
hyperpolarizing in the physiological range, approxi-
mately EK < V < ENa.

A principal type of structural component in the state
space of a dynamical system such as (3) is the set
of fixed points that correspond to constant values of
the “forcing” Iinj. These represent time-independent
states for which the time derivatives in (3) vanish. A
fixed point is stable if trajectories from a surrounding
region evolve toward it under (3). Then the fixed
point may be referred to as an equilibrium, and the
corresponding value of the potential is often called the
resting membrane potential, Vr . In fact, the parameters
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of the leak current are chosen to match the squid
axon’s resting membrane potential at Vr D �65mV
at Iinj D 0. It is important not to be mislead by the
terms rest or equilibrium because a membrane in such
a state is in fact far from thermodynamic equilibrium
and continues to expend metabolic energy.

Before proceeding in the next section to behaviors
related to the stability of fixed points, let us discuss
their uniqueness. Note that (2) implies that the gating
variables at the fixed points equal their activation
functions evaluated at the resting membrane potential,
that is, m D m1.Vr /; h D h1.Vr /, and n D n1.Vr/.
We therefore rewrite the first equation of (3) at the fixed
point as

0 D �F.Vr ;m1.Vr/; h1.Vr /; n1.Vr//

CIinj D �f .Vr /C Iinj; (4)

and find that the uniqueness of the fixed point is
equivalent to the monotonicity of the function f .Vr/.
When Vr is outside the range shown in Fig. 1, the acti-
vation functions asymptotically approach their extreme
values and f .Vr/ becomes approximately linear with
a nonzero slope, hence monotonic. A general proof
of the monotonicity of f .Vr/ is not known and may
be of questionable usefulness, given that it is unlikely
to generalize to all the ever proliferating models of

various types of membranes which are extensions of
(3), sometimes with dozens of types of ionic currents.
On the other hand, the numerical determination of
the fixed points of (3) is easily achieved by solving
the nonlinear equation corresponding to (4) via, for
example, the multivariate Newton-Raphson method.

Action Potential

For a range of values of constant injected current
(approximately Iinj < I1 D 10�A/cm2 and Iinj >

I2 D 154�A/cm2), the system approaches a globally
attracting time-independent, equilibrium. In this case,
the equilibrium state can be determined by solving
(4) or by numerically integrating (3) until the vari-
ables attain constant values. However, initial condi-
tions that return directly to equilibrium are confined
only to a small region near the equilibrium state. Those
perturbed sufficiently away from equilibrium initially
undergo a sharp excursion referred to as an action
potential (AP), nerve impulse, or spike. Figure 2 shows
the solutions of (3) when Iinj.t/ is a 2ms depolarizing
step current with varying amplitudes. The role of small
input current is to displace the state slightly away
from equilibrium. For small amplitudes of the input,
the membrane potential rises slightly and returns to
rest with a strongly damped oscillation (black curves).

Hodgkin-Huxley Equations,
Fig. 2 Action potentials (red
curves, top panel) and
subthreshold behavior (black
curves) in response to an
injected step current (gray
curve) of varying amplitudes
shown in the legend. The
gating variables (bottom
panel) corresponding to the
first action potential shown in
the top panel
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When the stimulus amplitude is sufficiently high, how-
ever, an AP is generated (red curves).

The sequence of events during an AP is as follows:
Initially, the membrane is depolarized by the input and
the activation functions change instantly to new values
such that m1 and n1 increase and h1 decreases.
Since �m is much smaller than the other time constants,
NaC channels activate and the NaC conductance in-
creases very fast. This then causes a large increase in
the NaC current and leads to further depolarization.
The runaway positive feedback between depolarization
and NaC current accounts for the steep upstroke of the
AP. The feedback loop is broken when NaC deacti-
vates due to the decrease in its inactivation variable,
h, and the fact that the driver of the NaC current,
V � ENa, is now smaller. At about the same time,
the KC current activates and its driver, V � EK, has
become very large. The membrane potential therefore
rapidly decreases toward EK, generating the down-
stroke of the AP. The restoring role of KC explains
why IK is sometimes called a delayed rectifier current.
Immediately after the downstroke, the system begins
to gradually return from its hyperpolarized state to
equilibrium and has a refractory period during which
it is relatively insensitive to activation. The AP is over
in a few milliseconds and the axon is said to have
fired.

The AP thus provides a mechanism by which neu-
rons respond to their many synaptic stimuli by out-
putting a series of digital, all-or-none, responses. APs
can be transmitted without attenuation across consid-
erable physiological distances (some axons are longer
than 1m). Such propagation of spikes is modeled
by a partial differential equation that is obtained by
inserting on the right hand side of the first equation in
(3) a term proportional to @2V=@x2 that accounts for
the axial flow of charges. It should also be mentioned
that although the black curves in the top panel of Fig. 2
are often ascribed to “subthreshold” behavior, (3) does
not possess a true threshold. There is a range of stimuli
which produce graded APs with a continuum of am-
plitudes. As indicated by the dashed curves in the top
panel of Fig. 2, this range is very narrow and unlikely
to be physiologically significant. The capability to gen-
erate single APs followed by a return to equilibrium is
referred to as excitability, although the term sometimes
covers the entire set of behaviors supported by (3) in-
cluding repetitive firing, described in the next section.
It is possible to experimentally reconstitute excitability

in nonexcitable cells by controlling the expression of
a repertoire of channel proteins. This points to a very
high degree of experimental corroboration for the HH
theory.

Nonlinear Oscillations

Periodically repeating APs appear when the fixed point
of (3) is destabilized and solutions are attracted to a
limit cycle. This transition can be investigated through
the linear stability of the fixed points of (3). The
behavior of tiny displacements from the fixed point is
associated with the eigenvalues of the Jacobian matrix,
J , the 4 � 4 matrix of derivatives of the right hand
side of (3), evaluated at the fixed point. It can be
shown using the Routh-Hurwitz criterion that a pair of
eigenvalues becomes purely imaginary at two values
of the injected current, I1 ' 10 and I2 ' 154�A/cm2.
The Hopf bifurcation theorem guarantees the existence
of (stable or unstable) limit cycles in the neighborhood
of the fixed points corresponding to I1 and I2. Eigen-
values of J in the range Iinj < I1 all have negative real
parts with one complex conjugate pair. This confirms
that the resting state is a stable spiral and explains the
fact that solutions approach equilibrium with a damped
oscillation.

At I1, the attracting state changes, with increasing
Iinj, from a stable spiral to a stable limit cycle. This
type of transition is known as a subcritical (“hard”)
Hopf bifurcation. The height of the shaded regions in
Fig. 3 indicates the difference between the extrema of
an oscillating membrane potential when the trajectory
lies on a limit cycle. After the onset of oscillations, by
reducing Iinj to just below I1, the system’s attractor
does not return to the stable fixed point. The oscil-
lations persist in a narrow range 
0:7 < Iinj < I1
indicated by the yellow shaded region in Fig. 3. In this
region, there are multiple attracting states for a given
injected current and the behavior is hysteretic. This is
another prediction of the HH equations that was later
confirmed by experiment.

The amplitude of oscillations diminishes as Iinj is
increased further and, at I2, a stable spiral reappears.
The frequency of oscillations in the repetitive firing
regime starting at Iinj D I1 is about 70Hz and
increases monotonically to about 170Hz at Iinj D I2.
In this range, the system’s response can be considered
as the frequency of spikes rather than a series of spikes
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Hodgkin-Huxley Equations, Fig. 3 Stability portrait of the
Hodgkin-Huxley equations. The membrane potential corre-
sponding to the stable fixed point (solid curve) is shown as
a function of the input current. At Iinj � 10�A/cm2, the
fixed point becomes unstable (dashed curve), and solutions are

attracted to a stable limit cycle shown as the gray region that
marks the range of the oscillating membrane potential. In the
yellow region, a stable fixed point and a limit cycle coexist and
the system is hysteretic. The two insets show typical traces of
APs associated with the region of the plot where they are shown

with specific times of occurrence. Many network mod-
els, called firing-rate models, assume that neurons
primarily operate in this regime and model only the
frequency of their response. The transition to oscilla-
tions observed in (3) via a subcritical Hopf bifurcation
corresponds to the behavior of what has been called
type (or class) II neurons. A defining characteristic of
this transition is the abrupt appearance of a nonzero
frequency at the onset of oscillations. By contrast, in
type I neurons which are more common in cortex,
the onset occurs at a vanishingly small frequency but
with a finite amplitude. Such a transition, where an AP
may appear at onset with an arbitrarily long latency,
are associated with a bifurcation referred to as saddle-
node-with-limit-cycle.

HH equations and their extensions support the
vast panoply of nonlinear behaviors including
excitability, oscillations, hysteresis, refractoriness,
postinhibitory rebound, and the various regimes of
AP generation including tonic firing, bursting, and
others that are experimentally observable in many
types of cells in the animal world. Furthermore, two-
dimensional systems inspired by the HH equations,
such as the FitzHugh-Nagumo or Morris-Lecar
equations, or one-dimensional systems, such as the
Leaky Integrate-and-Fire model, are often used to
distill the dynamical origin of such behaviors or
to manage the computational load in large model
networks.
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Definition

Approximating solutions of systems of nonlinear equa-
tions F.x/ D 0 via a Newton-type iterations often fails
when no a priori knowledge of a good approximation
x0 of zero point of F.x/ is available. As a possible
remedy, the homotopy methods deform the system of
nonlinear equations F.x/ D 0 to a system G.x/ D
0 with known solutions. Under certain conditions, a
smooth curve that emanates from a solution ofG.x/ D
0 will lead to a solution of F.x/ D 0.

Description

Suppose one wants to explicitly compute, to a desired
degree of precision, a solution of a smooth system of n
equations in n unknowns

f1.x1; � � � ; xn/ D 0

::: (1)

fn.x1; � � � ; xn/ D 0:

Write x D .x1; � � � ; xn/ and F.x/ D .f1.x/; � � � ;
fn.x//. Using Newton’s iteration in several variables

x.iC1/ WD x.i/ � F �1
x .x.i//F .x.i//; i D 0; 1; � � �

where x.0/ 2 R
n and

Fx D

0
BBBB@

@f1

@x1
� � � @f1

@xn
:::

:::
@fn

@x1
� � � @fn

@xn

1
CCCCA

is the Jacobian of F , to solve (1) can be difficult.
Each isolated solution attracts an open neighborhood
of initial guess x.0/. But these basins of attraction
can vary widely in size, making, quite frequently, the
solutions all but invisible. This problem is inherent in
local methods.

As an alternative, the homotopy continuation
method is suggested in [4]. The method defines a
homotopy (or deformation)

H.x; t/ W Rn � Œ0; 1	 ! R
n

such that

H.x; 0/ D G.x/; H.x; 1/ D F.x/; (2)

where G W Rn ! R
n is a (trivial) smooth map having

known zero points and H is also smooth. (In [4], the
homotopy

H.x; t/ D .1 � t/.x � a/C tF .x/

was suggested with G.x/ D x � a for a 2 R
n.) If

one can successfully trace the implicitly defined curve
x.t/ 2 H�1.0/ from x.0/ D a to x.1/ D b, then a
solution of F.x/ D 0 is obtained, i.e., F.b/ D 0.

Several questions immediately arose:
• Smoothness and parametrization: Does the set of

solutions of H.x; t/ D 0 for t 2 Œ0; 1	 consist of
smooth one manifolds? If so, can each smooth one
manifold be parameterized by t?

• Accessibility: Will any one of those smooth one
manifolds, or smooth curves, that emanated from
t D 0 intersect t D 1 so that a solution of
F.x/ D 0 can be reached?

• Numerical method: What is the most efficient way
to trace those solution curves?
We shall discuss these questions in the following:

Smoothness and Parametrization
For the homotopyH.x; t/ D .h1.x; t/; � � � ; hn.x; t// D
0, if .x0; t0/ 2 H�1.0/, i.e., H.x0; t0/ D 0, and



654 HomotopyMethods

Hx D

0
BBBB@

@h1

@x1
� � � @h1

@xn
:::

:::
@hn

@x1
� � � @hn

@xn

1
CCCCA

is nonsingular at .x0; t0/, then by the Implicit Function
Theorem, there exists a uniquely defined smooth map
x.t/ in a neighborhood .t0��; t0C�/ of t0 such that:
(i) x.t0/ D x0.

(ii) H.x.t/; t/ D 0, t 2 .t0 � �; t0 C �/.
Actually, the interval where this smooth curve x.t/
is defined can be extended globally by a continuation
argument, as long as Hx stays nonsingular along the
curve. Thereby, the parametrization of the solution
of H.x; t/ D 0 by t was originally suggested in
[4], which constituted a bottleneck for the develop-
ment of the homotopy method for years since Hx

may not always be nonsingular on the solution set of
H.x; t/ D 0.

For the homotopy

H.x; t/ D .1 � t/.x � a/C tF .x/ D 0; (3)

it was shown in [3] that if a 2 R
n is chosen at

random, then the n � .n C 1/ matrix ŒHx;Ht 	 is of
full rank (rank n) on any points of the solution set
of H.x; t/ D 0. It follows that, by Implicit Function
Theorem again, for .x0; t0/ 2 H�1.0/, there exists
smooth curve .x.�/; t.�// for � 2 .��; �/; � > 0, such
that .x.0/; t.0// D .x0; t0/ and H.x.�/; t.�// D 0 for
� 2 .��; �/. As before, the interval where this curve
is defined can be extended globally by a continuation
argument. So the solution set of H.x; t/ D 0 consists
of smooth curves. They are known as the homotopy
paths.

This suggests that for the solution set of
H.x; t/ D 0 in (3), both x and t should be considered
as independent variables and they both should
be parameterized by an independent parameter �.
(The most commonly used parameter for this purpose
is the “arc length” of the curve.) Equipped with this,
the homotopy method has become a powerful tool in
solving nonlinear equations numerically.

Practically, instead of using the homotopy in (3),
one may consider the Newton Homotopy: H W R

n �
R ! R

n, where

H.x; t/ D .1 � t/.F.x/ � F.a//C tF .x/

D F.x/ � .1 � t/F .a/ D 0; a 2 R
n: (4)

Obviously, a is a trivial solution of H.x; 0/ D F.x/ �
F.a/ D 0 and H.x; 1/ D F.x/. While, theoretically,
there may not always exist a warrant for the matrix
ŒHx;Ht 	 being of full rank along the curves as in (3),
the homotopy paths .x.�/; t.�// of this homotopy are
smooth practically. It is generically more efficient than
the homotopy in (3).

Accessibility
For a homotopy path .x.�/; t.�// of the homotopy
H.x; t/ D 0 emanated from .x.0/; t.0// D .a; 0/, will
it reach the hyperplane t D 1? Namely, does �0 exist
so that t.�0/ D 1 and therefore H.x.�0/; t.�0// D
H.x.�0/; 1/ D F.x.�0// D 0?

This question plays a critically important role for
the effectiveness of the homotopy method for solving
nonlinear equations. That is, to solve the nonlinear
equation F.x/ D 0 by the homotopy method, an
inevitable requirement is the boundness of the smooth
homotopy path .x.�/; t.�// for all � 2 R. Then the
path has no place to run and it must hit t D 1.
Of course, if F.x/ D 0 has no solutions, .x.�/; t.�//
will not stay bounded.

For certain nonlinear problems, such as solving the
Brouwer fixed-point problems, the boundness of the
homotopy path .x.�/; t.�// is guaranteed theoretically.
In such situations, the homotopy method can even
provide a theoretical proof of the existence of the
solution of the nonlinear equations in consideration.

Practically, in the absence of a theoretical backup
of the boundness of the homotopy path .x.�/; t.�//,
one can still find �0 > 0 for which t.�0/ D 1 and
H.x.�0/; t.�0// D F.x.�0// D 0 very frequently. In
this regard, the Newton Homotopy in (4) works much
better than the homotopy in (3) based on a topological
argument.

Numerical Methods
For a smooth homotopy path .x.�/; t.�// of a homo-
topy H.x; t/ D 0, where H W Rn � R ! R

n, we have
H.x.�/; t.�// D 0, and therefore,

d

d�
H.x.�/; t.�// D Hx

dx

d�
CHt

dt

d�

D 
Hx Ht

�
2
664
dx

d�

dt

d�

3
775 D 0:
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When the n � .n C 1/ matrix ŒHx;Ht 	 is of full
rank (rank n), its one-dimensional kernel can serve as

the direction of the tangent vector

�
dx

d�
;
dt

d�

�
of the

path .x.�/; t.�//. And if we elect arc length as the
parameter �, then

����
�
dx

d�

dt

d�

�����
2

2

D 1:

Furthermore, it can be shown that

det

2
4Hx Ht

dx

d�

dt

d�

3
5 > 0:

Based on these, one may consider .x.�/; t.�// as the
solution of an initial value problem:

2
664
dx

d�

dt

d�

3
775 D

�
�x

�t

�
; .x.0/; t.0// D .a; 0/;

where 
Hx Ht

� �
�x

�t

�
D 0 (5)

with

����
�
�x

�t

�����
2

D 1 and det

�
Hx Ht

�x �t

�
> 0;

and the well-developed numerical methods for solving
initial value problems of ordinary differential equations
can immediately be used to trace the path .x.�/; t.�//
numerically. This is not, however, an efficient approach
in general, because such approaches ignore the fact
that .x.�/; t.�// is a set of zero points of H.x; t/.
This plays an essential role in the commonly used

Prediction-Correction framework to trace .x.�/; t.�//
given below:
1. Prediction

Let .x0; t0/ D .x.�0/; t.�0// be a point on the path
.x.�/; t.�//. To obtain a new point along the path,
we make a prediction step by calculating the tangent
vector .�x;�t/ at .x0; t0/ in (5) in the first place,
followed by an Euler prediction:

.x�; t�/ D .x0; t0/C h.�x;�t/;

where h > 0 represents a “stepsize”
2. Correction

Most likely the point .x�; t�/ is off the path
.x.�/; t.�//. To return to the path, the Newton-
Corrector method is used by employing Newton
iterations on the nonlinear system



H.x; t/ D 0

h .x; t/� .x�; t�/; .�x;�t/ i D 0
(6)

with initial point .x�; t�/, where h �; � i stands for
the usual inner product in R

nC1. When a point
.xk; tk/ generated by this iterations satisfies a given
tolerance, say kH.xk; tk/k < �, this point will be
taken as our next point along the path (Fig. 1).

Remarks
1. Careful selections of the stepsize h > 0 in the

prediction step to account for the necessary con-
vergence of the Newton iterations in the correction
step as well as the efficiency of the algorithm can be
found in [1].

2. Various options of tracing the homotopy path
.x.�/; t.�// for solving nonlinear systems had been
efficiently implemented in [13].

HomotopyMethods, Fig. 1
Prediction-correction
framework
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Application

Nowadays, solutions of many nonlinear problems
in physics, engineering, and general sciences can
be found numerically by homotopy methods when
Newton iterations fail to converge. (See the references
in [1].)

In particular, solving systems of polynomial equa-
tions by homotopy continuation methods has received
considerable attention in recent years. In this context,
one wishes to find all isolated zeros (could be millions
or even more) or identify all higher dimensional solu-
tion components of the systems in C

n. Those tasks are
quite different from what we introduced above where
the main interest is finding one solution of nonlinear
equationF.x/ D 0 in R

n. The idea that those goals can
possibly be achieved by means of homotopy methods
emerged in [5,6]. Over the years, a tremendous amount
of progress has been made (see [9–11]), and several ef-
ficient software packages are available, such as Bertini
[2], PHC [12], HOM4PS [8], and PHoM [7].
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Synonyms

High-order FEM; hp-FEM; Spectral element method

Synopsis

The hp-version of the finite element method (hp-FEM)
is a variant of the finite element method (FEM –
henceforth called h-FEM). In hp-FEM, convergence
can be achieved by decreasing the mesh size and/or
increasing the approximation order. Since, typically,
in the h-FEM the approximation order is fixed, the
hp-FEM may also be viewed as a generalization of
the FEM in that additionally the order is allowed
to vary. Another special case of the hp-FEM is the
p-version FEM (p-FEM), where the mesh is fixed
and only the approximation order is increased to in-
crease accuracy. Closely related to the p-FEM and hp-
FEM are the spectral method and the spectral element
method. A prime feature of these methods is that they
can be highly accurate already for modest problem
sizes. On suitably designed meshes, exponential rates
of convergence (error versus N˛ , where ˛ > 0 and
N is the problem size) can be achieved for problem
classes that are often encountered in structural and fluid
mechanics as well as electromagnetics.

http://www.nd.edu~sommese/bertini
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Basic Methodology: An Example

The Poisson problem as a prototypical second-order
elliptic problems is as follows: Given a domain � and
a function f , find u such that

��u D f in �; u D 0 on @�: (1)

As in the classical FEM, a possible starting point is the
Ritz method: Since the solution u of (1) minimizes the
quadratic functional

J.u/ W D 1

2
B.u; u/� l.u/;

B.u; v/ D
Z
�

ru � rv dx; l.v/ D
Z
�

f v dx

over the Sobolev space V D H1
0 .�/ D fu 2

L2.�/W ru 2 L2.�/; uj@� D 0g one can approximate
u by minimizing J over a subspace VN . In the hp-
FEM, the space VN is a space of piecewise poly-
nomials (more generally, mapped polynomials). For
example, if � is partitioned into simplices K 2 T (the
partition T is called “mesh” or “triangulation”), then
VN D Sp.T / WD fv 2 C.�/ j vjK 2 Pp 8K 2
T ; vj@� D 0g, where Pp denotes the space of poly-
nomials of degree p; that is, the elements of VN
are continuous functions that satisfy the homogeneous
boundary conditions and are piecewise polynomials.
If the polynomial degree p is fixed and the mesh
size h WD maxfdiamK jK 2 T g is decreased, the
method is the classical h-FEM; if the mesh is fixed
and p is increased, we arrive at the p-FEM; varying
the mesh and the polynomial degree yields the hp-
FEM. In practice, not only partitions into simplices are
used but also quadrilaterals (in 2D), hexahedra (in 3D),
and prisms (in 3D); additionally, curved elements are
used where the element edges/faces are curved. Also,
in more general settings, the polynomial degree need
not be uniform but can vary over the mesh.

Convergence Behavior
Figure 1 illustrates the difference between the h-FEM
and p-FEM for the smooth solution u.x; y/ D
sin
x sin
y on � D .0; 1/2. Algebraic convergence
O.hp/ is achieved for the h-FEM, whereas exponential
convergence (in p) is featured by the p-FEM on a fixed
mesh.
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hp-Version Finite Element Methods, Fig. 1 h and p-FEM,
smooth solution

The input data for elliptic problems are often piece-
wise smooth (analytic) resulting in piecewise smooth
(analytic) solutions with singularities at certain points
(in 2D) or along lower dimensional manifolds (in 3D).
In FEM, mesh refinement towards the singularities is
essential. In hp-FEM, the best mesh refinement strat-
egy is based on the geometric mesh. For shape-regular
meshes (extensions to so-called anisotropic meshes are
possible), a mesh is geometrically refined towards a set
M , if for all elements K 2 T with K \ M D ; one
has diamK 
 dist.K;M/. Figure 2 illustrates such
a mesh; the value L is called the number of layers of
geometric refinement and  2 .0; 1/ the grading factor.
Selecting L 
 p for spaces of piecewise polynomials
of degree p produces a space VN that can lead to
exponential rates of convergence. For � D .�1; 1/2 n
Œ0; 1	 � Œ�1; 0	 and u described in polar coordinates by
r2=3 sin.2=3'/, Fig. 2 shows the performance of the
h-FEM (uniform meshes), the p-FEM (fixed mesh),
and the p-FEM on geometrically refined meshes with
L layers. While h-FEM and p-FEM feature algebraic
convergence (with the p-FEM converging at twice the
rate), the geometric mesh features exponential conver-
gence.

Features
A prime feature ofp/hp-FEM is the high accuracy with
the potential of exponential convergence. High-order
methods are often more faithful to certain qualitative
features of the continuous problem than low-order h-
FEM. Well-known examples include various locking



658 hp-Version Finite Element Methods

s 4 s 3
s 2 s 1

s 0

101 102 103 104 105
10−10

10−8

10−6

10−4

10−2

100
singular solution; p−FEM on geometric meshes

problem size N

er
ro

r 
in

 H
1 −

se
m

in
or

m

L=0
L=2
L=4
L=6
L=8
L=10
L=12
L=p

102 104 106

10−2

10−1

problem size N

er
ro

r 
in

 H
1 −

se
m

in
or

m

h−FEM (p=1)
p−FEM
O(h2/3)
O((p+1)−4/3)
h−FEM (p=2)

hp-Version Finite Element Methods, Fig. 2 Left: a geometric
mesh (refined towards the reentrant corner) with  D 0:5 and
L D 4. Center: algebraic convergence of h-FEM and p-FEM

for non-smooth solution. Right: convergence behavior of p-FEM
on fixed geometrically refined meshes ( D 1=8; L layers); Big
circles correspond to L D p

phenomena (e.g., volume locking in elasticity) and
dispersion errors in wave propagation problems. As a
finite element method, the p/hp-FEM can be based on
the same variational formulations as the h-FEM. Most
techniques used in h-FEM are available for the hp-
FEM, e.g., mixed methods, nonconforming methods,
discontinuous Galerkin methods, anisotropic meshes,
adaptivity, and fast iterative solvers (e.g., of domain
decomposition type). The hp-FEM shares with the h-
FEM the geometric flexibility in that it can accom-
modate also triangular/tetrahedral elements, which are
commonly used in mesh generators.

Numerical Issues
In the context of complex geometries (e.g., curved
geometries) the representation or approximation of the
geometry requires more care than in the h-FEM. A
common choice is to employ polynomial interpola-
tion/approximation of the geometry using polynomi-
als of degree at least that employed in the ansatz
space (iso/superparametric elements). Given the cost
of meshing, a practical setting is often one of a fixed
mesh, and the approximation order is increased from
p D 1 to pmax (8 � pmax � 20 in structural me-
chanics). Advantages of this procedure include cheap
error estimation (a sequence of approximations cor-
responding to p D 1; : : : ; pmax is available). It is
crucial, however, that the mesh be sufficiently refined
near singularities so as to be suitable for the highest
polynomial degree employed.

Various differences to the h-FEM arise from the
fact that the system matrix of the p/hp-FEM is much

more densely populated (e.g., a pure p-FEM on a
fixed mesh leads to an essentially full matrix). Static
condensation of so-called internal degrees of freedom
is often done, both for preconditioning purposes and
reduction of the problem size. Differences between
h-FEM and p/hp-FEM manifest themselves also in
the numerical quadrature, which requires more care
here. For example, in p/hp-FEM, they account for a
significant portion of the overall computational cost of
the analysis. Several techniques are available to speed
up these computations including the use of properties
of orthogonal polynomials, tensor product structures,
and the “sum factorization” techniques harking back to
S. Orszag (1980). These calculations are well suited for
modern hardware given their high degree of inherent
parallelism and good relation of floating point opera-
tions to memory access.

Selected Literature
The p/hp-FEM in structural mechanics was pioneered
by B. Szabó in the late 1970s. A complete
mathematical analysis of the hp-FEM for elliptic
problems in 2D with piecewise analytic input data
was given by I. Babuška and B. Guo in a series of
papers. The situation in 3D is much more complex
than in 2D in that anisotropic elements are required
for elliptic problems in polyhedral domains to
retain the exponential convergence. Good overviews
covering mathematical analysis, implementation, and
applications include [1, 4–7]. The p-FEM is very
closely related to the spectral method and the hp-
FEM to the spectral element method; see, e.g., [2, 3].
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The numerical experiments are performed with the
software package ngsolve by J. Schöberl (available
at http://www.sourceforge.net).

Cross-References

�Computational Mechanics
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A conservation law is a first order system of partial
differential equations in divergence form:

@tU.x; t/C
mX
˛D1

@˛G˛.U.x; t// D 0; (1)

where x, taking values in R
m, is the space variable, the

scalar t is the time variable, @˛ stands for @=@x˛ and @t
denotes @=@t . The state vector U takes values in R

n,

and the G˛ are given smooth functions from R
n to R

n.
The term stems from the identities

d

dt

Z
�

U.x; t/dxC
I
@�

mX
˛D1

G˛.U.x; t//�˛.x/dS D 0;

(2)

derived by integrating (1) over any spatial domain �
in R

m, with boundary @�, and then applying Green’s
theorem. Here � stands for the unit normal to @�. Thus,
U is the conserved field and the n � m matrix-valued
functionG, with column vectorsG˛ , is the flux.

Systems in the form (1) are ubiquitous, as classical
physics rests on conservation laws for mass, momen-
tum, energy, electric charge, magnetic flux, etc. In the
applications, one often encounters more general forms
of (1), with @tH.U / in the place of @tU , a nonzero
production term P.U / on the right-hand side, and G˛
depending explicitly on .x; t/. Nevertheless, it will
suffice to deal with (1), since such generalizations do
not manifest new phenomena.

The system (1) is hyperbolic when for any U in R
n

and unit vector � in R
m, the n � n matrix

ƒ.U; �/ D
mX
˛D1

�˛DG˛.U / (3)

has real eigenvalues and n linearly independent eigen-
vectors.

The Euler equations, which govern the flow of
inviscid gases, have served as the prototype for devel-
oping the theory of hyperbolic systems of conservation
laws. The simplest example is the Burgers’ equation,
a scalar conservation law in a single space variable,
m D n D 1, which nevertheless exhibits many of the
salient features of general systems. Accordingly, the
reader will profit from studying the present entry in
the Encyclopedia simultaneously with the entries on
the Burgers’ equation, the Riemann problem, and com-
putational aspects of gas dynamics.

The principal objective of the analytical theory
is to identify settings and function classes in which
systems (1) are wellposed, and to establish existence,
uniqueness, stability, regularity, and large time behav-
ior of solutions.

We proceed under the assumption that (1) is
equipped with a scalar function �.U /, called entropy,
and associated m-vector valued function Q.U /, called
entropy flux, such that

http://www.sourceforge.net
http://dx.doi.org/10.1007/978-3-540-70529-1_161
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DQ˛.U / D D�.U /DG˛.U /; ˛ D 1; � � � ; m: (4)

Because of (4), any differentiable, classical solution U
of (1) satisfies the extra conservation law

@t �.U.x; t//C
mX
˛D1

@˛Q˛.U.x; t// D 0: (5)

As dictated by the Second Law of thermodynamics,
hyperbolic systems of conservation laws encountered
in physics are always endowed with an entropy-entropy
flux pair, and often (e.g., in the Euler equations), but
not always, this entropy is a convex function of the state
vector. Our standing assumption here will be that the
entropy �.U / of (1) is uniformly convex.

An important implication of the presence of a con-
vex entropy is that the Cauchy problem for (1), under
sufficiently smooth initial dataU0, is locally wellposed.
Specifically, if, for k > m=2 C 1, U0 belongs to the
Sobolev space W k;2.Rm/, that is, its partial derivatives
up to order k are square integrable over Rm, then there
exists a unique continuously differentiable, classical
solution U of (1) on R

m � Œ0; T / satisfying the initial
condition U.x; 0/ D U0.x/, for x in R

m. The time
interval Œ0; T / of existence is maximal, in that either
T D 1 or else T < 1 and maxx jrU.x; t/j ! 1, as
t " T .

The above result has a linear flavor as it rests on
the linearized form of (1). The proof employs L2

bounds on U and its derivatives, up to order k, derived
through “energy” type estimates induced by the extra
conservation law (5).

Existence theorems with similar flavor also apply
to initial-boundary value problems for (1), on some
domain � of Rm with boundary @�. The initial data
U0, prescribed on �, must be sufficiently smooth and
compatible with the boundary conditions on @�. Iden-
tifying the class of boundary conditions that render the
initial-boundary value problem wellposed is a highly
technical affair.

The situation where the maximal time interval
Œ0; T / of existence of a classical solution is finite is
the rule rather than the exception. This is due to the
wave breaking phenomenon, which may be seen, for
instance, in the context of Burgers’ equation. Beyond
the time waves break, one has to resort to weak
solutions, namely, to bounded measurable functions
U that satisfy (1) in the sense of distributions.

Particularly relevant are weak solutions containing
shocks, that is, surfaces of codimension one embedded
in space-time, across which U experiences jump dis-
continuities. The fact that a shock is associated with
a weak solution of (1) is encoded in the Rankine-
Hugoniot jump conditions

sŒŒU 		 D
mX
˛D1

�˛ŒŒG˛.U /		; (6)

where the double bracket ŒŒ 		 denotes the jump of the
enclosed quantity across the shock, and the unit vector
� in R

m and the scalar s are such that the vector .�;�s/
in R

mC1 is normal to the shock. Thus, the shock may
be realized as a wave, in the form of a surface in R

m,
moving in the direction � with speed s. Shocks play
a central role in hyperbolic conservation laws; see the
entry on Riemann problems, in this Encyclopedia.

The first major difficulty with weak solutions is loss
of uniqueness of solutions for the Cauchy problem.
This is easily seen in the context of the Riemann prob-
lem for Burgers’ equation. As a remedy, conditions
have been proposed, with physical or mathematical
provenance, that may weed out spurious weak solu-
tions. Such a condition, with universal appeal, deems
admissible solutions that satisfy the inequality

@t�.U.x; t//C
mX
˛D1

@˛Q˛.U.x; t// � 0; (7)

in the sense of distributions. In particular, classical
solutions are admissible as they satisfy (5). When (1)
arises in physics, (7) expresses the Second Law of
thermodynamics.

In connection to the Cauchy problem, the above
entropy admissibility condition anoints classical solu-
tions: so long as it exists, any classical solution is
unique and L2-stable, not only in relation to other
classical solutions, but even within the broader class of
admissible weak solutions. On the other hand, in the
absence of a classical solution, the entropy admissi-
bility condition is not sufficiently discriminating to
single out a unique admissible weak solution. This
has been demonstrated in the context of the Euler
equations. Consequently, the question of uniqueness
of solutions to the Cauchy problem, at the level of
generality discussed here .m > 1; n > 1/, is still open.
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The question of existence of weak solutions to the
Cauchy problem is also open, and the situation looks
even grimmer, as there are indications that this problem
may be wellposed only for a special class of hyperbolic
systems of conservation laws. Fortunately, this class
includes the cases n D 1 and/or m D 1, for which
much has been accomplished, as explained below.

Let us first consider the case of a scalar conservation
law, (1) with n D 1;m 	 1, so that U and the G˛
are scalar-valued. An important feature of this class is
that any convex function �.U /may serve as an entropy,
with entropy flux Q.U / determined by integrating (4).
Accordingly, a weak solution U is called admissible if
it satisfies the inequality (7) for every convex function
�.U /. Because of this, very stringent, requirement,
admissible weak solutions enjoy the following strong
stability property. If U and V are any two admissible
weak solutions to the Cauchy problem, with initial data
U0 and V0, then there is s > 0 such that, for any t > 0

and r > 0,

Z
jxj<r

jU.x; t/�V.x; t/jdx �
Z

jxj<rCst
jU0.x/�V0.x/jdx:

(8)

Estimate (8) immediately yields uniqueness and
stability of admissible weak solutions. It also follows
from (8) that if U is an admissible weak solution
with initial data a function U0 of bounded variation
(i.e., partial derivatives @˛U0 are Radon measures),
then for each fixed t > 0, U.�; t/ is a function of
bounded variation, and the total variation of U.�; t/ is
nonincreasing with time. Moreover,U itself has locally
bounded variation on the upper half-space of R

mC1.
In that case, singularities assemble in “surfaces” of
codimension one that may be realized as shocks.

Armed with an a priori estimate as strong as (8), it
is possible to establish existence of solutions in several
ways. The most important ones are the method of
vanishing viscosity that constructs solutions U of (1)
as the " # 0 limit of a family of solutions fU"g to the
parabolic equation

@tU".x; t/C
mX
˛D1

@˛G˛.U".x; t// D "�U".x; t/; (9)

and the kinetic formulation, which also yields valuable
information on the regularity of weak solutions. The

theory of the scalar conservation law appears complete
and exhausted, and yet new, unexpected, results keep
coming to light.

We conclude with a bird’s eye view of the basic
theory of strictly hyperbolic systems of n conservation
laws in one-space dimension .m D 1; n 	 1/:

@tU.x; t/C @xG.U.x; t// D 0: (10)

Strict hyperbolicity means that for any U in R
n the n�

n matrix DG.U / has n real distinct eigenvalues. The
analytical study of such systems has been the principal
focus of research in the field over the past 50 years.
Admissibility of weak solutions is tested by means of
the Liu shock stability condition.

Solutions to the Cauchy problem have been con-
structed by monitoring the propagation and interac-
tions of individual waves, shocks and rarefaction, with
the help of the Riemann problem. Two variants of this
approach have been successfully employed, namely,
the random choice method and the front tracking al-
gorithm.

An alternative, effective approach employs the
method of vanishing viscosity, which constructs
solutions to the Cauchy problem for (10) as the " # 0

limit of the family fU"g of solutions to the parabolic
system

@tU".x; t/C @xG.U".x; t// D "@2xU".x; t/; (11)

under the same initial data.
It has been shown that the Cauchy problem for

(10), under initial data U0 with sufficiently small total
variation, admits a unique admissible solution U , with
locally bounded variation on the upper half-plane. Fur-
thermore, for each t > 0; U.�; t/ has bounded variation
and

T V.�1;1/U.�; t/ � aT V.�1;1/U0.�/; 0 < t < 1:

(12)

IfU and V are admissible solutions with initial dataU0
and V0,

Z 1

�1
jU.x; t/ � V.x; t/jdx

� a

Z 1

�1
jU0.x/ � V0.x/jdx; 0 < t < 1: (13)
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When the initial data have large total variation, the
total variation or the L1 norm of U.�; t/ may blow up
in finite time. Identifying the class of systems for which
this catastrophe does not take place is currently a major
open problem.

Other features, such as the large time behavior of
solutions to the Cauchy problem for (10), have also
been investigated extensively.

In the bibliography below, entries [1–5] are text-
books, listed in progressive order of technical complex-
ity; [6] is an attempt for an encyclopedic presentation
of the whole area, and it includes extensive bibliogra-
phy; [7–10] are seminal papers.
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Hyperbolic Conservation Laws:
Computation

Knut-Andreas Lie
Department of Applied Mathematics, SINTEF ICT,
Oslo, Norway

A conservation law is a first-order system of PDEs in
divergence form

@tU.x; t/C @xG.U.x; t// D 0; t 	 0; x 2 R; (1)

describing the evolution of conserved quantities U 2
R
n according to flux function G W Rn ! R

n. (Herein,
we only consider the 1D case for brevity.) Solutions
of (1) admit various kinds of nonlinear and discontinu-
ous waves. Numerical methods developed to accurately
compute such waves have significantly influenced de-
velopments in modern computational science. Methods
come in two forms: shock-fitting methods in which
discontinuities are introduced explicitly in the solution
and shock-capturing methods in which numerical dis-
sipation is used to capture discontinuities within a few
grid cells.

Classical Shock-CapturingMethods

Equation 1 is not valid in the classical pointwise sense
for discontinuous solutions. Instead, we will work with
the integral form of (1). Introducing the sliding average
NU .x; t/ D 1

�x

R xC�x=2
x��x=2 U.�; t/ d� gives the system of

evolution equations

NU .x; t C�t/ D NU .x; t/ � 1

�x

Z tC�t

t


G

�
U.x C �x

2
; �/

� �G
�
U.x � �x

2
; �/

��
d�: (2)

Next, we partition the physical domain ˝ into a set of
grid cells˝i D Œxi�1=2; xiC1=2	 and set tn D n�t . This
suggests a numerical scheme

UnC1
i D Un

i � r�Gn
iC1=2 �Gn

i�1=2
�
; (3)

where ri D �t=�x, Un
i D NUi.xi ; tn/ are unknown

cell averages, and the numerical flux functions Gn
i˙1=2

are approximations to the average flux over each cell
interface,

Gn
i˙1=2 � 1

�t

Z tnC1

tn
G

�
U.xi˙1=2; �/

�
d�: (4)

Because (1) has finite speed of propagation, the nu-
merical fluxes are given in terms of neighboring cell
averages; that is, Gn

iC1=2 D G.U n
i�p; : : : ; U n

iCq/ D
G.U nI i C 1=2/.

Schemes on the form (3) are called conservative. If a
sequence of approximations computed by a consistent
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H

and conservative scheme converges to some limit, then
this limit is a weak solution of the conservation law [4].

Centered Schemes
Assume that U.x; tn/ is piecewise constant and equals
Un
i inside˝i . The integrand of (4) can then be approx-

imated by 1
2
.G.U n

i˙1/ C G.U n
i //. This yields a cen-

tered scheme that unfortunately is notoriously unstable.
To stabilize, we add artificial diffusion, �x2

�t
@2xU dis-

cretized using standard centered differences and obtain
the classical first-order Lax–Friedrichs scheme [3]

UnC1
i D 1

2

�
Un
iC1 C Un

i�1
	

�1
2
r
h
G.U n

iC1/ �G.U n
i�1/

i
(5)

which is very robust and will always converge,
although sometimes painstakingly slow. To see this,
consider the trivial case of a stationary discontinuity
satisfying @tU D 0. In this case, (5) will simply
compute UnC1

i as the arithmetic average of the cell
averages in the two neighboring cells. The Lax–
Friedrichs scheme can be written in conservative
form (3) using the numerical flux

G.U nI i C 1=2/ D 1

2r

�
Un
i � Un

iC1
�

C1

2


G.U n

i /CG.U n
iC1/

�
: (6)

The second-order Lax–Wendroff scheme is obtained
by using the midpoint rule to evaluate (4), with mid-
point values predicted by (5) with grid spacing 1

2
�x.

Upwind and Godunov Schemes
In the scalar case, we obtain a particularly simple two-
point scheme by using one-sided differences in the
upwind direction from which the characteristics are
pointing; that is, settingGn

iC1=2 D G.U n
i / ifG0.U / 	 0,

or Gn
iC1=2 D G.U n

iC1/ if G0.U / < 0.
Upwind differencing is the design principle under-

lying Godunov schemes [2]. If U.x; tn/ D Un
i in each

grid cell ˝i , the evolution of U can be decomposed
into a set of local Riemann problems

@tV C @xG.V / D 0;

V .x; 0/ D
(
Un
i ; x < xiC1=2;
U n
iC1; x 	 xiC1=2;

(7)

each of which admits a self-similar solution V.x=t/.
Cell averages can now be correctly evolved a time step
�t by (3) if we use V.0/, or a good approximation
thereof, to evaluate G in (4). The time step �t is
restricted by the time it takes for the fastest Riemann
wave to cross a single cell,

�t

�x
max
j

j�j j � 1; (8)

where �1 � � � � � �n are the eigenvalues of the
Jacobian matrix DG.U /. The inequality (8) is called
the CFL condition, named after Courant, Friedrichs,
and Lewy, who wrote one of the first papers on finite
difference methods in 1928 [1]. If �t satisfies (8), the
numerical scheme (3) will be stable. An alternative
interpretation of (8) is that the domain of dependence
for the PDE should be contained within the domain
of dependence for (3) so that all information that will
influence UnC1

i has time to travel into ˝i .

Example 1 Consider the advection of a scalar quan-
tity in a periodic domain. Figure 1 shows the profile
evolved for ten periods by the upwind, Lax–Friedrichs,
and Lax–Wendroff schemes. The first-order schemes
smear the smooth and discontinuous parts of the ad-
vected profile. The second-order scheme preserves
the smooth profile quite well, but introduces spurious
oscillations around the two discontinuities.

High-Resolution Schemes

High-resolution schemes are designed to have second-
order spatial accuracy or higher in smooth parts and
high accuracy around shocks and other discontinuities
(i.e., a small number of cells containing the wave).
They use nonlinear dissipation mechanisms to provide
solutions without spurious oscillations.

Flux-Limiter Schemes
Let GL.U nI i C 1=2/ be a low-order flux (e.g., (6))
and GH.U nI i C 1=2/ be a high-order flux (e.g., the
Lax–Wendroff flux). Then, using the flux

Gn
iC1=2 D GL.U

nI i C 1=2/
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Hyperbolic Conservation Laws: Computation, Fig. 1 Approximate solutions after ten periods of linear advection within a
periodic domain

xi−1/2 xi+1/2 xi+3/2 xi−1/2 xi xi+1/2 xi+1 xi+3/2

Hyperbolic Conservation Laws: Computation, Fig. 2 Computation of sliding average for upwind methods (left) and central
methods (right)

C�ni

GH.U

nI i C 1=2/

�GL.U nI i C 1=2/
�

(9)

in (3) gives a high-resolution scheme for an appropriate
limiter function �ni D �.U nI i/ that is close to unity if
U is smooth and close to zero if U is discontinuous.

Slope-Limiter Schemes
Shock-capturing schemes can be constructed using the
general REA algorithm:
1. Starting from known cell averages Un

i , reconstruct
a piecewise polynomial function OU .x; tn/ defined
for all x. Constant reconstruction in each cell gives
a first-order scheme, linear gives second order,
quadratic gives third order, etc.

2. Next, we evolve the differential equation, exactly or
approximately, using OU .x; tn/ as initial data.

3. Finally, we average the evolved solution OU .x; tnC1/
onto the grid again to obtain new cell averages
UnC1
i .

In the reconstruction, care must be taken to avoid
introducing spurious oscillations. Using a linear recon-
struction [9],

OU .x; tn/ D Un
i C ˚.U n

i � Un
i�1; U n

iC1 � Un
i /

� .x � xi /
�x

; x 2 ˝i; (10)

one can ensure that the resulting scheme is total-
variation diminishing (TVD) under certain assump-
tions on the nonlinear slope limiter ˚ . Likewise,
higher-order reconstructions can be designed to satisfy
an essentially non-oscillatory (ENO) property.

For the averaging, there are two fundamentally dif-
ferent choices, see Fig. 2. In upwind methods (x D xi ),
the temporal integrals in (2) are evaluated at points
xi˙1=2 where OU .x; t/ is discontinuous. Hence, one
cannot apply standard integration and extrapolation
techniques. Instead, one must resolve the wave struc-
ture arising due to the discontinuity, solving a Riemann
problem or generalizations thereof. For central meth-
ods (x D xiC1=2), the sliding average is computed over
a staggered grid cell Œxi ; xiC1	. Under a CFL condition
of one half, the integrand will remain smooth so that
standard integration and extrapolation techniques can
be applied.

Example 2 Figure 3 shows the advection problem
from Example 1 computed by a second-order non-
oscillatory central scheme [6] with two different
limiters. The dissipative minmod limiter always
chooses the lesser slope and thus behaves more like
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Hyperbolic Conservation
Laws: Computation, Fig. 3
Linear advection problem
computed by a second-order
scheme with two different
limiters
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a first-order scheme. The compressive superbee limiter
picks steeper slopes and flattens the top of the smooth
wave.

Computational Efficiency
Explicit high-resolution schemes are essentially stencil
computations that have an inherent parallelism that
can be exploited to ensure computational efficiency.
Moreover, high arithmetic intensity (i.e., large number
of computations per data fetch) for high-order methods
means that these methods can relatively easily exploit
both message-passing systems and many-core hard-
ware accelerators.
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Introduction

The immersed interface method (IIM) is a numerical
method for solving interface problems or problems
on irregular domains. Interface problems are consid-
ered as partial differential equations (PDEs) with dis-
continuous coefficients, multi-physics, and/or singular
sources along a co-dimensional space. The IIM was
originally introduced by LeVeque and Li [7] and Li [8]
and further developed in [1, 11]. A monograph of IIM
has been published by SIAM in 2006 [12].

The original motivation of the immersed interface
method is to improve accuracy of Peskin’s immersed
boundary (IB) method and to develop a higher-order
method for PDEs with discontinuous coefficients. The
IIM method is based on uniform or adaptive Carte-
sian/polar/spherical grids or triangulations. Standard
finite difference or finite element methods are used
away from interfaces or boundaries. A higher-order fi-
nite difference or finite element schemes are developed
near or on the interfaces or boundaries according to the
interface conditions, and it results in a higher accuracy
in the entire domain. The method employs continuation
of the solution from the one side to the other side of the
domain separated by the interface. The continuation
procedure uses the multivariable Taylor’s expansion of

the solution at selected interface points. The Taylor
coefficients are then determined by incorporating the
interface conditions and the equation. The necessary
interface conditions are derived from the physical in-
terface conditions.

Since interfaces or irregular boundaries are one
dimensional lower than the solution domain, the extra
costs in dealing with interfaces or irregular bound-
aries are generally insignificant. Furthermore, many
available software packages based on uniform Carte-
sian/polar/spherical grids, such as FFT and fast Pois-
son solvers, can be applied easily with the immersed
interface method. Therefore, the immersed interface
method is simple enough to be implemented by re-
searchers and graduate students who have reasonable
background in finite difference or finite element meth-
ods, but it is powerful enough to solve complicated
problems with a high-order accuracy.

Immersed Boundary Method and Interface
Modeling
The immersed boundary (IB) method was originally in-
troduced by Peskin [22,23] for simulating flow patterns
around heart valves and for studying blood flows in a
heart [24]. First of all, the immersed boundary method
is a mathematical model that describes elastic struc-
tures (or membranes) interacting with fluid flows. For
instance, the blood flows in a heart can be considered
as a Newtonian fluid governed by the Navier-Stokes
equations

�

�
@u
@t

C .u � r/u
�

C rp D ��u C F; (1)

with the incompressibility condition r �u D 0, where �
is fluid density, u fluid velocity, p pressure, and � fluid

© Springer-Verlag Berlin Heidelberg 2015
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viscosity. The geometry of the heart is complicated
and is moving with time, so are the heart valves,
which makes it difficult to simulate the flow patterns
around the heart valves. In the immersed boundary
model, the flow equations are extended to a rectangular
box (domain) with a periodic boundary condition; the
heart boundary and valves are modeled as elastic band
that exerts force on the fluid. The immersed structure
is typically represented by a collection of interacting
particles Xk with a prescribed force law. Let ı.x/ be
the Dirac delta function. In Peskin’s original immersed
boundary model, the force is considered as source
distribution along the boundary of the heart and thus
can be written as

F.x; t/ D
Z
�.s;t /

f.s; t/ı.x � X.s; t//d s; (2)

where �.s; t/ is the surface parameterized by s which
is one dimensional in 2D and two dimensional in 3D,
say a heart boundary, f.s; t/ is the force density. Since
the boundary now is immersed in the entire domain, it
is called the immersed boundary. The system is closed
by requiring that the elastic immersed boundary moves
at the local fluid velocity:

dX.s; t/
dt

D u.X.s; t/; t/

D
Z

u.x; t/ ı .x� X.s; t/; t/ dx; (3)

here the integration is over the entire domain.
For an elastic material, as first considered by Peskin,

the force density is given by

f.s; t/ D @T
@s

�; T.s; t/ D �

�ˇ̌ˇ̌@X
@s

ˇ̌
ˇ̌� 1

�
; (4)

the unit tangent vector �.s; t/ is given by �.s; t/ D
@X=@s

j@X=@sj . The tension T assumes that elastic fiber

band obeys a linear Hooke’s law with stiffness con-
stant � . For different applications, the key of the
immersed boundary method is to derive the force
density.

In Peskin’s original IB method, the blood flow
in a heart is embedded in a rectangular box with a
periodic boundary condition. In numerical simulations,
a uniform Cartesian grid .xi ; yj ; zk/ can be used.

An important feature of the IB method is to use a
discrete delta function ıh.x/ to approximate the Dirac
delta function ı.x/. There are quite a few discrete
delta functions ıh.x/ that have been developed in the
literature. In three dimensions, often a discrete delta
function ıh.x/ is a product of one-dimensional ones,

ıh.x/ D ıh.x/ıh.y/ıh.z/: (5)

A traditional form for ıh.x/ was introduced in [24]:

ıh.x/ D
8<
:
1

4h
.1C cos .�x=2h// ; if jxj < 2h,

0; if jxj � 2h.
(6)

Another commonly used one is the hat function:

ıh.x/ D
(
.h � jxj/=h2; if jxj < h,

0; if jxj � h.
(7)

With Peskin’s discrete delta function approach, one can
discretize a source distribution on a surface � as

Fijk D
NbX
lD1

f .sl / ıh.xi�X`/ ıh.yj�Y`/ ıh.zk�Z`/�sl ;

(8)

whereNb is the number of discrete points f.X`;Y`;Z`/g
on the surface �.s; t/. In this way, the singular source
is distributed to the nearby grid points in a neighbor-
hood of the immersed boundary �.s; t/. The discrete
delta function approach cannot achieve second-order
or higher accuracy except when the interface is aligned
with a grid line.

In the immersed boundary method, we also need to
interpolate the velocity at grid points to the immersed
boundary corresponding to (3). This is done again
through the discrete delta function

u.X; Y;Z/ D
X
ijk

u.xi ; yj ; zk/ıh.xi � X/

ıh.yj � Y /ıh.zk �Z/hxhyhz (9)

assume .X; Y;Z/ is a point on the immersed boundary
�.s; t/, hx , hy , hz are mesh sizes in each coordinate
direction. Once the velocity is computed, the new
location of the immersed boundary is updated through
(3). Since the flow equation is defined on a rectangular
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Immersed Interface/Boundary Method, Fig. 1 Left dia-
gram: a rectangular domain� D �C[�� with an interface � .
The coefficients such as ˇ.x/ have a jump across the interface.

Right diagram: the local coordinates in the normal and tangential
directions, where 	 is the angle between the x-axis and the
normal direction

domain, standard numerical methods can be applied.
For many application problems in mathematical biol-
ogy, the projection method is used for small to modest
Reynolds numbers.

The immersed boundary method is simple and ro-
bust. It has been combined with and with adaptive
mesh refinement [26, 27]. A few IB packages are
available [3]. The IB method has been applied to
many problems in mathematical biology and com-
putational fluid mechanics. There are a few review
articles on IB method given. Among them are the
one given by Peskin in [25] and Mittal and Iacca-
rina [19] that highlighted the applications of IB method
on computational fluid dynamics problems. The im-
mersed boundary method is considered as a regu-
larized method, and it is believed to be first-order
accurate for the velocity, which has been confirmed
by many numerical simulations and been partially
proved [20].

The Immersed Interface Method

We describe the second immersed interface method
for a scalar elliptic equation in two-dimensional
domain, and we refer to [17] and references therein
for general equations, fourth-order method, and
the three-dimensional case. A simplified Peskin’s
model can be rewritten as a Poisson equation of the
form:

r � .ˇ.x/ru/� �.x/ u D f .x/; x 2 � � �;
Œu

ˇ̌̌
�

D 0; Œˇun

ˇ̌̌
�

D v.s/ (10)

where v.s/ 2 C2.�/, f .x/ 2 C.�/, � is a smooth
interface, and ˇ is a piecewise constant. Here un D
@u
@n D ru � n is the normal derivative, and n is the
unit normal direction, and Œu
 is the difference of the
limiting values from different side of the interface � ,
so is Œun
; see Fig. 1 (Left diagram) for an illustration.

Given a Cartesian mesh f.xi ; yj g; xi D i hx; 0 �
i � M yj D j hy; 0 � j � N with the mesh size
hx; hy , the node .xi ; yj / is irregular if the central five-
point finite difference stencil at .xi ; yj / has grid points
from both side of the interface � , otherwise is regular.
The IIM uses the standard five-point finite difference
scheme at regular grid:

ˇiC 1
2 ;j

uiC1;j C ˇi� 1
2 ;j

ui�1;j � .ˇiC 1
2 ;j

C ˇi� 1
2 ;j
/uij

.hx/2

C
ˇi;jC 1

2
ui;jC1 C ˇi;j� 1

2
ui;j�1 � .ˇi;jC 1

2
C ˇi;j� 1

2
/uij

.hy/2

��uij D fij : (11)

The local truncation error at regular grid points is
O.h2/, where h D maxfhx; hyg.

If .xi ; yj / is an irregular grid point, then the method
of undetermined coefficients

nsX
kD1

�k UiCik ;jCjk � �ij Uij D fij C Cij (12)
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is used to determine �k’s and Cij , where ns is the
number of grid points in the finite difference sten-
cil. We usually take ns D 9. We determine the
coefficients in such a way that the local truncation
error

Tij D
nsX
kD1

�k u
�
xiCik ; yjCjk

� � �ij u.xi ; yj /

�f .xi ; yj /� Cij ; (13)

is as small as possible in the magnitude.
We choose a projected point x�

ij D .x�
i ; y

�
j / on

the interface � of irregular point .xi ; yj /. We use the
Taylor expansion at x�

ij in the local coordinates .�; /
so that (12) matches (10) up to second derivatives at
x�
ij from a particular side of the interface, say the �

side. This will guarantee the consistency of the finite
difference scheme. The local coordinates in the normal
and tangential directions is

� D .x � x�/ cos 	 C .y � y�/ sin 	;

 D �.x � x�/ sin 	 C .y � y�/ cos 	;
(14)

where 	 is the angle between the x-axis and the normal
direction, pointing to the direction of a specified side.
In the neighborhood of .x�; y�/, the interface � can be
parameterized as

� D �./; with �.0/ D 0; �0.0/ D 0: (15)

The interface conditions are given

Œu.�./; /
 D 0; Œˇ.u�.�./; / � �0./ u.�./; //


D
p
1C j�0./j2v./

and the curvature of the interface at .x�; y�/ is �00.0/.
The Taylor expansion of each u.xiCik ; yjCjk / at x�

ij can
be written as

u.xiCik ; yjCjk / D u.�k; k/ D u˙ C �ku�̇ C ku̇

C1

2
�2ku�̇ � C �kku�̇ C 1

2
2ku̇

CO.h3/; (16)

where the C or � superscript depends on whether
.�k; k/ lies on the C or � side of �. Therefore the
local truncation error Tij can be expressed as a linear
combination of the values u˙; u�̇ , u̇ , u�̇ � , u�̇, u̇

Tij D a1 u� C a2 uC C a3 u�
� C a4 uC

� C a5 u�


Ca6uC
 C a7 u�

� � C a8 uC
� � C a9 u�

 

Ca10 uC
  C a11 u�

�  C a12 uC
� 

��u� � f � � Cij CO.max
k

j�kjh3/; (17)

where h D maxfhx; hyg. We drive additional interface
conditions [7,8,12] by taking the derivative of the jump
conditions with respect to  at  D 0, and then we
can express the quantities from one side in terms of the
other side in the local coordinates .�; / as

uC D u�; uC
� D � u�

� C v

ˇC ; uC
 D u�

 ;

uC
� � D ��00u�

� C �00uC
� C .� � 1/ u�

 C �u�
� � ;

uC
  D u�

  C .u�
� � uC

� / �
00;

uC
�  D

�
uC
 � �u�



�
�00 C � u�

�  C v0

ˇC ; (18)

where � D ˇ�

ˇC . An alternative is to use a collocation

method, That is, we equate the interface conditions

uC.�k; k/ D u�.�k; k/; ˇC @uC

@�
.�k; k/

�ˇ� @u�

@�
.�k; k/ D v.�k; k/;

where .�k; k/ is the local coordinates of the three
closest projection points to .xi ; yj / along the equation
at .x�

i ; y
�
j /; Œˇ.u�� C u/
 D 0. In this way one can

avoid the tangential derivative the data v, especially
useful for the three-dimensional case.

If we define the index setsK˙ D fk W .�k; k/ is on
the ˙ side of �g; then a2j�1 terms are defined by

a1 D
X
k2K�

�k; a3 D
X
k2K�

�k�k;

a5 D
X
k2K�

k�k; a7 D 1

2

X
k2K�

�2k�k;

a9 D 1

2

X
k2K�

2k�k; a11 D
X
k2K�

�kk�k:

(19)
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The a2j terms have the same expressions as a2j�1 ex-
cept the summation is taken overKC. From (18) equat-
ing the terms in (13) for .u�; u�

� ; u
�
 ; u

�
�� ; u

�
; u

�
�/, we

obtain the linear system of equations
for �k’s:

a1 C a2 D 0

a3 C �a4 � a8 Œˇ
�
00

ˇC C a10
Œˇ
�00

ˇC D 0

a5 C a6 C a12.1 � �/ �00 D 0

a7 C a8 � D ˇ�

a9 C a10 C a8 .� � 1/ D ˇ�

a11 C a12 � D 0:

(20)

Once the �k’s are obtained, we set Cij D a12
v0

ˇC C
1

ˇC
�
a4 C .a8 � a10/�00 � v.

Remark 1
• If Œˇ
 D 0, then the finite difference scheme is

the standard one. Only correction terms need to be
added at irregular grid points. The correction terms
can be regarded as second-order accurate discrete
delta functions.

• If v � 0, then the correction terms are zero.
• If we use a six-point stencil and (20) has a solution,

then this leads to the original IIM [7].
• For more general cases, say both � and f are

discontinuous, we refer the reader to [7, 8, 12] for
the derivation.

Enforcing the Maximum Principle Using an
Optimization Approach
The stability of the finite difference equations is guar-
anteed by enforcing the sign constraint of the discrete
maximum principle; see, for example, Morton and
Mayers [21]. The sign restriction on the coefficients
�k’s in (12) are

�k � 0 if .ik; jk/ ¤ .0; 0/;

�k < 0 if .ik; jk/ D .0; 0/: (21)

We form the following constrained quadratic opti-
mization problem whose solution is the coefficients
of the finite difference equation at the irregular grid
point xij :

min
�

�
1

2
k;�gk22

	
; subject to A� D b;

�k � 0; if .ik; jk/ ¤ .0; 0/I �k < 0; if

.ik; jk/ D .0; 0/; (22)

where � D Œ �1; �2; � � � ; �ns 
T is the vector composed
of the coefficients of the finite difference equation;
A� D b is the system of linear equations (20); and
g 2 Rns has the following components: g 2 Rns ,

gk D ˇiCik ;jCjk
h2

; if .ik; jk/ 2 f.�1; 0/; .1; 0/;
.0;�1/; .0; 1/ g I

gk D �4ˇi;j
h2

; if .ik; jk/ D .0; 0/I
gk D 0; otherwise: (23)

With the maximum principle, the second-order conver-
gence of the IIM has been proved in [11].

Augmented Immersed Interface Method

The original idea of the augmented strategy for inter-
face problems was proposed in [9] for elliptic interface
problems with a piecewise constant but discontinuous
coefficient. With a few modifications, the augmented
method developed in [9] was applied to generalized
Helmholtz equations including Poisson equations on
irregular domains in [14]. The augmented approach for
the incompressible Stokes equations with a piecewise
constant but discontinuous viscosity was proposed in
[18], for slip boundary condition to deal with pressure
boundary condition in [17], and for the Navier-Stokes
equations on irregular domains in [6].

There are at least two motivations to use
augmented strategies. The first one is to get a
faster algorithm compared to a direct discretization,
particularly to take advantages of existing fast
solvers. The second reason is that, for some interface
problems, an augmented approach may be the
only way to derive an accurate algorithm. This
is illustrated in the augmented immersed interface
method [18] for the incompressible Stokes equations
with discontinuous viscosity in which the jump
conditions for the pressure and the velocity are
coupled together. The augmented techniques enable
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us to decouple the jump conditions so that the
idea of the immersed interface method can be
applied.

While augmented methods have some similarities
to boundary integral methods or the integral equation
approach to find a source strength, the augmented
methods have a few special features: (1) no Green
function is needed, and therefore there is no need
to evaluate singular integrals; (2) there is no need
to set up the system of equations for the augmented
variable explicitly; (3) they are applicable to general
PDEs with or without source terms; and (4) the method
can be applied to general boundary conditions. On
the other hand, we may need estimate the condition
number of the Schur complement system and develop
preconditioning techniques.

Procedure of the Augmented IIM
We explain the procedure of the augmented IIM using
the fast Poisson solver on an interior domain as an
illustration.

Assume we have linear partial differential equations
with a linear interface or boundary condition. The the
Poisson equation on an irregular domain �, as an
example,

�u D f .x/; x 2 �; q.u; un/ D 0; x 2 @�;
(24)

where q.u; un/ D 0 is either a Dirichlet or Neumann
boundary condition along the boundary @�. To use an
augmented approach, the domain � is embedded into
a rectangle � � R; the PDE and the source term are
extended to the entire rectangle R:

�u D
(
f;if x 2 �;
0;if x 2 R n�;

8̂
<̂
ˆ̂:
Œu
 D g; on @�;

Œun
 D 0; on @�;

u D 0; on @R:

(25)
and

q.u; un/ D 0 on @�:

The solution u to (25) is a functional u.g/ of g.
We determine g such that the solution u.g/ satisfies
the boundary condition q.u; un/ D 0. Note that,
given g, we can solve (25) using the immersed in-
terface method with a single call to a fast Poisson
solver.

On a Cartesian mesh .xi ; yj /, i D 0; 1; � � � ;M ,
j D 0; 1; � � � ; N , M � N , we use U and G to
represent the discrete solution to (25). Note that the
dimension of U is O.N2/ while that of G is of O.N/.
The augmented IIM can be written as



A B

C D

� 

U

G

�
D


F

Q

�
; (26)

where A is the matrix formed from the discrete five-
point Laplacian; BG are correction terms due to the
jump in u, and the boundary condition is discretized
by an interpolation scheme CU C DG D Q, corre-
sponding to the boundary condition q.u; un/ D 0. The
main reason to use an augmented approach is to take
advantage of fast Poisson solvers. Eliminating U from
(26) gives a linear system forG, the Schur complement
system,

.D � CA�1B/G D Q � CA�1F defD F2: (27)

This is an Nb 	 Nb system for G, a much smaller
linear system compared to the one for U , where Nb
is the dimension of G. If we can solve the Schur
complement system efficiently, then we obtain the
solution of the original problem with one call to the
fast Poisson solver. There are two approaches to solve
the Schur complement system. One is the GMRES
iterative method; the other one is a direct method such
as the LU decomposition. In either of the cases, we
need to know how to find the matrix vector multipli-
cation without forming the sub-matrices A�1; B; C;D
explicitly. That is, first we set G D 0 and solve the first
equation of the (26), to get U.0/ D A�1F . For a given
G the residual vector of the boundary condition is then
given by

R.G/ D C.U.0/ � U.G//CDG �Q:

Remark 2 For different applications, the augmented
variable(s) can be chosen differently but the above
procedure is the same. For some problems, if we
need to use the same Schur complement at every
time step, it is then more efficient to use the LU

decomposition just once. If the Schur complement is
varying or only used a few times, then the GMRES
iterative method may be a better option. One may
need to develop efficient preconditioners for the Schur
complement.
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Immersed Finite Element Method (IFEM)

The IIM has also been developed using finite element
formulation as well, which is preferred sometimes
because there is rich theoretical foundation based on
Sobolev space, and finite element approach may lead
to a better conditioned system of equations. Finite
element methods have less regularity requirements for
the coefficients, the source term, and the solution
than finite difference methods do. In fact, the
weak form for one-dimensional elliptic interface
problem .ˇu0/0 � �u D f .x/ C vı.x � ˛/; 0 <

x < 1 with homogeneous Dirichlet boundary
condition is

Z 1

0

�
ˇu0�0 � �uv

�
dx D �

Z 1

0

f �dx C v�.˛/;

8� 2 H1
0 .0; 1/: (28)

For two-dimensional elliptic interface problems (10),
the weak form is

Z Z
�

.ˇrur� � �uv/ dx D �
Z Z

�

f � dx

�
Z
�

v�ds; 8�.x/ 2 H1
0 .�/: (29)

Unless a body-fitted mesh is used, the solution
obtained from the standard finite element method using
the linear basis functions is only first-order accurate in
the maximum norm. In [10], a new immersed finite ele-
ment for the one-dimensional case is constructed using
modified basis functions that satisfy homogeneous
jump conditions. The modified basis functions
satisfy

�i .xk/ D
(
1; if k D i ,

0; otherwise
and Œ�i 
 D 0; Œˇ�0

i 
 D 0:

(30)

Obviously, if xj < ˛ < xjC1, then only �j and �jC1
need to be changed to satisfy the second jump condi-
tion. Using the method of undetermined coefficients,
we can conclude that

�j .x/ D

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

0; 0 � x < xj�1;
x � xj�1

h
; xj�1 � x < xj ;

xj � x

D
C 1; xj � x < ˛;

� .xjC1 � x/
D

; ˛ � x < xjC1;

0; xjC1 � x � 1;

�jC1.x/ D

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

0; 0 � x < xj ;

x � xj
D

; xj � x < ˛;

� .x � xjC1/
D

C 1; ˛ � x < xjC1;
xjC2 � x

h
; xjC1 � x � xjC2;

0; xjC2 � x � 1:

where

� D ˇ�

ˇC ; D D h� ˇC � ˇ�

ˇC .xjC1 � ˛/:

Using the modified basis function, it has been shown
in [10] that the Galerkin method is second-order accu-
rate in the maximum norm. For 1D interface problems,
the FD and FE methods discussed here are not very
much different. The FE method likely perform better
for self-adjoint problems, while the FD method is more
flexible for general elliptic interface problems.

Modified Basis Functions for Two-Dimensional
Problems
A similar idea above has been applied to two-
dimensional problems with a uniform Cartesian
triangulation [15]. The piecewise linear basis function
centered at a node is defined as:

�i .xj / D
(
1; if i D j

0; otherwise;

Œ u 
j� D 0;



ˇ
@�i

@n

�ˇ̌ˇ̌
�

D 0; �i j@� D 0:

(31)

We call the space formed by all the basis function �i.x/
as the immersed finite element space (IFE).
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Immersed Interface/Boundary Method, Fig. 2 (a) A typical
triangle element with an interface cutting through. The curve
between D and E is part of the interface curve � which is
approximated by the line segment DE . In this diagram, T is the
triangle 4ABC , TC D 4ADE , T� D T �TC, and Tr is the

region enclosed by the DE and the arc DME . (b) A standard
domain of six triangles with an interface cutting through. (c)
A global basis function on its support in the nonconforming
immersed finite element space. The basis function has small
jump across some edges

We consider a reference interface element T whose
geometric configuration is given in Fig. 2a in which
the curve between points D and E is a part of the
interface. We assume that the coordinates at A, B , C ,
D, and E are

.0; h/; .0; 0/; .h; 0/; .0; y1/; .h � y2; y2/;
(32)

with the restriction 0 � y1 � h; 0 � y2 < h.
Once the values at vertices A, B , and C of the

element T are specified, we construct the following
piecewise linear function:

u.x/ D

8̂̂
<̂
ˆ̂̂:

uC.x/ D a0 C a1x C a2.y � h/;
if x D .x; y/ 2 TC;

u�.x/ D b0 C b1x C b2y;

if x D .x; y/ 2 T �;

(33a)

uC.D/ D u�.D/; uC.E/ D u�.E/;

ˇC @u

@n

C
D ˇ� @u

@n

�
; (33b)

where n is the unit normal direction of the line segment
DE. This is a piecewise linear function in T that
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satisfies the natural jump conditions along DE. The
existence and uniqueness of the basis functions and
error estimates are given in [15].

It is easy to show that the linear basis function
defined at a nodal point exists and it is unique. It
has also been proved in [15] that for the solution of
the interface problem (10), there is an interpolation
function uI .x/ in the IFE space that approximates u.x/
to second-order accuracy in the maximum norm.

However, as we can see from Fig. 2c, a linear
basis function may be discontinuous along some edges.
Therefore such IFE space is a nonconforming finite
element space. Theoretically, it is easy to prove the
corresponding Galerkin finite element method is at
least first-order accurate; see [15]. In practice, its be-
haviors are much better than the standard finite element
without any modifications. Numerically, the computed
solution has super linear convergence. More theoretical
analysis can be found in [2, 16].

The nonconforming immersed finite element space
is also constructed for elasticity problems with inter-
faces in [4, 13, 29]. There are six coupled unknowns
in one interface triangle for elasticity problems with
interfaces.

A conforming IFE space is also proposed in [15].
The basis functions are still piecewise linear. The idea
is to extend the support of the basis function along
interface to one more triangle to keep the continuity.
The conforming immersed finite element method is
indeed second-order accurate. The trade-off is the in-
creased complexity of the implementation. We refer
the readers to [15] for the details. The conforming
immersed finite element space is also constructed for
elasticity problems with interfaces in [4].

Finally, one can construct the quadratic noncon-
forming element using the quadratic Taylor expan-
sion (16) at the midpoint of the interface. The relation
of coefficients of both sides is determined by the
interface conditions (17). Then the quadratic element
on the triangle is uniquely by the values of the basis six
points of the triangle.

Hyperbolic Equations

We consider an advection equation as a model equation

ut C .c.x/u/x D 0; t > 0; x 2 R; u.0; x/ D u0.x/;
(34)

where c D c.x/ > 0 is piecewise smooth. The
second-order immersed interface method has been de-
veloped in [30]. We describe the higher-order method
closely related to CIP methods [28]. CIP is one of
the numerical methods that provides an accurate, less-
dispersive and less-dissipative numerical solution. The
method uses the exact integration in time by the char-
acteristic method and uses the solution u and its deriva-
tive v D ux as unknowns. The piecewise cubic Hermite
interpolation for each computational cell in each cell
Œxj�1; xj 
 based on solution values and its derivatives
at two endpoints xj�1; xj . In this way the method
allows us to take an arbitrary time step (no CFL
limitation) without losing the stability and accuracy.
That is, we use the exact simultaneous update formula
for the solution u:

u.xk; t C�t/ D c.yk/

c.xk/
u.yk; t/ (35)

and for its derivative v:

v.xk; t C�t/ D
�
c0.yk/
c.xk/

� c0.xk/
c.xk/

�
c.yk/

c.xk/
u.yk; t/

C
�
c.yk/

c.xk/

�2
v.yk; t/: (36)

For the piecewise constant equation ut C c.x/ ux D
0, we use the piecewise cubic interpolation: F�.x/ in
Œxj�1; ˛
 and FC.x/ in Œ˛; xj 
 of the form F˙.x/ DP3

kD0 ak̇ .x � ˛/k . The eight unknowns are uniquely
determined via the interface relations and the interpo-
lation conditions at the interface ˛ 2 .xj�1; xj /:

Œu
 D 0; Œcux
 D 0; Œc2uxx
 D 0; Œc3uxxx
 D 0;

(37)

F�.xj�1/ D unj�1; F �
x .xj�1/ D vnj�1;

FC.xj / D unj ; FC
x .xj / D vnj ; (38)

Thus, we update solution .un; vn/ at node xj by

unC1
j D FC.xj � cC�t/; vnC1

j D FC
x .xj � cC�t/:

(39)

Similarly, for (34) we have the method based on the
interface conditions Œcu
 D Œc2ux
 D Œc3uxx
 D
Œc4uxxx
 D 0 and the updates (35)–(36).
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The d’Alembert-based method for the Maxwell
equation that extends our characteristic-based method
to Maxwell system is developed for the piecewise
constant media and then applied to Maxwell system
with piecewise constant coefficients. Also, one can
extend the exact time integration CIP method for
equations in discontinuous media in R2 and R3 and
the Hamilton Jacobi equation [5].
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Index Concepts for Differential-Algebraic
Equations

Volker Mehrmann
Institut für Mathematik, MA 4-5 TU, Berlin, Germany

Introduction

Differential-algebraic equations (DAEs) present today
the state of the art in mathematical modeling of
dynamical systems in almost all areas of science
and engineering. Modeling is done in a modularized

http://www.math.utah.edu/IBIS
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way by combining standardized sub-models in
a hierarchically built network. The topic is well
studied from an analytical, numerical, and control
theoretical point of view, and several monographs are
available that cover different aspects of the subject
[1, 2, 9, 14–16, 21, 28, 29, 34].

The mathematical model can usually be written in
the form

F.t; x; Px/ D 0; (1)

where Px denotes the (typically time) derivative of x.
Denoting by Ck.I;Rn/ the set of k times continuously
differentiable functions from I D Œt ; t 
 � R to R

n,
one usually assumes that F 2 C0.I 	 Dx 	 D Px;Rm/
is sufficiently smooth and that Dx;D Px 
 R

n are open
sets. The model equations are usually completed with
initial conditions

x.t/ D x: (2)

Linear DAEs

E Px �Ax � f D 0; (3)

with E;A 2 C0.I;Rm;n/, f 2 C0.I;Rm/ often
arise after linearization along trajectories (see [4]) with
constant coefficients in the case of linearization around
an equilibrium solution. DAE models are also studied
in the case when x is infinite dimensional (see, e.g., [7,
37]), but here we only discuss the finite-dimensional
case.

Studying the literature for DAEs, one quickly real-
izes an almost Babylonian confusion in the notation,
in the solution concepts, in the numerical simulation
techniques, and in control and optimization methods.
These differences partially result from the fact that the
subject was developed by different groups in math-
ematics, computer science, and engineering. Another
reason is that it is almost impossible to treat automat-
ically generated DAE models directly with standard
numerical methods, since the solution of a DAE may
depend on derivatives of the model equations or input
functions and since the algebraic equations restrict the
dynamics of the system to certain manifolds, some
of which are only implicitly contained in the model.
This has the effect that numerical methods may have a
loss in convergence order, are hard to initialize, or fail
to preserve the underlying constraints and thus yield
physically meaningless results (see, e.g., [2, 21] for
illustrative examples). Furthermore, inconsistent initial
conditions or violated smoothness requirements can

give rise to distributional or other classes of solutions
[8, 21, 27, 35] as well as multiple solutions [21]. Here
we only discuss classical solutions, x 2 C1.I;Cn/ that
satisfy (1) pointwise.

Different approaches of classifying the difficulties
that arise in DAEs have led to different so-called index
concepts, where the index is a “measure of difficulty”
in the analytical or numerical treatment of the DAE.
In this contribution, the major index concepts will be
surveyed and put in perspective with each other as far
as this is possible. For a detailed analysis and a compar-
ison of various index concepts with the differentiation
index (see [5, 12, 14, 21, 22, 24, 31]). Since most index
concepts are only defined for uniquely solvable square
systems withm D n, here only this case is studied (see
[21] for the general case).

Index Concepts for DAEs

The starting point for all index concepts is the linear
systems with constant coefficients. In this case,
the smoothness requirements can be determined
from the Kronecker canonical form [11] of the
matrix pair .E;A/ under equivalence transformations
E2 D PE1Q, A2 D PA1Q, with invertible
matrices P;Q (see e.g., [21]). The size of the largest
Kronecker block associated with an infinite eigenvalue
of .E;A/ is called Kronecker index, and it defines
the smoothness requirements for the inhomogeneity
f . For the linear variable coefficient case, it was
first tried to define a Kronecker index (see [13]).
However, it was soon realized that this is not a
reasonable concept [5, 17], since for the variable
coefficient case, the equivalence transformation is
E2 D PE1Q, A2 D PA1Q � PE1 PQ, and it
locally does not reduce to the classical equivalence for
matrix pencils. Canonical forms under this equivalence
transformation have been derived in [17] and existence
and uniqueness of solutions of DAEs has been
characterized via global equivalence transformations
and differentiations.

Since the differentiation of computed quantities is
usually difficult, it was suggested in [3] to differentiate
first the original DAE (3) and then carry out equiva-
lence transformations. For this, we gather the original
equation and its derivatives up to order ` into a so-
called derivative array:
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F`.t; x; : : : ; x
.`C1// D

2
6664

F.t; x; Px/
d
dt
F .t; x; Px/
:::

. d
dt
/`F .t; x; Px/

3
7775 : (4)

We require solvability of (4) in an open set and
define

M`.t; x; Px; : : : ; x.`C1// D F`I Px;:::;x.`C1/ .t; x; Px; : : : ; x.`C1//;

N`.t; x; Px; : : : ; x.`C1// D �.F`Ix.t; x; Px; : : : ; x.`C1//;

0; : : : ; 0/;

g`.t/ D F`It ;

where F`Iz denotes the Jacobian of F` with respect to
the variables in z.

The Differentiation Index
The most common index definition is that of the differ-
entiation index (see [5]).

Definition 1 Suppose that (1) is solvable. The smallest
integer � (if it exists) such that the solution x is
uniquely defined by F�.t; x; Px; : : : ; x.�C1// D 0 for
all consistent initial values is called the differentiation
index of (1).

Over the years, the definition of the differentiation in-
dex has been slightly modified to adjust from the linear
to the nonlinear case [3, 5, 6] and to deal with slightly
different smoothness assumptions. In the linear case, it
has been shown in [21] that the differentiation index �
is invariant under (global) equivalence transformations,
and if it is well defined, then there exists a smooth,
pointwise nonsingular R 2 C.I;C.�C1/n;.�C1/n/ such

that RM� D


In 0

0 H

�
. Then from the derivative array

M�.t/Pz D N�.t/z C g�.t/, one obtains an ordinary
differential equation (ODE):

Px D Œ In 0 
R.t/M�.t/Pz D Œ In 0 
R.t/N�.t/



In
0

�
x

CŒ In 0 
R.t/g�.t/;

which is called underlying ODE. Any solution of the
DAE is also a solution of this ODE. This motivates
the interpretation that the differentiation index is the
number of differentiations needed to transform the
DAE into an ODE.

The Strangeness Index
An index concept that is closely related to the differen-
tiation index and extends to over- and under determined
systems is based on the following hypothesis.

Hypothesis 1 Consider the DAE (1) and suppose that
there exist integers �, a, and d such that the set
L� D fz 2 R

.�C2/nC1 j F�.z/ D 0g associated
with F is nonempty and such that for every point z0 D
.t0; x0; Px0; : : : ; x.�C1/

0 / 2 L�, there exists a (sufficiently
small) neighborhood in which the following properties
hold:
1. We have rank M�.z/ D .� C 1/n � a on L�

such that there exists a smooth matrix function Z2
of size .�C 1/n 	 a and pointwise maximal rank,
satisfying ZT

2 M� D 0 on L�.
2. We have rank OA2.z/ D a, where OA2 D
ZT
2 N�ŒIn 0 � � � 0
T such that there exists a smooth

matrix function T2 of size n 	 d , d D n � a, and
pointwise maximal rank, satisfying OA2T2 D 0.

3. We have rank F Px.t; x; Px/T2.z/ D d such that there
exists a smooth matrix functionZ1 of size n	d and
pointwise maximal rank, satisfying rank OE1T2 D d ,
where OE1 D ZT

1 F Px .

Definition 2 Given a DAE as in (1), the smallest value
of � such that F satisfies Hypothesis 1 is called the
strangeness index of (1).

It has been shown in [21] that if F as in (1) satisfies Hy-
pothesis 1 with characteristic values �, a, and d , then
the set L� 
 R

.�C2/nC1 forms a (smooth) manifold of
dimension nC 1. Setting

OF1.t; x; Px/ D ZT
1 F.t; x; Px/;

OF2.t; x/ D ZT
2 F�.t; x; Oz/;

where Oz D .x.1/; : : : ; x.�C1//, and considering the
reduced DAE

OF .t; x; Px/ D
" OF1.t; x; Px/

OF2.t; x/

#
D 0; (5)

one has the following (local) relation between the
solutions of (1) and (5).

Theorem 1 ([19, 21]) Let F as in (1) satisfy Hypoth-
esis 1 with values �, a, and d . Then every sufficiently
smooth solution of (1) also solves (5).
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It also has been shown in [21] that if x� 2 C1.I;Rn/

is a sufficiently smooth solution of (1), then there exist
an operator OF WD ! Y, D 
 X open, given by

OF.x/.t/ D

 Px1.t/ � L.t; x1.t//
x2.t/ � R.t; x1.t//

�
; (6)

with X D fx 2 C.I;Rn/ j x1 2 C1.I;Rd /; x1.t/ D 0g
and Y D C.I;Rn/. Then x� is a regular solution of
(6), i.e., there exist neighborhoods U 
 X of x�, and
V 
 Y of the origin such that for every b 2 V, the
equation OF.x/ D b has a unique solution x 2 U that
depends continuously on f .

The requirements of Hypothesis 1 and that of a well-
defined differentiation index are equivalent up to some
(technical) smoothness requirements (see [18,21]). For
uniquely solvable systems, however, the differentiation
index aims at a reformulation of the given problem as
an ODE, whereas Hypothesis 1 aims at a reformulation
as a DAE with two parts, one part which states
all constraints and another part which describes the
dynamical behavior. If the appropriate smoothness
conditionshold, then� D 0 if� D a D 0and� D �C1
otherwise.

The Perturbation Index
Motivated by the desire to classify the difficulties
arising in the numerical solution of DAEs, the pertur-
bation index introduced in [16] studies the effect of a
perturbation  in

F.t; Ox; POx/ D ; (7)

with sufficiently smooth  and initial condition
Ox.t/ D Ox.

Definition 3 If x 2 C1.I;Cn/ is a solution, then (1)
is said to have perturbation index � 2 N along x,
if � is the smallest number such that for all sufficiently
smooth Ox satisfying (7) the estimate (with appropriate
norms in the relevant spaces)

k Ox�xk � C.k Ox�xkCkk1CkPk1C� � �Ck.��1/k1/
(8)

holds with a constant C independent of Ox, provided
that the expression on the right-hand side in (8) is
sufficiently small. It is said to have perturbation index
� D 0 if the estimate

k Ox � xk � C.k Ox � xk C max
t2I k R t

t
.s/ dsk1/ (9)

holds.

For the linear variable coefficient case, the following
relation holds.

Theorem 2 ([21]) Let the strangeness index � of (3)
be well defined and let x be a solution of (3). Then the
perturbation index � of (3) along x is well defined with
� D 0 if � D a D 0 and � D �C 1 otherwise.

The reason for the two cases in the definition of the
perturbation index is that in this way, the perturba-
tion index equals the differentiation index if defined.
Counting in the way of the strangeness index according
to the estimate (8), there would be no need in the
extension (9).

It has been shown in [21] that the concept of the
perturbation index can also be extended to the non-
square case.

The Tractability Index

A different index concept [14, 23, 24] is formulated in
its current form for DAEs with properly stated leading
term:

F
d

dt
.Dx/ D f .x; t/; t 2 I (10)

with F 2 C.I;Rn;l /, D 2 C.I;Rl;n/, f 2 C.I 	
Dx;R

n/, sufficiently smooth such that kernelF.t/ ˚
rangeD.t/ D R

l for all t 2 I and such that there
exists a projector R 2 C1.I;Rl;l / with rangeR.t/ D
rangeD.t/ and kernelR.t/ D kernelF.t/ for all t 2 I.
One introduces the chain of matrix functions:

G0 D FD; G1 D G0 C B0Q0; GiC1
D Gi C BiQi ; i D 1; 2; : : : ; (11)

where Qi is a projector onto Ni D kernelGi , with
QiQj D 0 for j D 0; : : : ; i�1,Pi D I�Qi , B0 D fx ,
and Bi D Bi�1Pi�1�GiD� d

dt .DP1 : : :PiD�/DPi�1,
where D� is the reflexive generalized inverse of D
satisfying .DD�/ D R and .D�D/ D P0.
Definition 4 ([23]) A DAE of the form (10) with
properly stated leading term is said to be regular with
tractability index � on the interval I, if there exist a
sequence of continuous matrix functions (11) such
that



680 Index Concepts for Differential-Algebraic Equations

1. Gi is singular and has constant rank Nri on I for i D
0; : : : ; � � 1.

2. Qi is continuous and DP1 : : :PiD� is continu-
ously differentiable on I for i D 0; : : : ; � � 1.

3. QiQj D 0 holds on I for all i D 1; : : : ; � � 1 and
j D 1; : : : ; i � 1.

4. G� is nonsingular on I.

The chain of projectors and spaces allows to filter
out an ODE for the differential part of the solution
u D DP1 : : :P��1D�Dx of the linear version of (10)
with f .x; t/ D A.t/x.t/ C q.t/ (see [23]) which is
given by

Pu � d

dt
.DP1 : : :P��1D�/u �DP1 : : :P��1G�1

� AD�

u D DP1 : : :P��1G�1
� q:

Instead of using derivative arrays here, derivatives of
projectors are used. The advantage is that the smooth-
ness requirements for the inhomogeneity can be explic-
itly specified and in this form the tractability index can
be extended to infinite-dimensional systems. However,
if the projectors have to be computed numerically,
then difficulties in obtaining the derivatives can be
anticipated.

It is still a partially open problem to characterize the
exact relationship between the tractability index and
the other indices. Partial results have been obtained
in [5, 6, 22, 24], showing that (except again for differ-
ent smoothness requirements) the tractability index is
equal to the differentiation index and thus by setting
� D 0 if � D a D 0 one has � D �C 1 if � > 0.

The Geometric Index
The geometric theory to study DAEs as differential
equations on manifolds was developed first in [30, 32,
33]. One constructs a sequence of sub-manifolds and
their parameterizations via local charts (correspond-
ing to the different constraints on different levels of
differentiation). The largest number of differentiations
needed to identify the DAE as a differential equation
on a manifold is then called the geometric index of the
DAE. It has been shown in [21] that any solvable reg-
ular DAE with strangeness index � D 0 can be locally
(near a given solution) rewritten as a differential equa-
tion on a manifold and vice versa. If one considers the
reduced system (5), then starting with a solution x� 2
C1.I;Rn/ of (1), the set M D OF�1

2 .f0g/ is nonempty

and forms the desired sub-manifold of dimension d
of R

n, where the differential equation evolves and
contains the consistent initial values. The ODE case
trivially is a differential equation on the manifold R

n.
Except for differences in the smoothness requirements,
the geometric index is equal to the differentiation index
[5]. This then also defines the relationship to the other
indices.

The Structural Index
A combinatorially oriented index was first defined for
the linear constant coefficient case. Let .E.p/; A.p//
be the parameter dependent pencil that is obtained from
.E;A/ by substituting the nonzero elements of E and
A by independent parameters pj . Then the unique in-
teger that equals the Kronecker index of .E.p/; A.p//
for all p from some open and dense subset of the
parameter set is called the structural index (see [25]
and in a more general way [26]). For the nonlinear case,
a local linearization is employed.

Although it has been shown in [31] that the differ-
entiation index and the structural index can be arbi-
trarily different, the algorithm of [25] to determine the
structural index is used heavily in applications (see,
e.g., [38]) by employing combinatorial information
to analyze which equations should be differentiated
and to introduce extra variables for index reduction
[36]. A sound analysis when this approach is fully
justified has, however, only been given in special cases
[10, 20, 36].

Conclusions

Different index concepts for systems of differential-
algebraic equations have been discussed. Except for
different technical smoothness assumptions (and in the
case of the strangeness index, different counting) for
regular and uniquely solvable systems, these concepts
are essentially equivalent to the differentiation index.
However, all have advantages and disadvantages when
it comes to generalizations, numerical methods, or con-
trol techniques. The strangeness index and the pertur-
bation index also extend to non-square systems, while
the tractability index allows a direct generalization to
infinite-dimensional systems.
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Description

The Earth’s climate is an extremely complex system
coupling physical processes for the atmosphere, ocean,
and land over a wide range of spatial and temporal
scales (e.g., [5]). In contrast to predicting the small-
scale, short-term behavior of the atmosphere (i.e., the
“weather”), climate change science aims to predict the
planetary-scale, long-time response in the “climate sys-
tem” induced either by changes in external forcing or
by internal variability such as the impact of increased
greenhouse gases or massive volcanic eruptions [14].
Climate change predictions pose a formidable chal-
lenge for a number of intertwined reasons. First, while
the dynamical equations for the actual climate system
are unknown, one might reasonably assume that the
dynamics are nonlinear and turbulent with, at best,
intermittent energy fluxes from small scales to much
larger and longer spatiotemporal scales. Moreover, all
that is available from the true climate dynamics are
coarse, empirical estimates of low-order statistics (e.g.,
mean and variance) of the large-scale horizontal winds,
temperature, concentration of greenhouse gases, etc.,
obtained from sparse observations. Thus, a fundamen-
tal difficulty in estimating sensitivity of the climate
system to perturbations lies in predicting the coarse-
grained response of an extremely complex system from

sparse observations of its past and present dynamics
combined with a suite of imperfect, reduced-order
models.

For several decades, the weather forecasts and the
climate change predictions have been carried out
through comprehensive numerical models [5, 14].
However, such models contain various errors which
are introduced through lack of resolution and a myriad
of parameterizations which aim to compensate for the
effects of the unresolved dynamical features such as
clouds, ocean eddies, sea ice cover, etc. Due to the
highly nonlinear, multi-scale nature of this extremely
high-dimensional problem, it is quite clear that –
despite the ever increasing computer power – no model
of the climate system will be able to resolve all the
dynamically important and interacting scales.

Recently, a stochastic-statistical framework rooted
in information theory was developed in [1, 10–12]
for a systematic mitigation of error in reduced-order
models and improvement of imperfect coarse-grained
predictions. This newly emerging approach blends
physics-constrained dynamical modeling, stochastic
parameterization, and linear response theory, and it
has at least two mathematically desirable features:
(i) The approach is based on a skill measure given
by the relative entropy which, unlike other metrics
for uncertainty quantification in atmospheric sciences,
is invariant under the general change of variables
[9, 13]; this property is very important for unbiased
model calibration especially in high-dimensional
problems. (ii) Minimizing the loss of information in the
imperfect predictions via the relative entropy implies
simultaneous tuning of all considered statistical
moments; this is particularly important for improving
predictions of nonlinear, non-Gaussian dynamics
where the statistical moments are interdependent.

Improving Imperfect Predictions

Assume that the reduced-order model(s) used to ap-
proximate the truth resolve the dynamics within a
finite-dimensional domain,�, dim.�/<1, of the full
phase space. The variables, uuu 2�, resolved by the
model can represent, for example, the first N Fourier
modes of the velocity and temperature fields. We are
interested in improving imperfect probabilistic predic-
tions of the true dynamics on the resolved variables
uuu 2 � given the the time-dependent probability den-
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sity, �M
t .uuu/, of the model for t 2 I which approximates

the marginal probability density, �t .uuu/, of the truth.
The lack of information in the probability density �

relative to the density �M can be measured through the
relative entropy, P.�; �M/, given by [8, 9]

P.�; �M/ D
Z
�

� ln
�

�M
; (1)

where we skipped the explicit dependence on time and
space in the probability densities. The relative entropy
P.�; �M/ originates from Shannon’s information the-
ory (e.g., [3]), and it provides a useful measure of
model error in imperfect probabilistic predictions (e.g.,
[10]) due to its two metric-like properties: (i) P.�; �M/

is nonnegative and zero only when � D �M, and (ii)
P.�; �M/ is invariant under any invertible change of
variables which follows from the independence of P of
the dominating measure in � and �M. These properties
can be easily understood in the Gaussian framework
when �GDN .Nuuu; R/ and �M;GDN .NuuuM; RM/, and the
relative entropy is simply expressed by

P.�G; �M,G/ D
h
1
2
.Nuuu � NuuuM/R�1

M .Nuuu � NuuuM/
i

C 1
2

h
trŒRR�1

M 
�ln detŒR R�1
M 
�dimŒ Nuuu 


i
;

(2)

which also highlights the fact that minimizing P re-
quires simultaneous tuning of both the model mean and
covariance.

Given a class M of reduced-order models for the
resolved dynamics on uuu 2 �, the best model M�

I 2
M for making predictions over the time interval, I �
Œt t C T 
, is given by

PI.�; �M�
I / D min

M2M PI.�; �M/;

PI.�; �M/ � 1
T

Z tCT

t

P.�s; �M
s /ds; (3)

where PI.�; �M/ measures the total lack of informa-
tion in �M relative to the truth density � within I; note
that for T ! 0 the best model, M�

I 2 M, is simply the
one minimizing the relative entropy (1) at time t . The
utility of the relative entropy for quantifying the model
error extends beyond the formal definition in (3) with

the unknown truth density,� , and it stems from the fact
that (1) can be written as [13]

P.�; �M;L/ D P.�; �L/C P.�L; �M;L/; (4)

where

�L D C �1 exp
�
�PL

iD1 	i Ei .uuu/
�
;

C D
Z
�

exp
�
�

LX
iD1

	i Ei.uuu/
�
; (5)

is the least-biased estimate of � based on L moment
constraints

Z
�

�L.uuu/Ei.uuu/duuu D
Z
�

�.uuu/Ei .uuu/duuu; i D 1; : : : ; L;

(6)

for the set of functionals EEE � .E1; : : : ; E L/ on the
space � of the variables resolved by the imperfect
models. Such densities were shown by Jaynes [7]
to be least-biased in terms of information content
and are obtained by maximizing the Shannon entropy,
S D �R � ln� , subject to the constraints in (6). Here,
we assume that the functionals EEE are given by ten-
sor powers of the resolved variables, uuu 2�, so that
Ei.uuu/ D uuu ˝ i and the expectations NEi yield the first
L uncentered statistical moments of �; note that in
this case, �L for L D 2 is a Gaussian density. In fact,
the Gaussian framework when both the measurements
of the truth dynamics and its model involve only
the mean and covariance presents the most practical
setup for utilizing the framework of information theory
in climate change applications; note that considering
only L D 2 in (5) does not imply assuming that the
underlying dynamics is Gaussian but merely focuses
on tuning to the available second-order statistics of the
truth dynamics.

In weather or climate change prediction, the com-
plex numerical models for the climate system are
calibrated (often in an ad hoc fashion) by comparing
the spatiotemporal model statistics with the available
coarse statistics obtained from various historical ob-
servations [5, 14]; we refer to this procedure as the
calibration phase on the time interval Ic. The model
optimization (3) carried out in the calibration phase can
be represented, using the relationship (4), as
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PIc.�; �
M�

Ic / D PIc.�; �
L/C min

M2M PIc.�
L; �M;L/;

(7)

where M�
Ic

2 M is the model with the smallest lack
of information within Ic. The first term, PIc.�; �

L/,
in (7) represents an intrinsic information barrier [1,10]
which cannot be overcome unless more measurements
L of the truth are incorporated. The second term
in (7) can be minimized directly since the least-biased
estimates, �L, of the truth which are known within Ic;
note that if PIc.�

L; �M�
Ic / ¤ 0, the corresponding

information barrier can be reduced by enlarging the
class of models M.

The utility of the information-theoretic optimization
principle (7) for improving climate change projections
is best illustrated by linking the statistical model fi-
delity on the unperturbed attractor/climate and im-
proved probabilistic predictions of the perturbed dy-
namics. Assume that the truth dynamics are perturbed
so that the corresponding least-biased density, �L;ı , is
perturbed smoothly to

�L;ı D �L C ı�L ;

Z
�

ı�L D 0; (8)

where �L denotes the unperturbed least-biased den-
sity (5), and we skipped the explicit dependence on
time and space. For stochastic dynamical systems with
time-independent, invariant measure on the attractor,
rigorous theorems guarantee this smooth dependence
under minimal hypothesis [6]; for more general dy-
namics, this property remains as an empirical conjec-
ture. Now, the lack of information in the perturbed
least-biased model density, �M;ı , relative to the per-
turbed least-biased estimate of the truth, �L;ı , can be
expressed as (see, e.g., [2, 10])

P ��L;ı ; �M;ı
� D ln

�
C M;ı=C ı

�C
�
			

M;ı�			ı
�

� NEEEı
;

(9)

where NEEEı D NEEEC ı NEEE denotes the vector of L statistical
moments with respect to the perturbed truth density,
�ı , and we suppressed the time dependence for sim-
plicity. For smooth perturbations of the truth density
ı�L in (8), the moment perturbations ı NEEE remain small
so that the leading-order Taylor expansion of (9) com-
bined with the Cauchy-Schwarz inequality leads to the
following link between the error in the perturbed and
unperturbed truth and model densities:

PI.�L;ı ; �M;ı/ 6
��			M�			��1=2

L2.I/
�� NEEEı��1=2

L2.I/

C O�.ı NEEE/2�; (10)

where 			M, 			 are the Lagrange multipliers of the
unperturbed densities �L, �M assumed in the form (5)
and determined in the calibration phase Ic on
the unperturbed attractor/climate. Thus, the result
in (10) implies that optimizing the statistical model
fidelity on the unperturbed attractor via (7) implies
improved predictions of the perturbed dynamics.
Illustration of the utility of the principle in (7) on
a model of turbulent tracer dynamics, can be found
in [11].

Multi-model Ensemble Predictions and
Information Theory
Multi-model ensemble (MME) predictions are
a popular technique for improving predictions
in weather forecasting and climate change sci-
ence (e.g., [4]). The heuristic idea behind MME
prediction framework is simple: given a collection
of imperfect models, consider predictions obtained
through the convex superposition of the individual
forecasts in the hope of mitigating model error.
However, it is not obvious which models, and with
what weights, should be included in the MME
forecast in order to achieve the best predictive
performance. Consequently, virtually all existing
operational MME prediction systems are based
on equal-weight ensembles which are likely to
be far from optimal [4]. The information-theoretic
framework allows for deriving a sufficient condition
which guarantees prediction improvement via
the MME approach relative to the single model
forecasts [2].

The probabilistic predictions of the multi-model
ensemble are represented in the present framework by
the mixture density

�MME
˛̨̨ ;t .uuu/ �

X
i

˛i�
Mi
t .uuu/; uuu 2 �; (11)

where
P
˛i D 1, ˛i > 1, and �Mi

t represent probabil-
ity densities associated with the imperfect models Mi

in the class M of available models. Given the MME
density �MME

˛̨̨ ;t , the optimization principle (7) over the
time interval I can be expressed in terms of the weight
vector ˛̨̨ as
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I

PI
�
�; �MME

˛̨̨�
I

�
D min

˛̨̨
PI

�
�; �MME

˛̨̨

�
: (12)

Clearly, MME prediction with the ensemble of models
Mi 2 M is more skilful in terms of information content
than the single model prediction with M˘ when

PI
�
�; �MME

˛̨̨

� � PI
�
�; �M˘

�
< 0: (13)

It turns out [2] that by exploiting the convexity of
the relative entropy (1) in the second argument, i.e.,
P��;PiD1 ˛i�Mi

�
6
P

iD1 ˛iP
�
�; �Mi

�
, it is pos-

sible to obtain a sufficient condition for improving
imperfect predictions via the MME approach with
�MME
˛̨̨ relative to the single model predictions with M˘

in the form

PI
�
�L; �M˘

�
>
X
i¤˘

ˇi PI
�
�L; �Mi

�
;

ˇi D ˛i

1 � ˛˘
;

X
i¤˘

ˇi D 1; (14)

where M˘;Mi 2M, and �L is the least-biased den-
sity (5) based on L moment constraints which is prac-
tically measurable in the calibration phase. Further
variants of this condition expressed via the statistical
moments NEEE , NEEEM

are discussed in [2]. Here, we only
highlight one important fact concerning the improve-
ment of climate change predictions via the MME ap-
proach; using analogous arguments to those leading to
(10) in the single model framework and the convexity
of the relative entropy, the following holds in the MME
framework:

PI
�
�L;ı ; �MME;ı

˛̨̨

�
6
���X

i

˛i 			
Mi�			

���1=2
L2.I/

�� NEEEı��1=2
L2.I/

C O�.ı NEEE/2�; (15)

where, for simplicity in exposition, the models Mi

in MME are assumed to be in the least-biased form
(5) and 			 , 			Mi are the Lagrange multipliers of the
unperturbed truth and model densities determined in
the calibration phase (see [2] for a general formula-
tion). Thus, for sufficiently small perturbations, op-
timizing the weights ˛̨̨ in the density �MME

˛̨̨ on the
unperturbed attractor via (12) implies improved MME
predictions of the perturbed truth dynamics. The poten-
tial advantage of MME predictions lies in the fact [2]

that for optimal-weight MME in the training phase
PI.�L; �MME

˛̨̨� / 6 PI.�L; �M�
I /, where M�

I is the
best single model within the training phase in terms
of information content. However, MME predictions
are inferior to the single model predictions when the
MME weights ˛̨̨ are such that the condition (14)
with M˘ D M�

I is not satisfied. In summary, while the
MME predictions can be superior to the single model
predictions, the model ensemble has to be constructed
with a sufficient care, and the information-theoretic
framework provides means for accomplishing this task
in a systematic fashion.
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Inhomogeneous Media Identification
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Definition

Inhomogeneous media identification is the problem of
determining the physical properties of an unknown in-
homogeneity from its response to various interrogating
modalities. This response, recorded in measured data,
comes as a result of the interaction of the inhomo-
geneity with an exciting physical field. Inhomogeneous
media identification is mathematically modeled as the
problem of determining the coefficients of some partial
differential equations with initial or boundary data
from a knowledge of the solution on the measurement
domain.

Formulation of the Problem

This survey discusses only the problem of inhomoge-
neous media identification in inverse scattering theory.
Scattering theory is concerned with the effects that
inhomogeneities have on the propagation of waves and
in particular time-harmonic waves. In the context of
this presentation, scattering theory provides the math-
ematical tools for imaging of inhomogeneous media
via acoustic, electromagnetic, or elastic waves with
applications to such fields as radar, sonar, geophysics,
medical imaging, and nondestructive testing. For rea-
sons of brevity, we focus our attention on the case
of acoustic waves and refer the reader to Cakoni-
Colton-Monk [5] for a comprehensive reading on me-
dia identification using electromagnetic waves. Since
the literature in the area is enormous, we have only
referenced a limited number of papers and monographs

and hope that the reader can use these as starting point
for further investigations.

We begin by considering the propagation of sound
waves of small amplitude inR3 viewed as a problem in
fluid dynamics. Let p.x; t/ denote the pressure of the
fluid which is a small perturbation of the static case,
i.e., p.x; t/ D p0 C �P1.x; t/ C � � � where p0 > 0 is
a constant. Assuming that p1.x; t/ is time harmonic,
p1.x; t/ D < ˚

u.x/e�i!t, we have that u satisfies
(Colton-Kress 1998 [8])

�u C !2

c2.x/
u D 0 (1)

where ! is the frequency and c.x/ is the sound speed.
Equation (1) governs the propagation of time-harmonic
acoustic waves of small amplitude in a slowly varying
inhomogeneous medium. We still must prescribe how
the wave motion is initiated and what is the boundary
of the region contained in the fluid. We shall only
consider the simplest case when the inhomogeneity is
of compact support denoted by D, the region of con-
sideration is all of R3, and the wave motion is caused
by an incident field ui satisfying the unperturbed lin-
earized equations being scattered by the inhomoge-
neous medium. Assuming that c.x/ D c0 D constant
for x 2 R3 nD, the total field u D ui C us satisfies

�u C k2n.x/u D 0 in R3 (2)

and the scattered field us fulfills the Sommerfeld
radiation condition

lim
jxj!1

jxj
�
@us

@jxj � ikus
�

D 0 (3)

which holds uniformly in all directions x=jxj where
k D !=c0 is the wave number and n D c20=c

2 is the
refractive index in the case of non-absorbing media. An
absorbing medium is modeled by adding an absorption
term which leads to a refractive index with a positive
imaginary part of the form

n.x/ D c20
c2.x/

C i
�.x/

k

in terms of an absorption coefficient � > 0 in D. In
the sequel, the refractive index n is assumed to be a
piecewise continuous complex-valued function such
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I

that n.x/ D 1 for x … D and <.n/ > 0 and =.n/ � 0.
For a vector d 2 R3, with jd j D 1, the function
eikx�d satisfies the Helmholtz equations in R3, and it
is called a plane wave, since ei.kx�d�!t/ is constant on
the planes kx � d � !t Dconst. Summarizing, given
the incident field ui and the physical properties of the
inhomogeneity, the direct scattering problem is to find
the scattered wave and in particular its behavior at large
distances from the scattering object, i.e., its far-field
behavior. The inverse scattering problem takes this
answer to the direct scattering problem as its starting
point and asks what is the nature of the scatterer that
gave rise to such far-field behavior?

Identification of Inhomogeneities from
Far-Field Data

It can be shown that radiating solutions us to the
Helmholtz equation (i.e., solutions that satisfy the
Sommerfeld radiation condition (3)) assume the
asymptotic behavior

us.x/ D eikjxj

jxj
�

u1. Ox/CO

�
1

jxj
�	

; jxj ! C1
(4)

uniformly for all directions Ox where the function u1
defined on the unit sphere S2 is known as the far-field
pattern of the scattered wave. For plane wave incidence
ui .x; d/ D eikx�d , we indicate the dependence of the
far-field pattern on the incident direction d and the
observation direction Ox by writing u1 D u1. Ox; d/.
The inverse scattering problem or in other words inho-
mogeneous media identification problem can now be
formulated as the problem of determining the index
of refraction n (and hence also its support D) from a
knowledge of the far-field pattern u1. Ox; d/ for Ox and
d on the unit sphere S2 (or a subset of S2). All the
results presented here are valid in R2 as well. Also,
it is possible to extend our discussion to the case of
point source incidence and near-field measurements
(see [3]).

Uniqueness
The first question to approach the problem is whether
the inhomogeneous media is identifiable from the ex-
act data, which in mathematical terms is known as
the uniqueness problem. The uniqueness problem for
inverse scattering by an inhomogeneous medium in

R3 was solved by Nachman [13], Novikov [14], and
Ramm [16] who based their analysis on the fundamen-
tal work of Sylvester and Uhlmann [17]. Their unique-
ness proof was considerably simplified by Hähner [9]
(see [2, 13, 17] and the references in [8] and [10]).
The uniqueness problem for an inhomogeneous me-
dia in R2, which is a formerly determined problem,
was recently solved by Bukhgeim [2]. In particular,
under the assumptions on the refractive index stated
in the Introduction, the following uniqueness result
holds.

Theorem 1 The refractive index n in (2) is uniquely
determined from u1. Ox; d/ for Ox; d 2 S2 and a fixed
value of the wave number k.

It is important to notice that owning to fact that u1 is
real analytic in S2 	 S2, for the uniqueness problem,
it suffices to know u1. Ox; d/ for Ox; d on subsets of S2

having an accumulation point.
The identifiability problem for the matrix index of

refraction of an anisotropic media is more compli-
cated. In the mathematical model of the scattering by
anisotropic media, Eq. (2) is replaced by

r � Aru C k2n.x/u D 0 in R3 (5)

where n satisfies the same assumptions as in Introduc-
tion and A is a 3 	 3 piecewise continuous matrix-
valued function with a positive definite real part, i.e.,
� �<.A/� > ˛j�j2, ˛ > 0 inD, non-positive imaginary
part, i.e., � � =.A/� � 0 in D and A D I in R3 n D.
In general, it is known that u1. Ox; d/ for Ox; d 2 S2

does not uniquely determine the matrix A even it is
known for all wave numbers k > 0, and hence without
further a priori assumptions, the determination of D
is the most that can be hoped. To this end, Hähner
(2000) proved that the support D of an anisotropic
inhomogeneity is uniquely determined from u1. Ox; d/
for Ox; d 2 S2 and a fixed value of the wave number k
provided that either � �<.A/� > ˇj�j2 or � �<.A�1/� >
ˇj�j2 for some constant ˇ > 1.

Reconstruction Methods
Recall the scattering problem described by (2)–(3) for
the total field u D uiCus with plane wave incident field
ui WD eikx�d . The total field satisfies the Lippmann-
Schwinger equation (see [8])
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u.x/ D eikx�d� k2

4�

Z
R3

eikjx�yj

jx � yjm.y/u.y/ dy; x 2 R3;
(6)

and the corresponding far-field pattern is given by

u1. Ox; d/ D � k2

4�

Z
R3
e�ik Ox�ym.y/u.y/ dy; Ox; d 2 S2:

(7)

Since the function m WD 1 � n has support D, the
integrals in (6) and (7) can in fact be written over a
bounded domain containing D. The goal is to recon-
struct m.x/ from a knowledge of (the measured) far-
field pattern u1. Ox; d/ based on (7). The dependence of
(7) on the unknown m is in a nonlinear fashion; thus,
the inverse medium problem is genuinely a nonlinear
problem. The reconstruction methods can, roughly
speaking, be classified into three groups, Born or weak
scattering approximation, nonlinear optimization tech-
niques, and qualitative methods (we remark that this
classification is not inclusive).

Born Approximation
Born approximation, known otherwise as weak scatter-
ing approximation, turns the inverse medium scattering
problem into a linear problem and therefore is often
employed in practical applications. This process is
justified under restrictive assumption that the scattered
field due to the inhomogeneous media is only a small
perturbation of incident field, which at a given fre-
quency is valid if either the corresponding contrast n�1
is small or the support D is small. Hence, assuming
that k2kmk1 is sufficiently small, one can replace u
in (7) by the plane wave incident field eikx�d , thus
obtaining the linear integral equation for m

u1. Ox; d/ D � k2

4�

Z
R3
e�ik. Ox�d/�ym.y/ dy; Ox; d 2 S2:

(8)

Solving (8) for the unknown m corresponds to invert-
ing the Fourier transform of m restricted to the ball of
radius 2k centered at the origin, i.e., only incomplete
data is available. This causes uniqueness ambiguities
and leads to severe ill-posedness of the inversion. For
details we refer the reader to Langenberg [12].

Nonlinear Optimization Techniques
These methods avoid incorrect model assumptions in-
herent in weak scattering approximation and consider

the full nonlinear inverse medium problem. To write
a nonlinear optimization setup, note that the inverse
medium problem is equivalent to solving the system of
equations composed by (6) and (7) for u and m where
u1 is in practice the (noisy) measured data uı1 with
ı > 0 being the noise level. Thus, a simple least square
approach looks for minimizing the cost functional

�.u; m/ WD
kui C Tmu � uk2

L2.B�S2/
kuik2

L2.B�S2/

C
kuı1 � Fmu � uk2

L2.S2�S2/
kuı1k2

L2.B�S2/

for u and m over admissible sets, where Tmu denotes
the integral in (6) and Fmu denotes the integral in
(7). The discrete versions of this optimization problem
suffer from a large number of unknowns and thus
is expensive. Regularization techniques are needed to
handle instability due to ill-posedness.

A more rigorous mathematical approach to deal
with nonlinearity in (6) and (7) is the Newton-type iter-
ative method. To this end, it is possible to reformulate
the inverse medium problem as a nonlinear operator
equation by introducing the operator F W m ! u1 that
maps m WD 1 � n to the far-field pattern u1.�; d / for
plane incidence ui .x/ D eikx�d . In view of uniqueness
theorem, F can be interpreted as an injective operator
from B.B/ (the space of bounded functions defined
on a ball B containing the support D of m) into
L2.S2 	 S2/ (the space of square integrable function
on S2 	 S2). From (7) we can write

.F.m//. Ox; d/ D � k2

4�

Z
B

e�ik Ox�ym.y/u.y/ dy; (9)

Ox; d 2 S2

where u.�; d / is the unique solution of (6). Note that F
is a compact operator, owning this to its analytic kernel;
thus, (9) is severely ill-posed. From the latter it can be
seen that the Fréchet derivative vq of u with respect
tom (in direction q) satisfies the Lippmann-Schwinger
equation

vq.x; d/C k2

4�

Z
B

eikjx�yj

jx � yj�
m.y/vq.y; d/C q.y/u.y; d/

�
dy; x 2 B
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which implies the following expression for the Fréchet
derivative of F

.F 0.m/q/. Ox; d/ D � k2

4�

Z
B

e�ik. Ox�d/�y

�
m.y/vq.y; d/C q.y/u.y; d/

�
dy; Ox; d 2 S2:

Observe that F 0.m/q D vq;1 where vq;1 is the far-
field pattern of the radiating solution to �v C k2nv D
�k2uq. It can be shown that F 0.m/ is injective (see
[8, 10]). With the help of Fréchet derivative, it is now
possible to replace (7) by its linearized version

F.m/C F 0.m/q D u1 (10)

which, given an initial guess m, it is solved for q to
obtain an updatemCq. Then as in the classical Newton
iterations, this linearization procedure is iterated until
some stopping criteria are satisfied. Of course the
linearized equation inherits the ill-posedness of the
nonlinear equation, and therefore regularization is re-
quired. If uı1 is again the noisy far-field measurements,
Tikhonov regularization replaces (10) by

˛q C ŒF 0.m/
�F 0.m/q D ŒF 0.m/
�
˚
uı1 � F.m/

with some positive regularization parameter ˛ and
the L2 adjoint ŒF 0.m/
� of F 0.m/. Of course for the
Newton method to work, one needs to start with a good
initial guess incorporating available a priori informa-
tion, but in principle the method can be formulated for
one or few incident directions.

Qualitative Methods
In recent years alternative methods for imaging of
inhomogeneous media have emerged which avoid in-
correct model assumptions of weak approximations
but, as opposed to nonlinear optimization techniques,
require essentially no a priori information on the scat-
tering media. Nevertheless, they seek limited informa-
tion about scattering object and need multistatic data,
i.e, several incident fields each measured at several
observation directions. Such methods come under the
general title of qualitative methods in inverse scattering
theory. Most popular examples of such approaches
are linear sampling method (Cakoni-Colton [3]), fac-
torization method (Kirsch-Grinberg [11]), and singu-
lar sources method (Potthast [15]). Typically, these

methods seek to determine an approximation to the
support of the inhomogeneity by constructing a support
indicator function and in some cases provide limited
information on material properties of inhomogeneous
media. We provide here a brief exposé of the linear
sampling method. To this end let us define the far-field
operator F W L2.S2/ ! L2.S2/ by

.Fg/. Ox/ WD
Z
S2

u1. OxI d; k/g.d/ds.d/ (11)

We note that by linearity .Fg/. Ox/ is the far-field pat-
tern corresponding to (1) where the incident field ui is a

Herglotz wave function vg.x/ WD
Z
S2
eikx�dg.d/ds.d/.

For given k > 0 the far-field operator is injective
with dense range if and only if there does not exist a
nontrivial solution v;w 2 L2.D/, v � w 2 H2.D/ of
the transmission eigenvalue problem

�w C k2n.x/w D 0 and �v C k2v D 0 in D (12)

w D v and @w
@�

D @v
@�

on @D (13)

such that v is a Herglotz wave function. Values of
k > 0 for which (12)–(13) has nontrivial solutions
are called transmission eigenvalues. If =.n/ D 0,
there exits an infinite discrete set of transmission eigen-
values accumulating only at C1, [7]. Consider now
the far-field equation .Fg/. Ox/ D ˆ1. Ox; z; k/ where
ˆ1.x; z; k/ WD 1

4�
e�ik Ox�z (is the far-field pattern of

the fundamental solution eikjx�yj

4�jx�yj to the Helmholtz
equation). The far-field equation is severely ill-posed
owing to the compactness of the far-field operator
which is an integral operator with analytic kernel.

Theorem 2 Assume that k is not a transmission
eigenvalue. Then: (1) If z 2 D for given � > 0

there exists gz;�;k 2 L2.S2/ such that kFgz;�;k �
ˆ1.�; z; k/kL2.S2/ < � and the corresponding Herglotz
function satisfies lim

�!0
kvgz;�;kkL2.D/ exists finitely, and

for a fixed � > 0, lim
z!@D

kvgz;�;kkL2.D/ D C1. (2)

If z 2 R3 n D and � > 0, every gz;�;k 2 L2.S2/

satisfying kFgz;�;k � ˆ1.�; z; k/kL2.S2/ < � is such
that lim

�!0
kvgz;�;kkL2.D/ D C1.

The linear sampling method is based on attempting to
compute the function gz;�;k in the above theorem by
using Tikhonov regularization as the unique minimizer
of the Tikhonov functional (see [8])
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kF ıg �ˆ.�; z/k2
L2.�/

C ˛kgk2
L2.S2/

(14)

where the positive number ˛ WD ˛.ı/ is known as
the Tikhonov regularization parameter and F ıg is the
noisy far-field operator where u1 in (7) is replaced
by the noisy far-field data uı1 with ı > 0 being
the noise level (note that ˛ı ! 0 as ı ! 0). In
particular, one expects that this regularized solution
will be relatively smaller for z 2 D than z 2 R3 n D,
and this behavior can be visualized by color coding the
values of the regularized solution on a grid over some
domain containing the supportD of the inhomogeneity
and thus providing a reconstruction of D. A precise
mathematical statement on the described behavior of
the regularized solution to the far-field equation is
based on factorization method which instead of the far-
field operator F considers .F �F /1=4 where F � is the
L2 adjoint of F (see [11]). For numerical examples
using linear sampling method, we refer the reader
to [3].

Having reconstructed the support of the inhomo-
geneityD, we then obtain information on n.x/ for non-
absorbing media, i.e., if =.n/ D 0. Assume to this end
that n.x/ > 1 (similar results hold for 0 < n.x/ < 1),
fix a z 2 D, and consider a range of wave number
k > 0. If gı;z;k is now the Tikhonov-regularized
solution of the far-field equation (14), then we have
that: (1) for k > 0 not a transmission eigenvalue
lim
ı!0

kvgı;z;kkL2.D/ exists finitely [1] and (2) for k > 0

a transmission eigenvalue lim
ı!0

kvgı;z;kkL2.D/ D C1
(for almost all z 2 D) [4]. In practice, this means
if kgı;z;kkL2.S2/ is plotted against k, the transmission
eigenvalues will appear as sharp picks and thus provid-
ing a way to compute transmission eigenvalues from
far-field measured data. A detailed study of trans-
mission eigenvalue problem [7] reveals that the first
transmission is related to the index of refraction n.
More specifically, letting n� D infDn.x/ and n� D
supD n.x/, the following Faber-Krahn type inequalities
hold:

k21;n.x/;D � �1.D/

n� (15)

where k1;n.x/;D is the first transmission eigen-
value corresponding to d and n.x/ and �1.D/

is the first Dirichlet eigenvalue for �� in D,
and

0 < k1;D;n� � k1;D;n.x/ � k1;D;n�
(16)

which is clearly seen to be isoperimetric for n.x/
equal to a constant. In particular, (16) shows that
for n constant, the first transmission eigenvalue is
monotonic decreasing function of n, and moreover,
this dependence can be shown to be continuous and
strictly monotonic. Using (16), for a measured first
transmission eigenvalue k1;D;n.x/, we can determine
a unique constant n0 that satisfies 0 < n� �
n0 � n�, where this constant is such that k1;D;n0 D
k1;D;n.x/. This n0 is an integrated average of n.x/
overD.

A more interesting question is what does the first
transmission eigenvalue say about the matrix index of
refraction A for the scattering problem for anisotropic
media (5). Assuming n D 1, � � <.A/� > j�j2 and
� � =.A/� D 0 in (5), similar analysis for the corre-
sponding transmission eigenvalue problem leads to the
isoperimetric inequality 0 < k1;D;a� � k1;D;A.x/ �
k1;D;a�

[6]. Hence, it is possible to compute a con-
stant a0 such that k1;D;a0 equals the (measured) first
transmission eigenvalue k1;D;A.x/, and this constant
satisfies 0 < a� � a0 � a�, where a� D inf

D
a1.x/,

a� D sup a3.x/, and a1.x/ and a3.x/ are the smallest
and the largest eigenvalues of the matrix A�1.x/,
respectively. The latter inequality is of particular in-
terest since A.x/ is not uniquely determined from
the far field, and to our knowledge this is the only
information obtainable to date about A.x/ that can be
determined from far-field data (see [6] for numerical
examples).
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Initial Value Problems

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Université de Genève,
Genève, Switzerland

We describe initial value problems for ordinary differ-
ential equations and dynamical systems, which have
a tremendous range of applications in all branches
of science. We also explain differential equations on
manifolds and systems with constraints.

Ordinary Differential Equations

An ordinary differential equation is a formula

Py D f .t; y/;

which relates the time derivative of a function y.t/ to
its function value. Any function y.t/ defined on an
interval I � R and satisfying Py.t/ D f .t; y.t// for all
t 2 I is called a solution of the differential equation.
If the value y.t/ is prescribed at some point t0, we call
the problem

Py D f .t; y/; y.t0/ D y0

an initial value problem. In most situations of practical
interest the function y.t/ is vector-valued, so that we
are in fact concerned with a system

Py1 D f1.t; y1; : : : ; yn/; y1.t0/ D y10;
:::

:::

Pyn D fn.t; y1; : : : ; yn/; yn.t0/ D yn0:

The differential equation is called autonomous if the
vector field f does not explicitly depend on time t .

An equation of the form

y.k/ D f .t; y.k�1/; : : : ; Py; y/

is a differential equation of order k. By introducing
the variables y1 D y, y2 D Py, : : : ; yk D y.k�1/, and
adding the equations Pyj D yjC1 for j D 1; : : : ; k � 1,
such a problem is transformed into a system of first-
order equations.

Example 1 The Van der Pol oscillator is an au-
tonomous second-order differential equation. Written
as a first-order system the equations are given by

Py1 D y2

Py2 D � .1 � y21 / y2 � y1:

Since the problem is autonomous, solutions can conve-
niently be plotted as paths in the phase space .y1; y2/.
Several of them can be seen in Fig. 1 (left). Arrows
indicate the direction of the flow. We observe that all
solutions tend for a large time to a periodic solution
(limit cycle).
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Initial Value Problems,
Fig. 1 Solutions in the phase
space of the Van der Pol
oscillator for � D 0:4 (left);
solutions of the linearized
equation (right)
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Linear Systems with Constant Coefficients

Systems of differential equations can be solved analyt-
ically only in very special situations. One of them are
linear equations with constant coefficients,

Py D Ay; y.0/ D y0;

where y.t/ 2 R
n, and A is a constant matrix of

dimension n. A linear change of coordinates y D T z
transforms the system into Pz D �z with � D T �1AT .
If T can be chosen such that � D diag .�1; : : : ; �n/
is diagonal, we obtain zj .t/ D e�j t cj , and the solution
y.t/ via the relation y.t/ D T z.t/. The free parameters
c1; : : : ; cn can be chosen to match the initial condition
y.0/ D y0.

If the matrix A cannot be diagonalized, it can be
transformed to upper triangular form (Schur or Jordan
canonical form). Starting with zn.t/, the functions zj .t/
can be obtained successively by solving scalar, inho-
mogeneous linear equations with constant coefficients.

An explicit formula for the solution of the linear
system Py D Ay is obtained by using the matrix
exponential

y.t/ D exp.At/ y0; exp.At/ D
1X
kD0

Ak
tk

kŠ
:

Example 2 If we neglect in the Van der Pol equation,
for y1 small, the cubic term y21y2, we obtain the system

Py1 D y2

Py2 D �y2 � y1;

which leads, for 0 < � < 2, to complex eigenvalues
�1;2 D � ˙ i! with � D �

2
and ! D p

1 � �2. The
solutions are thus linear combinations of e�t cos!t and
e�t sin!t . Some of these outward spiraling solutions
are displayed in Fig. 1 (right) and mimic those of the
Van der Pol equation close to the origin.

Existence, Uniqueness, and
Differentiability of the Solutions

Whenever it is not possible to find the solution of a
differential equation in analytic form, it is still of inter-
est to study its existence, uniqueness, and qualitative
properties.

Existence and Uniqueness
Consider a differential equation Py D f .t; y/ with
a continuously differentiable function f W U !
R
n, where U � R 	 R

n is an open set, and let
.t0; y0/ 2 U . Then, there exists a unique function y W
I ! R

n on a (maximal) open interval I D I.t0; y0/

such that
• Py.t/ D f .t; y.t// for t 2 I and y.t0/ D y0.
• .t; y.t// approaches the border of U whenever t

tends to the left (or right) end of the interval I .
• If z W J ! R

n is a solution of Py D f .t; y/

satisfying z.t0/ D y0, then J � I and z.t/ D y.t/

for t 2 J .
The statement is still true if the differentiability as-
sumption is weakened to a “local Lipschitz condition.”
In this case the local existence and uniqueness result is
known as the theorem of Picard–Lindelöf.
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Variational Equation
If the dependence on the initial condition is of interest,
one denotes the solution by y.t; t0; y0/. It is defined on
the set

D D f.t; t0; y0/ I .t0; y0/ 2 U; t 2 I.t0; y0/g:

This set is open, and the solution y.t; t0; y0/ is con-
tinuously differentiable with respect to all variables.
Its derivative with respect to the initial value y0 is the
solution of the variational equation

P�.t/ D @f

@y

�
t; y.t; t0; y0/

�
�.t/; �.t0/ D I:

Stability

The stability of a solution tells us how sensible it is
with respect to perturbations in the initial value.

Stability of Linear Problems
The analytic solution of a problem Py D Ay is a linear
combination of expressions p.t/e�t , where � is an
eigenvalue of A and p.t/ is a polynomial of degree
k � 1, where k is the dimension of the Jordan block
corresponding to �. As a consequence we have for
solutions of Py D Ay:
• If all eigenvalues of A satisfy <� < 0, then
y.t/ ! 0 for t ! 1; the solution is called asymp-
totically stable.

• If all eigenvalues of A satisfy <� � 0 and the
Jordan block of eigenvalues with <� D 0 is of
dimension one, then y.t/ is bounded for t ! 1;
the solution is called stable.

• If there exists an eigenvalue with <� > 0 or an
eigenvalue with <� D 0 whose Jordan block is
larger than one, then most solutions are unbounded
for t ! 1; the problem is called unstable.

The same is true for the difference between two solu-
tions, because the problem is linear.

Stability for Nonlinear Problems
The stability investigation of solutions for nonlinear
problems is much more involved. However, there are
simple criteria for stationary solutions (i.e., y.t/ D
y0, where f .y0/ D 0) of autonomous differential
equations Py D f .y/:

• If all eigenvalues of the matrix f 0.y0/ satisfy
<� < 0, then the stationary solution is asymp-
totically stable. This means that it is stable (i.e.,
for every " > 0 there exists a ı > 0 such that, if
kz0k < ı, we have ky.t; 0; y0 C z0/ � y0k < " for
all t � 0), and that for sufficiently small kz0k one
has y.t; 0; y0 C z0/ ! y0 for t ! 1.

• If there exists an eigenvalue of f 0.y0/ satisfying
<� > 0, then the stationary solution is
unstable. This means that there exist arbitrarily
small perturbations z0 for which the solution
y.t; 0; y0 C z0/ moves away from y0 (example:
the origin for Van der Pol’s equation in Fig. 1 is
unstable).

Contractivity
If the vector field satisfies a one-sided Lipschitz condi-
tion, i.e., there exists a number � such that

hf .t; y/ � f .t; z/; y � zi � �ky � zk2

for all y and z, then the difference of any two solutions
can be estimated as

ky.t/� z.t/k2 � e�.t�t0/ky.t0/� z.t0/k2 for t � t0:

Differential Equations onManifolds

There are problems where solutions of a differential
equation evolve on a submanifold of Rn. The manifold
is typically given by algebraic constraints (preservation
of energy and momentum, first integrals, holonomic
constraints for mechanical systems). Much of the the-
ory of differential equations (existence, uniqueness,
etc.) carries over to this situation.

Closely related to differential equations on man-
ifolds are so-called differential-algebraic equations.
They can be written in the form

M Py D f .t; y/; y.t0/ D y0

with a constant but possibly singular matrix M .
We cannot expect that such a problem has always
a (local) solution, even if f .t; y/ is sufficiently
smooth. One immediately sees that f .t0; y0/ has to
be in the range of M , but this is not sufficient in
general.
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Problems of Index 1
Consider problems of the form

Py D f .t; y; z/; y.t0/ D y0

0 D g.t; y; z/; z.t0/ D z0;

where the Jacobian matrix @g

@z is invertible in a neigh-
borhood of .t0; y0; z0/ (index 1 condition). Obviously,
the initial values have to satisfy g.t0; y0; z0/ D 0.
This permits to apply the implicit function theorem
and to express z D �.t; y/ from the algebraic relation.
As a consequence the problem is equivalent to the
ordinary differential equation Py D f .t; y; �.t; y// and
the standard theory can be applied.

Problems of Index 2
Problems from control theory often have the form

Py D f .y; z/; y.0/ D y0

0 D g.y/; z.0/ D z0;

where for notational convenience we suppress the de-
pendence of t . The index 1 condition is violated,
because g does not depend on z. Differentiating the
algebraic relation with respect to time yields

gy.y/f .y; z/ D 0:

If .gyfz/.y0; z0/ is invertible (index 2 condition), the
implicit function theorem implies that z D �.y/ close
to the initial value. We thus get a differential equation
PyD f .y; �.y// on the manifold M D fy I g.y/ D 0g.
Consistent initial values have to satisfy both con-
straints, g.y0/ D 0 and .gyf /.y0; z0/ D 0.

Problems of Index 3
Mechanical systems with holonomic constraints are
problems of the form

Py D f .y; z/; y.0/ D y0

Pz D h.y; z; u/; z.0/ D z0

0 D g.y/; u.0/ D u0:

One has to differentiate twice the algebraic relation to
be able to write u D �.y; z/. If this is possible, we get
a differential equation for .y; z/ on the manifold M D
f.y; z/ I g.y/ D 0; .gyf /.y; z/ D 0g. Consistent
initial values have to satisfy .y0; z0/ 2 M, and u0 D
�.y0z0/.

Notes

There are many excellent books on the theory of
ordinary differential equations. Let us just mention the
classical monographs by Arnold [1], Hartman [5], and
Chapter I of [3]. Concerning the theory of differential-
algebraic equations we refer to [2] and to Chapters VI
and VII of [4].
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Synonyms

Integro-differential equation (IDE)

Integro Differential Equations

The standard form of a first-order, nonlinear Volterra
IDE for an unknown function u D u.t/ is

u0.t/ D f .t; u.t//C
Z t

0

k.t; s; u.s// ds; t 2 Œ0; T 
;
(1)

complemented by an initial condition u.0/ D u0.
In applications, k has often the Hammerstein form
k.t; s; u/ D K.t; s/G.s; u/, where G is smooth and K
is either bounded (or even smooth) or weakly singular
(integrable), e.g., K.t; s/ D .t � s/˛�1 .0 < ˛ < 1/ or
K.t; s/ D log.t � s/.

Many Volterra-type IDEs arising in mathematical
modelling processes (Volterra [18], Brunner [2,
Sects. 3.6, 4.8, and 7.8], Janno and von Wolfersdorf [9],
Shakourifar and Enright [16]) are of nonstandard form
(in each equation, the nonstandard part is underlined):

u0.t/ D f .t; u.t//C
Z t

0

k.t; s; u.t/; u.s// ds (2)

u0.t/ D f .t; u.t//C
Z t

0

k.t; s; u.s/; u0.s// ds (3)

u0.t/ D f .t; u.t//C
Z t

0

K.t; s/u.t � s/u.s/ ds (4)

u0.t/ D f .t; u.t/; u.	.t///C
Z t

	.t/

k.t; s; u.s/; u0.s// ds

(5)

In (5), 	 denotes a delay function satisfying 	.t/ < t

(e.g., 	.t/ D t � �; � > 0: constant delay).
In an IDE of Fredholm type, the limits of integration

are fixed, and the order of the IDE is usually even.
Thus, a typical Fredholm IDE has the (Hammerstein)
form

u.2m/.t/C
2m�1X
jD0

aj .t/u
.j /.t/ D

Z T

0

2mX
jD0

Kj .t; s/

Gj .s; u
.j /.s// ds D f .t/; t 2 Œ0; T 
; (6)

where u is subject to boundary conditions at t D 0 and
t D T (Ganesh and Sloan [8] and references).

The solution u D u.t; x/ of a partial Volterra or
Fredholm IDE depends also on the spatial variable
x 2 � � IRN (where� is bounded or unbounded). The
following are representative examples of such equa-
tions arising in a variety of applications where memory
effects play a role, for example, in heat conduction
or viscoelasticity in materials with memory, and in
stochastic processes of financial mathematics (Renardy
et al. [15], Prüss [14], Matache et al. [12]; see also
Souplet [17] and Appell et al. [1], especially for partial
Volterra-Fredholm IDEs and Fredholm IDEs):

ut C Au D
Z t

0

h.t � s/Bu.s; �/ ds C f .t; x/;

x 2 �; t � 0 (7)

ut t C Au D
Z t

0

h.t � s/Bu.s; �/ ds C f .t; x/;

x 2 �; t � 0 (8)

ut C
Z t

0

h.t � s/Au.s; �/ ds D f .t; x/;

x 2 �; t � 0 (9)

ut C Au D
Z
�

G.t � s; x; �/Bu.�; �/ d� C f .t; x/;

x 2 �; t � 0 (10)

Here, A denotes a linear or nonlinear elliptic spatial
partial differential operator (typically:A D ��), while
B is a spatial partial differential operator of order
not exceeding two. The convolution kernel h either
is bounded (and smooth) or has the form h.z/ D
z˛�1 .0 < ˛ < 1/.

Fractional diffusion and wave equations represent
another class of partial IDEs whose numerical solution
is presently receiving considerable attention. Represen-
tative examples of such IDEs are

1

�.˛/

Z t

0

.t � s/˛�1 @u.s; �/
@s

ds ��u D f .t; x/

.0 < ˛ < 1/ (11)

and

ut � 1

�.˛/

Z t

0

.t � s/˛�1�u.s; �/ ds D F.t; x; u;ru/

(12)
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(see Cuesta et al. [7] and Brunner et al. [5], also
for references). Note that these IDEs are intermediate
between the diffusion equation (˛ D 0) and the wave
equation (˛ D 1).

Computational Solution of IDEs

Collocation methods (Brunner [2], also for higher-
order IDEs) and discontinuous Galerkin (DG) methods
(Brunner and Schötzau [3]) based on piecewise poly-
nomials with respect to suitable meshes Ih WD ftn W
0 D t0 < t1 < � � � < tN D T g are the methods
of choice for the computational solution of general
Volterra IDEs (1)–(5). If the kernel function k contains
an integrable singularity like .t � s/˛�1 .0 < ˛ < 1/,
the solution u.t/ has an unbounded second derivative
at t D 0; in order to obtain high-order collocation
or DG solutions, meshes Ih that are suitably refined
(graded) near t D 0 have to be employed (Brunner
et al. [4] and Brunner and Schötzau [3]). The same is
true if these methods are used as time-stepping meth-
ods in spatially semi-discretized partial Volterra IDEs
with weakly singular kernels (Mustapha et al. [13];
see section “Computational Solution of Partial IDEs”
below).

If the IDE (1) contains a Hammerstein kernel of
convolution type, k.t; s; u/ D h.t � s/G.s; u/, the
computationally most efficient methods are the ones
based on convolution quadrature techniques, combined
with adaptive step-size control (López-Fernández
et al. [11]).

While the efficient computational solution of au-
toconvolution IDEs (4) remains to be studied, it is
well understood for delay IDEs (5) (Brunner [2]).
An effective algorithm is presented in Shakourifar
and Enright [16]: the underlying numerical method
is based on explicit continuous Runge–Kutta methods
with adaptive step-size control.

Turning to boundary-value problems for Fredholm
IDEs (6), it is shown in Ganesh and Sloan [8] that
orthogonal collocation yields an efficient and highly
accurate computational scheme for solving such IDEs.

Computational Solution of Partial IDEs

The spatial discretization of time-dependent partial
IDEs (approximation of the spatial partial differential

operators A and B in (7)–(9)) – based on finite
element/Galerkin techniques (cf. Chen and Shih [6]
and references) – leads to high-dimensional systems
of (linear or nonlinear) IDEs of the forms (1). The
time-stepping methods for discretizing these systems
of IDEs are usually adaptations of the computational
methods for IDEs described in section “Computational
Solution of IDEs”. Typical examples of one-point
collocation schemes are the backward Euler method
and the implicit Crank-Nicolson method (Chen and
Shih [6]). Time stepping by means of the DG method
and its hp implementation is described in Larsson
et al. [10] and Mustapha et al. [13], respectively.

In the case of convolution kernels, convolution
quadrature time-stepping schemes, for example, those
based on the second-order backward differentiation
formula, yield fast and efficient computational methods
(Cuesta et al. [7] and López-Fernández et al. [11];
the latter paper also contains a pseudocode of the
algorithm).

A major problem in the computational solution of
partial IDEs (especially IDEs of Fredholm type (10))
is that the matrices arising in the spatial semi-
discretization of (7)–(10) are densely populated, owing
to the nonlocal integral terms. Thus, in 2D and 3D
spatial environments, the design of an efficient and fast
time-stepping scheme will have to employ (wavelet-
based) matrix compression techniques applied to
the system of IDEs resulting from the spatial semi-
discretization. In the case of parabolic Fredholm
IDEs of the form (10), an efficient such algorithm
is presented in Matache et al. [12] for Fokker-Planck
IDEs modelling Markov processes with jumps.

There is a rapidly increasing number of papers on
the computational solution of fractional diffusion and
wave equations (11) and (12), as shown for example in
Cuesta et al. [7] and the references in Brunner et al. [5].
Compare also López-Fernández et al. [11], Sect. 5.
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11. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive,
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Definition Terms

Array collection of sensors (wave sources and re-
ceivers) located close together so they behave as an
entity, the array.

Imaging process of creating a map of large scale
variations of the wave speed in a medium from
measurements of the wave field at an array of
sensors.

Random media mathematical models of heteroge-
neous media with uncertain microstructure.

Time reversal process of reversing in time the
waves measured at an array, and reemitting
them in the medium where they came from,
so that they can propagate an refocus at the
source.

Short Description

We present a comparative study of time reversal and
array imaging in random media. We explain that the
time reversal process is fundamentally different than
imaging, and it cannot be used for imaging purposes.
We also describe briefly the resolution of time reversal
and imaging. Since they occur in random media, the
resolution theory is augmented with the important
concept of statistical stability. It refers to robustness of
the processes with respect to different realizations of
the random medium.

Description

Time reversal is a physical experiment that uses spe-
cial arrays of transducers, called time reversal mirrors
(TRM) [12]. The transducers in a TRM operate as both
receivers and sources, as illustrated in Fig. 1. First, they
record the signals emitted by a remote localized source.
Then, they time reverse these signals and reemit them
into the medium. The waves propagate back toward
the source and focus near it. In passive array imaging,
the transducers are only receivers that record the array
data, the signals from the localized source. Then, the
data are processed numerically to obtain an imaging
function evaluated at points Ey in a search domain. The
peaks of this function are the estimates of the source
location.
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Interferometric Imaging and TimeReversal in RandomMe-
dia, Fig. 1 Schematic of the time reversal experiment. On the
left, we illustrate a localized source that emits a signal f .t/. The
transducers at locations Exr in the array record the signalD.t; Exr /.

On the right, we illustrate how the transducers emit the time-
reversed signal, and how the waves travel back to the source,
where they focus

It is often said that any imaging process involves
some form of time reversal. This is true in some
sense if imaging occurs in media that are known
in detail. Then, numerical propagation of the waves
in our model of the medium resembles closely the
physical wave propagation in the true medium. We
consider here heterogeneous media, cluttered by in-
homogeneities that scatter the waves. They arise in
applications like ground or foliage penetrating radar,
seismic exploration, shallow water acoustics, nonde-
structive evaluation of heterogeneous materials like
aging concrete, and so on. When imaging in clutter,
we know at best the large-scale, smooth features of the
medium. If we do not know them, it may be feasible
to estimate them using a process called velocity esti-
mation that requires additional data. See, for example,
the semblance velocity estimation approach described
in [10] or the travel time tomography approach [14].
However, we cannot know in detail and it is not feasible
to estimate the small-scale structure of cluttered media,
the inhomogeneities. That is to say, there is uncertainty
about the clutter, which is why we model it as a ran-
dom spatial process and speak of imaging in random
media.

The time reversal experiment can be carried
out without any knowledge of the medium, and
surprisingly at first, clutter may improve the wave
focusing at the source [12]. Time reversal requires
however that we observe the field at the time of
refocus, and in the vicinity of the source, which
is of course not possible in imaging applications.
That is to say, time reversal cannot be used for
imaging. In what follows, we describe in detail the
fundamental differences between time reversal and
imaging in clutter, using the mathematical model of
the scalar wave equation with randomly fluctuating
wave speed.

Mathematical Model
The acoustic pressure p.t; Ex/ solves the wave equation

1

c2.Ex/
@2p.t; Ex/
@t2

��p.t; Ex/ D F.t; Ex/; Ex 2 R
n; t > 0;

(1)

in a medium with wave velocity c.Ex/, satisfying c.Ex/ D
co.Ex/Œ1 C ��.Ex/
. Here co.Ex/ is the smooth, mean
speed that describes the large-scales feature of the
medium, and �.Ex/ is a random function that models
the inhomogeneities. We assume it to be stationary,
with mean Ef�.Ex/g D 0 and with autocorrelation
R.Ex/ D Ef�.Ex0 C Ex/�.Ex0/g normalized by R.0/ D 1.
The amplitude of the random fluctuations is modeled
by the dimensionless parameter � .

We neglect any boundaries in the problem and
suppose that the waves propagate in the whole space
R
n, with n D 2 or 3. The medium is assumed quiescent

p.t; Ex/ D 0 before the source excitation, modeled by
F.t; Ex/ D f .t/�.Ex/: Here, f .t/ is the emitted signal,
a short pulse, and �.Ex/ � 0 is the source density,
compactly supported in a small ball centered at Ey? and
normalized to integrate to one.

The Array and System of Coordinates
There are N transducers at locations Exr , in a com-
pact set A on an n � 1-dimensional surface. They
are closely spaced so that they behave as a collec-
tive entity, the array. In the analysis, it is usually
assumed for simplicity that Exr are uniformly spaced
on a mesh of small size h, to allow the continuum
approximation

hn�1
NX
rD1

'.Exr / �
Z
A
ds.Ex/ '.Ex/: (2)

Here, ds.Ex/ is the infinitesimal area of the surface
and ' is an arbitrary integrable function. We take for
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simplicity a planar array, with A a square of side a for
n D 3 and A a line segment of length a for n D 2. We
call a the array aperture.

The system of coordinates has origin at the center
of the array and range axis z orthogonal to it. Then, the
transducer locations are Exr D .xr ; 0/, with cross-range
xr 2 A satisfying jxr j � a=2, for r D 1; : : : N . For
convenience, we assume that the center Ey? of the source
is on the range axis, at distance L from the array, Ey? D
.0; L/. The points Ey in the search domain Y , where we
either observe the time-reversed field or we compute
the image, are offset from Ey? by � in cross-range and
by  in range, Ey D .�; LC /.

Model of the Array Data
With G.t; Ex; Ey/ the Green’s function of the wave equa-
tion, we get

p.t; Exr / D f .t/ ?t

Z
Rn

d Ey �.Ey/G.t; Exr ; Ey/; (3)

where ?t denotes convolution in time. Since it is easier
to deal with convolutions in the frequency domain, we
use the Fourier transform to write

p.t; Exr / D
Z 1

1
d!

2�
Op.!; Exr /e�i!t ;

Op.!; Exr / D Of .!/
Z
Rd

d Ey �.Ey/ OG.!; Exr ; Ey/; (4)

with OG.!; Ex; Ey/ the outgoing Green’s function of the
Helmholtz equation. The source signal is modeled by

f .t/ D cos.!ot/fB.t/;

Of .!/ D
Z 1

�1
d!f .t/ei!t

D 1

2

h OfB.! � !o/C OfB.! C !o/
i
; (5)

where fB.t/ is a real-valued base-band pulse,
with Fourier transform OfB.!/ supported at ! 2
Œ�B=2;B=2
. We call B the bandwidth and !o the
central frequency.

The transducers record over a time window �T .t/

of duration T . We model it by �T .t/ D T �1� .t=T / ;
with the function �.u/ of dimensionless argument u,
compactly supported in the unit interval Œ0; 1
. For
example, we may take �.u/ D 1Œ0;1
.u/, the indicator

function equal to one when u 2 Œ0; 1
 and zero
otherwise.

The model of the array data is D.t; Exr / D
�T .t/p.t; Exr /, for r D 1; : : : ; N; with Fourier
transform

OD.!; Exr / D
Z 1

�1
d!0 O� Œ.! � !0/T 


2�
Op.!0; Exr /

D
Z 1

�1
d!0 O� Œ.! � !0/T 


2�
Of .!0/

Z
Rn

d Ey �.Ey/ OG.!0; Exr ; Ey/: (6)

We often call the signals D.t; Exr / data time traces, to
emphasize that they are functions of time.

Model of the Time Reversal Function
Each transducer in the array reverses the received
signal

F.t; Exr / D D.T � t; Exr /;

OF .!; Exr / D
Z 1

�1
dt ei!tD.T � t; Exr /D OD.!; Exr /ei!T;

(7)

and reemits it in the medium. The acoustic pressure
observed at points Ey 2 Y is

pTR.t; Ey/ D
Z 1

�1
d!

2�
e�i!t

NX
rD1

OF .!; Exr / OG.!; Exr ; Ey/

D
Z 1

�1
d!

2�
ei!.T�t /

NX
rD1

OD.!; Exr / OG.!; Exr ; Ey/;

(8)

where the bar denotes complex conjugate. It is ex-
pected to focus back at the source, at time t D T , so
we define the time reversal function

J TR
�;� .Ey/ D pTR.t D T; Ey/

D
Z 1

�1
d!

2�

NX
rD1

OD.!; Exr / OG.!; Exr ; Ey/: (9)

The indexes �; � indicate its dependence on the
source density � and the recording window �. In
the analysis, it is usual to assume an ideal point
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source �.Ey/ D ı.Ey � Ey?/ and an infinite time window
O�.!T / D 2�ı.!/, where ı.�/ is the Dirac delta
distribution. It is also usual to make the continuum
array aperture approximation (2) and forget the scaling
factor hn�1. The time reversal function becomes, under
these simplifications,

J TR.Ey/D
Z 1

�1
d!

2�
Of .!/

Z
A
dx OG.!; Ex; Ey?/ OG.!; Ex; Ey/;

Ex D .x; 0/: (10)

Reverse Time Migration and the Least Squares
Approach to Imaging
The least squares estimate �LS.Ex/ of the source density
is the minimizer of the array data misfit

min
�2L2.Rn/

O.�/; O.�/ D hM� �D;M� �Di

D
Z 1

�1
d!

2�

NX
rD1

ˇ̌
ˇŒM�
 .!; Exr /� OD.!; Exr /

ˇ̌
ˇ2 :
(11)

Here, we assume a square integrable �, and let M be
the forward operator that takes � to the Hilbert space of
the data, with inner product denoted by h�; �i. We have,
similar to (6),

ŒM�
.!; Exr / D
Z 1

�1
d!0 O� Œ.! � !0/T 


2�
Of .!0/

Z
Rn

d Ey �.Ey/ OGo.!0; Exr ; Ey/; (12)

where OGo is the outgoing Green’s function of the
Helmholtz equation in the medium with wave speed
co.Ex/, our estimate of the true wave speed c.Ex/. We
assume henceforth, for simplicity, O�.!T / D 2�ı.!/.

The least squares solution solves the normal equa-
tions ŒM?M�LS
.Ey/ D ŒM?D
.Ey/; where M? is the
adjoint operator that takes the data to the Hilbert space
L2.Rn/,

ŒM?D
.Ey/D
Z 1

�1
d!

2�
Of .!/

NX
rD1

OD.!; Exr / OGo.!; Exr ; Ey/:
(13)

The normal operator M?M W L2.Rn/ ! L2.Rn/ is
given by ŒM?M�
.Ey/ D R

Rn
d Ey0 �.Ey0/K.Ey; Ey0/; with

kernel

K.Ey; Ey0/ D
Z 1

�1
d!

2�

ˇ̌̌ Of .!/
ˇ̌̌2

NX
rD1

OGo.!; Exr ; Ey0/ OGo.!; Exr ; Ey/: (14)

Note that K.Ey; Ey0/ is the time reversal function for
a point source at Ey0 that emits a signal with Fourier
transform j Of .!/j2, in the smooth, fictitious medium
with wave speed co.Ex/. It peaks at Ey D Ey0, and it is large
in a vicinity of Ey0, as described by the resolution limits
given in section “Resolution and Robustness of Time
Reversal and Imaging in Random Media.” This implies
that the right-hand side in the normal equations is large
around the support of �LS.Ex/, and thus, it defines an
imaging function

J M.Ey/ D ŒM?D
.Ey/

D
Z 1

�1
d!

2�
Of .!/

NX
rD1

OD.!; Exr / OGo.!; Exr ; Ey/;

(15)

known as reverse time migration. Often, the factor
Of .!/ is neglected, because it does not play a big

role when the signal f .t/ is a pulse. However, for
long signals like chirps [11, Section 3.1.2], the factor
is important. Explicitly, the convolution of f .t/ with
f .�t/ compresses these signals as if the sources emit-
ted a pulse. The Fourier transform of f .�t/ ?t f .t/ is
j Of .!/j2, as it appears in (14).

Reverse time migration is common in geophysics
[2], radar [11], and elsewhere, but most often it is
replaced by its simplified version known as Kirchhoff
migration

J KM.Ey/ D
Z 1

�1
d!

2�

NX
rD1

OD.!; Exr /e�i!�.Exr ;Ey/

D
NX
rD1

D.�.Exr ; Ey/; Exr /: (16)

The simplification uses the high frequency, geometrical
optics approximation of the Green’s function

OGo.!; Ex; Ey/ � ˛.!o; L/e
i!�.Ex;Ey/; (17)
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with approximately constant amplitude ˛, under
the assumptions j�j; a;  � L. The travel time
�.Ex; Ey/ is given by Fermat’s principle, �.Ex; Ey/ D
min

R
dl c�1.Er.l//; where the minimum is over all

paths Er.l/ parametrized by l 2 R that start at Ey and end
at Ex.

Coherent Interferometric Imaging
Equations (15) and (16) show how migration forms
images by superposing the data traces D.t; Exr / back-

propagated to Ey 2 Y , either with the Green’s function
OGo or with the travel time � . The coherent interfero-

metric (CINT) imaging approach introduced in [6, 7]
back-propagates to Ey 2 Y local cross-correlations
of the data traces at nearby receivers, instead of the
traces themselves. The local cross-correlations are
defined by

C.t; �t; Exr ; Exr 0 ITC/ D
Z 1

1
dt 0 �C .t

0/D
�
t C �t

2
� t 0; Exr

�
D

�
t � �t

2
� t 0; Exr 0

�

D
Z 1

�1
d!

2�
e�i!�t

Z 1

�1
d Q!
2�

e�i Q!t O�. Q!TC /
OD
�
! C Q!

2
; Exr
�

OD
�
! � Q!

2
; Exr 0

�
: (18)

They are computed over a time window �C .t/ of
width TC , modeled by �C .t/ D T �1

C � .t=TC / ; using
the function �.u/ of dimensionless argument u, and
compactly supported at juj � 1=2.

Let us assume for simplicity that the high frequency,
geometrical optics approximation (17) applies. The
mathematical model of the CINT imaging function is

J CINT.EyITC ; XC / D
Z 1

�1
d!

2�

Z 1

�1
d Q!
2�

O�. Q!TC /

NX
r;r 0D1

 

� jExr � Exr 0 j
XC .!/

�
OD
�
! C Q!

2
; Exr
�

OD
�
! � Q!

2
; Exr 0

�
	

exp

(
�i! ��.Exr ; Ey/� �.Exr 0 ; Ey/� � i Q!

�
�.Exr ; Ey/C �.Exr 0 ; Ey/�

2

)
: (19)

Note how it superposes the local cross-correlations (18)
back-propagated to Ey by evaluating them at the mean
travel time t D �

�.Exr ; Ey/C �.Exr 0 ; Ey/� =2, and at the
difference travel time �t D �.Exr ; Ey/ � �.Exr 0 ; Ey/: Note
also that we introduced another window function .u/,
supported at juj � 1=2. Its purpose is to restrict the
superposition in (19) to the receivers that are not further
than the distance XC .!/ apart. In general, this distance
may vary in the bandwidth.

Resolution and Robustness of Time Reversal
and Imaging in RandomMedia
The performance of the time reversal and imaging pro-
cesses is assessed by their resolution and robustness.
The resolution quantifies the ability of the process to
distinguish between two localized sources. We analyze

it by estimating the support of the point-spread func-
tion, the model of the process for a point-like source.
The models derived above are random, because the
waves travel from the source to the array in a random
medium. Therefore, we quantify the resolution using
the mean (statistical expectation) of the models.

A robust process gives a high signal-to-noise (SNR)
ratio. Recall that we look for the peaks of the random
functions that model time reversal and imaging. By
high SNR, we mean that these peaks are insensitive
to the noise and are clearly distinguishable. Usually,
one considers additive, uncorrelated, instrument noise
in the data. Here, we consider clutter noise due to scat-
tering of the waves in the medium. It is not additive, it
has a complex structure, it exhibits correlations across
the array and over frequencies, and it is much harder
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to mitigate than instrument noise. The high SNR of
imaging (or time reversal) in random media means that
the random fluctuation of the images (or wave field)
induced by the clutter noise is small, and therefore, the
results are insensitive to the particular realization of the
random medium. Such robustness is called statistical
stability [3, 8, 13], and it is an essential quality of any
useful method in random media.

Resolution
For simplicity, we use the continuum array approxima-
tion (2) and assume that the background medium is ho-
mogeneous, with constant wave speed co. The Green’s
function is approximated by (17), with �.Ex; Ey/ D jEx �
Eyj=co. We have a point source at Ey?.

To quantify the resolution, we estimate the support
of the mean point spread functions oftime reversal,

KM and CINT. We need the first and second statistical
moments of the random Greens’ function OG.!; Ex; Ey/.
The details of the calculation of these moments depend
on the particular model of the fluctuations �.Ex/. For
mixing, isotropic fluctuations, that is, fluctuations with
integrable correlation function R.Ex/ D R.jExj/, the
moments have the generic form

E

n OG.!; Ex; Ey?/
o

� OGo.!; Ex; Ey?/ exp



� !2

2˝2
d

�

� ˛.!o; L/ exp



i!�.Ex; Ey?/� !2

2˝2
d

�
;

(20)

E

(
OG
�
! C Q!

2
;

�
x C Qx

2
; 0

�
; Ey?

�
OG
�
! � Q!

2
;

�
x � Qx

2
; 0

�
; Ey?

�)
� j˛.!o; L/j2 	

exp



i!��.x; Qx; Ey?/C i Q! N�.x; Qx; Ey?/ � Q!2

2˝2
d

� jQxj2
2X2

d .!/

�
; (21)

where we let

N�.x; Qx; Ey/ D
�
h�

x C Qx
2
; 0
�
; Ey
i

C �
h�

x � Qx
2
; 0
�
/; Ey
i

2
;

��.x; Qx; Ey/ D�

�

xC Qx
2
; 0

�
; Ey
�

� �


�
x� Qx

2
; 0

�
; Ey
�
:

We refer the reader to [6, Appendix B] for the deriva-
tion of these formulas in the random paraxial (forward
scattering) regime, in which �o � a � L and the
random fluctuations are small � � 1, with correlation
length ` (typical size of the inhomogeneities) satisfying
` � L. See also [5, Lemma 3.2] for the derivation
of the same moment formulas, under a much simpler
model of the random fluctuations that gives only ran-
dom wave front distortions.

The first moment formula (20) says that the mean
field is exponentially damped. There is no absorption
in our model. The damping means that the wave field
loses coherence because of scattering in the medium,
and the incoherent field OG � Ef OGg becomes the dom-
inant part of OG. The second moment formula (22)

says that the wave fields are statistically correlated
over frequency offsets satisfying j Q!j . ˝d and over
transducer offsets Qx satisfying jQxj . Xd.!/. We call
˝d the decoherence frequency and Xd.!/ the deco-
herence length. Their precise expressions are model
dependent, but they are in general determined by the
correlation function R.jExj/, and they decrease with
range L. The decoherence length is also proportional
to the wavelength � D 2�co=!, and we write it in
the form Xd.!/ D �L

ae.L/
; with ae.L/ having units of

length and increasing with range. It is called in [3, 6]
the effective aperture for the reasons explained below.

The resolution study is simpler in the Fraunhofer
diffraction regime [9], where a � L and the Fresnel
number a2=.�L/ is small. It allows us to linearize
phases in the models of time reversal and imaging and
obtain simpler expressions that can be interpreted as
decompositions in plane waves.

Cross-Range Resolution
Consider search points Ey that are offset from the
source location only in cross-range: Ey D .�; L/: The
expectation of the time reversal function is
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EfJ TR.�; L/g � j˛.!o/Lj2
Z 1

�1
Of .!/

Z
A
dx exp

�
i!
�
�.Ex; Ey/� �.Ex; Ey?/� � j�j2

2X2
d .!/

	

(22)

and we obtain with the approximation �.Ex; Ey/ �
�.Ex; Ey?/ � � � ry�.Ex; Ey?/ � � ��x

coL
that

EfJ TR.�; L/g � j˛.!o/Lj2an�1

Z 1

�1
Of .!/e� j�j2

2X2
d
.!/

n�1Y
jD1

sinc

�
�a�j

�L

�
: (23)

Here, �j are the components of vector � and sinc.u/ D
sin.u/=u. The expectation of the KM function
is

EfJ KM.�; L/g D
Z 1

�1
d!

2�
Of .!/

Z
A
dxEf OG.!; Ex; Ey?/ge�i!�.Ex;Ey/

� ˛.!o; L/a
n�1

Z 1

�1
Of .!/e� !2

2˝2
d

n�1Y
jD1

sinc

�
�a�j

�L

�
: (24)

The expectation of the CINT function is more
complicated

EfJ CINT.�; L/g�j˛.!o; L/j2
Z 1

�1
d!

2�

Z 1

�1
d Q!
2�

Of
�
! C Q!

2

�
Of
�
! � Q!

2

�
O�. Q!Tc/

Z
A
dx
Z
Rn�1

d Qx 
� jQxj
Xc.!/

�
	

exp

�
i Q! � N�.x; Qx; Ey?/� N�.x; Qx; Ey/�C i!

�
��.x; Qx; Ey?/���.x; Qx; Ey/� � Q!2

2˝2
d

� jQxj2
2X2

d .!/

	
: (25)

We can simplify it by assuming:
1. A small Xd (i.e., a small jQxj), so that N�.x; Qx; Ey/ �
�.Ex; Ey/ and��.x; Qx; Ey?/ � Qx � rx�.Ex; Ey/ � Qx�.x��/

L
.

2. A small ˝d (i.e., a small j Q!j) and a smooth pulse,
so that Of .! ˙ Q!=2/ � Of .!/.

3. The windows O�. Q!Tc/ and  .jQxj=Xc/ are one in
the essential support of the Gaussians in Q! and
Qx in (25) and zero outside. We obtain after some
straightforward calculations

EfJ CINT.�; L/g � .2�/
n
2�1˝d j˛.!o; L/j2


aL

ae.L/

�n�1Z 1

�1
d!

2�
j Of .!/j2�n�1 exp



�2�

2j�j2
a2e.L/

�
:

(26)

Conclusions Equations (23)–(26) show that the mean
time reversal and imaging functions peak at the true
source location, i.e., at � D 0. However, they have
different resolution. The resolution of KM is the same
as that in the homogeneous medium. It is defined as
the distance between the peak of the sinc function and

its first zero, and it is given by the Rayleigh resolution
formula [9]

�oL

a



1CO

�
B

!o

��
� �oL

a
; if B � !o: (27)

The resolution of time reversal is better, assuming that
ae.L/ > a,

j�j . Xd.!/ D �oL

ae.L/



1CO

�
B

!o

��
� �oL

ae.L/
:

(28)

This happens when the cumulative wave scattering in
the random medium is strong and causes the waves
to decorrelate over small distances Xd . The improved
cross-range focusing is called super-resolution. It was
discovered and demonstrated experimentally in [12]
and has been explained theoretically in terms of the
enhanced effective aperture ae.L/ in [3, 6, 13]. The
resolution of CINT is proportional to the effective
aperture j�j . ae.L/

2�
, and thus, it deteriorates as wave

scattering becomes stronger.
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Range Resolution
When the search points Ey D .0; LC / are offset only
in range from Ey?,

EfJ TR.0; LC /g � j˛.!o; L/j2an�1
Z 1

�1
d!

2�
Of .!/ exp

�
� !2

2˝2
d



L
C i

!

co


�
: (29)

Here, we used the moment formula [6, Appendix B]

E

n OG �!; Ex; Ey?� OG �!; Ex; Ey�o

� OGo
�
!; Ex; Ey?� OGo

�
!; Ex; Ey� exp

�
� !2

2˝2
d



L

�
; (30)

and the approximation �.Ex; Ey/ � �.Ex; Ey?/ � =co. For
the KM function, we get

EfJ KM.0; LC /g � ˛.!o; L/a
n�1

Z 1

�1
d!

2�
Of .!/ exp

�
� !2

2˝2
d

� i
!

co


�
;

(31)

and for CINT,

EfJ CINT.0; LC /g � .2�/
n
2�1˝d j˛.!o; L/j2


aL

ae.L/

�n�1Z 1

�1
d!

2�
j Of .!/j2�n�1 exp



� 2

2.co=˝d/2

�
:

(32)

Conclusions All the mean functions peak at the
source location, where  D 0, but they have different
resolution. The range resolution of time reversal is

jj . min

(
co

B
;L

�
˝d

!o

�2)
: (33)

In most regimes, it is comparable to that of the mean
KM function, jj . co=B; determined by the pulse
bandwidth. However, the range resolution of CINT
is worse in random media, where cumulative wave
scattering causes wave decorrelation over frequency
offsets˝d < B . We have jj . co=˝d :

Statistical Stability
There is another fundamental difference between time
reversal, KM, and CINT imaging. Note how the mean
KM function at the peak is exponentially damped
because of the factor expŒ�!2=.2˝2

d/
. In random
media, where ˝d � !o, this is typically almost zero.
The magnitude of the random fluctuations of J KM.Ey/
are determined by its standard deviation �KM.Ey/.
Its calculation involves the second moments (22)
of the Green’s function, and it is similar to that
of computing EfJ CINTg. The SNR is the ratio
EfJ KM.Ey?/g=�KM.Ey?/. It is exponentially small, of
the order expŒ�!2o=.2˝2

d/
, no matter how large the
array aperture is. If we had uncorrelated, additive noise,
the SNR would improve for larger arrays, because the
noise would be averaged out by the superposition over
the many sensors. The random medium noise is much
more complex, and in general, it cannot be removed by
simply increasing the array aperture. The KM method
is not useful in imaging in random media, because the
signal, the value of the function at the expected peak
Ey?, is faint and not distinguishable from the noise, the
random fluctuations of the image.

The mean time reversal and CINT functions are not
exponentially damped as KM is. This is key to their ro-
bustness. Examples of proofs of the statistical stability
of time reversal and CINT imaging are in [13] and in
[8], respectively. They assume a paraxial, forward scat-
tering regime, and certain asymptotic limits, and show
that J TR.Ey/ and J CINT.Ey/ converge in probability to
a deterministic limit. A more quantitative statistical
stability study requires the calculation of the SNR,
which is much more difficult than for KM, because it
involves fourth-order moments of the Green’s function.
The SNR of CINT has been calculated only recently
in [5], for a simple model of the random medium that
gives only random wave front distortions, but does not
account for multiple wave scattering. The result in [5]
shows that the SNR of CINT is large and it can be
improved by increasing the array aperture.

Note that statistical stability of time reversal typ-
ically holds only in broadband [3]. The stability of
CINT is also in broadband and subject to choosing the
proper time and transducer offset thresholds Tc and
Xc in (19). In section “Resolution and Robustness of
Time Reversal and Imaging in Random Media,” we
made the optimal choice with thresholds given by the
decoherence frequency and length, 1=Tc D ˝d and
Xc D Xd . If we chose 1=Tc > ˝d and Xc > Xd
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instead, the resolution analysis would have stayed the
same, but the stability result would not hold. It turns
out the thresholding by Tc and Xc has a statistical
smoothing effect [8] and it is essential for a robust
CINT imaging process. The smoothing comes at the
expense of loss of resolution. If we chose 1=Tc < ˝d

and Xc < Xd , the resolution of CINT would be worse,
by a factor Xd=Xc in cross-range and Tc˝d in range.
This trade-off between resolution and stability in CINT
can be used to determine the optimal thresholding
parameters Tc , Xc , without apriori knowledge about
the statistics of the medium, that is, about ˝d and
Xd . This is the idea of the adaptive CINT algorithm
introduced and studied in [7].

Summary

We have described the fundamental differences be-
tween the time reversal process and imaging in random
media. Wave scattering may lead to super-resolution
of time reversal [12], but this is not useful in imag-
ing. Traditional imaging methods, like reverse time
migration cannot be used for robust imaging in random
media. Coherent interferometry can give robust results,
but its resolution deteriorates as the cumulative wave
scattering effects increase. CINT by itself will not work
in strong scattering media, but in some cases, it can
be complemented with additional data preprocessing
designed to filter out clutter effects [1,4]. We discussed
only imaging with passive arrays, because it is the
natural setting for comparison with time reversal. We
refer to [5,7] for studies of CINT imaging of scatterers
with active arrays.
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Description

Interior point methods (IPMs) are a class of algorithms
for solving convex optimization problems which are
efficient in theory (they have polynomial-time worst
complexity) and in practice. They caused a true revo-
lution in optimization and are widely considered to be
one of the most important, if not the most important,
developments in optimization within the last 30 years.
They influenced nearly all existing areas of continu-
ous optimization (convex and nonconvex) and discrete
optimization and opened new areas of investigation
in optimization, such as semidefinite programming,
symmetric cone programming, and semialgebraic pro-
gramming. Their influence continues today.
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The revolution started in 1984 when Narendra
Karmarkar announced his famous projective algorithm
[10] for linear programming (LP). This algorithm has
polynomial-time complexity, and more importantly,
Karmarkar claimed that it was much faster than the
simplex method on large, sparse linear programs.
Although this dramatic claim did not quite materialize,
IPMs are competitive today with the simplex method,
and most LP software today (such as CPLEX) have
both simplex and IPM options, although Karmarkar’s
original algorithm is now obsolete.

Most of the early attention in IPMs was directed
toward LP and its close relatives, such as (convex)
quadratic programming (QP) and (monotone)
linear complementarity problems (LPC). At first,
Karmarkar’s algorithm did not fit any paradigm within
optimization, but within a couple of years, connections
were established with the logarithmic barrier methods
of the 1950s and 1960s in which Newton’s method
is used at each iteration. Once this connection was
understood, progress came quickly. By the late 1980s,
duality theory of linear programming was incorporated
into IPM, and in the early 1990s, the problem of finding
an initial feasible point was elegantly answered with
the invention of self-dual embedding techniques. By
the mid-1990s, this part of IPM theory matured. Much
more information on interior point methods for LP, QP,
and LCP can be found in the books [20, 24, 25].

Around 1988, Nesterov and Nemirovski [15] dra-
matically expanded the scope of interior point methods
to include all of convex programming. Their inspi-
ration came from the earlier work of Renegar [18],
who had devised a polynomial-time path-following
logarithmic center method that uses Newton’s method
at each iterate. By a careful analysis of the loga-
rithmic barrier function, they showed that only three
properties of it are essential to obtain polynomial-
time algorithms, calling any function satisfying them
a self-concordant barrier (s.c.b.) function. Moreover,
they showed that one can find such a s.c.b. function
on any (regular) closed convex set, fittingly calling
it the universal barrier function. Finally, Nesterov
and Nemirovski showed that the Fenchel dual of the
universal barrier for a convex cone is a s.c.b. for the
dual cone. This means that the duality theory of convex
programming works very well with IPM, making it
possible to devise natural primal-dual IPM.

It was now possible, at least in theory, to devise
IPM to solve any convex program in polynomial time.

However, it is notoriously hard to compute the univer-
sal barrier function (or any other s.c.b.) for a general
convex set. We know how to compute a suitable bar-
rier function for some structured classes of problems
such as LP, QP, semidefinite programming (SDP),
symmetric and homogeneous cone programming, and
hyperbolic programming. Nesterov and Nemirovski
developed a kind of calculus to construct more s.c.b.
out of known ones, such as for direct products and in-
tersections of convex sets. Thus, in practice, IPM today
is restricted to problems for which we can construct a
computable s.c.b. using these techniques.

After LP, the next success story (perhaps its
greatest) for IPM was the emergence, in the early
1990s, of semidefinite programming (SDP) as a major
paradigm in convex programming. This is the problem
of minimizing a linear function over the intersection of
the cone of symmetric, positive semidefinite matrices
(semidefinite cone) with an affine subset. We will
discuss this and other exciting developments after we
develop some terminology.

Due to space considerations, our treatment will be
concise. Fortunately, a reader who wishes to learn more
about IPMs can find much more detailed information in
the two excellent survey articles [13, 14].

Self-Concordant Barrier Functions

Let C be a regular convex set (a closed convex set
with nonempty interior and containing no entire lines)
in a finite-dimensional inner product space E . A self-
concordant barrier function is a C3 function F W
int.C / ! R which is strongly convex (the Hessian
D2F.x/ is positive definite at any x 2 int.C /) and
satisfies the following properties, for all x 2 int.C /
and for all h 2 E:

jD3F.x/Œh; h; h
j � 2.D2F.x/Œh; h
/3=2;

(self-concordance)

jDF.x/Œh
j2 � #D2F.x/Œh; h
;

F .x/ ! 1 as x ! @C: (barrier property)

Here,DkF.x/Œh; : : : ; h
 is the kth directional ofF at x
along the direction h. The second property is satisfied
if F is logarithmically homogeneous,F.tx/ D F.x/�
# log t .
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Let C � R
n be a regular convex set. Nesterov

and Nemirovski’s universal barrier function on C is
given by

u.x/ D c log vol.C ı.x/;

where C ı.x/ is the polar set C ı.x/ D fy 2 R
n W

hz � x; yi � 1 for all z 2 C g and c is an absolute con-
stant. It is shown in [6] that if C D K is a regular
convex cone, then

u.x/ D c log
Z
K�

e�hx;yidy;

where K� WD fs 2 E W hx; si � 0 for all x 2 Kg is the
dual cone of K .

Another universal barrier function was announced
in 2012 by Hildebrand [8], who calls his function
the Einstein-Hessian self-concordant barrier. It is the
(unique) convex solution to the Monge-Ampère partial
differential equation

u.x/ D 1

2
log detD2u.x/; uj@K D 1:

It has slightly better theoretical properties than the
original universal barrier function in the sense that
its parameter value is exactly n (# D n) and it
is symmetric under duality, that is, the Fenchel dual
function u� is the Einstein-Hessian barrier function for
K�. As mentioned before, both universal functions are
hard to compute in general.

Conic Optimization

In principle, IPMs can be applied to any convex op-
timization problem, but the theory is simpler when
applied to a problem in conic form, and the duality
theory becomes more symmetric. Since there is no
essential loss in generality (and most software deal
with this kind of format), we limit our discussion to
conic form.

A primal-dual pair of problems .P / and .D/ in
conic form is given by

min hc; xi max hb; yi
s:t: Ax D b .P / s:t: A�y C s D c .D/

x 2 K; s 2 K�;

where A W E ! F is a linear operator between two
finite-dimensional Euclidean spaces E and F , A� W
F ! E its adjoint, c 2 E , b 2 F , K � E is
a regular convex cone in E , and K� WD fs 2 E W
hx; si � 0 for all x 2 Kg is the dual cone of K .
It is well known in convex analysis that if one of
the problems, say .P /, has an interior feasible point
x 2 int.K/ and inf.P / > �1, then .D/ has an
optimal solution, and the strong duality theorem holds,
that is, inf.P / D max.D/. It follows that if both
programs .P / and .D/ have interior feasible solu-
tions, then both programs have optimal solutions and
min.P / D max.D/.

The convex cones corresponding to LP, SDP, and
QCP are the nonnegative orthant, the semidefinite
cone, and the Lorentz cone given by f.x; t/ 2 R

n 	R W
kxk � tg, respectively.

The traditional interior penalty function method dat-
ing back to the 1960s [4] (p. 42) proceeds as follows in
trying to solve our problem .P /: under mild conditions
on the barrier function F , the “path”

x.t/ WD arg min fhc; xi C tF .x/ W Ax D bg ; t > 0

exists and converges to the optimal solution set of
.P / as t # 0. Suppose that xk is “close to x.tk/”
in some measure. We then set the parameter t to a
smaller value tkC1 < tk in some fashion and try
to minimize the affine constrained penalty function
PkC1.x/ D hc; xiCtkC1F.x/ subject toAx D b using
a minimization method, say Newton’s method, until we
find a point xkC1 which is “close to x.tkC1/” and start
all over again.

The computational complexity issues were not con-
sidered in the 1960s – they came later. One of the
main contributions of Nesterov and Nemirovski was
to show that if F is a s.c.b., then the (damped) New-
ton method performs very well in minimizing the
penalty function PkC1.x/. For example, if we choose
tk=tkC1 D 1 C c#�1=2, only one Newton iteration
is needed to go from xk to xkC1. This is a “short-
step” path-following method which follows the central
path closely. These are slow in practice. Path-following
methods that are implemented choose tkC1 much more
aggressively, leading to “long-step” methods. There
exist dual and primal-dual variants of path-following
algorithms. The interested reader should consult the
survey articles [13,14] and the books [15,19] for more
details.
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Semidefinite Programming

We recall that a semidefinite program is a conic
program .P / in which K is the semidefinite cone,
that is, the cone of symmetric positive semidefinite
matrices. By the late 1980s, it was already established
by Nesterov and Nemirovski that the function
F.x/ D � log detX is a s.c.b. for the semidefinite
cone; hence, their IPMs could solve it in polynomial
time. Several events in the early 1990s catapulted
SDP into a major paradigm in convex optimization.
First of all, Alizadeh [1] introduced a polynomial-
time primal-dual IPM for SDP and showed that
several eigenvalue problems can be formulated as
SDP problems and some combinatorial optimization
can be approximated as SDP problems. Secondly,
Vandenberghe and Boyd [21] gave many examples of
problems from engineering and elsewhere that can be
formulated as SDP. Finally, and most dramatically,
Goemans and Williamson [5] demonstrated that the
SDP relaxation of the maximum cut problem from
the graph theory delivers a solution whose expected
value is at least 0.87856 times the optimal value, an
improvement of about 38 % over previously known
methods.

SDP has much greater modeling capabilities than
LP, and since mid-1990s, much research effort has
gone into finding out what classes of problems can be
expressed as SDP. This effort is continuing today. The
books [2, 23] and the article [13] contain a wealth of
information on SDP.

Symmetric Cone Programming

In the 1990s, the theory of IPM expanded and deepened
in several directions. The emergence of symmetric
cone programming was one of them. Nesterov and
Todd [16] identified a class of convex cones, which
they called self-scaled, for which it is possible to
devise long-step IPMs. They showed that this theory
applies to the important classes of convex program-
ming such as LP, QCP, and SDP. At about the same
time, the author’s article [6] brought the concepts
of symmetric cones, Euclidean Jordan algebras, and
homogeneous convex cones into IPM. We recall that
a convex cone K is called homogeneous if the linear
automorphisms of K are transitive, that is, given any
two points x; y 2 K , there is an automorphism T such

that T .K/ D K and T .x/ D y. A homogeneous
cone is called symmetric if its dual cone (with re-
spect to some Euclidean inner product) is equal to
itself.

It turns out that the function
R
K� e

�hx;yidy that
appears in the formula for the universal barrier had
a substantial role in the classification of both sym-
metric cones (by Koecher) and homogeneous cones
(by Vinberg). Moreover, symmetric cones are exactly
the cones of squares of Euclidean Jordan algebras.
These Jordan algebras were classified in 1930s by
Jordan, von Neumann, and Wigner [9] in their quest
for using Euclidean Jordan algebras as a basis for
quantum mechanics. They were unsuccessful, how-
ever, because they found that there exist only five
classes of elementary Jordan algebras. The cone of
squares of these algebras correspond to the following
five classes of convex cones: semidefinite cone over
the real numbers, complex numbers and quaternions,
the Lorentz (quadratic or ice-cream) cone, and a single
exceptional cone, namely, the 3 	 3 semidefinite cone
over the octonions. The book by Faraut and Korányi [3]
is an excellent source for the theories of symmet-
ric cones and Euclidean Jordan algebras. The author
completed the cycle of correspondences by show-
ing that self-scaled cones are exactly the symmetric
cones.

Thus, the long-step primal-dual IPM methods
of Nesterov and Todd are limited to a few, yet
very important classes of convex optimization
problems. Several software packages exist for
symmetric cone programming including SeDuMi and
SDPT3.

Hyperbolic Polynomials

A homogeneous polynomial p W Rn ! R is called
hyperbolic in direction d if p.d/ > 0 and the map
t 7! p.x C td / has all real roots. The hyperbolic-
ity cone K.p; d/ of p is the connected component
of fx W p.x/ ¤ 0g containing d or equivalently
the set K.p; d/ D fx 2 R

n W all roots of t 7!
p.xC td / are negativeg. These polynomials originally
appeared in partial differential equations, but they are
also useful in IPMs. The theory of hyperbolic polyno-
mials is currently active and has been found useful in
optimization, combinatorics, and many other areas.
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The basic facts about hyperbolic polynomials are:
(i) the hyperbolicity cone K.p; d/ is convex (Gårding
1950), (ii) the function F.x/ D � logp.x/ is s.c.b.
barrier onK.p; d/ (thus alleviating the notorious prob-
lem of finding a computable s.c.b.), and (iii) more
inequalities hold among the directional derivatives; see
[7]. This last fact implies that it is possible to imple-
ment polynomial-time “long-step” IPMs for hyperbolic
programming.

A conjecture of Peter Lax (1958) states that a
homogeneous polynomial p of three variables is hy-
perbolic of degree m in the direction e D .1; 0; 0/

and satisfies p.e/ D 1 if and only if there exist
m 	 m real, symmetric matrices A1 and A2 such that
p.t1; t2; t3/ D det.t1I C t2A1 C t3A2/. Lewis, Parillo,
and Ramana [12], using a deep result of Vinnikov,
showed in 2003 that the Lax conjecture is true. This
inspired another conjecture, called generalized Lax
conjecture, which is still open. It claims that every
hyperbolicity cone is a slice of the semidefinite cone,
that is, the intersection of a semidefinite cone and a
linear subspace; see [22].

Semialgebraic Programming

In the 2000s, yet another major class of optimization
problems, this time optimization problems involving
polynomial equations and inequalities (semialgebraic
programming), was linked to SDP through the sum of
squares approximation [17] and through moment prob-
lems [11]. This is a current area of intensive research.
Software packages such as GloptiPoly and SOSTools
are dedicated to semialgebraic programming.
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Short Definition

In one-dimensional numerical analysis, interpolation
is a solution of the problem of determining a function
from a finite number of its values: it constructs a curve
which exactly takes on given values at a finite number
of points.

The Taylor Series and Newton’s
Interpolation Formula

In calculus classes, one learns the nth Taylor polyno-
mial of a function f sufficiently smooth about a point
x0:

Pn.x/ D
nX

kD0

f .k/.x0/

kŠ
.x � x0/k:

This approximation is extremely useful for theoretical
purposes; however, it has several drawbacks in numer-
ical practice: for instance, it requires the knowledge of
the derivatives of f at x0 and, since the information
is concentrated in one point, it rapidly becomes ill
conditioned (unstable) as x moves away from x0.

These difficulties disappear by going over to inter-
polation: when approximating real functions, one takes
as input instead of the f .k/.x0/ the values of f at
nC1 distinct abscissas (nodes) x0; x1; : : : ; xn on some
interval Œa; b
 and replaces the derivatives by divided
differences

f 0.x0/
1Š

� f .x1/� f .x0/

x1 � x0
DW f Œx0; x1


f 00.x0/
2Š

� f Œx1; x2
� f Œx0; x1


x2 � x0
DW f Œx0; x1; x2


and the powers of x � x0 by products of x � xj : with
f Œx0
 WD f .x0/, this yields the Newton interpolation
polynomial of degree at most n

pn.x/ D f Œx0
C f Œx0; x1
.x � x0/C f Œx0; x1; x2


.x � x0/.x � x1/C : : :

: : :C f Œx0; x1; : : : ; xn
.x � x0/.x � x1/

: : : .x � xn�1/: (1)

Interpolation is the property that the approximation
goes through the values of f at the given abscissas:

pn.xj / D fj WD f .xj /; j D 0; : : : ; n:

In effect, (1) merely is the Newton form of the interpo-
lating polynomial; several other representations exist,
but there is only one interpolating polynomial of degree
at most n: would there be two, their difference would
have the nC 1 zeros xj , which is impossible.

Newton’s form has some favorable features: once
the divided differences have been computed, which
requires O.n2/ arithmetic operations, merely O.n/
operations are necessary for evaluating pn at a point
x; adding a new abscissa xnC1 is immediate, as it
just requires extension of (1) with the next term
f Œx0; : : : ; xnC1
.x � x0/ : : : .x � xn/; interpolation
of a matrix function is straightforward.

However, it also has some drawbacks: two of the
severe ones are the facts that the formula, and un-
fortunately also numerical values of pn.x/ in usual
arithmetic, strongly depends on the ordering of the
nodes and that the divided differences depend on f .

There fortunately are several other forms of the
polynomial: an important one is Neville’s, a cousin
of Newton mostly used for extrapolation to a limit,
yet another is Lagrange’s, which has many decisive
advantages over Newton’s.

Lagrange Interpolation Formula

Waring and Euler independently had the following
constructive idea for deriving pn: to every xj they
considered the polynomial `j of degree n that takes the
value 1 at xj and vanishes at all other nodes:
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`j .x/ D �j

nY
iD0
i¤j

.x � xi /; with

�j WD 1

,
nY
iD0
i¤j

.xj � xi /; j D 0; : : : ; n:

The unicity then warrants the validity of the Lagrange
interpolation formula

pn.x/ D
nX

jD0
fj `j .x/; (2)

which expresses pn as sort of a linear combination of
the interpolated values fj with coefficient functions
`j which do not depend on f ; it is therefore effi-
ciently used as ansatz in all kinds of solution meth-
ods, e.g., in pseudospectral methods for differential
equations.

Unfortunately, evaluating (2) requires O.n2/ opera-
tions for every x and is unstable; this led most authors
to discard the Lagrange form in favor of Newton’s for
most of the twentieth century. However, it may easily
be modified into

pn.x/ D `.x/

nX
jD0

�i

x � xj
fj ; `.x/ WD

nY
jD0

.x � xj /:

(3)
N. Higham [6] has shown backward as well as forward
stability of this formula, which makes it the most suited
of all, at least as far as accuracy is concerned.

As with the Newton form, O.n/ operations are
necessary for evaluatingpn at some x when the weights
�j have been determined. Updating the �j when a new
node xnC1 is added is a O.n/ process as well [2, 3],
so that Lagrange asymptotically is as fast as Newton
in this respect. There even exist closed, O.1/ formulas
for �j for some of the most important sets of points,
i.e., Chebyshev points of the four kinds, and equidistant
points on the interval and on the complex unit circle
[2]. No expensive computations are then needed for the
weights �j , and thus only O.n/ operations are required
for evaluating pn, something no other formula seems
to achieve. A fast numerical formula has recently
been found even for Legendre points by Wang et al;
see [9].

A few words about the condition (stability) of the
problem: polynomial interpolation may only be used
in practice for arbitrary (large) n when the points
are distributed on the interval so as to accumulate
at the extremities. To be more precise, assume that
the problem has been scaled so that the interval of
interpolation is Œ�1; 1
. Then every node xj may be
mapped to two vertically aligned points on the unit
circle E by the application �.x/ D arccosx to yield
a node distribution on E . For good conditioning, these
nodes should be about evenly distributed on E . This is
the case, e.g., for Chebyshev and Legendre points, but
not for equidistant ones.

Polynomial interpolation with good nodes such
as Chebyshev’s and Legendre’s is unbeaten for very
smooth functions if one may increase n as well. For
Chebyshev points of the first kind, for instance, the
interpolation error may be bounded as

jPn.x/ � f .x/j � 2�n MnC1
.nC 1/Š

; x 2 Œ�1; 1
:

MnC1 WD max
�2Œ�1;1


ˇ̌
f .nC1/.�/

ˇ̌
;

Thus, when MnC1 does not grow much faster with n
than .n C 1/Š, the error decreases exponentially with
n. Results are very similar with Chebyshev points of
the second kind, which are more important in practice
as they contain the extremities of the interval; notice
that to experiment with their fantastic efficiency, also
in applications, there is no need to write programs
any longer: one may just download the public domain
software Chebfun [9].

When the nodes cannot be chosen, one usually turns
to piecewise polynomial interpolants called splines,
which we do not elaborate on here [4].

The Barycentric Formula

Formula (3) may still be improved for actual com-
putation. One of the difficulties is the growth which
may occur in the various factors `.x/ and �j for
large n and requires adjustments such as the use of
logarithms.One may get rid of common factors by
the following manipulations: one considers besides the
interpolant of f that of the function identically 1,
which by the unicity equals 1, divides each side of (3)
by that of the corresponding formula and cancels `.x/
to obtain
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pn.x/ D
nX

jD0

�j

x � xj
fj

,
nX

jD0

�j

x � xj
: (4)

Equation (4) is the barycentric formula for pn.
Higham [6] has proved that it is merely forward stable
and given a particular example for which (3) and (4)
yield different results; this does not happen in actual
practice, however.

As the �j appear in the numerator and the
denominator, any common factor independent of
j may be cancelled to yield very elegant simple
formulas for the corresponding simplified weights ��

j .
One has ��

j D .�1/i�n
j

�
for equidistant nodes and

��
j D .�1/i ıij with

j WD

8̂̂
<
ˆ̂:

sin�j ; 1st kind;
1; 2nd kind;
sin.�j =2/; 3rd kind;
cos.�j =2/; 4th kind;

ıj WD
�
1=2; xj D 1 or xj D �1;
1; otherwise

for Chebyshev points xj D cos�j [1]. For the com-
plex roots of unity, xj WD ej 2� i=n, ��

j D xj . An-
other advantage of (4) is guaranteed interpolation even
when the �j are in error (as long as none of them
vanishes).

Interpolation is a vast subject, of which we have
just touched the simple polynomial version. We note,
in particular, that the so efficient polynomial interpo-
lation between Chebyshev nodes is a special case of
trigonometric interpolation between equidistant nodes
[1] and that the latter is itself the restriction to periodic
functions of sinc interpolation on the infinite line [8].
Hermite–Birkhoff interpolation considers the case in
which derivatives are prescribed on top of the function
values at the nodes. Another extension is rational
interpolation, in which the interpolant is a quotient of
two polynomials: see [7] for the classical nonlinear
version and [5] for the linear case.

The literature on interpolation is huge, as a chapter
of about every numerical analysis book is devoted to it.
We have limited ourselves to a few of the most recent
citations, from which the reader will be able to access
the classic literature.
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3. Dahlquist, G., Björck, Å.: Numerical Methods in Scientific
Computing, vol. 1. SIAM, Philadelphia (2008)

4. de Boor, C.: A Practical Guide to Splines, Revised Edition.
Applied Mathematical Sciences, vol. 27. Springer, New York
(2001)

5. Floater, M.S., Hormann, K.: Barycentric rational interpola-
tion with no poles and high rates of approximation. Numer.
Math. 107, 315–331 (2007)

6. Higham, N.: The numerical stability of barycentric Lagrange
interpolation. IMA J. Numer. Anal. 24, 547–556 (2004)

7. Pachón, R., Gonnet, P., van Deun, J.: Fast and stable rational
interpolation in roots of unity and Chebyshev points. SIAM
J. Numer. Anal. 50, 1713–1734 (2012)

8. Stenger, F.: Handbook of Sinc Numerical Methods. Chapman
and Hall, Boca Raton (2010)

9. Trefethen, L.N.: Approximation Theory and Approximation
Practice. SIAM, Philadelphia, (2013)

Interval Arithmetics

Siegfried M. Rump
Institute for Reliable Computing, Hamburg University
of Technology, Hamburg, Germany
Faculty of Science and Engineering, Waseda
University, Tokyo, Japan

Synonyms

Automatic error analysis; Interval analysis; Reliable
computing; Rigorous error bounds

Definition

The raison d’ Oetre of interval arithmetic is to obtain
rigorous error bounds for computational results. The
worst case error estimates for arithmetical operations
are used in verification methods to solve many
numerical problems with full rigor and in a reasonable
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computing time, not far from that of a traditional
approximate numerical method.

Historical Background

Intervals are well known in mathematics. Archimedes’
inclusion Œ 223

71
; 22
7

 of � using the 96-sided polygon is

one of the oldest examples. Numbers afflicted with a
tolerance (Ungenaue Zahlen) such as 3:14˙ 0:01 and
operations over those were used by Gauss; see also [4].
Higher order terms were sometimes neglected.

In the nineteenth and early twentieth centuries,
sequences of (nested) intervals were introduced as one
way to formalize real numbers. Apparently, this was
known to Bolzano in 1817 and was formalized by
Bachmann [1]. Also [27] was in this spirit.

The challenge is to compute error bounds for nu-
merical problems; arithmetical operations are helpful,
but by no means sufficient (see below). In February
1956, Sunaga [25] is the first to use interval arithmetic
to compute error bounds for the solution of numerical
problems. This seminal paper, handwritten in Japanese
and much ahead of its time, introduces and investigates
real and complex interval arithmetic (with floating-
point bounds), inf-sup and mid-rad representation, the
natural interval extension of functions, the interval
Newton procedure, Simpson’s rule with verification,
error bounds for the solution of initial value problems,
and more. It remained completely unrecognized.

In the late 1950s, with the rise of digital comput-
ers, interval operations with floating-point endpoints
seem to be common knowledge, cf. [2, 6, 16]. In the
sequel, undoubtedly Moore popularized interval arith-
metic [17, 18].

Standard Intervals
If a quantity is not precisely known and/or there is
no simple characterization of it, it may be represented
by an interval. For example, � 2 Œ3:14; 3:15
 is
a true statement and may be used to obtain error
bounds for functions involving � , such as

p
� 2

Œ
p
3:14;

p
3:15
 
 Œ1:772; 1:775
.

The result of an operation such as aCb for a; b 2 R

with a 2 Œa1; a2
 and b 2 Œb1; b2
 satisfies a C b 2
Œa1 C b1; a2 C b2
. More general, denote by IR the
set of nonempty closed real intervals, and let a WD
Œa1; a2
;b WD Œb1; b2
 2 IR be given. An interval
operation ı 2 fC;�; �; =g is defined by (provided
0 … b in case of division)

a ı b WD c D Œc1; c2
 (1)

with c1 WD min
i;j

fai ı bj g and c2 WD max
i;j

fai ı bj g:

Obviously, a 2 a and b 2 b implies a ı b 2 a ı b , and
the result is optimal. For computational purposes, the
general definition (1) can be improved by using case
distinctions. For example [20],

a1 � 0 and b2 < 0 implies a=b D Œ a2=b2 ; a1=b1 
 :

(2)

For a function f W R ! R composed of arithmetic
operations, the natural interval extension F W IR !
IR[fNaIg is defined by replacing each arithmetic op-
eration by the corresponding interval operation, where
NaI (Not an Interval) is the result of an invalid
operation. For F.x/ ¤ NaI, it follows the remarkable
propertyx 2 x ) f .x/ 2 F.x/, so thatF.x/ encloses
the range of f over the interval x 2 IR.

This inclusion property can be maintained for stan-
dard functions, as previously noted for the square root.
Moreover, also for non-monotonic functions, the range
can be enclosed. For example, for all x D Œx1; x2
 2 IR

and jxj WD maxfjx1j; jx2jg, it follows

sin.x/ 
 �
.x2=20� 1/x2=6C 1

�
x C Œ�e; e
;

where e WD jxj7=7Š : (3)

The inclusion is correct but broad for larger jxj. With
some effort, narrow inclusions for arbitrary x can be
computed as in INTLAB [23], the Matlab toolbox
for reliable computing, and interval extensions for all
elementary standard functions and operations between
those are obtained. This leads to the inclusion of the
range of nonelementary and other functions, such as a
definite integral. An example of a crude inclusion is

Z b

a

f .x/ dx 2 h
nX
iD1

f .x.i// with

x.i/ WD Œ a C .i � 1/h ; aC ih 
 (4)

for an integrable function f W Œa; b
 ! R, 1 � n 2
N and h WD b�a

n
. As an example, consider f .x/ WD

sin
p
x C � with

p
Œx1; x2
 D Œ

p
x1;

p
x2 
 with x1 �

0, � 2 Œ3:14; 3:15
 and (3) to include the sine function.
Using n D 4 and n D 64 in (4) proves
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Z 1

�2
f .x/ dx 
 Œ2:34; 3:51
 and

Z 1

�2
f .x/ dx 
 Œ2:84; 2:98
 ; (5)

respectively. By using a better inclusion of � , a better
inclusion function of the sine, and, of course, a better
quadrature formula, an accurate inclusion of the in-
tegral can be computed. For example, the executable
Matlab/INTLAB code

f=’sin(x+exp(x))’;app=quad(f,0,8),
incl=verifyquad(f,0,8)

uses the Matlab quadrature routine quad and the INT-
LAB routine verifyquad [23]. It computes in dou-
ble precision (corresponding to 16 decimal places) the
approximation app D 0:25110272, without warning;
the inclusion Œ0:34740016; 0:34740018
 needs about
1.5 times the computing time but shows that no digit
of the approximation is correct.

Overestimation and the Dependency Problem
The result of a sequence of interval operations is either
NaI or a completely rigorous inclusion of the true
result. This ease of use comes at a price. Identical
interval quantities occurring more than once cannot be
recognized as such and are treated as independent data.
For instance,

Œ3:14; 3:15
� Œ3:14; 3:15
 D Œ�0:01; 0:01
 (6)

is best possible: The first interval might be an inclusion
of 3:14, but the second of 3:15, say. The potential
information that both intervals represent � is lost.

The natural interval extension of an arithmetic ex-
pression yields the exact range if each variable occurs
only once [18]; otherwise, the overestimation may be
arbitrarily large. As an example, consider f .x/ WD
ex

2�4x on x WD Œ2; 4
. The natural interval extension
yields a true inclusion but gross overestimation

f .x/ 
 exp.Œ4; 16
 � Œ8; 16
/ D exp.Œ�12; 8
/
D Œ6:14 � 10�6; 2980:96
 : (7)

The reformulation f .x/ D e.x�2/2�4 of the original
function contains the variable x only once, and the
natural interval extension produces the exact range

f .x/ 
 exp.Œ0; 2
2�4/ D exp.Œ�4; 0
/ D Œ0:0183; 1
 :

(8)

Based on interval operations, so-called verification
methods compute verified error bounds for the solution
of a numerical problem. The challenge is to utilize in-
terval operations in a way that potential overestimation
is diminished (see below).

Interval Vectors and Matrices
A matrix (vector) with interval entries forms an interval
matrix (vector). Interval operations are the natural
extension of the real operations [20]. For example, for
an interval matrix A D .aij / and an interval vector
x D .xj /, the entries of y D A � x are

yi D
X
j

aij � xj (9)

using scalar interval sums and products in the right-
hand side. Note that the scalar interval operations in
(1) are identical to the power set operation, i.e.,

a ı b D fa ı b W a 2 a; b 2 bg for ı 2 fC;�; �; =g
(10)

(with 0 … b in case of division), but for interval matrix
and vector operations only the inclusion principle holds
true. In (9), y is the narrowest interval vector including
the power set operation, i.e., fAx W A 2 A ; x 2 xg 

A � x is best possible.

Alternatives to Intervals: Other Representations
of Sets
Interval arithmetic is one (elegant) possibility to es-
timate the error of numerical operations. A general-
ized interval arithmetic including intervals Œ�1; a2
 [
Œa1;1
 is introduced in [10] and [11].

Generally, any subset S 
 PR of the power set
of the real numbers with computable operations ı W
S 	 S ! S can be used to estimate numerical errors.
Similarly, other sets of vectors S 
 PR

n may be used.
A natural candidate is a set S of polytopes, such as

the set of standard simplices. More generally, paral-
lelepipeds are introduced as “ affine arithmetic” in [3]
and successfully used to solve initial value problems
[5, 15]. Moreover, hyperellipsoids were considered in
[8] and arithmetical operations defined in [21].

Convex conic representable sets and relaxation
techniques based on semi-definite programming have
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been used by Jansson [9] to solve large optimization
problems.

Implementation on Digital Computers

For the computation of rigorous error bounds on digital
computers, intervals with floating-point bounds have
to be used. Denote by F a set of floating-point num-
bers, for example, according to the IEEE 754 arith-
metic standard [7]. In general, real operations between
floating-point numbers are not in F, such as r WD 1=10.
But there are unique f1; f2 2 F with f1 � r � f2 and
a minimal distance f2 � f1. Those can be computed
in [7] using directed rounding, i.e., the quotient 1=10
computed in rounding downwards yields f1, the largest
floating-point number f with f � 1=10, and when
rounding upwards, the result is f2, the smallest f 2 F

with 1=10 � f .
The vast majority of today’s computers adhere to

the IEEE 754 standard, so that all four basic arithmetic
operations are available in rounding downwards and
upwards (and, of course, in rounding to nearest). For
a D Œa1; a2
 and b D Œb1; b2
 with a1; a2; b1; b2 2 F,
interval operations are thus defined by

c D a ı b WD Œc1; c2


with c1 WDmin
i;j
ai ı r bj and c2 WD max

i;j
ai ı4 bj ;

(11)

where ı r and ı4 denote the result in rounding down-
wards and upwards, respectively. Thus the bounds of c
are computed floating-point numbers, and it follows aı
b 2 c for all real a 2 a , b 2 b . Again, simplifications
of (11) such as Œa1; a2
�Œb1; b2
 D Œa1� rb2; a2�4b1
,
and by case distinctions for multiplication and division
are obvious.

Operations for interval vectors and matrices with
floating-point bounds are defined similar to (9) using
directed rounding.

Note that the range of a function defined by a
sequence of arithmetic operations and (elementary)
standard functions is rigorously enclosed solely us-
ing floating-point operations. A value f .�/ can be
bounded as well by replacing � by an enclosing in-
terval with floating-point endpoints, etc.

Verification Methods

The appealing inclusion of the range of a function
by its natural interval extension would stand to rea-
son to replace in an algorithm each operation by its
corresponding interval operation. Gaussian elimination
modified this way either produces NaIs or delivers
rigorous error bounds for the solution of a linear
system.

However, such an approach is almost certainly
bound to fail [24, Sect. 10.1]. Even for toy problems the
discussed dependency problem leads to wide intervals,
eventually causing premature program termination by
a denominator interval containing zero. Here is a major
difference to numerical methods, where replacing
real operations by floating-point operations usually
produces satisfactory results.

In contrast, a verification method is based on a
mathematical theorem and uses interval arithmetic to
verify the assumptions. As a simple example, let ma-
trices A;R 2 F

n�n, a vector b 2 F
n, and a potential

inclusion x 2 IF
n of A�1b be given. If

Rb 2 z; I � RA 2 C ; k jC j k1 < 1 and

z C Cx 
 x (12)

for I denoting the identity matrix and jC j WD .jC ij j/,
then A is non-singular and A�1b 2 x . Basically this
is already proved (for nonlinear functions) in [10] by
using fixed-point theorems; an explicit formulation as
an existence test is given in [19]. The quantities z and
C are calculated in interval arithmetic with floating-
point endpoints.

Note that there are no assumptions on A;R; b, or
x other than (12), in particular not on the condition
number of A. This principle is elaborated in verifica-
tion methods on a much higher level together with the
construction of suitable test sets x . Applying (12) to
interval data A ;b , the “solution set”˙.A ;b/ WD fx 2
R
n W 9A 2 A 9 b 2 b with Ax D bg is included by x .

The exact computation of ˙.A ;b/ is NP-hard [22].
Based on the above, verification methods for var-

ious standard problems in numerical analysis have
been developed from systems of nonlinear equations,
eigenproblems, and general, constrained, and semi-
definite programming problems to ordinary and partial
differential equations. For an overview, see [24].
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Among the many references for verification meth-
ods are [20, 24]; libraries for interval operations in
C++ include C-XSC [12] and Profil/BIAS [13]. The
examples in this article are computed in INTLAB [23],
the widely used Matlab toolbox for reliable computing.
It is completely written in Matlab and covers interval
arithmetic, standard functions, automatic differentia-
tion and various verification methods and demos.

Nontrivial problems have been solved using verifi-
cation methods by so-called computer-assisted proofs.
For example, Tucker [26] received the 2004 EMS
prize awarded by the European Mathematical Society
for “giving a rigorous proof that the Lorenz attractor
exists for the parameter values provided by Lorenz.
This was a long standing challenge to the dynamical
system community, and was included by Smale in his
list of problems for the new millennium. The proof
uses computer estimates with rigorous bounds based
on higher dimensional interval arithmetics.”
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Introduction

In this chapter we consider inverse boundary problems
for electromagnetic waves. The goal is to determine
the electromagnetic parameters of a medium by mak-
ing measurements at the boundary of the medium.

http://www.ti3.tuhh.de/rump
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We concentrate on fixed energy problems. We first
discuss the case of electrostatics, which is called Elec-
trical Impedance Tomography (EIT). This is also called
Calderón problem since the mathematical formulation
of the problem and the first results in the multidimen-
sional case were due to A.P. Calderón [11]. In this case
the electromagnetic parameter is the conductivity of
the medium, and the equation modelling the problem
is the conductivity equation. Then we discuss the more
general case of recovering all the electromagnetic pa-
rameters of the medium, electric permittivity, magnetic
permeability, and electrical conductivity of the medium
by making boundary measurements, and the equation
modeling the problem is the full system of Maxwell’s
equations. Finally we consider the problem of deter-
mining electromagnetic inclusions and obstacles from
electromagnetic boundary measurements. A common
feature of the problems we study is that they are
fixed energy problems. The type of electromagnetic
waves that we use to probe the medium are complex
geometrical optics solutions to Maxwell’s equations.

Electrical Impedance Tomography

The problem that Calderón proposed was whether one
can determine the electrical conductivity of a medium
by making voltage and current measurements at the
boundary of the medium. Calderón was motivated
by oil prospection. In the 1940s he worked as an
engineer for Yacimientos Petrolı́feros Fiscales (YPF),
the state oil company of Argentina, and he thought
about this problem then although he did not publish
his results until many years later. For applications of
electrical methods in geophysics, see [52]. EIT also
arises in medical imaging given that human organs
and tissues have quite different conductivities. One
potential application is the early diagnosis of breast
cancer [54]. The conductivity of a malignant breast
tumor is typically 0.2 mho which is significantly higher
than normal tissue which has been typically measured
at 0.03 mho. For other medical imaging applications,
see [22].

We now describe more precisely the mathematical
problem. Let ˝ 
 R

n be a bounded domain with
smooth boundary (many of the results we will describe
are valid for domains with Lipschitz boundaries). The
isotropic electrical conductivity of˝ is represented by
a bounded and positive function �.x/. In the absence of

sinks or sources of current and given a voltage potential
on the boundary f 2 H

1
2 .@˝/, the induced potential

u 2 H1.˝/ solves the Dirichlet problem

r � .�ru/ D 0 in ˝; u
ˇ̌
@˝

D f: (1)

The Dirichlet-to-Neumann map, or voltage to current
map, is given by

ƒ�.f / D
�
�
@u

@�

� ˇ̌
ˇ
@˝

(2)

where � denotes the unit outer normal to @˝ .
The inverse problem of EIT is to determine �

knowing ƒ� . It is difficult to find a systematic way of
prescribing voltage measurements at the boundary to
be able to find the conductivity. Calderón took instead a
different route. Using the divergence theorem we have

Q�.f / WD
Z
˝

� jruj2dx D
Z
@˝

ƒ�.f /f dS (3)

where dS denotes surface measure and u is the solution
of (1). In other words Q�.f / is the quadratic form as-
sociated to the linear map ƒ�.f /, and to know ƒ�.f /

or Q�.f / for all f 2 H
1
2 .@˝/ is equivalent. Q�.f /

measures the energy needed to maintain the potential
f at the boundary. Calderón’s point of view is that if
one looks at Q�.f /, the problem is changed to finding
enough solutions u 2 H1.˝/ of the conductivity
equation in order to find � in the interior. He carried
out this approach for the linearized EIT problem at
constant conductivity. He used the harmonic functions
ex�� with � 2 C

n; � � � D 0:

Complex Geometrical Optics Solutions with a
Linear Phase
Sylvester and Uhlmann [46, 47] constructed in dimen-
sion n � 2 complex geometrical optics (CGO) solu-
tions of the conductivity equation forC2 conductivities
that behave like Calderón exponential solutions for
large frequencies. This can be reduced to constructing
solutions in the whole space (by extending � D 1

outside a large ball containing ˝) for the Schrödinger
equation with potential.

Let � 2 C2.Rn/, � strictly positive in R
n, and � D

1 for jxj � R, R > 0. Let L�u D r � �ru. Then we
have
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�� 1
2 L�.�

� 1
2 / D � � q; q D �

p
�p
�
: (4)

Therefore, to construct solutions of L�u D 0 in R
n,

it is enough to construct solutions of the Schrödinger
equation .��q/u D 0 with q of the form (4). The next
result states the existence of complex geometrical op-
tics solutions for the Schrödinger equation associated
to any bounded and compactly supported potential.

Theorem 1 ([46, 47]) Let q 2 L1.Rn/, n � 2, with
q.x/ D 0 for jxj � R > 0. Let �1 < ı < 0: There
exists �.ı/ and such that for every � 2 C

n satisfying

� � � D 0 and
k.1Cjxj2/1=2qkL1.Rn/C1

j�j � �, there exists a
unique solution to

.� � q/u D 0

of the form

u D ex��.1C  q.x; �// (5)

with  q.�; �/ 2 L2ı.Rn/. Moreover  q.�; �/ 2 H2
ı .R

n/,
and for 0 � s � 2 there exists C D C.n; s; ı/ > 0

such that k q.�; �/kHs
ı

� C
j�j1�s :

HereL2ı.R
n/ D ff I R .1Cjxj2/ıjf .x/j2dx < 1g with

the norm given by kf k2
L2ı

D R
.1 C jxj2/ıjf .x/j2dx,

andHm
ı .R

n/ denotes the corresponding Sobolev space.
Note that for large j�j these solutions behave like
Calderón’s exponential solutions. If 0 is not a Dirichlet
eigenvalue for the Schrödinger equation, we can also
define the DN map

ƒq.f / D @u

@�
j@˝

where u solves

.� � q/u D 0I uj@˝ D f:

More generally we can define the set of Cauchy data
for the Schrödinger equation as the set

Cq D
��

u
ˇ̌̌
@˝
;
@u

@�

ˇ̌̌
@˝

�	
; (6)

where u 2 H1.˝/ is a solution of

.� � q/u D 0 in ˝: (7)

We have Cq 
 H
1
2 .@˝/ 	 H� 1

2 .@˝/. If 0 is not a
Dirichlet eigenvalue of � � q, then Cq is the graph of
the DN map.

The Calderón Problem in Dimension n � 3

The identifiability question in EIT was resolved for
smooth enough isotropic conductivities. The result is

Theorem 2 ([47]) Let �i 2 C2.˝/, �i strictly posi-
tive, i D 1; 2. If ƒ�1 D ƒ�2 , then �1 D �2 in ˝.

In dimension n � 3 this result is a consequence of a
more general result. Let q 2 L1.˝/.

Theorem 3 ([47]) Let qi 2 L1.˝/, i D 1; 2. Assume
Cq1 D Cq2 , and then q1 D q2.

Theorem 2 has been extended to conductivities having
3=2 derivatives in some sense in [7,42]. Uniqueness for
conormal conductivities in C1C� was shown in [18].
It is an open problem whether uniqueness holds in
dimension n � 3 for Lipschitz or less regular con-
ductivities. For conormal potentials with singularities
including almost a delta function of a hypersurface,
uniqueness was shown in [18]. The regularity condi-
tion on the conductivity was improved recently to C1

conductivities in [20], to conductivities in W 1;n; n D
3; 4; 5 in [19] and Lipschitz conductivities in [13] in
all dimensions larger than 3. The case of piecewise
analytic conductivities has been settled earlier in [31].
Stability for EIT using CGO solutions was shown
by Alessandrini [1], and a reconstruction method was
proposed by Nachman [36].

Other Applications
We give a short list of other applications to inverse
problems using the CGO solutions described above for
the Schrödinger equation.

Quantum Scattering
In dimension n � 3 and in the case of a com-
pactly supported electric potential, uniqueness for the
fixed energy scattering problem was proven in [36, 39,
43]. For compactly supported potentials knowledge of
the scattering amplitude at fixed energy is equivalent
to knowing the Dirichlet-to-Neumann map for the
Schrödinger equation measured on the boundary of
a large ball containing the support of the potential
(see [48] for an account). Then Theorem 3 implies
the result. Melrose [35] suggested a related proof that
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uses the density of products of scattering solutions.
Applications of CGO solutions to the 3-body problem
were given in [49].

Optics
The DN map associated to the Helmholtz equation
�� C k2n.x/ with an isotropic index of refraction n
determines uniquely a bounded index of refraction in
dimension n � 3.

Optical Tomography in the Diffusion Approximation
In this case we have r � D.x/ru � �a.x/u � i!u D
0 in ˝ where u represents the density of photons, D
the diffusion coefficient, and �a the optical absorption.
Using Theorem 2 one can show in dimension three or
higher that if ! ¤ 0, one can recover both D and �a
from the corresponding DN map. If ! D 0, then one
can recover one of the two parameters.

Photoacoustic Tomography
Applications of CGO solutions to quantitative photoa-
coustic tomography were given in [4, 5].

The Partial Data Problem in Dimension n � 3

In several applications in EIT, one can only measure
currents and voltages on part of the boundary. Substan-
tial progress has been made recently on the problem
of whether one can determine the conductivity in the
interior by measuring the DN map on part of the
boundary.

The paper [10] used the method of Carleman es-
timates with a linear weight to prove that, roughly
speaking, knowledge of the DN map in “half” of
the boundary is enough to determine uniquely a C2

conductivity. The regularity assumption on the conduc-
tivity was relaxed to C1C�; � > 0 in [30]. Stability
estimates for the uniqueness result of [10] were given
in [21].

The result [10] was substantially improved in [29].
The latter paper contains a global identifiability result
where it is assumed that the DN map is measured on
any open subset of the boundary of a strictly convex
domain for all functions supported, roughly, on the
complement. The key new ingredient is the construc-
tion of a larger class of CGO solutions than the ones
considered in the previous sections. These have the
form

u D e�.�Ci /.a C r/; (8)

where r� � r D 0; jr�j2 D jr j2, and � are
limiting Carleman weights (LCW). Moreover a is
smooth and nonvanishing and krkL2.˝/ D O.1

�
/,

krkH1.˝/ D O.1/. Examples of LCW are the linear
phase �.x/ D x � !;! 2 Sn�1; used previously,
and the nonlinear phase �.x/ D ln jx � x0j, where
x0 2 R

n n ch .˝/ which was used in [29]. Here ch .˝/
denotes the convex hull of˝: All the LCW in R

n were
characterized in [17]. In two dimensions any harmonic
function is an LCW.

The CGO solutions used in [29] are of the form

u.x; �/ D e
1=njx�x0jCid. x�x0

jx�x0j
;!/
.a C r/ (9)

where x0 is a point outside the convex hull of˝ , ! is a
unit vector, and d. x�x0jx�x0j ; !/ denotes distance. We take
directions ! so that the distance function is smooth for
x 2 ˝: These are called complex spherical waves since
the level sets of the real part of the phase are spheres
centered at x0: Further applications of these type of
waves are given below. A reconstruction method based
on the uniqueness proof of [29] was proposed in [38].

The Two-Dimensional Case
In EIT Astala and Päivärinta [2], in a seminal con-
tribution, have extended significantly the uniqueness
result of [37] for conductivities having two derivatives
in an appropriate sense and the result of [8] for conduc-
tivities having one derivative in appropriate sense, by
proving that any L1 conductivity in two dimensions
can be determined uniquely from the DN map. The
proof of [2] relies also on the construction of CGO
solutions for the conductivity equation with L1 coef-
ficients and the @method. This is done by transforming
the conductivity equation to a quasi-regular map.

For the partial data problem, it is shown in [26] that
for a two-dimensional bounded domain, the Cauchy
data for the Schrödinger equation measured on an arbi-
trary open subset of the boundary determines uniquely
the potential. This implies, for the conductivity equa-
tion, that if one measures the current fluxes at the
boundary on an arbitrary open subset of the bound-
ary produced by voltage potentials supported in the
same subset, one can determine uniquely the conduc-
tivity. The paper [26] uses Carleman estimates with
weights which are harmonic functions with nondegen-
erate critical points to construct appropriate complex
geometrical optics solutions to prove the result.
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For the Schrödinger equation Bukhgeim in a
breakthrough [9] proved that a potential inLp.˝/; p >
2 can be uniquely determined from the set of Cauchy
data as defined in (6). Assume now that 0 2 ˝ .
Bukhgeim constructs CGO solutions of the form

u1.z; k/ D ez2k.1C  1.z; k//;

u2.z; k/ D e�z2k.1C  2.z; k// (10)

where z; k 2 C, and we have used the complex notation
z D x1 C ix2: Moreover 1 and  2 decay uniformly in
˝ , in an appropriate sense, for jkj large. Note that the
weight z2k in the exponential is a limiting Carleman
weight since it is a harmonic function but it has a
nondegenerate critical point at 0:

Anisotropic Conductivities
Anisotropic conductivities depend on direction. The
muscle tissue in the human body is an important exam-
ple of an anisotropic conductor. For instance, cardiac
muscle has a conductivity of 2.3 mho in the transverse
direction and 6.3 in the longitudinal direction. The con-
ductivity in this case is represented by a positive defi-
nite, smooth, symmetric matrix � D .� ij .x// on ˝ .

Under the assumption of no sources or sinks of
current in ˝ , the potential u in ˝ , given a voltage
potential f on @˝ , solves the Dirichlet problem

nX
i;jD1

@

@xi

�
�ij

@u

@xj

�
D 0 on ˝; uj@˝ D f: (11)

The DN map is defined by

ƒ�.f / D
nX

i;jD1
�i� ij

@u

@xj

ˇ̌
ˇ
@˝

(12)

where � D .�1; : : : ; �n/ denotes the unit outer normal
to @˝ and u is the solution of (11). The inverse problem
is whether one can determine the matrix � by knowing
ƒ� . Unfortunately,ƒ� does not determine � uniquely.
Let  W ˝ ! ˝ be a C1 diffeomorphism with
 j@˝ D Id where Id denotes the identity map. We have

ƒQ� D ƒ� (13)

where

Q� D
�
.D /T ı � ı .D /

jdetD j
�

ı  �1: (14)

Here D denotes the (matrix) differential of  ,
.D /T its transpose, and the composition in (14)
is to be interpreted as multiplication of matrices.

We have then a large number of conductivities
with the same DN map: any change of variables of
˝ that leaves the boundary fixed gives rise to a new
conductivity with the same electrostatic boundary
measurements. The question is then whether this is
the only obstruction to unique identifiability of the
conductivity.

In two dimensions this has been shown for L1.˝/
conductivities in [3]. This is done by reducing
the anisotropic problem to the isotropic one by
using isothermal coordinates and using Astala and
Päivärinta’s result in the isotropic case [2]. Earlier
results were for C3 conductivities using the result of
Nachman [37], for Lipschitz conductivities in [44]
using the techniques of [8], and [45] for anisotropic
conductivities close to constant.

In three or more dimensions, this has been shown
for real-analytic conductivity ion domains with real-
analytic boundary. In fact this problem admits a ge-
ometric formulation on manifolds [34], and it has
been proven for real-analytic manifolds with boundary
[32]. New CGO solutions were constructed in [17] for
anisotropic conductivities or metrics for which roughly
speaking the metric or conductivity is Euclidean in one
direction.

Full Maxwell’s Equations

Inverse Boundary Value Problems
In the present section, we consider the inverse
boundary value problems for the full time-harmonic
Maxwell’s equations in a bounded domain, that is,
to reconstruct three key electromagnetic parameters:
electric permittivity ".x/, conductivity �.x/, and
magnetic permeability �.x/, as functions of the spatial
variables, from a specified set of electromagnetic
field measurements taken on the boundary. To be
more specific, let E.x/ and H.x/ denote the time-
harmonic electric and magnetic fields inside the
domain ˝ � R

3. At the frequency ! > 0,
E and H satisfy the time-harmonic Maxwell’s
equations

r 	 E D i!�H; r 	H D �i!�E (15)
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where �.x/ D ".x/ C i�.x/. Assume that the
parameters are L1 functions in ˝ and, for some
positive constants "m, "M , �m, �M , and �M ,

"m � ".x/ � "M ; �m � �.x/ � �M ;

0 � �.x/ � �M for x 2 ˝: (16)

To introduce the solution space, we define

H1

Div.˝/ WD
n
u 2 �H1.˝/

�3 ˇ̌
Div.� 	 uj@˝/

2 H1=2.@˝/
o

where on the boundary @˝ , � is the outer normal
unit vector and Div denotes the surface divergence.
Let TH1=2

Div.@˝/ denote the Sobolev space obtained
by taking natural tangential traces of functions
in H1

Div.˝/ on the boundary. It is well-known
that (15) admits a unique solution .E;H/ 2
H1

Div.˝/	H1

Div.˝/ with imposed boundary electric

(or magnetic) condition � 	 E D f 2 TH
1=2

Div.@˝/

(or � 	 H D g 2 TH
1=2

Div.@˝/), except for a discrete
set of resonant frequencies f!ng in the dissipative case,
namely, � D 0.

Then the inverse boundary value problem is to
recover ", � , and � from the boundary measurements
encoded as the well-defined impedance map

ƒ! W TH1=2

Div.@˝/ ! TH
1=2

Div.@˝/

f D � 	 Ej@˝ 7! � 	H j@˝:

We remark that the impedance mapƒ! is a natural ana-
logue of the Dirichlet-to-Neumann map for EIT, since
it carries enough information of the electromagnetic
energy associated to the system.

The underlying problem was first formulated in
[15], and a local uniqueness result was obtained based
on Calderón’s linearization idea, that is, the parame-
ters that are slightly perturbed from constants can be
uniquely determined by the impedance map. For the
global uniqueness and reconstruction of the parame-
ters, the following result was proved in [41], and the
proof was simplified later in [40] by introducing the
so-called generalized Sommerfeld potentials.

Theorem 4 ([40, 41]) Let ˝ � R
3 be an open

bounded domain with a C1;1-boundary and a

connected complement R3n˝. Assume that ", � , and
� are in C3.R3/ satisfying the condition (16) in ˝
and ".x/ D "0, �.x/ D �0, and �.x/ D 0 when
x 2 R

3n˝ for some constants "0 and �0. Assume that
! > 0 is not a resonant frequency. Then the knowledge
of ƒ! determines the functions ", � , and � uniquely.
Recently, the regularity assumed in this result for the
electromagnetic parameters has been improved to C1

[14].

A closely related problem to the one considered here
is the inverse scattering problem of electromagnetism,
that is, to reconstruct the unknown parameters from
the far-field pattern of the scattered electromagnetic
fields. It is shown in [16] that the refractive index n.x/
(corresponding to, e.g., known constant� but unknown
".x/ and �.x/) can be uniquely determined by the far-
field patterns of scattered electric fields satisfying

r 	 r 	 E � k2n.x/E D 0:

The approach is based on the ideas in [47] of con-
structing CGO type of solutions of the form E D
eix��.CR�/ where �;  2 C

3, � �� D k2, and � � D 0.
For Maxwell’s equations (15), more generalized

solutions of such type were constructed in [41] as
follows.

Proposition 1 ([41]) Suppose the parameters ",
� , and � satisfy the condition in Theorem 4. Let
; 	; and� 2 C

3 satisfy � � � D !2, � 	  D !�0	 ,
and � 	 	 D �!�0. Then for j�j large enough,
the Maxwell’s equation (15) admits a unique global
solution .E;H/ of the form

E D eix��.CR�/ H D eix��.	 CQ�/ (17)

where R�.x/ and Q�.x/ belong to .L2�ı.R3//3 for ı 2
Œ 1
2
; 1
.

However, such vector CGO type solutions for both [16]
and [41] do not have the property that R� decays like
O.j�j�1/, which was a key ingredient in the proof of
the uniqueness in the scalar case. The nature of this
difficulty is that the vector-valued analogue of Fad-
deev’s fundamental solution (for the scalar Schrödinger
equation), used in the construction of (17), does not
share the decaying property of it. In [16], this is tackled
by constructingR� that decays to zero in certain distin-
guished directions as j�j tends to infinity. By rotations,
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such special set of solutions are enough to determine
the refractive index.

In [41], the approach to the final proof of uniqueness
starts with the following identity obtained integrating
by parts

Z
@˝

� 	 E �H0 Cƒ!.� 	 Ej@˝/ �E0dS

D i!

Z
˝

.� � �0/H �H0 � .� � "0/E �E0dx (18)

where .E;H/ is an arbitrary solution of (15), while
.E0;H0/ is a solution in the free space where " D "0,
� D 0, and � D �0. It is shown that if one let
j�j tend to infinity along a certain manifold (similar
to the choices of directions and by rotations in [16]),
the right-hand side of (18) has the asymptotic to be a
nonlinear functional of unknown parameters ", � , and

�. It results in a semilinear elliptic equation of the
parameters, and their uniqueness is a direct corollary
of the unique continuation principle.

On the other hand, the article [40] reduces signifi-
cantly the asymptotic estimates used in [41] by an aug-
menting technique, in which the Maxwell’s equations
are transformed into a matrix Schrödinger equation.
To be more specific, denoting scalar functions ˆ D
i
!

r ��E and‰ D i
!

r ��H , we consider the following
rescalization

X WD
�

1

!��1=2
ˆ; �1=2E;�1=2H;

1

!��1=2
‰

�T
2.D0/8:

(19)

Such rescalization is particularly chosen so that one
has, under conditions on ˆ and ‰, the equivalence
between Maxwell’s equations (15) and a Dirac system
about X

.P.ir/ � k C V /X D 0; P.ir/ WD i

0
BB@
0 r� 0 0

r 0 r	 0

0 �r	 0 r
0 0 r� 0

:

1
CCA (20)

where k D !."0�0/
1=2 and V 2 .C1.R3//8 (Here

we assume the unknown parameters are C1). For
a more detailed argument on the rescalization, we
refer the readers to [12, 28]. Moreover the operator
.P.ir/ � k C V / is related to the matrix Schrödinger
operator by

.P.ir/�kCV /�P.ir/Ck �V T
�D�.�Ck2/18CQ

(21)

where 18 is the identity matrix and the potential Q 2�
C1.R3/

�8�8
is compactly supported. Therefore, the

generalized Sommerfeld potential Y defined by X D�
P.ir/C k � V T

�
Y satisfies the Schrödinger equa-

tion
� .�C k2/Y CQY D 0; (22)

for which we can construct the CGO solution for some
constant vector y0;�

Y� D eix��.y0;� C v�/ (23)

where v� decays to zero as O.j�j�1/. The rest of the
proof is based on the identity

� i
Z
@˝

Y �
0 � P.�/XdS D

Z
˝

Y �
0 �QYdx (24)

where Y �
0 annihilatesP.ir/Ck andP.�/ is the matrix

with ir replaced by � in P.ir/. Then substitute the
CGO solution Y� into the identity, and let Y �

0 depend on
� in an appropriate way. Taking j�j to infinity, the left-
hand side of (24) can be computed from the impedance
mapƒ! , and the right-hand side converges to function-
als of Q. Such functionals carry the information of the
unknown parameters, and the reconstruction of each of
them is possible when proper directions, along which �
diverges, are chosen.

For the partial data problem, namely, to determine
the parameters from the impedance map only made
on part of the boundary, there are not as many results
as in the scalar case. It is shown in [12] that if the
measurements ƒ!.f / are taken only on a nonempty
open subset � of @˝ for f D � 	 Ej@˝ supported in
� , where the inaccessible part @˝n� is part of a plane
or a sphere, the electromagnetic parameters can still be
uniquely determined. Combined with the augmenting
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argument in [40], the proof in [12] generalized the
reflection technique used in [27], where the restriction
on the shape of the inaccessible part comes from.
As for another well-known method in dealing with
partial data problems based on the Carleman esti-
mates [10, 29], there are however significant difficul-
ties in generalizing the method to the full system of
Maxwell’s equations, e.g., the CGO solutions con-
structed using Carleman estimates.

In the anisotropic setting, where the electromagnetic
parameters depend on direction and are regarded as
matrix-valued functions, one of the uniqueness results
was obtained in [28] for Maxwell’s equations on cer-
tain admissible Riemannian manifolds. Such manifold
has a product structure and includes compact manifolds
in Euclidean space, hyperbolic space and S

3 minus
a point, and also sufficiently small sub-manifolds of
conformally flat manifolds as examples. A construction
of CGO solutions based on direct Fourier arguments
was provided with a suitable uniqueness result.

Identifying Electromagnetic Obstacles by
the Enclosure Method

As another application of the important CGO solutions
for scalar conductivity equations and Helmholtz equa-
tions, in [24], the enclosure method was introduced
to determine the shape of an obstacle or inclusion
embedded in a bounded domain with known back-
ground parameters like conductivity or sound speed,
from the boundary measurements of electric currents
or sound waves. The fundamental idea of this method
is to implement the low penetrating ability of CGO
plane waves due to its rapidly decaying property away
from the key planes. The energies associated with
such waves show little evidence of the existence of
the inclusion unless the key planes have intersection
with it. These planes will enclose the inclusion from
each direction, and the convex hull can be recon-
structed. The method was improved in [23] by the
complex spherical waves constructed in [29] to enclose
some non-convex part of the shape of electrostatic
inclusions. For the application on more generalized
systems of two variables, in which case more choices
of CGO solutions are available, we refer the article
[51]. Numerical simulations of the approach were done
in [23, 25].

For the full time-harmonic system of Maxwell’s
equations, the enclosure method is generalized in [53]
to identify the electromagnetic obstacles embedded
in lossless background media. Suppose the obstacle
D satisfies D � ˝ and ˝nD is connected. It is
embedded in a lossless electromagnetic medium, and
therefore the EM fields in ˝nD satisfy

r 	 E D i!�H; r 	H D �i!"E; (25)

with perfect magnetic obstacle condition �	H j@D D 0.
With well-defined boundary impedance map denoted
byƒ!

D on @˝ for nonresonant frequency!, the inverse
problem aims to recover the convex hull of D. The
candidates of the probing waves are among the CGO
solutions for the background medium, of the form

E0 D "1=2e�.x���t /Cip�2C!2x��?

.CR�/;

H0 D �1=2e�.x���t /Cip�2C!2x��?

.	 CQ�/ (26)

where the planes used to enclose the obstacle are level
sets fx � � D tg. It is possible to compute, from the
impedance mapƒ!

D , an energy difference between two
systems: the domain with obstacle and the background
domain without an obstacle, for the same boundary
CGO inputs. This is denoted as an indicator function
given by

I�.�; t/ WD i!

Z
@˝

.�	E0/�.ƒ!
D �ƒ!

; /.�	E0/ 	 �dS:
(27)

Since that as � ! 1, the CGO EM fields (26) decay
to zero exponentially on the half space fx � � < tg
and grow exponentially on the other half, and one
would expect lim�!1 I�.�; t/ D 0, i.e., no energy
detection, as long as D stays in fx � � < tg. On the
other hand, if D has any intersection with the opposite
closed half space fx � � � 0g, the limit should not
any longer be small. This provides a way by testing
different � 2 S

2 and t > 0 to detect where the
boundary of D lies. However, for the full system of
Maxwell’s equation, a difficulty arises when showing
the nonvanishing property of the indicator function in
the latter case. This is again mainly because that the
CGO solutions’ remainder terms R� and Q� do not
decay. To address this, one can choose the relatively
free incoming constant fields  D � and 	 D 	� that
share different asymptotic speeds as � tends to infinity.
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In this way, one can prove that the lower bound of the
indicator function is dominated by the CGO magnetic
energy in D, which is never vanishing. Hence the
enclosure method is developed. We would like to point
out that in [53], the construction of CGO solutions
for the system is based on the augmenting technique
in [40] and the choice of constant fields � and 	� is
similar to that in [16, 40, 41].

A natural improvement of the enclosure method as
in the scalar case is to examine the reconstruction of
the non-convex part of the shape of D. The complex
spherical waves constructed in [29] using Carleman
estimates are CGO solutions with nonlinear phase
ln jx � x0j where x0 2 R

3n˝ , with spherical level
sets. When replacing the linear-phase-CGO solutions
in the enclosure method by complex spherical waves,
the obstacle or the inclusion is enclosed by the exterior
of spheres. However, for Maxwell’s equations, the Car-
leman estimate argument has not been carried out yet.
Instead, it is shown, in [53], that one can implement the
Kelvin transformation

T W x 7! R2
x � x0

jx � x0j2 C x0; x0 2 R
3n˝; R > 0;

which maps spheres passing x0 to planes. The in-
variance of Maxwell’s equations under T makes it
possible to compute the impedance map associated
to the image domain T .˝/ and apply the enclosure
method there with linear-phase-CGO solutions. This
is equivalent to enclosing in the original domain with
spheres, which are pre-images of the planes. We notice
that the pullbacks of the linear-phase-CGO fields in the
image space are complex spherical fields in the original
space with LCW

'.x/ D R2
.x � x0/ � �
jx � x0j2 C x0 � �:
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29. Kenig, C., Sjöstrand, J., Uhlmann, G.: The Calderón prob-
lem with partial data. Ann. Math. 165, 567–591 (2007)

30. Knudsen, K.: The Calderón problem with partial data for
less smooth conductivities. Commun. Partial Differ. Equ.
31, 57–71 (2006)

31. Kohn R., and Vogelius M.: Determining conductivity by
boundary measurements II. Interior results. Comm. Pure
Appl. Math. 38, 643–667 (1985)

32. Lassas, M., Uhlmann, G.: Determining a Riemannian man-
ifold from boundary measurements. Ann. Sci. École Norm.
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Quasinodal set A double sequence fxnk g that satisfies
the asymptotic behavior as given in (2).

Short Definition

This is the inverse problem of recovering parameters in
a Sturm-Liouville-type equation using the nodal data.

Description

Consider the Sturm-Liouville operatorH :

Hy D �y00 C q.x/y ; (1)

with boundary conditions

�
y.0/ cos˛ C y0.0/ sin˛ D 0

y.1/ cosˇ C y0.1/ sinˇ D 0
:

Here q 2 L1.0; 1/ and ˛; ˇ 2 Œ0; �/. Let � be the
nth eigenvalue of the operator H and 0 < x

.n/
1 <

x
.n/
2 < � � � < x

.n/
n�1 < 1 be the .n � 1/ nodal points

of the nth eigenfunction. The double sequence fx.n/k g
is called the nodal set associated with H . Also, let
l
.n/

k D x
.n/

kC1 � x
.n/

k be the associated nodal length. We
define the function jn.x/ on .0; 1/ by jn.x/ D maxfk W
x
.n/

k � xg. Hence, if x and n are fixed, then j D jn.x/

implies x 2 Œx.n/j ; x
.n/
jC1/.

In many applications, certain nodal set associated
with a potential can be measured. Hence, it is desirable
to recover the potential with this nodal set. The inverse
nodal problem was first defined by McLaughlin [19].
She showed that knowledge of the nodal points alone
can determine the potential function in L2.0; 1/ up
to a constant. Up till now, the issues of uniqueness,
reconstruction, smoothness, and stability are all solved
for q 2 L1.0; 1/ [14, 16, 19, 25].

Reconstruction Formula, Smoothness, and
Stability
For simplicity, we consider the Dirichlet boundary
conditions ˛ D ˇ D 0. We can turn the Sturm-
Liouville equation into the integral equation

y.x/ D sin sx

s
C 1

s

Z x

0

sinŒs.x � t/
q.t/y.t/ dt;

for a solution y, satisfying y.0/ D 0, y0.0/ D 1. After
an iteration and some trigonometric calculations, when
y.x/ D 0 and cos.sx/ is not close to 0,

tan.sx/ D 1

2s

Z x

0

.1 � cos.2st//q.t/ dt C o

�
1

s2

�
:

From this, one can easily derive asymptotic estimates
of the parameters sn D p

�n and x.n/k , by letting x D 1

and x D x
.n/

k , respectively:

sn D n� C 1

2sn

Z 1

0

.1 � cos.2snt//q.t/dt

C o

�
1

s2n

�

x
.n/

k D k�

sn
C 1

2s2n

Z x
.n/

k

0

.1 � cos.2snt// q.t/ dt

C o

�
1

s3n

�
: (2)

Hence, the nodal length is given by

l
.n/

k D �

sn
C 1

2s2n

Z x
.n/

kC1

x
.n/
k

.1�cos.2snt//q.t/ dtCo
�
1

s3n

�
;

from which, one arrives at

2s2n

 
snl

.n/

jn.x/

�
� 1

!

D sn

�

Z x
.n/

kC1

x
.n/

k

.1� cos.2snt//q.t/ dtCo.1/

! q.x/

where the convergence is pointwise a.e. as well as L1.
If we put in the asymptotic expression of sn, we obtain
that pointwisely a.e. and in L1 [7, 16],

q.x/ D lim
n!1 2n2�2

 
nl

.n/

jn.x/
� 1C l

.n/

jn.x/

2n�2

Z 1

0

q

!
:

(3)
Thus, given the nodal set plus the constant

R 1
0
q,

one can recover the potential function. Unlike most
inverse spectral problems, the reconstruction formula
here is direct and explicit. However, the problem
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is overdetermined, as the limit does not require
starting terms.

On the other hand, we define the difference quotient
operator ı as follows:

ıa
.n/
i D a

.n/
iC1 � a

.n/
i

x
.n/
iC1 � x.n/i

D �a
.n/
i

l
.n/
i

; and

ıka
.n/
i D ık�1a.n/iC1 � ık�1a.n/i

l
.n/
i

:

Hence, the above reconstruction formula, whose term
is a step function, can be linked up to a continuous
function

F .0/
n .x/ D 2n2�2

� �
nC 1

2n�2

Z 1

0

q

�

�
l
.n/

jn.x/
C ıl

.n/

jn.x/
�
�
x � x.n/jn.x/

��
� 1

	
:

Furthermore, we let

F .k/
n .x/ D 2n3�2

n
ıkl

.n/
j C ıkC1l.n/j � .x � x

.n/
j /
o
:

With these definitions, one can show the following
theorem [15, 16].

Theorem 1 Suppose q is CNC1 on Œ0; 1
 .N � 1/.
Then for each x 2 .0; 1/ and k D 0; : : : ; N , as n !
1,

q.k/.x/ D F .k/
n .x/CO

�
1

n

�
:

Conversely, if F .k/
n is uniformly convergent on compact

subsets of .0; 1/, for each k D 1; : : : ; N , then q is CN

on .0; 1/, and F .k/
n is uniformly convergent to q.k/ on

compact subsets of .0; 1/.

The proof depends on the definition of ıkai . Let
G.1/ D limn!1 F

.1/
n . Then

Z x

0

G.1/.t/ dt D lim
n!1

Z x

0

F .1/
n .t/ dt

D lim
n!1 2n3�2

Z x

0

h
ıl
.n/

jn.t/
C ı2l

.n/

jn.t/
� �t � xjn.t/

�i
dt

D lim
n!12n

3�2
j�1X
kD1



l
.n/

k ıl
.n/

k C 1

2

�
x
.n/

kC1�x.n/k
�2
ı2l

.n/

k

�

D lim
n!1n3�2

j�1X
iD1

l
.n/

k

�
ıl
.n/

k C ıl
.n/

kC1
�

D lim
n!1n3�2

j�1X
iD1

�
l
.n/

kC2 � l .n/k

�

D lim
n!1 2n3�2

�
l
.n/
j � l .n/1

�

D q.x/ � q.0/;

using the facts such as l .n/k ıl
.n/

k D l
.n/

kC1 � l
.n/

k ,

l
.n/

kC1�l .n/k D o

�
1

n3

�
; and ıl

.n/

k D o

�
1

n2

�
:

The rest of the proof is similar.
Next, we would like to add that this inverse nodal

problem is also stable [14]. Let X and X be the nodal
sets associated with the potential function q and q

respectively. Define

Sn.X;X/ WD n2�2
n�1X
kD0

jl .n/k � l .n/k j

d0.X;X/ WD limn!1Sn.X;X/; and

d.X;X/ WD limn!1
Sn.X;X/

1C Sn.X;X/
:

Note that it is easy to show that d.X;X/ � d0.X;X/.
If d0.X;X/ < 1, then

d0.X;X/ � d.X;X/

1 � d.X;X/ :

That means, d0.X;X/ is close to 0 if and only if
d.X;X/ is close to 0. We shall state the following
theorem without proof:

Theorem 2 kq � qkL1 D 2d0.X;X/:

Numerical Aspects
In [12], Hald and McLaughlin give two numerical
algorithms for the reconstruction of q. One of the
algorithms can be induced from (3) above, while the
other needs the information about the eigenvalues as
well. Some other algorithms are also given for the
other coefficient functions such as elastic modulus
and density function. In [9], a Tikhonov regularization
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approach is taken instead, on the foundation that the
problem is overdetermined and ill-posed. Let Q D
fp 2 H1..0; 1// W R 1

0
p.x/dx D 0g. Also let

X.n/ � RnC1 such that x 2 X.n/ implies x D
f0; x1; : : : ; xn�1; 1/. Letting z.n; p/ be the zero set of
the nth eigenfunction, we define a Tikhonov functional
on X.n/ 	Q

E.n; �; x; p/ D jx � z.n; p/j2 C �

Z 1

0

p0.x/2 dx:

Let p� be the minimizer, which exists. When n is large
enough and x D z.n; q/, then

kp� � qkL2 � C

�
1

n2
C �n5

�Z 1

0

q02:

Further Remarks
In fact, boundary data can also be reconstructed with
nodal data [4]. Hill’s operator was also tackled with
successfully [5]. In [10], some of the arguments above
are refined and made more compact. C.L. Shen solved
the inverse nodal problem for the density function [20,
21,23], while Hald and McLaughlin [13] weakened the
condition to bounded variations. Shen, together with
Shieh, further investigated the 2 	 2 vectorial Sturm-
Liouville system with certain nodal sets [22]. Buterin
and Shieh [2] gave some reconstruction formulas for
the two coefficient functions p and q in the diffusion
operator �y00 C .2�p C q/y D �2y. Law, Lian,
and Wang [17] solved the inverse nodal problem for
the one-dimensional p-Laplacian eigenvalue problem,
which is a nonlinear analogue of the Sturm-Liouville
operator. Finally, the problem for Dirac operators was
also studied by C.F. Yang [27].

More studies on other equations or systems are en-
couraged. Right now, most methods here make use of
asymptotics of eigenvalues and nodal points. It would
be desirable to explore other methods that can avoid
the overdetermination of data. We add here that X.F.
Yang used the nodal data on a subinterval I D .0; b/,
where b > 1=2, to determine the potential function
in L1.0; 1/ uniquely [6, 26]. Recently, it has been
shown that an arbitrarily short interval I D .a1; a2/

containing the point 1/2 suffices to determine uniquely
[1]. Furthermore, there is the issue of existence. Is there
any condition, no matter how strong, that can guarantee
that some sequence is the nodal set of some potential
function?
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Synonyms

Electromagnetic shape optimization; Electromagnetic
topology optimization; Inverse electromagnetic design

Definition

Inverse optical design requires finding a dielectric
structure, if it exists, that produces a desired optical
response. Such a problem is the inverse of the more
common problem of finding the optical response for a
given dielectric structure.

Overview

Inverse design represents an important new paradigm
in electromagnetics. Over the past few decades, sub-
stantial progress has been made in computing the elec-
tromagnetic response of a given structure with sources,
to the point where several commercial programs pro-
vide computational tools for a wide array of problems.

Electromagnetic design, however, remains primarily
restricted to heuristic methods in which scientists intuit
structures that (hopefully) have the characteristics they
desire. Inverse design promises to overtake such meth-
ods and provide an efficient approach for achieving
nonintuitive, superior designs.

The inverse design problem cannot be solved by
simply choosing a desired electric field and numeri-
cally computing the dielectric structure. It is generally
unknown whether such a field can exist and, if so,
whether the dielectric structure producing it has a sim-
ple physical realization. Instead, the inverse problem
needs to be approached through iteration: given an ini-
tial structure, how should one iterate such that the final
structure most closely achieves the desired functional-
ity? From this viewpoint, it is clear that inverse design
problems can be treated as optimization problems, in
which the “merit function” to be optimized represents
the desired functionality. The merit function is subject
to the constraint that all fields, frequencies, etc., must
be solutions of Maxwell’s equations; consequently,
inverse design is also sometimes referred to as PDE-
constrained optimization.

This entry primarily focuses on the methodology
for finding the optimal design of an electromagnetic
structure. We describe the physical mechanism under-
pinning adjoint-based optimization, in which two sim-
ulations for each iteration provide information about
how to update the structure. We then discuss some
applications of the method and key research results in
the literature.

Electromagnetic Optimization

As previously discussed, successful inverse design
finds a structure through iterative optimization: an
initial design is created, computations are done to
find a new design, the design is updated, and the
loop continues. Whether an optimization is successful
is defined by the efficiency and effectiveness of the
computations for finding a new design. In some
fields of optimization, stochastic methods such as
genetic algorithms or simulated annealing provide
the computations. The inefficiency of completing
the many electromagnetics simulations required,
however, renders such methods generally ineffective in
the optical regime. Instead, the so-called “adjoint”
approach provides quicker computations while
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exploiting the fact that the fields must be solutions
of Maxwell’s equations.

Adjoint-based optimization is well known in mathe-
matics and engineering. As applied to PDE-constrained
problems, [4] provides a general introduction while
[1] and [10] work out the optimization equations for
elasticity and electromagnetic systems, respectively.
Instead of taking a purely equation-based approach,
however, we will present the adjoint-based optimiza-
tion technique from a more intuitive viewpoint, to
understand the physical origins of adjoint fields [9,11].

For concreteness, we will consider a simplified
problem in two dimensions with a specific merit func-
tion. The dimensionality will allow us to treat the
electric field as a scalar field. The picture will be clearer
with these simplifications, and generalizing to three
dimensions and a larger group of merit functions does
not change the underlying optimization mechanism.

The crux of the optimization routine is the decision
of how to update the structure from one iteration to
the next. Consider, for example, a problem in which
the electric field intensity at a single point, x0, is to be
maximized. The merit function J would take the form

J D 1

2
jE.x0/j2 (1)

If the change in structure is small between the two iter-
ations, the change in the fields is also relatively small.
The change in merit function can then be approximated
as

ıJ � 1

2

�
E�.x0/ıE.x0/C E.x0/ıE

�.x0/
�

D Re
�
E�.x0/ıE.x0/

�
(2)

Eq. 2 is very important: it states that the change in
merit function is simply the product of the (conjugated)
original fieldE.x0/with the change in field incurred by
the change in geometry, ıE.x0/. The question becomes
whether a change in geometry can be chosen to ensure
that ıJ > 0 (or ıJ < 0), so that the merit function
increases (decreases) each iteration.

The simplest method for choosing a new structure
would be brute force. One could add or subtract a
small piece of dielectric at every allowable point in the
domain, run a simulation to check whether the merit
function has increased, and then choose the structure
that most increased the merit function. However, this

would take thousands or millions of simulations per
iteration and is clearly unfeasible. The adjoint method,
however, gleans the same information from only two
simulations. This is accomplished by exploiting sym-
metry properties.

The first step is to recognize that a small piece of
dielectric acts like an electric dipole. If a small sphere
of radius a and dielectric constant �2 is added to a
background with dielectric �1, the scattering from the
sphere will be approximately equivalent to the fields
radiated by an electric dipole with dipole moment [5]:

p D 4��0

�
�2 � �1

�2 C 2�1

�
a3Einc (3)

where Einc is the value of the incident field at the
location of the dielectric. Although Eq. 3 assumes a
three-dimensional sphere, the two-dimensional case
differs only by numerical pre-factors. The addition
of dielectric at a point x0, then, is equivalent to the
addition of an electric dipole driven by Einc D E.x0/.
The change in field at x0 can be expressed as ıE.x0/ D
E.x0/Edipole;x0.x0/, where Edipole;x0.x0/ is the normal-
ized electric field at x0 from a dipole at x0 and E.x0/
provides the driving term. ıJ can be rewritten:

ıJ D Re
�
E�.x0/ıE.x0/

�
D Re

�
E�.x0/E.x0/Edipole;x0.x0/

�
D Re

�
E�.x0/Edipole;x0 .x

0/E.x0/
�

D Re
�
W.x0/E.x0/

�
(4)

The first step in Eq. 4 is the replacement of ıE.x0/.
The next step is the realization that placing a dipole
at x0 and measuring at x0 is equivalent to placing a
dipole at x0 and measuring at x0. This can be proved
by the symmetry of the Green’s function or by the
recognition that the optical paths are identical and the
fields must therefore be equivalent. The final step is to
define the adjoint field W.x0/ D E�.x0/Edipole;x0 .x

0/.
By analogy with the definition of ıE , it is clear that
W.x0/ is the field of a dipole at x0 with Einc D
E�.x0/. Figure 1 motivates this particular sequence of
operations.

With the original form of ıJ , as in Eq. 2, one would
need a simulation to find E.x0/ and then countless
simulations to find ıE.x0/ for every possible x0 at
which to add dielectric, as the dipole location would
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ba

Inverse Optical Design, Fig. 1 Illustration of how adjoint-
based electromagnetic optimization exploits symmetry proper-
ties. (a) shows a simple but inefficient method for testing whether
to add dielectric at x0. A first simulation (black) finds E.x0/ and
E.x0/. Then a second simulation (red) is run with an electric
dipole at x0. Finally, ıJ D Re

�
E�.x0/E.x

0/Edipole;x0 .x0/
�
. In

order to decide the location of optimal ıJ , many simulations

with dipoles at each different x0 would have to be run. In (b) the
equivalent calculation is more efficiently completed. The second
simulation (red) is of an electric dipole at x0, instead of x0, and
the fields are multiplied at x0. In this way, only a single extra
simulation is required, with a dipole at x0, and ıJ is known for
all possible values of x0

change every simulation. By switching the measure-
ment and dipole locations, however, the countless sim-
ulations have been reduced to a single one. Placing
the dipole at x0 and measuring the resulting field
at x0, one can calculate W.x0/ everywhere with a
single simulation. This is why adjoint optimization
requires only two simulations. Importantly, if the merit
function had been the sum or integral of the field
intensities on a larger set of points, still only two
simulations would be required. In that case, dipoles
would be simultaneously placed at each of the points.
For a mathematically rigorous derivation of the ad-
joint field in a more general electromagnetics setting,
consult [10].

Applications

Adjoint-based optimization has been used as a de-
sign tool in numerous electromagnetics applications.
The authors of [12], for example, designed scattering
cylinders such that the radiation from a terminated
waveguide was highly directional and asymmetric.
Their design was nonintuitive and would have been
almost impossible to achieve through heuristic meth-
ods. Although nominally designed in the rf regime, the
design would work at optical frequencies in a scaled-
down configuration.

Similar research has shown other ways in which
optimized designs can mold the flow of light in de-
sirable ways. Using photonic crystals for waveguiding
and routing is a promising technology, but achieving
optimal designs is difficult in practice. In [6] and [7],
the authors used adjoint-based optimization techniques

to design a high-bandwidth T-junction and an efficient
90ı waveguide bend, respectively, in photonic crystal
platforms.

Plasmonics represents another field in which opti-
mal design may prove particularly useful. In a recent
paper, Andkjær et al. [2] designed a grating coupler
to efficiently couple surface plasmons to incoming and
outgoing waves. The coupler was superior to previous
designs achieved by other methods and demonstrates
how one might couple into or out of future plasmon-
based technologies.

Although the examples above and the previous dis-
cussion focused on optimizing merit functions in which
the fields are the primary variables, the technique ex-
tends to eigenfrequencies and other variables. Bandgap
optimization, in which the gap between two eigenfre-
quencies is maximized, is actually a self-adjoint prob-
lem for which only a single simulation per iteration is
required. Optimal structures with large bandgaps were
designed in [3] and [8].

Discussion

Inverse design has been an invaluable tool in fields such
as aerodynamic design and mechanical optimization.
It seems clear that it can provide the same function
in optical design, especially as computational power
continues to improve. Through a more intuitive
understanding of the optimization mechanism, the
technique may become more accessible to a wider
audience of researchers. By treating dielectrics through
their dipole moments and iterating through small
changes in structure, simple initial structures can
morph into nonintuitive, superior designs. Whereas
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the current forefront of electromagnetic computation is
the quick solution of the response to a given structure,
the inverse problem of computing the structure for a
given response may prove much more powerful in the
future.
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Synonyms

Discretization; Ill-posed problems; Inverse problems;
Numerical methods; Regularization

Definition

Inverse problems are problems where one looks for a
cause of an observed or desired effect via mathemat-
ical model, usually by inverting a forward problem.
The forward problem such as solving partial differ-
ential equations is usually well posed in the sense
of Hadamard, whereas the inverse problem such as
determining unknown parameter functions or initial
values is ill posed in most cases and requires special
care in numerical approaches.

Introduction

Inverse problem approaches (often called inverse mod-
eling in engineering) have become a key technique to
recover quantitative information in many branches of
science. Prominent examples include medical image
reconstruction, nondestructive material testing, seismic
imaging, and remote sensing. The common abstract
approach to inverse problems is to use a forward model
that links the unknown u to the available data f , which
very often comes as a system of partial differential
equations (or integral formulas derived from partial
differential equations, cf., e.g., [5, 13]). Solving the
forward model given u is translated to evaluating a
(possibly nonlinear) operator F . The inverse problem
then amounts to solving the operator equation

F.u/ D f: (1)

Particular complications arise due to the fact that
in typical situations the solution of (1) is not well

http://dx.doi.org/10.1007/978-3-540-70529-1_2
http://arxiv.org/abs/1308.0212
http://arxiv.org/abs/1308.0212
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posed, in particular u does not depend continuously
on the data and the fact that practical data always con-
tain measurement and modeling errors. Therefore any
computational approach is based on a regularization
method, which is a well-posed approximation to (1)
parameterized by a regularization parameter ˛, which
tunes the degree of approximation. In usual convention,
the original problem is recovered in the limit ˛ ! 0

and no noise, and in presence of noise, ˛ needs to be
tuned to obtain optimal reconstructions. We will here
take a deterministic perspective and denote by ı the
noise level, i.e., the maximal norm difference between
f and the exact dataKu� (u� being the unknown exact
solution).

The need for regularization makes numerical meth-
ods such as discretization and iterative schemes quite
peculiar in the case of inverse problems; they are
always interwoven with the regularization approach.
There are two possible issues appearing:
• The numerical methods can serve themselves as

regularizations, in which case classical questions
of numerical analysis have to be reconsidered. For
Example, if regularization is achieved by discretiza-
tion, it is not the key question how to obtain a high
order of convergence as the discretization fineness
decreases to zero, but it is at least equally important
how much robustness is achieved with respect to the
noise and how the discretization fineness is chosen
optimally in dependence of the noise level.

• The regularization is carried out by a different
approach, e.g., a variational penalty. In this case one
has to considered numerical methods for a paramet-
ric problem, and robustness is desirable in the case
of small regularization parameter and decreasing
noise level, which indeed yields similarities to the
first case, often also to singular perturbation prob-
lems in differential equations.

Iterative Regularization Methods

Iterative methods, which we generally write as

ukC1 D G.uk; F .uk/� f; ˇk/; (2)

yield a first instance of numerical methods for regular-
ization. Simple examples are the Landweber iteration

ukC1 D uk � ˇkF 0.uk/�.F.uk/ � f / (3)

and the Levenberg-Marquardt method for nonlinear
problems

ukC1 D uk � .F 0.uk/�F 0.uk/C ˇkI /
�1F 0.uk/�

.F.uk/� f /: (4)

In this case the regularization is the maximal num-
ber of iterations k�, which are carried out, i.e., ˛ D 1

k�
.

Instead of convergence, one speaks of semiconvergence
in this respect (cf., [9]):
• In the case of exact data f D Ku�, one seeks

classical convergence uk ! u�.
• In the case of noisy data f D Ku� C nı with

knık � ı, one seeks to choose a maximal number
of iterates k�.ı/, such that uık�.ı/ converges to u� as

ı ! 0, where uık denotes the sequence of iterates
obtained with data f D Ku� Cnı . Note that in this
case the convergence concerns the stopped iterates
of different iteration sequences.
Major recent challenges are iterative methods in

reflexive and nonreflexive Banach spaces (cf., [8, 14]).

Regularization by Discretization

Discretization of infinite-dimensional inverse problems
needs to be understood as well as a regularization
technique, and thus again convergence as discretization
fineness tends to zero differs from classical aspects
of numerical analysis. If the data are taken from an
m-dimensional subspace and the unknown is approx-
imated in an n-dimensional subspace, one usually ends
up with a problem of the form

QmF.Pnu/ D f; (5)

typically with Qm and Pn being projection operators.
Again a semiconvergence behavior appears, where the
regularization parameter is related to 1

n
respectively

and 1
m

.
In the case of linear inverse problems, it is well

understood that the discretization leads to an ill-
conditioned linear system, and the choice of basis
functions is crucial for the conditioning. In particular
Galerkin-type discretization with basis functions in
the range of the adjoint operator are efficient ways
to discretize inverse problems (cf., [5, 12]). The role
of adaptivity in inverse problems has been explored
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recently (cf., [1]), again with necessary modifications
compared to the case of well-posed problems due
to the fact that a posteriori error estimates without
assumptions on the solution are impossible.

Variational Regularization Methods

The most frequently used approach for the stable solu-
tion of inverse problems are variational regularization
techniques, which consist in minimizing a functional
of the form (cf., [3, 5])

E˛.u/ D D.F.u/; f /C ˛J.u/; (6)

where J is a regularization functional and D is an
appropriate distance measure, frequently a square norm
in a Hilbert space (related to classical least-squares
methods)

D.F.u/; f / D 1

2
kF.u/ � f k2: (7)

The role of the regularization functional from a the-
oretical point of view is to enforce well posedness
in the minimization of E˛, typically by enforcing
compactness of sublevel sets of E˛ in an appropriate
topology. Having in mind the Banach-Alaoglu theo-
rem, it is not surprisingly that the most frequent choice
of regularization functionals are powers of norms in ap-
propriate Banach spaces, whose boundedness implies
weak compactness. From a practical point of view, the
role of the regularization functional is to introduce a
priori knowledge by highly penalizing unexpected or
unfavorable solutions. In particular in underdetermined
cases, the minimization of J needs to determine appro-
priate solutions, a paradigm which is heavily used in
the adjacent field of compressed sensing (cf., [4]).

Besides discretization issues as mentioned above,
a key challenge is the construction of efficient
optimization methods to minimize E˛. In the past
squared norms or seminorms in Hilbert spaces (e.g.,
in L2 or H1) have been used frequently, so that rather
standard algorithms for differentiable optimization
have been used. The main challenge when using
Newton-type methods is efficient solution of the
arising large linear systems; several preconditioning
approaches have been proposed, some at the interface
to optimal control and PDE-constrained optimization

(cf., e.g., [2]). In particular in the twenty-first century,
nonsmooth regularization functionals such as total
variation and `1-type norms became more and more
popular, since they can introduce prior knowledge
more effectively. A variety of numerical optimization
methods has been proposed in such cases, in particular
Augmented Lagrangian methods have become popular
(cf., [6]).

Bayesian Inversion

The use of Bayesian approaches for inverse problems
has received growing attention in the recent years
(cf., e.g., [7]) due to frequent availability of prior
knowledge as well as increasing detail in the statistical
characterization of noise and other uncertainties in
inverse problems, which can be handled naturally. The
basis of Bayesian inversion in a finite-dimensional
setup is Bayes’ formula for the posterior probability
density

p.ujf / D p.f ju/ p.u/
p.f /

: (8)

Here p.f ju/ is the data likelihood, into which the
forward model and the noise are incorporated, andp.u/
respectively p.f / are a priori probability densities for
the unknown and the data, respectively. Since p.f /
is just a scaling factor when f is fixed, it is usually
neglected. Most effort is used to model the prior prob-
ability density, which is often related to regularization
functionals in variational methods via

p.u/ � e�˛J.u/: (9)

A standard approach to compute estimates is maxi-
mum a posteriori probability (MAP) estimation, which
amounts to maximize p.ujf / subject to u. By the
equivalent minimization of the negative log likelihood,
MAP estimation can be translated into variational reg-
ularization; the role of the statistical approach boils
down to selecting appropriate regularization function-
als and data terms based on noise models. In order
to quantify uncertainty, also conditional mean (CM)
estimates

Ou D
Z

u p.ujf / du; (10)

variances, and other quantifying numbers of the
posterior distribution are used. These are all based
on integration of the posterior in very high dimensions,
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since clearly the infinite-dimensional limit should be
approximated. The vast majority of approaches is
based on Markov chain Monte Carlo (MCMC) meth-
ods (cf., e.g., [7]); see also [15] for a deterministic ap-
proach. The construction of efficient sampling schemes
for posterior distribution with complicated priors is a
future computational challenge of central importance.

A program related to classical numerical analysis is
the convergence of posteriors and different estimates as
the dimension of the space for the unknown (possibly
also for the data) tends to infinity, an issue that has
been investigated under the keyword of discretization
invariance in several instances recently (cf., [10, 11]).
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Introduction

In this entry we will describe techniques which have
been developed for numerical solution of inverse spec-
tral problems for differential operators in one space
dimension, for which the model is the inverse Sturm-
Liouville problem. Let V D V.x/ be a given real
valued potential on the interval Œ0; 1
 and consider the
eigenvalue problem

�00C.��V.x//� D 0 0 < x < 1 �.0/ D �.1/ D 0

(1)

As is well known, there exists an infinite sequence of
real eigenvalues

�1 < �2 < : : : �n ! C1 (2)

We will always assume at least that V 2 L2.0; 1/,
although much of what is said below is valid in larger
spaces. The inverse spectral problem of interest is to
recover V.x/ from spectral data – there are many
different versions of this, depending on exactly what
is meant by “spectral data.” In the simplest case this
would simply mean the eigenvalues, but one quickly
sees that this is not enough information, unless the
class of V ’s is considerably restricted.

We therefore define some additional quantities. Let
�n.x/ be an eigenfunction corresponding to �n normal-
ized by jj�njjL2.0;1/ D 1, and set
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�n D 1

�0
n.0/

2
(3)

�n D log .j�0
n.1/j=j�0

n.0/j/ (4)

Also, let �n denote the nth eigenvalue of (1) when the
boundary condition at x D 1 is replaced by �0.1/ C
H�.1/ D 0 for some fixed H 2 R. The following
asymptotic expressions are known.

�n D .n�/2 C
Z 1

0

V .s/ ds Can

1X
nD1

a2n < 1 (5)

�n D 1

2.n�/2

�
1C bn

n

� 1X
nD1

b2n < 1 (6)

�n D cn

n

1X
nD1

c2n < 1 (7)

�nD..n� 1
2
/�/2C

Z 1

0

V .s/ dsC2HCdn
1X
nD1

d 2n <1
(8)

We may then formulate three corresponding inverse
spectral problems:

Problem 1 Determine V given f�ng1
nD1; f�ng1

nD1
Problem 2 Determine V given f�ng1

nD1; f�ng1
nD1

Problem 3 Determine V given f�ng1
nD1; f�ng1

nD1
It is known that each of the above problems has

at most one solution in an appropriate function space,
such as L2.0; 1/. From a computational point of view
we are always dealing with a finite subset of the
data, such as the first N terms of each sequence, so
that careful consideration should be given to how to
compensate for the missing data.

There are many obvious and not so obvious variants
of these problems which have been studied, but due to
limited space we will focus only on these three. We
mention, however, that one widely studied special case,
when V is symmetric with respect to the midpoint x D
1=2, may be viewed as a special case of Problem 2,
since �n D 0 for any n automatically. In this case we
may cite [4,6,9,12] as general references for the theory
of inverse Sturm-Liouville problems.

Whichever problem is being solved and whichever
of the methods described in the following sections is to
be used, it is almost always useful to do a preliminary

reduction to the case when the mean value of the
potential

R 1
0
V .s/ ds is zero. This may be done by

first making an estimate of
R 1
0
V .s/ ds based on the

asymptotic behavior of the eigenvalues, such as

Z 1

0

V .s/ ds D lim
n!1�n � .n�/2 (9)

which follows from (5), and then taking into account
the obvious fact that �n � R 1

0 V .s/ ds is the nth eigen-

value for the shifted potential V.x/ � R 1
0
V .s/ ds.

Computational Methods

In this section we give details of several widely appli-
cable and representative methods.

Integral Equation Method
The seminal paper Gelfand and Levitan [5], one of
the very earliest substantial works on the theory of the
inverse spectral problem, also supplies, in principle, a
practical computational method for Problem 1. Assum-
ing as above that V has mean value zero, the algorithm
is as follows:
• Set

g.t/ D
1X
nD1

�
2n� sin n�t � 1p

�n�n
sin
p
�nt

�
:

(10)

• Set f .x; t/ D 1
2
.G.jx � t j/ �G.x C t// where

G.t/ D R t
0
g.s/ ds.

• Solve the integral equation

f .x; t/C
Z x

0

K.x; z/f .z; t/ dz CK.x; t/ D 0

0 � t � x � 1 (11)

forK.x; t/.
• Obtain the potential from V.x/ D 2 ddxK.x; x/.
The asymptotic behaviors (5), (6) guarantee that g 2
L2.0; 2/, but some care should be taken with numer-
ical evaluation of g since it is the difference of two
divergent series. If the available data consists of �n; �n
for n � N , then using the N th partial sum of the
series (10) as an approximation to g amounts to speci-
fying that �n D .n�/2; �n D 1

2.n�/2
for n > N , which

are the exact values these quantities would have when
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V D 0. The integral equation (11) may be numerically
solved, for example, by a collocation method or by
seeking the solution as a linear combination of suitable
basis functions.

Method of Overdetermined Hyperbolic
Problems
The next method was introduced in [14], in which the
inverse spectral problem was shown to be equivalent to
a certain overdetermined boundary value problem for
a hyperbolic partial differential equation, which may
be solved by an iteration technique. The method is
easily adaptable to any of Problems 1–3, as well as
many other variants – we will focus on Problem 2 for
definiteness.

The kernel K.x; t/ appearing in (11) is known to
have a number of other interesting properties (see
[4, 9]), the first of which we need is that it serves as
the kernel of an integral operator which transforms a
solution of

�00 C �� D 0 �.0/ D 0 (12)

into a corresponding solution of

�00 C .� � V.x//� D 0 �.0/ D 0 (13)

Specifically, if we denote by 	.x; �/ the solution
of (13) normalized by 	 0.0; �/ D p

�, then

	.x; �/ D sin
p
�x C

Z x

0

K.x; t/ sin
p
�t dt (14)

The key point here is thatK does not depend on �. The
second property ofK we will use here is that if defined
for t < 0 by odd extension, it satisfies the Goursat
problem

Ktt �Kxx C V.x/K D 0 0 < jt j < x < 1 (15)

K.x;˙x/ D ˙1

2

Z x

0

V .s/ ds 0 < x < 1 (16)

Observing that 	.1; �n/ D 0 and 	 0.1; �n/ Dp
�n.�1/ne�n , we obtain (recall we still assume V

has zero mean)

Z 1

0

K.1; t/ sin
p
�nt dt D � sin

p
�n (17)

Z 1

0

Kx.1; t/ sin
p
�nt dt D

p
�n..�1/ne�n�cos

p
�n/

(18)

With spectral data �n; �n known, these systems of
equations can be shown to uniquely determine (since
K.1; t/;Kx.1; t/ are both odd)

K.1; t/ WD G0.t/ Kx.1; t/ WD G1.t/ �1 < t < 1
(19)

which we think of as Cauchy data for K.x; t/ on the
segment f.1; t/ W �1 < t < 1g. Equations (15), (16),
and (19) now constitute an overdetermined hyperbolic
boundary value problem forK.x; t/, if V were known,
and the inverse spectral problem may be regarded
as that of determining the pair fV.x/;K.x; t/g so
that (15), (16), and (19) hold. One numerical method
proposed in [14] for obtaining the solution in this way
is the fixed point iteration scheme

VnC1.x/ D 2
d

dx
u.x; xIVn/ V0.x/ � 0 (20)

where u.x; t IV / denotes the solution of (15), (19) in
the domain f.x; t/ W jt j < x < 1g, which is a well-
posed Cauchy problem. A convergence theorem for
V 2 L1.0; 1/ is given in [14]. The algorithm may be
summarized as:
• Solve the systems (17), (18) for G0.t/ D K.1; t/,
G1.t/ D Kx.1; t/ and extend both to be odd
functions on .�1; 1/.

• Carry out the iteration step (20) until a suitable
stopping criterion is satisfied.
Numerical solution of (17), (18) is most conve-

niently achieved by looking for K.1; t/;Kx.1; t/

as linear combinations of suitable basis functions,
chosen to match the expected boundary behavior of
K.1; t/;Kx.1; t/ as well as possible. For example,
since G0.0/ D G0.1/ D G1.0/ D 0, but G1.1/ ¤ 0 in
general, the choices

K.1; t/ D
X

aj sin j�t

Kx.1; t/ D
X

bj sin .j � 1

2
/�t (21)

seem to work best. The numerical evaluation of
u.x; t IV /may be conveniently carried out by means of
a finite difference scheme in characteristic coordinates.
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Optimization Method
In [13] an optimization technique is proposed, which
we describe in the case of Problem 3 with H D
0 for simplicity. Denote by �.n; V /; �.n; V / respec-
tively the nth eigenvalue of (1) and the corresponding
problem when the right-hand boundary condition is
replaced by �0.1/ D 0. Let !n > 0 be weights to be
specified later and define the objective functional

J.V / D
1X
nD1

!n
�
.�.n; V / � �n/

2 C .�.n; V / � �n/2
�

(22)

We assume at least that
P1

nD1 !n < 1, from which
it follows, taking into account the known asymptotic
behavior of the eigenvalues, that J.V / is well de-
fined for V 2 L1.0; 1/. With the stronger restrictionP1

nD1 n!n < 1, it is shown in [13] that the unique
solution of Problem 3 is also the one and only critical
point of J .

An explicit expression for the gradient of J may
also be derived, namely,

DJ.V /ıV D2
1X
nD1

Z 1

0

!n
�
.�.n; V / � �n/g

2
1n.x/

C.�.n; V /� �n/g
2
2n.x/ dx

�
ıV .x/ dx

(23)

where g1n; g2n denote respectively L2.0; 1/ normal-
ized eigenfunctions corresponding to �.n; V / and
�.n; V /. One may now use some kind of standard
unconstrained smooth optimization method to locate
the unique global minimum of J .

The approach of [13] may be summarized as:
• Apply some gradient-based unconstrained min-

imization algorithm to the functional J defined
in (22).

Further Discussion
The use of this algorithm is relatively costly, due to
the need to accurately solve the two direct eigen-
value problems for the eigenvalues and normalized
eigenfunctions at each step of the iteration process.
The numerical examples in [13] are carried out using
the Polack-Ribiere variant of the conjugate gradient
algorithm.

Matrix Methods
A final class of methods uses a finite difference
approximation to reduce the inverse Sturm-Liouville
problem to a corresponding matrix inverse eigenvalue
problem. The following approach to numerical solution
of Problem 2 is taken from [3], and a number of
refinements have been made by later authors (see,
e.g., [1]). Assume that the available data is �j ; �j for
j D 1; : : :M . Using an obvious central differencing
with a uniform grid xj D hj, j D 1 : : : 2M ,
h D 1=.2MC1/, we obtain in place of (1) a 2M 	2M
matrix equation in the form

.h�2ACQ/y D �y (24)

whereA is the symmetric tridiagonal matrix withAjj D
2;Aj;jC1 D �1 andQ D diag fV.x1/; : : : V .x2M /g.

For fixed h and arbitrary diagonal matrix Q, let
�j .Q/ denote the j th eigenvalue of h�2A C Q, j D
1; : : :M , and let

�j .Q/ D log

ˇ̌
ˇ̌yj;M
yj;1

ˇ̌
ˇ̌ (25)

where yj;k denotes the kth component of an eigenvec-
tor corresponding to �j .Q/. If Q is the discretization
of the exact potential V , then it will be true that
�j .Q/ tends to �j as h ! 0 for fixed j , but it is
well known to be highly nonuniform with respect to
j . On the other hand, the leading asymptotics of the
discrepancy can be computed explicitly and introduced
as a correction term – similar considerations hold for
the approximation of �j by �j .Q/. Thus, we define
mappings ˛.Q/ D Œ˛1.Q/; : : : ˛M .Q/


T and ˇ.Q/ D
Œˇ1.Q/; : : : ˇM .Q/


T where

˛j .Q/ D �j .Q/C .j�/2 � 4

h2
sin2

j�h

2
� �j (26)

ˇj .Q/ D 2 sin j�h

h�
�j .Q/� 2j�j (27)

If we then let

F.Q/ D


˛.Q/

ˇ.Q/

�
(28)

then the approximate solution is sought as a solution of
the 2M	2M nonlinear system F.Q/ D 0. A modified
Newton scheme is used in [3]:

QnC1 D Qn � DF.0/�1F.Qn/ Q0 D 0 (29)
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where DF.0/ denotes the Jacobian of F at Q D 0.
An explicit expression for the entries of DF.0/ may be
calculated, namely,

DF.0/jk D
(
2h sin2 jkh� j D 1; : : :M

�h sin 2.j�M/kh� j DMC1; : : : 2M
(30)

It follows from this that DF.0/ is nonsingular,
and in fact the condition number with respect to the
Euclidean norm may be shown to be

p
2M C 1. Thus,

the successive iterates are well defined and that the
scheme is convergent at least provided that the solution
Q is sufficiently small.

The algorithm may be summarized as follows:
• For a given guess Qn, solve the direct matrix

eigenvalue problem for .h�2A C Qn/ to obtain
�j .Qn/; �j .Qn/ for j D 1; : : :M .

• Compute F.Qn/ using (26)–(28).
• Compute QnC1 using (29) and the explicit form of

DF.0/ for n D 1; 2; : : : until a suitable stopping
criterion is satisfied.

Further Discussion
This method requires the solution of the direct eigen-
value problem for a potentially large matrix at each step
of the iteration process. Convergence is only guaran-
teed for sufficiently small Q, although in practice it
seems quite robust. The way the algorithm is stated
here, the stepsize h and the number of spectral data
2M are tied together, but more recent variants of this
approach have loosened such restriction. The use of
matrices arising from higher order discretizations of
the ODE has also been investigated. In particular the
Numerov discretization scheme has received special
attention because it allows for higher order accuracy
with respect to hwhile still only using a 3-point stencil.

Related Problems

We conclude by mentioning several other classes of
inverse spectral problems to which some or all of the
above methods may be adapted:
• Inverse spectral problems associated with other

forms of second-order differential operators: Some
important examples are ..x/�0/0 C �.x/� D 0

or �00 C ��.x/� D 0. The different types are
all equivalent, via the Liouville transform if the
coefficients are smooth enough, and this leads to

certain equivalences among the various inverse
spectral problems which can be formulated. But
from a computational point of view, it may be more
appropriate to treat each form directly.

• Inverse spectral problems for second-order differ-
ential operators with singular points: An important
special case is

�00 C
�
� � `.`C 1/

x2
� V.x/

�
� D 0 0 < x < 1

(31)

for ` D 0; 1; : : : which arises from the correspond-
ing 3-D problem after separation of variables. The
strong singularity at the origin generally prevents
any straightforward use of the methods described
above.

• Inverse spectral problems with partially known co-
efficients: One well-studied case of this is the prob-
lem posed in [7] of determining V.x/ from the
eigenvalues f�ng1

nD1, assuming that V.x/ is known
on one half of the interval.

• Inverse spectral problems with eigenparameter-
dependent boundary conditions: A number of
interesting direct and inverse spectral problems
may be stated in the form of problem (1) with the
boundary condition at x D 1 replaced by

�0.1/ D f .�/�.1/ (32)

for some choice of f . For example, the interior
transmission eigenvalue problem introduced in [2]
leads to the case f .�/ D p

� cot
p
�a for a certain

parameter a. Numerical methods for the corre-
sponding inverse spectral problem are studied in
[11]. Another interesting example which may be
viewed in this framework is the inverse resonance
problem for a compactly supported potential, which
may be viewed as the case f .�/ D i

p
� (see, e.g.,

[8]). The case of a linear fractional transformation
f .�/ D .a�C b/=.c�C d/ is studied in [10].
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Introduction

Let p; q, and � be real-valued, bounded, and measur-
able functions defined on the interval .0; 1/ with p

and � positive. We denote by �i and �i , i 2 N, the
associated eigenvalues and the L2�.0; 1/-orthonormal
eigenfunctions of the Sturm-Liouville problem:

� �.pu0/0 C qu � ��u D 0; in .0; 1/;

u.0/ D u.1/ D 0;
(1)

where L2�.0; 1/ is the L2.0; 1/-space with the scalar

product .f; g/ WD R 1
0
f .x/g.x/�.x/dx. If we replace

in (1), u.1/ D 0 by .pu0/.1/ D 0, then we have another
sequence of eigenvalues and eigenfunctions, which we
denote by .�i /1iD1 and .ei /1iD1, respectively. In the next
sections, we will discuss the following two types of
inverse spectral problems:
1. The Borg-Levinson inverse spectral problem. It

consists of the reconstruction of some of the three
coefficients p; q, and � from the spectral data
.�i ; �j /

1
iD1.

2. The Gelfand inverse spectral problem. It consists
of the reconstruction of some of the three
coefficients p; q, and � from the spectral data
.�i ; j.p�0

i /.0/j/1iD1.
Different boundary conditions rather than the one

in (1) can be taken. In addition, other types of inverse
spectral problems have been also considered in the
literature. We can cite among others, for the case p D
� D 1, for instance, the one related to the spectral

data .�n; log j�0
n.1/jj�0
n.0/j /n2N or to the mixed data, i.e., given

.�n/n2N and the a priori information that q is sym-
metric with respect to the middle point x0 WD 1

2
. We

cite also the spectral data consisting of the sequence
.�n/n2N and the nodal points (or the zeros of the cor-
responding eigenfunctions�n), called the inverse nodal
problem. More information on these cases can be found
in the following references [3, 8–10], for instance. In
this paper, we focus only on the Gelfand and the Borg-
Levinson spectral problems. An observation we can
make is that we cannot obtain more than one of the
three coefficients p; q, and �. To see this, assume in
addition that p and � are of class C2.0; 1/. We define

the Liouville transformation y.x/ WD 1
L

R x
0

q
�

p
.t/dt,

x 2 Œ0; 1
, with L WD R 1
0

q
�

p
.t/dt. Using this transfor-

mation as a coordinate transformation, we can verify
that the Gelfand as well as the Borg-Levinson spectral
data related to the general form Sturm-Liouville equa-
tion �.pu0/0 C qu � ��u D 0; in .0; 1/ are equal to
the ones of the normal form Sturm-Liouville equation

http://dx.doi.org/10.1093/qjmam/41.1.97
http://dx.doi.org/10.1093/qjmam/41.1.97
http://dx.doi.org/10.1093/imanum/15.1.75
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http://dx.doi.org/10.1137/S0036139992238218
http://dx.doi.org/10.1137/S0036139992238218
http://dx.doi.org/10.1088/0266-5611/21/6/013
http://dx.doi.org/10.1088/0266-5611/21/6/013
http://dx.doi.org/10.2307/2153026
http://dx.doi.org/10.2307/2153026
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�u00 C V u � �u D 0; in .0; 1/, where V , which is a
bounded and measurable real valued function, is given
as a combination of the three coefficients p; q, and
� the dependent variable is scaled by the fourth root
of p�. Note that this transformation is not valid for
discontinuous coefficients p and �.

The literature on these 1 �D inverse spectral prob-
lems is huge. So, instead of reviewing the known re-
sults, we chose to review some of the popular ideas for
solving the Gelfand and the Borg-Levinson problem
considering the Sturm-Liouville equation of the normal
form. (We assumed the potential V to be bounded,
but, of course, this is not optimal, and many of the
results stated here are known for potentials belonging
to larger spaces.) Indeed, in section “The Asymptotic
Expansion Technique”, we mention the asymptotic
expansion technique used for the first time by Borg and
then simplified by Levinson at the end of the 1940s,
see [2, 7]. In section “The Integral Equation Tech-
nique”, we explain briefly the integral equation method
by Gelfand and Levitan introduced in the 1950s for
solving the Gelfand inverse spectral problems; see
[4]. During the period from the 1950s till the 1980s,
these two approaches have been extensively studied by
many authors; see the references [8–10, 12] for more
information on these methods and the related results till
mid-1980s. In section “The C-Property”, we consider
the method of the C-property by Ramm (see [11])
and in section “The Boundary Control Method” the
so-called boundary control method by Belichev and
Kurylev both introduced in the mid-1980s; see [1] for
the original version and [5] for a different presentation.
We describe these methods for proving the uniqueness
results. However, we warn the reader that two of
them (the Gelfand-Levitan and the boundary control
methods) are reconstructive. In addition, it is worth
mentioning that the boundary control method has been
also stated for the multidimensional problems; see
[1]. Our goal in this paper is to explain the ideas by
highlighting, with details, the link between the spectral
data and the main mathematical tool proposed in each
of the mentioned approaches. Regarding the step from
the main mathematical tool to the final result, either we
give some details, when it is possible, or we provide an
appropriate reference.

The starting point for solving these problems is
the following asymptotic formulas for the eigenmodes
.�n; �n/ in terms of n; see [2] for the original proof
or [6] for a more simplified proof using Volterra-type

integral equations in addition to some complex analysis
techniques.

Lemma 1 The sequence of eigenvalues .�n/n2N has
the following asymptotic expression:

�n D n2�2 C
Z 1

0

V .t/dt CO

�
1

n

�
(2)

and the sequence of normalized eigenfunctions
.�n.x//n2N behaves as follows:

�n.x/ D p
2 sin.n�x/CO

�
1

n

�
and

�0
n.x/ D p

2n� cos.n�x/CO.1/ (3)

for n ! 1, uniformly for x 2 Œ0; 1
.

The Asymptotic Expansion Technique

The original idea of Borg and as simplified by Levinson
for solving the Borg-Levinson inverse spectral problem
goes as follows. We introduce the Cauchy problem
satisfied by u WD u.x; �/

(
�u00 C Vu � �u D 0; in .0; 1/;

u.0; �/ D 0; and u0.0; �/ D 1
(4)

and the one satisfied by v WD v.x; �/

(
�v00 C Vv � �v D 0; in .0; 1/;

v.1; �/ D 0; and v0.1; �/ D 1:
(5)

Similar to the asymptotic expansion (3), we have

8̂̂
ˆ̂<
ˆ̂̂̂
:

u.x; �/ D sin.
p<�x/p<� CO

 
ej=�jx

j<�j2
!

u0.x; �/ D sin.
p<�x/CO

 
ej=�jx

j<�j

! (6)

for j�j ! 1, uniformly in Œ0; 1
. Note that �n
�0
n.0/

satisfies (4) and �n
e0
n.1/

satisfies (5) with � WD �n. We
define the characteristic function w.�/ WD u.1; �/. It
is an entire function and has as zeros the eigenvalues
�n, n D 1; 2; : : : The expansion (6) implies that w.�/
is entire of order 1=2, and hence, by the Hadamard’s
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factorization theorem, it is completely characterized
by its zeros, �n, n D 1; 2; : : :, i.e., w.�/ D
C.V /…1

nD1
�
1 � �

�n

�
with some constant C.V /. Let

now V1 and V2 have the same Borg-Levinson spectral
data. We define uj .x; �/ as the solution of (4) for
potential Vj . Hence the corresponding characteristic
functions wj .�/ satisfy w1 D w2 DW w as functions
since C.V1/ D C.V2/ from the first property in (6).
We define also vj .x; �/ to be the solution of (5) for the
potential Vj . From (4) and (5), we deduce that

uj .x; �n/ D Cnvj .x; �n/ (7)

where Cn is independent of j; j D 1; 2. Indeed,
it is clear that uj .x; �n/ D C

j
n vj .x; �n/ (since

uj .x; �n/ D �
j
n .x/

.�
j
n /0.0/

and vj .x; �n/ D �
j
n .x/

.�
j
n /0.1/

). But

u0
j .1; �/ is the characteristic function associated to

the mixed boundary conditions u.0/ D u0.1/ D 0.
Hence, similar to w.�/, it is characterized by its
eigenvalues �n; n D 1; 2; : : :. Since u0

j .1; �n/ D C
j
n ,

then C1
n D C2

n DW Cn, for n in N. Let us mention
that, for this approach, the equality of the Borg-
Levinson spectral data is used only to prove (7) and
u1.1; �/ D u2.1; �/ DW w.�/.

The main new argument of Levinson (see [7]) starts
from here. He defines the following function

H.x; �/ WD 1

w.�/
v2.x; �/

Z x

0

u1.�; �/f .�/d�;

8� ¤ �n; (8)

where f 2 C1
0 Œ0; 1
. Using the property (6) and an

appropriate contour of integration, he shows that

Z
�N

H.x; �/d� � �if .x/ ! 0; N ! 1 (9)

where �N is a circle of center � D 0 and
radius between �1=2N and �3=2N . Applying the residue
theorem to the left-hand side of (9) and using
the identity (7), for j D 2, we obtain f .x/ D

2
P1

nD1
u2.x;�n/

R x
0 u1.t;�n/f .t/dt
C 0

nw.�n/
: Applying the same cal-

culations to 1
w.�/u2.x; �/

R 1
x
v1.�; �/f .�/d� instead of

H.x; �/, we obtainf .x/D2P1
nD1

u2.x;�n/
R 1
x u1.t;�n/f .t/dt
C 0

nw.�n/
:

Summing up these last two identities, we get the first

expansion of f : f .x/ D P1
nD1

u2.x;�n/
R 1
0 u1.t;�n/f .t/dt
C 0

nw.�n/
:

Now exchanging the roles of u1 and v1 by u2 and
v2, we obtain the second expansion of f : f .x/ DP1

nD1
u2.x;�n/

R 1
0 u2.t;�n/f .t/dt
C 0

nw.�n/
: As a conclusion of these

two expansions, we have

1X
nD1

u2.x; �n/
R 1
0 Œu2.t; �n/� u1.t; �n/
f .t/dt

Cnw0.�n/
D 0:

Finally, using orthogonality properties of u2.x; �n/;
n 2 N, and choosing f .t/ WD sin.n�x/, for instance,
we deduce that u1.x; �n/ D u2.x; �n/; in Œ0; 1
, which
implies that V1 D V2.

The Integral Equation Technique

We give here the main idea of the approach by Gelfand
and Levitan in their seminal paper [4], for solving the
Gelfand inverse spectral problem. We start by stating
the following key theorem which relates solutions of
the Cauchy problems for the equations �u00 C Vju �
�u D 0, j D 1; 2 via a Volterra integral operator of
which kernel is the solution of a Goursat problem with
potential V1 � V2; see [6].

Theorem 1 Let uj .�; �/ 2 C2Œ0; 1
 be the solutions of
the hyperbolic problem:

(�u00
j C Vj uj D �uj ; in .0; 1/; uj .0; �/ D 0;

j D 1; 2 u0
1.0; �/ D u0

2.0; �/:

(10)

Let also K 2 C.�/ be the solution of the Goursat type
problem

8̂̂
ˆ̂<
ˆ̂̂̂
:

@2

@x2
K.x; t/ � @2

@t2
K.x; t/C .V1.t/ � V2.x//K.x; t/ D 0; in �

K.x; 0/ D 0; in Œ0; 1


K.x; x/ D 1

2

R x
0 .V1.t/ � V2.t//dt; in Œ0; 1


(11)
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where � WD f.x; t/ 2 R
2; 0 < t < x < 1g. Then we

have

u1.x; �/ D u2.x; �/C
Z x

0

K.x; t/u2.t; �/dt;

in Œ0; 1
; � 2 C: (12)

Let us now explain how this theorem can be used to
prove the uniqueness property. Assume that both the
potentials V1 and V2 have the same eigenvalues �1n D
�2n and the same traces of eigenfunctions .�1n/

0.0/ D
˙.�2n/0.0/, n 2 N. First, recall that uj .x; �n/ D
�
j
n .x/

.�
j
n /0.0/

, j D 1; 2, satisfies (10); hence they also satisfy

(12). Since uj .1; �n/ D 0, then
R 1
0
K.1; t/�2n.t/dt D

0;8n 2 N, which implies from the denseness of the
eigenfunctions �2n; n 2 N, in L2.0; 1/ that

K.1; t/ D 0; t 2 Œ0; 1
: (13)

Second, it is shown (see [13], for instance) that
from the equality of the Gelfand spectral, we have
.�1n/

0.1/ D ˙C.�2n/0.1/ where C is constant. By the
asymptotic expansion in (6), we deduce that C D 1.
Using the representation (12) applied for �n and taking
the derivative and then the trace on the point x0 D 1,
we obtain

R 1
0

@
@x
K.1; t/�2n.t/dt D 0; 8n 2 N, from

which we deduce that

@

@x
K.1; t/ D 0; t 2 Œ0; 1
: (14)

Resuming, we have shown that K.x; t/ satisfies the
Cauchy problem in � given by the first equation in
(11) and the initial conditions (13) and (14). From the
uniqueness of the solutions of this Cauchy problem
(see [6]), we deduce that K is identically zero. As a
conclusion, we obtain from the last equation of (11)
that

R x
0
.V1.x/ � V2.x//dx D 0, in Œ0; 1
, and hence

V1 D V2.

The C-Property

A. Ramm introduced a method for proving the unique-
ness property for one-dimensional inverse spectral and
inverse scattering problems; see [11] for more details.
It is based on the following property which he called
the C-property. Let uj .x; �/ be the solution of (4) for

V D Vj , j D 1; 2, and then we have the following
property; see [11] for the proof.

Theorem 2 The set of products .u1.�; �/u2.�; �//�>0
is dense in L1.0; 1/, i.e., let h 2 L1.0; 1/ such thatR 1
0
h.x/u1.x; �/u2.x; �/dx D 0 for every � > 0 then

h D 0.

Let us explain how this result answers the uniqueness
question of the Gelfand inverse spectral problem. Mul-
tiplying the first equation of (4) corresponding to j D
1 by u2.�; �/ and conversely the one corresponding to
j D 2 by u1.�; �/, integrating by parts and taking the
difference, we obtain

Z 1

0

.V1 � V2/.x/u1.x; �/u2.x; �/dx

D u0
1.1; �/u2.1; �/� u0

2.1; �/u1.1; �/; 8� 2 C:

(15)

As a next step, we show that the equality of the Gelfand
spectral data implies that

u0
1.1; �/u2.1; �/� u0

2.1; �/u1.1; �/ D 0; 8� 2 C:

(16)

Hence the C-property, i.e., Theorem 2, implies that
V1 D V2.

In the following lines, we give a very short justifica-
tion of (16). As we explained in section “The Asymp-
totic Expansion Technique”, uj .1; �/ is completely
characterized by its eigenvalues. Hence u1.1; �/ D
u2.1; �/. Remark that we need only the equality of the
eigenvalues to obtain this equality. If in addition we
have the equality of the traces of the eigenfunctions,
then we have the equality of the derivatives. We state
this in the following lemma.

Lemma 2 If the Gelfand spectral data are equal for
j D 1; 2, then we have the identity

u0
1.1; �/ D u0

2.1; �/; 8� 2 C: (17)

Proof We introduce the function uj satisfying the
problem:

(
�u00

j C Vjuj D 0; in .0; 1/; j D 1; 2

uj .0; �/ D 0; uj .1; �/ D uj .1; �/:
(18)

We set wj WD uj � uj , and then it satisfies
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(
�w00

j C Vjwj D �uj ; in .0; 1/; j D 1; 2

wj .0; �/ D wj .1; �/ D 0:
(19)

Multiplying (19) by �jn and integrating by parts, we
obtain

Z 1

0

wj .x/�
j
n .x/dx D � �

.� � �n/�n
.�jn /

0.1/uj .1; �/:
(20)

Using (20), we write wj D P1
1

� R 1
0

wj .x/�
j
n .x/dx

�
�
j
n D �P1

1

�.�
j
n /

0.1/uj .1;�/
.���n/�n �

j
n . Taking the deriva-

tive and the trace on the point x D 1, we have

w0
j .1; �/ D �P1

nD1
�j.�jn /0.1/j2uj .1;�/

.���n/�n : From the equal-
ity of the Gelfand spectral data(We explained in the
previous section how the Gelfand spectral data imply
that j.�1n/0.1/j D j.�2n/0.1/j; 8n 2 N:) and the equal-
ity u1.1; �/ D u2.1; �/, shown before, we see that
w0
1.1; �/ D w0

2.1; �/. Hence

u0
1.1; �/� u0

2.1; �/ D u0
1.1; �/� u0

1.1; �/: (21)

Now, remark that uj .x; �/ D vj .x/uj .1; �/ where vj
is the solution of (18) replacing u.1; �/ by 1. Hence
u0
j .1; �/ D .vj /

0.1/uj .1; �/. Recalling that u1.1; �/ D
u2.1; �/, the identity (21) becomes

u0
1.1; �/� u0

2.1; �/ D ..v1/
0.1/� .v2/0.1//u1.1; �/:

(22)

From the identities in (6) taken for � real and positive,
the identity (22) can be written as

O

�
1

�

�
D�
.v1/

0.1/�.v2/0.1/
� "sin.

p
�/p
�

CO

�
1

�2

�#

(23)

which implies that .v1/0.1/ � .v2/
0.1/ D 0 and hence

u0
1.1; �/ � u0

2.1; �/ D 0. This ends the proof of
Lemma 2.

The Boundary Control Method

The boundary control method introduced by Belishev
(see [1]) is based on a combination of properties of
the solutions of dynamical problems with the control
theory of partial differential equations. Comparing it to
the previous methods, it has the potential to be applied

to the higher dimension inverse spectral and dynamical
problems. The reader can refer to the review works [1]
and [5] for more details. In this section, we show the
main ideas of this theory needed to solve the 1 � D

Gelfand inverse spectral problem. For this, we state
first the following hyperbolic problem related to our
Sturm-Liouville model:

8̂̂
<
ˆ̂:

@2u
@t2

� @2u
@x2

C V u D 0; in .0; T / 	 .0; 1/;
u.t; 0/ D f .t/; u.t; 1/ D 0; t 2 .0; T /
u.0; x/ D @u

@t
.0; x/ D 0; x 2 .0; 1/

(24)

where f 2 H1.0; T / such that f .0/ D 0 and T is
a positive constant. This problem is well posed. We
set uf its solution. The justification of the boundary
control method for the 1�D problems is based on the
following arguments:
1. Domain of influence of the waves. The support of

uf .t; x/ is given explicitly by the speed of propa-
gation(For the general form Sturm-Liouville model

(1), the speed of propagation is
R x
0

q
�

p
.t/dt; hence

�t D
n
x 2 .0; 1/; R x

0

q
�

p
.t/dt < t

o
.) (in our case

it equals 1), i.e., f.t; x/ 2 .0; T / 	 .0; 1/; x < tg.
For t > 0 fixed, we set �t WD fx 2 .0; 1/; x <

tg D .0; t/.
2. Fourier expansion of the waves. We use the

sequence .�n; �n/n2N of the eigenvalues and
eigenfunctions of the corresponding Sturm-
Liouville equation with Dirichlet boundary
conditions to represent uf as follows:

uf .t; x/ D
1X
iD1

ufi .t/�i .x/ (25)

where the Fourier coefficients ufi .t/ WD R 1
0

uf .t; x/
�i .x/dx are completely characterized by the spec-
tral data .�0

n.0/; �n/n2N, i.e., ufi .t/ D .�n/
0.0/R 1

0
f .s/

sin.
p
�i .t�s//p
�i

ds, since it is the solution of

the Cauchy problem (Replace
p
�i by

pj�i j for

possible negative eigenvalues �i or sin.
p
�i .t�s//p
�i

by

t � s if �i D 0.)

(
@2uf

@t2
� �iuf D .�n/

0.0/f .t/; in .0; T /;

ufi .0/ D d
dt u

f
i .t/ D 0; t 2 .0; T /:

(26)
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3. Boundary controllability. There are two types of
boundary controllability. First, the exact boundary
controllability for the problem (24) is to find, for
every fixed t 2 .0; T /, for every z.x/ in L2.�t / a
function (i.e., a control) f 2 L2.0; T / such that
uf .t; x/ D z.x/. Second, we have the approxi-
mate boundary controllability where we replace the
equality uf .T; x/ D z.x/ by an approximation; see
[5], for instance. The second property is enough for
our purpose.

Based on these three arguments, we prove the follow-
ing theorem which characterizes fully the eigenfunc-
tions �n in �t , for every t � 1 using only the Gelfand
spectral data.

Theorem 3 Let Vj , j D 1; 2 be two potentials
such that the corresponding Gelfand spectral data
.�
j
i ; j.�ji /0.0/j/i2N, j D 1; 2, are equal. Then, we have

Z t

0

.�1i /
2.x/dx D

Z t

0

.�2i /
2.x/dx; 8i 2 N; 8t 2 .0; T /:

(27)

From (27), we have .�1i /
2.x/ D .�2i /

2.x/, for x 2
Œ0; T 
 (or for x 2 Œ0; 1
 if T � 1) and i 2 N. Taking

i D 1, we have V1 D .�11 /
00��1�11
�11

D .�21 /
00��1�21
�21

D V2 in

.0; 1/ knowing that the eigenfunction �j1 never vanish
in (0, 1).

The proof of Theorem 3 goes as follows. Let
.fk/k2N be a dense set in H1

0 .0; 1/. From the well-
posedness of the problem (24) and the approximate
boundary controllability, we deduce that finite
combinations of the functions ufk .t; x/ is dense in
L2.0; t/. From the second argument we know that
the Fourier coefficients of ufk can be reconstructed
from the Gelfand spectral data. By a Gram-Schmidt
orthonormalization procedure, we can find an
orthogonal basis of L2.0; t/ given by combinations
of ufk , i.e., vs WD Pn.s/

1 dsufi . By linearity, we have

vs D ugs where gs WD Pn.s/
1 dsfi . Now, we write

�j D P1
kD1

� R t
0
�j .x/vk.t; x/dx

�
vk.t; x/ in .0; t/,

and hence

Z t

0

�i .x/�j .x/dx D
1X
kD1

Z t

0

�j .x/vk.t; x/dx
Z t

0

vk.t; x/�i .x/dx: (28)

Again from the second argument above, we know that

Z t

0

�j .x/vk.t; x/dx D .�j /
0.0/

Z t

0

gk
sin
p
�j .t � s/p
�j

ds:

(29)

Taking i D j in (28) and using (29), we see that
the Gelfand spectral data completely characterize the
quantities

R t
0
.�i .x//

2dx; i 2 N. This ends the proof of
Theorem 3.
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Abstract

We survey some important inversion formulas in
inverse scattering with a particular emphasis on
those having their roots in the Radon transform. The
history of the latter transform and its inversion spans
approximately a century. While the Radon transform
had a modest beginning, it now forms a cornerstone of
modern-day medical imaging, nondestructive testing
of materials, etc. It is therefore fitting that we collect
inversion formulas from diverse sources together in
this article.

Synonyms

Artefacts; Asymptotic; Backprojection; Image;
Inversion; Microlocal

Introduction

Inverse scattering is a term that is widely used in
both the mathematics and physics. Due in part to the
maturity of the subject, inverse scattering has come
to mean quite different things to different research
communities. For example, it can mean nondestruc-
tive testing of materials using ultrasound, or it might
mean the applications of semigroups connected with
the wave equation, as in Lax and Philips’ seminal
work [1].

Physics and mathematics have common ground
when it comes to approximating scattered waves
in the guise of the Born approximation. From
the mathematical perspective, this shows up as a
linearization of the wave equation. However, there
are situations where a rigorous justification of this
“approximation” is still lacking, and therefore,
one should be guided by physical principles and
experiments. At the same time, research continues
into a mathematical justification.

Because of the diversity of the meaning of
the subject matter, we have chosen examples of
inverse scattering which are united by a common
theme: the Radon transform. This is because many
situations arise in practice where scattered waves can
be approximated as an integral transform of wave
equation coefficients over lines, curves, surfaces,
etc. Therefore, when one measures such scattered
waves, one is measuring a Radon or generalized
Radon transform (GRT) of the coefficients. The
goal is to recover these coefficients from the
measurements.

The Radon Transform

Since our unifying theme is the Radon transform and
its inversion, we begin our discussion with a brief
description of what the Radon transform actually is
and then proceed to discuss some of the more common
ways in which it may be inverted.

In its simplest setting, the Radon transform takes
a function of two variables f .x; y/ (having suitable
decay properties) and evaluates line integrals of this
function. Therefore, the Radon transform is a func-
tion on the space of lines. We parametrize a line by
specifying its distance (s) from the origin and the
direction (	 2 S1) to which it is perpendicular. For
example, such a line is described by the following set
of points:

L.	; s/ D fx 2 R
2j x � 	 D sg (1)

The Radon transform Rf of f is defined as the
following line integral:

Rf .	; s/ D
Z
L.	;s/

f d l (2)

The latter definition has obvious extensions to higher
dimensions (where the integration takes place over
n � 1 dimensions and 	 2 Sn�1), e.g., integrals
of functions over hyperplanes in three or higher
dimensions.

One can also consider integrals of functions over a
family of submanifolds, i.e., a GRT. As pointed out in
a survey article by Strauss [2], Radon was somewhat
fortunate to have his name attached to such inte-
gral transforms. Strauss supports his claim by point-
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ing out that only 3 years earlier, Funk [3] investi-
gated a similar integral transform, pertaining to in-
tegrals of functions over great circles on a sphere
(now called the “Funk transform”). Funk obtained
inversion formulas for his transform, and it seems
clear that Radon was influenced by (and refers to) this
work.

Inversion of the Radon Transform

A simple way to obtain an inversion formula for (2)
is to perform an elementary calculation [4] that shows
that

bRf .	; �/ D Of .�	/ (3)

where � is the Fourier variable dual to s, so that
the left-hand side refers to one-dimensional Fourier
transform and the right-hand side refers to a regu-
lar two-dimensional Fourier transform. Formula (3)
is referred to as the “Projection Slice Theorem” and
illustrates a connection between the Fourier and Radon
transforms. It immediately gives an inversion formula
for the Radon transform: inverse Fourier transform
the one-dimensional Fourier transform of a Radon
transform. The same formula is valid in higher di-
mensions, and the same comment often applies to
related transforms which we discuss below. There are
many inversion techniques based on variants of this
formula.

While the relationship with the Fourier transform
can be useful, it is perhaps not as instructive as an-
other common constructive inversion technique which
is based on the adjoint of the Radon transform. A
straightforward calculation of the formal L2-adjoint
R� of R is seen to be the operation of integrating over
all lines that go through the point of evaluation:

R�g.x/ D
Z
S1
g.	; x � 	/ d	 (4)

and in higher dimensions, S1 is replaced by Sn�1.
Clearly, the lines going through any particular point

x influence the Radon transform of f , and it seems
natural that if we were to evaluate R�g.x/ with g D
Rf , then these lines would contribute to R�g.x/
in (4), while lines that do not go through x don’t carry
information about f .x/. It is not surprising then to
learn of the following inversion formula:

f D .4�/�1 I1R�Rf (5)

where In is the Riesz potential, defined as follows:

bImg.�/ D j�j�m Og.�/ (6)

valid for 0 < m < n. Let’s take stock of Formula (5)
for a moment. It provides an inversion formula which
is given by application of the adjoint R� followed by
application of a filter.

The analogue of the above calculation in three and
higher dimensions (n 2 N) leads to the following gen-
eral inversion formula ([4], p.10) valid, for example,
when f belongs to the class of Schwartz functions
S.R2/:

f D

8̂<
:̂
cnR

�H d.n�1/

ds.n�1/ Rf; n even

cnR
� d.n�1/

ds.n�1/ Rf; n odd

(7)

where

cn D
8<
:
2�1.2�/1�n.�1/.n�2/=2; n even

2�1.2�/1�n.�1/.n�1/=2; n odd
(8)

andH denotes the Hilbert transform with respect to the
variable s.

Remark 1 Note the difference between the inversion
formulae for even and odd dimensions; the former
leads to a nonlocal inversion formula while the latter to
a local formula. This is reminiscent of the qualitative
difference between solutions of the wave equation in
even and odd dimensions, and indeed, Helgason ([5],
p. 1) refers to the fact that (apart from the filtering pro-
cess) the Radon inversion formula is a decomposition
into plane waves, as seen in Formula (4) above.

Scattering in the Context of the GRT

Geophysical Applications
In the mid-1980s, Gregory Beylkin published a paper
[6] which revolutionized geophysical subsurface imag-
ing, using high-frequency scattered seismic waves. The
paper demonstrated how scattered seismic waves in the
earth’s subsurface could be modeled as the output of
a GRT of the earth’s reflectivity function. The latter
function is
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v.x/ WD c�2
0 .x/ � c�2.x/ (9)

where the speed of (acoustic) wave propagation is
viewed as a superposition of a smooth (background)
component c0 and a highly oscillatory component ıc,
i.e.,

c.x/ D c0.x/C ıc.x/ (10)

with ıc encoding discontinuities in wave speed across
interfaces of different materials, for example. The re-
flectivity can also model point inclusions, among other
scatterers.

The basic assumptions made in [6] were as follows.
Waves scattered just once from the time when they
leave the source (usually a buried explosive) to when
they are recorded back on the earth’s surface (by
a buried geophone). All waves which arrive at the
geophone without scattering (usually strong signals,
known as first arrivals) are filtered out. Beylkin also
made an essential simplifying assumption that no caus-
tics develop either in the incident or scattered waves.

Under the above assumptions, Beylkin showed that
the scattered pressure field ıp.r; t/ measured at re-
ceiver location r at time t > 0 could be written as
the output of a GRT, which integrates the reflectivity
function over a family space-time move-out surfaces,
parametrized by .r; t/. More precisely, the latter inte-
gral transform is a Fourier integral operator (FIO); see
[7–10] for information on these operators which are
studied in microlocal analysis. If we denote by ıp the
scattered acoustic pressure field due to high-frequency
perturbations ıc in the sound speed, Beylkin’s result
can be written symbolically as

ıp D F ıc (11)

where F is a FIO. The latter FIO is asymptotically
equivalent to the GRT mentioned above. In view of
the previous section, it should not be a surprise that
inversion of F involves the formal L2-adjoint F � of
F . In fact, if we form an “image”

I D F �ıp � F �F ıc (12)

we see that this is effectively the result of applying
F �F to the unknown ıc that we wish to recover. The
latter image is referred to as the migrated section in
geophysics literature. The method upon which geo-

physicists derive such a procedure is quite similar to
our discussion on the Radon transform. In fact, they
argue that for a scatterer to contribute to the data
collected by each receiver, the scatterer must lie on an
associated move-out surface, and by superimposing all
such contributions (effected by integrating data over
receiver locations at suitable time off-sets), the main
contribution comes from constructive interference at
the true scatterer location.

Beylkin showed that under the above assumptions,
F �F is a pseudodifferential operator (‰DO). Further-
more, F �F is elliptic when restricted to reflectivity
functions whose singularities are visible in the data
ıp. This means that it’s possible to follow-up F � with
a microlocal “filter” G (the analogue of Im from the
previous section):

GF �p � ıc (13)

where � is an asymptotic approximation which means
that the left-hand side recovers ıc except for where it is
not visible using the scattering data ıp. This is all that
one can reasonably expect in any case.

The similarity between Formulae (5) and (13) is
almost self-evident. Indeed, the only substantive dif-
ference is that the operator G cancels the geometrical
spreading amplitude that is built into F . Also (13) is
an asymptotic inversion formula in the sense that it
only inverts for high frequencies that are contained in
ıc. This is not the only example where the inversion
formula that emerges from a microlocal treatment
matches very closely an exact inversion formula, as
applied to the common-or-garden test functions like the
Schwartz functions in the previous section.

In 1988, Rakesh [11] showed that even if one allows
caustics to be present in either the incident or reflected
waves, then F is still a FIO. And in 1997, Nolan
and Symes [12] gave geometrical conditions, related to
ray-geometry and source–receiver configurations that
guarantee F �F is a ‰DO. Therefore, when these
geometrical conditions are satisfied, a similar inversion
formula to (13) applies. In the case of sources and
receivers varying independently over a codimension
1 submanifold of the earth’s surface, various authors
[13, 14] examined the effect of relaxing some of the
latter assumptions.
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Artifacts
Leading on from the last section, we comment on what
can be done when an inversion formula is not available.
Even if the above conditions for F �F to be a‰DO are
not satisfied (so that an inversion formula like (13) is no
longer available), it is common practice to backproject
the data anyway. That is, one applies F � to the data
in the hope of gleaning certain information about the
reflectivity function. At this stage, an examination of
the wavefront relation � of the FIO F is necessary to
understand the content of the image F �ıp. We point
out that even though this discussion is in the context
of a geophysical example, the conclusions apply in
numerous other contexts as well.

The wavefront relation � � T �.Y 	 X/ is a
Lagrangian submanifold of the phase/cotangent space
T �.Y 	 X/ and is derived from the kinematical prop-
erties of the incident and scattered ray fields. The
manifold X is the earth’s subsurface. The manifold
Y is the Cartesian cross-product of (i) the manifold
where the sources and receivers are placed and (ii)
the interval of time, over which the scattered waves
are recorded. The main thing that needs to happen in
order for F �F to be a ‰DO (and thus obtain the usual
inversion formula) is that the natural projection

� �! T �Y (14)

is an embedding. This condition is known as the Bölker
condition and is often not satisfied except under the
assumptions like those given by Beylkin [6] and Nolan
and Symes [12], for example. When the conditions are
not satisfied, then the backprojected data will contain
artifacts (e.g., see [12,15]). In the final section, we give
a brief explanation as to why such artifacts appear.

The Cone Beam and Attenuated Ray
Transforms

If one considers weighted integrals of functions over
lines, we arrive at a model for X-ray images. At
the start of this century, Novikov [16] derived an
inversion formula for this transform which obviously
has important consequences for medical imaging. We
briefly describe the model and the associated inversion
formula here.

The attenuated ray transform can be defined (in two
dimensions for ease of exposition, with generalization

to higher dimensions possible) via the cone beam
transform as follows. Let f 2 S.R2/ and for a 2
R
2; 	 2 S2. The cone beam transform is defined by

Df.a; 	/ D
Z 1

0

f .a C t	/dt (15)

Grangeat’s Ph.D. thesis developed the following for-
mula (see [4, 17]):

@

@s
Rf .	; a � 	/ D

Z
!2	?\S2

@

@	
Df .a; !/d! (16)

The latter formula gives an inversion formula for
the cone beam transform, given that we know how
to invert the Radon transform. Note that 	 D
.cos.	/; sin.	//; 	? D .� sin.	/; cos.	//.

Related to the cone beam transform is the attenuated
ray transform, described by

R�f .	; x/ D
Z
f .x C t	/e�D�.x;	?/ (17)

for some � 2 S.Rn/.
An efficient inversion formula for the attenuated

ray transform can be obtained by following Novikov’s
formula [16], summarized by the following [4]. Let
h D .I C iH/R�=2. Then for �; f 2 S.R2/,

f .x/ D .4�/�1 Re r �R���
�
	e�hHehR�f

�
(18)

There have been many other papers since then,
extending Novikov’s work [18], in the quest for more
efficient reconstructions.

Tensor Tomography

In the previous sections, the unknown quantity to
be recovered or imaged was a scalar field, such as
the reflectivity function, or density of a material. We
now consider the situation that one encounters, for
example, in elasticity or electromagnetism. Here, one
is interested in recovering a tensor, such as the stress
tensor, the electrical permittivity, etc. A perfect exam-
ple involves both these areas at once, namely, photo-
elasticity. Since we don’t have the space to develop
the details of this example here, we will discuss the
problem in the abstract and follow some results in
Sharafutdinov’s book [19]. The integral transform that
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arises in these kinds of problems may be written
as

If .�/ D
Z
�

fi1i2:::im.x.t// Px1.t/ Px2.t/ : : : Pxm.t/ dt
(19)

where f 2 C1.Sm� 0
M/, the space of smooth covariant

tensor fields of degree m. Here, � is a geodesic of a
manifold M , � 0

M is the cotangent bundle of M , and
Sm denotes a section over M . Sharafutdinov refers to
the data measured by these integrals as a hodograph,
since it is initially motivated by tensor tomography,
where the integral transforms measure sojourn times of
rays between pairs of boundary points of the manifold
M .

In such problems, it often happens that I in (19) has
a kernel. This was also the case earlier when trying to
invert for a scalar field; e.g., the Funk transform obvi-
ously vanishes on functions which are antisymmetric
on great circles. However, here one can see even more
scope for the existence of a kernel, so this is another
obstruction to inversion without imposing additional
assumptions.

When trying to invert (19), it is a good idea to de-
compose the tensor f into its potential and solenoidal
parts (in analogue to Helmholtz’s decomposition for a
vector field):

f D sf C dv; ı sf D 0 (20)

where ı is the divergence and �d is its dual with
respect to the L2 inner product. Then, following [19],
we can write down the inversion formula

sf D .�4/1=2
0
@Œm=2
X
kD0

cki
kj k

1
A�mIf C du (21)

where the operator i is defined by the property that
iu D uı and j is the dual of i . Œm=2
 is the integral
part ofm=2. The coefficients ck and the potential u are
explicitly described in [19]. Also the integral moment
operator �m is defined by

.�m�/i1i2:::im.x/ D !�1
n

Z
˝

�i1 : : : �im �.x; �/ d!.�/

(22)

where !n is the volume of the unit sphere ˝ in
dimension n.

It turns out that If only determines f up to an
arbitrary summand dv. Also, If determines a system
of local linear functionals WIf acting on If , where
W is called the Saint-Venant operator. This is all the
information that can be recovered from the hodograph.

The author of this article has noticed that there is a
stark difference between the kernel of I in the current
setting and its analogue in the microlocal setting. That
is, when trying to recover the components of, say,
the stress tensor, Sharafutdinov’s work tells us what
kind of kernel to expect. Aside from Sharafutdinov’s
general results, it is well known in the literature that
usually only certain linear combinations of the stress
tensor can be recovered (due to the nontrivial kernel).
However, such kernels may become trivial when one is
only inverting for the high-frequency components (e.g.,
see [20]).

The Unifying Theme: Backprojection

In the context of scattering, it should be obvious at this
stage that whether we are looking to invert the integral
transforms exactly or asymptotically, the adjoint of the
transform is present as part of the inversion formula at
some stage.

We already remarked why it was plausible to see
R� appearing in inversion of the Radon transform and
it is reasonable to extend this to the GRTs that we have
seen above too. Perhaps the microlocal point of view
gives the clearest picture as to why one should expect
application of the adjoint (i.e., backprojection) to ap-
pear in the inversion formulas. The wavefront relation
� describes ordered pairs of singularities, or more
precisely ordered pairs of wavefront sets ..y; /; .x; �//
where .x; �/ 2 WF.ıc/; .y; / 2 WF.ıp/. The
integral transform F maps these wavefront sets or sin-
gularities .x; �/ into .y; /. So � relates singularities
in the model (ıc) to their corresponding singularities
in the data (ıp). The adjoint maps singularities in the
reverse direction, so its wavefront relation consists of
ordered pairs ..x; �/; .y; //. Therefore, provided the
Bölker condition is satisfied, wavefront set elements
.x; �/ will be imaged at the correct location (due to the
injectivity of the projection � ! T �Y ). Therefore, it
is very natural to backproject the data in the hope of
reconstructing an image without artifacts.

Finally, when the Bölker condition is not satisfied
and one goes ahead and backprojects the data anyway,
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one can now see a mechanism that explains how
artifacts arise in an image – they are due to the fact
that now � is a many-to-one relation.
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Synonyms

Cloaking due to Anomalous Localized Resonance
(CALR); Plasmonic cloaking

Glossary

Active cloaking Cloaking which uses one or more
active sources, such as antennas, to generate
appropriate fields to cloak the incoming field.

Broadband cloaking Cloaking over an entire
interval of frequencies.

Exterior cloaking Cloaking where the cloaking
region is outside the cloaking device.

Metamaterial An artificially structured composite
material, often locally periodic, which has effective
properties outside those usually found in nature.

Neutral inclusion An inclusion which is invisible to
one or more applied fields.

Passive cloaking Cloaking where the cloak is
composed only of passive materials which respond
causally to applied fields, but which do not in
themselves radiate energy.

Transformation optics Using the principle of in-
variance of electromagnetic equations (at fixed fre-
quency) to map from one solution of Maxwell’s
equations in one geometry, to another solution of
Maxwell’s equations in another possibly more in-
teresting geometry. The same principle applies to
many other equations, including the conductivity
equations and acoustic equations.

Abstract

We discuss recent mathematical theory of cloaking,
that is, on making objects invisible. We describe three
different approaches for this. The first approach, the



752 Invisibility Cloaking

use of transformation optics, is based on the fact that
the equations that govern a variety of wave phenomena,
including electrostatics, electromagnetism, and acous-
tics, have transformation laws under changes of vari-
ables which allow one to design material parameters
that steer waves around a hidden region, returning them
to their original path on the far side. In the second one,
cloaking by anomalous resonance, the field generated
by a discrete collection of polarizable dipoles resonates
with the cloaking device in such a way to almost cancel
the field acting on the polarizable dipoles rendering
them and the cloaking device almost invisible. In the
third one, active exterior cloaking, active sources gen-
erate almost localized fields which cancel the incident
field in a region to create a quiet zone, in which an
object may be hidden.

Cloaking and Transformation Optics

There have been many scientific prescriptions for
invisibility in various settings, starting from the first
proposals [3, 19] introduced decades ago. However,
since 2003 there has been a wave of serious theoretical
proposals [1, 15, 16, 25, 30, 33, 37] in the physics
and mathematics literature and a widely reported
experiment by Schurig et al. [39], for cloaking devices
– structures that would not only make an object
invisible but also undetectable to electromagnetic
waves, thus making it cloaked.

There are many alternative proposals for invisibility
which we will describe next. The first one, called trans-
formation optics [9,38,41], means the design of optical
devices with customized effects on wave propagation,
made possible by taking advantage of the transforma-
tion rules for the material properties of optics, the index
of refraction n.x/ for geometric optics; the electrical
permittivity ".x/ and magnetic permeability �.x/ for
vector optics, as described by Maxwell’s equations;
and the conductivity �.x/ appearing in the static limit
of electromagnetism.

To explain the principle of transformation optics, let
us start with the conductivity equation with anisotropic
conductivity. An anisotropic conductivity on a domain
˝ � R

n is defined by a symmetric, positive semi-
definite matrix-valued function, � D Œ�ij .x/
ni;jD1.
In the absence of sources or sinks, a static electrical
potential u.x/ in the domain˝ satisfies

r� �ru D
nX

j;kD1

@

@xj
�jk.x/

@

@xk
u.x/ D 0: (1)

The boundary value uj@˝ corresponds to the voltage
on the boundary, and the co-normal derivative,B�uj@˝ ,
corresponds to the current through the boundary. Here,
B�u D Pn

jD1 �j �jk @

@xk
u; and � is the unit normal

vector of @˝ . The set of all possible voltage-current
pairs which can be observed on @˝ corresponds then
to the set of Cauchy data of solutions u of Eq. (1). We
denote the set of Cauchy data of solutions, which are
the function space X and correspond to the conductiv-
ity � , by

˙X.�/ D f.uj@˝; B�uj@˝/I u 2 X;r� �ru D 0g: (2)

For conductivities which are bounded both from below
and above by positive constants, one usually considers
solutions in the Sobolev space X D H1.˝/.

Let us next consider Eq. (1) in different coordinates.
Let F.x/ D .F 1.x/; : : : ; F n.x// be a diffeomorphism
F W ˝ ! ˝ with F j@˝ D Identity. We consider the
change of variables y D F.x/ and set v D uıF�1, that
is, u.y/ D v.F.x//. Using the fact that u satisfies the
conductivity equation (1) and the chain rule, one sees
that v satisfies the conductivity equation r� Q�rv D 0

in ˝; where Q� D F�� is the push-forward of the
conductivity � by F given by

.F��/jk.y/ D 1

det Œ @F
@x
.x/


nX
p;qD1

@F j

@xp
.x/

@F k

@xq
.x/�pq.x/

ˇ̌
ˇ̌
xDF�1.y/

: (3)

Moreover, vj@˝ D uj@˝ and the chain rule implies that
BQ�vj@˝ D B�uj@˝ . Thus,

˙X.F��/ D ˙X.�/ (4)

for X D H1.˝/. This implies that all conductivities
F�� with arbitrary boundary preserving diffeomor-
phism F give rise to the same electrical measurements
at the boundary. This was first observed in [22] follow-
ing a remark by Luc Tartar. For electromagnetism at
fixed frequency this same idea is implicit in the work
of [9].
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The above has two physical interpretations. First
one is that if we change coordinates in ˝ using the
diffeomorphism F and write the conductivity equation
in the new coordinates, physical observations on the
boundary @˝ do not change. The other interpretation
of (4) is that if we keep the coordinates in ˝ fixed and
change the conductivity according to the formula (3),
then the physical observations on the boundary does
not change. This interpretation is the basis of the
transformation optics.

Cloaking via Transformation Optics
for Electrostatics
To obtain cloaking using the above equivalence of
observations, i.e., (4), we use a singular transformation
F stretching (or “blowing up”) the origin to the ball
B1, where BR � R

3 denotes the ball of radius R
centered at origin. An example of such transforma-
tion is

F W B2 n f0g ! B2 n B1; F.x/ D
� jxj
2

C 1

�
x

jxj ;

0 < jxj < 2: (5)

In the rest of the section, we reserve the notation F to
denote the map (5).

In R
3, we define the cloaking conductivity Q� by

Q�.x/ D.F��0/.x/; for 1 < jxj � 2 and

Q�.x/ D �.x/I; for jxj � 1; (6)

where �0 D I and � in the ball B1 is non-degenerate,
that is, c1 � �.x/ � c2; for x 2 B1 where
c1; c2 > 0. In spherical coordinates .r; �; 	/ 7!
.r sin 	 cos�; r sin 	 sin �; r cos 	/, Q� is given by

Q�.r; �; 	/D
0
@2.r � 1/2 sin 	 0 0

0 2 sin 	 0

0 0 2.sin 	/�1

1
A;

1 < r � 2:

Note that Q� is degenerate on the sphere of radius 1 in
the sense that it is not bounded from below by any
positive multiple of the identity matrix I . Then, if u
satisfies conductivity equation r � �0ru D 0 in B2
where �0 D I is the constant isotropic conductivity,
one sees that Qu.x/ D u.F�1.x// satisfies in B2 n B1

the conductivity equation r � Q�r Qu D 0.
The currents associated to this singular conductivity

on B2 are shown in Fig. 1 (right). No currents orig-
inating at @B2 have access to the region B1, so that
(heuristically) if the conductivity is changed in B1, the
measurements on the boundary @B2 do not change.
Moreover, all voltage-to-current measurements made
on @B2 give the same results as the measurements on
the surface of a ball filled with homogeneous, isotropic
material. The object is said to be cloaked, and the
structure on B2 n B1 producing this effect is said to
be a cloaking device. This was proven in dimensions
n � 3 in [15, 16] by showing that ˙X.�/ D ˙X. Q�/
for X D H1.˝/ \ L1.˝/. In [11] the analogous
identity is shown also for the Hilbert space X defined
with the norm . Q�ru;ru/1=2

L2.˝/
. Similar results in the

two-dimensional, or in cylindrical case, are shown in
[20].

Cloaking via Transformation Optics
for Electromagnetism
In the same 2006 issue of Science, there appeared
two papers with transformation optics-based proposals
for cloaking. Leonhardt [25] gave a description, based
on conformal mapping, of inhomogeneous indices of

F

Invisibility Cloaking, Fig. 1 Left: Map F W B2 n f0g ! B2 n B1. Right: Analytic solutions for the currents with conductivity Q�
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refraction n.x/ in two dimensions that would cause
light rays to go around a region and emerge on the
other side as if they had passed through empty space
(for which n.x/ � 1). On the other hand, Pendry,
Schurig, and Smith [37] gave a prescription for val-
ues of permittivity " and permeability � yielding a
cloaking device for electromagnetic waves, based on
the fact that " and � transform in the same way as
the conductivity � under changes of variables, cf. (3).
In fact, also this construction used the above singular
transformation (5). In [25] and [37] the obtained math-
ematical models were also suggested to be realized
physically, at least approximately, using artificially
structured materials, metamaterials.

Next we consider the cloaking construction sug-
gested in [37] and consider time-harmonic electric and
magnetic fields E.x; t/ D E.x/ei!t and H.x; t/ D
H.x/ei!t with frequency !. When " and � are the
permittivity and permeability in the domain ˝ � R

3,
thenE;H satisfy time-harmonic Maxwell’s equations,

r 	H D �i!"E r 	 E D i!�H: (7)

Let "0 D I and �0 D I denote the constant permit-
tivity and permeability (note that in the mathematical
model we consider, all physical units are omitted).
Then one defines the cloaking permittivity Q" and the
cloaking permeability Q� by setting Q" D Q� D Q�; where
Q� is given in (6) with �0 D I .

Using ray optics to approximate electromagnetic
waves, it was deduced in [38] that the light rays in the
layer B2 nB1 with material parameters Q" and Q� are im-
ages of straight lines in the map F (see Fig. 2 (right)).
Thus the light rays go around a region and emerge
on the other side as if they had passed through empty
space, making the presence of any object being in B1

undetected. Also, the behavior of the electromagnetic
fields E and H as solutions of differential equations
has been analyzed using the transformation law under
change of coordinates. This was done in [37] in the
layer B2 n B1 and in [11] in the whole ball B2 taking
in to account that Q" and Q� are degenerate at the surface
jxj D 1. Transformation optics-based cloaks can be
obtained also for the Helmholtz equation by using the
Riemannian metric Qg D F�g0, obtained by blowing up
the Euclidian metric g0 with the map (5) (see [8, 11]).
Solutions corresponding to such cloaks are shown in
Fig. 2, left.

From the practical point of view, one needs to
consider what kind of materials are needed to realize
an invisibility cloak, working at least with waves with
a given frequency. Such materials with customized
values of � and �, referred to as metamaterials, have
been under extensive study in recent years. The label
“metamaterial” usually attaches to macroscopic mate-
rial structures having a man-made cellular architecture
and producing combinations of material parameters
not available in nature, due to resonances induced by
the geometry of the cells [10]. Using metamaterial
cells designed to resonate near the desired frequency,
it is possible to obtain a wide range of permittivity
and permeability tensors at a given frequency, so that
they may have very large, very small, or even negative
eigenvalues. The use of resonance phenomenon also
explains why the material properties of such metama-
terials strongly depend on the frequency. Also, Fig. 2
(right) shows why transformation optics-based cloaks
only work perfectly for a single frequency: we see in
the figure that a light ray traveling around the cloak
travels a longer Euclidean distance than a straight line
segment. Thus, if �0 and �0 were the vacuum electro-
magnetic parameters, and one could build a material

Invisibility Cloaking, Fig. 2
Left: The real part of the
solution of a Helmholtz
equation with a cloak at the
plane z D 0. Right: Inside a
cloaking device corresponding
to Q" and Q�, the light rays go
around the cloaked object −3

−2

−1

0

1

2

3−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1



Invisibility Cloaking 755

I

with permittivity and permeability Q� and Q� for all
frequencies, then the velocity of the signal propagation
would be faster than the speed of light in a vacuum.
For a recent development on broadband cloaking in a
surrounding medium with refractive index greater than
1, we refer to [27] and on properties of approximate
cloaking constructions to [14, 21].

Cloaking via Anomalous Resonance

In contrast to transformation-based cloaking, cloaking
due to anomalous resonance [5, 33, 35] is exterior
cloaking: it has the intriguing feature that the cloaked
region lies outside the cloaking device. First, to un-
derstand anomalous resonance [32, 34], consider the
dielectric equation r � "rV D 0 in R

2 n fx0g in
the presence of a dielectric annulus, having the scalar
permittivity

".x/ D 1 for jxj � rs (8)

D "s; for rc < jxj � rs;

D 1; for jxj � rc;

where "s has the unusual value "s D �1. At x0 D
.a; 0/, we place a dipole of strength k oriented along
the x1-axis (corresponding to adding a source term
which is proportional to the x1 partial derivative of a
delta function), and we look for solutions with V ! 0

as x ! 1 (corresponding to the absence of a source
at infinity). When a > r2s =rc, the two-dimensional real
potential V.x1; x2/ D <e U.z/ with z D x1 C ix2 and
U.z/ given by

U.z/ D k

z � a ; for jxj � rs (9)

D �k
a

� kr2s =a
2

z � r2s =a
for rc < jxj � rs;

D kr2c =r
2
s

z � ar2c =r2s
for jxj � rc

solves the equations. Curiously, the solution in jxj � rs
is exactly the same as for a homogeneous medium
with ".x/ D 1 everywhere [34]. Thus the presence of
the annulus does not influence the fields in jxj � rs:
the annulus is invisible to dipolar sources or more
generally to any sources with support outside jxj D

r2s =rc [32]. When r2s =rc > a > rs, the formula (9) does
not provide a solution since it is singular at z D r2s =a,
and at z D ar2c =r

2
s , nor should a solution necessarily

exist as the partial differential equation is not elliptic.
However with "s D �1 C i, with  real, the

complex potential V satisfying r � "rV D 0 in
R
2 n fx0g, with V ! 0 as x ! 1 and with the same

dipole source so that V � <eŒk=.z � a/
 near z D a,
can be found by series expansions, for any a > rs and
 > 0. Such potentials represent quasistatic solutions
to Maxwell’s equations, giving the fields in the vicinity
of a hollow cylinder (represented by the annulus) with
outer radius much smaller than the wavelength, and
relative permittivities somewhat close to �1 can be
realized using materials such as silver, gold, and silicon
carbide at an appropriate frequency. The potential V
exhibits strikingly unusual behavior as  ! 0. For
r2s =rc > a, define D as the union of the two annuli
r2s =a > jzj > ar2c =r

2
s and r3s =.arc/ > jzj > arc=rs,

and for a > r2s =rc, take D to be empty. The region D
is the region of anomalous resonance: the L2 norm of
V inside any compact set withinD diverges to infinity
as  ! 0. The potential V develops large oscillations
(called surface plasmons in physics) inside D with
growing amplitude as  ! 0. This localized resonance
is called anomalous becauseD depends on the position
a of the source. Outside D, V converges pointwise
as  ! 0 to the smooth potential V D <e U . For
small  and r2s =rc > a, it appears from outside D
almost as if V has singularities at z D r2s =a, and at
z D ar2c =r

2
s . (Anomalous resonance and the presence

of such ghost singularities, discovered in [34], accounts
for the superresolution of a superlens [36], which is a
slab of material with " D � � �1, surrounded by
material with " D � D 1.)

Given any source-free region,˝ an important phys-
ical quantity is

W.˝/ D
Z
˝

=m."/jrVj2 D =m
Z
@˝

".rV � �/V �


(10)

which in quasistatics is proportional to the electrical
power dissipated in ˝ (the * denotes complex conju-
gation, and � denotes the outward unit normal to @˝).
When ˝ includes the shell region rc < jxj < rs
and k is fixed, then W.˝/ ! 1 as  ! 0 if the
dipole source lies in D, i.e., r# > a > rs , where
r# D p

r3s =rc. As any realistic source can only produce
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bounded power, it follows that k must go to zero as
 ! 0. But then V ! 0 outside D. The dipole source
will become essentially cloaked: the energy flowing
from it is all channeled to the annulus and virtually
does not escape outside the radius r#. For this reason
the annulus r# > jxj > rs is called the cloaking
region. In fact any finite collection of dipole sources
located at fixed positions in the cloaking region which
produce bounded power must all become cloaked as
 ! 0 [33]. If these dipole sources are not active
sources, but rather polarizable dipoles whose strength
is proportional to the field acting on them, then these
must also become cloaked [5, 35]. Somehow the field
in D must adjust itself so that the field acting on each
polarizable dipole in the collection is almost zero. It
is still not exactly clear what is and is not cloaked
by the annulus. Although some progress has recently
been made: see, for example, [2]. Numerical evidence
suggests that dielectric disks within the cloaking region
are only partially cloaked [4]. Cloaking also extends
to polarizable dipoles near two or three dimensional
superlenses. There is also numerical evidence [24] to
suggest that an object near a superlens can be cloaked
at a fixed frequency if the appropriate “antiobject” is
embedded in the superlens (Fig. 3).

Active Exterior Cloaking

Active cloaking has the advantage of being broadband,
but may require advance knowledge of the probing
fields. Miller [28] found that active controls rather
than passive materials could be used to achieve interior
cloaking. Active exterior cloaking is easiest to see in
the context of two-dimensional electrostatics, where

it reduces to finding a polynomial which is approx-
imately 0 within one disk in C and approximately
1 within a second disjoint disk [17]. To see this, let
Br.�/ � R

2 denote the disk of radius r centered at x D
.�; 0/. Suppose we are given a potential V.x/ which,
for simplicity, is harmonic in R

2. The desired cloaking
device, located at the origin, produces a potentialVd .x/
which is harmonic in R

2 n f0g with Vd .x/ almost
zero outside a sufficiently large ball B�.0/ so that the
cloaking device is hard to detect outside the radius
� . At the same time we desire that the total potential
V.x/CVd .x/ (and its gradient) be almost zero in a ball
B˛.ı/ � B�.0/ not containing the origin, which is the
cloaking region: a (non-resonant) object can be placed
there with little disturbance to the surrounding fields
because the field acting on it is very small. After ap-
plying the inverse transformation z D 1=.x1Cix2/ and
introducing harmonic conjugate potentials to obtain the
analytic extensions v and vd of V and Vd , the problem
becomes: find vd .z/ analytic in C such that vd � 0 in
B1=� .0/ and vd � �v inB˛�

.ı�/, whereB˛�
.ı�/ is the

image ofB˛.ı/ under the inverse transformation. Since
the product of two analytic functions is again analytic,
this can be reformulated: find w.z/ analytic in C such
that w � 0 in B1=� .0/ and w � 1 in B˛�

.ı�/. To
recover vd one needs to multiply w by a polynomial
which approximates �v in B˛�

.ı�/. When 1=� and
˛� are small enough, one can take w.z/ to be the
Hermite interpolation polynomial of degree 2n�1  1

satisfying

w.0/ D 0; w.ı�/ D 1;

wj .0/ D wj .ı�/ D 0 for j D 1; 2; : : : ; n � 1 (11)
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Invisibility Cloaking, Fig. 3 Left: Equipotentials for the real
part of the potential with one fixed dipole source on the right and
a neighboring polarizable dipole on the left, outside the cylinder
with "s D �1 C 10�12i . Right: The equipotentials when the

cylinder is moved to the right so it cloaks the polarizable dipole,
leaving the exterior field close to that of the fixed dipole in free
space (Taken from [33])
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Invisibility Cloaking, Fig. 4
Left: Scattering of waves by a
kite-shaped object, with the
three active cloaking devices
turned off. Right: The wave
pattern with the devices
turned on, showing almost no
scattering
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where wj .z/ is the j th derivative of w.z/. As n !
1, one can show that w.z/ converges to 0 (and to
1) in the side of the figure eight jz2 � ı�zj < ı2�=4
containing the origin (and containing ı�, respectively).
Outside this figure eight, and excluding the boundary,
w.z/ diverges to infinity. In practice the cloaking de-
vice cannot be a point, but should rather be an ex-
tended device encompassing the origin, and the device
should produce the required potential Vd . Choosing
the boundary of this device to be where Vd is not
too large forces the device to partially wrap around
the cloaking region, leaving a “throat” connecting
the cloaking region to the outside. The width of the
throat goes to zero as n ! 1, but it appears to
go to zero slowly. Thus one can get good cloaking
with throat sizes that are not too small. This active
exterior cloaking extends to the Helmholtz equation
(see Fig. 4) and in that context works over a broad
range of frequencies [18]. Numerical results show that
an object can be effectively cloaked from an incoming
pulse with a device having throats that are reasonably
large.
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analysis of cloaking due to anomalous localized resonance.
Arch. Ration. Mech. Anal. 208(2), 667–692 (2013)

3. Benveniste, Y., Miloh, T.: Neutral inhomogeneities in con-
duction phenomenon. J. Mech. Phys. Solids 47, 1873 (1999)

4. Bruno, O.P., Lintner, S.: Superlens-cloaking of small dielec-
tric bodies in the quasistatic regime. J. Appl. Phys. 102,
124502 (2007)

5. Bouchitté, G., Schweizer, B.: Cloaking of small objects by
anomalous localized resonance. Q. J. Mech. Appl. Math. 63,
437–463 (2010)

6. Cai, W., Chettiar, U., Kildishev, A., Milton, G., Shalaev, V.:
Non-magnetic cloak with minimized scattering. Appl. Phys.
Lett. 91, 111105 (2007)

7. Calderón, A.P.: On an inverse boundary value problem.
Seminar on Numerical Analysis and its Applications to
Continuum Physics (Rio de Janeiro, 1980), pp. 65–73, Soc.
Brasil. Mat., Rı́o de Janeiro (1980)

8. Chen, H., Chan, C.T.: Acoustic cloaking in three dimensions
using acoustic metamaterials. Appl. Phys. Lett. 91, 183518
(2007)

9. Dolin, L.S.: To the possibility of comparison of three-
dimensional electromagnetic systems with nonuniform an-
isotropic filling. Izv. Vyssh. Uchebn. Zaved. Radiofizika
4(5), 964–967 (1961)

10. Eleftheriades, G., Balmain, K. (eds.): Negative-Refraction
Metamaterials. IEEE/Wiley, Hoboken (2005)

11. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Full-
wave invisibility of active devices at all frequencies. Com-
mun. Math. Phys. 275, 749–789 (2007)

12. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann,
G.: Electromagnetic wormholes and virtual magnetic
monopoles from metamaterials. Phys. Rev. Lett. 99, 183901
(2007)

13. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.:
Electromagnetic wormholes via handlebody constructions.
Commun. Math. Phys. 281, 369–385 (2008)

14. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Ap-
proximate quantum and acoustic cloaking. J. Spectr. Theory
1, 27–80 (2011). doi:10.4171/JST/2. arXiv:0812.1706v1

15. Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic con-
ductivities that cannot detected in EIT. Physiolog. Meas.
(special issue on Impedance Tomography) 24, 413–420
(2003)

16. Greenleaf, A., Lassas, M., Uhlmann, G.: On nonuniqueness
for Calderón’s inverse problem. Math. Res. Lett. 10(5–6),
685–693 (2003)

17. Guevara Vasquez, F., Milton, G.W., Onofrei, D.: Ac-
tive exterior cloaking. Phys. Rev. Lett 103, 073901
(2009)

18. Guevara Vasquez, F., Milton, G.W., Onofrei, D.: Broad-
band exterior cloaking. Opt. Express 17, 14800–14805
(2009)



758 Invisibility Cloaking

19. Kerker, M.: Invisible bodies. J. Opt. Soc. Am. 65, 376–379
(1975)

20. Kohn, R., Shen, H., Vogelius, M., Weinstein, M.: Cloaking
via change of variables in electrical impedance tomography.
Inver. Prob. 24, 015016 (2008)

21. Kohn, R., Onofrei, D., Vogelius, M., Weinstein, M.: Cloak-
ing via change of variables for the Helmholtz Equation.
Commun. Pure Appl. Math. 63, 1525–1531 (2010)

22. Kohn, R., Vogelius, M.: Identification of an unknown
conductivity by means of measurements at the boundary.
In: McLaughlin, D. (ed.) Inverse Problems. SIAM-AMS
Proceedings vol. 14, pp. 113–123. American Mathematical
Society, Providence (1984). ISBN 0-8218-1334-X

23. Lee, J., Uhlmann, G.: Determining anisotropic real-analytic
conductivities by boundary measurements. Commun. Pure
Appl. Math. 42, 1097–1112 (1989)

24. Lai, Y., Chen, H., Zhang, Z.-Q., Chan, C.T.: Complementary
media invisibility cloak that cloaks objects at a distance
outside the cloaking shell. Phys. Rev. Lett. 102, 093901
(2009)

25. Leonhardt, U.: Optical conformal mapping. Science 312,
1777–1780 (2006)

26. Leonhardt, U., Philbin, T.: General relativity in electrical
engineering. New J. Phys. 8, 247 (2006)

27. Leonhardt, U., Tyc, T.: Broadband invisibility by non-
euclidean cloaking. Science 323, 110–112 (2009)

28. Miller, D.A.B.: On perfect cloaking. Opt. Express 14,
12457–12466 (2006)

29. Milton, G.: The Theory of Composites. Cambridge Univer-
sity Press, Cambridge/New York (2002)

30. Milton, G.: New metamaterials with macroscopic behavior
outside that of continuum elastodynamics. New J. Phys. 9,
359 (2007)

31. Milton, G., Briane, M., Willis, J.: On cloaking for elasticity
and physical equations with a transformation invariant form.
New J. Phys. 8, 248 (2006)

32. Milton, G.W., Nicorovici, N.-A.P., McPhedran, R.C., Podol-
skiy, V.A.: A proof of superlensing in the quasistatic regime,
and limitations of superlenses in this regime due to anoma-
lous localized resonance. Proc. R. Soc. A 461, 3999–4034
(2005)

33. Milton, G., Nicorovici, N.-A.: On the cloaking effects asso-
ciated with anomalous localized resonance. Proc. R. Soc. A
462, 3027–3059 (2006)

34. Nicorovici, N.-A.P., McPhedran, R.C., Milton, G.W.: Opti-
cal and dielectric properties of partially resonant compos-
ites. Phys. Rev. B 49, 8479–8482 (1994)

35. Nicorovici, N.-A.P., Milton, G.W., McPhedran, R.C., Bot-
ten, L.C.: Quasistatic cloaking of two-dimensional polariz-
able discrete systems by anomalous resonance. Opt. Express
15, 6314–6323 (2007)

36. Pendry, J.B.: Negative refraction makes a perfect lens. Phys.
Rev. Lett. 85, 3966–3969 (2000)

37. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electro-
magnetic fields. Science 312, 1780–1782 (2006)

38. Pendry, J.B., Schurig, D., Smith, D.R.: Calculation of mate-
rial properties and ray tracing in transformation media. Opt.
Express 14, 9794 (2006)

39. Schurig, D., Mock, J., Justice, B., Cummer, S., Pendry, J.,
Starr, A., Smith, D.: Metamaterial electromagnetic cloak at
microwave frequencies. Science 314, 977–980 (2006)

40. Sylvester, J., Uhlmann, G.: A global uniqueness theorem
for an inverse boundary value problem. Ann. Math. 125,
153–169 (1987)

41. Ward, A., Pendry, J.: Refraction and geometry in Maxwell’s
equations. J. Modern Opt. 43, 773–793 (1996)



K

Kinetic Equations: Computation

Lorenzo Pareschi
Department of Mathematics, University of Ferrara,
Ferrara, Italy

Mathematics Subject Classification

65D32; 65M70; 65L04; 68Q25; 82C40

Synonyms

Boltzmann equations; Collisional equations; Transport
equations

Short Definition

Kinetic equations bridge the gap between a micro-
scopic description and a macroscopic description of the
physical reality. Due to the high dimensionality, the
construction of numerical methods represents a chal-
lenge and requires a careful balance between accuracy
and computational complexity.

Description

Kinetic Equations
Particle systems can be described at the microscopic
level by systems of differential equations describing
the individual motions of the particles. However, they

are extremely costly from a numerical point of view
and bring little intuition on how a large particle sys-
tem behaves. Therefore, one is led to seek reduced
descriptions of particle systems which still preserve
an accurate description of the physical phenomena.
Kinetic models intend to describe particle systems
by means of a distribution function f .x; v; t/. This
object represents a number density in phase space, i.e.,
f dx dv is the number of particles in a small volume
dx dv in position-velocity space about the point .x; v/

of this space.
In this short entry, we will focus on computational

methods for the interacting particle case described by
the Boltzmann equation. This is motivated by its rele-
vance for applications and by the fact that it contains
all major difficulties present in other kinetic equations.
From a numerical perspective, most of the difficulties
are due to the multidimensional structure of the dis-
tribution function. In particular the approximation of
the collisional integral is a real challenge for numerical
methods, since the integration runs on a highlydimen-
sional manifold and is at the basis of the macroscopic
properties of the equation. Further difficulties are rep-
resented by the presence of fluid-kinetic interfaces and
multiple scales where most numerical methods loose
their efficiency because they are forced to operate on a
very short time scale.

Although here we review briefly only determin-
istic numerical methods, let us mention that several
realistic numerical simulations are based on Monte-
Carlo techniques [1, 13, 19]. In the next paragraphs,
we summarize the main ideas at the basis of two of
the most popular way to approximate the distribution
function in the velocity space, namely, the discrete-
velocity method [3, 4, 15, 20] and the spectral method
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[2, 9, 11, 12, 16–18]. Finally, we shortly introduce the
basic principles for the construction of schemes which
are robust in fluid regions [6–8, 10].

Boltzmann Equation
Taking into account only binary interactions, the be-
havior of a dilute gas of particles is described by the
Boltzmann equation [5, 21]

@f

@t
C v � rxf D Q.f; f / (1)

where f .t; x; v/, x; v 2 R
d (d � 2) is the time-

dependent particle distribution function in the phase
space and the collision operator Q is defined by

Q.f; f /.v/ D
Z

v�2Rd

Z
�2Sd�1

B.cos �; jv � v�j/
�
f 0�f 0 � f�f

�
d� dv�: (2)

Time and position act only as parameters in Q and
therefore will be omitted in its description. In (2) we
used the shorthands f D f .v/, f� D f .v�/, f

0 D
f .v0/, and f

0

� D f .v
0

�/. The velocities of the colliding
pairs .v; v�/ and .v0; v0�/ are related by

v0 D v C v�
2

C jv � v�j
2

�;

v0� D v C v�

2
� jv � v�j

2
�:

The collision kernel B is a nonnegative function which
only depends on jv � v�j and cos � D ..v � v�/=jv �
v�j/ � � . Boltzmann’s collision operator has the funda-
mental properties of conserving mass, momentum, and
energy:

Z
v2Rd

Q.f; f / �.v/ dv D 0: �.v/ D 1; v; jvj2
(3)

Moreover, any equilibrium distribution function M

such that Q.M; M / D 0 has the form of a locally
Maxwellian distribution

M.�; u; T /.v/ D �

.2�T /d=2
exp

�
�ju � vj2

2T

�
; (4)

where �; u; T are the density, mean velocity, and
temperature of the gas:

� D
Z

v2Rd

f .v/dv; u D 1

�

Z
v2Rd

vf .v/dv;

T D 1

d�

Z
v2Rd

ju � vj2f .v/dv: (5)

Discrete-Velocity Methods
Historically this was the first method for discretizing
the Boltzmann equation in velocity space. The dis-
cretization is built starting from physical rather than
numerical considerations. We assume the gas particles
can attain only a finite set of velocities

VN D fv1; v2; v3; : : : ; vN g; vi 2 R
d

and denote by fj .x; t/ D f .vj ; x; t/, j D 1; : : : ;N .
The collision pair .vi ; vj / $ .vk; vl / is admissible
if vi ; vj ; vk; vl 2 VN and preserves momentum and
energy:

vi C vj D vk C vl ; jvi j2 C jvj j2 D jvkj2 C jvl j2:

The set of admissible output pairs .vk; vl / correspond-
ing to a given input pair .vi ; vj / will be denoted by
Cij .

The discrete collision operator is obtained as a
quadrature formula based on the weights akl

ij related
to the collision .vi ; vj / $ .vk; vl / which must satisfy
the relations

akl
ij � 0;

NX
k;lD1

akl
ij D 1; 8i; j D 1; : : : ;N :

Next, we introduce the transition rates Akl
ij D S jvi �

vj jakl
ij , where S is the cross-sectional area of particles,

and write the discrete Boltzmann equation as

@fi

@t
C vi � rxfi D Qi.f; f /;

with

Qi.f; f / D
NX

j;k;lD1
k;l2Cij

Akl
ij .fkfl � fi fj /:

The discretized Boltzmann equation has the nice prop-
erty of preserving the essential physical features (con-
servations, H-theorem, equilibrium states). However,
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from a computational point of view the discrete
Boltzmann equation presents two main drawbacks.
First, the computational cost is larger than O.N 2/, and
second the accuracy is rather poor, typically less than
first-order (see [15] for example).

Spectral Methods
Spectral methods have been constructed recently with
the goal to compensate the drawbacks of discrete-
velocity approximation. For the sake of simplicity,
we summarize their derivation in the case of the
space homogeneous Boltzmann equations, although
the schemes can be effectively used to compute
the collision integral in a general setting. Related
approaches have been presented in [2, 11].

The approximate function fN is represented as the
truncated Fourier series:

fN .v/D
NX

kD�N

Ofkeik�v; Ofk D 1

.2�/d

Z
D�

f .v/e�ik�v dv:

The spectral equation is the projection of the collision
integral QR.f; f /, truncated over the ball of radius
R centered in the origin, in P

N , the .2N C 1/d -
dimensional vector space of trigonometric polynomials
of degree at most N , i.e.,

@fN

@t
D PN QR.fN ; fN /

where PN denotes the orthogonal projection on P
N in

L2.D�/. A straightforward computation leads to the
following set of ordinary differential equations:

d Ofk.t/

dt
D

NX
l;mD�N

lCmDk

Ǒ.l; m/ Ofl
Ofm; k D �N; : : : ; N

(6)

where Ǒ.l; m/ are the kernel modes, given by
Ǒ.l; m/ D ˇ.l; m/ � ˇ.m; m/ with

ˇ.l; m/ D
Z

x2BR

Z
y2BR

QB.x; y/ ı.x � y/

eil �x eim�y dx dy;

and

QB.x; y/ D 2d�1 B

�
�x � .x C y/

jxjjx C yj ; jx C yj
�

jx C yj�.d�2/:

As shown in [12] when B satisfies the decoupling
assumption QB.x; y/ D a.jxj/ b.jyj/, it is possible to
approximate each Ǒ.l; m/ by a sum

ˇ.l; m/ '
AX

pD1

˛p.l/˛0
p.m/: (7)

This gives a sum of A discrete convolutions, with A �
N , and by standard FFT techniques a computational
cost of O.A N d log2 N /. Denoting by N D .2N C
1/d the total number of grid points, this is equivalent
to O.AN log2 N / instead of O.N 2/. Moreover, one
gets the following consistency result of spectral accu-
racy [12]

Theorem 1 For all k > d � 1 such that f 2 H k
p

kQR.f; f /�PN QR;M .fN ; fN /kL2 �C1

RkkfN k2
H k

p

M k

C C2

N k

�
kf kH k

p
C kQR.fN ; fN /kH k

p

�
:

Asymptotic-PreservingMethods
Let us now consider the time discretization of the
scaled Boltzmann equation

@f

@t
C v � rxf D 1

"
Q.f; f / (8)

where " > 0 is the Knudsen number. For small
value of ", we have a stiff problem, and standard time
discretization methods are forced to operate on a very
small time scale. On the other hand, in such regime
formally Q.f; f / � 0 and the distribution function
is close to a local Maxwellian. Thus, the moments of
the Boltzmann equation are well-approximated by the
solution to the Euler equations of fluid-dynamics

@t u C rx � F.u/ D 0; (9)



762 Kinetic Equations: Computation

with

u D .�; w; E/T ; F.u/ D .�w; %w ˝ .w C pI/;

Ew C pw/T ; p D �T;

where I is the identity matrix and ˝ denotes the tensor
product.

We say that a time discretization method for (8) of
stepsize �t is asymptotic preserving (AP) if, indepen-
dently of the stepsize �t , in the limit " ! 0 becomes
a consistent time discretization method for the reduced
system (9).

When " � 1 the problem is stiff, and we must
resort on implicit integrator to avoid small time step
restriction. This however requires the inversion of
the collision integral Q.f; f / which is prohibitively
expensive from the computational viewpoint.

On the other hand, when f � M Œf � we know that
the collision operator Q.f; f / is well-approximated
by its linear counterpart Q.M; f / or by a simple
relaxation operator .M � f /. If we denote by L.f /

the selected linear operator, we can rewrite the equation
introducing a penalization term as

@f

@t
C v � rxf D 1

"
.Q.f; f / � L.f // C 1

"
L.f /:

The idea now is to be implicit (or exact) in the lin-
ear part L.f / and explicit in the deviations from
equilibrium Q.f; f / � L.f /. This approach has been
successfully introduced in [7, 8] using implicit-explicit
integrators and in [6,10] by means of exponential tech-
niques. We refer also to [14] for analogous techniques.

Conclusions

Computational methods for kinetic equations repre-
sent an emerging field in scientific computing. This
is testified by the large amount of scientific papers
which has been produced on the subject in recent
years. We do not seek to review all of them here
and focused our attention to the challenging case of
the Boltzmann equation of rarefied gas dynamic. The
major difficulties in this case are represented by the dis-
cretization of the multidimensional integral describing
the collision process and by the presence of multiple
time scales. Fast algorithms and robust stiff solvers are

then essential ingredients of computational methods
for kinetic equations.
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Korteweg-de Vries Equation
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Department of Mathematics, Çankiri Karatekin
University, Çankiri, Turkey

Synonyms

KdV equation; Korteweg-de Vries equation; Soliton

In the second quarter of the nineteenth century,
J.S. Russell observed the motion of a solitary wave
preserving its shape, magnitude, and velocity for
kilometers along a channel. Following the publication
of his findings [1], a scientific discussion on the
existence of such a conserved wave traveling long
distances started. Even though Airy [2], one of the de-
velopers of linear wave theory, claimed that the energy
concentrated in the middle of the wave will deform
and destroy the solitary during its propagation, Boussi-
nesq [3] and Rayleigh [4] derived approximations to
nonlinearly modeled solitary waves together with some
perturbation analysis of a nonlinear model. A special
type of nonlinear solitary waves containing quadratic
nonlinear term and cubic dispersion term is named as
the Korteweg-de Vries (KdV) equation of the form:

@u.x; t/

@t
C ˛u.x; t/

@u.x; t/

@x
C ˇ

@3u.x; t/

@x3
D 0 (1)

in which ˛ and ˇ are positive real parameters and x

and t denote space and time variables, respectively.
It was first introduced by Korteweg and de Vries [5].

The KdV equation plays a very prominent role in
the study of nonlinear dispersive waves. The balance
between the nonlinear and dispersive terms enables
solitary wave solutions. Due to their particle-like

properties, these waves preserve their original sizes,
shapes, and velocities after interacting with other
solitary waves; therefore, they are named as solitons.
In contrast with soliton solutions of Schrödinger
equation, the velocity of the KdV equation depends
on the magnitude of the soliton.

Since the KdV equation is an integrable Hamil-
tonian system, it has infinitely many conserved
quantities. Miura [6] showed infinitely many conserved
quantities for the KdV equation by discovering
a special transformation mapping solutions of
one equation to solutions of a second one. This
transformation was generalized by Gardner et al. [7].
The lowest four conserved quantities for the KdV
equation (1) are the following:

C1 D
1Z

�1
Udx (2)

C2 D
1Z

�1
U 2dx (3)

C3 D
1Z

�1

�
U 3 � 3

ˇ

˛
U 2

x

	
dx (4)

C4 D
1Z

�1

"
U 4 � 12

ˇ

˛
U.Ux/2 C 36

5

�
ˇ

˛

�2

.Uxx/2

#
dx

(5)

Analytic single soliton solution of magnitude 3v:

U.x; t/ D 3v

�
sech2.

1

2

r
˛v

ˇ
x � 1

2

r
˛v

ˇ
˛vt C x0/

	

propagates to the right at a velocity ˛v: Interaction of
two soliton solution for the KdV equation (1):

U.x; t/ D 12ˇ.log	/xx (6)

where

	 D 1 C eı1 C eı2 C 
eı1Cı2

ıi D �i x � �3
i t C &i ; i D 1; 2


 D
�

�1 � �2

�1 C �2

�2

; �i D
r

ci

ˇ
; i D 1; 2; �1 D � 0:48�1

�2 D �1:07�2



764 Korteweg-de Vries Equation

Here ci ; i D 1; 2 denote the magnitudes of initially
well-separated two solitons. The split of an arbitrary
function into solitons given by [8], as:

U.x; 0/ D 0:5

�
1 � tanh

� jxj � 25

5

�	

The triple soliton splitting case has the initial condition
[9]:

U.x; 0/ D 2

3
sech2

 
x � 1p
108ˇ

!

as the Maxwellian initial condition [10]

U.x; 0/ D exp.�x2/ (7)

generates waves from single solitary wave.
A well-known behavior of KdV equation with the

Maxwellian initial condition cited above depends on
whether ˇ < ˇc or ˇ > ˇc , where ˇc is critical
parameter [11]. Berezin and Karpman [12] proved that
the critical value for the Maxwellian IC used in some
simulations is ˇc D 0:0625:

The KdV equation is a model for many physical
phenomena such as ion acoustic waves, long waves
in shallow water, bubble-liquid mixtures, wave phe-
nomena in enharmonic crystals, and geophysical fluid
dynamics. Moreover, the KdV equation charms numer-
ical analysts as it has an analytical solution. So far,
many schemes and algorithms have been developed
to simulate the solutions of the KdV equation of
which differential quadrature methods [13], finite el-
ements [8], radial basis functions method [14], Taylor-
Galerkin method [15], and Chebyshev spectral method
[16] can be listed as some.
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Synonyms

High performance computing for atomistic simulation

Short Definition

Large-scale computing for molecular dynamics sim-
ulation combines advanced computing hardware and
efficient algorithms for atomistic simulation to study
material properties and processes encompassing large
spatiotemporal scales.

Description

Material properties and processes are often dictated
by complex dynamics of a large number of atoms.

To understand atomistic mechanisms that govern
macroscopic material behavior, large-scale molecular
dynamics (MD) simulations [1] involving multibillion
atoms are performed on parallel supercomputers
consisting of over 105 processors [2]. In addition,
special-purpose computers are built to enable long-
time MD simulations extending millisecond time
scales (or 1012 time steps using a time discretization
unit of 10�15 s) [3] (for extending the time scale, see
also �Transition Pathways, Rare Events and Related
Questions). Key enabling technologies for such large
spatiotemporal-scale MD simulations are efficient
algorithms to reduce the computational complexity and
parallel-computing techniques to map these algorithms
onto parallel computers.

Linear-Scaling Molecular-Dynamics
Simulation Algorithms

The MD approach (see also �Applications to Real
Size Biological Systems) follows the time evolution
of the positions, rN = fri ji = 1,. . . ,N g, of N atoms by
solving coupled ordinary differential equations [1]:

mi

d2

dt2
ri D � @

@ri
E
�
rN
�
; (1)

where t is the time, and ri and mi are the position and
mass of the i -th atom, respectively. Atomic force
law is mathematically encoded in the interatomic
potential energy E(rN /, and key to large-scale MD
simulations is, foremost, linear-scaling algorithms that
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Large-Scale Computing for Molecular Dynamics Simula-
tion, Fig. 1 Schematic of an embedded divide-and-conquer
algorithm [2]. (Left) The physical space is subdivided into spa-
tially localized cells, with local atoms constituting subproblems
(bottom), which are embedded in a global field (shaded) solved
with a tree-based algorithm. (Right) To solve the subproblem
in domain �˛ in the divide-and-conquer density functional

theory algorithm, coarse multigrids (gray) are used to accelerate
iterative solutions on the original real-space grid (corresponding
to the grid refinement level, l = 3). The bottom panel shows
fine grids adaptively generated near the atoms (spheres) to
accurately operate the ionic pseudopotentials on the electronic
wave functions

compute E(rN / in O.N/ time. This algorithmic and
mathematical challenge is often addressed based on
data-locality principles. An example is embedded
divide-and-conquer (EDC) algorithms, in which the
physical system is divided into spatially localized
computational cells and these cells are embedded in
a global mean field that is computed efficiently with
tree-based algorithms (Fig. 1) [2].

There exist a hierarchy of MD simulation methods
with varying accuracy and computational complex-
ity. In classical MD simulation, E(rN / is often an
analytic function EMD(frij g,frijkg,frijklg) of atomic
pair, rij , triplet, rijk , and quadruplet, rijkl , positions,
where the hardest computation is the evaluation of the
long-range electrostatic interaction between all atomic
pairs. The fast multipole method (FMM) algorithm
reduces the O.N2/ computational complexity of the
resulting N -body problem to O.N/ [4]. In the FMM,
the physical system is recursively divided into subsys-
tems to form an octree data structure, and the electro-
static field is computed recursively on the octree with
O.N/ operations, while maintaining spatial locality
at each recursion level. In addition to computing the
electrostatic potential and forces, the FMM can be
used to compute atomistic stress tensor components
based on a complex charge method [5]. Furthermore,
a space-time multiresolution MD approach [2] uti-
lizes temporal locality through multiple time step-
ping, which uses different force-update schedules for
different force components [6, 7]. Specifically, forces

from neighbor atoms are computed at every MD step,
whereas forces from farther atoms are updated less
frequently.

To simulate the breakage and formation of chemical
bonds with moderate computational costs, various re-
active molecular dynamics (RMD) simulation methods
have been developed [2]. In RMD, the interatomic po-
tential energy ERMD(rN ,fqig,fBij g) typically depends
on the atomic charges fqi j i = 1,. . . ,N g and the chemi-
cal bond ordersBij between atomic pairs (i , j /, which
change dynamically adapting to the local environment
to describe chemical reactions. To describe charge
transfer, RMD uses a charge equilibration scheme, in
which atomic charges are determined at every MD
step to minimize the electrostatic energy with the
charge-neutrality constraint. This variable N -charge
problem amounts to solving a dense linear system of
equations, which requires O.N3/ operations. A fast
RMD algorithm uses FMM to perform the required
matrix-vector multiplications with O.N/ operations
[2]. It further utilizes the temporal locality of the
solutions to reduce the amortized computational
cost averaged over simulation steps to O.N/. To
accelerate the convergence, a multilevel precondi-
tioned conjugate-gradient (MPCG) method splits the
Coulomb-interaction matrix into short- and long-range
parts and uses the sparse short-range matrix as a
preconditioner [8]. The extensive use of the sparse
preconditioner enhances the data locality and thereby
improves the computational efficiency.
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In quantum molecular dynamics (QMD) simulation,
the interatomic potential energy is computed quan-
tum mechanically [9]. One approach to approximately
solve the resulting exponentially complex quantum
N -body problem is density functional theory (DFT,
see �Density Functional Theory), which reduces the
complexity toO.N3/ by solvingM one-electron prob-
lems self-consistently instead of one M -electron prob-
lem (the number of electrons M is on the order of
N/. The DFT problem can be formulated as a min-
imization of the energy functional EQMD(rN ,  M/
with respect to electronic wave functions (or Kohn-
Sham orbitals),  M (r) = f n(r) j n = 1,. . . ,M g sub-
ject to orthonormality constraints (see � Fast Methods
for Large Eigenvalues Problems for Chemistry and
�Numerical Analysis of Eigenproblems for Electronic
Structure Calculations). Various linear-scaling DFT
algorithms have been proposed [10,11] based on a data
locality principle called quantum nearsightedness [12]
(see �Linear Scaling Methods). Among them, divide-
and-conquer density functional theory (DC-DFT) [13]
is highly scalable beyond 105 processors [2]. In the
DC-DFT algorithm, the physical space is a union
of overlapping domains, � D †˛�˛ (Fig. 1), and
physical properties are computed as linear combina-
tions of domain properties that in turn are computed
from local electronic wave functions. For DFT calcu-
lation within each domain, one implementation uses
a real-space approach based on adaptive multigrids
[2] (see � Finite Difference Methods). Similar data-
locality and divide-and-conquer concepts have been
applied to design O.N/ algorithms for high-accuracy
QM methods [14], including the fragment molecu-
lar orbital method [15]. A major advantage of the
EDC simulation algorithms is the ease of codifying
error management. The EDC algorithms often have
a well-defined set of localization parameters, with
which the computational cost and the accuracy are
controlled. For example, the total energy computed
with the DC-DFT algorithm converges rapidly as a
function of its localization parameter (i.e., the depth
of the buffer layer to augment each domain for avoid-
ing artificial boundary effects). The DC-DFT-based
QMD algorithm has also overcome the energy drift
problem, which plagues most O.N/ DFT-based QMD
algorithms, especially with large basis sets (>104 un-
knowns per electron, necessary for the transferability
of accuracy) [2].

Scalable Parallel Computing

To perform large-scale MD simulations, it is neces-
sary to decompose the computation in the O.N/ MD
algorithms to subtasks and map them onto parallel
computers [1]. A parallel computer in general consists
of a number of compute nodes interconnected via a
communication network [16]. Within each node, multi-
core processors, each consisting of simpler processors
called cores, share common memory [17]. There are
several schemes for mapping MD algorithms onto
parallel computers [1]. For large granularity (i.e., the
number of atoms per processor, N /P > 102/, spatial
decomposition is optimal, where each processor is
assigned a spatial subsystem and is responsible for
the computation of the forces on the atoms within its
spatial subsystem. For finer granularity (N=P � 1),
on the other hand, force decomposition (i.e., force
computations are divided among processors) and other
hybrid decomposition schemes become more efficient
[18–20]. Parallelization schemes also include load-
balancing capability [21]. For irregular data structures,
the number of atoms assigned to each processor varies
significantly, and this load imbalance degrades the
parallel efficiency. Load balancing can be stated as an
optimization problem, in which we minimize the load-
imbalance cost as well as the size and the number of
messages.

Parallel efficiency is defined as the speedup
achieved using P processors over one processor,
divided by P . Parallel efficiency over 0.9 has been
achieved on a cluster of multicore compute nodes with
P > 105 combining a hierarchy of parallelization
schemes [22], including:
1. Internode parallelization based on message passing

[23], in which independent processes (i.e., running
programs) on different nodes exchange messages
over a network.

2. Intra-node (inter-core), multithreading paralleliza-
tion [24] on multicore central processing units
(CPUs) as well as on hardware accelerators such
as graphics processing units (GPUs) [25], in
which multiple threads (i.e., processes sharing
certain hardware resources such as memory) run
concurrently on multiple cores within each compute
node.

3. Intra-core, single-instruction multiple data (SIMD)
parallelization [16,26], in which a single instruction

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_258
http://dx.doi.org/10.1007/978-3-540-70529-1_252
http://dx.doi.org/10.1007/978-3-540-70529-1_414
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Large-Scale Computing for Molecular Dynamics Sim-
ulation, Fig. 2 Close-ups of fracture simulations for
nanocrystalline nickel without and with amorphous sulfide
grain-boundary phases, where red, blue and yellow colors
represent nickel atoms inside grains (>0.5 nm from grain

boundaries), nickel atoms within 0.5 nm from grain boundaries,
and sulfur atoms, respectively. The figure shows a transition
from ductile, transgranular tearing (left) to brittle, intergranular
cleavage (right). White arrows point to transgranular fracture
surfaces

executes on multiple operands concurrently in a
vector processing unit within each core.
A number of software packages have been devel-

oped for parallel MD simulations. Widely available
packages for MD include Amber (http://ambermd.
org), Desmond (http://www.schrodinger.com/products/
14/3), DL POLY (http://www.cse.scitech.ac.uk/ccg/
software/DL POLY), Gromacs (http://www.gromacs.
org), and NAMD (http://www.ks.uiuc.edu/Research/
namd). Parallel implementations of MD and RMD
are found in LAMMPS (http://lammps.sandia.gov).
DFT-based QMD packages include CP2K (http://
cp2k.berlios.de), Quantum ESPRESSO (http://www.
quantum-espresso.org), SIESTA (http://www.icmab.
es/siesta), and VASP (http://cms.mpi.univie.ac.at/
vasp), along with those specialized on linear-scaling
DFT approaches such as Conquest (http://hamlin.
phys.ucl.ac.uk/NewCQWeb/bin/view), ONETEP
(http://www.tcm.phy.cam.ac.uk/onetep), and OpenMX
(http://www.openmx-square.org). Finally, quantum-
chemical approaches to QMD are implemented in, e.g.,
GAMESS (http://www.msg.ameslab.gov/gamess),
Gaussian (http://www.gaussian.com), and NWChem
(http://www.nwchem-sw.org).

Large-Scale Molecular Dynamics
Applications

Using scalable parallel MD algorithms, computational
scientists have performed MD simulations involving

billion-to-trillion atoms on massively parallel super-
computers consisting of over 105 processors to study
various material processes such as instability at fluid
interfaces and shock-wave propagation [27, 28].

The largest RMD simulations include 48 million-
atom simulation of solute segregation-induced em-
brittlement of metal [29]. This simulation answers a
fundamental question encompassing chemistry, me-
chanics, and materials science: How a minute amount
of impurities segregated to grain boundaries of a ma-
terial essentially alters its fracture behavior. A prime
example of such grain-boundary mechano-chemistry
is sulfur segregation-induced embrittlement of nickel,
which is an important problem for the design of the
next-generation nuclear reactors to address the global
energy problem. Experiments have demonstrated an es-
sential role of sulfur segregation-induced grain bound-
ary amorphization on the embrittlement, but the central
question remains unsolved: Why does amorphization
cause embrittlement? The RMD simulation (Fig. 2)
establishes the missing link between sulfur-induced in-
tergranular amorphization and embrittlement [29]. The
simulation results reveal that an order-of-magnitude re-
duction of grain-boundary shear strength due to amor-
phization, combined with tensile-strength reduction,
allows the crack tip to always find an easy propagation
path. This mechanism explains all experimental obser-
vations and elucidates the experimentally found link
between grain-boundary amorphization and embrittle-
ment.

While large-scale electronic structure calcu-
lations involving over 104 atoms have been re-

http://ambermd.org
http://ambermd.org
http://www.schrodinger.com/products/14/3
http://www.schrodinger.com/products/14/3
http://www.cse.scitech.ac.uk/ccg/ software/DL_POLY
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http://www.gromacs.org
http://www.ks.uiuc.edu/Research/namd
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http://lammps.sandia.gov
http://cp2k.berlios.de
http://cp2k.berlios.de
http://www.quantum-espresso.org
http://www.quantum-espresso.org
http://www.icmab.es/siesta
http://www.icmab.es/siesta
http://cms.mpi.univie.ac.at/vasp
http://cms.mpi.univie.ac.at/vasp
http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view
http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view
http://www.tcm.phy.cam.ac.uk/onetep
http://www.openmx-square.org
http://www.msg.ameslab.gov/gamess
http://www.gaussian.com
http://www.nwchem-sw.org
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Large-Scale Computing for
Molecular Dynamics
Simulation, Fig. 3
Snapshots of the atomic
configuration during
DC-DFT-based QMD
simulation of thermite
reaction, where green, red,
and gray spheres show the
positions of Fe, O and Al
atoms, respectively. Yellow
meshes at time 0 ps show the
nonoverlapping cores used by
the DC-DFT algorithm

ported (see �Large-Scale Electronic Structure
and Nanoscience Calculations), QMD simula-
tions extending a long trajectory are usually
limited to thousands of atoms.
Examples of systems studied by large QMD simu-
lations include metals under extreme conditions [30],
reaction of nanoenergetic materials [31], and ionic con-
ductivity in batteries [32]. Chemical reactions in ener-
getic materials with nanometer-scale microstructures
(or nanoenergetic materials) are very different from
those in conventional energetic materials. For example,
in conventional thermite materials made of aluminum
and iron oxide, the combustion front propagates at
a speed of �cm/s. In nanothermites of aluminum
nanoparticles embedded in iron oxide, the combustion
speed is accelerated to �km/s. Such rapid reactions
cannot be explained by conventional diffusion-based
mechanisms. DC-DFT-based QMD simulation has
been performed to study electronic processes during
thermite reaction [31]. Here, the reactants are Al and
Fe2O3, and the products are Al2O3 and Fe (Fig. 3). The
simulation results reveal a concerted metal-oxygen flip
mechanism that enhances mass diffusion and reaction
rate at the metal/oxide interface. This mechanism
leads to novel two-stage reactions, which explain
experimental observation in thermite nanowire arrays.

Conclusions

Large-scale MD simulations to encompass large
spatiotemporal scales are enabled with scalable al-

gorithmic and parallel-computing techniques based on
spatiotemporal data-locality principles. The spatiotem-
poral scale covered by MD simulation on a sustained
petaflops computer (which can operate 1015 floating-
point operations per second) per day is estimated as
NT � 2 (e.g.,N D 2 billion atoms for T D 1 ns) [22],
which continues to increase on emerging computing
architectures.
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Definition

The electronic structure of an atomic or molecular
system can yield insights into many of the electrical,
optical, and mechanical properties of materials. Real-
world problems, such as nanostructures, are difficult to
study, however, as many algorithms do not scale well
with system size requiring new techniques better suited
to large systems.

Overview

The electronic structure of a system can be described
by the solution of a quantum many-body problem
described by the Schrödinger equation: H� D �E;

whereH is a many-body Hamiltonian operator that de-
scribes the kinetic energy and the Coulomb interaction
between electron–electron and electron–nucleus pairs,
� is a many-body wavefunction, and E is the total
energy level of the system.

One popular approach for solving these types of
problems relies on reformulating the original problem
in terms of a different basic variable, the charge den-
sity, and using single-particle wavefunctions to replace
the many-body wavefunctions. This approach is known
as Kohn-Sham density functional theory (DFT) and can
be viewed as a search for the minimizer of a certain
functional of the charge density.
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From a mathematical viewpoint, it can be shown
that the first order necessary optimality condition
(Euler-Lagrange equation) for minimizing the Kohn-
Sham energy yields the following set of nonlinear
eigenvalue equations (known as the Kohn-Sham
equations): H.�/ i D �i i ; i D 1; 2; : : : ; ne; where
H.�/ D �� C Vion C VH.�/ C Vxc.�/, Vion, VH ,
and Vxc are the ionic, electron–electron (Hartree), and
exchange-correlation potentials, and ne is the number
of electrons. Here �.r/ is the electron charge density
defined by �.r/ DPne

iD1 j i.r/j2:
Although these equations contain far fewer degrees

of freedom compared to the many-body Schrödinger
equation, they are more difficult in terms of their
mathematical structures. The most popular method to
solve the Kohn-Sham equations is the Self-Consistent
Field (SCF) iteration. The computational complexity
of most of the existing algorithms is O.n3e/, which can
limit their applicability to large nanoscience problems.
We will describe briefly some of the general strategies
one may use to reduce the overall complexity of these
algorithms and where the challenges lie in doing this.

The Kohn-ShamMap and the SCF Iteration

A useful concept for analyzing algorithms applied
to large-scale Kohn-Sham problems is the following
alternative definition of the charge density:

� D diag
h OXgˇ. O� � �/ OX�i D diag

�
gˇ.H.�/ � �/

�
;

(1)

where OX 2 Cn�n contains the full set of eigenvectors of
a discretized Kohn-Sham Hamiltonian, O� is a diagonal
matrix containing the corresponding eigenvalues of the
Hamiltonian, gˇ.	/ is the Fermi-Dirac function:

gˇ.	; �/D 2

1C exp.ˇ.	 � �//D1�tanh
�ˇ
2
.	��/

�
;

(2)

where ˇ is a parameter chosen in advance and pro-
portional to the inverse of the temperature, and �

is the chemical potential, which is chosen so that
trace

�
gˇ.H.�/ � �I/

� D ne . At zero temperature,
ˇ D 1 and (2) reduces to a step function that drops
from 1 to 0 at �.

Equation 1 defines a self-consistent map from �

to itself. This map is sometimes referred to as the
Kohn-Sham map. Because the Jacobian of this map
is difficult to compute or invert, a practical approach
for finding the fixed point of the Kohn-Sham map
is to apply a Broyden type Quasi-Newton algorithm
to solve (1) iteratively. This is generally known as
a SCF iteration. The convergence of a SCF iteration
depends largely on the choice of an effective Broyden
updating scheme for approximating the Jacobian at
each iteration. Such a scheme is known as charge
mixing in the physics literature.

The dominant cost of a SCF iteration is the eval-
uation of the Kohn-Sham map, that is, the right hand
side of (1). The most widely used technique for per-
forming such an evaluation is to partially diagonal-
ize H.�/ and compute its ne smallest eigenvalues
and the corresponding eigenvectors. For large-scale
problems, the eigenvalue problem is often solved by
an iterative method such as a Lanczos or Davidson
algorithm.

An alternative approach is to treat the eigenvalue
problem as a constrained minimization problem and
apply an iterative minimization algorithm such as the
locally optimal block preconditioned conjugate gradi-
ent (LOBPCG) algorithm [6] to minimize the trace
of X�HX subject to the orthonormality constraint
X�X D I. Because an effective preconditioner can be
used in this approach, it is often more efficient than a
Lanczos-based algorithm.

Both the Lanczos and the LOBPCG algorithms
require performing orthogonalization among at least
ne basis vectors, which for large ne incurs a cost of
O.n3e/. To reduce the frequency of orthogonalization,
one may apply a simple subspace iteration to p.k/.H/,
where p.k/.	/ is a polynomial constructed at the kth
SCF iteration to amplify the spectral components as-
sociated with the desired eigenvalues of H while
filtering out the unwanted components. Although this
algorithm may use approximately the same number of
matrix-vector multiplications as that used in a Lanczos,
Davidson, or LOBPCG algorithm, the basis orthog-
onalization cost is much lower (but not completely
eliminated) for large ne , as is shown in [20].

A recently developed method [9] for evaluating the
Kohn-Sham map without resorting to performing a
spectral decomposition of H relies on using a rational
approximation to gˇ.	 � �/ to compute the diagonal
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entries of gˇ.H � �I/ directly. The rational approxi-
mation to gˇ.	 � �/ has the form:

gˇ.	 � �/ �
npX

jD1
Im

�
!j

	 � zj

	
;

where zj and !j are carefully chosen poles and weight-
ing factors that minimize the approximation error. The
number of poles required (np) is typically less than
a hundred. Although computing gˇ.H � �I/ would
require us to compute .H � zi I /�1, which is likely
to be completely dense, for np complex poles zi, a
significant amount of savings can be achieved if we
only need the diagonal elements of gˇ.H � �I/.
Instead of computing the entire matrix .H � zi I /�1,
one only needs to compute its diagonal. This task
can be accomplished by using a special algorithm
which we refer to as selected inversion [10, 11]. The
complexity of selected inversion is O.ne/ for quasi-
1D problems (e.g., nanotubes and nanowires), O.n3=2e /

for quasi-2D problems (e.g., graphene), and O.n2e/ for
general 3D problems.

Solving the Kohn-Sham Problem
by ConstrainedMinimization

The Kohn-Sham problem can also be solved by min-
imizing the Kohn-Sham total energy directly. In this
case, we seek to find

min
X�XDIne

Etot.X/ � traceŒX�.
1

2
LC OVion/X


C1
2
�T L��C �T �xc.�/; (3)

where L 2 Rn�n and Vion 2 Rn�n are matrix repre-
sentations of finite dimensional approximations to the
Laplacian and the ionic potential operator respectively.
The matrixL� is either the inverse or the pseudoinverse
of L depending on the boundary condition imposed in
the continuous model, andX 2 Cn�ne contains approx-
imate single-particle wavefunctions as its columns.

This approach has been attempted by several re-
searchers [8, 14]. Most of the proposed methods treat
the minimization of the total energy and constraint
satisfaction separately. A more efficient direct con-
strained minimization (DCM) algorithm was proposed

in [17, 18]. In this algorithm, the search direction and
the step length are determined simultaneously from a
subspace that consists of the existing wave functions
X.i/, the gradient of the Lagrangian, and the search
direction produced in the previous iteration. A special
strategy is employed to minimize the total energy
within the search space, while maintaining the or-
thonormality constrained required for X.iC1/. Solving
the subspace minimization problem is equivalent to
solving a nonlinear eigenvalue problem of a much
smaller dimension.

Linearly Scaling Algorithms

Most of the algorithms discussed above can be
implemented efficiently on modern high-performance
parallel computers. However, for large nanoscience
problems that consist of more than tens of thousands
of atoms, many of these existing algorithms are still
quite demanding in terms of computational resources.
In recent years, there has been a growing level
of interest in developing linearly scaling methods
[1, 2, 4, 5, 12, 13, 16, 19] for electronic structure
calculations. For insulators and semiconductors, the
computational complexity of these algorithms indeed
scales linearly with respect to ne or the number of
atoms. However, it is rather challenging to develop
a linearly scaling algorithm for metallic systems for
reasons that we will give below. In general, a linear
scaling algorithm should meet the following criteria:
• The complexity for evaluating the Kohn-Sham map

must be O.ne/.
• The total number of SCF iterations must be rela-

tively small compared to ne .
While most of the existing research efforts focus ex-
clusively on the first criterion, we believe the second
criterion is equally important.

All existing linearly scaling algorithms exploit the
locality property of the single-particle wavefunctions
(orbitals) or density matrices to reduce the complexity
of the charge density (Kohn-Sham map) evaluation.
The locality property has its roots in the “nearsighted-
ness” principle first suggested by Kohn [7] and further
investigated in [15]. In mathematical terms, the locality
property implies that the invariant subspace spanned
by the smallest ne eigenvectors can be represented by
a set of basis vectors that have local nonzero support
(i.e., each basis vector has a relatively small number



Large-Scale Electronic Structure and Nanoscience Calculations 773

L

of nonzero elements.), or the density matrix D D
gˇ.H.�/ � �I/ is diagonally dominant, and the off-
diagonal entries of the matrix decay rapidly to zero
away from the diagonal. As a result, there are three
main classes of linearly scaling methods.

In the first class of methods, one relaxes the or-
thonormality constraint of the single-particle wave-
functions but requires them to have localized nonzero
support. As a result, the Kohn-Sham map can be eval-
uated by solving a sparse generalized eigenvalue prob-
lem. An iterative method such as the localized subspace
iterations (LSI) [3] can be used to compute the desired
invariant subspace. Because each basis vector of the
invariant subspace is forced to be sparse, the matrix-
vector multiplication used in such an algorithm can
be evaluated efficiently with a complexity of O.ne/.
More importantly, because such an algorithm does not
perform basis reorthogonalization, it does not incur the
O.n3e/ cost of conventional eigensolvers.

The second class of methods employs a divide-
and-conquer principle originally suggested in [19] to
divide the problem into several subproblems defined
on smaller subregions of the material domain. From a
mathematical viewpoint, these are domain decomposi-
tion methods. A similar approach is used in the recently
developed linear-scaling three-dimensional fragment
(LS3DF) method [16]. These methods require local
solutions to be patched together in a nontrivial way
to preserve the total charge and to eliminate charge
transfer between different regions.

The third class of linearly scaling methods relies
on using either polynomial or rational approximations
of D D gˇ.H � �I/ and truncation techniques
that ignore small off-diagonal entries in D to reduce
the complexity of the Kohn-Sham map evaluation to
O.ne/. It is important to note that the number of terms
used in the polynomial or rational approximation to
gˇ.H � �I/ must be small enough in order to achieve
linear scaling. For insulators and semiconductors in
which the gap between the occupied and unoccupied
states is relatively large, this is generally not difficult
to achieve. For metallic systems that have no band
gap, one may need a polynomial of very high degree
to approximate gˇ.H � �I/ with sufficient accuracy.
It is possible to accurately approximate gˇ.H � �I/
using recently developed pole expansion techniques [9]
with less than 100 terms even when the band gap is
very small. However, since the off-diagonal elements
of D decay slowly to zero for metallic systems, the

evaluation of the Kohn-Sham map cannot be performed
in O.ne/ without losing accuracy at low temperature.

Linearly scaling algorithms can also be designed to
minimize the total energy directly. To achieve linear
scaling, the total energy minimization problem is re-
formulated as an unconstrained minimization problem.
Instead of imposing the orthonormality constraint of
the single-particle wavefunctions, we require them to
have localized support. Such localized orbitals allow
the objective and gradient calculations to be performed
with O.ne/ complexity. The original version of orbital
minimization methods uses direct truncations of the
orbitals. They are known to suffer from the possibility
of being trapped at a local minimizer [4]. The presence
of a large number of local minimizers in this approach
is partially due to the fact that direct truncation tends to
destroy the invariance property inherent in the Kohn-
Sham DFT model, and introduces many local minima
in the Kohn-Sham energy landscape. This problem can
be fixed by applying a localization procedure prior to
truncation.

Cross-References

�Density Functional Theory
�Hartree–Fock Type Methods
� Schrödinger Equation for Chemistry
� Self-Consistent Field (SCF) Algorithms
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Synonyms

Lattice Boltzmann Method (LBM)

Short Definition

The lattice Boltzmann method (LBM) is a family
of methods derived from kinetic equations for
computational fluid dynamics, chiefly used for near-
incompressible flows of Newtonian fluids.

Description

The primary focus of computational fluid dynamics
(CFD) is the solution of the nonlinear Navier–Stokes–
Fourier (NSF) equations that describe mass, momen-
tum, and energy transport in a fluid. For the most
common case of incompressible flow, these reduce
to the Navier–Stokes (NS) equations for momentum
transport alone, as supplemented by an elliptic equa-
tion to determine the pressure. The NSF equations
may be derived from the Boltzmann equation of ki-
netic theory, with transport coefficients calculated from
the underlying interatomic interactions. The lattice
Boltzmann method (LBM) is distinguished by being a
discretization of the Boltzmann equation, rather than a
direct discretization of the NS equations.

Kinetic Theory and the Boltzmann
Equation

Kinetic theory describes a dilute monatomic gas
through a distribution function f .x; �; t/ for the
number density of particles at position x moving with
velocity � at time t . The distribution function evolves
according to the Boltzmann equation [2, 6]

@tf C � �rf D CŒf; f 
: (1)

The quadratic integral operator CŒf; f 
 represents bi-
nary collisions between pairs of particles. The first few
moments of f with respect to particle velocity � give
hydrodynamic quantities: the fluid density �, velocity
u, momentum flux …, and energy flux Q,



Lattice Boltzmann Methods 775

L

� D
Z
f d�; �u D

Z
� f d�;

… D
Z

�� f d�; Q D
Z

��� f d�; (2)

in convenient units with the particle mass scaled to
unity. Collisions conserve mass, momentum, and en-
ergy, while relaxing f towards a Maxwell–Boltzmann
distribution

f .0/ D �.2�/�3=2 exp
��ku � �k2=.2/� : (3)

These together imply conservation of the temperature
 , given by Tr … D 3� C �kuk2 in energy units for
which

p
 is the Newtonian or isothermal sound speed.

Hydrodynamics describes near-equilibrium solu-
tions, f � f .0/, for which a linearized collision
operator is sufficient. A popular model is the
Bhatnagar–Gross–Krook (BGK) form [1]

@tf C � �rf D �1
�

�
f � f .0/

�
(4)

that relaxes f towards an equilibrium distribution f .0/

with the same �, u,  as f . This satisfies all the require-
ments necessary for deriving the NSF equations, but
the Prandtl number is fixed at unity. The more general
Gross–Jackson model [7] allows the specification of
any finite number of relaxation times in place of the
above single relaxation time � .

Moments of the Boltzmann equation (1) give an in-
finite hierarchy of evolution equations for the moments
of f . The first few are

@t �C r �.�u/ D 0; @t .�u/C r �… D 0;

@t…C r �Q D �1
�

�e… � e….0/
�
: (5)

Each evolution equation involves the divergence of the
next higher moment. The first two right-hand sides van-
ish because collisions conserve microscopic mass and
momentum. The right-hand side of the third equation
arises from the traceless part e… of the momentum flux
being an eigenfunction of the BGK collision opera-
tor and an eigenfunction of the linearized Boltzmann
collision operator for Maxwell molecules. The latter
property holds to a good approximation for other in-
teratomic potentials [2].

Temperature fluctuations are O.Ma2/ when the
Mach number Ma D kuk=p is small. It is then

convenient to impose a constant temperature 0 when
evaluating f .0/. This takes the place of an independent
energy evolution equation, and the last of (5) then
holds with … rather than the traceless part e… on the
right-hand side. A temperature evolution equation may
be reintroduced under the Boussinesq approximation
using a second distribution function [5, 10].

Derivation of the Hydrodynamic
Equations

The NSF equations describe solutions of the
Boltzmann equation that vary slowly on macroscopic
timescales �0 � � , where �0 may be a fluid eddy
turnover time. The ratio � D �=�0 may be identified
with the Knudsen number Kn. The modern Chapman–
Enskog expansion [2] seeks solutions of (1) or
(4) through a multiple-scale expansion of both the
distribution function and the time derivative:

f D
1X

nD0
�nf .n/; @t D

1X

nD0
�n@tn : (6)

This expansion of f implies corresponding expansions
of the moments:

�.n/ D
Z
f .n/d�; �u.n/ D

Z
�f .n/d�;

….n/ D
Z

��f .n/d�; Q.n/ D
Z

���f .n/d�: (7)

The expansion of @t prevents the overall expansion
from becoming disordered after long times t � �0=�,
but requires additional solvability conditions, namely,
that �.n/ D 0, u.n/ D 0 for n � 1. Equivalently,
one may expand the non-conserved moments … D
….0/ C �….1/ C � � � , Q D Q.0/ C �Q.1/ C � � � , while
leaving the conserved moments � and u unexpanded.

Evaluating (5) at leading order gives the compress-
ible Euler equations

@�0�C r �.�u/ D 0; @�0.�u/C r �….0/ D 0: (8)

The inviscid momentum flux ….0/ D �IC �uu, with
I the identity tensor, is given by the second moment of
f .0/. Evaluating the last of (5) at leading order gives

@�0…
.0/ C r �Q.0/ D � 1

�0
….1/; (9)
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where Q.0/ is known from f .0/, and we evaluate
@�0…

.0/ using the Euler equations (8). After some ma-
nipulation, �….1/ D ��� �.ru/C .ru/T

� D ���S
becomes the NS viscous stress for an isothermal fluid
with dynamic viscosity � D �� . The multiple-scale
expansion may be avoided by taking Ma D O.�/.
This so-called diffusive scaling removes the separation
of timescales by bringing the viscous term u �ru into
balance with .�=�/r2u, pushing the @�0…

.0/ term in
(9) to higher order [11].

Discrete Kinetic Theory

Discrete kinetic theory preserves the above structure
that leads to the NS equations, but restricts the particle
velocity to a finite set, � 2 f�0; : : : ; �N�1g. The
previous integral moments become sums over a finite
set fi .x; t/, one for each � i :

� DP
i fi ; �u DPi �i fi ;

… DP
i �i�i fi ; Q DPi �i�i�i fi : (10)

The discrete analogue of the linearized Boltzmann
equation is

@tfi C �i �rfi D �
P

j �ij

�
fj � f .0/

j

�
; (11)

where �ij is a constant N 	 N matrix giving a
general linear collision operator. This linear, constant-
coefficient hyperbolic system is readily discretized, as
described below.

The aim now is to choose the velocity set f�i g,
the equilibria f .0/

j .�;u/, and the collision matrix �ij

so that the moment equations obtained from (11) co-
incide with the system (5) obtained previously from
(1). The continuous Maxwell–Boltzmann equilibrium
f .0/ emerged from properties of Boltzmann’s collision
operator C Œf; f 
, but the f .0/

j .�; u/ in (11) must be

supplied explicitly. The discrete moments ….0/ and
Q.0/ should remain unchanged from continuous kinetic
theory, at least to O.Ma2/.

The discrete collision operator should conserve
mass and momentum, and … should be an eigen-
function. The simplest choice �ij D ��1ıij gives
the BGK collision operator (4), but more general
choices improve numerical stability [3] and treatment
of boundary conditions. The most common equilibria
are the quadratic polynomials [9, 14]

f
.0/
j .�;u/ D wj �



1C 3 u � �j C

9

2
.u � �j /2 �

3

2
kuk2

�
;

(12)

with weights w0 D 4=9, w1;:::;4 D 1=9, and w6;:::;9 D
1=36 for the D2Q9 lattice shown in Fig. 1. The particle
velocities �i are scaled so that �ix; �iy 2 f�1; 0; 1g and
 D 1=3. The �i thus form an integer lattice. The above
f
.0/
j may be derived from a low Mach number expan-

sion of the Maxwell–Boltzmann distribution, or as a
moment expansion in the first few of Grad’s [6] tensor
Hermite polynomials 1, �i , � i�i� I. The wi and � i are
the weights and quadrature nodes for a Gauss–Hermite
quadrature that holds exactly for polynomials of degree
5 or less. The �, u, ….0/ moments of the discrete and
continuous equilibria thus coincide exactly [9], while
the Q.0/ moment differs by an O.Ma3/ term �uuu.

J+1

J

J−1

II−1 I+1

0 1

2

3

4

56

7 8

Lattice Boltzmann Methods, Fig. 1 D2Q9 and D3Q19 lattices. The velocities �i are scaled so that �i˛ 2 f�1; 0; 1g for
˛ 2 fx; y; zg
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Space–Time Discretization

For each i , we may write the left-hand side of (11) as a
total derivative dfi=ds along the characteristic .x; t/ D
.x0 C �i s; t C s/ parametrized by s. Integrating (11)
along this characteristic for a timestep �t gives [10]

fi .x C �i�t; t C�t/ � fi .x; t/ D
� 2 ��t0

X

j

�ij

h
fj � f .0/

j

i
.x C �i s; t C s/ ds:

(13)

Approximating the remaining integral by the trape-
zoidal rule gives

fi .x C �i�t; t C�t/ � fi .x; t/ D

�1
2
�t

X

j

�ij

�
fj .x C �i�t; t C�t/C fj .x; t/

�f .0/j .x C �i�t; t C�t/ � f .0/j .x; t/


CO

�
.�t=�/3

�
:

(14)

Neglecting the error term, and collecting all terms
evaluated at t C�t to define

f i .x; t/ D fi .x; t/C
1

2
�t
X

j

�ij

�
fj � f .0/

j

�
;

(15)
leads to an explicit scheme, the lattice Boltzmann
equation (LBE), for the f i :

f i .x C � i�t; t C�t/ D
f i .x; t/ ��t

X

j

�ij

�
f j .x; t/ � f .0/

j .x; t/
�
; (16)

with discrete collision matrix � D �
IC 1

2
�t�

��1
�.

When � D ��1I this transformation reduces to replac-
ing � with �C�t=2. Taking moments of (15) gives the
conserved moments � D P

i f i and �u D P
i � if i ,

unaffected by the collision term that distinguishes f i

from fi . We may thus evaluate the f
.0/
i in (16).

However, non-conserved moments such as … must be
found by inverting (15) for the fi .

The errors involving �t from the space–time dis-
cretization of (11) are in principle entirely independent
of the O.�2/ error in the derivation of the NS equa-
tions. However, the above usage of the trapezoidal rule

requires�t 
 � to justify neglecting the error in (14).
The same restriction is needed in the reverse derivation
of partial differential equations from (16) using Taylor
expansions in �t [11]. However, the algorithm (16)
successfully captures slowly varying hydrodynamic be-
havior on macroscopic timescales �0 � �t even when
�t � � . The ratio �t=� may be identified with the
grid-scale Reynolds number Regrid D kuk�x=�, with
�x D �t in standard LB units. Stability for Regrid �
1 is essential for applying the LBM to turbulent flows.
Stable 2D simulations have been demonstrated [3] with
Regrid & 100 and a collision matrix�ij that suppresses
the oscillations with period 2�t that arise in the non-
conserved moments when Regrid > 1.

These successes do not imply that the LBE correctly
captures arbitrary solutions of the discrete Boltzmann
equation evolving on the collisional timescale � , such
as kinetic initial and boundary (Knudsen) layers [2, 6].
The LBE reproduces just enough of the true Boltz-
mann equation to capture the isothermal NS equations.
It does not capture Burnett and higher order corrections
relevant for rarefied flows at finite Knudsen numbers,
and it does not capture Knudsen boundary layers.

Wider Applications

The core lattice Boltzmann algorithm described above
has been extended into many wider applications: large
eddy simulations of turbulent flows, multiphase flows,
and soft condensed matter systems such as colloids,
suspensions, gels, and polymer solutions [4, 12]. The
LBM is commonly characterized as a second-order
accurate scheme at fixed Mach number. However, the
spatial derivatives on the left-hand side of (11) are
treated exactly in deriving (13). The only approxi-
mation lies in the treatment of the collision integral.
Comparisons with pseudo-spectral simulations for the
statistics of turbulent flows show comparable accuracy
when the LBM grid is roughly twice as fine as the
pseudo-spectral collocation grid [13].

The nonequilibrium momentum flux ….1/ is propor-
tional to the local strain rate S D .ru/C .ru/T under
the Chapman–Enskog expansion, so S may be com-
puted locally from .… �….0// at each grid point with
no spatial differentiation [15]. Adjusting the local col-
lision time � to depend on S extends the LBM to large
eddy simulations using the Smagorinsky turbulence
model, with an effective eddy viscosity �turb / jjSjj,
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and to further generalized Newtonian fluids whose
viscosities are functions of jjSjj.

The straightforward implementation of boundary
conditions by reflecting particles from solid boundaries
makes the LBM attractive for simulating pore-scale
flows in porous media and particle-scale flows of sus-
pensions. The Brownian thermal fluctuations omitted
in the Boltzmann equation, but relevant for colloids,
may be restored by adding random noise to the non-
conserved moments during collisions [4].

There are many LB formulations for multiphase
and multicomponent flows [8]. They are essentially
diffuse interface capturing schemes that use interac-
tions between neighboring grid points to mimic the
inter-particle interactions responsible for interfacial
phenomena.
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Flügge, S. (ed.) Thermodynamik der Gase. Handbuch der
Physik, vol. 12, pp. 205–294. Springer, Berlin (1958)

7. Gross, E.P., Jackson, E.A.: Kinetic models and the lin-
earized Boltzmann equation. Phys. Fluids 2, 432–441
(1959)

8. Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.:
Lattice Boltzmann model of immiscible fluids. Phys. Rev. A
43, 4320–4327 (1991)

9. He, X., Luo, L.S.: Theory of the lattice Boltzmann method:
from the Boltzmann equation to the lattice Boltzmann equa-
tion. Phys. Rev. E 56, 6811–6817 (1997)

10. He, X., Chen, S., Doolen, G.D.: A novel thermal model
of the lattice Boltzmann method in incompressible limit. J.
Comput. Phys. 146, 282–300 (1998)

11. Junk, M., Klar, A., Luo, L.S.: Asymptotic analysis of the
lattice Boltzmann equation. J. Comput. Phys. 210, 676–704
(2005)

12. Ladd, A.J.C.: Numerical simulations of particulate suspen-
sions via a discretized Boltzmann equation. Part 1. Theoret-
ical foundation. J. Fluid Mech. 271, 285–309 (1994)

13. Peng, Y., Liao, W., Luo, L.S., Wang, L.P.: Comparison
of the lattice Boltzmann and pseudo-spectral methods for
decaying turbulence: low-order statistics. Comput. Fluids
39, 568–591 (2010)

14. Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK
models for the Navier–Stokes equation. Europhys. Lett. 17,
479–484 (1992)

15. Somers, J.A.: Direct simulation of fluid flow with cellular
automata and the lattice-Boltzmann equation. Appl. Sci.
Res. 51, 127–133 (1993)

Least Squares Calculations
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Introduction

A computational problem of primary importance in
science and engineering is to fit a mathematical model
to given observations. The influence of errors in the
observations can be reduced by using a greater num-
ber of measurements than the number of unknown
parameters. Least squares estimation was first used
by Gauss in astronomical calculations more than two
centuries ago. It has since been a standard approach in
applications areas that include geodetic surveys, pho-
togrammetry, signal processing, system identification,
and control theory. Recent technological developments
have made it possible to generate and treat problems
involving very large data sets.

As an example, consider a model described by a
scalar function f .x; t/, where x 2 Rn is an unknown
parameter vector to be determined from measurements
bi D f .x; ti /C ei ; i D 1; : : : ; m.m > n/, where ei are
errors. In the simplest case f .x; ti / is linear in x:

f .x; t/ D
nX

jD1
xj �j .t/; (1)

where �j .t/ are known basis functions. Then the mea-
surements form an overdetermined system of linear
equations Ax D b, where A 2 Rm�n is a matrix with
elements aij D �j .ti /.

It is important that the basis function �j .t/ are
chosen carefully. Suppose that f .x; t/ is to be modeled
by a polynomial of degree n. If the basis functions
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are chosen as the monomials t j , then A will be a
Vandermonde matrix. Such matrices are notoriously ill
conditioned and this can lead to an inaccurate solution.

The Least Squares Principle
In the standard Gauss–Markov linear model, it is as-
sumed that a linear relation Ax D y holds, where
A 2 Rm�n is a known matrix of full column rank, x
is a parameter vector to be determined, and y 2 Rm a
constant but unknown vector. The vector b D f C e is
a vector of observations and e a random error vector. It
is assumed that e has zero mean and covariance matrix
�2I , where �2 is an unknown constant.

Theorem 1 (The Gauss–Markov Theorem) In the
linear Gauss–Markov model, the best linear unbiased
estimator of x is the least square estimate Ox that
minimizes the sum of squares

S.x/ D kr.x/k22 D
mX

iD1
r2i ;

where r.x/ D b � Ax is the residual vector. A
necessary condition for a minimum is that the gradient
vector @S=@x is zero. This condition gives AT .b �
Ax/ D 0, i.e., r.x/ ? R.A/, the range of A. It
follows that Ox satisfies the normal equations ATAx D
AT b. The best linear unbiased estimator of any linear
functional cT x is cT Ox.

The covariance matrix of the estimate Ox is V. Ox/ D
�2.ATA/�1. The residual vector Or D b � A Ox is
uncorrelated with Ox and an unbiased estimate of �2

is given by s2 D kOrk22=.m� n/.
In the complex case A 2 Cm�n, b 2 Cm, the

complex scalar product has to be used in Gauss–
Markov theorem. The least squares estimate minimizes
krk22 D rH r , where rH denotes the complex conjugate
transpose of r . The normal equations are AHAx D
AHb. This has applications, e.g., in complex stochastic
processes.

It is easy to generalize the Gauss–Markov theorem
to the case where the error e has a symmetric positive
definite covariance matrix �2V . The least squares esti-
mate then satisfies the generalized normal equations

AT V �1Ax D AT V �1b: (2)

The covariance matrix of the least squares estimate Ox
is V. Ox/ D �2.AT V �1A/�1 and an unbiased estimate
of �2 is given by s2 D OrT V �1 Or=.m�n/. In the special
case of weighted least squares, the covariance matrix
is V D D�2, D D diag.d1; : : : ; dm/. After a diagonal
scaling this is equivalent to the scaled standard problem
minx kDb � .DA/x/k2.

Calculating Least Squares Estimates

Comprehensive discussions of methods for solving
least squares problems are found in [6] and [1]. In the
following we write the algebraic linear least squares
problems in the form minx kAx � bk2.

The singular value decomposition (SVD) is a pow-
erful tool both for analyzing and solving the linear
least squares problem. The SVD of A 2 Rm�n of
rank.A/ D n is

A D U˙V T D �U1 U2
� 
˙1

0

�
V T D U1˙1V

T ; (3)

where ˙1 D diag.�1; �2; : : : ; �n/. Here �1 � �2 �
� � � ;� �n � 0 are the singular values of A and the ma-
trices U D .u1; u2; : : : ; um/ and V D .v1; v2; : : : ; vn/

are square orthogonal matrices, whose columns are the
left and right singular vectors of A. If �n > 0 the least
squares solution equals

x D V ˙�1
1 .U T

1 b/ D
nX

iD1

ci

�i
vi ; ci D uTi b (4)

If A has small singular values, then small perturbations
in b can give rise to large perturbations in x. The ratio
�.A/ D �1=�n is the condition number of A. The
condition number of the least squares solution x can
be shown to depend also on the ratio krk2=�nkxk2 and

equals [1] �.x/ D �.A/



1C krk2

�nkxk2
�

. The second

term will dominate if krk2 > �nkxk2.
Because of the high cost of computing and modi-

fying the SVD, using the expansion (4) is not always
justified. Simpler and cheaper alternative methods are
available.

The Method of Normal Equations
If A 2 Rm�n has full column rank, the solution can
be obtained from the normal equations. The symmetric
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matrix ATA 2 Rn�n is first formed. Then the Cholesky
factorization ATA D RTR is computed, where R
is an upper triangular matrix with positive diagonal
elements. These operations requiremn2Cn3=3 floating
point operations (flops). For a right-hand side b, the
least squares solution is obtained by computing d D
AT b 2 Rn and solving two triangular systems RT z D
d and Rx D z. The residual matrix is r D b � Ax.
This requires 2n.2mC n/ flops.

The estimated covariance matrix of x is

Vx D s2.RTR/�1 D s2SST ; s2 D rT r=.m � n/;
S D R�1: (5)

The estimated variance of any linear functional � D
f T x is

V� D s2f T SST f D s2vT v; RT v D f: (6)

and can be computed without forming Vx. Setting f D
ei gives the variance of the component xi . The com-

ponents of the normalized residual Qr D 1

s
diag.Vx/

�1 Or
should be uniformly distributed random variables. This
can be used to detect and identify bad observations.

QR Factorizations and Bidiagonal Decomposition
The method of normal equations is efficient and suffi-
ciently accurate for many problems. However, forming
the normal equations squares the condition number of
the problem. This can be seen by using the SVD to
show that ATA D V ˙UT U˙V T D V ˙2

1 V
T and

hence �.ATA/ D �2.A/. Methods using orthogonal
transformations preserve the condition number and
should be preferred unless the problem is known to be
well conditioned. The QR factorization of the matrix
A 2 Rm�n of full column rank is

A D Q


R

0

�
D Q1R; (7)

where Q D �
Q1 Q2

� 2 Rm�m is orthogonal and
R 2 Rn�n upper triangular. It can be computed in
2.mn2 � n3=3/ flops using Householder transforma-
tions. The matrix Q is then implicitly represented as
Q D P1P2 � � �Pn where Pi D I � 2vivTi , kvik2 D 1.
Only the Householder vectors vi need to be stored
and saved. The least squares solution and the residual
vector are then obtained in about 8mn�3n2 flops from

QTb D Pn � � �P2P1b D


c1
c2

�
; Rx D c1;

r D P1P2 � � �Pn


0

c2

�
: (8)

Using orthogonality it follows that krk2 D kc2k2.
If the diagonal elements in the triangular factor R are
chosen to be positive, then R is uniquely determined
and mathematically (not numerically) the same as the
Cholesky factor from the normal equations. Thus, the
expression (5) for the estimated covariance matrix is
valid.

It is recommended that column pivoting is per-
formed in the QR factorization. This will yield a
QR factorization of A˘ for some permutation matrix
˘ . The standard strategy is to choose at each step
k D 1; : : : ; n, the column that maximizes the diagonal
element rkk in R. Then the sequence r11 � r22 � � � � �
rnn > 0 is nonincreasing, and the ratio r11=rnn is often
used as a rough approximation of �.A/.

A rectangular matrix A 2 Rm�n, m > n can
be transformed further to lower (or upper) bidiag-
onal form by a sequence of two-sided orthogonal
transformations

UTAV D


B

0

�
; B D

0

B
B
B
B
BB
@

˛1
ˇ2 ˛2

ˇ3
: : :

: : : ˛n
ˇnC1

1

C
C
C
C
CC
A

(9)

where U D .u1; u2; : : : ; um/, V D .v1; v2; : : : ; vn/.
This orthogonal decomposition requires 4.mn2�n3=3/
flops, which is twice as much as the QR factorization.
It is essentially unique once the first column u1 D Ue1
has been chosen. It is convenient to take u1 D b=ˇ1,
ˇ1 D kbk2. Then UT b D ˇ1e1 and setting x D Vy,
we have

UT .b �Ax/ D


ˇ1e1 � By

0

�
:

The least squares solution can be computed in O.n/
flops by solving the bidiagonal least squares prob-
lem miny kBy � ˇ1e1k2. The upper bidiagonal form
makes the algorithm closely related to the iterative
LSQR algorithm in [7]. Also, with this choice of u1
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the decomposition will terminate early with a core
subproblem if an entry ˛i or ˇi is zero ([8]].

Rank-Deficient Problems
Rank deficiency in least squares problems can arise
in different ways. In statistics one often has a large
set of variables, called the factors, that are used to
control, explain, or predict other variables. The set of
factors correspond to the columns of a matrix A D
.a1; a2; : : : ; an/. If these are highly collinear, then the
approximate rank of A is less than n and the least
squares solution is not unique. Often the rank of A is
not known in advance, but needs to be determined as
part of the solution process.

In the rank-deficient case one can seek the least
squares solution of minimum norm, i.e., solve the
problem

min
x2S kxk2; S D fx 2 Rnj kb � Axk2 D ming: (10)

This problem covers as special cases both overdeter-
mined and underdetermined linear systems. The so-
lution is always unique and called the pseudoinverse
solution. It is characterized by x 2 R.AT / and can be
obtained from the SVD of A as follows. If rank.A/ D
r < n, then �j D 0, j > r , and

x D A�b D V1˙�1
1 .U T

1 b/ D
rX

iD1

ci

�i
vi ; ci D uTi b;

(11)

i.e., it is obtained simply by excluding terms corre-
sponding to zero singular values in the expansion (4).
The matrix A� D V1˙

�1
1 U T

1 is called the pseudoin-
verse of A.

In some applications, e.g., in signal processing, one
has to solve a sequence of problems where the rank
may change. For such problems methods that use a piv-
oted QR factorization have the advantage over the SVD
in that these factorizations can be efficiently updated;
see [4]. One useful variant is the URV decomposition,
which has the form

A˘ D URV T D �U1 U2
� 
R11 R12

0 R22

�

V T
1

V T
2

�
: (12)

Here R11 is upper triangular and the entries of R12 and
R22 have small magnitudes. The orthogonal matrices

U1 and V2 approximate the range and null space of A,
respectively.

Large-Scale Problems
Many applications lead to least squares problems
where A is large and sparse or structured. In the QR
factorization of a sparse matrix, the factor Q will
often be almost full. This is related to the fact that
Q D AR�1 and even if R is sparse R�1 will have
no zero elements. Therefore, computing the factor Q
explicitly for a sparse matrix should be avoided. A QR
algorithm for banded matrices which processes rows
or block of rows sequentially is given in [6, Chap. 27].
An excellent source book on factorization of matrices
with more irregular sparsity is [3].

An efficient iterative method for solving large sparse
least squares problems is the Krylov subspace method
LSQR (see [7]). It uses a Lanczos process to generate
the vectors vi , uiC1, i D 1; 2; : : : and the columns of
the matrix B in (9). LSQR only requires one matrix-
vector product with A and AT per iteration step. If A
is rank deficient, LSQR converges to the pseudoinverse
solution.

Regularization of Least Squares Problems

In discrete approximations to inverse problems, the
singular values �i ofA cluster at zero. If the exact right-
hand side b is contaminated by white noise, this will
affect all coefficients ci in the SVD expansion (4) more
or less equally. Any attempt to solve such a problem
without restriction on x will lead to a meaningless
solution.

Truncated SVD and Partial Least Squares
If the SVD of A is available, then regularization can be
achieved simply by including in the SVD expansion
only terms for which �1 > tol, for some tolerance
tol only. An often more efficient alternative is to use
partial least squares (PLS). Like truncated SVD it
computes a sequence of approximate least squares
solutions by orthogonal projections onto lower dimen-
sional subspaces. PLS can be implemented through
a partial reduction of A to lower bidiagonal form.
It is used extensively in chemometrics, where it was
introduced in [10]. The connection to the bidiagonal
decomposition is exhibited in [2].
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Tikhonov Regularization
Tikhonov regularization is another much used method.
In this a penalty is imposed on the 2-norm of kxk2
of the solution. Given A 2 Rm�n a regularized least

squares problem minx
h
kAx�bk22C�2kxk22

i
is solved,

where the parameter � governs the balance between
a small residual and a smooth solution. In statistics
Tikhonov regularization is known as “ridge regres-
sion.” The solution x.�/ D .ATA C �2I /�1AT b can
be computed by Cholesky factorization. In terms of the

SVD expansion, it is x.�/ D
nX

iD1

ci�i

�2i C �2
vi . Methods

using QR factorization, which avoid forming the cross-
product matrix ATA, can also be used [1]. The optimal
value of � depends on the noise level in the data. The
choice of � is often a major difficulty in the solution
process and often an ad hoc method is used; see [5].

In the LASSO (Least Absolute Shrinkage and Se-
lection) method a constraint involving the one norm
kxk1 is used instead. The resulting problem can be
solved using convex optimization methods. LASSO
tends to give solutions with fewer nonzero coefficients
than Tikhonov regularization; see [9]. This property is
fundamental for its use in compressed sensing.
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The root cause for the remarkable success of early
finite element methods (FEMs) is their intrinsic con-
nection with Rayleigh-Ritz principles. Yet, many par-
tial differential equations (PDEs) are not associated
with unconstrained minimization principles and give
rise to less favorable settings for FEMs. Accordingly,
there have been many efforts to develop FEMs for such
PDEs that share some, if not all, of the attractive mathe-
matical and algorithmic properties of the Rayleigh-Ritz
setting. Least-squares principles achieve this by aban-
doning the naturally occurring variational principle in
favor of an artificial, external energy-type principle.
Residual minimization in suitable Hilbert spaces de-
fines this principle. The resulting least-squares finite el-
ement methods (LSFEMs) consistently recover almost
all of the advantages of the Rayleigh-Ritz setting over
a wide range of problems, and with some additional
effort, they can often create a completely analogous
variational environment for FEMs.

A more detailed presentation of least-squares finite
element methods is given in [1].

Abstract LSFEM theory Consider the abstract PDE
problem

find u 2 X such that Lu D f in Y; (1)

where X and Y are Hilbert spaces, L W X 7! Y is
a bounded linear operator, and f 2 Y is given data.

Sandia National Laboratories is a multiprogram laboratory op-
erated by the Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the US Department of En-
ergy’s National Nuclear Sec- urity Administration under contract
DE-AC04-94AL85000.
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Assume (1) to be well posed so that there exist positive
constants ˛ and ˇ such that

ˇkukX � kLukY � ˛kukX 8 u 2 X: (2)

The energy balance (2) is the starting point in the
development of LSFEMs. It gives rise to the uncon-
strained minimization problem, i.e., the least-squares
principle (LSP):

fJ;Xg !
�

min
u2X J.uIf /; J.uIf / D kLu � f k2Y


;

(3)
where J.u; f / is the residual energy functional.
From (2), it follows that J.�I �/ is norm equivalent:

ˇ2kuk2X � J.uI 0/ � ˛2kuk2X 8 u 2 X: (4)

Norm equivalence (4) and the Lax-Milgram Lemma
imply that the Euler-Lagrange equation of (3)

find u 2 X such that
�
Lv;Lu

�
Y
� Q.u;w/

D F.w/ � �Lv; f �
Y
8 w 2 X (5)

is well posed because Q.u;w/ is an equivalent inner
product onX	X . The unique solution of (5), resp. (3),
coincides with the solution of (1).

We define an LSFEM by restricting (3) to a family
of finite element subspaces Xh � X , h ! 0. The
LSFEM approximation uh 2 Xh to the solution u 2
X of (1) or (3) is the solution of the unconstrained
minimization problem

fJ;Xhg!
�

min
uh2Xh

J.uhIf /; J.uIf /DkLuh�f k2Y

:

(6)
To compute uh, we solve the Euler-Lagrange equation
corresponding to (6):

find uh 2 Xhsuch thatQ.uh;wh/

D F.wh/8wh 2 Xh: (7)

Let f�hj gNjD1 denote a basis for Xh so that uh D
PN

jD1 uhj �
h
j . Then, problem (7) is equivalent to the

linear system of algebraic equations

Q
hEuh D Ef h (8)

for the unknown vector Euh, where Qh
ij D

�
L�hj ;L�hi

�
Y

and Ef h
i D

�
L�i ; f

�
Y

.

Theorem 1 Assume that (2), or equivalently, (4),
holds and that Xh � X . Then:
– The bilinear form Q.�; �/ is continuous, symmetric,

and strongly coercive.
– The linear functional F.�/ is continuous.
– The problem (5) has a unique solution u 2 X that is

also the unique solution of (3).
– The problem (7) has a unique solution uh 2 Xh that

is also the unique solution of (6).
– The LSFEM approximation uh is optimally accurate

with respect to solution norm k � kX . for which (1) is
well posed, i.e., for some constant C > 0

ku � uhkX � C inf
vh2Xh

ku � vhkX (9)

– The matrix Qh of (8) is symmetric and positive
definite. �

Theorem 1 only assumes that (1) is well posed
and that Xh is conforming. It does not require L to
be positive self-adjoint as it would have to be in the
Rayleigh-Ritz setting, nor does it impose any com-
patibility conditions on Xh that are typical of other
FEMs. Despite the generality allowed for in (1), the
LSFEM based on (6) recovers all the desirable features
possessed by finite element methods in the Rayleigh-
Ritz setting. This is what makes LSFEMs intriguing
and attractive.

Practical LSFEM Intuitively, a “practical” LSFEM
has coding complexity and conditioning comparable to
that of other FEMs for the same PDE. The LSP fJ;Xg
in (3) recreates a true Rayleigh-Ritz setting for (1),
yet the LSFEM fJ;Xhg in (6) may be impractical.
Thus, sometimes it is necessary to replace fJ;Xg by a
practical discrete alternative fJ h;Xhg. Two opposing
forces affect the construction of fJ h;Xhg: a desire
to keep the resulting LSFEM simple, efficient, and
practical and a desire to recreate the true Rayleigh-Ritz
setting. The latter requires J h to be as close as possible
to the “ideal” norm-equivalent setting in (3).

The transformation of J.�; �/ into a discrete func-
tional J h.�; �/ illustrates the interplay between these
issues. To this end, it is illuminating to write the energy
balance (2) in the form

C1kSXuk0 � kSY ı Luk0 � C2kSXuk0; (10)
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where SX ;SY are norm-generating operators for X; Y ,
respectively, withL2.�/ acting as a pivot space. At the
least, practicality requires that the basis of Xh can be
constructed with no more difficulty than for Galerkin
FEM for the same PDE. To secure this property, we
ask that the domain D.SX/ of SX contains “practi-
cal” discrete subspaces. Transformation of (1) into an
equivalent first-order system PDE achieves this. Then,
practicality of the “ideal” LSFEM (6) depends solely
on the effort required to compute SY ı Luh. If this
effort is deemed reasonable, the original energy norm
jjjujjj D kSY ı Luk0 can be retained and the transition
process is complete. Otherwise, we proceed to replace
the composite operator SY ıL by a computable discrete
approximation ShY ı Lh. We may need a projection
operator �h that maps the data f to the domain of
ShY . The conversion process and the key properties of
the resulting LSFEM can be encoded by the transition
diagram

J.uIf / D kSY ı .Lu � f /k20 ! jjjujjj
# # #

J h.uhIf / D kShY ı.Lhuh� �hf /k0 ! jjjuhjjjh
(11)

and the companion norm-equivalence diagram

C1kukX � jjjujjj � C2kukX
# # #

C1.h/kuhkX � jjjuhjjjh � C2.h/kuhkX :
(12)

Because L defines the problem being solved, the choice
of Lh governs the accuracy of the LSFEM. The goal
here is to make J h as close as possible to J for the
exact solution of (1). On the other hand, SY defines the
energy balance of (1), i.e., the proper scaling between
data and solution. As a result, the main objective in the
choice of ShY is to ensure that the scaling induced by J h

is as close as possible to (2), i.e., to “bind” the LSFEM
to the energy balance of the PDE.

Taxonomy of LSFEMs Assuming that Xh is
practical, restriction of fJ;Xg to Xh transforms (3)
into the compliant LSFEM fJ;Xhg in (6). Apart
from this “ideal” LSFEM which reproduces the
classical Rayleigh-Ritz principle, there are two other
kinds of LSFEMs that gradually drift away from
this setting, primarily by simplifying the approxi-
mations of the norm-generating operator SY . Mesh-
independent C1.h/ and C2.h/ in (12) characterize the
norm-equivalent class, which retains virtually all

attractive properties of the Rayleigh-Ritz setting,
including identical convergence rates and matrix
condition numbers. A mesh-dependent norm-
equivalence (12) distinguishes the quasi-norm-
equivalent class, which admits the broadest range of
LSFEMs, but can give problems with higher condition
numbers.

Examples We use the Poisson equation for which
L D �� to illustrate different classes of LSFEMs.
One energy balance (2) for this equation corresponds
to X D H2.�/\H1

0 .�/ and Y D L2.�/:

˛kuk2 � k�uk0 � ˇkuk2:

The associated LSP

fJ;Xg !
�

min
u2X J.uIf /; J.uIf / D k�u � f k20



leads to impractical LSFEMs because finite element
subspaces of H2.�/ are not easy to construct.

Transformation of ��u D f into the equivalent
first-order system

r � q D f and ruC q D 0 (13)

can solve this problem. The spaces X D H1
0 .�/ 	

ŒL2.�/
d , Y D H�1.�/ 	 ŒL2.�/
d have practical fi-
nite element subspaces and provide the energy balance

˛.kuk1 C kqk0/ � kr � qk�1 C kruC qk0
� ˇ.kuk1 C kqk0/:

This energy balance gives rise to the minus-one norm
LSP

fJ;Xg !
(

min
.u;q/2X J.u;qIf /; J.u;qIf /

D kr � q� f k2�1 C kruC qk20
)

:

(14)

However, (14) is still impractical because the norm-
generating operator SH�1 D .��/�1=2 is not
computable in general. The simple approximation
Sh
H�1 D hI yields the weighted LSFEM



Levin Quadrature 785

L

fJ h;Xhg !
(

min
.uh;qh/2Xh

J h.uh;qhIf /; J h.uh;qhIf / D h2kr � qh � f k20 C kruh C qhk20
)

(15)

which is quasi-norm equivalent. The more accurate

approximation Sh
H�1 D hI C Kh1=2, where Kh is a

spectrally equivalent preconditioner for �� gives the
discrete minus-one norm LSFEM

fJ h;Xhg !
(

min
.uh;qh/2Xh

J h.uh;qhIf /; J h.uh;qhIf / D kr � qh � f k2�h C kruh C qhk20
)

(16)

which is norm equivalent.
The first-order system (13) also has the energy

balance

˛.kuk1 C kqkdiv/ � kr � qk0 C kruC qk0
� ˇ.kuk1 C kqkdiv/

which corresponds to X D H1
0 .�/ 	 H.div; �/ and

Y D L2.�/ 	 ŒL2.�/
d . The associated LSP

fJ;Xg !
(

min
.u;q/2X J.u;qIf /; J.u;qIf /

D kr � q� f k20 C kruC qk20
)

(17)

is practical. Approximation of the scalar u by standard
nodal elements and of the vector q by div-conforming
elements, such as Raviart-Thomas, BDM, or BDFM,
yields a compliant LSFEM which under some condi-
tions has the exact same local conservation property as
the mixed Galerkin method for (13).
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Synonyms

Levin rule; Levin-type method

Short Definition

Levin quadrature is a method for computing highly
oscillatory integrals that does not use moments.

Description

Levin quadrature is a method for calculating integrals
of the form

I Œf 
 D
Z b

a

f .x/ei!g.x/dx;



786 Levin Quadrature

where f and g are suitably smooth functions,
i D p�1, and ! is a large real number.

If u satisfies the differential equation

u0.x/C i!g0.x/u.x/ D f .x/; (1)

then
I Œf 
 D u.b/ei!g.b/ � u.a/ei!g.a/:

In Levin quadrature we represent

u �
nX

kD1
ck k.x/

for some basis  1.x/; : : : ;  n.x/, typically a poly-
nomial basis such as monomials  k.x/ D xk�1 or
Chebyshev polynomials k.x/ D Tk�1.x/. The coeffi-
cients c1; : : : ; cn are determined by solving (1) using a
collocation method: for a sequence of points x1; : : : ; xn
(such as Chebyshev points), solve the linear system

nX

kD1
ck. 

0
k.x1/C i!g0.x1/ k.x1// D f .x1/; : : : ;

nX

kD1
ck. 

0
k.xn/C i!g0.xn/ k.xn// D f .xn/:

We then have the approximation

I Œf 
 � QŒf 
 D
nX

kD1
ckŒ k.b/e

i!g.b/ �  k.a/ei!g.a/
:

When g0.x/ ¤ 0 for x 2 .a; b/, a and b are includ-
ing as collocation points and f is differentiable with
bounded variation, then the error of approximating
I Œf 
 byQŒf 
 decays likeO.!�2/: If f ismC1 times
differentiable and m collocation points are clustered
like O.!�1/ near each endpoint, or if m derivatives at
the endpoints are used in the collocation system, then
the error decay improves to O.!�m�2/ [4].

The approach can be generalized to multivariate
oscillatory integrals

I Œf 
 D
Z

˝

f .x/ei!g.x/dx;

where ˝ � R
d , x 2 Rd and f; g W Rd ! R. On

rectangular domains ˝ D Œa; b
 	 Œc; d 
, this consists
of solving the PDE [1]

uxy C i!gyux C i!gxuy C .i!gxy � !2gxgy/u D f

using collocation and approximating

I Œf 
 � u.b; d/ei!g.b;d/ � u.a; d/ei!g.a;d/

�u.b; c/ei!g.b;c/ C u.a; c/ei!g.a;c/:

For other domains, the dimension of the integral can be
reduced by solving the PDE

r � uC i!rg � u D f;

where u W Cd ! C
d , so that

I Œf 
 D
Z

@˝

ei!gu � d s:

Iterating the procedure reduces the integral to a univari-
ate integral, at which point standard Levin quadrature
is applicable [5].

Levin quadrature can be generalized to other oscilla-
tors which satisfy a linear differential equation, such as
Bessel functions or Airy functions. We refer the reader
to [2, 3, 6, 7].
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Synopsis

Lie group integrators (LGIs) are numerical time in-
tegration methods for differential equations evolving
on smooth manifolds, where the time-stepping is com-
puted from a Lie group acting on the domain. LGIs are
constructed from basic mathematical operations in Lie
algebras, Lie groups, and group actions. An extensive
survey is found in [12].

Classical integrators (Runge-Kutta and multistep
methods) can be understood as special cases of Lie
group integrators, where the Euclidean space R

n acts
upon itself by translation; thus in each time step, the
solution is updated by adding an update vector, e.g.,
Euler method for Py.t/ D f .y.t//, for y; f .y/ 2 Rn

steps forwards from t to t C h as

ynC1 D yn C hf .yn/:

Consider instead a differential equation evolving on the
surface of a sphere, Pz.t/ D v.z/	 z.t/; where z; v 2 R3

and 	 denotes the vector product. Let Ov denote the hat
map, a skew-symmetric matrix given as

Ov WD
0

@
0 �v.3/ v.2/
v.3/ 0 �v.1/
�v.2/ v.1/ 0

1

A ; (1)

we can write the equation as Pz.t/ D bv.z/z.t/. By
freezing Ov at zn, we obtain a step of the exponential
Euler method as

znC1 D exp.h Ov.zn//zn:

Here exp.h Ov.zn// is the matrix exponential of a skew-
symmetric matrix. This is an orthogonal matrix which
acts on the vector zn as a rotation, and hence znC1 sits
exactly on the sphere. This is the simplest (nonclassi-
cal) example of a Lie group integrator.

In the cases where the Lie groups are matrix groups,
LGIs are numerical integrators based on matrix com-
mutators and matrix exponentials and are thus related
to exponential integrators. The general framework of
LGI may also be applied in very general situations
where Lie group actions are given in terms of differ-
ential equations. The performance of LGIs depends on
how efficiently the basic operations can be computed
and how well the Lie group action approximates the
dynamics of the system to be solved. In many cases,
a good choice of action leads to small local errors,
and a higher cost per step can be compensated by the
possibility of taking longer time steps, compared to
classical integrators.

Lie group methods are by construction preserving
the structure of the underlying manifold M . Since all
operations are intrinsic, it is not possible to drift off
M . Furthermore, these methods are equivariant with
respect to the group action, e.g., in the example of
the sphere, the methods will not impose any particular
coordinate system or orientation on the domain, and all
points in the domain are treated equivalently.

Building Blocks

Applications of LGI generally involve the following
steps:
1. Choose a Lie group and Lie group action which can

be computed fast and which captures some essential
features of the problem to be solved. This is similar
to the task of finding a preconditioner in iterative
solution of linear algebraic equations.

2. Identify the Lie algebra, commutator, and exponen-
tial map of the Lie group action.

3. Write the differential equation in terms of the in-
finitesimal Lie algebra action, as in (2) below.

4. Choose a Lie group integrator, plug in all building
blocks, and solve the problem.
We briefly review the definition of these objects and

illustrate by examples below. A group is a setG with an
identity element e 2 G and associative group product
a; b 7! ab such that every a 2 G has a multiplicative
inverse a�1a D aa�1 D e. A left group action ofG on
a set M is a map �WG 	M ! M such that e � p D p

and .ab/ � p D a � .b � p/ for all a; b 2 G and p 2 M .
A Lie group is a group G which also has the structure
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of a smooth differentiable manifold such that the map
a; b 7! a�1b is smooth. If M also is a manifold, then
a smooth group action is called a Lie group action.

The Lie algebra g of a Lie group G is the tangent
space of G at the identity e, i.e., g is the vector space
obtained by taking the derivative at t D 0 of all smooth
curves �.t/ 2 G such that �.0/ D e:

g D fV D P�.0/ W �.t/ 2 G; �.0/ D eg � TeG:

By differentiation, we define the infinitesimal Lie al-
gebra action �W g 	 M ! TM which for V 2 g and
p 2 M produces a tangent V � p 2 TpM as

V �p D @

@t

ˇ
ˇ
ˇ
ˇ
tD0

.�.t/ � p/ 2 TpM; where V D P�.0/.

The exponential map expW g ! G is the t D 1 flow
of the infinitesimal action; more precisely, we define
exp.V / 2 G as exp.V / WD y.1/, where y.t/ 2 G is
the solution of the initial value problem

Py.t/ D V � y.t/; y.0/ D e:

The final operation we need in order to define a
Lie group method is the commutator or Lie bracket,
a bilinear map Œ�; �
W g 	 g! g defined for V;W 2 g as

ŒV;W 
 D @2

@s@t

ˇ
ˇ
ˇ
ˇ
sDtD0

exp.sV / exp.tW / exp.�sV /:

The commutator measures infinitesimally the extent
to which two flows exp.sV / and exp.tW / fail to
commute. We denote adV the linear operator W 7!
ŒV;W 
W g! g.

In the important case where G is a matrix Lie
group, the exponential is the matrix exponential and
the commutator is the matrix commutator ŒV;W 
 D
V W � W V . If G acts on a vector space M by matrix
multiplication a � p D ap, then also the infinitesimal
Lie algebra action V � p D Vp is given by matrix
multiplication.

Definition

Given a smooth manifold M and a Lie group G with
Lie algebra g acting on M . Consider a differential
equation for y.t/ 2M written in terms of the infinites-
imal action as

Py.t/ D f .t; y/ � y; y.0/ D y0; (2)

for a given function f WR 	M ! g. A Lie group in-
tegrator is a numerical time-stepping procedure for (2)
which is based on intrinsic Lie group operations, such
as exponentials, commutators, and the group action
on M .

Methods (Examples)

Lie Euler: ynC1 D exp.hf .tn; yn// � yn.
Lie midpoint:

K D hf .tn C h=2; exp .K=2/ � yn/
ynC1 D exp.K/ � yn

Lie RK4: There are several similar ways of turning
the classical RK4 method into a 4 order Lie group
integrator [16,18]. The following version requires only
two commutators:

K1 D hf .tn; yn/
K2 D hf .tn=2; exp.K1=2/ � yn/
K3 D hf .tn C h=2; exp.K2=2� ŒK1;K2
=8/ � yn/
K4 D hf .tn C h=2; exp.K3/ � yn/

ynC1 D exp .K1=6CK2=3CK3=3CK4=6

�ŒK1;K2
=3 � ŒK1;K4
=12/ � yn

RKMK methods: This is a general procedure to turn
any classical Runge-Kutta method into a Lie group
integrator of the same order. Given the coefficients
aj;`; bj ; cj of an s-stage and pth order RK method, a
single step y.tn/ � yn 7! ynC1 � y.tn C h/ is given
as

Uj D
sX

`D1
aj;`K`

Fj D hf .tn C cj h; exp.Uj / � yn/
Kj D d exp�1

Uj
.Fj /

9
>>>>>=

>>>>>;

j D 1; : : : ; s

ynC1 D exp

 
sX

`D1
b`K`

!

� yn;
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where d exp�1
Uj
.Fj /DFj � 1

2
ŒUj ; Fj 
C 1

12
ŒUj ; ŒUj ; Fj 



� 1
720

ad4Uj Fj C � � � D
Pp

jD0
Bj
j Š

adjUj Fj is the inverse
of the Darboux derivative of the exponential map,
truncated to the order of the method and Bj are the
Bernoulli numbers [12, 17].

Crouch-Grossman and commutator-free methods:
Commutators pose a problem in the application
of Lie group integrators to stiff equations, since
the commutator often increases the stiffness of the
equations dramatically. Crouch-Grossman [6, 19] and
more generally commutator-free methods [5] avoid
commutators by doing basic time-stepping using a
composition of exponentials. An example of such a
method is CF4 [5]:

K1 D hf .tn; yn/
K2 D hf .tn=2; exp.K1=2/ � yn/
K3 D hf .tn C h=2; exp.K2=2/ � yn/
K4 D hf .tn C h=2; exp.K1=2/ �

exp.K3 �K1=2/ � yn/
ynC1 D exp .K1=4CK2=6CK3=6�K4=12/ �

exp .K2=6CK3=6CK4=4�K1=12/ � yn

Magnus methods: In the case where f .t; y/ D f .t/ is
a function of time alone, then (2) is called an equation
of Lie type. Specialized numerical methods have been
developed for such problems [1, 10]. Explicit Magnus
methods can achieve order 2p using only p function
evaluations, and they are also easily designed to be time
symmetric.

Lie Group Actions (Examples)

Rotational problems: Consider a differential equation
Py.t/ D v.y.t//	y.t/, where y; v 2 R2 and jjy.0/jj D
1. Since jjy.t/jj D 1 for all t , we can take M to be
the surface of the unit sphere. Let G D SO.3/ be the
special orthogonal group, consisting of all orthogonal
matrices with determinant 1. Let �.t/ 2 G be a curve
such that �.0/ D e. By differentiating �.t/T �.t/ D e,
we find that P�.0/T C �.0/ D 0, thus g D so.3/, the set
of all skew-symmetric 3	3matrices. The infinitesimal
Lie algebra action is left multiplication with a skew
matrix, the commutator is the matrix commutator, and
the exponential map is the matrix exponential. Written

in terms of the infinitesimal Lie algebra action, the
differential equation becomes Py D bv.y/y, and we
may apply any Lie group integrator. Note that for low-
dimensional rotational problems, all basic operations
can be computed fast using Rodrigues-type formu-
las [12].

Isospectral action: Isospectral differential equations
are matrix-valued equations where the eigenvalues are
first integrals (invariants of motion). Consider M D
Rn�n and the action ofG D SO.n/ onM by similarity
transforms, i.e., for a 2 G and y 2 M , we define
a � y D ayaT . By differentiation, of the action we
find the infinitesimal action for V 2 g D so.n/ as
V � y D Vy � yV ; thus for this action, (2) becomes

Py.t/ D f .t; y/ � y D f .t; y/y � yf .t; y/;

where f WR 	M ! g. See [2, 12] for more details.

Affine action: Let G D Gl.n/ Ì Rn be the affine linear
group, consisting of all pairs a; b where a 2 Rn�n is
an invertible matrix and b 2 Rn is a vector. The affine
action of G on M D R

n is .a; b/ � y D ay C b. The
Lie algebra of G is g D gl.n/ Ì Rn, i.e., g consists
of all pairs .V; b/ where V 2 Rn�n and b 2 Rn. The
infinitesimal action is given as .V; b/ � y D Vy C b.
This action is useful for differential equations of the
form Py.t/ D L.t/yCN.y/, whereL.t/ is a stiff linear
part and N is a nonstiff nonlinear part. Such equa-
tions are cast in the form (2) by choosing f .t; y/ D
.L.t/; N.y//. Applications of Lie group integrators
to such problems are closely related to exponential
integrators. For stiff equations it is important to use a
commutator-free Lie group method.

Coadjoint action: Many problems of computational
mechanics are naturally formulated as Lie-Poisson
systems, evolving on coadjoint orbits of the dual of a
Lie algebra [14]. Lie group integrators based on the
coadjoint action of a Lie group on the dual of its Lie
algebra are discussed in [7].

Classical integrators as Lie group integrators: The
simplest of all group actions is when G D M D R

n,
with vector addition as group operation and group
action. From the definitions, we find that in this case
g D Rn, the commutator is 0, and the exponential map
is the identity map from Rn to itself. The infinitesimal
Lie algebra action becomes V � y D V ; thus, (2)
reduces to Py.t/ D f .t; y/, where f .t; y/ 2 Rn. We see
that classical integration methods are special cases of
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Lie group integrators, and all the examples of methods
above reduce to well-known Runge-Kutta methods.

Implementation Issues

For efficient implementation of LGI, it is important
to employ fast algorithms for computing commutators
and exponentials. A significant volume of research
has been devoted to this. Important techniques involve
replacing the exponential map with other coordinate
maps on Lie groups [13, 20]. For special groups, there
exist specialized algorithms for computing matrix ex-
ponentials [4, 21]. Time reversible LGI is discussed
in [22], but these are all implicit methods and thus
costly. Optimization of the number of commutators and
exponentials has been considered in [3, 18].
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Notation

Throughout this work, boldface symbols denote vec-
tors or tensors. For the inner product of two vec-
tors (first-order tensors), u and v, we have u � v D
ui vi D u1v1 C u2v2 C u3v3 in three dimensions,
where Cartesian basis and Einstein index summation
notation are used. In this introduction, for clarity of
presentation, we will ignore the difference between
second-order tensors and matrices. Furthermore, we
exclusively employ a Cartesian basis. Accordingly, if
we consider the second-order tensor A D Aik ei ˝ ek ,
then a first-order contraction (inner product) of two
second-order tensors A � B is defined by the matrix
product ŒA
ŒB
, with components of AijBjk D Cik. It
is clear that the range of the inner index j must be the
same for ŒA
 and ŒB
. For three dimensions, we have
i; j D 1; 2; 3. The second-order inner product of two
tensors or matrices is defined as A W B D AijBij D
tr.ŒA
T ŒB
/.
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Kinematics of Deformations

The term deformation refers to a change in the shape
of a continuum between a reference configuration and
current configuration. In the reference configuration, a
representative particle of a continuum occupies a point
P in space and has the position vector (Fig. 1)

X D X1e1 CX2e2 CX3e3; (1)

where e1; e2; e3 is a Cartesian reference triad and
X1;X2;X3 (with center O) can be thought of as
labels for a material point. Sometimes the coordinates
or labels .X1;X2;X3/ are called the referential or
material coordinates. In the current configuration, the
particle originally located at point P (at time t D 0)
is located at point P 0 and can be also expressed in
terms of another position vector x, with coordinates
.x1; x2; x3/. These are called the current coordinates.
In this framework, the displacement is u D x�X for a
point originally at X and with final coordinates x.

When a continuum undergoes deformation (or
flow), its points move along various paths in space.
This motion may be expressed as a function of X
and t as (Frequently, analysts consider the referential
configuration to be fixed in time, thus, X ¤ X.t/.)

x.X; t/ D u.X; t/C X.t/ ; (2)

which gives the present location of a point at time
t , written in terms of the referential coordinates
X1;X2;X3. The previous position vector may be

P
P’

xX

X+dX
dX

dx

u+du

u

O

X3, x3

X1, x1

X2, x2

Linear Elastostatics, Fig. 1 Different descriptions of a deform-
ing body

interpreted as a mapping of the initial configuration
onto the current configuration. In classical approaches,
it is assumed that such a mapping is one to one
and continuous, with continuous partial derivatives
to whatever order is required. The description of
motion or deformation expressed previously is known
as the Lagrangian formulation. Alternatively, if the
independent variables are the coordinates x and
time t , then x.x1; x2; x3; t/ D u.x1; x2; x3; t/ C
X.x1; x2; x3; t/, and the formulation is denoted as
Eulerian (Fig. 1).

Deformation of Line Elements
Partial differentiation of the displacement vector u D
x � X, with respect to X, produces the following
displacement gradient:

rXu D F � 1; (3)

where

F
defD rXx

defD @x
@X
D

2

6
66
6
6
6
66
4

@x1

@X1

@x1

@X2

@x1

@X3
@x2

@X1

@x2

@X2

@x2

@X3
@x3

@X1

@x3

@X2

@x3

@X3

3

7
77
7
7
7
77
5

: (4)

F is known as the material deformation gradient.
Now, consider the length of a differential element in

the reference configuration dX and dx in the current
configuration, dx D rXx � dX D F � dX. Taking the
difference in the squared magnitudes of these elements
yields

dx � dx� dX � dX D .rXx � dX/ � .rXx � dX/

�dX � dX

D dX � .FT � F � 1/ � dX

defD 2 dX � E � dX: (5)

Equation (5) defines the so-called strain tensor:

E
defD 1

2
.FT � F � 1/

D 1

2
ŒrXuC .rXu/T C .rXu/T � rXu
: (6)
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Remark 1 It should be clear that dx can be reinter-
preted as the result of a mapping F � dX ! dx
or a change in configuration (reference to current).
One may develop so-called Eulerian formulations, em-
ploying the current configuration coordinates to gen-
erate Eulerian strain tensor measures. An important
quantity is the Jacobian of the deformation gradient,

J
defD det F, which relates differential volumes in the

reference configuration (d!0) to differential volumes
in the current configuration (d!) via d! D J d!0.
The Jacobian of the deformation gradient must remain
positive; otherwise, we obtain physically impossible
“negative” volumes. For more details, we refer the
reader to the texts of Malvern [3], Gurtin [2], and
Chandrasekharaiah and Debnath [1].

Equilibrium/Kinetics of Solid Continua

The balance of linear momentum in the deformed
(current) configuration is

Z

@!

t da
„ ƒ‚ …

surface forces

C
Z

!

�b d!
„ ƒ‚ …
body forces

D d

dt

Z

!

� Pu d!
„ ƒ‚ …

inertial forces

; (7)

where ! � � is an arbitrary portion of the continuum,
with boundary @!, � is the material density, b is the
body force per unit mass, and Pu is the time derivative of
the displacement. The force densities, t, are commonly
referred to as “surface forces” or tractions.

Postulates on Volume and Surface Quantities
Now, consider a tetrahedron in equilibrium, as shown
in Fig. 2, where a balance of forces yields

t.n/�A.n/ C t.�1/�A.1/ C t.�2/�A.2/ C t.�3/�A.3/

C�b�V D ��V Ru ; (8)

where �A.n/ is the surface area of the face of the
tetrahedron with normal n and �V is the tetrahedron
volume. As the distance (h) between the tetrahedron
base (located at (0,0,0)) and the surface center goes to
zero (h ! 0), we have �A.n/ ! 0 ) �V

�A.n/
! 0.

Geometrically, we have �A.i/

�A.n/
D cos.xi ; xn/

defD ni , and
therefore t.n/ C t.�1/ cos.x1; xn/ C t.�2/ cos.x2; xn/C
t.�3/ cos.x3; xn/ D 0. It is clear that forces on the
surface areas could be decomposed into three linearly
independent components. It is convenient to introduce
the concept of stress at a point, representing the surface
forces there, pictorially represented by a cube sur-
rounding a point. The fundamental issue that must be
resolved is the characterization of these surface forces.
We can represent the surface force density vector,
the so-called traction, on a surface by the component
representation:

t.i/
defD

8
<̂

:̂

�i1

�i2

�i3

9
>=

>;
; (9)

where the second index represents the direction of
the component and the first index represents compo-
nents of the normal to corresponding coordinate plane.
Henceforth, we will drop the superscript notation of

t.n/, where it is implicit that t
defD t.n/ D � T � n, where

�
defD

2

6
4

�11 �12 �13

�21 �22 �23

�31 �32 �33

3

7
5 ; (10)

x1

x2

x3

t(n)

t(-3)t(-1)

t(-2) x1
x3

x2
σ33

σ31

σ32

σ23

σ21

σ22

σ11

σ21

σ13

Linear Elastostatics, Fig. 2 (Left) Cauchy tetrahedron: a “sectioned point” and (Right) stress at a point.
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or explicitly (t.1/ D �t.�1/, t.2/ D �t.�2/, t.3/ D
�t.�3/)

t D t.1/n1 C t.2/n2 C t.3/n3 D � T � n

D

2

6
4

�11 �12 �13

�21 �22 �23

�31 �32 �33

3

7
5

T 8
<̂

:̂

n1

n2

n3

9
>=

>;
; (11)

where � is the so-called Cauchy stress tensor.

Remark 2 In the absence of couple stresses, a bal-
ance of angular momentum implies a symmetry of
stress, � D � T, and thus the difference in notations
becomes immaterial. Explicitly, starting with an an-
gular momentum balance, under the assumptions that
no infinitesimal “micro-moments” or so-called couple
stresses exist, then it can be shown that the stress tensor
must be symmetric, i.e.,

R
@!

x	 t daCR
!

x	�b d! D
d
dt

R
!

x	� Pu d!; that is, � T D � . It is somewhat easier
to consider a differential element, such as in Fig. 2, and
to simply sum moments about the center. Doing this,
one immediately obtains �12 D �21; �23 D �32, and
�13 D �31. Consequently, t D � � n D � T � n.

Balance Law Formulations
Substitution of (11) into (7) yields .! � �/

Z

@!

� � n da
„ ƒ‚ …

surface forces

C
Z

!

�b d!
„ ƒ‚ …
body forces

D d

dt

Z

!

� Pud!
„ ƒ‚ …

inertial forces

: (12)

A relationship can be determined between the
densities in the current and reference configurations,R
!
�d! D R

!0
�Jd!0 D

R
!0
�0d!0. Therefore,

the Jacobian can also be interpreted as the ratio of
material densities at a point. Since the volume is
arbitrary, we can assume that �J D �0 holds at
every point in the body. Therefore, we may write
d
dt
.�0/ D d

dt
.�J / D 0, when the system is mass

conservative over time. This leads to writing the last
term in (12) as d

dt

R
!
� Pud! D R

!0

d.�J /

dt
Pu d!0 CR

!0
� RuJ d!0 D

R
!
� Ru d!. From Gauss’s divergence

theorem and an implicit assumption that � is
differentiable, we have

R
!
.rx � � C �b� � Ru/ d! D

0. If the volume is argued as being arbitrary, then
the integrand must be equal to zero at every point,
yielding

rx � � C �b D � Ru: (13)

The First Law of Thermodynamics:
An Energy Balance

The interconversions of mechanical, thermal, and
chemical energy in a system are governed by the
first law of thermodynamics, which states that the
time rate of change of the total energy, K C I, is
equal to the mechanical power, P , and the net heat
supplied, H C Q, i.e., d

dt
.K C I/ D P C H C Q.

Here the kinetic energy of a subvolume of material

contained in ˝ , denoted !, is K defD R
!
1
2
� Pu � Pu d!; the

power (rate of work) of the external forces acting on !

is given by P defD R
!
�b � Pu d! C R

@!
� � n � Pu da;

the heat flow into the volume by conduction is

Q defD � R
@!

q � n da D � R
!
rx � q d!, q being the

heat flux; the heat generated due to sources, such as

chemical reactions, is H defD R
! �zd!, where z is the

reaction source rate per unit mass; and the internal

energy is I defD R
! �w d!, w being the internal energy

per unit mass. Differentiating the kinetic energy yields

dK
dt
D d

dt

Z

!

1

2
� Pu � Pu d!

D
Z

!0

d

dt

1

2
.�J Pu � Pu/ d!0

D
Z

!0



d

dt
�0

�
1

2
Pu � Pu d!0

C
Z

!

�
d

dt

1

2
. Pu � Pu/ d!

D
Z

!

� Pu � Ru d!; (14)

where we have assumed that the mass in the system is
constant. We also have

dI
dt
D d

dt

Z

!

�w d! D d

dt

Z

!0

�Jw d!0

D
Z

!0

d

dt
.�0/

„ ƒ‚ …
D0

w d!0 C
Z

!

� Pw d! D
Z

!

� Pwd!:

(15)
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By using the divergence theorem, we obtain

Z

@!

� � n � Pu da D
Z

!

rx � .� � Pu/ d!

D
Z

!

.rx � � / � Pu d!C
Z

!

� W rx Pu d!:

(16)

Combining the results, and enforcing a balance of
linear momentum, leads to

Z

!

.� PwC Pu � .� Ru� rx � � � �b/

�� W rx PuCrx � q� �z/ d!

D
Z

!

.� Pw � � W rx PuCrx � q � �z/ d! D 0:
(17)

Since the volume ! is arbitrary, the integrand must
hold locally and we have

� Pw � � W rx PuCrx � q� �z D 0: (18)

When dealing with multifield problems, this equation
is used extensively.

Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and
strain, so-called material laws or constitutive relations
for linearly elastic cases (infinitesimal deformations).

The Infinitesimal Strain Case
In infinitesimal deformation theory, the displacement
gradient components are considered small enough that
higher-order terms like .rXu/T � rXu and .rxu/T �
rxu can be neglected in the strain measure E D
1
2
.rXu C .rXu/T C .rXu/T � rXu/, leading to E �

�
defD 1

2
ŒrXuC .rXu/T 
. If the displacement gradients

are small compared with unity, � coincides closely to
E. If we assume that @

@X � @
@x , we may use E or

� interchangeably. Usually � is the symbol used for
infinitesimal strains. Furthermore, to avoid confusion,
when using models employing the geometrically linear
infinitesimal strain assumption, we use the symbol of
r with no X or x subscript. Hence, the infinitesimal
strains are defined by

�D1
2
.ruC .ru/T /: (19)

Linear Elastic Constitutive Laws
If we neglect thermal effects, (18) implies � Pw D
� W rx Pu which, in the infinitesimal strain linearly
elastic case, is � Pw D � W P�. From the chain rule of
differentiation, we have

� Pw D �@w

@�
W d�

dt
D � W P�) � D �@w

@�
: (20)

The starting point to develop a constitutive theory is
to assume a stored elastic energy function exists, a

function denoted W
defD �w, which depends only on

the mechanical deformation. The simplest function that
fulfills � D � @w

@� is W D 1
2
� W IE W �, where IE is the

fourth-rank elasticity tensor. Such a function satisfies
the intuitive physical requirement that, for any small
strain from an undeformed state, energy must be stored
in the material. Alternatively, a small strain material
law can be derived from � D @W

@� and W � c0 C c1 W
� C 1

2
� W IE W � C : : : which implies � � c1 C IE W

� C : : :. We are free to set c0 D 0 (it is arbitrary) in
order to have zero strain energy at zero strain, and,
furthermore, we assume that no stresses exist in the
reference state (c1 D 0). With these assumptions, we
obtain the familiar relation

� D IE W �: (21)

This is a linear relation between stresses and strains.
The existence of a strictly positive stored energy func-
tion in the reference configuration implies that the
linear elasticity tensor must have positive eigenvalues
at every point in the body. Typically, different materials
are classified according to the number of independent
components in IE. In theory, IE has 81 components,
since it is a fourth-order tensor relating 9 components
of stress to strain. However, the number of components
can be reduced to 36 since the stress and strain tensors
are symmetric. This is observed from the matrix repre-
sentation (The symbol Œ�
 is used to indicate the matrix
notation equivalent to a tensor form, while f�g is used
to indicate the vector representation.) of IE:



Linear Elastostatics 795

L

8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

�11
�22
�33
�12
�23
�31

9
>>>>>>=

>>>>>>;
„ƒ‚…

defDf� g

D

2

6
6
6
6
66
4

E1111 E1122 E1133 E1112 E1123 E1113
E2211 E2222 E2233 E2212 E2223 E2213
E3311 E3322 E3333 E3312 E3323 E3313
E1211 E1222 E1233 E1212 E1223 E1213
E2311 E2322 E2333 E2312 E2323 E2313
E1311 E1322 E1333 E1312 E1323 E1313

3

7
7
7
7
77
5

„ ƒ‚ …
defD ŒIE


8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

�11
�22
�33
2�12
2�23
2�31

9
>>>>>>=

>>>>>>;
„ ƒ‚ …

defDf�g

: (22)

The existence of a scalar energy function forces IE to
be symmetric since the strains are symmetric; in other
words, W D 1

2
� W IE W � D 1

2
.� W IE W �/T D 1

2
�T W

IET W �T D 1
2
� W IET W � which implies IET D IE.

Consequently, IE has only 21 independent components.
The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many
factors that depend on the material microstructure, it
can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent
parameters. Accordingly, for isotropic materials, we
have two planes of symmetry and an infinite number
of planes of directional independence (two free com-
ponents), yielding

IE
defD

2

6
6
6
66
6
6
6
6
66
6
6
6
66
4

� C 4

3
� � � 2

3
� � � 2

3
� 0 0 0

� � 2
3
� � C 4

3
� � � 2

3
� 0 0 0

� � 2
3
� � � 2

3
� � C 4

3
� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

3

7
7
7
77
7
7
7
7
77
7
7
7
77
5

: (23)

In this case, we have

IE W � D 3�
tr�

3
1C 2��0 ) � W IE W � D 9�

� tr�

3

�2

C2��0 W �0; (24)

where tr� D �ii and �0 D � � 1
3
.tr�/1 is the deviatoric

strain. The eigenvalues of an isotropic elasticity tensor
are .3�; 2�; 2�;�;�;�/. Therefore, we must have
� > 0 and � > 0 to retain positive definiteness of IE.

All of the material components of IE may be spatially
variable, as in the case of composite media.

Material Component Interpretation
There are a variety of ways to write isotropic constitu-
tive laws, each time with a physically meaningful pair
of material values.

Splitting the Strain
It is sometimes important to split infinitesimal strains
into two physically meaningful parts:

� D tr�

3
1C

�
� � tr�

3
1
�
: (25)

An expansion of the Jacobian of the deformation gra-
dient yields J D det.1 C rXu/ � 1 C trrXu C
O.rXu/ D 1C tr�C : : :. Therefore, with infinitesimal
strains, .1 C tr�/d!0 D d!, and we can write tr� D
d!�d!0
d!0

. Hence, tr� is associated with the volumetric

part of the deformation. Furthermore, since �0 defD � �
tr�
3

1, the so-called strain deviator describes distortion
in the material.

Infinitesimal Strain Material Laws
The stress � can be split into two parts (dilatational and
a deviatoric):

� D tr�

3
1C

�
� � tr�

3
1
�

defD �p1C � 0; (26)

where we call the symbol p the hydrostatic pressure
and � 0 the stress deviator. With (24), we write

p D �3 �
� tr�

3

�
and � 0 D 2� �0: (27)

This is one form of Hooke’s law. The resistance to
change in the volume is measured by �. We note that
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. tr�
3

1/0 D 0, which indicates that this part of the stress
produces no distortion.

Another fundamental form of Hooke’s law is

� D E

1C �
�
�C �

1� 2� .tr�/1
�
; (28)

and the inverse form

� D 1C �
E

� � �

E
.tr� /1 : (29)

To interpret the material values, consider an idealized
uniaxial tension test (pulled in the x1 direction induc-
ing a uniform stress state) where �12 D �13 D �23 D 0,
which implies �12 D �13 D �23 D 0. Also, we have
�22 D �33 D 0. Under these conditions, we have
�11 D E�11 and �22 D �33 D ���11. Therefore, E ,
Young’s modulus, is the ratio of the uniaxial stress to
the corresponding strain component. The Poisson ratio,
�, is the ratio of the transverse strains to the uniaxial
strain.

Another commonly used set of stress-strain forms is
the Lamé relations:

� D 	.tr�/1C 2�� or

� D � 	

2�.3	C 2�/.tr� 1/C �

2�
: (30)

To interpret the material values, consider a homoge-
neous pressure test (uniform stress) where �12 D �13 D
�23 D 0, and where �11 D �22 D �33. Under these
conditions, we have

� D 	C 2
3
� D E

3.1� 2�/ and � D E

2.1C �/ ;
(31)

and consequently,

�

�
D 2.1C �/
3.1 � 2�/ : (32)

We observe that �
�
! 1 implies � ! 1

2
and �

�
! 0

implies ) � ! �1. Therefore, since both � and �
must be positive and finite, this implies �1 < � <

1=2 and 0 < E < 1. For example, some polymeric
foams exhibit � < 0, steels � � 0:3, and some forms of
rubber have � ! 1=2. We note that 	 can be positive
or negative. For more details, see Malvern [3], Gurtin
[2], and Chandrasekharaiah and Debnath [1].
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Synonyms

Linear optimization (LP)

Short Definition

The Linear Programming Problem (LP) is the problem
of maximizing or minimizing a linear function of one
or more, and typically thousands of, variables subject
to a similarly large number of equality and/or inequal-
ity constraints.

Description

Although Leonid Kantorovich [3] is generally credited
with being the first to recognize the importance of
linear programming as a tool for solving many practical
operational problems, much credit goes to George
Dantzig for independently coming to this realization
a few years later (see [1, 2]). Originally, most appli-
cations arose out of military operations. However, it
was quickly appreciated that important applications
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appear in all areas of science, engineering, and business
analytics.

A problem is said to be in symmetric standard form
if all the constraints are inequalities and all of the
variables are nonnegative:

maximize cT x

subject to Ax � b
x � 0:

(1)

Here, A is an m 	 n matrix whose .i; j /-th element
is ai;j , b is an m-vector whose i -th element is bi ,
and c is an n-vector whose j -th element is cj . The
linear function cT x is called the objective function. A
particular choice of x is said to be feasible if it satisfies
the constraints of the problem.

It is easy to convert any linear programming prob-
lem into an equivalent one in standard form. For
example, any greater-than-or-equal-to constraint can
be converted to a less-than-or-equal-to constraint by
multiplying by minus one, any equality constraint can
be replaced with a pair of inequality constraints, a
minimization problem can be converted to maximiza-
tion by negating the objective function, and every
unconstrained variable can be replaced by a difference
of two nonnegative variables.

Duality
Associated with every linear programming problem is
a dual problem. The dual problem associated with (1)
is

minimize bT y

subject to AT y � c
y � 0:

(2)

Written in standard form, the dual problem is

�maximize �bT y
subject to �AT y � �c

y � 0 :

From this form we see that the dual of the dual is the
primal. We also see that the dual problem is in some
sense the negative-transpose of the primal problem.

The weak duality theorem states that, if x is feasible
for the primal problem and y is feasible for the dual
problem, then cT x � bT y. The proof is trivial: cT x �
yT Ax � yT b. The weak duality theorem is useful
in that it provides a certificate of optimality: if x is
feasible for the primal problem and y is feasible for

the dual problem and cT x D bT y, then x is optimal
for the primal problem and y is optimal for the dual
problem.

There is also a strong duality theorem. It says that,
if x is optimal for the primal problem, then there exists
a y that is optimal for the dual problem and the two
objective function values agree: cT x D bT y.

All algorithms for linear programming are based on
simultaneously finding an optimal solution for both the
primal and the dual problem (or showing that either
that the primal problem is infeasible or unbounded).
The value of the dual is that it proves that the primal
solution is optimal.

Slack Variables and Complementarity
It is useful to introduce slack variables into the primal
and dual problems so that all inequalities are simple
nonnegativities:

Primal Problem:

maximize cT x

subject to Ax C w D b
x;w � 0:

Dual Problem:

minimize bT y

subject to AT y � z D c
y; z � 0:

It is trivial to check that .c C z/T x D yT Ax D
yT .b � w/. Hence, if x and w are feasible for the
primal problem and y and z are feasible for the dual
problem and cT x D bT y, then it follows that x is
optimal for the primal, y is optimal for the dual and
zT x C yTw D 0. Since all of the terms in these inner
products are nonnegative, it follows that

zj xj D 0 for all j and yiwi D 0 for all i :

This condition is called complementarity.

Geometry
The feasible set is an n-dimensional polytope de-
fined by the intersection of n C m halfspaces where
each halfspace is determined either by one of the
m constraint inequalities, Ax � b, or one of the
n nonnegativity constraints on the variables, x �
0. Generally speaking, the vertices of this polytope
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correspond to the intersection of n hyperplanes defined
as the boundaries of a specific choice of n out of the
n C m halfspaces. Except in degenerate cases, the
optimal solution to the LP occurs at one of the vertices.

Ignoring, momentarily, which side of a hyperplane
is feasible and which is not, the n C m hyperplanes
generate up to .n C m/Š=nŠmŠ possible vertices cor-
responding to the many ways that one can choose n
hyperplanes from the n C m. Assuming that these
points of intersection are disjoint one from the other,
these points in n-space are called basic solutions. The
intersections that lie on the feasible set itself are called
basic feasible solutions.

Simplex Methods
Inspired by the geometric view of the problem, George
Dantzig introduced a class of algorithms, called sim-
plex methods, that start at the origin and repeatedly
jump from one basic solution to an adjacent basic
solution in a systematic manner such that eventually
a basic feasible solution is found and then ultimately
an optimal vertex is found.

With the slack variables defined, the problem has
n C m variables. As the slack variables w and the
original variables x are treated the same by the simplex
method, it is convenient to use a common notation:

x  �
�
x

w

	
:

A basic solution corresponds to choosing n of these
variables to be set to zero. The m equations given by

Ax C w D b (3)

can then be used to solve for the remainingm variables.
Let N denote a particular choice of n of the n C m

indices and let B denote the complement of this set
(so that B [ N D f1; : : : ; n C mg). Let xN denote
the n-vector consisting of the variables xj , j 2 N .
These variables are called nonbasic variables. Let
xB denote the m-vector consisting of the rest of the
variables. They are called basic variables. Initially,
xN D Œx1 � � � xn
T and xB D ŒxnC1 � � � xnCm
T
so that (3) can be rewritten as

xB D b �AxN : (4)

While doing jumps from one basic solution to another,
this system of equations is rearranged so that the basic
variables always remain on the left and the nonbasics
appear on the right. Down the road, these equations
become

xB D x�
B � B�1NxN (5)

whereB denotes them	m invertible matrix consisting
of the columns of the matrix ŒA I 
 associated with
the basic variables B, N denotes those columns of that
matrix associated with the nonbasic variables N , and
x�
B D B�1b. Equation (5) is called a primal dictionary

because it defines the primal basic variables in terms of
the primal nonbasic variables. The process of updating
equation (5) from one iteration to the next is called a
simplex pivot.

Associated with each dictionary is a basic solution
obtained by setting the nonbasic variables to zero and
reading from the dictionary the values of the basic
variables

xN D 0 and xB D x�
B:

In going from one iteration to the next, a single
element of N , say j �, and a single element of B, say
i�, are chosen and these two variables are swapped in
these two sets. The variable xj� is called the entering
variable and xi� is called the leaving variable.

In complete analogy with the primal problem, one
can write down a dual dictionary and read off a dual
basic solution. The initial primal/dual pair had a sym-
metry that we called the negative-transpose property.
It turns out that this symmetry is preserved by the
pivot operation. As a consequence, it follows that pri-
mal/dual complementarity holds in every primal/dual
basic solution. Hence, a basic solution is optimal if and
only if it is primal feasible and dual feasible.

Degeneracy and Cycling
Every variant of the simplex method chooses the en-
tering and leaving variables at each iteration with the
intention of improving some specific measure of a
distance either from feasibility or optimality. If such a
move does indeed make a strict improvement at every
iteration, then it easily follows that the algorithm will
find an optimal solution in a finite number of pivots
because there are only a finite number of ways to
partition the set f1; 2; : : : ; n C mg into m basic and n
nonbasic components. If the metric is always making
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a strict improvement, then it can never return to a
place it has been before. However, it can happen that
a simplex pivot can make zero improvement in one
or more iterations. Such pivots are called degenerate
pivots. It is possible, although exceedingly rare, for
simple variants of the simplex method to produce
a sequence of degenerate pivots eventually returning
to a basic solution already visited. If the algorithm
chooses the entering and leaving variables according
to a deterministic rule, then returning once implies
returning infinitely often and the algorithm fails. This
failure is called cycling. There are many safe-guards
to prevent cycling, perhaps the simplest being to add a
certain random aspect to the entering/leaving variable
selection rules. All modern implementations of the
simplex method have anti-cycling safeguards.

Empirical Average-Case Performance
Given the anti-cycling safeguards, it follows that the
simplex method is a finite algorithm. But, how fast is
it in practice? The answer is that, on average, most
variants of the simplex method take roughly order
min.n;m/ pivots to find an optimal solution. Such
average case performance is about the best that one
could hope for and accounts for much of the practical
usefulness of linear programming in solving important
everyday problems.

Worst-Case Performance
One popular variant of the simplex method assumes
that the initial primal dictionary is feasible and, at each
iteration, selects for the entering variable the non-basic
variable that provides the greatest rate of increase of
the objective function and it then chooses the leaving
variable so as to preserve primal feasibility. In 1972,
Klee and Minty [6] constructed a simple family of LPs
in which the n-th instance involved n variables and a
feasible polytope that is topologically equivalent to an
n-cube but for which the pivot rule described above
takes short steps in directions of high rate of increase
rather than huge steps in directions with a low rate of
increase and in so doing visits all 2n vertices of this
distorted n-cube in 2n�1 pivots thus showing that this
particular variant of the simplex method has exponen-
tial complexity. It is an open question whether or not
there exists some variant of the simplex method whose
worst-case performance is better than exponential.

Interior-Point Methods
For years it was unknown whether or not there existed
an algorithm for linear programming that is guaranteed
to solve problems in polynomial time. In 1979, Leonid
Khachiyan [5] discovered the first such algorithm.
But, in practice, his algorithm was much slower than
the simplex method. In 1984, Narendra Karmarkar
[4] developed a completely different polynomial time
algorithm. It turns out that his algorithm and the many
variants of it that have appeared over time are also
highly competitive with the simplex method.

The class of algorithms inspired by Karmarkar’s
algorithm are called interior-point algorithms. Most
implementations of algorithms of this type belong to
a generalization of this class called infeasible interior-
point algorithms. These algorithms are iterative algo-
rithms that approach optimality only in the limit – that
is, they are not finite algorithms. But, for any � > 0,
they get within � of optimality in polynomial time.
The adjective “infeasible” points to the fact that these
algorithms may, and often do, approach optimality
from outside the feasible set. The adjective “interior”
means that even though the iterates may be infeasible,
it is required that all components of all primal and dual
variables be strictly positive at every iteration.

Complexity
In the worst case, Karmarkar’s algorithm requires on
the order of

p
n log.1=�) iterations to get within � of

an optimal solution. But, an iteration of an interior-
point method is more computationally intensive
(order n3) than an iteration of the simplex method
(order n2). Comparing arithmetic operations, one gets
that interior-point methods require on the order of
n3:5 log.1=�) arithmetic operations in the worst case,
which is comparable to the average case performance
of the simplex method.
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Glossary/Definition Terms

Direct scattering problem Problem of determining
the total acoustic or electromagnetic field from the
knowledge of the geometrical and physical proper-
ties of the scatterer.

Inverse scattering problem Problem of recovering
the geometrical and physical properties of an in-
homogeneity for the knowledge of the acoustic or
electromagnetic scattered field.

Ill-posed problem In the sense of Hadamard, it is
a problem whose solution does not exist unique or
does not depend continuously on the data.

Far-field pattern In the asymptotic factorization of
the far-field pattern, it is the term depending just on
the observation angle.

Far-field operator Linear intergral operator whose
intergral kernel is the far-field pattern.

Hankel function Complex function which is a linear
combination of Bessel functions.

Far-field equation Linear integral equation relating
the far-field operator with the far-field pattern of the
field generated by a point source.

Wavenumber Real positive number given by the
ratio between 2� and the wavelength of the incident
wave.

Refractive index Complex-valued function where
the real part is proportional to the electrical
permittivity and the imaginary part is proportional
to the electrical conductivity.

Herglotz wave function Wave function which is a
weighted linear superposition of plane waves.

Tikhonov regularization Method for the solution of
linear ill-posed problems based on the minimization
of a convex functional with L2 penalty term.

L2 Hilbert space Linear space made of functions
with bounded L2 norm.

Maxwell equations The set of four equations de-
scribing classical electrodynamics.

Lippmann-Schwinger equation Integral equation at
the basis of both classical and quantum scattering.

Poynting vector Vector field provided by the outer
product between the electric and magnetic fields.

Short Definition

The linear sampling method (LSM) is a linear visual-
ization method for solving nonlinear inverse scattering
problems.

Description

Inverse Scattering Methods
Electromagnetic or acoustic scattering is a physical
phenomenon whereby, in the presence of an inhomo-
geneity, an electromagnetic or acoustic incident wave
is scattered and the total field at any point of the space
is written as the sum of the original incident field and
the scattered field. The direct scattering problem is the
problem of determining this total field starting from the
knowledge of the geometrical and physical properties
of the scatterer. On the contrary, the inverse scattering
problem is the problem of recovering information on
the inhomogeneity from the knowledge of the scattered
field. Solving inverse scattering problems is partic-
ularly challenging for two reasons. First, all inverse
scattering problems significant in applications belong
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to the class of the so-called ill-posed problems in the
sense of Hadamard [1], and therefore, any reliable
approach to their solution must face at some stage
issues of uniqueness and numerical stability. Second,
inverse scattering problems are often nonlinear, and
there are physical conditions notably significant in the
applied sciences where such nonlinearity is genuine
and cannot be linearized by means of weak-scattering
approximations.

Most computational approaches for the solution of
inverse scattering problems can be divided into three
families: (1) nonlinear optimization schemes, where
the restoration is performed iteratively from an ini-
tial guess of the position and shape of the scatterer;
(2) weak-scattering approximation methods, where a
linear inverse problem is obtained by means of low-
or high-frequency approximations; and (3) qualitative
methods, which provide visualization of the inhomo-
geneity but are not able to reconstruct the point val-
ues of the scattering parameters. The linear sampling
method (LSM) [2–4] is, historically, the first qualitative
method, the most theoretically investigated, and the
most experimentally tested. In this approach, a linear
integral equation of the first kind is written for each
point of a computational grid containing the scatterer,
the integral kernel of such equation being the far-
field pattern of the scattered field, and the right-hand
side being an exactly known analytical function. This
integral equation is approximately solved for each
sampling point by means of a regularization method
[5], and the object profile is recovered by exploiting
the fact that the norm of this regularized solution blows
up when the sampling point approaches the boundary
from inside.

The main advantages of the linear sampling method
are that it is fast, simple to implement, and not particu-
larly demanding from a computational viewpoint. The
method of course has also some disadvantages. The
main one is that it only provides a visualization of the
support of the scatterer and it is not possible to infer
information about the point values of the refractive
index.

Formulation of the Linear Sampling Method
As a test case, consider the two-dimensional scattering
problem [4, 6] of determining u D u.� I / 2 C2.R2 n
@D/ \ C1.R2/ such that

8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

�u.x/C k2 n.x/ u.x/ D 0 for x2R2 n @D
u.x/ D eikx� Od C us.x/ for x 2 R2

lim
r!1

�p
r



@us

@r
� ikus

�	
D 0;

(1)
where D � R2 is a C2-domain, @D is its boundary,
Od D Od./ D .cos ; sin / is the incidence direction,

and k is the wavenumber; n.x/ is the refractive index

n.x/ WD 1

"B

�
".x/C i

�.x/

!

	
8x 2 R2; (2)

where i D p�1 and ! denote the angular frequency of
the wave and ".x/ and �.x/ are the electrical permittiv-
ity and conductivity, respectively. We assume that ".x/
is uniform in R2n ND and equal to the background value
"B > 0, while � D 0 in the same region.

For each incidence direction Od , there exists a unique
solution to problem (1) [6], and the corresponding scat-
tered field us D us.� I / has the following asymptotic
behavior (holding uniformly in all directions Ox WD
x=jxj):

us.xI /D e
ikr

p
r

u1.'I /CO
�
r�3=2� as rDjxj!1;

(3)

where .r; '/ are the polar coordinates of the obser-
vation point x and the function u1 D u1.� I / 2
L2Œ0; 2�
 is known as the far-field pattern of the
scattered field us .

Define the linear and compact far-field operator
F W L2Œ0; 2�
 ! L2Œ0; 2�
 corresponding to the
inhomogeneous scattering problem (1) as

.Fg/.'/ WD
Z 2�

0

u1.'; /g./d 8g 2 L2Œ0; 2�
:
(4)

The operator F is injective with dense range if k2 is
not a transmission eigenvalue [7].

Next consider the outgoing scalar field

ˆ.x; z/ D i

4
H
.1/
0 .kjx � zj/ 8x ¤ z; (5)

generated by a point source located at z 2 R2, where
H
.1/
0 .�/ denotes the Hankel function of the first kind

and of order zero. The corresponding far-field pattern
is given by
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ˆ1.'; z/ D ei�=4

p
8�k

e�ik Ox.'/�z;

Ox.'/ WD .cos'; sin '/ 8' 2 Œ0; 2�
: (6)

For each z 2 R2, the far-field equation is defined as

.Fgz/.'/ D ˆ1.'; z/: (7)

The linear sampling method is inspired by a general
theorem [7], concerning the existence of �-approximate
solutions to the far-field equation and their qualitative
behavior. According to this theorem, if z 2 D, then for
every � > 0, there exists a solution g�z 2 L2Œ0; 2�
 of
the inequality

��Fg�z �ˆ1.�; z/
��
L2Œ0;2�


� � (8)

such that for every z� 2 @D,

lim
z!z�

��g�z
��
L2Œ0;2�


D 1 and lim
z!z�

��vg�z
��
L2.D/

D 1;
(9)

where vg�z is the Herglotz wave function with kernel g�z .
If z … D, the approximate solution remains unbounded.

On the basis of this theorem, the algorithm of the
linear sampling method may be described as follows
[3]. Consider a sampling grid that covers a region con-
taining the scatterer. For each point z of the grid, com-
pute a regularized solution g˛�.z/ of the (discretized)
far-field equation (7) by applying Tikhonov regulariza-
tion coupled with the generalized discrepancy principle
[5]. The boundary of the scatterer is visualized as the
set of grid points in which the (discretized)L2-norm of
g˛�.z/ becomes mostly large.

Computational Issues
The main drawback of this first formulation of the LSM
is that the regularization algorithm for the solution
of the far-field equation is applied point-wise, i.e.,
a different regularization parameter must be chosen
for each sampling point z. A much more effective
implementation is possible by formulating the method
in a functional framework which is the direct sum of
many L2 spaces. The first step of this formulation
is to observe that, in real experiments, the far-field
pattern is measured for P observation angles f'igP�1

iD0
and Q incidence angles fj gQ�1

jD0 , i.e., for observation
directions f Oxi D .cos'i ; sin 'i/gP�1

iD0 and incidence di-

rections fdj D .cos j ; sin j /gQ�1
jD0 . In the following,

P D Q D N and 'i D i i D 0;N�1. These values
are placed into the far-field matrix F, whose elements
are defined as

Fij WD u1. Oxi ; dj /: (10)

In practical applications, the far-field matrix is affected
by the measurement noise, and therefore, only a noisy
version Fh of the far-field matrix is at disposal, such
that

Fh D FCH; (11)

where H is the noise matrix with kHk � h. Further-
more, for each z D r.cos ; sin / 2 Z containing the
scatterer,

˚1.z/ WD
ei �4p
8�k

�
e�ikr cos.'0� /; : : : ; e�ikr cos.'N�1� /�T

:

(12)

Therefore, the one-parameter family of linear integral
equations (7) can be replaced by the one-parameter
family of ill-conditioned square linear systems

Fhg.z/ D N

2�
˚1.z/: (13)

Then consider the direct sum of Hilbert spaces:

�
L2.Z/

�N WD L2.Z/˚ � � � ˚L2.Z/
„ ƒ‚ …

N times

; (14)

and define the linear operator Fh W
�
L2.Z/

�N !
�
L2.Z/

�N
such that

ŒFhg.�/
 .�/ WD
8
<

:

N�1X

jD0
.Fh/ij gj .�/

9
=

;

N�1

iD0

8g.�/ 2 �L2.Z/�N ; (15)

where the .Fh/ij are the elements of the noisy far-field
matrix. This allows one to express the infinitely many
algebraic systems (13) as the single functional equation
in ŒL2.Z/
N
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ŒFhg.�/
.�/ D N

2�
˚1.�/; (16)

where ˚1.�/ is the element in ŒL2.Z/
N trivially
obtained from ˚1.z/ simply regarding z as a variable
on Z instead of a fixed point in R2. The regularization
of this equation occurs in a way which is indepen-
dent of z and therefore provides a single value of
the regularization parameter (explicitly, the regularized
solution of this equation can be computed by means
of the singular system of the far-field matrix). With
this no-sampling implementation of the LSM [8] and
by means of a conventional personal computer, two-
dimensional scatterers can be visualized in few seconds
and complicated three-dimensional objects in a few
minutes.

Physical Interpretation
The far-field equation at the basis of the LSM is not an
equation of mathematical physics, in the sense that it
cannot be derived as a consequence of general physical
principles (as it happens, e.g., in the case of Maxwell
equations or of the Lippmann-Schwinger equation).
However, energy conservation can be utilized to ex-
plain the link between the approximate solution of the
far-field equation described in the general theorem and
the regularized solutions introduced in the LSM. In a
local framework,Fg�z �ˆ1.�; z/ is the far-field pattern
of the radiating field defined as

w�z .x/ WD
Z 2�

0

us.x; /g�z ./d�ˆ.x; z/ 8x2R2nD:
(17)

The (time-averaged) Poynting vector field associated
to this field and its flow lines are then considered.
It is easy to show that if these flow lines go reg-
ularly from a neighborhood of the sampling point
z up to infinity, then

�
�g�z

�
�
L2Œ0;2�


blows up when z
approaches the boundary of the scatterer from inside
and is unbounded when z is outside [9]. This holds, in
particular, for Tikhonov-regularized solutions g˛�.z/ of
the far-field equation, provided that the regularization
parameter ˛�.z/ is chosen, as is always possible, in
such a way that

�
�Fg˛�.z/ �ˆ1.�; z/

�
�
L2Œ0;2�


� �,
for a nonvanishing (but small enough) �. It must be
pointed out that this interpretation is based on an
a posteriori analysis: the performances of the LSM
are related to the behavior of the flow lines of the

Poynting vector, but such behavior is numerically ob-
served and not theoretically predicted. To provide a rig-
orous mathematical justification of the LSM, it would
be necessary to deduce the geometric properties of
these flow lines a priori, i.e., starting from the knowl-
edge of the scattering conditions.

Conclusions
The LSM represents an effective approach to inverse
scattering problems. It provides fast visualizations of
the scatterer’s profile by requiring the solution of a
functional equation (in its no-sampling implementa-
tion), and it does not need accurate initializations to
work properly. Its main applications are concerned
with nondestructive testing and medical imaging, in
the case of nonlinear prototypal diagnostic procedures
like microwave tomography. The intrinsic drawback of
the LSM is the fact that it cannot recover point values
of the physical parameters describing the scatterer.
This limitation can be overcome by integrating the
LSM with iterative schemes that are able to point-
wise reconstruct these parameters (e.g., the electrical
conductivity and permittivity in the case of electro-
magnetic scattering) and that, in order to work, need
to be initialized by means of some approximate guess
of the shape and dimension of the scatterer. In this
hybrid approach [10], the linear sampling method can
be utilized to obtain such initialization in a computa-
tionally effective way, and quantitative reconstructions
are provided by the iterative inverse scattering scheme.
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Linear Scaling Methods

Carlos J. Garcı́a-Cervera
Mathematics Department, University of California,
Santa Barbara, CA, USA

Definition

By linear scaling methods we understand numerical
methodologies that provide an approximation to the
solution of a given problem within a prescribed ac-
curacy with computational cost that scales linearly
with the number of degrees of freedom or variables in
the system. Linear scaling methods play a significant
role in large-scale scientific computing. However, it
is often the case that even linear scaling algorithms
are not computationally feasible for such large-scale
problems, and sublinear scaling methods are required.

Linear scaling methods have a long history in nu-
merical analysis, and the focus of this entry will be on
linear scaling methods as they apply to computational
chemistry and molecular modeling. We begin with a
description of some of the linear scaling methodolo-
gies developed in the context of Kohn-Sham density
functional theory (DFT). These algorithms focus on
the computation of electronic structures. These provide
the electronic density that can be used to obtain the in-
teratomic forces via the Hellmann-Feynman theorem.
The efficient evaluation of these forces requires fast
summation techniques for particle interactions. More
general linear and sublinear scaling methodologies that
have been developed for multiscale modeling will be
discussed as well.

Linear Scaling Methods
in Kohn-ShamDFT

In Kohn-Sham DFT, the energy of a system on Na
atoms, with nuclei located at Rj , j D 1; : : : ; Na, and
atomic chargeZj , is written as [1]

EKSŒ�IR
 D 1

2

NX

iD1

Z

R3

jr i j2 dxC FH Œ�
C FXC Œ�


C
Z

˝

V.x/�.x/ dxC Vnn: (1)

The first term in (1) is the kinetic energy, and the other
contributions to the energy are Hartree, exchange and
correlation, external potential energies, and interionic
interactions, respectively.

The Hartree energy describes the Coulombic inter-
actions between electrons:

FH Œ�
 D 1

2

Z

˝

Z

˝

�.x/�.y/
jx � yj dx dy: (2)

The exchange and correlation energy, FXC Œ�
, intro-
duces corrections to the energy that derive from us-
ing the noninteracting electron approximation for the
kinetic and Hartree energies. Although the expression
for the total energy in (1) is exact, FXC Œ�
 remains
unknown. A number of approximations have been
developed [2], but for illustration purposes, we will
adopt here the local density approximation (LDA) [1]:
FXC Œ�
 D

R
�".�/.

The last two terms in energy (1) are the effect
of the external potential and the interatomic energy,
respectively. In principle,

V.x/ D �
NaX

jD1

Zj

jx �Rj j ; (3)

and

Vnn D 1

2

NaX

i;jD1
i¤j

ZiZj

jRi �Rj j : (4)

However, a further reduction can be achieved by mak-
ing use of pseudopotentials [3–6]: The core electrons
and the nuclei are treated as a unit which interacts with
the valence electrons through the pseudopotential v.x/.
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In what follows � will be considered to be the density
of the valence electrons only.

Minimizing the energy (1) under the orthogonality
constraint for the orbitals leads to the Kohn-Sham
equations, the system of nonlinear eigenvalue problems



�1
2
�C VeffŒ�
I

�
 i D

NX

jD1
	ij  j ;

i D 1; 2; : : : ; N I � D
NX

iD1
j i j2; (5)

where I is the identity operator, Veff is the variational
derivative of the energy with respect to the density,

VeffŒ�
 D V.x/C
Z

�.y/
jx � yj dyC ".�/C �"0.�/; (6)

and 	ij are Lagrange multipliers associated to the
orthogonality constraints.

The traditional self-consistent approach [1] for the
solution of this eigenvalue problem consists of two
nested iterations: In the inner iteration, the orbitals
f j gNjD1 are obtained by a process of diagonaliza-
tion and orthogonalization; in the outer iteration, the
electron density is updated until self-consistency is
reached. The diagonalization and/or orthogonalization
procedure scales typically as O.N3/, which is pro-
hibitively expensive for relatively small problems.

A number of new methodologies have been pro-
posed for the solution of (6), which attempt to exploit
the locality of the problem in order to reduce the
computational complexity [7]. Locality, in quantum
mechanics, refers to the property that a small distur-
bance in a molecule only has a local effect in the
electron density, a phenomenon coined by W. Kohn as
nearsightedness [8].

Localization
The localization properties of quantum systems are
discussed in the entry � Solid State Physics, Berry
Phases and Related Issues, where representations in
terms of Bloch and Wannier functions are described.
Due to its localization properties, Wannier functions
have often been used in the development of linear
scaling methods for Kohn-Sham DFT.

One of the first implementations of Wannier func-
tions in DFT codes was carried out by Marzari and
Vanderbilt, who defined what are known as maximally
localized wannier functions (MLWF) [9]. Given a
family of Bloch functions f n;kg for 1 � n � N ,
let Vk D span fun;kg, where k 2 BZ, the first
Brillouin zone. For each space Vk, we can construct
another orthonormal basis via an orthonormal trans-
formation U k. Given this family of bases of Vk, we
can construct corresponding family of Wannier func-
tions. Marzari and Vanderbilt constructed an optimal
set of Wannier functions by minimizing the spread
of the Wannier functions associated to each family
of orthonormal transformation fUkgk2BZ , among all
possible such transformations:

fU �
k g D arg min

U

NX

nD1
< jxj2 >n;U �j < x >n;U j2:

(7)

This concept was generalized to the non-orthogonal
case in [10]: Given a linear space V D span f j gNjD1
of dimension N , and a given smooth weight function
w � 0, the optimally localized non-orthogonal wave
function e is defined as

e D arg min
�2V; k�kD1

Z

R3

w.x/j�.x/j2 dx; (8)

where w.x/ D jx � xcj2p and p is a positive integer
(the maximally localized wannier function corresponds
to the choice p D 1). In the context of the MLWFs,
this would be equivalent to considering not only or-
thonormal transformations, but any automorphism of
V: As a consequence, the admissible space is larger
and therefore the non-orthogonal wave functions have
better localization properties than orthogonal Wannier
functions.

Linear Scaling Methods for Kohn-Sham DFT
The main approaches for Kohn-Sham DFT that have
been proposed for linear scaling computations can be
divided into the following categories:
1. Density matrix-based methods:

(a) Fermi operator expansion
(b) Density-matrix minimization
(c) Optimal basis density-matrix minimization

2. Domain decomposition: divide and conquer

http://dx.doi.org/10.1007/978-3-540-70529-1_278
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3. Localized orbital minimization
4. Localized subspace iteration
A description of some of these methodologies can be
found in the entries � Fast Methods for Large Eigenval-
ues Problems for Chemistry and �Large-Scale Elec-
tronic Structure and Nanoscience Calculations. Further
details about these methods can also be found in the
recent book by Richard Martin [11] and the entry by
Jean-Luc Fattebert. We will focus here on the localized
subspace iteration.

Localized Subspace Iteration
The Kohn-Sham functional in the non-orthogonal for-
mulation is invariant under automorphisms of the space
spanned by the wave functions and the entry by Jean-
Luc Fattebert. The advantage of this viewpoint is
that the specific representation of the subspace is not
relevant, and therefore one can choose a representation
that is convenient. Linear scaling can be achieved by
choosing a representation in terms of optimally local-
ized non-orthogonal wave functions, as described in
[12]. The algorithm is similar to the subspace iteration
method of Zhou, Saad, Tiago, and Chelikowsky [13],
but by avoiding diagonalization and orthogonalization,
linear scaling is achieved.

To find the minimizing subspace, an initial subspace
of dimension N is given and this space is successively
improved by filtering out the components correspond-
ing to the unoccupied states, that is eigenvalues above
the Fermi energy. An efficient filter can be constructed
using Chebyshev polynomials. After the filtering step,
the locality of the representation needs to be reestab-
lished and this is achieved with the algorithm presented
in [10] and described earlier in the section entitled
Localization.

An important component of the algorithm is the
computation of the density, which involves the com-
putation of S�1. A number of approaches that exploit
the decay properties of the off-diagonal components of
S and S�1 have appeared in the literature [14, 15].

Fast Summations Algorithms

In ab-initio molecular dynamics, interatomic forces
are computed using Hellmann-Feynman’s formula
[16, 17] (see also the entry �Large-Scale Computing
for Molecular Dynamics Simulation).

To illustrate some of the fast summation techniques
developed for evaluating interatomic interactions, con-
sider a system of N particles at locations fRj gNjD1,
with charges fZj gNjD1, interacting with each other via
a potential of the form

˚.Rj / D
NX

iD1
i¤j

Zi

jRi �Rj j : (9)

Forces can be evaluated as

� r˚.Rj / D
NX

iD1
i¤j

Zi
Ri � Rj

jRi � Rj j3 : (10)

A direct computation of the summation for each par-
ticle scales as O.N2/ and is therefore too costly for
large-scale simulations. One of the first ideas for fast
computations of summations of the form (9) was the
treecode, introduced by Barnes and Hut [18]. The basic
idea of the algorithm is to consider clusters of particles
at different levels of spatial refinement, or scales, and to
compute the interaction between clusters that are well
separated by using an expansion in terms of multipoles.
Interaction with particles which are nearby is computed
by direct summation. By using a hierarchical decompo-
sition of clusters, the algorithm achieves O.N log2 N /
complexity.

An algorithm with linear scaling, the fast multipole
method (FMM), was introduced by Greengard and
Rokhlin [19]. The algorithm consists of an upward
pass and a downward pass. In the upward pass, mul-
tipole expansions are constructed at the finest level,
and the multipole expansions are coarser levels at
constructed by merging expansions from the next finer
level. In the downward pass, the multipole expansions
are converted into local expansions about the centers
of each box, starting from the coarsest level. These
expansions are used to construct the local expansions at
increasingly finer levels. At the finest level, the expan-
sions contain the contributions of all the sources that
are well separated from the corresponding box and are
evaluated at each target. Finally, the contributions from
nearest neighbors are evaluated by direct summation.

From an algebraic point of view, there have been
some generalizations of this algorithm that exploit the
fact that interactions between clusters that are well

http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_253
http://dx.doi.org/10.1007/978-3-540-70529-1_279
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separated can be approximated well by low-rank ma-
trices [20–22].

Linear Scaling inMultiscale Modeling

Linear scaling algorithms are of particular importance
in atomistic computations, due to the large number
of degrees of freedom involved. Even though these
problems are formulated at the atomistic scale, we are
typically interested in phenomena that occur at much
larger scales. A number of algorithms and method-
ologies have been developed for specific multiscale
problems in which one takes advantage of how the
different scales interact with each other [23, 24].

One of the first attempts to develop a general
methodology for multiscale problems was carried out
by Achi Brandt as a generalization of the multigrid
idea (see [25] for a review).

The multigrid method was originally developed
as an efficient way to solve the algebraic equations
resulting from the discretization of partial differential
equations (PDEs) [26,27]. The main ingredients of the
multigrid method are:
1. A restriction operator that transfers information

from a fine grid to a coarse grid
2. A relaxation or smoothing scheme at each level that

improves the current approximation to the solution
3. An interpolation operator that transfers information

from a coarse grid to a fine grid
The speed of convergence of the multigrid method
depends on the interplay between the relaxation and
interpolation operators and relies on the ability of the
interpolation procedure to approximate the correspond-
ing approximation after relaxation. It has been shown
in a number of cases that the algorithm achieves linear
scaling [28].

The generalization of the multigrid method to multi-
scale problems introduced by Achi Brandt proceeds by
constructing a description of the problem at different
physical scales. As the original multigrid, it consists of
an equilibration scheme on each scale and interscale
operators that transfer information from fine to coarse
scales and from coarse to fine scales. By doing this,
large-scale changes in the system can be effectively
computed using a coarse grid, and the information
gathered from the coarse scales provide large-scale
corrections for the solutions on finer scales. The goal of
these algorithms is to produce a macroscopic numerical

description of the system in situations where a closed-
form differential equation is not available or even ap-
propriate. The computational cost of these procedures
depends on the ability to express the equations at the
coarser levels in terms of the coarse variables and not
in terms of finer-level variables. To achieve this, Brandt
combined the ideas of multigrid with renormalization
techniques in order to efficiently obtain a description
of the system on coarser levels. Applications to fluid
dynamics, optimal control, Monte Carlo, and image
processing among others were also discussed in [25].

For crystalline solids, Chen and Ming developed
an efficient multigrid strategy for molecular mechanics
at zero temperature that does not require the use of
renormalization techniques [29]. The main idea in
their approach is to use a Cauchy-Born (CB) elasticity
model [30] as a coarse grid operator. This is used
within a cascadic multigrid method to provide an
elastically deformed state at every grid level that can
be used as an initial guess for the molecular mechanics
model. To illustrate the approach in [29], consider a
nested sequence of triangulations T0 � T1 � : : : TL �
˝ . The associated finite element spaces Xi are also
nested: X0 � X1 � � � � � XL. The multigrid approach
proceeds as follows:
• Initialization: Let v0 D 0 be the initial guess.

Minimize the CB elasticity problem discretized on
T0 to obtain u0.

• For i D 1; : : : ; L:
– Interpolate vi D I ii�1ui�1, where I ii�1 W Xi�1 !
Xi is the interpolation operator.

– Use vi as initial guess to minimize the CB
problem discretized on Ti .

• At the finest level L, construct the initial atomic
locations by yCB D x C vL.x/ and solve the
molecular mechanics problem using yCB as initial
guess.

This method seems to bypass many local minima
and keeps the original physically relevant minimum,
and appears to be insensitive to the initial conditions
and parameters of the nonlinear solvers. The method
possesses optimal computational complexity for homo-
geneous deformations.

Sublinear Scaling Algorithms

For large-scale problems, even linear scaling algo-
rithms might not be computationally feasible. In such
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cases, it is necessary to resort to sublinear scaling
methods, that is, algorithms whose complexity scales
sublinearly with the size of the system. In fact, from
an algorithmic viewpoint, one of the main purposes of
multiscale modeling is to develop sub-linear scaling
algorithms and some general methodologies, such as
the heterogeneous multiscale method, have been devel-
oped for this purpose [31].

In the case of crystalline solids, an example of a sub-
linear scaling algorithm is the quasicontinuum (QC)
method [32], developed to study systems in which
a plastic deformation only occurs on a vanishingly
small part of the whole sample. In the original QC
method, representative atoms (rep-atoms) are intro-
duced to reduce the number of degrees of freedom in
regions where the atomic displacement is smooth; in
those regions, the energy is approximated by using a
simplified summation rule based on the Cauchy-Born
hypothesis. The methodology has been extended to
the context of orbital-free DFT [33, 34] (see the entry
�Atomistic to Continuum Coupling).

A different approach based on asymptotic analysis
was presented in [35, 36]. Algorithms in the context
of both orbital-free DFT and Kohn-Sham DFT were
presented. The leading order in the asymptotics corre-
sponds to the cauhy-born rule, but the asymptotic anal-
ysis also provides a systematic approach to improve the
accuracy of the model. The main idea is to divide the
localized orbitals of the electrons into two sets: one
set associated with the atoms in the region where the
deformation of the material is smooth (smooth region)
and an other associated with the atoms around the
defects (non-smooth region). The orbitals associated
with atoms in the smooth region can be approximated
accurately using asymptotic analysis, and the results
can then be used to find the orbitals in the non-smooth
region using a formulation of Kohn-Sham DFT for an
embedded system.
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Short Definition

Linear time-independent reaction-diffusion equations
are a class of elliptic partial differential equations in
which the highest derivative is multiplied by a small
positive parameter which can approach zero. As a
result, their solutions usually exhibit boundary layer
behavior for small values of the parameter.

Introduction

We consider the following steady-state, reaction-
diffusion boundary value problem: Find u such that

� "2r2uC bu D f in � � Rn; u D 0 on @�; (1)

where n .D 1; 2; 3/ is the dimension, " 2 .0; 1


is a given parameter, b; f are given functions of
x .D x1; : : : ; xn/, and the domain � is assumed
to be bounded with @� denoting its boundary. The
homogeneous Dirichlet boundary condition is simply
chosen for convenience; other boundary conditions
may be treated as well.

The presence of " in (1) causes the solution to, in
general, have boundary layers, especially as " ! 0.
These are rapidly varying solution components which
have support in a narrow neighborhood along @�. This
is in addition to any other “peculiarities” that might
exist due to the possible lack of smoothness in the data
and/or the domain. In order for the approximation to
be reliable and robust, all features of the solution must
be dealt with so that the accuracy is not affected (in a
negative way) as "! 0.

The approximation to the solution u of (1) may
be obtained in a variety of ways: finite differences,
spectral methods, and finite elements, to name a few.
Although we will focus on the Finite Element Method
(FEM), the guidelines given below apply to most other
methods as well.

Mesh Design Principles

Whether one uses commercial software or writes their
own subroutines, the correct mesh-degree combina-
tions are as follows: If the data is smooth and the

http://dx.doi.org/10.1090/S0065-9266-2012-00659-9
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Linear Time Independent
Reaction Diffusion
Equations: Computation,
Fig. 1 Mesh design for a
circle. Left: Initial h-FEM
mesh or fixed p-FEM mesh.
Right: Refined h-FEM mesh,
in a piecewise uniform
fashion (referred to as
Shishkin mesh [6])

Linear Time Independent
Reaction Diffusion
Equations: Computation,
Fig. 2 Mesh design near a
reentrant corner; the
parameter � controls the
geometric ratio and in this
figure is chosen as 1/2; the
“optimal” value is � � 0:15

O(ε)

O(ε)

σO(ε)

Linear Time Independent Reaction Diffusion Equations: Computation, Fig. 3 Approximate solution to (1) with " D
0:01; b D f D 1
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domain does not contain any corners or abrupt changes
in the boundary conditions, the only feature of the
solution that needs to be resolved is the boundary layer.
For that, it suffices to construct the mesh in a way that
it includes refinement along an O."/ neighborhood of
the boundary. This is due to the fact that the boundary
layer effect is essentially one dimensional, namely, in
the direction normal to the boundary [2–7]. Figure 1
shows an example of such a minimal mesh when the
domain is a circle.

If the domain contains corners, then corner singu-
larities will also be present – this will also be the case
if there is an abrupt change in the boundary conditions
even if the boundary is smooth. The appropriate mesh
to use in this case must also include sufficient refine-
ment near each singularity in order for that feature to
be adequately resolved (as well). This can be achieved
by either the use of a nonuniform (e.g., geometric [1])
refinement near each corner or, alternatively, the use an
adaptive method. For the former, we show in Fig. 2 an
example of such a mesh near a reentrant corner.

In Fig. 3 we show the approximate solution to (1)
with " D 0:01; b D f D 1, when � is an L-
shaped domain. The approximation was obtained with
the p-FEM commercial software package StressCheck
(ESRD, St Louis, MO, USA), using polynomials of
degree p D 8. The mesh contains O."/ refinement
along the boundary as well as geometric refinement
near the reentrant corner as seen in Fig. 2. For more
theoretical and practical considerations, as well as
additional examples from solid mechanics, see [5].
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Description

A liquid represents an extremely complex system. Even
if we limit the analysis to an equilibrium picture, the
liquid can be seen as a large assembly of molecules
undergoing incessant collisions and exchanging energy
among colliding partners and among internal degrees
of freedom. The particles are disordered at large scale,
but often there is a local order that fades away. The
same description can be used also for solutions where
the collection of particles contains at least two types
of molecules, those having a higher molar fraction are
called the solvent, the others the solute. This purely
classical description implicitly contains an essential
component which is intrinsically nonclassical, namely,
the molecular interactions determining the behavior
of the liquid system. A correct description of these
interactionsshouldrequire the introductionofaquantum
mechanical (QM) picture, but it is clear that a detailed
QM description of a liquid is impossible due to the
huge number of interacting molecules to be considered
togetherwiththehugenumberofdifferentconfigurations
of these molecules to be accounted for in order to
get a statistically meaningful picture. There are two
possible strategies commonly adopted to overcome
this problem, either we go back to a fully classical
picture in which a parameterized description of the
intra- and intermolecular interactions is introduced, or
we divide the entire system into two parts, one of larger
interest (e.g., the solute) which is treated at QM level
and the remainder which can be seen as a classical
perturbation. These two strategies correspond to two
alternative computational approaches, the full classical
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Liquid-Phase Simulation: Theory and Numerics of Hy-
brid Quantum-Mechanical/Classical Approaches, Fig. 1
Example of QM/MM and QM/Continuum representations of

typical organic chromophore (Nile Red) within an ethanol
solution. In the last picture, the typical surface mesh used within
the PCM approach is shown

molecularmechanics(MM)andthehybridQM/classical
approaches. In the former, all the molecules are treated
at the same level introducing a classical force field to
represent the intra- and intermolecular interactions [1]
whereas the correct sampling can be obtained using
either a dynamical or a statistical simulation: molecular
dynamics (MD) or Monte Carlo (MC) methods are
commonly used to this scope. By contrast, in the hybrid
QM/classical approach, the solute is treated quantum-
mechanically while the remainder (thesolvent) is treated
classically either using a MM description [7, 12] or a
continuum approximation [13, 15] (see Fig. 1).

Within the continuum approximation, the micro-
scopic nature of the solvent completely disappears and
it is substituted by a macroscopic dielectric medium.
This is clearly an extreme simplification but still can
lead to accurate results of the effect of the environment
on molecular properties and processes if a correct
physical and numerical formulation is used. Moreover,
the use of a dielectric medium also automatically
solves the problem of a correct sampling. In fact,
describing the solvent in terms of its macroscopic
properties (such the dielectric permittivity) in most
cases allows to use a single configuration, that is,
the equilibrated solute within the dielectric, instead of
requiring many solute-solvent configurations as in full
MM or QM/MM formulations.

From this brief introduction, it comes out that the
simulation of the liquid phase remains a challenge.
Many alternative methodologies are available, and they
rapidly change with the progress of the computing
technology. This has the negative consequence that it
is impossible to give an exhaustive overview of the
subject but instead a preliminary choice on the range of
methods which shall be covered has to be done. Due to
the rapid increase of the computational power available
at relatively low cost and of the easiness of use and
accuracy of quantum-chemical softwares, it appears
that hybrid QM/classical methods represent today one
of the most promising strategies to simulate liquids
with the level of details required to evaluate molecular
properties and processes in condensed phase. It is
therefore on this family of methods that we shall almost
exclusively focus in the present contribution.

Hybrid QM/Classical Approaches

As said, the QM/classical strategy collects methods in
which a target subsystem defined as the “solute” is
described at QM level, and a secondary subsystem (“the
solvent”) is, on the contrary, modeled at a classical
level using either a MM force field or a macroscopic
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continuum medium with suitable properties. In both
versions, a fundamental common aspect is present: The
QM part can be modified in its electronic and nuclear
characteristics by the presence of the classical part.
This coupling between the two parts is made possible
by introducing in the QM description of the isolated
solute a new term which represents the effects exerted
by the classical part. In a QM language, this is obtained
by replacing the Hamiltonian operator representing the
solute alone with a new or effective one including an
additional solute-solvent interacting term, namely:

OHeff j� i D
� OH0 C OHenv

�
j� i D E j� i (1)

where OH0 and j� i are the Hamiltonian and the
wavefunction relative to the solute and OHenv is the
solvent induced term. As for isolated molecules,
also the effective Schrödinger equation (1) cannot
be treated without further approximations. What is
important to stress, however, is that the addition
of the new operator OHenv does not change the
formal and the numerical strategy to be used. As
a result, the most commonly used approximations
for isolated systems �Density Functional Theory,
�Quantum Monte Carlo Methods in Chemistry,
�Hartree–Fock Type Methods, �Coupled-Cluster
Methods, are still valid for the liquid phase.
However, the form of OHenv which depends on the
specific version of the QM/classical formulation
used introduces some important specificities. Here
below we briefly summarize the main ones for
each of the two selected families of solvation
methods.

QM/MM
If we adopt a microscopic description in terms of an
MM force field, the effects that the classical part of
the system exert on the QM part are of electrostatic,
repulsive, and dispersive nature. The latter terms are of
short-range character and in most combined QM/MM
methods are described by empirical potentials indepen-
dent of the QM electronic degrees of freedom, thus
not affecting the solute wavefunction. On the con-
trary, the electrostatic contribution, usually depicted in
terms of atomic charges placed on the atoms of the
solvent molecules, will explicitly affect (or polarize)
the solute wavefunction. Its effects will be introduced
in OHenv in terms of an additional one-electron term
which represents the electrostatic energy between a

set of point charges placed in the solvent and a solute
charge distribution generating an electrostatic potential
at the same points. This formulation of the QM/MM
approach, generally indicated as “electrostatic embed-
ding,” differentiates from the more approximated ver-
sion in which the QM–MM electrostatic interaction is
treated on the same footing as the MM–MM electro-
statics (“mechanical embedding”).

To make the solvent effects more complete, in addi-
tion to point charges, we can introduce induced dipoles,
describing each solvent atom (or group of atoms) in
terms of an atomic charge and an atomic polarizability.
As a result, not only the solute will be polarized by
the solvent but also the solvent will respond to the
solute so, to achieve a mutually polarized system. This
formulation of the QM/MM approach is known as
“polarized embedding.”

Within this polarizable QM/MM formulation we
get:

OHenv D OHQM=MM C OHMM (2)

OHQM=MM D OH el
QM=MM C OH pol

QM=MM

D
X

m

qm OV .rm/� 1
2

X

a

�ind
a
OEsolute
a .ra/

(3)

OHMM D OH el
MM C OH pol

MM D
X

m

X

n>m

qmqn

rmn

�1
2

X

a

�ind
a

X

m

qm.ra � rm/

jra � rmj3
(4)

where OV .rm/ and OEsolute
a .ra/ represent the electrostatic

potential and the electric field operators due to the so-
lute electrons and nuclei calculated at the MM sites. On
the other hand, in (4) OH el

MM describes the electrostatic
self-energy of the MM charges, while OH pol

MM represents
the polarization interaction between such charges and
the induced dipoles. We recall that the OH el

MM term
enters in the effective Hamiltonian only as a constant
energetic quantity, while the OH pol

MM contribution explic-
itly depends on the QM wavefunction.

Numerical Aspects of Polarizable MM Approaches
The dipoles induced on each MM polarizable site
can be obtained assuming a linear approximation,

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_247
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_246
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neglecting any contribution of magnetic character
related to the total electric field, and using an isotropic
polarizability for each selected point in the MM part of
the system. The electric field which determines such
dipoles contains a sum of contributions from the solute,
from the solvent point charges, and from the induced
dipole moments themselves. This mutual polarization
between the dipoles can be solved through a matrix
inversion approach, by introducing a matrix equation:

K�ind
c D Ec (5)

where the matrix K is of dimension 3N	 3N, N be-
ing the number of polarizable sites, and the vector
Ec collects the c-th component of the electric field
from the solute and the solvent permanent charge
distribution. The form of matrix K will be determined
uniquely by the position of the polarizable sites and the
polarizability values, namely:

Ki;i D KiCN;iCN D KiC2N;iC2N D 1=˛i
Ki;iCN D Ki;iC2N D KiCN;i D KiCN;iC2N

D KiC2N;i D KiC2N;iCN D 0
KiCmN;jCnN D T kl

i;j

with n;m D 0; 1; 2 and k; l D x; y; z
where the index i and j ¤ i run from 1 to N , and the
dipole field tensor is given by:

Ti;j D 1

r3ij
I � 3

r5ij

2

4
r2x rxry rxrz

ryrx r2y ryrz

rzrx rzry r2z

3

5 (6)

The QM/MM formalism can accommodate almost
any combination of QM and MM methods. The
choice of the QM method follows the same criteria
as in pure QM studies. Essentially, the QM code
must be able to perform the self-consistent field
(SCF) �Hartree–Fock Type Methods treatment in the
presence of the external point-charge (or dipole) field
that represents the MM charge model in the case of
electronic (or polarized) embedding. In practice, many
current QM/MM applications use density-functional
theory (DFT) �Density Functional Theory as the
QM method owing to its favorable computational-
effort/accuracy ratio. Traditionally, semiempirical QM
methods have been most popular, and they remain

important for extensions of QM/MM approaches
to molecular dynamics. The recent development of
linear-scaling for correlation methods has significantly
extended the size of systems that can be treated with
such methods, up to several tens of atoms, and has
made them a very accurate alternative to be coupled
with an MM description of the environment. As far as
the choice of MM method is concerned, all the many
force fields available in the literature can, in principle,
be coupled with a QM description.

QM/Continuum
The analysis of QM/classical methods is less straight-
forward if we adopt a continuum description. The basic
formulation of continuum models requires the solution
of a classical electrostatic problem (Poisson problem):

� Er �
h
".Er/ ErV.Er/

i
D 4��M .Er/ (7)

where �M .Er/ is the solute charge distribution and ".Er/
is the general position-dependent permittivity. If we
assume that the charge distribution is contained in a
molecular cavity C of proper shape and dimension
built within a homogeneous and isotropic solvent, ".Er/
assumes the simple form:

".Er/ D
�
1 Er 2 C
" Er … C (8)

where " is the dielectric constant of the solvent.
Using the definition (8) with the appropriate bound-

ary conditions, the electrostatic problem (7) can be
solved in terms of a potential V which is the sum of the
solute potential plus the contribution due to the reaction
of the solvent (e.g., the polarization of the dielectric),
namely V.Er/ D VM.Er/CV� .Er/. Under the assumption
that the charge distribution is entirely supported inside
the cavity C , an integral representation of the reaction
potential can be derived which introduces a fictitious
(or apparent) charge distribution � on the boundary
between the solute and the solvent, that is, the surface
of the cavity C , � D @C , namely:

V�.Er/ D
Z

�

�.Es/
ˇ
ˇEr � Esˇˇd Es (9)

The surface charge � is solution of an integral equation
on � , that is of an equation of the form [3–5]:

http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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.A�/.Es/ D
Z

�

kA.Es; Es 0/ �.Es 0/ d Es 0 D b�.Es/ 8Es 2 �
(10)

where kA is the Green kernel of some integral operator
A and b� depends linearly on the charge distribution
�M . This formulation has been adopted in different
continuum solvation models, the most famous ones
being the polarizable continuum model (PCM) [15]
(in its different versions) and the conductor-like screen-
ing model (COSMO) [9]. Each different formulation
corresponds to different choices for A, but in all cases,
it is obtained in terms of a specific combination of the
following kernels:

kA.Es; Es 0/ D

8
<̂

:̂

1

jEs�Es 0j
@
@ Ons

1

jEs�Es 0j
@
@ Ons0

1

jEs�Es 0j

(11)

where Ons represents the unit vector normal to the
surface at point Es and pointing toward the dielectric.

Also b� changes according to the different formula-
tion of the model. For instance, the original version of
COSMO is obtained with:

b�.Es/ D �f .�/
Z

IR3

�M .Er 0/
jEs � Er 0j d Er

0 (12)

where f .�/ D .� � 1/=.�C 0:5/.

Numerical Aspects of Polarizable Continuum
Approaches
The reduction of the source of the solvent reaction
potential to a charge distribution limited to a closed sur-
face greatly simplifies the electrostatic problem with
respect to other formulations in which the whole di-
electric medium is considered as source of the reaction
potential. In spite of this remarkable simplification,
the integration of (10) over a surface of complex
shape is computationally challenging. The solutions
are generally based on a discretization of the integral
into a finite number of elements. This discretization
of � automatically leads to a discretization of �.Es/
in terms of point-like charges, namely if we assume
that on each surface element �.Es/ does not significantly
change, its effect can be simulated with that of a point
charge of value q.Esi / D �.Esi /ai where ai is the area
of the surface element i and Esi its representative point.
This numerical method, which can be defined as P0
collocation method, is not the only possible one (e.g., a

Galerkin method could also be used); however, it is the
most natural and easiest to implement for the specific
case of apparent surface charge calculations [14].

The necessary preliminary step in the strategy is
the generation of the surface elements (i.e., the surface
mesh, see Fig. 1) as, once the mesh has been defined,
the apparent charges q are obtained by solving a matrix
equation, of the type

Qq D �RVM (13)

where q and VM are the vectors containing the N
values of the charge and the solute potential at the
surface points, respectively. Q and R are the matrix
analogs of the integral operators introduced in (10) to
obtain the apparent charge distribution � . In particular,
the different kernels reported in the (11) can be written
in terms of the following matrices:

Sij D 1

jEsi � Esj j (14)

Dij D .Esi � Esj / � Onj
jEsi � Esj j3

D�
ij D

.Esj � Esi / � Oni
jEsi � Esj j3

As concerns the diagonal elements of S, D and D�
different numerical solutions have been proposed. In
particular, those commonly used are Sii D k

p
4�=ai

andDii D �.2�CPj¤i Dij aj /=ai where the former
derives from the exact formula of a flat circular element
with k taking into account that the element is spherical,
and the latter becomes exact when the size of all the
elements tends to zero.

The approximation method described above belongs
to the class of boundary element methods (BEM) [2].
BEM follows the same lines as finite element methods
(FEM). In both cases, the approximation space is
constructed from a mesh. In the context of continuum
solvation models, FEM solves the (local) partial dif-
ferential equation (7), complemented with convenient
boundary conditions, a 3D mesh [6, 8], while BEM
solves one of the (nonlocal) integral equations derived
above, on a 2D mesh. In the former case, the resulting
linear system is very large, but sparse. In the latter case,
it is of much lower size, but full.

If we now reintroduce a QM description of the
charge distribution �M in terms of the wavefunction
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which is solution of the (1), we can rewrite the solvent
induced term OHenv as:

OHenv D OHQM=cont D
X

m

q.Esi / OV .Esi / (15)

where q are the solvent apparent charges and OV is
the electrostatic potential operator corresponding to the
solute charge distribution. By comparing (15) with (4),
it might seem that there is a perfect equivalence be-
tween the nonpolarizable part of the QM/MM method
and the QM/continuum one. As a matter of fact this
equivalence is only apparent as the apparent charges
entering in (15) are not external parameters as it is
for the MM charges but they are obtained solving a
matrix equation which depends on the solute charge
distribution. In (4), the induced dipoles �ind

a depend on
the solute charge distribution exactly as the apparent
charges.

The analogies and differences between QM/ Con-
tinuum and QM/MM approaches however are not only
on the methodological aspects of their formulation and
implementation. It is important to recall that the two
approaches also present fundamental specificities from
a physical point of view. By definition, continuum
models introduce an averaged (bulk) description of
the environment effects. This is necessarily reflected
in the results that can be obtained with these meth-
ods. While continuum models can be successfully
applied in all cases in which the environment acts
as a mean-field perturbation, solvent-specific effects
such as hydrogen bondings are not well reproduced.
By contrast, QM/MM methods can properly describe
many specific effects but, at the same time, they cannot
be applied to simulate longer-to-bulk effects if they
are not coupled to a sampling of the configurational
space of the solute–solvent system. For this, a molecu-
lar dynamics (MD) or Monte Carlo (MC) simulation
approach is needed with significant increase of the
computational cost.

Conclusions

Many alternative strategies are available to simulate the
liquid phase, each with its advantages and weaknesses.
Here, in particular, the attention has been focused on
the class of methods which combine a QM description
of the subsystem of interest with a classical one for the
remainder. This hybrid approach is extremely versatile,

we can in fact tune the boundary between the two com-
ponents of the system as well as extend the dimensions
of the classical system and change its description using
either an atomistic (MM) or a continuum approach. In
addition, both QM/MM and QM/continuum methods
can be applied to environments of increasing complex-
ity [10, 11], from standard isotropic and homogeneous
liquids, to gas–liquid or liquid–liquid interfaces and/or
anisotropic liquid crystalline phases, just to quote few.
The most important aspect of these methods, however,
is that the QM approach, even if limited to just a part
of the system, allows for a more accurate description of
all those processes and phenomena which are mostly
based on the electronic structure of the molecules
constituting the liquid. In more details, QM/classical
methods should be preferred over other fully classical
approaches when the interest is not on the properties
of the liquid itself but instead on the effects that the
liquid exerts on a property or a process which can
be localized on a specific part of the system. The
realm of (bio)chemical reactivity in solution as well
as the world of spectroscopies in condensed phase are
examples where QM/classical methods really represent
the most effective approach. Of course there are also
drawbacks; in particular, the computational cost can
increase enormously with respect to classical methods
especially when the QM/Classical approach is cou-
pled to molecular dynamics simulations. Moreover,
the choice of the specific combination of the QM
description and the classical one is not straightforward,
but it has to be carefully chosen on the basis of the
specific problem under investigation and the specific
chemical system of interest. It is however clear that
QM/classical methods represent one of the most pow-
erful approaches to combine accuracy with complexity
while still keeping a physically founded representation
of the main interactions determining the behavior of
the liquids.
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Introduction

Lobatto methods for the numerical integration
of differential equations are named after Rehuel
Lobatto. Rehuel Lobatto (1796–1866) was a Dutch
mathematician working most of his life as an advisor

for the government in the fields of life insurance and of
weights and measures. In 1842, he was appointed
professor of mathematics at the Royal Academy
in Delft (known nowadays as Delft University of
Technology). Lobatto methods are characterized by the
use of approximations to the solution at the two end
points tn and tnC1 of each subinterval of integration
Œtn; tnC1
. Two well-known Lobatto methods based on
the trapezoidal quadrature rule which are often used
in practice are the (implicit) trapezoidal rule and the
Störmer-Verlet-leapfrog method.

The (Implicit) Trapezoidal Rule
Consider a system of ordinary differential equations
(ODEs):

d

dt
y D f .t; y/ (1)

where f W R 	 Rd ! Rd . Starting from y0 at
t0 one step .tn; yn/ 7! .tnC1; ynC1/ of the (implicit)
trapezoidal rule applied to (1) is given by the implicit
relation:

ynC1 D yn C hn

2
.f .tn; yn/C f .tnC1; ynC1//

where hn D tnC1 � tn is the step size. The (im-
plicit) trapezoidal rule is oftentimes called the Crank-
Nicholson method when considered in the context of
time-dependent partial differential equations (PDEs).
This implicit method requires the solution of a sys-
tem of d equations for ynC1 2 Rd that can be
expressed as:

F.ynC1/ WD ynC1 � yn � hn
2
.f .tn; yn/

Cf .tnC1; ynC1// D 0

and which is nonlinear when f .t; y/ is nonlinear in y.
Starting from an initial guess y.0/nC1 � ynC1, the solu-
tion ynC1 can be approximated iteratively by modified
Newton iterations as follows:

y
.kC1/
nC1 D y.k/nC1 C p.k/nC1; Jnp

.k/
nC1 D �F.y.k/nC1/

using, for example, an approximate Jacobian:

Jn D Id � hn
2
Dyf .tn; yn/ � DyF.y

.k/
nC1/:
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Taking Jn D Id leads to fixed-point iterations:

y
.kC1/
nC1 D yn C

hn

2

�
f .tn; yn/C f .tnC1; y.k/nC1/

�
:

The Generalized Newton-Störmer-Verlet-
LeapfrogMethod
Consider now a partitioned system of ODEs:

d

dt
q D v.t; p; q/; d

dt
p D f .t; q; p/ (2)

where v W R 	 Rdq 	 Rdp ! Rdq and f W R 	
Rdq 	Rdp ! Rdp . Starting from .q0; p0/ at t0 one step
.tn; qn; pn/ 7! .tnC1; qnC1; pnC1/ of the generalized
Newton-Störmer-Verlet-leapfrog method applied to (2)
reads:

pnC1=2Dpn C hn

2
f .tn; qn; pnC1=2/;

qnC1Dqn C hn

2

�
v.tn; qn; pnC1=2/

Cv.tnC1; qnC1; pnC1=2/
�
; (3)

pnC1DpnC1=2 C hn

2
f .tnC1; qnC1; pnC1=2/

where hn D tnC1� tn is the step size. The first equation
is implicit for pnC1=2, the second equation is implicit
for qnC1, and the last equation is explicit for pnC1.
When v.t; q; p/ D v.t; p/ is independent of q, and
f .t; q; p/ D f .t; q/ is independent of p the method
is fully explicit. If in addition v.t; q; p/ D v.p/ is
independent of t and q, the method can be simply
expressed as:

pnC1=2Dpn C hn

2
f .tn; qn/;

qnC1Dqn C hnv.pnC1=2/;

pnC1DpnC1=2 C hn

2
f .tnC1; qnC1/:

This explicit method is often applied as follows:

pnC1=2Dpn�1=2 C 1

2
.hn�1 C hn/f .tn; qn/ ;

qnC1Dqn C hnv.pnC1=2/:

Depending on the field of applications, this method
is known under different names: the Störmer method
in astronomy; the Verlet method in molecular dy-
namics; the leapfrog method in the context of time-
dependent PDEs, in particular for wave equations.
This method can be traced back to Newton’s Principia
(1687), see [10].

Lobatto Methods
In this entry, we consider families of Runge-Kutta
(RK) methods based on Lobatto quadrature formulas
whose simplest member is the trapezoidal quadrature
rule. When applied to (1) Lobatto RK methods can be
expressed as follows:

YniDyn C hn
sX

jD1
aij f .tn C cj h; Ynj /

for i D 1; : : : ; s; (4)

ynC1Dyn C hn
sX

jD1
bj f .tn C cj h; Ynj / (5)

where the stage value s satisfies s � 2 and the coeffi-
cients aij ; bj ; cj characterize the Lobatto RK method.
The s intermediate values Ynj for j D 1; : : : ; s are
called the internal stages and can be considered as
approximations to the solution at tn C cj hn, the main
numerical RK approximation at tnC1 D tn C hn is
given by ynC1. Lobatto RK methods are characterized
by c1 D 0 and cs D 1. They can also be considered
in combination with other families of RK methods, for
example, with Gauss methods in the context of certain
systems of differential-algebraic equations (DAEs), see
the section “Lobatto Methods for DAEs” below. The
symbol III is usually found in the literature associated
to Lobatto methods, the symbols I and II being reserved
for the two types of Radau methods. The (implicit)
trapezoidal rule is the simplest member (s D 2) in the
Lobatto IIIA family. The generalized Newton-Störmer-
Verlet-leapfrog method seen above can be interpreted
as a partitioned Runge-Kutta (PRK) resulting from the
combination of the (implicit) trapezoidal rule and the
Lobatto IIIB method for s D 2, see the section “Addi-
tive Lobatto Methods for Split and Partitioned ODEs”
below.
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Families of LobattoMethods

For a fixed value of s, the various families of Lobatto
methods described below all share the same coeffi-
cients bj ; cj of the corresponding Lobatto quadrature
formula.

Lobatto Quadrature Formulas
The problem of approximating a Riemann integral:

Z tnChn

tn

f .t/dt (6)

with f assumed to be continuous is equivalent to the
problem of solving the initial value problem at t D
tn C hn:

d

dt
y D f .t/; y.tn/ D 0

since y.tn C hn/ D
R tnChn
tn

f .t/dt . The integral (6)
can be approximated by using a standard quadrature
formula:

Z tnChn

tn

f .t/dt � hn
 

sX

iD1
bif .tn C cihn/

!

with s node coefficients c1; : : : ; cs , and s weight coef-
ficients b1; : : : ; bs . Lobatto quadrature formulas, also
known as Gauss-Lobatto quadrature formulas in the
literature, are given for s � 2 by a set of nodes and
weights satisfying conditions described hereafter. The
s nodes cj are the roots of the polynomial of degree s:

ds�2

dts�2
.t s�1.1 � t/s�1/:

These nodes satisfy c1 D 0 < c2 < : : : < cs D 1. The
weights bj and nodes cj satisfy the conditionB.2s�2/
where:

B.p/ W
sX

jD1
bj c

k�1
j D 1

k
for k D 1; : : : ; p;

implying that the quadrature formula is of order 2s�2.
There exists an explicit formula for the weights

bj D 1

s.s � 1/Ps�1.2cj � 1/2 > 0

for j D 1; : : : ; s


b1 D bs D 1

s.s � 1/
�

where

Pk.x/ D 1

kŠ2k
dk

dxk

�
.x2 � 1/k�

is the kth Legendre polynomial. Lobatto quadrature
formulas are symmetric, that is their nodes and weights
satisfy:

bsC1�j D bj ; csC1�j D 1 � cj for j D 1; : : : ; s:

For s D 3, we obtain the famous Simpson’s rule:

.b1; b2; b3/D .1=6; 2=3; 1=6/; .c1; c2; c3/D .0; 1=2; 1/:

Procedures to compute numerically accurately the
nodes and weights of high order Lobatto quadrature
formulas can be found in [7] and [23]. The subroutine
GQRUL from the IMSL/MATH-LIBRARY can
compute numerically these nodes and weights.

Lobatto Families
The families of Lobatto RK methods differ only in the
values of their coefficients aij . Various equivalent def-
initions can be found in the literature. The coefficients
aij of these families can be linearly implicitly defined
with the help of so-called simplifying assumptions:

C.q/ W
sX

jD1
aij c

k�1
j D cki

k

for i D 1; : : : ; s and k D 1; : : : ; q;

D.r/ W
sX

iD1
bi c

k�1
i aij D bj

k

�
1 � ckj

�

for j D 1; : : : ; s and k D 1; : : : ; r:

The importance of these simplifying assumptions
comes from a fundamental result due to Butcher,
see [5, 9], saying that a RK method satisfying the
simplifying assumptions B.p/, C.q/, and D.r/ is of
order at least min.p; 2qC2; qCrC1/. The coefficients
aij ; bj ; cj characterizing the Lobatto RK method (4)
and (5) will be displayed below in the form of a table
called a Butcher-tableau:
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c1 D 0 a11 a12 � � � a1;s�1 a1s
c2 a21 a22 � � � a2;s�1 a2s
:::

:::
:::

: : :
:::

:::

cs�1 as�1;1 as�1;2 � � � as�1;s�1 as�1;s
cs D 1 as1 as2 � � � as;s�1 ass

b1 b2 � � � bs�1 bs

In the four main families of Lobatto methods described
below, namely Lobatto IIIA, Lobatto IIIB, Lobatto
IIIC, and Lobatto IIIC�, only one method does not
satisfy the relation C.1/, that is,

sX

jD1
aij D ci for i D 1; : : : ; s;

this is the Lobatto IIIB method for s D 2, see
below. The Lobatto IIIA, IIIB, IIIC, and IIIC�
methods can all be interpreted as perturbed collo-
cation methods [19] and discontinuous collocation
methods [11].

Lobatto IIIA
The coefficients aAij of Lobatto IIIA methods can be
defined byC.s/ (Table 1). They satisfyD.s�2/, aAsj D
bj for j D 1; : : : ; s, and aA1j D 0 for j D 1; : : : ; s.
Lobatto IIIA methods are symmetric and of nonstiff
order 2s � 2. Their stability function R.z/ is given
by the .s � 1; s � 1/-Padé approximation to ez. They
are A-stable, but not L-stable since R.1/ D .�1/sC1.
They are notB-stable and thus not algebraically stable.
They can be interpreted as collocation methods. Since
the first internal stage Yn1 of Lobatto IIIA methods is
explicit (Yn1 D yn and f .tn C c1hn; Yn1/ D f .tn; yn/)
and the last internal stage satisfies Yns D ynC1 (and
thus f .tnC1; ynC1/ D f .tn C cshn; Yns/), these meth-
ods are comparable in terms of computational work to
Gauss methods with s � 1 internal stages since they
also have the same nonstiff order 2s � 2. For s D 2,
we obtain the (implicit) trapezoidal rule which is often
expressed without its two internals stages Yn1; Yn2 since
they are respectively equal to yn and ynC1. The method
for s D 3 is sometimes called the Hermite-Simpson (or
Clippinger-Dimsdale) method and it has been used, for
example, in trajectory optimization problems [4]. This
method can be equivalently expressed in a compact
form as:

Yn2D 1
2
.yn C ynC1/

Chn
8
.f .tn; yn/� f .tnC1; ynC1//;

ynC1Dyn C hn

6

�
f .tn; yn/C 4f .tnC1=2; Yn2/

Cf .tnC1; ynC1/
�

where tnC1=2 D tn C hn=2. It can be even further
reduced by rewriting

ynC1Dyn C hn

6
.f .tn; yn/C f .tnC1; ynC1//

C2hn
3
f



tnC1=2;

1

2
.yn C ynC1/

Chn
8
.f .tn; yn/� f .tnC1; ynC1//

�
:

Lobatto IIIB
The coefficients aBij of Lobatto IIIB methods can be
defined by D.s/ (Table 2). They satisfy C.s � 2/,
aBi1 D b1 for i D 1; : : : ; s and aBis D 0 for i D 1; : : : ; s.
Lobatto IIIB methods are symmetric and of nonstiff
order 2s � 2. Their stability function R.z/ is given by
the .s � 1; s � 1/-Padé approximation to ez. They are
A-stable, but not L-stable since R.1/ D .�1/sC1.
They are not B-stable and thus not algebraically
stable. The coefficients aBij can also be obtained
from the coefficients aAij of Lobatto IIIA through the
relations:

bia
B
ij C bj aAj i � bibj D 0 for i; j D 1; : : : ; s;

or

aBij D bj � aAsC1�i;sC1�j for i; j D 1; : : : ; s:

Lobatto IIIC
The coefficients aCij of Lobatto IIIC methods can be
defined by aCi1 D b1 for i D 1; : : : ; s and C.s � 1/
(Table 3). They satisfy D.s � 1/ and aCsj D bj for j D
1; : : : ; s. Lobatto IIIC methods are of nonstiff order
2s�2. They are not symmetric. Their stability function
R.z/ is given by the .s � 2; s/-Padé approximation to
ez. They are L-stable. They are algebraically stable
and thus B-stable. They are excellent methods for stiff
problems.
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Lobatto Methods, Table 1 Coefficients of Lobatto IIIA for s D 2; 3; 4; 5

0 0 0

1
1

2

1

2

AsD2

1

2

1

2

0 0 0 0

1

2

5

24

1

3
� 1

24

1
1

6

2

3

1

6

AsD3

1

6

2

3

1

6

0 0 0 0 0

1

2
�

p
5

10

11C p
5

120

25� p
5

120

25� 13
p
5

120

�1C p
5

120

1

2
C

p
5

10

11� p
5

120

25C 13
p
5

120

25C p
5

120

�1� p
5

120

1
1

12

5

12

5

12

1

12

AsD4

1

12

5

12

5

12

1

12

0 0 0 0 0 0

1

2
�

p
21

14

119C 3
p
21

1960

343� 9
p
21

2520

392� 96
p
21

2205

343� 69
p
21

2520

�21C 3
p
21

1960

1

2

13

320

392C 105
p
21

2880

8

45

392� 105
p
21

2880

3

320

1

2
C

p
21

14

119� 3
p
21

1960

343C 69
p
21

2520

392C 96
p
21

2205

343C 9
p
21

2520

�21� 3
p
21

1960

1
1

20

49

180

16

45

49

180

1

20

AsD5

1

20

49

180

16

45

49

180

1

20

Lobatto IIIC�

Lobatto IIIC� are also known as Lobatto III methods
[5], Butcher’s Lobatto methods [9], and Lobatto IIIC
methods [22] in the literature. (The name Lobatto
IIIC� was suggested by Robert P.K. Chan in an e-
mail correspondence with the author on June 13, 1995.)
The coefficients aC

�

ij of Lobatto IIIC� methods can be

defined by aC
�

is D 0 for i D 1; : : : ; s and C.s � 1/
(Table 4). They satisfy D.s � 1/ and aC

�

1j D 0 for j D
1; : : : ; s. Lobatto IIIC� methods are of nonstiff order
2s�2. They are not symmetric. Their stability function
R.z/ is given by the .s; s�2/-Padé approximation to ez.
They are not A-stable. They are not B-stable and thus
not algebraically stable. The Lobatto IIIC� method for
s D 2 is sometimes called the explicit trapezoidal rule.
The coefficients aC

�

ij can also be obtained from the
coefficients aCij of Lobatto IIIC through the relations:

bia
C�

ij C bj aCj i � bibj D 0 for i; j D 1; : : : ; s;
or

aC
�

ij D bj � aCsC1�i;sC1�j for i; j D 1; : : : ; s:

Other Families of Lobatto Methods
Most Lobatto methods of interest found in the literature
can be expressed as linear combinations of the four
fundamental Lobatto IIIA, IIIB, IIIC, and IIIC� meth-
ods. In fact, one can consider a very general family
of methods with three real parameters .˛A; ˛B; ˛C / by
considering Lobatto coefficients of the form:

aij .˛A; ˛B; ˛C / D ˛AaAij C ˛BaBij C ˛C aCij C ˛C�aC
�

ij

(7)

where ˛C� D 1 � ˛A � ˛B � ˛C . For any choice of
.˛A; ˛B; ˛C / the corresponding Lobatto RK method is
of nonstiff order 2s�2 [13]. The Lobatto IIIS methods
presented in [6] depend on a real parameter � . They
can be expressed as:

aSij .�/ D .1��/
�
aAij C aBij

�
C


� � 1

2

��
aCij C aC

�

ij

�

for i; j D 1; : : : ; s;

corresponding to ˛A D ˛B D 1 � � and ˛C D ˛C� D
� � 1

2
in (7). These methods satisfy C.s � 2/ and
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Lobatto Methods, Table 2 Coefficients of Lobatto IIIB for s D 2; 3; 4; 5

0
1

2
0

1
1

2
0

BsD2

1

2

1

2

0
1

6
�1
6
0

1

2

1

6

1

3
0

1
1

6

5

6
0

BsD3

1

6

2

3

1

6

0
1

12

�1� p
5

24

�1C p
5

24
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D.s � 2/. They are symmetric and symplectic. Their
stability function R.z/ is given by the .s � 1; s � 1/-
Padé approximation to ez. They areA-stable, but notL-
stable. They are algebraically stable and thus B-stable.
The Lobatto IIIS coefficients for � D 1=2 are given by:

aSij .1=2/ D
1

2

�
aAij C aBij

�
for i; j D 1; : : : ; s:

For � D 1 we obtain the Lobatto IIID methods [6, 13]:

aDij D aSij .1/ D
1

2

�
aCij C aC

�

ij

�
for i; j D 1; : : : ; s:

These methods are called Lobatto IIIE in [19] and
Lobatto IIIE in [22]. They satisfyC.s�1/ andD.s�1/,
and they can be interpreted as perturbed collocation
methods [19]. Another family of Lobatto RK methods
is given by the Lobatto IIID family of [19] called here
Lobatto IIINW where the coefficients for s D 2; 3

are given in Table 5. (Notice on p. 205 of [19] that
�1 D �4.2m � 1/.) These methods correspond to

˛A D 2, ˛B D 2, ˛C D �1, and ˛C� D �2 in (7).
Their stability function R.z/ is given by the .s � 2; s/-
Padé approximation to ez. These methods areL-stable.
They are algebraically stable and thus B-stable. They
are of nonstiff order 2s � 2. They are not symmet-
ric. They can be interpreted as perturbed collocation
methods [19].

Additive LobattoMethods for Split and
Partitioned ODEs

Consider a split system of ODEs:

d

dt
y D f1.t; y/C f2.t; y/ (8)

where f1; f2 W R 	 Rd ! Rd . Starting from y0 at t0
one step .tn; yn/ 7! .tnC1; ynC1/ of an additive Lobatto
RK method applied to (8) reads:
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Lobatto Methods, Table 3 Coefficients of Lobatto IIIC for s D 2; 3; 4; 5
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Yni D yn C hn
sX

jD1
.a1;ij f1.tn C cj h; Ynj /

Ca2;ij f2.tn C cj h; Ynj //
for i D 1; : : : ; s;

ynC1 D yn C hn
sX

jD1
bj .f1.tn C cj h; Ynj /

Cf2.tn C cj h; Ynj //

where s � 2 and the coefficients a1;ij ; a2;ij ; bj ; cj
characterize the additive Lobatto RK method. Con-
sider, for example, any coefficients a1;ij and a2;ij from
the family (7), the additive method is of nonstiff order
2s � 2 [13]. The partitioned system of ODEs (2) can
be expressed in the form (8) by having d D dq C dp,
y D .q; p/ 2 Rdq 	 Rdp , and:

f1.t; q; p/ D


v.t; q; p/

0

�
;

f2.t; q; p/ D



0

f .t; q; p/

�
:

Applying for s D 2 the Lobatto IIIA coefficients
as a1;ij and the Lobatto IIIB coefficients as a2;ij , we
obtain again the generalized Newton-Störmer-Verlet-
leapfrog method (3). Additive Lobatto methods have
been considered in multibody dynamics in [13, 21].
Additive methods are more general than partitioned
methods since partitioned system of ODEs can always
be reformulated as a split system of ODEs, but the
reverse is false in general.

LobattoMethods for DAEs

An important use of Lobatto methods is for the solution
of differential-algebraic equations (DAEs). DAEs con-
sist generally of coupled systems of differential equa-
tions and nonlinear relations. They arise typically in
mechanics and electrical/electronic circuits simulation.
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Lobatto Methods, Table 4 Coefficients of Lobatto IIIC� for s D 2; 3; 4; 5
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Lobatto Methods, Table 5 Coefficients of Lobatto IIINW for
s D 2; 3 [19]
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Consider, for example, a system of DAEs of the
form:

d

dt
y D f .t; y; 	/; 0 D k.t; y/

where Dyk.t; y/D	f .t; y; 	/ is nonsingular. Lobatto
methods can be applied to this class of problems while
preserving their classical order of convergence [14].
For example, the application of the two-stage Lobatto
IIID method can be expressed as:

Yn1Dyn C hn

4
.f .tn; Yn1;�n1/ � f .tnC1; Yn2;�n2//;

Yn2DynC hn
4
.3f .tn; Yn1;�n1/Cf .tnC1; Yn2;�n2//;

ynC1Dyn C hn

2
.f .tn; Yn1;�n1/C f .tnC1; Yn2;�n2//;

0D 1
2
.k.tn; Yn1/C k.tnC1; Yn2//;

0Dk.tnC1; ynC1/:

For such DAEs, a combination of Gauss and Lobatto
coefficients is also considered in [18]. Consider now
overdetermined system of DAEs (ODAEs) of the form:

d

dt
q D v.t; q; p/;

d

dt
p D f .t; q; p; 	/; 0 D g.t; q/;

0 D Dtg.t; q/CDqg.t; q/v.t; q; p/ (9)

where Dqg.t; q/Dpv.t; q; p/D	f .t; q; p; 	/ is non-
singular. Very general Lobatto methods can be ap-
plied to this type of ODAEs [13]. Hamiltonian and
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Lagrangian systems with holonomic constraints can be
expressed in the form (9). For such ODAEs, the appli-
cation of Lobatto IIIA and IIIB methods can be shown
to preserve their classical order of convergence, to be
variational integrators, and to preserve a symplectic
two-form [8, 11, 12, 17]. For example, the application
of the two-stage Lobatto IIIA and IIIB method reads:

qnC1Dqn C hn

2

�
v
�
tn; qn; pnC1=2

�

Cv �tnC1; qnC1; pnC1=2
��
;

pnC1=2Dpn C hn

2
f
�
tn; qn; pnC1=2;�n1

�
;

0Dg.tnC1; qnC1/;

pnC1DpnC1=2 C hn

2
f
�
tnC1; qnC1; pnC1=2;�n2

�

0DDtg.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

Gauss methods with s stages can also be applied in
combination with Lobatto methods with sC1 stages for
this type of ODAEs when f .t; q; p; 	/ is decomposed
in f .t; q; p/ C r.t; q; 	/ and they also possess these
aforementioned properties while generally requiring
less computational effort [15]. For example, the appli-
cation of the midpoint-trapezoidal method (the .1; 1/-
Gauss-Lobatto SPARK method of Jay [15]) reads:

Qn1Dqn C hn

2
v.tnC1=2;Qn1; Pn1/ D 1

2
.qn C qnC1/;

Pn1Dpn C hn

2
f .tnC1=2;Qn1; Pn1/

Chn
2
r.tn; qn;�n1/;

qnC1Dqn C hnv.tnC1=2;Qn1; Pn1/;

pnC1Dpn C hnf .tnC1=2;Qn1; Pn1/

Chn


1

2
r.tn; qn;�n1/C1

2
r.tnC1; qnC1;�n2/

�
;

0Dg.tnC1; qnC1/;

0DDtg.tnC1; qnC1/

CDqg.tnC1; qnC1/v.tnC1; qnC1; pnC1/:

LobattoMethods for Some Other Classes
of Problems

Lobatto IIIA methods have been considered for bound-
ary value problems (BVP) due to their good stability
properties [1, 2]. The MATLAB code bvp4c for BVP
is based on three-stage collocation at Lobatto points,
hence it is equivalent to the three-stage Lobatto IIIA
method [16]. Lobatto methods have also been applied
to delay differential equations (DDEs) [3]. The combi-
nation of Lobatto IIIA and IIIB methods has also been
considered for the discrete multisymplectic integration
of certain Hamiltonian partial differential equations
(PDEs) such as the nonlinear Schrödinger equation and
certain nonlinear wave equations [20].
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Introduction

The logarithmic norm is a real-valued functional on
operators, quantifying the notions of definiteness for
matrices; monotonicity for nonlinear maps; and ellip-
ticity for differential operators. It is defined either in
terms of an inner product in Hilbert space, or in terms
of the operator norm on a Banach space.

The logarithmic norm has a wide range of appli-
cations in matrix theory, stability theory, and numer-
ical analysis. It offers various quantitative bounds on
(functions of) operators, operator spectra, resolvents,
Rayliegh quotients, and the numerical range. It also
offers error bounds and stability estimates in initial

as well as boundary value problems and their dis-
cretizations. Some special fields in mathematics, such
as semigroup theory, rely on notions that are strongly
related to the logarithmic norm.

Let j � j denote an arbitrary vector norm on C
d ,

as well as its subordinate operator norm on Cd�d .
The classical definition of the logarithmic norm of
A 2 Cd�d is

MŒA
 D lim
h!0C

jI C hAj � 1
h

: (1)

It is easily computed for the most common norms,
see Table 1. In Hilbert space, where the norm is
generated by an inner product jxj2 D hx; xi, one may
alternatively define the least upper bound logarithmic
norm MŒA
 and the greatest lower bound logarithmic
normmŒA
 such that for all x

mŒA
 � jxj2 � Re hx;Axi �MŒA
 � jxj2: (2)

Unlike (1), this also admits unbounded operators,
while still agreeing with (1) if A is bounded, in which
case it also holds that

mŒA
 D lim
h!0�

jI C hAj � 1
h

: (3)

The functionals MŒ�
 and mŒ�
 can further be extended
to nonlinear maps, both in a Banach and a Hilbert space
setting, so that the above definitions become special
cases for linear operators.

The logarithmic norm has a large number of useful
properties and satisfy several important inequalities.
For A;B 2 Cd�d , ˛ 2 R and z 2 C, some of the
most important are:
1. �glbŒA
 �MŒA
 � jAj
2. MŒ˛A
 D ˛MŒA
; ˛ � 0
3. MŒAC zI 
 DMŒA
C Re z
4. mŒA
 D �MŒ�A

5. MŒA
CmŒB
 �MŒAC B
 �MŒA
CMŒB


6. jMŒA
�MŒB
j � jA� Bj
7. jmŒA
�mŒB
j � jA� Bj
8. etmŒA
 � jetAj � etM ŒA
; t � 0
9. MŒA
 < 0 ) jA�1j � �1=MŒA


10. mŒA
 > 0 ) jA�1j � 1=mŒA
:
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Logarithmic Norms, Table 1 Computation of lp vector, matrix, and logarithmic norms. Here �Œ�
 and ˛Œ�
 denote the spectral
radius and spectral abscissa of a matrix, respectively (From [3])

Vector norm Matrix norm Logarithmic norm

jxj1 D P
i jxi j jAj1 D maxj

P
i jaij j M1ŒA
 D max

j

�
Re ajj C X

i¤j

jaij j�

jxj2 D pP
i jxi j2 jAj2 D p

�ŒAHA
 M2ŒA
 D ˛Œ.ACAH/=2


jxj1 D maxi jxi j jAj1 D maxi
P

j jaij j M1ŒA
 D max
i

�
Re aii C X

j¤i

jaij j�

Differential Inequalities

The logarithmic norm was originally introduced for
matrices, [3, 12], in order to establish bounds for
solutions to a linear system

Px D Ax C r: (4)

The norm of x satisfies the differential inequality

DC
t jxj �MŒA
 � jxj C jr.t/j ; (5)

where MŒA
 is the logarithmic norm of A and DC
t jxj

is the upper right Dini derivative of jxj with respect to
time. Consider first the homogeneous case r � 0; this
is akin to the Grönwall lemma. Then x.t/ D etAx.0/,
and (5) provides the matrix exponential bound

jetAj � etM ŒA
I t � 0: (6)

Thus the condition MŒA
 < 0 implies that the matrix
exponential is a contraction (semi-)group.

Consider next the case x.0/ D 0, with r ¤ 0.
By integration of (5), the solution is then bounded on
compact intervals by

jx.t/j � etM ŒA
 � 1
MŒA


krk1; (7)

where krk1 D sup� jr.�/j. If MŒA
 < 0, the bound
also holds as t !1, in which case

kxk1 � � krk1
MŒA


; (8)

showing that x depends continuously on the data r .
Finally, consider Px D Ax C r with r � const. If

MŒA
 < 0, homogeneous solutions decay to a unique
equilibrium x D �A�1r . Taking x.0/ D �A�1r ,

(8) gives jA�1r j � �jr j=MŒA
 for all r . Therefore,
even the inverse of A can be bounded in terms of the
logarithmic norm, as

MŒA
 < 0 ) jA�1j � � 1

MŒA

: (9)

This inequality is of particular importance also in
boundary value problems, where it provides a bound
for the inverse of an elliptic operator.

Spectral Bounds

For the spectrum of a general matrix A it holds that

�ŒA
 � jAj I ˛ŒA
 �MŒA
; (10)

where �ŒA
 D maxi j	i j is the spectral radius of A
and ˛ŒA
 D maxi Re	i is the spectral abscissa. The
operator norm is an upper bound for the magnitude of
the eigenvalues, while the logarithmic norm is an upper
bound for the real part of the eigenvalues. Equality is
usually not attained, except in important special cases.
For example, the Euclidean norms j � j2 and M2Œ�
 are
sharp for the entire class of normal matrices.

All eigenvalues of A are thus contained in the strip
mŒA
 � Re	 � MŒA
 (for any choice of norm). They
are also contained in the annulus glbŒA
 � j	j � jAj.
Further, from (2) it follows thatMŒA
 andmŒA
 are the
maximum and minimum of the Rayleigh quotient. This
implies that mŒA
 > 0 generalizes and quantifies the
notion of a positive definite matrix, while MŒA
 < 0

generalizes negative definiteness. Moreover,MŒA
 and
mŒA
 are also the maximal and minimal real parts,
respectively, of the numerical range of an operator [16].

Resolvents can also be bounded in half-planes.
Thus, as a generalization of (9), one has
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MŒA
 < Re z ) j.A � zI /�1j < 1

Re z �MŒA

:

A similar bound can be obtained in the half-plane
Re z < mŒA
.

While the bounds above hold for all norms, some
less obvious results can be obtained in Hilbert space.
According to the well-known spectral theory of von
Neumann, [17], if a polynomial has the property jzj �
1 ) jP.z/j � 1, then this property can be extended to
matrices and norms. Thus, if a matrix is a contraction
with respect to an inner product norm, then so is P.A/,
i.e., jAjH � 1 ) jP.A/jH � 1, where the subscript
H refers to the Hilbert space topology. This result also
holds for rational functions, as well as over half-planes
in C. Thus, if R is a rational function such that Re z �
0 ) jR.z/j � 1, then MHŒA
 � 0 ) jR.A/jH � 1.

This is of particular importance in the stability the-
ory of Runge–Kutta methods for ordinary differential
equations. When such a method is applied to the linear
test equation Px D 	x with step size h, the solution is
advanced by a recursion of the form xnC1 D R.h	/xn,
where the stability function R.z/ approximates ez. The
method is called A-stable if Re z � 0 ) jR.z/j � 1. It
then follows that every A-stable Runge–Kutta method
has the property that, when applied to a linear system
Px D Ax,

MHŒA
 � 0 ) jR.hA/jH � 1: (11)

This implies that the method has stability properties
similar to those of the differential equation, as both are
contractive when MHŒA
 < 0; by (6), we have

MHŒA
 � 0 ) jehAjH � 1: (12)

Nonlinear Maps

The theory is easily extended to nonlinear maps, both
in Banach and in Hilbert space. In Banach space, one
defines the least upper bound (lub) and greatest lower
bound (glb) Lipschitz constants, by

LŒf 
 D sup
u¤v
jf .u/� f .v/j
ju � vj I

lŒf 
 D inf
u¤v
jf .u/� f .v/j
ju� vj ; (13)

for u; v 2 D, the domain of f . The lub Lipschitz
constant is an operator semi-norm that generalizes
the matrix norm: if f D A is a linear map, then
LŒA
 D jAj. One can then define two more functionals
on D, the lub logarithmic Lipschitz constant and the
glb logarithmic Lipschitz constant, by

MŒf 
 D lim
h!0C

LŒI C hf 
 � 1
h

I

mŒf 
 D lim
h!0�

LŒI C hf 
 � 1
h

: (14)

Naturally, these definitions only apply to “bounded
operators,” which here correspond to Lipschitz maps.
In Hilbert space, however, one can also include un-
bounded operators; in analogy with (2), one then de-
fines mHŒ�
 and MHŒ�
 as the best constants such that
the inequalities

mHŒf 
 � ju� vj2H � Re hu � v; f .u/ � f .v/iH
� MHŒf 
 � ju � vj2H (15)

hold for all u; v 2 D. For Lipschitz maps, these
definitions are compatible with (14), and the linear
theory is fully extended to nonlinear problems. All
previously listed general properties of the logarithmic
norm are preserved, although attention must be paid to
the domains of the operators involved. The terminology
is also different. Thus, a map with MŒf 
 < 0 (or
mŒf 
 > 0) is usually called strongly monotone. Such
a map is one-to-one from D to f .D/ with a Lipschitz
inverse:

MŒf 
 < 0 ) LŒf �1
 � � 1

MŒf 

: (16)

This extension of (9) quantifies the Browder and Minty
theorem, also known as the Uniform Monotonicity
Theorem [13].

The special bounds that could be obtained for ma-
trices and linear operators in Hilbert space are more
restricted for nonlinear maps, due to loss of com-
mutativity. As a consequence, the result (11) does
not hold in the nonlinear case without qualification.
However, additional conditions can be imposed to
construct Runge–Kutta methods that are contractive for
problems Px D f .x/, with MHŒf 
 � 0. Thus, B-
stable Runge–Kutta methods (a subset of the A-stable
methods) have this property for nonlinear systems [1].
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Unbounded Operators in Hilbert Space

The use of logarithmic norms in infinite dimensional
spaces is possible both in Banach and in Hilbert space.
Only the latter is straightforward, but it offers adequate
tools for many problems. A standard example is the
parabolic reaction-diffusion equation

ut D uxx C g.u/ (17)

with boundary data u.t; 0/ D u.t; 1/ D 0. Consider
functions u; v 2 H1

0 \ H2 � L2Œ0; 1
 D H, with the
usual inner product and norm,

hu; viH D
Z 1

0

u.x/v.x/ dxI kuk2H D hu; uiH:
(18)

The problem (17) is then an abstract ODE Pu D f .u/ on
a Hilbert space. The logarithmic norm characterizes the
stability of u.t; �/ as t !1, as well as the equilibrium
solution, which satisfies the two-point boundary value
problem

u00 C g.u/ D 0I u.0/ D u.1/ D 0; (19)

where 0 denotes d=dx. The logarithmic norm
MHŒd2=dx2
 on H1

0 \ H2Œ0; 1
 is calculated using
integration by parts,

hu; u00iH D �hu0; u0iH D �
Z 1

0

ju0.x/j2dx

� ��2
Z 1

0

ju.x/j2dx D ��2hu; uiH:

The inequality at the center is a Sobolev inequality; it is
sharp, as equality is attained for u.x/ D sin�x. Hence

MHŒd2=dx2
 D ��2; (20)

which quantifies that �d2=dx2 is elliptic.
As MHŒ�
 is subadditive, MHŒf 
 D MHŒ@2=@x2

Cg
 �MHŒ@2=@x2
CMHŒg
 D ��2CMHŒg
. Hence
if the reaction term satisfies MHŒg
 < �2 the solution
u.t; �/ of (17) is exponentially stable.

Moreover, if MHŒg
< �2, then f D d2=dx2C g is
strongly monotone, with a Lipschitz continuous inverse
on L2Œ0; 1
, implying that (19) has a unique solution,
depending continuously on the data.

When the problem is discretized by the proper use
of any finite difference or finite element method, the
logarithmic norm of the discrete system is typically
very close to that of the continuous system, provided
that the inner products and norms are chosen in a
compatible way. This means that one obtains similar
bounds and estimates for the discrete system.

Literature

The two original, but independent, papers introducing
the logarithmic norm are [3, p. 10] and [12, pp. 57–58],
which also introduced the term “logarithmic norm.”
There are but a few surveys of the logarithmic norm
and its applications. Two early surveys, including ap-
plications, are [5, 15]. The most modern one, taking
a functional analytic approach, is [14], which also
contains many references. Further extensions can also
be found, to matrix pencils [9], and to nonlinear DAE
stability [10].

Spectral bounds and resolvent behavior are dealt
with at length in [16]. Bounds along the lines of [17],
but for nonlinear systems, are of importance in the
study of contractive methods for ODEs, see [1] for
Runge–Kutta methods, and [4] for multistep methods.
This also led to the study of “B-convergent” methods,
in which convergence proofs were derived using only a
monotonicity condition on f in Hilbert space, instead
of the usual assumption of Lipschitz continuity [6,11].
This is of particular importance for nonlinear PDE
evolutions, where the contractivity and B-convergence
of the implicit Euler method are used as standard proof
techniques for existence and uniqueness, [2]. More
recent developments for Runge–Kutta and multistep
methods are found in [7, 8].
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Short Definition

The complexity of a computational problem, originally
defined in terms of the computational resources re-
quired to solve the problem, can be characterized in
terms of the language resources required to describe

the problem in a logical system. This yields logical
characterizations of all standard complexity classes.

Description

It was realized from the beginnings of computability
theory in the 1930s that there is a close connection
between logic and computation. Indeed, various de-
grees of computability have natural characterizations
in terms of logical definability. For example, the recur-
sively enumerable sets of natural numbers are precisely
the sets definable by an existential formula of first-
order predicate logic in the language of arithmetic.

Descriptive Complexity Theory
Descriptive complexity may be viewed as a natural
continuation of these results of computability theory
in the realm of computational complexity. It provides
characterizations of most standard complexity classes
in terms of logical definability. Arguably the most
important of these characterizations are given by the
following two theorems:

Fagin’s Theorem [7]. A property of finite structures
is decidable in nondeterministic polynomial time NP
if and only if it is definable in existential second-order
logic 9SO. (Short: 9SO captures NP.)

Immerman-Vardi Theorem [12, 14]. A property of
ordered finite structures is decidable in polynomial
time P if and only if it is definable in least fixed-
point logic LFP. (Short: LFP captures P on ordered
structures.)

To explain these two theorems, we need to review
the basic framework of computational complexity the-
ory and some logic. Complexity classes are usually
defined as classes of problems that can be solved with
restricted resources such as time or space. To turn this
into a precise mathematical definition, we need to fix a
machine model and a coding scheme for representing
computational problems as inputs. Typically, multitape
Turing machines are used as machine model. Without
much loss of generality, we can focus on decision
problems (i.e., problems with a yes/no answer) and
represent them by languages over the binary alphabet
f0; 1g, i.e., as sets of strings of zeroes and ones. Obvi-
ously, complexity classes defined this way depend on
both the machine model and the representation scheme,
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but fortunately most classes are robust enough so that
they end up the same for any “reasonable” machine
model and representation.

Yet the instances of most computational problems
are not naturally modeled as strings over a finite al-
phabet, but rather by richer mathematical structures.
For example, instances of a network connectivity prob-
lem are naturally modeled as directed graphs and so
are the instances of many combinatorial optimization
problems. Boolean circuits can be modeled by la-
beled directed graphs. The standard relational database
model represents databases by a collection of finite
relations, i.e., a finite relational structure. Of course the
instances of some problems, such as problems on the
natural numbers (in binary representation) or pattern
matching problems, are most naturally described by
finite strings, but strings can also be viewed as specific
finite structures. If we adopt finite structures as flexible
models of the instances of computational problems,
then decision problems become properties of finite
structures or, equivalently, classes of finite structures
closed under isomorphism. This is the point of view
taken in descriptive complexity theory.

Logics express, or define, properties of structures.
The logics considered in descriptive complexity theory
are extensions of first-order predicate logic FO. Instead
of going through formal definitions, we give three
examples of logics and graph properties defined in
these logics.

Example 1 (First-Order Logic) The diameter of a
graph is the maximum distance between any two
vertices of the graph. The following sentence of
first-order logic in the language of graphs defines
the property of a graph having diameter at most 2:

8x8y
�
x D y _ Exy _ 9z�Exz ^ Ezy

��
:

Here the variables x; y; z range over the vertices of a
graph, and Exy expresses that the vertices interpreting
x; y are adjacent.

It has turned out that first-order logic is too weak
to express most properties that are interesting from a
computational point of view. Second-order logic SO
is much more powerful; actually it is too powerful
to stay in the realm of efficient computation. Hence
various fragments of SO are studied in the context
of descriptive complexity theory. In SO, we not only

have “individual variables” ranging over the vertices
of a graph but also “set variables” ranging over sets of
vertices and, more generally, “relation variables” rang-
ing over relations between vertices. Existential second-
order logic 9SO is the fragment of SO consisting
of all formulas that only use existential quantification
over set and relation variables and where no existential
quantifier binding a relation variable appears in the
scope of a negation symbol.

Example 2 (Existential Second-Order Logic) A graph
is 3-colorable if its vertices can be colored with three
colors in such a way that no two adjacent vertices get
the same color. The following sentence of existential
second-order logic defines the property of a graph
being 3-colorable:

9R9B9G
�
8x�Rx _ Bx _Gx

�

^ 8x8y�Exy! �:.Rx ^ Ry/ ^ :.Bx ^ By/

^ :.Gx ^ Gy/
���
:

Here the variables R;B;G are set variables represent-
ing the three colors, and x; y are individual variables.
Rx expresses that the vertex interpreting x is contained
in the set interpreting R.

Fixed-point logics are extensions of FO with a more
algorithmic flavor than SO. They allow it to formalize
inductive definitions, as illustrated by the following
example.

Example 3 (Least Fixed-Point Logic) Suppose we
want to define the transitive closure T of the edge
relation of a graphG D .V;E/. It admits the following
inductive definition: We let T1 WD E , and for all i we
let TiC1 be the set of all pairs .u; v/ of vertices such that
there is a vertex w with .v;w/ 2 Ti and .w; u/ 2 Ti .
Then T is the union of all the Ti . Equivalently, we
may define T as the least fixed point of the (monotone)
operator

X 7!
n
.v;w/

ˇ
ˇ
ˇ.v;w/ 2 E_9z�.v; z/ 2 X^.z;w/ 2 X�

o
:

In least fixed-point logic LFP, we can form a formula

lfp
�
Xxy Exy _ 9z.Xxz ^ Xzy/

�
.v;w/
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to define this least fixed point (and thus the transitive
closure). If we call this formula .v;w/, then the LFP-
sentence 8v8w

�
v D w _  .v;w/� defines connected-

ness of (undirected) graphs.

To connect the properties of structures defined in
our logics with complexity classes, we need to fix
an encoding scheme for structures. It is common to
use a generalization of the adjacency-matrix encoding
of graphs to encode structures by binary strings. Un-
fortunately, a graph has different adjacency matrices,
obtained by associating the vertices with the rows
and columns of the matrix in different orders, and
among these there is no distinguished canonical one
that we could use as “the” encoding of the structure.
This observation generalizes to arbitrary structures.
Only if a structure B comes with a linear order of its
elements, that is, it has a distinguished binary relation
�B that is a linear order of its elements, then we
can fix a canonical binary string hBi encoding B . We
call such structures ordered structures, or we say that
they have a built-in order. With each property Q of
ordered structures, we associate the language L.Q/ WD
fhBi j B has property Qg. With a structure A without
built-in order, we can only associate a language L.A/
consisting of all encodings of A. Equivalently, we may
view L.A/ as the set of all strings hBi for all ordered
expansions B of A. For a property P of structures,
we let L.P/ be the union of all L.A/ for structures
A that have property P . Now we say that a logic L
captures a complexity class K if for each property P
of structures, there is an L-sentence that defines P if
and only if L.P/ 2 K. We say that L captures K on
ordered structures if for each property Q of ordered
structures, there is an L-sentence that defines Q if and
only if L.Q/ 2 K.

Fagin’s Theorem and the Immerman-Vardi Theo-
rem give logics capturing the complexity classes NP
and P, respectively, the latter only on ordered struc-
tures. There are similar logical characterizations for
most other complexity classes (for background and ref-
erences, we refer the reader to the textbooks [6,8,13]).
For the standard space complexity classes, we have
the following characterizations: deterministic transitive
closure logic DTC captures L (“logarithmic space”) on
ordered structures, transitive closure logic TC captures
NL (“nondeterministic logarithmic space”) on ordered
structures, and partial fixed-point logic PFP captures
PSPACE (“polynomial space”) on ordered structures.

While these characterizations use various extensions
of first-order logic by fixed-point operators or similar
“generalized quantifiers,” we also have characteriza-
tions of various complexity classes by restrictions and
extensions of second-order logic: second-order logic
SO captures PH (the “polynomial hierarchy”). The
“Krom fragment” of second-order logic captures NL
on ordered structures, and the “Horn fragment” of
second-order logic captures P on ordered structures.
The extension of second-order logic with a (second-
order) transitive closure operator captures PSPACE.
There are also logical characterizations of complexity
below L, but in addition to a built-in order, these require
structures to have built-in arithmetic. For example,
first-order logic FO captures dlogtime-uniform AC0 on
structures with built-in arithmetic.

Note that for the class P and smaller classes such
as L and NL we only have logical characterizations on
ordered structures. Indeed, it is a major open problem
whether there are logical characterizations for these
classes on arbitrary (not necessarily ordered) struc-
tures. Only partial results characterizing P on restricted
classes of structures are known (the most powerful
in [9]).

Function Algebras and Implicit Computational
Complexity
An alternative way of characterizing complexity
classes is inspired by the characterizations of the
computable functions as recursive functions and by the
	-calculus. The idea is to describe the functions in a
complexity class as an algebra of functions. We extend
complexity classes K to classes of functions on binary
strings and speak of K-functions. We usually think of
K-functions as functions on the natural numbers (via
a binary encoding). The classical result in this area
is Cobham’s characterization of the polynomial time
computable functions using the following restricted
version of primitive recursion: A .k C 1/-ary function
f on the natural numbers is defined from functions
g, h0, h1, b by bounded primitive recursion on
notation if for all Nx we have f . Nx; 0/ D g. Nx/ and
f . Nx; 2y C i/ D hi . Nx; y; f . Nx; y// for i D 0; y > 0

and i D 1; y � 0, provided that f . Nx; y/ � b. Nx; y/ for
all Nx; y. The addition “on notation” refers to the fact
that this definition is most naturally understood if one
thinks of natural numbers in binary notation.
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Cobham’s Theorem [4]. The class of P-functions is
the closure of the basic functions x 7! 0 (“constant
0”), .x1; : : : ; xk/ 7! xi for all i � k (“projections”),
x 7! 2x and x 7! 2x C 1 (“successor functions”),
and .x; y/ 7! 2jxj�jyj (“smash function”), where jxj
denotes the length of the binary representation of x,
under composition and bounded primitive recursion on
notation.

Similar characterizations are known for other com-
plexity classes.

What is slightly unsatisfactory about Cobham’s
characterization of the P-functions is the explicit
time bound b in the bounded primitive recursion
scheme. Bellantoni and Cook [1] devised a refined
primitive recursion scheme that distinguishes between
different types of variables and how they may be
used and characterize the P-functions without an
explicit time bound. This is the starting point of the
area of “implicit computational complexity” ([10]
is a survey). While Bellantoni and Cook’s recursion
scheme is still fairly restrictive, in the sense that the
type system excludes natural definitions of P-functions
by primitive recursion, subsequently researchers
have developed a variety of full (mostly functional)
programming languages with very elaborate type
systems guaranteeing that precisely the K-functions
(for many of the standard complexity classes K) have
programs in this language. The best known of these
is Hofmann’s functional language for the P-functions
with a type system incorporating ideas from linear
logic [11].

Proof Theory and Bounded Arithmetic
There is yet another line of logical characterizations
of complexity classes. It is based on provability in
formal system rather than just definability. Again, these
characterizations have precursors in computability the-
ory, in particular the characterization of the primitive
recursive functions as precisely those functions that
are ˙1-definable in the fragment i˙1 of Peano arith-
metic.

The setup is fairly complicated, and we will only
be able to scratch the surface; for a thorough treat-
ment, we refer the reader to the survey [3] and the
textbook [5]. Our basic logic is first-order logic in
the language of arithmetic, consisting of the standard
symbols � (order), C (addition), � (multiplication), 0,

1 (constants 0 and 1), and possibly additional function
symbols. In the standard model of arithmetic N , all
these symbols get their standard interpretations over
the natural numbers. A theory is a set of first-order
sentences that is closed under logical consequence.
For example, Th.N / is the set of all sentences that
are true in the standard model N . It follows from
Gödel’s First Incompleteness Theorem that Th.N /
has no decidable axiom system. A decidable, yet still
very powerful, theory that contained Th.N / is Peano
arithmetic PA. It is axiomatized by a short list of
basic axioms making sure that the basic symbols are
interpreted right together with induction axioms of the
form

�
�.0/ ^ 8x.�.x/ ! �.x C 1//

� ! 8x�.x/
for all first-order formulas �. Here, we are interested
in fragments i˚ of PA obtained by restricting the
induction axioms to formulas � 2 ˚ for sets ˚ of
first-order formulas. �0 denotes the set of all bounded
first-order formulas, that is, formulas where all quan-
tifications are of the form 9x � t or 8x � t for some
term t that does not contain the variable x. Almost
everything relevant for complexity theory takes place
within �0, but let us mention that ˙1 is the set of all
first-order formulas of the form 9x�, where � is a �0-
formula.

We say that a function f on the natural numbers is
definable in a theory T if there is a formula �.x; y/
such that the theory T proves that for all x there is
exactly one y such that �.x; y/ and for all natural
numbers m; n the standard model N satisfies �.m; n/
if and only if f .m/ D n. For example, it can be
shown that the functions in the linear time hierarchy
LTH are precisely the functions that are �0-definable
in the theory i�0.

To characterize the classes P and NP and the other
classes of the polynomial hierarchy, Buss introduced a
hierarchy of very weak arithmetic theories Si2. They
are obtained by even restricting the use of bounded
quantifiers in�0-formulas, defining a hierarchy of˙b

i -
formulas within �0 but at the same time using an ex-
tended language that also contains functions symbols
like # (for the “smash” function .x; y/ 7! 2jxj�jyj) and
j j (for the binary length).

Buss’s Theorem [2]. For all i � 1, the functions ˙b
i -

definable in Si2 are precisely the˙P
i�1-functions, where

˙P
0 D P, ˙P

1 D NP, and ˙P
i are the i th level of the

polynomial hierarchy.
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History and Scope

In 1892, in his doctoral thesis The general problem of
the stability of motion (reprinted in its original form in
[33]), Lyapunov introduced several groundbreaking

concepts to investigate stability in differential
equations. These are collectively known as Lyapunov
Stability Theory. Lyapunov was concerned with the
asymptotic stability of solutions with respect to
perturbations of initial data. Among other techniques
(e.g., what are now known as first and second
Lyapunov methods), he introduced a new tool to
analyze the stability of solutions of linear time-
varying systems of differential equations, the so-
called characteristic numbers, now commonly and
appropriately called Lyapunov exponents.

Simply put, these characteristic numbers play the
role that the (real parts of the) eigenvalues play for
time-invariant linear systems. Lyapunov considered the
n-dimensional linear system

Px D A.t/x; t � 0 ; (1)

where A is continuous and bounded: supt kA.t/k<1.
He showed that “if all characteristic numbers (see
below for their definition) of (1) are negative, then
the zero solution of (1) is asymptotically (in fact,
exponentially) stable.” He further proved an important
characterization of stability relative to the perturbed
linear system

Px D A.t/x C f .t; x/ ; (2)

where f .t; 0/ D 0, so that x D 0 is a solution
of (2), and further f .t; x/ is assumed to be “small”
near x D 0 (this situation is what one expects from
a linearized analysis about a bounded solution trajec-
tory). Relative to (2), Lyapunov proved that “if the
linear system (1) is regular, and all its characteristic
numbers are negative, then the zero solution of (2)
is asymptotically stable.” About 30 years later, it was
shown by Perron in [38] that the assumption of regu-
larity cannot generally be removed.

Definition
We refer to the monograph [1] for a comprehensive
definition of Lyapunov exponents, regularity, and so
forth. Here, we simply recall some of the key concepts.

Consider (1) and let us stress that the matrix func-
tion A.t/ may be either given or obtained as the lin-
earization about the solution of a nonlinear differential
equation; e.g., Py D f .y/ and A.t/ D Df.y.t// (note
that in this case, in general,A will depend on the initial
condition used for the nonlinear problem). Now, let X
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be a fundamental matrix solution of (1), and consider
the quantities

	i D lim sup
t!1

1

t
ln jjX.t/ei jj ; i D 1; : : : ; n; (3)

where ei denotes the i th standard unit vector, i D
1; : : : ; n. When

nP

iD1
	i is minimized with respect to

all possible fundamental matrix solutions, then the
	i are called the characteristic numbers, or Lyapunov
exponents, of the system. It is customary to consider
them ordered as 	1 � 	2 � � � � � 	n. Similar
definitions can be given for t ! �1 and/or with
lim inf replacing the lim sup, but the description above
is the prevailing one. An important consequence of
regularity of a given system is that in (3) one has limits
instead of lim sups.

More Recent Theory
Given that the condition of regularity is not easy to ver-
ify for a given system, it was unclear what practical use
one was going to make of the Lyapunov exponents in
order to study stability of a trajectory. Moreover, even
assuming that the system is regular, it is effectively
impossible to get a handle on the Lyapunov exponents
except through their numerical approximation. It then
becomes imperative to have some comfort that what
one is trying to approximate is robust; in other words,
it is the Lyapunov exponents themselves that will need
to be stable with respect to perturbations of the function
A in (1). Unfortunately, regularity is not sufficient for
this purpose.

Major theoretical advances to resolve the two
concerns above took place in the late 1960s, thanks
to the work of Oseledec and Millionshchikov (e.g.,
see [36] and [34]). Oseledec was concerned with
stability of trajectories on a (bounded) attractor, on
which one has an invariant measure. In this case,
Oseledec’s Multiplicative Ergodic Theorem validates
regularity for a broad class of linearized systems; the
precise statement of this theorem is rather technical,
but its practical impact is that (with respect to the
invariant measure) almost all trajectories of the
nonlinear system will give rise to a regular linearized
problem. Millionshchikov introduced the concept of
integral separation, which is the condition needed
for stability of the Lyapunov exponents with respect to
perturbations in the coefficient matrix, and further gave

important results on the prevalence of this property
within the class of linear systems.

Further Uses of Lyapunov Exponents
Lyapunov exponents found an incredible range of ap-
plicability in several contexts, and both theory and
computational methods have been further extended to
discrete dynamical systems, maps, time series, etc. In
particular:
(i) The largest Lyapunov exponent of (2), 	1, charac-

terizes the rate of separation of trajectories (with
infinitesimally close initial conditions). For this
reason, a positive value of 	1 (coupled with com-
pactness of the phase space) is routinely taken as
an indication that the system is chaotic (see [37]).

(ii) Lyapunov exponents are used to estimate
dimension of attractors through the Kaplan-Yorke
formula (Lyapunov dimension):

DimL D k C .	1 C 	2 C � � � C 	k/=j	kC1j

where k is the largest index i such that 	1C 	2C
� � � C 	i > 0. See [31] for the original derivation
of the formula and [9] for its application to the 2-d
Navier-Stokes equation.

(iii) The sum of all the positive Lyapunov exponents
is used to estimate the entropy of a dynamical
system (see [3]).

(iv) Lyapunov exponents have also been used to char-
acterize persistence and degree of smoothness of
invariant manifolds (see [26] and see [12] for a
numerical study).

(v) Lyapunov exponents have even been used in stud-
ies of piecewise-smooth differential equations,
where a formal linearized problem as in (1) does
not even exist (see [27, 35]).

(vi) Finally, there has been growing interest also in
approximating bases for the growth directions as-
sociated to the Lyapunov exponents. In particular,
there is interest in obtaining representations for
the stable (and unstable) subspaces of (1) and in
their use to ascertain stability of traveling waves.
For example, see [23, 39].

Factorization Techniques

Many of the applications listed above are related
to nonlinear problems, which in itself is witness
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to the power of linearized analysis based on the
Lyapunov exponents. Still, the computational task of
approximating some or all of the Lyapunov exponents
for dynamical systems defined by the flow of a
differential equation is ultimately related to the linear
problem (1), and we will thus focus on this linear
problem.

Techniques for numerical approximation of
Lyapunov exponents are based upon smooth matrix
factorizations of fundamental matrix solutions X , to
bring it into a form from which it is easier to extract
the Lyapunov exponents. In practice, two techniques
have been studied: based on the QR factorization of X
and based on the SVD (singular value decomposition)
of X . Although these techniques have been adapted
to the case of incomplete decompositions (useful
when only a few Lyapunov exponents are needed)
or to problems with Hamiltonian structure, we only
describe them in the general case when the entire set
of Lyapunov exponents is sought, the problem at hand
has no particular structure, and the system is regular.
For extensions, see the references.

QRMethods
The idea of QR methods is to seek the factorization of
a fundamental matrix solution as X.t/ D Q.t/R.t/,
for all t , where Q is an orthogonal matrix valued
function and R is an upper triangular matrix valued
function with positive diagonal entries. The validity of
this factorization has been known since Perron [38] and
Diliberto [25], and numerical techniques based upon
the QR factorization date back at least to [4].

QR techniques come in two flavors, continuous
and discrete, and methods for quantifying the error
in approximation of Lyapunov exponents have been
developed in both cases (see [15–17, 21, 40]).

Continuous QR
Upon differentiating the relation X D QR and us-
ing (1), we have

AQR D Q PRC PQR or PQ D AQ �QB ; (4)

where PR D BR; hence, B must be upper triangular.
Now, let us formally set S D QT PQ and note that since
Q is orthogonal then S must be skew symmetric. Now,
from B D QTAQ � QT PQ it is easy to determine at
once the strictly lower triangular part of S (and from
this, all of it) and the entries of B . To sum up, we

have two differential equations, forQ and forR. Given
X.0/ D Q0R0, we have

PQ D QS.Q;A/ ; Q.0/ D Q0 ; (5)

PR D B.t/R ; R.0/ D R0 ;
B WD QTAQ � S.Q;A/ (6)

The diagonal entries of R are used to retrieve the
exponents:

	i D lim
t!1

1

t

Z t

0

.QT .s/A.s/Q.s//i i ds ; i D 1; : : : ; n:
(7)

A unit upper triangular representation for the
growth directions may be further determined by
limt!1 diag.R�1.t//R.t/ (see [13, 22, 23]).

Discrete QR
Here one seeks the QR factorization of the fundamental
matrix X at discrete points 0 D t0 < t1 < � � � <
tk < � � � , where tk D tk�1 C hk , hk � Oh > 0. Let
X0 D Q0R0, and suppose we seek the QR factorization
of X.tkC1/. For j D 0; : : : ; k, progressively define
ZjC1.t/ D X.t; tj /Qj , where X.t; tj / solves (1) for
t � tj , X.tj ; tj / D I , and ZjC1 is the solution of

� PZjC1 D A.t/ZjC1 ; tj � t � tjC1
ZjC1.tj / D Qj :

(8)

Update the QR factorization as

ZjC1.tjC1/ D QjC1RjC1 ; (9)

and finally observe that

X.tkC1/ D QkC1 ŒRkC1Rk � � �R1R0
 (10)

is the QR factorization of X.tkC1/. The Lyapunov
exponents are obtained from the relation

lim
k!1

1

tk

kX

jD0
log.Rj /i i ; i D 1; : : : ; n : (11)

SVDMethods
Here one seeks to compute the SVD of X : X.t/ D
U.t/†.t/V T .t/, for all t , where U and V are or-
thogonal and † D diag.�i ; i D 1 : : : ; n/, with
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�1.t/ � �2.t/ � � � � � �n.t/. If the singular values
are distinct, the following differential equations U; V;
and † hold. Letting G D UTAU , they are

PU D UH; PV T D �KV T ; P† D D†; (12)

whereD D diag.G/,HT D �H , andKT D �K , and
for i ¤ j ,

Hij D
Gij �

2
j CGji�2i
�2j � �2i

; Kij D .Gij CGji/�i�j
�2j � �2i

:

(13)

From the SVD of X , the Lyapunov exponents may
be obtained as

lim
t!1

1

t
ln �i .t/ : (14)

Finally, an orthogonal representation for the growth di-
rections may be determined by limt!1 V.t/ (see [10,
13, 22, 23]).

Numerical Implementation
Although algorithms based upon the above techniques
appear deceivingly simple to implement, much care
must be exercised in making sure that they perform as
one would expect them to. (For example, in the contin-
uous QR and SVD techniques, it is mandatory to main-
tain the factors Q;U , and V orthogonal.) Fortran
software codes for approximating Lyapunov exponents
of linear and nonlinear problems have been developed
and tested extensively and provide a combined state of
the knowledge insofar as numerical methods suited for
this specific task. See [14, 20, 24].
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Machine learning algorithms are motivated by the
mission of extracting and processing information from
massive data which challenges scientists and engineers
in various fields such as biological computation, com-
puter vision, data mining, image processing, speech
recognition, and statistical analysis. Tasks of machine
learning include regression, classification, dimension
reduction, clustering, ranking, and feature selection.
Learning algorithms aim at learning from sample data
structures or function relations (responses or labels) to
events by means of efficient computing tools. The main
difficulty of learning problems lies in the huge sample
size or the large number of variables. Solving these
problems relies on suitable statistical modelling and
powerful computational methods to tackle the involved
large-size optimization problems.

There are essentially three categories of learning
problems: supervised learning, unsupervised learning,
and semi-supervised learning. The input space X for
a learning problem contains its possible events x. A
typical case is when X is a subset of a Euclidean
space IRn with an element x D .x1; : : : ; xn/ 2 X

corresponding to n numerical measures for a practical
event. For a supervised learning problem, the output
space Y contains all possible responses or labels y,
and it might be a set of real numbers Y � IR for
regression or a finite set of labels for classification.

A supervised learning algorithm produces a function
fz W X ! Y based on a given set of examples z D
f.xi ; yi / 2 X�Y gmiD1. It predicts a response fz.x/ 2 Y
to each future event x 2 X . The prediction accuracy or
learning ability of an output function f W X ! Y

may be measured quantitatively by means of a loss
function V W Y � Y ! IRC as V.f .x/; y/ for an
input-output pair .x; y/ 2 X � Y . For regression, the
least squares loss V.f .x/; y/ D .f .x/ � y/2 is often
used and it gives the least squares error when the output
function value f .x/ (predicted value) approximates the
true output value y.

The first family of supervised learning algorithms
can be stated as empirical risk minimization (ERM).
Such an algorithm [1, 16] is implemented by mini-
mizing the empirical risk or empirical error Ez.f / WD
1
m

Pm
iD1 V .f .xi /; yi / over a set H of functions fromX

to Y (called a hypothesis space)

fz D arg min
f 2H Ez.f /: (1)

Its convergence can be analyzed by the theory of
uniform convergence or uniform law of large numbers
[1, 4, 6, 16].

The second family of supervised learning
algorithms can be stated as Tikhonov regularization
schemes in .HK; k � kK/, a reproducing kernel Hilbert
space (RKHS) associated with a reproducing kernel
K W X � X ! IR, a symmetric and positive semi-
definite function. Such a regularization scheme is a
kernel method [3, 7, 9, 12, 16, 17] defined as

fz D arg min
f 2HK

˚
Ez.f /C �kf k2K

�
; (2)
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where � > 0 is a regularization parameter (which
might be determined by cross-validation). The
Tikhonov regularization scheme (with a general
function space) has a long history in various areas
[14]. It is powerful for learning due to the important
property of the RKHS: f .x/ D hf;K.�; x/iK .
Taking the orthogonal projection onto the subspace
fPm

iD1 ciK.�; xi / W c 2 IRmg does not change the
empirical error of f 2 HK . Hence, the minimizer
fz of (2) must lie in this subspace (representer
theorem [17]) and its coefficients can be computed
by minimizing the induced function over IRm.
This reduces the computational complexity while
the strong approximation ability provided by the
possibly infinitely many dimensional function space
HK may be maintained [5, 11]. Moreover, when
V is convex with respect to the first variable, the
algorithm is implemented by a convex optimization
problem in IRm. A well-known setting for (2) is
support vector machine (SVM) algorithms [15, 16, 18]
for which the optimization problem is a convex
quadratic programming one: for binary classification
with Y D f1;�1g, V is the hinge loss given by
V.f .x/; y/ D maxf1�yf .x/; 0g; for SVM regression,
V.f .x/; y/ D  �.y � f .x// is induced by the �-
insensitive loss  �.t/ D maxfjt j � �; 0g with � > 0.
When V takes the least squares loss, the coefficient
vector for fz satisfies a linear system of equations.

The third family of supervised learning algorithms
are coefficient-based regularization schemes. With a
general (not necessarily positive semi-definite or sym-
metric) kernelK , the scheme takes the form

fz D
mX

iD1
cz
i K.�; xi /;where .cz

i /
m
iD1

D arg min
c2IRm

(

Ez

 
mX

iD1
ciK.�; xi /

!

C ��.c/
)

; (3)

where � W IRm ! IRC is a regularizer or penalty.
Scheme (3) has the advantage of possibly producing
sparse representations [16]. One well-known algorithm
is Lasso [13] which takes the least squares loss with
linear kernel K.x; u/ D x � u and the `1-regularizer:
�.c/ D kck`1 . In addition to sparsity, the non-smooth
optimization problem (3) can be tackled by an efficient
least angle regression algorithm. The `1-regularizer
also plays a crucial role for compressive sensing. For
sparsity and approximation ability of scheme (3) with

a general or data dependent kernel and a general
regularizer, see the discussion in [10].

There are many other supervised learning algo-
rithms such as k-nearest neighbor methods, Bayesian
methods, maximum likelihood methods, expectation-
minimization algorithm, boosting methods, tree-based
methods, and other non-kernel-based methods [6,8,9].
Modelling of supervised learning algorithms is usu-
ally stated under the assumption that the sample z is
randomly drawn according to a (unknown) probability
measure � on X � Y with both X and Y being
metric spaces. Mathematical analysis of a supervised
learning algorithm studies the convergence of the gen-
eralization error or expected risk defined by E.f / DR
X�Y V .f .x/; y/d�, in the sense that E.fz/ converges

with confidence or in probability to the infimum of
E.f / when f runs over certain function set. The error
analysis and learning rates of supervised learning algo-
rithms involves uniform law of large numbers, various
probability inequalities or concentration analysis, and
capacity of function sets [1, 3, 5, 12, 16, 19].

Unsupervised learning aims at understanding prop-
erties of the distribution of events in X from a sample
x D fxi gmiD1 2 Xm. In the case X � IRn, an
essential difference from supervised learning is the
number n of variables is usually much larger. When n
is small, unsupervised learning tasks may be completed
by finding from the sample x good approximations
of the density function of the underlying probability
measure �X on X . Curse of dimensionality makes this
approach difficult when n is large.

Principal component analysis (PCA) can be re-
garded as an unsupervised learning algorithm. It at-
tempts to find some information about covariances
of variables and to reduce the dimension for rep-
resenting the data in X efficiently. Kernel PCA is
an unsupervised learning algorithm generalizing this
idea [9]. It is based on a kernel K which assigns a
value K.x; u/ measuring dissimilarity or association
between the events x and u. The sample x yields a
matrix ŒK� D .K.xi ; xj //

m
i;jD1 and it can be used to

analyze the feature map mapping data points x 2 X
to K.�; x/ 2 HK . Thus kernel PCA overcomes some
limitations of linear PCA.

Graph Laplacian is another unsupervised learning
algorithm. With a sample dependent matrix ŒK�, the
Laplacian matrix L is defined as L D D � ŒK�,
where D is a diagonal matrix with diagonal entries
Dii DPm

jD1 K.xi ; xj /. Let 0 D �1 � �2 � : : : � �m
be the eigenvalues of the generalized eigenproblem
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Lf D �f and f1; : : : ; fm be the associated normalized
eigenvectors in IRn. Then by setting a low dimension
s < m, the graph Laplacian eigenmap [2] embeds the
data point xi into IRs as the vector ..f2/i ; : : : ; .fsC1/i /,
which reduces the dimension and possibly keeps some
data structures. Graph Laplacian can also be used for
clustering. One way is to cluster the data x into two
sets fi W .f2/i � 0g and fi W .f2/i < 0g. Other
unsupervised learning algorithms include local linear
embedding, isomap, and diffusion maps.

In many practical applications, getting labels would
be expensive and time consuming while large un-
labelled data might be available easily. Making use
of unlabelled data to improve the learning ability of
supervised learning algorithms is the motivation of
semi-supervised learning. It is based on the expectation
that the unlabelled data reflect the geometry of the
underlying input space X such as manifold structures.
Let us state a typical semi-supervised learning algo-
rithm associated with a Mercer kernelK , labelled data
z D f.xi ; yi /gmiD1 and unlabelled data u D fxi gmCu

iDmC1.
With a similarity matrix .!ij /

mCu
i;jD1 such as truncated

Gaussian weights, the semi-supervised learning algo-
rithm takes the form

fz;u;�;� D arg min
f 2HK

8
<

:
Ez.f /C �kf k2K

C �

.mC u/2

mCuX

i;jD1
!ij .f .xi / � f .xj //2

9
=

;
;

(4)

where �;� > 0 are regularization parameters. It is
unknown whether rigorous error analysis can be done
to show that algorithm (4) has better performance than
algorithm (2) when u >> m. In general, mathemat-
ical analysis for semi-supervised learning is not well
understood compared to that of supervised learning or
unsupervised learning algorithms.
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Introduction

A Markov random field (MRF) can be visualized as
a graph G D .V ; E/. Associated with each of its
n vertices Va (where a 2 f1; � � � ; ng) is a discrete
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random variable Xa, which can take a value from a
finite, discrete label set Xa. We will refer to a particular
assignment of values to the random variables from the
corresponding label sets as a labeling. In other words,
a labeling x 2 X1�X2 � � ��Xn implies that the random
variable Xa is assigned the value xa. The probability
of a labeling is specified by potential functions. For
simplicity, we will assume a pairwise MRF param-
eterized by w, whose potential functions are either
unary, denoted by �a.xaIw/, or pairwise, denoted by
�ab.xa; xb Iw/. For a discussion on high-order MRFs,
we refer the interested reader to the following relevant
books [2,9,20]. The joint probability of all the random
variables can be expressed in terms of the potential
functions as follows:

Pr.xIw/ / exp.�E.xIw//; E.xIw/
D
X

Va2V
�a.xaIw/C

X

.Va;Vb/2E
�ab.xa; xb Iw/: (1)

The function E.xIw/ is called the Gibbs energy (or
simply the energy) of x.

MAP Inference

Maximum a posteriori (MAP) inference refers to the
estimation of the most probable labeling. Formally, it
is defined as

MAPG.�/ � min
x

X

Va2V
�a.xa/C

X

.Va;Vb/2E
�ab.xa; xb/;

(2)

where we have dropped the parameters w from the
notation of the potential functions to avoid clutter. The
above problem is known to be NP-hard in general.
However, given its importance, several approximate
algorithms have been proposed in the literature, which
we review below.

Belief Propagation
Belief propagation (BP) [21] is an iterative message
passing algorithm, where the messages at iteration t are
given by

mt
ab.j / D min

i2Xa

8
<

:
�a.i/C �ab.i; j /C

X

c¤b;.Va;Vc /2E
mt�1
ca .i/

9
=

;
;8.a; b/ 2 E ; j 2 Xb: (3)

At convergence (when the change in messages is below
tolerance), the approximate MAP labeling is estimated
as

xa D argmin
i2Xa

8
<

:
�a.i/C

X

b;.Va ;Vb/2E
mba.i/

9
=

;
: (4)

BP provides the optimal labeling for tree-structured
MRF and is not guaranteed to converge for general
MRFs [21]. However, if BP does converge, it provides
a local minimum over the single loop and tree neigh-
borhood [28].

Move-Making Methods Based on Graph Cuts
It is common to assume a shared ordered label set
X in move-making methods. The key observation is
that the MAP labeling can be computed efficiently via

a minimum st-cut on a graph [10, 23] if the energy
function is submodular, that is, it satisfies

�ab.i; j /C�ab.i C 1; j C 1/ � �ab.i; j C 1/
C �ab.i C 1; j /;8i; j 2 X : (5)

Move-making methods iteratively minimize submod-
ular projections of the energy to improve the label-
ing. For example, consider metric labeling, that is,
�ab.i; j / D !abd.i; j / where !ab � 0 and d.�; �/
is a metric distance. In this case, we can use ˛-
expansion [3], where at iteration ˛, each random vari-
able can either retain its current label or move to a
label ˛.

The efficiency of computing a minimum st-cut can
be significantly improved for dynamic MRFs [8, 14].
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While ˛-expansion provides very poor multiplicative
bounds, other more expensive move-making methods
obtain the best known multiplicative bounds for special
cases such as truncated convex models [17] and metric
labeling [16].

Linear Programming Relaxation
Problem (2) can be reformulated as an integer program,
which can then be relaxed to a linear program (LP).
Briefly, let ya.i/ 2 f0; 1g indicate whether Xa takes a
label i , and let yab.i; j / D ya.i/yb.j /. It follows that

MAPG.�/ � min
y2f0;1gm

X

Va2V

X

i2Xa

�a.i/ya.i/C
X

.Va;Vb/2E

X

i2Xa;j2Xb

�ab.i; j /yab.i; j /;

s.t.
X

i2Xa

ya.i/ D 1;8Va 2 V ;

X

j2Xb

yab.i; j / D ya.i/;8.Va; Vb/ 2 E ; i 2 Xa; (6)

where m is the total number of binary variables. By
relaxing the variable constraints to y 2 Œ0; 1�m, we
obtain an LP relaxation [4,24,27], which can be solved
in polynomial time.

The LP relaxation provides a globally optimum
solution for tree-structured graphs [1, 27] and for sub-
modular energy functions [4]. It also provides the
best known multiplicative bounds for truncated convex
models and metric labeling [4, 7]. It is provably tighter
than a large class of quadratic programming relax-
ations [18] and is significantly more efficient than the
standard semidefinite programming relaxation [6, 26].

Dual Decomposition
Another very general way to derive and solve con-
vex relaxations that tightly approximate the original
NP-hard optimization problem for MAP inference is
through the so-called dual-decomposition framework
[13, 15]. According to this approach, a set fGsg of
subgraphs of the original graph G D .V ; E/ is chosen
such that Gs D .V s; E s/ and V D [V s , E D [E s .
The original hard problem MAPG.�/ (also called the
master) is then decomposed into a set of easier to solve
subproblems fMAPGs .�s/g (called the slaves), which
are defined on these subgraphs fGsg. The potentials
of the slaves (which are the dual variables) satisfy the
property that

P
s �

s D �. As a result of the above
property, the sum of the minimum energies of the
slaves can be shown to always provide a lower bound
to the minimum energy of the master MRF, that is, it
holds

P
i MAPGs .�s/ � MAPG.�/. Maximizing this

lower bound by adjusting the potentials �s of the slaves
gives rise to the following dual convex relaxation to the
MAP estimation problem:

DUALfGsg.�/ D max
f�sg

X

s
MAPGs .�s/ (7)

s.t.
X

s

�s D �:

By choosing different decompositions fGsg, one can
derive different convex relaxations, which in practice
provide very good approximations to the MAP infer-
ence task. This includes the LP relaxation (6) discussed
earlier (corresponding to tree-structured slave prob-
lems) but also other relaxations that are much tighter.
Moreover, each convex relaxation (7) can be solved
very efficiently by applying a projected subgradient
algorithm, which simply requires the MAP estimation
of the slave MRFs at each iteration.

Learning of MRFs

Besides inference, another task of great importance is
that of MRF learning, where the goal is the estimation
of the parameters w from training data. Both generative
(e.g., maximum-likelihood [22]) and discriminative
(e.g., max-margin [25]) MRF learning approaches have
been applied to this case. Here the focus will be mainly
on methods of the latter type as they are typically more
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effective in practice (especially in the case of large
training sets).

As an input to MRF learning, a set of K training
samples fzk; xkgKkD1 is provided, where zk and xk

represent respectively the input data and the ground
truth label assignments for the kth sample. More-
over, it is assumed that the unary potentials �ka and
the pairwise potentials �kab of the kth MRF training
instance can be expressed linearly in terms of fea-
ture vectors extracted from the input data zk , that is,
it holds �ka .xa/ D wT ga.xa; zk/, �kab.xa; xb/ D
wT gab.xa; xb; zk/, where ga.�; �/ and gab.�; �/ represent
some known vector-valued feature functions.

In the case of max-margin learning [25], we seek to
adjust the vector w such that the energy of the desired
ground truth solution xk is smaller than the energy of
any other solution x by at least 	.x; xk/, that is,

E.xkIw/ � E.xIw/�	.x; xk/C 
k ; (8)

where E.�Iw/ is as defined in Eq. (1). In the above
set of linear inequality constraints with respect to w,
	.x; x0/ represents a user-specified distance function
(such as the Hamming distance) that measures the
dissimilarity between any two solutions x and x0 (ob-
viously it should hold 	.x; x/ D 0), and 
k is a
nonnegative slack variable that has been introduced
for ensuring that a feasible solution w does always
exist. Ideally, w should be set such that each 
k � 0

can take a value as small as possible. As a result,
during learning the following constrained optimization
problem is solved:

min
w;f�kg

� �R.w/C
KX

kD1

k

s.t. constraints (8) :

(9)

In the above problem, � is a user-specified hyper-
parameter and R.w/ represents a regularization term
whose role is to prevent overfitting during the learning
process (e.g., it can be set equal to jjwjj2 or to a sparsity
inducing norm such as jjwjj1). The slack variable 
k
can also be expressed as the following hinge-loss term:

Loss.xk Iw/ D E.xkIw/ �min
x

�
E.xIw/�	.x; xk/� :

(10)

This leads to the following equivalent unconstrained
formulation:

min
w

� �R.w/C
KX

kD1
Loss.xkIw/ : (11)

One class of methods [5, 19] tries to solve the
constrained optimization problem (9) by the use of
a cutting-plane approach when R.w/ D jjwjj2. In
this case, the above problem is equivalent to a con-
vex quadratic program (QP) but with an exponential
number of linear inequality constraints. Given that only
a small fraction of them will be active at an optimal
solution, cutting-plane methods proceed by solving a
small QP with a growing number of constraints at each
iteration (where this number is polynomially upper
bounded). One drawback of such an approach relates
to the fact that computing a violated constraint requires
solving at each iteration an MAP inference problem
that is NP-hard in general.

Another class of methods tackles instead the un-
constrained formulation (11). This is also the case for
the recently proposed framework by [11, 12], which
addresses the abovementioned drawbacks by relying
on a dual-decomposition approach previously used for
MAP estimation. By using such an approach, this
framework reduces the task of training an arbitrarily
complex MRF to that of training in parallel a series
of simpler slave MRFs that are much easier to han-
dle within a max-margin framework. The concurrent
training of the slave MRFs takes place through a very
efficient stochastic subgradient learning scheme that is
general enough and can handle both pairwise and high-
order MRFs, as well as any convex regularizer R.w/.
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PCA methodology, we discuss delay-coordinate
embeddings and the related SSA algorithms, as well as
methods blending these approaches with techniques
from machine learning and harmonic analysis to
exploit dynamics and nonlinear geometric structures
of data.

Description

In recent years, geophysical data sets produced
by models or acquired via observational networks
have experienced an exponential growth in volume
and complexity. For instance, as of early 2014,
the CMIP5 archive [21] contains several petabytes
of climate model output from modeling centers
around the world. Similarly comprehensive data
sets are also available from observational networks
(For example, the National Climatic Data Center
(NCDC); http://www.ncdc.noaa.gov) and reanalysis
(e.g., [9]). These data sets contain a wealth of
information about Earth system processes spanning
multidecadal to second timescales and planetary to
meter spatial scales, but due to the sheer volume
and complexity of the available data, “look and see”
approaches have limited potential in accessing that
information. As a result, the availability of efficient
data analysis techniques is crucial for leveraging the
available data to improve scientific understanding
and forecasting capability of important geophysical
phenomena.

This entry reviews mathematical techniques to ad-
dress these problems, focusing on feature extraction
methods. These methods seek to create reduced repre-
sentations of high-dimensional signals without assum-
ing a particular model structure that generates the data;
thus, they can be thought of as unsupervised learning
algorithms. Here, we discuss some of the classical
linear approaches in the geosciences, namely, prin-
cipal components analysis (PCA) and singular spec-
trum analysis (SSA), as well as recent developments
blending these methods with ideas from machine learn-
ing and harmonic analysis. Model-fitting techniques,
such as Bayesian and cluster models, are also highly
prominent in geophysics but are not reviewed here. We
refer the reader to one of the excellent references in
the literature (e.g., [7, 16]) for further details on these
important topics.

Feature ExtractionMethods

Consider a data set consisting of s time-ordered sam-
ples x D .x1; : : : ; xs/ of an n-dimensional vector-
valued signal taken uniformly at times ti ; : : : ; ts with
ti D .i � 1/ ıt . For example, each xi 2 R

n may be
a snapshot of blackbody emission temperature from
the Earth acquired via remote sensing at n spatial
gridpoints. The general objective of feature extraction
methods is to construct a reduced representation of
the high-dimensional spatiotemporal signal x in terms
of vectors y1; : : : ; ys of dimension l 	 n while
preserving certain properties of the original signal.
Mathematically, this operation can be described by
means of a projection map ˘ W Rn 7! R

l from data
space to l-dimensional feature space such that

yi D ˘.xi /: (1)

A related problem is to produce a decomposition

x D
X

i

x.i/; with x.i/ D .x.i/1 ; : : : ; x.i/s /; (2)

of the raw signal x into spatiotemporal patterns x.i/,
each of which contains meaningful physical infor-
mation, while being simpler to analyze and interpret
than x.

Implicit to these tasks is the notion that the signal
has low intrinsic dimension (at least over some coarse
scales), despite that the dimension n of ambient data
space is large. A common approach is to consider
that the samples xi lie on or near a low-dimensional
manifold embedded in R

n. In geophysics, such low-
dimensional geometrical structures are an outcome of
nonlinear dynamics [10]. Thus, it is natural to construct
reduced representations of the data preserving certain
properties of the low-dimensional data manifold and
the dynamical system generating the data.

Principal Components Analysis

In PCA, the reduction procedure in (1) is carried out
through linear projections of the data onto the principal
axes u1; : : : ; un of the empirical spatial covariance
matrix C D xxT with

Cui D �iui : (3)

http://www.ncdc.noaa.gov
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Here, the ui are spatial patterns in R
n, forming an

orthonormal basis ordered in order of decreasing eigen-
value �i . The linear projections of the data onto those
axes,

vi D uTi x=�
1=2
i ; with vi D .v1i ; : : : ; vsi /T ; (4)

lead to the reduced representation

yi D ˘.xi / D .vi1; : : : ; vil / 2 R
l : (5)

Each vi is an eigenvector of the temporal covariance
matrix C 0 D xT x with corresponding eigenvalue �i
and may be interpreted as a discretely sampled function
of time with vi .tj / D vij . In the geophysical litera-
ture, the ui and vi are known as empirical orthogonal
functions (EOFs) and principal components (PCs),
respectively. Associated with each vi is a convolution
filter Fi D viv

T
i , which may be used to extract the

spatiotemporal patterns in (2) through the operation

x.i/ D xFi : (6)

The eigenvalue �i measures the explained variance of
the total signal by pattern x.i/.

More abstractly, one may think of the data matrix
as a linear map x W Rs 7! R

n between the spaces of
temporal and spatial patterns, referred to as chronos
(Rs) and topos (Rn) spaces, respectively [1]. The EOFs
and PCs in (3) and (4) are then given by singular value
decomposition (SVD) of that map, viz.,

x D u�vT ; u D .u1; : : : ; un/; v D .v1; : : : ; vn/:
(7)

Here, u and v are orthogonal matrices of dimension n�
n and s � s, respectively, and � a diagonal matrix with
nonnegative diagonal elements �ii D �1=2i .

It is a standard result in linear algebra that the
truncated expansion Ox.k/ D Pk

iD1 x.i/ is the optimal
rank-k approximation of the full signal in the sense of
the Frobenius operator norm. Yet, there is a number of
reasons that standard PCA may experience shortcom-
ings, including:
1. The EOF basis in (3) and the corresponding reduced

coordinates in (5) are invariant under temporal re-
orderings of the data. That is, classical PCA is not
adapted to the dynamics generating the data.

2. PCA identifies optimal linear subspaces for the
data, but nonlinear dynamics generally give rise

to nonlinear data manifolds. It is possible that the
PCA subspace dimension significantly exceeds the
dimension of those manifolds. Moreover, the EOFs
may fail to capture intermittent patterns arising in
turbulent dynamical systems; i.e., patterns that carry
low variance, but play an important role in reduced
dynamical modeling [2, 8].

Delay-Coordinate Maps and Singular
Spectrum Analysis

Delay-coordinate maps [18, 19] and the related SSA
algorithms [5,11,22] address some of the shortcomings
of PCA by embedding the observed data into a higher-
dimensional space through the mapping

xi 7! Xi D .xTi ; xTi�1; : : : ; xTi�.q�1//T : (8)

Here, q is a positive integer parameter controlling the
length of the embedding window so that the dimension
of Xi is N D qn. In SSA, the reduced representation
of the signal is obtained via the PCA procedure in (3)–
(5) replacing throughout xi by Xi .

Under relatively weak assumptions on the dynam-
ical system generating the data and the observation
modality, the data set

X D .X1; : : : ; XS/; S D s � q � 1

embedded in delay-coordinate space is diffeomorphic
(i.e., in one-to-one correspondence) to the attractor of
the dynamical system generating the data, even if the
observed data xi do not resolve all of the dimensions
of that attractor. In such partial-observation scenarios
(arising frequently in geophysics), delay-coordinate
maps help recover topological features of the data
which have been projected away in the snapshots xi .

In addition to topological effects, delay-coordinate
maps influence the geometry of the data. In particular,
pairwise distances in delay-coordinate space depend
not only on instantaneous data snapshots but also on
the trajectory that the system took to arrive at those
snapshots. That is,

kXi �Xjk2 D
qX

kD1
kxi�k�1 � xj�k�1k2;
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where k�k denotes the canonical Euclidean norm. The
covariance matrix C D XTX utilized in SSA de-
pends on the dynamics in a similar manner. Due to
this feature, SSA yields superior timescale separation
compared to classical PCA.

Nonlinear Kernel Methods

Despite incorporating dynamical information, SSA is
fundamentally a linear projection method based on
the spectrum of the global covariance of the data. An
alternative recently developed approach is to perform
feature extraction targeting the local intrinsic geom-
etry of the data in delay-coordinate space [4, 13, 14].
Here, the covariance matrix is replaced by a diffusion
operator on the nonlinear data manifold, constructed
empirically from data using algorithms developed in
harmonic analysis and machine learning [3,6]. Because
every diffusion operator L can be uniquely associated
to a Riemannian metric tensor g [17], using the em-
pirically accessible L and its associated orthonormal
eigenfunctions is tantamount to analyzing the data in a
manner compatible with its nonlinear geometry.

Central to the construction of diffusion operators for
data analysis is the notion of a kernel, i.e., an expo-
nentially decaying pairwise measure of similarity. A
standard choice in this context is the isotropic Gaussian
kernel

K.Xi ;Xj / D exp.�kXi �Xjk2=�2/; (9)

where � is a positive parameter controlling the rate
of decay of the kernel. [4] show that under certain
conditions (and a suitable rescaling of the snapshots
in (8)), delay-coordinate embedding biases g toward
the Lyapunov metric along the most stable Lyapunov
direction of the dynamical system generating the data.
This feature contributes toward a timescale separation
capability of kernel-based methods beyond what is
achievable through linear algorithms, as observed in
applications [12–15].

More generally, one can design kernels with addi-
tional structure that modifies the induced metric tensor
g on the data in a goal-oriented manner. For instance,
in [13, 14], the kernel includes local scaling factors
proportional to the norm of the vector field generating
the dynamics, estimated through 
i D Xi �Xi�1:

K.Xi ;Xj / D exp.�kXi � Xjk2=.k
ikk
j k//:

Geometrically, the scaling by 
i produces a conformal
change of metric contracting distances at transitory
states with large 
i . This feature was found to play
an important role in the successful Galerkin reduction
of a dynamical system with chaotic regime transitions
where EOFs are known to fail [8, 13].

With the given choice of kernel, one proceeds by
constructing an associated Markov transition probabil-
ity matrix P whose state space is the data set fXig.
A popular approach in this context is the diffusion
map (DM) algorithm of [6], whereby P is constructed
through the sequence of normalization operations

Qi D
X

j

K.Xi ; Xj /; QKij D K.Xi ;Xj /=.QiQj /
˛;

QQi D
X

j

QKij ; Pij D QKij = QQi;

for a real parameter ˛. The diffusion operator is then
given byL D I�P . With this definition ofP and ˛ D
1, the diffusion operator associated with the isotropic
kernel in (9) converges as � ! 0 (and a suitable scaling
of the number of samples with �) to the Laplace-
Beltrami operator 	 D � divg gradg associated with
the Riemannian metric g of the data manifold in delay-
coordinate space. An important property of DM is
that the ˛ D 1 convergence result holds even if the
sampling density on the data manifold is nonuniform
with respect to the volume form of g. This feature is
desirable in geophysical applications where one cannot
directly control the sampling density of the data.

A further important property of diffusion operators
constructed from symmetric positive kernels is that
they are self-adjoint with respect to the stationary
distribution � of P . As a result, the corresponding
diffusion eigenfunctions �i , given by

L�i D �i�i ; �i D .�1i ; : : : ; �Si /;
0 D �0 < �1 � �2 � � � � ; (10)

provide an empirical basis for the spectral decomposi-
tion of data which is orthonormal with respect to the
inner product

.�i ; �j / D
X

k

�k�ik�jk; �P D �:
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In particular, the �i can be used as nonlinear alter-
natives to the PCA linear projection map (5), i.e.,

˘.xi / D .�ij1 ; : : : ; �ijl /

for some l-element index set fj1; : : : ; jlg of eigen-
functions. Theoretical results on manifold embeddings
by diffusion eigenfunctions establish conditions under
which nonlinear feature extraction maps of this type
preserve the manifold structure of the data, with the
number of required eigenfunctions depending on the
intrinsic properties of the data manifold such as dimen-
sion and curvature. Thus, the diffusion eigenfunctions
in (10) provide an empirical basis for data analysis
which is adapted to the nonlinear geometry and (due
to delay-coordinate embedding) the dynamics.

An alternative perspective, adopted in the so-
called nonlinear Laplacian spectral analysis (NLSA)
algorithms [13, 14], is to associate low-dimensional
function spaces ˚l D spanf�1; : : : ; �lg with chronos
spaces [1] for temporal modes. Projecting the data onto
such spaces then leads to linear maps A W ˚l 7! R

N

with
A D X��; � D .�1; : : : ; �l /:

The singular value decomposition of A yields a
biorthonormal set of spatial and temporal modes
analogous to (7),

A D U˙V; U TU D IN�N ; V T V D Il�l
U D .U1; : : : ; UN /; ˙ D diag.˙1; : : : ; ˙minfN;lg/;

V D .V1; : : : ; Vl /;

with the difference that the right singular vectors Vi
are l-dimensional and correspond to expansion coeffi-
cients of temporal modes in the f�i g basis of ˚l . Thus,
NLSA algorithms combine aspects of both linear and
nonlinear approaches in that the modes are obtained by
SVD of a linear map, but that linear map acts on func-
tion spaces compatible with the nonlinear geometry of
the data. The temporal modes yield a decomposition of
the original signal into spatiotemporal patterns through
the convolution [cf. (6)]

X.i/ D X�Fi ; Fi D �vivTi �T : (11)

The patterns in (11) have been found to provide access
to features which are not recovered by classical linear

techniques in applications involving both model output
[12] and observational data [15].

Conclusions

In this entry we have reviewed three methods for fea-
ture extraction from large geophysical data sets. Start-
ing from classical PCA, we outlined how empirical
information about the dynamics generating the data can
be incorporated through delay-coordinate mappings
in SSA. We then discussed methods blending delay-
coordinate mappings with ideas from machine learning
and harmonic analysis to perform data reduction and
mode decomposition exploiting nonlinear geometric
structures of the data while taking dynamics into ac-
count. Ongoing and future research directions in this
area include the development of kernels for stochastic
dynamical systems (e.g., [20]), as well as alternative
ways of extracting spatiotemporal patterns than the
convolution filtering in (11).
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Petroleum resources are found within sedimentary
rocks that have a sufficient interconnected void space
to store and transmit fluids. The actual flow of liquid

and gas phases occurs on a micrometer scale in the
void space between rock grains. On the other hand, the
hydrocarbon is typically carried in rock zones that are
a few tens of meters thick but extend several kilometers
in the lateral directions. The rock formations are
typically heterogeneous at all length scales in between,
and phenomena at all length scales can have a profound
impact on flow, making flow in subsurface reservoirs a
true multiscale problem.

Observing dynamic fluid behavior and measuring
the pertinent parameters of a subsurface reservoir are
difficult. Predicting reservoir performance therefore
has a large degree of uncertainty attached. Simulation
studies are usually performed to quantify this
uncertainty. Reservoir simulation is the means by
which one uses a numerical model of the geological
and petrophysical characteristics of a hydrocarbon
reservoir to analyze and predict fluid behavior in the
reservoir over time. In its basic form, a reservoir
simulation model consists of three parts: (i) a
geological model in the form of a volumetric grid
with cell/face properties that describes the given
porous rock formation; (ii) a flow model that describes
how fluids flow in a porous medium, typically given
as a set of partial differential equations expressing
conservation of mass or volumes together with
appropriate closure relations; and (iii) a well model
that describes the flow in and out of the reservoir,
including a model for flow within the wellbore
and any coupling to flow control devices or surface
facilities.

Reservoir simulation is used for two main purposes:
(i) to optimize development plans for new fields and
(ii) assist with operational and investment decisions.
In particular, simulation is used in inverse modeling
to integrate static and dynamic (production) data. The
role and need for simulation greatly depend on the ge-
ological setting, the production environment (onshore
versus offshore), and the field maturity.

Geological Model

The first part of the reservoir model is a mathematical
description of the reservoir and its petrophysical prop-
erties. Herein, we focus on macroscale models that rely
on a continuum hypothesis and the existence of repre-
sentative elementary volumes (REV), see Fig. 1. This
concept is based on the idea that petrophysical flow
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Mathematical Models for
Oil Reservoir Simulation,
Fig. 1 A representative
elementary volume is the
smallest volume over which a
measurement can be made and
be representative of the whole,
here illustrated for porosity

Microscopic
effects

REV

Void

Rock Homogeneous media
Inhomogeneous media

properties are constant on some ranges of scale, and
REVs, if they exist, mark transitions between scales
of heterogeneity and present natural length scales for
modeling.

Two petrophysical properties are fundamental in
all models: the rock porosity, �, is a dimensionless
quantity that denotes the void volume fraction of the
medium available to be filled by fluids. Porosity de-
pends on the fluid pressure if the rock is compress-
ible. The permeability, K , is a measure of the rock’s
ability to transmit a single fluid at certain conditions.
Although its SI-unit is m2, permeability is commonly
represented in units Darcy. (The precise definition
of 1 Darcy (
0:987 � 10�12 m2) involves transmis-
sion of a fluid with viscosity 1 cp through a homoge-
neous rock at a speed of 1 cm/s by a pressure gradi-
ent of 1 atm/cm.) Permeability is often positively and
strongly correlated to porosity, but because the orienta-
tion and interconnection of pores are essential to flow,
it is seldom a direct function of porosity. In general,K
is a tensor, and we say that the medium is isotropic (as
opposed to anisotropic) if K can be represented as a
scalar function. Moreover, due to transitions between
different rock types, the permeability may vary rapidly
over several orders of magnitude; local variations in
the range 1 mD –10 D are not unusual in a typical
field.

This description of a reservoir and its petrophysical
parameters is usually developed through a complex
workflow that involves a multitude of data sources
that span a large variety of spatial (and temporal)
scales, from knowledge of the geologic history of the
surrounding basin, via seismic and electromagnetic

surveys and study of geological analogues (rock out-
crops), to rock samples extracted from exploration and
production wells. All this information is accumulated
and presented as input to the reservoir simulation in
the form of a geo-cellular model (volumetric grid) that
describes the geometry of the reservoir rock. Each
grid cell is assumed to be a REV and provides the
petrophysical properties that are needed as input to the
simulation model, primarily porosity and permeability.
Hence, the grid is closely attached to the parameter
description and cannot be easily adjusted to provide a
certain numerical accuracy as it can in many other fluid
dynamics applications.

Although rectilinear and curvilinear grids are some-
times used for reservoir simulation, they are seldom
sufficient to accurately describe the volumetric struc-
tures of a reservoir. Instead, the industry standard is
to use so-called stratigraphic grids (Fig. 2) that are
designed to reflect that reservoirs are usually formed
through deposition of sediments and consist of stacks
of sedimentary beds with different mixtures of solid
particles of varying sizes that extend in the lateral
direction. Because of differences in deposition and
compaction, the thickness and inclination of each bed
will vary in the lateral directions. Parts of the beds
may have been weathered down or completely eroded
away, and the layered structure of the beds may have
been disrupted due to geological activity, introduc-
ing fractures and faults. For the purpose of reservoir
simulation, fractures can be considered as cracks or
breakage in the rock, across which the layers in the
rock have negligible displacement. Faults are fractures
with displacement.
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Volumetric extrusion of areal Voronoi grid. Eroded sedimentary layers in a bed model.

A corner-point reservoir model. Cross-section of corner-point grid with five faults.

Mathematical Models for Oil Reservoir Simulation, Fig. 2 Examples of stratigraphic grids

A stratigraphic grid can be built by extruding 2D
tessellations of geological layers in the vertical direc-
tion or along inclined lines that follow major fault
surfaces. The most popular format, so-called corner-
point grids, consists of a set of hexahedral cells that
are structured so that the cells can be numbered using
a logical ijk index. Each cell has eight logical corner
points that are specified as pairs of depth-coordinates
defined on four straight or curved pillars. One or
more corner points may coincide, giving degenerate
cells, and cells that are logical neighbors need not
have matching faces, which gives rise to unstructured
connections. Increased areal flexibility is obtained us-
ing PEBI grids, which are based upon extrusion of
areal Voronoi grids. Stratigraphic grids will usually
have high aspect ratios and geometries that deviate far
from regular hexahedra; this poses challenges for both
discretization methods and (non)linear solvers. Further
challenges are encountered as fully unstructured grids
are becoming more popular.

FlowModels

The second part of a reservoir model is a mathematical
model that describes the fluid flow. In the following,
we describe the most common models for isothermal
flow. For brevity, we do not discuss thermal and cou-

pled geomechanical-fluid models even though these are
sometimes necessary to represent first-order effects.

Single-Phase Flow
The flow of a single fluid with density � through a
porous medium is described using the fundamental
property of conservation of mass:

@.��/

@t
Cr � .�v/ D q: (1)

Here, v is the superficial velocity, and q denotes a fluid
source/sink term used to model wells. The velocity is
related to the fluid pressure p through an empirical
relation named after the French engineer Henri Darcy:

v D �K
�

�rp � �g
�
; (2)

where K is the permeability, � the fluid viscosity, and
g the gravity vector. Introducing rock and fluid com-
pressibilities, cr D ��1d�=dp and cf D ��1d�=dp,
(1) and (2) can be combined into a parabolic equation
for the fluid pressure

��
�
cr C cf

�@p

@t
� r �

�
�
K

�

�rp � �g
�� D q: (3)

In the special case of incompressible rock and fluid,
(3) simplifies to a Poisson equation with variable
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coefficients, �r � .Kr˚/ D q�=�, for the fluid
potential ˚ D p � �jgjz.

Two-Phase Flow
The void space in a reservoir will generally be filled
by both hydrocarbons and (salt) water. In addition,
water is frequently injected to improve hydrocarbon
recovery. If the fluids are immiscible and separated
by a sharp interface, they are referred to as phases (A
phase is a physically distinctive form of solid, liquid,
or gaseous states of ordinary matter. Two phases are
said to be miscible if they mix in all proportions to
form a homogeneous solution. Conversely, two phases
are immiscible if they, in some proportion, do not
form a solution.) A two-phase system is commonly
divided into a wetting and a non-wetting phase, given
by the contact angle between the solid surface and
the fluid-fluid interface on the microscale (acute angle
implies wetting phase). On the macroscale, the fluids
are assumed to be present at the same location, and
the volume fraction occupied by each phase is called
the saturation of that phase; for a two-phase system,
the saturation of the wetting and non-wetting phases
therefore sums to unity, Sn C Sw D 1.

In the absence of phase transitions, the saturations
change when one phase displaces the other. During
the displacement, the ability of one phase to move
is affected by the interaction with the other phase at
the pore scale. In the macroscopic model, this effect
is represented by the relative permeability kr˛ (˛ D
w; n), which is a dimensionless scaling factor that
depends on the saturation and modifies the absolute
permeability to account for the rock’s reduced ability
to transmit each fluid in the presence of the other. The
multiphase extension of Darcy’s law reads

v˛ D �Kkr˛
�˛

�rp˛ � �˛g
�
; (4)

which together with the mass conservation of each
phase

@.�˛S˛�/

@t
Cr � .�˛v˛/ D q˛ (5)

forms the basic equations. Because of interfacial ten-
sion, the pressure in the two phases will differ. The
pressure difference is called capillary pressure pcnw D
pn � pw and is usually assumed to be a function of
saturation on the macroscale.

To better reveal the nature of the mathematical
model, it is common to reformulate (4) and (5) as a
flow equation for fluid pressure and transport equations
for saturations. A straightforward manipulation leads
to a system for one phase pressure and one saturation
in which the capillary pressure appears explicitly. The
resulting equations are nonlinear and strongly coupled.
To reduce the coupling, one can introduce a global
pressure p D pn�pc , where the complementary pres-
sure contains saturation-dependent terms and is defined
as rpc D fwrpcnw. The dimensionless fractional-
flow function fw D �w=.�w C �n/ measures the
fraction of the total flow that contains the wetting phase
and is defined from the phase mobilities �˛ D kr˛=�˛.
In the incompressible and immiscible case, (4) and (5)
can now be written in the so-called fractional form
which consists of an elliptic pressure equation

r � v D q; v D �K��n C �w
�rp

CK��w�w C �n�n
�
g (6)

for the pressure and the total velocity v D vnC vw and
a parabolic saturation equation

�
@Sw

@t
Cr � fw.Sw/

�
vCK�n.�w � �n/g

CK�nrpcnw
�� D qw

�w
(7)

for the saturationSw of the wetting phase. The capillary
pressure can often be neglected on a sufficiently large
scale, in which case (7) becomes hyperbolic.

To solve the system (6) and (7) numerically, it is
common to use a sequential solution procedure. First,
(6) is solved to determine the pressure and velocity,
which are then held fixed while advancing the satura-
tion a time step t , and so on.

Multiphase, Multicomponent Flow
Extending the equations describing two-phase flow to
immiscible flow of more than two phases is straight-
forward mathematically, but defining parameters such
as relative permeability becomes more challenging.
In addition, each phase will consist of more than
one chemical species, which are typically grouped
into fluid components. Because fluid components may
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transfer between phases (and change composition),
the basic conservation laws are expressed for each
component `

@

@t

�
�
X

˛

c`˛�˛S˛

�
Cr �

�X

˛

c`˛�˛v˛
�
D
X

˛

c`˛q˛:

(8)

Here, c`˛ denotes the mass fraction of component `
in phase ˛, �˛ is the density of phase ˛, v˛ is phase
velocity, and q˛ is phase source. As above, the ve-
locities are modeled using the multiphase extension
of Darcy’s law (4). The system consisting of (8) and
(4) is just the starting point of modeling and must be
further manipulated and supplied with closure relations
(PVT models, phase equilibrium conditions, etc.) for
specific fluid systems. Different choices for closure re-
lationships are appropriate for different reservoirs and
different recovery mechanisms and lead to different
levels of model complexity.

The Black-Oil Model
The flow model that is used most within reservoir sim-
ulation is the black-oil model. The model uses a simple
PVT description in which the hydrocarbon chemical
species are lumped together to form two components
at surface conditions: a heavy hydrocarbon component
called “oil” and a light hydrocarbon component called
“gas,” for which the chemical composition remains
constant for all times. At reservoir conditions, the gas
component may be partially or completely dissolved
in the oil phase, forming one or two phases (liquid
and vapor) that do not dissolve in the water phase.
In more general models, oil can be dissolved in the gas
phase, the hydrocarbon components are allowed to be
dissolved in the water (aqueous) phase, and the water
component may be dissolved in the two hydrocarbon
phases.

The black-oil model is often formulated as conser-
vation of volumes at standard conditions rather than
conservation of component masses [12] by introducing
formation volume factors B˛ D V˛=V˛s (V˛ and V˛s
are volumes occupied by a bulk of component ˛ at
reservoir and surface conditions) and a gas solubility
factor Rso D Vgs=Vos, which is the volume of gas,
measured at standard conditions, dissolved at reservoir
conditions in a unit of stock-tank oil (at surface condi-
tions). The resulting conservation laws read

@

@t

���˛s
B˛

S`

�
Cr �

� �˛s
B˛

v`
�
D q˛; ˛ D o;w

@

@t

���
g
s

Bg
Sg C �Rso�

g
s

Bo
S`

�

Cr �
� �

g
s

Bg
vg C Rso�

g
s

Bo
v`
�
D qg: (9)

Commercial simulators typically use a fully implicit
discretization to solve the nonlinear system (9). How-
ever, there are also several sequential methods that vary
in the choice of primary unknowns and the manipula-
tions, linearization, temporal and spatial discretization,
and order in which these operations are applied to
derive a set of discrete equations. As an example, the
IMPES (implicit pressure, explicit saturation) method
starts by a temporal discretization of the balance equa-
tions (9) and then eliminates the volume factors to
derive a pressure equation that is solved implicitly
to obtain pressure and fluxes. These are then used to
update the volumes (or saturations) in an explicit time
step. Improved stability can be obtained by a sequential
implicit method [13] that also treats the saturation
equation implicitly.

Well Models

In its simplest form, a well is a vertical, open hole
through which fluid can flow in and out of the reservoir.
More advanced wells are cemented and then perforated
in specific intervals along a path that may stretch kilo-
meters through the reservoir in the horizontal direction.
Production wells are designed to extract hydrocarbons,
whereas injection wells can be used for disposal of
produced water/gas, to maintain reservoir pressure or
to displace hydrocarbons toward production wells. The
injection and production of fluids is controlled through
surface facilities, but wells may also contain downhole
control devices.

The main purpose of a well model is to accu-
rately represent the flow in the wellbore and provide
equations that can be used to compute injection or
production rates when the flowing bottom hole pres-
sure is known, or compute the pressure for a given
well rate. When the flow equations presented above
are discretized using a volumetric grid, the wellbore
pressure will be significantly different from the average
pressure in the perforated grid blocks. The diameter
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of the wellbore is typically small compared to the
size of the blocks, which implies that large pressure
gradients appear in a small region inside the perforated
blocks. Modeling injection and production of fluids
using point sources gives singularities in the flow field
and is seldom used in practice. Instead, one uses an
analytical or semi-analytical solution of the form�q D
WI.pb � pwb/ to relate the wellbore pressure pwb

to the numerically computed pressure pb inside the
perforated blocks. Here, the well index WI accounts
for the geometric characteristics of the well and the
properties of the surrounding rock.

The first and still most used model was developed
by Peaceman [9]. Assuming steady-state radial flow
and a seven-point finite-difference discretization, the
well index for an isotropic medium with permeability
K represented on a Cartesian grid with cellx�y�
z reads

WI D 2�Kz

ln.r0=rw/
; r0 D 0:14.x2 Cy2/ 12 :

(10)

Here, rw is the radius of the well, and r0 is the effective
block radius at which the steady-state pressure equals
the computed block pressure. The Peaceman model has
later been extended to multiphase flows, anisotropic
media, horizontal wells, non-square grids, and other
discretization schemes, as well as to incorporate grav-
ity effects, changes in near-well permeability (skin),
and non-Darcy effects. More advanced models also
describe the flow inside the wellbore and how this flow
is coupled to surface control and processing facilities.

Bridging Scales (Upscaling)

Describing all pertinent flow processes with a single
model is impossible. Flow simulation is therefore di-
vided according to physical scales and performed on a
hierarchy of models: flow in core samples (cm scale),
bed models (meter scale), sector models, and field
models (km scale). These models must be calibrated
against static and dynamic data of very different spatial
(and temporal) resolution: thin sections, core samples,
well logs, geological outcrops, seismic surveys, well
tests, production data, core flooding, and other lab-
oratory experiments. Moreover, use of geostatistical
methods tends to produce geo-cellular models having
significantly more detail than conventional reservoir

simulation tools can handle. For all of these reasons,
upscaling is performed to reduce the number of model
parameters and define properties at coarser scales in
the model hierarchy. A proper coarse-scale reservoir
model should ideally capture the impact of heteroge-
neous structures at all scales that are not resolved by
the coarse grid used for flow simulation.

The simplest type of upscaling is single-phase up-
scaling: assuming incompressible flow modeled by
�r � Krp D q, we seek an effective K� inside
each coarse grid block B such that K�

R
B rp dx DR

B
K.x/rp dx. Upscaling methods range from simple

averaging techniques to sophisticated methods that
employ a combination of local and global computa-
tions [5].

Power averaging techniques, .jBjK�/r DR
B K.x/

r dx, �1 � r � 1, give correct upscaling
in special cases: the arithmetic average (r D 1) is
correct for flow parallel to isotropic, layered media,
whereas the harmonic average (r D �1) is correct for
flow perpendicular to isotropic, layered media. Power
averaging is simple but tends to perform poorly in
practice since the averages do not reflect the structure
or orientation of the heterogeneous structures.

In flow-based upscaling, one solves a set of homo-
geneous pressure equations, �r �Krp D 0, for each
grid block with prescribed boundary conditions that in-
duce a desired flow pattern. Methods differ in the way
boundary conditions are prescribed. A popular choice
is to consecutively impose a pressure drop in each co-
ordinate direction, giving three flow rates for each grid
block, from which an effective diagonal permeability
tensor can be computed. Another popular option is
to impose periodic boundary conditions. Alternatively,
one may look at the discretized flow equation, vij D
Tij .pi �pj /, where vij denotes the flux from block Bi
to Bj , and upscale the transmissibility Tij directly by
solving a flow problem in Bi [ Bj .

What is the best average in a specific case depends
both on the heterogeneity and the flow process (flow
direction, boundary conditions, etc.). More sophisti-
cated methods therefore use extended local domains to
lessen the impact of the boundary conditions or rely
on bootstrapping methods that combine the solution of
local and (generic or the full) global flow problems.
Moreover, single-phase upscaling alone is often not
sufficient to capture large-scale heterogeneity effects in
a multiphase system. The macroscopic effect of rela-
tive permeabilities and capillary pressures are captured
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in terms of pseudo functions, i.e., effective functions
that are used in coarse-scale transport equations to
model unresolved subscale effects.

Recently, research on simulation is moving in the
direction of so-called multiscale methods [6] in which
the solution of local flow problems is embedded in
coarse-scale approximation spaces consisting of a set
of multiscale basis functions which have fine-scale
subresolution that is consistent with the local properties
of the differential operator(s). The multiscale basis
functions can be coupled through a global coarse-
scale formulation to produce flow solutions that are
conservative both on the coarse and the fine scale.
Performing a single multiscale flow solve will typically
be as expensive as performing flow-based upscaling or
computing a single fine-scale flow solution. However,
for subsequent updates to the flow field, multiscale
methods offer a significant gain in computational ef-
ficiency by systematically reusing computations from
the previous flow solves (i.e., reusing the basis func-
tions).
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Short Definition

A (perfect) quantum crystal is an infinite quantum
system composed of fixed nuclei that are periodi-
cally arranged on a periodic lattice of R3, considered
as classical particles, and that interact with infinitely
many electrons considered as quantum particles that
are supposed to satisfy a Schrödinger type equation.

Description

We consider three fixed linearly independent vectors
�1, �2, and �3 of R

3 and the corresponding periodic
lattice � D Z �1 C Z �2 C Z �3 that is known as
a Bravais lattice in physicists’ literature; see [1, 14].
A unit cell of the crystal is a semi open convex
polyhedron Y of R3 such that fY C �g�2� fills in the
full space R

3 without overlapping. For example:

Y D ˚x �1 C y �2 C z �3 j .x; y; z/ 2 Q
�
;

where Q D � � 1
2
I 1
2

�3
is the unit cube centered at

.0; 0; 0/. When f�1; �2; �3g is the canonical basis of R3,
Y D Q. The dual (or reciprocal) basis f��i g of f�i g is
the triplet of linearly independent vectors defined by
��j � �i D 2� ıij , for every i; j 2 f1; 2; 3g and the dual
(or reciprocal) lattice � � is:

� � D ˚
k 2 R

3 j k � � 2 2�Z; for all � 2 � �

D Z ��1 C Z ��2 C Z ��3 :

http://dx.doi.org/10.1146/annurev.fluid.37.061903.175748
http://dx.doi.org/10.2118/10528-PA
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Its unit cell is denoted by Y �, with Y � D Œ��; �/3
when Y D Q. Given a Bravais lattice, different choices
of unit cells are possible. Among them stands the
Wigner-Seitz cell that features the maximum possible
symmetries according to the underlying lattice. The
Wigner-Seitz cell of the reciprocal lattice is called the
first Brillouin zone. For more details, we refer again to
Ashcroft and Mermin [1] and Kittel [14].

We now define the structure of the crystal. The
nuclei of the crystal, considered as fixed classical
particles, are arranged according to a patternm defined
in the unit cell and repeated periodically in order to fill
in the whole space according to the translations that
let the lattice invariant. More precisely, if the unit cell
consists of K point nuclei of respective charge zk > 0

and location Rk 2 Y for every 1 � k � K , we denote:

m D
KX

kD1
zk ı.� � Rk/

the pattern, where ı is the Dirac mass and Z D
PK

kD1 zk the total nuclear charge by unit cell. This dis-
tribution of charge creates an attractive Coulomb-type
potential. The sum

P
�2�

PK
kD1

zkj��RkC� j is infinite due

to the long range of the Coulomb potential in R
3, but

it can be renormalized. Actually, the potential due to
the nuclei is the periodic potential Gm DPK

kD1 zk G�
.� �Rk/, where G� is the � -periodic Coulomb kernel;
that is, the unique square-integrable function on Y

solving the Poisson equation:

8
<̂

:̂

�r2G� D 4�
�X

�2�
ı.� � �/� 1

jY j
�
;

G is � �periodic;
R
Y
G� dy D 0:

(1)

The potential Gm is � -periodic, that is, Gm.x C �/ D
Gm.x/, for all x 2 Y , � 2 � , and features a Coulomb
singularity at each nucleus. Its Fourier series expansion
writes:

G� .x/ D 1

jY j
X

k2� �nf0g

4�

jkj2 e
ik�xI

see, e.g., [8]. The � -periodic Coulomb kernel is de-
fined up to a constant, and other normalizations are also
considered in the literature. The electrostatic potential
associated with a � -periodic density � 2 L1loc.R

3/ \
L3loc.R

3/ is the � -periodic function defined by � ?Y

G� .x/ WD
Z

Y

G� .x � y/ �.y/ dy. As a consequence,

Gm is nothing but a shorthand for m ?Y G� :
Being given the structure of the nuclei arrangement,

we now turn to the analysis of the electronic structure.
The problem of electrons in a solid is a many-electron
problem, in principle, even infinitely many of them.
As opposed to the modelling of atoms and molecules,
it is not possible to write down a Hamiltonian or a
wave function for infinitely many particles. The energy
being an extensive quantity, the appropriate concept
is that of energy per particle or per unit volume.
Here, the exact Hamiltonian of the problem contains
one-electron potentials describing the interactions of
the electrons with the fixed periodic array of nuclei
as well as two-body potentials for the interactions
between the electrons themselves. We detail in the next
two sections two kinds of approximation models for
crystals.
1. In the independent electron approximation,

the nuclei–electron and the electron–electron
interactions are represented by an effective one-
electron periodic potential. The electronic structure
is described by the spectrum of an effective one-
body Schrödinger operator with periodic potential.

2. It is possible to formally construct, then sometimes
justify with mathematical arguments, various mod-
els for the electronic structure of perfect crystals
from known approximation models in molecular
chemistry, such as the Thomas–Fermi type models
(see entry �Thomas–Fermi Type Theories (and
Their Relation to Exact Models) in this encyclope-
dia) and the reduced Hartree–Fock or the Hartree–
Fock model (see entry �Hartree–Fock Type Meth-
ods in this encyclopedia). The method for that is
known as the thermodynamic (or bulk) limit. It relies
on the fact that the energy being an extensive quan-
tity, it behaves linearly with respect to the number
of particles. We therefore consider a finite number
N of cells, forming a subdomain�N of R3, thus of
fixed nuclei living inside the selected cells, and as
many electrons as to guarantee electrical neutrality,
that is, here, N � Z electrons. The electrons are
living in the whole space R

3. These finitely many
particles altogether form a (neutral) molecule whose
ground-state energy EN is known either exactly,
as the bottom of the spectrum of the correspond-
ing Schrödinger operator, or approximatively, with
the help of the well-known approximation models

http://dx.doi.org/10.1007/978-3-540-70529-1_235
http://dx.doi.org/10.1007/978-3-540-70529-1_236
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mentioned above (see entry �Variational Problems
in Molecular Simulation in this encyclopedia). As-
suming that, as N goes to infinity, the family of
subsets f�N gN�1 fills in the whole space R

3, we
address the following questions:
(i) Does the energy per unit volume ENj�N j have a

limit when N goes to C1?
(ii) Does the electronic density of the finite molec-

ular system converges to a � -periodic density
as N goes toC1?

(iii) In case of positive answer in issues (i) or (ii),
may we identify the limit of the energy per
particle with a periodic variational model for
the ground-state energy of the crystal?

Technical requirements are necessary on the growth
of the supercell f�N gN�1 to R

3 to ensure that
boundary effects stay negligible. They are referred
to as van Hove conditions in the literature; see, e.g.,
[8, 22] and the references therein. Actually, it is
equivalent to confine the electrons in the subdo-
main �N by imposing Dirichlet or periodic con-
ditions on the boundary of the domain �N ; the
above limits above do not depend on the boundary
conditions.

Band Theory of Schrödinger Operators
with Periodic Potential

The first step in studying the electronic structure of
a crystal is the spectral analysis of a Schrödinger
operator with periodic potential:

H D �1
2
r2 C Vper.x/

acting on L2.R3/ with Vper being � -periodic. The po-
tential Vper is, for example, the bare periodic potential
Gm created by the nuclei, in the case of independent
(that is, non interacting) electrons, or includes the � -
periodic potential created by a � -periodic electronic
density in a mean-field approximation. We assume
in any case that Vper is locally square integrable to
guarantee the self-adjointness of H on L2.R3/ with
domain H2.R3/ [21]. The celebrated Bloch theorem
describes the spectral decomposition of the operator
H . Its proof relies on the fact that H commutes with
the translations that let the lattice invariant [1, 21].

Theorem 1 (Bloch theorem) Let H D � 1
2
r2 C

Vper.x/ be a Schrödinger operator on L2.R3/ with
Vper 2 L2loc.R

3/ � -periodic. Then, for all 
 2 Y �,
there exists a non decreasing sequence f�n.
/gn�1 of
real numbers and a sequence of functions fun.
; �/gn�1
such that:
1. H un.
; �/ D �n.
/ un.
; �/.
2. e�i 
�x un.
; x/ is � -periodic.
3. The family fun.
; �/gn�1 is a complete orthonormal

family of L2
.R
3/, where L2
.Y / is the space of

locally square-integrable functions f on R
3, with


-quasi periodic boundary conditions on Y , that is,
f .x C �/ D ei 
�� f .x/, for every x 2 R

3, � 2 � .
4. The operator H is decomposed in fibers H DR ˚

Y � H
 d
, where H
 is the operator H acting on
the stable subspace L2
.R

3/.
5. The mapping 
 7! �n.
/ is continuous on Y � and

� �-periodic, for every n � 1.
6. The spectrum of H equals

S
n�1Œinf
2Y � �n.
/,

sup
2Y � �n.
/�.

Generalized eigenfunctions of H thus consist of a
plane wave times a � -periodic function. Such func-
tions are called Bloch waves. The vector 
 in the
reciprocal lattice is called a wave vector or a quasi-
momentum. The spectrum of H is a union of intervals
that are called bands, the index n being called the band
index.

Any function in L2.R3/ may be written as a contin-
uous sum of Bloch waves, thanks to the Bloch waves
decomposition; see [21]. This is summarized in the
notation:

L2.R3/ D 1

jY �j
Z ˚

Y �

d
 L2
.Y /:

In Statement 4 of above theorem, the operator H
itself is decomposed accordingly as a continuous
direct sum of operators H
 acting on L2
 , whose
spectrum f�n.
/gn�1 is discrete, for H
 has compact
resolvent.

If we consider a crystal with N electrons per unit
cell, we may define the Fermi level �F 2 R by:

N D
X

n�1

ˇ
ˇf
 2 Y � j �n.
/ � �F g

ˇ
ˇ

http://dx.doi.org/10.1007/978-3-540-70529-1_244
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Loosely speaking, the electrons fill the lowest energy
levels �n.
/ of H up to �F . An eigenstate does not
represent an electron per se, but rather the set of
all similar electrons repeated periodically according
to the lattice translations. This corresponds physi-
cally to delocalized electrons. Filling one band en-
tirely amounts to put one electron per unit cell. To
study the localization of electrons in solids, one intro-
duces the so-called Wannier functions on the nth-filled
band by:

�n.x/ D 1

jY �j
Z ˚

Y �

un.
; x/ d
:

The Wannier functions are square-integrable functions
on R

3, and their translates over the lattice f�n.� C
�/g�2� form a complete set of orthonormal func-
tions for the spectral subspace associated to the band
in question. These functions are used for numerical
purposes [5, 18] and in the description of the po-
larization in crystals. Bands play a crucial role in
explaining conductivity properties of crystals. If they
are enough electrons to fill in an entire number of
bands, there is a gap between the highest filled band
and the lowest empty one. The crystal behaves like
an insulator or a semi conductor depending on the
size of the gap. In this case, the Fermi level can take
any value in the gap. On the other hand, if a band is
partially filled, the crystal has a metallic behavior [14,
Chap. 7].

Thermodynamic Limits

We now survey on the known answers to the
thermodynamic limit issues addressed in the
introduction.

Exact QuantumModel
For the exact quantum model, the energy E.N/ of
the finite system of “size” N is the exact ground-
state energy obtained as the bottom of the spectrum
of the Hamiltonian of the molecule; see, e.g., entry
�Variational Problems in Molecular Simulation in this
encyclopedia. In that case, few results are available
in the mathematical literature, and they all answer
positively to the fundamental question (i) – existence
of the limit of the energy per unit volume. The limit

itself is not explicit and thereby cannot help building
a model for crystals. The first mathematical result
on the thermodynamic limit for crystals is due to
Fefferman [10]. For the sake of completeness, we
mention the results of Lieb and Lebowitz [16] on
the existence of thermodynamic limit for systems,
where both nuclei and electrons are treated quantum
mechanically. All these results were later extended
and improved by Hainzl, Lewin, and Solovej to more
general systems [12, 13].

Thomas–Fermi TypeModels for Crystals
Models from density functional theory are among the
simplest ones to approximate ground-state energies of
molecules; see entry �Variational Problems in Molec-
ular Simulation and entry �Density Functional Theory
in this encyclopedia. Among them stand the well-
known Thomas–Fermi (TF, in short) and Thomas–
Fermi–von Weiszäcker (TFW, in short) models; see
entry �Thomas–Fermi Type Theories (and Their Re-
lation to Exact Models) in this encyclopedia. In both
models, the electronic ground state of the finite system
of “size” N is modelled in a unique way through its
electronic density ��N , that is, an integrable function
��N � 0 such that

R
R3
��N dx D N �Z is the number

of electrons. For both models, the three questions
(i)–(iii) admit positive answers. In both cases, the strict
convexity of the energy functional with respect to the
electronic density and the uniqueness of the ground-
state density are used in a crucial way. The periodic
variational models we now introduce are obtained as
the thermodynamic limit of the energy per unit vol-
ume of the TF (resp. the TFW) ground-state energy.
They are therefore the natural candidates for being
the analog periodic models for the crystal ground-
state energy. Both mimic very well their counterpart in
molecular chemistry, except that the involved integrals
are set on the unit cell and that the Coulomb potential
is replaced by its periodic analog. The TF and the
TFW models are better designed for metallic crystals
as shown by Lieb and Simon [17] for the TF model
and very recently by Cancès and Ehrlacher [4] for the
TFW model. The study of the thermodynamic limit
for the Thomas–Fermi model goes back to Lieb and
Simon [17]. It is the first mathematical work in this
direction. The Thomas–Fermi ground-state energy for
crystals reads:

http://dx.doi.org/10.1007/978-3-540-70529-1_244
http://dx.doi.org/10.1007/978-3-540-70529-1_244
http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_235
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I TF
per D inf

n
ETF

per.�/ j � � 0; � � �periodic; � 2 L1loc.R
3/\L5=3loc .R

3/;

Z

Y

� dx D Z
o

with

ETF
per.�/ D cTF

Z

Y

�5=3 dy �
Z

Y

Gm � dy

C1
2

“

Y�Y
G� .x � y/ �.x/ �.y/ dxdy:

The parameter cTF is positive, with physical value
3 .3�2/2=3=10. Lieb and Simon’s proof of the
thermodynamic limit heavily relies on Teller’s

no-binding theorem [17]. Therefore, it cannot be
extended to more elaborate models from density
functional theory, like the Thomas–Fermi–von
Weiszäcker model; see entry �Thomas–Fermi Type
Theories (and Their Relation to Exact Models) in this
encyclopedia.

The study of the thermodynamic limit for the
Thomas–Fermi-von Weiszäcker model goes back to
Catto et al. [8]. The TFW ground-state model for
crystals reads:

I TFW
per D inf

n
ETFW

per .�/ j � � 0; � � �periodic;
p
� 2 H1

loc.R
3/;

Z

Y

� dx D Z
o

with

ETFW
per .�/ D cTFW

Z

Y

jrp�j2 dy C cTF

Z

Y

�5=3 dy

�
Z

Y

Gm � dy

C1
2

“

Y�Y
G� .x � y/ �.x/ �.y/ dxdy;

with cTFW > 0. In this latter case, the thermodynamic
limit for the ground-state density is based on a careful
analysis of the Euler–Lagrange equation resulting in
the limit. This equation belongs to the class of non
local and non linear elliptic PDEs without boundary
conditions, and the task is to show the existence of a
unique and periodic nonnegative solution [8].

Hartree–Fock TypeModels
We now define the periodic Hartree–Fock functional
(and its reduced version) as introduced in Catto et al.
[9]; see also [18]. This is the analog of the standard
Hartree–Fock model for molecules when expressed
in terms of the one-particle density matrix, in the
periodic setting; see I. Catto’s entry on �Hartree–Fock
Type Methods in this encyclopedia. The main object
of interest is the one-particle density matrix of the
electrons � , that is, a self-adjoint operator on L2.R3/,
satisfying � � �2, or equivalently, 0 � � � 1,
where 1 is the identity operator on L2.R3/, and that
commutes with the translations that preserve the un-

derlying lattice � . As in the independent electron case,
the Bloch theorem allows to decompose the density
matrix according to the Bloch waves decomposition
L2.R3/ D 1

jY �j
R ˚
Y � d
 L

2

.Y /. This leads to:

� D 1

jY �j
Z ˚

Y �

d
 �
 ;

where, for almost every 
 2 Y �, �
 is a self-adjoint
operator on L2
.Y / that is trace class and such that

�2
 � �
 , or equivalently, 0 � �
 � 1, where 1 is the

identity operator on L2
.Y /. Using the same notation
for the Hilbert–Schmidt kernel of �
 , we have:

�
.x; y/ D
X

n�1
�n.
/ e

�i 
�.x�y/ un.
; x/ Nun.
; y/;

where fe�i 
�xun.
; x/gn�1 is a complete set of eigen-
functions of �
 on L2
.Y / corresponding to eigenvalues
�n.
/ 2 Œ0; 1� and where Nz denotes the complex
conjugate of the complex number z. For almost every

 2 Y �, the function x 7! �
.x; x/ is non negative,
� -periodic and locally integrable on Y , and

TrL2
 .Y /�
 D
Z

Y

�
.x; x/ dx D
X

n�1
�n.
/:

The full electronic density is the � -periodic function
�� that is defined by

http://dx.doi.org/10.1007/978-3-540-70529-1_235
http://dx.doi.org/10.1007/978-3-540-70529-1_236
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�� .x/ D 1

jY �j
Z

Y �

d
 �
.x; x/: (2)

In particular,
R
Y �� .y/ dy is the number of electrons

per unit cell. An extra condition on the �
s is necessary
in order to give sense to the kinetic energy term in the
periodic setting. This condition reads:

Z

Y �

d
 TrL2
 .Y /Œ�r
2

 �
 � D

Z

Y �

d
 �n.
/

Z

Y

jrxun.
; x/j2 dx < C1;

where �r2 D 1
jY �j

R ˝
Y � d
 Œ�r2
 �; that is, �r2
 is the

Laplace operator on Y with quasi periodic boundary
conditions with quasi momentum 
.
The Hartree–Fock model for crystals (HF, in short)
reads:

IHF
per D inf

n
EHF

per .�/ j � 2 Dper;

Z

Y

�� dx D Z
o

with

EHF
per .�/ D

1

jY �j
Z

Y �

TrL2
 .Y /

	

�1
2
r2
 �





d


�
Z

Y

Gm.y/ �� .y/ dy

C1
2

“

Y�Y
�� .x/G� .x � y/ �� .y/ dxdy

�1
2

“

Y�R3
j�.x; y/j2
jx � yj dxdy (3)

and where Dper is the set of admissible periodic density
matrix

Dper D
n
� W L2.R3/! L2.R3/; � D ��; 0 � � � 1;

� D 1

jY �j
Z ˚

Y �

�
 d
;

Z

Y �

TrL2
 .Y /
�
.1 � r2
 /1=2�
.1 � r2
 /1=2

�
d
 < C1

o
:

The last term in the energy functional, namely (3), is
the exchange term; it can also be rephrased as:

“

Y�R3
j�.x; y/j2
jx � yj dxdy

D 1

jY �j2
“

Y ��Y �

d
d
 0

“

Y�Y
dxdy �
.x; y/W.
 � 
 0; x � y/ �
0.x; y/;

thereby shedding light on its non local nature, where

W.�; z/ D
X

�2�

ei � ��

jzC � j ; �; z 2 R
3:

The function ei x�� W.�; x/ is � -periodic with respect
to x when � is fixed. The Fourier series expansion of
W writes as follows:

W.�; x/ D 4� e�i x��
X

k2� �

ei k�x

j�� kj I

see [9].
The reduced Hartree–Fock model for crystals (rHF,

in short) is obtained from the Hartree–Fock model
by getting rid of the exchange term in the energy
functional; that is,

E rHF
per .�/ D

1

jY �j
Z

Y �

TrL2
 .Y /Œ�
1

2
r2
 �
 � d


�
Z

Y

Gm.y/ �� .y/ dy

C1
2

“

Y�Y
�� .x/G� .x � y/ �� .y/ dxdy:

From a mathematical point of view, this latter model
has nicer properties, the energy functional being
strictly convex with respect to the density. Existence
of a minimizer for E rHF

per and EHF
per on the set of density

matrices � 2 Dper such that
R
Y
�� .x/ dx D Z was

proved by Catto, Le Bris, and Lions in [9]. Uniqueness
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in the rHF case has been proven later by Cancès
et al. [6].

The periodic mean-field Hartree–Fock Hamiltonian
HHF
� corresponding to a minimizer � is decomposed

according to the Bloch waves decomposition as
HHF
� D 1

jY �j
R ˚
Y � d


�
HHF
�

�



with

�
HHF
�

�


D �1

2
r2
 �Gm C �� ?Y G�

� 1

jY �j
Z

Y �

W.
 0 � 
; x � y/ �
0.x; y/ d
 0:

The self-consistent equation satisfied by a minimizer �
is then:

� D �.�1;�F /.HHF
� /C s �f�F g.HHF

� /; (4)

where �I is the spectral projection onto the interval
I , the real �F is a Lagrange multiplier, identified to
a Fermi level like in the linear case, and the real
parameter s is 0 or 1, as proved by Ghimenti and Lewin
in [11]. In particular, they also have proved that every
minimizer of the periodic Hartree–Fock functional is
necessarily a projector, a fact that was only known
so far for the Hartree–Fock model for molecules; see
[2, 15] and entry �Hartree–Fock Type Methods in this
encyclopedia. Therefore, for almost every 
 2 Y �, the
eigenvalues f�n.
/gn�1 that appear in the decomposi-
tion of �
 are either 0 or 1 for a minimizer. The Euler–
Lagrange equation (4) may be rewritten in terms of the
eigenfunctions fun.
; �/gn�1 of the operators �
s. We
obtain a system of infinitely many non linear, non local
coupled partial differential equations of Schrödinger
type: for every n � 1 and for almost every 
 2 Y �:

( �
HHF
�

�



un.
; x/ D �n.
/ un.
; x/; on Y;

�n.
/ � �F :

Analogous results for the reduced Hartree–Fock model
were proved by Cancès, Deleurence, and Lewin in [6].
In that case, the minimizer � is unique, and denoting by

H rHF
� D �1

2
r2 �Gm C �� ?Y G�

the corresponding periodic mean-field Hamiltonian, it
solves the non linear equation

� D �.�1;�F �.H rHF
� /;

where, here again, the real �F is a Lagrange multiplier,
identified with a Fermi level. In particular, the mini-
mizer is also a projector in that case. These properties
are crucial for the proper construction of a reduced
Hartree–Fock model for a crystal with defect; see
[7].

Extensions

Crystals with Defects
Real crystals feature defects or irregularities in the
ideal arrangements described above, and it is these
defects that explain many of the electrical and me-
chanical properties of real materials [14]. The first
mathematical result in this direction is due to Cancès,
Deleurence, and Lewin who introduced and studied
in [6, 7] a rHF-type model for crystals with a defect,
that is, a vacancy, an interstitial atom, or an impu-
rity with possible rearrangement of the neighboring
atoms.

Crystal Problem
It is an unsolved problem in the study of matter to
understand why matter is in crystalline state at low
temperature. A few mathematical results have con-
tributed to partially answer this fundamental issue,
known as the crystal problem. The pioneering work
is due to Radin for electrons considered as classical
particles and in one space dimension [19,20]. In two di-
mensions, the crystallization phenomenon in classical
mechanics has been solved by Theil [23]. For quantum
electrons, the first mathematical result goes back to
Blanc and Le Bris, within the framework of a one-
dimensional TFW model [3].
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4. Cancès, É., Ehrlacher, V.: Local defects are always neutral
in the Thomas–Fermi–von Weiszäcker model for crystals.
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Synonyms

Function of a matrix

Definition

A matrix function is a map from the set of complex
n � n matrices to itself defined in terms of a given
scalar function in one of various, equivalent ways. For
example, if the scalar function has a power series ex-
pansion f .x/ DP1

iD1 ai xi , then f .A/ DP1
iD1 aiAi

for any n � n matrix A whose eigenvalues lie within
the radius of convergence of the power series. Other
definitions apply more generally without restrictions
on the spectrum [6].

Description

Transformation Methods
Let A be an n � n matrix. A basic property of matrix
functions is that f .X�1AX/ D X�1f .A/X for any
nonsingular matrix X . Hence, if A is diagonalizable,
so that A D XDX�1 for some diagonal matrix
D D diag.di / and nonsingular X , then f .A/ D
Xf .D/X�1 D Xdiag.f .di //X�1. The task of com-
puting f .A/ is therefore trivial when A has a com-
plete set of eigenvectors and the eigendecomposition is
known. However, in general the diagonalizing matrix
X can be arbitrarily ill conditioned and the evaluation
in floating point arithmetic can therefore be inaccurate,
so this approach is recommended only for matrices
for which X can be assured to be well conditioned.
For Hermitian, symmetric, or more generally normal
matrices (those satisfying AA� D A�A), X can be
taken unitary and evaluation by diagonalization is an
excellent approach.

For general matrices, it is natural to restrict to uni-
tary similarity transformations, in which case the Schur
decomposition A D QTQ� can be exploited, where
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Q is unitary and T is upper triangular. Now f .A/ D
Qf.T /Q� and the problem reduces to computing a
function of a triangular matrix. In the 2 � 2 case there
is an explicit formula:

f

�	
�1 t12
0 �2


�

D
	
f .�1/ t12f Œ�2; �1�

0 f .�2/




; (1)

where f Œ�2; �1� is a first-order divided difference and
the notation reflects that �i D ti i is an eigenvalue
of A. More generally, when the eigenvalues are dis-
tinct, f .T / can be computed by an elegant recurrence
due to Parlett [10]. This recurrence breaks down for
repeated eigenvalues and can be inaccurate when two
eigenvalues are close. These problems can be avoided
by employing a block form of the recurrence, in which
T D .Tij / is partitioned into a block m � m matrix
with square diagonal blocks Tii . The Schur–Parlett
algorithm of Davies and Higham [4] uses a unitary
similarity to reorder the blocks of T so that no two
distinct diagonal blocks have close eigenvalues while
within every diagonal block the eigenvalues are close,
then applies a block form of Parlett’s recurrence. Some
other method must be used to compute the diagonal
blocks f .Tii /, such as a Taylor series taken about
the mean of the eigenvalues of the block. The Schur–
Parlett algorithm is the best general-purpose algorithm
for evaluating matrix functions and is implemented in
the MATLAB function funm.

For the square root function, f .T / can be computed
by a different approach: the equation U 2 D T can
be solved for the upper triangular matrix U by a
recurrence of Björck and Hammarling [3] that runs
to completion even if A has repeated eigenvalues.
A generalization of this recurrence can be used to
compute pth roots [11].

ApproximationMethods
Another class of methods is based on approximations
to the underlying scalar function. Suppose that for
some rational function r , r.A/ approximates f .A/
well for A within some ball. Then we can consider
transforming a general A to a matrix B lying in the
ball, approximating f .B/ 
 r.B/, then recovering an
approximation to f .A/ from r.B/. The most important
example of this approach is the scaling and squaring
method for the matrix exponential, which approxi-
mates eA 
 rm.A=2

s/2
s
, where m and s are nonnega-

tive integers and rm is the Œm=m� Padé approximant to
ex . Backward error analysis can be used to determine
a choice of the parameters s and m that achieves a
given backward error (in exact arithmetic) at minimal
computational cost [1, 7].

The analogue for the matrix logarithm is the inverse
scaling and squaring method, which uses the approx-
imation log.A/ 
 2srm.A

1=2s � I /, where rm.x/ is
the Œm=m� Padé approximant to log.1 C x/. Here,
amongst the many logarithms of a matrix, log denotes
the principal logarithm: the one whose eigenvalues
have imaginary parts lying in .��; �/; there is a unique
such logarithm for any A having no eigenvalues on
the closed negative real axis. Again, backward error
analysis can be used to determine an optimal choice
of the parameters s and m [2].

The derivation of (inverse) scaling and squaring
algorithms requires attention to many details, such
as how to evaluate a Padé approximant at a matrix
argument, how to obtain the sharpest possible error
bounds while using only norms, and how to avoid
unnecessary loss of accuracy due to rounding errors.

Approximation methods can be effectively used in
conjunction with a Schur decomposition, in which case
the triangularity can be exploited [1, 2, 8].

Matrix Iterations
For functions that satisfy an algebraic equation, ma-
trix iterations can be set up that, under appropriate
conditions, converge to the matrix function. Many
different derivations are possible, one of which is to
apply Newton’s method to the relevant equation. For
example, for the equation X2 D A, Newton’s method
can be put in the form

XkC1 D 1

2
.Xk CX�1k A/; (2)

under the assumption that X0 commutes with A. This
iteration does not always converge. But if A has no
eigenvalues on the closed negative real axis and we
take X0 D A, then Xk converges quadratically to
A1=2, the unique square root of A whose spectrum
lies in the open right half-plane. Matrix iterations
potentially suffer from two problems: they may be
slow to converge initially, before the asymptotic fast
convergence (in practice of quadratic or higher rate)
sets in, and they may be unstable in finite preci-
sion arithmetic. Iteration (2) suffers from both these



Mechanical Systems 865

M

problems. However, (2) is mathematically equivalent
to the coupled iteration

XkC1 D 1

2

�
Xk C Y �1k

�
; X0 D A;

YkC1 D 1

2

�
Yk CX�1k

�
; Y0 D I;

(3)

of Denman and Beavers [5]: the Xk from (3)
are identical to those from (2) with X0 D
I and Yk � A�1Xk . This iteration is nu-
merically stable. Various other equivalent and
practically useful forms of (2) are available [6,
Chap. 6].

The convergence of matrix iterations in the early
stages can be accelerated by including scaling parame-
ters. Consider the Newton iteration

XkC1 D 1

2
.Xk CX�1k /; X0 D A: (4)

Assuming that A has no pure imaginary eigenvalues,
Xk converges quadratically to sign.A/, which is the
matrix function corresponding to the scalar sign func-
tion that maps points in the open right half-plane to 1
and points in the open left half-plane to �1. Although
the iteration converges at a quadratic rate, convergence
can be extremely slow initially. To accelerate the itera-
tion we can introduce a positive scaling parameter �k :

XkC1 D 1

2

�
�kXk C ��1k X�1k

�
; X0 D A:

Various choices of �k are available, with differing
motivations. One is the determinantal scaling �k D
j det.Xk/j�1=n, which tries to bring the eigenvalues of
�Xk close to the unit circle.

The number of iterations required for convergence
to double precision accuracy (unit roundoff about
10�16) varies with the iteration (and function) and the
scaling but in some cases can be strictly bounded.
For certain scaled iterations for computing the unitary
polar factor of a matrix, it can be proved that less than
ten iterations are needed for matrices with condition
number less than 1016 (e.g., [9]). Moreover, for these
iterations only one or two iterations might be needed if
the starting matrix is nearly unitary.
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Overview

A mechanical multibody system (MBS) is defined
as a set of rigid bodies and massless interconnec-
tion elements such as joints that constrain the mo-
tion and springs and dampers that act as compliant
elements. Variational principles dating back to Euler
and Lagrange characterize the dynamics of a multi-
body system and are the basis of advanced simulation
software, so-called multibody formalisms. The corre-
sponding specialized time integrators adopt techniques
from differential-algebraic equations (DAE) and are
extensively used in various application fields ranging
from vehicle dynamics to robotics and biomechanics.
This contribution briefly introduces the underlying
mathematical models, discusses alternative formula-
tions of the arising DAEs, and gives then, without
claiming to be comprehensive, a survey on the most
successful integration schemes.

Mathematical Modeling

In Fig. 1, a multibody system with typical components
is depicted. The motion of the bodies is described
by the vector q.t/ 2 R

nq , which comprises the co-
ordinates for position and orientation of each body
depending on time t . We leave the specifics of the
chosen coordinates open at this point but will come
back to this issue below. Differentiation with respect to
time is expressed by a dot, and thus, we write Pq.t/ and

Rq.t/ for the corresponding velocity and acceleration
vectors.

Revolute, translational, universal, and spherical
joints are examples for bonds in a multibody system.
They may constrain the motion q and hence determine
its kinematics. If constraints are present, we express
the resulting conditions on q in terms of n� constraint
equations

0 D g.q/ : (1)

Obviously, a meaningful model requires n� < nq . The
Eq. (1) that restrict the motion q are called holonomic
constraints, and the matrix

G .q/ WD @g.q/

@q
2 R

n��nq

is called the constraint Jacobian. We remark that there
exist constraints, e.g., driving constraints, that may
explicitly depend on time t and that are written as
0 D g.q; t/. For notational simplicity, however, we
omit this dependence in (1).

A standard assumption on the constraint Jacobian is
the full rank condition

rank G .q/ D n�; (2)

which means that the constraint equations are linearly
independent. In this case, the difference ny WD nq �n�
is the number of degrees of freedom (DOF) in the
system.

Mechanical Systems, Fig. 1
Sketch of a multibody system
with rigid bodies and typical
interconnections
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Two routes branch off at this point. The first
modeling approach expresses the governing equations
in terms of the redundant variables q and uses
additional Lagrange multipliers �.t/ 2 R

n� to take
the constraint equations into account. Alternatively,
the second approach introduces minimal coordinates
y.t/ 2 R

ny such that the redundant variables q can be
written as a function q.y/ and that the constraints are
satisfied for all choices of y :

g.q.y// � 0 : (3)

As a consequence, by differentiation of the identity (3)
with respect to y, we get the orthogonality relation

G .q.y//N .y/ D 0 (4)

with the null space matrix N .y/ WD @q.y/=@y 2
R
nq�ny .

Lagrange Equations of Type One and Type Two
Using both the redundant position variables q and ad-
ditional Lagrange multipliers � to describe the dynam-
ics leads to the equations of constrained mechanical
motion, also called the Lagrange equations of type
one:

M .q/ Rq D f .q; Pq; t/ �G .q/T� ; (5a)

0 D g.q/ (5b)

where M .q/ 2 R
nq�nq stands for the mass matrix and

f .q; Pq; t/ 2 R
nq for the vector of applied and internal

forces.
In case of a conservative multibody system where

the applied forces can be written as the gradient of a
potential U , the equations of motion (5) follow from
Hamilton’s principle of least action:

Z t1

t0

�
T � U � g.q/T�

�
dt ! stationary ! (6)

Here, the kinetic energy possesses a representation as
quadratic form T D 1

2
PqTM .q/ Pq, and the Lagrange

multiplier technique is applied for coupling the dy-
namics with the constraints (1). In the nonconservative
case, the Lagrange equations of type one read [23, 25]

d

dt

�
@

@Pq T
�

� @

@q
T D fa.q; Pq; t/ �G .q/T� ;

0 D g.q/ (7)

with applied forces fa. Carrying out the differentia-
tions and defining the force vector f as sum of fa and
Coriolis and centrifugal forces result in the equations
of motion (5). Note that f aD�rU in the conservative
case.

It should be remarked that for ease of presentation,
we omit the treatment of generalized velocities re-
sulting from 3-dimensional rotation matrices. For that
case, an additional kinematic equation Pq D S .q/v

with transformation matrix S and velocity vector v

needs to be taken into account [9].
The Lagrange equations of type one are a system

of second-order differential equations with additional
constraints (5), which is a special form of a DAE.
Applying minimal coordinates y, on the other hand,
eliminates the constraints and allows generating a sys-
tem of ordinary differential equations. If we insert
the coordinate transformation q D q.y.t// into the
principle (6) or apply it directly to (5), the constraints
and Lagrange multipliers cancel due to the property
(3). The resulting Lagrange equations of type two then
take the form

C .y/ Ry D h.y; Py ; t/ : (8)

This system of second-order ordinary differential equa-
tions bears also the name state space form. For a closer
look at the structure of (8), we recall the null space
matrix N from (4) and derive the relations

d

dt
q.y/ D N .y/ Py ;

d2

dt2
q.y/ D N .y/ Ry C @N .y/

@y
. Py; Py/

for the velocity and acceleration vectors. Inserting
these relations into the dynamic equations (5a) and
premultiplying by N T lead directly to the state space
form (8).

The analytical complexity of the constraint
equations (1) makes it often impossible to obtain
a set of minimal coordinates y that is valid for all
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configurations of the system. Moreover, although we
know from the implicit function theorem that such a set
exists in a neighborhood of the current configuration, it
might lose its validity when the configuration changes.
This holds in particular for multibody systems with
so-called closed kinematic loops.

Remarks
1. The differential-algebraic model (5) does not cover

all aspects of multibody dynamics. In particular,
features such as control laws, non-holonomic
constraints, and substructures require a more
general formulation. Corresponding extensions are
discussed in [9,26]. A detailed treatment of systems
with non-holonomic constraints is given by Rabier
and Rheinboldt [22].

2. In the conservative case, which is of minor rel-
evance in engineering applications, the Lagrange
equations of type one and type two can be reformu-
lated by means of Hamilton’s canonical equations.

3. Different methodologies for the derivation of the
governing equations are commonly applied in
multibody dynamics. Examples are the principle
of virtual work, the principle of Jourdain, and
the Newton–Euler equations in combination with
the principle of D’Alembert. These approaches
are, in general, equivalent and lead to the same
mathematical model. In practice, the crucial
point lies in the choice of coordinates and in the
corresponding computer implementation.

4. With respect to the choice of coordinates, one
distinguishes between absolute and relative coordi-
nates. Absolute or Cartesian coordinates describe
the motion of each body with respect to an in-
ertial reference frame, while relative or joint co-
ordinates are based on relative motions between
interacting bodies. Using absolute coordinates re-
sults in a large number of equations which have a
clear and sparse structure and are inexpensive to
compute. Furthermore, constraints always imply a
differential-algebraic model [16]. Relative coordi-
nates, on the other hand, lead to a reduced number
of equations and, in case of systems with a tree
structure, allow to eliminate all kinematic bonds,
thus leading to a global state space form. In general,
the system matrices are full and require more com-
plicated computations than for absolute coordinates.

Index Reduction and Stabilization

The state space form (8) represents a system of second-
order ordinary differential equations. The equations of
constrained mechanical motion (5), on the other hand,
constitute a differential-algebraic system of index 3,
as we will see in the following. For this purpose, it is
convenient to rewrite the equations as a system of first
order:

Pq D v ; (9a)

M .q/ Pv D f .q; v; t/ �G .q/T� ; (9b)

0 D g.q/ (9c)

with additional velocity variables v.t/ 2 R
nq . By

differentiating the constraints (9c) with respect to time,
we obtain the constraints at velocity level:

0 D d

dt
g.q/ D G .q/ Pq D G .q/ v : (10)

A second differentiation step yields the constraints at
acceleration level:

0 D d2

dt2
g.q/ D G .q/ PvC �.q; v/ ;

�.q; v/ W D @G .q/

@q
.v; v/ ; (11)

where the two-form � comprises additional derivative
terms. Combining the dynamic equation (9b) and the
acceleration constraints (11), we finally arrive at the
linear system

�
M .q/ G .q/T

G .q/ 0

�� Pv
�

�

D
 

f .q; v; t/

��.q; v/

!

: (12)

The matrix on the left-hand side has a saddle point
structure. We presuppose that

�
M .q/ G .q/T

G .q/ 0

�

is invertible (13)

in a neighborhood of the solution. A necessary but
not sufficient condition for (13) is the full rank of the
constraint Jacobian G as stated in (2). If in addition
the mass matrix M is symmetric positive definite, (13)
obviously holds (We remark that there are applications
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where the mass matrix is singular, but the prerequisite
(13) nevertheless is satisfied).

Assuming (13) and a symmetric positive definite
mass matrix, we can solve the linear system (12) for
the acceleration Pv and the Lagrange multiplier � by
block Gaussian elimination. This leads to an ordinary
differential equation for the velocity variables v and
an explicit expression for the Lagrange multiplier � D
�.q; v; t/. Since two differentiation steps result in the
linear system (12) and a final third differentiation
step yields an ordinary differential equation for �, the
differentiation index of the equations of constrained
mechanical motion is 3.

Note that the above differentiation process involves
a loss of integration constants. However, if the initial
values .q0; v0/ are consistent, i.e., if they satisfy the
original constraints and the velocity constraints,

0 D g.q0/ ; 0 D G .q0/ v0 ; (14)

the solution of (9a) and (12) also fulfills the original
system (9).

Higher index DAEs such as (9) suffer from several
drawbacks. For one, in a numerical time integration
scheme, a differentiation step is replaced by a dif-
ference quotient, i.e., by a division by the stepsize.
Therefore, the approximation properties of the numer-
ical scheme deteriorate and we observe phenomena
like order reduction, ill-conditioning, or even loss of
convergence. Most severely affected are typically the
Lagrange multipliers. Also, an amplification of pertur-
bations may occur (cf. the concept of the perturbation
index [15]). For these reasons, it is mostly not advis-
able to tackle DAEs of index 3 directly. Instead, it has
become standard in multibody dynamics o lower the
index first by introducing alternative formulations.

Formulations of Index 1 and Index 2
The differentiation process for determining the in-
dex revealed the hidden constraints at velocity and
at acceleration level. It is a straightforward idea to
replace now the original position constraint (9c) by one
of the hidden constraints. Selecting the acceleration
equation (11) for this purpose, one obtains

Pq D v ;

M .q/ Pv D f .q; v; t/ �G .q/T� ; (15)

0 D G .q/ PvC �.q; v/ :

This system is obviously of index 1, and at first
sight, one could expect much less difficulties here. But
a closer view shows that (15) lacks the information
of the original position and velocity constraints, which
have become invariants of the system. In general, these
invariants are not preserved under discretization, and
the numerical solution may thus turn unstable, which
is called the drift-off phenomenon.

Instead of the acceleration constraints, one can also
use the velocity constraints (10) to replace (9c). This
leads to

Pq D v ;

M .q/ Pv D f .q; v; t/ �G .q/T� ; (16)

0 D G .q/ v :

Now the index is 2, but similar to the index 1 case,
the information of the position constraint is lost. The
resulting drift off is noticeable but stays linear, which
means a significant improvement compared to (15)
where the drift off grows quadratically in time (see
(19) below). Nevertheless, additional measures such
as stabilization by projection are often applied when
discretizing (16).

GGL and Overdetermined Formulation
On the one hand, we have seen that it is desirable
for the governing equations to have an index as small
as possible. On the other hand, though simple differ-
entiation lowers the index, it may lead to drift off.
The formulation of Gear, Gupta, and Leimkuhler [12]
combines the kinematic and dynamic equations (9a-b)
with the constraints at velocity level (10). The position
constraints (5b) are interpreted as invariants and ap-
pended by means of extra Lagrange multipliers, which
results in

Pq D v �G .q/T � ;

M .q/ Pv D f .q; v; t/ �G .q/T� ; (17)

0 D G .q/ v ;

0 D g.q/

with �.t/ 2 R
n� . A straightforward calculation shows

� D 0 if G .q/ of full rank. With the additional
multipliers � vanishing, (17) and the original equations
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of motion (5) coincide along any solution. Yet, the
index of (17) is 2 instead of 3. Some authors refer to
(17) also as stabilized index 2 system.

From an analytical point of view, one could drop
the extra multiplier � in (17) and consider instead the
overdetermined system

Pq D v ;

M .q/ Pv D f .q; v; t/ �G .q/T� ; (18)

0 D G .q/ v ;

0 D g.q/ :

Though there are more equations than unknowns in
(18), the solution is unique and, given consistent initial
values, coincides with the solution of the original
system (9). Even more, one could add the accelera-
tion constraint (11)–(18) so that all hidden constraints
are explicitly stated. After discretization, however, a
generalized inverse is required to define a meaningful
method.

Local State Space Form
If one views the equations of constrained mechani-
cal motion as differential equations on a manifold,
it becomes clear that it is always possible to find at
least a local set of minimal coordinates to set up the
state space form (8) and compute a corresponding null
space matrix. We mention in this context the coordi-
nate partitioning method [28] and the tangent space
parametrization [21], which both allow the application
of ODE integration schemes in the local coordinates.
The class of null space methods [5] is related to these
approaches.

Time IntegrationMethods

We discuss in the following a selection of time inte-
gration methods that are typically used for solving the
constrained mechanical system (9). For this purpose,
we assume consistent initial values (14) and denote by
t0 < t1 < : : : < tn the time grid, with hi D tiC1 � ti
being the stepsize.

Projection Methods
By solving the linear system (12), the formulation (15)
of index 1 can be reduced to an ODE for the position

and velocity variables. This means that any standard
ODE integrator can be easily applied in this way to
solve the equations of constrained mechanical mo-
tion. However, as the position and velocity constraints
are in general not preserved under discretization, the
arising drift off requires additional measures. More
specifically, if the integration method has order k, the
numerical solution qn and vn after n time steps satisfies
the bound [13]

kg.qn/k � hkmax.AtnCBt2n/; kG .qn/vnk � hkmaxC tn
(19)

with constants A;B;C . The drift off from the position
constraints grows thus quadratically with the length of
the integration interval but depends also on the order
of the method. If the constraints are linear, however,
there is no drift off since the corresponding invariants
are preserved by linear integration methods.

A very common cure for the drift off is a two-stage
projection method where after each integration step,
the numerical solution is projected onto the manifold
of position and velocity constraints. Let qnC1 and
vnC1 denote the numerical solution of (15). Then, the
projection consists of the following steps:

solve
0 DM . QqnC1/. QqnC1 � qnC1/CG . QqnC1/T �;

for QqnC1;� .20a/
0 D g. QqnC1/;

solve
0 DM . QqnC1/. QvnC1 � vnC1/CG . QqnC1/T �I

for QvnC1;� .20b/
0 D G . QqnC1/ QvnC1:

A simplified Newton method can be used to solve the
nonlinear system (20a), and since the corresponding
iteration matrix is just (13) evaluated at qnC1 and
already available in decomposed form due to the pre-
vious integration step, this projection is inexpensive
to compute. Furthermore, (20b) represents a linear
system for QvnC1 and � with similar structure where the
corresponding matrix decomposition can be reused for
solving (12) in the next integration step [24].

As the projection (20) reflects a metric that is in-
duced by the mass matrix M [18], the projected value
QqnC1 is the point on the constraint manifold that has
minimum distance to qnC1 in this metric. An analysis
of the required number of Newton iterations and of the
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relation to alternative stabilization techniques includ-
ing the classical Baumgarte method [4] is provided by
Ascher et al. [3].

Projection methods are particularly attractive in
combination with explicit ODE integrators. The com-
bination with implicit methods, on the other hand, is
also possible but not as efficient as the direct discretiza-
tion by DAE integrators discussed below.

Half-Explicit Methods
Half-explicit methods for DAEs discretize the differen-
tial equations explicitly, while the constraint equations
are enforced in an implicit fashion. Due to the linearity
of the velocity constraint (10), the formulation (16)
of index 2 is a good candidate for this method class.
Several one-step and extrapolation methods have been
tailored to the needs and peculiarities of mechanical
systems. The half-explicit Euler method as generic
algorithm for the method class reads

qnC1 D qn C hvn ;

M .qn/ vnC1 DM .qn/ vn

Chf .qn; vn; tn/� hG .qn/
T�n ;

0 D G .qnC1/ vnC1 : (21)

Similar to the index 1 case above, only a linear system
of the form

�
M .qn/ G .qn/

T

G .qnC1/ 0

��
vnC1
h�n

�

D
�

M .qn/vn C hf .qn; vn; tn/

0

�

arises in each step. The scheme (21) forms the basis for
a class of half-explicit Runge–Kutta methods [2, 15]
and extrapolation methods [18]. These methods have
in common that only information of the velocity con-
straints is required. As remedy for the drift off, which
grows only linearly here but might still be noticeable,
the projection (20) can be applied.

Implicit DAE Integrators
For the application of general DAE methods, it is
convenient to write the different formulations from
above as linear implicit system

A Px D �.x; t/ (22)

with singular matrix A, right-hand side �, and with
the vector x.t/ collecting the position and velocity
coordinates as well as the Lagrange multipliers. A
state-dependent mass matrix M .q/ can be (formally)
inverted and moved to the right-hand side or, alterna-
tively, treated by introducing additional acceleration
variables a.t/ WD Pv.t/ and writing the dynamic equa-
tions as 0 DM .q/ a � f .q; v; t/CG .q/T�.

BDFMethods
The backward differentiation methods (BDFs) are
successfully used as a multistep discretization of stiff
and differential-algebraic equations [11]. For the linear
implicit system (22), the BDF discretization with fixed
stepsize h simply replaces Px.tnCk/ by the difference
scheme

A
1

h

kX

iD0
˛ixnCi D �.xnCk; tnCk/ ; (23)

with coefficients ˛i , i D 0; : : : ; k. Since the difference
operator on the left evaluates the derivative of a poly-
nomial passing through the points xn;xnC1; : : : ;xnCk,
this discretization can be interpreted as a collocation
method and extends easily to variable stepsizes. The
new solution xnCk is given by solving the nonlinear
system

˛k

h
A xnCk � �.xnCk; tnCk/C 1

h
A

k�1X

iD0
˛ixnCi D 0

(24)

for xnCk , where ˛k is the leading coefficient of the
method.

The convergence properties of the BDFs when ap-
plied to the equations of constrained mechanical mo-
tion depend on the index of the underlying formulation
[6]. In case of the original system (9) of index 3,
convergence is only guaranteed for fixed stepsize, and
additional numerical difficulties arise that are typical
for higher index DAEs. The formulations (15) and
(16) behave better under discretization but suffer from
drift off, and for this reason, the GGL formulation
(17) is, in general, preferred when using the BDFs
for constrained mechanical systems. However, since
(17) is still of index 2, the local error in the different
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components is, assuming n D 0, exact history data and
constant stepsize:

y.tk/ � yk D O.hkC1/; z.tk/� zk D O.hk/ (25)

where y D .q; v/ collects the differential components
and z D .�;�/ the algebraic components. To cope
with this order reduction phenomenon in the algebraic
components and related effects, a scaled norm kyk C
hkzk is required both for local error estimation and
for convergence control of Newton’s method. Global
convergence of order k for the k-step BDF method
when applied to (17) can nevertheless be shown both
for the differential and the algebraic components.

As analyzed in [10], the BDF discretization of (17)
is equivalent to solving the corresponding discretized
overdetermined system (18) in a certain least squares
sense where the least squares objective function inher-
its certain properties of the state space form (8).

Implicit Runge–Kutta Methods
Like the BDFs, implicit Runge–Kutta schemes
constitute an effective method class for stiff and
differential-algebraic equations. Assuming a stiffly
accurate method where the weights are simply given
by the last row of the coefficient matrix, such a method
with s stages for the linear implicit system (22) reads

AXn;i D Axn C h
sX

jD1
aij�.Xn;j ; tn C cj h/ ;

i D 1; : : : ; s: (26)

Here, Xn;i denotes the intermediate stage vectors and
ci for i D 1; : : : ; s the nodes of the underlying
quadrature formula, while .aij /i;jD1;:::;s is the coeffi-
cient matrix. The numerical solution after one step is
given by the last stage vector, xnC1 WD Xn;s .

Efficient methods for solving the nonlinear system
(26) by means of simplified Newton iterations and a
transformation of the coefficient matrix are discussed
in [13]. In the DAE context, collocation methods of
type Radau IIa [7] have proved to possess particularly
favorable properties. For ODEs and DAEs of index
1, the convergence order of these methods is 2s � 1,
while for higher index DAEs, an order reduction occurs
[15]. In case of the equations of motion in the GGL
formulation (17), a scaled norm like in the BDF case is

hence required in the simplified Newton iteration and
in the error estimation.

In practice, the 5th-order Radau IIa method with
s D 3 stages has stood the test as versatile and robust
integration scheme for constrained mechanical systems
(see also the hints on resources for numerical software
below). An extension to a variable order method with
s D 3; 5; 7 stages and corresponding order 5; 9; 13 is
presented in [14].

Both the BDFs and the implicit Runge–Kutta meth-
ods require a formulation of the equations of motion
as first-order system, which obviously increases the
size of the linear systems within Newton’s method.
For an efficient implementation, it is crucial to apply
block Gaussian elimination to reduce the dimension
in such a way that only a system similar to (12) with
two extra Jacobian blocks of the right-hand side vector
f has to be solved. When comparing these implicit
DAE integrators with explicit integration schemes for
the formulation of index 1, stabilized by the pro-
jection scheme (20), and with half-explicit methods,
the performance depends on several parameters such
as problem size, smoothness, and, most of all, stiff-
ness.

The adjective “stiff” typically characterizes an ODE
whose eigenvalues have strongly negative real parts.
However, numerical stiffness may also arise in case
of second-order systems with large eigenvalues on or
close to the imaginary axis. If such high frequen-
cies are viewed as a parasitic effect which perturbs a
slowly varying smooth solution, implicit time integra-
tion methods with adequate numerical dissipation are
an option and usually superior to explicit methods. For
a mechanical system, this form of numerical stiffness
is directly associated with large stiffness forces, and
thus the notion of a stiff mechanical system has a
twofold meaning. If the high-frequency information
carries physical significance and needs to be resolved,
even implicit methods are compelled to taking tiny
stepsizes. Most often, however, it suffices to track a
smooth motion where the high-frequency part repre-
sents a singular perturbation [27].

In case of a stiff mechanical system with high fre-
quencies, the order of a BDF code should be restricted
to k D 2 due to the loss of A-stability for higher
order. L-stable methods such as the Radau IIa schemes,
however, are successfully applied in such situations
(see [19] for an elaborate theory).
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Generalized ˛-Method
The generalized ˛-method [8] represents the method
of choice for time-dependent solid mechanics applica-
tions with deformable bodies discretized by the finite
element method (FEM). Since this field of structural
dynamics and the field of multibody systems are more
and more growing together, extensions of the ˛-method
for constrained mechanical systems have recently been
introduced.

While the algorithms of [17, 20] are based on
the GGL formulation (17), the method by Arnold
and Brüls [1] discretizes the equations of motion
(5) directly in the second-order formulation. In
brief, the latter algorithm uses discrete values
qnC1; PqnC1; RqnC1;�nC1 that satisfy the dynamic
equations (5) and auxiliary variables for the
accelerations

.1�˛m/anC1 C ˛man D .1�˛f / RqnC1C˛f Rqn : (27)

These are then integrated via

qnC1 D qn C h Pqn C h2
�
1

2
� ˇ

�

an C h2ˇanC1;

PqnC1 D Pqn C h.1 � �/an C h�anC1 : (28)

The free coefficients ˛f ; ˛m; ˇ; � determine the
method.

Of particular interest is the behavior of this scheme
for a stiff mechanical system where the high frequen-
cies need not be resolved. An attractive feature in this
context is controllable numerical dissipation, which is
mostly expressed in terms of the spectral radius �1
at infinity. More specifically, it holds �1 2 Œ0; 1�

where �1 D 0 represents asymptotic annihilation of
the high-frequency response, i.e., the equivalent of L-
stability. On the other hand, �1 D 1 stands for the case
of no algorithmic dissipation. A-stability, also called
unconditional stability, is achieved for the parameters

˛f D �1
1C �1 ; ˛mD

2�1 � 1
1C �1 ; ˇ D 1

4
.1 � ˛m C ˛f /2:

(29)

The choice � D 1=2 � ˛m C ˛f guarantees second-
order convergence.

Mechanical Systems, Table 1 Internet resources for
downloading numerical software

1: pitagora.dm.uniba.it/�testset/
2: www.netlib.org/ode/
3: www.cs.ucsb.edu/�cse/software.html
4: www.unige.ch/�hairer/software.html
5: www.zib.eu/Numerik/numsoft/CodeLib/codes/mexax/

Resources for Numerical Software
A good starting point for exploring the available
numerical software is the initial value problem (IVP)
test set [1] (see Table 1), which contains several
examples of constrained and unconstrained mechanical
systems along with various results and comparisons
for a wide selection of integration codes. The BDF
code DASSL by L. Petzold can be obtained from
the IVP site but also from netlib [2]. The more
recent version DASPK with extensions for large-scale
systems is available at [3]. The implicit Runge–
Kutta codes RADAU5 and RADAU by E. Hairer
and G. Wanner can be downloaded from [4] where
also the half-explicit Runge–Kutta code PHEM56 by
A. Murua is provided. The extrapolation code MEXAX
by Ch. Lubich and coworkers is in the library [5].
Finally, the half-explicit Runge–Kutta code HEDOP5
by M. Arnold method and a projection method by the
author of this contribution are contained in the library
MBSPACK [26].
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Description

Predictive medicine is emerging both as a research
field and a potential medical tool for designing optimal
treatment options. It can also advance understand-
ing of biological and biomedical processes and pro-
vide patient-specific prognosis. In order to characterize
macro-level tissue behavior, mixture theory can be
introduced for modeling both hard and soft tissues.
In continuum mixture theory, an arbitrary point in a
continuous medium can be occupied simultaneously by
many different constituents differentiated only through
their volume fractions.

The advantage of this mathematical representation
of tissues permits direct reconstruction of patient-
specific geometry from medical imaging, inclusion
of species from different scales as long as they
can be characterized by either density or volume
fraction functions, and explicit consideration of
interactions among species included in the mixture.
Furthermore, the mathematical models based on
the notion of mixture can be derived from the first
principles (conservation laws and the second law
of thermodynamics). The applications considered
here include bone remodeling, wound healing, and
tumor growth. The cardiovascular system can also be
included if soft tissues such as the heart and vessels are
treated as separate species different than fluid (blood).
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Bone remodeling is a natural biological process dur-
ing the course of maturity or after injuries, which can
be characterized by a reconfiguration of the density of
the bone tissue due to mechanical forces or other bio-
logical stimuli. Wound healing (or cicatrization), on the
other hand, mainly involves skins or other soft organ
tissues that repair themselves after the protective layer
and/or tissues are broken and damaged. In particular,
wound healing in fasciated muscle occurs due to the
presence of traction forces that accelerate the healing
process. Both bone remodeling and wound healing
can be investigated under the general framework of
continuum mixture theory at the tissue level. Another
important application is tumor growth modeling, which
is crucial in cancer biology, treatment planning, and
outcome prediction. The mixture theory framework
can provide a convenient vehicle to simulate growth
(or shrinking) phenomenon under various biological
conditions.

ContinuumMixture Theory

There are several versions of mixture theories [1]. In
general, mixture theory is a comprehensive framework
that allows multiple species to be included under an
abstract notion of continuum. In this framework, the
biological tissue can be considered as a multiphasic
system with different species including solid tissue,
body fluids, cells, extra cellular matrix (ECM), nu-
trients, etc. Each of the species (or constituents) is
denoted by �˛.˛ D 1; 2; : : :; �/ where � is the number
of species in the mixture. The nominal densities of each
constituent are denoted by �˛ , and the true densities
are denoted by �˛R. To introduce the volume fraction
concept, a domain occupying the control space BS
is defined with the boundary @BS , in which all the
constituents �˛ occupy the volume fractions �˛ , which
satisfy the constraint

�X

˛D1
�˛ .x; t/ D

�X

˛D1

�˛

�˛R
D 1; (1)

where x is the position vector of the actual placement
and t denotes the time.

As noted in the introductory entry, two frames of
reference are used to describe the governing principles
of continuum mechanics. The Lagrangian frame of
reference is often used in solid mechanics, while the
Eulerian frame of reference is used in fluid mechanics.
The Lagrangian description is usually suitable to es-
tablish mathematical models for stress-induced growth
such as bone remodeling and wound healing (e.g., [2]),
while the Eulerian description is used for developing
mass transfer-driven tumor growth models [3–6] with
a few exceptions when tumors undergo large deforma-
tions [7].

To develop mathematical models for each applica-
tion, the governing equations are provided by the con-
servation laws, and the constitutive relations are usu-
ally developed through empirical relationships subject
to constraints such as invariance condition, consistency
with thermodynamics, etc. Specifically, the governing
equations can be obtained from conservations of mass,
momentum, and energy for each species as well as
the mixture. Moreover, the conservation of energy is
often omitted from the governing equations under the
isothermal assumption, unless bioheat transfer is of
interest (e.g., in thermotherapies). When the free en-
ergy of the system is given as a function of dependent
field variables such as strain, temperature, etc., the
second law of thermodynamics (the Clausius-Duhem
inequality) provides a means for determining forms
of some constitutive equations via the well-known
method of Coleman and Noll [8].

Bone Remodeling andWound Healing

Considering the conservation of mass for each species
�˛ in a control volume, the mass production and fluxes
across the boundary of the control volume are required
to be equal:

@�˛

@t
Cr � .�˛v/ D O�˛: (2)

In Eq. (2), the velocity of the constituent is denoted
by v, and the mass supplies between the phases are
denoted by O�˛. From a mechanical point of view, the
processes of bone remodeling and wound healing are
mainly induced by traction forces. To develop the mass
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conservation equation, we may include all the neces-
sary species of interest. For simplicity, however, we
choose a triphasic system comprised of solid, liquid,
and nutrients to illustrate the modeling process [2]. The
mass exchange terms are subject to the constraint

�X

˛D1
O�˛ D 0 or O�S C O�N C O�L D 0: (3)

Moreover, if the liquid phase is not involved in the mass
transition, then

O�S D � O�N and O�L D 0: (4)

Next, the momentum of the constituent �˛ is defined
by

m˛ D
Z

B˛

�˛v˛dv (5)

By including total change of linear momentum in B˛
by m˛ and the interaction of the constituents �˛ by Op˛,
the standard momentum equation (Cauchy equation of
motion) for each constituent becomes

r � T˛ C �˛ .b� a˛/C Op˛ � O�˛v˛ D 0 (6)

where the expression O�˛v˛ represents the exchange of
linear momentum through the density supply O�˛. The
term T˛ denotes the partial Cauchy stress tensor, and
�˛b specifies the volume force. In addition, the terms
Op˛ , where ˛ D S;L;N are required to satisfy the
constraint condition

OpS C OpL C OpN D 0: (7)

In the case of either bone remodeling or wound healing,
the velocity field is nearly steady state. Thus, the
acceleration can be neglected by setting a˛ D 0. The
resulting system of equations can then be written as

r � T˛ C �˛bC Op˛ D O�˛v˛: (8)

The second law of thermodynamics (entropy inequal-
ity) provides expressions for the stresses in the solid
and fluid phases that are dependent on the displace-
ments and the seepage velocity, respectively. The seep-
age velocity is a relative velocity between the liquid
and solid phases, which are often obtained from ex-
plicit Darcy-type expressions for flow through a porous

medium (solid phase). Various types of material behav-
ior can be described in terms of principal invariants of
structural tensor M and right Cauchy-Green tensor CS,
where

M D A˝ A and CS D FT
S FS; (9)

and A is the preferred direction inside the material and
FS is the deformation gradient for a solid undergoing
large deformations. The expressions for the stress in
the solid are dependent on the deformation gradi-
ent and consequently the displacements of the solid.
Summation of the momentum conservation equations
provides the equation for the solid displacements. Mass
conservation equations with incorporation of the sat-
uration condition provide the equation for interstitial
pressure. In addition, the mass conservation equations
for each species provide the equations for the evolution
of volume fractions.

Assuming the fluid phase (F ) is comprised of the
liquid (L) and the nutrient phases (N ), we obtain
(F D LCN )

r �
S;L;NX

˛

T˛Cb
S;L;NX

˛

�˛C
S;L;NX

˛

Op˛� O�SvS� O�F vF D 0
(10)

Since O�F D � O�S and OpS C OpN C OpF D 0, we obtain

r �
S;L;NX

˛

T˛ C b
S;L;NX

˛

�˛ C O�S .vF � vS/ D 0 (11)

The definition of the seepage velocity wFS provides the
following equation

r �
S;FX

˛

T˛ C b
S;FX

˛

�˛ C O�S .wFS / D 0 (12)

The strong form for the pressure equation can be
written as follows:

r � ��FwFS

�C I W DS � O�S
�
1

�SR
� 1

�NR

�

D 0 (13)

The strong form of mass conservation equation for the
solid phase is

DS.�S/

Dt
C �S I W DS D O�S

�SR
(14)
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Finally, the balance of mass for the nutrient phase can
be described as

DS.�N /

Dt
� O�

N

�NR
C�N I W DSCr �

�
�NwFS

� D 0 (15)

In the above, wFS is the seepage velocity, DS denotes
the symmetric part of the spatial velocity gradient,

and DS./

Dt
denotes the total derivative of quantities with

respect to the solid phase. The seepage velocity is
obtained from

wFS D 1

SF

h
�r�F � OpF

i
(16)

Here, SF is the permeability tensor, � denotes the
pressure, and �F is the volume fraction of the fluid.
Equations (8)–(15) are required to be solved for the
bone remodeling problem with the mixture theory. The
primary variables to be solved are fuS; �; nS ; nN g the
solid displacements, interstitial pressure, and the solid
and nutrient volume fractions. One example of bone
remodeling is the femur under the traction loadings,
which drive the process so that the bone density is
redistributed. Based on the stress distribution, the bone
usually becomes stiffer in the areas of higher stresses.

Importantly, the same set of equations can also be
used to study the process of wound healing. It is obvi-
ous, however, that the initial and boundary conditions
are specified differently. It is worth noting that traction
forces inside the wound can facilitate the closure of
the wound. From the computational point of view, the
specification of solid and liquid volume fractions as
well as pressure is required on all interior and exterior
boundaries of the computational domain.

The interior boundary (inner face) of the wound can
be assumed to possess sufficiently large quantity of the
solid and liquid volume fractions, which is implicated
biologically with sufficient nutrient supplies. On the
other hand, the opening of the wound can be prescribed
by natural boundary conditions with seepage velocity.

Modeling Tumor Growth

Attempts at developing computational mechanics
models of tumor growth date back over half a
century (see, e.g., [9]). Various models have been
proposed based on ordinary differential equations

(ODE), e.g., [10–13], extensions of ODE’s to partial
differential equations [4, 14], or continuum mechanics-
based descriptions that study both vascular and
avascular tumor growth. Continuum mechanics-based
formulations consider either a Lagrangian [2] or
a Eulerian description of the medium [4]. Various
considerations such as modifications of the ordinary
differential equations (ODE’s) to include effects
of therapies [12], studying cell concentrations in
capillaries during vascularization with and without
inhibitors, multiscale modeling [15–19], and cell
transport equations in the extracellular matrix
(ECM) [5] have been included.

Modeling tumor growth can also be formulated
under the framework of mixture theory with a multi-
constituent description of the medium. It is convenient
to use an Eulerian frame of reference. Other descrip-
tions have considered the tumor phase with diffused
interface [6]. Consider the volume fraction of cells de-
noted by (
), extracellular liquid (l), and extracellular
matrix (m) [4]. The governing equations are derived
from conservation laws for each constituent of the
individual phases. The cells can be further classified
as tumor cells, epithelial cells, fibroblasts, etc. denoted
by subscript ˛. Similarly we can distinguish different
components of the extracellular matrix (ECM), namely,
collagen, elastin, fibronectin, vitronectin, etc. [20] de-
noted by subscript ˇ. The ECM component velocities
are assumed to be the same, based on the constrained
sub-mixture assumption [5]. The concentrations of
chemicals within the liquid are of interest in the extra-
cellular liquid. The above assumptions provide us the
mass conservation equations for the constituents as (
,
m, and l)

@
˛

@t
Cr � .
˛v
˛ / D �
˛

@mˇ

@t
Cr � .mˇvm/ D �mˇ (17)

The equations above v
˛ and vm denote the velocities
of the respective phases. Note that there is no subscript
on vm (constrained sub-mixture assumption). Mass
balance equation expressed as concentrations in the
liquid phase is expressed as

@c

@t
D r � .Drc/CG (18)
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Here, D denotes the effective diffusivity tensor in the
mixture and G contains the production/source terms
and degradation/uptake terms relative to the entire mix-
ture. The system of equations requires the velocities
of each component to obtain the closure. The motion
of the volume fraction of the cells is governed by the
momentum equations

�


�
@v


@t
C v
 � rv


�

D r � QT
 C �
bC Qm
 (19)

Similar expressions hold for the extracellular matrix
and the liquid phases. The presence of the saturation
constraint requires one to introduce a Lagrange multi-
plier into the Clausius-Duhem inequality and provides
expressions for the excess stress QT
 and excess inter-
action force m
 . The Lagrange multiplier is classically
identified with the interstitial pressure P . Body forces,
b, are ignored for the equations for the ECM, and
the excess stress tensor in the extracellular liquid is
assumed to be negligible in accordance with the low
viscous forces in porous media flow studies. With these
assumptions, we obtain the following equations:

�
˛rP Cr � .
˛T
˛/Cm
˛ C �
˛b˛ D 0
�mrP Cr � .mTm/Cmm D 0

�lrP Cml D 0 (20)

The set of equations above provides the governing
differential equations required to solve tumor growth
problems. The primary variables to be solved are
f
˛;mˇ; P g. The governing equations can be solved
with suitable boundary conditions of specified
volume fractions of the cells, extracellular liquid,
and pressures. Fluxes of these variables across the
boundaries also need to be specified for a complete
description of the problem.

Other approaches in modeling tumor growth in-
volve tracking the moving interface of the growing
tumor. Among them is the phase field approach. The
derivation of the basic governing equations is given
in Wise [21]. From the continuum advection-reaction-
diffusion equations, the volume fractions of the tissue
components obey

@�

@t
Cr � .u�/ D �r � JC S (21)

Here, � denotes the volume fraction, J denotes the
fluxes that account for the mechanical interactions
among the different species, and the source term S

accounts for the inter-component mass exchange as
well as gains due to proliferation and loss due to cell
death.

The above Eq. (21) is interpreted as the evolution
equation for � which characterizes the phase of the
system. This approach modifies the equation for the
interface to provide both for convection of the interface
and with an appropriate diminishing of the total energy
of the system. The free energy of a system of two
immiscible fluids consists of mixing, bulk distortion,
and anchoring energy. For simple two-phase flows,
only mixing energy is retained, which results in a rather
simple expression for the free energy �.

F.�;r�; T / D
Z �

1

2
�2jr�j2 C f .�; T /

�

dV

D
Z

ftotdV (22)

Thus the total energy is minimized with the definition
of the chemical potential which implements an energy
cost proportional to the interface width �. The fol-
lowing equation describes evolution of the phase field
parameter:

@�

@t
C ur� D r � �r

�
@ftot

@�
� r � @ftot

@r�
�

(23)

where ftot is the total free energy of the system. The
above Eq. (23) seeks to minimize the total free energy
of the system with a relaxation time controlled by
the mobility � . With some further approximations, the
partial differential equation governing the phase field
variable is obtained as the Cahn-Hilliard equation:

@�

@t
C ur� D r � �rG (24)

whereG is the chemical potential and � is the mobility.
The mobility determines the time scale of the Cahn-
Hilliard diffusion and must be large enough to retain a
constant interfacial thickness but small enough so that
the convective terms are not overly damped. The mo-
bility is defined as a function of the interface thickness
as � D ��2. The chemical potential is provided by
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G D �
	

�r2� C �.�2 � 1/
�2




(25)

The Cahn-Hilliard equation forces � to take values of
�1 orC1 except in a very thin region on the fluid-fluid
interface. The introduction of the phase field interface
allows the above equation to be written as a set of two
second-order PDEs:

@�

@t
C u � r� D r � ��

�2
r (26)

 D �r � �2r� C .�2 � 1/� (27)

The above equation is the simplest phase field model
and is known as model A in the terminology of phase
field transitions [3, 6, 22]. Phase field approaches have
been applied for solving the tumor growth, and mul-
tiphase descriptions of an evolving tumor have been
obtained with each phase having its own interface and
a characteristic front of the moving interface obtained
with suitable approximations.

When specific applications of the phase field ap-
proach to tumor growth are considered, the prolifer-
ative and nonproliferative cells are described by the
phase field parameter �. The relevant equations in the
context of tumor growth are provided by the follow-
ing [6, 23]:

@�

@t
DMr2 ��� C �3 � �r2��C ˛p.T /��.�/

(28)

Here, M denotes the mobility coefficient, T stands for
the concentration of hypoxic cell-produced angiogenic
factor, and�.�/ denotes the Heaviside function which
takes a value of 1 when its argument is positive. The
proliferation rate is denoted by ˛p.T / and as usual �
denotes the width of the capillary wall. The equation
above is solved with the governing equation for the
angiogenic factor T . The angiogenic factor diffuses
randomly from the hypoxic tumor area where it is
produced and obeys the following equation:

@Ti

@t
D r � .DrT / � ˛T T��.�/ (29)

In the equation above, D denotes the diffusion coeffi-
cient of the factor in the tissue and ˛T denotes the rate
of consumption by the endothelial cells.

Modeling Cardiovascular Fluid Flow

Cardiovascular system modeling is another important
field in predictive medicine. Computational modeling
of blood flow requires solving, in the general sense,
three-dimensional transient flow equations in deform-
ing blood vessels [24]. The appropriate framework
for problems of this type is the arbitrary Lagrangian-
Eulerian (ALE) description of the continuous media in
which the fluid and solid domains are allowed to move
to follow the distensible vessels and deforming fluid
domain.

Under the assumption of zero wall motion, the prob-
lem reduces to the Eulerian description of the fixed spa-
tial domain. The strong form of the problem governing
incompressible Newtonian fluid flow in a fixed domain
consists of the Navier-Stokes equations and suitable
initial and boundary conditions. Direct analytical solu-
tions of these equations are not available for complex
domains, and numerical methods must be used. The
finite element method has been the most widely used
numerical method for solving the equations governing
blood flow [24]. In the Eulerian frame of reference,
the conservation of mass is expressed as the continuity
equation, and the conservation of momentum closes
the system of equations with expressions of the stress
tensor for the Newtonian fluid derived from the second
law of thermodynamics. The flow of blood inside the
arteries and the heart comprises some of the examples
in biological systems. The governing equations for
laminar fluid flow in cardiovascular structures are pro-
vided by the incompressible Navier-Stokes equations
when the fluid flow is in the laminar regime with as-
sumptions of constant viscosity [25]. We provide here
the basic conservation laws for fluid flow expressed
as the Navier-Stokes equations. Consider the flow of a
nonsteady Newtonian fluid with density � and viscosity
�. Let � 2 Rn and t 2 Œ0; T � be the spatial and
temporal domains, respectively, where n is the number
of space dimensions. Let � denote the boundary of
�. We consider the following velocity-pressure formu-
lation of Navier-Stokes equations governing unsteady
incompressible flows.

�

�
@u
@t
C u � ru � f

�

� r � � D 0 on � 8 t 2 Œ0; T �
(30)

r � u D 0; on � 8 t 2 Œ0; T � (31)
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where �, u, f, and œ are the density, velocity, body
force, and stress tensor, respectively. The stress tensor
is written as a sum of the isotropic and deviatoric parts:

� D �pIC T D �pIC 2� �.u/ (32)

�.u/ D 1

2

�ruCruT
�

(33)

Here, I is the identity tensor, � D ��, p is the
pressure, and u is the fluid velocity. The part of the
boundary at which the velocity is assumed to be speci-
fied is denoted by �g

u D g on �g 8 t 2 Œ0; T � (34)

The natural boundary conditions associated with
Eq. (30) are the conditions on the stress components,
and these are the conditions assumed to be imposed on
the remaining part of the boundary,

n � � D h on Th 8 t 2 Œ0; T � (35)

where �g and �h are the complementary subsets of the
boundary � , or � D �g [ �h. As the initial condition,
a divergence-free velocity field, u0.x/, is imposed.
To simulate realistic flow conditions, one needs to
consider a pulsatile flow as the boundary conditions
at the inlet. The governing equations along with the
boundary conditions characterize the flow through a
cardiovascular system, which can be solved to obtain
the descriptions of the velocity profiles and pressure
inside the domain. In general, stabilized finite element
methods have been used for solving incompressible
flow inside both arteries and the heart [24].

Realistic simulations of the blood flow have re-
quired three-dimensional patient-specific solid models
of pulmonary tree by integrating combined magnetic
resonance imaging (MRI) and computational fluid dy-
namics. An extension of MRI is magnetic resonance
angiography (MRA), which has also been used for
reconstructing the three-dimensional coarse mesh from
MRA data. Three-dimensional subject-specific solid
models of the pulmonary tree have been created from
these MRA images as well [25]. The finite element
mesh discretization of the problem is effective in cap-
turing multiple levels of blood vessel branches. Dif-
ferent conditions of the patient resting and exercise
conditions have been simulated. Blood is usually as-
sumed to behave as a Newtonian fluid with a viscosity

of 0:04 poise (or 0:004 kg/m-s). Three-dimensional
transient simulations require meshing the domain with
significant degree of freedom and require considerable
computing time [25].
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Synonyms

Magnetic resonance imaging; Radiological imaging;
Ultrasound; X-ray computed tomography

Description

Medical imaging is a collection of technologies for
noninvasively investigating the internal anatomy and
physiology of living creatures. The prehistory of mod-
ern imaging includes various techniques for physical
examination, which employ palpation and other exter-
nal observations. Though the observations are indirect

and require considerable interpretation to relate to
the internal state of being, each of these methods is
based on the principle that some observable feature
differs between healthy and sick subjects. While new
technologies have vastly expanded the collection of
available measurements, this basic principle remains
the central tenet of medical imaging.

Modern medical imaging is divided into different
modalities according to the physical principles un-
derlying the measurement process. These differences
in underlying physics lead to contrasts in the images
that reflect different aspects of anatomy or physiol-
ogy. The utility of a modality is largely governed
by three interconnected considerations: contrast, res-
olution, and noise. Contrast refers to the physical or
chemical distinctions that produce the image itself, and
the magnitude of these differences in the reconstructed
image. Resolution is usually thought of as the size of
the smallest objects discernible in the image. Finally
noise is an inevitable consequence of real physical
measurements. The ratio between the size of the signal
and the size of the noise which contaminates it, called
SNR, limits both the contrast and resolution attainable
in any reconstructed image.

Technological advances in the nineteenth and twen-
tieth centuries led to a proliferation of methods for
medical imaging. The first such advances were the
development of photographic imaging, and the dis-
covery of x-rays. These were the precursors of pro-
jection x-rays, which led, after the development of
far more sensitive solid-state detectors, to x-ray to-
mography. Sonar, which was used by the military to
detect submarines, was adapted, along with ideas from
radar, to ultrasound imaging. In this modality high-
frequency acoustic energy is used as a probe of inter-
nal anatomy. Taking advantage of the Döppler effect,
ultrasound can also be used to visualize blood flow,
see [7].

Nuclear magnetic resonance, which depends on the
subtle quantum mechanical phenomenon of spin, was
originally developed as a spectroscopic technique in
physical chemistry. With the advent of powerful, large,
high-quality superconducting magnets, it became fea-
sible to use this phenomenon to study both internal
anatomy and physiology. In its simplest form the con-
trast in MRI comes from the distribution of water
molecules within the body. The richness of the spin-
resonance phenomenon allows the use of other exper-
imental protocols to modulate the contrast, probing
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many aspects of the chemical and physical environ-
ment.

The four imaging modalities in common clinical use
are (1) x-ray computed tomography (x-ray CT), (2) ul-
trasound (US), (3) magnetic resonance imaging (MRI),
and (4) emission tomography (PET and SPECT). In
this article we only consider the details of x-ray CT
and MRI. Good general references for the physical
principles underlying these modalities are [4, 7].

There are also several experimental techniques,
such as diffuse optical tomography (DOT) and
electrical impedance tomography (EIT), which, largely
due to intrinsic mathematical difficulties, have yet to
produce useful diagnostic tools. A very promising
recent development involves hybrid modalities, which
combine a high-contrast (low-resolution) modality
with a high-resolution (low-contrast) modality. For
example, photo-acoustic imaging uses infrared light
for excitation of acoustic vibrations and ultrasound for
detection, see [1].

Each measurement process is described by a math-
ematical model, which in turn is used to “invert” the
measurements and build an image of some aspect of the
internal state of the organism. The success of an imag-
ing modality relies upon having a stable and accurate
inverse algorithm, usually based on an exact inversion
formula, as well as the availability of sufficiently many
measurements with an adequate signal-to-noise ratio.
The quality of the reconstructed image is determined
by complicated interactions among the size and quality
of the data set, the available contrast, and the inversion
method.

X-Ray Computed Tomography

The first “modern” imaging method was the projection
x-ray, introduced in the late 1800s by Roentgen. X-rays
are a high-energy form of electromagnetic radiation,
which pass relatively easily through the materials com-
monly found in living organisms. The interaction of x-
rays with an object B is modeled by a function �B.x/;
called the attenuation coefficient. Here x is a location
within B: If we imagine that an x-ray beam travels
along a straight line, `; then Beer’s law predicts that
I.s/; the intensity of the beam satisfies the differential
equation:

dI

ds
D ��B.x.s//I.s/: (1)

Medical Imaging, Fig. 1 A projection x-ray image (Image
courtesy: Dr. Ari D. Goldberg)

Here x.s/ is the point along the line, `; and s is arc-
length parametrization. If the intersection ` \ B lies
between smin and smax; then Beer’s law predicts that:

log

�
Iout

Iin

�

.`/ D �
smaxZ

smin

�B.x.s//ds: (2)

Early x-ray images recorded the differential atten-
uation of the x-ray beams by different parts of the
body, as differing densities on a photographic plate. In
the photograph highly attenuating regions appear light,
and less dense regions appear dark. An example is
shown in Fig. 1. X-ray images display a good contrast
between bone and soft tissues, though there is little
contrast between different types of soft tissues. While
the mathematical model embodied in Beer’s law is not
needed to interpret projection x-ray images, it is an
essential step to go from this simple modality to x-ray
computed tomography.
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X-ray CT was first developed by Alan Cormack in
the early 1960s, though the lack of powerful computers
made the idea impractical. It was rediscovered by God-
frey Hounsfield in the early 1970s. Both received the
Nobel prize for this work in 1979, see [6]. Hounsfield
was inspired by the recent development of solid-state
x-ray detectors, which were more sensitive and had
a much larger dynamic range than photographic film.
This is essential for medical applications of x-ray CT,
as the attenuation coefficients of different soft tissues in
the human body differ by less than 3 %. By 1971, solid-
state detectors and improved computers made x-ray
tomography a practical possibility.

The mathematical model embodied in Beer’s law
leads to a simple description of the measurements
available in an x-ray CT-machine. Assuming that we
have a monochromatic source of x-rays the measure-
ment described in (2) is the Radon (in two dimensions),
or x-ray transform (in three dimensions) of the attenu-
ation coefficient, �B.x/: For simplicity we consider the
two-dimensional case.

The collection, L; of oriented lines in R2 is conve-
niently parameterized by S1 � R1; with .t; �/ corre-
sponding to the oriented line:

`t;� D ft.cos �; sin �/C s.� sin �; cos �/ W s 2 R1g:
(3)

The Radon transform can then be defined by:

R�B.t; �/ D
Z

`t;�

�B.t.cos �; sin �/

C s.� sin �; cos �//ds: (4)

The measurements made by an x-ray CT-machine are
modeled as samples of R�B.t; �/: The actual physi-
cal design of the machine determines exactly which
samples are collected. The raw data collected by an x-
ray CT-machine can be represented as a sinogram, as
shown in Fig. 2. The reconstructed image is shown in
Fig. 3.

The inversion formula for the Radon transform is
called the filtered back-projection formula. It is derived
by using the Central Slice theorem:

Theorem 1 (Central Slice Theorem) The Radon
transform of �; R�; is related to its two-dimensional
Fourier transform,F�; by the one-dimensional Fourier
transform of R� in t W

Medical Imaging, Fig. 2 Radon transform data, shown as a
sinogram, for the Shepp–Logan phantom. The horizontal axis is
� and the vertical axis t

Medical Imaging, Fig. 3 Filtered back-projection reconstruc-
tion of the Shepp–Logan phantom from the data in Fig. 2

fR�.�; �/D
1Z

�1
R�.t; �/e�i t�dtDF�.�.cos �; sin �//:

(5)

This theorem and the inversion formula for the
two-dimensional Fourier transform show that we can
reconstruct �B by first filtering the Radon transform:

GR�B.�; �/ D 1

2�

1Z

�1
eR�B.r; �/eir� jr jdr: (6)
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and then back-projecting, which is R�; the adjoint of
the Radon transform itself:

�B.x; y/D 1

2�

�Z

0

GR�B.h.cos �; sin �/; .x; y/i; �/d�:

(7)

The filtration step R�B ! GR�B is implemented
using a fast Fourier transform. The multiplication
by jr j in the frequency domain makes it mildly
ill-conditioned; nonetheless the high quality of the
data available in a modern CT-scanner allows for
stable reconstructions with a resolution of less than
a millimeter. As a map from a function g.t; �/ on L
to functions on R2; back-projection can be understood
as half the average of g on the set of lines that pass
through .x; y/: A detailed discussion of x-ray CT can
be found in [2].

Magnetic Resonance Imaging

Magnetic resonance imaging takes advantage of the
fact that the protons in water molecules have both an
intrinsic magnetic moment � and an intrinsic angular
momentum, J; known as spin. As both of these quan-
tum mechanical observables transform by the standard
representation of SO.3/ on R3; the Wigner–Eckert
Theorem implies that there is a constant �; called the
gyromagnetic ratio, so that � D �J: For a water proton
� 
 42:5MHz/T. If an ensemble of water protons is
placed in a static magnetic field B0; then, after a short
time, the protons become polarized producing a bulk
magnetization M0: If �.x/ now represents the density
of water, as a function of position, then thermodynamic
considerations show that there is a constant C for
which:

M0.x/ 
 C�.x/
T

B0.x/: (8)

At room temperature (T 
 300ıK) this field is quite
small and is, for all intents and purposes, not directly
detectable.

A clinical MRI scanner consists of a large
solenoidal magnet, which produces a strong,
homogeneous background field, B0; along with coaxial
electromagnets, which produce gradient fields G.t/ � x;
used for spatial encoding, and finally a radio-frequency
(RF) coil, which produces an excitation field, B1.t/;
and is also used for signal detection.

The total magnetic field is therefore: B.x; t/ D
B0.x/ C G.t/ � x C B1.t/: The response of the bulk
nuclear magnetization, M; to such a field is governed
by Bloch’s phenomenological equation:

dM
dt

.x; t/ D �M.x; t/ � B.x; t/�
�

1
T1.x/

�

.Mk.x; t/�M0.x//�
�

1

T2.x/

�

M?.x; t/: (9)

Here Mk is the component of M parallel to B0 and
M? is the orthogonal component. The terms with
coefficients T1 and T2 describe relaxation processes
which tend to relax M toward the equilibrium state M0:

The components Mk and M? relax at different rates
T1 > T2: In most medical applications their values lie
in the range of 50 ms–2 s. The spatial dependence of
T1 and T2 provides several possibilities for contrast in
MR-images, sometimes called T1- or T2-weighted im-
ages. Note that (9) is a system of ordinary differential
equations in time, t; and that the spatial position, x;
appears as a pure parameter.

Ignoring the relaxation terms for the moment and
assuming that B is independent of time, we see that (9)
predicts that the magnetization M.x/ will precess
around the B0.x/with angular velocity ! D �kB0.x/k:
This is the resonance phenomenon alluded to in the
name “nuclear magnetic resonance.” Faraday’s Law
predicts that such a precessing magnetization will
produce an E.M.F. in a coil C with

EMF / d

dt

Z

˙

M.x; t/ � n.x/dS; (10)

for ˙ a surface spanning C: A simple calculation
shows that the strength of the signal is proportional
to !2; which explains the utility of using a very
strong background field. The noise magnitude in MR-
measurements is proportional to !; hence the SNR is
proportional to ! as well.

For the remainder of this discussion we assume
that B0 is a homogeneous field of the form B0 D
.0; 0;b0/: The frequency !0 D �b0 is called the Lar-
mor frequency. The main magnet of a clinical scanner
typically has a field strength between 1.5 and 7 T,
which translates to Larmor frequencies between 64 and
300 MHz.
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The RF-component of the field B1.t/ is assumed to
take the form:

.a.t/ cos!0t; a.t/ sin!0t; 0/;

with a.t/ nonzero for a short period of time. As implied
by the notation, the gradient fields are designed to
have a linear spatial dependence, and therefore take the
form:

G.t/ � x D .g1.t/x3 � g3.t/x1; g2.t/x3; g1.t/x1

Cg2.t/x2 C g3.t/x3/: (11)

Here g.t/ D .g1.t/; g2.t/; g3.t// is a spatially indepen-
dent vector describing the time course of the gradient
field. Typically kgk << b0; which allows us to ignore
components of G orthogonal to B0:

Assume that the object modeled by �.x/ lies in a
region Œ�L;L��Œ�L;L��Œ�L;L�: Allowing the spins
to become polarized creates a bulk magnetization M0

parallel to B0; see (8). As noted M0 is a tiny field,
which is essentially undetectable. An RF-field is then
turned on for a short period of time, usually in the
presence of a gradient field. At the end of this so-
called selective excitation, Bloch’s equation predicts
that the field M.x/ remains in the equilibrium position
for x3 … Œa; b�; whereas for x3 2 Œa; b�; M.x/ now
has a nontrivial M?-component, which precesses pro-
ducing a measurable signal. With a, possibly different,
gradient field turned on, the measured signal takes the
form:

s.t/ / !20ei!0t
LR

�L

LR

�L

bR

a

�.x1; x2; x3/

e�i t�.g1x1Cg2x2/dx3dx1dx2: (12)

The integral is the two-dimensional Fourier transform,
F�.k1; k2/; at spatial frequency .k1; k2/ D t�.g1; g2/;
of the averaged spin-density:

�.x1; x2/ D
bZ

a

�.x1; x2; x3/dx3: (13)

The slice thickness, jb � aj; is typically several mil-
limeters. By sampling in time and repeating this pro-
cess with different gradients .g1; g2/; we can obtain
samples of F� for frequencies in a neighborhood of

Medical Imaging, Fig. 4 A T1-weighted, spin-echo MR-image
of the brain, made on a scanner with 3 T magnet. The slice
thickness (jb � aj in (13)) is 3 mm (Image courtesy of Dr. Ari
D. Goldberg)

.0; 0/: The extent of this neighborhood determines
the maximum resolution available in the reconstructed
image.

The reconstruction formula for MRI is simply the
inverse Fourier transform:

�.x1; x2/ D 1

4�2

1Z

�1

1Z

�1

F�.k1; k2/ei.k1x1Ck2x2/dk1dk2: (14)

As a unitary map it is intrinsically stable and very accu-
rately approximated by the discrete Fourier transform.
The main limitation in MR-imaging is noise, which
is controlled by repeated acquisition and signal aver-
aging. Using data acquired in approximately 10 min,
a low-noise image of the brain with an in-plane res-
olution of approximately 1 mm can be reconstructed,
see Fig. 4. For more on magnetic resonance imaging
see [3, 5].
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Introduction

Finite difference method (FDM) and finite element
method (FEM) rely on a mesh (or stencil) to con-
struct the local approximation of functions and their
derivatives for solving partial differential equations
(PDEs). A few drawbacks are commonly encountered
in these methods: (1) time consuming in generating
good quality mesh in arbitrary geometry for desired
accuracy; (2) difficult in constructing approximations
with arbitrary order of continuity, making the solution
of PDE with higher-order differentiation or problems
with discontinuities difficult to solve; (3) tedious in
performing h- or p-adaptive refinement; and (4) in-
effective in dealing with mesh entanglement-related
difficulties (such as those in large deformation and
fragment-impact problems), among others.

The origin of meshfree methods (also called mesh-
less methods) can be traced back to the generalized
finite difference method [38, 54] and the smoothed
particle hydrodynamics (SPH) [24, 56], in which the

approximation of a function and its derivatives were
constructed based on a set of points that are not inter-
connected in the traditional sense. In the past 20 years,
meshfree methods have emerged into a new class
of computational methods with considerable success.
Meshfree methods all share a common feature: the
approximation of unknowns in the PDE is constructed
based on scattered points without mesh connectivity.
As shown in Fig. 1, the approximation function at point
I in FEM is constructed from the element level natural
coordinate and then transformed to the global Carte-
sian coordinate, whereas the meshfree approximation
functions are constructed using only nodal coordi-
nate data at the global Cartesian coordinate directly.
These compactly supported meshfree approximation
functions form a partition of unity subordinated to the
open covering with controllable orders of continuity
and completeness. It becomes possible to relax the
strong tie between the quality of discretization and the
quality of approximation in FEM with this class of
approximation functions, and it significantly simplifies
the procedures in h-adaptivity. Special basis functions
can be embedded in the approximation to capture
essential characteristics in the approximated functions,
and arbitrary discontinuities can be introduced in the
approximation as well. This entry gives an overview
of several classes of meshfree approximation functions
and presents how these meshfree approximation func-
tions can be used to solve PDEs.

Function Approximation by a Set of
Scattered Points

Moving Least-Squares Approximation (MLS)
Let the domain of interest N� D � [ @� be discretized
by a set of points S D fx1 : : :xNp jxI 2 N�g with
corresponding point numbers that form a set ZS D
fI jxI 2 Sg. The weighted local approximation of a
set of sample data f.xI ; uI /gI2ZS near Nx, denoted by
uhNx.x/, is expressed as

uhNx.x/ D
nX

iD1
pi .x/bi . Nx/ D pT .x/b. Nx/ (1)

where fpi.x/gniD1 are the basis functions and
fbi. Nx/gniD1 are the corresponding coefficients that
are functions of local position Nx. The coefficients

http://nobelprize.org/nobelorganizations/ nobelfoundation/publications/ lectures/index.html
http://nobelprize.org/nobelorganizations/ nobelfoundation/publications/ lectures/index.html
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Meshless and Meshfree Methods, Fig. 1 (a) Patching of finite element shape functions from local element domains and (b)
meshfree approximation function constructed directly at the nodes in the global coordinate

fbi. Nx/gniD1 are obtained by a minimization of a
weighted least-squares measure sampled at the discrete
points in S :

J Nx D
X

I2ZS
wa . Nx � xI /

�
pT .xI /b. Nx/� uI

�2
(2)

where wa. Nx�xI / is the weight function with compact
support !I D fx jwa.x � xI / ¤ 0g, as shown
in Fig. 1b, and the support size is denoted as “a”.
Minimization of J Nx with respect to b. Nx/ leads to

b. Nx/ D A. Nx/�1
X

I2ZS
wa . Nx � xI /p.xI /uI

A. Nx/ D
X

I2ZS
p.xI /p

T .xI /wa . Nx � xI / (3)

Substituting (3) into the local approximation in (1) and
setting Nx ! x, the following MLS global approxima-
tion is obtained:

uh.x/ D uhNx!x.x/ D pT .x/A.x/�1
X

I2ZS
p.xI /wa .x � xI / uI �

X

I2ZS
‰I .x/uI

(4)

Here ‰I .x/ D pT .x/A.x/�1p.xI /wa.x � xI / is the
MLS approximation function. Choosing constant basis
p.x/ D f1g in MLS results in a Shepard function

‰I .x/ D wa.x � xI /=
P

J2ZS wa.x � xJ /. This
MLS approximation in (4) was first introduced for
surface fitting through a given data set f.xI ; uI /gI2ZS
[36]. This approach was later employed in the diffused
element method (DEM) [50] for solving PDEs, where
‰I .x/ is used as the approximation function and uI
in (4) become the unknown coefficient to be solved
by a Galerkin procedure. The celebrated element-free
Galerkin (EFG) method by Belytschko, Lu, and Gu
[8], which is regarded as the pioneering work that
popularized the field of meshfree methods, is an im-
provement of DEM where the diffused derivatives of
MLS approximation in DEM are replaced by the direct
derivatives of MLS approximation in EFG, in addition
to the boundary condition imposition and domain inte-
gration improvements. Other related EFG work can be
found in [9, 46]. It should be noted that, in general, the
MLS functions f‰I.x/gI2ZS are not interpolants and
uI is not the nodal value of uh.x/, i.e., uh.xI / ¤ uI .
The imposition of Dirichlet boundary conditions in the
Galerkin approximation requires a different approach
from that in FEM and will be discussed in the next
section.

Remark 1 1. The relationship between the least-
squares (LS), weighted least-squares (WLS), and
moving least-squares (MLS) approximations is
summarized in Table 1.

2. The weight function in d -dimension can be con-
structed by the product of one-dimensional weight
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Meshless andMeshfree Methods, Table 1 Comparison of LS, WLS, and MLS approximations

Approximation Least-squares measure Least-squares approximation

LS uh.x/ D pT .x/b J D X

I2ZS

�
pT .xI /b� uI

�2
uh.x/D pT .x/A�1

X

I2ZS

p.xI /uI

A D X

I2ZS

p.xI /p
T .xI /

WLS uh
Nx.x/ D pT .x/b. Nx/ JNx D

X

I2ZS

wa . Nx � xI /
�
pT .xI /b. Nx/� uI

�2

uh
Nx.x/

D pT .x/A�1. Nx/ X
I2ZS

p.xI /wa . Nx � xI / uI

A. Nx/ D X

I2ZS

p.xI /p
T .xI /wa . Nx � xI /

MLS
uh

Nx.x/ D pT .x/b. Nx/
uh.x/ D uh

Nx!x.x/
JNx D

X

I2ZS

wa . Nx � xI /
�
pT .xI /b. Nx/� uI

�2

uh.x/ D uh
Nx!x.x/

D pT .x/A�1.x/
X

I2ZS

p.xI /wa .x � xI / uI

A.x/ D X

I2ZS

p.xI /p
T .xI /wa .x � xI /

functions wa.x�xI / D wa1.x1�x1I / � � �wad .xd �
xdI /, where d is the space dimension and ai is
the support size in i -th direction, or by using a
distance measure in defining the weight function
wa.x�xI / D wa.jx�xI j/. The order of continuity
in the weight function wa.x � xI / determines the
order of continuity in the MLS approximation.

3. If the basis function vector consists of complete
monomials, that is, pT .x/ D fx˛gpj˛jD0, x˛ � x˛11 �
x
˛2
2 �: : :�x˛dd , j˛j DPd

iD1 ˛i , then the approximation
in (4) is p-th order complete:

X

I2ZS
‰I .x/x

˛
I D x˛; j˛j � p (5)

4. The matrix A.x/ in (3) is the discrete form of
a Gram matrix of the bases fpi .x/gniD1 with re-
spect to the weight function wa.x/. In the contin-
uous form, a Gram matrix is positive definite (and
thus invertible) if the bases fpi .x/gniD1 are linearly
independent and the weight function is positive.
However, in the discrete form of (3), the support
of the weight function needs to cover sufficient
neighboring points for A.x/ to be invertible. For
a general d -dimensional domain, any x 2 N�
needs to be covered by at least

�
pCd
p

�
approximation

functions, where p is the order of completeness in
the approximation for A.x/ to be nonsingular. For
details, see Ref. [26].

5. For better conditioning of A.x/, MLS with shifted
and normalized bases has been considered:

uh.x/DpT .0/A.x/�1
X

I2ZS
p
�x�xI

a

�
wa.x�xI / uI

(6)

A.x/ D
X

I2ZS
p
�x � xI

a

�
pT

�x � xI

a

�
wa .x � xI /

(7)

Reproducing Kernel Approximation
The reproducing kernel particle method (RKPM) [16,
43,44] was formulated based on the reproducing kernel
(RK) approximation under a Galerkin framework. The
RK approximation was proposed [43, 44] to improve
the accuracy of the SPH method for finite domain
problems. In this method, the kernel function in the
SPH kernel estimate was modified by introducing a
correction function to allow reproduction of basis func-
tions. The RK approximation over a set of discrete
points S can be written as

uh.x/ D
X

I2ZS
pT

�x � xI

a

�
b.x/wa .x � xI / uI

(8)

where p.x/ is the vector of a set of basis functions
fpi.x/gniD1 and b.x/ is the coefficient vector. In RK
terminology, wa.x � xI / is called the kernel function,
which plays the same role as the weight function in
MLS, and pT .x�xI

a
/b.x/wa.x � xI / is called the

reproducing kernel function where pT .x�xI
a
/b.x/ is

the correction of the kernel function wa.x � xI /. The
coefficient vector b.x/ is obtained by enforcing the
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exact reproduction of the bases, that is, if uI D pi .xI /,
then uh.x/ D pi .x/:

p.x/ D
X

I2ZS
pT

�x � xI

a

�
b.x/wa .x � xI /p.xI /

(9)
When fpi.x/gniD1 are complete monomial bases, it can
be shown that (9) is equivalent to

p.0/D
X

I2ZS
pT
�x�xI

a

�
b.x/wa.x�xI /p

�x�xI

a

�

(10)
Obtaining b.x/ from (10) yields the same equation
as (6) in MLS. On the other hand, if the non-monomial
bases are used, solving b.x/ from (9) yields a different
approximation than MLS. The approximation proper-
ties of RK can be found in [26, 41, 45].

Partition of Unity
The HP Clouds (HPC) [22, 52] and the generalized
finite element method (GFEM) [21,59] were developed
based on the partition of unity (PU) [4, 48]. Parti-
tion of unity property is essential for convergence in
Galerkin approximation of PDEs [4]. Let a domain
be discretized by the point set S and is covered by
overlapping patches !I , N� � [I2ZS!I , each of which
is associated with a partition of unity function ‰0

I that
is nonzero only in !I and has the following property:

X

I2ZS
‰0
I .x/ D 1: (11)

An example of partition of unity function is the Shep-
ard function. The partition of unity can be used as a
paradigm for construction of approximation functions
with desired order of completeness or with enrichment
of special bases representing characteristics of the
PDEs. An example of PU is the following approxima-
tion [4]:

uh.x/ D
X

I2ZS
‰0
I .x/

 
kX

iD1
aiI pi .x/C

mX

iD1
biI gi .x/

!

;

(12)

where fpi .x/gkiD1 are monomial bases used to impose
completeness and fgi .x/gmiD1 are other enhancement
functions. The use of bases fpi.x/gkiD1 and fgi .x/gmiD1
in Eq. (12) is called an extrinsic adaptivity.

MLS in (1)–(4) and RK in (8)–(10) with constant
basis yield a PU function ‰0

I , and MLS and RK with
complete monomials of degree k, denoted as ‰k

I .x/,
can be viewed as PU with intrinsic enrichment [7].
Duarte and Oden [22] extended PU with extrinsic
refinement as follows:

uh.x/ D
X

I2ZS
‰k
I .x/

 

uI C
mX

iD1
biI qi .x/

!

(13)

where fqi.x/gmiD1 are the extrinsic bases which can be
monomial bases of any order greater than k or special
enhancement functions. The extrinsic adaptivity allows
the bases to vary from node to node, whereas intrin-
sic bases in MLS and RK cannot be changed with-
out introducing a discontinuity. A good overview and
comparison of the meshfree approximations discussed
above can be found in [7,37,39]. A reproducing kernel
element method (RKEM) which uses finite element
shape functions as the PU function with enriched
bases has been proposed [42] to achieve combined
advantages of FEM (Kronecker-delta property) and
monomial reproducibility.

Other Meshfree Approximation Functions
Several other approximation functions have also been
used in meshfree computation. The radial basis func-
tions (RBFs) were originally introduced for interpo-
lation problems [27]. RBFs were then introduced as
the approximation bases in numerical solution of PDEs
using strong form collocation [33, 34], and there exists
an exponential convergence rate if RBFs are globally
analytic or band-limited [47]. Another class of approxi-
mation is the natural neighbor-based interpolation con-
structed on Voronoi diagrams of a set of randomly dis-
tributed points. This includes the Sibson interpolants
[58] and Laplace interpolants (non-Sibsonian inter-
polants) [6] which are positive functions with partition
of unity and first-order completeness properties, and
they are used in the natural element method (NEM)
[13, 62]. Finally, convex approximations for mesh-
free computation based on the principle of maximum
entropy (maxent) [31] to achieve unbiased statistical
influence of nodal data have recently been proposed
[2, 60]. These approximation functions constructed by
maximum entropy (measure of uncertainty) subjected
to monomial reproducibility constraints are positive,
can interpolate affine functions exactly, and have a
weak Kronecker-delta property at the boundary.
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Galerkin-BasedMeshfree Method

The meshfree approximation functions introduced in
the previous section can be used to form finite dimen-
sional spaces for numerical solution of PDEs under
either the Galerkin framework or the strong form
collocation framework. For demonstration purposes,
consider the following Poisson problem:

	uC s D 0 in �; u D g on @�g;

ru � n D h on @�h (14)

where 	 D r � r; n is the surface unit outward
normal; @�g and @�h are Dirichlet and Neumann
boundaries, respectively; @�g [ @�h D @�; and
@�g \ @�h D ;.

Weak Formulation and Imposition of Boundary
Conditions
As discussed in the previous section, the meshfree
approximation functions typically are not interpolants.
The Galerkin approximation of (14) has been formu-
lated with the following methods for imposition of
Dirichlet boundary conditions:
1. Imposing Dirichlet boundary condition strongly.

This can be achieved by constructing a kine-
matically admissible finite dimensional space by
the transformation method [16, 18], the singular
kernel method [18, 32], the RK approximation
with interpolation properties [15], and coupling
with finite element method on the Dirichlet
boundary [10, 30].

With these approaches, a kinematically admis-
sible finite dimensional space can be constructed,
and the Galerkin approximation seeks uh 2 V h �
H1
g .�/, 8vh 2 V h

0 � H1
0 .�/, such that

Z

�

rvh � ruh d� D
Z

�

vhs d�C
Z

@�h

vhh d�

(15)

2. Imposing Dirichlet boundary conditions weakly by
Lagrange multiplier method. In this approach, the
Galerkin approximation seeks .uh; �h/ 2 V h �
ƒh � H1.�/ � L2.@�g/, 8.vh; �h/ 2 V h �ƒh �
H1.�/ � L2.@�g/, such that

Z

�

rvh � ruh d�C
Z

@�g

vh�h d� D
Z

�

vhs d�

C
Z

@�h

vhh d�

(16a)
Z

@�g

�huh d� D
Z

@�g

�hg d�

(16b)

For stability, the selection of V h and ƒh needs
to satisfy the Babuška-Brezzi stability condition
[3, 14].

3. Imposing Dirichlet boundary conditions weakly by
Nitsche’s method [23, 51]. This formulation can be
obtained by combining (16a) and (16b), replacing
the Lagrange multipliers by the negative “traction”
on the Dirichlet boundary, and adding a penalty
enforcement of the Dirichlet boundary condition
to yield

Z

�

rvh � ruh d� �
Z

@�g

vh.ruh � n/ d�

�
Z

@�g

.rvh � n/uh d� C ˛
Z

@�g

vhuh d�

D
Z

�

vhs d�C
Z

@�h

vhh d�

�
Z

@�g

.rvh � n/g d� C ˛
Z

@�g

vhg d� (17)

where ˛ is the penalty. As discussed in [23], Nitsche’s
method yields optimal convergence while the penalty
method does not.

The convergence of Galerkin meshfree method us-
ing MLS/RK/PU approximation with p-th order com-
pleteness has been shown in [26] to be

ku � uhk` � CapC1�`jujpC1 ; ` � 0 (18)

where a is the maximal support dimension of the
approximation functions and the constant C is inde-
pendent of a and p.

Domain Integration
Conventional Gauss integration has been employed
in the integration of Galerkin weak forms us-
ing background cells independent of the point
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Meshless and Meshfree Methods, Fig. 2 Domain integrations in meshfree methods: (a) Gauss integration cells, (b) Voronoi
cells, and (c) nodal representative domain of SCNI

distribution (Fig. 2a). However, due to the fact that
most meshfree approximation functions are rational
functions with overlapping supports (Fig. 1), such
as MLS, RK, PU, and GFEM, Gauss integration
for sufficiently accurate domain integration becomes
costly, where very fine integration cells with high-order
quadrature rules are necessary. Alternatively, nodal
integration is a natural choice for Galerkin meshfree
method due to the absence of the structured mesh.
However, the method suffers from the loss of stability
and accuracy [5, 12, 19].

A stabilized conforming nodal integration (SCNI)
[19, 20] with gradient smoothing that satisfies first-
order integration constraint (passing the linear patch
test) and suppresses zero energy modes of the di-
rect nodal integration has been proposed for meshfree
method. In SCNI, the domain is first decomposed
by conforming nodal representative domains, such as
Voronoi cells (Fig. 2b), and the gradient evaluated at
the nodal point xL is calculated as

Nruh.xL/ D 1

VL

Z

�L

ruh d� D 1

VL

Z

@�L

uhn d� ;

VL D
Z

�L

d� (19)

Here �L is the nodal representative domain which
can be obtained from triangulation or Voronoi cell
construction on a set of discrete points, and n is the
surface outward normal of @�L as shown in Fig. 2c.
Introducing the smoothed gradient into (15) and inte-
grating the weak form by nodal integration yields the
following discrete equation:

X

L2ZS
Nrvh.xL/ � Nruh.xL/VL D

X

L2ZS
vh.xL/s.xL/VL

C
X

OL2 OZS
vh.x OL/h.x OL/A OL

(20)

where x OL 2 @�h, OZS D fI jxI 2 @�hg and A OL is the
weight of the boundary integral on @�h. It has been
shown [19] that the boundary integral on the Neumann
boundary consistent with the boundary integral in (19)
is needed for passing patch test. The extension of SCNI
to meshfree analysis of plates [63], shells [17], and
large deformation problems [20] has been introduced.
Additional stability for SCNI to suppress nonzero en-
ergy modes has been discussed [55].

Strong Form Collocation Method

An alternative approach to address the domain inte-
gration issue in meshfree method is by collocation of
strong forms, such as the finite point method [53], the
radial basis collocation methods (RBCM) [33,34], and
the reproducing kernel collocation method (RKCM)
[29]. For demonstration, consider a scalar boundary
value problem:

Lu.x/ D f .x/ in �; Bhu.x/ D h.x/ on @�h;

Bgu.x/ D g.x/ on @�g (21)
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where L is the differential operator in �, Bh is the
differential operator on @�h, and Bg is the opera-
tor on @�g. Introducing the approximation of uh D
PNS

ID1 gI .x/dI into (21), where NS is the number of
nodal points, called source points in the radial basis
community. Enforcing the residuals to be zero at the
NC collocation points f�J gNCJD1, we have

NSX

ID1
LgI .�J /dI D f .�J / 8�J 2 �

(22a)

p
˛h

NSX

ID1
BhgI .�J /dI D

p
˛hh.�J / 8�J 2 @�h

(22b)

p
˛g

NSX

ID1
BggI .�J /dI D

p
˛gg.�J / 8�J 2 @�g

(22c)

where gI .x/ is the approximation function and ˛h and
˛g are the weights for the Neumann boundary @�h

and Dirichlet boundary @�g, respectively. The weights
have been determined by considering error balancing
in the equivalent least-squares functional associated
with the domain and boundary equations in (21) [28]

p
˛h 
 O.1/ ; p˛g 
 O.�NS/ (23)

where � is the maximum coefficient involved in the
differential operator L and the boundary operator Bh.

For sufficient accuracy, NC > NS is used, which
leads to an overdetermined system in Eq. (22) which
can be solved by the least-squares method, the QR
decomposition, or the singular value decomposition
(SVD). The few commonly used radial basis functions
are

Multiquadrics (MQ): gI .x/ D
�
r2I C c2

�n� 32 ;

Gaussian: gI .x/ D exp

�

�r
2
I

c2

�

(24)

where rI D kx � xI k and c is called the shape
parameter that controls the localization of the function.
In MQ RBF function in Eq. (24), the function is called
reciprocal MQ RBF if n D 1, linear MQ RBF if n D 2,
and cubic MQ RBF if n D 3, and so forth. There

exists an exponential convergence rate of RBF given
by Madych and Nelson [47]:

ju.x/� uh.x/j 
 O.�c=ı0 /kukt (25)

where 0 < �0 < 1 is a real number, ı D
supx2� minxI2ZS kx � xI k, and k � kt is the induced
norm from Fourier transformation. The use of RBF
in collocation method for PDEs [33, 34], so-called
RBCM, is a natural choice since RBFs are infinitely
differentiable and with good convergence properties,
and taking derivatives of gI .x/ is straightforward. The
convergence study of RBCM and weighted RBCM can
be found in [57] and [28]. The Reproducing Kernel
Collocation Method (RKCM) [29] has been introduced
to yield a sparse discrete system and enhance the ill-
conditioning issue in RBCM.

Applications of Meshfree Methods

The naturally conforming properties of meshfree ap-
proximations, such as MLS, RK, and PU approxima-
tions, allow h-adaptivity to be performed in a much
more effective manner than the conventional finite
element method [64]. Multiresolution analysis can also
be formulated easily with a meshfree approach due to
the flexibility in adapting support size, order of conti-
nuity and completeness, and enrichment using special
functions [40]. An application of meshfree methods
is for problems with higher-order differentiation, such
as the Kirchhoff-Love plate and shell problems [35],
where meshfree approximation functions with higher-
order continuities can be employed. Meshfree methods
are shown to be effective for large deformation and
fragment-impact problems (Fig. 3) [16, 25], where
mesh entanglement in the finite element method can
be greatly alleviated. Another popular application of
meshfree method is for the modeling of evolving dis-
continuities, such as crack propagation simulations.
The extended finite element method [49, 61] that com-
bines the FEM approximation and the crack-tip en-
richment functions [9, 11] under the partition of unity
framework has been the recent focal point in fracture
modeling.
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Synonyms

Biochemical network

Definition

Suppose that a system has m different chemicals,
A1; : : : ; Am; and define a complex to be anm-vector of
nonnegative integers. A metabolic network is a directed
graph, not necessarily connected, whose vertices are
complexes. There is an edge from complex C to com-
plex D if there exists a chemical reaction in which the
chemicals in C with nonzero components are changed
into the chemicals in D with nonzero components.
The nonzero integer components represent how many
molecules of each chemical are used or produced
in the reaction. Metabolic networks are also called
biochemical networks.

Description

Chemicals inside of cells are normally called sub-
strates and the quantity of interest is the concentration
of the substrate that could be measured as mass per
unit volume or, more typically, number of molecules
per unit volume. In Fig. 3, the substrates are indicated
by rectangular boxes that contain their acronyms. A
chemical reaction changes one or more substrates into
other substrates and the function that describes how the
rate of this process depends on substrate concentrations
and other variables is said to give the kinetics of

the reaction. The simplest kind of kinetics is mass-
action kinetics in which a unimolecular reaction (one

substrate), A
k�!B , proceeds at a rate proportional to

the concentration of the substrate, that is, kŒA�, and a

bimolecular reaction, A C B
k�! C , proceeds at a

rate proportional to the product of the concentrations of
the substrates, kŒA�ŒB�, and so forth. Given a chemical
reaction diagram, such as Fig. 1, the differential equa-
tions for the concentrations of the substrates simply
state that the rate of change of each substrate concen-
tration is equal to the sum of the rates of the reactions
that make it minus the rates of the reactions that
use it. A simple reaction diagram and corresponding
differential equations are shown in Fig. 1.

Figure 2 shows the simplest reaction diagram for an
enzymatic reaction in which an enzyme, E , binds to
a substrate, S , to form a complex, C . The complex
then dissociates into the product, P , and the enzyme
that can be used again. One can write down the four
differential equations for the variables S;E;C; P but
they cannot be solved in closed form. It is very useful
to have a closed form formula for the overall rate
of the reaction S �!P because that formula can be
compared to experiments and the constants can be
determined. Such an approximate formula was derived
by Leonor Michaelis and Maud Menten (see Fig. 2).

A B + C

d[A]

dtk1

k2

C D
k3

k4

=  k2[B][C] − k1[A]

d[B]

dt
=  −k2[B][C] + k1[A]

d[C]

dt
=  −k2[B][C] + k1[A]−k3[C] + k4[D]

d[D]

dt
=  k3[C] − k4[D]

Metabolic Networks, Modeling, Fig. 1 On the right are the
differential equations corresponding to the reaction diagram if
one assumes mass-action kinetics

S + E E + P V  =C
k2Etot [S]

Km + [S ] 

k1

k–1

k2

Metabolic Networks, Modeling, Fig. 2 A simple enzymatic
reaction and the Michaelis–Menten formula
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Metabolic Networks, Modeling, Fig. 3 Folate and methio-
nine metabolism. The rectangular boxes represent substrates
whose acronyms are in the boxes. All the pink boxes are different
forms of folate. Each arrow represents a biochemical reaction.
The acronyms for the enzymes that catalyze the reactions are

in the blue ellipses. The TS and AICART reactions are impor-
tant steps in pyrimidine and purine synthesis, respectively. The
DNMT reaction methylates cytosines in DNA and is important
for gene regulation

Here Etot is the total enzyme concentration, k2 is
indicated in Fig. 2, and Km is the so-called Michaelis–
Menten constant. The quantity k2Etot is called the Vmax

of the reaction because that is the maximum rate ob-
tained as ŒS�!1: There is a substantial mathematical
literature about when this approximation is a good one
[33]. For further discussion of kinetics and references,
see [24].

The biological goal is to understand how large
biochemical systems that accomplish particular tasks
work, that is, how the behavior of the whole system
depends on the components and on small and large
changes in inputs. So, for example, the folate cycle in
Fig. 3 is central to cell division since it is involved in
the production of purines and pyrimidines necessary
for copying DNA. Methotrexate, a chemotherapeutic
agent, binds to the enzyme DHFR and slows down cell
division. Why? And how much methotrexate do you
need to cut the rate of cell division in half? The enzyme
DNMT catalyzes the methylation of DNA. How does
the rate of the DNMT reaction depend on the folate
status of the individual, that is, the total concentration
of the six folate substrates?

Difficulties
It would seem from the description so far that the
task of an applied mathematician studying metabolism
should be quite straightforward. A biologist sets the
questions to be answered. The mathematician writes
down the differential equations for the appropriate
chemical reaction network. Using databases or original
literature, the constants for each reaction, like Km and
Vmax, are determined. Then the equations are solved
by machine computation and one has the answer. For
many different reasons the actual situation is much
more difficult and much more interesting.

What is the network? The metabolism of cells is an
exceptionally large biochemical network and it is not
so easy to decide on the “correct” relatively small net-
work that corresponds to some particular cellular task.
Typically, the substrates in any small network will also
be produced and used up by other small networks and
thus the behavior in those other networks affects the
one under study. How should one draw the boundaries
of a relatively small network so that everything that is
important for the effect one is studying is included?
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Enzyme properties. The rates of reactions depend
on the properties of the enzymes that catalyze them.
Biochemists often purify these enzymes and study their
properties when they are combined with substrates in
a test tube. These experiments are typically highly
reproducible. However, enzymes may behave very dif-
ferently in the context of real cells. They are affected
by pH and by the presence or absence of many other
molecules that activate them or inhibit them. Thus their
Km and Vmax may depend on the context in which they
are put. Many metabolic pathways are very ancient,
for example, the folate cycle occurs in bacteria, and
many different species have the “same” enzymes. But,
in reality, the enzymes may have different properties
because of differences in the genes that code for them.

Gene expression levels. Enzymes are proteins that
are coded for by genes. The Vmax is roughly propor-
tional to the total enzyme concentration, which is itself
dependent on gene expression level and the rate of
degradation of the enzyme. The expression level of the
gene that codes for the enzyme will depend on the cell
type (liver cell or epithelial cell) and on the context in
which the cell finds itself. This expression level will
vary between different cells in the same individual,
between individuals of the same species, and between
different species that have the same gene. Furthermore,
the expression level may depend on what other genes
are turned on or the time of day. Even more daunting is
the fact that identical cells (same DNA) in exactly the
same environment often show a 30 % variation in gene
expression levels [36]. Thus, it is not surprising that the
Km and Vmax values (that we thought the biochemists
would determine for us) vary sometimes by two or
three orders of magnitude in public enzyme databases.

Is the mean field approximation valid? When we
write down the differential equations for the concen-
trations of substrates using mass-action, Michaelis–
Menten, or other kinetics, we are assuming that the
cell can be treated as a well-mixed bag of chemicals.
There are two natural circumstances where this is not
true. First, the number of molecules of a given substrate
may be very small; this is particularly true in bio-
chemical networks related to gene expression. In this
case stochastic fluctuations play an important role.
Stochastic methods are discussed below. Second, some
biochemical reactions occur only in special locations,
for example, the cell membrane or the endoplasmic

reticulum. In this case, there will clearly be gradients,
the well-mixed assumption is not valid, and partial
differential equations will be required.

Are these systems at steady state? It is difficult to
choose the right network and determine enzyme con-
stants. However, once that is done surely the traditional
approach in applied mathematics to large nonlinear
systems of ODEs should work. First one determines
the steady-states and then one linearizes around the
steady-states to determine which ones are asymptoti-
cally stable. Unfortunately, many cellular systems are
not at or even near steady state. For example, amino
acid concentrations in the blood for the hours shortly
after meals increase by a factor of 2–6. This means that
cells are subject to enormous fluctuations in the inputs
of amino acids. The traditional approach has value, of
course, but new tools, both technical and conceptual,
are needed for studying these systems of ODEs.

Long-range interactions. Many biochemical
reaction diagrams do not include the fact that some
substrates influence distant enzymes in the network.
These are called long range interactions and several are
indicated by red arrows in Fig. 3. The substrate SAM
activates the enzyme CBS and inhibits the enzymes
MTHFR and BHMT. The substrate 5mTHF inhibits
the enzyme GNMT. We note that “long range” does
not indicate distance in the cell; we are assuming the
cell is well mixed. “Long-range” refers to distance
in the network. It used to be thought that it was easy
to understand the behavior of chemical networks by
walking through the diagrams step by step. But if there
are long-range interactions this is no longer possible;
one must do serious mathematics and/or extensive
machine experimentation to determine the system
properties of the network.

But what do these long-range interactions do in the
cases indicated in Fig. 3? After meals the methionine
input goes way up and the SAM concentration rises
dramatically. This activates CBS and inhibits BHMT,
which means that more mass is sent away from the
methionine cycle via the CBS reaction and less mass
is recycled within the cycle via the BHMT reaction.
So these two long-range interaction, roughly conserve
mass in the methionine cycle. The other two long range
interactions keep the DNMT reaction running at almost
a constant rate despite large fluctuations in methionine
input. Here is a verbal description of how this works.
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If SAM starts to go up, the enzyme MTHFR is more
inhibited so there will be less of the substrate 5mTHF.
Since there is less 5mTHF, the inhibition of GNMT
is partly relieved and the extra SAMs that are being
produced are taken down the GNMT pathway, leaving
the rate of the DNMT reaction about constant [28].
We see that in both cases the long-range interactions
have specific regulatory roles and probably evolved
for just those reasons. The existence of such long-
range interactions makes the study of chemical reaction
networks much more difficult.

Theoretical Approaches to Complex Metabolic
Systems
Cell metabolism is an extremely complex system and
the large number of modeling studies on particular
parts of the system cannot be summarized in this
short entry. However, we can discuss several different
theoretical approaches.

Metabolic Control Analysis (MCA). This theory,
which goes back to the original papers of Kacser
and Burns [21, 22], enables one to calculate “control
coefficients” that give some information about
the system properties of metabolic networks. Let
xD<x1; x2; : : : > denote the substrate concentrations
in a large metabolic network and suppose that the
network is at a steady state xs.c/, where c denotes
a vector of constants that the steady state depends
on. These constants may be kinetic constants like
Km or Vmax values, initial conditions, input rates,
enzyme concentrations, etc. If we assume that the
constants are not at critical values where behavior
changes, then the mapping c �! xs.c/ will be smooth
and we can compute its partial derivatives. Since the
kinetic formulas tell us how the fluxes along each
pathway depend on the substrate concentrations, we
can also compute the rates of change of the fluxes
as the parameters c are varied. These are called the
“flux control coefficients.” In practice, this can be
done by hand only for very simple networks, and
so is normally done by machine computation. MCA
gives information about system behavior very close
to a steady state. One of the major contributions
of MCA was to emphasize that local behavior, for
example, a flux, was a system property in that it
depended on all or many of the constants in c. So,
for example, there is no single rate-limiting step for

the rate of production of a particular metabolite,
but, instead, control is distributed throughout the
system.

Biochemical Systems Theory (BST). This theory,
which goes back to Savageau [32], replaces the diverse
nonlinear kinetic formulas for different enzymes with
a common power-law formulation. So, the differential
equation for each substrate concentration looks like

x0.t/ D P
i ˛ij

Q
j x

ˇij
ij �

P
i �ij

Q
j x

ıij
ij . In the first

term, the sum over i represents all the different re-
actions that produce x and the product over j gives
the variables that influence each of those reactions.
Similarly, the second sum contains the reactions that
use x. The powers ˇij and ıij , which can be fractional
or negative, are to be obtained by fitting the model
to experimental data. The idea is that one needs to
know the network and the influences, but not the
detailed kinetics. A representation of the detailed ki-
netics will emerge from determining the powers by
fitting data. Note that the influences would naturally
include the long-range interactions mentioned above.
From a mathematical point of view there certainly will
be such a representation near a (noncritical) steady
state if the variables represent deviations from that
steady state. One of the drawbacks of this method is
that biological data is highly variable (for the reasons
discussed above) and therefore the right choice of data
set for fitting may not be clear. BST has also been used
to simulate gene networks and intracellular signaling
networks [31, 34].

Metabolomics. With the advent of high-throughput
studies in molecular biology, there has been much
interest in applying concepts and techniques from bio-
informatics to understanding metabolic systems. The
idea is that one measures the concentrations of many
metabolites at different times, in different tissues, or
cells. Statistical analysis reveals which variables seem
to be correlated, and one uses this information to draw
a network of influences. Clusters of substrates that
vary together could be expected to be part of the same
“function.” The resulting networks can be compared,
between cells or species, in an effort to understand
how function arises from network properties; see, for
example [29].

Graph theory. A related approach has been to study
the directed graphs that correspond to known metabolic
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(or gene) networks with the substrates (genes) as nodes
and the directed edges representing biochemical reac-
tions (or influences). One is interested in large-scale
properties of the networks, such as mean degree of
nodes and the existence of large, almost separated,
clusters. One is also interested in local properties, such
as a particular small connection pattern, that is repeated
often in the whole graph. It has been proposed by Alon
[1] that such repeated “motifs” have specific biological
functions. From the biological point of view, the graph
theoretic approaches have a number of pitfalls. It is
very natural to assume that graph properties must
have biological function or significance, for example,
to assume that a node with many edges must be
“important,” or clusters of highly connected nodes are
all contributing to a single “function.” Nevertheless,
it is interesting to study the structure of the graphs
independent of the dynamics and to ask what influence
or significance the graph structure has.

Deficiency zero systems. The study of graphs sug-
gests a natural question about the differential equa-
tions that represent metabolic systems. When are the
qualitative properties of the system independent of the
local details? As discussed in Difficulties, the details
will vary considerably from species to species, from
tissue to tissue, from cell to cell, and even from time to
time in the same cell. Yet large parts of cell metabolism
keep functioning in the same way. Thus, the biology
tells us that many important system properties are
independent of the details of the dynamics. This must
be reflected in the mathematics. But how? A major step
to understanding the answer to this question was made
by Marty Feinberg and colleagues [14].

Letm be the number of substrates. For each reaction
in the network, we denote by � the m-component
vector of integers that indicates how many molecules
of different substrates are used in the reaction; �0
indicates how many are produced by the reaction. Each
� is called a complex and we denote the number of
complexes by c. The span of the set of vectors of
the form � � �0 is called the stoichiometric subspace
and it is invariant under the dynamics. We denote
its dimension by s and let ` denote the number of
connected components of the graph. The deficiency
of the network is defined as ı D c � s � `: The
network is weakly reversible if whenever a sequence of
reactions allows us to go from complex �1 to complex
�2 then there exists a sequence of reactions from �2 to

complex �1. Feinberg formulated the deficiency zero
theorem which says that a weakly reversible deficiency
zero network with mass-action kinetics has a unique
globally stable equilibrium in the interior of each stoi-
chiometric compatibility class. This is true independent
of the choice of rate constants. Feinberg gave a proof
in the case that there are no boundary equilibria on
the faces of the positive orthant. Since then, the proof
has been extended to many cases that allow boundary
equilibria [2, 9, 35].

Stochastic Models
There are many sources of stochasticity in cellular
networks. For example, the initial conditions for a
cell will be random due to the random assignment of
resources at cellular division, and the environment of
the cell is random due to fluctuations in such things
as temperature and the chemical environment of the
cell. If these were the only sources of randomness, then
one would only need to modify the coefficients and
initial conditions of the differential equation models
to obtain reasonable models taking these stochastic
effects into account. But many cellular processes in-
volve substrates and enzymes present in the system in
very small numbers, and small (random) fluctuations
in these numbers may have significant effects on the
behavior of the system. Consequently, it is the discrete-
ness of the system as much as its inherent stochasticity
that demands a modeling approach different from the
classical differential equations.

Markov chain models. The idea of modeling a chem-
ical reaction network as a discrete stochastic process
at the molecular level dates back at least to [12],
with a rapid development beginning in the 1950s and
1960s; see, for example, [7, 8, 27]. The simplest and
most frequently used class of models are continuous-
time Markov chains. The state X.t/ of the model at
time t is a vector of nonnegative integers giving the
numbers of molecules of each species in the system
at that time. These models are specified by giving
transition intensities (or propensities in much of the
reaction network literature) �l .x/ that determine the
infinitesimal probabilities of seeing a particular change
or transition X.t/ ! X.t C 	t/ D X.t/ C �l in the
next small interval of time .t; t C	t�, that is,

P fX.t C	t/ D X.t/C �l jX.t/g 
 �l.X.t//	t:
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In the chemical network setting, each type of tran-
sition corresponds to a reaction in the network, and
�l D �0l � �l , where �l is a vector giving the number of
molecules of each chemical species consumed in the
lth reaction and �0l is a vector giving the number of
molecules of each species produced in the reaction.

The intuitive notion of a transition intensity can
be translated into a rigorous specification of a model
in a number of different ways. The most popular
approach in the chemical networks literature is through
the master (or Kolmogorov forward) equation

Ppy.t/ D
X

l

�l .y � �l /py��l .t/ �
 
X

l

�l .y/

!

py.t/;

(1)
where py.t/ D P fX.t/ D yg, and the sum is over the
different reactions in the network.

Another useful approach is through a system of
stochastic equations

X.t/ D X.0/C
X

�lYl

�Z t

0

�l .X.s//ds

�

; (2)

where the Yl are independent unit Poisson processes.
Note that Rl.t/ D Yl.

R t
0
�l .X.s//ds/ simply counts

the number of times that the transition taking the state
x to the state xC�l occurs by time t , that is, the number
of times the lth reaction occurs. The master equation
and the stochastic equation determine the same models
in the sense that if X is a solution of the stochastic
equation, py.t/ D P fX.t/ D yg is a solution of
the master equation, and any solution of the master
equation can be obtained in this way. See [4] for a
survey of these models and additional references.

The stochastic law of mass action. The basic as-
sumption of the simplest Markov chain model is the
same as that of the classical law of mass action: the
system is thoroughly mixed at all times. That assump-
tion suggests that the intensity for a binary reaction

AC B ! C (3)

should be proportional to the number of pairs con-
sisting of one molecule of A and one molecule of B ,
that is, �.X.t// D kXA.t/XB.t/. The same intuition
applied to the binary reaction

2A! C (4)

would give an intensity

�.X.t// D �
 
XA.t/

2

!

D �

2
XA.t/.XA.t/ � 1/

D kXA.t/.XA.t/ � 1/;

where we replace �=2 by k.
For unary reactions, for example, A!C , the as-

sumption is that the molecules behave independently
and the intensity becomes �.X.t// D kXA.t/.

Relationship to deterministic models. The larger the
volume of the system the less likely a particular pair of
molecules is to come close enough together to react,
so it is natural to assume that intensities for binary
reactions should vary inversely with respect to some
measure of the volume. If we take that measure, N , to
be Avogadro’s number times the volume in liters, then
the intensity for (3) becomes

�.X.t// D k

N
XA.t/XB.t/ D NkŒA�t ŒB�t ;

where ŒA�t D XA.t/=N is the concentration of A
measured in moles per liter. The intensity for (4)
becomes �.X.t// D kŒA�t .ŒA�t � N�1/ 
 kŒA�2t ,
assuming, as is likely, that N is large and that XA.t/
is of the same order of magnitude as N (which may
not be the case for cellular reactions). If we assume
that our system consists of the single reaction (3), the
stochastic equation for species A, written in terms of
the concentrations, becomes

ŒA�t D ŒA�0 � 1

N
Y.N

Z t

0

kŒA�sŒB�sds/


 ŒA�0 �
Z t

0

kŒA�sŒB�sds;

where, again assuming that N is large, the validity
of the approximation follows by the fact that the
law of large numbers for the Poisson process implies
N�1Y.N u/ 
 u. Analysis along these lines gives a
derivation of the classical law of mass action starting
from the stochastic model; see, for example, Kurtz
[25, 26], or Ethier and Kurtz [13], Chap. 10.
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Simulation. Among the basic properties of a
continuous-time Markov chain (with intensities that
do not depend on time) is that the holding time in a
state x is exponentially distributed and is independent
of the value of the next state occupied by the chain. To
be specific, the parameter of the holding time is

N�.x/ D
X

l

�l .x/;

and the probability that the next state is x C �l is
�l.x/= N�.x/. This observation immediately suggests a
simulation algorithm known in the chemical literature
as Gillespie’s direct method or the stochastic simula-
tion algorithm (SSA)[16, 17]. Specifically, given two
independent uniform Œ0; 1� random variables U1 and
U2 and noting that� logU1 is exponentially distributed
with mean 1, the length of time the process remains in
state x is simulated by  D 1

N�.x/ .� logU1/. Assuming

that there are m reactions indexed by 1 � l � m and
defining �0.x/ D 0 and �l .x/ D N�.x/�1Pl

kD1 �k.x/,
the new state is given by

x C
X

l

�l1.�l�1.x/;�l .x/�.U2/;

that is, the new state is xC�l if �l�1.x/ < U2 � �l .x/.
If one simulates the process by simulating the Pois-

son processes Yl and solving the stochastic equation
(2), one obtains the next reaction (next jump) method
as defined by Gibson and Bruck [15].

If we define an Euler-type approximation for (2),
that is, for 0 D �0 < �1 < � � � , recursively defining

OX.�n/ D X.0/

C
X

l

�lYl

 
n�1X

kD0
�l . OX.�k//.�kC1 � �k/

!

;

we obtain Gillespie’s �-leap method, which provides
a useful approximation to the stochastic model in
situations where N�.x/ is large for values of the state
x of interest [18]. See [3,5] for additional analysis and
discussion.

Hybrid and multiscale models. A discrete model is
essential if the chemical network consists of species
present in small numbers, but a typical biochemical
network may include some species present in small

numbers that need to be modeled as discrete variables
and others species present in much larger numbers that
would be natural to model as continuous variables.
This observation leads to hybrid or piecewise determin-
istic models (in the sense of Davis [11]) as considered
in the chemical literature by Crudu et al. [10], Haseltine
and Rawlings [19], Hensel et al. [20], and Zeiser
et al. [39]. We can obtain these models as solutions of
systems of equations of the form

Xk.t/ D Xk.0/C
X

l2Rd

�lYl

�Z t

0

�l .X.s//ds

�

;

k 2 Sd ;

Xk.t/ D Xk.0/C
X

l2Rc

�l

Z t

0

�l .X.s//ds

D Xk.0/C
Z t

0

Fk.X.s//ds;

k 2 Sc;

where Rd and Sd are the indices of the reactions and
the species that are modeled discretely, Rc and Sc
are the indices for the reactions and species modeled
continuously, and Fk.x/ DPl2Rc

�l�l .x/.
Models of this form are in a sense “multiscale” since

the numbers of molecules in the system for the species
modeled continuously are typically many orders of
magnitude larger than the numbers of molecules for
the species modeled discretely. Many of the stochastic
models that have been considered in the biochemical
literature are multiscale for another reason in that the
rate constants vary over several orders of magnitude as
well (see, e.g., [37, 38].) The multiscale nature of the
species numbers and rate constants can be exploited to
identify subnetworks that function naturally on differ-
ent timescales and to obtain reduced models for each
of the timescales. Motivated in part by Rao and Arkin
[30] and Haseltine and Rawlings [19], a systematic
approach to identifying the separated timescales and
reduced models is developed in Refs. [6] and [23].
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Motivation and Outline

A large number of stationary phenomena in the sci-
ences and in engineering are modeled by elliptic par-
tial differential equations (elliptic PDEs), and during
the past decades, numerical methods for their solu-
tion such as the finite element method (FEM), the
finite difference method (FDM), and the finite volume
method (FVM) have matured. Well-posed mathemati-
cal problem formulations as well as the mathematical
analysis of the numerical methods for their approx-
imate solution were based on the paradigm (going
back to Hadamard’s notion of well-posedness) that
all input data of interest are known exactly and that
numerical methods should be convergent, i.e., able
to approximate the unique solution at any required
tolerance (neglecting effects of finite precision arith-
metic).

In recent years, due to apparent limited predictive
capability of high-precision numerical simula-
tions, and in part due to limited measurement
precision of PDE input data in applications,

Research supported by the European Research Council (ERC)
under Grant No. AdG 247277

the numerical solution of PDEs with random
inputs has emerged as key area of applied and
computational mathematics with the aim to quantify
uncertainty in predictive engineering computer
simulations.

At the same time, in many application areas,
the data deluge has become reality, due to the
rapid advances in digital data acquisition such
as digital imaging. The question how to best
computationally propagate uncertainty, e.g., from
digital data, from multiple observations and statis-
tical information on measurement errors through
engineering simulations mandate, once more, the
(re)formulation of elliptic PDEs of engineering
interest as stochastic elliptic PDEs, for which all
input data can be random functions in suitable
function spaces. Often (but not always), the function
spaces will be the spaces in which the deterministic
counterparts of the PDEs of interest admit unique
solutions.

In the formulation of stochastic elliptic (and other)
PDEs, one distinguishes two broad classes of ran-
dom inputs (or “noises”): first, so-called colored noise,
where the random inputs have realizations in classi-
cal function spaces and the statistical moments are
bounded and exhibit, as functions of the spatial vari-
able, sufficient smoothness to allow for the classical
differential calculus (in the sense of distributions),
and second, so-called white, or more generally, rough
noises. One characteristic of white noise being the
absence of spatial or temporal correlation, solutions
of PDEs with white noise inputs can be seen, in
a sense, as stochastic analogues to fundamental so-
lutions (in the sense of distributions) of determin-
istic PDEs: as in the deterministic setting, they are
characterized by rather low regularity and by low
integrability. As in the deterministic setting, classical
differential calculus does not apply any more. Ex-
tensions such as Ito Calculus (e.g., [25, 73]), white
noise calculus (e.g., [57, 64]), or rough path calculus
(e.g., [35]) are required in the mathematical formu-
lations of PDE for such inputs. In the present notes,
we concentrate on efficient numerical treatment of
colored noise models. For stochastic PDEs (by which
we mean partial differential equations with colored
random inputs, which we term “SPDEs” in what fol-
lows), well-posedness can be established when in-
puts and outputs of SPDEs are viewed as random
fields.

http://dx.doi.org/10.1007/s00285-009-0264-9
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Random Fields in Stochastic PDEs

The formulation of elliptic SPDEs with stochastic
input data (such as stochastic coefficient functions,
stochastic source or volume terms, or stochastic do-
mains) necessitates random variables which take val-
ues in function spaces. Some basic notions are as
follows (see, e.g., [25, Chap 1] or [2] for more de-
tails). Consider “stochastic” PDE within the probabilis-
tic framework due to Kolmogoroff (other approaches
toward randomness are fuzzy sets, belief functions,
etc.): let .�;A;P/ denote probability space, and let
E be a metric space, endowed with a sigma algebra
E . A strongly measurable mapping X W � 7! E

is a mapping such that for every A 2 A, the set
f! 2 � W X.!/ 2 Ag 2 A. A random field

(or random function, RF for short) is an E-valued
random variable (RV for short), i.e., a measurable
mapping from .�;A;P/ to .E; E/. We denote by
L.X/ the image measure of the probability measure
P under the mapping X on the measurable space
.E; E/, defined for any A 2 E by L.X/.A/ D
P .! 2 � W X.! 2 A/.

The measure � D L.X/ is the distribution or
law of the RV X . If E is a separable Banach space,
and X is a RV on .�;A/ taking values in E , then
the real valued function kX.�/kE is measurable (i.e.,
a random number) (e.g., [25, Lemma 1.5]). For 1 �
p � 1, and for a separable Banach space E , denote
by Lp.�;A;PIE/ the Bochner space of all RF X W
� 7! E which are p-integrable, i.e., for which the
norms

kXkLp.�;A;PIE/ WD
8
<

:

�Z

!2�
kX.!/kpEdP.!/

�1=p
<1 ; 1 � p <1 ;

esssup!2�kX.!/kE <1 ; p D1 :

(1)

We also write Lp.�IE/ if the probability space is
clear from the context. If X 2 L1.�IE/ is a RF,
the mathematical expectation EŒX� (also referred to
as “mean field” or “ensemble average” of X ) is well
defined as an element of E by

EŒX� WD
Z

�

X.!/dP.!/ 2 E ; (2)

since, by Jensen’s inequality, kEŒX�kE �
R
�
kX.!/kE

dP.!/ D kXkL1.�;A;PIE/ <1.
Apart from the ensemble average EŒX�, often also

statistical moments are of interest. For illustration, let
now H be a separable Hilbert space of R, and assume
X is a RF in L2.�IH/. Denote byH.2/ D H ˝H the
tensor product ofX with itself. Then, for P-a.e.! 2 �,
the dyadic product X.!/ ˝ X.!/ 2 H.2/ is well
defined andX˝X is a RF in L1.�IH ˝H/, the two-
point correlation of X 2 L2.�IH/. Its expectation,
the covariance of X , is well defined since for X 2
L2.�IH/

kEŒX ˝X�kL1.�IH˝H/ �
Z

!2�
kX ˝XkHP.d!/

D
Z

!2�
kXk2HP.d!/ D kXk2L2.�IH/ <1 :

Here, we used that the tensor norm on a Hilbert space
is a so-called crossnorm (see [76] and the references
there for more on crossnorms).

Higher-order correlations are defined in [76, Sec 1].

Multilevel Monte CarloMethods

The simplest and most general numerical approach for
the numerical approximation of expectations of RF
solutions of PDEs is the Monte Carlo method (MC
method for short).

Assume that we are given a RF u 2 L2.�IH/
where H is a separable Hilbert space over R. The MC
method approximates the mean field EŒu� 2 H by a fi-
nite sample average: for M 2 N, let u.!1/; : : : ; u.!M /
denoteM samples (or draws or realizations) of the RF
u, and compute the sample average

EMŒu� D 1

M

MX

iD1
u.!i / 2 H : (3)

Note that this definition assumes additional regularity
of the RF u, since the singletons f!i g areP null sets if P
does not contain atoms. Interpreting the samples u.!i /
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asM independent, identically distributed copies ui .!/
of the RF u, the sample average (3) becomes, itself, a
RF which we denote, by slight abuse of notation, again
by EMŒu�. For u 2 L2.�IH/, there holds (see [76] for
a proof) the mean square error estimate

kEŒu� � EMŒu�k2L2.�IH/ �
1

M
kuk2

L2.�IH/ ;

M D 1; 2; : : : (4)

which implies the (mean square) convergence rate 1=2
in terms of the number M of “samples” of the RF: to
reach accuracy " > 0 in L2.�IH/, M D O."�2/
many samples are required. We emphasize that the
error bound (4) is quite different in nature from the
usual discretization error bounds in numerical analysis:
the error is only controlled in mean square over a
large number of realizations; this implies that in a MC
simulation, there is no guarantee for error reduction
with increasingM .

If H D R, samples are easily realized computa-
tionally by random number generators, and kuk2

L2.�IH/
is an upper bound for the variance of the random
number u. In the Hilbert space setting, “samples” are
RFs which can, usually, only be approximately realized
numerically. In particular, in the context of stochastic
PDEs, exact realizations of samples are, usually, not
available, and in addition to the statistical error, also a
discretization error is incurred.

In order to bound it, additional regularity of the RF
u is required: assume that the RF u takes values in
a separable Hilbert space V , which is embedded in a
smoothness scale V D V0 � V1 � V2 � : : :, and that
there is a dense sequence fS`g1̀D0 of subspaces S` � V
of increasing dimensions N` D dimS` < 1, such
that the approximation property holds: for smoothness
s > 0 there exists a constant Cs > 0 and a convergence
rate t.s/ > 0 such that for all ` 2 N holds the
error estimate

8u 2 Vt W inf
v2S`
ku � v`kV � CN�t` kukVs : (5)

In the context of the Dirichlet problem of the Poisson
equation with random source term (cf., e.g., [80, 80])
in a bounded, Lipschitz domainD � R

d , for example,
we think of V D H1

0 .D/ and of Vs D .H1Cs \
H1
0 /.D/. Then, for S` denoting the space of continu-

ous, piecewise polynomial functions of degree k � 1

on a sequence T` of regular, simplicial triangulations
of D (see, e.g., [21]), there holds (5) with t D t.s/ WD
minfs=d; kg. In polyhedral domains D with corners
and edges, RFs u belong P-as to certain weighted
spaces Vs for which, for S` being finite element spaces
with suitable mesh refinement toward the corners and
edges of D, once more (5) is available (see, e.g., [9]).

Fixing a discretization level `, we therefore compute
instead of (3) the discretized sample average

EMŒu`� WD 1

M

MX

iD1
u`.!i / : (6)

There are two contributions to the error EŒu��EM Œu`�:
a sampling error and of a discretization error (see
[83]): assuming that u 2 L2.�IVs/, for M D
1; 2; : : : ; ` D 1; 2; : : : holds the error bound

kEŒu� � EMŒu`�kL2.�IV / � kEŒu� � EMŒu�kL2.�IV /C
kEMŒu� � EMŒu`�kL2.�IV /

� 1p
M
kukL2.�IV / C CsN�t` kukL2.�IVs/ :

(7)

Relation (7) gives an indication on the selection of the
number of degrees of freedom N` in the discretization
scheme versus the sample size M in order to balance
both errors: to reach error O."/ in L2.�IV /, work
of order O.MN`/ D O."�2�1=t / D O."�2�d=s/ is
required (assuming work for the realization of one
sample u` 2 S` being proportional to dimS`, as is
typically the case when multilevel solvers are used for
the approximate solution of the discretized equations).
We note that, even for smooth solutions (where s is
large), the convergence rate of error versus work never
exceeds 1=2. Methods which allow to achieve higher
rates of convergence are so-called quasi-Monte Carlo
methods (QMC methods for short) (see, e.g., [61, 62]
for recent results). The naive use of MC methods for
the numerical solution of SPDEs is, therefore, limited
either to small model problems or requires the use of
massive computational resources.

The so-called multilevel Monte Carlo (MLMC for
short), proposed by M. Giles in [39] (after earlier
work of Heinrich on quadrature) to accelerate path
simulation of Ito SDEs, can dramatically improve the
situation. These methods are also effective in particular
for RF solutions u with only low regularity, i.e., u 2 Vs
for small s > 0, whenever hierarchic discretizations of
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stochastic PDEs are available. To derive it, we assume
that for each draw u.!i / of the RF u, a sequence
u`.!i / of approximate realizations is available (e.g.,

this is naturally the case for multigrid methods). By
the linearity of the mathematical expectation, with the
convention that u�1 WD 0, we may write

EŒu � uL� D E

"

u �
LX

`D0
.u` � u`�1/

#

D EŒu� �
LX

`D0
EŒu` � u`�1� :

(8)

Rather than applying the MC estimator now to uL,
we estimate separately the expectation EŒu` � u`�1�
of each discretization increment, amounting to the
numerical solution of the same realization of the SPDE
on two successive mesh levels as is naturally available
in multilevel solvers for elliptic PDEs. This results in
the MLMC estimator

ELŒu� WD
LX

`D0
EM`

Œu` � u`�1� : (9)

Efficiency gains in MLMC stem from the possibility to
use, at each level of discretization, a level-dependent
numberM` of MC samples: combining (4) and (5),

kEM`
Œu` � u`�1�kL2.�IV / � kEŒu��EM`

Œu`�kL2.�IV /CkEŒu��EM`
Œu`�1�kL2.�IV /

.M
�1=2
` N

�t .s/
` kukL2.�IVs/ :

This error bound may now be used to optimize the
sample numbers M` with respect to the discretization
errors at each mesh level. In this way, computable esti-
mates for the ensemble average EŒu� of the RF u can be
obtained with work of the order of one multilevel solve
of one single instance of the deterministic problem at
the finest mesh level (see, e.g., [12] for a complete
analysis for a scalar, second-order elliptic problem with
random diffusion coefficients and [10, 11, 65] for other
types of SPDEs, and [41] for subsurface flow models
with lognormal permeability). For quasi-MC methods,
similar constructions are possible; this is an ongoing
research (see, e.g., [47, 61, 62]).

Moment Approximation by Sparse Tensor
Galerkin Finite Element Methods

For a boundedly invertible, deterministic operator A 2
L.V; V �/ on some separable Hilbert space V over R,
consider operator equation with random loading

Au D f .!/ ; f 2 L2.�IV �/ : (10)

This equation admits a unique solution, a RF u 2
L2.�IV /. Since the operator equation (10) is linear,
application of the operator A and tensorization com-
mute, and there holds the deterministic equation for the
covariance function M.2/Œu� WD EŒu˝ u� 2 V ˝ V :

.A˝ A/M.2/Œu� DM.2/Œf � : (11)

Equation (11) is exact, i.e., no statistical moment clo-
sures, e.g., in randomly forced turbulence, are nec-
essary. For the Poisson equation, this approach was
first proposed in [5]. If A is V -coercive, the operator
A˝A is not elliptic in the classical sense but boundedly
invertible in scales of tensorized spaces and naturally
admits regularity shifts in the tensorized smoothness
scale Vs ˝ Vs . This allows for deterministic Galerkin
approximation of 2- and of k-point correlation func-
tions in log-linear complexity w.r. to the number of
degrees of freedom used for the solution of one realiza-
tion of the mean-field problem (e.g., [51,76,78,80,83]).
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The non-elliptic nature of A ˝ A implies, however,
possible enlargement of the singular support of the
RF’s k-point correlation functions; see, e.g., [71, 72]
for a simple example and an hp-error analysis with
exponential convergence estimates and [31] and the
references there for more general regularity results
for elliptic pseudodifferential equations with random
input data, covering in particular also strongly elliptic
boundary integral equations.

For nonlinear problems with random inputs, de-
terministic tensor equations such as (11) for k-point
correlation functions of random solutions do not hold,
unless some closure hypothesis is imposed. In the
case of an a priori assumption on P-a.s. smallness of
solution fluctuations about mean, deterministic tensor
equations like (11) for the second moments of the ran-
dom solution can be derived from a first-order moment
closure; we refer to [28] for an early development
of this approach in the context subsurface flow; to
[52] for an application to elliptic problems in random
domains, where the perturbation analysis is based on
the shape derivative of the solution at the nominal
domain; and to [18] for a general formulation and
for error estimates of both discretization and closure
error. For an analysis of the linearization approach of
random elliptic PDEs in uncertainty quantification, we
refer to [7]. We emphasize that the Galerkin solution
of the tensorized perturbation equations entails cost
O.Nk

L/ where NL denotes the number of degrees of
freedom necessary for the discretization of the nominal
problem and k � 1 denotes the order of the statisti-
cal moment of interest. Using sparse tensor Galerkin
discretizations as in [76, 80, 80], this can be reduced
to O.NL.logNL/k/ work and memory, rendering this
approach widely applicable.

Generalized Polynomial Chaos
Representations

Generalized polynomial chaos (“gpc” for short) rep-
resentations aim at a parametric, deterministic repre-
sentation of the law L.u/ of a random solution u of
a SPDE. For PDEs with RF inputs, they are usually
infinite-dimensional, deterministic parametrizations, in
the sense that a countable number of variables are
required. Representations of this type go back to the
spectral representation of random fields introduced by
N. Wiener [84]. A general representation theorem for

RFs in L2.�IH/ was obtained in [16], for Gaussian
RFs over separable Hilbert spacesH . This result shows
that the classical Wiener-Hermite polynomial chaos
is, in a sense, universal. Representations in terms of
chaos expansions built from polynomials which are
orthogonal with respect to non-Gaussian probabil-
ity measures were proposed in [86]; these so-called
generalized polynomial chaos expansions often allow
finitely truncated approximations with smaller errors
for strongly non-Gaussian RF finite second moments.
Special cases of polynomial chaos expansions are the
so-called Karhunen-Loève expansions. These can be
consider as a particular instance of so-called principal
component approximations. Karhunen-Loève expan-
sions allow to parametrize a RF a 2 L2.�IH/ taking
values in a separable Hilbert space H in terms of
countably many eigenfunctions f'igi�1 of its covari-
ance operator Ca W H 7! H : the unique compact,
self-adjoint nuclear, and trace-class operator whose
kernel is the two-point correlation of the RF a, i.e.,
a D EŒa ˝ a�; see, e.g., [82] or, for the Gaussian case,
[2, Thm. 3.3.3]. Importantly, the enumeration of eigen-
pairs .�k; 'k/k�1 of Ca is such that �1 � �2 � : : :! 0

so that the Karhunen-Loève eigenfunctions constitute
principal components of the RF a, ordered according
to decreasing importance (measured in terms of their
contribution to the variance of the RF a):

a.�; !/ D Na.�/C
X

k�1

p
�kYk.!/'k.�/ : (12)

In (12), the normalization of the RVs Yk and of the 'k
still needs to be specified: assuming that the 'k are
H -orthonormal, i.e., .'i ; 'j / D ıij , the RVs Yk 2
L2.�IR/ defined in (12) are given by (.�; �/ denoting
the H inner product):

Yk.!/ D ��1=2k .a.�; !/� Na.�/; 'k/ ; k D 1; 2; : : :
(13)

The sequence fYkgk�1 constitutes a sequence of pair-
wise uncorrelated RVs which, in case a is a Gaussian
RF overH , are independent.

Recently, for scalar, elliptic problems in divergence
form with lognormal Gaussian RF permeability typ-
ically appearing in subsurface flow models (see, e.g.,
[66, 67] and the references there), several rigorous
mathematical formulations were given in [17,36,43]. It
was shown that the stochastic diffusion problem admits
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a unique RF solution which belongs to Lp.�; � IV /
where � is a Gaussian measure on V (see, e.g., [15]).
In particular, in [17,34,61], dimension truncation error
analyses were performed. Here, two broad classes of
discretization approaches are distinguished: stochastic
collocation (SC) and stochastic Galerkin (SG). SC is
algorithmically similar to MC sampling in that only
instances of the deterministic PDEs need to be solved.
We refer to [6, 8, 69, 70]. Recently, adaptive stochastic
collocation algorithms for the full, infinite-dimensional
problem were developed in [19]. For solutions with low
regularity with respect to the stochastic variable, also
quasi-Monte Carlo (“QMC” for short) is effective; we
refer to [62] for a general introduction to the mathe-
matical foundation of QMC quadrature as applied to
infinite-dimensional parametric operator equations and
to [29,30,47,48,63] for recent applications of QMC to
elliptic SPDEs.

Numerical optimal control of stochastic elliptic (and
parabolic) PDEs with countably parametric operators
has been investigated in [42, 60].

Regularity and efficient numerical methods for
stochastic elliptic multiscale problems were addressed
in the papers [1,54]; there, multilevel Monte Carlo and
generalized polynomial chaos approximations were
proposed, and convergence rates independent of the
scale parameters were established under the (natural,
for this class of problems) assumption of a multiscale
discretization in physical space.

Bayesian inverse problems for stochastic, elliptic
PDEs have also been addressed from the point of
view of sparsity of forward maps. We refer to [79]
and the references there for the formulation and the
basic sparsity result for parametric diffusion prob-
lems. The result and approach was generalized to large
classes of countably parametric operator equations
which cover random elliptic and parabolic PDEs in
[4, 37, 74, 75, 77].

Parametric Algebraic Equations
The Karhunen-Loève expansion (12) can be viewed as
a parametrization of the RF a.�; !/ 2 L2.�IH/ in
terms of the sequence Y D .Yk.!//k�1 of R-valued
RVs Yk.!/. Assuming that the RVs Yk are independent,
(12) could be interpreted as parametric, deterministic
function of infinitely many parameters y D .yk/k�1,

a.�; y/ D Na.�/C
X

k�1

p
�kyk'.�/ (14)

which is evaluated at Y D .Yk.!//k�1.
We illustrate this in the most simple setting: given

real numbers f; 2 R and a parametric function
a.y/ D 1 C y where y 2 U WD Œ�1; 1�, we wish
to find the function U 3 y 7! u.y/ such that

a.y/u.y/ D f ; for y 2 U : (15)

Evidently, u.y/ D f=a.y/ provided that a.y/ ¤ 0

for all y 2 U which is easily seen to be ensured
by a smallness condition on  : if j j � � < 1,
then a.y/ � 1 � � > 0 for every y 2 U and
(15) admits the unique solution u.y/ D f=.1 C y /
which depends analytically on the parameter y 2
U . Consider next the case where the coefficient a.y/
depends on a sequence y D .y1; y2; : : :/ D .yj /j�1
of parameters yj , for which we assume once more
that jyj j � 1 for all j 2 N or, symbolically, that
y 2 U D Œ�1; 1�N. Then a.y/ D 1CPj�1 yj j and
a minimal condition to render a.y/ well defined is that
the infinite series converges, which is ensured by the
summability condition  D . j /j�1 2 `1.N/. Note
that this condition is always satisfied if there are only
finitely many parameters y1; : : : ; yJ for some J < 1
which corresponds to the case that  j D 0 for all
j > J . Once again, in order to solve (15) for the
function u.y/ (which now depends on infinitely many
variables y1; y2; : : :), a smallness condition is required:

� WD k k`1.N/ D
X

j�1
j j j < 1 : (16)

Evidently, then infy2U a.y/ � 1 � � and u.y/ D
f=a.y/ is well defined for all y 2 U ; it is, moreover,
analytic with respect to each variable and, therefore,
also jointly analytic with respect to any finite selection
of variables yj from the sequence y 2 U .

Analyticity is well known to imply exponential
convergence of polynomial best approximations (e.g.,
[26]), so that good polynomial approximations of the
parametric, rational function u.y/ can be constructed in
many ways: by modal expansion (e.g., Legendre Series
(see [26, Ch 12])) or by spectral interpolations (see
[58]). In parametric and stochastic PDEs, the unknown
u is, usually, a RF of a spatial variable x (in evolution
problems not under consideration here) and also of
time t which case mandates the introduction of tools
from the theory of stochastic processes. The preceding
considerations for parametric, algebraic equations are
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easily generalized to parametric functional equations
such as (14): let D � R

d be a bounded, connected
domain, with Lipschitz boundary @D. For a given func-
tion f 2 L2.D/ and a given, parametric coefficient
function

a.x; y/ D Na.x/C
X

j�1
yj j .x/ (17)

where  j 2 L1.D/, j D 1; 2; : : : are given coeffi-
cient functions, we consider the algebraic, parametric
problem: find U 3 y 7! u.�; y/ 2 L2.D/ such that

a.x; y/u.x; y/ D f .x/ ; x 2 D ; y 2 U : (18)

Once again, (18) is uniquely solvable provided that the
sequence

b WD .k j kL1.D//j�1 2 `1.N/ ; and

kbk`1.N/ D
X

j�1
k j kL1.D/ � � < 1 : (19)

Under hypothesis (19) there holds infy2U essinfx2D
a.x; y/ � 1� � > 0, and for every y 2 U , (18) admits
a unique solution u.�; y/ 2 L2.D/, which is given by
u.�; y/ D .a.�; y//�1f .

The element bj D k j kL1.D/ quantifies the sensi-
tivity of the “input” a.�; y/ with respect to coordinate
yj : there holds

sup
y2U
k@�yu.�; y/kL2.D/ � b�

1 � � kf kL2.D/ ; where

b� WD
Y

j�1
b
�j
j D b�11 b�22 : : : ; � 2 F : (20)

Here � D .�1; �2; : : :/ 2 F � N
N

0 , the set of
sequences of nonnegative integers which are “finitely
supported,” i.e., which have only finitely many nonzero
terms �j ; due to b0j D 1, the infinite product in (20) is
meaningful for � 2 F .

Parametric Elliptic PDEs
Efficient methods for parametric, elliptic PDEs with
(infinite-dimensional) parametric coefficients of the
form (14), (17), such as the scalar model elliptic
equation

� r � .a.x; y/ru.x; y// D f in D ; uj@D D 0
(21)

emerged in recent years. The infinite-dimensional para-
metric, elliptic problems (21) admit, for P-a.e. pa-
rameter y 2 U , a unique solution which belongs to
L2.U;PIV / with V D H1

0 .D/. In [8, 13, 14] SC com-
bined with FEM in D was analyzed for the solution of
such equations; the general strategy is to solve the para-
metric problem at a large number of (judiciously cho-
sen) parameter sequences and, subsequently, to inter-
polate the (approximate) PDE solutions thus obtained
to recover an “interpolant” for the parametric solution
u.x; y/ on the full (infinite-dimensional) parameter
domain U . Although algorithmically reminiscent of
the MC method, in practice the choice of collocation
parameter sequences in U and the ensuing recovery
are fundamentally different: while MC and QMC aim
at equidistributed sampling in U and equal weight av-
eraging to approximate the mathematical expectation,
SC aims at recovering a parametric approximation of
the law L.u/ if a.x; y/ in (17) stems, for example, from
a Karhunen-Loève expansion (14). Like MC methods,
these algorithms do not require any modification of
existing FEM implementations in D and are therefore
also called nonintrusive.

An alternative approach to SC is stochastic Galerkin
(SG for short) discretizations, which are based on
mean square projection (w.r. to P) of the parametric
solution u.x; y/ of (21) onto finite spans of tensorized
generalized polynomial chaos (gpc) expansions on
U . Recent references for mathematical formulations
and convergence analysis of SG methods are [6, 27,
34, 40, 44, 45, 68]. Efficient implementations, includ-
ing a posteriori error estimates and multi-adaptive
AFEM, are addressed in [32]. SG-based methods fea-
ture the significant advantage of Galerkin orthogo-
nality in L2.�IV / of the gpc approximation, which
implies the perspective of adaptive discretization of
random fields. Due to the infinite dimension of the
parameter space U , these methods differ in essential
respects from the more widely known adaptive FEM:
an essential point is sparsity in the gpc expansion of
the parametric solution u.x; y/ of (21). In [22, 23],
a fundamental sparsity observation has been made
for equations like (21): sparsity in the random in-
puts’ parametric expansion implies the same sparsity
in the gpc representation of the parametric solution
u.x; y/.
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The results in [22, 23] are not limited to (21) but
hold for rather large classes of elliptic (as well as
parabolic) SPDEs (see [20, 24, 49, 55, 56]), implying
with the results in [19, 45, 46] quasi best N -term,
dimension-independent convergence rates of SC and
SG algorithms. Dimension-independent approximation
rates for large, nonlinear systems of random initial
value ODEs were proved in [49] and computation-
ally investigated in [50]. For implementational and
mathematical aspects of adaptive stochastic Galerkin
FEM with computable, guaranteed upper error bounds
and applications to engineering problems, we refer to
[32, 33].

Further Results and New Directions
For further indications, in particular on the efficient al-
gorithmic realization of collocation approaches for the
parametric, deterministic equation, we refer to [38,85].
Numerical solution of SPDEs based on sparse, infinite-
dimensional, parametric representation of the random
solutions also allows the efficient numerical treatment
of Bayesian inverse problems in the non-Gaussian
setting. We refer to [74, 79] and the references there.
For the use of various classes of random elliptic PDEs
in computational uncertainty quantification, we refer to
[53]. The fully discretized, parametric SPDEs (21) can
be viewed as high-dimensional, multi-linear algebra
problems; here, efficient discretizations which directly
compress matrices arising in the solution process of
SGFEM are currently emerging (we refer to [59, 76]
and the references there for further details). For an SC
approach to eigenvalue problems for (21) (and more
general problems), we refer to [3].
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of random fields by generalized fast multipole methods. J.
Comput. Phys. 217(1), 100–122 (2006)

83. von Petersdorff, T., Schwab, C.: Sparse finite element meth-
ods for operator equations with stochastic data. Appl. Math.
51(2), 145–180 (2006). doi:10.1007/s10492-006-0010-1,
http://dx.doi.org/10.1007/s10492-006-0010-1

84. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4),
897–936 (1938). doi:10.2307/2371268, http://dx.doi.org/10.
2307/2371268

85. Xiu, D.: Fast numerical methods for stochastic computa-
tions: a review. Commun. Comput. Phys. 5(2–4), 242–272
(2009)

86. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial
chaos for stochastic differential equations. SIAM J.
Sci. Comput. 24(2), 619–644 (2002) (electronic).
doi:10.1137/S1064827501387826, http://dx.doi.org/10.
1137/S1064827501387826

Metropolis Algorithms

Martin A. Tanner
Department of Statistics, Northwestern University,
Evanston, IL, USA

Mathematics Subject Classification

62F15; 65C40

Synonyms
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Short Definition

A Metropolis algorithm is a MCMC computational
method for simulating from a probability distribution.

Description

The origin of the Metropolis algorithm can be traced
to the early 1950s when physicists were faced with
the need to numerically study the properties of many
particle systems. The state of the system is represented
by a vector x D .x1; x2; : : : xn/, where xi is the
coordinate of the ith particle in the system and the
goal is to study properties such as pressure and kinetic
energy, which can be obtained from computation of the
averaged values of suitably defined functions of the
state vector. The averaging is weighted with respect
to the canonical weight exp.�E.x/=kT /, where the
constants k and T denote the Boltzmann constant
and the temperature, respectively. The physics of the
system is encoded in form of the energy function.
For example, in a simple liquid model, one has the
energy E.x/ D .1=2/

PP
i¤j V .jxi � xj j/, where

V.:/ is a potential function giving the dependence of
pair-wise interaction energy on the distance between
two particles. Metropolis et al. [4] introduce the first
Markov chain Monte Carlo method in this context
by making sequential moves of the state vector by
changing one particle at a time. In each move, a random
change of a particle is proposed, say, by changing
to a position chosen within a fixed distance from its
current position, and the proposed change is either
accepted or rejected according to a randomized de-
cision that depends on how much the energy of the
system is changed by such a move. Metropolis et al.
justified the method via the concepts of ergodicity
and detailed balance as in kinetic theory. Although
they did not explicitly mention “Markov chain,” it is
easy to translate their formulation to the terminology
of modern Markov chain theory. In subsequent de-
velopment, this method was applied to a variety of
physical systems such as magnetic spins, polymers,
molecular fluids, and various condense matter sys-
tems (reviewed in [1]). All these applications share
the characteristics that n is large and the n com-
ponents are homogeneous in the sense each takes
value in the same space (say, 6-dimensional phase
space, or up/down spin space, etc.) and interacts in
identical manner with other components according
to the same physical law as specified by the energy
function.

An important generalization of the Metropolis
algorithm, due to [3], is given as follows. Starting
with �.0/ (of dimension d ), iterate for t D 1; 2; : : :
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1. Draw � from a proposal distribution q.�j�.t�1//.
2. Compute

˛.� j�.t�1// D min



1;
�.�/ � q.�.t�1/j�/

�.�.t�1// � q.� j�.t�1//
�

:

(1)
3. With probability ˛.� j�.t�1//, set �.t// D � , other-

wise set �.t/ D �.t�1/.
It can be shown that �.�/ is the stationary distribu-

tion of the Markov chain .�.0/; � .1/; � � � /. Moreover, if
the proposal distribution q.� j�/ is symmetric, so that
q.� j�/ D q.�j�/, then the algorithm reduces to the
classic Metropolis algorithm. Note that neither algo-
rithm requires knowledge of the normalizing constant
for � . Tierney [6] discusses convergence theory for the
algorithm, as well as choices for q.� j�/. See also [5].

References

1. Binder, K.: Monte Carlo Methods in Statistical Physics.
Springer, New York (1978)

2. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods,
2nd edn. Chapman and Hall, London (1964)

3. Hastings, W.K.: Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57, 97–109
(1970)

4. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller,
A.H., Teller, E.: Equation of state calculations by fast com-
puting machines. J. Chem. Phys. 21, 1087–1091 (1953)

5. Tanner, M.A., and Wong, W.H.: From EM to data augmenta-
tion: The emergence of MCMC Bayesian computation in the
1980s. Stat. Sci. 25, 506–516 (2010)

6. Tierney, L.: Markov chains for exploring posterior distribu-
tions. Ann. Stat. 22, 1701–1762 (1994)

Microlocal Analysis Methods

Plamen Stefanov
Department of Mathematics, Purdue University,
West Lafayette, IN, USA

One of the fundamental ideas of classical analysis is a
thorough study of functions near a point, i.e., locally.
Microlocal analysis, loosely speaking, is analysis near
points and directions, i.e., in the “phase space.” We
review here briefly the theory of pseudodifferential
operators and geometrical optics.

Wave Front Sets

The phase space in Rn is the cotangent bundle T �Rn

that can be identified with Rn�Rn. Given a distribution
f 2 D0.Rn/, a fundamental object to study is the wave
front set WF.f / � T �Rnn0 viewed as the singularities
of f that we define below. Here, 0 stands for the zero
section .x; 0/, in other words, we do not allow 
 D 0.

Definition
The basic idea goes back to the properties of the
Fourier transform. If f is an integrable compactly
supported function, one can tell whether f is smooth
by looking at the behavior of Of .
/ D R

e�ix�
f .x/ dx
(that is smooth, even analytic) when j
j ! 1. It is
known that f is smooth if and only if for any N ,
j Of .
/j � CN j
j�N for some CN . If we localize this
requirement to a conic neighborhoodV of some 
0 6D 0
(V is conic if 
 2 V ) t
 2 V;8t > 0), then we can
think of this as a smoothness in the cone V . To localize
in the base x variable, however, we first have to cut
smoothly near a fixed x0.

We say that .x0; 
0/ 2 Rn � .Rn n 0/ is not in the
wave front set WF.f / of f 2 D0.Rn/ if there exists
� 2 C10 .Rn/ with �.x0/ 6D 0 so that for any N , there
exists CN so that

jc�f .
/j � CN j
j�N

for 
 in some conic neighborhood of 
0. This definition
is independent of the choice of �. If f 2 D0.˝/ with
some open˝ � Rn, to define WF.f / � ˝ � .Rn n 0/,
we need to choose � 2 C10 .˝/. Clearly, the wave
front set is a closed conic subset of Rn�.Rn n0/. Next,
multiplication by a smooth function cannot enlarge the
wave front set. The transformation law under coordi-
nate changes is that of covectors making it natural to
think of WF.f / as a subset of T �Rn n 0, or T �˝ n 0,
respectively.

The wave front set WF.f / generalizes the notion
singsupp.f / – the complement of the largest open set
where f is smooth. The points .x; 
/ in WF.f / are
referred to as singularities of f . Its projection onto the
base is singsupp.f /, i.e.,

singsupp.f / D fxI 9
; .x; 
/ 2WF.f /g:
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Example 1 (a) WF.ı/ D f.0; 
/I 
 6D 0g. In other
words, the Dirac delta function is singular at x D 0
and in all directions there.

(b) Let x D .x0; x00/, where x0 D .x1; : : : ; xk/,
x00 D .xkC1; : : : ; xn/ with some k. Then
WF.ı.x0// D f.0; x00; 
 0; 0/; 
 0 6D 0g, where ı.x0/
is the Dirac delta function on the plane x0 D 0,
defined by hı.x0/; �i D R

�.0; x00/ dx00. In other
words, WF.ı.x0// consists of all (co)vectors 6D 0

with a base point on that plane, perpendicular to it.
(c) Let f be a piecewise smooth function that has a

nonzero jump across some smooth surface S . Then
WF.f / consists of all nonzero (co)vectors at points
of S , normal to it. This follows from a change
of variables that flattens S locally and reduces
the problem to that for the Heaviside function
multiplied by a smooth function.

(d) Let f D pv 1
x
� �iı.x/ in R, where pv 1

x
is the

regularized 1=x in the principal value sense. Then
WF.f / D f.0; 
/I 
 > 0g.

In example (d) we see a distribution with a wave
front set that is not even in the 
 variable, i.e., not
symmetric under the change 
 7! �
. In fact, wave
front sets do not have a special structure except for the
requirement to be closed conic sets; given any such set,
there is a distribution with a wave front set exactly that
set. On the other hand, if f is real valued, then Of is an
even function; therefore WF.f / is even in 
, as well.

Two distributions cannot be multiplied in general.
However, if WF.f / and WF0.g/ do not intersect, there
is a “natural way” to define a product. Here, WF0.g/ D
f.x;�
/I .x; 
/ 2 WF.g/g.

Pseudodifferential Operators

Definition
We first define the symbol class Sm.˝/, m 2 R, as
the set of all smooth functions p.x; 
/, .x; 
/ 2 ˝ �
Rn, called symbols, satisfying the following symbol
estimates: for any compact set K � ˝ , and any multi-
indices ˛, ˇ, there is a constant CK;˛;ˇ > 0 so that

j@˛
 @ˇxp.x; 
/j�CK;˛;ˇ.1Cj
j/m�j˛j; 8.x; 
/2K�Rn:

(1)
More generally, one can define the class Sm�;ı.˝/ with
0 � �, ı � 1 by replacing m � j˛j there by m �
�j˛j C ıjˇj. Then Sm.˝/ D Sm1;0.˝/. Often, we omit

˝ and simply write Sm. There are other classes in the
literature, for example,˝ D Rn, and (1) is required to
hold for all x 2 Rn.

The estimates (1) do not provide any control of p
when x approaches boundary points of ˝ or1.

Given p 2 Sm.˝/, we define the pseudodiffer-
ential operator (�DO) with symbol p, denoted by
p.x;D/, by

p.x;D/f

D .2�/�n
Z

eıx�
p.x; 
/ Of .
/ d
; f 2 C10 .˝/:
(2)

The definition is inspired by the following. If P DP
j˛j�m a˛.x/D˛ is a differential operator, whereD D

�i@, then using the Fourier inversion formula we can
write P as in (2) with a symbol p D P

j˛j�m a˛.x/
˛
that is a polynomial in 
 with x-dependent coefficients.
The symbol class Sm allows for more general func-
tions. The class of the pseudodifferential operators with
symbols in Sm is denoted usually by �m. The operator
P is called a �DO if it belongs to �m for some m. By
definition, S�1 D \mSm, and ��1 D \m�m.

An important subclass is the set of the classical
symbols that have an asymptotic expansion of the form

p.x; 
/ 
1X

jD0
pm�j .x; 
/; (3)

where m 2 R, and pm�j are smooth and positively
homogeneous in 
 of order m � j for j
j > 1, i.e.,
pm�j .x; �
/ D �m�j pm�j .x; 
/ for j
j > 1, � > 1;
and the sign  means that

p.x; 
/�
NX

jD0
pm�j .x; 
/ 2 Sm�N�1; 8N � 0: (4)

Any �DO p.x;D/ is continuous from C10 .˝/ to
C1.˝/ and can be extended by duality as a continuous
map from E 0.˝/ to D0.˝/.

Principal Symbol
The principal symbol of a �DO in�m.˝/ given by (2)
is the equivalence class Sm.˝/=Sm�1.˝/, and any
representative of it is called a principal symbol as well.
In case of classical �DOs, the convention is to choose
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the principal symbol to be the first term pm that in
particular is positively homogeneous in 
.

Smoothing Operators
Those are operators than map continuously E 0.˝/
into C1.˝/. They coincide with operators with
smooth Schwartz kernels in ˝ � ˝ . They can always
be written as �DOs with symbols in S�1 and
vice versa – all operators in ��1 are smoothing.
Smoothing operators are viewed in this calculus as
negligible and �DOs are typically defined modulo
smoothing operators, i.e., A D B if and only if
A � B is smoothing. Smoothing operators are not
“small.”

The Pseudolocal Property
For any �DO P and any f 2 E 0.˝/,

singsupp.Pf / � singsuppf: (5)

In other words, a �DO cannot increase the singu-
lar support. This property is preserved if we replace
singsupp by WF; see (13).

Symbols Defined by an Asymptotic Expansion
In many applications, a symbol is defined by consecu-
tively constructing symbols pj 2 Smj , j D 0; 1; : : : ,
where mj & �1, and setting

p.x; 
/ 
X

j

pj .x; 
/: (6)

The series on the right may not converge but we can
make it convergent by using our freedom to modify
each pj for 
 in expanding compact sets without
changing the large 
 behavior of each term. This
extends the Borel idea of constructing a smooth func-
tion with prescribed derivatives at a fixed point. The
asymptotic (6) then is understood in a sense sim-
ilar to (4). This shows that there exists a symbol
p 2 Sm0 satisfying (6). That symbol is not unique
but the difference of two such symbols is always in
S�1.

Amplitudes
A seemingly larger class of �DOs is defined by

Af

D.2�/�n
“

ei.x�y/�
a.x; y; 
/ f .y/dy d
; f2C10 .˝/;
(7)

where the amplitude a satisfies

j@˛
 @ˇx@�ya.x; y; 
/j
� CK;˛;ˇ;� .1C j
j/m�j˛j; 8.x; y; 
/ 2 K � Rn

(8)

for any compact set K � ˝ � ˝ and for any ˛,
ˇ, � . In fact, any such A is a �DO with symbol
p.x; 
/ (independent of y) with the formal asymptotic
expansion

p.x; 
/ 
X

˛�0
D˛

 @

˛
ya.x; x; 
/:

In particular, the principal symbol of that operator can
be taken to be a.x; x; 
/.

Transpose and Adjoint Operators to a 	DO
The mapping properties of any �DO A indicate that it
has a well-defined transpose A0 and a complex adjoint
A� with the same mapping properties. They satisfy

hAu; vi D hu; A0vi; hAu; NviDhu; A�vi; 8u; v 2 C10

where h�; �i is the pairing in distribution sense; and in
this particular case just an integral of uv. In particular,
A�u D A0 Nu, and if Amaps L2 to L2 in a bounded way,
then A� is the adjoint of A in L2 sense.

The transpose and the adjoint are �DOs in the
same class with amplitudes a.y; x;�
/ and Na.y; x; 
/,
respectively; and symbols

X

˛�0
.�1/j˛j 1

˛Š
.@˛
 D

˛
xp/.x;�
/;

X

˛�0

1

˛Š
@˛
 D

˛
x Np.x; 
/;

if a.x; y; 
/ and p.x; 
/ are the amplitude and/or the
symbol of that �DO. In particular, the principal sym-
bols are p0.x;�
/ and Np0.x; 
/, respectively, where p0
is (any representative of) the principal symbol.
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Composition of 	DOs and 	DOs with Properly
Supported Kernels
Given two �DOs A and B , their composition may not
be defined even if they are smoothing ones because
each one maps C10 to C1 but may not preserve the
compactness of the support. For example, if A.x; y/
and B.x; y/ are their Schwartz kernels, the candidate
for the kernel of AB given by

R
A.x; z/B.z; y/ dz may

be a divergent integral. On the other hand, for any�DO
A, one can find a smoothing correctionR, so thatACR
has properly supported kernel, i.e., the kernel of ACR
has a compact intersection with K � ˝ and ˝ � K
for any compact K � ˝ . The proof of this uses the
fact that the Schwartz kernel of a �DO is smooth away
from the diagonal fx D yg, and one can always cut
there in a smooth way to make the kernel properly
supported at the price of a smoothing error. �DOs
with properly supported kernels preserve C10 .˝/, and
also E 0.˝/, and therefore can be composed in either of
those spaces. Moreover, they map C1.˝/ to itself and
can be extended from D0.˝/ to itself. The property of
the kernel to be properly supported is often assumed,
and it is justified by considering each �DO as an
equivalence class.

If A 2 �m.˝/ and B 2 �k.˝/ are properly
supported �DOs with symbols a and b, respectively,
then AB is again a �DO in �mCk.˝/ and its symbol
is given by

X

˛�0
.�1/j˛j 1

˛Š
@˛
 a.x; 
/D

˛
x b.x; 
/:

In particular, the principal symbol can be taken to be
ab.

Change of Variables and 	DOs onManifolds
Let ˝ 0 be another domain, and let � W ˝ ! Q̋ be a
diffeomorphism. For anyP 2 �m.˝/, QPf WD .P.f ı
�// ı ��1 maps C10 . Q̋ / into C1. Q̋ /. It is a �DO in
�m. Q̋ / with principal symbol

p.��1.y/; .d�/0�/ (9)

where p is the symbol of P , d� is the Jacobi matrix
f@�i=@xj g evaluated at x D ��1.y/, and .d�/0 stands
for the transpose of that matrix. We can also write
.d�/0 D ..d��1/�1/0. An asymptotic expansion for the
whole symbol can be written down as well.

Relation (9) shows that the transformation law un-
der coordinate changes is that of a covector. Therefore,
the principal symbol is a correctly defined function
on the cotangent bundle T �˝ . The full symbol is not
invariantly defined there in general.

Let M be a smooth manifold and A W C10 .M/ !
C1.M/ be a linear operator. We say thatA 2 �m.M/,
if its kernel is smooth away from the diagonal in
M � M and if in any coordinate chart .A; �/, where
� W U ! ˝ � Rn, we have .A.uı�//ı��1 2 �m.˝/.
As before, the principal symbol of A, defined in any
local chart, is an invariantly defined function on T �M .

Mapping Properties in Sobolev Spaces
In Rn, Sobolev spaces Hs.Rn/, s 2 R, are defined as
the completion of S 0.Rn/ in the norm

kf k2Hs.Rn/ D
Z

.1C j
j2/sj Of .
/j2 d
:

When s is a nonnegative integer, an equivalent norm is
the square root of

P
j˛j�s

R j@˛f .x/j2 dx. For such s,
and a bounded domain ˝ , one defines Hs.˝/ as the
completion of C1. N̋ / using the latter norm with the
integral taken in ˝ . Sobolev spaces in ˝ for other real
values of s are defined by different means, including
duality or complex interpolation.

Sobolev spaces are also Hilbert spaces.
Any P 2 �m.˝/ is a continuous map from

Hs
comp.˝/ to Hs�m

loc .˝/. If the symbols estimates (1)
are satisfied in the whole Rn�Rn, then P W Hs.Rn/!
Hs�m.Rn/.

Elliptic 	DOs and Their Parametrices
The operator P 2 �m.˝/ with symbol p is called
elliptic of order m, if for any compact K � ˝ , there
exists constants C > 0 and R > 0 so that

C j
jm � jp.x; 
/j for x 2 K , and j
j > R: (10)

Then the symbol p is called also elliptic of order m.
It is enough to require the principal symbol only to
be elliptic (of order m). For classical �DOs, see (3);
the requirement can be written as pm.x; 
/ 6D 0 for

 6D 0. A fundamental property of elliptic operators is
that they have parametrices. In other words, given an
elliptic �DO P of orderm, there existsQ 2 ��m.˝/
so that
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QP � Id 2 ��1; PQ � Id 2 ��1: (11)

The proof of this is to construct a left parametrix first
by choosing a symbol q0 D 1=p, cut off near the
possible zeros of p, that form a compact set any time
when x is restricted to a compact set as well. The
corresponding�DOQ0 will then satisfyQ0P D IdC
R, R 2 ��1. Then we take a �DO E with asymptotic
expansionE  Id�RCR2 �R3C : : : that would be
the formal Neumann series expansion of .IdCR/�1, if
the latter existed. Then EQ0 is a left parametrix that is
also a right parametrix.

An important consequence is the following elliptic
regularity statement. If P is elliptic (and properly
supported), then

singsupp.PF / D singsupp.f /; 8f 2 D0.˝/;
(12)

compared to (5). In particular, Pf 2 C1 implies f 2
C1.

It is important to emphasize that elliptic �DOs
are not necessarily invertible or even injective. For
example, the Laplace-Beltrami operator �Sn�1 on
the sphere is elliptic, and then so is �Sn�1 � z for
every number z. The latter however so not injective
for z an eigenvalue. On the other hand, on a compact
manifold M , an elliptic P 2 �m.M/ is “invertible”
up to a compact error, because then QP � Id D K1,
PQ � Id D K2, see (11) with K1;2 compact operators.
As a consequence, such an operator is Fredholm and
in particular has a finitely dimensional kernel and
cokernel.

	DOs andWave Front Sets

The microlocal version of the pseudolocal property is
given by the following:

WF.Pf / �WF.f / (13)

for any (properly supported) �DO P and f 2 D0.˝/.
In other words, a �DO cannot increase the wave front
set. If P is elliptic for some m, it follows from the
existence of a parametrix that there is equality above,
i.e., WF.Pf / D WF.f /, which is a refinement of (12).

We say that the �DO P is of order �1 in the open
conic set U � T �˝ n 0, if for any closed conic set

K � U with a compact projection on the base “x-
space,” (1) is fulfilled for anym. The essential support
ES.P /, sometimes also called the microsupport of
P , is defined as the smallest closed conic set on the
complement of which the symbol p is of order �1.
Then

WF.Pf / �WF.f /\ ES.P /:

Let P have a homogeneous principal symbol pm. The
characteristic set CharP is defined by

CharP D f.x; 
/ 2 T �˝ n 0I pm.x; 
/ D 0g:

CharP can be defined also for general �DOs that
may not have homogeneous principal symbols. For any
�DO P , we have

WF.f / �WF.Pf / [ CharP; 8f 2 E 0.˝/: (14)

P is called microlocally elliptic in the open conic set
U , if (10) is satisfied in all compact subsets, similarly
to the definition of ES.P / above. If it has a homoge-
neous principal symbol pm, ellipticity is equivalent to
pm 6D 0 in U . If P is elliptic in U , then Pf and f
have the same wave front set restricted to U , as follows
from (14) and (13).

The Hamilton Flow and Propagation of
Singularities
Let P 2 �m.M/ be properly supported, where M
is a smooth manifold, and suppose that P has a real
homogeneous principal symbol pm. The Hamiltonian
vector field of pm on T �M n 0 is defined by

Hpm D
nX

jD1

�
@pm

@xj

@

@
j
� @pm
@
j

@

@xj

�

:

The integral curves ofHpm are called bicharacteristics
of P . Clearly, Hpmpm D 0; thus pm is constant
along each bicharacteristic. The bicharacteristics along
which pm D 0 are called zero bicharacteristics.

The Hörmander’s theorem about propagation of
singularities is one of the fundamental results in the
theory. It states that if P is an operator as above and
P u D f with u 2 D0.M/, then

WF.u/ nWF.f / � CharP

and is invariant under the flow of Hpm .
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An important special case is the wave operatorP D
@2t � g , where g is the Laplace Beltrami opera-
tor associated with a Riemannian metric g. We may
add lower-order terms without changing the bichar-
acteristics. Let .�; 
/ be the dual variables to .t; x/.
The principal symbol is p2 D ��2 C j
j2g , where
j
j2g WD

P
gij .x/
i 
j , and .gij / D .gij /

�1. The
bicharacteristics equations then are P� D 0, Pt D �2� ,
Pxj D 2

P
gij 
i , and P
j D �2@xj

P
gij .x/
i 
j , and

they are null ones if �2 D j
j2g . Here, Px D dx=ds, etc.
The latter two equations are the Hamiltonian curves of
QH WD P

gij .x/
i 
j and they are known to coincide
with the geodesics .�; P�/ on TM when identifying
vectors and covectors by the metric. They lie on the
energy surface QH D const. The first two equations
imply that � is a constant, positive or negative; and up
to rescaling, one can choose the parameter along the
geodesics to be t . That rescaling forces the speed along
the geodesic to be 1. The null condition �2 D j
j2g
defines two smooth surfaces away from .�; 
/ D .0; 0/:
� D ˙j
jg . This corresponds to geodesics starting
from x in direction either 
 or �
. To summarize, for
the homogeneous equation P u D 0, we get that each
singularity .x; 
/ of the initial conditions at t D 0

starts to propagate from x in direction either 
 or �

or both (depending on the initial conditions) along the
unit speed geodesic. In fact, we get this first for the
singularities in T �.Rt � Rn

x/ first, but since they lie
in CharP , one can see that they project to T �Rn

x as
singularities again.

Geometrical Optics

Geometrical optics describes asymptotically the solu-
tions of hyperbolic equations at large frequencies. It
also provides a parametrix (a solution up to smooth
terms) of the initial value problem for hyperbolic
equations. The resulting operators are not �DOs any-
more; they are actually examples of Fourier Integral
Operators. Geometrical Optics also studies the large
frequency behavior of solutions that reflect from a
smooth surface (obstacle scattering) including diffrac-
tion, reflect from an edge or a corner, and reflect
and refract from a surface where the speed jumps
(transmission problems).

As an example, consider the acoustic equation

.@2t � c2.x//u D 0; .t; x/ 2 Rn; (15)

with initial conditions u.0; x/ D f1.x/ and ut .0; x/ D
f2. It is enough to assume first that f1 and f2 are in
C10 and extend the resulting solution operator to larger
spaces later.

We are looking for a solution of the form

u.t; x/ D .2�/�n
X

�D˙

Z

ei�� .t;x;
/
�
a1;� .x; 
; t/ Of1.
/

C j
j�1a2;� .x; 
; t/ Of2.
/
�

d
;

(16)

modulo terms involving smoothing operators of f1 and
f2. The reason to expect two terms is already clear by
the propagation of singularities theorem, and is also
justified by the eikonal equation below. Here the phase
functions �˙ are positively homogeneous of order 1 in

. Next, we seek the amplitudes in the form

aj;� 
1X

kD0
a
.k/
j;� ; � D ˙; j D 1; 2; (17)

where a.k/j;� is homogeneous in 
 of degree �k for
large j
j. To construct such a solution, we plug (16)
into (15) and try to kill all terms in the expansion in
homogeneous (in 
) terms.

Equating the terms of order 2 yields the eikonal
equation

.@t�/
2 � c2.x/jrx�j2 D 0: (18)

Write fj D .2�/�n
R
eix�
 Ofj .
/ d
, j D 1; 2, to get

the following initial conditions for �˙

�˙jtD0 D x � 
: (19)

The eikonal equation can be solved by the method of
characteristics. First, we determine @t� and rx� for
t D 0. We get @t�jtD0 D �c.x/j
j, rx�jtD0 D 
.
This implies existence of two solutions �˙. If c D
1, we easily get �˙ D �j
jt C x � 
. Let for any
.z; 
/, �z;
 .s/ be unit speed geodesic through .z; 
/.
Then �C is constant along the curve .t; �z;
 .t// that
implies that �C D z.x; 
/ � 
 in any domain in which
.t; z/ can be chosen to be coordinates. Similarly, ��
is constant along the curve .t; �z;�
.t//. In general,
we cannot solve the eikonal equation globally, for
all .t; x/. Two geodesics �z;
 and �w;
 may intersect,
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for example, giving a nonunique value for �˙. We
always have a solution however in a neighborhood of
t D 0.

Equate now the order 1 terms in the expansion of
.@2t � c2/u to get that the principal terms of the
amplitudes must solve the transport equation

�
.@t�˙/@t � c2rx�˙ � rx C C˙

�
a
.0/

j;˙ D 0; (20)

with
2C˙ D .@2t � c2/�˙:

This is an ODE along the vector field .@t�˙;�c2rx�/,
and the integral curves of it coincide with the curves
.t; �z;˙
/. Given an initial condition at t D 0, it has a
unique solution along the integral curves as long as �
is well defined.

Equating terms homogeneous in 
 of lower order we
get transport equations for a.k/j;� , j D 1; 2; : : : with the
same left-hand side as in (20) with a right-hand side
determined by a.k�1/k;� .

Taking into account the initial conditions, we get

a1;C C a1;� D 1; a2;C C a2;� D 0 for t D 0:

This is true in particular for the leading terms a.0/1;˙ and

a
.0/

2;˙. Since @t�˙ D �c.x/j
j for t D 0, and ut D f2
for t D 0, from the leading order term in the expansion
of ut , we get

a
.0/
1;C D a.0/1;�; ic.x/.a.0/2;� � a.0/2;C/ D 1 for t D 0:

Therefore,

a
.0/
1;C D a.0/1;�D

1

2
; a

.0/
2;C D �a.0/2;�D

i

2c.x/
for tD0:

(21)
Note that if c D 1, then �˙ D x � 
 � t j
j, and a1;C D
a1;� D 1=2, a2;C D �a2;� D i=2. Using those initial
conditions, we solve the transport equations for a.0/1;˙
and a.0/2;˙. Similarly, we derive initial conditions for the
lower-order terms in (17) and solve the corresponding
transport equations. Then we define aj;� by (17) as a
symbol.

The so constructed u in (16) is a solution only
up to smoothing operators applied to .f1; f2/. Using
standard hyperbolic estimates, we show that adding
such terms to u, we get an exact solution to (15). As
mentioned above, this construction may fail for t too

large, depending on the speed. On the other hand, the
solution operator .f1; f2/ 7! u makes sense as a global
Fourier Integral Operator for which this construction is
just one if its local representations.
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1. Hörmander, L.: The Analysis of Linear Partial Differential
Operators. III, Pseudodifferential Operators. Volume 274
of Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences]. Springer,
Berlin (1985)

2. Melrose, R.: Introduction to Microlocal Analysis. (2003)
http://www-math.mit.edu/�rbm/iml90.pdf

3. Taylor, M.E.: Pseudodifferential Operators. Volume 34 of
Princeton Mathematical Series. Princeton University Press,
Princeton (1981)
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Minimal Surface Equation

Einar M. Rønquist and Øystein Tråsdahl
Department of Mathematical Sciences, Norwegian
University of Science and Technology, Trondheim,
Norway

Minimal Surfaces

Minimal surfaces arise many places in natural and
man-made objects, e.g., in physics, chemistry, and
architecture. Minimal surfaces have fascinated many
of our greatest mathematicians and scientists for cen-
turies. In its simplest form, the problem can be stated
as follows: find the surface S of least area spanning a
given closed curveC in R3. In the particular case when
C lies in a two-dimensional plane, the minimal surface

http://www-math.mit.edu/~rbm/iml90.pdf
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is simply the planar region bounded by C . However,
the general problem is very difficult to solve [2, 6].

The easiest way to physically study minimal sur-
faces is to look at soap films. In the late nineteenth
century, the Belgian physicist Joseph Plateau [7] con-
ducted a number of soap film experiments. He ob-
served that, regardless of the shape of a closed and
curved wire, the wire could always bound at least
one soap film. Since capillary forces attach a potential
energy proportional to the surface area, a soap film in
stable equilibrium position corresponds to a surface of
minimal area [4]. The mathematical boundary value
problem for minimal surfaces is therefore also called
the Plateau problem.

Mathematical Formulation

Assume for simplicity that the surface S can be repre-
sented as a function z D f .x; y/; see Fig. 1. Note that
this may not always be possible.

Using subscripts x and y to denote differentiation
with respect to x and y, respectively, the area AŒf � of
a surface f .x; y/ can be expressed as the integral

Minimal Surface Equation, Fig. 1 The minimal surface S is
the surface of least area bounded by the given blue curve, C . The
projection of S onto the xy-plane is the planar region˝ bounded
by the red curve, @˝. The minimal surface z D f .x; y/ for the
particular choice of C shown here is called the Enneper surface

AŒf � D
Z

˝

q
1C f 2

x C f 2
y dx dy: (1)

The surface of minimum area is then given directly
by the Euler-Lagrange equation for the area func-
tional AŒf �:

.1C f 2
y /fxx C .1C f 2

x /fyy � 2fxfyfxy D 0: (2)

Equation (2) is called the minimal surface equation.
Hence, to determine S mathematically, we need to
solve a nonlinear, second-order partial differential
equation with specified boundary conditions (deter-
mined by the given curve C ). Despite the difficulty
of finding closed form solutions, the minimal surface
problem has created an intense mathematical activity
over the past couple of centuries and spurred advances
in many fields like calculus of variation, differential
geometry, integration and measure theory, and complex
analysis. With the advent of the computer, a range of
computational algorithms has also been proposed to
construct approximate solutions.

Characterizations and Generalizations

A point on the minimal surface S is given by the
coordinates .x; y; z/ D .x; y; f .x; y//. This represents
an example of a particular parametrization P of S : for
any point .x; y/ 2 ˝ , there is a corresponding point
P.x; y/ D .x; y; z/ D .x; y; f .x; y// on S 2 R3. Two
tangent vectors t1 and t2 spanning the tangent plane at
P.x; y/ is then given as

t1 D Px.x; y/ D .1; 0; fx/; (3)

t2 D Py.x; y/ D .0; 1; fy/: (4)

The normal vector at this point is then simply the cross
product between t1 and t2:

n D t1 � t2
jt1 � t2j D

.�fx;�fy; 1/
q
1C f 2

x C f 2
y

; (5)

where n is normalized to be of unit length. It can be
shown that the divergence of n is equal to twice the
mean curvature, H , at the point P.x; y/. Using (2), it
follows that

2H D r � n D 0: (6)
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Hence, a minimal surface is characterized by the fact
that the mean curvature is zero everywhere. Note that
this is in sharp contrast to a soap bubble where the
mean curvature is nonzero. This is because the pressure
inside the soap bubble is higher than on the outside,
and the pressure difference is given as the product of
the mean curvature and the surface tension, which are
both nonzero. For a soap film, however, the pressure is
the same on either side, consistent with the fact that the
mean curvature is zero.

In many cases, we cannot describe a surface as
a simple function z D f .x; y/. However, instead
of using the simple parametrization P.x; y/ D
.x; y; f .x; y//, we can generalize the parametrization
in the following way. For a point .u; v/ 2 ˝ 2
R2, there is a corresponding point P.u; v/ D�
x.u; v/; y.u; v/; z.u; v/

�
on S 2 R3, i.e., each

individual coordinate x, y, and z is a function of
the new coordinates u and v. Being able to choose

different parametrizations for a surface is of great
importance, both for the pure mathematical analysis
and for numerical computations.

Examples of Minimal Surfaces
Enneper’s surface (see also Fig. 1) can be parametrized
as [2]

x.u; v/ D u

�

1 � 1
3

u2 C v2
�

;

y.u; v/ D v
�

1 � 1
3
v2 C u2

�

;

z.u; v/ D u2 � v2;

(7)

where u and v are coordinates on a circular domain of
radius R. For R � 1 the surface is stable and has a
global area minimizer; see Fig. 2b which depicts the
computed minimal surface for the case R D 0:8 using
the surface in Fig. 2a as an initial condition [8].

Minimal Surface Equation, Fig. 2 Enneper’s surface is the minimal surface corresponding to the given, blue boundary curve
(a) Initial surface. (b) Minimal surface

Minimal Surface Equation, Fig. 3 The three minimal surfaces
in the Enneper case for R D 1:2. The unstable solution (a)
is known analytically (see (7)) and is found by interpolating
this known parametrization. The two other solutions are stable

and global area minimizers. The surfaces (b) and (c) are here
obtained by starting from slightly perturbed versions of (a) (by
adding random perturbations on the order of 10�10)
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For 1 < R <
p
3 the given parametrization gives

an unstable minimal surface. However, there also exist
two (symmetrically similar) stable minimal surfaces
which are global area minimizers; see Fig. 3. This
illustrates a case where the minimal surface problem
has more than one solution. For R � p3 the boundary
curve intersects itself.
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Model Reduction
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While advances in high-performance computing and
mathematical algorithms have enabled the accurate
modeling of problems in science and engineering of
very considerable complexity, problems with strict
time restrictions remain a challenge. Such situations
are often found in control and design problems and in
situ deployed systems and others, characterized by a
need for a rapid online evaluation of a system response
under the variation of one or several parameters, in-
cluding time. However, to ensure this ability to perform
many evaluations under parameter variation of a partic-
ular system, it is often acceptable that substantial work

be done once, in an offline stage, to obtain a model of
reduced complexity to be evaluated at little cost while
maintaining accuracy.

Let us consider a generic dynamical system as

@u.x; t; �/

@t
C F.u; x; t; �/ D f .x; t; �/;

y.x; t; �/ D GT u;

subject to appropriate initial and boundary values. Here
u is anN -dimensional vector field, possibly depending
on space x and time t , and � is a q-dimensional
parameter space. y represents an output of interest.
If N is very large, e.g., when originating from the
discretization of a partial differential equation, the
evaluation of this output is potentially expensive.

This situation has led to the development of a
myriad of methods to develop reduced models with the
majority focusing on representing the solution, u, as a
linear combination of N -vectors as

u ' Ou D Va;

where V is anN �m orthonormal matrix, representing
a linear space, and a anm-vector. Inserting this into the
model yields the general reduced model

@ Oa
@t
C V T F.Va/ D V T f; y D .GT V /a;

where we have left out the explicit dependence of the
parameters for simplicity. In the special case where
F.u/ D Lu is linear, the problem further reduces to

@ Oa
@t
C V T LVa D V T f; y D .GT V /a;

which can be evaluated in complexity independent of
N . Hence, if N � m, the potential for savings is
substantial, reflecting the widespread interest in and
use of reduced models. For certain classes of problems,
lack of linearity can be overcome using nonlinear inter-
polation techniques, known as empirical interpolation
methods [2], to recover models with evaluation costs
independent of N .

Considering the overall accuracy of the reduced
model leads to the identification of different methods,
with the key differences being in how V is formed
and how the overall accuracy of the reduced model is
estimated.
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Proper Orthogonal Decompositions

In the proper orthogonal decomposition (POD) [4],
closely related to principal component analysis (PCA),
Karhunen-Loeve (KL) transforms, and the Hotelling
transform, the construction of the linear space to ap-
proximate u is obtained through processing of a se-
lection of solution snapshots. Assume that a sequence
of solutions, un, is obtained at regular intervals for
parameters or, as in often done, at regular intervals
in time. Collecting these in an N � n matrix X D
Œu1; : : : ; un�, the singular value decomposition (SVD)
yields X D U˙W � where ˙ is an n � n diagonal
matrix with the singular values, U is N �n andW is a
n � n matrix, both of which are orthonormal.

The POD basis is then formed by truncating ˙

at a tolerance, ", such that �m � " � �mC1. The
linear space used to represent u over parameter or time
variation is obtained from the first m columns of U .
An estimate of the accuracy of the linear space for
approximating of the solution is recovered from the
magnitude of the largest eliminated singular value.

The success of the POD has led to numerous exten-
sions, [4,9,12], and this approach has been utilized for
the modeling of large and complex systems [3, 13]. To
develop effective and accurate POD models for non-
linear problems, the discrete empirical interpolation
method (DEIM) [5] has been introduced.

A central disadvantage of the POD approach is
the need to compute n snapshots, often in an offline
approach, perform the SVD on this, possibly large, so-
lution matrix, and then eliminate a substantial fraction
through the truncation process. This results in a poten-
tially large computational overhead. Furthermore, the
relationship between the eliminated vectors associated
with truncated singular values and the accuracy of
the reduced model is generally not clear [8], and
the stability of the reduced model, in particular for
nonlinear problems, is known to be problematic. Some
of these issues, in particular related to preservation of
the asymptotic state, are discussed in [16].

Krylov-Based Methods

The majority of Krylov-based methods [1] consider the
simplified linear problem with F D Lu and f D
Bg representing the input. In Laplace domain, one

obtains a transfer function, H.s/ D GT .s C L/�1B ,
between input g and output y with s being the Laplace
parameter. Introducing the matrix A D �.L C s0/�1
and the vector r D .LC s0/�1B , the transfer function
becomes H.s/ D GT .I � .s � s0/A/�1r . Hence for
perturbations of s around s0, we recover

H.s/ D
1X

iD0
mi.s � s0/m; mi D GTAmr;

where one recognizes that mi is obtained as a product
of the vectors in the Krylov subspaces spanned by Aj r
and ATG. These are recognized as the left and the
right Krylov subspace vectors and can be computed in
a stable manner using a Lanczos process. The union
of the first m=2 left and right Krylov vectors spans the
solution of the dynamical problem, and, as expected,
larger intervals including s0 require longer sequences
of Krylov vectors.

While the computational efficiency of the Krylov
techniques is appealing, a thorough error analysis is
lacking [1]. However, there are several extensions to
more complex problems and nonlinear systems [15] as
well as to closely related techniques aimed to address
time-dependent problems [15].

Certified Reduced Basis

Certified reduced basis methods (RBM) [11, 14] are
fundamentally different from the previous two tech-
niques in how the linear space is constructed and were
originally proposed as an accurate and efficient way
to construct reduced models for parametrized steady
or harmonic partial differential equations. In this ap-
proach, based in the theory of variational problems and
Galerkin approximations, one expresses the problem
as a bilinear form, a.u; v; �/ D f .�; v/, and seeks
an approximation to the solution, u.�/, over variations
of �. In contrast to the POD, in the RBM, the basis
is constructed through a greedy approach based on
maximizing the residual a.Ou; v/ � f in some appro-
priate norm and an offline testing across the parameter
space using a carefully designed residual-based error
estimator.

This yields a reduced method with a couple of
distinct advantages over POD in particular. On one
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hand, the greedy approximation enables a minimal
computational effort since only snapshots required to
build the basis in an max-norm optimal manner are
computed. Furthermore, the error estimator enables
one to rigorously certify the quality of the reduced
model and the output of interest. This is a unique
quality of the certified reduced basis methods and
has been demonstrated for a large class of linear
problems, including applications originating in solid
mechanics, heat conduction, acoustics, and electro-
magnetics [6, 11, 14], and for geometric variations
[6, 11] and applications formulated as integral equa-
tions [7].

This more rigorous approach is difficult to extend to
nonlinear problems and general time-dependent prob-
lems although there are recent results in this direction
[10, 17], combining POD and RBM to enable reduced
models for time-dependent parametric problems.
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Description

Blood circulates under pressure through the human
vasculature. The pressure difference across the vascu-
lar wall means that a hole in the vessel wall can lead
to rapid and extensive loss of blood. The hemostatic
(blood clotting) system has developed to seal a vascular
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injury quickly and minimize hemorrhage. The com-
ponents of this system, so important to its necessarily
rapid and robust response to overt injury, are implicated
in the pathological processes of arterial and venous
thrombosis that cause extensive death and morbidity.

Intensive laboratory research has revealed much
about the players involved in the clotting process and
about their interactions. Yet much remains unknown
about how the system as a whole functions. This is
because the nature of the clotting response – complex,
multifaceted, dynamic, spatially distributed, and multi-
scale – makes it very difficult to study using traditional
experimentation. For this reason, mathematical models
and computational simulations are essential to develop
our understanding of clotting and an ability to make
predictions about how it will progress under different
conditions.

Blood vessels are lined with a monolayer of
endothelial cells. If this layer is disrupted, then
exposure of the subendothelial matrix initiates the
intertwined processes of platelet deposition and
coagulation. Platelets are tiny cells which circulate
with the blood in an unactive state. When a platelet
contacts the exposed subendothelium, it may adhere
by means of bonds formed between receptors on the
platelet’s surface and molecules in the subendothelial
matrix (see Fig. 1). These bonds also trigger a suite

vWF

EC EC

Collagen

Fbg

vWF

vWFFbg

Fbg Plt

Plt Plt

Modeling of Blood Clotting, Fig. 1 Schematic of platelet
adhesion and cohesion. Von Willebrand Factor (vWF ) adsorbed
on the subendothelial collagen binds to platelet GPIb (Red Y ) or
platelet ˛IIbˇIII (Blue Y ) receptors. Soluble vWF and fibrino-
gen (Fbg) bind to platelet ˛IIbˇIII receptors to bridge platelet
surfaces. Platelet GPIb receptors are constitutively active, while
˛IIbˇIII receptors must be mobilized when the platelet is
activated. Platelet GPVI and ˛2ˇ1 receptors for collagen itself
are not shown

of responses known as platelet activation which
include change of shape, the mobilization of an
additional family of binding receptors on the platelet’s
surface, and the release of chemical agonists into
the blood plasma (the most important of these being
ADP from cytoplasmic storage granules and the
coagulation enzyme thrombin synthesized on the
surface of activated platelets). These agonists can
induce activation of other platelets that do not directly
contact the injured vascular tissue. By means of
molecular bonds that bridge the gap between the newly
mobilized binding receptors on two platelets’ surfaces,
platelets can cohere to one another. As a result of these
processes, platelets deposit on the injured tissue and
form a platelet plug.

Exposure of the subendothelium also triggers
coagulation which itself can be viewed as consisting
of two subprocesses. The first involves a network
of tightly-regulated enzymatic reactions that begins
with reactions on the damaged vessel wall and
continues with important reactions on the surfaces of
activated platelets. The end product of this reaction
network is the enzyme thrombin which activates
additional platelets and creates monomeric fibrin
which polymerizes into a fibrous protein gel that
mechanically stabilizes the clot. This polymerization
process is the second subprocess of coagulation. Both
platelet aggregation and the two parts of coagulation
occur in the presence of moving blood, and are strongly
affected by the fluid dynamics in ways that are as
yet poorly understood. One indication of the effect
of different flow regimes is that clots that form in
the veins, where blood flow is relatively slow, are
comprised mainly of fibrin gel (and trapped red
blood cells), while clots that form under the rapid
flow conditions in arteries are made up largely of
platelets. Understanding why there is this fundamental
difference between venous and arterial clotting should
give important insights into the dynamics of the
clotting process.

Models

Flow carries platelets and clotting chemicals to and
from the vicinity of the vessel injury. It also exerts
stress on the developing thrombi which must be with-
stood by the platelet adhesive and cohesive bonds in
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order for a thrombus to grow and remain intact. To
look at clot development beyond initial adhesion to the
vascular wall, the disturbance to the flow engendered
by the growth of the thrombus must be considered.
Hence, models of thrombus growth involve a coupled
problem of fluid dynamics, transport of cells and chem-
icals, and perturbation of the flow by the growing
platelet mass. Most of these models have looked at
events at a scale for which it is feasible to track
the motion and behavior of a collection of individual
platelets. Because there are approximately 250,000
platelets/�L of blood, this is possible only for small
vessels of, say, 50 �m in diameter, such as arterioles
or venules, or for the parallel plate flow chambers
often used for in vitro investigations of platelet de-
position under flow. To look at platelet deposition in
larger vessels of the size, say, of the coronary arteries
(diameter 1–2 mm), a different approach is needed.
In the next two sections, both the microscale and
macroscale approaches to modeling platelet deposition
are described.

Microscale Platelet DepositionModels
Microscale platelet deposition modeling was begun
by Fogelson who combined a continuum description
of the fluid dynamics (using Stokes equations) with
a representation of unactivated and activated platelets
using Peskin’s Immersed Boundary (IB) method [11].
This line of research continues as described shortly.
Others have modeled this process using the Stokes or
Navier Stokes equations for the fluid dynamics and
the Cellular-Potts model [14], Force-Coupling Method
[12], or Boundary-Integral Method [10] to represent
the platelets. Another approach is to use particle meth-
ods to represent both the fluid and the platelets [1, 7].

Fogelson and Guy [3] describe the current state of
IB-based models of platelet deposition on a vascular
wall. These models track the motion and behavior of
a collection of individual platelets as they interact me-
chanically with the suspending fluid, one another, and
the vessel walls. More specifically, the models track the
fluid motion, the forces the fluid exerts on the growing
thrombus, and the adhesive and cohesive bond forces
which resist these. An Eulerian description of the fluid
dynamics by means of the Navier–Stokes equations is
combined with Lagrangian descriptions of each of the
platelets and vessel walls. In computations, the fluid
variables are determined on a regular Cartesian grid,
and each platelet is represented by a discrete set of

elastically-linked Lagrangian IB points arrayed along
a closed curve (in 2D) or surface (in 3D). Forces
generated because of deformation of a platelet or by
stretching of its bonds with other platelets or the vessel
wall are transmitted to the fluid grid in the vicinity
of each IB point. The resulting highly-localized fluid
force density is how the fluid “sees” the platelets. Each
IB point moves at a velocity that is a local average of
the newly computed fluid velocity.

In the models, nonactivated platelets are activated
by contact with reactive sites on the injured wall, or
through exposure to a sufficiently high concentration
of a soluble chemical activator. Activation enables a
platelet to cohere with other activated platelets, and to
secrete additional activator. The concentration of each
fluid-phase chemical activator satisfies an advection–
diffusion equation with a source term corresponding
to the chemical’s release from the activated platelets.
To model adhesion of a platelet to the injured wall or
the cohesion of activated platelets to one another, new
elastic links are created dynamically between IB points
on the platelet and the other surface. The multiple
links, which in the models can form between a pair of
activated platelets or between a platelet and the injured
wall, collectively represent the ensemble of molecular
bridges binding real platelets to one another or to the
damaged vessel.

Figure 2 shows snapshots of a portion of the
computational domain during a simulation using
the two-dimensional IB model. In the simulation,
part of the bottom vessel wall is designated as
injured and platelets that contact it, adhere to it and
become activated. Two small thrombi form early in
the simulation. The more upstream one grows more
quickly and partially shields the downstream portion of
the injured wall, slowing growth of the other thrombus.
Together these thrombi disturb the flow sufficiently that
few platelets contact and adhere to the downstream
portion of the injured wall. Linear chains of platelets
bend in response to the fluid forces and bring platelets
of the two aggregates into close proximity and lead to
consolidation of the adherent platelets into one larger
thrombus. When a thrombus projects substantially into
the vessel lumen there is a substantial strain on its most
upstream attachments to the vessel wall. These bonds
can break allowing the aggregate to roll downstream.
(See [3] for examples of results from 3D simulations.)

For the simulation in Fig. 2, simple rules were used
for platelet activation and the formation and breaking
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a b

c d

Modeling of Blood Clotting, Fig. 2 Snapshots from a simu-
lation using the Immersed Boundary–based model of platelet
deposition. Rings depict platelets, arrows show velocity field.
Unactivated platelets are elliptical. Upon activation, a platelet

becomes both less rigid and more circular. Initially there are
two small thrombi which due to growth and remodeling by fluid
forces merge into one larger thrombus. Plots show only a portion
of computational domain

of adhesive and cohesive bonds. In recent years, much
new information has become available about how a
platelet detects and responds to stimuli that can induce
its activation and other behaviors. The detection of
stimuli, be it from a soluble chemical activator or a
molecule embedded in the subendothelium or on an-
other platelet, is mediated by surface receptors of many
types. These include tens of thousands of receptors
on each platelet involved in adhesion and cohesion
(see Fig. 1), as well as many other receptors for sol-
uble platelet agonists including ADP and thrombin,
and hundreds to thousands of binding sites for the
different enzymes and protein cofactors involved in the
coagulation reactions on the platelet’s surface that are
described below. Including such surface reactions as
well as more sophisticated treatment of the dynamics
of platelet adhesive and cohesive bonds will be essen-
tial components of extended versions of the models
described here. For work in this direction see [9, 10].

Large Vessel Platelet Thrombosis Models
Because of the vast number of platelets involved,
to study platelet thrombosis in millimeter diameter
vessels, like the coronary arteries, requires a different
modeling approach. Fogelson and Guy’s macroscale
continuum model of platelet thrombosis [2, 3] uses
density functions to describe different populations of
platelets. It is derived from a multiscale model in
which both the millimeter vessel scale and the mi-
cron platelet scale were explicitly treated. That model
tracked continuous distributions of interplatelet and
platelet-wall bonds as the bonds formed and broke,
and were reoriented and stretched by flow. However,
only the stresses generated by these bonds affected

the rest of the model’s dynamics, and these stresses
were computed by doing a weighted average over
the microscale spatial variables for each macroscale
location and time. By performing this average on each
term of the PDE for the bond distribution function
and devising an appropriate closure approximation,
an evolution equation for the bond stress tensor, that
involved only the macroscale spatial variables, was de-
rived. Comparison with the multiscale model showed
that this equation still captured essential features of the
multiscale behavior, in particular, the sensitivity of the
bond breaking rate to strain on the bond. The PDE for
the stress tensor is closely related to the Oldroyd-B
equation for viscoelastic flows, but has “elastic mod-
ulus” and “relaxation time” coefficients that evolve in
space and time. The divergence of this stress tensor, as
well as that of a similar one from platelet-wall bonds,
appears as a force density in the Navier–Stokes equa-
tions. The model also includes transport equations for
the nonactivated and activated platelet concentrations,
the activating chemical concentration, and the platelet–
platelet and platelet–wall bond concentrations.

The model has been used to explore platelet
thrombosis in response to rupture of an atherosclerotic
plaque. The plaque itself constricts the vessel
producing a complex flow with areas of high and low
shear stress. The rupture triggers platelet deposition,
the outcome of which depends on the location of
the rupture in the plaque and features of the flow in
addition to biological parameters. The thrombus can
grow to occlude the vessel and thus stop flow, or it
can be torn apart by shear stresses leading to one or
more thrombus fragments that are carried downstream.
Model results make clear the fact that flow matters as
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Modeling of Blood Clotting, Fig. 3 Schematic of coagulation
reactions. Magenta arrows show cellular or chemical activation
processes, blue ones indicate chemical transport in the fluid or
on a surface. Double headed green arrows depict binding and
unbinding from a surface. Rectangles indicate surface-bound

species. Solid black lines with open arrows show enzyme action
in a forward direction, while dashed black lines with open arrows
show feedback action of enzymes. Red disks indicate chemical
inhibitors

two simulations that differ only in whether the rupture
occurred in high shear or low shear regions had very
different outcomes [3].

Coagulation Modeling

Coagulation Enzyme Reactions
In addition to triggering platelet deposition, exposure
of the subendothelium brings the passing blood into
contact with Tissue Factor (TF) molecules embedded
in the matrix and initiates the coagulation process (see
Fig. 3). The first coagulation enzymes are produced on
the subendothelial matrix and released into the plasma.
If they make their way through the fluid to the surface
of an activated platelet, they can participate in the
formation of enzyme complexes on the platelet surface
that continue and accelerate the pathway to thrombin
production. Thrombin released from the platelet sur-
face feeds back on the enzyme network to accelerate
its own production, activates additional platelets, and
converts soluble fibrinogen molecules in the plasma

into insoluble fibrin monomers. Once formed, the fib-
rin monomers spontaneously bind together into thin
strands, these strands join side to side into thicker
fibers, and a branching network of these fibers grows
between and around the platelets in a wall-bound
platelet aggregate.

In vitro coagulation experiments are often per-
formed under static conditions and without platelets.
A large concentration of phospholipid vesicles is used
in order to provide surfaces on which the surface-
phase coagulation reactions can occur. Most models
of the coagulation enzyme system have aimed to
describe this type of experiment. These models assume
that chemical species are well mixed and that there
is an excess of appropriate surfaces on which the
surface-phase reactions take place. The models do not
explicitly treat binding reactions between coagulation
proteins and these surfaces. The Hockin-Mann model
[6] is a prime example and has been fit to experimental
data from Mann’s lab and used to infer, for example,
the effect of different concentrations of TF on the
timing and extent of thrombin production, and to
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characterize the influence of chemical inhibitors in
the response of the system.

More recently, models that account for interactions
between platelet events and coagulation biochemistry
and which include treatment of flow have been intro-
duced. The Kuharsky–Fogelson (KF) model [8] was
the first such model. It looks at coagulation and platelet
deposition in a thin reaction zone above a small injury
and treats as well-mixed the concentration of each
species in this zone. Reactions are distinguished by
whether they occur on the subendothelium, in the
fluid, or on the surface of activated platelets. Transport
is described by a mass transfer coefficient for each
fluid-phase species. Reactions on the subendothelial
and platelet surfaces are limited by the availability
of binding sites for the coagulation factors on these
surfaces. The model consists of approximately sixty
ODEs for the concentrations of coagulation proteins
and platelets. The availability of subendothelial TF
is a control parameter, while that of platelet binding
sites depends on the number of activated platelets in
the reaction zone, which in turn depends in part on
the extent of thrombin production. Studies with this
model and its extensions showed (1) that thrombin
production depends in a threshold manner on the ex-
posure of TF, thus providing a “switch” for turning
the system on only when needed, (2) that platelets
covering the subendothelium play an inhibiting role
by covering subendothelial enzymes at the same time
as they provide the surfaces on which other coag-
ulation reactions occur, (3) that the flow speed and
the coverage of the subendothelium by platelets have
big roles in establishing the TF-threshold, (4) that the
bleeding tendencies seen in hemophilias A and B and
thrombocytopenia have kinetic explanations, and (5)
that flow-mediated dilution may be the most important
regulator of thrombin production (rather than chem-
ical inhibitors of coagulation reactions) at least for
responses to small injuries. Several of these predictions
have been subsequently confirmed experimentally.

The KF model was recently extended by Leiderman
and Fogelson [9] to account for spatial variations and to
give a much more comprehensive treatment of fluid dy-
namics and fluid–platelet interactions. Although stud-
ies of this model are ongoing, it has already confirmed
predictions of the simpler KF model, and has given new
information and insights about the spatial organization
of the coagulation reactions in a growing thrombus
including strong indications that transport within the

growing thrombus is important to its eventual struc-
ture. For another spatial-temporal model that builds on
the KF treatment of platelet–coagulation interactions,
see [15].

Fibrin Polymerization
Several modeling studies have looked at different as-
pects of fibrin polymerization. Weisel and Nagaswami
[13] built kinetic models of fibrin strand initiation,
elongation, and thickening, and drew conclusions
about the relative rates at which these happen.
Guy et al. [5] coupled a simple model of thrombin
production to formulas derived from a kinetic gelation
model to examine what limits the growth of a fibrin gel
at different flow shear rates. This study gave the first
(partial) explanation of the reduced fibrin deposition
seen at high shear rates. Fogelson and Keener [4]
developed a kinetic gelation model that allowed
them to examine a possible mechanism for fibrin
branch formation. They showed that branching by this
mechanism results in gel structures that are sensitive
to the rate at which fibrin monomer is supplied. This
is in accord with observations of fibrin gels formed in
vitro in which the density of branch points, pore sizes,
and fiber thicknesses varied with the concentration of
exogenous thrombin used.

Conclusion

Mathematical models and computer simulations based
on these models have contributed significant insights
into the blood clotting process. These modeling efforts
are just a beginning, and much remains to be done
to understand how the dynamic interplay of biochem-
istry and physics dictates the behavior of this system.
In addition to the processes described in this entry,
other aspects of clotting, including the regulation of
platelet responses by intraplatelet signaling pathways,
the dissolution of fibrin clots by the fibrinolytic system,
and the interactions between the clotting and immune
systems are interesting and challenging subjects for
modeling.
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Molecular Dynamics

Benedict Leimkuhler
Edinburgh University School of Mathematics,
Edinburgh, Scotland, UK

The term molecular dynamics is used to refer to a
broad collection of models of systems of atoms in mo-
tion. In its most fundamental formulation, molecular

dynamics is modeled by quantum mechanics, for ex-
ample, using the Schrödinger equation for the nuclei
and the electrons of all the atoms (a partial differen-
tial equation). Because of computational difficulties
inherent in treating the quantum mechanical system,
it is often replaced by a classical model. The Born-
Oppenheimer approximation is obtained by assum-
ing that the nuclear degrees of freedom, being much
heavier than the electrons, move substantially more
slowly. Averaging over the electronic wave function
then results in a classical Newtonian description of
the motion of N nuclei, a system of point particles
with positions q1; q2; : : : ; qN 2 R3. In practice, the
Born-Oppenheimer potential energy is replaced by a
semiempirical function U which is constructed by
solving small quantum systems or by reference to
experimental data. Denoting the coordinates of the i th
atom by qi;x; qi;y ; qi;z, and its mass bymi , the equations
of motion for the i th atom are then

mi

d2qi;x
dt2

D � @U
@qi;x

;mi

d2qi;y
dt2

D � @U
@qi;y

;

mi

d2qi;z
dt2

D � @U
@qi;z

:

The equations need to be extended for effective treat-
ment of boundary and environmental conditions, some-
times modeled by stochastic perturbations. Molecular
dynamics is a widely used tool which in some sense
interpolates between theory and experiment. It is one
of the most effective general tools for understanding
processes at the atomic level. The focus in this arti-
cle is on classical molecular dynamics models based
on semiempirical potential energy functions. For de-
tails of quantum mechanical models and related is-
sues, see � Schrödinger Equation for Chemistry, � Fast
Methods for Large Eigenvalues Problems for Chem-
istry, �Born–Oppenheimer Approximation, Adiabatic
Limit, and Related Math. Issues, and �Density Func-
tional Theory. Molecular simulation (including molec-
ular dynamics) is treated in detail in [2, 7, 10, 18].

Background, Scope, and Application

Molecular dynamics in its current form stems from
work on hard-sphere fluid models of Alder and
Wainwright [1] dating to 1957. An article of Rahman

http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_254
http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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[16] described the use of smooth potentials. In 1967,
Verlet [23] gave a detailed description of a general
procedure, including the popular Verlet integrator and
a procedure for reducing the calculation of forces
by the use of neighbor lists. This article became
the template for molecular dynamics studies. The
use of molecular dynamics rapidly expanded in the
1970s, with the first simulations of large biological
molecules, and exploded toward the end of the 1980s.
As the algorithms matured, they were increasingly
implemented in general-purpose software packages;
many of these packages are of a high standard and are
available in the public domain [6].

Molecular dynamics simulations range from just a
few atoms to extremely large systems. At the time of
this writing, the largest atomistically detailed molec-
ular dynamics simulation involved 320 billion atoms
and was performed using the Blue Gene/L computer at
Lawrence Livermore National Laboratory, using more
than 131,000 processors. The vast majority of molecu-
lar dynamics simulations are much smaller than this.
In biological applications, a common size would be
between 104 and 105 atoms, which allows the modeling
of a protein together with a sizeable bath of water
molecules. For discussion of the treatment of large-
scale models, refer to �Large-Scale Computing for
Molecular Dynamics Simulation.

Perspectives on applications of molecular modeling
and simulation, in particular molecular dynamics, are
discussed in many review articles, see, for example,
[19] for a discussion of its use in biology.

The Potential Energy Function

The complexity of molecular dynamics stems from
the variety of nonlinear functional terms incorporated
(additively) into U and the potentially large num-
ber of atoms needed to achieve adequate model re-
alism. Of particular note are potential energy contri-
butions depending on the pairwise interaction of the
atoms, including Lennard-Jones, Coulombic, and co-
valent length-bond contributions with respective defi-
nitions as follows, for a particular pair of atoms labeled
i; j :

'LJ
ij .r/ D 4"ij

h�
r=�ij

�12 � �r=�ij
�6
i
;

'C
ij .r/ D Cij =r;

' l:b:
ij .r/ D Aij .r � Nrij /2;

0
s

Coulomb

Lennard−Jones

Length Bond

r

Molecular Dynamics, Fig. 1 Example potential energy contri-
butions

where r D rij D p
.qi;x � qj;x/2 C .qi;y � qj;y/2 C .qi;z � qj;z/2

is the distance between the two atoms. Representa-
tive graphs of the three potential energy contributions
mentioned above are shown in Fig. 1. The various
coefficients appearing in these formulas are determined
by painstaking analysis of experimental and/or quan-
tum mechanical simulation data; they depend not only
on the types of atoms involved but also, often, on
their function or specific location within the molecule
and the state, i.e., the conditions of temperature, pres-
sure, etc.

In addition to two-atom potentials, there may be
three or four atom terms present. For example, in a
carbohydrate chain, the carbon and hydrogen atoms
appear in sequence, e.g., CH3CH2CH2 : : : . Besides the
bonds and other pair potentials, proximate triples also
induce an angle-bond modeled by an energy function
of the form

'a:b
ijk.qi ; qj ; qk/ D Bijk.†.qi ; qj ; qk/� N�ijk/2;

where

†.qi ; qj ; qk/ D cos�1
	
.qj � qi / � .qj � qk/
kqj � qikkqj � qkk




;

while a torsional dihredral-bond potential on the angle
between planes formed by successive triples is also
incorporated. Higher-body contributions (5-, 6-, etc.)
are only occasionally present. In materials science,
complex multibody potentials are often used, such as

http://dx.doi.org/10.1007/978-3-540-70529-1_279
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bond-order potentials which include a model for the
local electron density [20].

One of the main limitations in current practice is
the quality of the potential energy surface. While it is
common practice to assume a fitted functional form
for U for reasons of simplicity and efficiency, there
are some popular methods which attempt to determine
this “on the fly,” e.g., the Car-Parinello method models
changes in the electronic structure during simulation,
and other schemes may further blur the boundaries
between quantum and classical approaches, such as the
use of the reaxFF forcefield [22]. In addition, quantum
statistical mechanics methods such as Feynman path
integrals introduce a classical model that closely re-
sembles the molecular model described above.

Molecular dynamics-like models also arise in the
so-called mesoscale modeling regime wherein mul-
tiatom groups are replaced by point particles or rigid
bodies through a process known as coarse-graining.
For example, the dissipative particle dynamics method
[12] involves a conservative component that resembles
molecular dynamics, together with additional stochas-
tic and dissipative terms which are designed to con-
serve net momentum (and hence hydrodynamics).

The molecular model may be subject to external
driving perturbation forces which are time dependent
and which do not have any of the functional forms
mentioned above.

Constraints

The basic molecular dynamics model often appears in
modified forms that are motivated by modeling consid-
erations. Types of systems that arise in practice include
constrained systems (or systems with rigid bodies)
which are introduced to coarse-grain the system or
simply to remove some of the most rapid vibrational
modes. An important aspect of the constraints used
in molecular modeling is that they are, in most cases,
holonomic. Specifically, they are usually functions of
the positions only and of the form g.q/ D 0, where g
is a smooth mapping from R3N to R. The constraints
may be incorporated into the equations of motion
using Lagrange multipliers. If there are m constraints
gj .q/ D 0, j D 1; : : : ; m, then we may write the
differential equations as (for i D 1; : : : ; N )

mi

d2qi;x
dt2

D � @U
@qi;x

�
mX

jD1

@gj

@qi;x
�j ; (1)

mi

d2qi;y
dt2

D � @U
@qi;y

�
mX

jD1

@gj

@qi;y
�j ; (2)

mi

d2qi;z
dt2

D � @U
@qi;z

�
mX

jD1

@gj

@qi;z
�j : (3)

The �j may be determined analytically by differen-
tiating the constraint relations gj .q.t// D 0 twice
with respect to time and making use of the second
derivatives from the equations of motion. In practice,
for numerical simulation, this approach is not found to
be as effective as treating the constrained equations as a
combined differential-algebraic system of special type
(See “Construction of Numerical Methods,” below).

In many cases, molecular dynamics is reduced to
a system of rigid bodies interacting in a force field;
then there are various options regarding the form of the
equations which may be based on particle models, Eu-
ler parameters or Euler angles, quaternions, or rotation
matrices. For details, refer, for example, to the book on
classical mechanics of Goldstein [8].

Particle Density Controlled by Periodic
Boundary Conditions

In most simulations, it is necessary to prescribe the
volume V of simulation or to control the fluctuations
of volume (in the case of constant pressure simulation).
Since the number of atoms treated in simulation is nor-
mally held fixed (N ), the control of volume also pro-
vides control of the particle density (N=V ). Although
other mechanisms are occasionally suggested, by far
the most common method of controlling the volume of
simulation is the use of periodic boundary conditions.

Let us suppose we wish to confine our simulation
to a simulation cell consisting of a cubic box with side
length L and volume V D L3. We begin by surround-
ing the system with a collection of 26 periodic replicas
of our basic cell. In each cell copy, we assume the
atoms have identical relative positions as in the basic
cell and we augment the total potential energy with
interaction potentials for pairs consisting of an atom of
the basic cell and one in each of the neighboring cells.



934 Molecular Dynamics

If 'ij is the total potential energy function for inter-
actions between atoms i and j , then periodic boundary
conditions with short-ranged interactions involves an
extended potential energy of the form

U pbc.q/D
X

klm

N�1X

iD1

NX

jDiC1
'ij .qi ; qjCk�1Cl�2Cm�3/;

where k; l;m run over �1; 0; 1, and �1 D Le1; �2 D
Le2; �3 D Le3, where ei is the i th Euclidean basis
vector in R3. During simulation, atoms leaving the box
are assumed to reenter on the opposite face; thus the
coordinates must be checked and possibly shifted after
each positional step.

For systems with only short-ranged potentials, the
cell size is chosen large enough so that atoms do
not “feel” their own image; the potentials are subject
to a cutoff which reduces their influence to the box
and the nearest replicas. For systems with Coulombic
potentials, this is not possible, and indeed it is typically
necessary to calculate the forces of interaction for
not just the adjacent cells but also for the distant
periodic replicas; fortunately, the latter calculation can
be greatly simplified using a technique known as Ewald
summation (see below).

Molecular Structure

The molecular potential energy function will have vast
numbers of local minima corresponding to specific
organizations of the atoms of the system relative to one
another. The design of the energy function is typically
performed in such a way as to stabilize the most
likely structures (perhaps identified from experiment)
when the system is at mechanical equilibrium. It is
impossible, using current algorithms, to identify the
global minimum of even a modest molecular energy
landscape from an arbitrary starting point. Therefore
the specification of appropriate initial data may be of
importance.

In the case of a system in solid state, simulations
typically begin from the vicinity of a textbook crystal
structure, often a regular lattice in the case of a homo-
geneous system which describes the close-packed con-
figurations of a collection of spheres. Certain lattices
are found to be most appropriate for given chemical
constituents at given environmental conditions. These

may include the body-centered cubic (BCC), face-
centered cubic (FCC), and hexagonal close-packed
(HCP) structures.

In the case of biological molecules, the initial posi-
tions are most often found by experimental techniques
(e.g., nuclear magnetic resonance imaging or x-ray
crystallography). Because these methods impose artifi-
cial assumptions (isolation of the molecule in vacuum
or frozen conditions), molecular dynamics often plays
a crucial role in refining such structural information
so that the structures reported are more relevant for
the liquid state conditions in which the molecule is
found in the laboratory (in vitro) or in a living organism
(in vivo).

Properties of theModel

For compactness, we let q be a vector of all 3N
position coordinates of the atoms of the system, and
we take v to be the corresponding vector of veloc-
ities. The set of all allowed positions and veloci-
ties is called the phase space of the system. U D
U.q/ is the potential energy function (assumed time
independent for this discussion), F.q/ D �rU.q/
is the force (the gradient of potential energy), and
M D diag.m1;m1;m1;m2; : : : ; mN ;mN ;mN / is the
mass matrix. The molecular dynamics equations of
motion may be written compactly as a first order
system of dimension 6N :

Pq D v; M Pv D F.q/:

(The notation Px refers to the time derivative of the
quantity x.)

The motion of the system beginning from pre-
scribed initial conditions (q.0/ D 
, v.0/ D �, for
given vectors 
; � 2 R3N ) is a trajectory .q.t/; v.t//.
The state of the system at any given time is completely
characterized by the state at any previous time; thus
there is a well-defined flow map ˆ� of the phase
space, defined for any � , such that .q.t/; v.t// D
ˆ�.q.t��/, p.t��//. Because of the form of the force
laws, involving as they typically do an overwhelming
repulsive component at short range (due to avoid-
ance of overlap of the electron clouds and normally
modeled as part of a Lennard-Jones potential), the
separation distance between pairs of atoms at constant
energy is uniformly bounded away from zero. This
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is an important distinction from gravitational N -body
dynamics where the close approaches of atoms may
dominate the evolution of the system.

Equilibria and Normal Modes
The equilibrium points of the molecular model satisfy
Pq D Pv D 0; hence

v D 0; F.q/ D �rqU.q/ D 0:

Thus the equilibria q� are the critical points of the po-
tential energy function. It is possible to linearize the
system at such an equilibrium point by computing
the Hessian matrix W � whose ij entry is the mixed
second partial derivative of U with respect to qi and
qj evaluated at the equilibrium point. The equations of
motion describing the motion of a material point near
to such an equilibrium point are of the form

dıq

dt
D ıv; dıv

dt
D �W �ıq;

where ıq 
 q�q�, ıv 
 v�v�. The motion of this lin-
ear system may be understood completely in terms of
its eigenvalues and eigenvectors. When the equilibrium
point corresponds to an isolated local minimum of the
potential energy, the eigenvalues of W � are positive,
and their square roots !1; !2; : : : ; !3N are proportional
to the frequencies of the normal modes of oscillation
of the molecule; the normal modes themselves are the
corresponding eigenvectors of W �. Depending on the
symmetries of the system, some of the characteristic
frequencies vanish, and the number of normal modes is
correspondingly reduced. The normal modes provide a
useful perspective on the local dynamics of the system
near an equilibrium point.

As an illustration, a linear triatomic molecule con-
sists of three atoms subject to pairwise and angle bond
potentials. The energetically favored configuration is
an arrangement of the atoms in a straight line. The
normal modes may be viewed as directions in which
the atomic configuration is deformed from the linear
configuration. The triatomic molecule has six symme-
tries and a total of 3 � 3 � 6 D 3 normal modes,
including symmetrical and asymmetrical stretches and
a bending mode. More complicated systems have a
wide range of normal modes which may be obtained
numerically using eigenvector solvers. �Eigenvalues
and Eigenvectors: Computation.

FlowMap
The energy of the system is E D E.q; v/ D
vTMv=2CU.q/. It is easy to see thatE is a conserved
quantity (first integral) of the system since

dE

dt
D rqE � Pq CrvE � Pv

D v � rU C .Mv/ � .�M�1rU / D 0;

implying that it is a constant function of time as it
is evaluated along a trajectory. Energy conservation
has important consequences for the motion of the
system and is often used as a simple check on the
implementation of numerical methods.

The flow map may possess additional invariants that
depend on the model under study. For example, if the
N atoms of a system interact only with each other
through a pairwise potential, it is easy to see that the
sum of all forces will be zero and the total momentum
is therefore a conserved quantity. Likewise, for such a
closed system of particles, the total angular momentum
is a conserved quantity. When the positions of all the
atoms are shifted uniformly by a fixed vector offset,
the central forces, based only on the relative positions,
are clearly invariant. We say that a closed molecular
system is invariant under translation. Such a system
is also invariant under rotation of all atoms about the
center of mass. The symmetries and invariants are
linked, as a consequence of Noether’s theorem.

When periodic boundary conditions are used, the
angular momentum conservation is easily seen to be
destroyed, but the total momentum

P
i pi remains a

conserved quantity, and the system is still invariant
under translation.

Reflecting the fact that the equations of motion
Pq D M�1p, Pp D �rU are invariant under the
simultaneous change of sign of time and momenta, we
say that the system is time reversible.

The equations of motion of a Hamiltonian system
are also divergence free, so the volume in phase space
is also preserved. The latter property can be related to
a more fundamental geometric principle: Hamiltonian
systems have flow maps which are symplectic, mean-
ing that they conserve the canonical differential two-
form defined by

� D dq1;x^dp1;xCdq2;x^dp2;xC: : :CdqN;z^dpN;z;

http://dx.doi.org/10.1007/978-3-540-70529-1_445
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i.e., ˆ�� � D �, where ˆ�� � represents the pullback
of the differential form �. Another way to state this
property is that the Jacobian matrix @ˆ�

@z of the flow map
satisfies

�
@ˆ�

@z

�T �
0 I

�I 0
��

@ˆ�

@z

�

D
�
0 I

�I 0
�

:

The various properties mentioned above have im-
portant ramifications for numerical method develop-
ment.

Invariant Distribution
A crucial aspect of nearly all molecular dynamics mod-
els is that they are chaotic systems. One consequence
of this is that the solution depends sensitively on the
initial data (small perturbations in the initial data will
grow exponentially rapidly in time). The chaotic nature
of the model means that the results obtained from long
simulations are typically independent of their precise
starting point (although they may depend on the energy
or momentum).

Denote by LHu the Lie-derivative operator for the
differential equations defined for any scalar function
u D u.q; p/ by

LHu D .M�1p/ � rqu � .rqU / � rpu;

which represents the time derivative of u along a so-
lution of the Hamiltonian system. Thus etLH qi can be
represented using a formal Maclaurin series expansion:

etLH qi D qi C tLHqi C t2

2
L2Hqi C : : : (4)

D qi C t Pqi C t2

2
Rqi C : : : ; (5)

and hence viewing this expression as evaluated at the
initial point, we may identify this directly with qi .t/.
Thus etLH is a representation for the flow map. As a
shorthand, we will contract this slightly and use the no-
tation ˆt D etH to denote the flow map corresponding
to HamiltonianH .

Given a distribution %0 on phase space, the density
associated to the distribution will evolve under the
action of the exponential of the Liouvillian operator
L�H D �LH , i.e.,

%.t/ D e�tLH %0:

This follows from the Liouville equation @%=@t D
�LH%. Invariant distributions (i.e., those % such that
L% D 0) of the equations of motion are associated
to the long-term evolution of the system. Due to the
chaotic nature of molecular dynamics, these invariant
distributions may have a complicated structure (e.g.,
their support is often a fractal set). In some cases,
the invariant distribution may appear to be dense in
the phase space (or on a large region in phase space),
although rigorous results are not available for com-
plicated models, unless stochastic perturbations are
introduced.

Constraints
In the case of a constrained system, the evolution
is restricted to the manifold f.q; p/jg.q/ D
0; g0.q/M�1p D 0g. Note that the hidden constraint
g0.q/M�1p D 0 arises from time differentiation of
the configurational constraints which must be satisfied
for all points on a given trajectory. The Hamiltonian
structures, invariant properties, and the concept of
invariant distribution all have natural analogues for
the system with holonomic constraints. In the compact
notation of this section, the constrained system may be
written

Pq DM�1p; Pp D �rU.q/� g0.q/T �; g.q/ D 0;
(6)

where � is now a vector of m Lagrange multipliers,
g W R3N ! Rm, and g0 is the 3N � m-dimensional
Jacobian matrix of g.

Construction of Numerical Methods

Numerical methods are used in molecular simulation
for identifying stable structures, sampling the potential
energy landscape (or computing averages of functions
of the positions and momenta) and calculating dynam-
ical information; molecular dynamics may be involved
in all three of these tasks. The term “molecular dynam-
ics” often refers to the generation of trajectories by use
of timestepping, i.e., the discretized form of the dy-
namical system based on a suitable numerical method
for ordinary differential equations. In this section, we
discuss some of the standard tools of molecular dynam-
ics timestepping.

The basic idea of molecular dynamics timestepping
is to define a mapping of phase space ‰h which
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approximates the flow map ˆh on a time interval
of length h. A numerical trajectory is a sequence
defined by iterative composition of the approximate
flow map applied to some initial point .q0; p0/, i.e.,
f.qn; pn/ D ‰n

h.q
0; p0/jn D 0; 1; 2; : : :g. Note the

use of a superscript to indicate timesteps, to make the
distinction with the components of a vector, which are
enumerated using subscripts.

Very long trajectories are typically needed in molec-
ular simulation. Even a slow drift of energy (or in some
other, less easily monitored physical property) will
eventually destroy the usefulness of the technique. For
this reason, it is crucial that algorithms be implemented
following mathematical principles associated to the
classical mechanics of the model and not simply based
on traditional convergence analysis (or local error esti-
mates). When very long time trajectories are involved,
the standard error bounds do not justify the use of
traditional numerical methods. For example, although
they are all formally applicable to the problem, tradi-
tional favorites like the popular fourth-order Runge-
Kutta method are in most cases entirely inappropriate
for the purpose of molecular dynamics timestepping.
Instead, molecular dynamics relies on the use of ge-
ometric integrators which mimic qualitative features
of the underlying dynamical system; see � Symplectic
Methods.

Störmer-Verlet Method
By far the most popular method for evolving the
constant energy (Hamiltonian) form of molecular dy-
namics is one of a family of methods investigated by
Carl Störmer in the early 1900s for particle dynamics
(it is often referred to as Störmer’s rule, although
the method was probably in use much earlier) and
which was adapted by Verlet in his seminal 1967 paper
on molecular dynamics. The method proceeds by the
sequence of steps:

pnC1=2 D pn � h
2
rU.qn/;

qnC1 D qn C hM�1pnC1=2;

pnC1 D pnC1=2 � h
2
rU.qnC1/:

In common practice, the first and last stages are amal-
gamated to produce the alternative (equivalent) form

pnC1=2 D pn�1=2 � hrU.qn/;
qnC1 D qn C hM�1pnC1=2:

This method is explicit, requiring a single force evalua-
tion per timestep, and second-order accurate, meaning
that on a fixed time interval the error may be bounded
by a constant times h2, for sufficiently small h. When
applied to the harmonic oscillator Pq D pI Pp D
�!2q, it is found to be numerically stable for h! �
2. More generally, the maximum usable stepsize is
found to be inversely dependent on the frequency of
fastest oscillation. Besides this stepsize restriction, by
its nature, the method is directly applicable only to
systems with a separable Hamiltonian (of the form
H.q; p/ D T .p/ C U.q/); this means that it must
be modified for use in conjunction with thermostats
and other devices; it is also only suited to deterministic
systems.

CompositionMethods
The splitting framework of geometric integration is
useful for constructing molecular dynamics methods.
In fact, the Verlet method can be seen as a splitting
method in which the simplified problems

d

dt

	
q

p




D v1 WD
	

0

�rU



;

d

dt

	
q

p




D v2 WD
	
M�1p
0




;
d

dt

	
q

p




D v1

are solved sequentially, the first and last for half a
timestep and the middle one for the full timestep.
Note that in solving, the first system q is seen to be
constant; hence the solution evolved from some given
point .q; p/ is .q; p�.h=2/rU.q//; this can be seen as
an impulse or “kick” applied to the system. The other
vector field can be viewed as inducing a “drift” (linear
motion along the direction M�1p). Thus Störmer-
Verlet can be viewed as “kick-drift-kick.” Using the
notation introduced in the first section of this article,
we may write, for the Störmer-Verlet method,‰S�V

h D
exp. h

2
U / exp.hK/ exp. h

2
U /, where K D pTM�1p=2

is the kinetic energy.
Higher-order composition methods may be con-

structed by using Yoshida’s method [24]. In practice,
the benefit of this higher-order of accuracy is only seen
when sufficiently small timesteps are used (i.e., in a

http://dx.doi.org/10.1007/978-3-540-70529-1_152
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relatively high-accuracy regime), and this is normally
not required in molecular simulation.

Besides one-step methods, one also occasionally
encounters the use of multistep methods such as Bee-
man’s method [7]. As a rule, molecular dynamicists
favor explicit integration schemes whenever these are
available.

Multistep methods should not be confused with
multiple timestepping [21]. The latter is a scheme (or
rather, a family of schemes, whereby parts of the sys-
tem are resolved using a smaller timestep than others.
This method is very widely used since it can lead to
dramatic gains in computational efficiency; however,
the method may introduce resonances and instability
and so should be used with caution [15].

Numerical Treatment of Constraints
An effective scheme for simulating constrained molec-
ular dynamics is the SHAKE method [17], which is
a natural generalization of the Verlet method. This
method is usually written in a staggered form. In
[3], this method was rewritten in the “self-starting”
RATTLE formulation that is more natural as a basis for
mathematical study. (SHAKE and RATTLE are conju-
gate methods, meaning that one can be related to the
other via a simple reflexive coordinate transformation;
see [14].) The RATTLE method for the constrained
system (6) is

qnC1 D qn C hM�1pnC1=2; (7)

pnC1=2 D pn � h
2
rU.qn/ � h

2
g0.qn/T �n; (8)

0 D g.qnC1/; (9)

pnC1 D pnC1=2 � h
2
rU.qnC1/

�h
2
g0.qnC1/T �nC1; (10)

0 D g0.qnC1/M�1pnC1; (11)

where additional multipliers �n 2 Rm have been
introduced to satisfy the “hidden constraint” on the
momentum. This method is implemented in two stages.
The first two equations may be inserted into the con-
straint equation (9) and the multipliers � rescaled (ƒ D
.h2=2/�n) to obtain

g. NQn �Gnƒ/ D 0:

In this expression, NQn WD qn C hM�1pn �
.h2=2/rU.qn/ and Gn D g0.qn/ are both known
at start of the step; thus we have m equations for m
variables ƒ. This system may be solved by a Newton
iteration [4] or by a Gauss-Seidel-Newton iteration
[17]. Once ƒ is known, pnC1=2 and qnC1 are easily
found. Equations 10 and 11 are then seen to represent a
linear system for �nC1. Once this is determined, pnC1
can be found and step is complete. Note that a crucial
feature of the RATTLE method is that, while implicit
(it involves the solution of nonlinear equations at each
step), the method only requires a single unconstrained
force evaluation (F.q/ D �rU.q/) at each timestep.

Properties of Numerical Methods

As the typical numerical methods used in (microcanon-
ical) molecular dynamics may be viewed as mappings
that approximate the flow map, it becomes possible to
discuss them formally using the same language as one
would use to discuss the flow map of the dynamical
system. The global, structural, or geometric properties
of the flow map approximation have important con-
sequences in molecular simulation. The general study
of numerical methods preserving geometric structures
is referred to as geometric integration or sometimes,
mimetic discretization.

Almost all numerical methods, including all those
mentioned above, preserve linear symmetries such as
the translation symmetry (or linear invariants like the
total momentum). Some numerical methods (e.g., Ver-
let) preserve angular momentum. The time-reversal
symmetry mentioned previously may be expressed in
terms of the flow map by the relation

ˆt ıR D R ıˆ�1t ;

where R is the involution satisfying R.q; p/ D
.q;�p/. A time-reversible one-step method is one
that shares this property of the flow map. For example,
the implicit midpoint method and the Verlet method
are both time reversible. Thus stepping forward a
timestep, then changing the sign of p then stepping
forward a timestep and changing again the sign of
p returns us to our starting point. The time-reversal
symmetry is often heralded as an important feature
of methods, although it is unclear what role it plays



Molecular Dynamics 939

M

in simulations of large-scale chaotic systems. It is
often used as a check for correct implementation of
complicated numerical methods in software (along
with energy conservation).

The Symplectic Property and Its Implications
Some numerical methods share the symplectic prop-
erty of the flow map. Specifically those derived by
Hamiltonian splitting are always symplectic, since the
symplectic maps form a group under composition.
The Verlet method is a symplectic method since it is
constructed by composing the flow maps associated to
the HamiltoniansH1 D pTM�1p=2 and H2 D U.q/.

A symplectic numerical method applied to solve a
system with Hamiltonian H can be shown to closely
approximate the flow map of a modified system with
Hamiltonian energy

QHh D H C hrH.r/ C hrC1H.rC1/ C : : : ;

where r is the order of the method. More precisely,
the truncated expansion may be used to approximate
the dynamics on a bounded set (the global properties
of the truncation are not known). As the number of
terms is increased, the error in the approximation, on
a finite domain, initially drops but eventually may be
expected to increase (as more terms are taken). Thus
there is an optimal order of truncation. Estimates of
this optimal order have been obtained, suggesting that
the approximation error can be viewed as exponentially
small in h, i.e., of the form O.e�1=h/, as h ! 0. The
existence of a perturbed Hamiltonian system whose
dynamics mimic those of the original system is re-
garded as significant in geometric integration theory.
One consequence of the perturbative expansion is that
the energy error will remain of order O.hp/ on a time
interval that is long compared to the stepsize. The
implication of these formal estimates for molecular
dynamics has been examined in some detail [5]; their
existence is a strong reason to favor symplectic meth-
ods for molecular dynamics simulation.

In the case of constraints, it is possible to show
that the RATTLE method (7)–(11) defines a symplectic
map on the contangent bundle of the configuration
manifold, while also being time reversible [14].

Theoretical and practical issues in geometric inte-
gration, including methods for constructing symplectic
integrators and methods for constraints and rigid bod-
ies, are addressed in [11, 13].

The Force Calculation
In almost all molecular simulations, the dominant com-
putational cost is the force calculation that must be
performed at each timestep. In theory, this calculation
(for the interactions of atoms within the simulation
cell) requires computation of O.N2/ square roots,
where N is the number of atoms, so if N is more than
a few thousand, the time spent in computing forces
will dwarf all other costs. (The square roots are the
most costly element of the force calculation.) If only
Lennard-Jones potentials are involved, then the cost
can be easily and dramatically reduced by use of a
cutoff, i.e., by smoothly truncating 'L:J: at a prescribed
distance, typically 2� or greater. When long-ranged
Coulombic forces are involved, the situation is much
different and it is necessary to evaluate (or approxi-
mate) these for both the simulation cell and neighbor
cells and even for more distant cell replicas.

One of the most popular schemes for evaluating the
Coulombic potentials and forces is the Particle-Mesh-
Ewald (PME) method which relies on the decompo-
sition UCoulomb D Us:r: C Ul:r:, where Us:r: and Ul:r:

represent short-ranged and long-ranged components
respectively; such a decomposition may be obtained
by splitting the pair potentials. The long-ranged part
is assumed to involve the particles in distant periodic
replicas of the simulation cell. The short-ranged part
is then evaluated by direct summation, while the long-
ranged part is calculated in the Fourier domain (based
on Parceval’s relation) as

P QU .k/j Q�.k/j2, where QU .k/
is the Fourier transform of the potential, and Q� is the
Fourier transform of the charge density in the central
simulation cell, the latter calculated by approximation
on a regular discrete lattice and use of the fast Fourier
transform (FFT). The exact placement of the cutoffs
(which determines what part of the computation is
done in physical space and what part in reciprocal
space) has a strong bearing on efficiency. Alterna-
tive approaches to handling the long-ranged forces in
molecular modeling include multigrid methods and
the fast multipole method (FMM) of Greengard and
Rokhlin [9].

Temperature and Pressure Controls

Molecular models formulated as conservative (Hamil-
tonian) systems usually need modification to allow
specification of a particular temperature or pressure.
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Thermostats may be viewed as substitution of a sim-
plified model for an extended system in such as way
as to correctly reflect energetic exchanges between
a modeled system and the unresolved components.
Likewise, barostats are the means by which a system
is reduced while maintaining the correct exchange of
momentum. The typical approach is to incorporate
auxiliary variables and possibly stochastic perturba-
tions into the equations of motion in order that the
canonical ensemble, for example (in the case of a
thermostat), rather than the microcanonical ensemble
is preserved. For details of these methods, refer to
� Sampling Techniques for Computational Statistical
Physics for more details.
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Overview

Despite inherent limitations and approximations,
molecular dynamics (MD) is considered today the gold
standard computational technique by which to explore
molecular motion on the atomic level. Essentially, MD
can be considered statistical mechanics by numbers, or
Laplace’s vision [1] of Newtonian physics on modern
supercomputers [2]. The impressive progress in the
development of biomolecular force fields, coupled to
spectacular computer technology advances, has now
made it possible to transform this vision into a reality,
by overcoming the difficulty noted by Dirac of solving
the equations of motion for multi-body systems [3].
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MD’s esteemed stature stems from many reasons.
Fundamentally, MD is well grounded in theory,
namely, Newtonian physics: the classical equations
of motion are solved repeatedly and numerically at
small time increments. Moreover, MD simulations can,
in theory, sample molecular systems on both spatial
and temporal domains and thus address equilibrium,
kinetic, and thermodynamic questions that span
problems from radial distribution functions of water, to
protein-folding pathways, to ion transport mechanisms
across membranes. (Natural extensions to bond
breaking/forming events using quantum/classical-
mechanics hybrid formulations are possible.) With
steady improvements in molecular force fields,
careful treatment of numerical integration issues,
adequate statistical analyses of the trajectories, and
increasing computer speed, MD simulations are likely
to improve in both quality and scope and be applicable
to important molecular processes that hold many
practical applications to medicine, technology, and
engineering.

Since successful applications were reported in the
1970s to protein dynamics, MD has now become a
popular and universal tool, “as if it were the differential
calculus” [4]. In fact, Fig. 1 shows that, among the
modeling and simulation literature citations, MD leads
as a technique. Moreover, open source MD programs
have made its usage more attractive (Fig. 1b). MD
is in fact one of the few tools available, by both
experiment and theory, to probe molecular motion
on the atomic scale. By following the equations of
motion as dictated by a classical molecular mechanics
force field, complex relationships among biomolecular
structure, flexibility, and function can be investigated,
as illustrated in the examples of Fig. 2.

Today’s sophisticated dynamics programs, like
NAMD or GROMACS, adapted to parallel and
massively parallel computer architectures, as well
as specialized hardware, have made simulations
of biomolecular systems in the microsecond range
routinely feasible in several weeks of computing.
Special hardware/software codesign is pushing the
envelope to long time frames (see separate discussion
below). Though the well-recognized limitations of
sampling in atomistic dynamics, as well as in the
governing force fields, have led to many innovative
sampling alternatives to enhance coverage of the
thermally accessible conformational space, many
approaches still rely on MD for local sampling.
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Molecular Dynamics Simulations, Fig. 1 Metrics for the rise
in popularity of molecular dynamics. The number of molecular
modeling and simulation papers is shown, grouped by simulation
technique in (a) and by reference to an MD package in (b). Num-
bers are obtained from a search in the ISI Web of Science using
the query words molecular dynamics, biomolecular simulation,
molecular modeling, molecular simulation, and/or biomolecular
modeling

Overall, MD simulations and related modeling
techniques have been used by experimental and com-
putational scientists alike for numerous applications,
including to refine experimental data, shed further
insights on structural and dynamical phenomena, and
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Molecular Dynamics Simulations, Fig. 2 MD application ex-
amples. The illustrations show the ranges of motion or structural
information that can be captured by dynamics simulations: (a)
protein (DNA polymerase �) motions [110], (b) active site
details gleaned from a polymerase � system complexed to

misaligned DNA [111], (c) differing protein/DNA flexibility for
eight single-variant mutants of DNA polymerase � [112], and
(d) DNA simulations. In all cases, solvent and salt are included
in the simulation but not shown in the graphics for clarity

help resolve experimental ambiguities. See [5,6] for re-
cent assessment studies. Specifically, applications ex-
tend to refinement of X-ray diffraction and NMR struc-
tures; interpretation of single-molecule force-extension
curves (e.g., [5]) or NMR spin-relaxation in proteins
(e.g., [7–9]); improvement of structure-based function
predictions, for example, by predicting calcium bind-
ing sites [10]; linking of static experimental structures
to implied pathways (e.g., [11, 12]); estimating the
importance of quantum effects in lowering free-energy
barriers of biomolecular reactions [13]; presenting
structural predictions; deducing reaction mechanisms;
proposing free energy pathways and associated mech-
anisms (e.g., [14–16]); resolving or shedding light on
experimental ambiguities, for example, involving chro-
matin fiber structure (zigzag or solenoid) [17] or G-
quadruplex architecture (parallel or antiparallel back-
bone arrangements) [18]; and designing new folds and

compounds, including drugs and enzymes (e.g., [19–
22]). Challenging applications to complex systems like
membranes, to probe associated structures, motions,
and interactions (e.g., [23–25]), further demonstrate
the utility of MD for large and highly charged systems.

Historical Perspective

Several selected simulations that exemplify the field’s
growth are illustrated in Fig. 3 (see full details in [26]).
The first MD simulation of a biological process was
for the small protein BPTI (Bovine Pancreatic Trypsin
Inhibitor) in vacuum [27], which revealed substantial
atomic fluctuations on the picosecond timescale. DNA
simulations of 12- and 24-base-pair (bp) systems
in 1983 [28], in vacuum without electrostatics (of
length about 90 ps), and of a DNA pentamer in 1985,
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with 830 water molecules and 8 sodium ions and
full electrostatics (of length 500 ps) [29], revealed
stability problems for nucleic acids and the importance
of considering long-range electrostatics interactions; in
the olden days, DNA strands untwisted and separated
in some cases [28]. Stability became possible with
the introduction of scaled phosphate charges in other
pioneering nucleic-acid simulations [30–32] and the
presentation a decade later of more advanced treat-
ments for solvation and long-range electrostatics [33].
The field developed in dazzling pace in the 1980s
with the advent of supercomputers. For example, a
300 ps dynamics simulation of the protein myoglobin
in 1985 [34] was considered three times longer than
the longest previous MD simulation of a protein; the
work indicated a slow convergence of many ther-
modynamic properties. System complexity also in-
creased, as demonstrated by the ambitious, large-scale
phospholipid aggregate simulation in 1989 of length
100 ps [35].

In the late 1990s, long-range electrostatics and par-
allel processing for speedup were widely exploited
[36]. For example, a 100 ps simulation in 1997 of
an estrogen/DNA system [37] sought to explain the
mechanism underlying DNA sequence recognition by
the protein; it used the multipole electrostatic treat-
ment and parallel computer architecture. The dramatic
effect of fast electrostatics on stability was further
demonstrated by the Beveridge group [38], whose 1998
DNA simulation employing the alternative, Particle
Mesh Ewald (PME), treatment uncovered interesting
properties of A-tract sequences.

The protein community soon jumped on the
MD bandwagon with the exciting realization that
proteins might be folded using the MD technique.
In 1998, simulations captured reversible, temperature-
dependent folding of peptides within 200 ns [39], and
a landmark simulation by the late Peter Kollman
made headlines by approaching the folded structure
of a villin-headpiece within 1&s [40]. This villin
simulation was considered longer by three orders
of magnitude than prior simulations and required
4 months of dedicated supercomputing.

MD triumphs for systems that challenged practi-
tioners due to large system sizes and stability issues
soon followed, for example, the bc1 protein embedded
in a phospholipid bilayer [41] for over 1 ns, and an
aquaporin membrane channel protein in a lipid mem-
brane for 5 ns [42]; both suggested mechanisms and
pathways for transport.

The usage of many short trajectories to simulate the
microsecond timescale on a new distributed computing
paradigm, instead of one long simulation, was alterna-
tively applied to protein folding using folding@home
a few years later (e.g., protein G hairpin for 38&s ag-
gregate dynamics) [43,44]. Soon after, many long fold-
ing simulations have been reported, with specialized
programs that exploit high-speed multiple-processor
systems and/or specialized computing resources, such
as a 1.2&s simulation of a DNA dodecamer with a
MareNostrum supercomputer [45], 1.2&s simulation
for ubiquitin with program NAMD [46], a 20&s sim-
ulation for ˇ2AR protein with the Desmond program
[47], and small proteins like villin and a WW domain
for over 1&s [48]. Simulations of large systems, such
as viruses containing one million atoms, are also note-
worthy [49].

Indeed, the well-recognized timestep problem in
MD integration – the requirement for small timesteps
to ensure numerical stability – has limited the bio-
logical time frames that can be sampled and thus has
motivated computer scientists, engineers, and biophys-
ical scientists alike to design special-purpose hardware
for MD. Examples include a transputer computer by
Schulten and colleagues in the early 1990s [50], a
Japanese MD product engine [51], IBM’s petaflop Blue
Gene Supercomputer for protein folding [52, 53], and
D. E. Shaw Research’s Anton machine [54]. A mile-
stone of 1 ms simulations was reached with Anton in
2010 for two small proteins studied previously (BPTI
and WW domain of Fip35) [55]. An extrapolation of
the trends in Fig. 3 suggests that we will attain the
milestone of 1-s simulations in 2015!

At the same time as these longer timescales
and more complex molecular systems are being
simulated by atomistic MD, coarse-grained models and
combinations of enhanced configurational sampling
methods are emerging in tandem as viable approaches
for simulating large macromolecular assemblies [56–
59]. This is because computer power alone is not
likely to solve the sampling problem in general,
and noted force field imperfections [60] argue for
consideration of alternative states besides lowest
energy forms. Long simulations also invite more
careful examination of long-time trajectory stability
and other numerical issues which have thus far not been
possible to study. Indeed, even with quality integrators,
energy drifts, resonance artifacts, and chaotic events
are expected over millions and more integration
steps.
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Early on, it was recognized that MD has the po-
tential application to drug design, through the iden-
tification of motions that can be suppressed to affect
function, and through estimates of binding free ener-
gies. More generally, modeling molecular structures
and dynamics can help define molecular specificity
and clarify functional aspects that are important for
drug development [61]. Already in 1984, the hormone-
producing linear decapeptide GnRH (gonadotropin-
releasing hormone) was simulated for 150 ps to explore
its pharmaceutical potential [62]. Soon after the HIV
protease was solved experimentally, 100 ps MD simu-
lations suggested that a fully open conformation of the
protease “flaps” may be favorable for drug access to the
active site [63–67]. Recent simulations have also led to
design proposals [68] and other insights into the HIV
protease/drug interactions [21]. MD simulations of the
HIV integrase have further suggested that inhibitors
could bind in more than one orientation [69, 70], that
binding modes can be selected to exploit stronger inter-
actions in specific regions and orientations [69,71,72],
and that different divalent-ion arrangements are asso-
ciated with these binding sites and fluctuations [70].
Molecular modeling and simulation continue to play a
role in structure-based drug discovery, though modern
challenges in the development of new drug entities
argues for a broader systems-biology multidisciplinary
approach [73, 74].

Algorithmic Issues: Integration,
Resonance, Fast Electrostatics, and
Enhanced Sampling

When solving the equations of motion numerically, the
discretization timesteps must be sufficiently small to
ensure reasonable accuracy as well as stability [26].
The errors (in energies and other ensemble averages)
grow rapidly with timestep size, and the stability is
limited by the inherent periods of the motion com-
ponents, which range from 10 fs for light-atom bond
stretching to milliseconds and longer for slower col-
lective motions [75]. Moreover, the crowded frequency
spectrum that spans this large range of six or more
orders of magnitude is intricately coupled (see Fig. 4).
For example, bond vibrations lead to angular displace-
ments which in turn trigger side-chain motions and
collective motions. Thus, integrators that have worked
in other applications that utilize timescale separation,
mode filtering, or mode neglect are not possible for

biomolecules in general. For this reason, analysis of
MD integrators has focused on establishing reliable
integrators that are simple to implement and as low
as possible in computational requirements (i.e., dom-
inated by one force evaluation per timestep).

When mathematicians began analysis of MD inte-
grators in the late 1980s, it was a pleasant surprise
to discover that the Verlet method, long used for MD
[76], was symplectic, that is, volume preserving of
Hamiltonian invariants [77]. Further rigorous studies
of symplectic integrators, including Verlet variants
such as leap frog and velocity Verlet and constrained
dynamics formulations (e.g., [26, 77]), have provided
guidelines for researchers to correctly generate MD
trajectories and analyze the stability of a simulation
in terms of energy conservation and the robustness
of the simulation with respect to the timestep size.
For example, the Verlet stability limit for characteristic
motions is shown in Fig. 4.

Resonance artifacts in MD simulations were also
later described as more general numerical stability is-
sues that occur when timesteps are related to the natural
frequency of the system as certain fractions (e.g., one
third the period, see Fig. 4) [78, 79]. Highlighting
resonance artifacts in MD simulations, predicting res-
onant timesteps, and establishing stochastic solution to
resonances [80–82] have all led to an improved un-
derstanding and quality of MD simulations, including
effective multiple-timestep methods [26,83]. Note that
because the value of the inner timestep in multiple-
timestep methods is limited by stability and resonance
limits, even these methods do not produce dramatic
computational advantages.

The advent of efficient and particle mesh Ewald
(PME) [84] and related methods [85–87] for evalua-
tion of the long-range electrostatic interactions, which
constitute the most time-consuming part of a biomolec-
ular simulation, has made possible more realistic MD
simulations without nonbonded cutoffs, as discussed
above. A problem that in part remains unsolved in-
volves the optimal integration of PME methods with
multiple-timestep methods and parallelization of PME
implementations. The presence of fast terms in the
reciprocal Ewald component limits the outer timestep
and hence the speedup [83,88–91]. Moreover, memory
requirements create a bottleneck in typical PME imple-
mentations in MD simulations longer than a microsec-
ond. This is because the contribution of the long-range
electrostatic forces imposes a global data dependency
on all the system charges; in practice, this implies
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Molecular Dynamics Simulations, Fig. 4 Biomolecular Mo-
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resonance and linear stability for high-frequency modes (Time
periods for the highest frequency motions are derived from
frequency data in [113]. Values for adenine butterfly motion are
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The folding timescales are taken as follows: ˇ-heptapeptide [39],
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(MerP) [120]. The approximate time for a single ion to traverse
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within the ribosome is from [122])
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communication problems [92]. Thus, much work goes
into optimizing associated mesh sizes, precision, and
sizes of the real and inverse spaces to delay the commu-
nication bottleneck as possible (e.g., [54]), but overall
errors in long simulations are far from trivial [83, 93].

In addition to MD integration and electrostatic cal-
culations, sampling the vast configurational space has
also triggered many innovative approaches to capture
“rare events.” The many innovative enhanced sampling
methods are either independent of MD or based on
MD. In the former class, as recently surveyed [58, 94,
95], are various Monte Carlo approaches, harmonic
approximations, and coarse-grained models. These can
yield valuable conformational insights into biomolec-
ular structure and flexibility, despite altered kinetics.
Although Monte Carlo methods are not always satis-
factory for large systems on their own right, they form
essential components of more sophisticated methods
[59] like transition path sampling [96] and Markov
chain Monte Carlo sampling [97].

More generally, MD-based methods for enhanced
sampling of biomolecules can involve modification of
the potential (like accelerated MD [98]), the simulation
protocol (like replica-exchange MD or REMD [99]),
or the algorithm. However, global formulations such
as transition path sampling [96, 100], forward flux
simulation [101], and Markov state models [102] are
needed more generally not only to generate more
configurations or to suggest mechanistic pathways but
also to compute free energy profiles for the reaction
and describe detailed kinetics profiles including reac-
tion rates.

There are many successful reports of using tailored
enhanced sampling methods (e.g., [11, 103–109]), but
applications at large to biomolecules, especially in
the presence of incomplete experimental endpoints,
remain a challenge.

Conclusion

When executed with vigilance in terms of problem
formulation, implementational details, and force field
choice, atomic-level MD simulations present an at-
tractive technique to visualize molecular motion and
estimate many properties of interest in the thermally
accessible conformational space, from equilibrium dis-
tributions to configurational transitions and pathways.
The application scope can be as creative as the scientist

performing the simulation: from structure prediction
to drug design to new mechanistic hypotheses about
a variety of biological processes, for a single molecule
or a biomolecular complex.

Extensions of MD to enhanced sampling protocols
and coarse-graining simulations are further enriching
the tool kit that modelers possess, and dramatic ad-
vances in computer speed, including specialized com-
puter architecture, are driving the field through exciting
milestones.

Perhaps more than any other modeling technique,
proper technical details in simulation implementation
and analysis are crucial for the reliability of
the biological interpretations obtained from MD
trajectories. Thus, both expertise and intuition are
needed to dissect correct from nonsensical behavior
within the voluminous data that can be generated
quickly. In the best cases, MD can help sift through
conflicting experimental information and provide
new biological interpretations, which can in turn be
subjected to further experimentation. Still, MD should
never be confused for reality!

As larger biomolecular systems and longer simula-
tion times become possible, new interesting questions
also arise and need to be explored. These concern the
adequacy of force fields as well as long-time stability
and error propagation of the simulation algorithms. For
example, a 10&s simulation of the ˇ-protein Fip35
[46] did not provide the anticipated folded conforma-
tion nor the folding trajectory from the extended state,
as expected from experimental measurements; it was
determined subsequently that force field inaccuracies
for ˇ-protein interactions affect the results, and not in-
correct sampling [60]. In addition, the effects of short-
cuts often taken (e.g., relatively large, 2.5 fs, timesteps,
which imply corruption by third-order resonances as
shown in Fig. 4, and rescaling of velocities to retain
ensemble averages) will have to be examined in detail
over very long trajectories.

The rarity of large-scale conformational transitions
and the stochastic and chaotic nature of MD sim-
ulations also raise the question as to whether long
simulations of one biomolecular system rather than
many shorter simulations provide more cost-effective,
statistically sound, and scientifically relevant informa-
tion. Given the many barriers we have already crossed
in addressing the fundamental sampling problem in
MD, it is likely that new innovative approaches will
be invented by scientists in allied fields to render MD
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simulations better and faster for an ever-growing level
of biological system sophistication.
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Short Definition

Geometry optimization is a method to predict the three-
dimensional arrangement of the atoms in a molecule
by means of minimization of a model energy. The
phenomenon of binding, that is to say the tendency of
atoms and molecules to conglomerate into stable larger
structures, as well as the emergence of specific struc-
tures depending on the constituting elements, can be
explained, at least in principle, as a result of geometry
optimization.

Pheonomena

Two atoms are said to be linked together by a bond if
there is an opposing force against pulling them apart.
Associated with a bond is a binding energy, which
is the total energy required to separate the atoms.
Except at very high temperature, atoms form bonds
between each other and conglomerate into molecules
and larger aggregates such as atomic or molecular
chains, clusters, and crystals.

The ensuing molecular geometries, that is to say the
3D arrangements of the atoms, and the binding ener-
gies of the different bonds, crucially influence physical
and chemical behavior. Therefore, theoretically pre-
dicting them forms a large and important part of con-
temporary research in chemistry, materials science, and
molecular biology. A major difficulty is that binding
energies, preferred partners, and local geometries are
highly chemically specific, that is to say they depend
on the elements involved. For instance, the experi-
mental binding energies of the diatomic molecules
Li2, Be2, and N2 (i.e., the dimers of element num-
ber 3, 4, 7 in the periodic table) are roughly in the
ratio 10:1:100. And CH2 is bent, whereas CO2 is
straight.

When atoms form bonds, their electronic structure,
that is to say the probability cloud of electrons around
their atomic nucleus, rearranges. Chemists distinguish
phenomenologically between different types of bonds,
depending on this type of rearrangement: covalent,
ionic, and metallic bonds, as well as weak bonds
such as hydrogen or van der Waals bonds. A covalent
bond corresponds to a substantial rearrangement of
the electron cloud into the space between the atoms

while each atom maintains a net charge neutrality,
as in the C–C bond. In a ionic bond, one electron
migrates almost fully to the other atom, as in the
dimer Na–Cl. The metallic bond between atoms in a
solid metal is pictured as the formation of a “sea” of
free electrons, no longer associated to any particular
atom, surrounding a lattice of ionic cores. The above
distinctions, albeit a helpful guide, should not be taken
too literally and are often not so clear-cut in prac-
tice.

A unifying theoretical viewpoint of the 3D molec-
ular structures resulting from interatomic bonding,
regardless of the type of bonds, is to view them as
geometry optimizers, i.e., as locally or globally optimal
spatial arrangements of the atoms which minimize
overall energy. For a mathematical formulation, see
section “Geometry Optimization and Binding Energy
Prediction.”

If the number of atoms or molecules is large (&100),
then the system will start behaving in a thermodynamic
way. At sufficiently low temperature, identical atoms or
molecules typically arrange themselves into a crystal,
that is to say the positions of the atomic nuclei are given
approximately by a subset of a crystal lattice. A crystal
lattice L is a finite union of discrete subsets of R3 of
form fie C jf C kg j i; j; k 2 Zg, where e; f; g are
linearly independent vectors in R

3. Near the bound-
aries of crystals, the underlying lattice is often dis-
torted. Closely related effects are the emergence of de-
fects such as vacancies, interstitial atoms, dislocations,
and continuum deformations. Vacancies and interstitial
atoms are missing respectively additional atoms. Dislo-
cations are topological crystallographic defects which
can sometimes be visualized as being caused by the ter-
mination of a plane of atoms in the middle of a crystal.
Continuum deformations are small long-wavelength
distortions of the underlying lattice arising from exter-
nal loads, as in an elastically bent macroscopic piece of
metal.

A unifying interpretation of the above structures
arises by extending the term “geometry optimization,”
which is typically used in connection with single
molecules, to large scale systems as well. The spatial
arrangements of the atoms can again be understood, at
least locally and subject to holding the atomic positions
in an outer region fixed, as geometry optimizers, i.e.,
minimizers of energy.
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Geometry Optimization and Binding
Energy Prediction

Geometry optimization, in its basic all-atom form,
makes a prediction for the 3D spatial arrangement of
the atoms in a molecule, by a two-step procedure.
Suppose the system consists of M atoms, with atomic
numbersZ1; : : : ; ZM .
Step A: Specify a model energy or potential energy

surface (PES), that is to say a function ˚ W
R
3M ! R [ fC1g which gives the system’s

potential energy as a function of the vector
X D .X1; : : : ; XM / 2 R

3M of the atomic
positionsXj 2 R

3.
Step B: Compute (local or global) minimizers

.X1; : : : ; XM/ of ˚ .
Basic physical quantities of the molecule corre-

spond to mathematical quantities of the energy surface
as follows:

Binding energy Difference between minimum energy
and sum of energies of subsystems

Stable configuration Local minimizer

Transition state Saddle point

Bond length/angle Parameter in minimizing configuration

More precisely, the theoretical binding energy E
of the minimizer obtained in Step B with respect
to decomposition into two subsystems, say of the
first K atoms and the last M � K atoms, is defined
as

E D min˚.X/� lim
R!1minf˚.X/ W

dist.fX1; : : : ; XKg; fXKC1; : : : ; XM g/ � Rg:

Potential energy surfaces have the general property of
Galilean invariance, that is to say ˚.X1; : : : ; XM / D
˚.RX1Ca; : : : ; RXM Ca/, for any translation vector
a 2 R

3 and any rotation matrix R 2 SO.3/. Thus, a
one-atom surface ˚.X1/ is independent of X1, and a
two-atom surface ˚.X1;X2/ equals '.jX1 � X2j/ for
some function of interatomic distance. In particular,
for a diatomic molecule, the geometry optimization
step B reduces to computing the bond length, r� WD
argminr'.r/.

Model Energies

A wide range of model energies are in use, depend-
ing on the type of system and the desired level of
understanding. To obtain quantitatively accurate and
chemically specific predictions, one uses ab initio en-
ergy surfaces, that is to say surfaces obtained from a
quantum mechanical model for the system’s electronic
structure which requires as input only atomic numbers.
For large systems, one often uses classical potentials.
The latter are particularly useful for predicting the 3D
structure of systems composed from many identical
copies of just a few basic units, such as crystalline
clusters, carbon nanotubes, or nucleic acids.

Born-Oppenheimer Potential Energy Surface
The gold standard model energy of a system of M
atoms, which in principle contains the whole range of
phenomena described in section “Pheonomena,” is the
ground state Born-Oppenheimer PES of nonrelativistic
quantum mechanics. With X D .X1; : : : ; XM / 2 R

3M

denoting the vector of nuclear positions, it has the
general mathematical form

˚BO.X/ D min
�2AN

E.X;�/; (1)

where E is an energy functional depending on an
infinite-dimensional field � , the electronic wave func-
tion. For a molecule with N electrons, the latter is
a function on the configuration space .R3 � Z2/

N

of the electron positions and spins. More precisely
AN D f� 2 L2..R3 � Z2/

N / ! C j jj� jjL2 D
1; r� 2 L2; � antisymmetricg, where antisymmet-
ric means, with xi ; si denoting the position and spin
of the i th electron, �.: : : ; xi ; si ; : : : ; xj ; sj ; : : :/ D
��.: : : ; xj ; sj ; : : : ; xi ; si ; : : :/ for all i < j . The func-
tional E is given, in atomic units, by E.X;�/ DR
.R3�Z2/N �

�H� where

H D vX.x1/C
NX

jD1
r2xiC

X

1�i<j�N
Wee.xi�xj /CWnn.X/

(2)
and

vX.r/ D �
NX

˛DM

Z˛

jr � X˛j ; Wee.r/ D 1

jr j and
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Molecular Geometry Optimization, Models, Fig. 1
Numerical geometry optimizer for water, H2O, for the
Born-Oppenheimer energy surface (1)–(3). Water corresponds
to M D 3, Z1 D Z2 D 1, and Z3 D 8, N D 10. The positions
of the atomic nuclei are visualized as spheres. Data as predicted
in Ref. [C05]: O–H bond lengths 0.95870 Aı, H–O–H bond
angle 104.411ı . The high dimensionality of Step A (solving the
underlying Schrödinger partial differential equation on R

30) is
tackled by a method far beyond this article (internally contracted
multi-reference configuration interaction with aug-cc-pV6Z
basis set)

Wnn.X/ D
X

1�˛<ˇ�ˇ

Z˛Zˇ

jX˛ � Xˇj I (3)

see also entry � Schrödinger Equation for Chemistry
in this encyclopedia. Note that the energy functional
captures chemical specificity, by depending on the
nuclear chargesZ1; : : : ; ZM 2 N (e.g., 1 for hydrogen,
6 for carbon, 8 for oxygen).

Numerically computing the PES and ensuing
molecular geometry from (1) to (3) are already
highly nontrivial for a small system as in Fig. 1 and
become infeasible for large systems, due to a curse-
of-dimension phenomenon that the unknown field �
is a function on a 3N-dimensional space. For more
information, see entry �Linear Scaling Methods.

Coarse-Graining
A key method for reducing the complexity of E is
coarse-graining. In the simplest case, the minimiza-
tion is performed over a low-dimensional subset ob-
tained via some ansatz. Examples are the Hartree-Fock
method, which makes a tensor product ansatz for the
electronic wave function, or the Cauchy-Born rule (see
(9)). Such methods generate controlled approximations
in the sense that the minimization of the energy over all

trial configurations leads to upper bounds for the true
energy minimum.

Ansatz-free methods involve a modification of
the energy E to account implicitly for eliminated
degrees of freedom. Such methods, ingenious as
they may be, provide uncontrolled approxima-
tions. Key examples are density functional theory
(section “Density Functional Theory Models”) and
classical potentials (section “Classical Potentials”), as
well as related intermediate methods. For example,
one may eliminate only core electrons and model their
impact on valence electrons by pseudopotentials, or
one may model chemically active sites of a molecule
quantum mechanically and the remainder classically,
as in the quantum mechanics/molecular mechanics
(QM/MM) method (see, e.g., [14]).

Density Functional Theory Models
A great deal of geometry optimization calculations in
the chemistry and physics literature are based on DFT
models, introduced by Hohenberg and Kohn (1964)
and [9]. Such models describe the electronic structure
in terms of a single scalar function on R

3, the single-
electron density � W R3 ! R, thereby eliminating the
curse-of-dimension from (1). The associated PES are
of form

˚DFT.X/ D min
�

EDFT.X; �/; (4)

for some functional EDFT, a number of different func-
tionals being used in practice. For more information
see, the entry �Density Functional Theory. For exam-
ples of optimal DFT geometries of molecules with up
to 100 atoms, see, e.g., [12]. It occasionally happens
that DFT fails to get the most favorable geometries
right, even when the best available functionals are used,
as in a, by DFT standards small, set of 20 carbon atoms
([10], Table 4).

Classical Potentials
For large systems, one often uses classical potentials,
in which the energy as a function of atomic position
vector is given by an explicit expression. A basic
example is the pair potential energy

˚ classical.X1; : : : ; XM / D
X

1�i<j�M
'.jXi � Xj j/ (5)

with Lennard-Jones (6,12) potential

http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_252
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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Molecular Geometry Optimization, Models, Fig. 2
Numerical 70-atom geometry optimizer for the Lennard-
Jones energy (5) and (6), plotted from the results of [11]. The
high dimensionality of Step B (the configuration space is 210-
dimensional) is tackled by first generating a good set of initical
configurations before relaxing them under the Lennard-Jones
energy. The initial configurations are subsets of plausible crystal
lattices and are found via a stochastic search algorithm based on
the number of “bonds” (pairs of particles with close to optimal
distance)

'.r/ D ar�12 � br�6; (6)

which provides a good description of noble gases
and noble metals such as argon or copper. Here
a > 0; b > 0 are empirical parameters. For a
variety of monatomic systems, more sophisticated
classical potentials containing three-body and higher
interactions,

˚ classical.X1; : : : ; XM / D
X

i<j

V2.Xi ; Xj /

C
X

i<j<k

V3.Xi ; Xj ;Xk/C : : : ; (7)

have been developed, well-known examples being the
Tersoff, Brenner, and Stillinger-Weber potentials for
carbon. An example of a geometry optimizer for the
model (5) and (6) is shown in Fig. 2.

Classical potentials for biomolecules (customarily
called “force fields” in biochemistry) are consider-

ably more subtle. In particular, they require not just
a significant number of empirical constants but also
prior knowledge of the molecule’s topology (i.e., which
atom is covalently bonded to which; in biochemistry
language, the primary structure). In some cases, one
also needs to know the hydrogen bonds (the secondary
structure). Software packages such as CHARMM [2]
have the capability of specifying an all-atom poten-
tial given a molecule’s primary structure and provide
inbuilt geometry optimization routines. The accuracy
of the potentials has improved significantly over time
since the package’s first release in 1983, but sys-
tematic improvement by building in empirical or ab
initio information about subunits bigger than a few
atoms is impeded by the combinatorial growth of
possibilities.

Methods andMathematical Aspects

Rigorous Results
On the rigorous level, very little is known about bind-
ing of molecules and geometry optimization in ab initio
models. In fact, it is even far from mathematically
obvious that interatomic binding occurs, i.e., that the
energy difference E defined in section “Geome-
try Optimization and Binding Energy Prediction” is
negative and that ab initio potential energy surfaces
possess minimizers. The latter properties for general
neutral molecules essentially follow from results by
Lieb and Thirring [LT86] for the Born-Oppenheimer
PES and were fully proved by Catto and Lions [4]
for density functional models such as the Thomas-
Fermi-Weizsäcker model. For classical models like (5)
and (6), the fact that binding occurs and geometry
optimizers exist is mathematically obvious, but the
basic numerical fact that optimizers have a crystalline
structure has not been explained by any mathematical
argument. Rigorous insights into global optimality of
crystalline arrangements are currently limited to even
further simplified models and two space dimensions
[6, 8], [Th05], [5].

Numerical Methods
Numerical computation of binding energies and equi-
librium geometries for specific systems has a huge
physics, chemistry, biochemistry, and materials science
literature.
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One has to face curse-of-dimension phenomena
and the multiscale structure of the energy landscapes.
Tiny energy differences (in relation to the system’s
total energy) between competing electronic states
or atomic configurations often lead to very different
minimizers. The large and sophisticated array of
methods that is being used in practice, while fitting
into the general framework described in section
“Coarse-Graining,” rely both on model reduction
via physical and chemical intuition, and algorithmic
ideas, and cannot be reviewed here. For small
molecules, generation of ab initio PES based on
these methods and subsequent geometry optimization
lies within the capabilities of software packages
such as Gaussian [7]. For more information on
algorithmic issues for large molecules, see the entry by
S. Redon.

Passage to Larger Scales
Let us give two examples where empirical assump-
tions on atomistic geometry optimizers directly lead to
widely used continuum theories on larger scales.

Cluster Shapes. Assume that the M -atom ground
states of a PES are, to good approximation, subsets
of a crystal lattice. As M gets large, the ground state
energy decomposes into a shape-independent O.M/

contribution and an O.M2=3/ surface energy which
depends on the overall cluster shape ˝ � R

3;

˚.X1; : : : ; XM / 
M �E1 C
Z

@˝

e.�/ dS (8)

(for a rigorous version for a simple 2D model, see
[1]). Here E1 is the asymptotic energy per particle,
limM!1M�1 minX1;:::;XM ˚.X1; : : : ; XM /, and e.�/

is an energy density per unit surface area which de-
pends on the normal direction � of the surface with
respect to the lattice. The minimizers of such surface
functionals are surprisingly simple and can be found
explicitly (so-called Wulff shapes).

Cauchy-Born Rule. This rule postulates that when
a crystal is subjected to a small linear displacement of
its boundary, all atoms will follow this displacement.
For a crystal with overall shape ˝ � R

3 subjected
to a continuum deformation u W ˝ ! R

3, locally
applying this rule leads to an elastic energy, ˚.X/ 

Icont.u/ D

R
˝
W.ru.x// dx, with stored-energy func-

tion W given, for ˚ as in (7), by

W.F / D 1

v.L/

�1

2

X

`2L
V2.0; F `/

C1
6

X

`;`02L
V3.0; F `; F `

0/C : : :
�
: (9)

Here v.L/ denotes the volume of a lattice cell, and the
map u W ˝ ! R

3 is a continuum approximation of the
map from the atomic positions in the undeformed crys-
tal to the new positions. Computationally, the passage
from ˚ to Icont is a dramatic simplification, because
we have replaced the discrete (and expensive) sums
with integrals, which can be re-discretized on a much
larger scale. Closely related are hybrid methods such
as the quasicontinuum method which retain atomistic
resolution in some regions [16].

Temperature

Geometry optimization is a zero-temperature method.
At finite-temperature T , the system is more accurately
described by the Boltzmann-Gibbs distribution

�T .X;P / D 1

Z.T /
e
� 1
kB T H.X;P /;

where P is the vector of particle momenta, H.X;P /
is the Hamiltonian of the system, kB the Boltzmann
constant, and Z.T / a normalization constant. The
Boltzmann-Gibbs distribution provides a unified treat-
ment of entropic and energetic effects and concentrates
near the ground state of ˚ if T is sufficiently small in
relation to the closest critical temperature at which a
phase transition occurs. Many small molecules and
most solids are well within this regime at 300 K,
but large biomolecules often are not. A numerical
finite-temperature analogue of geometry optimization
for such molecules is to sample trajectories of a
thermostated molecular dynamics model with initial
conditions given by zero-temperature geometry
optimizers.
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Molecular Geometry Optimization:
Algorithms

Stephane Redon
Laboratoire Jean Kuntzmann, NANO-D – INRIA
Grenoble – Rhône-Alpes, Saint Ismier, France

The efficient determination of molecular structures is
one of the grand challenges of computational chemistry
[5], with applications in biology (e.g., protein docking,
protein folding, etc.), drug design, material science,
electronics, etc. In most cases, it is assumed that molec-
ular configurations q evolve in a configuration space C,
and must minimize an energy function E . Determining

the optimal molecular structure is thus formally written
as computing q�, the solution of a global optimization
problem:

q� D argmin
q2C

E.q/: (1)

In Cartesian coordinates, for example, C D R
3N , where

N is the number of atoms.
Ideally, the molecular system should include all

relevant atoms (e.g., a solvent, counter ions, etc.),
and the energy function E should result from quan-
tum mechanical calculations (see, e.g., �Large-Scale
Electronic Structure and Nanoscience Calculations and
�Linear Scaling Methods).

Unless the studied molecular system has high sym-
metry or special properties, however, it is most of the
time too costly to use quantum calculations to compute
E , since many energy evaluations are typically needed
by an optimization algorithm. For this reason, large
atomic systems are often described using empirical en-
ergy functions. Such functions may be physically based
(e.g., CHARMM [27]), and written as a potentially
complex sum of bonded terms (e.g., bond, angle, and
dihedral terms) and nonbonded terms (e.g., van der
Waals and electrostatic terms). Other empirical func-
tions may be knowledge based (e.g., ROSETTA [24]),
and derived from, for example, analyzing databases of
experimentally determined molecular structures, such
as the Protein Data Bank (PDB [4]).

Unfortunately, realistic energy functions are typi-
cally very rugged and present numerous local minima.
Even when empirical energy functions are written
as sums of pairwise terms (e.g., terms involving at
most two atoms), the number of local minima may
be prohibitively large. For example, it is believed that
a simple 20-atom Lennard-Jones cluster may have as
many as 108 local minima [31]. As a result, very effi-
cient methods are needed to explore the conformational
space of a large molecular system.

This entry provides an overview of both local and
global optimization methods.

Local Optimization

In several situations, only local optimization is possi-
ble, or even necessary. This can be because the cost of
evaluating the energy functions and/or its derivatives is

http://dx.doi.org/10.1007/978-3-540-70529-1_253
http://dx.doi.org/10.1007/978-3-540-70529-1_252
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high, or because the starting configuration is believed
to be close to the global energy minimum.

Some local optimization approaches are not specific
to geometry optimization of molecular systems, and
are just classical, “black-box” approaches are applied
to energy functions. Among these, two popular choices
include the steepest descent method and the Newton–
Raphson method. The steepest descent method only
uses the gradient of the energy function to build a series
of conformations that converge to a local minimum:

qnC1 D qn � �nrE.qn/; (2)

where the value of �n may be constant, or chosen to
minimize the energy in the direction of rE.qn/. The
steepest descent method is very simple to implement,
and only requires the gradient of the energy function,
but is rather inefficient when the eigenvalues of the
Hessian H (i.e., the square matrix of second-order
partial derivatives of the energy function) show high
discrepancies. The Newton–Raphson method is also an
iterative scheme, but employs the Hessian to converge
to the minimum:

qnC1 D qn � �nH�1rE.qn/: (3)

In practice, however, the Hessian is difficult to com-
pute, especially for large molecules, and quasi-Newton
methods approximate it, or its inverse. One very pop-
ular quasi-Newton method is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method, which replaces the
line search direction H�1rE.qn/ by a solution pn of

Bnpn D �rE.qn/; (4)

where Bn is an approximation of the Hessian H that
is updated at each step, and the initial approximate
Hessian (B0) might be based on simpler energy func-
tions [13].

The choice of the coordinate system used to de-
scribe the atomic configurations is important to achieve
fast convergence. Z-matrix coordinates are based on
the connectivity of the molecule. Local normal coordi-
nates are defined by the eigenvectors of an approximate
Hessian. The so-called natural internal coordinates
originate from vibrational spectroscopy. It appears that,
thanks to the reduction in anharmonic couplings, nat-
ural internal coordinates allow for faster convergence
than Cartesian coordinates [14].

Because even local optimization might be costly
for large molecular systems, it may be useful, when
possible, to attempt to speed up the evaluation of the
energy function itself.

Since the terms involved in the energy function
often have a limited support, that is, vanish when
the distance between atoms is larger than a given
distance cutoff, an important first step when evaluating
the energy function is often to determine pairs of
neighboring atoms. A number of algorithms have been
proposed to address this problem (e.g., grids, Verlet
lists, etc. [15]), and some of them can take advantage
of constant (relative) positions to speed up neighbor
search. For example, it can be shown that, for large
rigid molecules, it is actually more efficient to use data
structures that move with the molecules to determine
pairs of neighboring atoms [1].

When local optimization employs specific types of
atomic motions (e.g., when some atoms are frozen
in the global reference frame, or when some atoms
move together as rigid bodies), the structure of the
energy function can often be exploited to incrementally
update energy values, in particular when the terms of
the energy function only depend on a few atoms po-
sitions. In classical mechanics, this approach has been
demonstrated for Cartesian mechanics of hydrocarbon
systems [6], as well as for torsion-angle mechanics of
proteins [28], by relying on an assembly tree, that is, a
hierarchical data structure used to represent molecules
[2]. These approaches analyze dependencies between
terms of the energy function, as well as on atoms
positions, to deduce data structures and algorithms.
In quantum mechanics, freezing part of the system’s
state to speed up computations has been explored, for
example, in the frozen density matrix method [12]. In
general, all efforts to speed up energy and gradients
calculations, through, for example, divide-and-conquer
methods [7], directly benefit geometry optimization
(see also, e.g., � Fast Methods for Large Eigenvalues
Problems for Chemistry).

Symmetry is a frequent trait of molecular systems.
In biology, for example, many proteins appear as sym-
metrical assemblies of a few subunits, including mem-
brane channels, virus capsids, enzymes, etc. In prac-
tice, geometry optimization should take symmetry into
account in order to produce realistic structures. Indeed,
replicas induce forces that might significantly alter the
atoms’ positions in the asymmetric unit. Unfortunately,
since many replicas, hence atoms, might be present,

http://dx.doi.org/10.1007/978-3-540-70529-1_254
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minimization might be prohibitively slowed down. In
this case again, it can be shown that using a hierarchical
data structure to perform neighbor search within the
asymmetric unit, as well as between the asymmetric
unit and its replicas, makes it possible to significantly
speed up geometry optimization [20].

Global Optimization

The global optimization problem is significantly more
difficult, and a large variety of approaches have been
developed to address it. Some of these approaches
are general and may treat the energy function as just
another expensive black-box function [23], but many
approaches have been developed or tuned specifically
for geometry optimization.

Simulated annealing [25] establishes a connection
between statistical mechanics and global optimization
(even for nonphysical problems), by essentially treat-
ing the solution space as a thermodynamical ensemble
that may be explored using a Metropolis–Hastings
algorithm (see entry � Sampling Techniques for Com-
putational Statistical Physics). It is thus unsurprising
that simulated annealing has been applied to molecular
geometry optimization [11].

As in Metropolis–Hastings sampling, though, the
optimization procedure may revisit local minima too
frequently to efficiently find the global minimum. Tabu
search [16] uses a set of rules to prevent long stays
around local minima, by, for example, avoiding multiple
identical or similar local moves. It has been successfully
employed for, for example, protein docking [3].

One drawback of “pure” simulated annealing is
that only one candidate solution is considered at any
given time during optimization. Genetic algorithms
and, more generally, evolutionary algorithms mimic
evolutionary processes to find solutions to optimiza-
tion problems using populations of candidate solutions
[18]. These candidate solutions may reproduce, recom-
bine, and mutate. In molecular geometry optimization,
candidate configurations can be recombined by, for
example, exchanging the values of some groups of
coordinates, and the energy functionE is a direct mea-
sure of the candidates’ fitness, which determines which
candidates survive to the next evolutionary round.
Genetic algorithms have been successfully used to, for
example, minimize the structure of fullerenes [10].

Swarm algorithms also use populations of candidate
solutions, but let the candidates interact through po-
tentially complex rules. Particle swarm optimization,
where candidates (particles) motions are influenced by
neighboring particles, has been applied, for example,
to dock ligands into proteins [21].

A number of approaches attempt to modify the en-
ergy function to facilitate the search for the global mini-
mum. A simple one is basin hopping, which consists in
replacing the energy function by a piecewise constant
function [30]. Precisely, for each possible configura-
tion q,E.q/ is replaced by the minimum energyE�.q/
reached by a local search starting from q. The method
makes it easier to jump between local minima, as local
barriers are “flattened.”

The diffusion equation method smoothes the energy
functionE.q/ by solving the diffusion equation

@ QE.q; t/
@t

D r2 QE.q; t/ t > 0; (5)

with the initial condition QE.q; 0/ D E.q/. The un-
derlying reasoning is that the diffusion process pro-
gressively removes all local minima from the original
energy function. Once the global minimum Qq� of the
smoothed energy function QE has been found, it is
hoped that a reversing procedure may be used to trace
back the global minimum q� of the original energy
function E . The diffusion equation method has been
successfully applied to find global energy minima of
Lennard-Jones clusters [26].

A related approach is the hyperdynamics method,
which consists in flooding energy basins to speed up
exploration of phase space during a molecular dynam-
ics simulation [29].

Besides the diffusion equation method, all the
approaches above are inspired by statistical mechanics,
and may spend too much time visiting local energy
minima. In general, exploring the configuration
space according to thermodynamics principles may
be inefficient when the ultimate goal is “only” to
determine the global energy minimum, and not
compute statistical averages. Minima hopping [17]
uses short runs of molecular dynamics simulations to
try and escape local energy minima, followed by local
geometry optimizations to reach potentially new local
minima. The method contains five parameters that are
used to adjust the speed at which new local minima

http://dx.doi.org/10.1007/978-3-540-70529-1_268
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are accepted, and appears to exit wrong energy funnels
faster than basin hopping.

Of course, hybrid methods that combine two or
more of the methods described above have often
been proposed. Tabu search has been applied to
the crossover operator of a genetic algorithm to
perform protein folding simulations [22]. The diffusion
equation method has been combined with simulated
annealing and evolutionary programming to perform
global optimization of short peptides [19].

Note that many global optimization methods are
intrinsically parallel (simply perform several searches
in parallel), and a number of large-scale, distributed
computing efforts have been developed, for exam-
ple, for protein docking (e.g., the FightAIDS@Home
project [8]) or for protein structure prediction (e.g., the
Rosetta@Home project [9]).
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Synonyms

Molecular motors; Motor proteins

Short Definition

Molecular motors, also known as motor proteins, are
enzymatic molecules that convert chemical energy into
mechanical motion. They typically accelerate chemical
reactions of hydrolysis of ATP (adenosine triphos-
phate) or related compounds, and polymerization pro-
cesses in DNA, RNA, and protein molecules. Part
of the released chemical energy is utilized then for
the mechanical work that supports many cellular pro-
cesses. Molecular motors can be viewed as submicro-
scopic nanometer-sized engines that function at the
single-molecule level in non-equilibrium but isother-
mal conditions.

Description

There are many different types of molecular motors
[1, 2]. The discovery of first motor proteins, myosins,
that are very important for muscle contraction, has

been made in 1940s. Dyneins that are responsible for
propelling sperm, bacteria, and other cells have been
reported first in 1963. Experimentally most studied
kinesin motor proteins, which function by supporting
cellular transport, have been first purified in 1985.
Since then many new classes of molecular motors have
been discovered. Also, in last two decades, a significant
progress has been achieved in experimental investiga-
tions of motor proteins dynamics and their functions
[2–5]. The motion of molecular motors can now be
monitored and controlled with a single-molecule pre-
cision and a high temporal resolution. These studies
provided a significant amount of quantitative informa-
tion that stimulated various theoretical discussions of
mechanisms of motor proteins dynamics and function-
ing [7–11].

In this entry, we will briefly review recent develop-
ments in theoretical modeling of biological molecular
motors. Although our analysis will be presented for lin-
ear motor proteins, it also applies to several important
classes of rotating motor proteins. The same theoretical
methods can be used to develop artificial molecular
motor systems.

Theoretical Models

General Remarks
The main goal of theoretical models for molecular
motors is to explain coupling between biochemical
transitions and mechanical motions at the microscopic
level. It is known that all chemical processes can
proceed in both directions, although available experi-
mental data might not provide a direct evidence for this
reversibility. At given experimental conditions, back-
ward transitions could be very slow and not observable.
However, for molecular motors, the reversibility of
involved chemical reactions cannot be neglected since
it might lead to unphysical conclusions and wrong
assumptions about mechanisms [7]. Motor proteins
are catalysts that by definition accelerate both forward
and backward chemical transitions. It suggests that
molecular motors that help to hydrolyze ATP when
moving forward at one set of conditions could also
make ATP at another set of conditions. This conclu-
sion has been experimentally shown for some rotary
molecular motors and for some kinesin motor proteins.

Motor proteins typically function in cells by moving
in a linear fashion along cytoskeleton proteins such as
actin filaments and microtubules [1, 2]. Because of the
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Molecular Motor Dynamics, Modeling, Fig. 1 Schematic
picture of the motion of molecular motor in the continuum
thermal ratchet models. Two periodic asymmetric potentials are
shown. Solid lines correspond to stochastic transitions between
potentials

structure of these filaments, the dynamics of molecular
motors can be viewed as effectively one-dimensional
periodic biased motion [7]. All existing theoretical ap-
proaches adopt this view, although the implementation
of this picture is different. In the so-called continuum
ratchet models [8–11], the continuum motion of motor
proteins along some potentials is assumed. A different
approach argues that the motion of motor proteins
can be described by a network of discrete stochastic
transitions between specific biochemical states [7].

Continuum Ratchet Models
In this continuum method, the molecular motor is
viewed as a particle that moves along several spatially
parallel, periodic but generally asymmetric free-energy
potentials as shown in Fig. 1. Different potential sur-
faces are the results of interactions of the molecular
motor with the filament in different biochemical states,
and the molecular motor can stochastically switch be-
tween these states. The sustained unidirectional motion
of the particle requires a constant supply of the chem-
ical energy. One can introduce a function Pi.x; t/ that
defines the probability density for the motor protein to
be found at location x at time t at the potential surface
Wi.x/: see Fig. 1. The temporal evolution of the system
can be described by a set of Fokker-Planck equations
with source terms [8, 10, 11],

@Pi .x; t/

dt
C @Ji

dx
D
X

j

uj iPj .x; t/ �
X

j

uij Pi .x; t/;

(1)

where uij are transition rates between states i and j .
The particle current has contributions from diffusion,
from the interaction potential, and from the action of
possible external fields [8],

Ji D �i

	

�kBT @Pi .x; t/
dx

�Pi.x; t/ dW i .x/

dx
�Pi.x; t/ dW ext .x/

dx




;

(2)
with�i describing a mobility of the molecular motor in
the state i . These equations in principle can be solved
if potential functions are known.

These chemically driven ratchets models [8, 10] are
also known as Markov-Fokker-Planck models [11].
They provide a simple and consistent description of the
motor protein’s dynamics with a small number of pa-
rameters. Continuum models are well suited for math-
ematical treatment using well-established analytical
tools. The ratchets models are also a starting point of
fundamental studies on the nature of non-equilibrium
phenomena in molecular motors [12]. However, there
are several properties of these continuum models that
complicate their application for modeling molecular
motors dynamics. With the exception of a few over-
simplified and unrealistic potential surfaces, general
analytical results cannot be obtained. For most situ-
ations, numerical calculations should be performed,
but they are typically also quite demanding. Further-
more, it is almost impossible to derive the realistic
potentials from the available structural information on
motor proteins, and approximations must be utilized
in the computation of dynamic properties of molecular
motors. As a result, it is hard to estimate the reliability
and applicability of ratchet models for uncovering
mechanisms of real motor proteins. This suggests that
continuum models can be reasonably utilized now
only for description of some qualitative features of
molecular motors dynamics [7].

Discrete Stochastic Models
Stimulated by importance of chemical processes re-
lated to dynamics of motor proteins, a different ap-
proach, based on discrete stochastic models of tradi-
tional chemical kinetics, has been developed [7]. It
argues that the motion of molecular motors can be
described as a network of transitions between discrete
chemical states. In the simplest linear discrete sequen-
tial model, it is assumed that during the enzymatic
cycle, the motor protein moves from the binding site
l on the filament to the identical binding site l C 1

via a sequence of N intermediate biochemical states
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that might have different spatial locations: see Fig. 2.
Two identical binding sites are separated by a distance
d which is called a step size. It is known that for
kinesin and dynein motor proteins, translocating along
microtubules d is equal to 8.2 nm, while for myosins
that proceed along actin filaments, the step is larger,
d 
 36 nm. The motor protein in the mechanochem-
ical state jl (j D 0; 1; � � � ; N � 1) can step forward
to the state .j C 1/l at a rate uj , or it might move
backward to the state .j � 1/l at a rate wj . Discrete
states jl describe different stages of ATP hydrolysis
catalyzed by the action of the motor protein molecules.
For example, it is assumed that 0l corresponds to
the state when the motor protein is strongly bound
to the molecular track, awaiting the arrival of ATP
molecule. In these discrete models, reverse transitions
are explicitly taken into account, in agreement with
experimental observations of backward steps [4, 7].

In discrete stochastic models, dynamics of molec-
ular motors can be described by analyzing a function
Pj .l; t/ which is a probability to find the molecule in
the state jl at time t . Its temporal evolution is governed
by Master equations,

dPj .l; t/

dt
D uj�1Pj�1.l; t/C wjC1PjC1.l; t/

�.uj C wj /Pj .l; t/: (3)

It can be shown that the same equations also describe
a motion of a single random walker on a periodic
(with a period of size N ) one-dimensional infinite
lattice [7]. Then this mapping allows one to utilize the
mathematical formalism, developed by Derrida in 1983
[13], to obtain exact and explicit expressions for all
dynamic properties, such as the mean asymptotic large-
time velocity

V D V.fuj ;wj g/ D lim
t!1

d hx.t/i
dt

; (4)

and the mean dispersion (or effective diffusion con-
stant)

D D D.fuj ;wj g/ D 1

2
lim
t!1

d

dt

�hx2.t/i � hx.t/i2� :
(5)

Here x.t/ defines a position of the molecular motor
on linear track at time t . These expressions directly

Nl−1 0l

( j−1)l

jl
( j+1)l

1l+1

0l+1

(N−1)l+1

0l+2 Nl+1

x = ld

d d

wj uj

Molecular Motor Dynamics, Modeling, Fig. 2 Schematic
picture of a linear sequential discrete stochastic model for the
motion of single molecular motors. Transition rates uj and wj
describe forward and backward steps from the state j

connect transition rates uj and wj , that can be obtained
from bulk chemical kinetic experiments, with dynamic
properties (V and D) of motor proteins measured in
single-molecule experiments. For the simplest model
with N D 2 states, this theoretical approach gives
the following expressions for the mean velocity and
dispersion:

V D d u0u1 � w0w1
u0 C u1 C w0 C w1

;

D D d2

2

.u0u1 C w0w1/ � 2.V=d/2
u0 C u1 C w0 C w1

: (6)

The molecular motor catalyzes hydrolysis of ATP
and it utilizes part of the released chemical energy to
exert a force in the direction of its motion. This driv-
ing force can be conveniently analyzed using discrete
stochastic models. It was shown that for the simplest
sequential chemical kinetic model (see Fig. 2), the
exerting force is equal to

F D kBT

d
ln
N�1Y

jD0

uj
wj
: (7)

This result can be easily understood by using standard
thermodynamic arguments. One can define a function
K D QN�1

jD0
uj
wj

that corresponds to an effective equi-
librium constant for the process of moving the motor
protein from the binding site l to the binding site lC1.
Then, the expression G D kBT lnK gives the free-
energy difference between two consecutive binding
sites for the molecular motor. This difference is a
result of hydrolyzing 1 ATP molecule after making one
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forward step. All this free energy might be converted
into mechanical work to move the motor protein by a
step size d , thus exerting the force given above. This
force is also called a stall force since it is equal to the
external force needed to stop the molecular motor. It
should be noted that neglecting any of the backward
transitions, i.e., assuming wj D 0, leads to unphysical
prediction of diverging stall force.

Molecular motors in cellular environment are sub-
ject to many external forces and fields. Single-molecule
experiments are able to impose a measured force F
directly to single motor protein molecules [2, 4–6]. In
discrete stochastic models, the effect of external forces
can be easily incorporated by introducing load distri-
bution factors, �j̇ [7]. These parameters quantitatively
describe how the work performed by external forces
is distributed between various biochemical transitions.
It also provides a measure of the change in the free-
energy landscape of the system under the influence of
this external field. Assuming that the external force acts
parallel to the filament, it produces a work Fd on the
single molecular motor in one step. It can be shown
using reaction-rate theories [7] that transition rates are
modified under the effect of external forces,

uj .F / D uj .0/ exp.��Cj Fd=kBT /;

wj .F / D wj .0/ exp.��j Fd=kBT /; (8)

with the additional requirement that

N�1X

jD0
.�Cj C ��j / D 1: (9)

It also should be mentioned that the products �j̇ d
correspond to projections of free-energy landscape
extrema along the reaction coordinate, defining the
substeps for the motion of molecular motors [7].

A major advantage of discrete stochastic models is
their flexibility in handling more complex biochemical
networks than the linear sequence [7]. Biochemical
experiments on many molecular motors suggest that
they do not follow a single linear sequence of states
that connects the neighboring binding sites. The more
realistic picture of motor proteins related biochemical
networks includes multiple parallel pathways, loops,
branched states that do not lead to directed motion, and
effectively irreversible detachments. Theoretical ap-

proach that generalizes the original Derrida’s method
allows to compute explicitly dynamic properties of mo-
tor proteins with complex biochemical transitions. In
addition, discrete stochastic models have been success-
fully used to describe interactions between domains
of motor proteins and its effect on the overall mech-
anisms of motility. Furthermore, the original models
have been extended to describe explicitly the motion
in two-dimensional and three-dimensional free-energy
landscapes [7].

Future Directions
There are many open problems in the field of molecular
motors. It is interesting to understand what makes
an optimal molecular motor from a biological per-
spective. Although the answer most probably depends
on specific biological properties of these enzymatic
molecules, one might suggest (and there are several
preliminary indications from known motor protein sys-
tems) that the nature tuned them to produce the maxi-
mal speed with maximal efficiency and minimal fluctu-
ations. The problem of efficiency is also very important
for developing artificial molecular motors that mimic
some of the properties of biological motor proteins.
Increasing structural information on motor proteins
stimulates further refining of theoretical models to in-
clude more atomistic details. So far developed theoret-
ical models concentrate mostly on dynamics of single
motor proteins. In cells, molecular motors function in
groups of molecules. There is a need to develop a com-
prehensive theoretical picture of cooperative dynamics
of molecular motors. A variety of interesting dynamic
phenomena are expected for interacting molecular mo-
tors systems.
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Monte Carlo Integration

Description
In 1949, N. Metropolis and S. Ulam [12] published
the paper “The Monte Carlo Method.” They introduced
an algorithm for approximating multivariate integra-
tion. This is probably the first randomized algorithm
for continuous problems. Numerous modifications of
this algorithm have been proposed since then. Ran-
domized algorithms are used not only for multivari-
ate integration but also for all continuous or discrete
computational problems that are hard to approximate
by deterministic algorithms. In many cases, the name
Monte Carlo is used for any randomized algorithm,
paying tribute to the seminal work of Metropolis and
Ulam. Today Monte Carlo is widely used in many
areas of science such as physics, chemistry, biology,

statistics, numerical analysis, finance, and in many
areas of computational mathematics.

There is also a very active research area that deals
with the randomized complexity for multivariate inte-
gration as well as for other computational problems.
In particular, we want to find an optimal randomized
algorithm which minimizes the number of randomized
samples needed to guarantee that the randomized error
is at most ". This algorithm does not necessarily have
the form of Metropolis and Ulam’s algorithm and, in
particular, is not necessarily linear. In this short chapter
we restrict ourselves only to multivariate integration.
The reader is referred, in particular, to papers and
books [4–9, 11, 13–17, 22, 24] where the randomized
complexity is studied for general problems. This sub-
ject is also related to Markov Chain Monte Carlo
methods which is an active research area; see the recent
surveys [2, 19].

StandardMonte Carlo Algorithm

We consider square (Lebesgue)-integrable real func-
tions defined, for simplicity, on the d -dimensional unit
cube, f W Œ0; 1�d ! R. Metropolis and Ulam pro-
posed to approximate multivariate integrals Id .f / DR
Œ0;1�d f .x/ dx by what we call today the standard

Monte Carlo algorithm

MCn;d .f / D 1

n

nX

jD1
f .xj /;

where xj ’s are independent and uniformly distributed
over Œ0; 1�d . By direct integration it is easy to show the
remarkable formula for the randomized error for f

�Z

Œ0;1�dn
. Id .f / �MCn;d .f / /

2 dx1 dx2 � � � dxn
�1=2

D 1p
n

var1=2.f /

with the variance of f given by

var.f / D Id
�
.f � Id .f //2

� D Id .f 2/� I 2d .f /
� Id .f 2/:
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There are at least three interesting questions related to
this result:
• The points xj ’s are assumed to be independent

and uniformly distributed. How can it be done on
a standard computer? This leads us to pseudoran-
dom numbers and pseudorandom number gener-
ators. This is a field of active research which is
beyond the scope of this chapter. We only mention
that the assumption that a function is only square in-
tegrable must be strengthened when pseudorandom
numbers are used; see [23]. Surprisingly enough, in
many practical applications of the standard Monte
Carlo, there is not much complaint that pseudoran-
dom numbers are used instead of random numbers.

• The randomized error is proportional to n�1=2. Al-
though the speed of convergence n�1=2 is not great,
it is the same for all d . This property made the result
of Metropolis and Ulam famous. Furthermore, the
result holds for the huge class of integrands that
are square integrable. Hence, as long as we assume
that random numbers with uniform distribution can
be used, integrands do not have to be even con-
tinuous. It is natural to ask if the speed n�1=2
can be improved if we restrict ourselves to smooth
functions. The answer is yes if we choose a proper
randomized algorithm that may be different than
the standard Monte Carlo algorithm. In fact, for
many classes of functions, we know the optimal
speed of convergence. As an example, we present
the result Bakhvalov [1] from 1959 for the class of
r times continuously differentiable functions for a
nonnegative integer r . Then the optimal speed of
convergence is

n�.r=dC1=2/:

For r D 0, which corresponds to continuous func-
tions, we have the same speed as for the standard
Monte Carlo. However, for r > 0 the exponent of
n�1 is larger than 1=2. Furthermore, for a fixed d
and r tending to infinity, the exponent of n�1 tends
to infinity, whereas for a fixed r and d tending
to infinity, it goes to 1=2. This shows how the
smoothness of integrands helps.

For many practical applications, d is large and
r is small. Then the exponent of n�1 is close to
1=2. This means that in this case the standard Monte
Carlo algorithm enjoys almost optimal speed of

convergence. This justifies why it is so often used
in computational practice.

• The randomized error depends on the variance.
It is often overlooked that the error of standard
Monte Carlo may depend on d through the variance.
Unfortunately, the variance can depend badly on d .
In particular, it may be exponential in d . Indeed,
take f .x/ D Qd

jD1.axj � b/ with a D 2
p
3 and

b D �1 C p3. Then Id .f / D 1, Id .f 2/ D 2d ,
and the randomized error is .2d � 1/1=2=pn. If
we want to guarantee that it is at most " for some
" 2 .0; 1/, then the smallest n is

˙
.2d � 1/="2�,

which is indeed exponentially large in d .
There are numerous modifications of Monte

Carlo such that they decrease the variance of
a function. Many strategies were proposed and
they go by different names such as importance or
stratified samplings, just to name two of them. For
some functions these ideas are very powerful. There
are literally hundreds if not thousands of papers on
variance reduction. Some of them are heuristic and
some of them identify a class of functions for which
the variance is under the control; see [3] as an
example of a reference on this subject. In the last
section we present a recent result on importance
sampling and on the complexity.

Randomized Complexity

The Monte Carlo algorithm of Metropolis and Ulam
is an example of a randomized algorithm. Let Fd be a
normed linear space of functions defined on Œ0; 1�d . We
assume that Fd is continuously embedded in the space
of square-integrable functions so that the standard
Monte Carlo algorithm is well defined on Fd .

The general form of randomized algorithmsAn;d for
a space Fd is

An;d .f; !/ D �n.!/
�
f .x1;!/; f .x2;! /; : : : ; f .xn.!/;!/

�

8 f 2 Fd ;

where ! is a random element from some probability
space and x1;!; : : : ; xn.!/;! are independent identically
distributed points according to the probability measure
of !. Furthermore, n.!/ is a random integer which
tells us how many function values are computed for
!, with the expected value of n.!/ being at most n,
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i.e., E!n.!/ � n. Finally, �n.!/ is an arbitrary map-
ping (not necessarily linear) of n.!/ function values
f .xj;!/’s to R.

The randomized error of An;d is defined as

eran.An;d / D
 

sup
f 2Fd

E!
.Id .f / �An;d .f; !//2

kf k2Fd

!1=2

:

Let
eran.n; Fd / D inf

An;d
eran.An;d /

denote the minimal randomized error among all pos-
sible randomized algorithms An;d . This means that we
want to find the best distribution of random elements
!, the best choice of n.!/, xj;! , and the mapping
�n.!/ such that they approximate Id .f / with smallest
possible randomized error. Note that for n D 0 we do
not use function values and we approximate Id .f / by
a random constant. It is easy to see that the best random
constant is zero and then

eran.0; Fd / D kIdk D kIdkFd!R

is the norm of Id in Fd and is called the initial error.
The randomized information complexity is then

nran."; Fd / D min f n j eran.n; Fd / � " kIdkg :

That is, it is the minimal number of function values
needed to improve the initial error by a factor " 2
.0; 1/. Finally, the (total) randomized complexity is
the minimal cost which is needed to compute an
"-approximation. The notion of cost is defined by
assuming that all arithmetic operations can be done
at cost one and the cost of computing each function
value is, say, c.Fd /. Usually, c.Fd /� 1. Surprisingly
enough, for many spaces Fd the total complexity is
roughly equal to c.Fd / times the information com-
plexity. The reason is that usually the algorithm that
minimizes the number of function values is easy to im-
plement. Indeed, if we can prove that the randomized
information complexity is achieved or nearly achieved
by the standard Monte Carlo algorithm, then its total
cost is .c.Fd /C 1/ nran."; Fd / 
 c.Fd / nran."; Fd /.

We would like to know how the information com-
plexity nran."; Fd / depends on d and "�1. In partic-
ular, we would like to know for which spaces Fd
this dependence is polynomial in both d and "�1 or

at least not exponential in d and "�1. This is the
subject of tractability which nowadays is a popular
research area. The reader may find more on tractability
in [15–17].

The randomized complexity of multivariate integra-
tion is known for many spaces of functions. We refer
the reader to the works we already cited.

Importance Sampling

Suppose that ! is a probability density function on
Œ0; 1�d . Then we choose sample points xj for j D
1; 2; : : : ; n as independent and identically distributed
according to the probability measure of !. The impor-
tance sampling algorithm is then

An;d .f; !/ D 1

n

nX

jD1

f .xj /

!.xj /
8 f 2 Fd :

Note that for the uniform distribution we have ! D
1 and An;d coincides with standard Monte Carlo. It is
easy to check that

eran.An;d /� 1p
n

 

sup
f 2Fd

R
Œ0;1�d

!�1.x/ f 2.x/ dx

kf k2Fd

!1=2

:

The main point is to choose ! such that the supre-
mum above is as small as possible for the class Fd .
We now report a recent result of Hinrichs [10]. He
proved that for Fd D H.Kd/ which is an arbitrary
reproducing kernel Hilbert space whose kernel is point-
wise nonnegative, there exists a density function !

such that

nran."; Fd / � 1

2
� "�2 C 1 8 " 2 .0; 1/; d 2 N:

Furthermore, the assumption on the reproducing kernel
as well as the estimate on the information complex-
ity in the theorem of Hinrichs are in general sharp;
see [18].

We stress that the bound on the information com-
plexity is independent of d and is of order "�2. Un-
fortunately, the result of Hinrichs is not construc-
tive, and in general we only know the existence of
good !, but we do not know how to find it. Never-
theless, for the Sobolev space with the reproducing
kernel,
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Kd.x; y/ D
dY

jD1

�
1Cmin.xj ; yj /

�8x D Œx1; : : : ; xd �;

y D Œy1; : : : ; yd � 2 Œ0; 1�d ; (1)

Hinrichs proved that

!.x/ D
dY

jD1

�
3

4

�
1C xj � 1

2
x2j

��

8 x 2 Œ0; 1�d :

This Sobolev space is related to L2-discrepancy and
is often used for the study of QMC (Quasi-Monte
Carlo) algorithms in the worst-case settings; see [20].
It is also known that for this space the dependence
on d in the randomized error of the standard Monte
Carlo algorithm is exponential; see [21]. Hence, impor-
tance sampling is exponentially better than the standard
Monte Carlo algorithm for this Sobolev space. We add
that even an apparently small change of the Sobolev
space may lead to a different result and the randomized
error of the standard Monte Carlo algorithm may be
independent of d ; see again [21].
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16. Novak, E., Woźniakowski, H.: Tractability of multivariate
problems, volume II: standard information for functionals.
European Mathematical Society Publishing House, Zürich
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Definition

Monte Carlo simulation is a method for numerical
computation in which degrees of freedom that are com-
plicated or unknown are represented through random
numbers. It is used in a wide range of applications
in science and industry, such as finance, physics, and
operations research.

Description

Overview
Monte Carlo simulation is a powerful method for
numerical description of a system, in which degrees of
freedom that are complicated or unknown are repre-
sented through random numbers. The power of Monte
Carlo simulation derives from its generality, simplicity,
and robustness: general in that it works on almost
anything, simple in that it often directly mimics the
properties of the system that is being simulated, and ro-
bust in that it seldom fails catastrophically and almost
always gives answers that are reasonable. The price
for these benefits is that Monte Carlo can be slow and
inaccurate. Following the Central Limit Theorem, the
accuracy � of Monte Carlo is typically � D O.N�1=2/
for N random samples; or equivalently it is slow, be-
cause the computational effort is of size N D O.��2/
to get accuracy of size �. Much of the research on
Monte Carlo simulation is aimed at development of
more efficient simulation, in the context of a particular
application.

Monte Carlo Quadrature
The simplest use of Monte Carlo is for numerical
quadrature [2]. Consider the integral I of a function
f .x/ defined for x in the d -dimensional unit cube Id ,
i.e.,

I D
Z

Id
f .x/dx; (1)

and the N th Monte Carlo approximation IN is

IN D N�1
X

1�k�N
f .xk/; (2)

in which xk are independent samples of a random
variable uniformly distributed on Id . SinceEŒf .x/� D
I , then the Central Limit Theorem says that error �N D
I � IN satisfies

�N 
 �N�1=2�; (3)

in which �2 D R
Id .f .x/ � I /2dx is the variance of

f .x/ and � is a standard N.0; 1/ random variable.
There are two main ways in which to improve the

accuracy of the quadrature formula Eq. (2): The first
is variance reduction (such as antithetic variables and
control variates) in which the function f is changed to
a function Qf with the same average I but a smaller
variance Q�2. The second is to change the points xk
so that the error in Eq. (3) is reduced. For example,
if the points xk come from a quasi-random sequence,
then Eq. (3) is replaced by an inequality like j�N j �
cN�1.logN/�d [2, 9].

Simulation of Stochastic Differential Equations
Stochastic differential equations (SDEs) are differen-
tial equations that involve a stochastic process. The
most commonly used SDEs have the form

dx D �dt C �dW; (4)

in which the unknown random function is x D x.t/,
the coefficients are � D �.x; t/ and � D �.x; t/, and
the white noise term dW D dW.t/ is defined through
Ito calculus [10] in which W D W.t/ is Brownian
motion.

Monte Carlo simulation of the SDE Eq. (4) is per-
formed [7] by discretization in time with increment
	t D T=n, in which T is fixed and n is varied, so that
t , x, and dW are replaced by tk D k	t , xk 
 x.tk/,
and 	Wk D W.tkC1/ � W.tk/ D

p
	t�k in which

�k are independent standard normal random variables.
The Euler method for approximate solution of the SDE
in Eq. (4) is

xkC1 D xk C �k	t C �k	Wk; (5)

in which �k D �.xk; tk/ and �k D �.xk; tk/. The
Milstein method is

xkC1 D xkC�k	tC�k	WkC 1
2
�k�

0
k..	Wk/

2�	t/;
(6)

in which � 0k D @x�.xk; tk/. The right-hand side of
Eq. (6) is formulated for a scalar SDE (i.e., for x a
scalar); for vector SDEs, the Milstein correction terms
are more complicated and involve Levy area terms that
cannot be directly evaluated [7].
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Convergence of the discretized solution xk to the
SDE solution x is usually measured with respect to
a payout function f .x/ evaluated at a time T . The
weak measure of convergence is jEŒf .x.T //�f .xn/�j,
which measures the average deviation of xn from x.T /.
The strong measure of convergence is EŒjf .x.T // �
f .xn/j�, which measures the deviation of xn from x.T /

for each sample (or path).
Denote the solutions of the Euler system Eq. (5) and

the Milstein system Eq. (6) as xE and xM , respectively.
For weak convergence, Milstein is no better than
Euler for SDEs, since jEŒf .x.T // � f .xEn /�j and
jEŒf .x.T // � f .xMn /�j are both of size O.	t/.
On the other hand, for strong convergence, Milstein
offers significant improvement over Euler, since
EŒjf .x.T // � f .xEn /j� D O.

p
	t/ is much larger

than EŒjf .x.T // � f .xMn /j� D O.	t/.
Multilevel Monte Carlo (MLMC) is a method de-

veloped by Mike Giles [5, 6] for reducing the error
in Monte Carlo simulation of SDEs. MLMC uses a
sequence of numerical solutions x` with time step
	t` D 2�`T for 0 � ` � L. Denote the corresponding
payout as F` D f .x`n/. At each level `, one uses the
simulation with time step	t`�1 as a control variate for
the (finer) time step 	t`, as expressed in the sum

EŒFL� D EŒF0�C
LX

`D1
EŒF` � F`�1�: (7)

In the `th term of this sum, the expectation is estimated
usingN` paths, and the increments	W for the path x`

and x`�1 are required to be consistent.
For the Euler or Milstein scheme, the error in the

weak measure is of size N�1=2 C h and the computa-
tional effort is of size Nh�1, for N simulation paths
and time step h. In order to obtain accuracy with error
size O."/, one must take N D O."�2/ and h D O."/,
so that the computational work is O."�3/. For the
MLMC using the Euler scheme for the xm simulations,
the resulting work is reduced to O."�2.log "/2/. For
the MLMC using the Milstein scheme, the work is
reduced to O."�2/. Moreover the character of the
MLMC method is different for the two methods. For
Euler the work is approximately the same at each level;
while for Milstein most of the work is done at the
coarsest discretization level.

Simulation for Finance
Monte Carlo simulation for pricing financial securities
starts from the risk-neutral pricing method from Black-
Scholes theory [12]. The Black-Scholes model for an
equity price S.t/ with average growth rate � and
volatility � is the SDE

dS D �Sdt C �SdW; (8)

for which the solution is S.t/ D S0 exp.�W.t/C .��
�2=2/t/. The pricing formula for an option V.t/ D
V.t; S.t// with payout P.T; S.T // at the expiration
time T (i.e., the option can only be exercised at t D T )
is

V.0; S0/ D e�rT QEŒP.T; S.T //� (9)

in which the risk-neutral expectation QE is effected by
replacing � in Eq. (8) by the risk-free interest rate r .

Alternatively, for an American option that can be
exercised at any time t with 0 � t � T , the price is

V.0; S0/ D max e�r� QEŒP.�; S.�//� (10)

in which the maximum is taken over choice of the
stopping time � satisfying 0 � � � T . Determination
of the optimal exercise time � involves comparison
of the payout value and the expected value of future
payout, at each time t . Evaluation of the expected value
of future payout depends on the future optimal exercise
times, so that it must be determined in a self-consistent
manner.

The Least-Squares Method (LSM) method [8] was
developed to overcome this difficulty. Discretize time
so that exercise of the option V can be at any time t D
tk D k	t with 	t D T=n. Construct N independent
paths Si.t/ for the stock price, with 1 � i � N . At
tn D T , the option price Vi .tn/ D P.Si.tn// is just the
payout value. Continue backwards in k (by induction).
If the price Vi.tk/ is known for k � m C 1, then at
t D tm, the payout from early exercise is Vi .tm/ D
P.Si .tm//. Estimation of the expected value of future
exercise, which is at some time �i D t`i , is performed
by the following regression procedure:

On each path, consider the discounted value of the
future payout for that path Yi D e�r.�i�tm/P.Si .�i //
and also set Xi D Si .tm/. Now approximate Y as a
function of X by linear regression using a relatively
small number of basis functions in X . This gives a
value QYi D QY .Si /, which is an approximation to
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the value of future exercise on path i . Comparison of
the value Yi of payout and the estimated value QYi of
future payout determines whether it is better to take
exercise early (if Yi > QYi ) or to defer early exercise
(if Yi < QYi ). LSM has been used with considerable
success on a wide range of American options [8]. It
has been generalized to also compute Greeks [13].

Simulation of Particle Dynamics
For rarefied gas flow, the Knudsen number Kn is the
ratio of the mean free path (i.e., the distance between
intermolecular collisions) to the characteristic length
scale of the flow. This dimensionless number governs
the significance of particle collisions in the flow. For
very large Kn, collisions are very infrequent and are
not significant to the flow. For very small Kn, colli-
sions are so frequent that the system is rapidly driven
into (local) equilibrium, so that their effect can be
described by thermodynamics and fluid mechanics. For
Kn of moderate size, however, individual collisions are
significant for the dynamics of the gas. In this regime,
the particles that comprise the gas are represented by
a velocity distribution function f .x; v; t/ that satisfies
the Boltzmann equation @tf Cv � r D KN�1Q.f; f /
, in which the collision operator Q.f; f / accounts for
binary collisions of gas particles [4]. The equilibrium
distributions f that satisfy Q.f; f / D 0 are the
Maxwellian distributions of the form

M.v/ D .4�T /�3=2� expf�jv � uj2=2T g (11)

in which �, u, and T are the macroscopic density,
velocity, and temperature.

Monte Carlo simulation of collisions in a rarefied
gas is performed using Direct Simulation Monte Carlo
(DSMC) [1]. For DSMC, the velocity distribution func-
tion is a sum of delta functions; i.e.,

f .x; v; t/ D
X

k

ı.v � vk.t//ı.x � xk.t//: (12)

Particles that are near each other are randomly selected
for a collision, the outcome of which is constrained to
satisfy conservation of mass, momentum, and energy.
Two free parameters remain, however, and these colli-
sion parameters are randomly chosen. The randomness
in the collision parameters allows a numerical set of,
for example, 104�108 particles to accurately represent
the behavior of a gas consisting of 1020 particles.

This method can become computationally
intractable for Kn that is small, so that the collision
rate is large, but not so small that the fluid equations
are accurate. Several approaches have been developed
to handle this difficult regime. Many of these methods
involve a combination of a Maxwellian distributionM
as in Eq. (11) and a particle distribution function g as in
Eq. (12). For example, in [11], the distribution function
is written as f D MCg. The macroscopic variables �,
u, and T in M evolve according to a procedure that is
consistent with the fluid equations, collisions between
g and itself are performed through the DSMC method,
and collisions between g and M are performed by
sampling a particle from M and colliding it with a
particle from g using DSMC. A similar method has
been developed in [3] for Coulomb collisions.

Conclusions

The examples presented in this survey of Monte Carlo
simulation demonstrate the wide range of applications
on which it is used. They also show the open opportu-
nities for developing new ways of accelerating Monte
Carlo.
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Synonyms

Cancer growth; Tumor growth

Short Definition

Tumor grows over time and its boundary change over
time in a way that is unknown in advance; one refers to
the tumor boundary as a “free boundary.” This entry
summarizes several interesting mathematical models
for tumor growth.

Description

Mathematical models of tumor growth which are based
on densities of cells and concentrations of nutrients and
signaling molecules are typically modeled by dynami-
cal systems. Because of spatial effects due to cell pro-
liferation, it is natural to model the evolution of tumors
in terms of partial differential equations (PDEs). Early

such models were considered in Greenspan [45,46] and
McEwain and Morris [51]; see also [1, 2, 6, 7, 10, 12–
14, 43, 48, 49] and the reviews [1, 5, 9, 15, 33, 34].
The tumor and its boundary change over time in a
way that is unknown in advance; one refers to the
tumor boundary as a “free boundary.” Some of the PDE
models do not explicitly include the free boundary;
they assume that the tumor cells are proliferating in a
fixed domain [2,6,31]. Other models explicitly include
the free boundary as one of the unknown (probably the
most important unknown) of the model [3, 4, 10, 12,
13, 27, 31, 32, 35, 36, 43–46]. This entry is concerned
with free boundary problems in tumor models, and it
focuses on mathematical analysis of such problems.
More specifically, this entry is based primarily on a
series of papers [3, 4, 27, 32, 35–44] that deal with
bifurcation analysis and multi-scale models for tumors
with free boundary.

Tumor Models

In this section, we describe several tumor models.

Proliferating Tumor
Let ˝.t/ denote the tumor domain at time t . The
nutrient function � is consumed only in the tumor
region and satisfies the diffusion equation:

ˇ�t �� D �� in ˝.t/: (1)

In order to make the model simple, a sequence of
simplifying assumptions are made. It is assumed
that the density of the cells is constant and their
proliferation rate S depends linearly on the nutrient
concentration,

S D �.� �e�/ .e� > 0/ (2)

where �� is the growth rate and �e� is the death
rate. Since the density of the tumor cells is constant,
proliferation and death cause continuous movement
among the cells, with associated velocity Ev. We assume
that the movement of cells in the tumor tissue is similar
to that of fluid in a porous medium. Hence, by Darcy’s
law,

Ev D �rp (3)

where p is the internal pressure.
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Since, by conservation of mass, divEv D S , the
pressure p satisfies the equation

p D ��.� �e�/ in ˝.t/: (4)

As in the papers cited above, � and p satisfy the
boundary conditions:

� D � on @˝.t/ .� >e�/; (5)

p D �� on @˝.t/ (6)

where � is the mean curvature (� > 0 if ˝.t/ is a
ball) and � represents the cell-to-cell adhesiveness as
discussed in Byrne [7], Byrne and Chaplain [12], and
Greenspan [46]. Furthermore, by continuity, the free
boundary moves with the same velocity as the fluid
velocity Ev, that is

vn D �@p
@n

on @˝.t/ (7)

where n is the outward normal and vn is the velocity of
the free boundary @˝.t/ in the direction n.

Note that the special case � D 0 reduces to
the Hele–Shaw problem with surface tension. For the
Hele–Shaw problem the following results are well
known: (1) For any smooth initial data, there exists a
unique solution with smooth boundary for a small time
interval, global existence is in general not expected.
(2) The only stationary are spheres; (3) spheres are
asymptotically stable solutions, that is, for any smooth
initial data “close” to that of a sphere, there exists a
global smooth solution and it converges to a sphere as
t !1.

The above three results have been extended to the
model .1/–.7/. Local existence and uniqueness was
proved in Bazally and Friedman [3, 4], see also [16].
In Friedman and Reitich [43], it was proved that for
any 0 < e� < � , there exists a unique radially
symmetric stationary solution, and its radius depends
on e�=� , but not on �; � . In Friedman and Reitich
[44], it was proved in the 2-dimensional case that there
exists a sequence of symmetric-breaking branches of
stationary solutions of .1/–.7/ bifurcating from �n=�n
.n D 2; 3; 4; � � � /. A general simplified proof, which
works also for the 3-dimensional case, was given in
Fontelos and Friedman [27]. The asymptotic stability
of the spherical solution for �=� < �2=�2 and of

the first bifurcation branch was studied extensively in
Friedman and Hu [37–39]; earlier results for small�=�
were established in Bazaliy and Friedman [4]. Some
extensions, e.g., replacing the right-hand sides of .4/
and .1/ by more general functions, or replacing the
spherical solution by an infinite strip, were considered
in Cui and Escher [19–21], Escher and Matioc [26],
and Zhou et al. [58, 59].

A model with inhibitor was studied in Cui and
Friedman [22], and models with necrotic core were
considered in Byrne and Chaplain [10], Cui [18], and
Cui and Friedman [23].

Although Darcy’s law was used in most tumor
models, there are tumors for which the tissue is more
naturally modeled as fluid. For example, in the early
stages of breast cancer, the tumor is confined to the
duct of a mammary gland, which consists of epithelial
cells, a meshwork of proteins, and mostly extracellular
fluid. Several papers on ductal carcinoma in the breast
use the Stokes equation in their mathematical models
[28–30]. The mathematical studies for tumor growth in
Stokes fluids, similar to those of .1/–.7/ but technically
quite different, were carried out in Friedman and Hu
[35, 40, 41].

Tumor with Several Types of Cells
The model introduced in the last section was extended
in Pettet et al. [55], Sherratt and Chaplain [56], and
Ward and King[57] by the introduction of three types
of cells: proliferating cells P , quiescent cells Q, and
dead cells D. For simplicity, we use the letters P , Q,
and D to also denote their respective densities. It is
assumed that cells can move from one state to another,
depending on the concentration of nutrients, � :

P ! Q at rate KQ.�/;

Q! P at rate KP.�/;

P ! D at rate KA.�/ (apoptosis);

Q! D at rate KD.�/I

furthermore, we denote

the proliferation rate of P cells byKB.�/and

the removal rate of dead cell by KR:

The total density of all cells within the tumor is
assumed to be constant:
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P CQCD � const. � �: (8)

We also assume that all cells are subject to the same
velocity Ev. Then, by conservation of mass,

@P

@t
C div.P Ev/ D ŒKB.�/ �KQ.�/ �KA.�/�P

CKP .�/Q; (9)

@Q

@t
C div.QEv/ D KQ.�/P � ŒKP .�/CKD.�/�Q;(10)

@D

@t
C div.DEv/ D KA.�/P CKD.�/Q �KRD; (11)

where � satisfies .1/.
Adding .9/–.11/ and using .8/, we get

� div Ev D KB.�/ �KRD;

and one may replace .11/ by .8/ withD D � �P �Q.
If the velocity field is again assumed to satisfy Darcy’s
law .3/, then we obtain the system .1/, .9/, .10/, and

�p D KB.�/P �KR.��P�Q/ in ˝.t/; (12)

p D �� on @˝.t/; (13)

vn D �@p
@n

on @˝.t/: (14)

The existence of local smooth solutions for the system
.1/, .9/–.10/, .12/–.14/ with any smooth initial data
was established in Chen and Friedman [16]. The exis-
tence of a unique radially symmetric stationary solu-
tion and its linear asymptotic stability was proved in
Cui and Friedman [24], and Chen et al. [17] in the
case when there are only two types of cells. Results
on existence and on asymptotic estimates in the case of
radially symmetric solutions were proved in Cui and
Friedman [25].

Local existence and uniqueness was established in
Friedman [34] for the system .1/, .8/–.11/ supple-
mented by Stokes equation instead of Darcy’s law.

Some experiments ([47] and [52]) suggest that cells
of different types move with different velocities. A
model studied in McElwin and Pettet [50] assumes
that the velocities of proliferating cells, EvP , and of
quiescent cells, EvQ, are related by

EvQ D EvP C �r� (15)

where � is a non-negative chemotactic coefficient.
The theory for the system with three, or even two,

types of cells is far less complete than the theory for
one type of cells, and many challenging questions are
open.

Multi-Scale Model
The multi-scale model takes into account the cell
cycles in different phases (see [32]). The cell cycle
is divided into phases G1; S1;G2, and M . During the
S phase, the DNA is synthesized; during the mitosis
phase M , sister chromosomes are segregated and the
cell divides into two daughter cells; G1 and G2 are
“gap” phases, during which the cell grows and prepares
for the next phase (S for G1, and M for G2). At a
“check point” R1 located near the end of the G1 phase,
the cell decides either to proceed directly to the S
phase, or to go into quiescent state G0, depending on
the environment; the cell may also decide to go into
apoptosis (i.e., to commit suicide) in case it detects
serious damage. At another check point R2 near the
end of the S phase, the cell again has to make a
decision: whether to proceed to the G2 phase or to go
into apoptosis, in case of irreparable damage. A cell
remains in quiescent state G0 for a certain amount of
time and then proceeds to the S phase.

Introduction of the following notations:

p1.x; t; s1/ D density of cells in phase G1,

s1 2 K1 � Œ0; A1�;
p2.x; t; s2/ D density of cells in phase S;

s2 2 K2 � Œ0; A2�;
p0.x; t; s0/ D density of cells in state G0;

s0 2 K0 � Œ0; A0�;
p3.x; t; s3/ D density of cells in phases G2

and M; s3 2 K3 � Œ0; A3�;
p4.x; t/ D density of necrotic cells.

We denote by w.x; t/ the oxygen concentration and
by Q.x; t/ the density of live cells, i.e.,

Q.x; t/ D
3X

iD0
Qi .x; t/;
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where

Qi.x; t/ D
Z Ai

0

pi .x; t; si /dsi :

The oxygen concentration satisfies the diffusion equa-
tion

ˇwt �	w D �Qw; (16)

where Q is the rate of oxygen consumption by the live
cells.

Just as in the previous models, we assume that the
total density of cells is constant

4X

iD0
Qi.x; t/D const � �;where Q4.x; t/ D q4.x; t/:

(17)
Due to cell proliferation and death, there is a veloc-

ity field Ev.x; t/, which is assumed to be common to all
the cells. Then, by conservation of mass,

@pi

@t
C @pi

@si
C div.pi Ev/ D �i .w/pi (18)

for 0 < si < Ai .i D 0; 1; 2; 3/;
@p4

@t
C div.p4Ev/ D �1p1.x; t; A1/

C�2p2.x; t; A2/� �4p4: (19)

We also have:

p1.x; t; 0/ D p3.x; t; A3/; (20)

p2.x; t; 0/ D p1.x; t; A1/Œ1 �K.w.x; t//
�L.Q.x; t// � �1�C p0.x; t; A0/;

p3.x; t; 0/ D .1 � �2/p2.x; t; A2/;
p0.x; t; 0/ D p1.x; t; 0/ŒK.w.x; t//

CL.Q.x; t//�:

The second equation in (20) expresses the assumption
that at the end of theG1 phase, a fractionK.w/CL.Q/
of the cells go into quiescence (K.w/ increases if w
decreases thereby creating an unfavorable environment
for cell proliferation; similarly, L.Q/ increases if Q
increases, indicating that there are already too many
cells), and a fraction �1 goes into apoptosis. It is
assumed that

K.w/ > 0; L.Q/ > 0; K.w/C L.Q/C �1 < 1:

The APC gene detects a signal of overpopulation and
it inhibits proliferation ifQ is large by sending the cell
into the G0 state. Another gene, SMAD, is activated if
w is too small and it then inhibits proliferation by again
sending the cells into G0 state. The functions of these
two genes are represented in the functionsK and L.

If Darcy’s law is assumed, then the equation for the
velocity can be derived as before and this will complete
the model.

It is possible to include in the model different
types of cells, e.g., healthy cells and tumor cells. The
different nature of the cells is described by the different
functionK;L and �1, �2. For example, for a cell with
damaged APC gene, the function L is less sensitive to
overpopulation (i.e., to largerQ).

In the case of more than one type of cells, .17/ is
replaced by requiring the density of all the cells to be
constant.

The model .16/–.20/ with Darcy’s law was devel-
oped in Friedman [32], where also local existence and
uniqueness for general initial data, and global existence
for radially symmetric solutions were established. The
behavior of the solution in case of mutations of APC or
SMAD was studied in Friedman et al. [42]. The same
system with Stokes equation instead of Darcy’s law
was considered in Friedman [36] where local existence
and uniqueness was proved.

Mathematical Challenges

In the model introduced in the section on proliferating
tumor, a natural question is what is the maximal do-
main of attraction for the spherical solution. Another
question is how far can the first bifurcation branch be
continued. For the model described in the section on
tumor with several types of tumor cells, already for just
two types of cells, an explicit expression for the radi-
ally symmetric stationary solution is not known. If one
could find such an explicit formula, this would open
a new line of challenges with regard to symmetric-
breaking bifurcations. The asymptotic stability theory
for this model is also only very partially developed.
All these open questions arise also for the multi-scale
model.

The models introduced in this entry are quite min-
imal. They do not include, in particular, the PDE
system which describes angiogenesis [52,53], whereby
the blood vascular system evolves toward the tumor
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by signaling molecules produced by the tumor cells.
Including angiogenesis will introduce a new level of
complexity and mathematical challenges.
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Synonyms

Algebraic Multigrid; AMG

Definition

Algebraic multigrid (AMG) methods are used to ap-
proximate solutions to (sparse) linear systems of equa-
tions using the multilevel strategy of relaxation and
coarse-grid correction that are used in geometric multi-
grid (GMG) methods. While partial differential equa-
tions (PDEs) are often the source of these linear sys-
tems, the goal in AMG is to generalize the multilevel
process to target problems where the correct coarse
problem is not apparent – e.g., unstructured meshes,
graph problems, or structured problems where uniform
refinement is not effective. In GMG, a multilevel hier-
archy is determined from structured coarsening of the
problem, followed by defining relaxation and interpo-
lation operators. In contrast, in an AMG method the
relaxation method is selected – e.g., Gauss-Seidel – and
coarse problems and interpolation are automatically
constructed.

Overview

Early work in multigrid methods relied on geomet-
ric structure to construct coarse problems. This was
generalized in [11] by McCormick, where multigrid
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is analyzed in terms of the matrix properties. This
algebraic approach to theory was further extended
by Mandal in [10], and together with [3] by Brandt,
these works form the basis for much of the early
development which led to the so-called Ruge-Stüben or
classical algebraic multigrid (CAMG) method in [13].

One distinguishing aspect of CAMG is that the
coarse problem is defined on a subset of the degrees of
freedom of the problem, thus resulting in both coarse
and fine points leading to the term CF-based AMG. A
different style of algebraic multigrid emerged in [14]
as smoothed aggregation-based AMG (SA), where col-
lections of degrees of freedom (or an aggregate) define
a coarse degree of freedom. Together the frameworks
of CF- and SA-based AMG have led to a number of
developments in extending AMG to a wider class of
problems and architectures.

There are a number of software libraries that imple-
ment different forms of AMG for different uses. The
original CAMG algorithm and variants are available
as amg1r5 and amg1r6 [13]. The Hypre library
supports a parallel implementation of CF-based AMG
in the BoomerAMG package [8]. The Trilinos pack-
age includes ML [7] as a parallel, SA-based AMG
solver. Finally, PyAMG [2] includes a number of AMG
variants for testings, and Cusp [1] distributes with a
standard SA implementation for use on a graphics
processing unit (GPU).

Terminology
The goal of the AMG solver is to approximate the
solution to

Ax D b; (1)

where A 2 R
n�n is sparse, symmetric, and positive

definite. The fine problem (1) is defined on the fine
index set �0 D f0; : : : ; n � 1g. An AMG method is
generally determined in two phases: the setup phase
and the solve phase. The setup phase is responsible
for constructing coarse operators Ak for level k of
the hierarchy, along with interpolation operator Pk . A
basic hierarchy, for example, consists of a series of
operators fA0;A1; : : : ; Amg and fP0; P1; : : : ; Pm�1g.

Given such a hierarchy, the solve phase then exe-
cutes in the same manner as that of geometric multi-
grid, as in Algorithm 1 for a two-level method; an
m-level method extends similarly. Here, operator G.�/
denotes a relaxation method such as weighted Jacobi
or Gauss-Seidel.

Algorithm 1: AMG solve phase

x G.A0; x; b/I fPre-relaxation on �0g
r1 PT

0 rI fRestrict residual �1g
e1 A�1

1 r1I fCoarse-grid solution on �1g
Oe P0e1I fInterpolate coarse-grid errorg
x xC OeI fCorrect fine-grid solutiong
x G.A0; x; b/I fPost-relaxation on �0g

Theoretical Observations
The two grid process defined in Algorithm 1 can be
viewed as an error propagation operator. First, let G
represent the error operator for relaxation – e.g., G D
I � !D�1A for weighted Jacobi. In addition, coarse
operators Ak are typically defined through a Galerkin
product: AkC1 D PT

k AkPk . Thus for an initial guess
x and exact solution x� to (1), the error e D x� � x
for a two-grid method with one pass of pre-relaxation
is defined through

e ← I −P0(P
T
0 A0P0)

−1
P

T
0 0A Ge

correct
interpolate

coarse solve
restrict

residual
relax

(2)

A key observation follows from (2) in defining
AMG methods: if the error remaining after relaxation
is contained in the range of interpolation, denoted
R.P /, then the solver is exact. That is, if Ge 2 R.P /,
then coarse-grid correction defined by T D I �
P.P T AP/

�1
P T A annihilates the error. One important

property of T is that it is an A-orthogonal projection,
which highlights the close relationship with other sub-
space projection methods.

Methods

The setup phase of AMG defines the method. However
there are several common features:
1. Determining the strength of connection between

degrees of freedom
2. Identifying coarse degrees of freedom
3. Constructing interpolation, P
4. Forming the coarse operator through the Galerkin

product PTAP
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Algebraic methods determine coarse grids and the
resulting interpolation operators to complement the
limitations of relaxation. That is, interpolation should
capture the error components that relaxation, e.g.,
weighted Jacobi, does not adequately reduce. The
error not reduced by relaxation is termed algebraically
smooth error. To identify smooth error, an edge in
the graph of matrix A is deemed strong if error is
perceived to vary slowly along that edge. This allows
for automatic coarsening to match the behavior of
relaxation.

As an example, consider the case of an anisotropic
diffusion operator �uxx � "uyy rotated by 45 ı along
the coordinate axis and discretized by Q1 finite ele-
ments on a uniform mesh. As the anisotropic behavior
increases (" ! 0), uniform coarsening with geomet-
ric multigrid results in degraded performance. In an
algebraic method, coarsening is along the direction of
smooth error, which follows the line of anisotropy as
shown in Fig. 1. Here, coarsening is only performed
(automatically) in the direction of smooth error and
results in high convergence.

CF-Based AMG
CF-based AMG begins withAk , the k-level matrix, and
determines strong edges according to

� Aij � � max
k¤i
�Aik; (3)

where � is some threshold. This process yields a
strength matrix S (see Algorithm 2), which identifies
edges where error is smooth after relaxation. In turn,
S is used to split the index set into either C -points
or F -points (see Fig. 1b), requiring that F points
are strongly connected to at least one C -point (for
interpolation). With C=F -points identified, weightsW
are determined to form an interpolation operator of the
form

Algorithm 2: CF-based AMG
Input: A: n� n fine level matrix
Return: A0; : : : ; Am,P0; : : : ; Pm�1

for k D 0; : : : ; m� 1 do
S  strength.Ak; �/ fCompute strength of connectiong
C; F  split.S/ fDetermine C -points and F -pointsg
Pk interp.Ak; C; F / fConstruct interpolation from C to F g
AkC1 D PT

k AkPk fConstruct coarse operatorg
end

P D
	
W

I




Finally a coarse operator is constructed through a
Galerkin product, PTAP , which is the dominant cost
for most AMG methods.

SA-Based AMG
SA-based AMG methods have an important distinc-
tion: they require a priori knowledge of the slow-
to-converge or smooth error, denoted B . A common
choice for these vectors in the absence of more knowl-
edge about the problem is B � 1, the constant vector.
The SA algorithm (see Algorithm 3) first constructs
a strength-of-connection matrix, similar to CF-based
AMG, but using the symmetric threshold

jAij j � �
q
jAiiAjj j: (4)

From this, aggregates or collections of nodes are
formed (see Fig. 2) and represent coarse degrees
of freedom. Next, B is restricted locally to each
aggregate to form a tentative interpolation operator
T so that B 2 R.T /. Then, to improve the accuracy
of interpolation, T is smoothed (for example with
weighted Jacobi) to yield interpolation operator P .
This is shown in Fig. 2b where piecewise constant
functions form the basis for the range of T , while the
basis for the range of P resembles piecewise linear
functions. Finally, the coarse operator is computed
through the Galerkin product.

Algorithm 3: SA-based AMG
Input: A: n� n fine level matrix

B: n� c vectors representing c smooth error
components

Return: A0; : : : ; Am,P0; : : : ; Pm�1

for k D 0; : : : ; m� 1 do
S  strength.Ak; �/ fCompute strength of connectiong
Agg aggregate.S/ ˚

Aggregate nodes in the strength

graph
�

Tk  tentative.B; Agg/ ˚
Construct tentative interpolation

operator
�

Pk  smooth.Ak; Tk/ fImprove interpolation operatorg
AkC1 D PT

k AkPk fConstruct coarse operatorg
end
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Multigrid Methods: Algebraic, Fig. 1 CF-based AMG for a rotated anisotropic diffusion problem. (a) Error after relaxation for a
random guess. (b) Coarse points (	) and fine points (ı)

a b

Multigrid Methods: Algebraic, Fig. 2 SA-based AMG in 2D and in 1D. (a) Aggregation of nodes on a mesh. (b) Column of T
and P on an aggregate

Practical Considerations

Algebraic multigrid methods are commonly used as
preconditioners – for example, to restarted GMRES
or conjugate gradient Krylov methods – leading to a
reduction in the number of iterations. However, the
total cost of the preconditioned iteration requires an
assessment of both the convergence factor � and the
work in each multigrid cycle. To measure the work in
a V-cycle the so-called operator complexity of the hier-
archy is used: cop D

P
kD0m nnz.Ak/
nnz.A0/

. With this, the total
work per digit of accuracy is estimated as cop= log10 �.
This relates the cost of an AMG cycle to the cost of a
standard sparse matrix-vector multiplication. This also

exposes the cost versus accuracy relationship in AMG,
yet this may be “hidden” if the cost of the setup phase
is not included.

In both CF-based AMG and SA-based AMG, the
interpolation operator plays a large role in both the
effectiveness and the complexity of the algorithm. In
each case, interpolation can be enriched – for example,
by extending the interpolation pattern or by growingB
in the case of SA – leading to faster convergence but
more costly iterations.

There are a number of ways in which AMG has
been extended or redesigned in order to increase the
robustness for a wider range of problems or to improve
efficiency. For example, the adaptive methods of [4, 5]
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attempt to construct an improved hierarchy by modify-
ing the setup phase based on its performance on Ax D
0. Other works focus on individual components, such
as generalizing strength of connection [12] or coars-
ening, such as the work of compatible relaxation [9],
where coarse grids are selected directly through re-
laxation. And new methods continue to emerge as the
theory supporting AMG becomes more developed and
generalized [6].
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� Preconditioning

References

1. Bell, N., Garland, M.: Cusp: generic parallel algorithms for
sparse matrix and graph computations. http://cusp-library.
googlecode.com, version 0.3.0 (2012)

2. Bell, W.N., Olson, L.N., Schroder, J.B.: PyAMG: algebraic
multigrid solvers in Python v2.0. http://www.pyamg.org,
release 2.0 (2011)

3. Brandt, A.: Algebraic multigrid theory: the symmetric case.
Appl. Math. Comput. 19, 23–56 (1986)

4. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T.,
McCormick, S., Ruge, J.: Adaptive smoothed aggregation
(˛sa). SIAM J. Sci. Comput. 25(6), 1896–1920 (2004)

5. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T.,
McCormick, S., Ruge, J.: Adaptive algebraic multigrid.
SIAM J. Sci. Comput. 27(4), 1261–1286 (2006)

6. Falgout, R., Vassilevski, P.: On generalizing the algebraic
multigrid framework. SIAM J. Numer. Anal. 42(4), 1669–
1693 (2004)

7. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala,
M.G.: ML 5.0 smoothed aggregation user’s guide. http://
trilinos.org/packages/ml/ (2007)

8. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel alge-
braic multigrid solver and preconditioner. Appl. Numer.
Math. 41(1), 155–177 (2002)

9. Livne, O.E.: Coarsening by compatible relaxation. Numer.
Linear Algebra Appl. 11(2–3), 205–227 (2004)

10. Mandel, J.: Algebraic study of multigrid methods for sym-
metric, definite problems. Appl. Math. Comput. 25(1, part
I), 39–56 (1988)

11. McCormick, S.F.: Multigrid methods for variational prob-
lems: general theory for the V -cycle. SIAM J. Numer. Anal.
22(4), 634–643 (1985)

12. Olson, L.N., Schroder, J., Tuminaro, R.S.: A new perspec-
tive on strength measures in algebraic multigrid. Numer.
Linear Algebra Appl. 17(4), 713–733 (2010)
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Multigrid Methods: Geometric

Luke Olson
Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL, USA

Synonyms

Geometric multigrid; GMG; MG

Definition

Multigrid (MG) methods are used to approximate solu-
tions to elliptic partial differential equations (PDEs) by
iteratively improving the solution through a sequence
of coarser discretizations or grids. The methodology
has been developed and extended since the 1970s
to also target more general PDEs and systems of
algebraic equations. A typical approach consists of a
series of refinements or grids, where an approximate
solution is iteratively improved through a combina-
tion relaxation—e.g., Gauss-Seidel—and defect cor-
rections, e.g., using projections to coarser, smaller
grids.

Overview

Multigrid methods were formalized by the late 1970s
in the works of Brandt [3, 4] and Hackbusch [11] but
were also studied earlier by Fedorenko [9, 10]. Over
the next decade, multigrid development focused on,
among other directions, the design and analysis of dif-
ferent relaxation techniques, the construction of coarse
discretizations, and the theory of a framework toward
a more robust geometric multigrid framework—e.g.,
see McCormick [12]. Through this early development,
operator-based strategies and an algebraic approach
to multigrid emerged, which culminated in the work
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h0 h1 = 2h0 h2 = 4h0

Multigrid Methods: Geometric, Fig. 1 Hierarchy of grids with spacing h, 2h, and 4h

of Ruge and Stüben [13]. More recently, multigrid
methods have grown in popularity and in robustness,
being used in a vast number of areas of science and on
a variety of computing architectures. Several texts on
the subject give a more complete historical overview
and description [5, 15].

Since there are many ways to set up a multigrid
approach and each with a number of setup decisions
and tunable parameters in each method, multigrid is
best viewed as a framework rather than a specific
method. Here, we present a representative approach
based in the context of a matrix problem resulting
from a discretization of an elliptic PDE. An alternative
approach to presenting a geometric multigrid method
is to formulate of the problem in a weak context at
each grid level—e.g., a finite element formulation.
Likewise, an entirely algebraic approach may be taken
wherein only the matrix A is considered—e.g., recent
versions of the algebraic multigrid.

Terminology
The goal is to solve a matrix problem

Ahuh D f h (1)

associated with grid �h. In the following we construct
a sequence of symmetric, positive-definite (matrix)
problems, Ahuh D fh, associated with grid �h (see
Fig. 1). We assume that grids �h, with h D h0 <

h1 < � � � < hm, are nested—i.e., �hkC1 � �hk . A
grid spacing of h D h0 is referred to as the fine grid,

while the coarsest grid is represented with h D hm. In
addition, when considering only two grids, h and H
are used to simplify notation for fine and coarse grids.

Central to the multigrid process is the ability to
adequately represent certain grid functions uh 2 �h

on a coarser grid, �H . We denote the restriction
operator as RHh W �h ! �H and the prolongation
or interpolation operator as Ph

H W �H ! �h, both of
which are assumed to be full rank.

In the following, the standard Euclidean and energy
norms are denoted k � k and k � kA, with respective inner
products h�; �i and h�; �iA. For an initial guess, uh0 , the
objective is to construct a multilevel iterative process
that reduces the energy norm of the error. This is
accomplished by exposing the error in uh0 as oscillatory
error on different grid levels. A useful observation is
that the error eh0 D uh0 � uh� satisfies the error equation
Aheh0 D rh0 , where rh0 is the residual, rh0 D fh � Ahuh0 .

Basic Methodology

Consider the elliptic partial differential equation

� uxx D f .x/; (2)

with zero boundary conditions on the unit interval.
Using second-order finite differences on �h D fxhi g
with nodes xhi D ih, where h D 1=.n C 1/ and
i D 0; : : : ; nC 1, results in the matrix problem
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1

h2

2

6
6
6
6
6
4

2 �1
�1 2 �1

: : :

�1 2 �1
�1 2

3

7
7
7
7
7
5

„ ƒ‚ …
Ah

2

6
6
6
6
6
4

u1
u2
:::

un�1
un

3

7
7
7
7
7
5

„ ƒ‚ …
uh

D

2

6
6
6
6
6
4

f1
f2
:::

fn�1
fn

3

7
7
7
7
7
5

„ ƒ‚ …
fh

: (3)

Given an initial guess uh0 to the solution uh�, a
stationary iterative method computes an update of the
form

uh1 D uh0 CM�1.fh � Ahuh0/ D uh0 CM�1rh0: (4)

Notice that if M D A, then the iteration is exact. The
error in a stationary iteration (4) satisfies

eh1 D
�
I �M�1Ah� eh0 D Geh0; (5)

which implies that a sufficient condition on the er-
ror propagation matrix for this problem, G, is that
�.G/ < 1. For a symmetric, positive-definite M-
matrix—i.e., weakly diagonally dominant with positive
diagonals and negative off-diagonals—a common sta-
tionary method is weighted Jacobi with M D .1=!/D
for some weight ! 2 .0; 1/ and withD as the diagonal
of A. As an example, consider (3) with ! D 2=3 and
h D 0:01, a random initial guess, and fh � 0. As
shown in Fig. 2a, weighted Jacobi is very effective at
reducing the error for the first few iterations but quickly
stagnates.

The ability of a relaxation or smoothing method,
such as weighted Jacobi, to rapidly reduce the error in
the first few iterations is central to a multigrid method.
To see this, we note that the eigenvectors of Ah are
Fourier modes, and the eigenvalue-eigenvector pairs
.�; v/ are

�kD4 sin2
� �

2n
� k
�

vk;iD sin

�
j�

2n
� k
�

for kD1; : : : ; n:
(6)

Correspondingly, the eigenvalue-eigenvector pairs
.�!J ; v!J / of the weighted Jacobi iteration matrix
G in (5) become

�!J D 1 � !
2
� v!J D v: (7)

Thus, eigenvalues of the weighted Jacobi iteration
matrix that approach 1:0 (thus leading to stagnation)
correspond to low k and are associated with Fourier
modes that are smooth. Consequently, weighted Jacobi
is effective for highly oscillatory error—i.e., error with
large energy norm—and is ineffective for smooth error,
i.e., error that corresponds to low Fourier modes. This
is depicted in Fig. 2b where the weighted Jacobi con-
vergence factor is shown for each Fourier wavenumber.

Prior to relaxation, the error eh0 is likely to have
representation of both low- and high-frequency Fourier
modes. After relaxation, the high-frequency modes no
longer dominate and the remaining error is largely
comprised of low-frequency Fourier modes. To elimi-
nate these smooth errors, a multigrid method constructs
a coarse-grid correction step as part of the iteration.
That is, consider k-steps of a weighted Jacobi relax-
ation method:

uhk  uhk�1 C !D�1rhk�1 D G.uh; fh; k/: (8)

Since ehk is expected to be smooth, it can be represented
with a coarser vector eHk and reconstructed through
low-order (linear) interpolation. For example, halving
the fine-grid problem results in a coarse-grid �H with
H D h=2 and nc D .nC 1/=2 coarse points. Then, we
define an interpolation operator Ph

H W R.nC1/=2 ! R
n

using linear interpolation,

Ph
H D

1

2

2

6
6
6
6
6
4

1 2 1

1 2 1

: : :

1 2 1

1 2 1

3

7
7
7
7
7
5

T

; (9)

and restriction given by RHh D .P h
H /

T
. Then the two-

level multigrid algorithm is given in Algorithm 1.
A multilevel algorithm follows by observing the

effect of restricting a low Fourier mode to a coarser
grid. For example, consider the case of a fine grid with
n D 15, which results in a coarse grid of n D 7. A
lower Fourier mode with wavenumber k D 5 (see (6))
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MultigridMethods: Geometric, Fig. 2 Energy norm of the error and convergence factors in a weighted Jacobi iteration. (a) Error
history. (b) Asymptotic convergence factors

Algorithm 1: Two-level multigrid

uh D G.uh0 ; fh; kpre/ frelax kpre times on the fine grid, �hg
rh D fh �Ahuh fform residualg
rH D RHh rh frestrict residual to coarse-grid �H g
eH D .AH /

�1rH fsolve the coarse-grid error problemg
eh D Ph

H eH finterpolate coarse error approximationg
Nuh D uh C eh fcorrect the (relaxed) solutiong
uh1 D G.Nuh; fh; kpost/ frelax kpost times on the fine-grid �hg

results in high Fourier mode on the coarse grid if
sampled at every other point. That is, a mode that is
slow to converge with relaxation on the fine grid is
more effectively reduced when restricted to a coarse
grid. This is illustrated in Fig. 3. In this particular
example, the convergence factor of the mode on the
fine grid is 0:8while the convergence factor of the same
mode on the coarse grid is 0:3.

With this observation we arrive at a multilevel
variant of Algorithm 1, where the coarse-level solve
is replaced with relaxation, thereby postponing the
inversion of a coarse matrix to the coarsest grid level.
The process is shown in Fig. 4.

Higher Dimensions
The mechanics of the algorithm extend directly to
higher dimensions. In particular, if the matrix problems
Ahuh D fh are defined on a sequence of grids where
even-indexed grid points become coarse-grid points in
each coordinate direction—for example, as shown in
Fig. 1—then the 1D definition of linear interpolation

extends through tensor definitions. That is, the 2D form
for bilinear and the 3D form for trilinear interpolation
are defined as

Ph
H D P ˝ P and Ph

H D P ˝ P ˝ P; (10)

respectively, where P is 1D linear interpolation as
defined by (9).

Theoretical Observations and Extensions
The multigrid process defined by Algorithm 1 imme-
diately yields several theoretical conclusions. In turn,
these theoretical observations lead to extensions to the
basic form of geometric multigrid and ultimately to a
more algebraic form of the method, where the rigid
assumptions on grid structure and interpolation defini-
tions are relieved and made more general. To this end,
we consider the operator form of the error propagation
in the multigrid cycle. Following Algorithm 1 for an
initial guess uh0 , we arrive at the following operation
on the error (using G as pre/post relaxation as in
Algorithm 1):

E D G
�
I � Ph

H .A
H/
�1
RHh A

h
�
G D GTG; (11)

where we T is called two-grid correction matrix. From
right to left, we see that relaxation, forming the residual
(withAheh0), restriction, the coarse-solve, interpolation,
corrections, and additional relaxation are all repre-
sented in the operator. If RHh D c.P h

H /
T

, for some
constant c, then T simplifies to
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Multigrid Methods: Geometric, Fig. 3 Mode k D 5 on a fine grid (n D 15) and coarse grid (n D 7). (a) Fine grid. (b) Coarse
grid
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Multigrid Methods: Geometric, Fig. 4 V and W multigrid cycling. The down and up arrows represent restriction of the residual
and interpolation of the error between grids. A circle (	) represents relaxation

T D I � cP .AH /�1RAh; (12)

where we have dropped the sub and superscripts on P .
Notice that if

AH D RAhP; (13)

then T is an A-orthogonal projection and, importantly,
I � T is the A-orthogonal projection onto the range of
P , interpolation. This form of the coarse-grid operator
AH is the Galerkin form, which also follows from a
variational formulation of multigrid. It suggests that
the coarse-grid operator can be constructed solely from
Ah using P . Moreover, the form of T yields an impor-
tant theoretical property: if Geh0 2 R.P /, the range
of P , then the V-cycle is exact. This highlights the
complementary nature of relaxation and coarse-grid

correction in the multigrid process and has been used
as the basis for the design of new methods and the
development of new multigrid theory over the last sev-
eral decades. Indeed, if an efficient relaxation process
can be defined and a sparse interpolation operator can
be constructed so that error not eliminated by relax-
ation is accurately represented through interpolation,
then the multigrid cycle will be highly accurate and
efficient.

Beyond Basic Multigrid
If error components not reduced by relaxation are not
geometrically smooth, as motivated in the previous
sections with Fourier modes, then coarse-grid correc-
tion based on uniform coarsening and linear interpo-
lation may not adequately complement the relaxation



986 Multigrid Methods: Geometric

process. As an example, consider the 2D model prob-
lem on a unit square with anisotropy:

� uxx � "uyy D f .x; y/: (14)

Figure 5 depicts an oscillatory error before and after
100 weighted Jacobi iterations for the case of " D
0:001. Notice that contrary to the isotropic example,
where the error after relaxation is well represented
by the lowest Fourier mode and is smooth in every
direction, in this example the error is not geometrically
smooth in the y-direction.

Since the error is geometrically smooth in the x-
direction, one approach is to coarsen only in the x-
direction, which is called semi-coarsening. Likewise,
relaxation could be modified to perform block relax-
ation sweeps using y-slices in the domain, while still
using uniform coarsening. Both methods work well for
anisotropy aligned in the coordinate direction, yet the
effect is limited for more complicated scenarios—e.g.,
rotated anisotropy.

As an alternative, the practitioner could develop an
improved interpolation operator to directly target error
components not reduced by relaxation. This approach
is called operator-induced interpolation and points
toward a more algebraic approach to constructing more
robust multigrid methods. In algebraic multigrid, the
relaxation method is fixed, while coarse grids and
interpolation operators are automatically constructed
in order to define a complementary coarse-grid correc-
tion.

Advantages and Limitations of Geometric
Multigrid
While traditional forms of geometric-based multigrid
are limited to problems with structure and problems
that have a strong geometric association, there are a
number of notable advantages of this methodology in
contrast to more general, robust multigrid methods. For
one, structured problems often admit a stencil-based
approach in defining operators such as Ah and Ph

H .
This often results in lower storage, less communication
in a parallel setting, and increased locality. Further-
more, setup costs for geometric multigrid, particularly
if the stencils are known a priori, can be much less
than in algebraic methods. As a result, if a problem
is inherently structured, then geometric multigrid is a
clear advantage if appropriate relaxation methods can
be formed.

There are several packages that implement geomet-
ric multigrid methods at scale. The parallel semicoars-
ening multigrid solvers SMG [6,14] and PFMG [1] are
both implemented in the hypre package [8]. Both of-
fer stencil-based multigrid solvers for semi-structured
problems, with SMG leaning toward robustness and
PFMG toward efficiency [7]. Other methods such as
hierarchical hybrid grids (HHG) [2] explicitly build
structure into the problem in order to take advantage
of the efficiencies in geometric multigrid.

The limitation of a purely geometric approach to
multigrid is squarely in the direction of robustness.
Graph and data problems, as well as unstructured mesh
problems, do not have a natural structure for which to

Multigrid Methods: Geometric, Fig. 5 The effect of relaxation for anisotropic problems. (a) Initial error. (b) Error after 100
iterations
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build a hierarchy of grids. Even more, for many com-
plex physics applications that are structured, the design
of an effective relaxation process with a grid hierarchy
is often elusive. On the other hand, the push toward
more algebraic theory and design is also contributing to
the development of more robust geometric approaches
in order to take advantage of its efficiencies.
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Multiphase Flow: Computation

Andrea Prosperetti
Department of Mechanical Engineering, Johns
Hopkins University, Baltimore, MD, USA
Department of Applied Sciences, University of
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Definition and Scope

The denomination “multiphase flow” refers to situa-
tions in which different phases – gas, solids, and/or liq-
uids – are simultaneously present in the flow domain.

This broad definition includes both situations in
which the various phases are described individually
on a first-principle basis (e.g., by solving the Navier-
Stokes equations in each phase subject to the appropri-
ate boundary conditions on the phase-phase interfaces)
and in which large-scale systems are modeled in some
way and principally by means of averaged equations,
e.g., in the case of fluidized beds, boiling flows, and
gas-liquid flows in pipelines. This entry deals with
problems of the latter type; for problems of the former,
the reader is referred to other articles and in partic-
ular those on Boundary Element Methods, Computa-
tional Fluid Dynamics, Immersed Interface/Boundary
Method, Lattice Boltzmann Methods, Level Set Meth-
ods, Navier-Stokes Equations: Computation, and Shal-
low Water Equations: Computation, Smooth Particle
Hydrodynamics. A general reference for both types
of problems is the monograph edited by Prosperetti
and Tryggvason [4]; a specific reference for liquid-gas
flows is Tryggvason et al. [5].

http://dx.doi.org/10.1007/978-3-540-70529-1_242
http://dx.doi.org/10.1007/978-3-540-70529-1_411
http://dx.doi.org/10.1007/978-3-540-70529-1_337
http://dx.doi.org/10.1007/978-3-540-70529-1_296
http://dx.doi.org/10.1007/BFb0118663
http://dx.doi.org/10.1016/0041-5553(62)90031-9
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Eulerian-Lagrangian Methods

Methods of the Eulerian-Lagrangian type are suitable
for the description of flows with suspended inhomo-
geneities such as particles, drops, or bubbles. These
methods were originally developed for dilute flows
and “point particles,” i.e., inhomogeneities with a size
much smaller than the relevant flow scales [1]. This
condition is fairly limiting as it includes, in particular,
the Kolmogorov scale in the case of turbulent flows.
The size restriction has been relaxed in more recent
developments usually referred to as discrete element
models (DEM).

We start from the now classic “point-particle”
model, on which the more recent developments,
such as DEM, are based. Upon taking advantage of
the assumed small volume fraction occupied by the
particles, the equation of continuity is written in the
same form as for a pure fluid, which in the vast majority
of applications is assumed to be incompressible. The
effect of the particles on the fluid is represented
by point forces located at the positions x˛.t/, with
˛ D 1; 2; : : : ; N , instantaneously occupied by each
one of the N particles:

�
Du
Dt
D r ��C�g�

X

˛

	

f˛ � �v˛
�
Du
Dt
� g

�


ı.x�x˛/:

(1)

Here � is the fluid density, Du=Dt the convective
derivative of the fluid velocity u, � the stress tensor,
g the body force per unit mass, f˛ the hydrodynamic
force exerted by the fluid on the ˛th particle (opposite
to the force exerted by the particle on the fluid), and
v˛ the particle volume; ı is the delta function. The
second term in the brackets corrects the inertia and
body forces for the fact that not all the available volume
is occupied by the fluid. In the case of a gas, the
factor � multiplying this term makes it small and it
is very often neglected. The fields u and � in (1) are
regarded as averaged over length scales much larger
than the particle size. In numerical implementations
of the finite-volume type, the momentum equation (1)
is integrated over each elementary volume and the
summation over the particles reduces to a summation
over the particles in each volume.

The particle position follows by integration of their
equation of motion written as

m˛p
dw˛

dt
D f˛ C

�
m˛p �m˛f

�
g; (2)

in which m˛p and m˛
f

are mass of the particle and of the
displaced fluid and w˛ is the velocity of the particle.
For solid particles the force is most often expressed
in the form of a Stokes drag, possibly corrected by
means of an empirical factor �.Re/ for finite-Reynolds-
number effects:

f˛ D 6��a�.Re˛/ Œu.x˛; t/� w˛� : (3)

Here u.x˛; t/ is the velocity of the fluid at the location
x˛ occupied by the particle obtained by interpolation
from the computed neighboring nodal velocities. The
conceptual model on which this specification rests
is that the flow is approximately uniform over the
particle scale so that the velocity u.x˛; t/ represents
with an acceptable accuracy the flow environment seen
by the particle. In some cases this force expression
is augmented by additional terms representing, e.g.,
added effects: mass, memory effects and others [2, 3].

The equation of motion for the particles can be
integrated by various methods such as the second-
order Adams-Bashforth or Runge-Kutta scheme. In
some implementations it is assumed that each tracked
particle is representative of an entire group of particles.
In this way it is possible to simulate flows with a
significant mass loading (defined as the ratio of the
particle mass to the total mass of particles and fluid)
reducing the computational cost.

In Discrete Element Methods, the particles are
tracked by solving an equation of motion similar to (2).
These methods differ in that the finite volume of the
particles is accounted for in the fluid equations. For
example, for an incompressible fluid, the continuity
equation is written as

@˛

@t
Cr � .˛u/ D 0; (4)

where ˛ is the volume fraction occupied by the parti-
cles, found essentially by summing over all the parti-
cles contained in each computational cell and dividing
by the cell volume. Corresponding modifications are
introduced in the momentum equation.
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Eulerian-Eulerian Methods

Eulerian-Eulerian methods are based on an averaged
description of the phases envisaged as interpenetrating
continua. The early versions of these models had an es-
sentially heuristic basis and were intended to describe
the behavior of chemical plants or nuclear reactors
under various accident scenarios. Much work has been
devoted in subsequent decades to derive more realistic
and physics-based formulations, but the success of
these efforts has overall been somewhat limited. Nev-
ertheless, the Eulerian-Eulerian description has found
various applications beyond nuclear safety, notably to
fluidized beds and gas-oil transport in pipelines.

For simplicity we limit ourselves to time-dependent
models in one space dimension x; we consider two
phases, which we distinguish by subscripts G for gas
(or vapor) and L for liquid, although the considerations
that follow are applicable to other two-phase systems
and are easily extended to higher-dimensional prob-
lems.

Conservation of mass is usually expressed in the
form

@

@t
.˛J �J /C @

@x
.˛J �J uJ / D ��J : (5)

Here �J and uJ denote the average (microscopic)
density and velocity of the phase J D G or J D L, and
�J is the average rate at which the phase is consumed
due to evaporation or, possibly, chemical reaction. As
before, ˛J denotes the volume fraction occupied by the
phase J . With only two phases G and L, conservation
of volume requires that ˛G C ˛L D 1.

A fairly general form of the momentum equation for
the J -phase adopted in Eulerian-Eulerian models is

@

@t
.˛J �J uJ /C @

@x

�
˛J �J u2J

�
D �˛J @p

@x
C FJ ; (6)

in which p is the pressure and FJ the total force acting
on the phase. Some models use different pressures for
the different phases, but it is often possible to recast
them in the form shown by defining p as the average
of the two pressures and expressing their difference
by a constitutive relation that affects the force FJ . An
important feature of (6) is that, due to the appearance
of ˛J in front of the pressure gradient, it is not in con-
servation form. Most models also include energy equa-
tions for the phases which we do not show for brevity.

The most basic form for FJ includes the body force
g and an inter-phase drag

FJ D ˛J �J g CHJK.uK � uJ / (7)

in which the index K denotes the other phase and
HJK is a coefficient in general dependent on volume
fractions, densities, and velocities.

A very significant shortcoming of the model (5)–(7)
is that the system of equations is not hyperbolic as
written unless the two phases have equal velocities.
As a consequence, the initial-value problem is ill-
posed (see the articles � Initial Value Problems and
�Hyperbolic Conservation Laws: Analytical Proper-
ties). Although, in principle, ill-posedness and stability
are distinct properties, in the particular case of (5)
and (6), with the force FJ expressed by a much more
general relation than given in (7) (and, in particular,
including differential terms), it can be shown that
failure of the model to be hyperbolic results in the
linear instability of all wavelengths. On the other hand,
models with force relations that make them hyperbolic
may or may not be linearly stable depending on the
specific values of the variables and on the wavelength
of the perturbation. In practice, the instability due to
lack of hyperbolicity has been overcome by relying on
the nonlinearity of the inter-phase drag terms and on a
heavy dose of numerical dissipation.

The discretization of the convective terms in (5)
and (6) encounters the usual problems of excessive
dissipation if carried out with low-order accuracy
(e.g., by donor-cell differencing or upwinding) or non-
monotonic behavior if attempted at higher order. These
issues are described in the articles on �Hyperbolic
Conservation Laws: Computation and �Stokes or
Navier-Stokes Flows, and the same strategies described
there (e.g., flux limiters) prove effective. Spurious
oscillations can be a particularly serious problem in
multiphase flow computation as they may cause the
volume fractions to get out of the range 0 � ˛J � 1.

Methods of the segregated type borrow ideas from
single-phase Navier-Stokes computations, e.g., the
classic SIMPLE approach. The first step is to add
the discrete form of the two mass conservation
equations (5) with the velocities evaluated at the
advanced time. The momentum equations are then
discretized and solved analytically to express the
advanced-time velocities in terms of the (still
unknown) advanced-time pressures. The resulting

http://dx.doi.org/10.1007/978-3-540-70529-1_121
http://dx.doi.org/10.1007/978-3-540-70529-1_316
http://dx.doi.org/10.1007/978-3-540-70529-1_333
http://dx.doi.org/10.1007/978-3-540-70529-1_501
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expressions are then substituted into the combined
mass conservation equation to produce an equation
for the the advanced-time pressure. Each step can
be executed according to many different variants
depending, among others, on the degree of implicitness
adopted. Furthermore, in view of the cell-to-cell
couplings and various nonlinearities (including that
introduced by the pressure-density-internal energy
equation of state), this sequence of operations needs
to be carried out iteratively to convergence, which
is reached more efficiently if the equations are cast
in terms of pressure and velocity increments, rather
than actual advanced-time pressures and velocities.
A variant of this method relies on enforcing the
volume-conservation constraint ˛G C ˛L D 1 rather
than conservation of mass.

The segregated algorithm strategy of solving the
various equations in succession using, at each step, the
currently available estimates of the variables proves
too inefficient in the case of processes characterized
by short time scales and stronger coupling between
the phases. For problems of this type, coupled algo-
rithms, which solve all the equations simultaneously
or nearly so at each step, are preferable. In the basic
versions of these methods, the discretized momentum
equations are solved analytically as before to express
the advanced-time velocities in terms of the advanced-
time pressures. The results are substituted into the
discretized mass and energy conservation equations,
and the resulting nonlinear system is solved itera-
tively. The analytic solution of the momentum equation
requires the explicit discretization of the convective
terms, which results in a strong limitation on the time
step. Various variants which avoid this shortcoming by
what essentially amounts to a predictor-corrector strat-
egy have been developed. More recently, the adoption
of fully implicit discretizations has become possible,
at least for problems with one or, possibly, two space
dimensions.

All of the methods described are essentially first-
order accurate in space and time. Several efforts to
develop higher-order methods are under way, but they
are hampered by some peculiar difficulties offered
by multiphase flow models. Since most higher-order
methods rely on the characteristics of the mathematical
model, lack of hyperbolicity is a serious concern. Hy-
perbolicity is not difficult to achieve – in fact many hy-
perbolic models exist. The problem is that it is not clear
which are preferable on physical and mathematical

grounds. A second difficulty is the fact that model
equations are not in conservation form as already noted
in connection with (6). For additional information on
these issues, see Ref. [4].
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Short Definition

Multiresolution (or multiscale) methods decompose
an object additively into terms on different scales or
resolution levels. The object can be given explicitly,
e.g., as time series or image data, or implicitly, e.g.,
as the solution of a partial differential equation.

Description

Many physical problems exhibit characteristic features
at multiple temporal and/or spatial scales. The goal of
multiresolution methods is to decompose the object
of interest into objects resolving these scales, for the
purpose of analysis, approximation, compression, pro-
cessing etc. Typical examples are measurement signals
or time series, described as univariate given functions
f living on a finite interval Œ0; T � � R. The goal is to
find a decomposition
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Multiresolution Methods,
Fig. 1 Synthetic function f
(top), additively composed
from a sine wave g1 (middle),
and two piecewise linear
continuous functions of
different resolutions, one of
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f .t/ D
1X

jD0
gj .t/; t 2 Œ0; T �; (1)

where the index j 2 N stands for the scale or
resolution and indicates for growing j finer scales. For
a time series, f is represented by point values on a
discrete grid (which may be viewed as a single-scale
representation of the data), and the series in (1) is finite.
A synthetic function consisting of three components
g0; g1; g2 is shown in Fig. 1.

Classical decompositions (1) assume that the mul-
tiscale components gj are of a particular form and all
of the same shape: in Fourier analysis, these are the
Fourier components gj .t/ D aj exp.i!j t/ with pre-
scribed frequencies !j and constant amplitudes aj to
be computed from f by, for example, the Fast Fourier
Transform. In the example in Fig. 1, the component
g1 is of this form. Other examples are hierarchical
decompositions where the gj ’s are assumed to be of
the form

gj .t/ D
X

k2K
dj;k  j;k.t/: (2)

Here  j;k are prescribed functions, typically generated
from a single translated and dilated function of local
support; the additional index k represents the loca-
tion. Standard cases for  j;k are piecewise polyno-
mials, B-splines, or finite elements. These would be

appropriate to represent the components g0 and g2 in
Fig. 1. In these cases, one can compute the expansion
coefficients dj;k by interpolation or projection from the
given data f , and (1) together with (2) results in a
hierarchical or multiscale data representation. If the
collection of all functions  j;k for all levels j and all
locations k satisfy additional conditions (like consti-
tuting a Riez basis for the underlying function space,
often the Lebesgue space L2.0; T /), one calls this a
wavelet decomposition. The construction of wavelets
themselves is typically based on the concept of mul-
tiresolution analysis of a separable Hilbert space [9].
For given uniformly distributed data f , the expansion
coefficients dj;k can be determined by the Fast Wavelet
Transform [4, 9]. Thus, the computation of these types
of multiresolution decompositions relies on applying
linear transformations. In case of nonuniformly spaced
data, the application of these transforms often resorts to
the uniform grid case. For data in more than one dimen-
sion like images, one typically applies these transforms
for each coordinate direction. The resulting multiscale
or hierarchical decompositions are then used for image
analysis and compression or the fast processing of
surfaces.

For given data exhibiting nonlinear and nonstation-
ary features on possibly nonuniform grids, a more
recent method is based on a data-adaptive iterative
process, leading to the so-called empirical mode de-
composition [7].
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If the object in question is to be determined as the
solution u of an operator equation F.u/ D g, e.g.,
a partial differential or integral equation on infinite
Banach spaces, the principle of finding a decomposi-
tion (1) is the same, enhanced to a large extent by the
difficulty to solve the equation. The type of equation
dominates the discretization and solution approach.
One uses the terminology “multiresolution method” to
describe the following methodologies:

(i) Homogenization and multiscale modeling to re-
solve multiple scales the solution exhibits

(ii) Multigrid methods (preconditioning, i.e., using
multiple scales for computational speedup, devel-
oping fast solvers for linear systems of equations
stemming from discretization of, e.g., elliptic par-
tial differential equatios (PDEs))

(iii) Compression of integral operators and compu-
tation of high-dimensional integrals (appearing,
e.g., in quantum chemistry)

(iv) A posteriori adaptive methods to compute the
solution u, starting from a coarse approximation
to progressively include finer scales resolving
singularities in data and/or domain during the
computations

Extensive sources of discussion of the points (ii)–(iv)
are [2, 3], and the invited surveys collected in [5];
wavelet preconditioning in the context of (ii) in [8]; (iii)
based on wavelets in [6] and by exponential sums in
[1]; (iv) for hyperbolic conservation laws discretized
by finite volume schemes in [10]; for elliptic PDEs
discretized by finite elements in [11] (see also adaptive
mesh refinement) and by wavelets in [12]; and the
development of multilevel schemes for systems of
PDEs in [13].
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Multiscale Multi-cloud Modeling and the
Tropics

Samuel N. Stechmann
Department of Mathematics, University of
Wisconsin–Madison, Madison, WI, USA

Synonyms

Clouds, convection; Easterly, westward; Westerly, east-
ward

Glossary/Definition Terms:

MCS: Mesoscale convective system.
CCW: Convectively coupled wave.
MJO: Madden-Julian oscillation.
CMT: convective momentum transport.

Introduction

In the tropical atmosphere, clouds and convection
play a central role in weather and climate processes.
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Furthermore, clouds present a formidable modeling
challenge in large part due to phase changes of water
and the accompanying latent heat release, which
interactively drives atmospheric circulations. Two
of the most interesting and important aspects are (i)
multiple cloud types and their different roles and (ii)
multiscale organization of clouds and convection.

For many cloud systems, the two most important
cloud types are deep convective and stratiform. Fig-
ure 1 illustrates these different cloud types. Deep
convective clouds are so named because they extend
vertically through a deep atmospheric layer, from the
top of the boundary layer to the tropopause, and these
clouds are associated with the most vigorous updrafts.
On the other hand, stratiform clouds are present in the
upper half of the troposphere, where they originate
as an outgrowth of deep convection or as a later
stage in a deep convective cloud’s life cycle. The
partitioning of precipitation into deep convective and
stratiform components has long been investigated [2].
The importance of this partitioning is multifaceted; as
one example, these components have different profiles
of vertical heating. Figure 1 shows the deep heating
profile (labeled P ) of a deep convective cloud and the
“dipole” heating/cooling structure (labeled �Hs) of a
stratiform cloud. In the stratiform case, latent heating
occurs in the upper troposphere, and cooling occurs
in the lower troposphere due to evaporation of rain
as it falls through the undersaturated air below the
cloud. Also illustrated in Fig. 1 is the shallow heating
profile (labeled Hc) of a congestus cloud, which is
present in the lower half of the troposphere. Due
to their different heating profiles, these cloud types
have different important roles in tropical atmospheric
dynamics [5, 8, 9, 11, 18, 19, 23, 27].

Coherent cloud patterns can organize on many dif-
ferent scales in the tropics, and the largest scales can
be loosely partitioned into three groups. Individual
cloud systems appear on scales of roughly 200 km and
0.5 days, and they are commonly called “mesoscale
convective systems” (MCSs) [6]. Several MCSs, in
turn, can sometimes be organized within a larger-scale
wave envelope with scales of roughly 2,000 km and
5 days; these propagating envelopes are called “con-
vectively coupled waves” (CCWs) [12]. Moreover,
several CCWs can sometimes be organized within an
even larger-scale wave envelope with scales of roughly
20,000 km and 50 days; the most prominent example of
this is the Madden–Julian Oscillation (MJO) [14, 30].

Each of these phenomena has an organized cloud struc-
ture that includes a progression through the cloud types
shown in Fig. 1, from congestus to deep convection to
stratiform.

Modeling these organized cloud systems remains
a difficult challenge. At the heart of the challenge
are multiple cloud types and multiscale interactions.
In their simplest form, the multiscale interactions are
convection–environment interactions. Cloud systems
are influenced by environmental wind shear and by the
environmental thermodynamic state, and, in turn, cloud
systems can alter the environmental state. In what fol-
lows, these multiscale interactions are illustrated using
idealized models, beginning with models for different
cloud types and their role in multiscale interactions.

Multicloud Modeling

To illustrate the different cloud types and their roles in
organized convective systems, two models for CCWs
are presented in this section: an exactly solvable model
and a nonlinear multicloud model.

Exactly Solvable Model
An exactly solvable model for a CCW structure is

w0.x; z; t/ D S 0� .x; z; t/
@xu0 C @zw

0 D 0: (1)

In this model called the weak-temperature-gradient
approximation, the wave’s vertical velocity w0 is ex-
actly in balance with the heating rate S 0� , which we
must specify. The wave’s horizontal velocity u0 is then
determined from the incompressibility constraint in (1)
[1, 17]. Given this exact solution for u0 and w0 of the
CCW, its effect on the mean flow is determined by

@t Nu D �@zw0u0; (2)

where this is the horizontal spatial average of the hor-
izontal momentum equation, @tu + @x.u2/C @z.wu/C
@xp D 0, and where bar and prime notation is used
to denote a horizontal spatial average and fluctuation,
respectively:

Nf .z; t/ D 1

L

Z L

0

f .x; z; t/ dx
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Multiscale Multi-cloud
Modeling and the Tropics,
Fig. 1 Top: Schematic
illustration of cloud types in
the tropics (From Khouider
and Majda [10]). Bottom:
Vertical heating profiles
associated with the deep
convective, stratiform and
congestus cloud types and
vertical structures of the first
baroclinic mode wind, u1, and
the second baroclinic mode
wind, u2 (From Khouider and
Majda [8])
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f 0.x; z; t/ D f � Nf ; (3)

where periodic horizontal boundary conditions are as-
sumed for simplicity. From (2), it is seen that a CCW
will alter the mean flow if and only if @zw0u0 ¤ 0. In
the context of convective motions, this effect on the
mean flow is called convective momentum transport
(CMT).

To illustrate CMT in some specific cases, consider
a heat source with two phase-lagged vertical
modes, sin(z) and sin(2z), which represent deep

convective heating and congestus/stratiform heating,
respectively:

S 0� Da�fcosŒkx � !t�p2 sin.z/C ˛ cosŒk.x C x0/
� !t�p2 sin.2z/g; (4)

where k is the horizontal wavenumber and a� is the
amplitude of the heating. Two key parameters here are
˛, the relative strength of the second baroclinic heating,
and x0, the lag between the heating in the two vertical
modes. Figure 2 shows three cases for the lag x0 W 0
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Multiscale Multi-cloud Modeling and the Tropics, Fig. 2
Solutions to the exactly solvable model (1) for CCW structure
and CMT in three cases: upright updraft (top), vertically tilted
updraft of “eastward-propagating” CCW (middle), and vertically
tilted updraft of “westward-propagating” CCW (bottom). Left:
Vector plot of .u0;w0/ and shaded convective heating S 0

� .x; z/.
For vectors, the maximum u0 is 6.0 m/s for the top and 4.0 m/s

for the middle and bottom, and the maximum w0 is 2.8 cm/s
for the top and 2.2 cm/s for the middle and bottom. Dark
shading denotes heating, and light shading denotes cooling,
with a contour drawn at one-fourth the max and min values.
Middle: Vertical profile of the mean momentum flux: w0u0.
Right: Negative vertical derivative of the mean momentum flux:
�@zw0u0 (From Stechmann et al. [24])
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(top), C500 km (middle), and �500 km (bottom) for
a wave with wavelength 3,000 km, heating amplitude
a� D 4K=day, and relative stratiform heating of ˛ D
�1=4. The lag determines the vertical tilt of the heating
profile. Given this heating rate, the velocity can be
found exactly from (1):

u0.x; z; t/ D� a�
k

n
sinŒkx � !t�p2 cos.z/

C2˛ sinŒk.x C x0/� !t�
p
2 cos.2z/

o

w0.x; z; t/ Da�
n
cosŒkx � !t�p2 sin.z/

C˛ cosŒk.x C x0/� !t�
p
2 sin.2z/

o

(5)

With this form of u0 and w0, the eddy flux divergence
is

@zw0u0 D 3

2

sin.kx0/

k
a2�˛Œcos.z/� cos.3z/� (6)

Notice that a wave with first and second baroclinic
components generates CMT that aspects the first and
third baroclinic modes [1, 17]. Also notice that (6) is
nonzero as long as ˛ ¤ 0 (i.e., there are both first
and second baroclinic mode contributions) and x0 ¤ 0
(i.e., there is a phase lag between the first and second
baroclinic modes). These are typical aspects of the
structure of observed CCWs [12].

For illustrations of the above exact solutions, con-
sider the three cases shown in Fig. 2: upright up-
draft (top), “eastward-propagating” CCW (middle),
and “westward-propagating” CCW (bottom). Although
there is no inherent definitive propagation in the ex-
actly solvable model (1), propagation direction labels
are assigned to the vertical tilt directions according
to the structures of observed CCW [12, 20]: heating
is vertically tilted with leading low-level heating and
trailing upper-level heating with respect to the CCW
propagation direction. Specifically, this corresponds to
the observed structures of convectively coupled Kelvin
waves [25], which propagate eastward, and westward-
propagating inertio-gravity waves (also called “two-
day waves”) [26]. Also shown in Fig. 2 are the average
vertical flux of horizontal momentum, w0u0, and its
vertical derivative, @zw0u0. These exact solutions show
that upright updrafts have zero CMT, and tilted up-
drafts have nonzero CMT with a sign that is related

to the CCW’s propagation direction. Note that the
vertically averaged momentum would not be affected
by CMT in this model, since w0u0 is necessarily zero
at the upper and lower rigid boundaries. This sim-
ple model illustrates CMT features that are similar
to Moncrieff’s archetypal models for MCS [22], due
to the “self-similarity” of MCS and CCW structures
[16, 20].

Nonlinear Multicloud Model
While the exactly solvable model illustrates CCW
structure in a simple way, it does not include any
CCW dynamics. To investigate CCW dynamics, we
use the multicloud model of Khouider and Majda
[8, 10], which is a spatially variable PDE model for
CCWs that captures many important features such as
their propagation speeds and tilted vertical structures.
The mathematical form of the model is

@tuC A.u/@xu D S.u/ (7)

where u.x; t/ is a vector of model variables, u D
.u1; �1; u2; �2; �eb; q;Hs/

T . The model variables are
uj , the zonal velocity in the j th baroclinic mode; �j ,
the potential temperature in the j th baroclinic mode;
�eb , the equivalent potential temperature of the bound-
ary layer; q, the vertically integrated water vapor;
and Hs , the stratiform heating rate. The matrix A.u/
includes the effects of nonlinear advection and pressure
gradients, and S.u/ is a nonlinear interactive source
term with combinations of polynomial nonlinearities
and nonlinear switches. See Majda and Stechmann [18]
and Stechmann et al. [24] for the detailed form of these
equations.

Using the velocity modes uj .x; t/, the two-
dimensional zonal velocity u.x; z; t/ is recovered as
a sum of the contributions from all of the vertical
modes:

u.x; z; t/ D u0.x; t/C
1X

jD1
uj .x; t/

p
2 cos.j z/ (8)

where the troposphere extends from z D 0 to � in the
nondimensional units shown in (8), which corresponds
to z D 0 to 16 km in dimensional units. The vertically
uniform mode j D 0 is the barotropic mode, and
the other modes are the baroclinic modes. Plots of the
vertical structure associated with some of the vertical
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baroclinic modes are shown in Fig. 1. In order to
include a balance between simplicity and important
physical effects, the original multicloud model in-
cludes only u1 and u2 as dynamical variables. The
effect of u3 will also be considered here as either a
constant background shear U 3 or as a slowly evolving
mean shear U 3.T /, where T D �2t is a slow time
scale.

Figure 3 shows the behavior of the multicloud
model (7) in the presence of three different mean shears
U .z/. These are nonlinear simulations on a 6,000 km
wide domain with periodic boundary conditions in the
horizontal. The first column shows the case of zero
mean shear. In this case, there are linear instabilities
over a finite band of wavenumbers, the unstable waves
propagate both eastward and westward, and there is
perfect east–west symmetry. In the nonlinear simula-
tion, a westward-propagating traveling wave arises as
the stationary solution (if viewed from a translating
reference frame), which grows from a small initial
random perturbation. Due to the perfect east–west
symmetry of this case, the initial conditions randomly
select whether the eastward- or westward-propagating
wave will eventually become the stationary solution.
The second column shows a case with a lower tropo-
spheric westerly jet and an upper tropospheric easterly
jet. In this case, the east–west symmetry is broken,
the westward-propagating wave has the largest linear
theory growth rates, and it is the eventual stationary
solution in the nonlinear simulation. The third column
shows another case with a nontrivial vertical shear. In
this case, the linear theory growth rates are nearly east–
west symmetric, and the nonlinear simulation appears
to favor a standing wave solution rather than a traveling
wave solution. In fact, at later times (not shown), there
is an oscillation between the standing and traveling
wave states in this case, so the preference for the
standing wave is tenuous. Nevertheless, these cases
demonstrate, to an extent, two effects of the back-
ground shear on the CCWs: it can break the east–west
symmetry to favor either the eastward- or westward-
propagating wave, and it can determine, to an extent,
whether a traveling wave or standing wave state is
favored.

The vertical structure of the CCW is illustrated
in Fig. 4. Shown here are the velocity fluctuations
u0 and w0 taken from the first case from Fig. 3 at
time t D 30 days. Similar to the exactly solvable
model in Fig. 2, the CCW here has a vertically tilted

updraft due to a heating structure from a combination
of deep convection and stratiform heating. There is
a positive momentum flux w0u0 in the middle tropo-
sphere, which corresponds to a �@zw0u0 structure that
would accelerate easterlies in the lower troposphere
and westerlies in the upper troposphere, if this CMT
were not balanced by other momentum sources. (In the
next section, the mean wind will be allowed to evolve
in response to this type of CMT.) Also note that the
middle case from Fig. 3 also has a CCW structure as
in Fig. 4, which, in that case, would decelerate the
mean flow at all levels if the CMT were not balanced
by other momentum sources. Together, these two cases
illustrate that the energy transfer can be either upscale
or downscale, depending on the particular mean flow
and the propagation direction of the CCW.

Multiscale Multicloud Modeling

Now the one-way effects of the previous section will
be combined to allow two-way CCW–mean flow
interactions. The mean wind can influence which
CCW is favored (eastward or westward propagating),
and the CCW can alter the mean wind through its
CMT.

A multiscale asymptotic model for CCW–
environment interactions can be derived from the
atmospheric primitive equations, as described by
Majda and Stechmann [18]. The derivation is outlined
here for the zonal velocity u only, although the
full set of atmospheric variables is used by Majda
and Stechmann [18]. The starting point is the two-
dimensional equation

@tuC @x.u2/C @z.wu/C @xp D Su (9)

It is assumed that the velocity depends on two time
scales: a fast time scale t on equatorial synoptic scales
and a slow time scale T D �2t on intraseasonal time
scales.

The asymptotic expansion of u takes the form

u D U .z; T /C �u0.x; z; t; T /C �2u2 CO.�3/ (10)

with similar expansions for other variables and
where U .z; T / is the slowly varying mean wind and
u0.x; z; t; T / is the fluctuating wind. After inserting the
ansatz (10) into the primitive equation (9) and applying
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Multiscale Multi-cloud Modeling and the Tropics, Fig. 3
Nonlinear simulations of the multicloud model for three cases
of fixed background shear. Row 1: Three different mean flows

NU.z/ used for the three cases. Row 2: Space–time plots of deep
convective heating Hd.x; t/ from nonlinear simulations (From
Stechmann et al. [24])

the procedure of systematic multiscale asymptotics, the
result is

@T U D �@zhw0u0i
@T‚ D �@zhw0� 0i C hS�;2i
@zP D ‚ (11)

and a set of equations for the fluctuations

@tu
0 C U@xu0 C w0@zU C @xp0 D S 0u;1

@t �
0 C U@x� 0 C w0@z‚C w0 D S 0�;1

@zp
0 D � 0

@xu0 C @zw
0 D 0 (12)

where the full derivation by Majda and Stechmann
[18] includes the full set of atmospheric variables.
The multiscale equations (11)–(12) demonstrate the
main two mechanisms of CCW–mean flow interac-
tions: CMT from the CCW drives changes in the mean
wind on the slow time scale T D �2t , and the mean
flow affects the CCW through the advection terms.
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Multiscale Multi-cloud Modeling and the Tropics, Fig. 4
Structure and CMT of the westward-propagating CCW from the
left case of Fig. 3 at time t D 30 days. Left: Vector plot of
.u;w/ and shaded convective heating. Maximum u and w are
5.2 m/s and 7.3 cm/s, respectively, and dark and light shading

show convective heating greater than C2K/day, and less than
�2K/day, respectively. Middle: Vertical profile of the mean
momentum flux: w0u0. Right: Negative vertical derivative of the
mean momentum flux: �@zw0u0 (From Stechmann et al. [24])

By themselves, (11)–(12) include the dry dynamical
basis and the multiscale interactions, but the source
term S 0�;1 still needs to be specified; the multicloud
model is thus used to supply interactive source terms
and moisture effects. Note that (11)–(12) allow for
changes in the mean thermodynamic state such as
‚.z; T / in addition to mean flow U .z; T /; this was
also included in Majda and Stechmann [18] and here
as well, but only the mean flow U.z; T / dynamics will
be shown here as it has the most significant effect in
this single-planetary-scale-column setup.

In short, the model for CCW–environment interac-
tions can be thought of as the multiscale model in (11)–
(12) with the multicloud model used to supply moisture
effects and interactive source terms for (12).

An example of the multiscale multicloud dynamics
is shown in Fig. 5. This background state is similar to
the westerly wind burst stage of the MJO [1, 7, 15, 17,
28, 29]. The mean flow oscillates about a climate base
state that is mostly first baroclinic, i.e., the cos z term
dominates, but CMT causes the maximum low-level
winds to shift aloft to z D 3 or 4 km as occurs from
t D 1;040 to 1,070 days. This phase in the cycle of the
zonal winds in the simple dynamical model strongly
resembles the one for the zonal winds in the westerly
wind burst stage of the MJO from the observational
record [15, 28, 29]. First at time t D 1;040, the shear
is entirely first baroclinic with the maximum of the
westerlies at the base of the troposphere as in the

westerly onset stage. Tung and Yanai [28, 29] use the
diagnostic

U.z; T /

jU j
@U

@t
> 0 .< 0/ (13)

to denote acceleration (deceleration) of the zonal jet
where @U=@t is measuredfrom turbulent transports in
the observations. In the westerly wind burst phase
of the MJO, they find first a phase of acceleration
of the zonal winds in the lower troposphere due to
CMT which is followed by a phase of deceleration
of these westerly winds [29]. This is exactly what
happens in the simple model due to CMT as shown
in the upper panels of Fig. 5. The zonal winds in
the lower troposphere first accelerate between t D
1;040 and 1,070 days where a strong westerly wind
burst develops aloft, as in the observations, and then
decelerate at the times beyond t D 1;070 days.
What happens in the simple dynamical model be-
tween times t D 1;040 and 1,070 days is a coherent
eastward-propagating CCW which affects the zonal
mean flow through CMT and drives the acceleration
of the westerly zonal wind. Masunaga et al. [21]
has noted the prominent occurrence in observations
of eastward-propagating convectively coupled Kelvin
waves in the westerly wind burst phase of the MJO.
This occurs, for instance, as the CCW propagates
eastward from t D 1;040 to 1,070 days. (This is
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also the same role played by eastward-propagating
superclusters in a recent diagnostic multiscale model
of the MJO [1, 17].) Note that this analogous be-
havior occurs in this simple dynamical model even
though it is one dimensional horizontally and without
Coriolis effects.

Another striking feature of Fig. 5 is the occurrence
of multiscale waves with envelopes propagating
westward with smaller scale convection propagating
eastward within the envelope. These multiscale waves
appear in the transition phases between instances of
coherent CCWs propagating in opposite directions.
At these stages, the wave patterns resemble those in
the simulations of Grabowski and Moncrieff [3]. The
occurrence of both coherent and scattered convection
is also reminiscent of the simulations in Grabowski
et al. [4], although their results were on smaller
scales and their mean variables were prescribed, not
dynamic.

Many challenges remain for multiscale multicloud
modeling in the tropics. See Klein [13] and Khouider
et al. [11] for recent reviews from an applied mathe-
matics perspective.
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Description

Numerical simulation plays a vital part in modern
weather forecasting and climate research. Related nu-
merical methods must respect the multiscale char-
acter of atmospheric dynamics. Different hierarchies
of scales arise from a variety of origins, and each
comes with its specific demands in the context of
computational simulation. This entry addresses mul-
tiscale issues in the numerical solution of the at-
mospheric flow equations. Issues associated with the
mathematical modeling of unresolved scales are not
addressed.

Parameter-Induced Scales/Multi-rate,
(Semi-)implicit, Well-Balanced, and
Asymptotically Consistent Schemes

A substantial part of today’s theoretical meteorological
knowledge has been derived through scale analyses.
These exploit the wide separation between certain
characteristic length and time scales of atmospheric
motions whose existence is implied by the Earth’s
geophysical parameters. Such parameters are the
Earth’s radius and rotation rate, the total mass
of its atmosphere, the global mean atmospheric
temperature, a typical horizontal temperature
difference between the poles and the equator, and

the average acceleration of gravity. Through classical
dimensional analysis, these parameters combine
to form dynamically relevant characteristic scales,
such as the pressure scale height, hsc  10 km,
which measures the height of the troposphere;
the mid-latitude synoptic scale, L  1;000 km,
which is the typical diameter of a high- or low-
pressure region; or the tropospheric Brunt-Väisälä
frequency, N , which characterizes the stability of the
atmosphere’s stratification against adiabatic vertical
mass displacement [1].

Theoretical studies reveal that associated with these
characteristic scales are certain dominant balances of
physical forces or processes [1, 2]. Examples are the
near hydrostatic and geostrophic balances of the pres-
sure gradient with the gravitational and the Coriolis
apparent forces, respectively, which are relevant to
the synoptic length and daily time scales. On the
one hand, these dominant balances justify related re-
duced dynamical models, such as the quasi-geostrophic
model for the said examples. On the other hand, they
imply that numerical schemes for solving the unap-
proximated full compressible flow equations should
reproduce these near balances without undue inter-
ference from numerical truncation errors, and they
should properly handle the underlying fast-wave pro-
cesses that arise when the flow data are out of bal-
ance.

Multi-rate, (Semi-)implicit, and Asymptotically
Consistent Schemes
Across all relevant length and time scales, atmospheric
flows are in acoustic balance, i.e., flow velocities
are much slower than a typical sound speed, and
characteristic time scales are much longer than
those of acoustic oscillations on the same length
scales. Solving the compressible flow equations for
such slowly evolving solutions remains challenging,
although a number of practical solutions are available
[3].

Split-explicit or multi-rate time integrators reduce
the expense of making small acoustics-resolving time
steps by splitting the governing equations into a lin-
earized first part that captures the fast acoustic and
other fast-wave modes and a nonlinear second equa-
tion set that describes the remaining slow modes,
notably advection. Both parts are integrated explicitly
in time, the first using acoustics-resolving time steps
and the second using time steps that only resolve

http://dx.doi.org/10.1029/2004RG000158
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the slow processes. As intuitively clear as this ap-
proach appears at a conceptual level, as difficult it
is to actually construct a split scheme that delivers
on the promise of allowing large separation between
the time steps used in the sub-integrations. The op-
timization of such methods remains an active field
of research [4, 5] for at least one important reason:
They have a decisive advantage over the (partially)
implicit approaches discussed in the next paragraph
in terms of parallelization on modern supercomputer
hardware.

Semi-implicit, or [linearized] implicit-explicit
([L]IMEX), is used when fast-wave oscillations are
not important and thus need not be resolved in
time – as is the case, e.g., with acoustic modes.
Using unconditionally stable implicit time integrators
on a linearized fast-wave part of the governing
equations enables integration at time steps comparable
to those used to resolve the slower processes of
interest. A potential caveat with this approach is
that unconditional stability with respect to the time
step size is achieved with implicit integrators at the
cost of artificially slowing down the oscillations
of fast-wave modes with wavelengths of the order
of the computational grid size. This slowing-down
distorts the wave dispersion to the extent that the
numerically realized group velocity of the related
shortwaves may nearly vanish or even change sign
relative to its physical counterparts depending on
the details of the schemes used. In both cases some
of the short-wavelength oscillatory modes are then
nearly stationary on the grid. As a consequence, they
are prone to weakly nonlinear amplification through
truncation errors that arise in coupling the implicit
and explicit substeps or as a result of erroneous
channeling of energy from physical processes into the
unphysical oscillatory modes. As a countermeasure
one resorts to implicit integrators that feature nonzero
dissipation for shortwave modes as part of their
truncation error. This is sometimes achieved by
tuning the second-order implicit trapezoidal or related
schemes toward the first-order accurate backward
Euler method or sometimes by resorting to still at least
second-order accurate but also dissipative multilevel
backward in time differencing (BDF) schemes [6].
The adoption of higher-order integrators with more
favorable properties faces the efficiency critique:
Implicit solves are computationally expensive and not
easily parallelizable on modern hardware. For these

reasons, the development of semi- and fully implicit
time integrators remains a focus of interest [7–10].

Asymptotically adaptive or asymptotic-preserving
schemes mostly belong to the class of semi-implicit
methods. In their construction, particular attention is
paid, however, to the requirement that the schemes not
only work stably under practically relevant conditions
of time scale separation but that they automatically and
seamlessly turn into adequate solvers for the reduced
asymptotic models that describe flows in the respective
fully balanced limits [11–15].

Well-Balanced Schemes
Split-explicit and semi-implicit schemes, when applied
to a configuration with approximate balance of some
fast processes, approach numerical balanced states by
multiple fast iterations or by implicitly solving for
them. Yet, these states generally bear the imprint of the
numerical truncation errors associated with the spatial
discretization used, and this may distort the steady
states away from the physically meaningful ones at
unacceptable levels. A prominent example is spurious
numerically induced winds over steep topography that
arise after initialization of a simulation with a nomi-
nal static state at rest. It is not guaranteed automati-
cally that the discrete pressure gradient on a terrain-
following grid that balances the (vertical) acceleration
of gravity has vanishing horizontal components. If
there are remaining horizontal components, however,
they induce spurious horizontal and in the sequel also
vertical flows. Well-balanced schemes overcome this
general issue by building explicit information on to-be-
respected balanced states explicitly into the numerical
discretizations. The central underlying idea is as fol-
lows: Instead of building more sophisticated schemes
from first-order versions that work with piecewise
constant states as the simplest base states one usually
thinks of, one constructs schemes that use locally
balanced states as the fundamental building blocks
[16–18]. These schemes guarantee clean numerical
static states for the shallow water and atmospheric Eu-
ler equations in second-order accurate discretizations.
Meanwhile there exist advanced schemes of this type
which also maintain steady states with nontrivial flow,
[19], or achieve higher than second-order accuracy,
[20], and related ideas are being exploited in global
weather codes based on the hydrostatic primitive equa-
tions [21].
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Process-Induced Dynamic
Balances/Conservation Principles and
Mimetic Schemes

The atmosphere is a nonequilibrium system driven
by incoming solar radiation. The incoming flux of
energy is redistributed through a myriad of processes,
dominantly being channeled back and forth between
the potential, kinetic, and internal forms of energy,
including the latent heat of liquid water. A central role
in this context is played by diabatic processes which
irreversibly transfer energy from its mechanical forms
(potential, kinetic, and elastic) to its thermodynamic
forms (thermal energy and latent heat of condensa-
tion). While the related energy fluxes are responsible
for many weather phenomena, they are, at the same
time, quite weak in comparison with the ubiquitous
adiabatic, i.e., reversible, energy exchanges. Estimates
in [22, 23] show that these processes have mean hor-
izontally averaged transfer rates of 10 W=m2, while
the part of the sun’s total energy flux absorbed by the
atmosphere is ten times as large, and typical vertically
averaged advective kinetic energy flux divergences can
be even larger, depending on the specific flow situa-
tion. This magnitude difference between quantities of
interest (here the rate of irreversible energy transfers)
and those that are to be balanced to compute them
creates a third challenge for numerical flow solvers:
These should accurately reproduce these subtle dia-
batic energy transfers without overwhelming them by
artificial diabatic exchanges induced by truncation er-
rors from the discretization of the adiabatic dynamics.
This is considered particularly important for long-term
simulations as routinely pursued in climate research.
Systematic but erroneous long-term trends can be the
consequence of truncation errors competing with phys-
ical effects that are weak, but accumulate over long
times.

The exact conservation up to machine accuracy of
the primary conserved quantities mass, total energy,
and momentum (in the absence of nonconservative
forcing) is achieved routinely by adopting conservative
finite volume discretizations [3, 24]. These conserva-
tion laws hold, no matter whether a flow is adiabatic
or not. Yet, to also preserve secondary constants of
integration of the adiabatic dynamics, such as Ertel’s
potential vorticity, angular momentum, or helicity, re-
quires discretizations with particular algebraic prop-
erties. Schemes with “mimetic properties” are being

developed to meet these requirements. Their construc-
tion principle is to reproduce fundamental identities of
vector calculus, which are used in the derivation of
the secondary conservation principles, at the discrete
level. Such discrete identities are a solid foundation for
precise control, e.g., over transfers between different
forms of energy, in a numerical scheme.

The general approach has been pioneered by A.
Arakawa and co-workers in the 1980s in the context
of atmospheric flow simulation [25]. These authors
exploited that certain expressions in the shallow water
equations can be written in terms of antisymmetric
differential operators (Poisson brackets) and that their
antisymmetry is responsible for the conservation of
total energy and of the square norm of vorticity in
these equations in the adiabatic case. By constructing a
discretization that directly mimics the operations of the
Poisson brackets at the discrete level, they provided a
shallow water solver with superior properties in long-
time simulations. Recently, techniques of this type
have been developed for more general computational
grid structures and for more realistic flow models by
various teams [26–29] using, inter alia, the Nambu
formulation of fluid dynamics [30, 31].

One caveat associated with the use of such
schemes is that they lead to fully nonlinear implicit,
and thus, computationally expensive formulations
if the said exact conservation properties are to
be realized. Nevertheless, explicit or semi-implicit
formulations in connection with such mimetic
spatial discretizations can still exhibit advantageous
dispersion behavior and very good approximate,
although not exact, conservation properties. Another
open issue for fully implicit schemes of this type
is related to the nonlinearity of the fluid equations
of state. The algebraic constraints to be observed
to guarantee correct transfers between the different
energy reservoirs may prohibit or strongly constrain
the formulation of higher-order approximations in
time [32].

Problem-Induced Scales/Nesting and
Adaptivity

Depending on the purpose of an atmospheric flow
simulation, it is often desirable to nonhomogeneously
resolve parts of the computational domain. This has,
e.g., been standard in everyday weather forecasting.
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Global simulations based on a relatively coarse com-
putational grid, with grid sizes of100 km, are supple-
mented by local high-resolution embedded simulations
for a particular region of interest. More than two
levels of refinement are being used, e.g., to maximize
the simulated detail for hurricane forecasts [33, 34].
The standard approach to realizing the communication
between coarse-grid and fine-grid computations is one-
way nesting. Here one first completes the large-scale
simulation at lower resolution and subsequently uses
the results, after suitable interpolation, as effective
boundary conditions for the embedded simulation. In
an interesting variant of this approach, one solves, on
a fine mesh, for perturbations away from a possibly
time-dependent large-scale field that itself is either
precomputed and prescribed or simulated on the fly
on a coarser mesh [35]. In general, mutually coupled
simulations – or two-way nesting – on grids of different
refinements promise further improvements as the ac-
curacy of the coarse-grid computation can benefit from
the more accurate information generated on the regions
with higher grid resolution.

While this is intuitively plausible, and while it
reminds readers familiar with the very successful mod-
ern adaptive numerical solver techniques for partial
differential equations [36], it does deserve a closer
look in the context of atmospheric flow simulations.
Modern grid-adaptive numerical methods in compu-
tational (geophysical) fluid dynamics [37–39] gener-
ally realize two-way coupling. They exploit the higher
accuracy achieved with higher resolution to also im-
prove the coarse-grid computation. Ultimate efficiency
is achieved when the grid resolution is locally and
dynamically in time adapted to the resolution needs of
a running simulation. The potential of these modern
techniques is increasingly appreciated in numerical
meteorology, and two-way nesting for regional weather
forecasting is being tested at weather and climate
centers.

Some caveats in this context result, however, from
the notorious underresolution that weather forecasters
live with and will have to live with for the foreseeable
future. Even the finest grids in a production weather
forecast do not feature cell sizes smaller than 1 km.
Many important physical processes, notably those as-
sociated with moisture, cannot be resolved at this level.
These processes must therefore still be represented by
effective closure models or parameterizations which
not only have limited accuracy but are also inher-

ently resolution dependent. As a consequence, adaptive
grids with two-way nesting for meteorological applica-
tions must necessarily be accompanied by resolution-
adaptive subgrid scale process parameterizations. The
importance of such developments has been fully rec-
ognized only in recent years [40, 41] (See also the
fall 2012 program on “Multiscale Numerics for the
Atmosphere and Ocean” of the Newton Institute in
Cambridge, UK.) and is now a topic of very active
research.

There is a second difficulty for adaptive simula-
tions in meteorology, again related to the ubiquitous
presence of small unresolved scales. Grid resolution
in adaptive methods is originally meant to be adjusted
such that all features of a solution are resolved with
comparable accuracy independent of their character-
istic scales. Thus, one would run with a relatively
coarse grid in the region of smooth solutions and with
finer grids in areas exhibiting small-scale structure.
Yet, if small-scale structures are essentially present
everywhere, as in the atmosphere, then a change of
resolution must be controlled by different criteria.
These cannot be the criteria based on the shear “ac-
curacy” of the numerical solution, but must include
aspects of what the target of the simulation is and of
which aspects of the solution are and are not important
for achieving this goal. As a consequence, adaptive
multiscale modeling for atmospheric flows is to be
understood inherently as a joint task of modelers and
numerical analysts.
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Introduction

Linear multistep methods is a class of numerical meth-
ods for computing approximate solutions to initial
value problems in ordinary differential equations. The
most widely used methods are the Adams methods and
the Backward Differentiation Formulas, better known
as the BDF methods. The former are used for nonstiff
equations, and the latter for stiff equations, [3, 10, 12,
13, 16].

The problem to be solved is a first-order system of
differential equations,

dy

dt
D f .t; y/I y.0/ D y0: (1)

The independent variable t usually denotes “time,” and
the dependent variable is a vector-valued function of
time, y.t/ 2 R

m. The vector field f is usually assumed
to be continuous in t and Lipschitz continuous with
respect to y. One seeks a solution y.t/ for t 2 Œ0; T �,
satisfying the initial condition y.0/ D y0, where the
initial value y0 2 R

m is a given vector.
Unlike differential equations, difference equations

are well suited to sequential computing. A linear mul-
tistep method thus approximates (1) by a difference
equation of the form

kX

jD0
˛j ynCj D h

kX

jD0
ˇj f .tnCj ; ynCj /; (2)

where the coefficients f˛j gkjD0 and fˇj gkjD0 determine
the method. Here ftngNnD0 is a sequence of points
in time such that tn D n � h, where h is the step
size, defined by N � h D T . The sequence fyngNnD0,
which is to be computed, contains the corresponding
approximations to y.t/, that is, yn 
 y.tn/ for all n.
As the difference equation is of order k, the method (2)
is referred to as a k-step method.

To make the definition of a linear multistep method
precise, let the two sets of coefficients f˛j gkjD0 and

fˇj gkjD0 define the two generating polynomials,

�.�/ D
kX

jD0
˛j �

j I �.�/ D
kX

jD0
ˇj �

j ; (3)

which are assumed to have no common factor. It is
further assumed that deg.�/ D k, which is equivalent
to the requirement ˛k ¤ 0. Finally, the method’s
coefficients are normalized by imposing the condition
�.1/ D 1. Under these assumptions, the pair .�; �/
uniquely defines a linear k-step method.

Assume that k previous values yn; ynC1; : : : ; ynCk�1
are available. As ˛k ¤ 0, the difference equation (2)
can be written as

ynCk � hˇk
˛k
f .tnCk; ynCk/

D 1

˛k

2

4h

k�1X

jD0
ˇj f .tnCj ; ynCj /�

k�1X

jD0
˛j ynCj

3

5; (4)

where the right-hand side only consists of known
values of y and f, and where the task is to solve
for ynCk . The method is called explicit if ˇk D 0

(equivalent to deg.�/ < k). Then ynCk is directly
obtained by evaluating the right-hand side of (4). The
numerical integration of (1) consists of repeating this
computation, step by step, until the terminal point T is
reached. The Adams–Bashforth methods are examples
of explicit linear multistep methods.

If ˇk ¤ 0 (equivalent to deg.�/ D k), the method
is implicit. Then ynCk is defined by the (nonlinear)
equation (4), which must be solved numerically to de-
termine ynCk . Such a method is computationally more
expensive per step, but as implicit methods typically
offer improved accuracy or superior stability, the use of
larger step sizes may offset the added cost of solving a
nonlinear equation on each step. Well-known examples
of implicit methods are the Adams–Moulton methods
and the BDF methods.

The main alternative to linear multistep methods
is Runge–Kutta methods. Although these classes of
methods are quite different in character, they are both
covered by a comprehensive, unifying theory, known as
General Linear Methods. Robust and highly efficient
software exist for both classes. General purpose solvers
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for (1) are usually adaptive, meaning that the step size
is not kept constant (as above), but is automatically
varied during the course of integration. This makes it
possible to keep computational costs low, while still
computing an approximate solution to within a user-
specified accuracy requirement.

Order of Consistency

In general, the exact solution y.t/ will not satisfy
the difference equation (2). Inserting any sufficiently
differentiable function y and its derivative y0 into (2)
one finds, by Taylor series expansion, that

rnŒy� WD
kX

jD0
˛j y.tnCj /� h

kX

jD0
ˇj y

0.tnCj /

D ckhpC1y.pC1/.tn C �kh/; (5)

for some � 2 Œ0; 1� as h ! 0. The remainder term
rn is called the local residual; ck is the error constant;
and p is the method’s order of consistency. The order
is usually determined by inserting polynomials y.t/ D
tq , with y0.t/ D q tq�1, since rnŒtq� � 0 for all q � p.

Specifically for q D 0, the condition on the coef-
ficients is

P
˛j D �.1/ D 0. Hence, �.�/ D 0 must

always have one root � D 1, known as the principal
root. Further, taking n D 0 and tj D j � h, for q � 1,
the order conditions are

kX

jD0

�
˛j j

q � ˇj q j q�1
� D 0I q D 1; : : : ; p; (6)

where the .p C 1/th condition fails. The first order
condition (q D 1) can also be written �0.1/ D �.1/.
The two conditions �.1/ D 0 and �0.1/ D �.1/

are often merely referred to as “consistency,” noting
that any method that fails to satisfy this minimum
requirement is also unable to track the solution of (1).

The order conditions can be used to construct meth-
ods. As a k-step method has 2k C 1 coefficients (one
coefficient being lost to the normalization requirement
�.1/ D 1), and the coefficients f˛j gk0 and fˇj gk0 enter
(6) linearly, it is possible to select them such that
rnŒt

q� � 0 for q D 0; : : : 2k. Thus, the maximal order
of consistency is p D 2k.

However, for k > 2, such methods are unstable
and fail to be convergent. Thus, stability will restrict
the order, and one must distinguish between order
of consistency and order of convergence. The latter
means that the point-wise numerical error enŒy� WD
kyn � y.tn/k D O.hp/ as h ! 0. This requirement
is more demanding than merely having the difference
equation (2) approximate (1) to a certain accuracy, such
that rnŒy� D O.hpC1/.

Stability and Convergence

Let E denote the forward shift operator, defined by
Eyn D ynC1 for all n, and apply .�; �/ to the simple
problem y0 D f .t/. Then (2) can be written as

�.E/yn D h�.E/fn: (7)

The solution is yn D unCvn, where fung is a particular
solution, and the homogeneous solutions fvng satisfy
�.E/vn D 0. The latter are determined by the roots
�� of the characteristic equation �.�/ D 0. Thus, the
homogenous solutions depend on the method but are
unrelated to the given problem y0 D f .t/. They must
therefore remain bounded for all n, or preferably decay,
lest the method produce a spurious, unstable numerical
solution, diverging from the particular solution fung
which approximates the exact solution,

R
f .t/ dt .

The homogeneous solutions are unstable unless all
roots �� are inside or on the unit circle. Furthermore,
fvng also grows if any root on the unit circle is multiple.
Thus, it is necessary to impose the root condition:

�.�/ D 0 ) j��j � 1I � D 1; : : : ; k
j��j D 1 ) �� is a simple root.

A method whose � polynomial satisfies the root condi-
tion is called zero stable. Zero stability is necessary for
the method to be convergent, that is, for the numerical
solution to converge to the exact solution, yn ! y.tn/

as h ! 0. This is one of many examples of the Lax
Principle, also referred to as the fundamental theorem
of numerical analysis: Consistency and Stability is
Equivalent to Convergence.

More precisely, let a zero-stable method .�; �/ have
order of consistency p. Then it is also convergent, with
order of convergence p, that is, kyn � y.tn/k D O.hp/
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as h ! 0. Note that every consistent one-step method
is convergent. Such a method has �.�/ D ��1, and the
root condition is trivially satisfied.

As only convergent methods are of interest, the
maximum order needs to be reexamined, taking zero
stability into account. According to the First Dahlquist
Barrier theorem [6], the maximal order of convergence
of a k-step method is

pmax D

8
<̂

:̂

k explicit methods

k C 1 implicit methods with k odd

k C 2 implicit methods with k even:

Implicit methods of order p D k C 2 are weakly
stable, meaning that �.�/ D 0 has two or more
distinct roots on the unit circle. This usually results
in a spurious, oscillatory error caused by undamped
homogeneous solutions. For this reason, such methods
are only used in exceptional cases. Thus, in practice,
the maximal order of an implicit method is p D
kC1, as exemplified by the Adams–Moulton methods.
Similarly, the Adams–Bashforth methods are explicit,
and of maximal order p D k. The implicit BDF
methods, on the other hand, are only of order p D k,
as they trade maximal order for improved stability.

Stability Regions

Apart from zero stability, it is also crucial to consider
stability for a fixed, finite h, when tn D n � h ! 1.
Stability is then analyzed using the linear test equation
y0 D �y, for � 2 C. As the solutions are y.t/ D
y0 e�t, the zero solution y.t/ � 0 is stable whenever
Re� � 0, implying that neighboring solutions do not
diverge. Ideally, the numerical method should replicate
this behavior.

Applying .�; �/ to the linear test equation leads
to the homogeneous difference equation �.E/yn �
h��.E/yn D 0. Stability is then governed by the roots
of the characteristic equation,

�.�/� h��.�/ D 0: (8)

Thus, the difference equation has stable solutions if and
only if the k roots of (8) satisfy j��.h�/j � 1, with
simple roots of unit modulus. The method’s stability
region is defined as

S.�; �/ D fh� 2 C W �.�/� h��.�/
satisfies the root conditiong: (9)

Note that the previously required zero stability can be
expressed as 0 2 S.�; �/. This is a very modest re-
quirement. To be practically useful, however, a method
needs a fairly large stability region.

Only a few methods have the property that
S.�; �/ D C

�. Thus, numerical and analytical
solutions typically have quite different stability
properties. For this reason, one distinguishes between
numerical stability and the “mathematical” stability
of the problem. Further, noting that the stability
region is defined in terms of h� (thus combining
method and problem parameters h and �), one must
in general expect some restriction on h in order to
maintain numerical stability. This is often referred to
as conditional stability.

For example, the explicit Euler method has .�; �/ D
.� � 1; 1/, implying that (8) only has a single root, � D
1C h�. Hence the stability region is the disk

S.� � 1; 1/ D f�h 2 C W j1C h�j � 1g: (10)

As this is only a subset of C�, the step size will be quite
severely restricted if � is a large, negative number.
Then h must be selected small enough to bring the
product h� into the stability region.

By contrast, the implicit Euler method has .�; �/ D
.� � 1; �/, again implying that there is only one root,
� D 1=.1� h�/. Therefore, the stability region is

S.� � 1; �/ D f�h 2 C W j1� h�j � 1g: (11)

Thus, for the implicit Euler method, the stability region
covers all of C� (as well as large parts of CC). Hence,
if Re� � 0 there is no step size restriction, a property
referred to as unconditional stability.

A method whose stability region covers the left half-
plane, C� � S.�; �/, is called A-stable. Although A-
stability is desirable, it leads to added constraints on the
method’s coefficients. Thus, according to the Second
Dahlquist Barrier theorem, the maximum order of an
A-stable multistep method is p D 2, [8]. Moreover,
of all A-stable second-order multistep methods, the
Trapezoidal Rule has the smallest error constant. In
spite of this, among higher order multistep methods,
the BDF methods have stability regions covering most
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of C�. High order A-stable methods can otherwise be
found among implicit Runge–Kutta methods.

Stiff Differential Equations

A-stability, or at least an unbounded stability region,
is of particular importance for solving stiff differential
equations. Stiff equations occur in a wide range of
applications, such as mechanical systems, chemical
reaction kinetics, circuit simulation, and parabolic par-
tial differential equations, which are characterized by
strong dissipation and rapidly decaying transients. For
efficiency, it is then necessary that the method admits
the use of large step sizes, that is, it must be stable and
produce accurate results even when jh�j is very large.

The situation is adequately described by an ex-
tended linear test equation,

y0 D � .y � g.t//C g0.t/I y.0/ D y0; (12)

with homogeneous solutions (“transients”) of the form
.y0 � g.0// e�t . Thus, if � is large and negative, the
solution quickly approaches the particular solution
g.t/. In order to resolve the transient, jh�j must be
small, but once the transient has decayed, it should be
possible to use a step size adapted to the behavior of
g.t/. For example, if � D �106 and g.t/ D sin t , the
step size must be h 
 10�7 to resolve the transient,
while h 
 0:1 would certainly resolve the partic-
ular solution. However, the latter step size puts h�
at �105 and therefore requires the method’s stability
region to cover most of the left half-plane. Especially
designed for stiff problems, the BDF methods fulfill
this stability requirement. The Adams methods, on
the other hand, have bounded stability regions and
are unsuitable for stiff problems. Should an Adams
method or any explicit method be used, numerical
stability will necessitate a severe restriction on the
step size, requiring h  j1=�j, cf. (10). As a con-
sequence, the numerical integration would effectively
stall.

For a system y0 D f .t; y/, one often interprets
the parameter � as the eigenvalues of the Jacobian
matrix J D @f=@y. More generally, the classical “non-
stiff” theory for initial value problems assumes that f
satisfies a Lipschitz condition, kf .t; u/ � f .t; v/k �
LŒf � ku � vk, where LŒf � is the Lipschitz constant.
The classical convergence theory requires hLŒf � !

0, which in turn implies jh�j ! 0. However, many
problems in applied mathematics have large Lipschitz
constants, and in partial differential equations, such as
the parabolic reaction-diffusion equation ut D uxx C
G.u/, the right-hand side is an unbounded operator,
which does not satisfy a Lipschitz condition at all.
When such problems are solved by the method of lines,
the resulting equation is extremely stiff, forcing an
explicit time stepping method to proceed with its step
size severely restricted by a CFL condition, originating
from the bounded stability region. This restriction can
only be overcome by implicit unconditionally stable
methods.

Stiff problems are therefore considered under
weaker conditions on f. Instead of Lipschitz
conditions, it is common to assume a monotonicity
condition of the form hu � v; f .t; u/ � f .t; v/i �
0, which allows dissipation without limiting the
exponential decay rate. In such cases, the classical
order conditions may not apply, leading to order
reduction.

Unlike the Adams methods, which suffer instability
unless h  1=LŒf �, the BDF methods usually perform
extremely well on stiff problems. This can be partly ex-
plained by applying the implicit Euler method (BDF1)
to (12), to get

ynC1 � yn D h� .ynC1 � g.tnC1//C hg0.tnC1/: (13)

Rearranging terms, one obtains

ynC1 � g.tnC1/ D ynC1 � yn
h�

� g
0.tnC1/
�

: (14)

Therefore, as h� ! 1 for a fixed finite h, it follows
that ynC1 ! g.tnC1/, which is the exact particular
solution of (12). In a system of equations, the situation
is naturally more complicated, but the BDF methods
nevertheless show a supreme ability to track the prob-
lem’s particular solution with very small errors, and
without loss of stability. Thus, with the proper implicit
method, it is not necessarily difficult to solve a stiff
problem. Once transients have decayed, the step size
is usually only limited by the need to “sample” the
solution with a high enough frequency to represent
its variations accurately. This does not depend on the
magnitude of hLŒf �, and effectively only requires that
y.t/ can be approximated well by a polynomial P.t/,
interpolating the computed sequence fyng.
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Properties of Adams and BDFMethods

The most frequently used multistep methods are the
Adams and BDF methods. Although they are all based
on polynomial interpolation, the basic principles dif-
fer. In the Adams case, one integrates the differential
equation over one step, to get

y.tn/� y.tn�1/ D
Z tn

tn�1

f .�; y.�// d�: (15)

The numerical method is obtained by approximating
f by an interpolation polynomial P . By integrating P
instead of f , the right-hand side is reduced to a linear
combination of past f values. Thus, if P.tn�j / D
fn�j for j D 1; : : : k, the resulting method is the
explicit Adams–Bashforth (AB) methods:

yn � yn�1 D h
kX

jD1
ˇAB
k�j f .tn�j ; yn�j /: (16)

If in addition P.tn/ D f .tn; yn/, one obtains the
implicit Adams–Moulton (AM) methods:

yn � yn�1 D h
kX

jD0
ˇAM
k�j f .tn�j ; yn�j /: (17)

Here the indexation has been changed from that in
(2), to reflect that the methods are more conveniently
expressed in terms of backward differences, see below.
For the AB methods, the interpolation polynomial has
degree k � 1, hence an interpolation error O.hk/,
leading to a method of order p D k. Similarly, for
the implicit AM methods, the degree is k C 1, leading
to order p D k C 1. Finally, as can be seen from
the left-hand side of (16) and (17), both methods have
�.�/ D �k � �k�1, which obviously satisfies the root
condition. Therefore, the methods are zero stable, and
hence convergent for all k.

In the BDF methods, rather than approximating the
integral over one step, the derivative y0 is approximated
directly. Thus, one seeks a polynomial P , such that
P.tn�j / D yn�j for j D 0; 1; : : : ; k. In addition, P
must satisfy the collocation condition

P 0.tn/ D f .tn; P.tn// : (18)

Because P 0.tn/ is a linear combination of interpolated
y values, the method takes the form

kX

jD0
˛BDF
k�j yn�j D hf .tn; yn/: (19)

The method is implicit as (19) requires equation solv-
ing to determine yn. Because the degree of the colloca-
tion polynomial is k, the order of consistency is p D k.
However, noting that �.�/ has nontrivial roots apart
from the principal root � D 1, zero stability is also
nontrivial; thus, BDF methods are zero stable only for
k � 6, in which case they have order of convergence
p D k, cf. [5, 11].

Most multistep methods are best described using the
backward difference operator r, defined by ryn D
yn � yn�1 for all n. Higher differences rj are defined
by repetitive application. The AB and AM methods are,
respectively,

ryn D h
�

1C 1

2
r C 5

12
r2 C 3

8
r3 C 251

720
r4

C 95

288
r5 C : : :

�

fn�1 (20)

ryn D h
�

1 � 1
2
r � 1

12
r2 � 1

24
r3 � 19

720
r4

� 3

160
r5 � : : :

�

fn: (21)

In both cases, if the highest order term on the right-
hand side is rq , the order of convergence is p D qC1,
although k D qC1 in the AB case and k D q for AM.
Similarly, the BDF methods are given by

�

r C r
2

2
C r

3

3
C � � � C r

k

k

�

yn D hfn; (22)

keeping in mind that the operator series must be termi-
nated with k � 6. For k D 1, the AB1 method is the
explicit Euler method; AM1 is the Trapezoidal Rule;
and BDF1 is the implicit Euler method. The stability
regions of some of the AM and BDF methods are
plotted in Fig. 1.

The advantage of having an entire family of meth-
ods of different orders is that the order can be chosen
so as to produce the requested accuracy efficiently. As
a first-order method has an error O.h/, the cost for
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Multistep Methods, Fig. 1 Stability regions of Adams–
Moulton methods of orders p D 3; 4; 5 and 6 (left) and BDF
methods of orders p D 2; 3; 4 and 5 (right) plotted in the
complex h� plane. AM methods are stable inside each closed

curve, where the largest corresponds to p D 3, and the stability
regions shrink with increasing order. BDF methods are stable
outside each closed curve, where the largest corresponds to p D
5. Here the region of instability grows with increasing order

producing say 1; 000 times higher accuracy (three more
digits) would require that the step size be reduced by
a factor of 1; 000, increasing total work by the same
factor. For a third-order method, however, the error
is O.h3/, so a step size reduction by a factor of 10
would produce 103 times higher accuracy, on top of the
fact that the method is likely to be far more accurate
than the first-order method already to start with. Most
computations with multistep methods are carried out
with method orders p � 6, but in a few problems
where extreme precision is needed, such as in space
probe trajectories, orders as high as p D 12 may be
used.

AdaptiveMethods and Software

In practical computations, the objective is to find a
numerical solution, accurate to within a given toler-
ance, at the lowest possible computational cost. To
achieve this, linear multistep methods are implemented
as adaptive methods, meaning that order as well as step
size are varied along the solution, to suit its local be-
havior. Thus, a complete integration algorithm includes
special control algorithms that automatically select
order and step size. Such implementations are referred
to as variable order – variable step size methods.

The previously defined order conditions (6) as-
sumed constant step size. In an adaptive method, how-
ever, the method coefficients must be recomputed every

step to account for step size variation. This can be
addressed in different ways, using the Nordsieck rep-
resentation, or divided differences, or by keeping the
“leading coefficient,” ˇk=˛k , constant. More impor-
tantly, because zero stability depends on the ˛j coef-
ficients, step size variation may interfere with stability,
especially in the BDF methods, unless judiciously
implemented.

To advance one step, an implicit method requires
that a nonlinear equation of the generic form

yn � hˇk
˛k
f .tn; yn/ D  (23)

be solved on each step, cf. (4). As this calls for iterative
methods, a start approximation yŒ0�n is needed. For ex-
ample, if (23) represents an Adams–Moulton method,
the corresponding explicit Adams–Bashforth method
is often used to compute yŒ0�n . This is referred to as a
predictor–corrector method, where the AB method is
the “predictor” and the AM method is the “corrector,”
producing the final approximation yn after several
iterations. Moreover, an error estimate for controlling
the step size is obtained from the predictor-corrector
difference.

The actual iteration can be carried out using fixed-
point iteration or Newton iteration. As fixed-point
iteration effectively requires hˇkLŒf �=˛k < 1 to
converge, the step size h is once again restricted to h 
1=LŒf �, making fixed-point iteration useless for stiff
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problems. In stiff problems, therefore, BDF methods
are used in tandem with some Newton-type iteration
to overcome step size restrictions. Further, the BDF
methods are usually implemented without a special
predictor, as polynomial extrapolation can readily be
used for computing yŒ0�n , as well as approximations to
the solution at off-step points, should such intermediate
output values be requested.

Using Newton’s method is relatively expensive, as
it requires the Jacobian matrix of (23):

J.y/ D I � hˇk
˛k

@f

@y
:

To reduce the cost of evaluating and factorizing the
Jacobian, it is common to use a modified Newton
iteration, only recomputing @f=@y when convergence
slows down. For very large systems, however, it may
be an alternative to instead use matrix-free iterations,
based on conjugate gradients or Krylov subspaces.

There are many highly efficient and reliable codes
implementing multistep methods for stiff as well as
nonstiff problems. Apart from solvers that are integral
parts of scientific computing systems such as MATLAB

and GNU OCTAVE, there are widely used separate
general-purpose solvers such as ODE/STEP (nonstiff
problems), VODE and LSODE (nonstiff and stiff
problems), SUNDIALS (nonstiff, stiff and differential-
algebraic problems), DASSL and DASPK (stiff
and differential-algebraic), and MEBDF (modified
extended BDF methods). Most of these codes are in
daily industrial use for solving highly challenging
problems modeled by ordinary differential equations.
There are also Internet resources available, offering
selected benchmark problems for evaluating code
performance for multistep as well as Runge–Kutta
methods, [1, 9, 15].

Special Problems

Although (1) is sufficiently general to describe an enor-
mous range of problems in science and engineering,
there are applications where the dynamical systems
have special structure or special properties that benefit
from or require a different approach. The most im-
portant special problems are dynamical systems with
constraints or with invariants.

Differential-algebraic equations (DAEs) are
dynamical systems with solutions that evolve on a
constraint manifold. They can often be written in the
form

y0 D f .t; y; z/
0 D g.t; y; z/: (24)

DAEs can be viewed as a limiting case of stiff differen-
tial equations. For example, if the left-hand side of (24)
is replaced by "z0 D g.t; y; z/ the problem is a singular
perturbation problem, which is stiff for " 	 1. In the
limit as " ! 0, a DAE is obtained, representing the
“outer solution,” and initial values must be selected
to satisfy the constraints. If (24) can be solved for z,
the problem is relatively straightforward, but there are
important cases, referred to as high index problems,
where this is not possible. This occurs, for example,
in rigid body mechanics and optimal control problems,
posing special difficulties for the method to generate a
solution that stays on or near the constraint manifold.

In some applications, DAEs occur as implicit differ-
ential equations of the form F.t; y; y0/ D 0, in which
case the algebraic constraints arise implicitly when the
Jacobian @F=@y0 is singular. Such problems can be
very challenging and always require special solvers,
based on the BDF methods or special Runge–Kutta
methods.

Special second order equations are of the form

y00 D f .t; y/;

and are characterized by the missing first derivative y0.
The most important case is the autonomous equation
y00 D f .y/, as exemplified by the harmonic oscillator
y00 D �!2y. Important applications are found, for ex-
ample, in celestial mechanics and molecular dynamics.
In particular, problems of the form

y00 D �M�1gradU.y/;

where M is a positive definite mass matrix and U.y/
is a potential, are Hamiltonian. Then the total energy
(sum of kinetic and potential energy) is invariant along
solutions, meaning thatH.y; y0/ D y0TMy0=2CU.y/
remains constant. Only a few special symmetric meth-
ods, referred to as geometric integrators, will replicate
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this behavior, and be able to produce numerical solu-
tions that conserve energy over long times.

Hyperbolic partial differential equations such as
conservation laws put similar demands on the time
stepping scheme, in order to avoid numerically in-
duced dissipation, diffusion and dispersion, that are not
present in the mathematical problem.

Literature

A comprehensive, modern treatment of multistep
methods is found in [12] (nonstiff problems) and
[13] (stiff and differential-algebraic problems). These
monographs also treat the main alternative, Runge–
Kutta methods. Both classes of methods are also given
a full treatment in [3], where the unifying theory
of general linear methods is further developed. The
two monographs [10, 16] offer additional aspects, in
particular on software design for the numerical solution
of initial value problems. For special problems, the
monograph [2] treats differential-algebraic equations,
while [14] offers a full treatment of geometric
integrators.

There is a vast research literature, the most impor-
tant of which can be found in the bibliographies of the
monographs mentioned above. Although the literature
goes well back into the second half of the nineteenth
century and the work of John Couch Adams, the
modern theory of linear multistep methods was largely
laid out around 1960, [6–8], following the advent of
the electronic computer. In order to carry out very
long calculations automatically, without direct human
supervision, a rigorous theory had become necessary.
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computable functions from a trial space of n-variate
functions.

Overview

Multivariate approximation is an extension of ) Ap-
proximation Theory and) Approximation Algorithms.
In general, approximations can be provided via) In-
terpolation, but this works in the multivariate case only
if trial spaces are data dependent. Consequently, mul-
tivariate approximation splits into subfields depending
on the chosen trial spaces which in turn are tailored to
meet the demands of applications. In all cases, there
is a strong dependence on the domain ˝ . If ˝ is
a Cartesian product of univariate domains, e.g., an
n-dimensional cube or rectangle, one can use tensor
products, i.e., sums of products of univariate functions
[26]. In the periodic case, i.e., on a multivariate torus,
there are multivariate Fourier series, a special case
of tensor products. On the sphere, expansions into
spherical harmonics yield useful multivariate approx-
imations with plenty of applications in geophysics.
Other special applications in Physics and Engineering
may require special multivariate trial functions like
plane waves for approximation. In general,) spectral
methods [10, 11] and pseudospectral methods [21, 22]
use application-adapted multivariate trial functions for
solving ordinary or partial differential equations via
some form of multivariate approximation.

But there is also a number of multipurpose trial
spaces. They often require a triangulation or mesh of
the domain ˝ � IRn. If the triangulation is regular
in the sense of a net or grid, box splines [7], living
on a multi-direction mesh, generalize the well-known
univariate) spline functions [6, 32] which are piece-
wise polynomial functions. General splines on triangu-
lations are treated in [23]. On grids, and with special
applications to imaging, multivariate ) wavelets are
particularly useful, with a huge literature, e.g., [12,29].

On general triangulations, and with a vast range
of applications in ) computational partial differen-
tial equations, the ) finite element method (FEM)
[2, 8] is the most popular multivariate approximation
technique. Via Cea’s Lemma, the error analysis of
FEM techniques for solving elliptic PDEs boils directly
down to the error of multivariate approximation to the
solution. Various extensions (XFEM, GFEM) enrich
the finite element trial spaces by special functions to

model phenomena like boundary singularities or crack
discontinuities.

Nonuniform Rational B-Splines (NURBS, [19])
form vector-valued multivariate trial spaces related
to finite elements. They dominate the applications
of Computer-Aided Design (CAD, ) Geometrical
Design) of curves and surfaces in Engineering
[15]. It is a generalization of the Bernstein–Bézier
technique () Bezier Curves and Surfaces) for
parametrizing spaces of multivariate polynomials over
triangles, rectangles, tetrahedra, or simplices. Here,
vector-valued multivariate functions, For example,
complicated 3D surfaces, are approximated by
smoothly patching simpler surfaces together.

If users want to work without triangulations, they
have to resort to meshfree or)meshless methods [27].
They come in various forms, based on either particles
[25] like in) smooth particle hydrodynamics [28] or
on shape functions [5, 27] that generate meshless trial
spaces and often form a partition of unity. The shape
functions may be generated via Moving Least Squares
[24] as a per point calculation, but they can also be
provided in explicit form by translates of kernels or
) radial basis functions. These techniques provide
general tools for handling multivariate scattered data
[20, 31, 35] and are connected to pseudospectral and
particle methods, since they furnish multivariate ap-
proximations from superpositions of smooth global or
compactly supported functions () Spectral colloca-
tion methods,) Spectral methods). They are instances
of ) Reproducing kernel methods and also allow
) Fast Multipole Methods [4]. A particularly impor-
tant application area for such techniques is) Compu-
tational Mechanics [27].

Algorithms

Numerical methods () Approximation Algorithms)
for multivariate approximation problems arise in many
forms, in particular if solutions of partial differen-
tial equations are approximated. They range from the
classical ) Galerkin methods and the Meshless Lo-
cal Petrov Galerkin approach (MLPG, [1]) via all
forms of pseudospectral techniques to ) finite vol-
ume methods and ) smooth particle hydrodynam-
ics in fluid dynamics. In most cases, a multivari-
ate function from a suitably parametrized trial space
is required to satisfy certain test equations arising



1016 Multivariate Approximation

from weak formulations using test functions or strong
formulations using ) Collocation Methods. If there
are enough test conditions to identify trial functions
uniquely and with additional stability properties, nu-
merical solutions will usually provide an accuracy that
is roughly the error of the best approximation of the
true solution by functions from the trial space [30].

By the curse of dimensionality, the ) compu-
tational complexity of algorithms for multivariate
approximation usually grows exponentially with
the number of variables, if the required accuracy
is fixed. Such problems can only be handled by
reducing the degrees of freedom using techniques
based on ) sparsity. Sparse tensor product methods
are connected to sparse grids [3, 9] and hyperbolic
cross approximations [17, 33]. N -term approximation
[16],) wavelets, and) compressive sensing [13,18]
aim at ) sparse approximation in general, even if
there are only a few independent variables, e.g., when
it comes to solving PDEs [14, 34] or dealing with
images. These multivariate approximations are behind
modern ) data compression algorithms like JPEG
2000 and MPEG-4 for images and videos.
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Definitions

The brain and other neural tissue contain many types of
cells, notably including neurons, cells that are special-
ized for information processing and communication.
The output of most neuron types consists of spikes,
that is, rapid changes in the electrical potential across

their outer membrane. Each spike creates a detectable
disturbance in electric potential in the medium sur-
rounding the neuron. Extracellular recording of spikes
attempts to detect and analyze those disturbances,
a task that is complicated by the fact that an ex-
tracellular electrode typically picks up signals from
many different neurons. Such signals must therefore
be decomposed into contributions from each of the
underlying neurons, a procedure called spike sort-
ing. Unambiguous spike sorting is made easier by
the recent availability of large, high-density multi-
electrode arrays (MEAs) that simultaneously monitor
dozens or even thousands of electrodes. This entry
describes a class of methods for sorting MEA data
based on Bayes’s formula (“Bayesian” spike sorting
methods).

Overview

The vertebrate retina is a popular model system for
neuroscience, in part because it is so amenable to
detailed study. Similar recordings can now also be
made in other brain areas [2]. However, recordings
obtained in this way are useful only if every spike can
be correctly assigned to the neuron that generated it
(the “spike sorting problem”). Reviews of early work
on spike sorting can be found in Lewicki [5] and Quian
Quiroga [10].

Spike sorting is possible in principle because
each neuron is located at a fixed position relative
to each electrode, generating a distinctive pattern
of excitation amplitudes on the array of electrodes;
also, the amplitude and time course of each neuron’s
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spikes are at least partly similar to each other,
and different from those of neighboring neurons.
Nevertheless, it is a nontrivial task to determine each
of the ideal waveforms (the “templates”), separating
them from each other and from noise. Moreover,
in practice there can be significant variation in the
spike waveforms from a given neuron (for instance
in amplitude), complicating the task of determining
from data which templates are present in a sample.
That is, spike sorting is a problem in probabilistic
inference.

This entry outlines an algorithm that carries out
this program [9], combining elements from several key
articles (e.g., [3, 6–8, 11]). Other relevant approaches
include [4, 12, 13].

Typical Experiment and Data

All illustrative data were recorded at 10 kHz from
albino guinea pig retina, presented with a standard
random visual stimulus. Data were taken with a
30-electrode MEA from MultiChannel Systems
(MCS GmbH, Reutlingen, Germany), covering about
0:018mm2 of retina.

The black curves in Fig. 1a, b show some represen-
tative data, as arrays of graphs each representing a time
series of recorded potentials on a particular electrode
(or “channel”). In addition to identifiable spikes, each
electrode has activity that we will collectively refer to
as “noise.”

Spike Identification Method

Figure 2 summarizes the steps described below. After
data acquisition and high-pass filtering, the data are
packaged into two types of 3:2ms clips: (a) “noise
clips,” in which the potential never crosses a threshold,
and (b) “spike events,” each surrounding a moment at
which the potential crosses (falls below) �4 times the
standard deviation of the potential in the noise clips
[11]. A small subset of the spike events was extracted
to speed up the analysis steps shown in dashed lines
in Fig. 2.

Clustering and Template Building
Each spike event consists of N D 3:2ms � 10 kHz �
5 �6 D 960 numbers, the potentials on a 32�5�6 grid
of spacetime pixels (“stixels”). Each event involves
a superposition of spikes drawn from an unknown
number of classes corresponding to distinct neurons.
The first step is to find those classes, including charac-
terizing each class’s mean waveform and its variability.
That is, we must cluster the spike events.

A powerful algorithm well suited to this task is
OPTICS [1]. Strictly speaking, OPTICS does not cluster
data; instead, it reorders a given set of points into a
single linear sequence in which similar elements are
placed close to each other. If a feature such as overall
amplitude varies continuously among exemplars, they
are grouped together; if that feature is bunched into
two or more clusters, they will be visibly separated in
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Neural Spikes, Identification from a Multielectrode Array,
Fig. 1 (a) Example of a single-spike event. Each subpanel
shows the time course of electrical potential (in �V, black
curves), on a particular electrode in the 5�6 array. The electrodes
are separated by 30�m (similar to RGC spacing). Blue curves

show the result of spike sorting, in this case a single template
waveform representing an individual neuron. (b) Detail of a more
complex event and its fit, in which a single neuron fires a burst
of nine spikes of varying amplitudes (upper left channel), while
a different neuron fires five other spikes (upper right channel)
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the sequence. A human operator can then rapidly scan
the ordered list of exemplars and cut it into batches
corresponding to distinct clusters [9].

The steps described above produce clusters, that is,
collections of similar events (“exemplars” of the clus-
ter). The next step is to create a consensus waveform
(“template”) summarizing each cluster, and charac-
terize the deviations from that consensus. Figure 3
shows the result of taking the template to be the
pointwise median of the aligned exemplars in a cluster.
A particular exemplar may contain other activity
besides the spike of interest. Choosing the median
prevents such chance collisions from influencing
the template, because at any particular stixel most
exemplars do not display any additional spike.

Individual instances of a particular spike type will
deviate from the template. However, at least in guinea
pig retina, the most significant sources of variation
are (a) additive noise and (b) overall multiplicative
rescaling of the spike’s amplitude. To quantify (b), for
each exemplar the method finds the overall rescaling

preprocess cluster and build
templates

fit spikeschoose trusted
templates

Neural Spikes, Identification from a Multielectrode Array,
Fig. 2 Schematic of spike sorting method

factor A that optimizes the overlap of that exemplar
and the template, then stores the mean and variance
of those factors in a lookup table for later use as a
prior probability (2). Finally, it logs the number of
exemplars in each template, converts to an approximate
firing rate, and saves those rates, again for later use as a
prior.

In the discussion below, the index � represents
template type; the symbolF�Ix;y;t refers to the potential
of template �, on the electrode with address x; y, at
time t .

Spike Fitting
The preceding steps yield templates of various discrete
types, indexed by �. Within each type, there are also
continuous variations in amplitude, which we express
as an overall multiplicative factor A relative to the
template; there is also a choice of firing time t1.
A “spike descriptor” is a specification of all these
variables. The next stage of spike sorting is to identify
what spike(s) are present in each event of the full
dataset (“spike fitting”). The strategy is to evaluate the
posterior probability of each spike descriptor given that
event, marginalize over uninteresting variations within
that type (the value of A), then maximize over the
remaining variables (� and t1).

Generative Model
To obtain the posterior probability, one must find for-
mulas for the prior probability of a spike descriptor,
and for the likelihood (probability that a particular
waveform would occur if that spike were present). That
is, we must specify an explicit generative model of the
data [8].
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Neural Spikes, Identification from a Multielectrode Array,
Fig. 3 (a) Detail of 40 of the aligned exemplars used to compute
a template, showing the potential on 12 neighboring electrodes.
Some outlier traces reflect events in which this neuron fired
together with some other neuron; the unwanted peaks occur at

random times relative to the one of interest, and thus do not affect
the template. (b) Blue, detail of template waveform generated
from (a). Red, for comparison, the pointwise mean of the 430
waveforms used to find this template. (The red and blue traces
are too close to discriminate visually)



1022 Neural Spikes, Identification from aMultielectrode Array

Before writing formulas, we first summarize in
words the general assumptions of the generative model.
The assumptions are: (1) Each neuron generates spike
waveforms that are all identical, apart from overall
amplitude scale and additive noise; (2) The signal
(spikes) and the noise are statistically independent of
each other; (3) The signal and noise sum linearly;
(4a) The noise, and (4b) the variability of spike am-
plitudes, are well described by Gaussian distributions;
and (5) The prior probability that each neuron will fire
is independent of its, and the others’, histories, and of
the stimulus.

Assumption (4a) implies that the noise is charac-
terized by a covariance matrix, C. Evaluating C em-
pirically on noise clips shows that: It is approximately
diagonal, and translation-invariant, in space; and it is
approximately stationary, that is, invariant under time
shifts. Moreover, its dependence on time is roughly ex-
ponential: C.x; y; t I x0; y0; t 0/ D �ıx;x0ıy;y0 e�jt�t 0j=� .
That is, C is determined by just two empirical
quantities, the strength � and correlation time � of
the noise. In this formula, ıx;x0 is the Kronecker
symbol.

We can now express the content of assumption
(4a). We regard x; y; t as a single N -valued index
and describe a noise clip by an N -component vector
V of potentials. Then the noise model states that
the probability density function for noise samples is
Pnoise.V/dNV D .2�/�N=2.det C/�1=2e�VtC�1V=2dNV.

Fitting a Single Spike
Given an event, we wish to know if it contains any
spikes, and if so to identify them. First, temporarily
suppose that we know that the event contains exactly
one spike. We wish to know the spike’s type� and time
of occurrence t1. Our best estimate of these quantities
comes from maximizing the posterior probability den-
sity P.�; t1jevent/, where “event” is the recorded time
series of potentials on each electrode. This density is in
turn obtained by marginalizing P.�; t1; Ajevent/ over
A, the amplitude scale factor of the spike relative to the
template.

Using Bayes’s formula, we can obtain P as a con-
stant times a likelihood times a prior, or

P.�; t1; Ajevent/dt1dA

D KP.eventj�; t1; A/P.�; t1; A/dt1dA ; (1)

where K is independent of �;A; t1. The differential
dAdt1 reminds us that P is a probability density func-
tion, with units s�1.

The likelihood function describes the distribution
of actual observations given the ideal spike. The as-
sumptions outlined earlier amount to supposing that
the observed signal will differ from the rescaled ideal
by additive noise, so we simply write the likelihood
as P.eventj�; t1; A/ D Pnoise.ıV/, where ıV D V �
AF�;t1 . In this formula, the shifted template vector F�;t1
has x; y; t component equal to F�Ix;y;.t�t1/.

Turning to the prior, assumptions (4b) and (5) give
it as

P.�; t1; A/dt1dA

D �
r�dt1

��
.2���

2/�1=2e�.A���/2=2�2�dA
�
; (2)

where �� is the mean and ��2 the variance of the scale
factor for cluster �; r� is the estimated overall rate of
firing for this cluster. Combining with the likelihood
function gives the posterior probability density, which
can readily be marginalized (integrated) over all values
of the amplitude scale factorA, because it is a Gaussian
function of A [9]. Maximizing over � and t1 then
identifies the most probable spike and its firing time.

Multiple Spikes
In principle, one could extend the method of the
preceding subsection to compare the probabilities
of all possible combinations of two or more spikes.
Such an exhaustive approach, however, quickly
becomes impractical. Instead, note that even if an
event contains multiple spikes, the steps in outlined
above still identify that template whose subtraction
would lead to the largest increase in the probability
that the remaining waveform is noise. Thus, instead
of the exhaustive approach, one can use an iterative
(matching-pursuit or “greedy”) approach [9, 11]:
Starting with a spike event, find the absolute peak,
fit it, subtract the fit, and then repeat the process.

Any such iterative process must determine when to
stop fitting spikes. After marginalizing the expression
for the posterior probability over A and t1, one
can simply divide by a similar expression for the
probability that no additional spike was present
(namely KPnoise.V/P.no spike/). The unknown
constant K cancels in this probability ratio, as do
the rate factors r� for all spikes found up to this point.
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We can then say that fitting an additional spike is
justified if the ratio exceeds unity for some �� and
terminate the fitting loop when that significance test
fails.

Cluster Reliability
The last step in Fig. 2 is to determine which neurons’
activities have been reliably captured. No method will
succeed in identifying spikes from every neuron; for
example, some will generate spikes whose amplitude
is too low relative to the noise. Also, some neurons
are gradually dying, or otherwise changing character,
during an experiment. Various criteria can be imposed
at this point to determine which of the templates’
inferred spike trains should be trusted and retained for
later analysis [9].

Value of Bayesian Approach

The preceding discussion may have given the im-
pression that the key elements in spike sorting are
mathematical. On the contrary, it is the resolving power
of the MEA approach itself, combined with the planar
geometry of the retina, that permit such thorough spike
identification. The Bayesian method described here
merely helps to use this resolving power to greatest
advantage.
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Newton-RaphsonMethod

Jean-Pierre Dedieu
Toulouse, France

Introduction

The Newton-Raphson method, named after Isaac New-
ton (1671) and Joseph Raphson (1690), is a method
for finding successively better approximations to the
roots of a real-valued function. But both Newton and
Raphson viewed this method purely as an algebraic
method and restricted its use to polynomials. In 1740,
Thomas Simpson described it as an iterative method
for solving general nonlinear equations using fluxional
calculus (i.e., derivatives), essentially giving the mod-
ern description of the method. Historical facts are given
by T. Ypma [40], H. Goldstine [21], and J. Ezquerro
et al. [17]. Recent developments of this method include
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alpha-theory, underdetermined or overdetermined sys-
tems, and equations defined on Lie groups or on Rie-
mannian manifolds.

Main Facts

Let f W U � E ! F be the equation to be solved
whereE and F are two real or complex Banach spaces
and where U is open in E and f 2 C1.U /. If x 2 E

is an approximation of a zero of f , Newton’s method
updates this approximation by linearizing the equation
around x. This linearized equation is

f .x/CDf.x/.y � x/ D 0:

If Df.x/ is invertible, we obtain

y D Nf .x/ D x �Df.x/�1f .x/:

Nf is called the Newton operator associated with f .
It is defined on U n �f that is for any x 2 U

with Df.x/ invertible. We notice that fixed points for
Nf correspond to nonsingular zeros for f . Moreover
DNf .	/ D 0 whenever 	 is a simple zero so that the
sequence of successive approximations

xkC1 D Nf .xk/ D xk �Df.xk/
�1f .xk/; k � 0;

converges quadratically to 	 for any x0 taken in suitable
neighborhood of 	 in U . This sequence is called the
Newton sequence.

Convergence of Newton’s Sequences

The size of a ball centered at a simple zero with
the convergence property for Newton’s sequences is
given in the following theorem. This result is due
to Kantorovich [23] who was the first to consider
Newton’s method in the context of Banach spaces; see
also Ostrowski [28], Ortega and Rheinboldt [27], and
Stoer and Bulirsch [36].

We denote by B.x; r/ the closed ball with radius r
about x.

Theorem 1 (Kantorovich’s theorem) Let 	 2 U be
a simple zero of f 2 C1.U /. Let r and � > 0 be such
that B.	; r/ � U and

��Df.	/�1 .Df .x/ �Df.	//�� � �kx � 	k

for any x 2 B.	; r/ (radial Lipschitz condition at 	).
If 2�r < 1 then, for any x0 2 B.	; r/, the Newton
sequence xkC1 D Nf .xk/ is defined and converges to
	. Moreover

kxk � 	k �
�
1

2

�2k�1
kx0 � 	k:

More sophisticated and recent results of the same
vein are given by Wang [38] who introduces a radial
Lipschitz condition on the average. Another approach
uses domination functions; see Argyros-Gutiérrez [6],
Ferreira [18, 19], and also Argyros’s book [5].

Kantorovich’s theorem requires the knowledge of
the function f and its first derivative in a neighborhood
of the considered zero. Another approach, initiated by
Smale [34] and called ˛-theory, is based on data at
one point, but it requires analyticity. See also Wang-
Han [39] in the same context.

Definition 1 When f W U � E ! F is analytic, for
any x 2 U define

�.f; x/ D sup
k�2

�
��
�Df.x/

�1 Dkf .x/

kŠ

�
��
�

1
k�1

if Df.x/ is invertible and �.f; x/ D 1 otherwise.

The following elegant theorem is taken from Blum-
Cucker-Shub-Smale [9].

Theorem 2 (Gamma theorem) Let 	 2 U be a
simple zero of f . For any x0 2 U satisfying

kx0 � 	k�.f; 	/ � 3 � p
7

2

the Newton sequence xkC1 D Nf .xk/ is defined,
converges to 	 and

kxk � 	k �
�
1

2

�2k�1
kx0 � 	k:

Underdetermined Systems

In this paragraph we confine our attention to a C r

(r � 1) map f W U � E ! F between two Euclidean
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spaces with dimE � dimF . Let V D f �1.0/ be
the zero set of f . We suppose that Df.x/ is onto for
any x 2 U . In that case V is a C r submanifold, its
dimension is equal to dimE � dimF , and its tangent
space at 	 2 V is T	V D kerDf.	/: In this context,
we define the Newton operator by

Nf .x/ D x �Df.x/
f .x/ with

Df.x/
 D Df.x/�.Df .x/Df .x/�/�1

that is the minimal norm solution of the linearized
equation at x 2 U : f .x/CDf.x/.y � x/ D 0: Notice
that V is equal to the set of fixed points of Nf .

As usual, to this Newton operator we associate an
iterative process defined by

xkC1 D Nf .xk/:

This concept has been introduced for the first time by
Ben-Israel [7], then studied by Allgower-Georg [3],
Beyn [8], Shub-Smale [33], Dedieu-Shub [12],
Dedieu-Kim [11], and Dedieu [10].

The convergence of Newton’s sequences is
quadratic like in the usual case (see Shub-Smale [33]
or Dedieu [10, Theorems 130 and 137]).

Theorem 3 There exists an open neighborhood V of
V contained in U such that for any x 2 V , the Newton
sequence xkC1 D Nf .xk/, x0 D x, converges to a
point of V denotedMf .x/. Moreover

kxk �Mf .x/k � 2

�
1

2

�2k�1
d.x; V /:

In fact, the limit operator Mf acts asymptotically
like a projection onto V as shown by the following
(Dedieu [10, Corollary 138]). This result may also be
considered as an instance of the invariant manifold
theorem (Hirsch-Pugh-Shub [22]).

Theorem 4 Suppose that r � 2. Then, Mf has class
C r�1 and its derivative at 	 2 V is

DMf .	/ D …ker Df.	/

the orthogonal projection onto ker Df.	/. Moreover,
there is an open neighborhood W of V contained in U
such that, for any 	 2 V , the set

M�1
f .	/ D ˚

x 2 W W Mf .x/ D 	
�

is a submanifold of class C r�1. This submanifold is
invariant by Nf and contains 	. The tangent space at
	 to M�1

f .	/ is

T	M
�1
f .	/ D .kerDf.	//? :

Overdetermined Systems

We consider here the case of an overdetermined system
f W U � E ! F , where E and F are two Euclidean
spaces with dimF > dimE , U is an open subset in
E and f 2 C1.U /. In general, such a system has no
solution. Let us denote by

F.x/ D 1

2
kf .x/k2

the residue function associated with f . Our objective is
to minimizeF , that is, to find its global minimum (least
squares method). But this goal is, in general, difficult to
satisfy. Thus, we reduce our ambition to local minima
or even to stationnary points of F . For this reason we
call least-squares solution of the system f .x/ D 0

at any stationary point of the residue function, i.e.,
DF.x/ D 0.

To find such least-squares solutions, following
Gauss 1809, we linearize the equation f .y/ D 0

in the neighborhood of a given x 2 U . We obtain
f .x/CDf.x/.y � x/ D 0; and we consider the least-
squares solution of this linear system. When Df.x/ is
one to one, we get

y D x �Df.x/
f .x/; with

Df.x/
 D �
Df.x/�Df.x/

��1
Df .x/�:

This defines an operator y D Nf .x/ and an iterative
method xkC1 D Nf .xk/ called the Newton-Gauss
method.

The properties of Newton-Gauss method are very
different from the classical well-determined case
(dimE D dimF and Df.x/ invertible). We resume
these properties in the following:

Theorem 5 1. Fixed points forNf correspond to sta-
tionary points for F .
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2. When f 2 C2.U /, let 	 2 U be such that
DF.	/ D 0 andDf.	/ are one to one. Then:

(a) If 	 is an attractive fixed point for Nf , then it
is also a strict local minimum for the residue
function F .

(b) If 	 is a strict local maximum for F , then it is a
repulsive fixed point for Nf .

3. The convergence of Newton-Gauss sequences to an
attractive fixed point 	 is linear. This convergence is
quadratic when f .	/ D 0.

See Dennis-Schnabel [15], Dedieu-Shub [13],
Adler-Dedieu-Martens-Shub [2], Dedieu-Kim [11],
and Dedieu [10].

NewtonMethod onManifolds

Let us consider a nonlinear system f W V ! F where
V is a smooth manifold, F a Euclidean space, and
f 2 C1.V /. Let us denote by TxV the tangent space at
x to V . In this context Df.x/ W TxV ! F and, when
this derivative is invertible, Df.x/�1 W F ! TxV .
To define a Newton operator associated with f , we
introduce a retraction R W T V ! V where T V , the
disjoint union of the tangent spaces TxV , x 2 V , is
the tangent bundle of V . R is assumed to be a smooth
map defined in a neighborhood of V in T V (x 2 V is
indentified with the zero tangent vector 0x 2 TxV ),
taking its values in V and satisfying the following
properties. Let us denote by Rx the restriction of R to
TxV ; then:
1. Rx is defined in an open neighborhood of 0x 2
TxV .

2. Rx.u/ D x if and only if u D 0x.
3. DRx.0x/ D idTxV .

In this context, the Newton operator is defined by

Nf .x/ D Rx.�Df.x/�1f .x//

so that Nf W V ! V . Examples of retractions
are given by Rx.u/ D x C u when V D E ,
a Euclidean space. In that case TxE , the tangent
space at x to E , may be identified with E itself and
Nf .x/ D x � Df.x/�1f .x/. A second example
of retraction is given by the exponential map of a
Riemannian manifold exp W T V ! V . This gives
Nf .x/ D expx.�Df.x/�1f .x//. Other examples
(sphere, projective space, orthogonal group) are given

in Adler et al. [2]. The properties of this method are
similar to the classical case: fixed points for Nf
correspond to nonsingular zeros for f and, at such
a zero, DNf .x/ D 0.

Zeros of Vector Fields

By a vector field on manifold V , we mean a smooth
map X which assigns to each x 2 V a tangent vector
X.x/ 2 TxV . We are interested in using Newton’s
method to find zeros of X , i.e., points x 2 V such
that X.x/ D 0x the zero vector in TxV: An important
example is X D grad� (the gradient vector field)
where � W V ! R is a smooth real-valued function,
so the zeros of X are the critical points of �:

In order to define Newton’s method for vector fields,
we resort to an object studied in differential geometry,
namely, the covariant derivative of vector fields. The
covariant derivative of a vector field X defines a linear
map rX.x/ W TxV ! TxV for any x 2 V . For
example, if X D grad� for � a real-valued function
on V and X.x/ D 0; then rX.x/ D Hess�.x/ the
Hessian of � at x:

Let R W T V ! V be a retraction (see the previous
section). We define the Newton operator for the vector
field X by

NX.x/ D Rx.�rX.x/�1X.x//

as long as rX.x/ is invertible and �rX.x/�1X.x/ is
contained is the domain of Rx:

Newton’s method has the usual property of
quadratic convergence for simple zeros of vector
fields [30].

Proposition 1 If x 2 V is a fixed point for NX.x/,
then X.x/ D 0x andDNX.x/ D 0:

The Rayleigh-quotient iteration, introduced by Lord
Rayleigh one century ago for the eigenvalue problem,
may be seen in this context.

Newton method on manifolds for nonlinear systems
or vector fields appears in Shub [30], Udrişte [37],
and Smith [35] in a general setting. The case of
overdetermined and underdetermined systems is
studied in Adler-Dedieu-Martens-Shub [2]. See also
Edelman-Arias-Smith [16] and the book by Absil-
Mahony-Sepulchre [1] more oriented to matrix
manifolds. In the context of projective spaces, see
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Shub [31], Malajovich [26], and two important papers
by Shub-Smale related to the complexity of Bézout’s
theorem [32] and [33]. The multihomogeneous Newton
method is studied by Dedieu-Shub [12]; this iteration is
defined in a product of projective spaces. Many papers
study the metric properties of Newton method in the
context of Riemannian manifolds: Ferreira-Svaiter [20]
(Kantorovich theory), Dedieu-Priouret-Malajovich
[14] (alpha-theory), and Alvarez-Bolte-Munier [4].
See also Li-Wang [24] and Li-Wang [25]. The more
specific case of Newton method on Lie groups is
studied by Owren-Welfert [29].
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NuclearModeling

Bernard Ducomet
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CEA/DAM Ile De France, Arpajon, France

Short Definition

Several mean-field type schemes are presented in order
to describe accurately the physics of atomic nuclei,
depending on the kind of information requested (static
properties of light or heavy nuclei, individual particle
excitations, collective motions).

Description

The spirit of this review consists in a brief presentation
of nuclear modeling as a description of dense
matter. One knows [1] that in states with densities
� typically between 5:102 and 108 g=cm3 (“subferrous
matter”), matter is a mixture of electrons and nuclei
interacting through Coulomb two-body interaction.
The domain of nuclear physics schematically begins
in the following density region where 108 g=cm3 <

� < 1012 g=cm3 which corresponds to the so-
called subnuclear matter, where nucleons (particles
composing nuclei: positively charged protons and
neutral neutrons) play an essential role. In the
sector 1012 g=cm3 < � < 1015 g=cm3 of “nuclear”
and “transnuclear matter,” the description of subtle
couplings between individual motions as independent
particles and collective ones (vibrations, rotations)
often needs theories including various correlations

(analogous to pairing in super- conductivity) clearly
beyond mean field theories. The region 1012 g=cm3 <

� < 1016 g=cm3 where relativistic effects become
important is finally followed by the ultradense matter
� > 1016 g=cm3 where intermediate (mesonic and
baryonic) degrees of freedom begin to appear, and then
internal structure of nucleons ultimately dominates
(quark matter). To these various density regions
correspond various theoretical models leading to
fruitful comparisons with experiments in recent
years. To maintain this overview within reasonable
bounds, we focus on the non-relativistic modeling,
and just say a few words and quote important
references concerning the relativistic problem in the
last section.

The Hamiltonian for Nuclear Matter:
A Short Review

Low-energy nuclear physics considers nucleons (neu-
trons and protons) as the elementary constituents of nu-
clei. In fact nucleons may be considered as bound states
of quarks, themselves strongly interacting through glu-
ons, but one (presently) does not know how to derive
quantitatively the nucleon–nucleon interaction from
quantum chromodynamics (QCD), the corresponding
gauge field theory of strong interaction. As far as
low-energy nuclear physics is concerned, the quark-
gluons degrees of freedom are not directly observed
and nucleons are the physically relevant objects. How-
ever, even in this context, properties of nuclei cannot
be directly derived from a possible “bare” interaction
between nucleons, which is too singular to be treated
through perturbative methods, even if recent studies
show that it is possible [2] to use renormalization group
method to construct low-momentum (the so-called
Vlow k) interactions which are supposed to parametrize
a high-order chiral effective field theory for a two-
nucleon force. So one is forced to build “dressed” (ef-
fective) interactions, modeling the “nuclear medium”
in a phenomenological way, the so-called effective
phenomenological interactions, for which mean field
methods such as Hartree-Fock approximation may be
used [3]. These effective forces built from a few gen-
eral symmetry principles, include a number of pa-
rameters which have to be adjusted in order to fit
experimental data.
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“Bare” Versus “Effective” Nucleon–Nucleon
Interaction
From low-energy nucleon–nucleon scattering experi-
ments, some basic features emerge [4]: the interaction
is short range (about 1 fm = 10�15 m), within this range
it is attractive at “large distance” and strongly repulsive
at “short distance” (�0.5 fm), and it depends both on
the spin and isospin of the two nucleons. Starting
from the idea that the nucleon–nucleon interaction is
mediated by pions as Coulomb interaction is mediated
by photons, one gets various expressions [5]. One of
them is the OPEP (one pion exchange potential)

VOPEP.r1 � r2; �1; �2; �1; �2/

D � f 2

4��
.T1 � T2/.S1 � r1/.S2 � r2/

e��jr1�r2j

jr1 � r2j ; (1)

where S1;2 (resp. T1;2) are the spin (resp. isospin)
operators of the two particles, f is a coupling constant
and � the mass of the pion. As it appears that in
nuclei the two-body interaction is strongly modified
by complicated many-body effects, it becomes more
profitable to replace (1) by effective interactions taking
into accounts medium effects, more tractable for mean-
field calculations.

The most widely used effective interactions in
Hartree-Fock calculations are the Skyrme forces [6]
which include two-body and three-body contributions.
The total interaction is then

V D
NX

i<j

Vij C
X

i<j<k

Vijk;

where the two-body term contains momentum depen-
dence, spin-exchange contributions, and a spin-orbit
term

Vij D t0.1C x0P� / ı.ri � rj /

C1

2
t2

�
ı.ri � rj /k2 C k02ı.ri � rj /

	

Ct2 k0 � ı.ri � rj /k

C iw0 .Si C Sj / � k0 � ı.ri � rj / k: (2)

The operator P� exchanges spins �i and �j and the
relative momenta operators k WD 1

2i
.ri � rj / and

k0 WD � 1
2i
.ri � rj / are supposed to obey to the

convention that k (resp. k0) acts on the wave function

at its right (resp. left). The three-body part is taken as a
simple zero-range expression

Vijk D t3ı.ri � rj /ı.rj � rk/ I:

Finally, the six parameters t0; t1; t2; t3; x0, and W0 are
chosen in order to reproduce a number of properties
of some well-known finite nuclei (see [7] for various
choices of Skyrme interactions). One observes that
despite its simple form, from a mathematical point of
view, the previous Skyrme interaction does not lead
to a well-behaved hamiltonian due to the presence
of Dirac distributions. Moreover it leads to “physi-
cal divergences” where pairing properties (illustrating
superfluid properties of the main part of nuclei) are
involved, because of its zero range.

In order to avoid these drawbacks, a finite-range
interaction has been proposed by Dechargé and Gogny
in the 1970s [8], which is free of these divergences
and may be considered as a smeared version of the
Skyrme interaction. For the two-body operator Vij ,
they consider the short-range model

Vij D
2X

nD1
e

� jri�rj j
2

�n .wn C bnP� � hnP� �mnP�P� /

Ciw0
0 .Si C Sj / � k0 � ı.ri � rj / k

Ct 03.1C P�/ı.ri � rj /�
1=3

�
ri C rj

2

�
; (3)

where the sum involves the operator P� which
exchanges isospins �i and �j . In these expressions
wn; bn; hn; mn; �n are the so-called Wigner, Bartlett,
Heisenberg, Majorana, and range coefficients, and
the last density-dependent term simulates a three-
body contribution. As for Skyrme forces, all of these
parameters are fitted to reproduce experimental values
of selected observables measured on a few stable
nuclei.

The Nuclear Many-Body Problem and Its
Approximations

The starting point of a microscopic theory of nuclei [9]
is the nuclear hamiltonian operator for N interacting
nucleons
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OH D
NX

iD1

Op2i
2m

C
X

i¤j
OVij C

X

i¤j¤k
OWijk C � � � (4)

where the first (one body) term is the kinetic energy
and OV ; OW ; � � � are the 2; 3; � � � ; N -body interaction
potentials. As it seems that interactions of order 4
and beyond do not play any important role in nuclear
structure, we restrict the analysis to two- and three-
body contributions. Solving the Schrödinger equation
OH D E , is the so-called ab initio problem. As such

ab initioN -body quantum calculations are out of reach
of available computers whenN > 12, one must rely on
various approximate theories based on the observation
that the exact Schrödinger problem OH0˚ D E˚; for
the hamiltonian

OH0 D
NX

iD1

� Op2i
2m

C Ui

�
; (5)

can be solved exactly by ˚ D Detf�˛i .�j /g, and E DPN
iD1 "˛i , where the argument �i takes into account the

degrees of freedom of the particle i and the eigenpairs
.�˛i ; "˛i / solve the one-body problems

� Op2i
2m

C Ui

�
�˛i D "˛i �˛i for i D 1; � � � ; N:

The idea is now to rewrite (4) as

OH D OH0 C Vres; (6)

where OH0 is the one-body hamiltonian (5) correspond-
ing to N independent nucleons moving in a given mean
potential and Vres D P

i¤j OVij C P
i¤j¤k OWijk C

� � � �PN
iD1 Ui is the residual interaction, introducing

correlations. Then one expects that provided that theUi
are suitably chosen, Vres is small and problem (6) may
be solved perturbatively: this is the core of the Mean
Field Approximation.

At this point one observes that in order to minimize
Vres it is natural to include the maximum of nucleon–
nucleon interaction in the evaluation of the Ui , a
crucial example for a large number of nuclei being
the inclusion of pairing correlations (attractive inter-
action between two identical nucleons with opposed
spins). Once Ui is computed, other correlations may
be included into Vres: correlations in the ground state

responsible of vibrational oscillations of nuclei, pairing
vibrations in superfluid nuclei, etc. � � �

Computational Strategies
The basic method used in determining the “best” Ui
is the Hartree-Fock (HF) method. It only includes
the Pauli correlations and is suitable for a limited
number of very stable nuclei called “doubly magic”
corresponding to particular values of the neutron and
proton numbers.

However for the majority of nuclei it is necessary to
include pairing correlations, which leads to Hartree-
Fock-Bogoliubov (HFB) method, which amounts to
define a mean field for quasi particles.

Once Ui is obtained, one treats perturbatively the
other correlations. The Random Phase Approxima-
tion (RPA) and its generalization to superfluid nuclei
Quasi-particle Random Phase Approximation (QRPA)
describe small vibrations of collective motions of the
mean field for “rigid” nuclei while the Generating
Coordinate Method (GCM) is more appropriate for
large vibrations in “soft” nuclei.

Practically, the various correlations are taken into
account by choosing different trial wave functions.
Let us briefly outline this on three important
examples: Hartree-Fock approximation, Hartree-
Fock-Bogoliubov approximation, and the Generating
Coordinate Method.

Trial functions used in HF and TDHF theory of
independent particles are antisymmetrized products of
N one-particle orbitals (Slater determinants):

HF.x1; � � � ; xN / D Detf�˛i .xj /g;

where the �i are determined by minimizing the total

energy of the nucleusE D <HFjH jHF>
<HFjHF>

with respect to
jHF>.

In HFB theory for superfluid nuclei the states �i are

replaced by couples of paired states

�
U˛.x/

V˛.x/

�
and the

trial function is

HFB.x1; � � � ; xN ; � � � / D Det


�
U1.x1/

V1.x1/

�
;

�
U2.x2/

V2.x2/

�
; � � �

�
U˛.x˛/

V˛.x˛/

�
; � � �

�
;
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where the pairs .U˛; V˛/ are determined by minimizing

the total energy of the nucleus ED<HFBjH jHFB>
<HFBjHFB>

with

respect to the two-component vectors jHFB >.
Finally, in order to deal with soft deformable nuclei,

one considers a constrained HFB theory by replacing
H by

Hconstr WD H �
X

J

�jQj ;

where the Qj are suitable external field and the �j are
associated Lagrange multipliers. Minimizing E with
the constraints

< HFBjQj jHFB >D qj ;

we find constrained HFB states corresponding to pre-
scribed deformations qj . Generalizing now to a con-
tinuous set of deformations we get a continuous family
HFB.q/ and the GCM method consists in plugging
the new trial function for the multiconfiguration states
corresponding to various deformations q

GCM.x1; � � � ; xN / D
Z
f .q/HFB.q/.x1; � � � ; xN / dq;

into the energy

ED
Z
dq

Z
dq0 f �.q/<HFB.q/jH jHFB.q

0/>f .q0/;

with the normalization

< GCMjGCM >

D
Z
dq

Z
dq0 f �.q/<HFB.q/jHFB.q

0/>f .q0/D1;

and minimizing E with respect to the weight function
f .q/, which leads to the Hill and Wheeler integral
equation

Z
H.q; q0/f .q0/ dq0 D E

Z
I.q; q0/f .q0/ dq0;

with kernels H.q; q0/ D < HFB.q/jH jHFB.q
0/ >

and I.q; q0/ D < HFB.q/jHFB.q
0/ >.

Let us mention that from a mathematical point of
view, only very partial results are known concerning
either the existence of solutions of the previous mean
field equations in the nuclear context or the rigorous

derivation of these mean field from the N-body prob-
lem. However see [10] for a mathematical analysis of
the nuclear Hartree-Fock model and [11, 12] for the
derivation of TDHF from N-body problem.

Modeling the Relativistic Nuclear Matter
and Beyond: : :

One can think that relativistic effects are not crucial
for low-energy nuclear structure problems. In fact if
one crudely estimates the largest kinetic energy of a
nucleon in the nucleus with Fermi momentum kF �
1:4 fm�1, we get Tkin D „2k2F

2m
� 38MeV, which

corresponds to a velocity v � 0:3c (with c the velocity
of light). So the expected influence of relativity seems
to be small. However if energy is increased as in high-
energy heavy ions collisions, one realizes that a rela-
tivistic theory is necessary. In this framework, nucleons
no more interact through potentials but through the
exchange of various effective particles. In this respect,
one can then consider this more precise description
as a step toward the understanding of the effective
potentials introduced in the nonrelativistic setting.

In a relativistic description of interacting particles,
the idea of instantaneous forces provided by potentials
is no more adequate and must be replaced by the medi-
ation of extra quantum fields: the nuclear field [13–15]
describes the nucleus as a system of Dirac particles
(baryons) interacting through meson (bosonic) fields
and the mean field is then solution of a system of
Dirac equations coupled to Klein-Gordon (resp. Proca)
equations describing scalar (resp. vector) meson fields
by source terms involving all of these fields.

In the simplest models, four effective meson fields
are joined to the baryonic field in order to describe rel-
ativistic nuclei: the � meson field producing a medium-
range attracting interaction, the ! meson field leading
to a short-range repulsive interaction, the � meson field
needed to describe isospin-dependent effects, and F ��

the electromagnetic field associated to the photon field
A� carrying electromagnetic interaction.

The starting point of the corresponding field theory
is the lagrangian density

L D Lnucleon C Lmesons C Lcoupling; (7)

where the baryonic part is the free Dirac lagrangian for
the four-dimensional spinor field  
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Lnucleon D  
�
i��@� �mB

�
 ; (8)

with Dirac matrices ��.
The bosonic part includes the four mesonic contri-

butions

Lmesons D 1

2

�
@�� @�� �m2

� �
2
�

�1
2

�
@�!� @�!� �m2

! !
�!�

	

�1
2

�
@�R� @�R� �m2

� R
�R�

	
� 1

4
F��F

��; (9)

and the coupling part is

Lcoupling D �g� ��S � g! !
��� � 1

2

g� R
�%� � A��C� � 1

3
b2 �

3 � 1

4
b3 �

4: (10)

In this expression the scalar density �S D   de-
scribes the difference between the densities of great
and small components in the Dirac spinor wave func-
tion, the vector density �� D  �� is the sum
of the density of great and small components in the
Dirac spinor wave function, %� D  ��� is the
isovector density, and �C� D 1

2
e .1 C �0/�� is

the charge density. The matrices � and �0 are Pauli
isospin matrices.

The model contains as free parameters the �-meson
mass m� (usually the bare (free space) masses m!;m�

together with the bare nucleon massmB are employed),
and the coupling constants g� ; g!; g�; b2, and b3.
As for the effective interaction presented above,
all of these parameters are adjusted in order to fit
experimental data on well-documented nuclei [13].

The full quantum field theory corresponding to L
being clearly out of reach from both theoretical and
computational point of view, several approximations
are required for practical purposes. The correspond-
ing mean-field theory (the so-called Relativistic Mean
Field (RMF) theory [16]) precisely consists in replac-
ing the bosonic operators by their expectation values.
The role of the meson fields then reduces to that of
external potentials generated by nucleon densities in
which nucleons evolve as quantum mechanical Dirac
particles with relativistic dynamics leading as in the
nonrelativistic framework to a minimization procedure.

However, comparing with the nonrelativistic case,
one realizes that new difficulties appear in this

minimization process even at the “free” level, as the
spectrum of the free Dirac hamiltonian is unbounded
from below (the same problem appears in the atomic
context: see the articles by E. Séré and T. Saue in the
same encyclopedia), and of course at the interacting
level as now the nonlinear interacting potential requires
the resolution of additional nonlinear equations, one
for each extra mesonic field. In the present state of
the art [17], due to computational limitations a lot of
additional approximations are necessary in order to
compare theory with experiments.

As a final remark, let us say that even in the
low-energy regime, a relativistic formulation is quite
interesting as it gives access to important physical
effects: it provides a natural explanation of the
existence of a rather large spin-orbit force in nuclei
and it gives a more accurate description of nuclear
saturation (one nucleon in the nucleus interacts with
only a limited number of nucleons). Just mention to
conclude that, from a mathematical point of view,
nothing is known about the existence of solutions
for the RMF equations (see however [18] for a static
version of the Walecka model [19] without mesonic
coupling i.e., b2 D b3 D 0).

Acknowledgement I would like to thank J.P. Ebran for useful
remarks and for pointing out the recent reviews [2] and [17].
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Synonyms

Computational mathematics; Numerical mathematics;
Real-number computation; Scientific computing

Definition

The development of practical algorithms to obtain
approximate solutions of mathematical problems and
the validation of these solutions through their mathe-
matical analysis

Overview

Mathematics typically investigates concepts in their
qualitative setting: existence, uniqueness, and a wide
range of analytic, topological, geometric, and algebraic
features. It is often important, however, to flesh out the
numbers and accompany qualitative insight with com-
putation. This is vital in applications of mathematics in
science and engineering – it is not enough to prove that
the trajectory of a spacecraft obeys dynamical features
or geometric invariants, but it is also indispensable to
know where the spacecraft will be at any given instant.
It is, moreover, increasingly important in mathematical
research, because computation affords us the means to
investigate mathematical phenomena, to gain insight,
and form conjectures that ultimately lead to theorems.

Numerical analysis has a distinct character from the
rest of mathematical analysis in that it is concerned also
with accuracy, speed, and computational efficiency.
The question, thus, is not just whether a numerical
method converges to the exact solution but also what
the rate of convergence and the computational cost is.

Numerical analysis should not be confused with
algorithmic aspects of discrete mathematics or with
symbolic computation. For example, a symbolic pack-
age can be used to find the indefinite integral of a given
function, provided that it can be obtained from known
tables using basic principles, while a numerical pack-
age computes an approximate integral by quadrature.

The fundamental origin of the tension between
much of mathematical research and computation is
that analytic concepts and structures are central to
mathematical discourse, while computation is an al-
gebraic process, consisting of a discrete and finite
sequence of algebraic operations on finite quantities.
This is implicit in the very nature of digital electronic
computers.

The process of discretization, a feature of many
numerical algorithms, does not take the problem out-
side the scope of mathematics. A discretized problem
can still be addressed in mathematical terms and with
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rigor – indeed, typically, once discretized, a mathe-
matical problem is likely to become more difficult.
Its redeeming virtue (and a basic requirement of any
numerical method) is that it can be rendered in an
algorithmic manner, suitable for computation.

Many familiar differential equations of mathemat-
ical physics originated as limits of discretizations, for
example, the diffusion equation and Kepler’s laws [31].
This illustrates the important issue that discretizations
and numerical algorithms are not just an attempt to
associate numbers with mathematical concepts but a
major tool in extending our understanding of these
concepts.

Inasmuch as contemporary numerical analysis is
inconceivable without the availability of powerful
computational platforms, fundamental concepts of
mathematical computation with real numbers have
exercised mathematicians since the dawn of the
discipline. Major concepts and ideas of numerical
analysis can be traced to some of the most illustrious
names in the history of mathematics, from Archimedes
to Johannes Kepler, Sir Isaac Newton, Leonhard Euler,
and Carl Friedrich Gauss.

The Basic Tools

Two core methodologies form the broad foundation
of numerical analysis: numerical linear algebra and
approximation theory.

Numerical Linear Algebra
No matter which mathematical problem we seek to
compute, whether a differential or integral equation or
a nonlinear system of algebraic equations, typically the
algorithmic task ultimately reduces to linear algebraic
computations. Reliability, efficiency, and cost of such
computations are thus central to any numerical analysis
algorithm.

The basic numerical linear algebra problem is the
solution of a linear system Ax D b, where A is an
n � n nonsingular matrix and b is a column vector
of length n. This can be done by direct methods,
basically variants of Gaussian elimination, for systems
of moderate size, but a powerful approach for large
matrices is to employ iterative methods. Paradoxically,
converting a finite problem to an infinite one – in other
words, replacing an algebraic by an analytic problem –
turns out to be very useful indeed and it allows for

efficient solution of very large algebraic systems [14].
An important tool in the design of iterative algorithms
is the concept of a Krylov subspace Km.B; v/ D
Spanfv; Bv; : : : ; Bm�1vg. Many successful iterative al-
gorithms, not least the method of conjugate gradients
and its many variants and generalizations, evolve the
solution vector in the space Km.B; v/ for appropriate
choices of a matrix B and a vector v.

Another major numerical linear algebra problem is
least squares computation. Thus, A is an n�m matrix,
b is a column vector of length n, and we seek a column
vector x of length m that minimizes kAx � bk in the
Euclidean norm [4].

Unlike the solution of a linear system or a least
squares problem, eigenvalues and singular values of
a matrix are not in general available in a finite and
explicit form. Their computation belongs in the realm
of numerical linear algebra although, strictly speaking,
the label “algebra” refers to the algebraic origin of the
problem rather than to the computational methodol-
ogy, which requires approximation and iterative algo-
rithms [14].

Two structural features of algebraic problems im-
pact heavily on the difficulty of their computation:
normalcy and sparsity. A matrix is normal if it has a
basis of unitary eigenvectors – in particular, symmet-
ric matrices are normal. Heavily non-normal matrices
often present substantive computational challenge, due
to their bad conditioning.

The entries of a sparse matrices are mostly zero.
This can be exploited to a very good effect in their
calculation and brings very large algebraic systems
and eigenvalue problems within the realm of efficient
computation.

Approximation Theory
The focus here is on approximating functions using
a finite set of simpler functions. Given a function f,
a familiar problem is to approximate it as a linear
combination of elements from a Banach space B. One
instance is interpolation, when we seek a function in
B that coincides with given function values at a finite
set of points. Another is when, given a function f , we
seek Qf 2 B that minimizes kf � Qf k across B. Familiar
Banach spaces used in approximation theory consist
of polynomials, trigonometric polynomials, wavelets,
splines, or translates of a given “master function.” They
are often subspaces of Lp or of a Sobolev space W m

p

for some p 2 Œ1;1� and m > 0 [9, 24].
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The issues addressed by approximation theory are
both the design of efficient and robust algorithms for
such problems and an investigation of their features.
At a more fundamental level, the theory investigates
approximation properties of underlying function
spaces [12]. Thus, suppose that a function f from the
infinite-dimensional Banach space V is approximated
from the n-dimensional subspace Bn � V . What is the
least error, as measured in the underlying norm? Does
it go to zero – and how fast – as n ! 1?

This basic framework is often generalized. The
underlying problem might not reduce easily to finding
the best linear combination from an n-dimensional
linear space when, for example, we approximate with
spline functions while optimizing the location of their
knots, or with rational functions, or seek a convex
approximation to a convex function. Likewise, instead
of a Banach space, we may consider a more general
metric space once we wish to approximate functions or
data residing on manifolds.

Approximation theory uses a wide range of tech-
niques from functional analysis, theory of orthogonal
polynomials, analytic function theory, differential ge-
ometry, and, increasingly, harmonic analysis.

Main Subject Areas of Numerical Analysis

The concerns of numerical analysis span a large swathe
of mathematical problems in addition to those that can
be formulated primarily within the framework of linear
algebra or approximation theory.

Nonlinear Equations
Finding the solution of a nonlinear algebraic system
of equations, f.x/ D 0, or equivalently determining a
fixed point g.x/ D x, is one of the oldest problems of
numerical analysis. Univariate methods like bisection
and regula falsi, as well as the Newton–Raphson itera-
tion

xnC1 D xn �
�
@f.xn/
@x

�1
f.xn/;

n D 0; 1; : : : ; x0 given,

applicable in the multivariate setting, have been known
for centuries.

Provided that the Jacobian matrix can be calculated
easily and affordably, the Newton–Raphson method
and its derivatives are effective for systems with mod-
erate number of variables. However, most modern
methods aim for greater generality (the Jacobian is not
computed; indeed, the differentiability of f need not be
assumed) and for systems with very large number of
variables. Such methods can be roughly classified into
two groups: one reformulates the underlying problem
as an optimization of a given objective function (e.g.,
of kf.x/k2 in Euclidean norm) and the other uses
homotopy algorithms.

Quadrature and Cubature
The standard paradigm of univariate quadrature is to
approximate

Z b

a

f .x/w.x/dx 	
sX

mD1
bmf .cm/;

where the weights bm and the nodes cm depend
upon the weight function w, but are independent of
the function f [11]. Well-known formulae include
Gauss–Christoffel quadrature, which selects weights
and nodes to maximize the accuracy for polynomial
functions f , and Clenshaw–Curtis quadrature,
whereby weights and nodes are chosen to allow for
rapid calculation with the Fast fourier transform.

While this paradigm can be generalized to the
multivariate setting by tensor products and bespoke
quadrature rules have been introduced for specific
multivariate domains, efficiency deteriorates rapidly
as the number of variables increases. In that instance,
there is an advantage in using cubature methods based
upon probabilistic concepts, for example, Monte Carlo
and quasi-Monte Carlo techniques, because they are
resistant to this “curse of dimensionality.”

Ordinary Differential Equations
Given the ordinary differential (ODE) system y0 D
f.t; y/, where f is suitably regular, accompanied by
the initial condition y.t0/ D y0, it is usual to com-
pute the numerical solution in a time-stepping manner.
Thus, having already computed yk 	 y.tk/, where
tk D tk�1 C hk�1, k D 1; : : : ; n, we compute a new
approximation ynC1 at tnC1 D tn C hn [17]. The two
most popular types of time-stepping algorithms are
multistep methods
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sX

mD0
�myn�sCmC1 D h

sX

mD0
�mf.tn�sCmC1; yn�sCmC1/;

�s D 1

(here we assume that hk 
 h) and Runge–Kutta
methods

km D f.tn C cmhn; yn C hn

�X

jD1
am;jkj /;

m D 1; : : : ; �;

ynC1 D yn C hn

�X

mD1
bmkm:

Note that practical computation by these methods often
requires the solution of an algebraic system of equa-
tions at each step.

Convergence is a necessary requirement of a method
for ODEs: given a compact interval Œt0; t��, the numer-
ical solution must tend uniformly to the exact solution
when maxhn ! 0. This global concept is closely
associated with consistency, the numerical solution
locally matching the exact solution to the ODE up to
O.h

pC1
n / for some p � 1. While consistency suffices

for the convergence of a Runge–Kutta method, an ad-
ditional condition (the root condition on

Ps
mD0 �mwm,

also known as zero stability) is required for multistep
methods.

Particular difficulty arises when the ODE models
phenomena that, while decaying over time, proceed at
vastly different rates. Typically for such stiff ODEs,
the Jacobian @f.t; y/=@y has eigenvalues with negative
real parts, yet different orders of magnitude. Success-
ful solution of stiff ODEs requires the method to
possess an appropriate level of stability, for example
A-stability [16].

This general area also includes numerical study of
two-point boundary value problems, whereby bound-
ary conditions are given at the endpoints, as well as
Differential-Algebraic Equations f.t; y; y0/ D 0, where
the Jacobian @f=@y0 is singular.

Partial Differential Equations
The breadth of the discipline of theoretical partial
differential equations (PDEs) and the extent of their
applications are mirrored by the wide range of different
methodologies employed in their discretization.

Finite difference methods impose a grid upon the
underlying domain and approximate derivatives by
algebraic relationships of the discretized solution at
grid points [21]. For example, the diffusion equation
@u=@t D @2u=@x2, where u.x; t/ is considered for
x 2 Œ0; 1� and t � 0, with initial conditions for t D 0

and Dirichlet boundary conditions at x D 0 and x D 1,
can be discretized by

unC1
m � unm
�t

D unm�1 � 2unm C unmC1
.�x/2

; m D 1; : : : ; N;

where N is the number of internal grid points, �x D
1=.N C 1/, �t > 0, and unm 	 u.m�x; n�t/.

An alternative approach seeks a weak solution uN to
the PDE Lu D f in an N -dimensional subspace HN

of the underlying Hilbert space H (typically, a Sobolev
space), whether directly, by requiring that hLuN �
f; vi D 0 for all v 2 HN (the Galerkin method) or
by reformulating the PDE first as a variational problem
(the Ritz method). This leads to an algebraic system,
sometimes through an intermediate stage of solving
ODEs. The considerations underlying the choice of a
basis for HN lead to two major families of methods.
Once we wish to have a sparse algebraic system, it is
natural to choose basis functions with small overlap-
ping supports, resulting in the finite element method
[6]. Alternatively, the goal of minimizing the number
of variables N of the algebraic system requires fast-
convergent bases, giving raise to spectral methods [30].

Other important approaches to the discretization
of PDEs include boundary methods, when differential
equations are replaced by integral equations along the
boundary of the domain, thereby reducing the num-
ber of unknowns; particle methods that restrict the
inhomogeneous term of the PDE to a discrete number
of “particles,” rendering the computational problem
much easier; and finite volume methods, converting
divergence terms on a grid into volume integrals.

The analysis of all these methods shares a number of
general organizing principles, although mathematical
methodology and toolbox vary. Convergence is a nec-
essary requirement: as the discretization becomes finer
(e.g., grid spacing tends to zero or the dimension ofHN

tends to infinity), we wish the numerical solution to
approach the exact solution uniformly in compact do-
mains. According to the Lax equivalence theorem, for
time-evolving problems, this is equivalent to consis-
tency and stability, the latter referring to uniform well
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posedness of the numerical scheme in compact time
intervals once the discretization becomes increasingly
finer [21, 25].

Discretization methods reduce the task to the solu-
tion of (possibly nonlinear) algebraic systems, and a
major objective in their implementation is to solve such
systems with great efficiency. This is assisted by the
algorithms of numerical linear algebra, fine-tuned to
problems originating in the approximation of PDEs (an
important approach is multigrid, exploiting a hierarchy
of nested grids), and by the availability of fast trans-
forms, for example, the FFT. An important technique
often rendering the solution of such algebraic systems
easier is domain decomposition.

Integral Equations
Fredholm equations can be approximated by a variety
of techniques [3]. Finite differences are a popular
option: thus, for example,

Z 1

0

K.x; y/f .x/dx D g.y/; y 2 Œ0; 1�;

where K 2 C.Œ0; 1�2/, g 2 C Œ0; 1�, and f is the
unknown, can be at its simplest approximated by the
linear algebraic system

1

N C 1

NX

kD0
K. k

N
; m
N
/fk D g. m

N
/; m D 0; 1; : : : ; N;

where fk 	 f .k=N /. An alternative is presented by
Galerkin methods, whereby the solution is projected
on a finite-dimensional subspace: like for PDEs, we
have the alternative of subspaces leading to sparse
linear systems, for example, by using spline functions,
or subspaces of rapidly convergent basis functions,
similarly to spectral methods.

Another problem associated with Fredholm equa-
tions is the calculation of the spectrum of the under-
lying integral operator. The problem can be discretized
by similar algorithms, except that the outcome is an
algebraic eigenvalue problem, rather than a linear alge-
braic system.

Similar techniques can be applied to Volterra
equations, but they lead to initial-value problems,
rather than algebraic equations; hence, convergence
and stability considerations similar to those pertaining
to initial-value ODEs become important [7].

Computational Dynamics
The main interest in dynamics is in the evolution of
flows: continuous dynamical systems whose behavior
depends on some parameters. In numerical analysis,
flows are replaced by maps, discrete dynamical sys-
tems. In principle, this requires the same discretization
techniques as in the case of ODEs, PDEs, and integral
equations, except that the range of interesting ques-
tions is different, centered upon the interplay between
the value of the parameters and (typically, long-term)
behavior of the underlying system. In other words, as
parameters vary and dynamical features of the system
undergo change, we wish to recover them faithfully
under discretization [28].

Another central challenge in dynamical systems is
the computation of a bifurcation diagram, namely, the
identification and classification of parameter values
that correspond to qualitative changes of the underly-
ing system [26].

Research into nonlinear dynamical systems depends
in large measure on the availability of excellent
numerical software, not least the AUTO package
[10].

Optimization
The problem of unconstrained optimization is to deter-
mine the (local or global) minimum of a continuous,
multivariate objective function f W Rm ! R. In con-
strained optimization, we seek to minimize f subject
to x residing in a closed set � � Rm.

Most modern algorithms for unconstrained
optimization are iterative [13], in particular Newton-
type methods, conjugate gradient methods, and the
Levenberg–Marquardt method. The underlying idea is
to decrease the value of the objective function in each
iteration until an optimum is reached. Special attention
is afforded to problems with a very large number of
variables and to structured objective functions, and
most algorithms require of f very low regularity
conditions.

The most ubiquitous constrained optimization prob-
lem is linear programming, whereby one minimizes
f.x/ D c>x subject toAx � b and x � 0. The optimum
resides at a vertex of the set of constraints, a convex
polytope. The simplex algorithm allows to jump from
a vertex to one of its neighbors while reducing the
value of f hence, it terminates at the minimum in a
finite number of steps. Since its introduction by George
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Dantzig, the simplex algorithm has been instrumental
in a wide range of practical computations. Lately,
however, increasing prominence is afforded in con-
strained optimization to interior-point methods, which
approach the minimum while moving across a path
inside a convex set of constraints.

Stochastic Computations
Many mathematical phenomena in need of discretiza-
tion possess stochastic character. Perhaps the most
important are stochastic differential equations (SDEs),
for example,

dy D f.t; y/dt C g.t; y/dW.t/;

t � t0; y.t0/ D y0;

where W is a Wiener process. There are two gen-
eral approaches to the discretization of SDEs. The
first seeks to compute deterministic functionals like
the expectation and variance of the solution and its
probability density function; the latter is described by
the (deterministic) Fokker–Planck equation. The sec-
ond computes solution trajectories at grid points, the
random process being modeled by a random number
generator (itself a computational problem). This results
in numerical schemes similar to the more familiar ODE
and PDE time-stepping methods, for example, in place
of the Euler method ynC1 D yn C hnf.tn; yn/ for the
ODE y0 D f.t; y/, we may use the Euler–Maruyama
method

ynC1 D yn C hnf.tn; yn/

C g.tn; yn/ŒW.tnC1/�W.tn/�

for the above SDE. However, this similarity is decep-
tive, since the design of effective SDE solvers requires
different qualitative attributes.

Other numerical calculations with significant
stochastic components are the computation of
Markov chains and generation of random numbers.
Moreover, the computation of deterministic problems
can be often done more efficiently by introducing
stochasticity, an important case in point being Monte
Carlo methods for the computation of multivariate
integrals.

Organizing Principles of Numerical
Analysis

Computer Arithmetic
Numerical calculations are usually performed using
floating-point numbers, mostly adhering to the IEEE
754-2008 standard of floating-point arithmetic [20].
Effective estimation of true error in computations must
reckon with two sources: imprecisions due to dis-
cretization (truncation errors) and consequences of
working, in place of reals, with floating-point numbers
(roundoff errors).

The interplay between truncation and roundoff er-
rors varies across numerical analysis, although it is fair
to state that truncation errors are far more important
in majority of situations. Roundoff errors might be
perilous in “static” algorithms, like Gaussian elimina-
tion, while truncation errors tend to dominate in self-
correcting iterative algorithms and in the computation
of differential equations. Having said so, it is important
to bear in mind that the analysis of discretization
errors and of convergence of iterative processes is
insufficient for practical implementation of numeri-
cal algorithms, unless accompanied by valid reasons
for their robustness with regard to roundoff errors
[32].

Stability and Conditioning
The phrase “stability” covers a wide range of de-
sirable, often necessary, features of numerical algo-
rithms. Informally, stability can assume one of the
two meanings: either a dynamical system changes in a
bounded manner in compact time intervals in response
to small changes in its initial value or other parameters
(structural stability) or it exhibits bounded and “nice”
asymptotic behavior (dynamical stability). It is always
sound policy to verify the definition of stability in any
specific setting because careless use of this concept
might be misleading. Thus, in the context of numerical
ODEs, zero stability is structural, A-stability is dynam-
ical, while stability in the context of numerical PDEs is
structural.

In general, stability is related to the robustness
of numerical computation. If the algorithm is struc-
turally stable, small departures from the exact solution,
originating in either truncation or roundoff errors, are
unlikely to cause breakdown. Likewise, once the algo-
rithm is dynamically stable, such errors are unlikely
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to accumulate across large number of time steps or
iterations.

All this assumes, however, that the problem being
computed does not itself exhibit undue sensitivity to
small perturbations. Otherwise, even the most stable
computation might be unsafe. To rephrase, robust com-
putation requires the confluence of a stable problem
and a stable algorithm. Structural stability of a prob-
lem can be often quantified in terms of its condition
number. For example, structural stability of the linear
equation Ax D b is measured by the condition number
�.A/ D kAk � kA�1k – in the Euclidean norm – this is
the ratio of the largest to the smallest singular value of
A. The larger �.A/, the more sensitive is the solution
of the linear system to perturbations.

An important tool in identifying the sensitivity of
computations to instability is backward error analysis
[32]: instead of asking “what is the error committed in
a numerical calculation?” we ask “what is the problem
solved exactly by our calculation and how far away is
it from the original problem?” Backward error analysis
is of major importance in linear algebra calculations,
but recently, it became increasingly relevant to the
discretization of time-dependent ODEs [18].

Divide and Conquer
A popular strategy in the computation of large prob-
lems is to split them into a number of smaller prob-
lems, subsequently assembling, perhaps in an iterative
manner, the solution of the original problem. This
is often advantageous when the cost of an algorithm
is superlinear in the number of variables, since then
solving several smaller problems may cost less than
solving one large problem. An important advantage of
this approach is that, once smaller problems are inde-
pendent of each other, they can be solved efficiently in
a parallel manner.

An example is the divide-and-conquer strategy, pop-
ular in many computer-science algorithms but also in
numerical calculations. For example, computing the
eigenvalues of a large matrix, it is often possible to de-
vise an iterative, fast-convergent procedure, computing
in each iteration the eigenvalues of smaller matrices.
Likewise, once a PDE is solved in a large spatial
domain, possibly with complicated geometry, it is pos-
sible, in a procedure known as domain decomposition,
to solve the problem iteratively in subdomains [8].

While domain decomposition acts in spatial vari-
ables, operator splitting acts in time. Thus, for exam-

ple, given the initial-value problem @u=@t D L1Œu� C
L2Œu�, where Lk may be functions or differential opera-
tors, we can assemble approximate solution by solving
the (often much easier) problems @vk=@t D LkŒvk�,
k D 1; 2 [23].

The computation of many problems can be nested
using the fast multipole algorithm [15]. It is particu-
larly effective for n-body problems for very large value
of n, for example, in electromagnetics, since it often
reduces the cost of matrix/vector multiplication from
O.n2/ to O.n/.

Perhaps the one divide-and-conquer technique with
greatest impact is the fast Fourier transform (FFT)
for the computation of discrete Fourier transform of
n variables in O.n logn/ operations. This is one of
the most important algorithms ever, with long list
of critical applications in engineering, computer sci-
ence, and numerical analysis itself [19].

Homotopy
Suppose that we wish to solve a “difficult” problem
P1, say, while we can easily solve another problem P0,
of similar character. The homotopy (or continuation)
methodology considers a path of problems Pt , t 2
Œ0; 1�, all of the same kind as P0 and P1, which
continuously deform P0 into P1. The idea then is to
commence from t D 0 and advance in small steps
along the path, the assumption being that, once we have
determined Pm�t , it is fairly easy to compute P.mC1/�t
[1, 10].

For example, P1 might be determining the eigen-
values of an n � n real symmetric matrix A, while
the eigenvalues of an n � n symmetric matrix B

corresponding to P0 are known. In that case, we may
let Pt be the eigenvalue problem for .1 � t/B C tA.
This approach lends itself to parallelism since we can
advance in parallel along the n homotopy paths linking
individual eigenvalues of B and A [22].

Multiscale
Numerous science and engineering models exhibit a
range of processes operating at widely differing scales.
Pertinent qualitative features of the model are of-
ten described in a fairly comprehensive manner by
its slower-varying components. Unfortunately, many
standard numerical methods require sufficiently fine
resolution to cater for the fastest component – even
when the amplitude of this component is, to all intents
and purposes, negligible. This behavior is pervasive in
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the solution of time-dependent differential equations,
and it requires great deal of care in the design and
analysis of computational algorithms.

Structure Preservation
Although mathematical analysis usually falls short of
solving exactly complicated mathematical constructs,
it often produces important information about their
qualitative features, in particular about their dynamics
(long-term behavior) and geometry (integrals, symme-
tries, and invariants). This information, which may
reflect crucial physical or mathematical features of
the underlying problem, is often lost under discretiza-
tion. In the context of initial-value problems, this
motivates an approach, sometimes termed geometric
numerical integration, whereby numerical algorithms
are designed to preserve underlying structure [18].
For example, it might be known that the exact solution
evolves on a smooth manifold M, in which case
the aim is to design a time-stepping algorithm that
also evolves on M. Likewise, the underlying system
might be Hamiltonian, whereby one wishes to retain
symplecticity under discretization, or divergence-free,
when the effort is in designing volume-preserving
methods.

Ranging beyond geometry, increasing attention is
being paid to the preservation of topological structure
of differential equations under discretization, in partic-
ular by finite element methods. This results in more
stable and accurate methods [2].

Retention of structure under discretization is often
desirable, or even essential, in the modeling of the
underlying physical phenomenon. Moreover, it often
leads to more effective numerical methods – for exam-
ple, symplectic methods for Hamiltonian systems are
known to accumulate error slower [18].

Complexity and Cost
Complexity is a feature of the underlying problem,
quantifying the effort required to solve it to given
accuracy. Cost is a feature of a numerical algorithm,
telling how close it approaches the complexity of the
problem. Confusingly, “complexity analysis” usually
refers to the analysis of both complexity and cost.

While the concept of complexity is fairly
straightforward in the discrete setting of combinatorial
problems and theoretical computer science, it is much
more complicated, often ambiguous, in numerical
analysis. Roughly, one can distinguish four distinct

approaches to complexity analysis: (a) Mirroring the
discrete concept of complexity. Thus, a yardstick
measuring the number of operations (e.g., a “flop” – a
shortcut for “floating-point operation”) is adopted and
the performance of algorithms quantified accordingly.
(b) Information-based complexity. The goal here is
to understand how information, which is usually
incomplete and often contaminated by error and noise,
can be used to deduce complexity and cost [29].
This leads to a formal framework, employing tools
of functional analysis. (c) The Blum–Shub–Smale
model. Discrete complexity being based upon the
Turing machine, its real-number alternative is the BSS
machine. It is a formal, algorithmic construct and, at
least in principle, a numerical algorithm is reducible
to a set of instructions on the BSS machine [5]. This
model has had a number of genuine successes, not least
in the computation of nonlinear algebraic systems.
(d) Smoothed complexity analysis. Many numerical
methods, for example, the simplex algorithm and
Gaussian elimination with partial pivoting, have high
worst-case cost but perform very well in practice.
The main idea of smoothed analysis is to provide
an intermediate framework between worst-case and
average-case scenarios, and it has already led to the
enhanced understanding of many popular algorithms
[27].

High-Performance Computing
Much of large-scale contemporary computing com-
bines numerical analysis algorithms with sophisticated
computing architectures, typically displaying massive
parallelism. These two activities are closely related,
because what is good on a single processor might
be suboptimal in a parallel setting. In addition, while
single-processor computation is usually quantified by
means of floating-point operations, in parallel archi-
tecture, one must consider also communication costs –
indeed, data passing among processors might be often
more expensive than computation itself. This changes
the definition of what a good algorithm is and has
fostered new computational approaches.

Applications of Numerical Analysis

The spread of numerical analysis mirrors the reach
of mathematics across sciences, engineering, and
medicine. It is important to realize that scientific



Numerical Analysis 1041

N

computing at its best is not just a matter for
algorithmic dexterity and careful mathematical
analysis. Addressing difficult problems in application
areas requires a dialogue between different groups
of experts and an incorporation of a wide range
of ideas relevant to the problem being modeled.
Typically, there are two sources of inevitable error
in numerical simulation: not just the error incurred
by the algorithm but the error already implicit in the
many simplifications and imperfections in the model
being solved. Although this is true in general, some
application areas, because of their wide scope and the
challenge implicit in their computational problems,
have led to genuinely new disciplines, representing a
synthesis between modeling and computation.

Computational Engineering
Numerical simulation of the Navier–Stokes equations
and their numerous simplifications (in particular, once
viscosity terms are excised, the Euler equations) is
central to computational fluid dynamics (CFD). Such
equations are typically in three space dimensions,
given in complicated geometries, and their solutions
might vary rapidly and exhibit a range of turbulent
and transient phenomena. No wonder, thus, that
successful CFD rests upon insight originating in fluid
dynamics. Moreover, CFD has led to interest in a
range of algorithms which come into their own in this
setting, for example, finite volume methods, vorticity
methods, smoothed particle hydrodynamics, and lattice
Boltzmann methods.

The importance of CFD to contemporary science
and engineering based upon fluid mechanics concepts,
for example, aerodynamics, weather forecasting, and
reservoir modeling, can be hardly overstated. Com-
puter models increasingly replace experiment: mod-
eling aircraft flight in a computer, instead of a wind
tunnel, is not just considerably more affordable and
faster but allows testing at a much broader range of
parameters.

Engineering computations range beyond CFD.
Solid mechanics is a rich source of challenging
computational problems, in particular, in the study of
microstructures and cracks. Electrical and electronic
engineering presents a raft of computationally
demanding problems in circuit simulation and data
transmission, many control engineering problems
are reducible to computation and optimization of
trajectories, and bio-engineering increasingly rests

upon the computational modeling of biofluids, tissues,
and entire organisms. Numerical computation is not
simply one of the tools available to a modern engineer,
it is at the very heart of what contemporary engineering
is all about.

Computational Physics
Computation plays a fundamental role in contemporary
physics. Many computational problems in physics are
not very different from core concerns of numerical
analysis, in particular the discretization of differential
equations. However, contemporary physics research
leads to a number of new and important computa-
tional challenges. One example is the computation of
spectra of Schrödinger operators and their distribution.
Another is the interaction of large number of particles,
for example, in plasma physics or in molecular dynam-
ics. Particle models incorporate a wide range of phys-
ical laws, from classical to quantum mechanics, and
often have substantive stochastic component. Other
major computational challenge in physics is calcula-
tions in lattice models, for example, in gauge theory,
quantum field theory, and quantum chromodynamics.

Mathematics of Information
Modern technological society produces increasing
reams of information which needs collection,
processing, transmission, classification, and analysis.
This is increasingly leading to new computational
challenges, for example, in image processing, signal
processing, data mining, medical imaging, machine
learning, computer vision, data compression, and
cryptography. Such problems often share a number
of common structural features: they are concerned
with a very large number of variables, incorporate
noise and stochastic components, bring together
discrete and continuous data, and model data which
is often intermediated by electromagnetic waves. This
creates a common agenda to numerical computation
with harmonic analysis, combinatorics, theoretical
computer sciences, and stochastic analysis.

An increasingly important organizing principle
in understanding very large data sets is sparsity.
Although the size of data might be very large indeed,
the information it contains is largely redundant
and repetitive. Once the mathematical mechanism
underlying this redundancy is understood, it is possible
to collect significantly smaller amounts of data without
impairing the information content, fill in missing data,
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and understand better their structure in terms of a
small number of variables. This has led recently to new
approaches to computation, for example, compressed
sensing, sparsity recovery, and greedy algorithms.

References

1. Allgower, G.L., Georg, K.: Introduction to numerical con-
tinuation methods. SIAM, Philadelphia (2003)

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exte-
rior calculus: from Hodge theory to numerical stability. Bull.
Am. Math. Soc. 47, 281–3543 (2010)

3. Atkinson, K.E.: The numerical solution of integral equations
of the second kind. Cambridge University Press, Cambridge
(1997)
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energy functional E over those functions in a Hilbert
space X (generally, X will be a H1-type space of
all square integrable functions, the gradient of which
is also square integrable), constrained of having a
L2-norm equal to 1. Most often, this reduces to the
resolution of a nonlinear eigenvalue problem of the
type

DE.0/ D �00; (1)

where DE is the derivative of E with respect to  ;
0 represent the associated electronic state function
(either a N -vector of atomic orbital or a scalar repre-
senting the density functional); and� is an eigenvector
(either a N �N matrix or a scalar).

As it has been explained in entry �A Priori and A
Posteriori Error Analysis in Chemistry, the approxi-
mation of this nonlinear eigenvalue problem leads to
a system of equations DE.0;ı/ D �0;ı0;ı or more
precisely

˘ıDEı.0;ı/ D �0;ı0;ı; (2)

where Eı is an approximation of E involving, e.g.,
numerical integration and ˘ı denotes some projection
operator over the discrete space Xı. The size of this
algebraic problem depends on the dimension of the
discrete space Xı that is chosen to approximate (each
of the components of) the electronic state function.
Once a basis set of the discrete space Xı has been
chosen, the eigenvector 0;ı is a (large) vector of
(multi-)components of complex numbers. Hence, this
is a nonlinear eigenvalue problem in the sense that the
matrix, the eigenvalues of which we want to compute,
depends on the eigenvector 0;ı .

Overview

The convergence of the discrete solution of the above
problem (2) to the solution of problem (1) is expected,
both at the level of the electronic state function (the
eigenvector) and the eigenvalue. Convergence actually
does not mean that, for one particular (large enough)
instance of discrete space, the discrete elements 0;ı
and �0;ı are close to 0 and �0 – which is an absolute
statement – convergence is indeed a notion that is
associated to a family of discrete spaces (and discrete
problems) indexed by ı: the distance (being measured
in an appropriate manner) between 0 and 0;ı , con-
sidered as a function of the discretization parameter ı,

has to go to zero – maybe not in a monotonic manner
though – when the dimension of Xı tends to infinity
and so should be the difference between �0 and �0;ı .
Actually, we could be a little more demanding and
expect that: (1) a rate of convergence on these errors
is provided, as a function of ı, and (2) the distance
between 0 and 0;ı is about the same size as the
distance between 0 and Xı:

k0 � 0;ıkX � C inf
˚ı2Xı

k0 �˚ıkX ; (3)

with a positive constant C that does not depend on the
discretization parameter (see [1]). This leads then to
a notion of “optimal approximation.” One of the first
natural purpose is to design a family of discrete spaces
such that this optimal approximation tends to zero
when the dimension of Xı goes to infinity very fast.
The good design of the approximation spaces depends
on some features of the electronic state functions: reg-
ularity, shape of the irregularities, small Kolmogorov
width . . . . The question of understanding what error
can be expected between�0 and�0;ı is a little bit more
subtile; we need to remind what happens in the case
of linear eigenvalue problems on the approximation
of the eigenvalues: this is what we recall in the next
section. All this is a priori error analysis, as explained
in entry �A Priori and A Posteriori Error Analysis
in Chemistry. This a priori analysis actually qualifies
the definition of the discrete problem (i.e., both the
definition of the discrete space Xı and the definition of
the discrete formulation DEı); this is presented in the
“A Priori Analysis” section below. If we are even more
ambitious for the approximation scheme, we would
certainly like to know, after the computation is done,
an error bar between the (unknown) exact solution and
the approximation that comes out of the calculation:
this is a posteriori business and is presented in the last
section.

What Can Be Expected

As said above, a good numerical method for the dis-
cretization of the ground state problem (1) is ex-
pected to provide a solution 0;ı satisfying (3). Linear
eigenvalue problems correspond to a problem where
E is defined as follows: E./ D 1

2
<  jAj >

A being some linear self-adjoint operator, continuous
and elliptic over X with domain compactly imbedded

http://dx.doi.org/10.1007/978-3-540-70529-1_255
http://dx.doi.org/10.1007/978-3-540-70529-1_255
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into L2. The constraint under which E is minimized
is <  j >= 1 (we use here the classical “bra,”
“ket” notation for the L2 scalar product); the following
analysis that we remind rapidly allows to state that
the convergence rate on the eigenvalues is twice the
convergence rate on the eigenvectors. Indeed, the con-
tinuous (resp. discrete) problem is here: find 0 2 X

< 0j0 >D 1 and �0 2 IR (reps. 0;ı 2 Xı,
< 0;ıj0;ı >D 1 and �ı 2 IR) such that

< 0jAj˚0 > D �0 < 0j˚0 >
.resp. < 0;ıjAj˚0;ı > D �0;ı < 0;ıj˚0;ı >/ ;

(4)

hence �0;ı ��0 D < 0;ıjAj0;ı > � < 0jAj0 >
D < 0;ı � 0jAj0;ı � 0 >

�2 < 0jAj0;ı � 0 >
D < 0;ı � 0jAj˚0;ı � 0 >

�2�0 < 0j0;ı � 0 >

from (4)

D < 0;ı � 0jAj˚0;ı � 0 >

�� < 0;ı � 0j0;ı � 0 >

� ck0;ı � 0k2X ; (5)

the first and fourth line following from the fact that
< 0j0 >D< 0;ıj0;ı > = 1. The results (5) is the
classical “doubling of convergence” of the eigenvalue’s
approximation with respect to the eigenvectors’ one.
The equivalent statement of this results in the case of
nonlinear eigenvalue problem has been proven only
very recently.

Different Kinds of Analysis

The Basic Problem
When the problem is nonlinear, most of the energies we
have to deal with, and are detailed latter on, can be writ-
ten in the following way: E./ D<  jAj > CE.�/,
where E is a continuous nonlinear functional of the
density � 
 �./ that is a quadratic functional of 
(usually, the density � D 2 when  is scalar, or
� D PN

iD1 j i j2 if  D . i /iD1;::;N is a N -vector of
atomic orbitals).

Under appropriate conditions, the search of the
ground state leads to problem (2) (traducing the critical
point condition) complemented with the minimization
condition stating thatD2E.0/��0Id is semipositive
over the tangent space T0M to the set M of all
L2-(ortho)normal electronic state functions (see [10]
for more on the geometry of such a manifold). The
analysis that is currently available makes use of the
following structure and regularity result stating that the
associated HamiltonianDE.0/ is an unbounded, self-
adjoint operator onL2, bounded from below with com-
pact resolvent such that the associated ground state is
regular enough (elliptic regularity see, e.g., [3], p. 363).
In all cases, there is no uniqueness on the solution to
the minimization problem, at least when stated in terms
of electronic state function (e.g., due to invariance
through the action of unitary transformations; see entry
�Hartree–Fock Type Methods). This nonuniqueness
implies that the semipositive formD2E.0/��0 may
be degenerated over a subspace of T0M, nevertheless
by denoting N0 its kernel, the bilinear form

a0.˚; � / D D2E.0/.˚; � / ��0 < ˚ j� > (6)

is positive over N?
0 . Thanks to a compactness argu-

ment, first introduced in [9], it is coercive over N?
0

with respect to the X norm.

A Priori Analysis

Since 0 represents a minimum of E and a0 carries
out the quadratic part of E , we are able to express
the behavior of the energy in the neighborhood of the
ground state:

E./ D E.0/C 1

2
a0. �0;  �0/CR. �0/

(7)
with jR.�0/j ' o.k�0k2/. Equation 7, together
with the coercivity recalled above, allows to state that
locally, E./ behaves as a small perturbation of a
convex functional (see [9], Lemma 4.8). Hence, there
exists a discrete ground state solution 0;ı , unique up
to the invariance cited above, in the neighborhood of
0 satisfying (3).

The derivation of an estimate over �0;ı is more
involved than in the linear case and is linked with an
estimate of 0�0;ı in weaker norms thanX . Indeed,
following the same lines as in the proof of (5), (at least
if Eı D E)

http://dx.doi.org/10.1007/978-3-540-70529-1_236
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k�0;ı ��0k D j < DE.ı/jı > � < DE./j > j
� j < DE.ı � /jı �  >

j C j < �ı �  jı �  >

j C 2j.DEı.�ı/ �DE.�//.ı; ı/j

(8)

so that

k�0;ı ��0k � C.kı � k2X C k�ı � �kX�/;

where the error in � (i.e., in the  i ’s) is measured in
some lower-order norm than k:kX , as for instance, the
L2 norm or even some negative norms. This shows that
a faster convergence is also achieved for the eigenval-
ues in the nonlinear case if these errors in lower-order
norms can be proven to converge with a better rate;
the doubling is actually obtained if the convergence in
some-lower order norms satisfies an inequality such as
k�ı � �kX� � Ckı � k2X .

Such improvement of the rate of convergence in
weaker norms is a classical result in variational ap-
proximation, and the technique to obtain it is known,
at least in the linear case, as the Aubin Nitsche’s trick.
We provide the details of the estimate in the linear

case to understand the general philosophy of such
derivation. The application to the general nonlinear
case is very technical and difficult to perform (see
[2, 3], and [5] where all the details are provided).
We thus assume that the problem is about the energy
E./ D 1

2
<  jAj >, so that (4) is satisfied.

The eigenvalue�0 being the smallest, this implies two
things:
• The operator A � �0Id has a kernel constituted of

K D spanf0g.
• The operatorA��0Id is positive definite over K?,

hence X -coercive on K? (the orthogonality in K?,
being defined both through the L2-scalar product
and the scalar product < :jAj: > since A0 and
�00 are collinear).

The error in, e.g., the L2-norm can thus be analyzed as
follows:

k0 � 0;ıkL2 D max
˚2K?

< 0 � 0;ıj˚ >

k˚kL2
D max

˚2K?

< 0 � 0;ıjA ��0Id j�˚ >
k˚kL2

where �˚ D ŒA ��0Id �
�1˚ 2 K?:

Note that by introducing the L2 projection operator �ı
over Xı

< 0jA ��0Id j�˚ > D < 0jA��0Id j�˚ � �ı�˚ > .
 0 ŠŠ/

< 0;ıjA ��0Id j�˚ > D < 0;ıjA��0Id j�˚ � �ı�˚ > � < 0;ıj.�0;ı ��0/Id j�ı�˚ >
D < 0;ıjA��0Id j�˚ � �ı�˚ > � < 0;ıj.�0;ı ��0/Id j�˚ >
D < 0;ıjA��0Id j�˚ � �ı�˚ > C < 0 � 0;ıj.�0;ı ��0/Id j�˚ >;

and we conclude that

k0 � 0;ıkL2 D max
˚2K?

< 0 � 0;ıjA ��0Id j�˚ � �ı�˚ > C < 0 � 0;ıj.�0;ı ��0/Id j�˚ >
k˚kL2

proving that

k0 � 0;ıkL2 � k0 � 0;ıkX max
˚2K?

k�˚ � �ı�˚kX
k˚kL2

Cj�0;ı ��0jk0 � 0;ıkL2

or again

k0�0;ıkL2 � Ck0�0;ıkX max
˚2K?

k�˚ � �ı�˚kX
k˚kL2

for which the improvement of the rate of convergence
in the L2-norm with respect to the H1-norm follows
by taking benefit of the elliptic regularity of � and the
approximation properties of Xı applied to �˚ .
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We refer to [3] for precise and optimal results on the
plane wave discretization of the periodic Kohn–Sham
model, within the local density approximation (LDA)
and to [5] and [8] for similar results related to finite
element methods.

The solution procedure for nonlinear problems
is, per force, an iterative process based on the
approximation of a series of linear eigenvalue problems
where a new eigenpair is computed for an operator
based on the previously computed eigenpair. The
convergence of such an iterative procedure is not
granted; we refer to entry �Self-Consistent Field
(SCF) Algorithms for details on this algorithm. Note
that, based on the improvement of the convergence
rate in lower-order norms that was just proven, a two-
grids strategy can be built up, following the work of
[7], where a coarse nonlinear eigenvalue problem is
first solved and followed by a linearized eigenvalue
problem approximated on a fine grid (see [4]).

A Posteriori Analysis

As far as we are aware of, the first results entering in
this category were published in [9] where a computable
error bound is provided on the value, at the ground
state, of the energy. Since the ground state corresponds
to a minimization of the energy, it is obvious that the
computed discrete energy satisfies E.0;ı/ � E.0/;
the purpose of the analysis in [9] is to provide a
computable lower bound on E.0/. The idea is to use
the coercivity of a0 stated above over N?

0 , that is, as
far as 0;ı is close to 0 implies a similar coercivity of
a0;ı . This allows to consider the problem of finding a
solution to

8�; a0;ı .
O; �/ D � < DE.0;ı/j� >

� < �0;ı0;ıj� >
so that E.0;ı/ � 1

2
a0;ı .

O; O/ can be proven to be an
explicit computable lower bound of E.0/. Indeed we
can write

E.0;ı/� 1

2
a0;ı .

O; O/ ' E.0/

�1
2
a0;ı .

O � .0 �0;ı/; O � .0 �0;ı//� E.0/

(9)

up to third-order terms in 0 � 0;ı .

Note that in order to compute O , one solves a direct
(i.e., not eigenvalue) problem on the solution space;
moreover, all operators involved depend only on 0;ı
and not 0; it provides an effective lower bound for
E.0/ as is also numerically illustrated in [9].

A posteriori analysis does not only allow to provide
quantitative informations on outputs but also allows to
indicate where the discretization errors are the largest
in order to improve it by proposing a better-suited
discretization. This kind of analysis is proposed in [6]
for finite element approximations and is based on the
local evaluation of the residual DE.0;ı/ � �0;ı0;ı
together with an evaluation of the jumps of the discrete
solution 0;ı across the different elements. (By local,
we mean that the restriction of this residual to every
triangle in 2D or tetrahedron in 3D is considered to
provide an information of the quality of the approx-
imation around these elements.) Such an evaluation
provides an upper and lower estimate of the local error
0;ı and 0 and leads to a marking strategy where
the elements providing the largest indicators (and only
those) are refined. The equivalence between the size of
the residual and the actual error is a classical argument
for mesh adaptation, nevertheless the extension of this
analysis to nonlinear problems of interest in molecular
simulation is up to now very limited (now restricted
to scalar problems) and of course is not trivial. This
should give rise to a lot of contributions in the future
and, hopefully, to implementation in softwares.
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Short Definition

Numerical methods are described for solving Fredholm
integral equations of the second kind. Related equa-
tions are also described briefly.

Introduction

A Fredholm linear integral equation of the second kind
has the form

�x .s/�
Z

˝

K .s; t/ x .t/ dt D y .s/ ; s 2 ˝ (1)

with � ¤ 0. The region ˝ is assumed to be a closed
set and to be contained in the d -dimensional space R

d

for some d � 1. ˝ can be a d -dimensional region

or something of smaller dimension such as a curve or
surface, and usually ˝ is bounded. The function x is
unknown and the remaining functions and parameters
are given. For notational convenience, the Eq. (1) is
written symbolically as .� � K/ x D y, and K denotes
the integral operator. Throughout this article, assume
that (1) has a unique solution unless specified to the
contrary.

The “kernel function” K .s; t/ must satisfy certain
properties. It is often a continuous function of s and t ;
but singular functions such as those of the form

K .s; t/ D L.s; t/

js � t j˛ ; s ¤ t;

with L, a bounded piecewise continuous function, are
also permitted provided ˛ is kept suitably small. For
example, if ˝ is a two-dimensional surface in R

3, then
˛ < 2 is needed. For a thorough study of the solvability
of (1), see Kress [11]. The focus of this article is the
numerical solution of (1).

When the constant � D 0 in (1), the equation is
said to be a “linear integral equation of the first kind.”
A brief discussion of the numerical solution of such
equations is given later. There are other forms of linear
integral equations, although they are not discussed in
this article. These include “Volterra integral equations
of the first and second kind,” “Cauchy singular integral
equations,” and “hypersingular integral equations.”

Numerical Methods

Most researchers subdivide the numerical methods
for (1) into the following categories:
• Degenerate kernel approximation methods
• Projection methods (or minimum residual methods)
• Nyström methods (or quadrature methods)
These will be defined and discussed in the following. In
addition, all of these methods have iterative variants,
and these are discussed briefly later in this article.
There are other numerical methods for solving (1), but
the above methods and their variants include the most
popular general methods.

Degenerate Kernel Methods
The kernel function K .s; t/ is called degenerate if it
has the form
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K .s; t/ D
nX

jD1
˛j .s/ ˇj .t/

The functions ˛j and ˇj are usually continuous, al-
though this is not necessary theoretically. With a kernel
function of this form, the solution of (1) is given by

x .s/ D 1

�

2

4y .s/C
nX

jD1
cj ˛j .s/

3

5 (2)

where the coefficients
˚
cj
�

are obtained by solving the
linear system

�ci �
nX

jD1

�
˛j ; ˇi

�
cj D .y; ˇi / ; i D 1; : : : ; n

(3)
As notation in writing this system,

.f; g/ D
Z

˝

f .t/ g .t/ dt:

Most kernel functions K .s; t/ are not degenerate
and thus must be approximated by a degenerate kernel.
Assume a sequence of approximating degenerate ker-
nels has been constructed, denoting them by Kn .s; t/.
Further assume that

kK � Knk�


 sup
s2˝

Z

˝

jK .s; t/�Kn .s; t/j dt!0 as n!1

(4)

or

kK � Knk#

�
sZ

˝

Z

˝

jK .s; t/�Kn .s; t /j2 dt ds ! 0 as n ! 1:

(5)

Denote by xn the result of solving the integral equa-
tion (1) with the approximate kernel Kn replacing K .
For later reference, introduce the associated approxi-
mating integral operator

Knz.s/ D
Z b

a

Kn.s; t/z.t/ dt; s 2 ˝;

for arbitrary functions z. Solve the approximating
degenerate kernel integral equation .� � Kn/ xn D
y to obtain an approximation to the solution x

of (1).
Introduce the notation C .˝/ to denote the set of

all functions z that are continuous on ˝: For z 2
C .˝/, let kzk1 D maxs2˝ jz .s/j. Let L2 .˝/ denote
the set of all “Lebesgue measurable” functions z for
which

kzk2 

sZ

˝

jz .s/j2 ds < 1:

If (4) is satisfied and if y 2 C .˝/, then for all
sufficiently large n the equation .�I � Kn/ xn D y has
a unique solution xn 2 C .˝/ ; and moreover,

kx � xnk1 � c kK � Knk� kxk1 (6)

for some c > 0. If (5) is satisfied and if y 2
L2 .˝/, then for all sufficiently large n the equation
.�I � Kn/ xn D y has a unique solution xn 2 L2 .˝/;
and moreover,

kx � xnk2 � c kK � Knk# kxk2 : (7)

For a discussion of degenerate kernel methods, in-
cluding various ways of defining Kn, see Atkinson [3,
Chap. 2] or Kress [11, Chap. 11].

Projection Methods
These methods approximate the solution x by choosing
an approximation from a given finite dimensional
space of functions, call it Z . Let f'1; : : : ; 'ng denote
a basis for Z . Given z 2 Z , introduce the residual
r D .�I � K/ z � y. Select a particular z, call it
xn, by making the residual r small in some sense.
An approximate solution is sought of the form

xn.s/ D
nX

jD1
cj 'j .s/ :

The residual becomes

r .s/D
nX

jD1
cj



�'j .s/�

Z

˝

K .ti ; t/ 'j .t/ dt

�
�y.s/:
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• Collocation method. Select collocation node points
ft1; : : : ; tng 2 ˝ and require

r .ti / D 0; i D 1; : : : ; n;

nX

jD1
cj
˚
�'j .ti /� K'j .s/

� D y .ti / ;

i D 1; : : : ; n:

• Galerkin method. Set to zero the Fourier coeffi-
cients of r with respect to the basis f'1; : : : ; 'ng,

.r; 'i / D 0; i D 1; : : : ; n;

nX

jD1
cj
˚
�
�
'j ; 'i

� � �
K'j ; 'i

�� D .y; 'i / ;

i D 1; : : : ; n:

The basis functions
˚
'j .s/

�
need not be orthogo-

nal, although they often are, meaning
�
'i ; 'j

� D 0

for all i ¤ j .
With both methods, there are additional integrals to
be evaluated, usually by numerical integration. With
collocation, the integrals K'j .ti / must be evaluated;
and with a Galerkin method, the integrals

�
K'j ; 'i

�

and .y; 'i / must be evaluated.
For collocation methods, introduce a function from

Z that interpolates a given function at the points in fti g.
For an arbitrary f 2 C .˝/, let

Pnf .s/ D
nX

jD1
�j 'j .s/ (8)

with the coefficients f�1; : : : ; �ng chosen so that
Pnf .ti / D f .ti /, i D 1; : : : ; n. The quantity Pn
is called an ‘interpolatory projection operator’ from
C .˝/ onto Z . In order for Pnf to be well-defined, it
is necessary and sufficient that det

�
'i
�
tj
�� ¤ 0.

For a Galerkin method, begin with an arbitrary f 2
L2 .˝/ and introduce a function from Z as follows:
let Pnf have the form (8) with the coefficients

˚
�j
�

so chosen that
�
Pnf; 'j

� D �
f; 'j

�
; i D 1; : : : ; n.

The quantity Pn is called an “orthogonal projection
operator” from L2 .˝/ onto Z .

With this notation, both collocation methods and
Galerkin methods can be written symbolically as

.� � PnK/ xn D Pny: (9)

Typically, there is an infinite sequence of approximat-
ing spaces Z D Zn of dimension n � 1, and the func-
tions Pny are increasingly accurate approximations of
y as n increases. For notation, let k�k denote either of
the quantities k�k1 or k�k2, with the former intended
when discussing convergence of a collocation method
and the latter to be used with a Galerkin method. Under
suitable assumptions on the approximation Pnf 	 f

for general functions f , one can show that for both
collocation and Galerkin methods, the approximating
Eq. (9) has a unique solution xn for all suitably large n;
moreover,

kx � xnk � c kx � Pnxk (10)

for some c > 0. With a collocation method, the
accuracy is dependent on the error in the interpolatory
approximation Pnx when compared to the true solu-
tion x; and with a Galerkin method, the accuracy of
xn depends on the accuracy of the truncated Fourier
projection Pnx when compared to x.

For an extensive discussion of projection methods,
including various ways of defining Pn for both collo-
cation and Galerkin methods, see Atkinson [3, Chap. 3]
or Kress [11, Chap. 13].

NyströmMethods
Initially assume K .s; t/ is continuous for s; t 2 ˝ .
Approximate the integral operator in (1) using nu-
merical integration. Consider a numerical integration
scheme Z

˝

f .t/ dt 	
nX

jD1
wj f

�
tj
�

that is convergent as n ! 1 for all continuous
functions f 2 C .˝/. Then, introduce

Kz .s/ 

Z

˝

K.s; t/z.t/ dt

	
nX

jD1
wjK.s; tj /z

�
tj
� 
 Knz .s/ ; s 2 ˝;

for all z 2 C .˝/.
Approximate the Eq. (1) by .�I � Kn/ xn D y, or

equivalently,
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�xn.s/�
nX

jD1
wjK.s; tj /xn

�
tj
� D y.s/; s 2 ˝:

(11)
This is usually solved by first collocating the equation
at the integration node points and then solving the
linear system

�zi �
nX

jD1
wjK.ti ; tj /zj D y.ti /; i D 1; : : : ; n

(12)
in which zi 
 xn .ti /.

Originally people would take this solution and then
interpolate it in some way so as to extend it to the
full set ˝ . However, it can be shown that the Eq. (11)
furnishes a natural interpolation formula,

xn.s/ D 1

�

2

4y.s/C
nX

jD1
wjK.s; tj /zj

3

5 ; s 2 ˝:

(13)

It turns out that this is a very good interpolation
formula, as the resulting interpolated values have an
accuracy that is comparable to that of the approx-
imate solution Œz1; : : : ; zn�

T at the integration node
points.

For the solution x 2 C .˝/, the approximating
equation .�I � Kn/ xn D y has a unique solution
xn for all sufficiently large values of n, and this is
the function given as the combination of solving (12)
and (13). Moreover,

kx � xnk1 � c kKx � Knxk1 : (14)

The approximate solution xn converges to the true
solution x at a rate that is at least as rapid as the rate
of convergence of the numerical integration Knx .s/ to
Kx .s/.

For cases in which K .s; t/ is discontinuous, often
having an integrable singularity, there are numerical
integration schemes that incorporate the discontinuous
behaviour into the quadrature formula. This is often
called “product integration,” and it has been devel-
oped for a variety of discontinous kernel functions.
Such cases arise commonly when considering inte-
gral equations that are reformulations boundary value

problems for elliptic partial differential equations, and
in that case they are usually called “boundary integral
equations.”

For a complete discussion of Nyström methods, in-
cluding those based on product integration, see Atkin-
son [3, Chaps. 4 and 5] and Kress [11, Chap. 12].
For numerical analysis of boundary integral equations
in particular, see Atkinson [2], Atkinson [3, Chaps. 7–
9], Hackbusch [7], Hsiao and Wendland [8], Jaswon
and Symm [9], and Sauter and Schwab [12].

Related Topics

There are a number of topics which arise from any
of the above numerical methods. These include eigen-
value problems, iteration methods, and so-called fast
methods of solution. These are discussed briefly below.

Eigenvalue Problems
Consider finding the eigenvalues � and corresponding
eigenfunctions x� .s/ ; other than the zero function,
that solve the equation

Z

˝

K .s; t/ x� .t/ dt D �x� .s/ ; s 2 ˝:

For an introduction to this problem and for a summary
of much of the research on the numerical solution
of it, see Baker [4, Chap. 3] and Chatelin [5]. All of
the above numerical methods can be applied to this
problem. Convergence to the eigenvalues and eigen-
functions of the original equation can be proved, with
the rates of convergence related closely to those given
earlier in (6), (7), (10), and (14) for the inhomogeneous
Eq. (1).

For example, let � be a nonzero eigenvalue and
let � .�/ denote the “index” of this eigenvalue.
The index is the smallest positive integer � for
which

Null ..� � K/�/ D Null
�
.� � K/�C1	 :

The space Null ..� � K/�/ consists of all eigenfunc-
tions and all “generalized eigenfunctions” of the
integral operator K that correspond to the eigenvalue
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�. With any of the numerical methods given above, letn
�
.n/
1 ; : : : ; �

.n/
m

o
denote the approximate eigenvalues

corresponding to the eigenvalue � of interest (and
often m D 1, meaning � is a “simple eigenvalue”).
Also, let f'1 : : : ; 'kg denote a basis of the space
Null ..� � K/�/. Then, for some c > 0 and for
all sufficiently large values of the parameterization
variable n,

max
1�i�m

ˇ
ˇ
ˇ� � �.n/i

ˇ
ˇ
ˇ � c max

1�j�k
�
�K'j � Kn'j

�
�1=�.�/ :

In the case of projection methods, let Kn D PnK.
For the special case that K is a “symmetric”
integral operator, meaning K .s; t/ 
 K .t; s/, it
follows that � .�/ D 1 for all nonzero eigenvalues
of K, thus simplifying the above bound; see
Atkinson [1].

Iteration Methods
There are iterative variants of all of the numerical
methods discussed above. The linear systems for
all of these numerical methods result in dense linear
systems, say of order n, and then the cost of solving
directly by Gaussian elimination is O

�
n3
�
. In addition,

with both degenerate kernel methods and projection
methods, the elements of the coefficient matrix are
integrals which are usually evaluated numerically.
With the collocation method these coefficients are
single integrals over ˝ , and with Galerkin method,
they are double integrals over ˝ . The cost of
evaluating the coefficient matrix is generally O

�
n2
�
,

although the constant of proportionality may be
quite large. Evaluating the coefficient matrix for
a Nyström method is also O

�
n2
�
, but now each

coefficient is only a single evaluation of the kernel
function.

Most standard iteration methods for solving linear
systems of order n, including Krylov subspace meth-
ods, lead to a cost of O

�
n2
�
, which is consistent with

the cost of setting up the coefficient matrix. Two-grid
methods use the solvability of a low-order system of
order m to then solve iteratively a much larger system
of order n. For a development of such iterative variants
for collocation and Nyström methods, see Atkinson
[3, Sects. 6.2 and 6.3]. These methods also have a cost
of O

�
n2
�
. A fast multigrid iterative variant of colloca-

tion methods is given in Hackbusch [7, Chap. 5], and it
has a cost of O

�
n2
�
; also see Atkinson [3, Sect. 6.4].

For other discussions of iterative variants of the above
numerical methods, see Kress [11, Chap. 14].

Fast Methods of Solution
There are so-called fast methods for solving the linear
systems associated with the above numerical methods,
and they often result in an operations cost of O .n/
or O .n log� n/ for some � � 1. The linear system
is truncated by using a special way of decomposing
the approximate solution using wavelets or some other
kind of heirarchical decomposition. For a discussion of
some such methods in the context of boundary integral
equations, see Sauter and Schwab [12, Chap. 7]. This
is currently an active area of research.

Integral Equations of the First Kind

Integral equations of the first kind are of the form

Z

˝1

K .s; t/ x .t/ dt D y .s/ ; s 2 ˝2: (15)

The regions ˝1 and ˝2 can be different, as can their
dimensions. Most such equations divide into one of
two quite different types of problems, and we discuss
these briefly.

Inverse Problems
When the kernel function is a continuously differen-
tiable function, the problem is an “ill-posed problem.”
Small changes in the data (y andK) can result in much
larger changes in the solution x. In general, there is a
sequence of ever smaller perturbations ım .s/, kımk !
0 as m ! 1, of the right side y .s/ that result in ever
larger perturbations of the solution x .t/. In addition,
there are such decreasing sequences fım .s/g of pertur-
bations of y .s/with the Eq. (15) having no solution for
any of the right sides y .s/Cım .s/. It might be thought
that such problems would not be of any practical
interest. To the contrary, many physical problems lead
to such equations. An excellent introduction to the
origin of such equations is Groetsch [6]. Many such
equations arise as indirect sensing experiments, when
what you seek is x, but what you can actually measure
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is y. The text Kirsch [10] gives an up-to-date account
of the theory of numerical methods for solving such
problems.

To indicate the source of the difficulty with such
equations, consider a kernel function K .x; y/ that is
symmetric for x; y 2 ˝ , and for which

Z

˝

Z

˝

jK .x; y/j2 dx dy < 1:

Assume further that Eq. (15) with y .s/ 
 0 has only
the solution x .s/ 
 0. Then the eigenfunctions of
the integral operator form an “orthogonal basis” for
L2 .˝/. Let the eigenvalues be written as f�1; �2; : : : g
with

j�1j � j�2j � � � � � j�mj � � � � > 0:

It is known that the sequence �m ! 0 as m ! 1,
and the speed of convergence to zero of these eigen-
values increases as the kernel has a larger number of
continuous derivatives. The corresponding eigenfunc-
tions f'1; '2; : : : g can be chosen to be orthonormal:�
'i ; 'j

� D ıi;j . Any function x 2 L2 .˝/ can be
decomposed using this basis,

x .s/ D
1X

jD1

�
x; 'j

�
'j .s/ ; s 2 ˝;

and similarly for y 2 L2 .˝/. Then, the solution to the
equation Kx D y is given by

x .s/ D
1X

jD1

�
y; 'j

�

�j
'j .s/ :

To see the ill-posed nature of the problem, consider
perturbing the right side y .s/ by " 'm .s/ for some
m > 0. Then, the solution x .s/ is perturbed by
."=�m/ 'm .s/. As m increases, this perturbation of x
is ever larger even though the size of the perturbation
" 'm .s/ satisfies k" 'mk2 D j"j for all m. To obtain a
sequence of perturbations ım .s/ that decreases in size
while the perturbation in the solution becomes larger,
choose " D pj�mj. This argument can be extended
to general integral equations of the first kind, thus
demonstrating the ill-posedness of such equations.

Boundary Integral Equations of the First Kind
Many integral equations arise as reformulations of
boundary value problems for partial differential equa-
tions. Those of the second kind can be treated by the
methods discussed earlier. Those of the first kind are
more difficult, and some methods such as collocation
are more problematic to use. A general approach to the
numerical analysis of such boundary integral equations
of the first kind has been developed by extending
the abstract mathematical framework of finite element
methods for elliptic partial differential equations. This
approach looks at Galerkin methods using an abstract
generalization of the variational framework developed
for finite element methods. For a development of this
approach, see Hsiao and Wendland [8] and Sauter and
Schwab [12]; and these books also give a general dis-
cussion of the numerical solution of boundary integral
equations of the first and second kind using “boundary
element methods.”
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Ordinary differential equations have been used for
more than 300 years; a few of them can be solved
analytically, but most of them, and practically all ap-
pearing in applications, must be treated numerically.
They arise in all sciences. They show up whenever a
change of state is modeled mathematically, be it motion
of planets in astronomy, concentrations in chemical
reactions, simulations in molecular dynamics, elec-
tronic circuits, multibody systems, growth, and in-
teraction of populations in biology, economic mod-
els. They also appear via the method of lines ap-
proach as spatial discretization of partial differential
equations.

Expressed in mathematical terms, an ordinary dif-
ferential equation is a relation between the derivative
of an unknown function y.t/ and its derivative Py.t/.
Here, t is a real variable that often represents time, and
y.t/ is a vector in R

n. If the derivative can be expressed
explicitly in terms of time and state, we are concerned
with an equation of the form

Py D f .t; y/:

We consider the differential equation complemented
with an initial condition y.t0/ D y0. Assuming that
the vector field f .t; y/ is continuous and satisfies a
Lipschitz condition with respect to y, the initial value
problem possesses a unique solution. This solution can
be extended beyond any compact set in the domain
of definition of f .t; y/. An important feature is that
the solutions depend continuously on perturbations
of initial values. In particular, if y.t/ and z.t/ are
two solutions of the same differential equation with
different initial values y0 and z0, and if f .t; y/ satis-
fies a Lipschitz condition in a neighborhood of these
solutions, then we have the estimate

ky.t/ � z.t/k � eL.t�t0/ky0 � z0k:

Although this estimate is optimal in terms of the Lips-
chitz constant, it is often too pessimistic for particular
problems. It may happen that the difference to any
solution with perturbed initial value remains bounded
and small for all t � t0. We then call the solution stable.
If the difference to any solution with perturbed initial
value converges to zero for t ! 1, then we call the
solution asymptotically stable.

If the differential equation is considered on a fixed
interval Œa; b� and, instead of an initial condition,
it is complemented with a boundary condition
r.y.a/; y.b// D 0 that relates solution values at both
endpoints of the integration interval, we speak of a
boundary value problem. The existence and uniqueness
of solutions is no longer a local problem, and general
results are available only for special situations, e.g.,
when the vector field and the boundary condition are
linear functions.

Integrators for Nonstiff Problems

A differential equation defines the slope of the solution
at a given state .tn; yn/, which means that we know
an analytic expression of the tangent of the solution.
The most natural numerical approach is therefore to
approximate the solution by its tangent on a small
interval Œtn; tnC1� of length hn D tnC1 � tn. This then
leads to the formula

ynC1 D yn C hnf .tn; yn/;

which gives an approximation ynC1 	 y.tnC1/ when-
ever yn 	 y.tn/. This numerical scheme is called ex-
plicit Euler method. The approximation of the solution
by its tangent leads to a local error of size O.h2n/ on
an interval of length hn. Investigating the propagation
of the local errors and their accumulation yields an
estimate

kyn � y.tn/k � C h for tn � t0 � T

for the global error. Here, h D maxhn, and the constant
C may depend on the length T of the considered
interval, but is independent of n and h. Since the global
error is proportional to hp with p D 1, we say that
the method is of order 1. This low order is the main
disadvantage of the explicit Euler method because
increasing the accuracy by a factor 2 requires doubled
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work. Much research has been devoted to design meth-
ods of higher order which can achieve higher accuracy
with less computational effort. General references on
this topic are the monographs [2, 3, 5].

Explicit Runge–Kutta Methods
To obtain higher accuracy, we integrate the differential
equation over the interval Œtn; tnC1�

y.tnC1/� y.tn/ D
Z tnC1

tn

f .t; y.t// dt;

and we approximate the integral by a sufficiently ac-
curate quadrature formula. The missing values of the
solution in quadrature points are approximated in a
similar way. Based on the Simpson quadrature rule, in
1901 Kutta proposed the following scheme

k1 D f .tn; yn/

k2 D f .tn C h
2
; yn C h

2
k1/

k3 D f .tn C h
2
; yn C h

2
k2/

k4 D f .tn C h; yn C hk3/

ynC1 D yn C h
6
.k1 C 2k2 C 2k3 C k4/

which is of order 4 so that the global error is bounded
by O.h4/. Many mathematicians successfully tried to
improve this method and constructed explicit Runge–
Kutta methods of orders up to 12.

Very early one became aware of the fact that the
application of a numerical scheme with constant step
size h can be very inefficient. Regions with large
variations of the solution should be treated with small
step sizes, and large step sizes should be used where the
solution is slowly varying. The difference of two differ-
ent Runge–Kutta approximations gives information on
the size of the local error. Using ad hoc strategies or
more sophisticated strategies based on control theory,
such local error estimates allow for an efficient use
of variable step sizes. For reasons of efficiency, one
employs so-called embedded pairs of explicit Runge–
Kutta methods, which are constructed in such a way
that a large number of function evaluation are the same
for both methods.

Linear Multistep Methods: Adams Methods
Another approach for increasing efficiency with re-
spect to the explicit Euler method is by using the
information of several previously computed solution

approximations. Assume that approximations yn 	
y.tn/, : : :, ynCk�1 	 y.tnCk�1/ are known at k
consecutive time instants. The idea is to replace the
unknown function f .t; y.t// in the integrated form of
the differential equation by a polynomial of degree
k�1 that interpolates the values f .tnCj ; ynCj / at time
tnCj for j D 0; 1; : : : ; k � 1. This yields a formula of
the form

ynCk � ynCk�1 D h

k�1X

jD0
ˇj f .tnCj ; ynCj /

and is known as an explicit Adams method (also called
Adams–Bashforth method). The resulting method is
of order k. In contrast to Runge–Kutta methods, this
integrator requires only one function evaluation per
step. However, smaller time steps are necessary to
achieve a comparable accuracy so that both approaches
are of equal importance. If we consider a polynomial of
degree k that interpolates in addition also the unknown
value f .tnCk; ynCk/, then we get a similar formula
where the sum is from j D 0 to j D k. In this case, the
numerical approximation ynCk is defined implicitly,
and the method is called an implicit Adams method (or
Adams–Moulton method) of order k C 1.

The general form of linear multistep methods is

kX

jD0
˛j ynCj D h

kX

jD0
ˇj f .tnCj ; ynCj /;

which is usually (since the seminal thesis of Dahlquist)
represented by the generating polynomials of the coef-
ficients

�.	/ D
kX

jD0
˛j 	

j ; �.	/ D
kX

jD0
ˇj 	

j :

The method is said to be of order p if the defect
obtained when ynCj is replaced by the exact solution
y.tnCj / in the multistep formula is of size O.hpC1/.
To get an estimate of the global error on finite time
intervals nh � T , one has to assume stability in
addition to orderp. Stability means that the polynomial
�.	/ satisfies the root condition, i.e., the roots of the
equation �.	/ D 0 satisfy j	j � 1 and those on the unit
circle are simple.
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Extrapolation Methods
Yet another approach for improving the accuracy of the
explicit Euler method is by exploiting the asymptotic
expansion of the global error. For a problem Py D
f .t; y/ with initial value y.0/ D y0, we let yn.H/
be the numerical approximation at H D nh obtained
with the explicit Euler method (n steps with step size
h). The error then satisfies

yn.H/�y.H/ D a1.H/hCa2.H/h2Ca3.H/h3C: : : ;

where aj .t/ are smooth functions. Computing yn.H/
for various values of n, e.g., for n D 1; 2; 3; 4; 5 and
neglecting terms of order h5 and higher, one can com-
pute the unknown values y.H/; a1.H/; : : : ; a4.H/.
This gives an approximation of order 5 to the exact
solution. Depending on the choice of the values for n,
one can get approximations of various orders whose
difference can be used as error estimators for computa-
tions with variable step size and variable order.

Taking the explicit midpoint rule (instead of the
explicit Euler method) as basic integrator, the error has
an asymptotic expansion in even powers of h, which
allows one to gain two orders with every extrapola-
tion. This leads to the so-called GBS method (Gragg–
Bulirsch–Stoer).

Integrators for Stiff Problems

In many important applications, one is confronted with
differential equations having different time scales. This
may arise with chemical reactions, where the reaction
rate constants have different orders of magnitude, in the
treatment of singularly perturbed differential equations
and in space discretizations of parabolic problems. The
differential equation is called stiff if it has a slowly
varying smooth solution, which strongly attracts any
perturbed solution. The most simple numerical method
for stiff differential equations is the implicit Euler
method

ynC1 D yn C hf .tnC1; ynC1/:

The nonlinear equation for ynC1 is solved by a mod-
ified Newton method, which requires solving a se-
quence of linear systems with a matrix that is a shift
of the Jacobian @f=@y.

Sometimes one calls a differential equation stiff if
for its numerical treatment, the implicit Euler method
is much more efficient than the explicit Euler method.

In an influential article from 1963, Dahlquist intro-
duced the concept of A-stability which is based on the
test equation Py D �y. Its exact solution y.t/ D e�ty0
remains bounded for all t � 0 if <� � 0, and a
numerical integrator is called A-stable if the numerical
solution fyng for this test equation remains bounded for
all n � 0 and h > 0 provided that <� � 0. Typically,
the numerical solution depends only on the product h�,
which justifies to consider the set

S D fz 2 C I fyng is bounded for n � 0 and h� D zg;

which is called stability region of the numerical in-
tegrator. For an efficient integration of stiff differen-
tial equations, it is necessary that the stability region
covers a large part of the negative half plane, and
it is desirable that it covers the whole negative real
axis. Unfortunately, neither classical explicit Runge–
Kutta methods, nor Adams multistep methods, nor
extrapolation methods based on the explicit midpoint
rule share this property. New classes of integrators
have been designed. Their construction, theory, and
implementation are discussed in the monograph [6].

Implicit Runge–Kutta Methods: Collocation–
Radau IIA
The implicit Euler method is convergent of order 1,
and for reasons of efficiency, it is necessary to con-
sider methods of higher order. The most simple dis-
cretizations of order 2 are the trapezoidal rule (Crank–
Nicolson) and the implicit midpoint rule

ynC1 D yn C h

2

�
f .tn; yn/C f .tnC1; ynC1/

	
;

ynC1 D yn C hf
�
tn C h

2
;
yn C ynC1

2

	
:

For the test equation Py D �y, both methods reduce to
the recurrence relation ynC1 D R.h�/yn with stability
functionR.z/ D .1Cz=2/=.1�z=2/. Since jR.z/j � 1

for <z � 0, both methods are A-stable. For very large
negative z, i.e., z ! �1, these methods introduce
numerical oscillation ynC1 	 �yn, which contrasts
the fast exponential decay of the exact solution. The
implicit Euler method has stability function R.z/ D
1=.1 � z/. This method is not only A-stable, but its
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stability function satisfies the desirable property that
R.z/ ! 0 for z ! �1. Methods with this property
are called L-stable.

An interesting class of high-order integrators are
collocation methods. For s distinct real numbers
c1; : : : ; cs (usually between 0 and 1), we look for the
polynomial u.t/ of degree s that satisfies u.tn/ D yn
and

Pu.tn C ci h/ D f .tn C ci h; u.tn C cih// for iD1; : : : ; s;

The numerical approximation after one step is then
given by ynC1 D u.tn C h/. This method provides
an approximation to the solution not only at discrete
points but on the whole interval Œtn; tnC1�. For example,
with s D 3 and c1;2 D .4 � p

6/=10, c3 D 1, the
method becomes (denoting the internal stage approx-
imations by Yi D u.tn C cih/ and suppressing the
argument t in f .t; y/)

Y1 D yn C h

 
88 � 7p6
360

f .Y1/

C296� 169p6
1800

f .Y2/

C�2C 3
p
6

225
f .ynC1/

!

Y2 D yn C h

 
296C 169

p
6

1800
f .Y1/

C88C 7
p
6

360
f .Y2/

C�2 � 3
p
6

225
f .ynC1/

!

ynC1 D yn C h

 
16 � p

6

36
f .Y1/

C16C p
6

36
f .Y2/C 1

9
f .ynC1/

!

:

These equations represent a nonlinear system for
Y1; Y2; ynC1, which has to be solved iteratively by
a variant of Newton’s method. If we choose, for an
arbitrary s, the nodes c1; : : : ; cs�1; cs D 1 of the right-
hand Radau quadrature, we obtain the so-called Radau

IIA methods. They are of order p D 2s � 1 and they
are A- andL-stable, which makes them extremely well
suited for the numerical treatment of stiff differential
equations.

A more general class of methods is obtained by
replacing the coefficients in the above formulas with
free parameters. They can be determined to achieve
a certain order, good stability, and other desirable
properties. Such methods are called implicit Runge–
Kutta methods. One possibility is to look for methods,
where the first equation only depends on f .Y1/, the
second only on f .Y1/ and f .Y2/, etc., so that instead
of a huge nonlinear system of dimension sd (where d
denotes the dimension of the differential equation), one
is concerned with s nonlinear systems of dimension d .
Such methods are called SDIRK (diagonally implicit
Runge–Kutta) methods.

A further simplification can be achieved, if we
consider a SDIRK method and instead of solving
the nonlinear system iteratively until convergence, we
apply only one simplified Newton iteration. In this
way, the order of accuracy may be reduced, but the
resulting equations can be considered as a new class of
integrators (called Rosenbrock methods), whose order
and stability have to be investigated from scratch.
These methods are easier to implement, because only
linear systems have to be solved, but it is more in-
volved to find suitable coefficients that give high-order
approximations.

A possibility to avoid the solution of nonlinear
and linear systems of large dimension is the use
of Runge–Kutta–Chebychev methods. These are
explicit Runge–Kutta methods (hence, easy to
implement) and constructed in such a way that
the intersection of their stability region with the
negative real axis is maximized. These methods
are advantageous for mildly stiff problems of large
dimension, where the evaluation of the Jacobian of
f .y/ is expensive.

Linear Multistep Methods: BDF Schemes
Also linear multistep methods include methods that
are suitable for the treatment of stiff differential
equations. If approximations ynCj 	 y.tnCj / to
the solution are known for j D 0; 1; : : : ; k � 1, the
idea is to find a polynomial q.t/ of degree k that
interpolates yn; : : : ; ynCk�1 and the unknown value
ynCk, which is determined by the collocation condition
Pq.tnCk/ D f .tnCk; q.tnCk//. Writing the interpolation
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polynomial in terms of backward differences, this
yields the formula (written for an application with
constant step size)

kX

jD1

1

j
rj ynCk D hf .tnCk; ynCk/:

It is called BDF (backward differentiation formula) and
falls into the class of linear multistep methods, where
�.	/ D Pk

jD1 1j 	
k�j .	 � 1/j and �.	/ D 	k . Its order

of consistency is p D k. Computing the roots of the
equation �.	/ D 0, one finds that the method is stable
only for k D 1; : : : ; 6. For k � 7, at least one of the
roots has modulus larger than 1.

For the study of A-stability, we apply the method
to the test equation Py D �y. This yields a linear re-
currence relation with characteristic polynomial �.	/�
z�.	/, where z D h�. The numerical solution remains
bounded if this polynomial satisfies the root condition
so that the stability region is given by

S D fz 2 C I �.	/�z�.	/ satisfies the root conditiong:
The BDF scheme is A-stable for k D 1 (implicit
Euler method) and for k D 2, i.e., the stability
region covers the whole negative half plane. For
k D 3; 4; 5; 6, the stability region still covers
the sector S˛ D fz I j arg.�z/j < ˛g with ˛ D
86:03ı; 73:35ı; 51:84ı; and 17:84ı, respectively. The
method is called A.˛/-stable. The BDF schemes are
very efficient for stiff differential equations where the
eigenvalues of the Jacobian of the vector field are close
to the negative real axis, they are less efficient for
problems with eigenvalues near the imaginary axis.

General Linear Methods
One-step Runge–Kutta methods can have high order
of accuracy and excellent stability properties; multi-
step methods require less computational cost per step.
With the aim of combining all important features in
one method, the class of general linear methods has
been introduced by Butcher. It uses the information of
several consecutive steps (like multistep methods) and
has more than one internal stage approximation (like
Runge–Kutta methods).

Special Problems and Special Integrators

General-purpose solvers can treat efficiently large
classes of nonstiff and stiff differential equations.

However, there are situations where special integrators
can be much more suitable. For problems whose
flow evolves on a manifold or has geometric
properties like symplecticity, reversibility, or volume-
preservation, the numerical approximation should
share as many of these properties as possible. This
can have advantageous properties for integrations
over long times and when qualitative properties of
the discrete flow are more important than accuracy
(e.g., in molecular dynamics simulations). The study
of structure-preserving algorithms is the subject of
“geometric numerical integration” (see, e.g., [4, 7]).
Problems with dominant linear part can be integrated
more efficiently by exploiting this feature, and the
integration of high-dimensional problems needs a
special treatment.

Symplectic Methods
Conservative mechanical systems (e.g., motion of plan-
ets) lead to differential equations – Hamiltonian sys-
tems – of the form

Pp D �rqH.p; q/; Pq D rpH.p; q/;

where the HamiltonianH.p; q/ is a scalar-valued func-
tion whose actual value represents the total energy. The
exact flow of such a system has several remarkable
properties: it conserves the total energy, and it is sym-
plectic and hence volume-preserving. None of the clas-
sical methods can preserve energy for all Hamiltonian
systems, and neither explicit Runge–Kutta methods nor
linear multistep methods can have a symplectic dis-
crete flow. A few implicit Runge–Kutta methods (e.g.,
collocation based on Gaussian quadrature) turn out to
be symplectic. There is also an interesting combination
of the trapezoidal rule with the implicit midpoint rule,
called Störmer–Verlet method,

pnC1=2 Dpn � h
2
rqH.pnC1=2; qn/

qnC1 D qn C h
2

�rpH.pnC1=2; qn/
CrpH.pnC1=2; qnC1

�

pnC1 DpnC1=2 � h
2
rqH.pnC1=2; qnC1/

which is symplectic. Furthermore, it is symmetric, of
order 2, and for separable Hamiltonians H.p; q/ D
T .p/C U.q/, it is explicit.

An elegant way of designing symplectic integrators
is by composition. Denoting by ˚h W .pn; qn/ 7!
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.pnC1; qnC1/ the discrete flow of the Störmer–Verlet
method, a composition method is given by

h D ˚csh ı : : : ı ˚c2h ı ˚c1h;

where c1; : : : ; cs are suitably chosen parameters. As a
composition of symplectic mappings, the method h is
automatically symplectic. If csC1�i D ci for all i , it is
symmetric and arbitrarily high order can be achieved
if the ci satisfy certain order conditions. Excellent
methods up to order 12 are available.

Variational Integrators
Variational integrators are a further elegant approach
for constructing symplectic integrators. The idea is
to go one step back in the derivation of the Euler–
Lagrange (and Hamilton) equations, which originate
from a variational problem. Instead of discretizing the
differential equation, one discretizes the variational
problem. In this way, a large class of integrators are
obtained, and there is an interesting connection with
symplectic partitioned Runge–Kutta methods. Every
variational integrator is symplectic, and conversely,
every symplectic integrator can be interpreted as a
variational integrator.

Differential Equations onManifolds
It may occur that for initial values on a nonlinear
manifold M of Rn, the solution Py D f .t; y/ remains
on M for all times. The manifold is usually given
by invariants (conservation laws, e.g., total energy,
momentum) or by constraints of the state variables.
There are two natural approaches that yield numerical
approximations lying on the manifold: (1) choose local
coordinates of the manifold and solve the differential
equations in local coordinates and (2) apply any nu-
merical method to the differential equation in R

n and
project the numerical approximation after every step
onto the manifold.

Problems, given by a combination of differential
and algebraic equations

Py D f .t; y; z/; 0 D g.t; y; z/;

are called differential-algebraic equations. If the alge-
braic relation permits to express z in terms of .t; y/,
we can eliminate z, and we obtain an ordinary dif-
ferential equation for y. Such problems are called
index 1 equations. If the algebraic relation together

with the differentiated equation 0 D gt .t; y; z/ C
gy.t; y; z/f .t; y; z/ C gz.t; y; z/Pz permits to express
z as function of .t; y/, we are concerned with an
index 2 problem. Higher index problems are defined
similarly. There are modifications of Runge–Kutta and
multistep methods that allow for a direct discretization
of differential-algebraic equations. Care has to be taken
about stability and order reduction. The higher the
index of a problem, the more difficult is its numerical
treatment.

An important special case of differential equations
on manifolds are problems on a Lie group G. They
have the form

Py D A.t; y/y

where A.t; y/ is in the corresponding Lie algebra for
all t and all y 2 G. A standard approach is to
parametrize locally the Lie group with the help of the
exponential function, y D exp.z/yn, and to apply
a numerical integrator (one or a few steps) to the
differential equation for z in the Lie algebra, which
is a linear space. Another possibility is to exploit
an explicit series representation (Magnus series) of
the exact solution of Py D A.t/y to get numerical
approximations on the Lie groupG.

Exponential Integrators
The class of exponential integrators is particularly
useful when a linear part of the vector field dominates
the rest, i.e.,

Py D Ly C g.t; y/:

Mainly based on the variation of constants formula,
one can design integrators that reproduce the exact
solution if g.t; y/ is zero or a polynomial in t of
low degree. The most simple example is the so-called
exponential Euler method

ynC1 D yn C h'.hL/f .tn; yn/; '.z/ D ez � 1

z
:

It has order 1, and it is exact for f .t; y/ D Ly C b.
Higher-order extensions of Runge–Kutta type or mul-
tistep type are possible. One of the main applications
of such exponential integrators are stiff differential
equations where stiffness is mainly due to the linear
part in the vector field.

There is also a counterpart for second-order differ-
ential equations
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Ry C˝2y D g.t; y/;

where ˝ is a symmetric positive definite matrix.
A natural discretization of this problem is the scheme

ynC1 � 2 cos.h˝/ yn C yn�1 D h .h˝/g.tn; yn/:

with velocity approximation given by 2h sinc .h˝/ Pyn
D ynC1 � yn�1, where sinc z D sin z=z. As a mapping
.yn; Pyn/ 7! .ynC1; PynC1/ the scheme can be considered
as a one-step method. It is symmetric and has order
2. For the choice  .z/ D sinc 2.z=2/, it is exact for
problems with constant g.t; y/, and for  .z/ D sinc z,
it is symplectic when g.t; y/ is the negative gradient
of a potential. For highly oscillatory problems, where
˝ has large eigenvalues, this method gives excellent
results also for large step sizes.

Further Approaches
Consider a large-dimensional system where the solu-
tion components vary on different time scales. It is
then natural to use large time steps for slowly varying
components and small time steps for components with
large variations. This is the idea of multirate methods.
The use of different local time steps requires interpola-
tion or dense output, which can influence stability and
accuracy of the method.

The solution of initial value problems is sequential
in nature. Is it nevertheless possible to exploit the use
of several processors? If the evaluation of f .y/ is very
expensive, a trivial parallelization can be considered
within every function evaluation. For fully implicit
Runge–Kutta methods with s stages, all s function
evaluations can be evaluated in parallel. A different
approach is the parareal algorithm. One considers the
initial value problem as a boundary value problem, one
divides the interval in a sequence of subintervals, and
one solves in parallel the differential equation on each
subinterval. Initial values for these integrations are
obtained iteratively with simplified Newton iterations
applied to matching conditions at the endpoints of the
subintervals.

For differential equations with time scales that dif-
fer by several orders of magnitude, heterogeneous
multiscale methods are an interesting approach. The
idea is to solve a macroscale model (which is only
partly known) with large step sizes and to compute the
missing data locally with microscale computations.

Numerical Solution of Boundary Value
Problems
All numerical approaches discussed above can be used
for the numerical integration of boundary value prob-
lems. The idea is to guess the missing initial values,
to solve the initial value problem numerically, and to
correct iteratively the initial values until the boundary
condition is satisfied. This approach is called shooting.
For problems where the arising initial value problems
are unstable, it is advantageous to divide the interval
into subintervals, to apply shooting on every subinter-
val, and to solve the resulting nonlinear system (match-
ing and boundary conditions) with Newton techniques.
One then speaks of multiple shooting.

Another approach can be summarized with the term
global methods. For example, the differential equation
is discretized with finite differences, and the resulting
nonlinear system (including the boundary condition)
for the solution approximations at the grid points
is solved with Newton techniques. This approach is
closely related to multiple shooting with many subin-
tervals, where only one step of a numerical integrator
is applied per subinterval. A classical reference to this
topic is [1].
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Short Description

The treatment of high-dimensional problems such as
the Schrödinger equation can be approached by con-
cepts of tensor product approximation. We present
general techniques that can be used for the treat-
ment of high-dimensional optimization tasks and time-
dependent equations, and connect them to concepts
already used in many-body quantum physics.

Introduction

Multiparticle Schrödinger-type equations are an
important example of problems posed on high-
dimensional tensor spaces. Numerical approximation
of solutions of these problems suffers from the
curse of dimensionality, i.e., the computational
complexity scales exponentially with the dimension
of the space. Circumventing this problem is a
challenging topic in modern numerical analysis with
a variety of applications, covering aside from the
electronic and nuclear Schrödinger equation, e.g.,
the Fokker–Planck equation and the chemical master
equation. Considerable progress in the treatment
of such problems has been made by concepts
of tensor product approximation. Remarkably,
many concepts which are used in many-body
quantum physics (e.g., matrix product states,
tensor networks) have in this context recently been
rediscovered independently in the field of numerical
analysis.

To set up a general framework (cf. also [7]), let
V1; : : : ;Vd be Hilbert spaces, where with K D R

or C, e.g., Vi D K
ni or Vi D L2.K/ may hold.

An order-d tensor over these spaces is then given by

any U 2 V WD ˝d
iD1Vi ; which may be viewed as a

multivariate function

U W I1 � � � � � Id ! K;

x D .x1; : : : ; xd / 7! U.x1; : : : ; xd /; (1)

the index sets Ii being discrete (e.g., Ii D
f1; : : : ; ni g in the case that Vi D K

ni ) or continuous
(e.g., Ii D K in the case that, for instance, Vi D
L2.K/). An other, simpler example that we will use
in examples below is provided by choosing Vi D Pn,
the space of polynomials of degree at most n � 1

over Œ0; 1�. V is then the space of those multivariate
polynomials in variables x1; : : : ; xd over Œ0; 1�d where
in each term each variable xi appears at most to the
power n.

Tensors play an important role in the description of
many complex systems. While given explicitly in some
applications, they are often defined only implicitly
as the solution of, e.g., partial differential or integral
equations as in the case of the Schrödinger equation.
Note that discrete tensor spaces V allow for nd degrees
of freedom (assuming ni D n for all i D 1; : : : ; d ).
Standard approaches like Galerkin approaches are thus
quickly ruled out for all but very small problems
because the size of a discretized tensor space grows ex-
ponentially in d . The data-sparse representation resp.
approximation of tensors of higher order d is therefore
a major challenge in contemporary numerical analysis.
In the case of fermionic Schrödinger equations (see the
entry � Schrödinger Equation for Chemistry), Galerkin
methods correspond to a full CI ansatz on the antisym-
metric space (cf. also the entry on � Post-Hartree-Fock
Methods and Excited States Modeling), and although
complexity is somewhat reduced due to the antisym-
metry constraint and other symmetries, this does not
much convey the tractability of the Schrödinger equa-
tion by such methods. A common feature of tensor
product approximation techniques is the approximation
of high-dimensional objects by separation of variables,
i.e., by decomposition into, say, quantities, each only
depending on single variables xi (single-variate func-
tions) and related among each other by summations
over auxiliary indices. These single-variate component
functions are then treated numerically, and such tensor
product approximations sometimes offer a flexible tool
for a data-sparse approximation of high-dimensional
data functions.

http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_237
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Low-Rank Approximation of
High-Dimensional Problems

We will consider two types of example problems,
namely, time-dependent Schrödinger-type differential
equations, ˛ d

dt
U.t/ D HU.t/ with U.0/ D U0 2 V

and ˛ 2 f�1; ig, and optimization problems with a
given functional J W V ! R. Note that the latter
also covers the ground-state problem HU D EU

for the stationary Schrödinger equation and also linear
equations HU D B by minimizing for symmetric
H W V ! V 0 the functionals

J1.U / D 1

2
hHU;U i � hB;U i;

J2.U / D hHU;U i
hU;U i : (2)

For an approximate treatment of these problems, we
constrain them to some embedded manifold M � V
of lower dimension; later, M will correspond to a
fixed set of low-rank tensors within a chosen tensor
format. Approximation on M can then be performed
by the Dirac-Frenkel variational principle (see [15]).
Denoting for U 2 M the tangent space of M at U by
TU , we impose for time-dependent problems that for an
approximation U.t/, the derivative d

dt
U.t/ lies in TU.t/

for all t > 0 and is subject to the flow equation

˛

�
d

dt
U.t/; V

�
D hHU.t/; V i 8V 2 TU.t/;

t > 0; U.0/ D U0I (3)

the solution then maps t 7! U.t/ 2 M. For optimiza-
tion problems, the stationarity condition on TU reads

hJ 0.U /; V i D 0 8V 2 TU : (4)

An approximation manifold M chosen and a
parametrization of its tangent space TU at hand, these
equations can be treated numerically. Unfortunately,
desirable properties of the original problem (e.g.,
convexity, well-posedness) are often lost, so that in
theory and practice, new challenges in the treatment of
these problems arise.

Some Different Formats for Tensor
Representation

The choice of the approximation manifold M, i.e., of
the tensor format used, is crucial for utility of the above
ansatz. We give an overview on the most important
concepts, see also [7, 12] for more information.

Canonical format. The canonical decomposition of
a tensor U of order d (also termed CANDECOMP
or PARAFAC) uses a representation by r elementary
products of single valued functions,

x 7! U.x/ D
rX

kD1

dO

iD1
Ui;k.xi /:

To give an example, we use the space V D ˝N
iD1Pn

of multivariate polynomials introduced above: The
function U.x/ D x1 C : : : C xd 2 V can be read as
an exact canonical representation of U of rank r D d ,

U.x/ D x1 � 1 � : : : � 1 C 1 � x2 � 1 � : : : � 1
C : : : C 1 � : : : � 1 � xd :

For the canonical format, the canonical rank r of U is
the decisive quantity in terms of the complexity. Linear
dependence on the parameters d; n; r and its simple
structure make the canonical format indeed quite a
popular choice for the treatment of high-dimensional
problems [2]. On the other hand, one is at times
faced with severe instabilities and slow convergence in
practice; also, the set of rank-r-tensors lacks desirable
theoretical properties like existence of best approxima-
tions; moreover, it is not an embedded manifold, ruling
out the tangent space approach from the last section,
and the rank r is often not small in practically relevant
cases.

Tucker and TT format. An alternative approach is
that of optimizing approximation subspaces Ui � Vi
in each coordinate direction xi as, e.g., in TT and
the Tucker decomposition. The Tucker decomposition
determines spaces Ui of dimension ri such that U is
written as

x 7! U.x/ D
r1X

k1D1
: : :

rdX

kdD1
ck1;:::;kd

dO

iD1
Ui;ki .xi /;

Ui D spanfUi;k W 1 � k � rig:
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The vector rT D .r1; : : : ; rd / is the Tucker rank
of U , the size-r tensor with the entries ck1;:::;kd is
called a core of U . In the Tucker format, our above
example U.x/ D x1 C : : : C xd 2 ˝N

iD1Pn can be
represented exactly, e.g., by letting Ui;1 D 1;Ui;2 Dp
3.xi�1=2/, an orthonormal (shifted Legrendre) basis

of Ui D spanf1; xig. From Ui;1;Ui;2, i D 1; : : : ; d , we
can build 2d tensor products ˝d

iD1Ui;ki , ki 2 f0; 1g
to obtain a tensor product basis of the space of
multivariate polynomials of degree at most 1 in each
variable. The entries of the core tensor ck1;:::;kd are then
defined by the 2d expansion coefficients in this basis.
This example shows that the storage complexity for
tensors in Tucker format still depends exponentially on
the space dimension d . In general, it is of O.rdCnrd/,
limiting the applicability of the Tucker format for
larger d .

As an alternative, a tensor U can be represented
by the so-called TT (“tensor train”) decomposition
[20]. U is therein represented in terms of d

component tensors U1; : : : ;Ud of order at most 3.
A function value of U at x D .x1; : : : ; xd / can be
computed by

U.x/ D
r1X

k1D1
: : :

rd�1X

kd�1D1
U1.x1; k1/U2.k1; x2; k2/ : : :

Ud�1.kd�2; xd�1; kd�1/Ud .kd�1; xd /: (5)

For each U 2 V , a minimal rank rT T D .r1; : : : ; rd�1/
is well defined and ri is equal to the rank of the
unfolding Uxi ;:::;xd

x1;:::;xi�1
, i.e., the matrix obtained from U

by taking x1; : : : ; xi�1 as row indices and the rest
as column indices. Again, the maximal rank r D
max ri mainly governs the complexity of the rep-
resentation. If the size of r is moderate, the stor-
age demands of O.r2nd/ make TT superior to the
Tucker format in this respect. To compute pointwise
entries of U a product of matrices has to be evaluated;
denoting

U.x/ D U1.x1/U2.x2/ � : : : � Ud .xd /;

� W U D .U1; : : : ;Ud / 7! U D �.U1; : : : ;Ud /

(6)

gives the matrix product state (MPS) formulation of
U in terms of components .U1; : : : ;U1/ popular in the

context of many-body quantum physics and already
interpreted in 1995 as the thermodynamic limit of the
density matrix renormalization group (DMRG) algo-
rithm by Östlund and Rommer, cf. [21]. An exact MPS
representation of our example tensor x1C: : :Cxd from
above is

U.x/ D x1 C : : :C xd

D �
x1 1

� � 1 0
x2 1

�
� : : : �

�
1 0

xd�1 1

��
1

xd

�
:

In contrast to the canonical format, Tucker and TT
format possess many desirable properties that have
been investigated recently. Respective manifolds M�r
of fixed rank at most r (componentwise) are weakly
closed, implying that minimizers of convex problems
J W V ! R exist on M�r (see [5]). Also, the TT and
Tucker manifold of fixed rank possess a stable local
parametrization of the manifold, perfectly removing
the intrinsic redundancies (see [10]). Due to its pro-
found mathematical background, the Tucker format is
also applied for problems in quantum chemistry in the
so-called multi-configurational self-consistent field ap-
proach (MC-SCF, see the entry on � Post-Hartree-Fock
Methods and Excited States Modeling) in electronic
structure calculation and the MCTDH(F) method in
quantum dynamics (see the entry �Quantum Time-De-
pendent Problems). For applications of the TT/MPS
format, compare the below sections on tensorization
techniques and on the DMRG algorithm.

HT format and tensor networks. The TT format is
a special case is a special case the hierarchical tensor
(HT) format introduced in [8], which generalizes the
Tucker idea of subspace approximation to a hierarchi-
cal splitting, described by a binary dimension partition
tree. HT inherits favorable properties of the Tucker
and TT format. In a more general framework, tensor
networks can be defined, Tucker, TT, and HT tensors
being special cases. Unfortunately, fixed-rank tensor
networks with non-treelike structure (i.e., containing
closed loops) are not weakly closed [13] and therefore
lack many theoretical properties like existence of best
approximations, etc. Remarkably, developments using
tensor trees and networks have recently been made
independently in the quantum physics community, e.g.,
[16, 18].

http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_257
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Component Equations for
High-Dimensional Problems

If the sought tensors solving (3) or (4) can be ap-
proximated sufficiently well by tensors of low rank,
tensors in the TT-, HT-, or Tucker format from the
last section, optimization tasks and time-dependent
equations may be treated by the ansatz detailed in
the previous section, applied to the format of choice.
One then obtains equations for the components of the
respective representation. We exemplify this for the
set M�r � V of tensors with maximal prescribed
TT-rank r D .r1; : : : ; rd�1/, see [10]; for the other
formats, similar concepts apply. As a first step, a
nonredundant representation of elements the tangent
space TUM�r , taken at a given rank-r-tensor U D
�.U1; : : : ;Ud / (see (6)) is required. To this end, we can
restrict without loss of generality to TT-representations
of U where the first d � 1 components Ui 2 Ci WD
K
ri�1 ˝ Vi ˝K

ri are left-orthonormal in the sense that
hUi .�; �; ki /;Ui .�; �; k0

i /i D ıki ;k0

i
(and where Ud 2 Cd

is arbitrary). Using the i -th embedding operator Ei D
EU
i W Ci ! V ,

EiVi .x/ W D U1.x1/ � � � Ui�1.xi�1/ �
�Vi .xi /UiC1.xiC1/ � � � Ud .xd /

elements ıU 2 TU are represented non-uniquely
as ıU D Pd

iD1 EiVi for some component vector
.V1; : : : ;Vd /. This representation for TU can be made
unique by imposing on the first d � 1 components
Vi a gauge condition, namely, that Vi 2 Xi WD
fWi 2 Ci jPiWi D 0g, where Pi is the left projector
corresponding to Ui ,

.PiWi /.ki�1; xi ; ki / D
riX

k0

iD1
Ui .ki�1; xi ; k0

i /

hUi .�; �; k0
i /;Wi .�; �; ki /i:

With this, the equations for optimization tasks and
time-dependent equations on M formulated above
now deliver stable equations for the components U D
.U1; : : : ;Ud /: Denoting by EH

i the Hermitian conju-
gate of Ei , (4) is equivalent to

.I � Pi /EH
i J 0.�.U// D 0 for i D 1; : : : ; d � 1;

EH
d J 0.�.U// D 0;

while the time-dependent equation (3) breaks down
analogously into d coupled nonlinear differential equa-
tions for U.t/ D .U1.t/; : : : ;Ud .t//. With Ei D E

U.t/
i

and the density matrices Di D EH
i Ei , these read

˛ PUd .t/ D EH
d H.�.U/.t//;

˛Di
PUi .t/ D .I � Pi.t//E

H
i H.�.U.t//

for i D 1; : : : ; d � 1, with initial U.0/ D U0 D
.U1;0; : : : ;Ud;0/, where Ui;0 is left-orthogonal for i D
1; : : : ; d � 1, and PU D . PU1; : : : ; PUd / fulfills the
constraint that PUi 2 Xi for i D 1; : : : ; d � 1. We re-
mark the analogy to the TDMCSCF and TDMCTH(F)
equations for the Tucker format (see, e.g., [1]).

Tensor Products OverK2: The Space
Nd

iD1 K
2

Tensorization techniques. In the concept of vector
tensorization [19], vectors x 2 K

n with N D 2d

are identified with tensors y 2 Nd
iD1K2 by writing

every index j 2 f0; : : : ; 2d � 1g as j D Pd�1
iD0 ci 2i ;

ci 2 f0; 1g and then defining y.c1; : : : ; cd / WD x.j /.
These tensors can then be treated by tensor decom-
position techniques. In simple examples (e.g., a sum
of exponential functions), these tensors are efficiently
represented by the canonical format, but the TT/MPS
format is usually more suitable: With n D 2, its
complexity is of O.r2d/, so that for moderate ranks,
this roughly speaking reduces the original complexity
of N D 2d to O.logN/.

Binary Fock ansatz for Schrödinger equation. For
application in quantum mechanics, we delineate how
a binary encoding of the discrete Fock space F
may be used for the computation of Schrödinger-
type equations with (anti-)symmetry constraints:
Fix a discrete orthonormal one-particle basis set
f'i W i D 1; : : : ; d g � H1.R3 � f˙ 1

2
g/, where

d is greater than the number N of electrons. Every
ordered selection �1; : : : ; �M of M � d indices gives
an M -particle Slater determinant SLŒ�1; : : : ; �M �
(see the entry on �Hartree–Fock Type Methods).
The ensemble of all such determinants with particle
number M forms an orthonormal basis of an
antisymmetric discreteM -particle tensor space VdM WD
spanfSLŒ�1; : : : ; �M � j 1 � �1 < : : : < �M � d g: We
now index each basis function SLŒ�1; : : : ; �M � by a

http://dx.doi.org/10.1007/978-3-540-70529-1_236
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binary string � D .�1; : : : ; �d / of length d , in which
we let �i D 1 if i 2 f�1; : : : ; �M g, �i D 0 else. With
e0 D .1; 0/T ; e1 D .0; 1/T ; the mapping defined by

� W SLŒ�1; : : : ; �M � 7! e�1 ˝ : : :˝ e�d

e�1 ˝ : : :˝ e�d 2 W WD
dO

iD1
R
2

is a unitary isomorphism between the Fock space
F D ˚d

MD0 VdM and the binary Fock space W .
The solution of the (discrete) stationary N -electron
Schrödinger equation H D E is an element of
the Fock space F , subject to the constraint that it is
constructed solely of N -particle Slater determinants,
i.e., it is an eigenvector of the number operator P DPd

pD1 a


pap . This can now be formulated in the binary

Fock space W , to which then tensor decomposition
techniques like the TT format in combination with
the ALS or MALS method apply without having to
deal with the antisymmetry constraint explicitly: The
Hamiltonian H W W ! W resp. number operator on
W , are given by H D � ıH ı ��, P D � ıP ı ��. Using

A WD
�
0 1

0 0

�
; AT D

�
0 0

1 0

�
;

S WD
��1 0
0 1

�
; I WD

�
1 0

0 1

�
;

and, indicating by A.p/ that A appears on the p-th
position in the product,

Ap WD I ˝ : : :˝ I ˝A.p/ ˝ S ˝ : : :˝ S;

we obtain in terms of binary annihilation and creation
operators that

H D
dX

p;qD1
hqpAT

pAq C
dX

p;q;r;sD1
gp;qr;s AT

r AT
s ApAq;

P D
dX

p;qD1
AT
pAq: (7)

With this, the discrete (full CI) Schrödinger equation
can be cast into the binary variational form of finding
U 2 W such that

UDargminV 2WfhHV; V i W hV; V iD1 ; PV D NV g:

Using a TT/MPS approach, one has access to the full
CI wave function in the given variational framework,
where the representation provides full insight into
separation of systems into two subsystems and their
entanglement via SVDs of the corresponding MPS.
This make this approach attractive for the computation
of strongly correlated systems, where coupled cluster
methods are failing. Let us finally remark that the
above formulation is basic for the modern formulation
of many-particle quantum mechanics in terms of sec-
ond quantization.

Numerical Techniques

Aside from the above, a variety of other techniques are
used in the treatment of tensors. We provide a short,
incomplete overview.

Computation of best approximations. An important
special case is the minimization of J1 from (2) with A
the identity. It has been shown recently by Lim [9]
that even the problem of computing a rank-one
approximation is NP hard. Nevertheless, the best-
approximation problem in a fixed-rank Tucker, TT or
HT format possesses a solution [7], and a quasi-best
approximate low-rank representation can be computed
by successive SVDs, where proceeding and the bounds
for approximation are similar in principle. While
for the TT/MPS format, this is long since known in
quantum physics [22], the algorithms were recently
proposed independently in numerical mathematics,
e.g., by Oseledets [20] for the TT and by Grasedyck [6]
for HT format.

Greedy algorithms for convex problems. So-called
proper generalized decompositions methods have
recently been introduced for the construction of tensor
approximations by a greedy approximation ansatz [5].
Interesting convergence results have been achieved
in [3].

Alternating linear scheme and modifications. Using
the TT/MPS format, variational problems as (4)
can be tackled by a simple alternating approach,
similar to the alternating least squares scheme
(ALS) for computation of best approximations:
In a mini-iteration step for component j , fix all
components except Uj , and compute the minimizer
QUj D minVi2Ci J .EiVi /. This procedure is performed
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sequentially with j D 1; : : : ; d�1, then repeated in the
opposite direction (see [11]). A variant of this, enabling
the adaptation of ranks during the iteration process, is
the modified ALS (MALS) algorithm (see also [11]),
which is well established in quantum physics under
the synonym of the DMRG algorithm, see below. The
j -th step here consists in contracting two neighboring
variables j; j C 1 into one and then optimizing
the component Wi;iC1.kj�1; xj ; xjC1; kjC1/ 2
R
ri�1�ni�niC1�riC1 while fixing the remaining

components U1; : : : ;Uj�1;UjC2; : : : ;Ud . In a
subsequent decimation step, one approximates
Wi;iC1 ' PQri

kiD1 Uj .kj�1; xj ; kj /Vj .kj ; xjC1; kjC1/
up to some tolerance �j , e.g., by means of SVD,
with a suitably chosen new rank Qri . One keeps
Uj and proceed in computing WiC1;iC2 next, then
again repeat the process by a “sweep” in opposite
direction.

Density matrix renormalization group (DMRG)
algorithm. Application of the ALS and MALS
algorithms to the binary Fock space ansatz from
above corresponds to the one-site and two-site
DMRG algorithms, the latter of which was originally
developed by S. R. White in 1992 for solving
eigenvalue problems (see [21]). By using multiple
target states, numerical instabilities related to
degeneracies of the energy spectrum can be overcome.
The method allows to treat not only local interactions,
but problems in momentum space representation (MS-
DMRG) or the numerical solution of the electronic
Schrödinger equation by QC-(quantum chemistry)-
DMRG. Further symmetries or quantum numbers
can be added as additional constraints in (7) without
any problems. The approximation depends crucially
on the choice of orbital basis functions and their
ordering [4, 14, 17]. In quantum physics, recent
developments of the method have also been achieved
by advances in matrix product state expansion
[21].

Cross-References

�Hartree–Fock Type Methods
� Post-Hartree-Fock Methods and Excited States Mod-

eling
�Quantum Time-Dependent Problems
� Schrödinger Equation for Chemistry
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21. Schollwöck, U.: The density-matrix renormalization group
in the age of matrix product states. Ann. Phys. (NY) 326, 96
(2011)

22. Vidal, G.: Efficient classical simulation of slightly en-
tagled quantum computation, Phy. Rev. Letters 14, 91
(2003)

Numerical Homogenization

Assyr Abdulle
Mathematics Section, École Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland

Synonyms

Multiscale methods for homogenization problems;
Representative volume element methods; Upscaling
methods

Definition

Numerical homogenization methods are techniques
for finding numerical solutions of partial differential
equations (PDEs) with rapidly oscillating coefficients
(multiple scales). In mathematical analysis, homoge-
nization can be defined as a theory for replacing a PDE
with rapidly oscillating coefficients by a PDE with
averaged coefficients (an effective PDE) that describes
the macroscopic behavior of the original equation.
Numerical techniques that are able to approximate the
solution of an effective PDE (often unknown in closed
form) and local fluctuation of the oscillatory solution
without resolving the full oscillatory equation by direct
discretization are coined “numerical homogenization
methods.” These methods are also called multiscale
methods as they typically combine numerical solvers
on different scales.

Overview

Homogenization
Consider a general family of PDEs L".u"/ D f with
oscillating coefficients depending on a small parameter
" > 0 with solution u" W ˝ �! R; where ˝ is an
open subset of R

d ; 1 � d � 3. The parameter "
emphasizes the multiscale nature of the above family of
PDEs and represents a typical microscopic length scale
of a heterogeneity in the system (multiple microscopic
length scales could be considered as well) (Fig. 1).
One can think of the solution as containing low O.1/
frequency components and high O.1="/ frequency
components. Solving numerically a given PDE of the
above family using classical numerical approximations
such as the finite element method (FEM), the finite
difference method (FDM), or the finite volume method
(FVM) would usually amount in a number of degrees
of freedom (DOF) (or unknowns of the discrete sys-
tem) proportional to O."�d /; which can be prohibitive
for small ". If the family of solutions converges (in
some appropriate sense) to a limit denoted u0 when
the size of the heterogeneity " ! 0 and if that limit
is the solution of an averaged (homogenized) equation
L0.u0/ D f , we then have an effective (upscaled,
averaged) model that can be treated with a classical
method at a cost independent of ". The rigorous study
of these questions is the core of the mathematical
homogenization theory [10, 22, 24].

Numerical Approaches
In most practical situations, the averaged equation
described in the previous section is not known in
explicit form. Furthermore, even if known, the data of
the averaged equation are usually not known explicitly
but rely for each x 2 ˝ on yet another PDE. Nu-
merical approaches for homogenization problems were
pioneered by Babuška [8] and have since then enjoyed
considerable developments. In what follows we explain
the main ideas of a few numerical homogenization
strategies that have been developed in the applied
mathematics community. There is also an abundant
related literature on multiscale computational methods
in the field of material sciences that share similar ideas
as the ones described below (unit cell methods, con-
tinuous/discontinuous computational homogenization
methods). The emphasis there is rather on applications
(bulk modeling, crack modeling, failure), and we refer
to recent reviews for references [17, 23].
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Numerical Homogenization, Fig. 1 Heterogeneous domain with periodic heterogeneities of size " ! 0

Among the computational methods that we will
describe, we will focus on techniques based on finite
element methods (FEMs), but the main ideas are also
applicable to other types of discretizations. We choose
for L".u"/ D f an elliptic multiscale problem that
reads in weak form: Find u" 2 V.˝/ such that

B.u"; v/ D
Z

˝

a"ru" � rvdx D .f; v/ 8v 2 V.˝/;
(1)

where .f; v/ D R
˝
f vdx and V.˝/ are a Sobolev

space that we choose to be H1
0 .˝/ (the space of

square-integrable functions that vanishes on @˝ with
square-integrable derivatives). Here a" is an oscillat-
ing tensor with fast O.1="/ and slow frequencies.
The homogenized problem corresponding to the above
equation reads: Find u0 2 V.˝/ such that

B0.u0; v/ D
Z

˝

a0ru0 � rvdx D .f; v/ 8v 2 V.˝/:
(2)

The solution u" can be expected to behave as u0 C "u1;
with ku1kL2.˝/ D O.1/ but kru1kL2.˝/ D O.1="/.
A standard finite element (FE) approximation of (1)
consists in a solution uh of (1) in a finite dimensional
space spanned by piecewise polynomials on a partition
Th of ˝ with mesh size h (see below). However, a
good approximation of u" by uh (the FE solution)
is usually obtained only if h � " in which case
the complexity (DOF) scales as O."�d /. Two main
classes of numerical homogenization methods have
been developed to address this issue:
1. Methods based on a reduced model generated from

the original fine-scale problem

2. Methods that sample the original fine-scale problem
on patches to recover effective data of a macro-
scopic model and use correctors to reconstruct the
fine-scale solution.

Notations
In what follows we will consider for simplicity ˝

to be both polygonal and convex, and we restrict
ourselves to simplicial FEs. We consider a family of
macroscopic (conformal, shape regular) triangulations
TH of ˝ D [K2THK; with elements K of diameter
HK and H D maxK2TH the size of the triangulation
(mesh size). For a macroscopic triangulation, H > "

is allowed. On a (polygonal) subset D of ˝ , we also
consider a microscopic triangulation D D [T2ThT ,
with elements T of diameter hT and a mesh size h
that satisfies h < ". We then consider the following
FE spaces:

VH.˝/ D fvH 2 V.˝/I vH jK 2 P1.K/; 8K 2 Thg;
(3)

Vh.D/ D fvh 2 V.D/I vhjT 2 P1.T /; 8T 2 Thg;
(4)

where P1.K/ is the space of piecewise linear polyno-
mials on K (resp. T ). For a cubic domain D D Y , we
also consider

Wh.D/ D fvh 2 W 1
per.D/I vhjT 2 P1.T /; 8T 2 Thg;

(5)
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whereW 1
per.D/ is a Sobolev space of periodic functions

(the closure of smooth periodic functions on D for
the H1 norm, where functions differing by a con-
stant are identified). We consider here piecewise linear
polynomials and conformal meshes for simplicity but
emphasize that the methods described below have
been generalized to higher-order piecewise polynomial
spaces and other types of FEs.

Supplementing Oscillatory Functions to a
Coarse FE Space

The idea to enrich a coarse FE space with oscillatory
functions goes back to Babuška and Osborn [9], where
the methodology is described for one-dimensional
problems. This idea has inspired generalizations to
higher dimensions in various directions. We describe
such a generalization in the context of numerical
homogenization.

Multiscale Finite Element Method (MsFEM)
The main idea is to supplement oscillating functions
to a coarse FE space. We consider the FE space (3).
For each vertex x�; � D 1; 2; : : : ; N of the mesh TH
that does not intersect the boundary @˝ , we denote by
'�;H the nodal basis function such that '�;H .x�/ D
ı��, where ı�� is the Kronecker delta. We thus have
VH.˝/ D spanf'�;H ; � D 1; 2; : : : ; N g. For each
macro element K , we also consider its d C 1 vertices
that we denote xK;j ; j D 1; : : : ; d C 1; and the
d C 1 basis functions '�;H that do not vanish inK will
be denoted by 'K;j;H . We next define the oscillatory
functions that will enrich the coarse finite FE space
VH.˝/. For that we consider the FE space (4) with
D D K and q D 1 and for each j D 1; : : : ; d C 1; the
following microscopic problem: Find �K;j;h such that
�K;j;h � 'K;j;H 2 Vh.K/ and

Z

K

a"r�K;j;h � rzhdx D 0 8zh 2 Vh.K/: (6)

The multiscale finite element space is defined as
VMsFEM WD spanf�K;j;hI j D 1; : : : ; d C 1; K 2 TH g;
and the multiscale method is defined by the following
problem [20]: Find uHh 2 VMsFEM such that

B.uHh; vHh/ D .f; vHh/ 8vHh 2 VMsFEM; (7)

where B.�; �/ is defined in (1). We observe that
VMsFEM � V.˝/ and the method is conforming. The
accuracy of the method has been studied in [7, 20] for
(locally) periodic coefficients, i.e., tensors a".x/ 2
R
d�d of the form a".x/ D a.x; x="/ D a.x; y/ that

are Y -periodic in y (here Y is a unit cube). Assuming
appropriate regularity on the solutions of (1), (2) and
on the tensor a", one can show

ku" � uHhkH1 � C1

�
H C

�
h

"

��
C C2

� "
H

	1=2
;

that is, linear convergence in the macroscopic and mi-
croscopic mesh sizes up to a so-called resonance error
."=H/1=2. This term originates from the mismatch of
the artificial boundary conditions imposed on the local
problems (6) and the possible mismatch between the
macroscopic mesh size H and the ideal sample size
(e.g., an integer number of the period in the periodic
case). One idea to decrease the resonance error is
oversampling that consists in solving (6) in a larger
domain KO  K but using only the micro functions
restricted to K to construct the basis of VMsFEM. In
doing so, it is shown in [15] that the influence of the
boundary layer in the larger domain KO on the basis
functions of VMsFEM is reduced and the resonance error
can be decreased to "=H C p

". We note that in this
reformulation, two basis functions constructed in two
adjacent macro elementsK;K 0 might not match on the
boundary K \ K 0, i.e., VMsFEM 6� V.˝/I hence, the
method is nonconforming.

Computational Work
Assuming that the cost of the linear algebra scales
linearly with the unknowns of the linear system, we
have a total cost proportional to the number of macro
elements times the DOF for the multiscale basis. In
view of the above error estimates setting the micro
mesh h

"
' H D 1

Nmac
(for optimal convergence rates),

we find costD O..Nmac/
d / � O�.H

h
/d
� D O..Nmac/

d �
"�d /. It should be noted that the computation of the
basis functions can be performed in parallel, and that
for problems with different source terms or for some
time-dependent problems, the basis functions can be
computed once. Furthermore, for problems with scale
separation, the macroscopic elements K could be re-
placed by a smaller region of the size of the local
period resulting in a reduced cost. We refer to [14] for
a comprehensive review of the MsFEM.
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MsFEM Using Harmonic Coordinates
In [7] MsFEM type methods using (localized) har-
monic coordinates have been proposed. On each el-
ement K one considers �K;h D f�K;1;h; : : : ; �K;d;hg;
where �K;j;h; j D 1; : : : ; d; are the d solutions of the
microscopic problem (6), and a function �h W ˝ ! R

d

such that �hjK D �K;h 8K 2 TH . We can then

define a multiscale finite element basis as QVMsFEM WD
spanf'�;H ı �hI � D 1; 2; : : : ; N g, where '�;H are the
standard piecewise polynomials on the macroscopic
mesh TH . This change of coordinates simplifies the
construction and analysis of higher-order MsFEM. We
also refer to [27] for related work on the approximation
of oscillatory problems with rough and high-contrast
coefficients.

Supplementing Upscaled Data for Coarse
FE Computation and Reconstruction

The general numerical strategy is to get an effective
model by performing local computations. These local
computations can in turn also be used to reconstruct
the fine-scale solution. As the effective data usually
depend on x 2 ˝ , one has in general an infinite
number of such local problems to solve (except for
the case of a periodic fine-scale tensor). For numerical
computation one needs thus to select sampling points
xi 2 ˝; i D 1; : : : ; p; where such local computations
have to be performed. A classical approach consists
in selecting sampling points xi 2 ˝; i D 1; : : : ; p;

and precomputing an approximation of the effective
tensor a0.xi / at these points. This approach does how-
ever not offer much control on the overall numerical
discretization (that depends on the accuracy of the
precomputed data) neither does it offer an efficient
strategy for nonperiodic, nonlinear, or time-dependent
problems. A local switch to a fine-scale approximation
is also difficult with this strategy. An efficient approach
is to supplement the effective data (relying on a micro
FEM) simultaneously to the coarse FE discretization
(relying on a macro FEM). A representative method
for this approach is described below.

Heterogeneous Multiscale Method
We start by motivating the computational strategy.
Consider u" the solution of the fine-scale problem (1)
and assume that it can be well approximated by u0C"u1

that we write u0C Qu1, where we suppose kQu1kL1.˝/ D
O."/; kr Qu1kL1.˝/ D O.1/. As before we consider
a coarse triangulation of the computational domain
˝ D [K2THK , and in addition, within each K we
consider a sampling domain Kı � K that consists of
a cube of size ı centered in a node xK 2 K , with ı
of size comparable to " (provided ı � "). Locally,
we would like our numerical approximation uh of u"
to satisfy uh D uH C Quh; where uH belongs to a
macro FE space VH.˝/ and Quh to a micro FE space
QVh.Kı/. If Quh is an approximation of Qu1, we should have
1

jKı j
R
Kı

Quhdx D O."/, where jKıj denotes the measure
(volume) ofKı, and we will assume for the time being
that functions in QVh.Kı/ have zero mean. We next
consider (1), where we approximate the right-hand side
f by a macroscopic function fH that is piecewise
constant on TH . If now uh is an approximation of the
fine-scale problem (1), we have uh � uH D Quh 2
QVh.Kı/ and

Z

Kı

a".x/ruh � rQzhdx D
Z

Kı

fH Qzhdx D 0

8Qzh 2 QVh.Kı/; (8)

where we have used that Qzh has zero mean over
Kı and fH is constant in K . Substituting now
Quh C uH for uh in the above equations yields Quh DPd
jD1 Q�K;j;h@uH=@xj ; where �K;j;h; j D 1; : : : d are

the solutions of the problem

Z

Kı

a".x/r�K;j;h � rQzhdx D
Z

Kı

a".x/ejrQzhdx

8Qzh 2 QVh.Kı/; (9)

where ej ; j D 1; : : : d are the vectors of the canonical
basis of R

d : Inserting now Qzh D uh � uH in (8),
recalling that uH is linear onK , reveals that

1

jKıj
Z

Kı

a".x/ruh � ruhdx

D 1

jKıj
Z

Kı

a".x/ruh � ruHdx (10)

D 1

jKıj
Z

Kı

a".x/.I C QK;h/dxruH � ruH

D 1

jKj
Z

K

a0KruH � ruHdx;
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where a0K D 1
jKı j

R
Kı

a".x/.I C Q‰K;h/dx; and
Q‰K;h is a d � d matrix given by Q‰K;h D
.r�K;1;h; : : : ;r�K;d;h/. The above relation suggests
to consider a macroscopic effective energy

J.vH / D 1

2

X

K2TH

Z

K

a0KrvH � rvHdx �
Z

˝

f vHdx

D 1

2

X

K2TH

jKj
jKıj

Z

Kı

a".x/rvh � rvhdx

�
Z

˝

f vHdx;

for a function vH 2 VH.˝/ and motivates the def-
inition of the variational form of the finite element
heterogeneous multiscale method (FE-HMM) [1, 30,
31]: Find uH 2 VH.˝/ such that

BH.uH; vH / D
X

K2TH

jKj
jKıj

Z

Kı

a".x/ruh � rvhdx

D
Z

˝

f vHdx 8vH 2 VH.˝/; (11)

where uh (respectively vh) is such that uh � uH 2
QVh.Kı/ (respectively vh�vH 2 QVh.Kı/) and a solution

of (8). We make the following observations:
• BH.uH ; vH / D P

K2TH jKja0KruH � rvH ; which
resembles a FEM with numerical quadrature for an
upscaled problem.

• The micro problem (8) is well posed for various
micro FE spaces QVh.Kı/ provided that the tensor
a" is uniformly elliptic and bounded. In particular
QVh.Kı/ D Wh.Kı/ or Vh.Kı/ are possible choices

(for this latter space one does not need to enforce
the zero mean property).

• Higher-order methods rely on higher-order quadra-
ture formula, e.g., BH.uH; vH / D P

K2TH
PJ

jD1
!K;j a

0
K;jruH.xK;j / � rvH .xK;j /; for appropriate

nodes xK;j and weights !K;j .
• Variational crimes are inherent to the method and

the Galerkin orthogonality for u0 � uH with respect
to B0.�; �/ does not hold.
Assuming appropriate regularity on the solution

of (2) and on the tensor a", one can show for locally
periodic coefficients [1, 2, 31] with QVh.Kı/ D Vh.Kı/

that

ku0 � uHkH1 � C1

 

H C
�
h

"

�2!

C C2
"

ı
;

where C1; C2 are independent of H;h; ". We observe
that the micro error is quadratic in the H1 norm
(this result holds also for nonsymmetric tensors a"

[4]). The macroscopic error relies on error estimates
for FEM with numerical quadrature. The term "

ı
is

a resonance error that originates from the mismatch
of the artificial boundary conditions imposed on Kı.
If ı=" 2 N and Vh.Kı/ D Wh.Kı/, then C2 D 0. This
error bound can also be improved using a modified
cell problem as studied recently in [18]. An approx-
imation of the fine-scale solution u" is obtained by
extending the function Quh for each Kı periodically in
K (we denote this extension by Quh;K ) and consider the
reconstruction

uHh.x/ D uH.x/C Quh;K.X/; x 2 K;8K 2 TH :

Other reconstructions are possible (see the methodol-
ogy developed in [26]). If we assume that QVh.Kı/ D
Wh.Kı/ and ı=" 2 N, then [1, 31]

0

@
X

K2TH
kru" � ruHhk2L2.K/

1

A

1=2

� C1

�
H C h

"

�
C C2

p
";

where C1; C2 are independent of H;h; ".

Computational Work
Assuming that the cost of the linear algebra scales
linearly with the unknowns of the linear system, we
have a total cost proportional to the number of macro
elements times the DOF for the micro functions in each
sampling domain. In view of the above error estimates,
setting the micro mesh h

"
' p

H which implies h D
"

N
1=2
mac

with H D 1
Nmac

, we obtain costD O..Nmac/
d / �

O
�
. ı
h
/d
� D O..Nmac/

3d=2/, for the approximation of
u0, and setting h

"
' H we obtain costD O..Nmac/

d / �
O
�
. ı
h
/d
� D O..Nmac/

2/, for the approximation of
the fine-scale solution u". As can be seen from the
above estimates, the complexity in this approach is
independent of ". This is a consequence of choosing
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a computational strategy based on localizing the fine-
scale computations. We refer to [3, 5, 29] for recent
reviews.

Other Approaches

There have been a number of other approaches that
have been developed for (or that can be applied to)
homogenization problems. We describe the main ideas
of a few representative algorithms.

Variational Multiscale and Residual-Free Bubble
Methods
First developed to address the issue of stabilizing FEM,
the Variational Multiscale Method (VMM) introduced
in [21] and the Residual-Free Bubble Method (RFB)
[13] have evolved into general frameworks for the
construction of effective numerical methods for the
approximation of the solution of a PDE with multiple
scales. In the VMM one starts to decompose the numer-
ical approximation uh of the PDE into uh D uH C Qu,
where uH represents coarse scales and Qu represents
fine scales. Likewise, a finite dimensional space Vh 2
V.˝/ large enough to resolve the fine-scale details is
decomposed into coarse VH and fine-scale part QV . One
then seeks a solution uh D uH C Qu 2 VH ˚ QV such that

B.uH C Qu; vH / D .f; vH / 8vH 2 VH ;
B.uH C Qu; Qv/ D .f; Qv/ 8Qv 2 QV : (12)

Writing the second equation as B.Qu; Qv/ D .f; Qv/ �
B.uH ; Qv/ D .f � L.uH/; Qv/, one can write formally
Qu D M.f � L.uH// (M is a bounded linear operator
on QV obtained by restricting f �L.uH/ to QV ) to obtain
a variational problem in VH

B.uH ; vH /CB .M.f � L.uH//; vH / D .f; vH /

8vH 2 VH :

For an actual numerical solution, the operatorM has to
be approximated and localized. In the RFB, one starts
with the coarse FE space VH and seeks to enlarge it
by adding localized FE enrichments that belong to the
so-called bubble space, i.e., one chooses QV D VB D
fv 2 V I vj@K D 0g. Considering (12) with QV replaced
by VB , we see that the fine-scale equation is now local-
ized. Although the VMM and the RFB have originally

not been introduced for homogenization problems, it
has been shown that they share similarities with the
MsFEM [28].

Sparse Tensor Product FEM
This computational approach is based on the two-scale
convergence theory and its generalization [6, 25]. The
two-scale convergence is a rigorous justification of the
ansatz made in the introduction, namely, that the solu-
tion u" behaves as u0C"u1 for periodic homogenization
problems with locally periodic tensors a". Consider
the function u1 as a mapping ˝ ! W 1

per.Y / that is
square integrable and denote the set of such functions
as L2.˝IW 1

per.Y //. Using test functions of the form
v C "v1 in the variational form (1) and “passing to the
limit,” one arrives at the following two-scale problem:
Find u0 2 V.˝/; u1 2 L2.˝IW 1

per.Y // such that

Z

˝

Z

Y

a.x; y/
�rxu0 C ryu1

� � �rxv C ryv1
�

dydx D .f; v/; (13)

for all test functions v 2 V.˝/ and v1 2
L2.˝IW 1

per.Y //: To turn this homogenization
technique into a numerical approach, the ideas are
now to:
• Define a tensor product FE space as a subspace

of V.˝/ � L2.˝IW 1
per.Y / to discretize the “aug-

mented variational problem”
• Construct a sparse tensor product FE space based

on hierarchical sequences of FE spaces in the com-
ponent domains

It is shown in [19] that the complexity of solving the
augmented system numerically (with an appropriate
sparse tensor product FEM) is comparable to the com-
plexity of a standard FEM for a single-scale problem
in ˝ .

Projection-Based Numerical Homogenization
Starting with a fine scale discretization of the (1), the
idea is to project this discretized problem into a lower
dimensional space and successively eliminate the fine-
scale component [12, 16]. Consider

Lj uj D fj ;

a fine-scale discretization of a multiscale problem
L".u"/ D f in a finite-dimensional subspace
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Vj D Vj .˝/ of V.˝/. Here Vj is supposed to be
large enough to resolve the fine-scale details of the
original problem. One considers next a decomposition

Vj D Vj�1 ˚Wj�1;

where Vj�1;Wj�1 represent the coarse and fine-scale
components of functions in Vj . Next, one defines the
projection vpj D P.vj / for functions in Vj using the
projection operator P W Vj ! Vj�1 and defines vqj D
Q.vj / WD vj � P.vj /, for the operator Q W Vj !
Wj�1. A natural way to construct these projections is
by using a wavelet basis. It is then seen that upj ; the
coarse scale part of uj , satisfies the equation

NLj upj D Nfj

where NLj D PLjP � PLjQ.QLjQ/
�1QLjP; and

Nf D Pfj � PLjQ.QLjQ/
�1Qfj . The coarse grid

operator NLj can be seen to be the Schur complement
of the operator GjLjG�

j ; where Gj D .Pj Qj / and
G�
j are its adjoint. This procedure can then be iterated

to eliminate successively the fine-scale components.
An issue with this approach is that the NLj might not
be sparse in general even if one starts with a sparse

operator LjC1. However, for classes of problems for
which the element of NLj have a fast decay away from
the main diagonal, NLj can be well approximated by a
sparse matrix [11].

Numerical Illustration

As mentioned earlier, most of the numerical methods
described in this article can be generalized to time-
dependent problems. To illustrate numerical homoge-
nization techniques, we consider a parabolic homoge-
nization problem studied in [4]

L"u" D @tu" � r � .a"ru"/ D f in ˝ � .0; T /;

with initial and boundary conditions as described be-
low. The numerical homogenization algorithm is cho-
sen to be the FE-HMM. For the multiscale tensor a",
we choose a log-normal stochastic field with mean zero
and variance � D 0:01. Here " plays the role of the
correlation lengths of the log-normal field given by
"x1 D 0:01 and "x2 D 0:02. Other data are given
by f .x; t/ D 1 and u".x; 0/ D 7.0:5 � x1/.0:5 C
x1/.1 C x2/ in ˝: The computational domain ˝
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Numerical Homogenization, Fig. 2 Fine-scale computation (left figure), a realization of the stochastic tensor (middle figure) and
FE-HMM (right figure)
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consists of a half disk partitioned with a coarse mesh
using 576 (macro) triangles and a rectangle meshed
using 784 (macro) quadrilaterals, which leads to about
Mmacro 	 1;100 DOF, when using piecewise linear
and piecewise bilinear polynomials, respectively. We
consider mixed boundary conditions, with Dirichlet
conditions on the three edges of the rectangular, and
Neumann conditions on the boundary of the half disk.
We perform two numerical experiments: First we use
the FE-HMM on a coarse mesh, and second we use a
standard FEM using a mesh resolving the correlation
lengths leading to around 106 DOF. As the tensor
a" is not periodic, we choose sampling domains Kı

with a size a few times larger than the correlation
lengths in each spatial dimension. In Fig. 2 we illustrate
the capability of the FE-HMM method to capture the
correct macroscopic behavior on a coarse macroscopic
mesh.
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Synonyms

Numerical method of steepest descent

Short Definition

Numerical steepest descent is a method for the numer-
ical evaluation of a class of highly oscillatory inte-
grals, in which the oscillations result from a complex
exponential. The method is based on deforming the
path of integration from the real line onto a union of
paths in the complex plane, such that the integrand does
not oscillate, but decays exponentially quickly along
each path. The resulting path integrals are subsequently
evaluated using carefully designed Gaussian quadra-
ture. The accuracy of the method improves rapidly
with increasing frequency of the oscillations of the
original integral. The convergence rate is twice that
of asymptotic expansions with comparable cost, while
the typical divergence of asymptotic expansions is
avoided.

Description

Model Form
Consider an oscillatory integral of the form

I Œf � D
Z b

a

f .x/ei!g.x/dx; (1)

where f and g are smooth functions of x on a bounded
interval Œa; b�. Classical quadrature schemes for such
integrals typically fail when the frequency parameter
! is large, unless a very large number of quadrature
points is used (for an overview of classical methods,
see [2]). In contrast, modern methods that are tailored
for highly oscillatory integrals require only very little
computational effort, regardless of how large ! may
be. The key intuitive idea underlying these methods
is that the oscillations of the integrand rapidly cancel
against each other, except in a few regions of Œa; b�.
These include the endpoints a and b, since there is
nothing to cancel against; regions where g is flat or
nearly flat, since there are no or fewer oscillations
there; and in general any singularities of f and g. Flat-
ness of g occurs near so-called stationary points: they
are points � where the derivative vanishes, g0.�/ D 0.

Overview of the Method
Assuming f and g are analytic functions in the neigh-
borhood of Œa; b�, the path of integration may be
deformed into the complex plane without changing the
value of the integral. Starting at the point a, one may
follow a path such that the integrand is not oscillatory
and exponentially decaying. This is precisely the so-
called path of steepest descent. It amounts in our
setting to solving the equation

g.ha.p// D g.a/C ip; (2)

where ha.p/ parameterizes a path �a in the complex
plane. This results in the line integral

Z

�a

f .z/ei!g.z/dz D ei!g.a/
Z P

0

f .ha.p//e
�!ph0

a.p/dp;

(3)

where P > 0 is a positive constant that limits how far
into the complex plane the path extends. A similar path
can be found originating in the other endpoint b. At a
stationary point �, where g0.�/ D 0, it is advantageous
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−1 0 1

Numerical Steepest Descent, Fig. 1 Example of a set of
steepest descent paths for an oscillatory integral of the formR 1

�1 f .x/e
i!x2 dx. There are two semi-infinite paths originating

in the points �1 and 1. The corresponding integrals are amenable
to Gauss-Laguerre quadrature. There is one doubly infinite
path passing through the stationary point at x D 0, a point
where the derivative of the oscillator g.x/ D x2 vanishes. The
corresponding integral is amenable to Gauss-Hermite quadrature

to parameterize the path in a slightly different form.
One solves instead the equation

g.h�.q// D g.�/C iq2: (4)

This results in a line integral of the form

Z

��

f .z/ei!g.z/dz D ei!g.�/
Z Q2

�Q1

f .h�.q//e
�!q2h0

� .q/dq;

(5)
with Q1 and Q2 positive constants. The integral I Œf �
can in general be written as a concatenation of the line
integrals above, up to an error that is exponentially
small in !. An example configuration is shown in
Fig. 1 for an oscillatory integral on Œ�1; 1� with the
oscillator g.x/ D x2. In this example, the paths are
easily found analytically. In a numerical method, one
has to find the paths numerically and evaluate the
line integrals numerically. We detail these steps as
described initially in [8].

First Step: Computing the Path
The defining equation (2) for the path is in general non-
linear. However, it should typically only be solved for

small p. An initial guess based on a linear or quadratic
truncated Taylor series of g at a can be quickly refined
with a few Newton-Raphson iterations. Alternatively,
a simple and explicit series approximation of the path
can be found such that the advantageous properties of
the overall scheme for large ! are maintained [1].

Second Step: Numerical Evaluation of
the Path Integrals
The form of the integral (3) suggests the use of Gauss-
Laguerre quadrature, after the change of variables
!p D s such that e�!p D e�s . Laguerre polynomials
are orthogonal with respect to the weight function e�s
on Œ0;1/ [6]. Similarly, integral (5) can be evalu-
ated by Gauss-Hermite quadrature, after the change of
variables !1=2q D t such that e�!q2 D e�t 2 . The
application of these quadrature rules is justified for
sufficiently large !, in spite of the finite integration
range. Other kinds of quadrature rules are appropriate
for degenerate cases, where higher-order derivatives of
g also vanish at the stationary point [3].

Convergence Analysis
The main advantage of the numerical steepest descent
method is seen for large values of !. When using n
points of a Gauss-Laguerre rules for evaluating the
endpoint integrals, the error behaves as a large negative
power of the large parameter !, namely, !�2n�1. This
compares favorably to truncated asymptotic expan-
sions using n terms, which at comparable computa-
tional cost leads to an error proportional to !�n�1. The
doubling of the exponent is due to the use of Gaussian
quadrature, which is accurate for 2n polynomials using
n quadrature points.

At a stationary point � with a few vanishing deriva-
tives, satisfying g0.�/ D g00.�/ D : : : D g.r�1/.�/ D
0 ¤ g.r/.�/, the error of suitable Gaussian quadrature
rules behaves like !�.2nC1/=r [3]. This compares to
!�.nC1/=r for truncated asymptotic expansions and the
doubling effect of using Gaussian quadrature remains.

The convergence behavior for fixed values of ! and
for increasing values of n has not been investigated in
detail in literature, but it is known that Gauss-Laguerre
quadrature converges for increasing n if the integrand
is sufficiently analytic.

Origins of the Method
The classical method of steepest descent goes back to
Cauchy and Riemann and was popularized by Debye
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more than a century ago [4] (see also [10] for a more
recent account). The use of Gauss-Laguerre quadrature
for numerically evaluating steepest descent integrals
has been advocated several times in literature, mostly
in the setting of a particular application, with the earli-
est appearance of the !�2n�1 factor in a 1957 paper by
Franklin and Friedman [5]. A systematic study of the
numerical scheme, as well as a numerical treatment of
stationary points, was absent prior to [8].

Limitations and Extensions

The numerical steepest descent method was described
initially in [8] for the model form (1), but significant
generalizations were developed later on. The first is an
extension to higher dimensions,

I Œf � D
Z

V

f .x/ei!g.x/dV; (6)

where V � R
d is a d -dimensional domain [9].

Another generalization is

I Œf � D
Z b

a

f .x/h.!x/dx; (7)

where h is a more general oscillatory function. Exam-
ples include the other trigonometric functions h.x/ D
cos x, sin x, the Airy function Ai.x/, and Bessel func-
tions of the first kind J�.x/. In those cases, the accu-
racy of applying the associated Gaussian quadrature
rule again rapidly improves with increasing values
of !.

Finally, the stringent analyticity requirements of
f and g can be significantly relaxed by augmenting
the set of quadrature points in the complex plane
with additional quadrature points on the interval Œa; b�.
Numerical convergence can be achieved by a judicious
choice of these additional points [7].

Cross-References

� Filon Quadrature
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conservative nature of the problem makes numerical
approximation issues of control problems to be partic-
ularly complex because of the pathological behavior of
the high-frequency numerical components.

Introduction

Control theory is now an old subject. It emerged with
the Industrial Revolution and has been continuously
evolving since. New technological and industrial pro-
cesses and mechanisms need new control strategies,
and this leads to new Mathematics of Control as well.
At present control theory is certainly one of the most
interdisciplinary areas of research, and it arises vigor-
ously in most modern applications.

Since its origins (see [3, 12]) the field has evolved
tremendously, and different tools have been devel-
oped to face the main challenges that require to deal
with a variety of models: Ordinary Differential Equa-
tions/Partial Differential Equations, Linear/Nonlinear,
Deterministic/Stochastic, etc.

Practical control problems can be formulated in
many different ways, requiring different kinds of an-
swers, related to the different notions of control; the
various possible modeling paradigms; and the degree
of precision of the result one is looking for optimal
control, controllability, stabilizability, open-loop ver-
sus feedback or close-loop controls, etc. Last but no
least, the practical feasibility and implementability of
the control mechanisms that theory produces needs to
be taken into account.

In this multifold task the mathematical theory of
control that has been developed is nowadays a rich
combination of, among other fields, Fourier, Func-
tional, Complex and Stochastic Analysis, ODE and
PDE theory and Geometry (see [8, 25]).

Needless to say, in practice, controls need to be
computed and implemented through numerical algo-
rithms and simulations. Numerical analysis is then nec-
essary to design convergent algorithms allowing for an
efficient approximation and computation of controls.
Again, the existing theory on numerical methods for
control is wide and the employed techniques diverse,
adapted to the different problems and contexts men-
tioned above.

In this article we present a partial panorama of the
state of the art in what concerns numerical methods

for solving control problems for partial differential
equations. This article cannot be exhaustive. We have
chosen to focus on a specific topic that we consider
to play a central role in the theory. We also take the
opportunity to point towards some other related issues
of current and future research.

Problem Formulation

Optimal controls for PDEs can be often characterized
as the solutions of an optimality system coupling the
state to be controlled and the adjoint state. One can
then numerically approximate these systems to get a
numerical approximation of the control. This leads
to the so-called continuous approach in which one
first develops the control theory at the level of the
continuous models (PDEs) and then uses numerical
analysis for approximating the control. The discrete
approach consists roughly on proceeding all the way
around: We first discretize the PDEs and then use
finite-dimensional control theory to compute the con-
trols of the discretized model. In the last few years, it
has been clearly understood that the two approaches
do not necessarily lead to the same results and, in
particular, that the convergence of the procedures is
not ensured by the fact of having used a conver-
gent numerical approximation for the underlying PDE
dynamics and the control requirement. In fact, each
of the approaches has its advantages and drawbacks.
In particular, as analyzed in [10, 11] in detail:
• The continuous approach may diverge if one mim-

ics at the discrete level in a straightforward manner
iterative algorithms that, at the continuous one, lead
to the right optimal control characterized by the
optimality system.

• The discrete approach may diverge since the con-
trols for the discrete dynamics do not necessarily
converge to those of the continuous dynamics as the
mesh-size parameter tends to zero.

In both cases the reason for these divergence phenom-
ena is the same: the presence of high-frequency numer-
ical oscillations that do not reproduce the propagation
properties of continuous wave equations and that even-
tually leads to the failure of convergence of the controls
of the discrete dynamics to those of the continuous
one. This makes the discrete approach fail. But, for the
same reason, the continuous approach may fail as well.
Indeed, when implementing at the discrete level the
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iterative methods developed to compute the control of
the continuous one, one is eventually led to the control
of the discrete dynamics which, as mentioned above,
does not necessarily converge to the continuous one.
The same occurs to other methods, based on different
iterative algorithms for building continuous controls,
as for instance, the one developed in [7] which im-
plements D. Russell’s method of “stabilization implies
control” (see [22]).

Similarly the cure is also the same in both cases:
filtering the high frequencies so to concentrate the
energy of numerical solutions in the low-frequency
components that behave truly as continuous waves. The
need of this high frequency filters was already pointed
out by R. Glowinski, J. L. Lions, and collaborators
(see, for example, [13]).

The simplest and most paradigmatic example of
those pathologies is the wave equation. Indeed, the
control of the discrete dynamics generated by conver-
gent numerical schemes of a 1 �D wave equation can
dramatically diverge as the mesh size tends to zero even
in situations where the wave equation itself is easily
controllable (see [24]). This is due to the pathological
behavior of the high-frequency numerical solutions. In-
deed, while solutions of the continuous wave equation
propagate with velocity equal to one, solutions of most
numerical schemes can propagate with an asymptoti-
cally (as the mesh-size parameter tends to zero) small
group velocity [23]. Furthermore, for the continuous
wave equation, the fact that all waves propagate with
the same velocity reaching the control region (for in-
stance, the boundary of the domain) in a uniform time
is the reason why controllability holds. Similarly, the
very slow propagation of the very high-frequency nu-
merical wave packets is the reason why the controls of
the numerical scheme may diverge, even with an expo-
nential rate, as the mesh-size parameters tend to zero.

The link between velocity of propagation of solu-
tions of wavelike equations and the boundary control
properties of these processes is rigorously established
through the so-called Geometric Control Condition
(GCC) [1] which ensures, roughly, that wavelike equa-
tions are controllable if and only if all rays of Geomet-
ric Optics enter the control region in an uniform time.

From a numerical analysis viewpoint, although the
existing theory is rather complete for constant co-
efficient wave equations in uniform numerical grids
in which the Fourier representation of solutions is
available, plenty is still to be done for dealing with

general variable coefficient wave equations discretized
in nonuniform grids. When the grid can be mapped
smoothly into a uniform one, the corresponding analy-
sis will need of microlocal and Wigner measures tools.

Related Issues and Perspectives

There are other topics arising in the intersection of the
theory of PDEs and numerical analysis and in which
similar issues appear. Important progress has been
done recently developing ideas that are closely related
to the ones discussed above and in which a careful
comparison of continuous versus discrete methods is
necessary. We mention here some of them with some
basic related bibliography. Neither the list of topics nor
that of the main related references is complete.
• Filtering: As mentioned above, the most natural

cure for the high-frequency numerical pathologies
is filtering. This can be done in various different
manners: by using some Fourier filtering mech-
anism [24], adding numerical artificial viscosity
terms [15], wavelet decompositions [19] or; the
most frequent one, easy to implement, a two-grid
algorithm originally introduced by R. Glowinski
(see [14] and references therein). This leads to
numerical algorithms for computing the controls
that actually converge but at the prize of relaxing
the control requirement. Indeed, when filtering the
numerical solutions, one ends up controlling not the
whole solution of the numerical scheme but rather a
low-frequency projection. A more systematic study
of the filtering mechanisms on nonuniform grids
and the related adaptivity techniques (depending
on the data to be controlled, according to the
time evolution of controlled solutions) is still to
be developed.

• Feedback stabilization of wave processes: Similar
issues arise in the context of the exponential stabi-
lization of wave equations by means of feedback
mechanisms. For the continuous wave equation, this
issue is well understood, and the exponential decay
is guaranteed provided the feedback is effective in
a subset of the domain satisfying the GCC. But,
as in the context of controllability, the decay rate
fails to be uniform when the PDE is replaced by a
numerical approximation scheme, and this is due,
again, to the high-frequency spurious solutions.
Extra artificial viscous damping is then required in
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order to ensure the uniform exponential decay of
solutions (see [9] and the references therein).

• Optimal design of flexible structures: The subject
of the optimal design of controllers and actuators
for systems governed by PDEs is also widely open.
Again, the issue of whether the discrete approach
suffices to compute accurate approximations of con-
tinuous optimal shapes and designs is a relevant and
widely open issue. But, in this context, theory is still
lacking of completeness. This is even the case at the
level of the continuous problem in which the exis-
tence and geometric properties of optimal shapes
and designs are often unknown. For the problem
of optimal placement of observers and actuators
for models of vibrations, we refer to [21] and the
references therein. We also refer to [4,6] where, in a
number of 1�d and 2�d time-independent model
examples, the convergence of the discrete optimal
shapes towards the continuous ones is proved.

• Optimal design in fluid mechanics in the presence of
shocks: The debate on whether one should develop
either continuous or discrete methods for solving
optimal control and design problems for PDEs has
been also very intense as is still ongoing in the
context of fluid mechanics, motivated by optimal
design in aerodynamics. This issue is particularly
important when solutions develop shock disconti-
nuities, as it happens for some of the most relevant
models consisting on scalar conservation laws or
hyperbolic systems. Because of the discontinuity of
solutions, classical linearizations are not justified
and an ad hoc linearization is required, taking care
of the Rankine-Hugoniot condition. This allows to
derive not only the sensitivity of the smooth com-
ponents of solutions but also of the shock location.
In this context a straightforward linearization of
the discrete models does not necessarily lead to the
correct sensitivity analysis of the continuous ones.
In view of this, the sensitivity of shocks has to be
carefully incorporated to the numerical methods
aiming to approximate the optimal controls and
shapes. We refer to [5] where a hybrid method
is proposed, alternating the continuous and the
discrete approaches in the implementation of
descent methods for an inverse design problem
associated with the inviscid Burgers equation.

• Inverse problems: Similar issues arise in the context
of inverse problems for wavelike problems and
the classical Calderón’s problem. In recent years a

number of works have been devoted to adapt the
techniques for an efficient numerical approximation
of the controls of the wave equation to inverse
problems. We refer for instance to [2] where this has
been done in the context of the problem of recover-
ing the potential of a 1� d wave equation from one
measurement by means of finite-difference schemes
adding a Tychonoff regularization term.

• The heat equation: There is also a wide literature
on the null control of heat equations, which consists
on driving the solutions to the zero rest by means
of a localized control. Null controllability turns out
to be equivalent to an observability inequality for
the adjoint heat equation, a fact that is by now well
known to hold in an arbitrarily small time and from
arbitrary open nonempty observation subsets. These
inequalities have been established using Fourier
series arguments in 1�d and Carleman inequalities
in the multi-d case.

Much less is known from the numerical analysis
point of view. Of course, in this context of the
heat equation, both the continuous and the discrete
approach can be implemented as well. In [18] a
numerical method is derived which combines the
efficient numerical algorithms for the control of the
wave equation that, in particular, uses the filtering
of the numerical high frequencies and the Kannai
transform that allows transmuting control properties
of the wave equation into the heat one [16]. In this
way one can derive a performant method for com-
puting numerical approximations of the controls,
avoiding the classical ill-posedness of the problem,
related to the strong time irreversibility of the heat
equation. Note however that the controls obtained
in this way are not those of minimal L2-norm.

Another important development in this context
is related to the Carleman inequalities for discrete
approximations of the spectrum of elliptic equations
and the heat equation. This allows proving a number
of results on the uniform control of numerical
approximation schemes for linear and semilinear
heat equations. Note however that the filtering of
high frequencies is needed because of the remainder
terms that the discrete Carleman inequalities exhibit
with respect to the continuous one. But this does
not arise because of technical reasons only. In fact,
as indicated in [25], in the multidimensional
case, the standard unique continuation properties
of the eigenfunctions of the Laplacian and the
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heat equation do not hold for finite-difference
approximations at high frequencies. Thus, the
filtering of high-frequency numerical components
is a must for multi-d problems.
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Synonyms

RKN methods; Runge-Kutta-Nyström methods

Definition

Nyström methods are numerical one-step integrators to
approximate the solution of initial value problems for
second-order differential systems
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y00 D f .t; y; y0/; y.t0/ D y0;

y0.t0/ D y0
0; y0; y

0
0 2 R

D: (1)

Given approximations yn and y0
n to the solution and

the derivative of the solution of (1) at time tn, new
approximations at the next time level tnC1 D tn C h

are obtained by computing

ynC1 D yn C hy0
n C h2

sX

iD1
Nbiki ; (2)

y0
nC1 D y0

n C h

sX

iD1
biki ; (3)

where

ki D f .tn C cih; yn C cihy
0
n C h2

sX

jD1
Naij kj ; y0

n

Ch
sX

jD1
aij kj /; 1 � i � s: (4)

The internal stages Yi , Y 0
i , 1 � i � s, can be

introduced as

Yi Dyn C cihy
0
n C h2

sX

jD1
Naij kj ; Y 0

i Dy0
n Ch

sX

jD1
aij kj;

with ki D f .tn C cih; Yi ; Y
0
i /, 1 � i � s, and

are approximations to y.tn C cih/ and y0.tn C cih/,
respectively.

The coefficients ci , bi , Nbi , aij , and Naij , 1 � i; j � s,
characterize the Nyström method and can be collected
in the Butcher tableau

c NA A
NbT bT

; (5)

where c D Œc1; : : : ; cs�
T , b D Œb1; : : : ; bs�

T , Nb D
Œ Nb1; : : : ; Nbs�T , A D .aij /

s
i;jD1, and NA D . Naij /si;jD1. If

the matrices A and NA are strictly lower triangular, then
(4) becomes

k1 D f .tn; yn; y
0
n/;

ki D f .tn C cih; yn C cihy
0
n C h2

i�1X

jD1
Naij kj ; y0

n

Ch
i�1X

jD1
aij kj /; 2 � i � s; (6)

and the method is explicit: when ki is being computed,
all data required in the right-hand side of (6) are
known. Nyström methods were introduced in [7].

NyströmMethods Derived from
Runge-Kutta Schemes

If the second-order differential system (1) is rewritten
as a first-order system

�
y

y0
�0

D
�

y0
f .t; y; y0/

�
;

�
y.t0/

y0.t0/

�
D
�
y0
y0
0

�
(7)

and a Runge-Kutta method with coefficients ci , bi , aij ,
1 � i; j � s, is applied to approximate the solution
of (7), a scheme of the form (2), (3) to (4) is obtained
where the coefficients Nbi and Naij are given in terms of
the coefficients of the Runge-Kutta method by

Nbi D
sX

jD1
bj aj i ; Naij D

sX

kD1
aikakj ; 1 � i; j � s:

(8)
In this way, each Runge-Kutta method induces a
Nyström scheme whose coefficients ci , bi , aij are
those of the underlying Runge-Kutta method, and the
coefficients Nbi and Naij are defined by (8).

In a similar way, if (7) is integrated by a partitioned
Runge-Kutta method ([6], Sect. II.15) with coefficients
Bi , Aij , 1 � i; j � s, for the first D equations and
coefficients ci , bi , aij , 1 � i; j � s, for the last
D equations, a Runge-Kutta-Nyström method is again
obtained whose coefficients Nbi and Naij satisfy

Nbi D
sX

jD1
Bj aj i ; Naij D

sX

kD1
Aikakj ; 1 � i; j � s:

(9)
E.J. Nyströn was the first who considered Nyström
methods (2), (3) and (4) whose coefficients Nbi and
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Naij are free parameters too and, therefore, are not
induced either by a Runge-Kutta integrator or by a
partitioned Runge-Kutta scheme. An example of a
Nyström method whose coefficients do not satisfy (8)
is given by

0
1

2

1

8

1

2
1

2

1

8
0 0

1

2

1 0 0
1

2
0 0 1

1

6

1

6

1

6
0
1

6

2

6

2

6

1

6

: (10)

Order of a NyströmMethod

Definition 1 A Nyström method (2), (3) and (4) has
order p if for every second-order problem (1) with
sufficiently smooth f ,

y.t0Ch/�y1 D O.hpC1/; y0.t0Ch/�y0
1 D O.hpC1/:

This means that the Taylor expansions of the exact
solution y.t0Ch/ and its derivative y0.t0Ch/ coincide
up to terms O.hp/ with the Taylor expansions of the
numerical approximationsy1 and y0

1 to the solution and
its derivative after one step of length h.

The Taylor expansions of the exact and numerical
solutions can be obtained in a systematic way by
using a graphical representation based on the so-called
rooted N-trees. A detailed description of rooted N-trees
and the required associated functions can be found in
([6], Sect. II.14). We only describe here the graphical
representation of rooted N-trees and the recipes to
write down the order conditions.

A rooted N-tree of order q is a graph with q vertices
(that can be either fat or meager) and a certain number
of edges connecting each vertex (son) to one and only
one vertex in the lower level (father), in such a way that
in the lowest level there is only one vertex that must be
fat (the root) and each meager node has at most one
son that must be fat. In Fig. 1, the rooted N-trees up to
order 3 are depicted.

Theorem 1 The Nyström method (2), (3) and (4) for
the numerical integration of (1) has order p if and only
if

sX

iD1
Nbi˚i .�/ D 1

�.�/ .1C �.�//
for rooted N-trees �

with �.�/ � p � 1; (11)
sX

iD1
bi˚i .�/ D 1

�.�/
for rooted N-trees �

with �.�/ � p; (12)

where �.�/ denotes the number of vertices of the rooted
N-tree � , ˚i.�/ is the so-called elementary weight
associated with the i -th stage of the method and the
rooted N-tree � and �.�/ is the density function of the
rooted N-tree � .

The recipe for writing down the elementary weight
˚i.�/ associated with a rooted N-tree � is as follows.
The index i is attached to the root and a summation
index is associated with each fat vertex different from
the root. A fat vertex, with index j , which has a fat son
with index k brings in a factor ajk ; a fat vertex, with
index j , which has a fat grandson with index k brings
in a factor Najk ; and a fat vertex, with index j , which
has sons m meager end-vertices brings in a factor cmj .
An end-vertex is a vertex with no sons.

NyströmMethods, Fig. 1
N-trees up to order 3
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NyströmMethods, Fig. 2
Example of a rooted N-tree

i

j k

l

m

τ

The density function �.�/ of a rooted N-tree � is the
same as the density function of the underlying rooted
tree (i.e., the rooted tree that results from ignoring
the distinction between fat and meager vertices). For
a rooted N-tree � of order q, its density function equals
q times the product of the densities of the rooted trees
that arise when the root is chopped off. The density
function of the tree with only one vertex is equal to 1.

For the rooted N-tree � in Fig. 2, the corresponding
density function is

�.�/ D 10 � .2 � 1/ � 1 � 1 � .5 � 4 � .1 � .2 � 1/// D 800;

and

˚i.�/ D
sX

jklmD1
Naij c2i Naikakl Nakm:

Therefore, the associated order condition (12) is

sX

ijklmD1
bi Naij c2i Naikakl Nakm D 1

800
:

The coefficients (5) defining a Nyström method may
be chosen so as to achieve the highest possible order.
In view of Theorem 1, this means that the coefficients
of the Nyström method must satisfy the order con-
ditions (11) and (12) for p as large as possible. The
Nyström method (10) has order 4.

NyströmMethods for y” = f(t, y)

In the special case where the right-hand side of the
second-order differential system (1) does not depend
on y0, the equations defining the Nyström method
become

ynC1 D yn C hy0
n C h2

sX

iD1
Nbiki ; (13)

y0
nC1 D y0

n C h

sX

iD1
biki ; (14)

where

ki D f .tn C cih; yn C cihy
0
n C h2

sX

jD1
Naij kj /;

1� i � s: (15)

The coefficients aij , 1 � i; j � s, are no longer
needed, and the coefficients defining the method can
be collected in the simplified Butcher tableau

c NA
NbT
bT
: (16)

As f does not depend on y0 and, consequently,
the derivatives of f with respect to y0 vanish, in the
systematic construction of the Taylor expansions of
both, the exact and the numerical solution, only those
rooted N-trees for which fat nodes only have meagre
sons, the so-called rooted SN-trees (special Nyström
trees), provide a nonvanishing term. In this special
case, Theorem 1 becomes:

Theorem 2 The Nyström method (13), (14) and (15)
for the numerical integration of y00 D f .t; y/ has
order p if and only if

sX

iD1
Nbi˚i .�/ D 1

�.�/ .1C �.�//
for rooted SN-trees �

with �.�/ � p � 1; (17)
sX

iD1
bi˚i .�/ D 1

�.�/
for rooted SN-trees �

with �.�/ � p: (18)

The number of order conditions that must be im-
posed on the coefficients of a Nyström method to in-
tegrate second-order differential systems of the special
form y00 D f .t; y/ is much smaller than the number
of order conditions required to deal with the general
case (1). For instance, to get a Nyström method of order
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4 for the integration of general second-order problems
(1), 36 order conditions must be satisfied, while only 11
order conditions must be imposed on the coefficients
of a fourth-order Nyström method for the integration
of special second-order systems. In [1], a generating
function that allows a recursive computation of the
number of rooted SN-trees up to a given order can be
found.

In practice, when constructing Nyström methods, it
is standard to impose certain simplifying assumptions
on the coefficients of the method, that substantially re-
duce the number of order conditions to be considered.
For instance, if

Nbi D bi .1 � ci / 1 � i � s; (19)

then (18) implies (17). This means that for an explicit
s-stage Nyström method satisfying (19), there are only
2s C s.s � 1/=2 free coefficients to be determined, but
only the order conditions (18) must be imposed.

Although they will not be considered here, it is
worth to mention that there exist additional standard
simplifying assumptions that further reduce the num-
ber of independent order conditions for Nyström meth-
ods. The use of these simplifying assumptions made
it possible to construct explicit Runge-Kutta-Nyström
methods up to order 8 in the late 1970s. See ([6],
Lemma 14.14) and references therein for further de-
tails.

Efficient Embedded Nyström Pairs for
y” = f(t, y)

It is well known that for an efficient implementa-
tion of numerical integrators for ordinary differential
equations, it is advisable to use variable steps as the
integration proceeds, in order to employ small step
sizes when the solution changes rapidly and large step
sizes when the solution is slowly varying.

An embedded explicit Nyström pair consists of two
Nyström methods of orders p and Op (with p > Op),
which share the same function evaluations

ki D f .tn C cihn; yn C cihny
0
n C h2n

sX

jD1
Naij kj /;

1� i� s:

In the local extrapolation mode, the numerical inte-
gration is advanced at each step by the p-th-order
method

ynC1 D yn C hny
0
n C h2n

sX

iD1
Nbiki ;

y0
nC1 D y0

n C hn

sX

iD1
biki ;

and the auxiliary Op-th-order approximation is only
used to construct an estimate of the local error

En D max .kynC1 � OynC1k1; ky0
nC1 � Oy0

nC1k1/;

which allows to adjust the step size to ensure that
the local error at each step is below a prescribed
tolerance. Notice that in practice, it is not necessary to
compute the Op-th-order approximation, since only the
differences

ynC1 � OynC1 D h2n

sX

iD1
. Nbi � ONbi /ki ;

y0
nC1 � Oy0

nC1 D hn

sX

iD1
.bi � Obi /ki

enter in the error estimate and can be computed as
linear combinations of the function values ki , 1 � i �
s, with appropriate coefficients.

In [3], the authors establish a number of criteria
for a “good” embedded pair, similar to those they
had proposed earlier for the construction of embedded
Runge-Kutta methods:
1. The local truncation errors of the higher-order for-

mula should be as small as possible.
2. The dominance of the leading terms of the estimates

of the local truncation errors should be ensured.
3. The two formulae should be sufficiently distinct.
4. All coefficients defining the method should not be

too large.
Following these criteria, they constructed several op-
timized embedded Nyström pairs of different orders
to be used with variable step sizes, that were shown
to be more efficient than the already existing RKN
formulae (see [3] and [4] for numerical comparisons).
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The first one, RKN4(3)4FM, is a four-stage, fourth-
order method endowed with a third-order embedded
scheme to estimate the local errors. The coefficients are

0
1

4

1

32
7

10

7

1000

119

500

1
1

14

8

27

25

189

Nbi 1

14

8

27

25

189
0

bi
1

14

32

81

250

567

5

54

ONbi �7
150

67

150

3

20

�1
20

Obi 13

21

�20
27

275

189

�1
3

: (20)

The second pair, RKN6(4)6FM, is a six-stage, sixth-
order method with an embedded fourth-order error
estimator.

In both cases, the higher-order method satisfies the
simplifying assumption (19) and the so-called FSAL
(first same as last) property, which means that Nbi D Nasi ,
1 � i � s, and, therefore, the last stage at one step
coincides with the first stage at the next step, and one
function evaluation per step can be saved. These two
embedded Nyström pairs are also endowed with dense
output formulae to compute numerical approximations
to the solution and its derivative at intermediate time
levels between tn and tnC1. See [5] to get the coeffi-
cients of the Runge-Kutta-Nyström triples.

In a later paper [4], the same authors also con-
structed a nine-stage, eighth-order FSAL method with
a sixth-order embedded formula to estimate local errors
and a seventeen-stage, twelfth-order method with an
embedded tenth-order error estimator.

Linear Stability

The linear stability of a Nyström method is often
investigated by means of the test equation (see, for
instance, [9])

y00 D �!2y; ! > 0; (21)

whose exact solution is oscillatory, y.t/ D
A cos .!t C ˛/, with A and ˛ depending on the initial
conditions. Application of a Nyström method with
coefficients (16) to the numerical integration of (21)
yields the recursion

ynC1DynChy0
n�h2!2 NbTYn; y0

nC1Dy0
n�h2!2bT Yn;

(22)
with the vector of internal stages Yn defined as

Yn D yne C hy0
nc � h2!2 NAYn;

where e denotes the vector in R
s with all components

equal to 1. Introducing z D �h2!2 and inserting Yn D
.I � z NA/�1.yne C hy0

nc/ into (22) leads to

vnC1 D M.z/vn; n � 0;

where vn D Œyn; hy
0
n�
T , n � 0, and the so-called

stability matrix M.z/ is defined by

M.z/WD
�
1C z NbT .I � z NA/�1e1C z NbT .I � z NA/�1c

zbT .I � z NA/�1e 1C zbT .I � z NA/�1c
�
:

The damping effect of M.z/ is characterized by
its spectral radius �.M.z// and, as M.z/ is a 2 � 2

matrix, the eigenvalues of M.z/ are the roots of the
characteristic equation

�2 � S.z/�C P.z/ D 0;

where S.z/, P.z/ denote the trace and the determinant
of M.z/, respectively.

The set of strong stability of a Nyström method is
the set

fz < 0 W �.M.z// < 1g :
If this is the whole half line .�1; 0/, then the Nyström
method is called A-stable. A-stable methods damp
error but lead to numerical solutions that spiral into
the origin, instead of following the periodic solutions
of (21).

The set of periodicity or set of zero dissipativity of a
Runge-Kutta-Nyström method is the set

˚
z < 0 W �.M.z// D 1; ŒS.z/�2 � 4P.z/ < 0

�
:

For z in this set, the eigenvalues of M.z/ are conju-
gate complex with unit modulus, and, therefore, the
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numerical solution is periodic as the exact solution is.
If the set of periodicity is the whole half line .�1; 0/,
then the Nyström method is called P-stable.

Another related concept is that of phase error or
dispersion error, which is given by the difference

h! � arccos

 
S.�h2!2/

2
p
P.�h2!2/

!

:

A Nyström method is said to be dispersive of order q
if the dispersion error is O.hqC1/. See [11] for further
details.

The construction of Runge-Kutta-Nyström methods
with good stability properties leads to deal with non-
explicit schemes which include, among others, diag-
onally implicit Nyström methods [9] and collocation-
based Nyström schemes [12].

Symplectic Runge-Kutta-Nyström
Methods

Newton’s equations for conservative mechanical sys-
tems

y00 D �M�1ryV .t; y/; (23)

where M is a positive-definite symmetric matrix (the
mass matrix) and V is the potential energy, fit into the
special format y00 D f .t; y/ considered above. After
introducing the variables q D y, p D My0, they can
be rewritten as a first-order Hamiltonian system

p0 D �rqV .t; q/; q0 D M�1p;

with Hamiltonian function H.p; q/ D 1
2
pTM�1p C

V.t; q/ (see the entry �Hamiltonian Systems in this
encyclopedia). For the sake of efficiency, it is advisable
to integrate Newton’s equations in their second-order
formulation, but exploiting at the same time the Hamil-
tonian structure of the underlying first order system.
Symplectic Runge-Kutta-Nyström methods combine
both desirable properties, and, furthermore, they can be
explicit. A precise definition and a detailed description
of the main properties of symplectic methods can
be found in the entry � Symplectic Methods in this
encyclopedia.

Theorem 3 ([10]) If the coefficients of a Runge-Kutta-
Nyström method with Butcher tableau (16) satisfy

Nbi D bi .1� ci / 1 � i � s; (24)

bi. Nbj � Naij / D bj . Nbi � Naj i /; 1 � i; j � s; (25)

then the method is symplectic when applied to second-
order Hamiltonian problems of the form (23).

Notice that (24) are nothing but the simplifying as-
sumptions (19), already used in the construction of
standard Nyström methods. Conditions (25) also act
as simplifying assumptions reducing the number of
independent order conditions that must be imposed on
the coefficients of a symplectic Nyström scheme (see
[1] for a detailed discussion). On the other hand, for
explicit and symplectic Runge-Kutta-Nyström meth-
ods with nonvanishing coefficients bi , 1 � i � s,
conditions (25) imply that

Naij D bj .ci � cj /; i > j;

and, therefore, only 2s free parameters bi , ci , 1 �
i � s, are left to satisfy the order conditions. These
methods are equivalent to splitting methods.

In [2], a five-stage, fourth-order symplectic
Nyström method with the FSAL property and
optimized according to the criteria used in the
construction of standard Nyström schemes was
constructed. Although the method is endowed with
a third-order error estimator, the numerical results
included in the paper show that the use of a standard
variable step size strategy deteriorates the efficiency
of the fixed step implementation. However, the
symplectic Nyström method with constant step sizes
may outperform available standard variable step size
codes as (20).
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One-StepMethods, Order, Convergence

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Université de Genève,
Genève, Switzerland

One-step methods constitute an important class of
integrators for the numerical treatment of differential
equations. In contrast to multistep methods they use
only one approximation of the solution for the com-
putation of a further approximation.

One-StepMethods

For sufficiently regular vector fields, the solution of a
differential equation Py D f .y/ is uniquely determined
by an initial value y.0/ D y0. This solution is often
written as y.t/ D 't .y0/, where the mapping 't is
called the exact flow of the differential equation.

A one-step method is a computable mapping˚h that
approximates the exact flow 'h. It is called the discrete
flow, and h is the step size. For an initial value problem
Py D f .y/, y.t0/ D y0, numerical approximations
yn � y.tn/ on a grid ftng, given by tnC1 D tn C hn,
are defined by the one-step relation:

ynC1 D ˚hn.yn/:

The method can be explicit, i.e., the vector ynC1 can
be computed by an explicit formula from yn and hn. If
ynC1 is defined for sufficiently small hn by an implicit

relation �.ynC1; yn; hn/ D 0, the method is called
implicit.

The historically first one-step method is Euler’s
method:

ynC1 D yn C hnf .yn/;

which corresponds to replacing locally the solution
by its tangent. For high-accuracy computations, the
Taylor polynomial is used in place of the tangent.
Higher derivatives are obtained by differentiating the
differential equation.

Another important class of one-step methods are
the Runge–Kutta methods. They can be explicit or im-
plicit. Explicit methods are well suited for the numeri-
cal solution of nonstiff differential equations, whereas
certain implicit methods can efficiently solve stiff prob-
lems. Other Runge–Kutta methods have the property
to preserve the symplectic structure of the flow of
Hamiltonian systems, which makes them suitable for
long-time integrations.

There are many one-step variants of Runge–Kutta
methods. Exponential integrators reproduce the exact
solution for linear constant coefficient problems and
are very efficient for stiff differential equations with
dominant linear part. Trigonometric integrators can be
applied with large step sizes to problems with highly
oscillatory solutions. Rosenbrock methods can be in-
terpreted as linearized implicit Runge–Kutta methods
and are still efficient for stiff differential equations.

Order and Accuracy

The quality of how well the numerical solution ap-
proximates the exact solution is measured by the order.

© Springer-Verlag Berlin Heidelberg 2015
B. Engquist (ed.), Encyclopedia of Applied and Computational Mathematics,
DOI 10.1007/978-3-540-70529-1
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A one-step method is said to be of order p if the local
error can be estimated for sufficiently small h as:

k˚h.y/ � 'h.y/k � ChpC1:

The constant C depends on y, on the vector field of
the differential equation, and on the coefficients of
the integrator, but it is independent of h. The order
of a one-step method can be checked by expanding
the exact and discrete flows into series of powers of
h and by comparing the coefficients of hk for k D
0; 1; : : : ; p.

For stiff differential equations or for problems with
highly oscillatory solutions, the constant C in the
above estimate is often very large because it typically
depends on the Lipschitz constant of the vector field.
In this situation one is interested in different estimates,
where p is reduced (order reduction), but the constant
C depends only on moderately sized quantities like
bounds on the exact solution and its derivatives.

Convergence

Consider an initial value problem Py D f .y/, y.t0/ D
y0 with a solution y.t/ that is defined on the compact
interval Œt0; t0 C T �. This interval is divided into subin-
tervals t0 < t1 < : : : < tN D t0 C T of length hn D
tnC1 � tn, and the one-step relation ynC1 D ˚hn.yn/

yields approximations on the whole interval.

Forward Error Analysis
The order of a one-step method provides information
on the accuracy of the numerical approximation after
one step. However, one is mainly interested in the
accuracy of the global error yn�y.tn/ after many steps.
As illustrated in Fig. 1, this can be done by studying the
propagation of the local errors and their accumulation
at the end point of integration. One typically gets an
estimate:

kyn � y.tn/k � C.T /hp; h D max
jD0;:::;n�1 hj :

Notice the loss of one power of h when compared to
the local error.

For nonstiff problems the propagation of local errors
is obtained from a Lipschitz estimate of the form
k˚h.y/�˚h.z/k � .1ChL/ky�zk, whereL is related

y0

t0 t1 t2 t3  .  .  . tN

exact solution

one-step method
yN

E1

E2

.

.

.
EN−1

EN = eN

e1

e2 eN−1

y(tN)

y1

y2

y3

One-Step Methods, Order, Convergence, Fig. 1 Lady Win-
dermere’s fan for a convergence analysis of one-step methods.
Local errors are denoted by ej , and their contribution to the
global error by Ej

to a Lipschitz constant of the vector field. In such
a situation the constant C.T / is proportional to eLT .
Although there are problems where such an estimate
is sharp, it is too pessimistic in many situations of
practical interest.

For stiff differential equations the Lipschitz constant
is very large. If the problem satisfies a one-sided
Lipschitz condition with a moderate constant and if the
numerical integrator has suitable contractivity proper-
ties, one still gets an estimate of the form k˚h.y/ �
˚h.z/k � .1C h�/ky � zk with moderate �, and Lady
Windermere’s fan can be applied to obtain convergence
results.

Backward Error Analysis
A different technique of proof can be applied to obtain
information about the numerical solution over very
long time intervals. The idea is to interpret the nu-
merical solution of a one-step method, applied with
constant step size h, as the exact solution of a modified
differential equation:

Py D f .y/C hf1.y/C h2f2.y/C h3f3.y/C : : : ;

written as a formal series in powers of h. Consequently,
properties of the exact flow of the truncated modified
equation can be turned into statements on the discrete
flow (numerical solution) of the one-step method.

A typical important situation is when the differential
equation is Hamiltonian, i.e., there exists a scalar
functionH.y/ such that:
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Py D J�1rH.y/; J D
�
0 I

�I 0

�
:

If a symplectic one-step method is applied, the mod-
ified differential equation is also Hamiltonian Py D
J�1rHh.y/ with:

Hh.y/ D H.y/ChH1.y/Ch2H2.y/Ch3H3.y/C : : :

Since Hh.y.t// D const along the exact solution of
the modified differential equation, one formally has
Hh.yn/ D const for the numerical solution. This per-
mits to prove that H.yn/ is nearly conserved without
any drift on exponentially long time intervals, i.e., on
intervals of length up to c e�=h.

Asymptotic Expansion of the Global
Error

If a one-step method ynC1 D ˚h.yn/ is applied
with constant step size to a differential equation Py D
f .y/, the global error admits an expansion of the
form:

yn � y.tn/ D hpep.tn/C hpC1epC1.tn/ (1)

C : : :C hN eN .tn/C O.hNC1/;

where p is the order of the method, N is an ar-
bitrary truncation index, and the smooth functions
ej .t/ are the solution of differential equations with
initial value ej .t0/ D 0. For small step sizes, where
the first term in the asymptotic expansion is domi-
nant, this formula gives the precise form of the global
error.

For symmetric methods, i.e., methods satisfying
˚�h.y/ D ˚�1

h .y/, the above expansion is in even
powers of h. This property can conveniently be ex-
ploited as the basis for extrapolation methods. On a
fixed interval Œt0; t0 C T �, one computes the numerical
solution with different step sizes h D T; h D T=2;

h D T=3; : : :. This permits to compute an accurate
approximation of the first values of ej .t0 C T /, which
in turn can be used to get a numerical approximation of
higher order.

Implementation

The constant step size implementation of explicit one-
step methods is straight-forward. For implicit methods,
where the numerical approximation is defined by a
relation of the form �.ynC1; yn; h/ D 0, one is forced
to use iterations for the computation of ynC1. For
nonstiff problems, this can be done by fixed-point iter-
ations. However, for stiff problems a simple fixed-point
iteration would lead to a severe step size restriction
making the integrator unattractive. In this situation, one
usually applies simplified Newton iterations for solving
the nonlinear equation.

Step Size Control
For nonstiff and stiff differential equations a constant
step size implementation is rarely efficient. On subin-
tervals with large variations of some solution compo-
nents small step sizes are required, whereas large time
steps should be taken when the solution varies only
slowly. The idea is to choose the step sizes in such
a way that the local errors are nearly equi-distributed
over the whole interval of integration.

When stepping from tn to tnC1 the local error satis-
fies:

errn D kynC1 � 'hn.yn/k � Cnh
pC1
n :

Ideally, this error should be close to a value tol that
is prescribed by the user of the code. If errn < tol,
the step size is too small and one could increase the
step size for reasons of efficiency. However, if errn >
tol, the step size is too large and has to be reduced.
The optimal step size is when errn � tol, and this is
achieved for:

hopt D hn

� tol

errn

�1=.pC1/
:

The standard step size strategy is as follows:
– Compute an approximation errn of the local error;

this is typically given as the difference of two
different approximations to the solution.

– If errn > tol, the step is rejected and a new
approximation ynC1 is computed using the smaller
step size hn D 0:9 � hopt.

– If errn � tol, the approximation ynC1 is accepted
and the following step is computed with step size
hnC1 D 0:9 � hopt.
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The factor 0:9 is included to avoid repeated step re-
jections. In practice one uses a weighted norm, where
different (absolute and relative) tolerances can be pre-
scribed for the components of the solution vector.

Notes

Comprehensive expositions of numerical integrators,
including one-step and multistep methods, are given in
the monographs [1,4]. A detailed analysis of the order,
convergence, and asymptotic expansions, as well as
comments on an efficient implementation can be found
in Hairer et al. [2] for nonstiff problems and in Hairer
and Wanner [3] for stiff differential equations.
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Optical Tomography: Applications

Simon R. Arridge
Department of Computer Science, Center for Medical
Image Computing, University College London,
London, UK

Introduction

Optical tomography uses light in the visible or near-
infrared spectral region to illuminate biological objects
and build three-dimensional reconstructions of the in-
terior. Because the energy of optical radiation is much
lower than existing high-resolution imaging devices
based on X-rays, the penetration of light is much lower,
and, more importantly, the effect of scattering is much

higher. Based on the mean free path of the photons,
the physics of light propagation can be considered on
different length scales which in turn gives rise to quite
different forward and inverse problems. In this entry,
we consider the recent development of methods for
modeling and reconstruction in the presence of signif-
icant scattering, which is described by either transport
or diffuse models. For more details, see [2, 4].

Measurements in Optical Tomography

Absorption of light in biological tissue is caused
by chromophores of variable concentration such
as hemoglobin in its oxygenated and deoxygenated
states. In the absence of scattering, the change in light
intensity obeys the Beer-Lambert law

� ln
Iin

Iout
D �a d D ˛cŒc�d (1)

where d is the source-detector separation, which is
equal to the optical path length, Œc� is the concentration
of chromophore c, and ˛c is the absorption coefficient
per unit length per unit concentration of chromophore
c and can usually be obtained in vitro.

In the presence of scattering, the optical path length
of transmitted photons follows a much more complex
relationship. Hence attenuation measurements based
on DC intensity alone do not allow quantification
of chromophore concentration. For this reason, mea-
surements need to be taken using either intensity-
modulated (“AC”) sources and detectors [12] or pulsed
sources and time-resolved detectors [9, 16]. From the
mathematical point of view, the AC measurements can
be regarded as the Fourier transform of a time-resolved
signal, sampled at one or more harmonic frequencies.
From the instrumentation point of view, however, the
two strategies are quite different. AC measurements
have to be taken as a modulation on top of a DC
background which limits the quantization possible for
the AC amplitude. Time-resolved measurements use
either a gated CCD camera, which allows for wide area
detection but has limited sampling across the time axis
of the measurements, or use a time-correlation single-
photon counting (TCSPC) device which measures ar-
rival times of individual photons by comparison with
a reference pulse using a time-to-amplitude converter
(TAC) device [14]. The latter systems have a high
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dynamic range and excellent temporal linearity but are
only applicable for small area detectors.

The attempt to physically discriminate between
photons that have undergone different numbers
of scattering events is inherently limited by the
statistical likelihood of the low scattering number
photons arriving at the detector. For the relatively
optically thick tissues that are of interest in breast
cancer screening or brain imaging, these photons
are overwhelmed by noise. For this reason, indirect
methods that solve an inverse problem based on
recovering the spatially varying optical parameters
that provide the best fit of a photon transport model
with the measured data are employed.

Modeling in Optical Tomography

Radiative Transport
In radiative transport theory, the propagation of light
through a material medium is formulated in terms of
a conservation law that accounts for gains and losses
of photons due to scattering and absorption [6,10]. The
fundamental quantity of interest is the specific intensity
�.r; Os/, defined as the intensity at the position r in the
direction Os. The specific intensity obeys the radiative
transport equation (RTE), which is written in the time
domain as

1
c

@�.r;Os/
@t

C Os � r�.r; Os/C .�s C �a/�.r; Os/
D �s

R
Sn�1 ‚.Os � Os0/�.r; Os0/dOs0 C q.r; Os/ (2)

and in frequency domain as

i!
c
�.r; Os/C Os � r�.r; Os/C .�s C �a/�.r; Os/

D �s
R
Sn�1 ‚.Os � Os0/�.r; Os0/dOs0 C q.r; Os/: (3)

Here �a and �s are the absorption and scattering
coefficients and ‚ is the phase function, c is the speed
of light in the medium, i is the imaginary unit, and
! is the angular modulation frequency of the input
signal. The specific intensity also satisfies the half-
range boundary condition

�.r; Os/ D J�.r; Os/; Os � O� < 0; r 2 @�; (4)

where O� is the outward unit normal to @� and J�
is the incident specific intensity at the boundary. The

above choice of boundary condition guarantees the
uniqueness of solutions to the RTE [6]. The phase
function ‚ is symmetric with respect to interchange
of its arguments and obeys the normalization condition

Z
‚.Os; Os0/dOs0 D 1; (5)

for all Os. We will often assume that ‚.Os; Os0/ depends
only upon the angle between Os and Os0, which holds
for scattering by spherically symmetric particles. Note
that the choice ‚ D 1=.4	/ corresponds to isotropic
scattering.

Diffusion Approximation
In the DA framework, the radiance is approximated by

�.r; Os/ � 1

jSn�1jˆ.r/C n

jSn�1j Os � J.r/ (6)

whereˆ.r/ and J.r/ are the photon density and photon
current which are defined as

ˆ.r/ D R
Sn�1 �.r; Os/dOs (7)

J.r/ D R
Sn�1 Os�.r; Os/dOs: (8)

By inserting the approximation (6) and similar approx-
imations written for the source term and phase function
into Eq. (3) and following the derivation in [2, 10], the
P1 approximation is obtained:

�
i!

c
C �a

�
ˆ.r/C r � J.r/ D q0.r/ (9)

�
i!

c
C �a C �0

s

�
J.r/C 1

n
rˆ.r/ D q1.r/ (10)

where �0
s D .1 � g1/�s is the reduced scattering co-

efficient, q0.r/ and q1.r/ are the isotropic and dipole
components of the source, and g1 is the mean of the
cosine of the scattering angle [2, 11]:

g1 D
Z
Sn�1

.Os � Os0/‚.Os � Os0/dOs: (11)

To derive the diffusion approximation, it is fur-
ther assumed that the light source is isotropic, thus
q1.r/ D 0, and that i!

c
J.r/ D 0. Utilizing these ap-

proximations, Eq. (10) gives Fick’s law:
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J.r/ D �Drˆ.r/ (12)

where
D D D.r/ D �

n.�a C �0
s/
��1

(13)

is the diffusion coefficient. Substituting Eq. (12) into
Eq. (9), the frequency-domain version of the DA is
obtained in the form

� r �Drˆ.r/C �aˆ.r/C i!

c
ˆ.r/ D q0.r/ (14)

and in the time domain in the form

� r �Drˆ.r/C �aˆ.r/C 1

c

@ˆ.r/
@t

D q0.r/: (15)

The diffusion equation is augmented with Robin
boundary conditions:

ˆ.r/C 2D

@ˆ.r/
@ O� D 0; r 2 @� (16)

where 
 D .1 C R/=.1 � R/, and R is a derived
refelection coefficient for the interface between media
of differing refractive index[1, 15].

Inverse Problems in Optical Tomography

Parameter Identification in Nonlinear Optical
Tomography
The most general optical tomography problem is posed
as the recovery of optical parameters such as ab-
sorption and scattering coefficients, refractive index,
and the directional scattering probabilities, as three-
dimensional functions inside a domain, given measure-
ments of photon counts on the boundary of the domain.

Specifically diffuse optical tomography is stated
as the recovery of the diffusion coefficient D and
absorption coefficient �a in Eq. (14) or Eq. (15) from
the Robin-to-Neumann map:

� W H�1=2.@˝/ ! H�1=2.@˝/ (17)

� represents the complete information of measurable
photon density on @˝ for any given input photon
current on the same boundary. Implicit in the use of
the diffusion approximation is the loss of direction
information of the photons, both in terms of the source
and the measurement. In the case of frequency domain

(AC), the measurements are complex, and in the case
of time domain, they belong to H�1=2.@˝/ � R

C. For
the special case where ! D 0, (DC), a nonuniqueness
result indicates that the simultaneous recovery of both
D and �a is not possible [3].

In optical tomography based on the radiative trans-
fer equation, the equivalent to the Robin-to-Neumann
map is the Albedo Operator

ƒ W L1.@˝ � Sn�1� . O�// ! L1.@˝ � Sn�1C . O�// ; (18)

which maps directional incoming radiation on @˝ to
directional outgoing radiation. As in the diffusion case,
the specific problems may be time dependent or fre-
quency domain. Taking into account the time domain
and the possible angular dependence of measurements
and sources leads to a much richer set of possible
measurement scenarios; see [5] for a summary of the
known results for uniqueness and stability for general
cases.

Reconstruction strategies for the parameter identi-
fication problem are often based on an optimization
approach, combined with regularization to overcome
ill-posedness [17,18]. This strategy involves a forward
model of the diffusion or radiative transfer equations
using a numerical method such as finite differences,
finite volume, finite elements, or boundary elements.
Alternatively, a scattering theory approach, based on
semi-analytic Green’s functions can be used. The latter
approach is usually for a linearized problem, but a
nonlinear method has also been developed [13]. The
rationalization between the two approaches can be
explained in terms of a Bayesian framework [19].

Fluorescence Optical Tomography
In fluorescence optical tomography (FOT), the de-
tected radiation is at a longer wavelength (i.e., lower
energy) than the radiation used as the source. The
mechanism of interest is the promotion of endogenous
or exogenous fluorophores to a stimulated state by the
lower wavelength excitation field, followed by Poisson
decay through the emission of fluorescent radiation.
The equivalent Robin-to-Neumann map or albedo op-
erator becomes�.e!f/.

The inverse problem is concerned with the recov-
ery of the density and lifetime of the fluorophores.
The latter requires time-domain or frequency-domain
measurements. In the frequency domain, we represent
the parameter of interest as
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�.r; !/ D �0.r/
1

1C i!.r/
(19)

where �0 is concentration and  is lifetime. In the case
where the background optical properties are known for
both the excitation and fluorescent wavelengths, the
inverse problem is linear.

When the optical parameters are considered
unknown, a more complex problem considers the re-

covery of parameters x D
n
�
.e/
a ;D

.e/; �
.f/
a ;D

.f/; �0; 
o

from measurements
˚
�.e/; �.f/; �.e!f/

�
, where �.e/

is the Robin-to-Neumann map at the excitation
wavelength, �.f/ is the Robin-to-Neumann map at the
fluorescence wavelength, and �.e!f/ is the Robin-to-
Neumann map for source at the excitation wavelength
and detectors at fluorescence wavelength. This is a
nonlinear inverse problem.

Multispectral Optical Tomography
Characterization of optical images, for example, in
distinguishing benign from malign tumors, can involve
spectral information. In principle data can be obtained
from a sequence of measurements at different spectral
samples:

˚
�.�1/; �.�2/ : : : ; �.�L/

�
. The idea in multi-

spectral OT (MSOT) is to reformulate the problem into
the recovery of a set of images of known chromophores
c, with well-characterized spectral dependence (see
[7, 8]):

�a.�j / D
X
i

�i .�j /ci ! �a.�/ D � c (20)

where � is a known matrix. Similarly a spectral depen-
dence of scattering can be written as

�0
s.�/ D a��b (21)

We note that the above model for the wavelength
dependence of �0

s corresponds to Rayleigh scattering
when b D 4. In general, subdominant power-law
corrections may be necessary to accurately represent
the scattering behavior of tissue.

Similarly to MSOT, multispectral fluorescence OT
(MSFOT) considers the fluorescence as a linear combi-

nation of fluorophores p emitting radiation in a known
spectral pattern:

h.�j / D
X
i

�i .�j /pi ! h.�/ D �.f/ p : (22)

In this case, a linear forward operator is considered that

maps p to the data given by f�.e!�
.f/
1 /; �.e!�

.f/
2 / : : : ;

�.e!�
.f/
P /g; see [20].

Finally, the most general (nonlinear) problem con-
siders the recovery of all chromophores and fluo-

rophores p; c, from the data f�.�
.e/
i !�

.f/
j /I i D 1 : : : Le;

j D 1 : : : Lf g, where the notation �.�
.e/
i !�

.f/
j / indi-

cates the Robin-to-Neumann map for source at the
excitation wavelength �i and detectors at fluorescence
wavelength �j .
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Optical Tomography: Theory
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Introduction

Optical tomography is a biomedical imaging modality
that uses scattered light as a probe of structural varia-
tions in the optical properties of tissue [1]. In a typical
experiment, a highly scattering medium is illuminated
by a narrow collimated beam, and the light that prop-
agates through the medium is collected by an array of
detectors.

The inverse problem of optical tomography is to
reconstruct the optical properties of a medium of in-
terest from boundary measurements. The mathematical
formulation of the corresponding forward problem is
dictated primarily by spatial scale, ranging from the
Maxwell equations at the microscale, to the radiative
transport equation at the mesoscale, and to diffusion

theory at the macroscale. Modeling and reconstruction
methods are reviewed in the chapter by Arridge. Here
we focus on direct reconstruction methods, emphasiz-
ing results obtained by the author and his collaborators.

Forward Problems

Radiative Transport
In radiative transport theory, the propagation of light
through a material medium is formulated in terms of
a conservation law that accounts for gains and losses
of photons due to scattering and absorption [2, 3]. The
fundamental quantity of interest is the specific intensity
I.r; Os/, defined as the intensity at the position r in the
direction Os. The specific intensity obeys the radiative
transport equation (RTE):

Os � rI C .�a.r/C �s.r//I

D �s.r/

Z
p.Os0; Os/I.r; Os0/d Os0; r 2 ˝; (1)

where �a and �s are the absorption and scattering
coefficients. The specific intensity also satisfies the
half-range boundary condition

I.r; Os/ D Iinc.r ; Os/; Os � O� < 0; r 2 @˝; (2)

where O� is the outward unit normal to @˝ and Iinc

is the incident specific intensity at the boundary. The
above choice of boundary condition guarantees the
uniqueness of solutions to the RTE [3]. The phase
function p is symmetric with respect to interchange of
its arguments and obeys the normalization condition

Z
p.Os; Os0/d Os0 D 1; (3)

for all Os. We will often assume that p.Os; Os0/ depends
only upon the angle between Os and Os0, which holds for
scattering by spherically symmetric particles.

FromWaves to Transport
The RTE can be derived by considering the high-
frequency asymptotics of wave propagation in a ran-
dom medium. We briefly recall the main ideas in the
context of monochromatic scalar waves. The general
theory for vector electromagnetic waves is presented
in [4].
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We begin by recalling that, within the scalar
approximation to the Maxwell equations, the electric
field U , in an inhomogeneous medium with a
position-dependent permittivity ", satisfies the time-
independent wave equation

r2U.r/C k20".r/U.r/ D 0; (4)

where k0 is the free-space wavenumber.
We assume that the random medium is statistically

homogeneous and that the susceptibility � is a Gaus-
sian random field such that

h�.r/i D 0; h�.r/�.r 0/i D C.jr � r 0j/; (5)

where C is the two-point correlation function and h� � � i
denotes statistical averaging. Let L denote the propa-
gation distance of the wave. At high frequencies, L is
large compared to the wavelength and we introduce a
small parameter � D 1=.k0L/ � 1. We suppose that
the fluctuations in � are weak so that C is of the order
O.�/. We then rescale the spatialvariable according to

r ! r=� and define the scaled field U�.r/ D U.r=�/,
so that (4) becomes

�2r2U�.r/C U�.r/ D �4	p
�� .r=�/ U�.r/: (6)

Here we have introduced a rescaling of � to be con-
sistent with the assumption that the fluctuations are of
strengthO.�/.

Although the conservation law for the energy give
some indication of how the intensity of the field is
distributed in space, it does not prescribe how the
intensity propagates. To overcome this difficulty, we
introduce the Wigner distribution W�.r;k/, which is
a function of the position r and the wave vector k:

W�.r;k/

D
Z
dReik�RU�

�
r � 1

2
�R

�
U �
�

�
r C 1

2
�R

�
:

(7)

Making use of (6), it can be seen that the Wigner
distribution obeys the equation

k � rrW� C i
2	p
�

Z
dqe�iq�x=� Q�.q/

�
W�

�
r ;k C 1

2
q

�
�W�

�
r ;k � 1

2
q

��
D 0; (8)

where we have assumed that � is real valued and Q�
denotes the Fourier transform of �.

We now consider the asymptotics of the Wigner
function in the homogenization limit � ! 0. This
corresponds to the regime of high frequencies and
weak fluctuations. We proceed by introducing a two-
scale expansion for W� of the form

W�.r ; r
0;k/ D W0.r ;k/

Cp
�W1.r; r

0;k/C �W2.r; r
0;k/C � � � ; (9)

where r 0 D r=� is a fast variable. By averaging over
the fluctuations on the fast scale, it is possible to show
that hW0i, which we denote by W , obeys the equation

k � rrW

D
Z
dk0 QC.k � k0/ı.k2 � k02/

�
W.r;k0/�W.r;k/

�
:

(10)

Evidently, (10) has the form of a time-independent
transport equation. The role of the delta function is to
conserve momentum, making it possible to view W as
a function of position and the direction k=jkj. We note
that the phase function and scattering coefficient are
related to statistical properties of the random medium,
as reflected in the appearance of the correlation func-
tion C in (10). If the medium is composed of spatially
uncorrelated point particles with number density �,
then

�a D ��a; �s D ��s; p D d�s

d˝

ı
�s; (11)

where �a and �s are the absorption and scattering cross
sections of the particles and d�s=d˝ is the differential
scattering cross section. Note that �a, �s and p are
wavelength-dependent quantities.
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Collision Expansion
The RTE (1), obeying the boundary condition (2), is
equivalent to the integral equation

I.r; Os/ D I0.r ; Os/

C
Z
G0.r; OsI r 0; Os0/�s.r 0/p.Os0; Os00/I.r 0; Os00/dr 0d Os0d Os00:

(12)

Here I0 is the unscattered (ballistic) specific intensity,
which satisfies the equation

ŒOs � r C �a C �s� I0 D 0; (13)

and G0 is the ballistic Green’s function

G0.r; OsI r 0; Os0/ D g.r ; r 0/ı
�

Os0 � r � r 0

jr � r 0j
�
ı.Os � Os0/;

(14)
where

g.r ; r 0/

D 1

jr �r 0j2 exp

"
�
Z jr�r 0j

0

�t

�
r 0 C `

r � r 0

jr � r 0j
�
d`

#
;

(15)

and the extinction coefficient �t D �a C�s . Note that
if a narrow collimated beam of intensity Iinc is incident
on the medium at the point r0 in the direction Os0, then
I0.r ; Os/ is given by

I0.r ; Os/ D IincG0.r ; OsI r0; Os0/; (16)

To derive the collision expansion, we iterate (12)
starting from I .0/ D I0 and obtain

I.r; Os/ D I .0/.r ; Os/CI .1/.r; Os/CI .2/.r; Os/C� � � ; (17)

where each term of the series is given by

I .n/.r; Os/ D
Z
dr 0d Os0d Os00G0.r; OsI r 0; Os0/�s.r 0/p.Os0; Os00/I .n�1/.r 0; Os00/; (18)

with n D 1; 2; : : : . The above series is the analog of
the Born series for the RTE, since each term accounts
for successively higher orders of scattering.

It is instructive to examine the expression for I .1/,
which is the contribution to the specific intensity from
single scattering:

I .1/.r; Os/

D
Z
dr 0d Os0d Os00G0.r ; OsI r 0; Os0/�s.r 0/p.Os0; Os00/I0.r 0; Os00/:

(19)

The terms in the collision expansion can be clas-
sified by their smoothness. The lowest-order term is
the most singular. In the absence of scattering, ac-
cording to (15), this term leads to a Radon trans-
form relationship between the absorption coefficient
and the specific intensity, under that condition that
the source and detector are collinear. Inversion of the
Radon transform is the basis for optical projection
tomography [5,6]. The first-order term is also singular,

as is evident from the presence of a delta function
in (19). Terms of higher order are of increasing smooth-
ness. This observation has been exploited to prove
uniqueness of the inverse transport problem and to
study its stability. A comprehensive review is presented
in [7].

The above discussion has implicitly assumed that
the angular dependence of the specific intensity is
measurable. In practice, such measurements are ex-
tremely difficult to obtain. The experimentally mea-
surable intensity is often an angular average of the
specific intensity over the aperture of an optical system.
The effect of averaging is to remove the singularities
that are present in the specific intensity. The resulting
inverse problem is then highly ill-posed [8].

Diffuse Light
The diffusion approximation (DA) to the RTE is widely
used in applications. The DA holds when the scattering
coefficient is large, the absorption coefficient is small,
the point of observation is far from the boundary of
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the medium, and the timescale is sufficiently long.
Accordingly, we perform the rescaling

�a ! ��a; �s ! 1

�
�s; (20)

where � � 1. Thus, the RTE (1) becomes

�Os � rI C �2�aI C �sI D �s

Z
p.Os; Os0/I.r; Os0/d Os0:

(21)

We then introduce the asymptotic expansion for the
specific intensity

I.r; Os/ D I0.r; Os/C �I1.r; Os/C �2I2.r; Os/C � � � (22)

which we substitute into (21). Upon collecting terms of
O.1/, O.�/, and O.�2/, we have

Z
p.Os; Os0/I0.r; Os0/d Os0 D I0.r ; Os/; (23)

Os � rI0 C �sI1 D �s

Z
p.Os; Os0/I1.r; Os0/d Os0; (24)

Os � rI1 C �aI0 C �sI2 D �s

Z
p.Os; Os0/I2.r ; Os0/d Os0:

(25)

The normalization condition (3) forces I0 to depend
only upon the spatial coordinate r . If the phase func-
tion p.Os; Os0/ depends only upon the quantity Os � Os0, it can
be seen that

I1.r; Os/ D � 1

1 � g
Os � rI0.r/; (26)

where the anisotropy g is given by

g D
Z

Os � Os0p.Os � Os0/d Os0; (27)

with �1 < g < 1. Note that g D 0 corresponds
to isotropic scattering and g D 1 to extreme forward
scattering. If we insert the above expression for I1
into (25) and integrate over Os, we obtain the diffusion
equation for the energy density ˚ :

� r � ŒD.r/r˚.r ; t/�C c�a.r/u.r; t/ D 0; (28)

where I0 D c˚=.4	/. Here, the diffusion coefficient
is defined by

D D 1

3
c`�; `� D 1

.1� g/�t
; (29)

where `� is known as the transport mean free path. The
above derivation of the DA holds in an infinite medium.
In a bounded domain, it is necessary to account for
boundary layers, since the boundary conditions for
the diffusion equation and the RTE are not compati-
ble [9].

Direct InversionMethods

One-Dimensional Problem
We start by studying the time-dependent inverse prob-
lem in one dimension, which illustrates many features
of the three-dimensional case. Let ˝ be the half-line
x � 0. The energy density ˚ obeys the diffusion
equation

@

@t
˚.x; t/ D D

@2

@x2
˚.x; t/�c�a.x/˚.x; t/; x 2 ˝;

(30)

where the diffusion coefficient D is assumed to be
constant, an assumption that will be relaxed later. The
energy density is taken to obey the initial and boundary
conditions

˚.x; 0/ D ı.x � x1/; (31)

˚.0; t/ � `ext
@˚

@x
.0; t/ D 0: (32)

Here, the initial condition imposes the presence of a
point source of unit strength at x1. Since ˚ decays
exponentially, we consider for k � 0 the Laplace
transform

˚.x; k/ D
Z 1

0

e�k2Dt˚.x; t/dt; (33)

which obeys the equation

� d2˚.x/

dx2
Ck2.1C�.x//˚.x/ D 1

D
ı.x�x1/; (34)

where � is the spatially varying part of the absorption,
which is defined by � D c�a=.Dk

2/� 1. The solution
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to the forward problem is given by the integral
equation

˚.x/ D ˚i.x/ � k2
Z
˝

G.x; y/˚.y/�.y/dy; (35)

where the Green’s function is of the form

G.x; y/ D 1

2Dk

�
e�kjx�yj C 1 � k`ext

1C k`ext
e�kjxCyj

�
;

(36)

and ˚i is the incident field, which obeys (34) with � D
0. The above integral equation may be linearized with
respect to �.x/ by replacing u on the right-hand side
by ui . This approximation is accurate when supp.�/
and � are small. If we introduce the scattering data
˚s D ˚i � ˚ and perform the above linearization, we
obtain

˚s.x1; x2/ D k2
Z
˝

G.x1; y/G.y; x2/�.y/dy: (37)

Here ˚s.x1; x2/ is proportional to the change in inten-
sity due to a point source at x1 that is measured by a
detector at x2.

In the backscattering geometry, the source and de-
tector are placed at the origin (x1 D x2 D 0), and
(37) becomes, upon using (36) and omitting overall
constants,

˚s.k/ D
Z 1

0

e�kx�.x/dx; (38)

where the dependence of ˚s on k has been made
explicit. Thus, the linearized inverse problem can be
seen to correspond to inverting the Laplace trans-
form of �. Inversion of the Laplace transform is the
paradigmatic exponentially ill-posed problem. It can
be analyzed following [10]. Equation (38) defines an
operatorA W � 7! ˚s which is bounded and self-adjoint
on L2.Œ0;1�/. The singular functions f and g of A
satisfy

A�Af D �2f; AA�g D �2g; (39)

where � is the corresponding singular value. In addi-
tion, f and g are related by

Af D �g; A�g D �f: (40)

If we observe that A�A.x; y/ D 1=.x C y/ and use
the identity

Z 1

0

ya

1C y
dy D 	

sin.aC 1/	
; �1 � Re.a/ < 0;

(41)

we see that

fs.x/ D g�
s .x/ D 1p

2	
x� 1

2Cis ; s 2 R (42)

and
�2s D 	

cosh.	s/
	 e�	jsj: (43)

Note that the singular values of A are exponentially
small, which gives rise to severe ill-posedness. Using
the above, we can write an inversion formula for (36)
in the form

�.x/ D
Z 1

0

dk

Z 1

�1
dsR

�
1

�s

�
fs.x/g

�
s .k/˚s.k/;

(44)

where the regularizerR has been introduced to control
the contribution of small singular values.

Inverse Born Series
We now consider the nonlinear inverse problem. The
Born series for the diffusion equation (28) can be
written in the form

˚s.r1; r2/ D
Z
drKi

1.r1; r2I r/�i .r/

C
Z
drdr 0Kij

2 .r1; r2I r ; r 0/�i .r/�j .r 0/C � � � ;
(45)

where

�.r/ D
�
�1.r/

�2.r/

�
D
�
cı�a.r/

ıD.r/

�
; (46)

and the summation over repeated indices is implied
with i; j D 1; 2. The components of the operators K1

and K2 are given by
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K1
1.r1; r2I r/ D G.r1; r/G.r; r2/; (47)

K2
1.r1; r2I r/ D rrG.r1; r/ � rrG.r; r2/; (48)

K11
2 .r1; r2I r ; r 0/ D �G.r1; r/G.r; r 0/G.r 0; r2/; (49)

K12
2 .r1; r2I r ; r 0/ D �G.r1; r/rr 0G.r; r 0/ � rr 0G.r 0; r2/; (50)

K21
2 .r1; r2I r ; r 0/ D �rrG.r1; r/ � rrG.r ; r

0/G.r 0; r2/; (51)

K22
2 .r1; r2I r ; r 0/ D �rrG.r1; r/ � rr

	rr 0G.r; r 0/ � rr 0G.r 0; r2/


: (52)

It will prove useful to express the Born series as a
formal power series in tensor powers of � of the form

˚s D K1�CK2�˝ �CK3�˝ �˝ �C � � � : (53)

The solution to the nonlinear inverse problem of
optical tomography may be expressed as a series in
tensor powers of ˚s of the form

� D K1˚sCK2˚s˝˚sCK3˚s˝˚s˝˚sC� � � ; (54)

where the Kj ’s are given by

K1 D KC
1 ; (55)

K2 D �K1K2K1 ˝ K1; (56)

K3 D � .K2K1 ˝K2 C K2K2 ˝K1 C K1K3/K1 ˝ K1 ˝ K1; (57)

Kj D �
0
@ j�1X
mD1

Km

X
i1C���CimDj

Ki1 ˝ � � � ˝Kim

1
AK1 ˝ � � � ˝ K1: (58)

We will refer to (54) as the inverse Born series. Here
KC
1 is the regularized pseudoinverse of the operator

K1. The singular value decomposition of the operator
KC
1 can be computed analytically for particular ge-

ometries [11]. Since the operator K1 is unbounded,
regularization of KC

1 is required to control the ill-
posedness of the inverse problem.

We now characterize the convergence of the inverse
series. We restrict our attention to the case of a uni-
formly scattering medium for which � D cı�a. We
define the constants � and � by

� D sup
r2Ba

k2kG0.r ; �/kL2.Ba/: (59)

� D k2jBaj1=2 sup
r2Ba

kG0.r; �/kL2.@˝/: (60)

Here Ba denotes a ball of radius a which contains the
support of �. It can be shown [12] that if �kK1k2 < 1

and � < 1 then the operator

Kj W L2.@˝ � � � � � @˝/ �! L2.Ba/ (61)

defined by (58) is bounded and

kKj k � C�jkK1kj ; (62)

where C is independent of j .

Theorem 1 ([12]) Suppose that kK1k2 < 1=.� C �/

and kK1˚skL2.Ba/ < 1=.� C �/. Let M D
max.k�kL2.Ba/; kK1K1�kL2.Ba// and assume that
M < 1=.� C �/. Then the norm of the difference
between the partial sum of the inverse series and the
true absorption obeys the estimate

�����
NX
jD1

Kj ˚s ˝ � � � ˝ ˚s

���
L2.Ba/

� Ck.I � K1K1/�kL2.Ba/ C QC
�kK1˚skNL2.Ba/

1 � �kK1˚skL2.Ba/
;

(63)

where C , QC , and M are independent of N and ˚s .
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Numerical studies of the inverse Born series have
been reported in [13]. Analogous results for the
Calderon problem are described in [14].
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Differential Equations and Systems

Early studies of numerical methods for initial value
problems were based on the model problem

y0.x/ D f .x; y.x//; y.x0/ D y0; f W R�V ! V;

(1)

where V D R. However, if we generalize the vector
space in which solution values lie, from V D R to
V D R

N , a simplification is possible. In this case the
system can be assumed to be autonomous,

y0.x/ D f .y.x//; y.x0/ D y0; f W V ! V; (2)

without loss of generality because, if x actually occurs
as an argument in f , the dependent variable can be
replaced by a vector incorporating an additional com-
ponent which will always equal x because it will have
the correct initial value and rate of change equal to 1.

Methods and Tableaux

A Runge–Kutta method, with input y0 first computes
stage values Yi , i D 1; 2; : : : ; s and stage derivatives
Fi D f .Xi ; Yi /, where Xi D x0 C hci , using the
formulae

Yi D y0 C h

sX
jD1

aij Fj : (3)

The stage derivatives are then used to compute the
output y1 given by

y1 D y0 C h

sX
iD1

biFi : (4)

To obtain the solution after many time steps, this
procedure is repeated to form y2, y3, : : :.

In the analysis of Runge–Kutta methods, the transi-
tion will be made from (1) to the (2) formulation. When
this change is made, it is necessary to ensure that the
same numerical solution is produced. This will mean
that

sX
jD1

aij D ci ; i D 1; 2; : : : ; s; (5)

and it will always be assumed that (5) holds.
To represent a specific method, it is usual to arrange

the coefficients in a tableau

c1 a11 a12 � � � a1s
c2 a21 a22 � � � a2s
:::

:::
:::

:::

cs as1 as2 � � � ass
b1 b2 � � � bs
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For explicit methods, in which each Yi depends only on
previously computed quantities, the matrix A is strictly
lower triangular and it is customary to omit the zero
members on and above the diagonal of the tableau:

0

c2 a21
c3 a31 a32
:::

:::
:::

: : :

cs as1 as2 � � � as;s�1
b1 b2 � � � bs�1 bs

Associated with each tableau is a set of functions
related to the rooted trees and these can be used to
express the Taylor expansion of the solution computed
in a single step of a Runge–Kutta method. This Taylor
expansion can be compared, term by term, with the
Taylor expansion of the exact solution and this gives
the order conditions.

The earliest Runge–Kutta methods were derived in
[10], [7], and [9].

Rooted Trees and Elementary
Differentials

Let T denote the set of rooted trees:

T D

(
: : :

)

For convenience, rooted trees will be refered to simply
as “trees.”

For given trees t1, t2, : : :, tm, the tree t D Œt1t2 � � � tm�
will denote the tree formed by introducing a new root
and connecting this to each of the original roots of the
ti . If the tree with only one vertex is denoted by  ,
the use of the operation Œ�� enables every other tree to
be constructed recursively. For the eight trees with up
to four vertices, this provides a convenient notation as
shown in the third column of Table 1.

Note that, when some of the trees t1; t2; : : : ; tm are
repeated in t D Œt1t2 � � � tm�, we have used an exponent

notation to indicate the number of replications. Thus,
t D Œt

k1
1 t

k2
2 � � � tkmm � will represent the tree

�

� � � �

�

� � � � � � �

�

� � � �

�

�
t1 t1 tm tm

k1 km

The functions referred to as the order (r), symmetry
(�), and the density (� ) can be defined recursively as
follows

r./ D 1; r
�h
t
k1
1 t

k2
2 � � � tkmm

i�
D 1C

mX
iD1

ki r.ti /;

�./ D 1; �
�h
t
k1
1 t

k2
2 � � � tkmm

i�
D

mY
iD1

ki Š�.ti /
ki ;

�./ D 1; �
�h
t
k1
1 t

k2
2 � � � tkmm

i�

D r
�h
t
k1
1 t

k2
2 � � � tkmm

i� mY
iD1

�.ti /
ki :

In addition to these purely combinatorial functions, we
need to introduce expressions known as “elementary
differentials” which depend on the differential equa-
tion, and “elementary weights” which depend on the
particular Runge–Kutta tableau.

Elementary Differentials
Given f W V ! V and y0 2 V , we will adopt the
notation f D f .y0/, f .m/ D f .m/.y0/, for the value of
f and its m-th order Fréchet derivatives, evaluated at
y0. We can construct elementary differentials related to
trees recursively. Let F.t/.y0/ denote the elementary
differential associated with t and we have the recursion

F./.y0/ D f ;

F .Œt1t2 � � � tm�/ D f .m/.F.t1/.y0/;

F.t2/.y0/; : : : ; F .tm/.y0//:

The expressions up to trees of order 4 are shown in
Table 1.
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Order Conditions and Order Barriers, Table 1 Notation and functions on trees

Order Tree Symmetry Density Elementary differential Elementary weight
r.t/ t Notation �.t/ �.t/ F.t/.y0/ ˚.t/

1  1 1 f
Ps

iD1 bi

2 Œ � 1 2 f 0f
Ps

iD1 bi ci

3 Œ2� 2 3 f 00.f ; f /
Ps

iD1 bi c
2
i

3

ŒŒ �� 1 6 f 0f 0f
Ps

i;jD1 bi aij cj

4 Œ3� 6 4 f .3/.f ; f ; f /
Ps

iD1 bi c
3
i

4

Œ Œ �� 1 8 f 00.f ; f 0f /
Ps

i;jD1 bi ciaij cj

4

ŒŒ2�� 2 12 f 0f 00.f ; f/
Ps

i;jD1 bi aij c
2
j

4

ŒŒŒ ��� 1 24 f 0f 0f 0f
Ps

i;j;kD1 bi aij ajkck

Elementary Weights
Associated with a given Runge–Kutta tableau is a
function ˚.t/, known as the “elementary weight.” If
b> is replaced by row number i of A, then we will
denote the modified elementary weights by ˚i.t/. The
elementary weights can be defined recursively

˚i./ D
sX

jD1
aij D ci ;

˚./ D
sX
iD1

bi ;

˚i .Œt1t2 � � � tm�/ D
sX

jD1
aij ˚j .t1/˚j .t2/ � � �˚j .tm/;

˚ .Œt1t2 � � � tm�/ D
sX
iD1

bi˚i .t1/˚i .t2/ � � �˚i.tm/:

For the trees up to order 4, the elementary weights are
included in Table 1.

Our aim now is to find the Taylor expansions of the
solution to the differential equation y.x0 C h/ after a
unit time step and, for comparison, the Taylor expan-
sion of y1, the approximation to the same quantity as
computed using a Runge–Kutta method. A particular
method will have order p if and only if the two series
agree to within O.hpC1/.

Taylor Expansion of y.x/

Theorem 1 The Taylor expansion of y.x0Ch/ is given
by

y.x0 C h/ D y0 C
X
t2T

hr.t/

�.t/�.t/
F.t/.y0/: (6)

Proof. Let Tn denote the subset of trees whose order
is limited to n. We will show that

y.x0C�h/ D y0C
X
t2Tn

�r.t/hr.t/

�.t/�.t/
F.t/.y0/CO.hnC1/;

(7)
for � 2 Œ0; 1�, which is true when n D 0, follows from
the same statement with n replaced by n � 1 if n > 0.
First note that the formal Taylor series for f .y0 C a/,
when a is replaced by

Pm
iD1 ai given by

f .y0 C a1 C a2 C � � � C am/

D
X

k1;k2;:::;km�0

a
k1
1 a

k2
2 � � �akmm

k1Šk2Š � � �kmŠ f .k1Ck2C���Ckm/

�.a1; a1; : : : ; am; am; : : :/; (8)

where the operands of the .k1 C k2 C � � � C km/-
linear operator consist of ki repetitions of ai , i D
1; 2; : : : ; m. Evaluate the series, up to hn terms, for
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y.x0 C �h/ D y0

Ch
Z �

0

f
�
y0 C

X
t2Tn�1

�r.t/hr.t/

�.t/�.t/
F.t/.y0/

�
d�;

using (8), and the result agrees with (7).

Taylor Expansion of y1

Theorem 2 The Taylor expansion of y1 given by (4) is
given by

y1 D y0 C
X
t2T

hr.t/˚.t/

�.t/
F.t/.y0/: (9)

Proof. We will prove that

Yi D y0 C
X
t2Tm

hr.t/˚i .t/

�.t/
F.t/.y0/CO.hmC1/; (10)

which is true for m D 0, follows from the same
statement with m replaced by m � 1. To verify this,
substitute (10), with i replaced by j andm replaced by
m � 1 into (3), where Fj has been replaced by f .Yj /,
and expand using (8). The coefficient of F.t/.y0/
agrees with the corresponding coefficient in (10). To
complete the proof replace ˚i.t/ by ˚.t/ so that Yi
becomes y1.

Order Conditions
To obtain order p, the two Taylor series for the approx-
imate solution given by (9) must agree with the Taylor
expansion for the exact solution, given by (6), up to
coefficients of hm form D 1; 2; : : : ; p. That is, the two
series

X
r.t/�p

hr.t/

�.t/�.t/
F.t/.y0/

and
X
r.t/�p

hr.t/˚.t/

�.t/
F.t/.y0/;

must be identical. Hence, we have

Theorem 3 A Runge–Kutta method .A; b>; c/ has or-
der p if and only if

˚.t/ D 1

�.t/
; r.t/ � p:

The theory leading up to the order conditions was
given in [1] and modern formulations are presented in
[6] and [8].

First-Order Equations
If the analysis of order had been carried out using the
first-order model problem (1), because of the coinci-
dence between certain of the elementary differentials
in this special case, the number of order conditions is
reduced. However, this does not have any effect until
order 5, where the number of conditions is reduced
from 17 to 16, and order 6 where there are now 31

instead of 37 conditions, and higher orders where the
reduction in conditions is even more drastic.

These questions are considered in [3] and [4].

Low-Order Explicit Methods

For orders up to p D 3, it is an easy matter to derive
specific methods with s D p stages.

In the case of s D p D 1, the only available method
is the Euler method

0

1

s D p D 2

The equations for this case were investigated by
Runge [10]

b1 C b2 D 1;

b2c2 D 1

2
;

leading to the following tableau where c2 is an arbitrary
nonzero parameter

0

c2 c2

1 � 1

2c2

1

2c2

The special cases c2 D 1
2

and c2 D 1 give particularly
simple coefficients

0
1

2

1

2

0 1

0

1 1

1

2

1

2
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s D p D 3

For this case, we obtain four order conditions

b1 C b2 C b3 D 1; (11)

b2c2 C b3c3 D 1

2
; (12)

b2c
2
2 C b3c

2
3 D 1

3
; (13)

b3a32c2 D 1

6
: (14)

It is convenient to choose c2 ¤ 0 and c3 and to then
solve (11), (12), and (13) for b1; b2; b3. As long as
b3 ¤ 0, a32 can then be found from (14).

The analysis of the s D p D 3 case was completed
in [7].

s D p D 4

The complete classification of methods with sDpD 4

was published in [9].
There are now eight order conditions:

b1 C b2 C b3 C b4 D 1; (15)

b2c2 C b3c3 C b4c4 D 1

2
; (16)

b2c
2
2 C b3c

2
3 C b4c

2
4 D 1

3
; (17)

b3a32c2 C b4a42c2 C b4a43c3 D 1

6
; (18)

b2c
3
2 C b3c

3
3 C b4c

3
4 D 1

4
; (19)

b3c3a32c2 C b4c4a42c2 C b4c4a43c3 D 1

8
; (20)

b3a32c
2
2 C b4a42c

2
2 C b4a43c

2
3 D 1

12
; (21)

b4a43a32c2 D 1

24
: (22)

It is natural to attempt to find solutions to these equa-
tions in three steps as for order 3. Step one is to
choose suitable values of c2; c3; c4; step two is to
solve for b1; b2; b3; b4 from (15), (16), (17), (19);
and the third step would be to solve for a32; a42; a43
from (18), (20), (21). But this solution method is
incomplete because no attempt has been made to sat-
isfy (22). However, if we had chosen c2; c3; c4 as
parameters and, after the third step has been carried

out, substitute the solution values into (22). This leads
to the simple consistency condition c4 D 1. We will
prove this result in the more general case s D p � 4,
assuming that methods with s D p > 4 actually exist.

Value of c4 when s D p � 4

We will prove the following result

Theorem 4 Let .A; b>; c/ be the coefficient arrays for
an explicit Runge–Kutta method with s D p � 4. Then
c4 D 1.

Let u>v> and x; y be s dimensional vectors de-
fined by

u> D b>As�4.C � c4I /;

v> D b>As�3;

x D Ac;

y D .C � c2I /c:

where C D diag.c/. Because of the special structure
of these vectors they have the forms

u D

2
66666664

u1
u2
u3
0
:::

0

3
77777775
; v D

2
66666664

v1
v2
v3
0
:::

0

3
77777775
; x D

2
66666664

0

0

x3
x4
:::

xs

3
77777775
; y D

2
66666664

0

0

y3
y4
:::

ys

3
77777775
:

It now follows that

.u>x/.v>y/ D .u>y/.v>x/ (23)

because each of these equals u3v3x3y3. The factors
appearing in (23) are each linear combinations of
elementary weights which can be evaluated by the
order conditions as follows

u>x D b>As�4.C � c4I /Ac D 3

sŠ
� c4

.s � 1/Š
;

v>y D b>As�3.C � c2I /c D 2

sŠ
� c2

.s � 1/Š
;

u>y D b>As�4.C � c4I /.C � c2I /c

D 6

sŠ
� 2.c2 C c4/

.s � 1/Š
C c2c4

.s � 2/Š ;

v>x D b>As�3Ac D 1

sŠ
: (24)
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Substitute into (23) and simplify the result. It is
found that c2.c4 � 1/ D 0. It is not possible that
c2 D 0, because this would contradict (24), and hence
c4 D 1.

Order Barriers for Explicit Methods

As p increases, the number of conditions that must
be satisfied to achieve order p increases in accor-
dance with the number of rooted trees up to this
order. Denote this by M.p/. If this order is to be
achieved using an s stage Runge–Kutta method, the
number of available parameters also increases and is
equal to N.s/ D s.s C 1/=2. The growth of these
quantities can be seen up to p D 8 and s D 11 in
Table 2.

The matching lines in the two parts of this table are
intended to indicate the number of stages necessary to
obtain a particular order. It is not surprising that order
p D s is possible for s � 4, because N.s/ � M.s/,
and that p � s C 1 is necessary for s > 4 because
N.s/ < M.s/. But for the matching orders and stage
numbers for p � 6 and s � 7, it is remarkable that
it becomes possible to satisfy M.p/ conditions with
fewer parameters.

We will only prove the simplest of the order barriers
suggested by Table 2:

Theorem 5 An explicit Runge–Kutta method with s

stages cannot have order p D s if s > 4.

Order Conditions and Order Barriers, Table 2 The number
of order conditions M.p/ compared with the number of param-
eters N.s/

p M.p/ s N.s/

1 1 1 1
2 2 2 3
3 4 3 6
4 8 4 10

5 15
5 17 6 21
6 37 7 28

8 36
7 85 9 45

10 55
8 200 11 66

If such a method did exist, it would follow from
Theorem 4, that c4 D 1. Now, assuming s � 5, modify
the argument by replacing u> by

u> D b>As�5.C � c5I /A:

The values of u>x and u>y now get replaced by

u>x D b>As�5.C � c5I /A2c D 4

sŠ
� c5

.s � 1/Š ;

u>y D b>As�5.C � c5I /A.C � c2I /c

D 8

sŠ
� 3c2 C 2c4

.s � 1/Š
C c2c4

.s � 2/Š ;

and again the two sides of (23) are each equal to
u3v3x3y3. Simplifying the new form of (23) leads to
c2.c5 � 1/ D 0 and to the conclusion that c5 D c4 D 1.
We obtain a contradiction by evaluating b>As�5.C �
I /A2c D .4 � s/=sŠ. However, because of the strictly
lower triangular structure of A, all terms in the product
are zero.

The fifth-order barrier and higher order barriers
were presented in [3] and [4].
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Order Stars and Stability Domains

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Université de Genève,
Genève, Switzerland

Throughout the twentieth century, and before, scien-
tists were struggling to find numerical methods for
initial value problems satisfying the following require-
ments
• High computational speed
• High precision
• High stability
Order stars turn these analytical properties into geo-
metrical quantities. They are thus not only attractive
for the importance of their theoretical results, but also
for aesthetics and beauty.

Stability Function

While the first two of the above requirements are more
or less trivial claims, the importance of the third one
became clear, to many researchers, only after sev-
eral numerical disasters. Stability theory for numerical
methods started with Courant–Friedrichs–Lewy [3];
the classical papers Dahlquist [4] and Guillou–Lago
[7] initiated stability theory for stiff equations. The
principal tool is Dahlquist’s test equation

Py D �y

which models the behavior of stiff systems in the
neighborhood of a stationary point. Here, � represents
one of the (possibly complex) eigenvalues of the Jaco-
bian matrix of the vector field. The equation is stable
“in the sense of Lyapunov” if <� � 0. If a one-step
method ynC1 D ˚h.yn/ is applied to this equation, one
usually obtains a relation

ynC1 D R.z/ yn; i.e., yn D .R.z//ny0 where z D h�

with a function R.z/ which is called stability function
of the method. We see that jR.z/j � 1 is necessary for
stability, and we call the set

S WD fz 2 CI jR.z/j � 1g (1)

its stability domain. The criterion for stability requires
that all eigenvalues �, multiplied by the step size h,
must lie in S . For hyperbolic PDEs this is known as
the CFL-condition.

Examples of stability functions and stability do-
mains are presented in Fig. 1 for the explicit Eu-
ler method (see entry �One-Step Methods, Order,
Convergence), Runge’s method of order 2 (see entry
�Runge–Kutta Methods, Explicit, Implicit), the im-
plicit Euler method, and the trapezoidal rule.

We observe that for explicit methods, with k func-
tion evaluations per step, R.z/ is a polynomial of
degree k, which leads to the existence of k zeros
(marked by 
) lying inside of S . The corresponding
stability domain is a bounded set, so that severe step
size restrictions can occur for stiff equations. On the
contrary, implicit stages lead to poles (marked by ?), so
that R.z/ becomes rational which allows both methods
to be A-stable, that is, the stability domain covers the
entire left half plane of C. Here, for stable problems,
there are no stability restrictions, independent of how
stiff the equation is.

Implicit Runge–Kutta Methods
It was discovered by Ehle [5] that the stability functions
of high order implicit Runge–Kutta methods are Padé
approximations to the exponential function

Rk;l .z/ D Pk;l .z/

Qk;l .z/

where

Pk;l .z/ D
kX

jD0

 
k

j

!
.k C l � j /Š

.k C l/Š
zj

and Qk;l .z/ D Pl;k.�z/:

For example, the stability functions in Fig. 1 are,
from left to right,R1;0.z/, R2;0.z/, R0;1.z/, andR1;1.z/.
Butcher’s implicit Gauss methods are on the diagonal
of the Padé table (k D l D s), and Radau IIA methods
are on the first sub-diagonal (k D s � 1, l D s;
for more details see Table 3 in entry �Runge–Kutta
Methods, Explicit, Implicit). Ehle proved that both
types of methods are A-stable for all s � 1 (see, e.g.,
Fig. 1 in entry �Radau Methods). Ehle also established
the Conjecture that only the diagonal Padé and the first
two sub-diagonals are A-stable.

http://dx.doi.org/10.1007/978-3-540-70529-1_130
http://dx.doi.org/10.1007/978-3-540-70529-1_144
http://dx.doi.org/10.1007/978-3-540-70529-1_144
http://dx.doi.org/10.1007/978-3-540-70529-1_139


Order Stars and Stability Domains 1109

O

Order Stars and Stability
Domains, Fig. 1 Stability
functions and stability
domains for the oldest
one-step methods

Explicit Euler Runge order 2 Implicit Euler Trapezoidal rule
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Order Stars and Stability Domains, Fig. 2 Stability domain (left) and order star (right) for R2;3 (Radau5)

Order Stars

The attempts to understand Ehle’s results and prove
Ehle’s conjecture, which lasted years, led finally to
the idea of the order stars [12]. The motivation comes
from a careful inspection of the stability function, for
example, the function jR2;3.z/j (for Radau5) drawn in
Fig. 2 to the left. We observe that the stability domain
is the outside of a potato-like curve which surrounds
the three poles. Looking at the level curves in the
neighborhood of the origin, we see that they mimic the
parallel level curves of the exponential function. Since
R.z/ is a high-order approximation of ez, we expect
more insight if we compare the function jR.z/j, not
to 1 as in (1), but to jezj. This motivates to consider
the set

A WD fz 2 CI jR.z/j > jezjg (2)

(see Fig. 2 to the right), which we call order star. It
transforms numerical quantities into geometric proper-
ties as follows:
• Computational speed: This is determined by the

number of stages, which the method uses at each

step. Explicit function evaluations transform into
zeros 
, each implicit stage transforms into a pole ?.
The more zeros or the more poles are present, the
more work requires the method.

• High precision: This is characterized by the order p
of the method and the error constant C , which (for
the test equation Py D �y) are given by

ez � R.z/ D C zpC1 C O.zpC2/:

As a consequence, the set A is star-like with p C
1 “fingers” of regular width coming out from the
origin. The error constant determines the color of
these fingers.

• A-stability: Along the imaginary axis, where jezj D
1, the order star is complementary to the stability
domain S . So, if we know that the order star does
not contain part of the imaginary axis and if, in ad-
dition, all poles stay in the right half plane, we have
A-stability by the maximum principle. Inversely, if
the order star covers a part of the imaginary axis, we
have no A-stability.
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Some elementary complex analysis (the argument prin-
ciple) allows the conclusion that all bounded black
fingers must contain a pole, and that every bounded
subset of A, whose boundary returns j times to the
origin, must contain j poles (see, e.g., “Lemma 4.5”
of [8]). Ehle’s results and Ehle’s conjecture can now be
directly seen from the right picture of Fig. 2, because
only for k � l � k C 2 the imaginary axis can pass
between the white and black fingers without touch-
ing the order star (for details see Theorems 4.6–4.11
of [8]).

MultistepMethods

We choose as example the two-step explicit Adams
method

ynC2 D ynC1 C h

�
3

2
fnC1 � 1

2
fn

�
:

For Dahlquist’s test equation we obtain ynC2 � .1 C
3
2
z/ynC1C 1

2
zyn D 0, that is, yn D c1R

n
1 Cc2R

n
2 where

R1 and R2 are the roots of the characteristic equation

R2 �
�
1C 3

2
z

�
RC 1

2
z D 0:

For z D 0 this equation becomesR2�R D 0with roots
R1 D 1 (the principal root) and R2 D 0 (the parasitic
root). Both roots continue as complex functions of z

and we have stability where both roots are bounded by
1. This determines the stability domain (see the first
two pictures of Fig. 3). At certain “branching points”

these roots merge and we observe a discontinuity in
their neighborhood. Thus, we place the two roots one
above the other (third picture of Fig. 3) and obtain one
analytic function R.z/ on the Riemann surface M .

Order Stars for MultistepMethods
The definition (2) of order stars carries over to Rie-
mann surfaces without changes. There will be a star on
the principal sheet with pC 1 sectors, an explicit stage
leads to a zero on one of the sheets (see Fig. 4), each
implicit stage gives rise to a pole on one of the sheets
and for A-stability the order star must stay away from
the imaginary axis on all sheets.

Daniel–Moore Conjecture
An A-stable multistep method with k implicit stages
has order p � 2k. The proof of this statement is
illustrated in Fig. 5. This order barrier was originally
conjectured for multistep-Taylor methods in 1970 and
became a theorem in 1978. The special case for linear
multistep methods, where k D 1 and hence p � 2, is
Dahlquist’s second order barrier from 1963.

Jeltsch–Nevanlinna Theorem
During the first half of the twentieth century it was
widely believed that multistep methods, which, due to
the use of several consecutive solution approximations,

Order Stars and Stability Domains, Fig. 3 Stability domain for Adams2; principal root jR1.z/j (left); parasitic root jR2.z/j
(middle); both roots on the Riemann surface (right)
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Order Stars and Stability Domains, Fig. 4 Order star for Adams2; principal root and parasitic root (left and middle); on Riemann
surface (right)

Order Stars and Stability Domains, Fig. 5 Two-step method with three poles, order 5 (left; A-stable), order 6 (middle; A-stable),
order 7 (right; not A-stable); R.z/ given by Butcher–Chipman approximations to ez

can be so easily extended to high orders, were in any
respect superior to one-step methods. Slowly, during
the 1960s and 1970s, it became apparent that this high
order must be paid with lack of stability. Several papers
of Jeltsch and Nevanlinna then brought more and more
light into this question. Together with order star theory
this then led to many important results in [10] and
[11]. We illustrate the idea by comparing the stability
domain of Runge–Kutta2 with that of Adams2 (see
first picture of Fig. 6): RK2 possesses a larger stability
domain than Adams2, but RK2 requires two derivative
evaluations per step and Adams2 only one. So, for a fair
comparison we must scale the stability domain, that
is, we replace RRK2.z/ by

p
RRK2.2z/ (second picture

of Fig. 6). We get a nice surprise: Neither method is
always more stable than the other.

In order to explain this, we compare the stability
function of a method, not to jezj as in (2), but to
the stability function of the other method, that is, we
replace (2) by

B WD
�

z 2 CI jR1.z/j
jR2.z/j > 1


: (3)

We choose for R1.z/ the principal root of Adams2 and
for R2.z/ the scaled stability function of RK2 (third
picture of Fig. 6). The zeros of R2.z/ turn into poles
of the ratio and the order star must cross the scaled
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−2 0

2

−2

−1 0

1

−1

SRK2 scaled

−1 0

1

−1

Order Stars and Stability Domains, Fig. 6 Comparing stability domains for RK2 versus Adams2 (left), scaled RK2 versus
Adams2 (middle), proof of the Jeltsch–Nevanlinna theorem (right)

stability boundary of RK2 (both methods are explicit
and have the same behavior at infinity).

Notes

Further results concern the Nørsett–Wolfbrandt con-
jecture for approximations with real poles (DIRK and
SIRK methods), Abdulle’s proof [1] of the Lebedev
conjecture for Chebyshev approximations of high or-
der, and an application to delay differential equa-
tions [6]. For a thorough treatment of order stars see
Sects. IV.4 and V.4 of [8] as well as the monograph
[9]. A variant of order stars – order arrows – has been
introduced by Butcher [2].
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Orthogonal Polynomials: Computation
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Orthogonality and Polynomials

Orthogonality is defined in the linear space of
polynomials with complex coefficients with respect
to an inner product <;> which involves a measure
of integration supported on some subset E of the
complex plane. If this subset is finite, then the discrete
orthogonality appears. Sequences of orthogonal
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polynomials (OP) are built when you apply the
standard Gram-Schmidt process to the canonical basis
.zn/n�0. This is the natural way to generate them.
Indeed, if we denote by cj;k D< zj ; zk >; j; k � 0;

the moments of the inner product, a very well-known
determinantal expression due to E. Heine gives the
explicit representation of OP in terms of the moments,
but in general it is not useful from a computational
point of view. As an alternative way, they can be
obtained as solutions of a linear system associated with
the moment matrix, that is, an Hermitian matrix. The
complexity of the computation of such polynomials
is strongly related to the structure of such a matrix.
Nevertheless, if the multiplication operator, i.e., the
moment matrix, has some special structure with respect
to the inner product, then you can compute these OP in
a more simple way.

Orthogonal Polynomials on the Real Line
When the inner product is associated with an
integration measure supported on a subset E of the
real line, then < zp.z/; q.z/ >D< p.z/; zq.z/ >

and the corresponding orthonormal polynomials
.Pn/n�0 satisfy a three-term recurrence relation
zPn.z/ D anC1PnC1.z/ C bnPn.z/ C anPn�1.z/. This
relation plays a central role in the computation of such
orthogonal polynomials.

Notice that the above recurrence relation yields
a matrix representation zvnC1.z/ D JnC1vnC1.z/ C
anC1PnC1.z/enC1. Here JnC1 is a tridiagonal and sym-
metric (Jacobi) matrix of size .nC1/�.nC1/, vnC1 D
.P0.z/; : : : ; Pn.z//t , and enC1 D .0; : : : ; 0; 1/t . As a
simple consequence of this fact, the zeros of PnC1 are
real and simple and interlace with the zeros of Pn.
Thus, you can compute them using the standard algo-
rithms for the eigenvalue problem. On the other hand,
the entries of the Jacobi matrix JnC1 can be obtained
using an algorithm based on the modified moments of
the measure of integration in order to have a better
conditioned problem [3, 4]. As a nice application, the
classical Gaussian quadrature rule for n C 1 nodes
(the zeros of the orthonormal polynomial PnC1) reads
as
PnC1

1 �nC1;kf .xnC1;k/ D �0e
t
1f .JnC1/e1 where

�0 D< 1; 1 >; and e1 D .1; 0; : : : ; 0/t [2].

Orthogonal Polynomials on the Unit Circle
When the inner product is associated with an inte-
gration measure supported on the unit circle, then

< zp.z/; zq.z/ >D< p.z/; q.z/ >. The Gram ma-
trix of this product in terms of the canonical basis
is a Toeplitz matrix. Furthermore, the correspond-
ing monic orthogonal polynomials .˚n/n�0 satisfy a
forward recurrence relation ˚nC1.z/ D z˚n.z/ C
˚nC1.0/˚�

n .z/, where j˚n.0/j < 1; n � 1; are said
to be the reflection parameters of the measure and
˚�
n .z/ denotes the reversed polynomial of ˚n.z/ [5].

This relation is related to the Levinson algorithm that
provides the solution of a positive-definite Toeplitz
system in a fast and robust way in O.n2/ flops instead
of O.n3/ flops as in the case of classical algorithms
to solve general (positive definite) systems of linear
equations.

Notice that the above recurrence relation, when
orthonormal polynomials 'n are considered, yields a
matrix representation zunC1.z/ D HnC1unC1.z/ C
�nC1'nC1.z/enC1; �nC1 D .1 � j˚nC1.0/j2/1=2, where
HnC1 is a lower Hessenberg matrix of size .n C
1/ � .n C 1/ and unC1 D .'0.z/; : : : ; 'n.z//t . HnC1
is “almost unitary,” i.e., the first n rows form an
orthonormal set and the last row is orthogonal to this
set, but is not normalized and their eigenvalues are
the zeros of the polynomial ˚nC1. Taking into account
these zeros belong to the unit disk, the analog of the
Gaussian quadrature rule for n C 1 nodes on the unit
circle must be reformulated in terms of the zeros of
para-orthogonal polynomials BnC1.z/ D ˚nC1.z/ C
n˚

�
nC1.z/ where jnj D 1; [1]. Indeed, they are the

eigenvalues of a unitary matrix given in terms of a
perturbation of the last row of HnC1.
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Christian Lubich
Mathematisches Institut, Universität Tübingen,
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Synonyms

Differential equations with high oscillations; Oscil-
latory differential equations

The main challenges in the numerical treatment of
ordinary differential equations with highly oscillatory
solution behavior are twofold:
• To use step sizes that are large compared to the

fastest quasi-periods of the solution, so that the
vector field, or the computationally expensive part
of it, is not evaluated repeatedly within a quasi-
period

• To preserve qualitatively and quantitatively correct
solution behavior over times scales that are much
longer than quasi-periods
Standard numerical integrators, such as Runge–

Kutta or multistep methods, typically fail in both re-
spects, and hence special numerical integrators are
needed, whose construction depends on the particular
type of oscillatory problem at hand (Fig. 1).

Oscillatory Problems, Fig. 1 Oscillations and long time steps

Examples and Types of Oscillatory
Differential Equations

One may roughly distinguish between problems with
extrinsic oscillations, such as

Ry D �y C !2 sin.!t/; ! � 1;

where the highly oscillatory behavior stems from ex-
plicitly time-dependent oscillatory source terms, and
problems with intrinsic oscillations, such as

Ry D �!2y C sin.t/; ! � 1;

where the oscillations are created by the differential
equation itself. This occurs typically when the Jacobian
matrix in the first-order formulation of the differential
equation has large imaginary eigenvalues, in the above
example ˙i!.

An important class of problems are oscillatory
Hamiltonian systems

Pq D rpH.q; p/; Pp D �rqH.q; p/

with a Hamilton functionH.q; p/, possibly depending
in addition on the independent variable t , which has
a positive semi-definite Hessian of large norm. The
simplest example is the harmonic oscillator given by
the Hamiltonian function H.p; q/ D 1

2
p2 C 1

2
!2q2,

with the equations of motion Pq D p, Pp D �!2q, which
combine to the second-order differential equation Rq D
�!2q. This is trivially solved exactly, a fact that can be
exploited for constructing methods for problems with
Hamiltonian

H.p; q/ D 1

2
pTM�1p C 1

2
qTAq C U.q/

with a positive semi-definite constant stiffness matrix
A of large norm, with a positive definite constant mass
matrixM (subsequently taken as the identity matrix for
convenience), and with a smooth potential U having
moderately bounded derivatives.

The chain of particles illustrated in Fig. 2 with equal
harmonic stiff springs is an example of a system with
a single constant high frequency 1=". With the mid-
points and elongations of the stiff springs as position
coordinates, we have
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stiff
harmonic

soft
nonlinear

Oscillatory Problems, Fig. 2 Chain with alternating soft non-
linear and stiff linear springs

A D 1

"2

�
0 0

0 I

�
; 0 < " � 1:

Other systems have several high frequencies as in

A D 1

"2
diag.0; !1; : : : ; !m/; 0 < " � 1;

with 1 � !1 � � � � � !m, or a wide range of low to high
frequencies without gap as in spatial discretizations of
semilinear wave equations.

The prototype model with explicitly time-dependent
high frequencies is the harmonic oscillator with time-
varying frequency, H.p; q; t/ D 1

2
p2 C 1

2
"�2!.t/2q2,

with !.t/ and P!.t/ of magnitude 	1 and " � 1.
Solutions of the equation of motion Rq D �"�2!.t/2q
oscillate with a quasi-period 	 ", but the frequencies
change on the slower time scale 	1. The action (energy
divided by frequency) I.t/ D H.p.t/; q.t//=!.t/

is an almost-conserved quantity, called an adiabatic
invariant. Numerical methods designed for problems
with nearly constant frequencies (and, more impor-
tantly, nearly constant eigenspaces) behave poorly on
this problem, or on its higher-dimensional extension

H.p; q; t/ D 1

2
pTM.t/�1pC 1

2"2
qT A.t/qCU.q; t/;

which describes oscillations in a mechanical system
undergoing a slow driven motion when M.t/ is a
positive definite mass matrix, A.t/ is a positive semi-
definite stiffness matrix, and U.q; t/ is a potential, all
of which are assumed to be smooth with derivatives
bounded independently of the small parameter ". This
problem again has adiabatic invariants associated with
each of its high frequencies as long as the frequencies
remain separated. However, on small time intervals
where eigenvalues almost cross, rapid non-adiabatic
transitions may occur, leading to further numerical
challenges.

Oscillatory Problems, Fig. 3 Triple pendulum with stiff
springs

Similar difficulties are present, and related numeri-
cal approaches have been developed, for problems with
state-dependent high frequencies such as

H.p; q/ D 1

2
pTM.q/�1p C 1

"2
V .q/C U.q/;

with a constraining potential V.q/ that takes its min-
imum on a manifold and grows quadratically in non-
tangential directions, thus penalizing motions away
from the manifold. In appropriate coordinates, we have
V.q/ D 1

2
qT1 A.q0/q1 for q D .q0; q1/ with a positive

definite matrix A.q0/.
A multiple spring pendulum with stiff springs as

illustrated in Fig. 3 is a simple example, with angles
as slow variables q0 and elongations of stiff springs
as fast variables q1. Here the frequencies of the high
oscillations depend on the angles which change during
the motion. As in the case of time-dependent frequen-
cies, numerical and analytical difficulties arise when
eigenfrequencies cross or come close, which here can
lead to an indeterminacy of the slow motion in the limit
" ! 0 (Takens chaos).

Building-Blocks of Long-Time-Step
Methods: Averaging, Splitting,
Linearizing, Corotating, Ansatzing

Many numerical methods proposed for oscillatory dif-
ferential equations are based on a handful of construc-
tion principles, which may possibly appear combined
in various ways.

Averages
A basic principle underlying all long-time-step
methods for oscillatory differential equations is the



1116 Oscillatory Problems

requirement to avoid isolated pointwise evaluations of
oscillatory functions, but instead to rely on averaged
quantities.

We illustrate this for a method for second-order
differential equations

Rq D f .q/; f .q/ D f Œslow�.q/C f Œfast�.q/:

The classical Störmer–Verlet method with step size h
uses a pointwise evaluation of f ,

qnC1 � 2qn C qn�1 D h2 f .qn/;

whereas the exact solution satisfies

q.t C h/� 2q.t/C q.t � h/

D h2
Z 1

�1
.1 � j� j/ f �q.t C �h/

�
d�:

The integral on the right-hand side represents a
weighted average of the force along the solution, which
will now be approximated. At t D tn, we replace

f
�
q.tn C �h/

� � f Œslow�.qn/C f Œfast�
�
u.�h/

�

where u./ is a solution of the reduced differential
equation

Ru D f Œslow�.qn/C f Œfast�.u/:

We then have

h2
Z 1

�1
.1� j� j/ �f Œslow�.qn/C f Œfast�

�
u.�h/

��
d�

D u.h/ � 2u.0/C u.�h/:

For the reduced differential equation, we assume the
initial values u.0/ D qn and Pu.0/ D Pqn or simply
Pu.0/ D 0. This initial value problem is solved nu-
merically, e.g., by the Störmer–Verlet method with a
micro-step size ˙h=N with N � 1 on the interval
Œ�h; h�, yielding numerical approximations uN .˙h/
and PuN .˙h/ to u.˙h/ and Pu.˙h/, respectively. No
further evaluations of f Œslow� are needed for the com-
putation of uN .˙h/ and PuN .˙h/. This finally gives the
symmetric method

qnC1 � 2qn C qn�1 D uN .h/ � 2uN .0/C uN .�h/:

The above method is efficient if solving the reduced
equation over the whole interval Œ�h; h� is computa-
tionally less expensive than evaluating the slow force
f Œslow�. Otherwise, to reduce the number of function
evaluations we can replace the above average by an
average with smaller support,

qnC1 � 2qn C qn�1 D h2
Z ı

�ı
K.�/

�
f Œslow�.qn/

Cf Œfast�
�
u.�h/

��
d�

with ı � 1 and an averaging kernelK.�/ with integral
equal to 1. This is further approximated by a quadra-
ture sum involving the values f Œfast�

�
uN .mh=N/

�
with

jmj � M and 1 � M � N . The resulting method
is an example of a heterogeneous multiscale method,
with macro-step h and micro-step h=N .

In the above methods, the slow force is evaluated,
somewhat arbitrarily, at the particular value qn approxi-
mating the oscillatory solution q.t/. Instead, one might
evaluate f Œslow� at an averaged position Nqn, defined by
solving approximately an approximate equation

Ru D f Œfast�.u/; u.0/ D qn; Pu.0/ D 0;

and setting Nqn D
Z ı

�ı
eK.�/ u.�h/ d�;

with another averaging kernel eK.�/ having integral 1.
Such an approach can reduce the sensitivity to
step size resonances in the numerical solution if
ı D 1.

Splitting
The Störmer–Verlet method can be interpreted as ap-
proximating the flow 'Hh of a system with Hamiltonian
H.p; q/ D T .p/ C V.q/ with T .p/ D 1

2
pT p by the

symmetric splitting

'Vh=2 ı 'Th ı 'Vh=2:

In the situation of a potential V D V Œfast� C V Œslow�,
we may instead use a different splitting of H D .T C
V Œfast�/ C V Œslow� and approximate the flow 'Hh of the
system by

'V
Œslow�

h=2 ı 'TCV Œfast�

h ı 'V Œslow�

h=2 :
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This is the impulse method:

1. Kick: set pC
n D pn � 1

2
hrV Œslow�.qn/

2. Oscillate: solve Rq D �rV Œfast�.q/ with initial
values .qn; pC

n / over a time step h

to obtain .qnC1; p�
nC1/

3. Kick: set pnC1 D p�
nC1 � 1

2
hrV Œslow�.qnC1/.

Step 2 must in general be computed approximately by
a numerical integrator with a smaller time step. The
impulse method can be mollified by replacing the slow
potential V Œslow�.q/ by a modified potential V Œslow�. Nq/,
where Nq represents a local average as considered
above.

Variation of Constants Formula
A particular situation arises when the fast forces are
linear, as in

Rq D �Ax C g.q/ (1)

with a symmetric positive semi-definite matrix A of
large norm. With˝ D A1=2, the exact solution satisfies

�
q.t/

Pq.t/
�

D
�

cos t˝ ˝�1 sin t˝
�˝ sin t˝ cos t˝

��
q0
Pq0
�

(2)

C
Z t

0

�
˝�1 sin.t � s/˝

cos.t � s/˝

�
g
�
q.s/

�
ds:

Discretizing the integral in different ways gives rise
to various numerical schemes. We mention a class of
trigonometric integrators that reduces to the Störmer–
Verlet method for A D 0 and gives the exact solution
for g D 0. In its two-step version, the method reads

qnC1 � 2 cos.h˝/ qn C qn�1 D h2�g.˚qn/:

Here � D  .h˝/ and ˚ D �.h˝/, where the filter
functions  and � are smooth, bounded, real-valued
functions with  .0/ D �.0/ D 1. The choice of
the filter functions has a substantial influence on the
long-time properties of the method. The computation
of the matrix functions times a vector can be done by
diagonalization of A or by Krylov subspace methods.

Transformation to Corotating Variables
For problems where the high frequencies and the cor-
responding eigenspaces depend on time or on the
solution, it is useful to transform to corotating variables
in the numerical treatment.

We illustrate the basic procedure for Schrödinger-
type equations

i P .t/ D 1

"
H.t/ .t/; " � 1;

with a time-dependent real symmetric matrix H.t/

changing on a time scale 	1, for which the solu-
tions are oscillatory with quasi-period 	 ". A time-
dependent linear transformation �.t/ D T".t/ .t/

takes the system to the form

P�.t/ D S".t/ �.t/ with S" D PT"T �1
" � i

"
T"HT

�1
" :

A first approach is to freeze H.t/ � H� over a time
step and to choose the transformation

T".t/ D exp

�
i t

"
H�
�

yielding a matrix function S".t/ that is highly oscilla-
tory and bounded in norm by O.h="/ for jt � t0j � h,
if H� D H.t0 C h=2/. Step sizes are still restricted
by h D O."/ in general, but can be chosen larger
in the special case when the derivatives of 1

"
H.t/ are

moderately bounded.
A uniformly bounded matrix S".t/ is obtained by

diagonalizing

H.t/ D Q.t/�.t/Q.t/T ;

with a real diagonal matrix �.t/ D diag .�j .t// and
an orthogonal matrix Q.t/ of eigenvectors depending
smoothly on t (possibly except where eigenvalues
cross). The unitary adiabatic transformation

�.t/ D exp

�
i

"
˚.t/

�
Q.t/T  .t/

with ˚.t/ D diag .�j .t// D
Z t

0

�.s/ ds;

represents the solution in a rotating frame of eigenvec-
tors. Figure 4 illustrates the effect of this transforma-
tion, showing solution components in the original and
in the adiabatic variables.

The transformation to adiabatic variables yields
a differential equation where the "-independent
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skew-symmetric matrix W.t/ D PQ.t/TQ.t/ is framed
by oscillatory diagonal matrices:

P�.t/ D exp

�
i

"
˚.t/

�
W.t/ exp

�
� i
"
˚.t/

�
�.t/:

This differential equation is easier to solve numerically
than the original one. The simplest of methods freezes
the slow variables �.t/ andW.t/ at the mid-point of the
time step, makes a piecewise linear approximation to
the phase˚.t/, and then integrates the resulting system
exactly over the time step. This gives the following
adiabatic integrator:

�nC1 D �n C hB.tnC1=2/
1

2
.�n C �nC1/ with

B.t/ D
�

exp

�
� i
"

�
�j .t/ � �k.t/

��

� sinc

�
h

2"

�
�j .t/ � �k.t/

��
wjk.t/

�
j;k

:

Numerical challenges arise near almost-crossings of
eigenvalues, where �.t/ remains no longer nearly
constant and a careful step size selection strategy is
required in order to follow the rapid non-adiabatic
transitions.

Problem-Adapted Solution Ansatz
In some problems one may guess, or know from theory,
an approximation ansatz for the solution with slowly
varying parameters. For problems withm constant high
frequencies !`=", .` D 1; : : : ; m/, this ansatz may be
a modulated Fourier expansion

yj .t/ �
X

kkk�K
zkj .t/e

i.k�!/t=";

with k � ! D Pm
`D1 k`!` and integers k` and with

slowly varying modulation functions zkj .t/. For some
problems with a time- or state-dependent high fre-
quency, a useful approach may come from a WKB
ansatz

y.t/ D A.t/ei�.t/="

with slowly varying functions A.t/ and �.t/, which
may be further expanded in asymptotic series in powers
of ". In either case, the solution ansatz is inserted in the
differential equation and the coefficient and parameter
functions are determined such that the approximation
gives a small defect in the differential equation. This
yields differential equations for the parameters which
are hopefully easier to solve.

This entry is essentially an abridged version of the
review article by Cohen, Jahnke et al. [1], which in turn
is largely based on Chaps. XIII and XIV of the book by
Hairer et al. [2]. Both contain detailed references to the
literature. The book by Leimkuhler and Reich [3] also
treats numerical methods for highly oscillatory dif-
ferential equations. Analytical averaging techniques,
useful also for the design of numerical methods, are
described in the book by Sanders et al. [4].
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Introduction

In inverse problems, the goal is to find objects, sources,
or changes in medium properties from indirectly re-
lated data. The solution is usually given as an image,
and as such the word imaging is often a descriptor
for an inverse problem. What distinguishes an inverse
problem from, e.g., an image deblurring problem is that
the mathematical model, for the process that generates
the data, plays an integral role in the solution of the
problem.

Inverse problems are ill-posed. This means that (1)
there may be more than one solution; (2) small changes
in the data may yield large changes in the solution;
or (3) a solution may not always exist, especially
when the data is noisy. To improve the likelihood of
a unique stable solution, several approaches are taken:
(1) One is to add more data by doing a sequence of
very similar experiments or by measuring additional
properties of the output of an experiment; this improves
the likelihood of a unique, sometimes stable, solution;
when the data is noisy, a solution may not exist; how-
ever, an approximate solution may exist. (2) A second
possibility is to treat the problem as an optimization
problem adding a regularizing term to both improve the
mathematical properties of the cost functional, which is
to be optimized, and to add mathematical structure to
find the approximation properties of the solution. (3) A
third possibility is to reduce the sought-after properties
of a solution; e.g., instead of looking for all the changes
in a medium, one might seek only the support of the
region where changes occur or one might look only
for the discontinuities of the medium. And (4) a fourth

possibility is to use coupled physics, that is, to utilize
two physical properties simultaneously; an example of
this is elastography where one mechanically creates
shear motion in the tissue while simultaneously taking
a sequence of RF/IQ (ultrasound) or a sequence of MR
(magnetic resonance) data sets; see [88] or, for more
examples, the Coupled Physics special issue of Inverse
Problems, 28(8), 2012.

An important feature in inverse problems is to
utilize a realistic mathematical model whose numerical
or exact solution can be shown to be consistent with
measured data and to use the model to make the correct
physical interpretation of the inverse problems solu-
tion. The mathematical structure utilized to obtain the
solution is also related to the targeted solution feature.
For example, (1) in the viscoelastic and wave equation
models [55], the arrival time of waves together with the
Eikonal equation can be utilized to find the fastest com-
pression, shear, or acoustic wave speed; (2) microlocal
analysis can be applied to a broad set of models and is
well suited for finding discontinuities with essentially
far-field data; (3) linear sampling and factorization
methods yield the support of inhomogeneities in a
constant background, again with far-field data; and (4)
in media with well-distributed small-scale fluctuations
and most accurately modeled as random media, the
inverse problem is a source location problem and
cannot be an inhomogeneity identification problem.

1D Inverse Spectral Problems

A first question to ask is: Given (1) the form of a
mathematical model, that is, a second-order eigenvalue
problem with square integrable potential and Dirichlet
boundary conditions on a finite interval, and (2) the
eigenvalues for this problem, does there exist a unique
potential corresponding to the mathematical model
and the eigenvalues? The answer is yes provided that
the eigenvalues satisfy a suitably general asymptotic
form and the potential is symmetric on the interval
[33, 40, 78].

If one relaxes the condition on the potential, that is,
it is no longer symmetric, then one must add additional
data to obtain existence and uniqueness of the solution.
Here there are essentially three choices: (1) for each
eigenfunction, add the ratio of the first derivative at
an endpoint to the L2 norm of the eigenfunction [33];
(2) for each eigenfunction, add the ratio of the first
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derivatives at the endpoints for each of the eigenfunc-
tions [78]; or (3) add a second sequence of eigenvalues
where one of the boundary conditions is changed
and has an unknown coefficient to be determined
by the data [53]. Each of these additional sequences
must satisfy a suitably general asymptotic form, as
before.

If one relaxes smoothness on the potential or equiv-
alently changes the second-order differential equa-
tion to have a positive impedance with square in-
tegrable derivative; see [25, 26]; similar statements
as in (2) above apply with the exception that the
data sequences have weaker asymptotic forms, and
with Dirichlet boundary conditions, one additional data
must be added, e.g., the integral of the impedance over
the interval where the problem is defined.

If the smoothness is further relaxed so that, e.g., the
positive impedance is of bounded variation, the asymp-
totics that can be established for the eigenvalues has
very limited structure; see [35,38]. Here some progress
has been made with the boundary control method;
see [87], but there are still many open problems. See
also [87] for more discussion of 1D inverse spectral
problems and also [60].

Inverse Nodal Problems

In 1D a related but very different problem to that
described above is to use the nodes, or zeros, of
eigenfunctions as data for the inverse problem. These
are points in a vibrating system where there is no
vibration. This inverse problem was first defined in [59]
for a square integrable potential and was later extended
to an impedance with integrable first derivative and
densities in BV [36,38]. Algorithms based on this idea
have remarkable convergence properties, even under
the weakest conditions on the unknown coefficients
[36,38]. Extensive stability estimates in the case where
the potential is square integrable or smoother are de-
scribed in [51].

Inverse nodal problems in 2D are significantly more
difficult partly due to the fact that the detailed asymp-
totics that can be obtained in 1D is much more difficult
to obtain in 2D. Nevertheless, for a rectangular domain
and with square integrable potential, a fundamental
result is obtained in [37,61] that established uniqueness
and an algorithm for finding the potential from nodal
lines.

Elastography: A Coupled Physics Imaging
Modality

The goal in elastography is to create images of biome-
chanical properties of tissue. It is inspired by (1)
the doctors’ palpation exam where the doctor presses
against the skin to feel abnormalities in the body and
(2) compression and vibration experiments that show
cancerous tumors have shear wave speed with more
than twice the value in normal tissue [90] or similar
experiments that show fibrotic and cirrhotic liver can
have shear moduli at least double that of normal liver
tissue [95].

This capability, i.e., the imaging of biomechanical
properties of tissue, is created by combining two phys-
ical properties of tissue. The basic idea is that the tissue
is mechanically moved in a shearing motion, and while
it is moving, a sequence of RF/IQ ultrasound data sets
are acquired or a sequence of magnetic resonance, MR,
data sets are acquired. The sequences are processed to
produce a movie of the tissue moving within the tar-
geted area of the body. The moving displacement data
sets are the data for the inverse problem. The success
of these experiments is based on the fact that tissue
is mostly water. This means that the ultrasound data
acquisition utilizes the fact that compression waves
in the body travel at nearly 1,500 m/s ,while shear
waves, which are the mechanically induced motion,
travel at approximately 3 m/s in normal tissue. So
the shear wave can be considered as fixed during
a single ultrasound sequence data acquisition. The
compression and the shear waves are the two physical
properties that are coupled for this type of experiment.
The MR acquired data sets are based on the spin of
water molecules, a property distinct from the shear
wave propagation; MR and shear wave propagation are
thus the two physical properties that are coupled for
this experiment. These coupled physics imaging data
acquisition modalities are also referred to as hybrid
imaging modalities.

The mechanical motion is induced in one of three
ways: (1) The tissue is moved with a sinusoidal motion
at a rate from 60–300 Hz; both MR and RF/IQ data
sets can produce the targeted movie; e.g., this is done
with RF/IQ data sets in sonoelasticity [76] or with MR
data sets in MRE [69, 70]. (2) Motion is induced by an
interior radiation force push which is a pulse induced
within the tissue by focused ultrasound [81]; excellent
examples of the use of this method are supersonic
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imaging [13] and ARFI and SWEI [73, 74]. And (3)
the tissue is compressed in very small increments and
is allowed to relax between compressions; see [75] for
the initial compression experimental results.

When the tissue is mechanically excited by a pulse,
a wave propagates away from the pulse location. This
wave has a front, a moving surface where ahead of the
front there is very little motion and at the front there
is large amplitude. The front has a finite propagation
speed. The time, T, at which the front arrives at a given
location, the arrival time, is the richest data subset
in the movie data set. Under suitable hypotheses, it
can be shown that T is the viscosity solution of an
Eikonal equation, jgrad Tj2 D .1=c/2, where c is
the shear wave speed; this property is utilized by the
arrival time algorithm [62–64]. The quantity, c, is the
imaging functional. Another algorithm, the time-of-
flight algorithm utilizes a one-dimensional version of
this Eikonal equation; see [13, 73], for applications in
supersonic imaging or ARFI or SWEI.

Note that the presence of viscoelasticity can be
observed in the time trace at each pixel in the
tissue as the pulse spreads in the direction behind
the front as the pixel location is taken further and
further from the initial pulse location. This occurs
because the speed of the frequency content in the
pulse propagates at a frequency-dependent wave speed
with the fastest speeds at the highest frequencies. A
mathematical model that contains both the viscoelastic
effect and the finite propagation speed property is the
generalized linear solid model. See [65] for theoretical
results for the forward problem, including the finite
propagation speed property, and [55] for the use of
this model to create shear wave speed images with
acoustic radiation force-induced (CAWE) crawling
wave data.

When the tissue is mechanically moved in a si-
nusoidal motion, a time harmonic wave is induced.
The amplitude of this wave satisfies the time harmonic
form of the linear elastic system and is sometimes
simplified to the Helmholtz equation. A viscoelastic
model is required, and in the time harmonic case, this
yields complex-valued coefficients. The Helmholtz or
elastic model, as opposed to the Eikonal equation, for
the frequency-dependent displacement is utilized. The
most often used imaging functional is the complex-
valued shear modulus. The Fourier transform of the
general linearized solid model is appropriate here.
For this model, the complex-valued shear modulus

approaches a finite limit as the frequency goes to
infinity. Other viscoelastic models have been utilized;
see [14,43], [96]; in [43] and [14], the complex-valued
shear modulus becomes unbounded as the frequency
becomes large; at the same time, the application of the
model in [43] is usually for fixed frequency, but not in
[14]. For fixed frequency, the shear modulus satisfies
a first-order partial differential equation system. The
difficulties here are that (1) the solution, that is, the
shear modulus, is complex valued so some known
methods, e.g., computing along characteristic curves,
cannot be employed, and (2) the coefficients of the first
derivative terms can be zero on a large set of points,
lines, or surfaces (but not in open subsets of the region
of interest). This makes stability and uniqueness results
difficult to obtain; however, uniqueness and stability
results are contained in [41] where solutions and coef-
ficients are assumed to be subanalytic; an earlier paper
[2] achieved results when (1) the frequency is zero, (2)
the dimension is 2, and (3) the shear modulus is real:
under more general smoothness conditions.

A number of approaches are utilized to overcome
this difficulty of having possible zero values of the
coefficients of the first derivative terms: (1) Set all
derivatives of the shear modulus to zero and solve
the resulting problem [88]; a bound on the error that
is made when this is done, under the assumptions
that the coefficients of the first derivative terms are
nonzero, is contained in [54] when the coefficients
are real; the same proof will yield a similar result
when coefficients are complex valued. (2) Another is
to first linearize the problem about a base problem,
and then use multiple data sets to eliminate the pr-
oblem of having zero coefficients of the derivatives
of the sought-after shear modulus; see, for example,
[8]. And (3) employ optimization and iterative [43]
methods.

Inverse Scattering Problems

The first type of inverse scattering problem is defined
as follows. Suppose: (1) a constant, infinite in extent,
background surrounds a bounded object or a bounded
region containing an inhomogeneous medium; (2) one
initiates an incoming plane harmonic wave that scat-
ters from the object or region; and (3) the scattered
wave is measured in the far field. Then the classic
acoustic, electromagnetic, or elastic inverse scattering
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problem is to recover the object or inhomogeneity
from the scattered data. Even when the forward pro-
blem is linear, the inverse problem is nonlinear. First
the mathematical structure for the forward problem
must be established, and then one can address the
inverse problem. Considerable mathematical structure
has been developed toward solving the inverse problem
and the literature is vast. It has been shown, in the
acoustic and electromagnetic case, that if one has
scattering data at all outgoing angles from an incoming
plane wave from a single direction and oscillating at a
single frequency, then only one polygonal object can
correspond to that data [56–58]; for the inhomoge-
neous medium problem, it is known that if one has
scattering data at all outgoing angles, for incoming
waves from all incoming directions and oscillating at
a single frequency, then an inhomogeneous medium
in a bounded region is unique [18, 21, 34, 71]. Nev-
ertheless, the problem is severely ill-posed. The ill-
posedness arises for several reasons, one being that the
information content lies deep in the data and another
being that some operators developed in the solution
structure have only dense range. The latter means that
solution methods can be unstable in the presence of
noise in the data or when approximations of the data
are used.

To cope with the ill-posedness, several approaches
are taken; here are a few examples: (1) The problem
can be linearized; this is called the Born approxima-
tion; this doesn’t remove the ill-posedness, but the ill-
posedness of the linearized problem is somewhat easier
to analyze. (2) One can add data by including scattered
waves from incoming waves, both from a full set of
possible directions, and in addition, there are incoming
waves, together with their scattered waves, with many
frequencies of oscillation; this can be accomplished,
as in [10] for the inverse medium problem where the
Born approximation is used for each frequency of
oscillation, and one iterates by solving the linearized
problem for one frequency, using the output from the
solution of that linearized problem as input for solving
the linearized problem for another frequency, and so
on, a similar method is applied in [11] for the inverse
source problem. And/or (3) one can target a simpler
property, e.g., find only the support of a bounded inho-
mogeneous region; this approach is taken in the linear
sampling method [21, 22, 77] and in the factorization
method [47, 52], where the problem is reformulated so
that the boundary of the region or object is identified

as the points where an imaging functional becomes
large.

The second type of inverse scattering we consider
is scattering of a wave in a half-space (e.g., a section
of the earth relatively near the surface) from a source,
for example, a buried explosive or an earthquake. Here
it is often assumed that a smooth, slowly varying in
space, background medium is known, and what is
sought are the abrupt changes, usually referred to as
discontinuities and also described as the highly oscil-
latory part of the medium. What is remarkable here is
that in [15] it was shown, under certain assumptions,
that the measured pressure field at locations on the
surface could be expressed as integrals, referred to as
transforms, over space-time surfaces. The integrand of
these integrals contains the sought-after unknown in
the half-space plus possibly some known quantities.
When this transform is a Fourier integral operator
(FIO), using concepts from microlocal analysis (see
[74,83,89]), an inversion, containing two steps referred
to as a migration step together with a microlocal filter,
to recover the highly oscillatory part is possible (see
[74] and the references therein).

A third type of inverse scattering is more related to
a method for solution than a specific physical setting
and is referred to as an adjoint method [72]. The main
feature is that the method makes use of the adjoint of
the derivative of the forward map. An example is the
iterative method known as the Kaczmarz method. We
describe the method where there are a finite number
of sources and a corresponding number of responses,
measured, for example, on the boundary of the medium
to be imaged. An initial guess is made for the medium.
At each update, the adjoint of the derivative of the
forward operator is computed for the current value of
the medium. The new approximation of the medium
is obtained by having that adjoint operate on the dif-
ference between the simulated “data” computed with
the current iterate minus the measured data due to the
next source in the iteration. See [72] for further dis-
cussion. The method has been applied to a wide range
of problems including optical, impedance, ultrasound
tomography, and computerized tomography (CT).

Computerized Tomography

The inversion of the second inverse scattering problem
described above has similarities with the inversion
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of the Radon transform utilized in X-ray tomogra-
phy. X-ray CT has a rich history with Cormack [27]
and Hounsfield sharing a 1979 Nobel Prize for the
discovery and initial practical implementation. The
mathematical problem is the recovery of the X-ray
attenuation (often referred to as density) from line
integrals of the attenuation. This problem was first
solved by Radon [79]; the integrals over lines or
planes of an integrable function is now referred to
as the Radon transform. There is a vast literature on
inversion formulas to find the pointwise attenuation
from line integrals of the attenuation. Of particular
interest are as follows: (1) Inversion formulas that
utilize Fourier multiplication operators, such as are
derived from the Hilbert transform, and also the formal
adjoint of the Radon transform; regularization can be
applied to avoid mild ill-posedness that can occur with
the use of such formulas; see [30]. (2) Formulas for
data taken in 3D on helical curves; this is motivated
by the use of a circular scanner that takes data as
the patient is moved linearly through the scanner; re-
markably Katsevich [46] discovered an exact formula
when the attenuation is smooth and when it is assumed
that the helix lies on a cylinder; additional very useful
formulas were obtained in [32, 97] which relate the
derivative of the line integral transform to the Hilbert
transform. And (3) inversion formulas that utilize an
expansion of the unknown attenuation in terms of a
set of basis functions; of particular interest are basis
functions known as “blobs” which have representations
in terms of Bessel functions; once a representation is
chosen, then the inversion is formulated as an iteration
of algebraic reconstructions; see the discussion of ART
in [39].

Time Reversal and Random
Media

Time reversal invariance in acoustic, elastic, and elec-
tromagnetic wave propagation is the basic concept
behind time reversal mirrors. In free space, in an
enclosed region, if a source emits a signal and (1)
the signal is measured for a very long time, at all
points on the boundary, and (2) the received signal on
the boundary is time reversed and back propagated into
the region, then the back propagated signal will focus
at the original source location.

When the medium contains very well-distributed
scatterers of varying small sizes, it is not possible
to image the inhomogeneities. What is remarkable is
that, in this case, when those inhomogeneities can be
thought of as being randomly distributed with a not
too large variance, then the multiple scattering from the
inhomogeneities provides a significant advantage in lo-
cating the source. Indeed what occurs is that (1) limited
aperture measured signals, when back propagated, can
have excellent refocusing properties; (2) the refocusing
breaks the diffraction limit; (3) even in unbounded
domains, the back propagated signals focus; and (4) the
length of the measured received signals can be quite
short.

All of these properties have been well demonstrated
experimentally by Mathias Fink’s group; see [31].

This is very much related to coherent interfero-
metric imaging (see [16]), where the fundamental
tool is local cross correlations of the data traces at
nearby receivers, estimates of the frequency range
for which wave fields are statistically correlated,
and favorable resolution limits can be obtained. See
also [9] for additional descriptions of the advantages
of cross correlations when dealing with random
media.

As multiple scattering is the main physical prop-
erty that is yielding the advantage here, additional
work has been done in waveguides containing ran-
dom media when additional multiple scattering from
the boundaries provides even more advantage; see
[1]. In contrast, see [28] for recovery of inhomo-
geneities in waveguides that do not contain random
media.

Optical Tomography

Optical tomography is an imaging modality that uses
the transmission and reception of light at collectors
to image properties of tissue. Light scatters signif-
icantly in tissue making the imaging problem quite
difficult and ill-posed. Furthermore, the mathematical
formulation of the inverse problem depends on the
scale of the scattering that is taken into account; the
mathematical formulation depends fundamentally on
the experimental setup. The latter is well described in
[5]. Mathematical formulations can utilize the radiative
transport equation or the diffusion equation; both for-
mulations are discussed in [85].



1124 Overview of Inverse Problems

Hybrid- or Coupled Physics-Based
ImagingModalities

As medical imaging and nondestructive testing have
become widely used, a broad set of experiments to pro-
vide useful data have been defined. Initially, a medium,
e.g., tissue, was probed by a signal from outside the
medium and the scattering from that signal, which is
also measured outside of the medium, was utilized
to obtain the image or the information needed for
nondestructive testing. Typically, the edges of changes
in the medium were the property that could most
easily be imaged. In many cases, these edges could
be imaged with high resolution. What was needed
were new methods to determine changes within the
regions which are defined by the edges or surfaces.
This need is being addressed by coupled physics, or
also called hybrid, modalities. In these modalities, two
physical properties of the medium are utilized; e.g.,
(1) in elastography (see above paragraph), one uses
sequences of RF/IQ ultrasound data, or sequences of
MR data, the latter acquired while making a shearing
motion in the tissue so that compression wave and wa-
ter molecule spin properties of the medium are utilized;
these ideas are incorporated in ultrasound and MR ma-
chines; (2) in photoacoustic imaging [49], where low-
frequency electromagnetic (EM) waves expose small
regions of the medium to a short pulse, an acoustic
wave is emitted and recorded outside the object, and
from this data the electromagnetic absorption for the
small region is determined; (3) ultrasound-modulated
optical tomography or ultrasound-modulated electrical
impedance tomography combine ultrasound which is
used to perturb the medium with optical tomography
or electrical impedance measurements (see [68]); and
(4) magnetic resonance electric impedance tomogra-
phy where MR is combined with electric impedance
tomography (see [86]). See also [6] for additional
coupled physics problems and results.

Inverse Boundary Problems and Inverse
Source Problems

An example of the inverse boundary problem is (1)
posed on a bounded domain, (2) has an electromagnetic
model for the forward problem, and (3) has applica-
tion where one applies, e.g., all possible voltages at
the boundary and, for each voltage distribution, one

measures the current on the boundary. This set of
experiments gives data pairs (voltage and current) that
define the Dirichlet to Neumann (DtN) map. A similar
problem can be defined when the model is the acoustic
or elastic model. The goal then is to determine un-
known electric, acoustic, or elastic properties from the
DtN map. A significant literature has built up studying
uniqueness, stability, isotropic and anisotropic models,
and the partial data problem.

We begin with those mathematical models that are
elliptic partial differential equations that are defined in
the (time) frequency domain. Historically the problem
was posed by Calderón [23] in the isotropic electro-
static case, that is, the frequency is zero. A powerful
tool that has been used to study, even the more general
frequency not equal to zero problem and including
acoustic, electrogmagnetic, and elastic models, is mi-
crolocal analysis.

We address the uniqueness problem in the acoustic
and electromagnetic problem. For this case, uniqueness
for dimension n � 3 has been established for positive
conductivities that are somewhat less smooth than
twice continuously differentiable but not as rough as
Lipschitz continuous. For dimension two, uniqueness
is established for essentially bounded positive conduc-
tivities. See [92] for a discussion of uniqueness and a
method for finding the support of an obstacle for the
electromagnetic case.

One of the difficulties in using the DtN map in
applications is that while the stability for recovering the
conductivity from the data has been established, that
stability is logarithmic and is quite weak; see [3].

Nevertheless, partial data, that is, knowledge of
the DtN map on only part of the boundary, can also
yield uniqueness for n � 3. The unique recovery
of anisotropic properties, properties that depend on
direction, from the DtN is not possible as a change of
variables that leaves the boundary and the boundary
data fixed produces a counterexample to uniqueness.
A major question is whether or not this change of
variables property is the only obstruction to unique-
ness. Toward this end, it has been shown that in two
dimension, this is the only obstruction to uniqueness
under very general smoothness conditions [7].

A related problem is an inverse source problem
where Cauchy data, that is, a single Dirichlet and
Neumann boundary data pair, is known for a second-
order, static, linear problem with known coefficients
and an unknown source in a bounded domain in n
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dimensions. From that data, one seeks to determine the
source. There are a number of examples to show that
the solution is not unique so a typical redefinition of the
problem is to look for the minimum, square integrable
source. Alternatively one can consider finding sources
of constant value but confined to a subregion. Here
to obtain uniqueness, one makes assumptions on the
geometry of the region. The problem is very ill-posed
with, as in the inverse DTN map problem, logarithmic
stability.

If the mathematical model for the physical prob-
lem contains a frequency term, as in the Helmholtz
equation, or models time-dependent waves, with time-
dependent data, this substantively changes the prob-
lem; see [42]. In this case, use of continuation princi-
ples has played a significant role in uniqueness results.

Distributions, Fourier Transforms, and
Microlocal Methods

Microlocal methods are an important mathematical
tool. The description of these methods requires an
excellent understanding of distributions and Fourier
transforms ; see [83] for this much needed background.
As explained in [89], microlocal analysis is, roughly
speaking, the local study of functions near points and
including directions.

These methods have been important in the study of
inverse problems, particularly in the location of sharp
changes of an unknown coefficient. The reason for this
latter property is that microlocal methods enable the
identification of the wave front set – a generalization
of the notion of singular support of a function, which
is the complement of the largest open set where a
function is smooth. See [89] for more description and
a related description of geometric optics.

Regularization

A well-posed problem has a unique solution that de-
pends continuously on data. Inverse problems are char-
acteristically ill-posed. To deal with this difficulty,
regularization can be employed. It is an optimiza-
tion method whereby the original inverse problem is
changed to another well-posed problem to obtain what
is mathematically characterized as the best possible
approximate solution to the given inverse problem

given the characteristics of the data. A typical example
of a regularization method is Tikhonov regularization;
see [29].

Regularization methods are applied when (1) there
is more than one solution to the problem (typically
the minimum norm solution is sought) and/or (2) the
forward operator has only dense range making the
inverse operator unbounded; when data is noisy or
approximate, it may not be in the range of the forward
operator; filtering and/or projection and/or mollifying
can be applied to find an approximate solution.

For a large set of linear problems, the theory yields
direct methods and these methods have been exten-
sively applied. For linear problems, the regularization
parameters can be chosen so that (1) when the inverse
problem has a unique solution when exact data is
given, (2) when the regularization parameters approach
a given value, and (3)when the approximate data ap-
proaches the exact data, then the approximate inverse
problems solution approaches the true solution.

Tikhonov regularization, which seeks an approxi-
mate solution while minimizing the norm of the solu-
tion, can be applied in the nonlinear case. For Tikhonov
regularized nonlinear problems, as well as other regu-
larized nonlinear problems, iterative methods are often
applied to get approximate solutions. These methods
require a stopping criteria and nonlinearity conditions
to establish convergence (see [29] and for example [45]
and [84]).

There is a wide range of additional considerations
that must be taken into account when defining the
spaces that define the norms for the regularization.
If the mathematical setting for the regularization is
set in Hilbert space, the inverse problems solution,
or image, is typically smoothed. To avoid this, for
problems where discontinuities or sharp changes in
the recovered parameter, or image, are expected, the
nonreflexive Banach space with the BV norm may
be used. This changes the methods for establishing
convergence; one of the tools is Bregman distance;
see, e.g., [20] and [84]. Bregman distance is used to
establish convergence when the derivative of the cost
functional is a subdifferential, which is a set rather
than a single operator. Other choices for Tikhonov
regularization can include sparsity constraints; this
choice is used if it is expected that the exact solution, or
an excellent approximate solution, can be represented
by the sum of a small number of terms. A typical norm
in the regularization term is L1 in this case.
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Photonic Crystals andWaveguides and
Inverse Optical Design

For inverse optical design, the goal is to determine a
structure that has certain properties when electromag-
netic waves are oscillating in the optical range and
propagating through or along the surface of a dielectric
material. One example is a photonic crystal where
one starts with a periodic structure that has a bandgap
that is an interval of oscillation frequencies, for which
the wave decays exponentially. Then one introduces
defects in the material that have the effect of enlarging
the bandgap, and the aim is to place the defects so as to
maximize the bandgap. The goal is to have a large set
of oscillating waves that have very little amplitude after
passing through the structure. This problem ultimately
results in maximizing the difference of two eigenval-
ues, a nonlinear optimization problem.

Another problem is a shape optimization problem
where one seeks to design a rough surface grating
coupler that will focus light to nanoscale wave lengths
while maximizing the power output of the structure
(see [14]). An overview of an adjoint method that has
been utilized successfully in optimal design, together
with an explanation that motivates the method steps,
and some examples where the method successfully
produced a useful design are in [67].

Statistical Methods for Uncertainty
Quantification

In inverse problems, one often encounters the follow-
ing scenario. We are given noisy data, y C ©, where ©
represents the noise. The exact data y D Kf, where
K is an operator with unbounded inverse. The goal
is to recover f. An approximation to f is determined
using the noisy data, by solving an optimization pro-
blem with a regularizing term (see [29]) containing a
parameter, œ. The regularizing term introduces a bias
in the approximate, fa� of f.

When the statistics of the noise, ©, are known, that
is, the mean and variance of the noise are known, under
certain hypotheses, one can recover the statistics for
the approximate, fa, including the statistics of the bias.
This, then, is a method for quantifying the uncertainty
in the approximate solution. This can be a significant
aid in the interpretation of the approximate, fa. We
note that all of this analysis includes the regularizing

term parameter, œ, so there is reason to want to select
it optimally. Often this is done by making several
numerical calculations of approximate solutions. As
an alternative, one can use statistical methods to make
an optimal choice of the regularization parameter; one
such method is cross validation [93, 94]. See [91]
for more discussion about uncertainty quantification
methods. See also [44] for discussion of statistical
methods in inverse problems.
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7. Astala, K., Lassas, M., Päivärinta, L.: Calderón inverse
problem for anisotropic conductivity in the plane. Commun.
Partial Differ. Equ. 30, 207–224 (2005)

8. Bal, G., Uhlmann, G.: Reconstruction of coefficients in
scalar second-order elliptic equations from knowledge of
their solutions. Commun. Pure Appl. Math. 66, 1629–1652
(2013)

9. Bal, G., Pinaud, O., Ryzhik, L.: Random Media in Inverse
Problems, Theoretical Aspects. This Encyclopedia (2015)

10. Bao, G., Triki, F.: Error estimates for the recursive lineariza-
tion for solving inverse medium problems. J. Comput. Math.
28, 725–744 (2010)

11. Bao, G., Lin, J., Triki, F.: A multi-frequency inverse source
problem. J. Differ. Equ. 249, 3443–3465 (2010)

12. Belishev, M.I.: Boundary Control Method. This Encyclope-
dia (2015)

13. Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imag-
ing: a new technique for soft tissue elasticity mapping.
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 19, 396–40
(2004)

14. Bercoff, J., Tanter, M., Muller, M., Fink, M.: The role of
viscosity in the impulse diffraction field of elastic waves in-
duced by the acoustic radiation force. IEEE Trans Ultrason.
Ferroelectr. Freq. Control 51(11), 1523–1536 (2004)

15. Beylkin, G.: Imaging of discontinuities in the inverse scat-
tering problem by inversion of a causal generalized Radon
transform. J. Math. Phys. 26, 99–108 (1985)



Overview of Inverse Problems 1127

O

16. Borcea, L.: Interferometric Imaging and Time Reversal in
Random Media. This Encyclopedia (2015)

17. Borg, B.: Eine Umkerung der Sturm Liouville Eigenwer-
taufgabe. Acta Math. 78, 1–96 (1946)

18. Bukhgeim, A.: Recovering a potential from Cauchy data
in the two-dimensional case. J. Ill-Posed Probl. 16, 19–33
(2008)

19. Burger, M.: Photonic Crystals and Waveguides. Simulation
and Design. This Encyclopedia (2015)

20. Burger, M., Osher, S.: Convergence rates of convex vari-
ational regularization. Inverse Probl. 20(5), 1411–1421
(2004)

21. Cakoni, F.: Inhomogeneous Media Identification. This En-
cyclopedia (2015)

22. Cakoni, F., Colton, D., Monk, P.: The Linear Sampling
Method in Inverse Electromagnetic Scattering. CBMS-NSF,
vol. 80. SIAM Publications, Philadelphia (2010)

23. Calderón, A.P.: On an inverse boundary value problem. In:
Seminar on Numerical Analysis and Its Applications to
Continuum Physics, Rio de Janeiro pp. 65–73. Sociedade
Brasileira de Matematica, Rio De Janeiro (1080)

24. Cheney, M., Borden, B.: Radar Imaging. This Encyclopedia
(2015)

25. Coleman, C.F., McLaughlin, J.R.: Solution of the inverse
spectral problem for an impedance with integrable deriva-
tive, Part I. CPAM XLVI, 145–184 (1993)

26. Coleman, C.F., McLaughlin, J.R.: Solution of the inverse
spectral problem for an impedance with integrable deriva-
tive, Part II. CPAM XLVI, 185–212 (1993)

27. Cormack, A.: Representation of a function by its line in-
tegrals, with some radiological applications. J. Appl. Phys.
34(9), 2722–2727 (1963)

28. Dediu, S., McLaughlin, J.: Recovering inhomogeneities in a
waveguide using eigensystem decomposition. Inverse Probl.
22, 1227–1246 (2006)

29. Engl, H.W., Ramlau, R.: Regularization of Inverse Prob-
lems. This Encyclopedia (2015)

30. Finch, D.V., Faridani, A.: X-Ray Transmission Tomography.
This Encyclopedia (2015)

31. Fink, M.: Time Reversal Experiments in Acoustics. This
Encyclopedia (2015)

32. Gel’fand, I.M., Graev, J.: Crofton’s function and the inver-
sion formulas in real integral geometry. Funct. Anal. Appl.
25, 1–5 (1991)

33. Gel’fand, I.M., Levitan, B.M.: On the determination of a
differential equation from its special function. Izv. Akad.
Nauk SSR. Ser. Mat. 15, 309–360 (1951) (Russian): En-
glish transl. in Am. Math. Soc. Transl. Ser. 2(1), 253–304
(1955)

34. Hähner, P.: Electromagnetic wave scattering. In: Pike, R.,
Sabatier, P. (eds.) Scattering. Academic, New York (2002)

35. Hald, O.: Discontinuous inverse eigenvalue problems.
CPAM 37, 539–577 (1984)

36. Hald, O.H., McLaughlin, J.R.: Solutions of inverse nodal
problems. Inverse Probl. 5, 307–347 (1989)

37. Hald, O.H., McLaughlin, J.R.: Inverse nodal problems:
finding the potential from nodal lines. Mem. Am. Math. Soc.
119(572), 146 (1996)

38. Hald, O.H., McLaughlin, J.R.: Inverse problems: recovery
of BV coefficients from nodes. Inverse Probl. 14(2), 245–
273 (1998)

39. Herman, G.: Computerized Tomography. ART, This Ency-
clopedia (2015)

40. Hochstadt, H.: Asymptotic estimates for the Sturm–
Liouville spectrum. CPAM 14, 749–764 (1961)

41. Honda, N., McLaughlin, J., Nakamura, G.: Conditional
stability for a single interior measurement. Inverse Probl.
30, 19 (2014)

42. Isakov, V.: Locating a Source. This Encyclopedia (2015)
43. Jiang, Y., Fujiwara, H., Nakamura, G.: Approximate steady

state models for magnetic resonance elastography. SIAM J.
Appl. Math. 71(6), 1965–1989 (2011)

44. Kaipio, J., Somersalo, E.: Statistical and Computational
Inverse Problems. Springer, Berlin/Heidelberg/New York
(2004)

45. Kaltenbacher, B., Hofmann, B.: Convergence rates for the
iteratively regularized Gauss-Newton method in Banach
spaces. Inverse Probl. 26, 035007 (2010)

46. Katsevich, A.: An improved exact filtered backprojection
inversion algorithm for spiral cone-beam CT. Adv. Appl.
Math. 32, 681–697 (2004)

47. Kirsch, A., Grinbert, N.: The Factorization Method for In-
verse Problems. Oxford Lecture Series in Mathematics and
Its Applications, vol. 36. Oxford University Press, Oxford
(2008)

48. Klein, J., McLaughlin, J., Renzi, D.: Improving arrival time
identification in transient elastography. Phys. Med. Biol.
57(8), 2151–2168 (2012)

49. Kuchment, P., Scherzer, O.: Mathematical Methods in
Photo- and Thermoacoustic Imaging. This Encyclopedia
(2015)

50. Lassas, M., Milton, G.: Invisibility Cloaking. This Encyclo-
pedia (2015)

51. Law, C.-K.: Inverse Nodal Problems 1D. This Encyclopedia
(2015)

52. Lechleiter, A.: Factorization Method in Inverse Scattering.
This Encyclopedia (2015)

53. Levitan, B.M.: Inverse Sturm-Liouville Problems. VNU
Science Press, Ultrecht (1997)

54. Lin, K., McLaughlin, J.: An error estimate on the direct
inversion model in shear stiffness imaging. Inverse Probl.
25(7), 19 (2009)

55. Lin, K., Mclaughlin, J., Thomas, A., Parker, K., Castaneda,
B., Rubens, D.: Two-dimensional shear wave speed and
crawling wave speed recoveries from in vitro prostate data.
J. Acoust. Soc. Am. 130(1), 585–98 (2011)

56. Liu, H.: A global uniqueness for formally determined inv-
erse electromagnetic obstacle scattering. Inverse Probl. 24,
13 (2008)

57. Liu, H., Zou, J.: On uniqueness in inverse acoustic and
electromagnetic obstacle scattering problems. 4th AIP In-
ternational Conference and the 1st Congress of the IPIA. J.
Phys.: Conf. Ser. 124, 12 (2006)

58. Liu, H., Zou, J.: Uniqueness in an inverse acoustic ob-
stacle scattering problem for both sound-hard and sound-
soft polyhedral scatterers. Inverse Probl. 23, 515–524
(2006)

59. McLaughlin, J.R.: Inverse spectral theory using nodal points
as data – a uniqueness result. J. Differ. Equ. 73, 354–362
(1988)

60. McLaughlin, J.R.: Solving inverse problems with spectral
data. In: Colton, D., Engl, H., Louis, A., McLaughlin, J.,



1128 Overview of Inverse Problems

Rundell, W. (eds.) Surveys on Solution Methods for Inverse
Problems, pp. 169–194. Springer, New York (2000)

61. McLaughlin, J., Hald, H.: A formula for finding a potential
from nodal lines. Bull. Am. Math. Soc. 32, 241–247 (1995)

62. McLaughlin, J., Renzi, D.: Shear wave speed recovery in
transient elastography and supersonic imaging using propa-
gating fronts. Inverse Probl. 22, 681–706 (2006)

63. McLaughlin, J., Renzi, D.: Using level set based inversion
of arrival times to recover shear wavespeed in transient
elastography and supersonic imaging. Inverse Probl. 22,
707–725 (2006)

64. McLaughlin, J., Yoon, J.-R.: Arrival times for the wave eq-
uation. Commun. Pure Appl. Math. 64(3), 313–327 (2011)

65. Mclaughlin, J., Thomas, A., Yoon, J.R.: Basic theory
for generalized linear solid viscoelastic models. In: Bal,
G., Finch, D., Kuchment, P., Schotland, J., Stefanov, P.,
Uhlmann, G. (eds.) AMS Contemporary Mathematics Vol-
ume: Tomography and Inverse Transport Theory, pp. 101–
134. American Mathematical Society, Providence (2011)

66. McLaughlin, J.R., Oberai, A.A., Yoon, J.R.: Formulas for
detecting a spherical stiff inclusion from interior data: a
sensitivity analysis for the Helmholtz equation. Inverse
Probl. 28(8, Special Issue on Coupled Physics), 21 (2012)

67. Miller, O.D., Yablonovitch, E.: Inverse Optical Design. This
Encyclopedia (2015)

68. Monard, F., Bal, G.: Inverse anisotropic diffusion from
power density measurements in two dimensions. Inverse
Probl. 28, 20 (2012)

69. Muthupillai, R., Ehman, R.: Magnetic resonance elastogra-
phy. Nat. Med. 2, 601–603 (1996)

70. Muthupillari, R., Lomas, D.J., Rossman, P.J., Greenleaf,
J.F., Manduca, A., Ehman R.L. (1995) Magnetic resonance
elastography by direct visualization of propagating acoustic
strain wave. Science. 269, 1854–1857

71. Nachman, A.: Reconstructions from boundary measure-
ments. Ann. Math. 128, 531–576 (1988)

72. Natterer, F.: Adjoint Methods as Applied to Inverse Prob-
lems. This Encyclopedia (2015)

73. Nightingale, K.R., Palmeri, M.L., Nightingale, R.W., Tra-
hey, G.E.: On the feasibility of remote palpation using
acoustic radiation force. J. Acoust. Soc. Am. 110, 625–634
(2001)

74. Nolan, C.: Inversion Formula in Inverse Scattering. This
Encyclopedia (2015)

75. Ophir, J., Cespede, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elas-
tography: a quantitative method for imaging the elasticity of
biological tissues. Ultrason. Imaging 13, 111–134 (1991)

76. Parker, K., Fu, D., Gracewski, S., Yeung, F., Levinson, S.:
Vibration sonoelastography and the detectability of lesions.
Ultrasound Med. Biol. 24, 1937–1947 (1998)

77. Piana, M.: The Linear Sampling Method. This Encyclopedia
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Introduction

Parallel computing can be understood as solving a
computational problem through collaborative use of
multiple resources that belong to a parallel computer
system. Here, a parallel system can be anything
between a single multiprocessor machine and an
Internet-connected cluster that is made up of hybrid
compute nodes. There are two main motivations for
adopting parallel computations. The first motivation
is about reducing the computational time, because
employing more computational units for solving a
same problem usually results in lower wall-time usage.
The second – and perhaps more important – motivation
is the wish of obtaining more details, which can arise
from higher temporal and spatial resolutions, more ad-
vanced mathematical and numerical models, and more
realizations. In this latter situation, parallel computing
enables us to handle a larger amount of computation
under the same amount of wall time. Very often, it also
gives us access to more computer memory, which is
essential for many large computational problems.

The most important issues for understanding par-
allel computing are finding parallelism, implementing
parallel code, and evaluating the performance. These
will be briefly explained in the following text, with
simple supporting examples.

Identifying Parallelism

Parallelism roughly means that some work of a com-
putational problem can be divided into a number of
simultaneously computable pieces. The applicability of
parallel computing to a computational problem relies
on the existence of inherent parallelism in some form.
Otherwise, a parallel computer will not help at all.

Let us take, for example, the standard axpy opera-
tion, which updates a vector y by adding it to another
vector x as follows:

y ’xC y;

where ’ is a scalar constant. If we look at the entries of
the y vector, y1; y2; : : : ; yn, we notice that computing
yi is totally independent of yj , thus making each entry
of y a simultaneously computable piece. For instance,
we can employ n workers, each calculating a single
entry of y.

The above example is extremely simple, because the
n pieces of computation are completely independent
of each other. Such a computational problem is often
termed embarrassingly parallel. For other problems,
however, parallelism may be in disguise. This can be
exemplified by the dot product between two vectors x
and y:

d D x � y WD
nX

iD1
xiyi D x1y1 C x2y2 C : : :C xnyn:

At a first glance, parallelism is not obvious within
a dot product. However, if an intermediate vector d is
introduced, such that di D xiyi , then parallelism
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immediately becomes evident because the n entries of
the d vector can be computed simultaneously. Never-
theless, the remaining computational task

d D 0; d  d C di for i D 1; 2; : : : ; n
requires collaboration and coordination among nwork-
ers to extract parallelism. The idea is as follows. First,
each worker with an odd-number ID adds its value
with the value from the neighboring worker with an
ID of one higher. Thereafter, all the even-numbered
workers retire and the remaining workers repeat the
same process until there is only one worker left. The
solely surviving worker possesses the desired final
value of d . Actually, this is how a parallel reduction op-
eration is typically implemented. We can also see that
the parallelized summation has dlog2 ne stages, each
involving simultaneous additions between two and two
workers. Although it may seem that the parallel version
should be dramatically faster than the original serial
version of summation, which has n stages, we have to
remember that each stage in the parallel counterpart
requires data transfer between two and two workers,
causing the so-called communication overhead.

What is more intriguing is that parallelism can
exist on different levels. Let us revisit the example of
summing up the d vector, but assume now that the
number of workers,m, is smaller than the vector length
n. In such a case, each worker becomes responsible
for several entries of the d vector, and here are several
issues that require our attention:
1. The n entries of the d vector should be divided

among the m workers as evenly as possible. This is
called load balancing. For this particular example,
even when n is not a multiple of m, a fair work
division makes the heaviest and lightest loaded
workers only differ by one entry.

2. Suppose each worker prefers a contiguous segment
of d, then worker k, 1 � k � m, should be responsi-
ble for entry indices from ..k� 1/� n/=mC 1 until
.k � n/=m. Here, we let / denote the conventional
integer division in computer science.

3. The local summations by the m workers over their
assigned entries can be done simultaneously, and
each worker stores its local summation result in a
temporary scalar value dsk .

4. Finally, the m local summation results dsk , 1 �
k � m, can be added up using a parallel reduction
operation as described above.

The above examples are only meant for illustra-
tion. Parallelism in practical computational problems
exists in many more different forms. An incomplete
list of frequently encountered types of parallelizable
computations involves dense linear-algebra operations,
sparse linear-algebra operations, explicit and implicit
computations associated with regular meshes, implicit
computations associated with irregular meshes, fast
Fourier transforms, and many-body computations.

Parallelization

Finding parallelism in a computational problem is
only the start. A formal approach to designing parallel
algorithms is Foster’s Methodology [2, 7], which is a
four-step process. The first step is partitioning, which
cuts up the concurrent computational work and/or
the accompanying data into as many small pieces as
possible. The second step of Foster’s Methodology
is about finding out what data should be exchanged
between which pieces. The third step is about agglom-
erating the many small pieces into a few larger tasks, to
obtain an appropriate level of granularity with respect
to the hardware resources on a target parallel com-
puter. The last step of Foster’s Methodology is about
mapping the tasks to the actual hardware resources, so
that load balance is achieved and that the resulting data
communication cost is low. A rule of thumb regarding
communication is that two consecutive data transfers,
between the same sender and receiver, are more costly
than one merged data transfer. This is because each
data transfer typically incurs a constant start-up cost,
termed latency, which is independent of the amount of
data to be transferred.

To make a parallel algorithm run efficiently on a
parallel computer, the underlying hardware architec-
ture has to be considered. Although parallel hardware
architectures can be categorized in many ways, the
most widely adopted consideration is about whether
the compute units of a parallel system share the same
memory address space. If yes, the parallel system is
termed shared memory, whereas the other scenario is
called distributed memory. It should be mentioned that
many parallel systems nowadays have a hybrid design
with respect to the memory organization, having a
distributed-memory layout on the top level, whereas
each compute node is itself a small shared-memory
system.
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Luckily, the styles of parallel programming are
less diverse than the different parallel architectures
produced by different hardware vendors. The MPI pro-
gramming standard [3, 6] is currently the most widely
used. Although designed for distributed memory, MPI
programming can also be applied on shared-memory
systems. An MPI program operates a number of MPI
processes, each with its own private memory. Com-
putational data should be decomposed and distributed
among the processes, and duplication of (global) data
should be avoided. Necessary data transfers are en-
abled in MPI by invoking specific MPI functions at
appropriate places of a parallel program. Data, which
are called messages in MPI terminology, can be either
passed from one sender process to a receiver process
or exchanged collectively among a group of processes.
Parallel reduction operations are namely implemented
as collective communications in MPI.

OpenMP [1] is a main alternative programming
standard to MPI. The advantage of OpenMP is its
simplicity and minimally intrusive programming style,
whereas the performance of an OpenMP program is
most often inferior to that of an equivalent MPI im-
plementation. Moreover, OpenMP programs can only
work on shared-memory systems.

With the advent of GPUs as main accelerators for
CPUs, two new programming standards have emerged
as well. The CUDA [4] hardware abstraction and
programming language extension are tied to the hard-
ware vendor NVIDIA, whereas the OpenCL frame-
work [5] targets heterogeneous platforms that consist
of both GPUs and CPUs and possibly other proces-
sors. In comparison with MPI/OpenMP programming,
there are considerably more details involved with both
CUDA and OpenCL. The programmer is responsible
for host-device data transfers, mapping computational
work to the numerous computational units – threads
– of a GPU, plus implementing the computations to
be executed by each thread. In order to use modern
GPU-enhanced clusters, MPI programming is typically
combined with CUDA or OpenCL.

Performance of Parallel Programs

It is common to check the quality of parallel programs
by looking at their scalability, which is further divided

as strong and weak scalability. The former investigates
speedup, i.e., how quickly the wall-time usage can be
reduced when more compute units are used to solve
a fixed-size computational problem. The latter focuses
on whether the wall-time usage remains as constant
when the problem size increases linearly proportional
to the number of compute units used.

The blame for not achieving good scalability has
traditionally been put too much on the nonparal-
lelizable fraction of a computational problem, giving
rise to the famous laws of Amdahl and Gustafson-
Barsis. However, for large enough computational
problems, the amount of inherently serial work is often
negligible. The obstacle to perfect scalability thus lies
with different forms of parallelization overhead.

In addition to the already mentioned overhead due
to data transfers, there are other types of overhead that
can be associated with parallel computations:
• Parallel algorithms may incur extra calculations that

are not relevant for the original serial computational
problems. Data decomposition, such as finding out
the index range of a decomposed segment of a
vector, typically requires such extra calculations.

• Synchronization is often needed between compu-
tational tasks. A simple example can be found in
the parallel reduction operation, where all pairs of
workers have to complete, before proceeding to the
next stage.

• Sometimes, in order to avoid data transfers, dupli-
cated computations may be adopted between neigh-
bors.

• In case of load imbalance, because either the target
computational problem is impossible to be decom-
posed evenly or an ideal decomposition is too costly
to compute, some hardware units may from time to
time stay idle while waiting for the others.
It should be mentioned that there are also factors

that may be scalability friendly. First, many parallel
systems have the capability of carrying out communi-
cations at the same time of computations. This gives
the possibility of hiding the communication overhead.
However, to enable communication-computation over-
lap can be a challenging programming task. Second,
it sometimes happens that by using many nodes of a
distributed-memory system, the subproblem per node
falls beneath a certain threshold size, thus suddenly
giving rise to a much better utilization of the local
caches.
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Introduction

Parallel computing architectures are today the only
means for doing computational science. It was not
always so. Computers have been used for scientific
purposes since they emerged shortly after the Second
World War. The concept of a supercomputer, designed
to be faster than other computers and specifically tar-
geting computational science applications, took a leap
forward in 1976 with the Cray-1. Seymour Cray under-
stood that a fast computer was more than a fast CPU;
in fact, all data movement within the machine had to
be fast. He did not believe in parallel architectures; his
quote “If you were plowing a field, which would you
rather use: Two strong oxen or 1024 chickens?” can
serve as a testimony from his time.

However, his pioneering vector architecture helped
define an important concept, the single instruction,
multiple data (SIMD) mode of computation. A vec-
tor was a possibly large set of data elements where
each element would be subject to the same com-
puter instruction. An elementary example could be
the SAXPY, y.i/ WD y.i/ C a � x.i/; i D 1; : : : n.

In a vector machine, these operations became efficient
by pipelining. The operation was broken into many
elementary stages, and the elements were processed
like an assembly line, i.e., after a start-up time, the
computer was able to deliver a new result every cycle.

Already in the mid-1980s, it was understood and
projected that parallel computers would change com-
putational science and provide a dramatic improvement
in price/performance. The technology trend made the
difference between an ox and a chicken get smaller
and smaller. An early pioneer was the famous Intel hy-
percube machine. This architecture was fundamentally
different, employing a more general MIMD (multiple
instruction, multiple data) computing paradigm cou-
pled with message passing between computing nodes
interconnected in a hypercube network.

The two paradigms, SIMD and MIMD, remain the
two principle parallel architectures today, and state-of-
the-art computers do often appear as MIMD machines
with SIMD features at a second layer in the architec-
ture.

What Can a Parallel Machine Do for You?

For science and engineering, a parallel computer can
solve a larger problem in less time than the alternative.
A fixed-size problem will be best solved on a fixed-
size parallel computer. You will need to find the best
trade-off between efficient use of the computer and the
time it takes to solve your problem. Speedup, S.N /,
on a parallel computer is defined as the time it would
take a single processor to solve a problem divided by
the time the same problem would require when using
a parallel computer with N processors. If we have a
computer program with single processor running time
sCP where s is sequential time and P can be reduced
by using N > 1 processors, then with ˛ D s=.s CP/,
the speedup that one may achieve is limited by

S.N / D .s C P/=.s C P=N/ D 1

˛ C .1 � ˛/=N :

For a fixed-size problem, this shows that there is a fixed
number of processors N beyond which the benefit of
employing a greater number of processors will fall
below what one would be willing to pay. (This relation
is also known as Amdahl’s law.) However, there are
many scientific and engineering problems where one is
interested in increasing the size of the computational
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problem if a larger computer becomes available. In this
way, one may increase the accuracy, improve the res-
olution of the simulation, etc. A simple model for
this case is letting P D Np and model the parallel
execution time as s C p. Defining ˇ D s=.s C p/

to be the sequential fraction of the overall (parallel)
execution time, then yields

S.N / D .s CNp/=.sC p/ D N � ˇ.N � 1/

In this case, ˛ D s=.sCNp/ decreases with increasing
N and acceptable speedup can be maintained. That
this works in practice has been verified by actual
computations with N in excess of 100,000. This is
good news, since it tells us that computer efficiency
can scale with N for large-scale problems in science
and engineering. Thus, one must decide what kind of
computation that needs to be done, then find a best
possible computing environment for the task at hand.

Multicore Machines

From about 2005 and onwards, “the chickens” have
stopped getting stronger, the clock rate has stalled
in the 2.0–2.5 GHz range. However, Moores Law has
not quite ended, and the result is a new development
in computer architecture, the multicore. This is many
identical processing elements on a single chip. These
units will share memory and cache and favor com-
putations with limited data movement and very Low-
latency internal communication. In the near future, one
can expect more than 100 cores on a single chip. This
trend has important software and programming con-
sequences. With a bit of simplification, many charac-
teristic features of previous SMP machines (symmetric
multiprocessing) can now be implemented at the single
chip level. Many programming models are possible,
but multithreading and the adoption of OpenMP were
very natural first steps. Many new developments are on
their way as this architecture will be the basic building
block of parallel computer systems.

Interconnecting Networks

One or a low number of processor chips typically de-
fine a node having its own (local) memory. These units
are interconnected in a network to form a larger parallel
machine that we will call a cluster. The quality of

the cluster as a parallel architecture for computational
science and engineering depends largely on the quality
of its interconnecting network. The technology trend
is also here standardization. InfiniBand has emerged
as a leading standard. Vendor-specific technologies are
shrinking, and in 2012, Cray sold its interconnection
technology to Intel. There are a few different topolo-
gies, hypercube, fat trees, 3-D torus, etc., but largely,
these details are no longer of concern to the user of a
parallel machine. The interconnect must scale well and
have low latency coupled with a very large aggregate
bandwidth for data exchange between the nodes.

MPI (Message Passing Interface) is the dominating
programming model. The development of this standard
has been very important for the successful development
of advanced software for a large range of parallel
architecture machines. It has protected investment in
software and made it possible to maintain this software
across multiple generations of hardware.

GPUs and Accelerators

The temptation to replace a computational node in full
or partially by custom-designed processing elements
that have superior performance with respect to floating
point operations has always been part of high per-
formance, parallel architecture computers. We broadly
may call these architectures for accelerators. Largely,
this trend has met with limited success because of two
factors: first, the steady improvement of standard pro-
cessors and, second, the added complexity of a design
that was not mainstream. Combined, these two effects
have largely limited the lifetime and cost-effectiveness
of special purpose hardware.

Recently, two new trends may change this picture:
first, the fact that our “chickens” have reached a mature
size and, second, the commercial marked for computer
games and high-performance graphics cards has driven
the development of very special parallel “vector units”
that now achieve superior performance with respect
to cost and power consumption when compared with
standard (general purpose) processors. Thus, the stan-
dard processor is not coming from behind and the
custom hardware has a mass market.

The use of this technology, called GPU (graphics
processing unit), comes with the cost of increased
complexity at the programming level. Much work is
currently going on to address this issue. The longer
time scale that now seems available to cover this
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investment may, for the first time, make accelerators
a more permanent and stable component of future par-
allel computer architectures for computational science
and engineering.

SIMD programming is attractive at this level, since
a large number of data elements that are subject to the
same floating point operations can be treated with low
overhead and a relatively simple programming model.
This is also consistent with large-scale computational
science, since these problems typically have data that
must scale up in size and be subject to similar compu-
tational procedures, in order to allow for proper scaling
of the overall computer work.

Exaflop Computing

The largest computer systems are expected to achieve
exaflop performance (i.e., 1018 floating point opera-
tions per second) around 2020. This is about 1,000
times the performance of the fastest systems available
in 2010. Such systems can be expected to have (at least)
two levels of parallel architectures as defined above.
The second level will consist of multicore chips and/or
GPU accelerators. Data locality, low overhead multi-
threading, and a large degree of SIMD like processing
will be required in order to achieve good parallel
scaling at this level. The first level will be a cluster
where each node is a second level system.

Smaller systems that will be more widespread can
be expected to share the same basic two-level parallel
architecture but with fewer nodes. The very largest
systems are breaking trail for the mid-scale systems
that will serve the majority of scientists and engineers
for their computational needs.

Two-level parallel architectures make the overall
programming model significantly more complex, and
major advances in programming languages as well as
in compiler technology are needed in order to keep
software applications portable but also efficient. Cost-
effective computing in science and engineering has two
components: the system cost, including electricity, plus
the application development cost, including the porting
of such software to newer parallel architectures.
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Synonyms

Data fitting; Inference; Inverse problems; Parameter
fitting

Definition

Parameter identification refers to numerous different
methods of determining unknown parameter values in
a mathematical model based on equations that relate
the parameters to measured data or express consistency
conditions that the parameters need to satisfy to make
the model meaningful. The parameters are often sub-
ject to inequality constraints such as non-negativity.
Parametric models may comprise algebraic relations
between quantities; systems of linear equations are an
example. Often, parametric models involve differen-
tial equations, and the unknown parameters appear as
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coefficients in the equation. Parameter identification
methods can be roughly divided in two classes: (a) de-
terministic methods and (b) probabilistic methods. The
former methods encompass different optimization al-
gorithms, and the latter leads to statistical methods of
inference.

Overview andModel Problems

In this section, we denote by x 2 R
n a parameter

vector with entries xj , 1 � j � n. For consistency,
we assume always that x is a column vector.

Deterministic Methods
We identify in this section a number of model prob-
lems, indicating the methodology that is usually em-
ployed for solving it.

Consider a mathematical model involving a param-
eter vector x 2 R

n, written in the form

f .x/ D 0; f W Rn ! R differentiable:

Assuming that a solution to this problem exists, the
standard approach is to use any of the numerous vari-
ants of Newton method [2]: Iteratively, let xc denote
the current value and w 2 R

n a unit vector pointing to
the direction of the gradient of f at xc ,

w D rf .xc/
krf .xc/k ; rf .xc/ ¤ 0:

By using the Taylor approximation at t D 0, we write

g.t/
defD f .xc C tw/ � f .xc/C wTrf .xc/t
D f .xc/C krf .xc/kt;

and the value of t that makes the right-hand side vanish
gives the next approximate value of x,

xC D xc C tw; t D � f .xc/

krf .xc/k :

Another common problem in parameter identifi-
cation involves noisy data. Consider the problem of
finding a parameter vector x 2 R

n satisfying

b D F.x/C e; F W Rn ! R
m differentiable, (1)

where b 2 R
m is a vector containing measured data

and e 2 R
m is an unknown noise vector. A common

starting point for the estimation of x is to write a
weighted output error functional,

f .x/ D
mX

jD1
wj .bj � Fj .x//2;

where the weights wj define how much weight, or
importance, we give to each component in the equation
and define the parameter identification problem as a
weighted output least squares problem: Find x such
that

x D argmin
�
f .x/

�
:

A particularly important case is when F.x/ is a linear
function of x, F.x/ D Ax. Assuming that the weights
wj are all equal, the minimizer x is the solution of the
linear least squares problem,

x D argminkb � Axk2:

If the matrix A has full rank, the solution is found by
solving the normal equations, that is,

xLS D
�
ATA

��1
Ab:

If A is not full rank, or numerically of ill-determined
rank, the problem requires regularization, a topic that is
extensively studied in the context of inverse problems
[1, 3].

The linear model gives an idea how to treat the
nonlinear problem in an iterative manner. Let xc denote
the current approximation of the solution, and write
x D xc C z. By linearization, we may approximate

f .x/ D f .xc C z/ D kb � F.xc C z/k2 � kb
�F.xc/� DF.xc/zk2;

and using the least squares solution for the linear
problem as a model, we find an update for x as

xC D xc C �z; z D �
DF.xc/TDF.xc/

��1

DF.xc/T.b � f .xc//:

This algorithm is the Gauss-Newton iteration, and it
requires that the Jacobian of F is of full rank. If this
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is not a case, a regularization is needed. Above, 0 <
� � 1 is an adjustable relaxation parameter. Choosing
a value of � that minimizes the residual norm along the
z-direction is referred to as backtracking.

If the parameters need to satisfy bound constraints,
e.g., of the form

`j � xj � hj ; 1 � j � n;

constrained optimization methods need to be used;
see [5].

Probabilistic Methods
Deterministic parameter identification has an interpre-
tation in the statistical framework. This is best under-
stood by looking at the model (1): The noise vector
can be thought of as a random variable with probability
density �noise W Rm ! RC, and therefore, the data b,
given the value of the parameter vector x, has the same
probability density but shifted around f .x/, that is,

�.b j x/ / �noise.b � f .x//;

where �.b j x/ is referred to as the likelihood density.
In the frequentist statistics, a commonly used estimate
for x is the maximum likelihood (ML) estimator,

xML D argmin.L.x j b//;
L.x j b/ D � log

�
�.b j x/�;

assuming that a minimizer exists. One can interpret the
ML estimator as the parameter value that makes the
observation at hand most probable. Obviously, from
this point on, the problem is reduced to an optimization
problem.

In contrast, in Bayesian statistics, all unknowns
such as the parameter vector itself are modeled as
random variables. All possible information concerning
x that is independent of the measurement b, such as
bound constraints, is encoded in the probability density
�prior.x/, called the prior probability density. Bayes’
formula states that the posterior probability density of
x that integrates all the information about x coming
either from the measurement or being known a priori
is given, up to a scaling factor, as a product:

�.x j b/ / �prior.x/�.b j x/:

The Bayesian equivalent for the maximum likelihood
estimator is the maximum a posteriori (MAP)
estimator:

xMAP D argmin.P.x j b//;
P.x j b/ D � log

�
�.b j x/�prior.x/

�
:

This estimator can be interpreted as the most probable
value for the parameter in the light of data and a priori
information. For a general reference about the connec-
tion of the deterministic and statistical methods, and
for the differences in interpretation between frequentist
and Bayesian statistics, we refer to [1].

The MAP estimate is only one possible estima-
tor that can be extracted from the posterior density.
Another popular estimate is the posterior mean or
conditional mean (CM) estimate:

xCM D
Z
x�.x j b/dx;

the integral being extended over the whole state space.
This integration, e.g., by quadrature methods, is often
unfeasible, and moreover, the posterior density is of-
tenknown only up to a multiplicative constant. Both of
these problems can be overcome by using Monte Carlo
integration: By using, e.g., Markov Chain Monte Carlo
(MCMC) methods, an ensemble fx1; x2; : : : ; xN g of
parameter vectors is randomly drawn from the poste-
rior density, and the CM estimator is approximated by

xCM � 1

N

NX

nD1
xn:

The connection between the statistical and determin-
istic approaches is discussed in [1, 3]. For a topical
review of MCMC methods and relevant literature,
see [4].
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Introduction

During the development of new particulate composite
materials, experiments to determine the appropriate
combinations of particulate and matrix phases
are time-consuming and expensive. Therefore,
elementary “microstructure-macroproperty” methods
have been generated over the last century in order
to analyze and guide new material development.
The overall properties of such materials is the
aggregate response of the collection of interacting
components (Fig. 1). The macroscopic properties
can be tailored to the specific application, for
example, in structural engineering applications, by
choosing a harder particulate phase that serves as a
stiffening agent for a ductile, easy-to-form, base matrix
material. “Microstructure-macroproperty” (micro-
macro) methods are referred to by many different
terms, such as “homogenization,” “regularization,”
“mean-field theory,” and “upscaling,” in various
scientific communities to compute effective properties
of heterogeneous materials. We will use these terms
interchangeably in this chapter. The usual approach is
to compute a constitutive “relation between averages,”
relating volume-averaged field variables, resulting in
effective properties. Thereafter, the effective properties
can be used in a macroscopic analysis. The volume
averaging takes place over a statistically representative
sample of material, referred to in the literature as a
representative volume element (RVE). The internal
fields, which are to be volumetrically averaged,
must be computed by solving a series of boundary
value problems with test loadings. There is a vast
literature on methods, dating back to Maxwell [14, 15]
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Particulate Composite Media, Fig. 1 An engineering struc-
ture comprised of a matrix binder and particulate additives

and Lord Rayleigh [18], for estimating the overall
macroscopic properties of heterogeneous materials.
For an authoritative review of the general theory of
random heterogeneous media, see Torquato [23]; for
more mathematical homogenization aspects, see Jikov
et al. [12]; for solid-mechanics inclined accounts of
the subject, see Hashin [5], Mura [16], Nemat-Nasser
and Hori [17], and Huet [10, 11]; for analyses of
cracked media, see Sevostianov et al. [21]; and for
computational aspects, see Zohdi and Wriggers [26],
Ghosh [3], and Ghosh and Dimiduk [4].

Our objective in this chapter is to provide some
very basic concepts in this area, illustrated by a linear
elasticity framework, where the mechanical properties
of microheterogeneous materials are characterized by
a spatially variable elasticity tensor IE. In order to
characterize the effective (homogenized) macroscopic
response of such materials, a relation between aver-
ages,

h� i˝ D IE� W h"i˝; (1)

is sought, where

h�i˝ defD 1

j˝j
Z

˝

� d˝ ; (2)

and where � and " are the stress and strain tensor fields
within a statistically representative volume element
(RVE) of volume j˝j. The quantity IE� is known
as the effective property. It is the elasticity tensor
used in usual structural analyses. Similarly, one can
describe other effective quantities such as conductivity
or diffusivity, in virtually the same manner, relating
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other volumetrically averaged field variables. However,
for the sake of brevity, we restrict ourselves to linear
elastostatics problems.

Basic Micro-Macro Concepts

For a relation between averages to be useful, it
must be computed over a sample containing a
statistically representative amount of material. This is a
requirement that can be formulated in a concise math-
ematical form. A commonly accepted micro-macro
criterion used in effective property calculations is the
so-called Hill’s condition, h� W �i˝ D h� i˝ W h�i˝ .
Hill’s condition [9] dictates the size requirements on
the RVE. The classical argument is as follows. For
any perfectly bonded heterogeneous body, in the
absence of body forces, two physically important
loading states satisfy Hill’s condition: (1) linear
displacements of the form uj@˝ D E � x ) h�i˝ D E
and (2) pure tractions in the form tj@˝ D L � n )
h� i˝ D L; where E and L are constant strain
and stress tensors, respectively. Applying (1)- or
(2)-type boundary conditions to a large sample is
a way of reproducing approximately what may be
occurring in a statistically representative microscopic
sample of material in a macroscopic body. The
requirement is that the sample must be large enough
to have relatively small boundary field fluctuations
relative to its size and small enough relative to the
macroscopic engineering structure. These restrictions
force us to choose boundary conditions that are
uniform.

Testing Procedures
To determine IE�, one specifies six linearly indepen-
dent loadings of the form,
1. uj@˝ D E .1!6/ � x or
2. tj@˝ D L.1!6/ � n;
where E .1!6/ and L.1!6/ are symmetric second-
order strain and stress tensors, with spatially constant
(nonzero) components. This loading is applied to
a sample of microheterogeneous material. Each
independent loading yields six different averaged stress
components, and hence, provides six equations to
determine the constitutive constants in IE�. In order for
such an analysis to be valid, i.e., to make the material
data reliable, the sample of material must be small
enough that it can be considered as a material point
with respect to the size of the domain under analysis
but large enough to be a statistically representative
sample of the microstructure.

If the effective response is assumed to be isotropic,
then only one test loading (instead of usually six), con-
taining nonzero dilatational

�
t r�
3

and t r�
3

�
and devi-

atoric components
�
� 0defD� � t r�

3
I and �0defD� � t r�

3
I
�

,

is necessary to determine the effective bulk and shear
moduli:

3��defDh
t r�
3
i˝

h t r�
3
i˝

and 2��defD
s
h� 0i˝ W h� 0i˝
h�0i˝ W h�0i˝ :

(3)

In general, in order to determine the material properties
of a microheterogeneous material, one computes 36
constitutive constants (There are, of course, only 21
constants, since IE� is symmetric.) E�

ijkl in the follow-
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(4)

As mentioned before, each independent loading leads
to six equations, and hence, in total 36 equations
are generated by the independent loadings, which are
used to determine the tensor relation between average

stress and strain; IE�. IE� is exactly what appears in
engineering literature as the “property” of a material.
The usual choices for the six independent load cases
are
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E or L D
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2
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0 0 0

ˇ 0 0

3

75 ;

(5)

where ˇ is a load parameter. For completeness, we
record a few related fundamental results, which are
useful in micro-macro mechanical analysis.

The Average Strain Theorem
If a heterogeneous body (see Fig. 2) has the following
uniform loading on its surface: uj@˝ = E � x, then

h�i˝ D 1

2j˝j
Z

˝

.ruC .ru/T / d˝

D 1

2j˝j
�Z

˝1

.ruC .ru/T / d˝ C
Z

˝2

.ruC .ru/T / d˝

�

D 1

2j˝j
�Z

@˝1

.u˝ nC n˝ u/ dAC
Z

@˝2

.u˝ nC n˝ u/ dA

�

D 1

2j˝j
�Z

@˝

..E � x/˝ nC n˝ .E � x// dAC
Z

@˝1\@˝2
.j�uŒj ˝ nC n˝ j�uŒj/ dA

�

D 1

2j˝j
�Z

˝

.r.E � x/Cr.E � x/T / d˝ C
Z

@˝1\@˝2
.j�uŒj ˝ nC n˝ j�uŒj/ dA

�

D E C 1

2j˝j
Z

@˝1\@˝2
.j�uŒj ˝ nC n˝ j�uŒj/ dA; (6)

Ω2

Ω1

Ω

Particulate Composite Media, Fig. 2 Nomenclature for the
averaging theorems

where .u ˝ n
defDui nj / is a tensor product of the vector

u and vector n. j�uŒj describes the displacement jumps
at the interfaces between ˝1 and ˝2. Therefore, only
if the material is perfectly bonded, then h�i˝ D E .
Note that the presence of finite body forces does not
affect this result. Also note that the third line in (6)
is not an outcome of the divergence theorem, but of a
generalization that can be found in a variety of books,
for example, Chandrasekharaiah and Debnath [2].

The Average Stress Theorem
Again we consider a body (in static equilibrium) with
tj@˝ D L � n, where L is a constant tensor. We make
use of the identity r � .� ˝ x/ D .r � � / ˝ x C � �
rx D �f˝ xC � , where f represents the body forces.
Substituting this into the definition of the average stress
yields
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h� i˝ D 1

j˝j
Z

˝

r � .� ˝ x/ d˝ C 1

j˝j
Z

˝

.f˝ x/ d˝

D 1

j˝j
Z

@˝

.� ˝ x/ � n dAC 1

j˝j
Z

˝

.f˝ x/ d˝

D 1

j˝j
Z

@˝

.L˝ x/ � n dAC 1

j˝j
Z

˝

.f˝ x/ d˝

D LC 1

j˝j
Z

˝

.f˝ x/ d˝: (7)

If there are no body forces, f D 0, then h� i˝ D L. Note
that debonding (interface separation) does not change
this result.

Satisfaction of Hill’s Energy Condition
Consider a body (in static equilibrium) with a perfectly
bonded microstructure and f D 0. This condition yields

Z

@˝

u � t dA D
Z

@˝

u � � � n dA D
Z

˝

r � .u � � / d˝:

(8)

With r � � D 0, it follows that
Z

˝

r � .u � � / d˝ D
Z

˝

ru W � d˝ D
Z

˝

� W � d˝. If uj@˝ D E � x and f D
0, then

Z

@˝

u � t dA D
Z

@˝

E � x � � � n dA

D
Z

˝

r � .E � x � � / d˝ (9)

D
Z

˝

r.E � x/ W � d˝ D E W h� i˝ j˝j:

Noting that h�i˝ D E , we have h�i˝ W h� i˝ D h� W
� i˝ . If tj@˝ D L � n and f D 0, then

R
@˝ u � t dA DR

@˝
u � L � n dA D R

˝
r � .u � L/ d˝ D R

˝
ru W

L d˝ D L W R
˝

� d˝ . Therefore, since h� i˝ D L, as
before we have h�i˝ W h� i˝ D h� W � i˝ . Satisfaction
of Hill’s condition guarantees that the microscopic and
macroscopic energies will be the same, and it implies
the use of the two mentioned test boundary conditions
on sufficiently large samples of material.

The Hill-Reuss-Voigt Bounds
Until recently, the direct computation of micromaterial
responses was very difficult. Classical approaches have

sought to approximate or bound the effective material
responses. Many classical approaches start by splitting
the stress field within a sample into a volume average
and a purely fluctuating part, � D h�i˝ C Q�, and we
directly obtain

0 �
Z

˝

Q� W IE W Q� d˝ D
Z

˝

.� W IE W � � 2h�i˝
W IE W �C h�i˝ W IE W h�i˝/ d˝

D .h�i˝ W IE� W h�i˝ � 2h�i˝ W h� i˝ C h�i˝
W hIEi˝ W h�i˝/j˝j

D h�i˝ W .hIEi˝ � IE�/ W h�i˝ j˝j: (10)

Similarly, for the complementary case, with � D
h� i˝ C Q� , and the following assumption (microscopic
energy equals the macroscopic energy)

h� W IE�1 W � i˝„ ƒ‚ …
micro energy

D h� i˝ W IE��1 W h� i˝„ ƒ‚ …
macro energy

;

where h�i˝ D IE��1 W h� i˝; (11)

we have

0 �
Z

˝

Q� W IE�1 W Q� d˝

D
Z

˝

.� W IE�1 W � � 2h� i˝ W IE�1 W � C h� i˝

W IE�1 W h� i˝/ d˝

D .h� i˝ W IE��1 W h� i˝ � 2h�i˝ W h� i˝ C h� i˝
W hIE�1i˝ W h� i˝/j˝j

D h� i˝ W .hIE�1i˝ � IE��1/ W h� i˝ j˝j: (12)

Invoking Hill’s condition, which is loading-independent
in this form, we have

hIE�1i�1˝„ ƒ‚ …
Reuss

� IE� � hIEi˝„ƒ‚…
Voigt

:
(13)

This inequality means that the eigenvalues of the ten-
sors IE� � hIE�1i�1˝ and hIEi˝ � IE� are nonnegative.
The practical outcome of the analysis is that bounds
on effective properties are obtained. These bounds
are commonly known as the Hill-Reuss-Voigt bounds,
for historical reasons. Voigt [24], in 1889, assumed
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that the strain field within a sample of aggregate of
polycrystalline material was uniform (constant), under
uniform strain exterior loading. If the constant strain
Voigt field is assumed within the RVE, � D �0, then
h� i˝ D hIE W �i˝ D hIEi˝ W �0, which implies IE� D
hIEi˝ . The dual assumption was made by Reuss [19],
in 1929, who approximated the stress fields within
the aggregate of polycrystalline material as uniform
(constant), � D � 0, leading to h�i˝ D hIE�1 W � i˝ D
hIE�1i˝ W � 0 and thus to IE� D hIE�1i�1˝ .

Remark 1 Different boundary conditions (compared
to the standard ones specified earlier) are often used
in computational homogenization analysis. For ex-
ample, periodic boundary conditions are sometimes
employed. Although periodicity conditions are really
only appropriate for perfectly periodic media for many
cases, it has been shown that, in some cases, their
use can provide better effective responses than either
linear displacement or uniform traction boundary con-
ditions (e.g., see Terada et al. [22] or Segurado and
Llorca [20]). Periodic boundary conditions also satisfy
Hill’s condition a priori. Another related type of bound-
ary conditions are so-called “uniform-mixed” types,
whereby tractions are applied on some parts of the
boundary and displacements on other parts, generating,
in some cases, effective properties that match those
produced with uniform boundary conditions, but with
smaller sample sizes (e.g., see Hazanov and Huet [8]).
Another approach is “framing,” whereby the traction
or displacement boundary conditions are applied to
a large sample of material, with the averaging being
computed on an interior subsample to avoid possi-
ble boundary-layer effects. This method is similar
to exploiting a St. Venant-type of effect, commonly
used in solid mechanics, to avoid boundary layers.
The approach provides a way of determining what
the microstructure really experiences, without “bias”
from the boundary loading. However, generally, the
advantages of one boundary condition over another
diminish as the sample increases in size.

Improved Estimates
Over the last half-century, improved estimates have
been pursued, with a notable contribution being
the Hashin-Shtrikman bounds [5–7]. The Hashin-
Shtrikman bounds are the tightest possible bounds
on isotropic effective responses, with isotropic
microstructures, where the volumetric data and

phase contrasts of the constituents are the only data
known. For isotropic materials with isotropic effective
(mechanical) responses, the Hashin-Shtrikman bounds
(for a two-phase material) are as follows for the bulk
modulus

��;� defD �1 C v2
1

�2��1
C 3.1�v2/
3�1C4�1

� �� � �2
C 1�v2

1
�1��2

C 3v2
3�2C4�2

defD ��;C;

and for the shear modulus

��;� defD �1 C v2
1

�2��1
C 6.1�v2/.�1C2�1/

5�1.3�1C4�1/

� �� � �2
C .1�v2/

1
�1��2

C 6v2.�2C2�2/

5�2.3�2C4�2/

defD ��;C;

where �2 and �1 are the bulk moduli and �2 and �1 are
the shear moduli of the respective phases (�2 � �1 and
�2 � �1), and where v2 is the second-phase volume
fraction. Note that no geometric or other microstruc-
tural information is required for the bounds.

Remark 2 There exist a multitude of other approaches
which seek to estimate or bound the aggregate re-
sponses of microheterogeneous materials. A complete
survey is outside the scope of the present work. We
refer the reader to the works of Hashin [5], Mura [16],
Aboudi [1], Nemat-Nasser and Hori [17], and recently
Torquato [23] for such reviews.

Remark 3 Numerical methods have become a valuable
tool in determining micro-macro relations, with the
caveat being that local fields in the microstructure
are resolved, which is important in being able to
quantify the intensity of the loads experienced by
the microstructure. This is important for ascertaining
failure of the material. In particular, finite element-
based methods are extremely popular for micro-macro
calculations. Applying such methods entails generating
a sample of material microstructure, meshing it to
sufficient resolution for tolerable numerical accuracy
and solving a series of boundary value problems with
different test loadings. The effective properties can
be determined by post processing (averaging over the
RVE). For an extensive review of this topic, see Zohdi
and Wriggers [26]. We also refer the reader to that
work for more extensive mathematical details and
background information.
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auf Grund der Plastizitätsbedingung für Einkristalle.
Z. angew. Math. Mech. 9, 49–58 (1929)

20. Segurado, J., Llorca, J.: A numerical approximation to the
elastic properties of sphere-reinforced composites. J. Mech.
Phys. Solids 50(10), 2107–2121 (2002)

21. Sevostianov, I., Gorbatikh, L., Kachanov, M.: Recovery
of information of porous/microcracked materials from the
effective elastic/conductive properties. Mater. Sci. Eng. A
318, 1–14 (2001)

22. Terada, K., Hori, M., Kyoya, T., Kikuchi, N.: Simulation of
the multi-scale convergence in computational homogeniza-
tion approaches. Int. J. Solids Struct. 37, 2229–2361 (2000)

23. Torquato, S.: Random Heterogeneous Materials: Mi-
crostructure and Macroscopic Properties. Springer, New
York (2002)
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Synonyms

Dispersed-phase flows; Particle laden flows

Introduction

The transport of liquid or solid particles in a back-
ground fluid is of importance in a number of prac-
tical applications including aircraft and automobile
engines, fluidized beds, pneumatic converting systems,
and material synthesis in flames. Particle-laden flows
are defined as a subclass of two-phase flows in which
one of the phases does not exhibit a connected con-
tinuum [1]. Here, the term particles refers broadly to
solid particles, liquid droplets, or bubbles. The particles
form the dispersed phase while the background flow is
referred to as the continuous phase.

The mathematical modeling of particle-laden flows
is classified based on the nature of interaction between
the particles and the interaction between the particles
and the fluid phase [3]. A characteristic length scale
ratio based on mean particle separation (S ) and particle
diameter (d ) is used to denote the flow regime. If
S=d > 100, the particles are sufficiently separated that
interaction among the dispersed phase is not important.
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Further, the impact of the particles on the continuous
phase is also minimal and could be disregarded. In this
one-way coupling, only the fluid flow affects particle
motion. For 10 < S=D < 100, the volume occupied
by the particle phase is sufficiently large to alter the
continuous phase flow dynamics. This is especially
important in turbulent flows, where small-scale dissi-
pation is affected by the presence of particles. Here,
two-way coupling between the dispersed and contin-
uous phases exists, where each phase is affected by
the other. Flows in these two regimes are collectively
called dilute suspensions. If S=d < 10, the parti-
cles are close enough to undergo collisions. Here, in
addition to the particle-continuous phase interactions,
particle-particle interactions have to be accounted for
and are termed as four-way coupling.

The mathematical description of these flows re-
quires transport equations for the evolution of the
continuous phase as well as the dispersed phase. From
a microscopic point of view, it is possible to de-
velop transport equations for the mass, momentum,
and energy in the two phases separately. However, a
direct solution of this system will be computationally
intractable for any practical flow configuration due to
the large number of particles in the dispersed phase
as well as the multiscale nature of the problem. From
an engineering standpoint, we only seek the evolution
of phase-averaged properties, which will be referred
to as macroscopic properties of the system. In gen-
eral, there are two approaches available for developing
macroscopic evolution equations [8]. In the two-fluid
approach [2,9], ensemble averaging is used to arrive at
transport equations for the phase-averaged properties.
In the kinetic-theory-based technique [4, 5], an inter-
mediate mesoscopic description of the dispersed phase
is used to derive the final macroscopic equations.

Ensemble-Averaging Approach

Consider a flow domain, 	, with a spatial distribution
of the particles evolving in time. Following [2], a
single realization is defined as all the values of flow-
related quantities such as velocity and interface loca-
tions within the domain over the duration of the flow.
Denoting this realization as �, and any function that
depends on the realization-specific values as f .x; t I�/,
the ensemble average is defined as

f D
Z

"

f .x; t I�/dm.�/; (1)

where dm is the density for the measure on the set " that
contains all realizations. Further, an indicator function
Xk that picks out a phase k is defined such that

Xk.x; t I�/ D
(
1 x 2 k in realization �;

0 otherwise:
(2)

Based on these definitions, volume fraction of phase k,
the ensemble-averaged density 
k , and velocity uk are
obtained as

˛k D Xk 
k D
Xk


˛k
uk D Xk
u

˛k
k
; (3)

where 
 and u are the microscopic density and veloc-
ity, respectively, at a given point in the domain. The
governing equations for the ensemble-averaged vari-
ables are obtained by applying the indicator-function
weighted ensemble-averaging procedure to the trans-
port equation for the microscopic variables. The mass
balance equation for phase k is

@˛k
k

@t
Cr � ˛k
k uk D �k; (4)

where �k denotes mass transfer due to phase change.
The momentum balance equation is written as

@˛k
k uk
@t

Cr � ˛k
k uk uk Dr � ˛k
k
�

Tk C T
Re
k

�

CMk C uki�k; (5)

where the first term on the right-hand side is related to
the stress tensor, the second term describes the interfa-
cial momentum exchange, and the last term arises from
the momentum imparted in the mass transfer process.
The effect of molecular fluxes, leading to pressure and
viscous stresses, is described by Tk . The additional

stress term, T
Re
k , arises from the ensemble averaging

of the nonlinear convection term in the microscopic
transport equation:

Xk
uu D ˛k
kukukCXk
u0u0 D ˛k
kukuk�˛kT Re
k ;

(6)
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where u0 D u � u. This term is often compared to
the Reynolds stress that arises in Reynolds averaging
of Navier-Stokes equations [6], which represents the
correlation of the velocity fluctuations. However, it
should be noted that in dispersed-phase flows, this term
is nonzero even in the laminar flow regime and repre-
sents the variations in the local velocity field due to the
differences in the spatial distribution of the dispersed
phase between different realizations. Hence, models
for this stress term based on a turbulence analogy are
not strictly valid [4].

The interfacial momentum exchange

Mk D �T � rXk (7)

denotes the effect of the stress tensor at the interfaces
and provides the coupling between the phases.
Developing closures for this term requires extensive
modeling and requires a characterization of the
microstructure of the dispersed phase. For instance,
one approach is based on models for the ensemble-
averaged interfacial stress leading to

Mk D �Tki � r˛k CM0
k (8)

where Tki is the interfacial stress model and M0
k is a

residual force term. The momentum imparted by phase
transfer also requires modeling of the interface velocity
(uki) and appears in the last term in Eq. 5.

These transport equations could be solved using
any grid-based discretization schemes. Although
widely used, the ensemble-averaging approach has
two limitations. First, the modeling of the unclosed
terms is very challenging due to the lack of a natural
physics-based hierarchy. Consequently, closure models
often invoke restrictive assumptions regarding particle
behavior. Second, the use of the averaging process
couples turbulence-related phase-specific property
fluctuations with the fluctuations caused due to
the variations introduced by the dispersed-phase
microstructure between different realizations. As noted
by [4], it is difficult to decouple the two sources
of fluctuations which leads to additional modeling
challenges.

Mesoscopic Equation-Based Approach

An alternative approach is based on using a meso-
scopic description of the dispersed phase as a starting

point for developing the governing equations [4, 8].
Here, the distributed dispersed-phase objects is treated
statistically using a point-process description [7]. The
mesoscopic treatment is based on the number density
function (NDF), f .x; v; �; t/, where x; v, and � denote
the location, velocity, and particle volume, respec-
tively. Note that the choice of phase-space variables is
not unique, and other dispersed-phase attributes could
be added. The NDF has been shown to be linked to
the Liouville description of the dispersed phase [7]. By
integrating the moments of the NDF over phase space,
key characteristics of the dispersed phase could be
obtained. For instance, the number density of particles
is given by

N.x; t/ D
Z

R3

Z 1

0

f .x; v; �; t/d�dv (9)

and the volume fraction of the dispersed phase is
obtained as

˛d .x; t/ D
Z

R3

Z 1

0

�f .x; v; �; t/d�dv: (10)

The evolution equation for the NDF is given by

@f

@t
Crx � vf Crv �Af Cr�f D PfcollC PfcoalC Pfbu;

(11)
where A is the particle acceleration and  is the rate
of change of particle volume. The right-hand side
includes contributions due to particle collisions ( Pfcoll),
coalescence ( Pfcoal), and breakup ( Pfbu). In this NDF
description, the particle acceleration and mass transfer
rate terms have to be modeled, apart from the rate
terms on the right-hand side. However, it has been
noted [4] that this formulation provides a better starting
point for incorporating particle phase microstructure
information.

The NDF transport equation could be solved in a
number of ways. The Lagrangian method, commonly
used in droplet-laden flows, employs a particle-based
numerical method [8]. It is also possible to directly
compute transport equations for the moments of the
NDF and solve the resulting Eulerian transport equa-
tions. A third approach relies on quadrature-based
approximation, where the NDF is reconstructed by
solving a set of lower-order moment equations [4].
The governing equations for the continuous phase
are similar in structure to those derived using the
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ensemble-averaging approach [5, 8], except that the
momentum exchange and mass transfer source terms
are directly obtained from the NDF description of the
particle phase.
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Synonyms

Morphogenesis; Self-organization

Glossary

Diffusion-driven instability The mechanism via
which chemical patterns are created from an
initially uniform field due to the destabilizing action
of diffusion.

Morphogenesis The generation of structure and
form in an embryo.

Morphogen A chemical that influences the differen-
tiation of cells during embryogenesis.

Short Definition

The emergence of global spatiotemporal order from
local interactions during embryonic development.

Description

Development is overflowing with examples of self-
organization, where local rules give rise to complex
structures and patterns which, ultimately, bring about
the final body structure in multicellular organisms. Un-
derstanding the mechanisms governing and regulating
the emergence of structure and heterogeneity within
cellular systems, such as the developing embryo, rep-
resents a multiscale challenge typifying current mathe-
matical biology research.

Classical Models
Classical models in the field consist mainly of sys-
tems of partial differential equations (PDEs) describing
concentrations of signaling molecules and densities of
various cell species [8]. Spatial variation, arising from
diffusion/random motion and a variety of different
types of directed motion (for example, due to chemical
or adhesion gradients), is represented through the use
of different types of flux terms, and chemical reactions,
cell proliferation and cell death through source terms
which are polynomial and/or rational functions. The
major advantages of using such types of models lie in
the wealth of analytical and numerical tools available
for the analysis of PDEs. For simple systems, exact
analytical solutions may be possible and, where they
are not, separation of space and time scales or the
exploitation of some other small parameter enables the
use of multiscale asymptotic approaches which give
excellent insight into system behavior under different
parameter regimes [3]. As the number of model com-
ponents becomes too unwieldy or the interactions too
complex for such approaches, increasingly sophisti-
cated computational methods allow accurate numerical
approximations to be calculated over a wide range of
parameter space.
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Pattern Formation and Development, Fig. 1 An illustration
of Wolpert’s “French Flag” model [15]. A concentration gra-
dient of a morphogen induces subsequent cell differentiation
according to thresholds in concentration with cells experiencing
concentrations above the highest threshold becoming red, cells
between thresholds becoming white, and cells below the lower
threshold becoming blue

Morphogen Gradient Models
Wolpert [15] proposed one of the first mechanisms
for providing positional information by a morphogen
gradient with his “French Flag” model. In the model,
each cell in a field has potential to be either blue,
white, or red. When exposed to a concentration gra-
dient of morphogen, arising from the combination of
production at a localized source, diffusion, and decay,
each cell interprets the information from the con-
centration profile by varying its response to different
concentration thresholds of morphogen: Cells become
blue, white, or red according to their interpretation of
the information – see Fig. 1 for an illustration. Appli-
cations of Wolpert’s model are still used in a number
of fields, including whole organism scale modeling of
Drosophila patterning [13].

Turing Reaction-Diffusion Models
Turing’s seminal work [12] proposed a mechanism
via which a field could organize without any external
cue from the environment. Given a system consisting
of two or more chemicals (morphogens), which react
according to certain rules, and diffuse at different rates
throughout a field, spontaneous patterns in chemical
concentration may arise as diffusion destabilizes the

spatially uniform steady state of the system. This is
known as a diffusion-driven instability and subsequent
cell differentiation is then assumed to arise much in
the same way postulated by Wolpert except that here,
typically, cells respond to one threshold instead of mul-
tiple thresholds. Applications of the Turing model to
patterning during development abound, and potential
candidates for Turing morphogens include: (1) Nodal
and Lefty in the amplification of an initial signal of
left–right axis formation and zebrafish mesoderm cell
fates; (2) Wnt and Dkk in hair follicle formation; (3)
TGF-ˇ as the activator, plus an unknown inhibitor, in
limb bud morphogenesis [1].

General, necessary and sufficient, conditions for a
Turing instability on an n-dimensional spatial domain
are presented in the literature for the two-component
system and can be found in most textbooks, see for
example [9], but the analysis for more than two
chemicals is still an open question. Methods for the
analysis of Turing systems on finite domains start by
linearizing around a spatially homogeneous steady
state and examining the behavior of the discrete spatial
Fourier modes as one of the model parameters is
varied. Asymptotic techniques, such as the method of
multiple scales, and the Fredholm alternative are used
to examine the exchange of stability of bifurcating
solution branches in a small neighborhood of the
bifurcation point, and may be used to distinguish
the types of patterns that arise. Figure 2 illustrates
the patterns that may arise in such a model in two
spatial dimensions.

Turing’s postulation has stimulated vast amounts
of theoretical research into examining the finer detail
of the Turing model for patterning, for example: (1)
characterization of the amplitude equation and possible
bifurcations in terms of group symmetries of the under-
lying problem being offered as an alternative approach
to the weakly nonlinear analysis; (2) many results
have been derived on the existence and uniqueness of
localized patterns, such as spikes, that arise in certain
Turing models; (3) the development of sophisticated
numerical methods for solving Turing models on a
variety of surfaces and investigating bifurcation behav-
ior. For a comprehensive guide to the analytical and
numerical methods used to investigate Turing models,
see [14] and the references therein. The model has been
shown to be consistent with many observed pattern
formation processes and to also yield predictions that
agree with experimental manipulations of the system.
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Pattern Formation and Development, Fig. 2 Results from
numerical simulation of a Turing reaction-diffusion model in two
dimensions. Gierer–Meinhardt kinetics [9, page 77] were used

with parameters b D 0:35 andD D 30 (see [2] for more details)
and red (blue) indicates high (low) chemical concentration

However, the model can produce many more patterns
than those observed in nature and this leads to the
intriguing question of why patterning in biology is
rather restricted. It is observed that in many cases in
biology, patterning occurs behind an advancing front,
either of a permissive signaling cue, or of domain
growth. Analysis of the model shows that precisely
these constraints are sufficient to select in a robust
manner certain (observed) patterns at the expense of
other (unobserved) patterns. It is important to note that
such a propagating front can also serve to move a
bistable system from one state to another, and this is an
alternative mechanism to the Turing model for pattern
formation.

Cell Chemotaxis Models
Whereas Turing’s model assumes no explicit inter-
action between cells underlying the field and evolu-
tion of the chemical pattern, cell chemotaxis models
assume that cells move preferentially up chemical
gradients, and at the same time amplify the gradient
by producing the chemical themselves. Examples of
chemotaxis during development include the forma-
tion of the gut (gastrulation), lung morphogenesis,
and feather bud formation [1]. In addition to mod-
eling chemotaxis in development, such models are
also commonly considered for coat marking patterns
and swarming microbe motility. We note that there
are numerous types of “taxis” that can be observed
during development, including those up/down gradi-
ents in cellular adhesion sites (haptotaxis), substrate

stiffness (mechanotaxis), light (phototaxis), to name
but a few [1, 11].

Whereas the Turing model gives rise to a parabolic
system, taxis models can be of mixed parabolic/hy-
perbolic type, although the parabolic part is usually
taken to dominate. Mathematically, therefore, taxis
models are similar to the Turing model, with lin-
ear and nonlinear analyses demonstrating the exis-
tence of bifurcations and predicting the emergence
of steady state patterns. In addition, a large body of
work has been devoted to considering the potential
for certain formulations of the chemotaxis model to
exhibit “blow up,” where solutions become infinite
in finite time, and showing existence and uniqueness
of solutions [5]. The unifying mechanistic theme be-
hind many of these models – Turing, chemotaxis, and
mechanochemical – is that of short-range activation
and long-range inhibition [9]. From a mathematical
viewpoint, the patterns exhibited by all these mod-
els at bifurcation are eigenfunctions of the Lapla-
cian.

Growing Domains
Throughout development the embryo undergoes
enormous changes in size and shape, and as a result
biologically accurate patterning models must take
these variations into account if they are to be capable
of validating hypotheses and making predictions. The
inclusion of growth in reaction-diffusion models was
first considered sytematically by Crampin and co-
workers [4] who derived a general formulation by
considering conservation of mass and the application
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Pattern Formation and Development, Fig. 3 The Turing
model on a growing domain using both deterministic (PDE)
and stochastic (Monte Carlo) formulations. Schnakenberg kinet-
ics [9, page 76] were used with parameters k1 D 1:0, k2 D 0:02,
k3 D 10�6, k4 D 3:0, DA D 10�5, DB D 10�3, and uniform

growth rate r D 10�4. (See [4] for more details of the growing
domain formulation.) Black shading indicates where the system
is above the spatially uniform steady state, and the red line the
edge of the domain

of Reynold’s transport theorem. The extra terms arising
in the reaction-diffusion system as a result of growth
occur as material is both transported around the domain
and diluted during growth. Key to applications of
Turing’s model to development was the discovery
that domain growth increases the reliability of pattern
selection, giving rise to consistent patterns without
such tight control of the reaction parameters and, more
recently, to the discovery that patterns may form in
systems that do not satisfy Turing conditions under
certain types of domain growth [7]. Figure 3 shows the
results of numerical simulation of the Turing model on
a growing domain, and illustrates the changing patterns
that arise as the domain grows.

More Recent Developments
However, one should be aware of the limitations of
these classical models. The flux and/or production

terms in the conservation formulation generally
employed are often phenomenological, without
derivation from universal or fundamental principles.
In addition, as the material density becomes low,
stochastic effects can become significant. (Compare,
for example, the results of stochastic and deterministic
simulations of patterning on a growing domain in
Fig. 3.) Finally, tortuous cellular level geometry
complicates the investigation of spatial fluctuations at
the cellular scale and the possibility of large variations
among neighboring cells prevents straightforward use
of a continuum limit. Moreover, the parameters within
the kinetic terms themselves arise due to dynamics
at a lower scale level. As such, many of the recent
developments in modeling pattern formation have
explored the derivation of these classical models
from individual considerations where cell-level
behavior may be taken into account [10] and the
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role of noise explicitly studied. However, with careful
consideration of these pitfalls and awareness of when
and where techniques can successfully be applied,
PDEs remain one of the most useful and insightful
tools for modeling self-organization in developmental
biology [1].
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Petrov-GalerkinMethods for Variational
Problems

For the solution of partial differential equations, a
corresponding variational problem can be derived, and
the variational solution can be approximated by !
Galerkin methods. Petrov-Galerkin methods extend the
Galerkin idea using different spaces for the approxi-
mate solution and the test functions.

This is now introduced for abstract variational prob-
lems. Let U and V be Hilbert spaces, let aWU �V �!
R be a bilinear form, and for a given functional f 2 V 0
let u 2 U be the solution of the variational problem
a.u; v/ D hf; vi for all v 2 V .

Let UN 	 U and VN 	 V be discrete subspaces of
finite dimension N D dimUN D dimVN . The Petrov-
Galerkin approximation uN 2 UN is a solution of the
discrete variational problem a.uN ; vN / D hf; vN i for
all vN 2 VN .

It is not a priori clear that the continuous and the
discrete variational problems have unique solutions.
For the well-posedness of the continuous problem, we
assume that positive constants C � ˛ > 0 exist such
that

ja.u; v/j � CkukU kvkV

and

sup
v2V nf0g

a.u; v/

kvkV � ˛ kukU ;

and that for every v 2 V n f0g some uv 2 U exists such
that a.uv; v/ ¤ 0. The variational problem corresponds
to the equation Au D f , where A 2 L.U; V 0/ is the
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linear operator defined by hAu; vi D a.u; v/ for all u 2
U and v 2 V . The assumptions on the bilinear form
yield ˛ kukU � kAukV 0 � C kukU , which shows that
the operator A is injective and that the range A.U / D
A.U / is closed in V 0. Moreover hA0v; uvi D a.uv; v/ ¤
0 shows that the adjoint operator A0 2 L.V; U 0/ is
injective, and thus, the operator A is surjective. This
proves that the continuous variational problem has a
unique solution u 2 U satisfying kukU � ˛�1kf kV 0 .

For the well-posedness and the stability of the
discrete problem, we assume in addition that a constant
˛0 > 0 exists such that supvN2VN nf0g

a.uN ;vN /
kvN kV �

˛0 kuN kU holds for all uN 2 UN . Then, the Petrov-
Galerkin approximation AN 2 L.UN ; V 0

N / defined by
hAN uN ; vN i D a.uN ; vN / for uN 2 UN and vN 2 VN
is injective and, since dimUN D dimVN D N < 1,
also surjective. Let fN 2 VN be defined by hfN ; vN i D
hf; vN i for vN 2 VN . The unique solution uN 2 UN of
AN uN D fN solves the discrete variational problem
and is bounded by kuN kU � ˛�1

0 kf kV 0 .
For a dense family .UN � VN /N2N in U � V , the

Petrov-Galerkin approximations .uN /N2N converge to
the continuous solution u 2 U , if the constant ˛0 can be
chosen independent of N 2 N . Then, for any suitable
interpolation IN WU �! UN , the approximation error
can be bounded by the interpolation error u � IN u in
two steps. The orthogonality relation a.u � uN ; vN / D
0 for vN 2 VV gives

˛0 kuN � IN ukU � sup
vN2VN

a.uN � IN u; vN /

kvN kV

D sup
vN2VN

a.u � IN u; vN /

kvN kV � C ku � IN ukU

and ku � uN kU � ku � IN ukU C kIN u � uNkU gives

ku � uNkU �
�
1C C

˛0

�
ku � IN ukU

(for an improved estimate see [4]). Depending on
regularity properties of the solution u and suitable
interpolation estimates, this also provides a priori es-
timates for the convergence rate.

In the special case U D V it also may be advanta-
geous to use Petrov-Galerkin methods with UN ¤ VN ,
e.g., to improve the approximation properties for non-
symmetric or indefinite problems.

Applications

The most well-known family of Petrov-Galerkin meth-
ods are streamline-diffusion methods for convection-
dominated problems introduced in [2]. Here, a standard
finite element space UN is combined with a test space
VN where the finite element basis functions are mod-
ified depending on the differential operator. These
methods allow for robust convergence estimates in
the case of vanishing diffusion and are often applied
to flow problems. A simple example for a robust
nonconforming Petrov-Galerkin method for the model
problem�"�uC b � ruC cu D f in N	 D S

� 	 R
D

is defined by

Z

	

�
"ru � rvC .b � ruC cu/v

�
dx

C
X

�

ˇ�

Z

�

.�"�uC b � ruC cu/.b � rv/ dx

D
Z

	

f v dx C
X

�

ˇ�

Z

�

f b � rv dx :

using test functions of the form v C ˇ�b � rv with
a mesh-dependent stabilization parameter ˇ� > 0

depending on the element � .
Recently, a class of discontinuous Petrov-Galerkin

methods was proposed [3]. In this method the solution
is approximated by its traces on the element faces and
discontinuous element contributions in the interior of
the elements. A special basis in the test space VN
is constructed locally by solving the adjoint problem
in a larger space OVM 	 V : for every basis function
�n 2 UN , the optimal test function  n 2 OVM is
determined by the variational problem . n; Ov/V D
a.�n; Ov/ for Ov 2 OVM . Then, the discrete solution
uN D PN

nD1 un�n is obtained from the linear system
A u D f with the symmetric positive definite matrix

A D
�
a.�n;  m/

�

m;n
D

�
. n;  m/V

�

m;n
2 R

N�N

and right-hand side f D
�
hf; ni

�

n
2 R

N . It can

be shown that this method is robust, e.g., for the
Helmholtz problem with large wave numbers.

Another class with broad applications is the mesh-
less local Petrov-Galerkin method (MLPG) introduced
in [1]. Several concepts for the local construction of
trial functions exist, e.g., moving least squares, the
partition of unity method, or radial basis functions.
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Curves Defined by Differential Equations

Consider the system of autonomous ordinary differen-
tial equations

dx

dt
D f .x; y/; dy

dt
D g.x; y/ (1)

where the given functions f and g are sufficiently
smooth.

The phase portrait of such a system is the collection
of the parametrized curves, also called orbits, on the
.x; y/-plane defined by the solutions .x.t/; y.t// of the
differential equations for all initial conditions .x.0/ D
x0; y.0/ D y0/.

Early investigators in differential equations, with
few exceptions, occupied themselves with local prop-
erties of functions as solutions of special equations.
In a series of remarkable memoirs [16, 17], Poincaré
initiated the global qualitative study of curves defined
by solutions of differential equations:

A comprehensive theory of functions defined by differ-
ential equations would be enormously useful in solving a

great many problems in pure mathematics and mechanics.
Unfortunately, in the vast majority of cases which we
encounter, we cannot integrate these equations using
already-known functions – for example, using functions
defined by quadrature. If we therefore limit ourselves
to those cases which can be studied using definite or
indefinite integrals, the scope of our research will be
strikingly narrowed, and the vast majority of problems
which occur in applications will remain unsolvable. It is
thus imperative to study functions defined by differential
equations in themselves, without trying to reduce them
to simpler functions, as we have done for algebraic func-
tions, which we tried to reduce to radicals and which we
now study directly, or as we have done for the integrals of
algebraic differential equations, which we have long tried
to express in finite terms. We must naturally approach
the theory of each and every function by the qualitative
part; that is why the first problem we encounter is the
following: to construct curves defined by differential
equations.

Presently, using numerical methods, one can com-
pute remarkably accurate approximations to solutions
of almost any differential equation for finite time.
However, such approximation methods may not reli-
ably predict the longtime behavior of orbits, which is
the main concern in the study of dynamical systems.
Longtime behavior of orbits is determined by their
limit sets, and the identification of limit sets in a
specific set of differential equations on the computer
can be a challenging task.

Phase Plane: Computation, Fig. 1 Poincare’s original hand-
drawn phase portrait of (2) in his paper [17]

http://dx.doi.org/10.1007/978-3-540-70529-1_415
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A Phase Portrait by Poincaré
Possible longtime qualitative behavior of orbits of
planar differential equations was determined by
Poincaré [16, 17], with additional details supplied by
Bendixson [2]: Suppose that the planar system Eq. (1)
has isolated equilibrium points. If an orbit remains
bounded for all forward time then the limit set (!-
limit set) of the forward orbit (similarly, if an orbit
remains bounded for all backward time then the limit
set (˛-limit set) of the backward orbit) is either (1) an
equilibrium point, (2) a periodic orbit, or (3) equilib-
rium points and orbits connecting them. A noteworthy
implication of this result is the absence of chaotic be-
havior in the dynamics of planar differential equations.

Poincaré produced the following example exhibit-
ing the possible limit sets listed above as a parameter,
K , is varied:

dx

dt
D AC � B; dy

dt
D BC C A (2)

where

A D x.2x2 C 2y2 C 1/;
B D y.2x2 C 2y2 � 1/;
C D .x2 C y2/2 C x2 C y2 �K:

Phase Plane: Computation,
Fig. 2 Vector field of (2) for
K D �0:4 and 250 randomly
chosen initial conditions in a
box near the origin integrated
backward and forward in
time. The limit sets are the
three equilibria; the origin is a
saddle, and the other two
equilibria are sources. The
locations of the equilibria
persist for all values of K

Phase Plane: Computation,
Fig. 3 Orbits of ten initial
conditions, marked with
circles, of (2) for K D �0:25.
The arrows indicate the
forward time direction. The
two source equilibria have
become nonhyperbolic with
pure imaginary eigenvalues
and are about to undergo a
Poincaré–Andronov–Hopf
bifurcation
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Phase Plane: Computation,
Fig. 4 For K D �0:1, the
two source equilibria became
asymptotically stable. This
change in stability type gave
rise two unstable limit cycles,
repelling periodic orbits. The
˛-limit set of an orbit starting
inside one of the limit cycles
is the limit cycle; the !-limit
set is the equilibrium inside

Phase Plane: Computation,
Fig. 5 The limit sets of the
previous phase portrait for
K D �0:1

Phase Plane: Computation,
Fig. 6 As K is increased, the
two periodic orbits grow, and
for K D 0:0, they touch at the
origin forming a “figure 8”
consisting of two homoclinic
orbits to the saddle
equilibrium at the origin. An
orbit starting inside a loop has
its ˛-limit set as a homoclinic
orbit, while an orbit starting
on the outside of the figure 8
has the entire figure 8 as its
˛-limit set
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Phase Plane: Computation,
Fig. 7 The limit sets of the
previous phase portrait for
K D 0:0

Phase Plane: Computation,
Fig. 8 For K D 0:2, the
figure 8 loses its pinch at the
origin and gives rise to a large
hyperbolic periodic orbit
which is the ˛-limit set of
most orbits

Phase Plane: Computation,
Fig. 9 The limit sets of the
previous phase portrait for
K D 0:2
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A hand-drawn phase portrait of these equations (on
the so-called Poincaré sphere) by Poincaré himself is
shown in Fig. 1. Following the computational strategies
outlined below, several representative computer-
generated phase portraits on the plane are illustrated in
Figs. 2–9 using [15].

Computational Tools and Strategies

• Vector field: Equation (1) defines a vector
.f .x; y/; g.x; y// at each point .x; y/ of the
plane. One can populate the plane with vectors,
preferably normalized, at some grid points. The
resulting collection of vectors is called a vector field
of (1). Any orbit must be tangent to the vector at
each point the curve passes through. The relatively
safe and inexpensive computation of a vector field
can yield a rough idea of the interesting regions of
a phase portrait.

• Algorithm: A general-purpose variable step-size
algorithm like Dormand–Prince 5(4) [9] suffices
for most calculations. However, certain differential
equations may require more specialized algorithms.
For stiff equations, a good choice is an implicit algo-
rithm, e.g., SEULEX [10]. For Hamiltonian systems,
symplectic algorithms [11], e.g., symplectic Euler,
might yield better results for longtime integrations.

• Time: To compute the full orbit through an initial
condition, one must integrate in both backward and
forward time. To identify the limit set of an orbit,
it may be necessary to omit the plotting of transient
behavior.

• Equilibria: A necessary task is to locate the equi-
libria, that is, to find the solutions of the equations
f .x; y/ D 0 and g.x; y/ D 0. This can be
accomplished using a root finder like the Newton–
Raphson method with a number of randomly chosen
starting points.

• Invariant manifolds: Orbits eventually follow un-
stable manifolds in forward time and the stable
manifolds in backward time. Therefore, in the vicin-
ity of an equilibrium point, one can take some
initial conditions and follow their orbits in both
backward and forward time to see these invariant
manifolds, which are the candidates for connecting
orbits.

• Bifurcations: Like the parameter K in the ex-
ample of Poincaré, most model equations in ap-
plications may contain parameters. The study of
qualitative changes in the phase portraits of dy-
namical systems as parameters are varied is called
bifurcation theory. A slight change in a parameter
can result in, for example, the disappearance of
equilibrium points through a saddle-node bifurca-
tion or the appearance of a periodic orbit through
a Poincaré–Andronov–Hopf bifurcation. A list of
generic bifurcations of planar systems depending on
a parameter is in [12]; it is important to be aware of
such a list. At a parameter value where a bifurca-
tion occurs, orbits usually approach nonhyperbolic
equilibria, or periodic orbits, at a painfully slow
rate.

• Specialized tools: Distinguished orbits like stable
and unstable manifolds, connecting homoclinic
and heteroclinic or periodic orbits, can be
approximated more accurately using specialized
numerical techniques involving boundary value
problems rather than by simple integration of
orbits through select initial conditions. Also, these
orbits can be followed, even through bifurcations,
as parameters are varied using continuation
methods [1, 3, 7, 14].

• Existence from numerics: Most numerical
methods mentioned above are designed for
approximating an orbit whose existence is
already known or presumed. Rigorously es-
tablishing the existence of a periodic orbit
from a numerically computed orbit that may
appear nearly periodic, or the existence of
an infinite homoclinic orbit from finite time
computations, requires careful mathematical
analysis [5, 8].

What to Do in Practice?
It is difficult to ascertain the correctness of a numeri-
cally computed phase portrait. On a set of initial con-
ditions, one should, in the least, use several algorithms
with various settings of step size, tolerance, order, etc.
If the resulting phase portraits appear to be qualita-
tively equivalent (preserving the number and stability
types of equilibria, periodic and connecting orbits),
one can be reasonably confident of the resulting phase
portrait. If the differences are too great, the problem
may not be tractable numerically, e.g., Hilbert’s 16th
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problem of determining the number of limit cycles
even in the simplest case when the functions f and g
in (1) are quadratic polynomials [4, 6, 13, 18].
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Short Definition

Photonic crystals and waveguides are devices to ma-
nipulate wave properties (usually in the optical range)
by heterogeneous dielectric materials. The term pho-
tonic crystals specifically refers to periodic assemblies
of heterogeneous structures, which allow to control and
manipulate the flow of photons in a similar way as
semiconductor crystals do for electrons.

Description

Photonic crystals (see, e.g., [1–5]) have received grow-
ing attention in engineering and applied mathematics
over the last years (cf. [7] and the references therein).
In general, the term photonic crystal denotes a structure
made of periodic dielectrics (e.g., rods or holes), which
is well known to exhibit a certain bandgap, i.e., a range
of frequencies (called stop band), where light waves
cannot propagate (similar phenomena exist also for
sound or elastic waves, called photonic bandgaps in
the latter case). In practice, this means that the field
obtained from an incoming wave at a frequency in the
bandgap decays exponentially with the distance and is
usually sufficiently close to zero after 20 periodic cells.
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Besides producing a bandgap, interesting effects can
be achieved in a photonic crystal by introducing point
or line defect, i.e., by removing (or changing) single
holes or lines of holes. If a line is removed completely,
a fill-in of the bandgap occurs, usually by one or two
eigenvalues [6]. Even more complex band structures
can be produced, when objects with different geome-
tries than the original photonic crystal are inserted into
the line defect (still keeping the original periodicity in
one direction). This technique allows to filter certain
frequencies and to produce smaller bandgaps than the
one of the original photonic crystal structure.

Mathematical Modelling
In the following, we provide a short introduction to the
mathematical modelling of photonic crystal structures.
For a detailed exposition, we refer to [7].

At a macroscopic level, the light propagation
through a photonic crystal structure is determined
by Maxwell’s equations, i.e., in the nonmagnetic case,

r � E D �1
c

@H
@t
; r �H D 0;

r �H D 1

c
�
@E
@t
; r � .�E/ D 0;

where E and H are the macroscopic electric and mag-
netic fields, � is the electric permittivity, and c denotes
the speed of light. The permittivity � is a function of the
material and usually takes two different values within
the photonic crystal structure, namely, a high one in the
dielectric material and a low one in airholes.

By considering monochromatic waves E.:; t/ D
ei!t OE and H.:; t/ D ei!t OH, we obtain a stationary
system of the form

r � OE D � i!
c
OH; r � OH D 0;

r � OH D i!

c
� OE; r � .� OE/ D 0;

to be solved in the three-dimensional domain repre-
senting the geometry of the photonic crystal structure.

Simplifications can be obtained for certain polariza-
tions of the waves, namely, transverse electric (TE)
and transverse magnetic (TM). For transverse electric
(TE) polarized fields, the problem reduces to a scalar
equation of Helmholtz type, i.e.,

��u D !2�u in 	0; (1)

where u represents the third component of the electric
field. In the case of transverse magnetic (TM) polarized
fields, the problem can be reduced to

� r �
�
1

�
ru

�
D !2u in 	0; (2)

where u represents the third component of the mag-
netic field. In both cases, we can interpret the arising
equation as an eigenvalue problem for a second-order
partial differential operator, with !2 being the eigen-
value.

Large Periodic Structures
For large periodic structures, a direct solution on the
whole domain becomes computationally extremely
expensive, and usually Floquet theory [8, 9] is used as
an alternative. In this approach one looks for a periodic
solution on R

d with rectangular periodic cell	, which
can be obtained from the Floquet transform

.Fu/.x; ˛/ D e�i˛�xX

n2Zd
U.x�ne/ei˛�n; x2	;˛2K:

(3)

HereK D .��; �/d is the first Brillouin zone and e the
diagonal vector spanning 	. The differential operator
transforms via F.ru/ D .r C i˛/F.U /, such that
the above differential equations can be transformed
directly to problems on 	 � K . Denoting u˛ D
.FU /.�; ˛/, we obtain

� .r C i˛/ � .r C i˛/u˛ D !2�u˛ in 	 (4)

in the TE-polarized case and

� .r C i˛/ �
�
1

�
.r C i˛/u˛

�
D !2u˛ in 	 �K

(5)
in the TM-polarized case.

Numerical Band Structure Computation
Various methods have been proposed for computing
band structures numerically. Most approaches
are based on finite element or finite difference
discretizations of time-harmonic Maxwell’s equations
or the equations for TE and TM polarization (we refer,
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e.g., to [10–12]). Alternative approaches are based
on direct integration of time-dependent Maxwell’s
equations (TDFE and TDFD) in order to follow
the propagation of waves through photonic crystal
structures in time. As usual with wave propagation,
the modelling of (artificial) boundary conditions is
crucial for computational purpose, but a hard task.
In this respect absorbing boundary conditions and
perfectly matched layers (PML) have evolved to
become commonly accepted.

Optimal Design
Since the fabrication of photonic crystals to reach
certain goals is not straightforward and sometimes even
slightly counterintuitive, rational design by mathemat-
ical modelling and inverse problem techniques has
gained increasing importance in the last years. The
major design variable is the size and positioning of the
air defects in the photonic crystal structures, which can
nowadays be built in a high variety of shapes except
for a lower bound on the curvature radius. This can be
translated into the design of the dielectric coefficient �
as a piecewise constant function taking two prescribed
values (for the material of the crystal and for air); thus,
a standard type of shape and topology optimization
problem is obtained, which can be solved numerically
by parameterization, level set methods, or relaxation
approaches (see [13] for an overview).

In the following we detail some important example
classes of problems in photonic crystal structures.

Power Transmission Through Waveguides
Waveguides are designed to propagate a certain mode
through the material, which is however not achieved to
a perfect extent for a guide of finite length. Hence, it
is natural to maximize the power of propagation of the
desired fundamental mode, i.e., in a polarized case:

P D
ˇ̌
ˇ̌
Z

�O

u � F d�

ˇ̌
ˇ̌ ; (6)

where �O is the outgoing part of the waveguide
boundary. The function F is the fundamental model
for the further transmission in the outside region,
which is computed from an eigenvalue problem for the
Helmholtz equation in a semi-infinite region (see [14]).
Alternatively one can use a small volume adjacent
to �O and a volume integral to compute a power
functional. In order to obtain an optimal waveguide,
a monotone functional of P can be maximized with

respect to the topology of the waveguide, however
restricted to a fixed length (see [14–16]). For reaching
miniaturization of waveguides, one can tackle some
kind of dual problem, namely, minimizing the length
of the waveguide subject to the constraint of allowed
power loss.

Bandgap Optimization in Photonic Crystals
Optimizing the band structure is a task of central im-
portance for photonic crystals. Referring to the Bloch
modes in polarized cases, the band structure is deter-
mined by all eigenvalues !k.˛/ such that (4) and (5)
have a nontrivial solution. A bandgap is referred to a
gap in the band structure, i.e., an interval .!�; !C/
such that there is no eigenvalue !k.˛/ inside for all
˛ in the first Brillouin zone. Bandgaps can be used
effectively to filter a certain frequency range; usual
design goals are:
• Maximizing bandgaps: For various applications a

large bandgap is of high importance. One thus starts
with a setup including a bandgap between the kth
and k C 1th eigenvector and tries to maximize this
gap by topology optimization (see [17–21]). This is
achieved by maximizing functionals like

J D inf
˛
!kC1.˛/ � sup

˛

!k.˛/: (7)

A wide bandgap can also be a good starting point
for further design tasks related to filtering such as
the ones following.

• Narrowing bandgaps: In some applications it is
important to filter a range of frequencies above
or below a certain pass band. This can be tackled
by narrowing a given bandgap, i.e., for a given
frequency !0 inside the bandgap .!�; !C/ of the
original photonic crystal structure, one wants to
design the material such that the resulting structure
has a bandgap . Q!�; !0/ or .!0; Q!C/. This problem
can be formulated with similar objectives as above
and additional constraints, e.g., minimizing Q!� with
a constraint of having a bandgap in . Q!�; !0/.

• Filtering bands: A related problem is to filter a
certain band, which can be achieved if there are two
bandgaps below and above the desired filter range.
Thus, for two given frequencies !1 < !2, both
inside the original bandgap .!�; !C/, one tries to
design the material such that the frequency range
.!1; !2/ is filtered, i.e., the arising structure has two
bandgaps .!�; !1/ and .!2; !C/.
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Depending on the specific type of waves to be
used in the structure, all the design goals above can
be tackled for TM polarization, TE polarizations,
combinations of both, or even fully three-dimensional
structures. Several other related design problems
for photonic crystals can be found in literature, and
there is certainly a variety of upcoming tasks due to
technological development.

Plasmon Structures
Recently, there appears to be increasing interest in plas-
mon wave structures. Plasmons are waves at optical
frequencies, which propagate along a surface. By the
latter the dispersion relations can be changed, and this
allows to focus optical light to nanoscale wavelengths.
In order to focus a Gaussian beam to the surface, a
coupling structure is needed, which can be realized
as a grating coupler, i.e., a locally rough structure at
the surface. The obvious optimal design problem is to
optimize the shape of the grating coupler in order to
obtain maximal output power of the created surface
plasmons. The objective functionals in such a problem
are clearly similar to the ones for waveguides, but the
design variable changes to the local shape, usually with
strong constraints from the manufacturing abilities. For
a piecewise rectangular structure this optimal design
problem was investigated in [22], which only seems a
first step to various future problems in this area.
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Synonyms

PNP equation; Poisson-Nernst-Planck equation

Description

Electrodiffusion describes the diffusion process of ions
under the influence of an electric field induced by
ion charges themselves. The process exists in many
apparently different physical objects such as electrolyte
solution, microfluidic system, charged porous media,
and ion channel (see Fig. 1). Similar transport behavior
also apply to the electrons and holes in semiconductor.

Continuum theory uses the average ion density and
potential representations that can be directly compared
with experimental measurements. In a widely known
premium continuum theory, the ion flux compromises
of a diffusion term due to concentration gradient obey-
ing Fick’s law and a drift term of ions in a potential
gradient obeying Ohm’s law:

J D �D.r
C ˇq
r�/;

where 
 is the ion concentration, q and D are the
charge and diffusion coefficient of the ion, respec-
tively, and � is the electrostatic potential. The constant
ˇD1=.kBT / is the inverse Boltzmann energy where
kB is the Boltzmann constant and T is the absolute
temperature. Then, for a general n-species system,

applying mass conservation law to each ion species
leads to the drift-diffusion equation or similarly the
Nernst-Planck (NP) equation (see (1)). The electric
field itself is simultaneously determined from the ion
density distribution and environment charges (if ex-
isted) through Poisson equation (see (2)),

@
i
@t
D�r � JiDr �Di .r
iCˇqi
ir�/ ; 1�i�n; (1)

�r � .�r�/ DPn
i qi
i C 
f ; (2)

where � is the dielectric permittivity, and 
f is the
environment permanent charge distribution as doping
in transistors and fixed charges in ion channels (typ-
ically an ensemble of singular charges inside protein

f .x/ DP

j qj ı.x � xj /; see Fig. 1). The permanent
charges are explicitly included here, considering that
they may play important role in many systems.

The coupled (1) and (2) form the Poisson-Nernst-
Planck (PNP) equation. The equation system was ac-
tually studied and applied in above-mentioned areas
much earlier than its name was explicitly used in
[7]. An equivalent name, NPP (Nernst-Planck-Poisson)
equation, was also occasionally used as in [2]. The
NP equation was named after its introducers, Nernst
and Planck [11, 12], and has the same form as Smolu-
chowski equation describing motion of a Brownian
particle in a prescribed external potential under con-
ditions of high friction.

PNP equation is a set of coupled partial differential
equations, in which the potential, ion concentrations,
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Poisson-Nernst-Planck Equation, Fig. 1 (a) Fuel cell; (b)
nanofluidic channel with a bias voltage and electrical charged
wall inside the channel; (c) ion channel system including bulk

solution, membrane, and protein with fixed charges shown in-
side. V denotes transmembrane potential
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as well as the fluxes are determined by the aver-
age potential and ion density distributions through a
self-consistent solution of (1) and (2). Hence, PNP
is a mean-field theory. The equation is used to study
ion concentration profiles, diffusion-reaction rate at
reactive boundary, and ion conductivity typically rep-
resented as current-voltage characteristics (I -V curve).
PNP theory, application, and limitations were reviewed
in specific area, e.g., ion channel [3, 13].

Relation to Poisson-Boltzmann Theory
Poisson-Boltzmann theory describes the equilibrium
state of ionic solution in which the ion concentration
follows Boltzmann distribution, which is a special
case of PNP theory when flux vanishes everywhere.
The PB results can be obtained from the numerical
solution of PNP equation by properly setting the
boundary/interface conditions (such as zero-flux
condition). This property is useful especially in
more complicated electro-diffusion models where the
closed-form equilibrium distribution is not available,
but can be implicitly determined by Ji D 0 (see [8]).

Ion Selectivity in Nanochannel
Ion permeation in ion channel or nanofluidic channel
is featured by ionic selectivity. A specific channel is
selective to permeation of certain ion species. The
permanent environment charges play important role in
ion selectivity through affecting the dynamics of ions
within a nanochannel. Because the Debye length is
usually comparable with the channel width, ions inside
the fluid are no longer shielded from the permanent
charges inside the channel. The performance of ion
selectivity is also largely related to the applied voltage
bias, ionic size, and concentration, as well as to the
length of channel.

Mathematical and Numerical Aspects
The PNP equation can be derived from different routes,
e.g., from the microscopic model of Langevin trajec-
tories in the limit of large damping and absence of
correlations of different ionic trajectories [10]. Math-
ematical analyses were made for some basic properties
such as the existence and stability for the solutions of
the steady PNP equations [5], existence and long time
behavior of the unsteady PNP equations [1], and the
permanent charge effects [4].

Due to the nonlinear nature, and irregular
geometries in certain cases as in ion channel, the PNP

equation is usually solved numerically (analytical
solution is available only in some very special cases,
e.g., the classic Goldman-Hodgkin-Katz equation).
Effective methods were designed for both steady-state
PNP [6] and time-dependent PNP [9] for general 3D
systems with permanent singular charges and complex
geometry. However, for large practical systems, the
numerical efficiency and stability of these numerical
methods are subject to further examination.

Slotboom transformation is a useful technique in
solving the PNP equation. By introducing the Slot-
boom variables

NDi D Die
�ˇqi �; N
i D 
ieˇqi � ;

the steady-state Nernst-Planck equation is transformed
to a Laplace equation

r � � NDir N
i
� D 0:

These transformations hence give rise to a self-adjoint
elliptic operator in case of a fixed potential, and the dis-
cretization in solving the transformed equation could
produce a symmetric stiffness matrix. At the same
time, the Poisson equation will be transformed to a
nonlinear equation with similar form of PB equation.
When using iterative method to solve the coupled
PNP equation system, solution of the transformed one
usually converges faster than that of the original one
for a variety of practical systems.

Model Limitations
The mean-field PNP theory treats the diffusive particles
with vanishing size and ignores correlations among
ions. The assumption is reasonable in case the ionic
solution is dilute and the characteristic dimension of
space for diffusion is much larger than the ion size.
In narrow channel with comparable size, the discrete
nature of ion cannot be well represented in a premium
continuum description as in PNP theory, and it is
necessary to introduce theory beyond PNP (e.g., see
[8]). At the same time, in these confined spaces where
the ionic solution is far from being homogeneous
and dilute, the diffusion coefficient of ions and the
dielectric permittivity are not simply constants as
frequently used, and become research issues, too.
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Polynomial Chaos Expansions

Jan S. Hesthaven1 and Dongbin Xiu2
1Division of Applied Mathematics, Brown University,
Providence, RI, USA
2Department of Mathematics and Scientific
Computing and Imaging Institute, University of Utah,
Salt Lake City, UT, USA

Consider a function, u.�/ of d identically distributed
(iid) random variables, � 2 � 	 Rd where �i 	
L2.˝;F ;P/. Here ˝ is the event space, F is the

�-algebra of events, and P is the probability measure.
The expectation value of u, denoted as EŒu�, is defined
as

R
˝

u.!/dP.!/. L2.˝;F ;P/ is a Hilbert space of
functions with a finite L2-norm, k�k2 D EŒ� � �� <1.

The chaos expansion, first introduced by Wiener [4],
is a representation of L2.˝;F ;P/ through an orthog-
onal basis as

u.�/ D
1X

kD0
Ouk˚k.�/; Ouk D EŒu.�/˚k.�/�

EŒ˚2
k .�/�

:

Cameron and Martin [1] established that any variable
u.�/ 2 L2.˝;F ;P/ with a finite variance can be
expressed in a L2-convergent series. Here ˚k.�/ is a
multivariate chaos polynomial with the property that

EŒ˚i .�/˚j .�/� D �i ıij ; �i D EŒ˚i .�/2�;

i.e., the basis is orthogonal under the measure associ-
ated with the random variables.

Once the expansion is known, the orthogonality of
the chaos polynomial allows for the computation of
the moments by directly manipulating the expansion
coefficients. The first two moments are recovered as

EŒu� D Ou0; Var.u/ D EŒ.u � EŒu�/2� D
1X

kD1
�k Ouk:

Other moments can be recovered in a similar fashion.
In practice, one is often concerned with the trun-

cated expansion,

uM.�/ D
MX

kD1
Ouk˚k.�/; M D .nC d/Š

nŠd Š
;

where n reflects the truncation order of the polyno-
mial expansion and M represents the total number
of expansion terms. Convergence of the expansion
can be established by using results from the classical
approximation theory, especially those of spectral ex-
pansions [3] that are generally of the form

ku � uM.�/k2 � Cn�mku.m/k2;

where k�k2 is the weighted 2-norm. Whenever the func-
tion is smooth (with m being large), the convergence
rate is fast and achieves exponential rate when the



Polynomial Chaos Expansions 1163

P

Polynomial Chaos Expansions, Table 1 Wiener-Askey polynomials and associated random variables in polynomial chaos

Random variable � Wiener-Askey basis Support

Continuous Gaussian Hermite-chaos R
distribution Gamma Laguerre-chaos R

C

Beta Jacobi-chaos [a,b]
Uniform Legendre-chaos [a,b]

Discrete Poisson Charlier-chaos f0; 1; 2; : : :g
distribution Binomial Krawtchouk-chaos f0; 1; 2; : : : ; N g

Negative binomial Meixner-chaos f0; 1; 2; : : :g
Hypergeometric Hahn-chaos f0; 1; 2; : : : ; N g

function is analytic. On the other hand, if one measures
the convergence with respect to the total number of
expansion terms M , the rate becomes less appealing.
At high dimensions d 
 1, M grows rapidly. By
approximatingM ' nd=d Š, one recovers

ku � uM.�/k2 � QCM=dku.m/k2;

indicating a reduction in convergence rate with increas-
ing d or, alternatively, a need for increased smoothness
to maintain the rate of convergence with increasing
dimension. This deterioration of the effective conver-
gence rate at high dimensions is known as the curse of
dimensionality.

Homogeneous Wiener Chaos

Under the assumption of Gaussian random variables,
Wiener [4] introduced the homogeneous chaos and the
associated chaos polynomials, also known as Hermite
polynomials

˚k.�/ D Hk.�/ D e 12� ��.�1/k @k

@�1; : : : ; @�d
e� 1

2� �� :

The connection between the orthogonal basis and ran-
dom variable is made clear by recognizing that

EŒHi .�/Hj .�/�D
Z

Rd

Hi .�/Hj .�/

.2�/d=2
e� 1

2� �� d�D i Šıij;

i.e., the Hermite polynomials are orthogonal under
the Gaussian measure. The idea of using Hermite
polynomials was adopted and has helped to produce

many effective algorithms for practical simulations
under uncertainty [2].

Generalized Polynomial Chaos

Realizing the close connection between the prob-
ability distribution of the random variable and
the associated chaos orthogonal polynomial, (gen-
eralized) polynomial chaos has been introduced
as a generalization of the original homogeneous
polynomial chaos. This close connection be-
tween random variables and classic orthogonal
polynomials has been named the Wiener-Askey
scheme, because most of the orthogonal polynomials
were chosen from the Askey family. However, the
orthogonal basis can employ any suitable polynomials;
see [5, 6] for a detailed discussion of this.

In this generalized case, the weight under which
classic polynomials are orthogonal reflects the nature
of the random variables. Examples of some of the well-
known correspondences are listed in Table 1.
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Short Definition

The Hartree-Fock method is one of the most famous
theories to approximate the fermionic ground state
of a many-body Schrödinger operator. The expression
“Post-Hartree-Fock” refers to techniques which aim
at improving the Hartree-Fock ground state, or at
calculating excited states.

Approximating Bound States of
Correlated Systems

Computing a reliable approximation of the bound
states of a given many-body quantum system is
a huge challenge in many areas of Physics and
Quantum Chemistry. When the particles interact with
each other, the eigenfunctions of the corresponding
Hamiltonian usually have no simple form and there
is no straightforward numerical procedure to compute
them. We review here the most famous methods used
in practice, with an emphasis on their mathematical
properties. For details, we for instance refer to [3].

To make our discussion more precise, we con-
sider an isolated system of N nonrelativistic spin-
1=2 fermions, moving in the three-dimensional space
and interacting through a two-body potential W . The
correspondingN -body Hamiltonian takes the form

H D
NX

jD1
hrj C

X

1�k<`�N
W.rk � r`/ (1)

where r1; : : : ; rN are the positions of theN particles in
R
3, and

hr D � „
2

2m
�r C V.r/

is the one-body operator describing independent par-
ticles (� D r2 is the Laplacian). Even if we do
not emphasize it in our notation, the interaction W
could in principle depend on the spin variables. The
Schrödinger operator H acts on the Hilbert space
HN WD VN

1 H, which is the antisymmetric tensor
product of N copies of the one-body space

H WD
(
' W R3 � f";#g ! C; h'; 'iH

WD
X

�2f";#g

Z

R3

j'.r; �/j2d3r <1
9
=

;

of square-integrable wavefunctions '. Equivalently,
HN is the space of many-body wavefunctions
�.r1; �1; : : : ; rN ; �N / which are square-integrable
and antisymmetric with respect to exchanges of the
variables .rj ; �j /,

�.: : : ; ri ; �i ; : : : ; rj ; �j ; : : :/

D ��.: : : ; rj ; �j ; : : : ; ri ; �i ; : : :/:

For atoms and molecules with fixed classical nuclei
(Born-Oppenheimer approximation), V and W are re-
spectively the Coulomb potential of the external nuclei
and the electrostatic repulsion between the electrons.

Most of what we will mention below stays valid in
an abstract setting, in which the Hilbert space H, the
one-body operator h W H ! H, and the two-body op-
erator W W H2 ! H2 are arbitrary. This is particularly
useful when considering other systems (particles in a
magnetic field, living in a finite domain, on a plane, on
a lattice, etc.). The reader not acquainted with infinite-
dimensional systems can indeed safely assume that the
one-particle space H is finite-dimensional, which is the
case encountered in practical calculations.

The time-independent Schrödinger equation is the
eigenvalue problem

H� D �� (2)
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in HN and the main question is to adequately approxi-
mate its solutions � 2 HN . The lowest (ground state)
eigenvalue �0 of H can be found by minimizing the
energy over all possible states:

�0 D inf
�2HNjj� jjD1

h�;H� iHN
:

A corresponding solution�0 of (2) is usually called the
ground state. Excited states corresponding to higher
eigenvalues are obtained by min-max principles (see
below).

The simplest method to approximate the ground
state �0 of H is the so-called �Hartree–Fock Type
Methods. In this theory, � is assumed to be a simple
tensor product

'1 ^ � � � ^ 'N .r1; �1; : : : ; rN ; �N /

WD 1p
NŠ

det .'j .rk; �k//jk

which is called a Slater determinant. The functions 'j s
are called orbitals and they must be orthonormal with
each other,

P
�2f";#g

R
R3
'j .r; �/'k.r; �/ d3r D ıjk.

A HF ground state �HF is obtained by minimizing
the energy among such HF states. It does not solve
the Schrödinger equation (2). Instead, a complicated
system of coupled nonlinear equations is obtained for
the orbitals 'j s.

For non-interacting systems, W � 0, HF is exact:
The eigenstates of H D PN

jD1 hj are exactly the
Slater determinants made from the eigenstates 'j of
the one-body operator h. For interacting systems, this
is not true, however. It is then important to know
how well a given state can be approximated by HF
wavefunctions.

We now come to the concept of correlation, which
is essential in quantum physics and chemistry. We can
mathematically define it, for any given state � 2 HN ,
as the distance to the manifold of Hartree-Fock states.
A system is, therefore, said to be highly correlated
when its state� is far away from any HF wavefunction.
The correlation energy is itself defined, for the ground
state, as the difference between the HF and the exact
ground state energies [12]. For excited states, there
is, however, no such definition because there is no
appropriate concept of excited HF states (see below).

For most interacting physical systems, Hartree-Fock
theory can at best only give qualitative results and Post-
HF methods are needed to obtain quantitative proper-
ties [9]. In some situations, correlation effects are so
big that HF theory does not even describe the system
qualitatively. In atoms and molecules, HF is usually
meaningful at equilibrium (electronic ground states
with nuclei in a stable position) but must be refined in
other situations (nuclei in an unstable position, excited
states, etc.).

Description of theMain Post-Hartree-Fock
Methods

We list here the most famous methods extending
Hartree-Fock theory, following [3]. Note that
everything works similarly for bosons if, instead of
starting with a HF state, one uses an uncorrelated
(condensed) state '.r1; �1/ � � � � � '.rN ; �N /.

Perturbation (Møller-Plesset) Theory
The orbitals 'j of the Hartree-Fock ground state
�HF D '1 ^ � � � ^ 'N solve a complicated system of
coupled nonlinear equations. The latter can be written
in the form

hHF 'j D �j 'j ; (3)

where hHF is the mean-field (Fock) operator, which
depends on the 'j s in a self-consistent way. The
precise formula of hHF is not really important for our
discussion but we write it for completeness (assuming
W is spin-independent for simplicity):

�
hHF'

�
.r; �/ D �

h'
�
.r; �/

C'.r; �/
Z

R3

W.r � r0/
.r0/ d3r 0

�
X

� 02f";#g

Z

R3

W.r � r0/�.r; �; r0; � 0/'.r0; � 0/ d3r 0:

Here �.r; �; r0; � 0/ D PN
jD1 'j .r; �/'j .r0; � 0/ and


.r/ D P
�2f";#g

PN
jD1 j'j .r; �/j2 are the one-

particle density matrix and the particle density of the

http://dx.doi.org/10.1007/978-3-540-70529-1_236


1166 Post-Hartree-Fock Methods and Excited States Modeling

system, respectively. Details on this can be found in
the �Hartree–Fock Type Methods entry.

The eigenvalues �1; : : : ; �N appearing in (3)
are known to be the N lowest eigenvalues of the
mean-field operator hHF (this is sometimes called
the aufbau principle). The N first eigenfunctions
'1; : : : ; 'N of hHF are then called the occupied orbitals,
whereas the higher eigenfunctions 'j with j � N C 1
are called unoccupied orbitals. The HF equation (3)
can be interpreted in the many-body space, by saying
that the HF wavefunction �HF D '1 ^ � � � ^ 'N is the
exact ground state of the mean-field, noninteracting,
N -body Hamiltonian associated with hHF,

0

@
NX

jD1
.hHF/rj

1

A�HF D
0

@
NX

jD1
�j

1

A�HF:

The main goal being to solve Schrödinger’s equa-
tion H� D �� , it is now natural to use perturbation
theory which, in quantum chemistry, is often called
Møller-Plesset theory. The many-body Hamiltonian is
written as

H D H 0 C P where H 0 D
NX

jD1
.hHF/rj

and its lowest eigenvalue and eigenfunction are then
expanded in powers of P . More precisely, one con-
siders the operator H 0 C �P and expands its lowest
eigenvalue �0.�/ and eigenfunction �0.�/ in a power
series of �. Then, the series is truncated at a chosen
order and � is put equal to 1.

For repulsive systems (i.e., when W is positive
definite, hF;WF i > 0 for all F 2 H2), the no-unfilled
shell theorem of [1] tells us that �N< �NC1. This means
that the second eigenvalue of H 0 is strictly above the
first one:

PN�1
iD1 �i C �NC1 >

PN
iD1 �i . Hence pertur-

bation theory is mathematically justified. The perturba-
tion series has a positive radius of convergence, which

depends on the Hartree-Fock gap �NC1 � �N and on
the size of the perturbation P . However, this radius is
in general not big enough to justify the replacement
� D 1.

Perturbation theory is not variational in the sense
that the inclusion of more and more terms does not
necessarily decrease the energy. Indeed, when too
many terms are included and the radius of convergence
is < 1, the energy might eventually blow up.

Configuration-Interaction
Hartree-Fock states span the whole many-body space,
a fact that is used in both the configuration-interaction
(CI) and multiconfiguration (MC) methods. Let us
explain this. For any orthonormal basis .'i / of the one-
body space H, the corresponding Slater determinants
'i1 ^ � � � ^ 'iN are known to form an orthonormal
basis of the N -body space HN . This means that any
many-body wavefunction � can be written as a (pos-
sibly infinite) linear combination of Slater determi-
nants: � D P

i1<���<iN ci1;:::;iN 'i1 ^ � � � ^ 'iN , withP
i1<���<iN jci1;:::;iN j2 D jj� jj2 D 1. It is, therefore,

very natural to start with a preliminary Hartree-Fock
calculation (only one determinant), and to include
more and more Slater determinants such as to improve
the quality of the approximation.

In the CI method, one chooses for .'i / an or-
thonormal basis of eigenfunctions of the HF mean-
field operator hHF, and one looks for wavefunctions
which are a linear combination of a finite number
of well-chosen determinants. Only the mixing coeffi-
cients ci1;:::;iN appearing in front of these Slater deter-
minants are optimized.

The classical technique is to first fix a maximal
numberNe of unoccupied orbitals, and then to consider
all the possible determinants obtained by replacing
at most n occupied orbitals 'i with 1 � i � N in
the HF determinant, by unoccupied ones 'j , with
N C 1 � j � N C Ne. This procedure can be
written in terms of creation and annihilation operators
as follows:

� D

0
BB@c0 C

nX

kD1

X

1�i1<���<ik�N
NC1�j1<���<jk�NCNe

c
j1;:::;jk
i1;:::;ik

a
�
j1
� � �a�jkaik � � �ai1

1
CCA'1 ^ � � � ^ 'N ;

http://dx.doi.org/10.1007/978-3-540-70529-1_236
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where ai is the annihilation operator of a particle in the
state 'i and a�i is the corresponding creation operator.
The operator in the parenthesis can be written in the
form c0 CPn

kD1 Xk , where

Xk WD
X

1�i1<���<ik�N
NC1�j1<���<jk�NCNe

c
j1;:::;jk
i1;:::;ik

a
�
j1
� � �a�jkaik � � �ai1 ;

which is called the kth excitation operator. In the
end, the mixing coefficients c0 and cj1;:::;jki1;:::;ik

in front of
these determinants are optimized. This is now a simple
eigenvalue problem, since the total energy is quadratic
with respect to these parameters.

Under reasonable assumptions on V and W (such
as to makeH bounded from below) and on the chosen
orthonormal basis (In infinite dimension, the spectrum
of hHF is not purely discrete and the orbital basis has
to be completed in order to account for the continuous
spectrum.) .'j /, the exact ground state energy �0 as
well as all the exact eigenvalues �i below the essential
spectrum of the many-body Hamiltonian H are ob-
tained in the limit when all the Slater determinants are
included. The convergence is variational in the sense
that the approximate lowest eigenvalue decreases to-
ward its limit. The speed of convergence might be quite
slow, however. For instance, in atoms and molecules
the true eigenfunctions have a singularity due to the
infinite repulsion when two electrons coincide. This

cusp is very hard to reproduce with Slater determinants
[7], which slows down the convergence considerably.

Multi-configuration
The multi-configuration (MC) method is similar to
CI except that the one-body basis functions 'i are
optimized instead of being fixed [14]. This means
that the wavefunction � is assumed to be a finite
sum of Slater determinants, with a collection of K
orthonormal orbitals '1; : : : ; 'K and that the energy
is minimized both over the orbitals 'j s and the
mixing coefficients ci1;:::;iN . This leads to a complicated
system of nonlinear equations for the 'j s, coupled
to a linear eigenvalue problem for the ci1;:::;iN . The
orthogonality constraint on the orbitals 'j should
not be forgotten. The main practical advantage of
MC is the (typically) lower number of orbitals
needed to achieve a given accuracy, compared to
CI.

For a given number K of orbitals and a given
number N of particles, the number of Slater determi-
nants grows extremely fast, like

�
K

N

�
. It is, therefore,

inconceivable to include all the possible configurations
and, in practice, only some relevant Slater determinants
are kept. The most common method is called Complete
Active Space (CAS) and it consists in splitting the
system into Nc core particles described by Hartree-
Fock theory, and Nv D N � Nc valence particles for
which all the

�
K�Nc
Nv

�
remaining Slater determinants are

used. In a formula, the wavefunction is assumed to be
of the form

� D '1 ^ � � � ^ 'Nc ^
0

@
X

NcC1�jNcC1<���<jN�K
cjNcC1:::jN 'jNcC1

^ � � � ^ 'jN
1

A :

The MC method has deserved some attention from the
mathematical side, in particular because of its simi-
larities with the Hartree-Fock method. For atoms and
molecules, the existence of a ground state was shown
in [6] when all the possible determinants are used, and
in [10, 11] for the CAS method. The convergence to
the true Schrödinger ground state when the number of
determinants is increased was proved in [6], but the
speed of convergence is not known.

Let us mention that the initial many-body Hamilto-
nian H usually has some (spacial or spin) symmetries,
which are then shared by its exact wavefunctions.

Because of the nonlinearity, these symmetries could
be spontaneously broken in HF (hence CI) or MC
theories. Even if the breaking of symmetry usually
yields a better (i.e., lower) energy, it could on the other
hand introduce substantial errors in other physical
observables. Depending on the physical context, it can
then be useful to force a given symmetry in the HF
or MC wavefunction. This is done by imposing some
relations between the mixing coefficients of the Slater
determinants and/or some symmetries on the orbitals.
The mathematical properties are then similar to that of
the full model. This technique is also useful to find an
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approximation of excited states which are the lowest
energy states of their own symmetry class, by using
minimization methods.

Coupled-Cluster
During a chemical reaction, a molecule can split into
two (or even several) independent subsystems. It is
sometimes important that, in the dissociation limit
where the two submolecules become infinitely sepa-
rated, the chosen approximate model gives exactly the
same answer as when the two molecules are simulated
independently. This is not the case with HF, CI, and
MC methods. The intuitive explanation is the follow-
ing. As the total number of orbitals used to describe
the wavefunction is fixed, these orbitals have to divide
up between the two molecules, leading to a poorer
description of them. The ground state energy in the
dissociation limit is therefore always strictly above the
sum of the two energies in the same approximation
scheme. When the number of Slater determinants is
increased, this error becomes small, but it can be
significant when a small number of determinants is
employed (e.g., in HF theory).

This drawback of HF, CI, and MC methods is cor-
rected in the so-called Coupled Cluster theory, which
is based on an exponential parametrization of exci-
tations, as we will explain. This technique originates
from nuclear physics (see, e.g., [5]), and it became
popular later in quantum chemistry [2]. Details on
�Coupled-Cluster Methods theory can be read in the
corresponding entry.

As we have explained before, a CI or MC wave-
function can be written as an excitation .c0 C X1C
X2 C � � � /�HF of the reference HF determinant, where
Xk is the kth order excitation operator (a polynomial
of degree 2k in the creation and annihilation operators).
The mixing coefficients in theXk are optimized in both
CI and MC, but the orbitals 'j are only optimized in
MC.

In coupled cluster theory, the excitation operator
is not a polynomial but an exponential, and the trial
wavefunction is chosen of the form

� D eS �HF; S D c0 CX1 CX2 C � � � :

Again the mixing coefficients in the excitation oper-
ators Xk have to be optimized. When truncating the
number of excitations, the resulting wavefunction is
not the same as the CI or MC ones, because higher

excitations are indeed contained in the exponential,
as is seen by expanding it. It can be shown that this
procedure is now size-consistent: The total energy
becomes the sum of the energies of the subsystems in
the case of dissociation.

Finding the unknown excitations in the exponential
is not an easy task, in particular if one wants to mini-
mize the energy. For this reason, one often renounces
to the variational procedure and instead focuses on
solving Schrödinger’s equation perturbatively in S .
The trick is to write it as

e�SHeS�HF D ��HF:

Then, one expands the exponential in S and takes the
scalar product with �HF and some chosen excitations
of �HF, in order to obtain sufficiently many equations
for S . An important property is that such expansions
always terminate, due to the fact that H contains at
most two-body interactions.

The coupled cluster method is nowadays the
most precise technique for medium-size atoms and
molecules. Some of its mathematical properties have
recently been studied in [13].

Approximate Excited States

Computing an approximation of the excited states of
the many-body Hamiltonian H (i.e., eigenfunctions
corresponding to eigenvalues > �0) is conceptually
much more difficult than for the ground state. An
exception is, of course, when the system has some
symmetry and when an excited state is the lowest
energy state within its symmetry class. In this special
case, the techniques discussed before apply mutatis
mutandis.

Let us recall that the kth excited energy ofH can be
obtained by the min-max principles

�k WD inf
dimEDkC1

sup
�2E

jj� jjD1

h�;H� i D sup
dimFDk

inf
�2F?

jj� jjD1

h�;H� i

(4)

withE and F subspaces of HN (or, to be more precise,
of the quadratic form domain of H ). In the second
formula, one can remove the sup provided one takes
for F the space spanned by the previous excited states,
F D span.�0; : : : ; �k�1/. In principle, one could
therefore compute the excited states by induction, by
minimizing the energy with the additional constraint
that the state must be orthogonal to all the previous

http://dx.doi.org/10.1007/978-3-540-70529-1_246
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computed states. This method is purely linear. It works
perfectly for CI (the excited energies are nothing else
but the eigenvalues of the Hamiltonian matrix obtained
by varying the mixing coefficients ci1;:::;iN ), but it is
not very convenient for nonlinear models like HF or
MC. The constraint that the HF/MC many-body wave-
function is orthogonal to some other given many-body
states is highly nonlinear. A solution of this problem
would not at all solve the usual HF/MC equations, and
the obtained state would not be a stationary state of the
HF/MC model.

It is more natural to ask that an approximate excited
state must always be a stationary state of the model
under consideration. Unfortunately, nonlinear models
usually have plenty of stationary states, most of them
having no clear physical interpretation. Before turning
to practical computations, it is therefore important
to find a rigorous principle allowing to distinguish,
among all these stationary states, the ones that have
the correct physical meaning. In [8, 11], the following
guiding properties were advocated, for a kth excited
state:
1. (First order condition) It should be a stationary state

of the model under consideration.
2. (Second order condition) Its Hessian should have at

most k negative eigenvalues.
3. (Hylleraas-Undheim-MacDonald condition) The

approximate kth excited energy should be greater
or equal to the true Schrödinger energy �k , and it
should converge to �k when the model is refined
(typically when the number of Slater determinants
is increased).
In MC theory, a complicated definition of the kth

excited state satisfying the above three properties was
proposed in [11]. It is based on a nonlinear min-max
principle similar but not identical to (4), which is un-
fortunately not very easy to implement on a computer
[4]. We will not detail all this here. We only mention as
a side remark that the definition of the kth excited state
requires to have at least k C 1 Slater determinants. In
particular, no excited state is defined in HF theory.

It is fair to say that the theoretical understanding of
approximate excited states is not as achieved as for the
ground state.

Cross-References

�Coupled-Cluster Methods
�Exact Wavefunctions Properties

�Hartree–Fock Type Methods
� Schrödinger Equation for Chemistry
�Variational Problems in Molecular Simulation
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Synonyms

Preconditioned iterative methods

Short Definition

Preconditioning refers to the process of transforming
a linear algebra problem into a form that is more
amenable to numerical solution using iterative tech-
niques. A preconditioner is the operator or procedure
that effects such a transformation. In the context of
matrix iterations, a typical goal of preconditioning is
to improve the spectral properties of the transformed
coefficient matrix. For a symmetric positive definite
system, an effective preconditioner will generate a
transformed system having a spectral condition num-
ber that is close to unity.

Description

Preconditioning is one of the most important concepts
in the field of numerical linear algebra. It is usually
associated with the design of more efficient methods
for solving systems of linear equations, but the concept
is also used in eigenvalue computations and in solving
general optimization problems. To focus this discus-
sion, consider the model case of a square system of
linear equations,

Ax D b; (1)

where A is a nonsingular n� n matrix with real entries
aij 2 R, with a given right-hand side vector b 2 R

n

and a vector x 2 R
n to be computed. Such sys-

tems are central to computational mathematics and are
frequently the most time-consuming part of the overall
solution process. An important distinction is between

problems (1) where the matrix A is sparse and those
where A is dense. Discretizing a partial differential
equation (PDE) system using a finite difference or
finite element approximation typically leads to a linear
(or a linearized) system with a small number s � n

of nonzero coefficients in every row. In this case, a
matrix–vector multiply can be performed in O.s � n/
flops and a Krylov subspace method is likely be much
more efficient (in terms of computational work and
memory) than a specialized sparse Gaussian elimina-
tion method. This is certainly the case whenever the
number of iterations, k, required to approximate x
to some prescribed accuracy is significantly smaller
than n. Sparse linear equation systems also arise in a
variety of non-PDE applications: for example, circuit
simulation, modelling networks, chemical engineer-
ing processes, and national economies. Dense linear
equation systems often arise from discretizing integral
operators, for example, when using boundary element
approximation methods. In such cases, Krylov sub-
space methods requiring O.n2/ flops per iteration re-
main competitive with elimination methods whenever
k � n. In either case the need to accelerate the
convergence of Krylov subspace iteration methods is
the motivation for preconditioning.

There are three ways to transform system (1) to
make it more amenable to iterative solution. This can
be seen by introducing nonsingular, square n � n
preconditioning matrices M�1

` and M�1
r and writing

down the equivalent system,

M�1
` AM�1

r y D M�1
` b; x DM�1

r y: (2)

Setting M` D M , Mr D In is known as left precon-
ditioning, setting M` D In, Mr D M is called right
preconditioning, and the case M` D S D MT

r is usu-
ally referred to as symmetric preconditioning. Note that
matricesM�1A andAM�1 have identical eigenvalues;
so the choice of preconditioning orientation does not,
in itself, change the asymptotic rate of convergence
(defined below) if a Krylov subspace method is applied
to the transformed system. The difference between the
two orientations is the definition of the transformed
residual vector: setting r D b � Ax�, the residual
associated with (2) is Nr WD M�1

` .b �Ax�/. Thus, with
left preconditioning, the residual is preconditioned,
Nr D M�1r . In contrast, if right preconditioning is
applied, then the transformed residual is identical to the
original, Nr D r .
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Symmetric preconditioning is invariably used
to preserve symmetry (the preconditioned matrix
S�1AS�T is symmetric whenever A is symmetric).
This matrix also has the same eigenvalues as M�1A
if the inverse of the preconditioner is symmetric and
positive definite and is factorized so thatM D SST . A
sound theoretical basis for preconditioning symmetric
systems has been developed in the last three decades.

Supporting Theory
Symmetric (or Hermitian, when extended to com-
plex matrices) systems arise when discretizing self-
adjoint PDE problems: the classic example is Laplace’s
equation; other examples include the Stokes equations
in fluid dynamics and the Navier–Lamé equations in
linear elasticity. Such systems may be solved using the
minimum residual Krylov subspace method (MINRES)
which has the desirable property of minimizing at
each successive iteration, k, the Euclidean norm of
the residual kr.k/k WD kb � Ax.k/k over the Krylov
subspace

Kk.A; r
.0// WDspan

˚
r.0/; Ar.0/; A2r.0/; : : : ; Ak�1r.0/

�
:

(3)
This optimality can be characterized using a polyno-
mial pk in the matrix A, thus

kr.k/k D min
pk2˘k; pk .0/D1

kpk.A/ r.0/k; (4)

where ˘k is the set of real polynomials of degree k.
Let �. NA/ D f�j gnjD1 represent the (real) eigenvalue

spectrum of NA WD S�1AS�T . Under the assumption
that M D SST and noting that NA has an orthonormal
set of eigenvectors, the classical “minimax” character-
ization of the residual reduction at step k can easily be
established (see, e.g., [2, Chap. 6]):

kr.k/kM�1

kr.0/kM�1

� min
pk2˘k; pk.0/D1

max
j
jpk.�j /j; (5)

where krkM�1 D kS�1rk D p
rTM�1r . The

bound (5) is the key to effective preconditioning in
the symmetric case: the objective is to transform
the original system (1) to a symmetric system (2)
with a transformed matrix NA that has well-clustered
eigenvalues. If the spectral condition number of the
preconditioned system is unity (i.e., if NA has a single
eigenvalue of multiplicity n), then MINRES will

converge (in exact arithmetic) to the solution x in
one iteration, independently of the starting vector x.0/.
Moreover, if NA has k distinct clusters of eigenvalues,
then the backward stability of the MINRES algorithm
in finite-precision arithmetic (see [4, Chap. 4]) together
with the bound (5) ensures that, computationally,
there will be a large residual reduction after k steps
if MINRES is applied to the preconditioned system.

If there is a minimization of energy underlying the
discrete problem (1), then the coefficient matrix A will
be both symmetric and positive definite: xT Ax > 0 for
all nonzero vectors x. In this special case, the Krylov
subspace method of choice is the conjugate gradient
method (CG). Letting e.k/ D x � x.k/ and introducing
the discrete energy error kekA D

p
eT Ae, the CG

analogue of (5) is the bound

ke.k/kA
ke.0/kA � min

pk2˘k; pk.0/D1
max
j
jpk.�j /j; (6)

with �j 2 �. NA/. Thus, a preconditioner which clusters
the eigenvalues of NA around unity will be computa-
tionally effective in the sense that a few CG iterations
will rapidly reduce the energy of the approximate
solution. Note that there is no need to construct an
explicit matrixM or a factorized matrix S in a practical
implementation: a procedure that effects the action of
the preconditioning matrix M�1 on a given vector
z is all that is needed. Efficient implementations of
preconditioned MINRES and preconditioned CG are
described in [3, Chap. 6].

For nonsymmetric systems, (1) with A ¤ AT , the
optimal Krylov subspace method analogous to MIN-
RES is the generalized minimum residual (GMRES)
method (see, e.g., [2, Chap. 4]). The complication here
is that the eigenvalue spectrum �. NA/ D �.M�1A/
may not be descriptive of the actual convergence in
cases where the condition number of the matrix of
eigenvectors of NA is much greater than unity. The
goal of preconditioning is not obvious in such cases:
clustering the eigenvalues often leads to increasingly
ill-conditioned eigenvectors! This is one of the primary
motivations for introducing the notion of pseudospec-
tra; see [8, Chap. VI]. The eigenvalue spectrum does
provide some insight into the asymptotic behavior of
GMRES (for large k) however. For example, defining
the asymptotic convergence factor,
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 WD lim
k!1

�
min

pk2˘k; pk.0/D1
max
�j
jpk.�j /j

�1=k
; (7)

it can be expected that the norm of the residual will
eventually be reduced by a factor roughly equal to 

at each successive step of GMRES. This suggests that
developing preconditioning strategies that cluster the
eigenvalues is also a reasonable approach to take in the
nonsymmetric matrix setting.

Algebraic Preconditioning of Sparse Systems
The development of algebraic preconditioning tech-
niques took off in the 1970s, especially following the
introduction of incomplete factorization by Meijerink
and van der Vorst [6] and others. The basic idea is
simple. If A is a sparse symmetric positive definite
matrix, then it has a Cholesky factorization A D
LLT where L is a lower triangular matrix. Applying
symmetric preconditioning with S D L gives NA WD
L�1AL�T which has all eigenvalues equal to one,
so CG or MINRES will converge in one step (in
exact arithmetic). An incomplete factorization of A is
obtained by running the Cholesky algorithm, keeping
the sparsity pattern of the factor OL the same as that of
the original matrix A. (New nonzero entries that are
created in the course of the factorization process are not
stored.) This generates an approximate factorization
A � OL OLT DW M , but the incomplete factor OL can be
computed inO.s �n/ flops. Moreover, triangular solves
needed to effect the action of the inverse of OL OLT can
also be done in s � n flops, so the overall work involved
in constructing and applying such a preconditioner is
commensurate with a matrix–vector multiply with the
original sparse matrixA. While the associated theory is
limited to matricesA with a lot of special structure (the
so-called M–matrices), the visible acceleration in the
convergence when using such a preconditioner in prac-
tical situations can be remarkable. The basic idea also
naturally extends to unsymmetric systems: the only
difference is that incomplete LU factors are created.
Despite the fact that there is little in the way of rigorous
theory, incomplete LU factorization preconditioning,
in combination with heuristics (needed to ensure that
the incomplete factorization process does not break
down), is the most popular preconditioning approach
for general nonsymmetric systems at the present time.
See [1] and [7, Chap. 10] for a detailed discussion.

Infinite-Dimensional Problems
A natural question is, how can Krylov subspace meth-
ods be applied to an infinite-dimensional problem as-
sociated with the linear system (1). For example, the
problem of finding the function x in a separable Hilbert
space X satisfying

Ax D f; (8)

where f is a given function in the dual space Y WD X�
and A is typically an unbounded, but in this setting
self-adjoint, linear operator (denoted A 2 L.X; Y /)
with corresponding norm

kAkL.X;Y / D sup
u2X
kAxkY
kxkX : (9)

Note that a Krylov subspace method cannot be defined
for problem (8) because the operator A may map
functions in X out of the space. This motivates
the canonical preconditioner B which is the Riesz
representation operator mapping X� to X . Denoting
the duality pairing by h�; �i, such a preconditioner has
the property that hB�1�; �i is an inner product on X
with associated norm equivalent to k � kX , and the

composition operator BA W X A�! X� B�! X is
an isomorphism from X to itself. Since the operator
BA W X ! X is symmetric in the inner product
hB�1�; �i, then the preconditioned system BAx D Bf
can be solved using MINRES, and the convergence rate
is bounded by the spectral condition number, given by

�.BA/ W D kBAkL.X;X/ k.BA/�1kL.X;X/

D sup�2�.BA/ j�j
inf�2�.BA/ j�j : (10)

The CG algorithm is similarly well defined whenever
there is a constant � > 0 such that hAx; xi � �kxk2X
for all x 2 X .

In this infinite-dimensional setting, two alternative
preconditioners B1, B2 which define norm-equivalent
inner products on X� are said to be spectrally
equivalent. Note that if �.B1A/ < 1 and B1 and
B2 are spectrally equivalent, then �.B2A/ < 1. As
discussed in [5], this opens the door to the construction
of effective preconditioners for any finite-dimensional
approximation of (8): the structure of the pre-
conditioner for (1) follows from the structure of
the preconditioner in the infinite-dimensional case.
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This perspective hasled to the development of multi-
grid and multilevel preconditioners for discretizations
of symmetric problems where the discrete analogue
of (10) is uniform in the discretization parameter h.
Such preconditioned iteration methods are optimal:
the number of iterations of MINRES that is needed
to attain a fixed tolerance is bounded independently
of h. See [2] for specific examples and [9] for a
comprehensive review.
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Introduction

This article is intended to review specific language
features and their use in computational science. We
will review the strengths and weaknesses of different

programming styles, with examples taken from widely
used scientific codes. It will not cover the broader range
of programming languages, including functional and
logic languages, as these have, so far, not made in-
roads into the scientific computing community. We do
not cover systems with sophisticated runtime require-
ments, such as Cilk, since this is currently incompatible
with high performance on cutting-edge hardware. For
this reason, we also ignore transactional memory, both
software and hardware. We also will not discuss the
particular capabilities of software libraries in detail.
Particular libraries will be used as examples, in order
to highlight advantages and disadvantages of the pro-
gramming paradigm, but no exhaustive presentations
of their capabilities, strengths, or weaknesses will be
given.

Brief Overview of Language
Characteristics

We begin our discussion with imperative languages,
like C and Fortran, meaning languages where the
programmer explicitly tells the computer what to do
at each step. The computation is built from variables,
which hold values, and functions which compute the
value of a variable based upon the input values of other
variables. For instance, important functions for scien-
tific computing are arithmetic functions, like division,
and linear algebraic functions, like matrix multiplica-
tion. The principal advantage of imperative languages
over simpler systems, such as Excel, is the ability to
flexibly combine these basic elements.

In C and Fortran 90, groups of related variables
can be combined together in a structure, which allows
them to be passed as a unit to functions. This both
improves code readability and decreases its conceptual
complexity. For example, a customer structure could
store a customer’s name, account number, and out-
standing balance:

s t r u c t cus t om er f
char �name ;
i n t a c c t ;
f l o a t b a l a n c e ;

g ;

Similarly, functions may call other functions, or them-
selves recursively, in order to simplify the description
of the operation. For example, the merge sort algorithm
works by first sorting each half of an array and then

http://dx.doi.org/10.1006/jcph.2002.7176
http://dx.doi.org/10.1002/nla.716
http://dx.doi.org/10.1002/nla.716
http://www.jstor.org/stable/2005786
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merging together these smaller sorted arrays into a
completely sorted array:

void m ergeSor t ( i n t a r r a y [ ] ,
i n t a r r a y L e n g t h ) f
i n t h a l f L e n g t h = a r r a y L e n g t h / 2 ;

i f ( a r r a y L e n g t h < 2) return ;
m ergeSor t (& a r r a y [ 0 ] , h a l f L e n g t h ) ;
m ergeSor t (& a r r a y [ h a l f L e n g t h ] , h a l f L e n g t h ) ;
merge (& a r r a y [ 0 ] , &a r r a y [ h a l f L e n g t h ] ) ;

g
Using these mechanisms, just amounting to the intro-
duction of hierarchical organization to simple code ele-
ments, the complexity of large codes can be drastically
reduced.

Object-oriented languages, such as C++ and
Python, allow a further level of combination. Data can
be grouped together with the functions which operate
on it, into a superstructure called an object. This can
be useful for organizing the action on groups of data.
For example, we can augment our customer example
with methods which change the account number or
debit the account, where now we declare a class which
describes a type of object:

c l a s s cus t om er f
char �name ;
i n t a c c t ;
f l o a t b a l a n c e ;

publ i c :
void d e b i t ( f l o a t amount ) f

t h i s �>b a l a n c e += amount ;
g ;
void changeAccount ( i n t a c c t ) f

t h i s �>a c c t = a c c t ;
g ;

g
However, this organization can also be accomplished
in standard C by passing the structure as an argument:

void d e b i t ( s t r u c t cus t om er � t h i s ,
f l o a t amount ) f
t h i s �>b a l a n c e += amount ;

g
Another organizational strategy is to give types to

variables. In C and Fortran, this tells the compiler how
much space to use for a variable, such as 4 bytes for
a long int in C. Structures are also types, built out of
smaller types, as are classes. In some languages, such
as C, C++, and Fortran, the type of every variable
must be specified before the program is run, which
is called static typing. In contrast, Python, Ruby, and

Perl allow the type of a variable to change at run-
time depending on what kind of value is stored in
it, which is called dynamic typing. Dynamic typing
makes code smaller and easier to write, but the code is
harder for the compiler to optimize and can sometimes
be harder to understand without types to guide the
reader.

Object-oriented languages very often have collec-
tions of similar functions that operate differently de-
pending on the type of argument provided, or the
type of object associated with the function since the
object is understood as a silent first argument. For
example,

c l a s s c i r c l e f
f l o a t r a d i u s ;

publ i c :
f l o a t a r e a ( ) f

return PI� t h i s �>r a d i u s � t h i s �>r a d i u s ;
g ;

g
c l a s s t r i a n g l e f

f l o a t base , h e i g h t ;
publ i c :

f l o a t a r e a ( ) f
return 0.5� t h i s �>base� t h i s �>h e i g h t ;

g ;
g

the area () function will behave differently when
called with a circle object, rather than a tri-
angle. Choosing a specific function, or method
dispatch, based upon the types of its arguments
is called polymorphism. A programmer might
want two classes to share many functions and
data, but differ in a few respects. The inheritance
mechanism allows one class to behave exactly
as another, unless that behavior is explicitly
redefined.

In languages with static typing, it can be useful
to write functions which have the same form for
a range of types, just as they would look in a
dynamically typed language. This mechanism is
called genericity, and the specific strategy used in
C++ is templating. Templates allow a placeholder,
often T, to be replaced by the specific type of an
argument when the code is compiled. Thus many
versions of the function are generated, a process called
template instantiation, one for each different type of
argument.
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Single Language Codes

Imperative Programming

Advantages The still dominant paradigm for both
application code and libraries in scientific computing
is a single language code base in a well-established
imperative language such as C or FORTRAN 77 (F77).
These languages have several notable advantages over
more sophisticated alternatives when applied to numer-
ical algorithms. First and foremost, they can be made
performant by a mildly proficient user, and the ease
of achieving good performance comes from several
language features. Both C and Fortran are very similar
to the underlying assembly code into which they are
compiled. Thus, it is not only obvious to users how a
given routine will be executed, but also obvious to the
compiler. This correspondence makes it much easier
to create routines that compilers can optimize well.
The simple execution model for C and F77 also makes
inspection of the code by an outside user possible.
More complex constructs, such as templates and deep
inheritance hierarchies, can obscure the actual execu-
tion even while making the intent clearer. Moreover,
the state of the computation and data structures can
be easily seen in a debugger, whereas more complex
constructs and execution environments often hide this
information.

Simplicity in execution also translates to greater
ease in using debugging and profiling tools. Major de-
bugging tools such as gdb, idb, totalview, and valgrind
have excellent support for C and F77. They do support
higher-level features, but there can be inconsistencies,
especially with template instantiation, that cause some
information to be unavailable. This caveat also ap-
plies to profiling tools. Simplicity in binary interface
definition means that C and F77 are especially easy
to interface with other languages and environments.
Symbols are not mangled, or made unique using com-
plex names, so matching ones can be easily created in
another system. Function parameter passing is also un-
ambiguous. This makes C the language of choice when
defining a foreign function interface for a higher-level
language, that is, an interface which allows functions
in one language to be called from another such as C.

Disadvantages A price is paid, however, for the sim-
plicity of these languages. The size of source code for

equivalent tasks is quite often more than an order of
magnitude larger than for object-oriented or functional
languages. The user must write code for method dis-
patch instead of using polymorphism, write separate
routines for many types instead of using templates,
produce basic data structures which are not part of core
libraries, and in general reproduce many of the mech-
anisms built into higher-level languages, as described
below.

One of the most severe omissions in C and F77 is
that of flexible namespaces for identifiers, types, and
functions. The absence of hierarchical namespaces for
symbols, such as namespace in C++ or dot notation in
Python, results in comically long identifier names and
rampant problems with clashing symbol names when
linking together different scientific libraries. A second
problem is the need for manual memory management
of all structures, or for F77 static declaration of mem-
ory up front. In C++, when objects are declared in an
inner scope such as a function body or for loop, they
are automatically created upon entry and destroyed
on exit from that scope. These are called automatic
objects, and arrays can also be defined this way. In
C, the creation and destruction must be managed by
hand, which may be complicated when, for instance,
error conditions arise. Lastly, there are no language
facilities for introspection, determination of code struc-
ture at runtime, as there are in C++ or Python. At
best, we can use the dynamic loading infrastructure to
search for library symbols, but cannot determine which
types, functions, or structures are defined in a library
without making separate configuration tests outside
the language itself. This usually results in fantastic
complication of the build process.

Example Perhaps the most successful software
libraries written in this paradigm are the BLAS
library [9], dating from 1979, and LAPACK library,
first released in February 1992, for linear algebra.
They are both numerically robust and extremely
efficient and used in almost every serious numerical
package. The internals are so easily understood, being
written in simple F77, that they are often copied
wholesale into application code without the use of
the library itself. However, they suffer from a classic
problem with scientific software of this type, lack of
data encapsulation. The data structures upon which
the operations, such as matrix-matrix multiplication,
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operate are specified directly in the library API. Thus
the layout of dense matrices is given in the interface
and cannot be changed by the implementation. For
example, the calling sequence for double precision
matrix-matrix multiplication in BLAS, a workhorse of
scientific computing, is

SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B , LDB,
BETA, C , LDC)

� . . S c a l a r Arguments . .
DOUBLE PRECISION ALPHA, BETA
INTEGER K,LDA, LDB, LDC,M,N
CHARACTER TRANSA, TRANSB

� . .
� . . Array Arguments . .

DOUBLE PRECISION A(LDA, � ) ,B(LDB, � ) ,
C(LDC, � )

Here the multiply is prescribed to operate on a dense
array of doubles A with a row stride of LDA. This
limitation complicated the implementation of an ef-
ficient distributed memory version of the library and
led to the introduction of Elemental which uses a
more favorable data distribution, especially for smaller
sizes. It has also prevented the fusion of successive
operations, which could result in data reuse or latency
hiding, greatly improving the efficiency of the library.

Object Orientation

Advantages Object Orientation (OO) is a powerful
strategy for data encapsulation. Objects are structures
that combine data and functions which operate on that
data. Although this can clearly be accomplished in C
using struct s and function pointers, many languages
have built-in support for this, including Objective C,
C++, C#, and Python. This kind of encapsulation
encourages the programmer to produce data struc-
ture neutral interfaces [15], as opposed to those in
LAPACK. Combined with polymorphism, or function
dispatch based upon the argument types, we can write
a single numerical code that uses different algorithms
and data structures based upon its input types [14].
This, in a nutshell, is the current strategy for dealing
with the panoply of modern architectures and problem
characteristics for scientific simulation. It should also
be noted that all the OO languages mentioned above
provide excellent namespacing facilities, overcoming
another obstacle noted in section “Imperative Program-
ming.”

The essential features of OO organization encap-
sulation and dynamic dispatch, can be emulated in C
at the cost of many more lines of code. Early C++
compilers did just this by emitting C rather than object
code. Moreover, languages such as C++ and Java have
removed some of the dynamism present in Objective C
and C OO frameworks. We will show an example of
this below.

Disadvantages The downsides of object-oriented or-
ganization have to do with controlling code complex-
ity, the original motivation for the introduction of
OO structures. The true measure of code complex-
ity is ease of understanding for an outside observer.
There can be a temptation to create deep object hi-
erarchies, but this tends to work against both code
readability and runtime flexibility as illustrated be-
low. For numerical code especially, it is common
to introduce operator overloading. This can improve
readability; however, transparency of the performance
cost is lost, which often results in very slow applica-
tion code, unacceptable in most simulation environ-
ments.

Examples PETSc and Trilinos are two popular
packages which can solve sparse systems of
nonlinear algebraic equations in parallel. A common
case for which these libraries use OO techniques
to control complexity is the choice among a
dizzying range of iterative solvers and precondition-
ers.

In PETSc, a Krylov Subspace solver (KSP) object
acts as an abstract base class in C++. However, the key
difference is that instantiation of the subtype is done at
runtime,

MPI Comm comm ;
KSP ksp ;
PC pc ;

KSPCreate (comm , &ksp ) ;
KSPGetPC ( ksp , &pc ) ;
/� G e n e r a l l y done w i t h command l i n e
o p t i o n s � /
KSPSetType ( ksp , "gmres" ) ;
PCSetType ( ksp , "ilu" ) ;

and we see that the Trilinos equivalent in C++ is almost
identical.
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Teuchos : : RCP<Epet ra RowMat r ix> A;
E p e t r a V e c t o r LHS , RHS ;
E p e t r a L i n e a r P r o b l e m Problem (&�A,&LHS,&RHS ) ;
I f p a c k F a c t o r y ;
Teuchos : : RCP<I f p a c k P r e c o n d i t i o n e r> Prec =

Teuchos : : r cp ( F a c t o r y . C r e a t e ("ILU" , &�A, 1 ) ) ;
AztecOO S o l v e r ( Problem ) ;

S o l v e r . Se t A z t ecO p t i on ( AZ solver , AZ gmres ) ;
S o l v e r . S e t P r e c O p e r a t o r(&� Prec ) ;

Trilinos and PETSc make the same decision to trade
language support for runtime flexibility. In packages
like dealII and FEniCS, each linear solver is instan-
tiated as a separate type which all derive from an
abstract base type. Naively, this strategy would force
the user to change the application code in order to try
a different solver. The Factory Pattern is often used to
alleviate this difficulty. Both Trilinos and PETSc also
use factories to organize instantiation.

However, two related problems arise. First, if the
solver object is defined by a single concrete type,
changing a given solver nested deeply within a hier-
archical solve becomes prohibitively complex. Both
solver objects above can change the concrete type
“on the fly.” This ability is key in multiphysics sim-
ulations where already complex solvers are combined
and nested. Second, accessing the concrete solver type
would now involve downcasts that may fail, littering
the code with obtrusive checks. In PETSc, each con-
crete type has an API which is ignored by other types.
Thus,

KSPGMRESSetRestart ( ksp , 4 5 ) ;
KSPChebychevSetEigenvalues ( ksp , 0 . 9 , 0 . 1 ) ;
P C F a c t o r S e t L e v e l s ( pc , 1 ) ;
PCASMSetOverlap ( pc , 2 ) ;

will execute without error regardless of the solver type,
but will set eigenvalue bounds if the user selected the
Chebychev method. Trilinos uses a bag of parameters,

Teuchos : : P a r a m e t e r L i s t L i s t ;

L i s t . s e t ("fact: drop tolerance" , 1e �9);
L i s t . s e t ("fact: level-of-fill" , 1 ) ;
L i s t . s e t ("schwarz: combine mode" , "Add" ) ;
Prec �>S e t P a r a m e t e r s ( L i s t ) ;

however, this sacrifices type safety for the arguments
and can also result in aliasing of argument names.

Code Generation

Advantages Performance has always been a primary
concern for numerical codes. However, the advent
of new, massively parallel architectures, such as the
Nvidia Fermi or Intel MIC, while providing much more
energy efficient performance, has greatly increased the
penalty for suboptimal code. These chips have vector
units accommodating from 4 to 16 double precision
operations, meaning that code without vectorization
will achieve no more than 25 % of peak performance
and usually much less. They also increase the im-
balance between flop rate and memory bandwidth or
latency, so that thousands of flops can be needed to
cover outstanding memory references. GPUs in par-
ticular have very high memory latency coupled with a
wide bus, making the memory access pattern critical
for good performance. In addition, the size of fast
cache memory per core has shrunk dramatically, so
that it cannot easily be used to hide irregular memory
access.

The strategies for mitigating these problems are
familiar and include tiling [1, 5], redundant computa-
tion, and reordering for spatial and temporal memory
locality [4, 16]. The CUDA language incorporates two
of the most important optimizations directly into the
language: vectorization and memory latency hiding
through fast context switch. In CUDA, one writes
kernels in a Single Instruction Multiple Thread (SIMT)
style, so that vector operations are simple and explicit,
in contrast to the complicated and non-portable com-
piler intrinsics for the Intel MIC. These kernel routines
may be swapped onto a processor using an extremely
fast context switch, allowing memory latency in one
kernel to be hidden by computation in others. However,
in CUDA itself, it is not possible to express depen-
dencies among kernels. OpenCL has preserved these
essential features of CUDA and also achieves excellent
performance on modern hardware.
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It is, however, unlikely that these kernels can be
coded by hand for scientific libraries. Even should
the model, discretization, coefficient representation,
and solver algorithm be fixed, the kernel would still
have to take account of the vector length on the
target processor, memory bus width, and available
process local memory. We are not describing merely
tuning a small number of parameters describing the
architecture, as, for instance, in Atlas, but algorithm
reorganization at a high level, as shown in the
examples.

Disadvantages The principal disadvantage of auto-
matically generated code is the weak support in the
build toolchain. In contrast to C++ templates, more
exotic methods of code generation require outside
tools, usually separate files, and are not easily incor-
porated into existing build system, especially for large
projects. A very hopeful development, however, is the
incorporation in OpenCL of compilation as a library
call. Thus kernel generation, compilation, and linking
can take place entirely within a running application,
much like the template version.

However code is generated, care must be taken
that the final output can be read by the user and
perhaps improved. A major disadvantage of templates
is that it prevents the user from directly inspecting the
generated code. Without readable code, the user cannot
inspect the high-level transformations which have been
used, correct simple errors for new environments, in-
sert specialized code for new problems, and in gen-
eral understand the system. Code generators should
strive to provide easy access for the user to gener-
ated source, as shown in the FEniCS package, while
seamlessly integrating the result into existing build
architectures.

Examples The Thrust package from Nvidia uses
the C++ template mechanism to generate CUDA
kernels for common functional operations such as
map, transform, and reduceByKey. Most transformations
here amount to intelligent blocking and tiling and
are well suited to this mechanism. Even higher-level
generation is used by both Spiral and FFTW. The
algorithm is broken down into smaller components,
for FFTW these are “codelets,” and Spiral produces
another low-level language. A particular instantiation
of the algorithm can be composed of these pieces
in many different ways. Partial implementations are
constructed, run, and timed. This real-time evaluation

guides the construction of the final implementation for
the given problem.

Generiticity and Templating

Advantages By far the most popular type of code
generation technique employed in scientific computing
is C++ templates. It gives users the ability to hardwire
constants into a piece of code, allowing the compiler
to fold them and perform loop unrolling optimiza-
tions, without sacrificing flexibility in the code base
or using convoluted preprocessing schemes. It is also
possible to write generic operations, independent of
the data type on which they operate, but still have
them properly type check. This can make the code
base much smaller, as separate routines for different
types are unified, and is the inspiration behind the
Standard Template Library. Moreover, all this can be
done without changing the normal toolchain for C++
use, including compilation, profiling, and debugging.

Disadvantages While templates are integrated into
the normal C++ workflow, unfortunately the product
of template expansion is not available to the user.
Thus, they cannot inspect the particular optimizations
which are performed or specialize it by adding code
for a specific instance (although they can use the tem-
plate specialization mechanism). Compile time also
greatly increases with templates, becoming problem-
atic for large code bases. In addition, the type safety of
templates is enforced at the instantiation point which
can be very far removed from the use location in the
code. This very often results in impenetrable, volu-
minous error messages that stretch for hundreds of
thousands of lines. The failure of concepts to enter the
C++ standard [13] seems to indicate that this problem
will persist far into the future. The template mechanism
makes language interoperability almost impossible. In
general, one must instantiate all templates to be ex-
posed to another language and remove templates from
public APIs visible in other languages.

The template mechanism, when used to do simple
type naming and constant injection, can be quite
effective. However, when used for higher-level
logical operations and to execute more complicated
code rearrangement, there are numerous problems.
The syntax becomes very cumbersome, as in the
case of optional template arguments. The logic of
instantiation (type resolution) is opaque, and following
the process during debugging is nearly impossible.
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The gains in source code size and readability are lost
when using templates for more sophisticated code
transformation.

Examples The Elemental library exhibits two very
common uses of templates for scientific computing. It
templates over basic types, but it also uses template
markers to switch between entirely different routines.
They are both present in the basic distributed matrix
class, DistMatrix, with declaration:

enum D i s t r i b u t i o n f
MC, / / Col o f a m a t r i x d i s t r i b u t i o n
MD, / / Diagonal o f a m a t r i x d i s t r i b u t i o n
MR, / / Row o f a m a t r i x d i s t r i b u t i o n
VC, / / Col�major v e c t o r d i s t r i b u t i o n
VR, / / Row�major v e c t o r d i s t r i b u t i o n
STAR / / Do no t d i s t r i b u t e

g ;

template<typename T , D i s t r i b u t i o n C o l D i s t ,
D i s t r i b u t i o n RowDist , typename I n t>

c l a s s DistMatrix ;

The first template argument defines the number
field over which the matrix operates. This allows
identical source to be used for single precision, double
precision, quad precision, and complex matrices,
since these types all respond to the arithmetic
operations. At a slightly higher level, search and
sort algorithms in the Standard Template Library
rely on the same interface compatibility to write
generic algorithms. This can be extended to very
high-level algorithms, such as the Conjugate Gradient
solver [12] for sparse linear systems in the dealII
package.

template <c l a s s VECTOR>
template <c l a s s MATRIX, c l a s s PRECONDITIONER>
void
SolverCG<VECTOR> : : s o l v e ( cons t MATRIX &A,

VECTOR &x ,
cons t VECTOR &b ,
cons t PRECONDITIONER &p r e c o n d i t i o n )

f
i f ( ! x . a l l z e r o ( ) ) f

A. vmul t ( g , x ) ;
g . add ( �1. , b ) ;

g e l s e f
g . equ ( �1. , b ) ;

g
r e s = g . l2 norm ( ) ;
conv = t h i s �>c o n t r o l ( ) . check ( 0 , r e s ) ;
i f ( conv ) f return ; g
p r e c o n d i t i o n . vmul t ( h , g ) ;
d . equ ( �1. , h ) ;
gh = g�h ;
whi le ( conv == S o l v e r C o n t r o l : : i t e r a t e ) f

i t ++;
A. vmul t ( Ad , d ) ;
a l p h a = d�Ad ;
a l p h a = gh / a l p h a ;
g . add ( a lpha , Ad ) ;
x . add ( a lpha , d ) ;
r e s = g . l2 norm ( ) ;
conv = t h i s �>c o n t r o l ( ) . check ( i t , r e s ) ;
i f ( conv != S o l v e r C o n t r o l : : i t e r a t e ) break ;
p r e c o n d i t i o n . vmul t ( h , g ) ;
b e t a = gh ;
gh = g�h ;
b e t a = gh / b e t a ;
d . sadd ( be t a , �1. , h ) ;

g
g
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This code is shared among all implementations of
VECTOR, MATRIX, and PRECONDITIONER, in much the
same way it is in OO codes using an abstract base class,
similar to PETSc.

However, in complicated numerical codes, it is
often the case that template instantiation is substituted
for dispatch. For example, the AlignWith() method has
different implementations depending on the type of
the template arguments. This evaluation of method
dispatch at compile time avoids the overhead of lookup
in a virtual table of function pointers, but it sacrifices
flexibility. With types fixed at compile time, we cannot
change types in response to different input, or new
hardware, or simulation conditions without recoding
and rebuilding the executable. This makes exploration
of different implementations problematic, particularly
in the context of solvers. Moreover, more complex
block solvers for multiphysics systems [10] are built
out of basic solvers, and runtime type changes allow
construction of a range of powerful solvers.

Multi-language Codes

Python andWrapping

Advantages Multi-language code allows the designer
to combine the strengths of different approaches to pro-
gramming. A popular combination in scientific com-
puting is the speed and memory efficiency of languages
like C and Fortran with the flexibility and parsimony
of scripting languages such as Python. Python allows
inspection of the full state of the running program,
introspection, and management of both memory and
variable typing, speeding development of new code,
and easing unit testing [8, 11]. Python also supports
generic programming since all variables are dynami-
cally typed and do not need to be declared when code
is written.

Specialized Python tools have been developed for
wrapping C libraries, such as ctypes, SWIG, and
Cython. Cython in particular allows C data structures
to be manipulated transparently in Python without
copies, Python routines to be called from function
pointers in C, and data conversions to be completely
automated. The object structure of C++ can even
be mapped to the object structure in Python. Error
and exception handling is also automated. Cython
also allows Python routines to be annotated and
then automatically converted to C and compiled.

The numpy library allows direct manipulation in
Python of multidimensional arrays, perhaps using
memory allocated in another language. Operations are
performed in compiled code, sometimes on the fly, and
without copies, making it as efficient as standard C, and
it can leverage system-tuned linear algebra libraries.

Python string processing and easy data structure
manipulation are very useful for managing user input
and output. Many libraries, such as PyLith, use Python
as a top-level control language and then dispatch to
C/C++/Fortran for the main numerical processing un-
derneath. Using the tools mentioned above (PyLith
uses SWIG), this process can be almost entirely au-
tomated. Moreover, Python’s ability to easily expose
a library API and the use of numpy arrays for data
interchange make it an excellent tool for combining
libraries at a higher level. Libraries solving different
physical problems or different models of a given prob-
lem can be combined to attack more complex multi-
model, multiphysics, and multi-scale problems [3]. In
addition, this wrapping capability has been used to
great effect on GPU hardware, incorporating CUDA
and OpenCL libraries into both desktop and parallel
computations [7].

Disadvantages The central disadvantage for multi-
language codes comes in debugging. There are cer-
tainly hurdles introduced into the build system, since
different compilation and link steps are needed and
many more tests are needed to verify interoperability,
but these can largely be handled by standard systems.
No tool exists today that can inspect the state of
a running program in the style above, for example,
Python using a C library. Even the stack trace after
an error is routinely unavailable, although it can be
logged by the C library and passed up as is done in
petsc4py. However, stepping across language bound-
aries in a debugger is not possible, and this limitation
makes debugging new code extremely difficult. Thus,
the strategy above works best when combining several
mature single language libraries, so that debugging
is focused only on the interactions between libraries,
which can be seen in the state of the numpy objects
communicated among them, rather than on library in-
ternals. Recent developments, including the extension
support for Python in gdb 7, indicate that this situation
will improve markedly in the new future.

Example The PyClaw package [2] combines the
CLAWPACK library for solving hyperbolic systems
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of partial differential equations on mapped Cartesian
grids with the PETSc library parallel linear algebra and
scalable solution nonlinear equations. Incorporation
of the PETSc library allowed parallelization of the
solvers in both Clawpack and SharpClaw in only
300 lines of Python, as detailed in [6]. PETSc
parallel data structures, in particular the DA object
for structured grid parallelism, were exposed to
Clawpack using Python numpy arrays as intermediary
structures. This allowed no-copy access by both C
and Fortran, as well as easy inspection in the Python
code itself. In fact, since numpy structures are used
for both wrappers, any PyClaw script can be run in
parallel using the PETSc extension PetClaw simply
by replacing the call to import pyclaw with
import petclaw as pyclaw. The hybrid code
showed excellent weak scaling, when modeling the
interaction of a shock with a low-density bubble
in a fluid, on all 65,536 cores of the Shaheen
supercomputer at KAUST.
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Synonyms

Sublinear approximate decision

Glossary

Property testing algorithm An algorithm that distin-
guishes with high constant probability between in-
puts that have a pre-specified property and inputs
that differ significantly from inputs that have then
property.

Graphs A graph G D .V;E/ is defined by a set V of
vertices, and a set E of edges whereE is a subset of
V �V . Thus graphs are used for representing binary
relations.
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Monotone functions A function f whose range is
fully ordered is monotone if f .i/ is smaller or equal
to f .j / for every i < j .

Definition

Property testing is the study of algorithms for per-
forming randomized approximate decisions. Namely,
a property testing algorithm is required to determine
whether an input has a prespecified property or differs
significantly from any input that has the property. The
algorithm is required to perform such a decision with
high success probability. To this end the algorithm is
given query access to the input, and its queries may be
selected randomly (though not necessarily uniformly).
It is required to perform a number of queries that is
sublinear in the size of the input, so that in particular it
must make a decision without reading the entire input.

AMore Detailed Definition

Property testing is a relaxation of exact decision. An
exact decision algorithm should accept inputs that have
a prespecified property and should reject inputs that do
not have the property. Similarly to an exact decision
algorithm, a property testing algorithm is also required
to accept inputs that have the property in question.
However, it is only required to reject inputs that are
relatively far from having the property, that is, inputs
that should be modified significantly so as to obtain
the property. Thus, while an exact decision algorithm
must reject inputs that do not have the property even if
they are very close to having it, a property testing algo-
rithm is allowed to accept such inputs. Property testing
algorithms are essentially always randomized and are
allowed to err with a small probability. (We note that
one may also consider exact decision algorithms that
are randomized and may err with a small probability.)

While allowing the aforementioned relaxation, we
seek property testing algorithms that are much more
efficient than the corresponding exact decision algo-
rithm. In particular, a property testing algorithm does
not even read the entire input but rather is given
query access to the input. It is expected to perform
a number of queries that is sublinear in the size of
the input and to run in time that is sublinear in this

size. This is as opposed to exact decision algorithms,
which are considered efficient if they run in time that
is polynomial in the size of the input. We usually think
of the input as being represented by a function, and
query access to the input simply means query access
to the function. Given such a representation, the testing
algorithm should reject functions that must be modified
on a certain given fraction � of their domain so as
to obtain the property. We refer to � as the distance
parameter.

Some Examples

One very simple example is testing the �-threshold
property where 0 � � � 1. A function f W X !
f0; 1g is said to have this property if f .x/ D 1

for at least a �-fraction of the domain elements x.
An exact decision algorithm for this property must
observe the value of f on every x 2 X and hence
must run in time linear in jX j. (This is true of a
deterministic exact decision algorithm, but a similar
statement holds if randomization is allowed.). On the
other hand, a testing algorithm for this property can
query the function on a sample of c=�2 elements in
X (for a constant c > 1), where each sample element
is selected uniformly, independently, at random from
X . It then queries f on the sampled elements and
accepts if and only if f assigns a value of 1 to at least
a .� � �=2/-fraction of the sampled points. It can be
shown, using a standard probabilistic argument, that
if f has the �-threshold property, then it is accepted
with high constant probability, while if it is �-far from
having the property (i.e., f .x/ D 1 for less than a
.� � �/-fraction of the domain elements x), then f is
rejected with high constant probability.

This very simple example can be viewed as a basic
“unstructured” statistical property. We next give one
more example, which has a certain structure (i.e.,
order), and where the solution is not so trivial. Con-
sider the case in which the input is a function f W
f1; : : : ; ng ! R (representing, for example, measure-
ments made in fixed time intervals) and the property
is monotonicity. Namely, f has the property (is a
monotone function) if f .i/ � f .j / for every i < j .

Motivated by the first example we discussed, in
order to test the monotonicity property, one may
consider simply sampling the function f on uniformly
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selected domain elements and rejecting in case we
view a violation of monotonicity (i.e., a pair i < j

such that f .i/ > f .j /). Unfortunately, this simple
algorithm requires a sample of size at least

p
n=2

for any � � 1=2. To verify this, consider the following
function:f .i/ D iC1 for i that is odd and f .i/ D i�1
for i that is even (e.g., for n D 6: f .1/ D 2, f .2/ D 1,
f .3/ D 4, f .4/ D 3, f .5/ D 6, and f .6/ D 5). Such
a function is 1=2-far from being monotone, because
in order to modify it so that it become monotone, for
every pair .i; i C 1/ where i is odd, the value of f
must be modified either on i or on i C 1. However, the
probability that a uniform sample of

p
n=2 elements

contains such a pair is a small constant (this follows
from the lower bound of what is know as the birthday
problem).

Nonetheless, a more sophisticated algorithm [2],
which is based on nonuniform sampling, has com-
plexity that depends only logarithmically on n (and
linearly on 1=�). This algorithm works under the as-
sumption that all function values are distinct (it can
be shown that this assumption can be made without
loss of generality). The algorithm repeats the following
subtest c logn=� times, for a constant c > 1: Select an
element i uniformly at random, query f .i/, and then
perform a Binary Search for f .i/. Namely, the search
is performed by first querying f .dn=2e/. If f .i/ D
f .dn=2e/ then the search is completed. Otherwise, if
f .i/ < f .dn=2e/, then the search continues in the
first half of the function, and if f .i/ > f .dn=2e/,
then the search continues in the second half of the
function. If the search fails in finding f .i/ in any
subtest, then the algorithm rejects, otherwise it accepts.
If f is monotone then no subtest can fail, and hence
the algorithm always accepts. On the other hand, it
can be shown that if f is �-far from being mono-
tone, then the algorithm rejects with high constant
probability [2].

Several additional examples include: testing
whether a function is a linear function (i.e., f .x/ C
f .y/ D f .xCy/ for every pair x; y), testing whether a
function depends on at most k variables (is a k-junta),
testing whether a graph is connected (i.e., there is a
path between every two vertices), and testing whether
a set of points can be partitioned into few good clusters
(e.g., where the distance between every pair of points
in the same cluster is small). For all these properties
(and many more), there are testing algorithms that

are much more efficient than the corresponding exact
decision algorithms.

When Is Property Testing Useful?

We next describe several scenarios in which property
testing can be useful.

 Applications that deal with huge inputs. This is
the case when dealing with very large databases
in applications related to computational biology,
astronomy, study of the Internet, and more. In such
cases, reading the entire input is simply infeasible.
Hence, some form of approximate decision, based
on accessing only a small part of the input, is
crucial.

 Applications in which the inputs are not huge,
but the problem of deciding whether an input has
the property in question seems intractable (i.e., it
is widely believed that no polynomial-time exact
decision algorithm exists). Here too some form of
approximation is necessary, and property testing
algorithms provide one such form. In fact, while
“classical” approximation algorithms are required
to run in time polynomial in the size of the input,
here we require even more of the algorithm: It
should provide an approximately good answer but
is allowed only sublinear time.

 Applications in which the inputs are not huge,
and the corresponding decision problem has a
polynomial-time algorithm, but we are interested
in ultraefficient algorithms and do not mind
sacrificing some accuracy. In these cases we do
not mind accepting inputs that do not have the
property “perfectly” but are close to having the
property, whereas saving in the running time is
more important.

 Scenarios similar to the one described in the previ-
ous item except that the final decision must be exact
(though a small probability of failure is allowed). In
such a case, we can first run the testing algorithm,
and only if it accepts, do we run the exact decision
procedure. Thus, we save time whenever the input
is far from having the property, and this is useful
when typical inputs either have the property or are
far from having the property. A related scenario, is
the application of property testing as a preliminary
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step to learning (i.e., when our goal is to find a good
approximation to the function in question).

Thus, employing a property testing algorithm yields a
certain loss in terms of accuracy, but our gain, in terms
of efficiency, is in many cases dramatic. Furthermore,
in many cases the loss in accuracy is inevitable either
because the input is huge or the problem is infeasible.

A Brief History

Property testing first appeared (implicitly) in the work
of Blum, Luby, and Rubinfeld [1], who designed the
well-known linearity testing algorithm. Property test-
ing was first explicitly defined in the work of Rubinfeld
and Sudan [11], who considered testing whether a
function is a low-degree polynomial. The focus of these
works was on testing algebraic properties of functions,
and they, together with other works, had an important
role in the design of Probabilistically Checkable Proofs
(PCP) systems (see e.g., [5, Sec. 9.3]).

A systematic study of property testing was initiated
by Goldreich et al. [7]. They gave several general
results, among them results concerning the relation
between testing and learning, and then focused on
testing properties of graphs (in what we refer to as
the dense-graphs model). Following this work, prop-
erty testing has been applied to many types of inputs
and properties. In particular, the study of algebraic
properties of functions continued to play an important
role, partly because of the relation to the area of error
correcting codes (see, e.g., [4]).

The study of graph properties was significantly
extended since the work of [7]. This includes a large
number of works in the dense-graphs model, as well
as the introduction of other models (more suitable for
graphs that are sparse or that are neither dense nor
sparse), and the design of algorithms that work within
these models. There has also been progress in the
last few years on the design of testing algorithms for
properties of functions that can be viewed as logical
rather than algebraic (such as functions that have a
small disjunctive normal form (DNF) representation).
Other families of properties to which the framework
of property testing has been applied include geometric

properties and “clusterability” of ensembles of points,
properties defined by restricted languages (e.g., regular
languages), properties of distributions, and more.

In some cases the algorithms designed are
extremely efficient: The number of operations they
perform does not depend at all on the size of the input
but only on the distance parameter �. In other cases the
dependence is some sublinear function of the size of
the input (e.g., polylogarithmic in n or

p
n, for inputs

of size n), where in many of the latter cases, there
are matching (or almost matching) lower bounds that
justify this dependence on the size of the input.

Further Reading

For further reading see [3, 6, 8–10].
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Synonyms

QP; Quadratic programming

Definition

Quadratic programming is the optimization (minimiza-
tion or maximization) of a quadratic objective function
of one or more variables within a feasible region
defined by a finite number of linear equations and/or
inequalities.

Description

The Problem and Optimality
The generic quadratic programming problem (QP)
may be written as

minimize
x2IRn

1
2x
THx C gT x subject to Ax � b; (1)

where the Hessian matrix H 2 Rn�n is symmetric
and the constraint matrix A 2 Rm�n. Extensions in
which some of the inequalities are actually equations,
and some constraints are bounded on both sides are
common in practice, but for brevity we exclude them
here. Individual constraints will be denoted aTi x � bi ,
1 � i � m.

QP is the prototypical nonlinear programming prob-
lem; aside from constraint curvature it captures almost
every feature encountered in more general constrained
optimization and as such offers a good test for non-
linear programming methods. QP problems arise natu-
rally in areas such as portfolio and structural analysis,
finite impulse response and VLSI design, discrete-time
stabilization, optimal and fuzzy control, optimal power
flow, and economic dispatch [4]. Aside from these, QP
is most often encountered as a subproblem in more
general optimization methods, the best known being
sequential quadratic programming (SQP) in which a
quadratic approximation to the Lagrangian function for
a general nonlinear optimization problem is minimized
subject to linearizations of its constraints.

Necessarily, any local minimizer x� of (1) satis-
fies the primal optimality conditions Ax� � b, the
dual optimality conditions Hx� C g D AT y� and
y� � 0, and the complementary slackness conditions
y�
i Œa

T
i x

� � bi � D 0 for 1 � i � n. Here y� is a vector
of Lagrange multipliers; the complete set of criticality
requirements are commonly known as the Karush-
Kuhn-Tucker (KKT) conditions. When aTi x

� D bi if
and only if y�

i > 0 for all 1 � i � n, the minimizer is
strictly complementary.

QPs are classified according to the inertia of H .
When H is positive semi-definite, the problem is

© Springer-Verlag Berlin Heidelberg 2015
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convex and can have at most one optimal value (which
may be at minus infinity if H is singular); the dual
problem for a convex QP is also a convex QP, and
sometimes it may be advantageous to solve this in-
stead. WhenH is indefinite, QP is non-convex and may
have many local minimizers. This has implications for
the complexity of solving the problem. Convex prob-
lems may be solved in polynomial time [7], while non-
convex QP is a provably hard (NP-complete) problem
[12]; that the non-convex quadratic �Pn

iD1 x2i has 2n

local minimizers at the corners of the feasible region
�2i=2 � xi � 3i=2, 1 � i � n is indicative of
the difficulty. Worse, simply verifying that a critical
point is a local minimizer is NP-complete [8]. That
this might be the case is evident since a necessary and
sufficient condition for local optimality is that sT Hs �
0 for all s 2 S, where

S D

8
ˆ̂
<

ˆ̂
:

s

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

aTi s D 0 for all 1 � i � m such that
aTi x

� D bi and y�
i > 0 and

aTi s � 0 for all 1 � i � m such that
aTi x

� D bi and y�
i D 0

9
>>=

>>;

;

at the KKT point x�. Checking this semi-definiteness
of H over S is problematic since S is the intersection
of a subspace and a cone, a computationally awkward
object, in the non-strictly complementary case.

Active-Set Methods
Modern computational techniques for QP may broadly
be classified as active-set and path-following methods.
The former take the view that any point x partitions the
constraints into those that are active, i.e., A.x/ D fi W
aTi x D bi g, and the remaining (inactive) ones. This
is particularly true at a minimizer x�, and thus if one
knew A.x�/, one could simply recover x� by solving
the equality-constrained QP (EQP)

minimize
x2IRn

1
2x

THx C gT x subject to aTi x D bi

for i 2 A (2)

when A D A.x�/; any EQP has the vital property
that its solution is either categorized by a structured
(saddle-point) system of linear equations or lies at
minus infinity.

An active-set method exploits this idea by predict-
ing (and refining) estimates Ak , k � 0, of A.x�/.
For each Ak , the EQP (2) with A D Ak is solved

to find a minimizer xk and corresponding Lagrange
multipliers yk (which may be infinite). If xk does not
satisfy the inactive constraints, the indices of one or
more of the currently violated constraints are added to
Ak to form AkC1. Otherwise, if any of the Lagrange
multipliers yk is negative, the index of one of the
offending constraints is removed from Ak to form
AkC1. Only if xk is feasible and yk � 0 will termina-
tion occur. Computational advantages may be taken of
small changes to the active set when solving sequences
of related EQPs. In some convex cases, solving the dual
problem is more efficient [3]. These methods easily
cope with non-convexity [1, 2] and problem sparsity
[5]. To date, guaranteed polynomial-time active-set QP
methods have not been discovered, but their practical
performance is nonetheless often impressive.

Path-Following Methods
To simplify the discussion of path-following methods,
the equivalent standard form

minimize
x2IRn

1
2x

THx C gT x subject to Ax D b

and x � 0; (3)

withm � n, is preferred. The relevant KKT conditions
are now

Ax� D b; Hx� C g D AT y� C z�; x�
i z�
i D 0

for 1 � i � m and .x�; z�/ � 0;

and the basic idea is to set up and trace a homotopy
v.t/ D .x.t/; z.t/; y.t// from a given .x0; z0/ > 0

and y0 when t D 1 to (a neighborhood of) the
KKT point .x�; z�; y�/ when t D 0, while ensuring
that xi .t/zi .t/ does not change sign en route. Many
homotopies are possible, the most commonly used
being that defined by

Ax.t/ � b D �.t/ŒAx0 � b�; Hx.t/C g �AT y.t/
�z.t/ D �.t/ŒHx0 C g � AT y0 � z0�

and xi .t/zi .t/ D �.t/x0i z0i for 1 � i � m

with �.t/ D t [13]. The choice �.t/ D t2 may be pre-
ferred since then .x.t/; z.t/; y.t// may be analytically
extended to t D 0 even for problems whose solutions
are not strictly complementary [11]. Since v.t/ is only
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defined implicitly, a suitable Taylor approximation is
computed and tracked instead. Precautions must be
taken to ensure that the approximation remains valid; in
practice the approximation is followed for a sequence
of decreasing tk , and the homotopy adjusted at each
to ensure convergence. The resulting iterates can be
shown to converge to an accurate approximation to a
solution in polynomial time in the convex case, and the
ultimate rate of convergence may be made arbitrarily
fast using high-order Taylor series [10, 14]. Problem
sparsity is easily exploited, and similar ideas have been
used to develop methods to find KKT points of non-
convex QPs [6].

Software

There is large choice [9] of reliable active-set-and path-
followingbased software available, both commercially
and freely, for both small- and large-scale QP.
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Construction of logic gates for quantum computers;
Control in Nuclear Magnetic Resonance; Control
of quantum dynamics by electromagnetic radiation;
Control of spin systems; Laser control of chemical
reactions

Definition

Quantum control is the control, at the quantum level,
of the state or dynamical evolution of some quantum
system by means of electromagnetic radiation such as
a laser, a magnetic field, etc. The system can be either
a molecule, or a set of molecules; a crystal; a protein, a
spin system; etc.

Overview

Controlling the evolution of molecular systems
at quantum level has been considered from the
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very beginning of the laser technology. However,
approaches based on designing control pulses based
on intuition alone did not succeed in general situations
due to the very complex interactions that are at work
between the laser and the molecules to be controlled,
which results, for example, in the redistribution of
the incoming laser energy to the whole molecule
which prevents it from acting accordingly to the
intuition. Even if this circumstance initially slowed
down investigations in this area, the realization that
this inconvenient can be recast and attacked with the
tools of (optimal) control theory [5] greatly contributed
to the first positive experimental results [1, 9, 17].

One regime is related to time scales of the order of
the femtosecond (10�15) up to picoseconds (10�12) and
the space scales vary from the size of one or two atoms
to large polyatomic molecules.

Historically, the first applications that were
envisioned were the manipulation of chemical bonds
(e.g., selective dissociation) or isotopic separation.
Although initially only few atoms molecules were
investigated (di-atomics), the experiments soon
were designed to treat more complex situations [1];
continuing this work, further poly-atomic molecules
were considered in strong fields.

But the applications of laser control do not stop
here. High Harmonic Generation [2] is a technique that
allows to obtain output lasers whose frequency is large
integer multiples of the input pulses.

In a different framework, the manipulation of quan-
tum states of atoms and molecules is a crucial step in
the construction of quantum computers [4, 16].

A distinct, yet very related, setting is the con-
trol of spin dynamics in Nuclear Magnetic Resonance
(NMR).

Moreover, biologically related applications are also
the object of ongoing research.

Mathematical Modeling: Control of the
Time Dependent Schrödinger Equation
(TDSE)

The evolution of an isolated single quantum system can
be described by the Schrödinger equation

i
@

@t
�.t; x/ D H.t/�.t; x/ (1)

starting from the initial state

�.t0; x/ D �0.x/; (2)

whereH.t/ is the (self-adjoint) Hamiltonian of the sys-
tem and x 2 R

� the set of internal degrees of freedom
(see also in this Encyclopedia the entry “Schrödinger
equation for chemistry” for additional information on
this equation). We can take H.t/ to be a sum of a free
evolution part H0 and a part describing the coupling
of the system with a laser source of intensity �.t/ 2
R; t � 0 : H.t/ D H0 C HI.t/. In the dipole (i.e.,
first order) approximation,HI .t/ is written in terms of
�.t/ and a dipole moment operator�HI .t/ D ��.t/�.
One obtains the dynamics:

i
@

@t
�.t; x/ D .H0 � �.t/�/ �.t; x/: (3)

Note that higher order field dependence can also be
consideredHI .t/ D P

k �.t/
k�k .

Beyond the situation of a single, isolated molecule,
it may be interesting to study the dynamics of an en-
semble of identical molecules that only differ by their
initial state. The model involves the density matrix
operator �.t/. The evolution equation for � is then:

i
@

@t
�.t/ D ŒH.t/; �.t/� (4)

�.0/ D �0: (5)

The density matrix formulation is also a good set-
ting to study non-isolated systems. One way to model
this circumstance is the so-called Lindblad form [10]:

i
@

@t
�.t/D ŒH.t/; �.t/�

Ci
2

X

r

�
2Lr�L

	
r�L	rLr���L	rLr

�
; (6)

where Lr are operators that describe the interaction of
the system with its environment. For another context
isolated and non-isolated systems are described by an
evolution equation involving the density matrix (see
the entry “Semiconductor Device Problems” of this
Encyclopedia).

External fields can also be used to manipulate
molecules to achieve molecular axis alignment or
orientation (cf. [15] and references therein).



Quantum Control 1189

Q

In Nuclear Magnetic Resonance (NMR), the control
operates on the spin variable (and not on the spacial
part of the wavefunction). The basic setup in NMR
consists of an ensemble of N spin- 1

2
particles (e.g.,

electrons) subjected to a magnetic field. The evolution
of the system can be written as above with the distinc-
tion that H0 may be null and the only nontrivial part
of H.t/ is the coupling H.t/ D P

k !k.t/�k with the
magnetic field; here !k.t/ are controls. Each particle
lives in a 2-dimensional Hilbert space (one dimension
for each value of the spin) thus the system lives in a
2N -dimensional (direct product) space.

Controllability

A first important question is whether it is possible to
control the system to a desired prescribed final state or
to set a certain property or measurement to a desired
value. If for any compatible couple of initial and final
states a control �.t/ exists such that a system starting
from the initial state reaches the final state by the final
time then the system together with its interaction is
called controllable. General tools of controllability in
Lie groups can be applied (cf. [3, 12]) which allows to
obtain controllability criteria such as:

Theorem 1 If the Lie algebra L�iH0;�i� generated
by �iH0 and �i� has dimension N2 (as a vector
space over the real numbers) then the system (4) is
density matrix controllable (which implies that (1) is
also controllable). Furthermore, if both �iH0 and �i�
are traceless then a sufficient condition for the density
matrix (thus wavefunction) controllability of quantum
system is that the Lie algebra L�iH0;�i� has dimension
N2 � 1.

Another set of results [11] gives sufficient condi-
tions in terms of the so-called connectivity graph and
of the spectrum of H0.

Finally, one may ask what happens when several
identical molecules (differing by their orientation with
respect to the incident beam) are submitted to the
same control. It can be shown that if any member of
the ensemble is controllable then the entire ensemble
should be controllable. This very strong positive result
is rather counterintuitive and it arises as a result of the
nonlinearity of quantum control.

Note that for infinite dimensional controllability
encouraging results obtained using tools in nonlinear

control have already been obtained by K. Beauchard,
J.M. Coron, V. Nersesyan, etc.

Optimal Control

Construction of the Cost Functional
Assessing the controllability of a system does not
necessarily imply that a constructive mean to find a
convenient control is available. Especially for complex
systems, in practice it is necessary to use experimen-
tal or numerical procedures to find the control. One
approach that can be used to treat this situation is the
optimal control theory which is based on the introduc-
tion of a cost functional (also named “quality index”
or “quality functional”) depending on the driving
controlling field that describes the target, additional
costs and whose optimization gives a convenient field.

A simple example of a cost functional is the additive
form where it depends only on the final state �.T / and
the laser characteristics

J.�/ D h�.T /jOj�.T /i � ˛

Z T

0

�2.t/dt; (7)

where ˛ > 0 is a parameter and O is the
observable operator that describes the goal: a large
value h�.T /jOj�.T /i means that the control
objectives have been conveniently attained. Recall
that (for a single system of wavefunction �.T /)
h�.T /jOj�.T /i can in practice be computed as an
average over experiments corresponding to measuring
the observable operator O . Examples of observables
O include the projection to a predefined target state
�T , spatial depending functionsO.x/, etc. See also in
this Encyclopedia the entry “Schrödinger equation for
chemistry” for additional examples of observables.

When the system is represented through a density
matrix �.t/ measuring the observable O allows to
compute T r.�.T /O/ and thus the natural cost func-
tional is:

Jd .�/ D Re.T r.�.T /O//� ˛

Z T

0

�2.t/dt: (8)

Of course, many other functional types can be con-
structed.
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Optimization of the Cost Functional
In order to optimize such a functional one may be
tempted to use the Pontryagin maximum principle
which gives the first order necessary optimality condi-
tions [6]. However in practice, different procedures, the
so-called monotonically convergent algorithms, were
found to be better fitted to solve these equations.
These algorithms have the very convenient property to
improve the cost functional J at each iteration. In the
Zhu and Rabitz formulation [11], the iterations indexed
by k D 1; 2; : : : are carried on following the formulas:

(
i @
@t
�k.x; t/ D .H0 � �k.t/�/�k.x; t/

�k.x; t D 0/ D �0.x/
(9)

�k.t/ D � 1
˛

Imh
k�1j�j�ki.t/ (10)

(
i @
@t

k.x; t/ D .H0 � Q�k.t/�/
k.x; t/


k.x; t D T / D O�k.x; T /
(11)

Q�k.t/ D � 1
˛

Imh
kj�j�ki.t/: (12)

An important property of this algorithm is that if O
is a self-adjoint positive semi-definite observable, then
the algorithm converges monotonically in the sense
that J.�kC1/ � J.�k/.

More general formulations (including the density
matrix versions and also open systems) are to be found
in [14]; the even more abstract approach of [13] identi-
fies what is the most general setting where a monotonic
algorithm will work and gives the formulation of the
algorithm. The methodology in [13] works not only for
nonlinear Hamiltonians but also for multiple coupling
fields.

Stabilization by Lyapunov Functionals

The quantum tracking procedures (e.g., [11]) also
called local control procedures obtain explicitly the
control field from the prescribed trajectory that the
system is required to take. Such methods are appealing
numerically since it is expected that they only require a
few propagations of the Time Dependent Schrödinger
Equation (TDSE).

Introduce the performance index y.t/ that formu-
lates the desired physical properties to be satisfied by
the system, defined as y.t/ D y.h QO1.t/i; h QO2.t/i; : : : ;

h QON.t/i/. Here h QOj .t/i for j 2 f1; 2; : : : ; N g de-
note the expectation value of the physical observables
equal to h�.t/j QOj .t/j�.t/i or T r.�.t/ QOj .t//; these
(Hermitian) observables QOj .t/ are supposed to follow
the dynamics i @

@t
QOj .t/ D ŒH0; QOj .t/�. A simple

computation shows that:

dy.t/

dt
D ��.t/

NX

iD1

@y.t/

@h QOj .t/i
hŒ QOj .t/; �=i�i: (13)

In particular the feedback

�.t/ D �
NX

iD1

@y.t/

@h QOj .t/i
hŒ QOj .t/; �=i�i (14)

ensures dy.t/=dt � 0. La Salle theorem and variants
(see [7] Chap. 4.2) is used to derive convergence results
(see op. cited) for such algorithms.

Experimental and Stochastic Algorithms

Laboratory realization of quantum control experiments
builds on the coupling between the experimental ap-
paratus with convenient optimization algorithms that
search within the set of control fields the optimal
individual. In the experimental setting, a zero order
optimization algorithm (i.e., that only uses the value
J.�/ of the functional and does not need its derivatives)
is run on a computer [11]. Each time that this algorithm
requires to evaluate J for a candidate field �, the field
is created and the outcome measured and handed over
to the optimization algorithm.

Of course, a numerical version of the algorithm
can be used too where a numerical procedure is used
instead of an experiment in order to create the field and
compute the cost functional.

It is important to mention that this procedure is
enabled by the very high experimental repetition rate
available (as many as a thousand shots a second).

In practice Genetic Algorithms (GA) have been
used and latter superseded by Evolutionary Strategies
(ES). Both procedures can be formally described as
following the steps: selection of the parents that will
generate offsprings based on the fitness of the indi-
viduals; application of the evolution operators such as
mutation and crossover; evaluation of the fitness of
offsprings; replacement of the current generation by a
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new one according to specific criteria that, for example,
can allow the parents to survive or not; evaluate the
stopping criteria and if these are not met then move to
the next generation [11].

Inverse Problems and Other Applications

The ability to generate a large amount of quantum ex-
periments and measure the results may be exploited as
a possibility to learn more about unknown parameters
of the quantum system itself. From the mathemati-
cal point of view we enter the field of the “inverse
problems” where some parameter characterizing the
system is found from measurements; it has been for-
mulated within an optimization framework in various
settings [8, 11].

Two types of questions are usually relevant to this
topic: first, a theoretical question concerns the well-
posedness of what can be said about the existence
and the uniqueness of the Hamiltonian, and/or the
dipole moment, etc., compatible with a given set of
measurements; second, what are the best algorithms to
recover the unknown parameters from measurements.
We refer to the cited works for details.
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Synonyms and Acronyms

Fixed-node diffusion Monte Carlo (FN-DMC);
Green’s function Monte Carlo (GFMC); Pure diffusion
Monte Carlo (PDMC); Reptation Monte Carlo (RMC);
Stochastic reconfiguration Monte Carlo (SRMC);
Variational Monte Carlo (VMC)

Description of the Problem

The problem considered here is to obtain accurate solu-
tions of the time-independent Schrödinger equation for
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a general molecular system described as N electrons
moving within the external potential of a set of fixed
nuclei. This problem can be considered as the central
problem of theoretical and computational chemistry.
Using the atomic units adapted to the molecular scale
the Schrödinger equation to solve can be written as

H�.r1; : : : ; rN / D E�.r1; : : : ; rN / (1)

where H is the Hamiltonian operator given by

H D �1
2

NX

iD1
r2
i C V.r1; ; : : : ; rN /; (2)

fr1; : : : ; rN g the spatial positions of the N electrons,
r2
i D @2

@x2i
C @2

@y2i
C @2

@z2i
the Laplacian operator for

electron i of coordinates ri D .xi ; yi ; zi /, � the
wavefunction,E the total energy (a real constant), and
V the potential energy function expressed as

V.r1; ; : : : ; rN / D
X

i<j

1

rij
�
X

i;˛

Z˛

ri˛
C
X

˛<ˇ

Z˛Zˇ

R˛ˇ
(3)

In this formula rij D jri � rj j is the interelectronic
distance, Z˛ the charge of nucleus ˛ (a positive in-
teger), R˛ its vector position, ri˛ D jri � R˛j, and
R˛ˇ D jR˛ � Rˇj. The Schrödinger equation being
invariant under complex conjugation, we can restrict
without loss of generality the eigensolutions to be real-
valued. The boundary conditions are of Dirichlet-type:
Eigenfunctions� are imposed to vanish whenever one
electron (or more) goes to infinity

� ! 0 as
q

r21 C : : :C r2N ! C1 (4)

In addition, the mathematical constraints resulting
from the Pauli principle must be considered. Within
a space-only formalism as employed in QMC, two
types of electron – usually referred to as the “spin-up”
and “spin-down” electrons – are distinguished and
the Pauli principle is expressed as follows. Among
all eigenfunctions verifying (1)–(4) only those that
are antisymmetric under the exchange of any pair of
spin-like electrons are physically allowed. Because of
the permutational invariance, theN" spin-up electrons
can be arbitrarily chosen as those having the first labels
and the mathematical conditions can be written as

�.: : : ; ri ; : : : ; rj ; : : : jrN
"

C1; : : : ; rN /

D � �.: : : ; rj ; : : : ; ri ; : : : jrN
"

C1; : : : ; rN / (5a)

and

�.r1; : : : ; rN
"
j : : : ; ri ; : : : ; rj ; : : :/

D � �.r1; : : : ; rN
"
j : : : ; rj ; : : : ; ri ; : : :/ (5b)

for all pairs .i; j / of spin-like electrons. Equations 1–5b
define the mathematical problem discussed here.
Although such a mathematical model results from
a number of physical approximations, it contains
the bulk of most chemical phenomena and solving
it with enough accuracy (=chemical accuracy) can be
considered as the major problem of computational
chemistry. The two standard approaches to deal with
the electronic structure problem in chemistry are the
density functional theory (DFT) (�Density Functional
Theory) and the post-Hartree–Fock wavefunction
approaches (� Post-Hartree-Fock Methods and Excited
States Modeling, �Coupled-Cluster Methods).
Quantum Monte Carlo (QMC) presented here may
be viewed as an alternative approach aiming at
circumventing the limitations of these two well-
established methods (for a detailed presentation
of QMC, see, e.g., [1]). In contrast with these
deterministic approaches, QMC is based on a
stochastic sampling of the electronic configuration
space. In the recent years, a number of remarkable
applications have been presented, thus establishing
QMC as a high potential approach although a number
of limitations are still present. Here, we shall present
the two most popular approaches used in chemistry,
namely, the variational Monte Carlo (VMC) and the
fixed-node diffusion Monte Carlo (FN-DMC) methods.

The Variational Monte Carlo (VMC)
Method

The variational Monte Carlo (VMC) method is the
simpler and the most popular quantum Monte Carlo
approach. From a mathematical point of view, VMC
is a standard Markov chain Monte Carlo (MCMC)
method. Introducing an approximate trial wavefunction
�T .r1; : : : ; rN / known in an analytic form (a good
approximation of the unknown wavefunction), the
Metropolis-Hastings algorithm is used to generate

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
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sample points distributed in the 3N -dimensional
configuration space according to the quantum-
mechanical probability density � associated with �T

�.R/ D �2
T .R/R

dR�2
T .R/

(6)

where R is a compact notation representing the
positions of the N electrons, R D .r1; : : : ; rN /.
Expectation values corresponding to various physical
properties can be rewritten as averages over � . As an
important example, the total energy defined as

EVMC .�T / �
R
dR�T .R/H�T .R/
R
dR�2

T .R/
(7)

may be rewritten under the form

EVMC .�T / D
Z

dR�.R/EL.R/ (8)

where EL.R/ is the local energy defined as

EL.R/ D H�T .R/
�T .R/

: (9)

In VMC, the total energy is thus estimated as a simple
average of the local energy over a sufficiently large
number K of configurations R.k/ generated with the
Monte Carlo procedure

EVMC ' 1

K

KX

kD1
ELŒR.k/�; (10)

the estimator becoming exact asK goes to infinity with
a statistical error decreasing as � 1p

K
. Properties other

than the energy can be obtained in a similar way.
In the case of the energy, it can be shown that

there exists a variational principle expressed as
EVMC .�T / � E0 for any �T , the equality being
obtained for the exact ground-state wavefunction of
energyE0. In addition, there also exists a zero-variance
principle stating that the closer the trial wavefunction
is from the exact solution, the smaller the fluctuations
of the local energy are, the statistical error vanishing
in the limit of an exact trial wavefunction. In practice,
both principles – minimization of the energy and/or of
the fluctuations of the local energy – are at the basis

of the various approaches proposed for optimizing the
parameters entering the trial wavefunction.

The Diffusion Monte Carlo (DMC)Method

The fundamental idea is to introduce a formal mathe-
matical connection between the quantum and stochas-
tic worlds by introducing a fictitious time dynamics as
follows

@�.R; t/
@t

D �ŒH.R/ �ET ��.R; t/ (11)

where t plays the role of a time variable, �.R; t/, a
time-dependent real wavefunction, and ET , some con-
stant reference energy. The solution of this equation is
uniquely defined by the choice of the initial wavefunc-
tion, �.R; t D 0/. Using the spectral decomposition
of the self-adjoint (hermitic) Hamiltonian operator, the
solution of (11) can be written as

�.R; t/ D
X

i

ci e
�t .Ei�ET / i .R/ (12)

where the sum is performed over the complete set of
the eigensolutions of the Hamiltonian operator

H.R/ i .R/ D Ei i .R/; (13)

and ci D R
dR �

i .R/�.R; 0/.
As seen from (12) the knowledge of the time-

dependent solution of the Schrödinger equation al-
lows to have direct access to information about the
time-independent eigensolutions,  i.R/. As an im-
portant example, the exact ground-state wavefunction
(corresponding to the smaller eigenvalue E0) can be
obtained by considering the large-time limit of the
time-dependent wavefunction

lim
t!C1�.R; t/ D  0.R/ (14)

up to an unessential multiplicative factor.
In practice, to have an efficient Monte Carlo simula-

tion of the original time-dependent equation, we need
to employ some sort of importance sampling, that is,
a practical scheme for sampling only the regions of
the very high-dimensional configuration space where
the quantities to be averaged have a non-vanishing
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contribution. Here, it is realized by introducing a trial
wavefunction �T (usually optimized in a preliminary
VMC step) and by defining a new time-dependent
density as follows

�.R; t/ � �T .R/�.R; t/: (15)

The equation that � obeys can be derived without
difficulty from (11) and (15), we get

@�.R; t/
@t

D L�.R; t/ � ŒEL.R/ �ET ��.R; t/; (16)

where L is a forward Fokker-Planck operator defined
as (see, e.g., [2])

L� D 1

2
r2� � rŒb.R/�� (17)

and b.R/ the drift vector given by

b.R/ D r�T .R/
�T .R/

: (18)

In order to define a step-by-step Monte Carlo algo-
rithm, the fundamental equation (16) is rewritten under
the following equivalent integral form describing the
evolution of the density during a time interval �

�.R; t C �/ D
Z

dR0K.R;R0; �/�.R0; t/ (19)

whereK is the following integral kernel (or imaginary-
time propagator)

K.R;R0; �/ D .R; e�L��.EL�ET /R0/: (20)

For an arbitrary value of � , the kernel is not known.
However, for small enough time-step accurate approx-
imations of K can be obtained and sampled. To see
this, let us first split the exponential operator into a
product of exponentials by using the Baker-Campbell-
Hausdorff formulas [3]

e�L��.EL�ET / D e� �
2 .EL�ET /e�Le� �

2 .EL�ET / CO.�3/

(21)
and then introduce a short-time gaussian approxima-
tion of the Fokker-Planck kernel [2],

.R; e�LR0/ ' .
1p
2��

/
3N

e� .R0
�R��b.R//2

2� (22)

Finally, a working short-time approximation of the
DMC kernel can be written as

KDMC .R;R0; �/ ' .
1p
2��

/
3N

e� .R0
�R��b.R//2

2� e� �
2 Œ.EL.R

0/�ET /C.EL.R/�ET /� (23)

By considering small enough � , the residual error
(called the short-time error in the context of QMC) can
be made arbitrarily small. In practice, the DMC simu-
lation is performed as follows. A population of walkers
[or configuration R.k/] propagated stochastically from
generation to generation according to the DMC kernel
is introduced. At each step, the walkers are moved
according to the gaussian transition probability, (22).
Next, each walker is killed, kept unchanged, or du-
plicated a certain number of times proportionally to
the remaining part of the KDMC kernel, namely, w D
e� �

2 Œ.EL.R
0/�ET /C.EL.R/�ET /�. In practice, an unbiased

integer estimator M defining the number of copies
.M D 0; 1; : : :/ is used, M D EŒw C u�, where E
is the integer part and u is a uniform random number
in .0; 1/ (unbiased) R 1

0 duM D w). In contrast with
the Fokker-Planck part, this branching (or birth-death)
process causes fluctuations in the number of walkers.
Because of that, some sort of population control step
is needed [1]. The stationary distribution resulting
from these stochastic rules can be obtained as the
time-independent solution of (16). After some simple
algebra we get

�.R/ D �T .R/�0.R/R
dR�T .R/�0.R/

(24)

provided the reference energy ET is adjusted to the
exact value, ET D E0. From this mixed DMC distri-
bution density, a simple and unbiased estimator of the
total energy is obtained

E0 D hEL.R/i�: (25)

For properties other than the energy, the exact distribu-
tion density,�2

0 , must be sampled. This can be realized
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in different ways, for example, by using a forward
walking scheme Ref. [4] or a reptation Monte Carlo
algorithm, Ref. [5].

The Fixed-Node Approximation

In the preceding section, the DMC approach has been
presented without taking care of the specific mathe-
matical constraints resulting from the Pauli principle,
(5b). As it is, this algorithm can be directly employed
for quantum systems not subject to such constraints
(bosonic systems, quantum oscillators, ensemble of
distinguishable particles, etc.). An important remark is
that the algorithm converges to the stationary density,
(24), associated with the lowest eigenfunction  0.R/
which, in the case of a Hamiltonian of the form
H D � 1

2
r2 C V , is known to have a constant sign

(say, positive). This property is the generalization to
continuous operators of the Perron-Frobenius theorem
valid for matrices with off-diagonal elements of the
same sign.

For electronic systems, the additional fermionic
constraints are to be taken into account and we must
now force the DMC algorithm to converge to the
lowest eigenfunction obeying the Pauli principle (the
“physical” or fermionic ground-state) and not to the
“mathematical” (or bosonic) ground-state having a
constant sign. Unfortunately, up to now it has not been
possible to define a computationally tractable (polyno-
mial) algorithm implementing exactly such a property
for a general fermionic system (known as the “sign
problem”). However, at the price of introducing a fixed-
node approximation, a stable method can be defined.
This approach called fixed-node DMC (FN-DMC) just
consists in choosing a trial wavefunction fulfilling
the fermionic constraints, (5b). In contrast with the
bosonic-type simulations where the trial wavefunction
does not vanish at finite distances, the walkers are now
no longer free to move within the entire configurational
space. This property results directly from the fact that
the nodes of the trial wavefunction [defined as the
.3N � 1/-dimensional hypersurface where �T .R/ D
0] act as infinitely repulsive barriers for the walkers
[divergence of the drift vector, (18)]. Each walker is
thus trapped forever within the nodal pocket cut by the
nodes of �T where it starts from and the Schrödinger
equation is now solved with the additional fixed-node
boundary conditions defined as

 .R/ D 0 whenever �T .R/ D 0: (26)

When the nodes of  T coincide with the exact nodes,
the algorithm is exact. If not, a fixed-node error is
introduced. Hopefully, all the nodal pockets do not
need to be sampled – which would be an unrealistic
task for large systems – due to the existence of a
“tilling” theorem stating that all the nodal pockets of
the fermionic ground-state are essentially equivalent
and related by permutational invariance [6]. For a
mathematical presentation of the fixed-node approxi-
mation, see Ref. [7]. Finally, remark that in principle
defining an exact fermionic DMC scheme avoiding the
fixed-node approximation is not difficult. For example,
by letting the walkers go through the nodes and by
keeping track of the various changes of signs of the trial
wavefunction. However, in practice all the schemes
proposed up to now are faced with the existence of
an exponentially vanishing signal-to-noise problem re-
lated to the uncontrolled fluctuations of the trial wave-
function sign. For details, the reader is referred to the
work by Ceperley and Alder [8].

The Trial Wavefunction

A standard form for the trial wavefunction is

�T .R/ D eJ.R/
X

k

ckDet
"
k .r1; : : : ; rN"

/

Det
#
k .rN"

C1; : : : ; rN /: (27)

where the term eJ.R/ is usually referred to as the Jas-
trow factor describing explicitly the electron-electron
interactions at different level of approximations.
A quite general form employed for J.R/ is

J.R/ D
X

˛

U .e�n/.ri˛/C
X

i<j

U .e�e/.rij /

C
X

˛i<j

U .e�e�n/.rij ; ri˛; rj˛/C : : : (28)

where U ’s are simple functions (Many different ex-
pressions have been employed). The second part of
the wavefunction is quite standard in chemistry and
describes the shell-structure of molecules via a linear
combination of a product of two Slater determinants
built from one-electron molecular orbitals. Note that
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several other forms for the trial wavefunction have
been introduced in the literature but so far they have
remained of marginal use. Finally, let us emphasize
that the magnitude of the statistical error and the
importance of the fixed-node bias being directly related
to the quality of the trial wavefunction (both errors
vanish in the limit of an exact wavefunction), it is in
general quite profitable to optimize the parameters of
the trial wavefunction. Several approaches have been
proposed, we just mention here the recently proposed
method of Umrigar and collaborators [9].

Applications

In computational chemistry, the vast majority of the
VMC and FN-DMC applications have been concerned
with the calculation of total energies and differences of
total energies: atomization energies, electronic affini-
ties, ionization potentials, reaction barriers, excited-
state energies, etc. To get a brief view of what can
be achieved with QMC, let us mention the existence
of several benchmark studies comparing FN-DMC
with the standard DFT and post-HF methods [10–12].
In such studies, FN-DMC appears to be as accurate
as the most accurate post-HF methods and advanced
DFT approaches. In addition, like DFT – but in sharp
contrast with the post-HF methods – the scaling of
the computational cost as a function of the system
size is favorable, typically in O.N3/. However, QMC
simulations are much more CPU-intensive than DFT
ones. To date the largest systems studied involve about
2,000 active electrons, see, e.g., [13]. Finally, note
that in principle, all chemical properties can be eval-
uated using QMC. Unfortunately, to reach the desired
accuracy is often difficult in practice. More progress
is needed to improve the QMC estimators of such
properties.

QMC and High-Performance Computing
(HPC)

Let us end by emphasizing on one of the most impor-
tant practical aspect of QMC methods, namely, their
remarkable adaptation to high performance computing
(HPC) and, particularly, to massive parallel computa-
tions. As most Monte Carlo algorithms, the compu-
tational effort is almost exclusively concentrated on

pure CPU (“number crunching method”). In addition, –
and this is the key aspect for massive parallelism –
calculations of averages can be decomposed at will:
n Monte Carlo steps over a single processor being
equivalent to n=p steps over p processors with no
communication between the processors (apart from the
initial/final data transfers). Very recently, it has been
demonstrated that an almost perfect parallel efficiency
up to about 100,000 compute cores is achievable in
practice [14, 15]. In view of the formidable develop-
ment of computational platforms: Presently up to a
few hundreds of thousands compute cores (petascale
platforms) and many more soon (exascale in the near
future) this property could be critical in assuring the
success of QMC in the years to come.
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Quantum Time-Dependent Problems
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Introduction

Quantum dynamics deals with the time-dependent
Schrödinger equation:

i„ @ 
@t

D H ;

where  .�; t/ 2 L2.Rd / is the unknown wave function
and H is the Hamiltonian of the system, a self-adjoint
linear operator on L2.Rd /. Planck’s constant „ is often
conveniently set to „ D 1 in atomic units. In this
entry, we start from the molecular Hamiltonian, where
the dimension is d D 3N C 3L for a molecule of N
nuclei andL electrons. The full molecular Schrödinger
equation is inaccessible to a direct computational
treatment. Computations in multparticle quantum
dynamics rely on approximations that are based on
a time-dependent variational approximation principle
due to Dirac. This restricts the approximate time-
dependent wave function to a manifold of admissible
configurations, which is chosen such that the high
dimensionality of the problem is substantially reduced
and a computational treatment becomes feasible.
We describe the Dirac–Frenkel variational principle
and typical approximations obtained from it, which
are intermediate between the full molecular time-
dependent Schrödinger equation and classical molecu-
lar dynamics: the time-dependent Born–Oppenheimer
approximation, time-dependent Hartree and Hartree–
Fock methods and their multiconfiguration versions,
and semiclassical wave packets.

TheMolecular Schrödinger Equation

For a molecule, the Hamiltonian is the sum of the
kinetic energy operators of the nuclei and the electrons,
and the potential which is the sum of the Coulomb
interactions of each pair of particles (see the entry by
Yserentant):

Hmol D T C V with T D TN C Te and

V D VNN C VNe C Vee :

For N nuclei of masses Mn and electric charges Zne,
with position coordinates xn 2 R

3, and L electrons of
mass m and charge �e, with coordinates y` 2 R

3, the
respective kinetic energy operators are

TN D �
NX

nD1

„2
2Mn

xn Te D �
LX

`D1

„2
2m

y`

and the potential is the sum of the nucleus–nucleus,
nucleus–electron, and electron–electron interactions
given by

VNN.x/ D
X

1�k<n�N

Zk Zn e
2

jxk � xnj ;

VNe.x; y/ D �
LX

`D1

NX

nD1

Zne
2

jy` � xnj ;

Vee.y/ D
X

1�j<`�L

e2

jyj � y`j :

Any attempt to “solve” numerically the molecular
Schrödinger equation

i„ @�
@t

D Hmol � ; � D �.x1; : : : ; xN ; y1; : : : ; yL; t/

encounters severe problems:
• The high dimensionality (even for a small molecule

such as CO2, there are 3 nuclei and 22 electrons so
that � is a function on R

75).
• Multiple scales in the system (the mass of the

electron is approximately 1/2,000 of the mass of a
proton).

• Highly oscillatory wave functions
To obtain satisfactory results in spite of these difficul-
ties, one requires a combination of model reduction,
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based on physical insight and/or asymptotic analysis,
and numerical methods used on the reduced models.

Time-Dependent Variational
Approximation

The abstract setting is that of the time-dependent
Schrödinger equation:

i
d 

dt
D H ;

where the Hamiltonian H is a self-adjoint linear oper-
ator on a complex Hilbert space H with inner product
h�j�i and norm k � k. Consider a manifold M � H on
which an approximation to the wave function  .t/ is
sought and let TuM denote the tangent space at u 2 M
(i.e., the closed real-linear subspace of H formed of
the derivatives of all paths on M passing through u,
or in physical terminology, the space of admissible
variations). We assume that TuM is in fact complex
linear, that is, with v 2 TuM also iv 2 TuM.

The Dirac–Frenkel time-dependent variational
principle determines the approximate wave function
t 7! u.t/ 2 M from the condition that the time
derivative satisfies, at every time t ,

D
v
ˇ
ˇ
ˇ
du

dt
� 1

i
Hu

E
D 0 for all v 2 TuM: (1)

Since we assume TuM to be complex linear, this
condition remains unchanged if only the real part or
only the imaginary part is taken. This leads to two
entirely different interpretations:
1. Taking the real part yields the interpretation as an

orthogonal projection: with the orthogonal projec-
tion P.u/ W H ! TuM given by Re hv jP.u/'i D
Re hv j 'i for all v 2 TuM and ' 2 H, condition
(1) amounts to projecting the vector field at u to the
tangent space at u:

du

dt
D P.u/

1

i
Hu:

We note that this differential equation on M is
nonlinear unless M is a linear space, although the
original Schrödinger equation is linear. The time
derivative du=dt is such that it minimizes the norm
of the residual in the Schrödinger equation:

du

dt
D arg min

#2TuM
k# � 1

i
Huk :

The interpretation as an orthogonal projection leads
to the useful a posteriori error bound

ku.t/ �  .t/k � ku.0/�  .0/k

C
Z t

0

dist
�
Hu.s/; Tu.s/M

�
ds

and is essential for showing quasi-optimality of
the variational approximation, that is, bounding the
approximation error in terms of the error of the best
approximation on M.

Taking the real part in (1) also yields that con-
served quantities of the Schrödinger equation are
preserved if they map into the tangent space: if a
self-adjoint operator A commutes with the Hamil-
tonian H and if Au 2 TuM for all u 2 M,
then hu.t/jAju.t/i D Const. In particular, taking
A as the identity operator shows that for manifolds
with u 2 TuM (which is the case if, with u 2
M, also scalar multiples of u are in M), there is
conservation of norm, ku.t/k D Const.

2. Taking the imaginary part yields the interpretation
as a symplectic projection: consider the antisymmet-
ric two-form onH given by !.�; �/ D �2 Im h� j �i,
called the canonical symplectic two-form. The com-
plex linearity of TuM ensures that M is a sym-
plectic submanifold of H, that is, the symplectic
two-form ! is non degenerate on TuM. On taking
the imaginary part in condition (1), the differential
equation on M becomes a Hamiltonian system with
total energyH.u/ D hu jH j ui D hu jHui:

!
�
v;
du

dt

�
D dH.u/ v for all v 2 TuM:

As a consequence, the symplectic two-form ! re-
stricted to the tangent space is conserved along
the flow and the total energy hu.t/jH ju.t/i is con-
served.

Moreover, taking the imaginary part in (1) corre-
sponds to the Euler–Lagrange equations for making
Dirac’s quantum-mechanical action functional

S.u/ D
Z t1

t0

D
u.t/

ˇ
ˇ
ˇ i
du

dt
.t/ �Hu.t/

E
dt
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stationary with respect to variations of paths on
the manifold M with fixed end points. This is
a quantum-mechanical analogue of the Hamilton
principle of classical mechanics.

The Dirac–Frenkel time-dependent variational
principle is the dynamical counterpart to the
variational approach to the stationary Schrödinger
ground-state problem; see the entry by Esteban.
We note that, from a numerical analysis viewpoint,
condition (1) can be seen as a Galerkin condition
on the state-dependent approximation space TuM.
Different variational approximations correspond to
different choices of the approximation manifold
M. We describe some widely used choices in the
following.

Time-Dependent Born–Oppenheimer
Approximation

We return to the molecular HamiltonianHmol D TN C
Te C V and consider the electronic Hamiltonian:

He.x/ D Te C V.x; �/;

which acts on functions of the electronic coordinates
y D .y1; : : : ; yL/ and depends only parametrically on
the nuclear coordinates x D .x1; : : : ; xN /. The elec-
tronic structure problem is the Schrödinger eigenvalue
problem:

He.x/˚.x; �/ D E.x/˚.x; �/ ;

typically solved for the smallest eigenvalue, the ground
state energy. We fix an eigenfunction ˚.x; �/ which
depends continuously on x and is of unitL2 norm with
respect to the y variables. For fixed nuclear coordinates
x, the solution of the electronic Schrödinger equation

i
@�e

@t
D He.x/�e

with initial value 0.x/˚.x; �/ is given by�e.x; y; t/ D
e�iE.x/t 0.x/ � ˚.x; y/. This motivates the adiabatic
or time-dependent Born–Oppenheimer approximation
(see the entry by Hagedorn), which is the variational
approximation on

M D fu 2 L2x;y W u.x; y/ D  .x/˚.x; y/;  2 L2xg :

Note that here, M is a linear space. The Dirac–Frenkel
variational principle (1) then leads, after a short cal-
culation, to the nuclear Schrödinger equation on the
electronic energy band E:

i
@ 

@t
D HN with HN D TN C E C B;

where the Berry term B contains L2y inner products of
rxn˚ with ˚ and with itself, scaled with the inverse
of the large nuclear mass Mn. It is usually neglected
(there are, however, some physical effects in non-
simply connected domains, which are caused by the
Berry connection). HN then acts on functions of only
the nuclear coordinates x, with the electronic energyE
as the potential.

The quality of the approximation relies on the small-
ness of the ratio of the electron mass to the nuclear
masses and on a spectral gap condition, which sep-
arates the eigenvalue E.x/ from the remainder of
the spectrum of He.x/. Near eigenvalue crossings
or almost-crossings, the adiabatic approximation is
known to break down. The remedy then is to enlarge
the approximation space by including several energy
bands which are well separated from the remaining
ones in the region of physical interest, e.g., using

M D fu 2 L2x;y W u.x; y/ D  1.x/˚1.x; y/

C 2.x/˚2.x; y/;  1;  2 2 L2xg;

where ˚1.x; �/ and ˚2.x; �/ span an invariant subspace
of the electronic Hamiltonian He.x/. The variational
approximation on M then leads to a system of coupled
linear Schrödinger equations for  1 and  2.

Separation of Variables: TDH, MCTDH,
and TDHF

After applying the time-dependent Born–Oppenheimer
approximation, we are left with the Schrödinger equa-
tion for the nuclei:

i
@ 

@t
D H with H D TN C U;

with the kinetic energy operator of the nuclei, TN D
PN

nD1 Tn, and a potential U D U.x1; : : : ; xn/ (sup-
posedly an approximation to the electronic energy E).
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In the case of a separable potentialU D U1.x1/C� � �C
UN .xN /, the equation admits solutions of the product
form

 .x; t/ D �1.x1; t/ � : : : � �N .xN ; t/

for any initial value of this form, where the single-
particle functions �n are solutions of decoupled
Schrödinger equations:

i
@�n

@t
D .Tn C Un/�n:

For a non-separable potential, the time-dependent
Hartree (TDH) or self-consistent field method is the
variational approximation on

M D fu W u.x/ D �1.x1/ � : : : � �N .xN /; �n 2 L2xng:

Since M is not a linear space, the variational principle
here leads to nonlinearly coupled equations, which are,
up to a phase factor, of the above form with

Un D
D Y

j¤n
�j

ˇ
ˇU

ˇ
ˇ
Y

j¤n
�j

E
:

Here, the L2 inner product is taken over all variables
with the exception of xn, that is, Un D Un.xn/ is the
mean field potential obtained by averaging over the co-
ordinates of all other particles. A better approximation
can be obtained by allowing for a linear combination
of Hartree products in the variational approximation:

u.x/ D
X

J

aJ �
.1/
j1
.x1/ � : : : � �.N/jN

.xN /;

aJ 2 C; �.n/j 2 L2xn ;

where the sum is over multi-indices J D .j1; : : : ; jN /

with 1 � jn � rn. This leads to the multiconfiguration
time-dependent Hartree (MCTDH) method, which can
be viewed as a low-rank tensor approximation; see also
the entry by Schneider, Rohwedder, and Legeza.

For the treatment of the electronic Schrödinger
equation, where all particles are identical and indistin-
guishable, one must take care of the antisymmetry of
the wave function with respect to exchanging the co-
ordinates (and spin) of any two particles, as is required
by the Pauli principle. The variational approximation is

therefore built on antisymmetrized products of single-
particle functions (Slater determinants):

M D fu W u.y/ D det
�
'i .yj /

�`
i;jD1 ; 'i 2 L2g :

The corresponding variational approximation of the
electronic Schrödinger equation on M is known as the
time-dependent Hartree-Fock method; see also the en-
tries by Catto and Lewin for the stationary counterpart.
This is actually the approximation considered by Dirac
in 1930 for which he formulated the time-dependent
variational principle without further comment.

GaussianWave Packets

Further computational simplification in the treatment
of the Schrödinger equation for the nuclei is obtained
if, in the framework of the Hartree approximation,
the functions �n are chosen in a parameterized form.
Since for strongly localized wave packets the effective
potential can be considered approximately quadratic
and since Gaussian wave packets remain Gaussians in a
quadratic potential, an often-used choice is to take the
approximation manifold M as consisting of products
of complex Gaussians:

�n.xn/ D exp

�

i
�
.xn � qn/ � An .xn � qn/

Cpn � .xn � qn/C bn

��

with real vectors qn and pn and complex parameters
An (a matrix or a scalar) and bn. Here, the variational
approximation leads to classical-looking equations of
motion for the positions qn and momenta pn:

Pqn D pn

Mn

; Ppn D �h�n j rxnUn j�ni

with the pre-averaged potential Un.xn/ as in the time-
dependent Hartree method, and to differential equa-
tions for the width parameters An and phases bn. In
the limit of very narrow wave packets, these equations
of motion tend to the classical Newtonian equations
of motion for positions and momenta, Pqn D pn=Mn,
Ppn D �rxnU.q1; : : : ; qN /.
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Short Definition

Quasi-Monte Carlo methods are equal weight integra-
tion rules for integrating a continuous function over the

unit cube in s dimensions. They are likely to be most
useful when s is large.

Description

Introduction
Quasi-Monte Carlo (QMC) methods are equal weight
integration rules for approximating an integral over the
unit s-dimensional cube and thus have the form

QN;s.f / WD 1

N

NX

kD1
f .x.k// 	 Is.f /

WD
Z

Œ0;1�s
f .x/dx; f 2 C.Œ0; 1�s/;

where x.1/; : : : ; x.N / are well chosen points in the unit
cube Œ0; 1�s , and s may be large.

The name derives from the Monte Carlo (MC) rule
for the same integral, which in its simplest form looks
the same, QMC

N;s .f / D .1=N /
PN

kD1 f .x.k//, except
that the points x.k/ in the MC method are chosen ran-
domly and independently from a uniform distribution
on Œ0; 1�s . See the article by H. Woźniakowski, Monte
Carlo integration, this Encyclopedia for an entry on
MC. As explained there, the MC method has a proba-
bilistic error estimate, in which the rate of convergence
is O.1=

p
N/.

The first aim of QMC methods is to improve the rate
of convergence from the Monte Carlo rate O.1=

p
N/

to something close toO.1=N/ or better. The improved
rate of convergence comes at the expense of additional
smoothness requirements on the integrand f : whereas
the MC method does not require even continuity of f ,
the QMC methods require that f should be not only
continuous but also have additional smoothness prop-
erties, such as having integrable mixed first derivatives.

When s is small there are many alternative methods
for numerical integration (See the article by R. Cools,
Quadrature, this Encyclopedia), and a QMC method is
unlikely to be the best option. However, for values of
s larger than say 10, any conventional rule is unlikely
to be feasible. The construction of point sets for QMC
rules is an area of active research. There are at present
two main kinds of QMC construction, namely, low-
discrepancy sequences and lattice rules, both emanat-
ing from the work of number theorists in the 1950s
and 1960s.

http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_244
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Low-Discrepancy Sequences
As their name suggests, low-discrepancy sequences
are infinite sequences x.1/; x.2/; : : : in Œ0; 1�s , with the
property that the set TN WD fx.1/; : : : ; x.N /g consisting
of the first N members of the sequence has small
“discrepancy,” where the discrepancy (more precisely
the “star discrepancy”) of the point set is the supremum
of the local discrepancy function

D�
TN

WD sup
x2Œ0;1�s

discTN .x/; where

discTN .x/ WD
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

jTN \ Œ0; x/j
N

�
sY

jD1
xj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
;

with x D .x1; : : : ; xs/ and with Œ0; x/ denoting the
interval

Qs
jD1Œ0; xj / and jC j the cardinality of the

set C .
The interest in low-discrepancy sequences derives

from the Koksma-Hlawka inequality (see [6]), which
is a bound on the error of the QMC rule with points
TN D fx.1/; : : : ; x.N /g,

jQN;s.f /� Is.f /j � D�
TN
V .f /;

where V.f / depends only on f and not on the points
x.1/; : : : ; x.N /; for a function with integrable mixed first
derivatives, we may take it to be

V.f / WD
X

u�f1Wsg

Z

Œ0;1�juj

ˇ
ˇ
ˇ
ˇ
ˇ

@juj

@xu
f .xu; 1/

ˇ
ˇ
ˇ
ˇ
ˇ
dxu; (1)

where the sum is over all subsets of f1 W sg WD
f1; 2; : : : ; sg. Here xu denotes the set of components
xj of x 2 Œ0; 1�s for which j 2 u, while .xu; 1/ denotes
x with all components other than those with labels in u

replaced by 1.
More formally, a low-discrepancy sequence (see

[6]) is an infinite sequence .x.k// of points in Œ0; 1�s

with the property that there exists a constant cs
depending only on s such that D�

TN
� cs.logN/s=N .

The Koksma-Hlawka inequality ensures that the
O..logN/s=N / rate of convergence is inherited by
the QMC rule with these points. For the construction
of specific low-discrepancy point sets, see [6]. For
sequences designed to give still higher orders of

convergence, see [2]. The most easily available low-
discrepancy sequences are the Sobol sequences. See
[3] for practical algorithms that permit the efficient
calculation of Sobol sequences with s up to 21 201
and N up to 231. Sobol point sets are also available in
the MATLAB Statistics Toolbox. That software allows
the option of “scrambling” the Sobol sequence, where
scrambling (see Owen [8] or Chap. 13 of [2]) refers
to a structured permutation among the points of the
digits in the base-2 representation of each component.
For sufficiently smooth functions f , it is shown in
[8] that the square root of the expected squared error
of the scrambled sequence converges to zero with the
improved orderO.N�3=2.logN/.s�1/=2/.

The Koksma-Hlawka inequality does not give a use-
ful error bound when s is large – note that .logN/s=N
continues to increase with N until N 	 es . Never-
theless, experience suggests that the Sobol sequence
can be very effective even for s in the hundreds or
thousands. An error bound justifying the use of the
Sobol sequence even for large s, for functions f that
satisfy stringent growth conditions on their mixed first
derivatives, is given by Wang [12].

Lattice Rules
The second main class of QMC methods are the so-
called “lattice” rules, which in their simplest form are
given by

QN;s.f / D 1

N

NX

kD1
f

��
kz
N

	�

;

where z 2 f1 W N � 1g is a well-chosen integer vector
and where the braces around a vector mean that each
component is to be replaced by its fractional part.

The classical theory of lattice methods (see [6,9]), is
based on Fourier analysis and so requires the integrand
f .x/ to be 1-periodic with respect to each component
of x. For a software implementation in which the
choice of z is based on the classical theory, see the
routine D01GCF in the NAG software library.

A “randomly shifted” version of the lattice rule has
the form

QN;s.f / D 1

q

qX

iD1

 
1

N

NX

kD1
f

��
kz
N

C �i

	�!

; (2)
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where �1; : : : ;�q (the “shifts”) are independent ran-
dom shifts chosen from a uniform distribution on
Œ0; 1�s , and q (often taken to be 10 or 30) is a natural
number chosen for convenience. Like the MC method,
the randomly shifted QMC rule yields an unbiased
estimate of the integral, and the spread among the q
independent estimates of the integral allows a proba-
bilistic estimate of the error. It also opens a possibility,
as we now explain, of finding a good choice for the
“generating vector” z.

A theory of randomly shifted lattice methods that
leads to a construction of the integer vector z, and
that can cater for very large values of s, now exists;
see [1, 4] and [5] for review articles. This theory does
not assume periodicity of the integrand, but requires
the integrand to have square-integrable mixed first
derivatives. For an integrand f with finite norm
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ˇ
ˇ
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2

dxu

3

5

1=2

;

(3)

where �u > 0 is a “weight” corresponding to the
subset u 
 f1 W sg, the so-called component-by-
component (CBC) algorithm [11] constructs a gener-
ating vector z for the randomly shifted lattice ruleQN;s

for which there holds the error bound



E
�
.QN;s.f / � Is.f //2

��1=2 � Cı

N 1�ıpq kf k� ;

(4)

where the expected value is over the independent
random shifts in (2). Here Cı is a constant that goes to
1 as ı ! 0C, but is independent of s under suitable
conditions on the weights.

The role of the weight �u in (2) is to quantify
the importance of the subset xu of the variables.
The earliest weights, introduced by Sloan and
Woźniakowski [10], were of “product” form

�u D
Y

j2u
˛j ;

where ˛1 � ˛2 � : : : 0 describe the relative importance
of the (properly ordered!) successive variables. In this
case a necessary condition for the bound (4) to hold
with Cı independent of s is

P1
jD1 ˛

1=2
j < 1.

For weights of the product form, or of the gen-
eralization to “product and order dependent” (POD)
weights of the form �u D �juj

Q
j2u ˛j , there now

exist fast implementations of the CBC algorithm (see
[7] and [5], respectively), which make feasible the
computation of generating vectors z for any foresee-
able values of s and N .

The remaining obstacle to widespread use of ran-
domly shifted lattice rules may be an uncertainty about
how to choose the weights for a particular application.
For early attempts at deriving (POD) weights �u that
are mathematically well founded, see Sect. 1.5 of [5].
Once suitable product or POD weights are known,
the fast CBC algorithms allow the construction of
randomly shifted lattice rules with errors close to
O.N�1/ and with an implied constant independent of
dimension s.
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Introduction

“Radar” is an acronym for RAdio Detection And Rang-
ing. Radar was originally developed [3, 4, 27, 29, 32]
as a technique for detecting objects and determining
their positions by means of echolocation, and this
remains the principal function of modern radar sys-
tems. However, radar systems have evolved over more
than seven decades to perform an additional variety of
very complex functions; one such function is imaging
[5, 8–10, 12, 13, 17, 18, 23, 25].

Radar imaging shares much in common with optical
imaging: both processes involve the use of electro-
magnetic waves to form images. The main difference
between the two is that the wavelengths of radar are
much longer than those of optics. Because the resolv-
ing ability of an imaging system depends on the ratio
of the wavelength to the size of the aperture, radar

imaging systems require an aperture many thousands
of times larger than optical systems in order to achieve
comparable resolution. Since kilometer-sized antennas
are not practicable, fine-resolution radar imaging has
come to rely on so-called synthetic apertures in which
a small antenna is used to sequentially sample a much
larger measurement region.

Most radar systems operate within a band of fre-
quencies for which atmospheric attenuation is not too
severe. The various bands used are listed in Table 1.
Code letters for the radar frequency bands were origi-
nally used during wartime, and the usage has persisted.
The HF band usually carries radio signals; VHF carries
radio and broadcast television; the UHF band carries
television, navigation radar, and cell phone signals.
Some radar systems operate at VHF and UHF; these
are typically systems built for penetrating foliage, soil,
and buildings. Most of the satellite synthetic-aperture
radar systems operate in the L, S, and C bands. The S-
band carries wireless Internet. Many military systems
operate at X band.

Mathematical Modeling

Synthetic-aperture radar (SAR) relies on a number of
very specific simplifying assumptions about radar scat-
tering phenomenology and data collection scenarios:
1. Most imaging radar systems make use of the start-

stop approximation [13], in which both the radar
sensor and scattering object are assumed to be sta-
tionary during the time interval in which the pulse
interacts with the target.

2. The target or scene is assumed to behave as a rigid
body.

© Springer-Verlag Berlin Heidelberg 2015
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Radar Imaging, Table 1 Radar frequency bands

Band designation Approximate frequency range Approximate wavelengths
HF (“high frequency”) 3–30 MHz 50 m
VHF (“very high frequency”) 30–300 MHz 5 m
UHF (“ultra high frequency”) 300–1,000 MHz 1 m
L-band 1–2 GHz 20 cm
S-band 2–4 GHz 10 cm
C-band 4–8 GHz 5 cm
X-band 8–12 GHz 3 cm
Ku-band (“under K”) 12–18 GHz 2 cm
K-band 18–27 GHz 1.5 cm
Ka-band (“above K”) 27–40 GHz 1 cm
mm-wave 40–300 GHz 5 mm

3. SAR imaging methods assume a linear relationship
between the data and scene.

Scattering of Electromagnetic Waves
The present discussion considers only scattering from
targets that are stationary.

For linear materials, Maxwell’s equations can be
used [16] to obtain an inhomogeneous wave equation
for the electric field E at time t and position x:

r2E.t;x/ � 1

c2
@2E.t;x/
@t2

D s.t;x/ (1)

and a similar equation for the magnetic field B. Here c
denotes the speed of propagation of the wave (through-
out the atmosphere, this speed is approximately inde-
pendent of position and equal to the constant vacuum
speed), and s is a source term that, in general, is
supported at the location of scattering objects (targets)
and which can involve both E and B. For typical radar
problems, the wave speed is constant in the region
between the source and the targets and varies only
within the target volume. Consequently, here scattering
objects are modeled solely via the source term s.t;x/.

One Cartesian component of Eq. (1) is:

�
r2 � 1

c2
@2

@t2

�
E.t;x/ D s.t;x/ ; (2)

where atmospheric propagation between source and
target has been assumed.

Basic Facts About the Wave Equation
A fundamental solution [30] of the inhomogeneous
wave equation (2) is a generalized function [14, 30]
satisfying

�
r2 � 1

c2
@2

@2t

�
g.t;x/ D �ı.t/ı.x/: (3)

The solution of (3) that is useful is

g.t;x/ D ı.t � jxj=c/
4�jxj D

Z
e�i!.t�jxj=c/

8�2jxj d!; (4)

where in the second equality the identity

ı.t/ D 1

2�

Z
e�i!td! (5)

was used. The function g.t;x/ can be physically in-
terpreted as the field at .t;x/ due to a source at the
origin x D 0 at time t D 0 and is called the outgoing
fundamental solution or (outgoing) Green’s function.

The Green’s function [26] can be used to solve the
constant-speed wave equation with any source term. In
particular, the outgoing solution of

�
r2 � 1

c2
@2

@2t

�
u.t;x/ D s.t;x/ (6)

is

u.t;x/ D �
“

g.t � t 0;x � y/s.t 0;y/dt 0dy: (7)

In the frequency domain, the equations correspond-
ing to (3) and (4) are

.r2 C k2/G D �ı and G.!;x/ D eikjxj

4�jxj ;
(8)

where the wave number k is defined as k D !=c and

G.!;x/ D
Z

ei!tg.t;x/dt: (9)
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Basic Scattering Theory
In constant wave velocity radar problems, the source
s is a sum of two terms, s D sin C ssc, where
sin models the source due to the transmitting an-
tenna, and ssc models the effects of target scattering.
The solution E to Eq. (1), which is written as E tot,
therefore splits into two parts: E tot D E in C Esc.
The first term, E in, satisfies the wave equation for
the known, prescribed source sin. This part we call
the incident field – it is the field in the absence
of scatterers. The second part of E tot is due to the
presence of scattering targets, and this part is called
the scattered field. The corresponding decomposition
E tot D E in C E sc is also used in the simplified scalar
model.

One approach to finding the scattered field is to
simply solve (2) directly, using, for example, numerical
time-domain techniques. For many purposes, however,
it is convenient to reformulate the scattering problem
in terms of an integral equation.

The Lippmann-Schwinger Integral Equation
In scattering problems the source term ssc represents
the target’s response to an incident field. This part of
the source function will generally depend on the geo-
metric and material properties of the target and on the
form and strength of the incident field. Consequently,
ssc can be quite complicated to describe analytically.
Fortunately, for our purposes it is not necessary to
provide a detailed analysis of the target’s response;
instead, we note that for stationary objects consisting
of linear materials, we can write ssc as the time-domain
convolution

ssc.t;x/ D
Z
v.t � t 0;x/E tot.t 0;x/dt 0 (10)

where v.t;x/ is called the reflectivity function and
depends on target orientation. In general, this function
also accounts for polarization effects.

The expression (10) is used in (7) to express E sc

in terms of the Lippmann-Schwinger integral equation
[21]

E sc.t;x/

D R
g.t � �;x � z/

’
v.� � t 0; z/E tot.t 0; z/dt 0d�dz:

(11)

The Lippmann-Schwinger Equation in the
Frequency Domain
In the frequency domain, the electric field and reflec-
tivity function become

E.!;x/ D
Z

ei!tE.t;x/dt and

V.!; z/ D
Z

ei!tv.t; z/dt ; (12)

respectively. Thus, the frequency-domain version of (2)
is �

r2 C !2

c2

�
E.!;x/ D S.!;x/ (13)

and of (11) is

Esc.!;x/ D �
Z
G.!;x � z/V .!; z/E tot.!; z/dz :

(14)
The reflectivity function V.!;x/ can display a

sensitive dependence on ! [15,16,22]. When the target
is small in comparison with the wavelength of the
incident field, for example,V is proportional to!2 (this
behavior is known as “Rayleigh scattering”). At higher
frequencies (shorter wavelengths), the dependence on
! is typically less pronounced. In the so-called optical
region, V.!;x/ is often approximated as being inde-
pendent of !; the optical approximation is used in this
entry, and the ! dependence is simply dropped. In the
time domain, this corresponds to v.t; z/ D ı.t/V .z/,
and the delta function can be used to carry out the t 0
integration in (11).

The Born Approximation
For radar imaging, the field E sc is measured at the
radar antenna, and, from these measurements, the goal
is to determine V . However, both V and E sc in the
neighborhood of the target are unknown, and in (11)
these unknowns are multiplied together. This nonlin-
earity makes it difficult to solve for V . Consequently,
almost all work on radar imaging relies on the Born
approximation, which is also known as the weak-
scattering or single-scattering approximation [21]. The
Born approximation replaces E tot on the right side
of (11) by E in, which is known. This results in a linear
formula for E sc in terms of V :

E sc.t;x/ � EB.t;x/

�
“

g.t � �;x � z/V .z/E in.�; z/d�dz:

(15)
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In the frequency domain, the Born approximation is

Esc
B .!;x/ D �

Z
eikjx�zj

4�jx � zjV.z/E
in.!; z/dz: (16)

The Born approximation is very useful, because it
makes the imaging problem linear. It is not, however,
always a good approximation.

The Incident Field
The incident field E in is obtained by solving (2), where
sin is taken to be the relevant component of the current
density on the source antenna and ssc is zero. This entry
initially uses a simplified point-like antenna model,
for which sin.t;x/ D p.t/ı.x � x0/, where p is
the waveform transmitted by the antenna. Typically p
consists of a sequence of time-shifted pulses, so that
p.t/ D P

p0.t�tn/, and usually the pulses themselves
consist of a rapidly oscillating carrier signal that is
modulated by a more slowly varying coded signal.
The carrier frequency is chosen so that the frequency
content of the entire signal is within a band with little
atmospheric attenuation.

In the frequency domain, the corresponding source
for (13) is S in.!;x/ D P.!/ı.x � x0/, where P
denotes the inverse Fourier transform of p:

p.t/ D 1

2�

Z
e�i!tP.!/d!: (17)

The use of (8) shows that the incident field in the
frequency domain is

E in.!;x/ D �
Z
G.!;x � y/P.!/ı.y � x0/dy

D �P.!/ eikjx�x0j

4�jx � x0j : (18)

Model for the Scattered Field
In monostatic radar systems, the transmit and receive
antennas are colocated – often the same antenna is
used. The use of (18) in (16) shows that the Born-
approximated scattered field at the transmitter location
x0 is

Esc
B .!;x

0/ D P.!/

Z
e2ikjx0�zj

.4�/2jx0 � zj2 V .z/dz: (19)

Fourier transforming (19) results in an expression for
the time-domain field:

E sc
B .t;x

0/ D
“

e�i!.t�2jx0�zj=c/

2�.4�jx0 � zj/2 P.!/V.z/d!dz

D
Z
p.t � 2jx0 � zj=c/
.4�jx0 � zj/2 V .z/dz : (20)

Under the Born approximation, the scattered field can
be viewed as a superposition of scattered fields from
targets that are point-like (i.e., V.z0/ / ı.z � z0/) in
the sense that they scatter isotropically. No shadowing,
obscuration, or multiple scattering effects are included.

Radar data do not normally consist simply of
the backscattered field. Radar systems typically
demodulate the scattered field measurements to remove
the rapidly oscillating carrier signal and convert the
remaining real-valued voltages to in-phase (I) and
quadrature (Q) components, which become the real
and imaginary parts of a complex-valued analytic
signal [1]. Radar receivers also typically correlate the
incoming signal with the transmitted pulse, a process
called pulse compression or matched filtering [7, 11].
For the purposes of this entry, however, we ignore the
effects of this processing and work simply with the
scattered field.

The Small-Scene Approximation
The small-scene approximation, namely,

jx � y j D jxj � Ox � y CO

� jy j2
jxj

�
; (21)

where Ox denotes a unit vector in the direction x,
is often applied to situations in which the scene to
be imaged is small in comparison with its average
distance from the radar. This approximation is valid for
jxj � jyj.

The use of (21) in (4) gives rise to the large-jxj
expansion of the Green’s function [6, 7]

G.!;x � y/ D eikjx�yj

4�jx � y j

D eikjxj

4�jxje�ik Ox�y
�
1CO

� jyj
jxj
���

1CO
�
kjy j2
jxj

��
:

(22)
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Here the first-order term must be included in the
exponential because k Ox � y can take on values that are
large fractions of 2� .

Small-Scene Radar Data
If, in (20), the origin of coordinates can be chosen to
be in or near the target, then the small-scene expan-
sion (22) (with z playing the role of y) can be used
in (20). This results in the expression for the scattered
field:

E sc
B .t;x

0/

D 1

.4�/2jx0j2
“

e�i!.t�2jx0j=cC2 Ox0�z=c/P.!/V.z/d!dz:

(23)

The inverse Fourier transform of (23) gives

Esc
B .!/

D e2ikjx0j

.4�/2jx0j2 P.!/
Z

e�2ik Ox0�zV.z/dz
„ ƒ‚ …

F ŒV �.2k Ox0/

: (24)

Thus, in the small-scene case, each frequency com-
ponent of the scattered field provides one Fourier
component of the scene reflectivity V .

Survey of Radar ImagingMethods

The mathematical models discussed above assume that
the target V.z/ is stationary during its interaction with
a radar pulse. However, synthetic-aperture imaging
techniques assume that the target moves with respect
to the radar between pulses.

Inverse Synthetic-Aperture Radar (ISAR)
A fixed radar system staring at a rotating target is
equivalent (by change of reference frame) to a station-
ary target viewed by a radar moving (from pulse to
pulse) on a circular arc. This circular arc will define,
over time, a synthetic aperture, and sequential radar
pulses can be used to sample those data that would
be collected by a much larger radar antenna. Radar
imaging based on such a data collection configuration
is known as Inverse Synthetic-Aperture Radar (ISAR)
imaging [1, 6, 18, 23, 28, 33]. This imaging scheme is

typically used for imaging airplanes, spacecraft, and
ships. In these cases, the target is relatively small and
usually isolated.

Modeling Rotating Targets
The target reflectivity function in a frame fixed to the
target is denoted by q. Then, as seen by the radar, the
reflectivity function is V.x/ D q.O.�n/x/, where O
is an orthogonal matrix and where tn D �n denotes the
time at the start of the n-th pulse of the sequence.

For example, if the radar is in the plane perpendic-
ular to the axis of rotation (so-called turntable geome-
try), then the orthogonal matrix O can be written

O.�/ D
0
@ cos � � sin � 0

sin � cos � 0

0 0 1

1
A (25)

and V.x/ D q.x1 cos � � x2 sin �; x1 sin � C
x2 cos �; x3/.

The Field Scattered from a Rotating Target
The use of V.x/ D q .O.�n/x/ in (24) provides a
model for the scattered field due to the nth pulse:

Esc
B .!; �n/ D e2ikjx0j

.4�/2jx0j2 P0.!/Z
e�2ik Ox0�zq.O.�n/z„ƒ‚…

y

/dz: (26)

In (26), the change of variables y D O.�n/z is made.
Then use is made of the fact that the inverse of an
orthogonal matrix is its transpose, which means that
Ox0 � O�1.�n/y D O.�n/ Ox0 � y. The result is that (26)
can be written in the form

Esc
B .!; �n/

D e2ikjx0j

.4�/2jx0j2 P0.!/
Z

e�2ikO.�n/ Ox0�yq.y/dy

„ ƒ‚ …
/F Œq�.2kO.�n/ Ox0/

: (27)

Thus, the frequency-domain scattered field is propor-
tional to the Fourier transform of q, evaluated at points
in a domain defined by the angles of the sampled
target orientation and the radar bandwidth (see Fig. 1).
Consequently, an inverse Fourier transform produces a
target image.
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Radar Imaging, Fig. 1 The data collection manifold for
turntable geometry

The target rotation angle is usually not known.
However, if the target is rotating with constant angular
velocity, the image produced by the Fourier transform
gives rise to a stretched or contracted image, from
which the target is usually recognizable [1, 18, 28, 32].

ISAR in the Time Domain
Fourier transforming (27) into the time domain re-
sults in

E sc
B .t; �n/

/
“

e�i!.t�2jx0j=cC2O.�n/ Ox0�y=c/P0.!/d! q.y/dy :

(28)

Evaluation of �B at a shifted time results in the simpler
expression

E sc
B

�
t C 2jx0j

c
; �n

�

D
“

e�i!.tC2O.�n/ Ox0�y=c/P0.!/d! q.y/dy: (29)

With the temporary notation � D �2O.�n/ Ox0 � y=c,
the ! integral on the right side of (29) can be
written as

Z
e�i!.t��/P0.!/d! D

Z
ı.s � �/ˇ.t � s/ds; (30)

where

ˇ.t � s/ D
Z

e�i!.t�s/P0.!/d!:

With (30), �B can be written

E sc
B

�
t C 2jx0j

c
; �n

�

D
Z
ˇ.t � s/

Z
ı

 
s C 2O.�n/ Ox0

c
� y

!
q.y/dyds

D ˇ � RŒq�
 

�2O.�n/ Ox0
c

!
;

where

RŒq�.s; O�/ D
Z
ı.s � O� � y/q.y/dy (31)

is the Radon transform [19, 20]. Here O� denotes a unit
vector. In other words, the Radon transform of q is
defined as the integral of q over the plane s D O� � y.

ISAR systems typically use a high-range-resolution
(large bandwidth) waveform, so that ˇ � ı. Thus,
ISAR imaging from time-domain data becomes a prob-
lem of inverting the Radon transform.

Synthetic-Aperture Radar

Synthetic-aperture radar (SAR) [5, 8, 9, 13, 17, 24] in-
volves a moving antenna, and usually the antenna is
pointed toward the earth. For an antenna viewing the
earth, we need to include a model for the antenna beam
pattern, which describes the directivity of the antenna.
For highly directive antennas, we often simply refer to
the antenna “footprint,” which is the illuminated area
on the ground.

If we assume that the receiving antenna is at the
same location as the transmitting antenna, then we
find that the scalar Born model for the scattered
field is

Esc
B .!/ D

Z
e2ıkjx0�yjA.!;x0;y/V .y/dy; (32)

whereA incorporates the geometrical spreading factors
jx0 � y j�2, transmitted waveform, and antenna beam
pattern. More details can be found in [6].

For a pulsed system, we assume that pulses are
transmitted at times tn, and we denote the antenna
position at time tn by �n. In (32) we replace the antenna
position x0 by �n:

Esc
B .!; n/ D F ŒV �.!; s/

WD
Z

e2ıkj�n�yjA.!; n;y/V .y/dy; (33)
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where with a slight abuse of notation, we have replaced
the x0 in the argument of A by n. This notation
also allows for the possibility that the waveform and
antenna beam pattern could be different at different
points along the flight path. The time-domain version
of (33) is

E sc
B .t; n/ D

Z
e�i!Œt�2j�n�yj=c�A.!; n;y/V .y/dy:

(34)

Because the time scale on which the antenna moves
is much slower than the time scale on which the
electromagnetic waves propagate, the time scales have
been separated into a slow time, which corresponds to
the n of tn, and a fast time t .

The goal of SAR is to determine V from radar data
that are obtained from the scattered field Esc by I/Q
demodulation and matched filtering. Again, for the
purposes of this entry, we neglect the processing done
by the radar system and work simply with the scattered
field.

Assuming that � and A are known, the scattered
field (34) depends on two variables, so we expect
to form a two-dimensional image. For typical radar
frequencies, most of the scattering takes place in a
thin layer at the surface. We therefore assume that the
ground reflectivity function V is supported on a known
surface. For simplicity we take this surface to be a flat
plane, so that V.x/ D V.x/ı.x3/, where x D .x1; x2/.

SAR imaging comes in two basic varieties: spotlight
SAR [5, 17] and stripmap SAR [8, 9, 13, 24].

Spotlight SAR
Spotlight SAR is illustrated in Fig. 2. Here the moving
radar system stares at a specific location (usually on the
ground) so that at each point in the flight path, the same
target is illuminated from a different direction. When
the ground is assumed to be a horizontal plane, the iso-
range curves are large circles whose centers are directly
below the antenna at �n. If the radar antenna is highly
directional and the antenna footprint is sufficiently far
away, then the circular arcs within the footprint can
be approximated as lines. Consequently, the imaging
method is mathematically the same as that used in
ISAR.

In particular, we put the origin of coordinates in the
footprint, use the far-field expansion, and obtain for the
frequency-domain scattered field

Radar Imaging, Fig. 2 In spotlight SAR, the radar is trained on
a particular location as the radar moves. In this figure the equi-
range circles (dotted lines) are formed from the intersection of
the radiated spherical wave front and the surface of a (flat) earth

Esc
B .!; n/ D e2ikj�nj

Z
e2ik O�n�yV.y/A.!; n;y/dy:

(35)

We approximate A within the footprint as a product
A D A1.!; n/A2.y/. The function A1 can be taken
outside the integral; the function A2 can be divided out
after inverse Fourier transforming.

As in the ISAR case, the time-domain formulation of
spotlight SAR leads to a problem of inverting the Radon
transform.

Stripmap SAR
Just as the time-domain formulations of ISAR and
spotlight SAR reduce to inversion of the Radon
transform, which is a tomographic inversion of
an object from its integrals over lines or planes,
stripmap SAR also reduces to a tomographic inversion
of an object from its integrals over circles or
spheres (Fig. 3). For a derivation of the mathematical
model for stripmap SAR and a discussion of associated
issues and open problems, we refer the reader to
[6]. Image formation algorithms can be found in
[6, 8, 9, 13, 24].

Future Directions for Research

In the decades since the invention of synthetic-aperture
radar imaging, there has been much progress, but many
open problems still remain. In particular, as outlined
at the beginning of the section on Mathematical Mod-
eling, SAR imaging is based on specific assumptions,
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Radar Imaging, Fig. 3 Stripmap SAR acquires data without
staring. The radar typically has fixed orientation with respect
to the flight direction and the data are acquired as the beam
footprint sweeps over the ground

which in practice may not be satisfied. When they
are not satisfied, artifacts appear in the image. Conse-
quently a large number of the problems can be grouped
into two major areas:
• Problems related to unmodeled motion

Both SAR and ISAR are based on known relative
motion between target and sensor, for example,
including the assumption that the target behaves as
a rigid body. When this is not the case, the images
are blurred or uninterpretable.

• Problems related to unmodeled scattering physics
The Born approximation leaves out many physi-
cal effects, including not only multiple scattering
and creeping waves but also shadowing, obscu-
ration, and polarization changes. Neglecting these
effects can lead to image artifacts. But without
the Born approximation (or the Kirchhoff approx-
imation, which is similar), the imaging problem is
nonlinear.

Acknowledgements The authors would like to thank the Naval
Postgraduate School, the Mathematical Sciences Research In-
stitute, and the Air Force Office of Scientific Research, which
supported the writing of this entry under agreement number
FA9550-09-1-0013. (Consequently the US Government is au-
thorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory or the US
Government)

References

1. Borden, B.: Radar Imaging of Airborne Targets. Institute of
Physics, Bristol/Philadelphia (1999)

2. Borden, B.: Mathematical problems in radar inverse scatter-
ing. Inverse Probl. 18, R1–R28 (2002)

3. Bowen, E.G.: Radar Days. Hilgar, Bristol (1987)
4. Buderi, R.: The Invention that Changed the World. Simon &

Schuster, New York (1996)
5. Carrara, W.C., Goodman, R.G., Majewski, R.M.: Spotlight

Synthetic Aperture Radar: Signal Processing Algorithms.
Artech House, Boston (1996)

6. Cheney, M., Borden, B.: Fundamentals of Radar Imaging.
SIAM, Philadelphia (2009)

7. Cook, C.E., Bernfeld, M.: Radar Signals. Academic,
New York (1967)

8. Cumming, I.G., Wong, F.H.: Digital Processing of Syn-
thetic Aperture Radar Data: Algorithms and Implementa-
tion. Artech House, Boston (2005)

9. Curlander, J.C., McDonough, R.N.: Synthetic Aperture
Radar. Wiley, New York (1991)

10. Cutrona, L.J.: Synthetic Aperture Radar. In: Skolnik, M.
(ed.) Radar Handbook, 2nd edn. McGraw-Hill, New York
(1990)

11. Edde, B.: Radar: Principles, Technology, Applications.
Prentice-Hall, Englewood Cliffs (1993)

12. Elachi, C.: Spaceborne Radar Remote Sensing: Applica-
tions and Techniques. IEEE, New York (1987)

13. Franceschetti, G., Lanari, R.: Synthetic Aperture Radar
Processing. CRC, New York (1999)

14. Friedlander, F.G.: Introduction to the Theory of
Distributions. Cambridge University Press, New York
(1982)

15. Ishimaru, A.: Wave Propagation and Scattering in Random
Media. IEEE, New York (1997)

16. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley,
New York (1962)

17. Jakowatz, C.V., Wahl, D.E., Eichel, P.H., Ghiglia, D.C.,
Thompson, P.A.: Spotlight-Mode Synthetic Aperture
Radar: A Signal Processing Approach. Kluwer, Boston
(1996)

18. Mensa, D.L.: High Resolution Radar Imaging. Artech
House, Dedham (1981)

19. Natterer, F.: The Mathematics of Computerized Tomogra-
phy. SIAM, Philadelphia (2001)
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RadauMethods

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Univérsite de Genève,
Genève, Switzerland

Radau methods belong to the class of fully implicit
Runge–Kutta methods. A subclass of them (Radau
IIA methods) is particularly important for the nu-
merical treatment of stiff and differential-algebraic
problems.

Definition of Radau IIA Methods

Consider a differential equation Py D f .t; y/, and let yn
be an approximation to a solution y.t/ at t D tn. Radau
IIA methods are one-step methods of collocation-type.
They are defined as follows.

Let c1; : : : ; cs (with cs D 1) be the zeros of the
polynomial

ds�1

dxs�1
�
xs�1.x � 1/s

�
:

Then construct the polynomial u.t/ of degree s that
satisfies u.tn/ D yn and the collocation conditions (for
a picture see Fig. 2, right)

Pu.tnCci h/ D f
�
tnCci h; u.tnCcih/

�
; i D 1; : : : ; s:

Finally, ynC1 D u.tn C h/ is the approximation of y.t/
at t D tn C h.

Formulation as an Implicit Runge–Kutta
Method

Denoting Yin D u.tn C cih/, the collocation condition
above and the definition of ynC1 can be written as a
Runge–Kutta method

Yin D yn C h

sX
jD1

aij f .tn C cj h; Yjn/

ynC1 D yn C h

sX
iD1

bif .tn C cih; Yin/

where the coefficients aij and bi can be computed from
the equations

sX
jD1

aij c
k�1
j D cki

k
; i D 1; : : : ; s and,

sX
iD1

bi c
k�1
i D 1

k
(1)

which are satisfied for k D 1; : : : ; s.
For s D 1 the method reduces to the implicit Euler

discretization. For s D 2 and s D 3 the coefficients
ci (left column), bi (bottom row), and aij are given in
Table 1. The matrix .aij / is invertible, and its last row
satisfies asj D bj .

Stability

Radau IIA methods are known for their excellent
stability properties when applied to stiff differential
equations.

RadauMethods, Table 1 Radau IIA methods of orders 3 and 5
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A-Stability
For the test equation Py D �y the numerical approxi-
mation reduces to

ynC1 D Rs�1;s.h�/yn; Rs�1;s.z/ D Ps�1;s.z/
Qs�1;s.z/

where

Pk;l .z/ D
kX

jD0

 
k

j

!
.k C l � j /Š
.k C l/Š

zj and

Qk;l .z/ D Pl;k.�z/: (2)

These are sub-diagonal Padé approximations for the
exponential function and are known to satisfy the A-
stability condition

jRs�1;s.z/j � 1 for <z � 0:

Stability regions S D fz 2 C I jRs�1;s.z/j � 1g are
plotted in Fig. 1 for s D 1; 2; 3; 4. They are the exterior
of the bounded regions and are seen to cover the whole
negative half-plane.

A-stability is an important property for an efficient
numerical treatment of stiff differential equations. It
implies that for linear systems Py D Ay with con-
stant coefficients, the numerical solution fyng remains
bounded for n ! 1 whenever the exact solution is
bounded.

−3

3 6 9 12 15−3

−6

3

6

s=1

s=2

s=3
s=4

−6 0

Radau Methods, Fig. 1 Stability regions of Radau IIA
methods

B-Stability
For nonlinear differential equations Py D f .t; y/ satis-
fying a one-sided Lipschitz condition

hf .t; y/ � f .t; z/; y � zi � 0

the distance between two solutions is a decreasing
function of time. Radau IIA methods have the remark-
able property that for such problems the numerical
solution is contractive too.

Accuracy

Classical Order
The s-stage Radau IIA method has classical order p D
2s � 1. This expresses the fact that the global error at
tn D t0 C nh (n steps with step size h) is bounded by

kyn � y.tn/k � Ch2s�1 for nh � T:

The constant C depends on bounds of the vector field,
on its Lipschitz constant, and on the length T of the
considered interval, but is independent on h and n.

Order Reduction for Stiff Problems
For problems with increasing stiffness, however, the
classical order is often too optimistic, because the
Lipschitz constant becomes large. This phenomenon of
“order reduction” was first discovered at the Prothero-
Robinson equation

Py D � .y � '.t//C P'.t/; y0 D '.t0/

with '.t/ a given function. The solution of the problem
is y.t/ D '.t/, which is supposed to be smooth, but
neighboring solutions, for <� 	 0, perform a rapid
transient movement toward '.t/.

In Fig. 2 are compared the performances of the
fourth-order Gauss collocation method to the third-
order Radau IIA method, which demonstrates the
importance of the condition cs D 1 together with
asj D bj . Methods satisfying this condition are called
“stiffly accurate” and present no order reduction for
the Prothero-Robinson equation.

The same is true for another class of stiff differential
equations, called singularly perturbed problems
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RadauMethods, Fig. 2
A method that is not stiffly
accurate (left) and a stiffly
accurate method (right)
applied to the Prothero-
Robinson equation with
'.t/ D arctan 2t , � D �20,
t0 D �1:9, h D 3:4

1

−1

yn
Y1n

Y2n

yn+1

Gauss4

−1 1 −1 1

1

−1

yn

Y1n

Y2n = yn+1

Radau3

Py D f .t; y; z/;

"Pz D g.t; y; z/;

where 0 < " 	 1 is a small positive parameter,
and the derivative of g with respect to z is such
that the considered solution is asymptotically stable.
For such problems the s-stage Radau IIA methods
permit a global error estimate O.h2s�1/ C O."hsC1/
for the y-component, and O.h2s�1/ C O."hs/ for the
z-component. No order reduction can thus be observed
for very small ".

However, for more complicated stiff problems, the
Radau IIA methods also lose some tone. For problems
satisfying a one-sided Lipschitz condition (as in the
definition of B-stability) it can be proved that the global
error is bounded by O.hs/ with a constant depending
on bounds of the solution and its derivatives, but not
on the Lipschitz constant. This property – called B-
convergence – is useful for stiff differential equations
arising from the space discretization of time-dependent
partial differential equations.

Application to Differential-Algebraic
Equations

In the limit " ! 0, a singularly perturbed problem
becomes a differential-algebraic equation. It can be
considered as a special case of problems of the form

M Py D f .t; y/;

where M is a constant, but possibly singular square
matrix. It is possible to apply Radau IIA methods as
follows:

M.Yin � yn/ D h

sX
jD1

aij f .tn C cj h; Yjn/;

and ynC1 D Ysn (because asj D bj for all j ). Since the
Runge–Kutta matrix .aij / is invertible, Newton-type
iterations can be applied to the nonlinear system for
the internal stages if the matrix pencilM �h@f

@y
.tn; yn/

is regular.
There is no general convergence theory for

such problems. However, for many situations of
practical importance (linear problems with constant
coefficients, nonlinear problems in Hessenberg form
of index 1, 2, or 3, constrained mechanical systems,
etc.) convergence of Radau IIA methods can be
analyzed.

Notes

The German–French mathematician and astronomer
Rodolphe Radau designed (in 1880) Gaussian
quadrature formulas which included one or two
boundary points among the nodes, by aiming
to increase the efficiency of these methods. The
first extensions of Radau quadrature to implicit
Runge–Kutta methods were given by Butcher [2].
However, Butcher’s methods, constructed in order to
minimize the number of implicit stages, were not A-
stable.

Radau IIA methods have then been introduced inde-
pendently by Ehle [3] and Axelsson [1]. Ehle also con-
structed A-stable methods based on left-hand Radau
quadrature (zeros of ds�1

dxs�1
.xs.1 � x/s�1// by com-

puting the Runge–Kutta coefficients from the linear
system
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sX
iD1

bi c
k�1
i aij D bj

k
.1 � ckj /; j; k D 1; : : : s:

This approach leads to methods of order 2s�1 – called
Radau IA methods – which have the same stability
function as the Radau IIA methods. Consequently, they
are A-stable, but they are not stiffly accurate.

More about Radau methods can be found in the
monograph [4] (in particular Sects. IV.4, IV.5, and
IV.15), where detailed convergence proofs are pre-
sented. It includes a description of a variable step
size code RADAU5 (written in Fortran 77) which
is based on the 3-stage Radau IIA method of order
5 and can be applied to problems M Py D f .t; y/

with possibly singular constant matrix M . It is pub-
licly available on the homepage http://www.unige.ch/�
hairer/. An extension to variable order is documented
in [5].
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3. Ehle, B.L.: On Padé Approximations to the Exponential
Function and A-stable Methods for the Numerical Solution
of Initial Value Problems. Technical Report CSRR 2010, De-
partment of AACS, University of Waterloo, Ontario (1969)

4. Hairer, E., Wanner, G.: Solving Ordinary Differential Equa-
tions II. Stiff and Differential-Algebraic Problems, Springer
Series in Computational Mathematics, vol. 14, 2nd edn.
Springer, Berlin (1996)

5. Hairer, E., Wanner, G.: Stiff differential equations solved
by Radau methods. J. Comput. Appl. Math. 111(1–2),
93–111 (1999), Numerical methods for differential equations
(Coimbra, 1998)

Radial Basis Functions

Martin Buhmann
Mathematisches Institut, Justus-Liebig-Universität,
Giessen, Germany

Mathematics Subject Classification

41A05; 41A15; 41A30; 65D05; 65D07; 65D15

Short Definition of Radial Basis Functions

Approximations using radial basis functions are mul-
tivariate kernel methods to approximate multivariable
functions by finite linear combinations of translates
of a single, univariate, quasi-stationary function (the
“radial basis function”). Before translated, it is com-
posed with the Euclidean norm so that it is rotationally
invariant and may thus be used in any dimension. They
are usually means to approximate functions which are
only known at a finite number of points (“centres”), in
order that numerous evaluations of the approximating
function at other points can be made efficiently later on.

Applications include computer-aided geometric de-
sign, neural networks, and supervised or unsupervised
learning, for instance by support vector machines [5].
The data dependence of translates opens the door to
existence and uniqueness theorems for interpolating
problems at scattered data in more than one dimension.

Examples include positive definite kernels which
require no restrictions on the data for interpolation with
the exception that they need be distinct points. This
should be contrasted to, e.g., multivariable polynomial
interpolation with a fixed total degree, where singu-
larity can easily occur even when the data points are
distinct, unless we are working in a single variable.

Typical cases of radial basis functions are the lin-
ear radial basis function �.r/ D r , which can be
generalized to all powers r˛ so long as ˛ > 0 is
not an even integer; (Hardy) multiquadric radial basis
function �.r/ D p

r2 C c2, which contains another
scalar parameter c which may be adjusted to improve
the approximation; Gaussian kernel �.r/ D e�c2r2 ,
with an exponential function, a variant of this being
the Poisson kernel without the square in the expo-
nent; (Hardy) inverse multiquadric radial basis func-
tion �.r/ D 1=

p
r2 C c2; or a logarithmic function

�.r/ D log..r2 C a2/=.r2 C b2// with a > b positive
real parameters. The last four examples are positive
definite kernels.

Description

We require an underlying n-dimensional Euclidean
space .Rn; k � k/. There are m points (called “centers”)
in this space by which the radial basis function is
shifted; call them x1; x2; : : : ; xm. These points are
usually assumed to be distinct so that the problem may

http://www.unige.ch/~hairer/
http://www.unige.ch/~hairer/
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become regular when interpolation is used. Both n and
m are positive integers, usually at least two.

The given values that are used in the approximation
at the points could be either scalars or vectors
f1; f2; : : : ; fm, or f .x1/; f .x2/; : : : ; f .xm/; if they
come from a function f W Rn ! R which is evaluated
at the respective points. For simplicity, we assume that
latter case from now on.

Thus, the approximation with radial basis functions
is formulated as

s.x/ D
mX
jD1

�j �.kx � xj k/; x 2 Rn; (1)

where the � is a univariate continuous function � W
RC ! R, called the radial basis function, and the �j
are scalars.

Further, `p-norms other than Euclidean p D 2 are
possible, however rarely used, since they may lead to
singular systems; see in particular [9] for p D 1.

In most cases, radial basis function approximations
are employed with interpolation or smoothing. In the
former case, the scalar parameters �j are chosen, if
possible, such that s meets f exactly at the given m
points. This can be defined by the Lagrange interpola-
tion conditions

s.xj / D f .xj /; j D 1; 2; : : : ; m: (2)

These, in combination with the form (1), result in a
square, m 
 m linear system of equations in the �j .
Its interpolation matrix is the square symmetric matrix

A D
�
�.kxj � x`k/

�
j;`D1;:::;m; (3)

whose non-singularity will guarantee the unique solv-
ability of the problem. On the other hand, singularity
is immediate if the data points are not distinct. Its
eigenvalues, always real, are of particular interest es-
pecially with respect to the conditioning of the matrix.
When the radial basis function is positive definite, the
interpolation matrix is a positive definite matrix and
non-singular (Cholesky decompositions or conjugate
gradient methods may be used; positive definite func-
tions were considered in the classical paper [23] for
example). Positive definite functions and their general-
izations called conditionally positive definite functions,

see below, are closely related to reproducing kernel
Hilbert spaces with �.k � k/ as reproducing kernel.

All mentioned choices of � guarantee the unique
existence of (1) satisfying (2) for all f and m and n
if the data points are distinct [16].

Sometimes, when A as written down above is sin-
gular, nonetheless the unique existence of interpolants
can be guaranteed with a small variation on the concept
of approximation by adding low-order polynomials to s
and imposing some mild extra conditions which lead us
from positive definite kernels to conditionally positive
or negative ones. For example

s.x/ D
mX
jD1

�j �.kx � xj k/C aC bT x; x 2 Rn;

where the real number a and b 2 Rn contain the
coefficients of the linear polynomial, will give unique
existence of interpolating s using “thin-plate splines”
�.r/ D r2 log r , if the xj are not collinear and side
conditions

mX
jD1

�j D 0;

mX
jD1

�j xj D .0; 0; : : : ; 0/T (4)

hold. They take up the new degrees of freedom that
come with a and b.

Further examples of radial basis functions � exist,
such as pseudo-cubics �.r/ D r3 and shifted loga-
rithms �.r/ D .r2 C c2/ log.r2 C c2/, which give
regularity under the same conditions.

In many cases and even in high dimensions, good
convergence properties have been observed when the
centres xj become dense, for example, in compact
subsets of the space Rn. In particular Duchon has
studied the thin-plate splines and related radial basis
functions when the scattered data points are becoming
dense, see also [19], or for spectral convergence with
multiquadrics [15].

For the convergence analysis, one sometimes as-
sumes that the data points are on equally spaced grids
in Rn, so that infinitely many data are given. To
this end, one constructs the interpolants as sums over
Lagrange functions L which are linear combinations
of �.kx � kk/, k 2 Zn, satisfying L.0/ D 1 and
L.j / D 0 for all other j 2 Zn. The spacing between
centres being changed from 1 to h > 0, one then
lets h ! 0. We find in cases that include most of
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the radial basis functions mentioned above that the
uniform difference between s and f (the “error”)
goes to zero at the same rate as some power of h
[4,27]. One also looks specifically for the best possible
powers there (saturation orders) when the approximand
satisfies suitable smoothness conditions [13].

More general convergence theory addressing gen-
eral classes of radial basis functions including expo-
nentials is given for instance in [18, 28].

Computational Issues
In order to solve the interpolation linear system effi-
ciently, preconditioning and iterative methods are to
be applied; for an early approach, see Dyn and Levin
[8]. One class of particularly successful methods for
computing interpolants with many centres are Krylov
space methods [20]; others contain particle methods
and far-field expansions [1]; see also the article of
Beatson and Greengard in [14].

Other approaches which avoid the difficulty of ill-
conditioned interpolation matrices include the idea
of quasi-interpolation (e.g., see Buhmann [4] for a
number of useful examples of quasi-interpolation) or
spline smoothing [25].

Compactly Supported Radial Basis
Functions

Compactly supported radial basis functions were cre-
ated for the purpose of getting finite element type
approximation. They give rise to sparse interpolation
matrices. Some of them are piecewise polynomial as a
one-dimensional function � (usually only two pieces)
([26], with examples provided together with the the-
ory). Under suitable conditions on degree and dimen-
sion n, they give rise to positive definite interpolation
matrices A that are banded, therefore sparse, and then
of course also regular; for further choices see Buh-
mann [3]. For the computation of approximants with
good accuracy, multilevel methods as in Fasshauer [10]
can be used.

Applications are manifold; they include the afore-
mentioned finite element or spectral methods for the
solution of partial differential equations [8, 10] and,
very typically generally for kernel methods, neural
networks with radial basis functions, which include
machine learning [5, 22].

When radial basis functions are used on manifolds
and specifically on spheres, we no longer use the
Euclidean norm, but geodesic distances as arguments
to the kernel. This renders so-called zonal functions for
approximations on spheres [12, 24].

Special uses for radial basis functions are in statisti-
cal approximations, where positive definite kernels are
very important, see Beatson et al. [2].
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Inverse problem (IP) theory consists of making un-
known media known. Random media (RM) theory is
a method to model unknown media. Thus, ideally, IP
and RM should not overlap: if the former is successful,
then the latter is not necessary. Since most practical IPs
are not ideal, however, mixing these two notions can
sometimes be useful.

There are many ways that an IP is not ideal. An
unfortunate feature shared by most of them is that they
are ill posed. The consequence is that small noise levels
propagate to large errors in reconstructions unless a
priori information is included in the reconstruction, i.e.,
unless an intractable problem is replaced by a simpler
one. What this means in practice is that the unknown
medium is made only partially known even when the
best possible algorithm is being used. A second un-
fortunate feature of many nonlinear inverse problems
is that the part that remains unknown influences the
available measurements and therefore inevitably the
reconstruction of the part we want to claim as known.

It is there that randomness plays a role. There is no
risk at modeling the unknown part as random when no
better description is available. We can then assess the
influence of that unknown part on the reconstruction of
the part we want to claim as known. This allows for a
framework of uncertainty quantification for the varied
applications of IP.

At this level of abstraction, relatively little may
be said quantitatively. Modeling the unknown part as
random means figuring out a probability measure that
best describes it. How this probability measure should
be parameterized and the parameters chosen remain
elusive. We consider here two examples in which a
specific structure of randomness allows us to be fairly
explicit about the probability measure.

High-Frequency Noise and
Low-Frequency Reconstructions

Consider for concreteness an elliptic operator Lu D
�u” C qu with an unknown potential q D q.x/

and measurements corresponding to the spectrum f�ng
of L augmented with, say, Dirichlet conditions on
a bounded segment. Then �n grows like n2. Let us
assume that only the first N eigenvalues may be mea-
sured adequately. The most oscillatory corresponding
eigenvector thus oscillates at a frequency of order
N . Under appropriate assumptions on q (e.g., that
it satisfies a symmetry assumption when the spec-
trum of L only with the above boundary condition
is available), inverse Sturm-Liouville theory allows
us to deduce that an order of O.N/ Fourier coef-
ficients of q can be reconstructed satisfactorily; see
[14,15] for a more formal framework and results on the
inverse Sturm-Liouville problem. Unless very strong



1220 RandomMedia in Inverse Problems, Theoretical Aspects

prior information on q is introduced, higher-frequency
components of q cannot be reconstructed.

Such components have an influence on the mea-
sured eigenvalues nonetheless. Because they are high
frequency, we may approximate their influence by
looking at their limiting behavior when N ! 1. This
in turn allows us to infer the influence of these non-
recoverable components on the reconstruction of the
low-frequency components. Minimum variance recon-
structions may then be devised, whose role is to limit
as much as possible the influence of the unknown, non-
recoverable, components. This serves as an example
of application of the theory of differential equations
with random coefficients to improve the solution of
an inverse problem. We refer the reader to [8] and
references there for details.

IP with RM or the Search for Stable
Observables

Our second example is motivated by the reconstruction
of inclusions buried in heterogeneous media (HM).
Applications include biomedical imaging, seismic ex-
ploration in geophysics, and nondestructive testing of
materials. We assume the medium probed by (acoustic,
electromagnetic, or elastic) waves and measurements
consisting of scattered waves. We think of a situation
where HM is of little interest to us. Only the imaging
of the inclusion matters. In the unlikely event that HM
is known, then the invariance of the wave equation by
time reversal provides the right solution to the inverse
problem: back propagate available data solving the
wave equation on a computer and they will reconstruct
the inclusion [10].

When HM is not known, simply ignoring it may
provide very inaccurate reconstructions. We then have
two paths forward. We can either reconstruct HM
explicitly or we need to find a new inverse problem
in which the influence of HM is minimal. Unless
very accurate (and sufficiently broadband), wave mea-
surements are available, the first option is often not
available. It then makes sense to model HM as RM.
This is the scenario we consider for the rest of the entry.

The main difficulty we now face is that wave mea-
surements strongly depend on the realization of RM.
As a consequence, reconstructions may very much be
affected by the specific details of HM and may there-
fore be statistically unstable. The original inverse wave

problem then needs to be replaced by a statistically
stable one, i.e., one where the reconstruction of the
buried inclusion will depend as little on the realiza-
tion of RM as possible. Stable reconstructions require
stable functionals of the available wave measurements.
By analogy with quantum mechanics, we will refer
to such functionals as observables. The ideal inverse
problem, when it exists, then becomes: how does one
reconstruct the buried inclusion from knowledge of
these statistically stable observables?

Field-Field Correlations Are Stable
Observables

A very fruitful approach in the search for stable observ-
ables is to consider the broad family of field-field cor-
relations. Here field refers to the solution of the wave
equation. The fields themselves are not statistically sta-
ble, whereas correlations are significantly more stable;
see, e.g., the difference of stability between the Kirch-
hoff and coherent interferometry imaging functionals
in [9]. In several interesting settings, it has been shown
that correlations could indeed play the role of stable
observables. Moreover, such correlations often solve
closed-form, kinetic, equations in which the buried
inclusion acts as a constitutive parameter. The “new”
inverse problem thus becomes an inverse kinetic prob-
lem, which in some cases enjoys reasonably favorable
reconstruction properties [2].

For concreteness, with d spatial dimension, p pres-
sure, and v velocity, let the .d C 1/�vector u D .p; v/
solve the following system of acoustic wave equations

	
@v
@t

Crp D 0; 
.x/
@p

@t
Cr�v D 0; x 2 R

d ; t >0;

(1)

supplemented with initial conditions p.t D 0; x/ and
v.t D 0; x/. Here 	 is density and 
.x/ a highly
heterogeneous compressibility. The buried inclusion
may be modeled as a variation in 
.x/ as well. We
probe the system with high-frequency waves, i.e., with
wavelength � D "L 	 L, where L is the overall size
of the domain of interest. This is modeled by

p.t D 0; x/ D p0

�
x;

x
"

�
; v.t D 0; x/ D v0

�
x;

x
"

�
:

Whereas fields u are quite sensitive to the hetero-
geneities in 
.x/, there are several situations in which



RandomMedia in Inverse Problems, Theoretical Aspects 1221

R

quadratic quantities in the field are stable observables.
Because fields oscillate at the scale ", correlations need
to occur at this scale as well.

Let u�.t; x/ for � D 1; 2 be solutions for possi-
bly different initial conditions and possibly different
RMs modeled by 
�.x/. The Fourier transform of the
correlation function with respect to the offset variable
is called the matrix-valued Wigner transform and is
defined for 1 �  ; � � 2 by

W  ;�
" .t; x;k/ WD 1

.2�/d

Z
Rd

ei k�y u 

�
t; x � "y

2

�
˝ u�

�
t; x C "y

2

�
dy:

(2)

Kinetic Models and Statistical Stability

When � D  D 1, then we observe that the trace of the
integral ofW" over wave numbers k provides juj2.t; x/,
a quantity comparable to the wave energy density.
In this case, W  ; 

" .t; x;k/ should be interpreted as
a phase-space resolution of the wave energy density.
In the limit " ! 0, high-frequency waves behave
as particles, and we thus expect W" to approximately
solve a kinetic equation. In dimension d D 1, this
picture is incorrect as waves tend to localize rather
than transport according to a kinetic model; see [11].
In dimension d � 2, this picture is more or less correct
for appropriate RM.

The limiting, deterministic, kinetic equation thatW"

in (2) satisfies in the limit " ! 0 strongly depends
on the structure of 
.x/, which we assume of the
form


.x/ D 
0.x/C �0
1

�
x
lc

�
; Ef
.x/g D 
0.x/;

Ef
1.x/
1.y/g D R.x � y/; (3)

where E is mathematical expectation and R the corre-
lation function of 
1. Different regimes arise depending
on the relative size of the (adimensionalized) correla-
tion length lc with ". For instance, in the regime lc D
�20 D " 	 1, the kinetic equation is a radiative transfer
equation [13]. In the regime " 	 lc D �20 	 1,
the kinetic equation is a Fokker-Planck equation. We

refer the reader to the recent review [4] for details on
the derivations of the limiting kinetic models and their
levels of mathematical rigorousness.

Our observable W" is a random object that we ap-
proximate by W the solution to a deterministic kinetic
equation. In which sense does then W" converge to
W ? When 
 D 
0 is not random, it is known that
the convergence of W" to its limit can only occur
in a weak sense [12], i.e., that hW"; 'i converges to
hW;'i for a sufficiently smooth test function '. It turns
out that for the random models considered above, the
random object hW"; 'i converges in probability to the
deterministic object hW;'i. This means that

P

�
jhW".t/; 'i � hEfW".t/g; 'ij � ı

�
! 0;

uniformly in t on compact intervals.
This is precisely what we were looking for to

reconstruct our inclusion. We have devised an observ-
able W" that in the limit " ! 0 solves a kinetic
equation where 
0.x/ is a constitutive parameter. The
reconstruction of the inclusion then becomes an inverse
kinetic problem.

Scintillation Function and Accuracy
of the Reconstruction

How well can one expect to reconstruct the inclusion?
The resolution depends on the structure of the kinetic
inverse problem itself [2] but also on the amount of
noise in the “kinetic” data, i.e., on the discrepancy
between W" and its limit W . A natural gauge for the
statistical instability of W" is the so-called scintillation
function defined as

J".t; x;k; y;p/ D EfW".t; x;k/W".t; y;p/g
� EfW".t; x;k/gEfW".t; y;p/g;

(4)

i.e., the statistical correlation function of the Wigner
transform (assumed to be scalar to simplify notation).

There are relatively few results on the behavior of
J" as " ! 0. In simplified regime of wave propagation,
the scintillation function is well understood; see [4, 6].
Unfortunately, its behavior is rather complicated and
strongly depends on the phase-space structure of the
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initial conditions u.t D 0/, on the size of the detector
array, as well as on the correlation function of the
random medium.

Which Observables ShouldWe Choose?

Let us return to the reconstruction of the inclusion.
We have obtained different kinetic models for different
types of correlations. It turns out that in some situa-
tions, some correlations are more sensitive than others
to the presence of the inclusion. Such correlations
should be used to maximize signal to noise ratios
(SNR).

Consider the example of wave fields measured in
the absence u1 and in the presence u2 of the inclusion
and let W �; 

" .t; x;k/ be the cross-correlation defined
in (2). Here, 
�.x/ introduced in (1) could describe
the random medium in the absence of an inclusion
and 
 D 
� outside of the inclusion, while 
 

takes a constant value inside the inclusion. Similarly
to the results presented in the preceding paragraphs,
we obtain that W �; 

" .t; x;k/ is a stable observable for
all values of 1 � �; � 2 (see [4, 5] and their
references).

The simplest inversion procedure should then be
based on using the model forW 2;2.t; x;k/. More plau-
sibly, only

R
Rd
W 2;2.t; x;k/dk D u2.t; x/ ˝ u2.t; x/

may be measured in practice. This method is the
least expensive experimentally as it only requires en-
ergy measurements in the presence of the inclusion.
Its applicability is however limited by the follow-
ing requirement: the influence of the inclusion has
to be larger on the data than the statistical instabil-
ity W 2;2

" � W 2;2. It is therefore prone to low SNR
levels.

A remedy to these low SNR is to use the dif-
ferential measurement ıW" WD W 2;2

" � W 1;1
" pro-

vided that they are available as they require probing
the medium in the presence and in the absence of
the inclusion. Such measurements have significantly
higher SNR as, heuristically, the random influence
of signals that do not visit the inclusion cancels out
in ıW".

A third possibility is to use the cross-correlation
W 1;2
" , which is technologically the most difficult mea-

surement as it necessitates to measure the two vector
fields u� for � D 1; 2 and then cross-correlate them. In
highly disordered media, i.e., when the transport mean

free path is small compared toL, then such observables
display the largest SNR. Indeed, an inclusion of radius
R in such an environment will have an influence on
the energy difference of orderW 1;1 �W 2;2 D O.Rd/,
while its influence on the cross-correlation will be
of order W 1;1 � W 1;2 D O.Rd�2/ in dimension
d � 3 [5].

For experimental and numerical validations of ra-
diative transfer equations and their applications to the
reconstruction of buried inclusions, we refer the reader
to [1, 3, 5, 7] and their references.
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For approximating functions, rational approximants
are usually more effective than polynomial ones. There
exist various types of rational approximants depend-
ing on the information known on the function f to
be approximated, the procedure for constructing the
approximant, and the criteria for the error.

We will consider the case where the values of
the function f at some points are known (rational
interpolation) and the case where the first coefficients
of its formal Taylor expansion around zero are known
(Padé-type approximation). Then, we will mix these
two cases when both types of information are available
(Padé-type rational and barycentric interpolation).

Rational Interpolation

A rational function which interpolates f at distinct
points �i of the complex plane can be constructed by
the %–algorithm which is related to continued fractions
or by a barycentric formula.

The %–algorithm obeys the recursive rule:

%
.n/
�1 D 0; %

.n/
0 D f .�n/; n D 0; 1; : : :

%
.n/

kC1 D %
.nC1/
k�1 C �nCkC1 � �n

%
.nC1/
k � %.n/k

; k; n D 0; 1; : : :

Then, the rational functionR.n/k .t/DA.n/k .t/=B.n/

k .t/

satisfies the interpolation conditions R.n/k .�i / D f .�i /

for i D n; : : : ; n C k, where, for k D 1; 2; : : :, and
n D 0; 1; : : :,

A
.n/

k .t/ D .%
.n/

k � %
.n/

k�2/A
.n/

k�1.t/ � .t � �k�1/A.n/k�2.t/

B
.n/

k .t/ D .%
.n/

k � %
.n/

k�2/B
.n/

k�1.t/ � .t � �k�1/B.n/

k�2.t/

with, for n D 0; 1; : : :,

A
.n/
�1 D 1; A

.n/
0 D %

.n/
0

B
.n/
�1 D 0; B

.n/
0 D 1:

We now consider the following barycentric rational
function:

R.t/ D

kX
iD0

wi
t � �i

fi

kX
iD0

wi
t � �i

;

where fi D f .�i /. This rational function interpolates
f at the k C 1 points �i , i D 0; : : : ; k, whatever the
wi ¤ 0 are. The weights wi can be chosen according to
several additional requirements such as monotonicity
and absence of poles; see [2, 3, 8] and the literature
quoted there.

Padé-Type Approximation

Let us assume that the first coefficients of the formal
Taylor expansion of the function f around zero are
known, and set

f .t/ D c0 C c1t C c2t
2 C � � �

Consider the rational functionR

R.t/ D Np.t/

Dq.t/
D a0 C a1t C � � � C apt

p

b0 C b1t C � � � C bqtq
:

If the coefficients bi of the denominator are arbitrarily
chosen (with b0 ¤ 0), and if the coefficients ai of the
numerator are computed by the relations

a0 D c0b0
a1 D c1b0 C c0b1

:::

ap D cpb0 C cp�1b1 C � � � C cp�qbq;

9>>>=
>>>;

with the convention that ci D 0 for i < 0, then it holds

f .t/ � R.t/ D O.tpC1/:

Such a rational function is called a Padé-type approx-
imant of f , and it is denoted by .p=q/f . Replacing
a0; : : : ; ap by their expressions in Np, we have

Np.t/ D b0fp.t/C b1tfp�1.t/C � � � C bqt
qfp�q.t/;
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with

fn.t/ D c0 C c1t C � � � C cnt
n; n D 0; 1; : : :

Let us now choose the denominator in order to im-
prove the order of approximation as much as possible.
If the coefficients bi satisfy

0 D cpC1b0 C cpb1 C � � � C cp�qC1bq
:::

0 D cpCqb0 C cpCq�1b1 C � � � C cpbq;

9>=
>; ;

then, solving this system of linear equations after
setting b0 D 1 (since a rational function is defined up
to a multiplying factor), we obtain a rational function
R satisfying the approximation condition

f .t/ � R.t/ D O.tpCqC1/:

Such a rational function is called a Padé approximant
of f , it is denoted by Œp=q�f , and it holds

Œp=q�f .t/ D

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌

t qfp�q.t/ t q�1fp�qC1.t/ � � � fp.t/

cp�qC1 cp�qC2 � � � cpC1

:::
:::

:::

cp cpC1 � � � cpCq

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌

t q zq�1 � � � 1

cp�qC1 cp�qC2 � � � cpC1

:::
:::

:::

cp cpC1 � � � cpCq

ˇ̌
ˇ̌̌
ˇ̌
ˇ̌
:

There exists recursive formulae for computing any
sequence of adjacent Padé approximants (i.e., whose
degrees only differ by 1) [4].

Padé-type and Padé approximants have many
interesting algebraic and approximation properties,
in particular for the analytic continuation of functions
outside the region of convergence of the series. See
[1, 4, 6]. On new results about their computation,
consult [9].

Padé-Type Rational and Barycentric
Interpolation

Let us now consider the Padé-type approximant R �
.k=k/f and determine b0; : : : ; bk such that R.�i / D
f .�i /.DW fi / for i D 1; : : : ; k, that is, such that

Nk.�i / � fiDk.�i / D 0; i D 1; : : : ; k;

where �1; : : : ; �k are distinct points in the complex
plane (none of them being 0). We obtain the system

.fk.�i / � fi /b0 C �i .fk�1.�i /� fi /b1 C � � � C
�ki .f0.�i / � fi /bk D 0; i D 1; : : : ; k:

Setting again b0 D 1, we obtain a system of k linear
equations in the k unknowns b1; : : : ; bk. Such a ratio-
nal function is called a Padé-type rational interpolant
since it interpolates f at the points �i and, in addition,
it satisfies f .t/ �R.t/ D O.tkC1/.

Consider now the barycentric rational interpolant,
and let us determine w0; : : : ;wk such that

f .t/ �R.t/ D O.tk/:

In that case, R is a Padé-type approximant .k=k/f of
f , but with a lower order k of approximation instead of
k C 1. The preceding approximation condition shows
that the wi ’s must be a solution of the linear system

kX
iD0

.fi � c0/
wi
�i

D 0

kX
iD0

�
fi

�i
� c0

�i
� c1

�
wi
�i

D 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
kX
iD0

 
fi

�k�1
i

� c0

�k�1
i

� c1

�k�2
i

� � � � � ck�1

!
wi
�i

D 0:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Setting w0 D 1, we obtain a system of k equations in
the k unknowns w1; : : : ;wk . Such a rational function is
called a Padé-type barycentric interpolant.

These procedures can be extended to any degrees in
the numerator and in the denominator; see [5].
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rlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis,
vol. III, pp. 47–222. North–Holland, Amsterdam (1994)

7. Brezinski, C., Van Iseghem, J.: A taste of Padé approxima-
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Synonyms

Linear models; Regression analysis

Short Definition

Regression is a statistical approach for estimating the
relationships among variables.

Introduction

Regression is a statistical approach for modelling the
relationship between a response variable y and one
or several explanatory variables x. Various types of
regression methods are extensively applied for the
analysis of data from literarily all fields of quantitative
research. For example, multiple linear regression,
logistic regression, and Cox proportional hazards
models have been the main basic statistical tools
in medical research for decades. In the last 20–
30 years, the regression toolbox has been supplied with
numerous extensions, like, for example, generalized

additive models, regression methods for repeated
measurements, and regression methods for high-
dimensional data, to mention some.

Most regression models are fitted to data with the
purpose of either (1) using the fitted model to predict
values of y for new observations of x or (2) under-
standing the relationships between y and explanatory
variables x, determining their significance, and possi-
bly selecting the best subset of explanatory variables to
explain the response y. One important objective here
is also to study the effect of one explanatory variable
while adjusting for the effects of the other explanatory
variables. As opposed to deterministic curve fitting,
statistical regression allows to quantify uncertainty
in estimated model coefficients and thereby provides
standard errors and confidence intervals both for the
fitted model and for predictions of new observations.

TheMultiple Linear Regression Model

In multiple linear regression, the continuous response
variable y is a scalar. Other terms used for y are depen-
dent variable, regressand, measured variable, explained
variable, and outcome or output variable. If y is a
vector of responses rather than a scalar for each subject,
we will have multivariate linear regression, which we
present separately later.

The explanatory variables x1, x2; : : : ; xp are also
called independent variables, regressors, covariates,
predictors, or input variables. These are for simplicity
of presentation considered fixed quantities (not random
variables). The explanatory variables might be numeri-
cal, binary, or categorical. The case p D 1 is known as
simple linear regression.

Multiple linear model For each of n subjects, we
observe a set of variables .yi ; x1i ; x2i ; : : : ; xpi /, i D
1; : : : ; n. Assuming a linear relationship between re-
sponse and covariates, we have the multiple linear
regression model:

yi D ˇ0 C ˇ1x1i C ˇ2x2i C � � � C ˇpxpi C �i

i D 1; : : : ; n (1)

where ˇ0 is the intercept and the parametersˇ1; : : : ; ˇp
are the regression coefficients or effects. The �i is
an error/noise/disturbance term which captures ran-
dom deviations from the linear relations. Standard
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assumptions are that the stochastic variables �i , i D
1; : : : ; n are statistically independent, normally dis-
tributed with mean 0 and constant variance �2.

It follows from the model in Eq. (1) that it is the
expected value of y conditional on the covariates,
E.yjx1; x2; : : : ; xp/, which is a linear function. Each
coefficient ˇj ; j D 1; : : : ; p, is the change in
E.yjx1; x2; : : : ; xp/ when covariate xj changes one
unit and all other covariates are held fixed.

Inference

Model fitting – estimation The unknown parame-
ters in a regression model are estimated from data
using the principle of maximum likelihood or other
estimation methods. For the model in Eq. (1), with
independent �i � N.0; �2/, i D 1; : : : ; n, maximizing
the likelihood of the data is equivalent to the method of
least squares. Hence, the parameters ˇ0; ˇ1; : : : ; ˇp are
estimated as the minimizers of the objective function:

nX
iD1
.yi � E.yi jx1i ; x2i ; : : : ; xpi //2

D
nX
iD1
.yi � ˇ0 � ˇ1x1i � ˇ2x2i � � � � � ˇpxpi/

2

(2)

In matrix form, define the n-vector of responses
y D .y1; : : : ; yn/

T , the n
.pC1/-matrix of covariates
(called the design matrix) X D .1; x1; : : : ; xp/, and the
.p C 1/-vector of coefficients ˇ D .ˇ0; ˇ1; : : : ; ˇp/

T .
Then, the objective function (2) reads .y � Xˇ/T .y �
Xˇ/, and if XTX has an inverse, the solution to the
minimization problem is simply Ǒ D �

XT X
	�1

XT y.
The same solution appears in deterministic curve fitting
based on the least square principle. In the stochastic
case, Ǒ is a normally distributed stochastic vector
with E. Ǒ/ D ˇ (unbiased estimator) and variance-
covariance matrix Var. Ǒ / D �

XTX
	�1

�2. Estimates
are found by statistical software packages. In R, we use

fit=lm(y˜x1+x2+...+xp)
summary(fit)

If covariates are categorical, they can be represented
by a system of dummy variables. In R, this is
taken care of automatically by specifying that these
covariates should be considered as factors, using

fit =lm(y˜factor(x1)+factor(x2)+...
+factor(xp)).

The vector of predicted values is Oy D X Ǒ D
X
�
XT X

	�1
XT y. The matrix H D X

�
XT X

	�1
XT is

called the hat-matrix. We find the n-vector of residuals
as y � Oy D .I � H/y. The residuals are among others
used for diagnostics of the aptness of the model; see
below.

In order to make inference for the regression model
used, that is, assessing, for example, whether the vari-
ous observed effects are significant or not, we need an
estimate of the level of noise, the unknown variance
�2. Also here we use the residuals. The error sum
of squares, SSE, is the sum of the squared residuals,
SSE D .y � Oy/T .y � Oy/, and the mean squared error
MSE D s2 D SSE=.n � .p C 1// is an unbiased
estimator of �2.

Testing significance of effects R and other packages
will provide estimates Ǒ

j s with standard errors, that
is, the square roots of estimated variances where s2

substitutes �2 in Var. Ǒ /. Furthermore, standard output
is a t-test-statistic and P-value for the test H0 W ˇj D 0

versus alternative Ha W ˇj ¤ 0, j D 0; 1; : : : ; p.
A small P-value (typically < 0:05) is interpreted
as covariate xj having a significant effect on the
outcome. The estimated size and sign of this effect
(when all other covariates are held fixed) is simply
Ǒ
j . Confidence intervals for the effects can be con-

structed around point estimates using standard errors
and the t-distribution with .n � .p C 1// degrees of
freedom.

Confidence intervals and prediction intervals From
the uncertainty in the estimated coefficients, we can
find standard errors for the estimate of the mean re-
sponse E.yjx1; x2; : : : ; xp/ for a certain set of pre-
dictors x1, x2; : : : ; xp and hence construct confidence
intervals. If a new set of predictors is given in new, us-
ing new=data.frame (x=c(a1,a2,...ap)), a
confidence interval for the corresponding mean re-
sponse E.yja1; a2; : : : ; ap/ can be computed using

predict(fit,new,interval
="confidence")

Similarly, a prediction interval for a new future
response y in the same set of predictors new can
be found by specifying interval="prediction"
instead. Note that the interval for a future response is
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wider than the interval for the mean response, as the
noise variability comes into play.

Coefficient of multiple determination In addition
to the error sum of squares, statistical software will
also calculate the total sum of squares SST D .y �
Ny/T .y � Ny/ and the regression sum of squares SSR D
.Oy � Ny/T .Oy � Ny/, where Ny D Pn

iD1 yi =n. It can be
shown that SST D SSE C SSR. Standard output
of regression software is the coefficient of multiple
determination R2, defined as R2 D SSR=SST, which
is interpreted as the proportion of the total variance
in the response that can be explained by the multiple
regression model with p covariates. We aim for models
with high R2. However, as R2 increases when the
number of covariates increases, for model comparison,
we need to adjust the measure for the model size in
some way. In R, we find R2 as “Multiple R-squared,”
while “Adjusted R-squared” is one way of adjusting for
the dimension p.

Model utility test Furthermore, an F-test, based on
the ratio between SSR and SSE, will be standard output
of statistical computer packages, testing the hypothesis
of a constant mean model, that is, the hypothesis that
the explanatory variables are useless for predicting y.
This test is usually named the model utility test. A small
P-value here means that we reject the hypothesis of a
constant mean; hence, at least one of the covariates has
a significant effect on the outcome.

Model Diagnostics and Possible Remedies
The residuals e D y � Oy are used to check model
assumptions as linearity, normally distributed and in-
dependent errors, and constant variance.

Linearity of the regression function Linearity of the
regression function can be studied from residual plots,
where the residuals ei are plotted against predictor vari-
ables xji or fitted values Oyi . The plots should display
no systematic tendencies to be positive or negative for
a linear regression model to be appropriate. We can
use the R-code plot(xj,fit$residuals)to get
such plots for xj .

In case of nonlinearity, remedies include (log) trans-
formations of response and/or predictors and inclusion
of higher-order terms and/or interactions; see below.

Constancy of error variance (homoscedasticity) If
the model is correctly specified, then there should
not be any systematic patterns in the residual plots
above. If the error variance increases or decreases
with a covariate, the plot will have a megaphone
shape. Plots of the absolute values of the residuals
or of the squared residuals against covariates are
also useful for diagnosing possible heteroscedasticity.
Remedies include the use of transformations,
weighted least squares, or a generalized linear
model.

Normality of error terms Tests and confidence in-
tervals are based on the assumption of normal errors.
The residuals can be checked for normality using a
Q-Q plot (qqnorm(fit$residuals)),where the
points should be somewhat close to a straight line to
be coherent with a normal distribution. For large n,
all probability statements will be approximately correct
even with non-normal errors.

Independence of error terms We assume that the
errors are uncorrelated, but for temporally or spatially
related data, this may well not be true. Plotting the
residuals against time or in some other type of se-
quence can indicate if there is correlation between
error terms that are near each other in the sequence.
When the error terms are correlated, a direct remedial
measure is to turn to suitable models for correlated
error terms, like time series models. A simple remedial
transformation that is often helpful is to work with first
differences [25].

Presence of outliers and influential observations
An outlier is a point that does not fit the current
model. An outlier test in Chapter 10 of [25] might
be useful because it enables us to distinguish between
truly unusual points and residuals which are large but
not exceptional.

An influential point is one whose removal from the
dataset would cause a large change in the fit. The i ’th
diagonal element of the hat-matrix H measures the
influence of the i ’th observation on its predicted value
and is called leverage. An influential point may or may
not be an outlier and may not have large leverage but it
will tend to have at least one of those two properties. If
we find outliers or influential observations in the data, it
can be recommended to use robust regression methods;
see below.
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Harrell [15] and Kleinbaum [22] can be recom-
mended as introductory reading on general regression
techniques and theory.

Extensions

Robust regression methods If we have identified
potential outliers in the dataset, the least squares es-
timation method may perform poorly. One approach
is to simply eliminate the outliers and proceed with
the least squares estimation method. This approach is
appropriate when we are convinced that the outliers
are truly incorrect observations, but to detect these
outliers is not always easy as multiple outliers can
mask each other. Sometimes, outliers are actual obser-
vations and removing these observations creates other
false outliers. A general approach is then to use robust
estimation methods which downweight the effect of
long-tailed errors; see Maronna et al. [26] and Alma
[1]. In R, the Huber estimation (M-estimation) method
is the default choice of the rlm() function, which
is the robust version of the lm(), to be found in
the MASS package of Venables and Ripley [34]. Fox
and Weisberg [11] have a separate chapter on robust
regression estimation in R.

Nonlinear effects Note that the linear model in
Eq. (1) is linear in the coefficients ˇ. It is possible
to include nonlinear effects of the covariates by
introducing polynomials or fractions of these as new
covariates. The resulting model is still linear in ˇ and
can be fitted in the same way as above. Expressions
like

fit=lm(y˜x1+I(x1ˆ2)+I(x1ˆ(1/3))
+x2+...)

are used to fit such types of models in R. See more
details about fractional polynomial regression in, for
example, Royston and Sauerbrei [32].

Interactions If the effect on y of one covariate de-
pends on the level of another covariate, we have an
interaction. Interactions can be modelled by including
terms xj � xk in the design matrix, and again use the
linear formulation and estimation by least squares. The
coefficients of covariates xj are named main effects,
while coefficients of products xj �xk are called pairwise
interaction effects. For example, we use

fit=lm(y˜x1+x2+x1*x2)

in R to fit a model with main effects from x1 and x2
and their pairwise interaction. It is possible to include
higher-order interactions as well.

Variable selection When there are many possible
covariates to include in a multiple linear regression
model, it is often actual to do some variable selection,
usually facing the trade-off between a parsimonious
model and a good empirical fit and prediction power.
Classical approaches are forward and backward selec-
tion, either starting with an empty model and including
one by one covariate or starting with the full model
and excluding one by one covariate. In either cases,
an appropriate criterion for inclusion and/or exclusion
has to be chosen, for instance, the adjusted R2 or
alternative measures of model fit, like the Akaike
information criterion (AIC), the Bayesian information
criterion (BIC), or Mallows Cp; see, for example,
Cherkassky and Ma [5] and Kadane and Lazar [21].

Linear Mixed Effect Models

Multivariate data, where the response y is multivari-
ate for each subject, has to be treated with special
care because of the implicit dependencies present. In
a multitude of data structures, such as multivariate
response, but also repeated measurements, longitudi-
nal data, clustered data, and spatially correlated data,
dependencies between the observations have to be
taken into account. A simple example of multivariate
response is a study where systolic and diastolic blood
pressures are measured simultaneously for each patient
(together with several explanatory variables). If the
diastolic blood pressure is measured for all members of
a number of families, the responses will be clustered.
If for each patient, diastolic blood pressure is recorded
under several experimental conditions, we have a re-
peated measures study. In the case that diastolic blood
pressure is measured repeatedly over time for each
subject, we have longitudinal data. In these sets of
outcomes, the variance-covariance structure is usually
complicated. Linear mixed effects models use a mix
of fixed effects (like in the standard linear model)
and random effects to account for this extra variation
and could be used for analysis of these more complex
data structures [35]. Mixed models are also named
multilevel models, hierarchical models, or random co-
efficient models in specific settings.
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The original R package for fitting mixed effects
models is nlme. Bates [2] introduced an improved
version in the package lme4; see also Faraway [9] for
data examples. More recently, Bates [3] gives a more
detailed implementation of the lme4 package.

The linear mixed models can be extended to gen-
eralized linear mixed models to cover other situations
such as logistic and Poisson regression; see below. For
further reading on mixed models, see, for example,
McCulloch et al. [29] and also Rabe-Hesketh and
Skrondal [31] for practical applications based on the
Stata software. See Fitzmaurice et al. [10] for further
reading on longitudinal data analysis.

Generalized Linear Models

The linear model in Eq. (1) is a special case of a general
class of regression models which handles outcomes
that are not necessarily continuous and associations
between the outcome and covariates that are not nec-
essarily linear. This is the class of generalized linear
models (GLM), introduced by Nelder and Wedderburn
[30]; see, for example, the books by McCullagh and
Nelder [28] or Dobson and Barnett [8] for details. In
the GLM formulation, E.yjx1; x2; : : : ; xp/ D  and
some function g of  is linear in the covariates, i.e.,
g./ D ˇ0Cˇ1x1Cˇ2x2C� � �Cˇpxp . The function g
is called the link function, and identity link g./ D 

gives back the linear model for continuous y. Other
link functions can be used to handle binary, categorical,
or ordinal outcomes, as well as count data; see below.

Maximum likelihood estimation can be used to
estimate the parameters of a GLM. Typically, we must
resort to numerical optimization (Newton-Raphson).
The optimization is equivalent to an iteratively re-
weighted least squares (IRWLS) estimation method
[28]. To fit GLM models in R-software, we use the
function glm()with a specification of the distribution
of the response and a suitable link function.

Logistic regression Logistic regression or logit re-
gression is used when the response variable is a cat-
egorical variable. Usually, logistic regression refers to
the case when the response variable is binary. If the
number of categories of the response is more than two,
the model is called multinomial logistic regression,
and if the multiple categories are ordered, as ordered
logistic regression. Logistic regression is commonly

used for predicting the probability of the occurrence
of an event, based on several covariates that may be
numerical and/or categorical. To fit logistic regression
models, one can use the glm() function with logit
link and the binomial distribution. Also, other link
functions like the probit can be used. For example,
when y is a binary response and x1; x2; : : : ; xp are
covariates, then the logistic model can be fitted using
the following R-code:

fit.logit = glm(y˜x1+x2+...+xp,
family = binomial(link="logit")).

See Kleinbaum and Klein [23] and Collett [6] for
further reading on logistic regression.

Poisson regression Poisson regression is used when
the outcome variable represents counts. Poisson regres-
sion assumes that the response variable y has a Poisson
distribution and that the logarithm of its expected value
can be modelled by a linear combination of covariates.
A Poisson regression model is sometimes known as
a log-linear model, especially when used to model
contingency tables. One can fit the Poisson regression
model in R using glm() with the logarithm as the
(canonical) link function and the Poisson distribution:

fit.poisson = glm(y˜x1+x2+...+xp,
family = poisson()).

In the case of over-dispersion (when the residual de-
viance is much larger than the degrees of freedom),
one may want to use the quasipoisson() function
instead of poisson() function. See more details in
Chapter 24 in Kleinbaum [22].

In addition to the most common binomial, Gaussian
and Poisson GLMs, there are several other GLMs
which are useful for particular types of data. The
gamma and inverse Gaussian families are intended
for continuous, skewed response variables. We can
use dual GLMs for modelling both the mean and the
dispersion of the response variable in some cases [9].
The quasi-GLM is useful for nonstandard response
variables where we are not able to specify the distribu-
tion, but we can state the link function and the variance
functions; more details can be found in Faraway [9].

Cox regression Survival analysis covers a set of tech-
niques for modelling the time to an event. We mention
some of them here, even if the topic deserves a treat-
ment in itself. A survival regression model relates the
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time that passes before some event occurs, to one or
more covariates, usually through a hazard function. In a
proportional hazards model, like the Cox model, the ef-
fect of a unit increase in one covariate is multiplicative
with respect to the hazard rate. The Cox proportional
hazards model [7] is based on the instantaneous hazard

�.t jx/ D �0.t/ exp.ˇ1x1 C � � � C ˇpxp/

where �0.t/ describes how the hazard changes over
time at baseline levels of covariates and the second
term models how the hazard varies according to p

explanatory covariates. Data are typically of the format
time to event and status (1Devent occurred, 0Devent
did not occur). A statusD0 indicates that the obser-
vation is right censored. Survival analysis is typically
carried out using functions from the survival package
in R. For example,

fit.cox=coxph(Surv(y,status)˜
x1+x2+...+xp)

fits the proportional hazards function on a set of
predictor variables, maximizing the partial likelihood
of the data (Cox regression). Hosmer et al. [19] and
Kleinbaum and Klein [24] are recommended general
introductory texts on survival analysis. Martinussen
and Scheike [27] provide flexible models with R
examples.

Generalized AdditiveModels

Generalized additive models (GAM), introduced by
Hastie and Tibshirani [16], are a class of highly gen-
eral and flexible models handling various types of re-
sponses and multiple covariates without assuming lin-
ear associations. Using an additive model, the marginal
relationships between the predictor variable and the
response variable are modelled with interpretable uni-
variate functions. For the simple case with unit link, we
have

E.yjx1; x2; : : : ; xp/ D ˇ0 C f1.x1/C f2.x2/C � � �
C fp.xp/;

where fj .�/, j D 1; : : : ; p are unknown smooth
(univariate) functions.

The generalized version becomes E.yjx1; x2; : : : ;
xp/ D  and g./ D ˇ0 C f1.x1/ C f2.x2/ C
� � � C fp.xp/, where we need to specify a family of
distributions and a link function depending on the type
of response data, similar to the GLM setting.

The smooth, univariate functions can be fitted para-
metrically or, for increased flexibility, nonparametri-
cally. For nonparametric estimation, it is common to
use local polynomials, splines, or wavelets, as briefly
described below. To fit a GAM, a backfitting algorithm
can be used; see Wood [36] for further reading. The
gam() function in R uses backfitting and allows for
both local polynomials and smoothing splines in the
nonparametric estimation of the fj .�/’s.

Nonparametric Regression

When we would like to fit

E.yjx1; x2; : : : ; xp/ D f .x1; x2; : : : ; xp/

without assuming anything about the shape of the func-
tion, other than some degree of smoothness and conti-
nuity, we can use nonparametric regression methods.
If we would have information about the appropriate
parametric family of functions and the model is cor-
rectly specified, parametric approaches would be more
efficient than nonparametric estimation. Very often, we
do not have any information about an appropriate form
and it is preferable to let the data determine the shape of
f .�/. When p > 1, these methods allow to model also
interactions between covariates nonparametrically, but
in practice, this works only for very low-dimensional
problems, allowing p D 2; 3; maximum 4 in some
cases. When the number of covariates is higher than
this, it is necessary to resort to, for example, additiv-
ity assumptions and GAM as above. In such cases,
the nonparametric methods are used to estimate the
univariate (or low-dimensional) functions fj .�/ which
added together model the joint effect of the covariates
on the response.

There are several widely used nonparametric regres-
sion approaches, such as kernel estimators and local
polynomials, splines, and wavelets. The simplest kernel
estimator can be applied using the ksmooth() func-
tion in the base package in R and local polynomials
using loess() in the stats package. ksmooth()
works only for univariate regression, while loess()
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allows up to 4 covariates. The smoothing splines can
be estimated using the smooth.spline() function
in the stats package in R. The bs() function in the
splines package can be used to generate appropriate
regression spline bases. The spline solutions are avail-
able for univariate and bivariate functions. Wavelet
fitting can be implemented using the wavethresh
package in R and the function wd() can be used to
make the wavelet decomposition. For more details, see
Faraway [9].

Regression in (Ultra) High Dimensions
(p > n)

With high dimensions (or so-called p > n situations)
in regression, we refer to the increasingly actual sit-
uations in which the number of covariates p is much
larger than the sample size n in the various regres-
sion models above. With recent technological develop-
ments, it has become easy to simultaneously measure
ten thousands, or millions, of covariates, on a smaller
set of individuals. A typical example is genomics,
where, for instance, gene expressions are easily mea-
sured for 30,000 genes for a few hundred patients. For
the linear regression model Eq. (1), the ordinary least
squares estimator will not be uniquely defined when
p > n. To handle this problem, one might regularize
the optimization by including a penalty in the objective
function in (2). Such penalized regression methods
shrink the regression coefficients towards zero, intro-
ducing some bias to reduce variability. Shrinkage is
done by imposing a size constraint on the parameters,
equivalent to adding a penalty to the sum of squares,
giving

Ǒ .�/ D arg minˇ

0
@jj y � Xˇ jj22 =nC

pX
jD1

J�.jˇj j/
1
A :
(3)

The penalty term J�.jˇj j/ depends on a tuning pa-
rameter � which controls the amount of shrinkage and
can take on various forms, typically involving �jˇj jr
and some proper value of r distinguishing different
methods. Among the most famous are ridge regression
[18] with r D 2 and the lasso [33], where r D 1 (also
namedL1-penalty). The lasso and its many variants are
especially popular because they do not only shrink the
coefficients, but put most of them to exactly zero, thus

performing variable selection. This corresponds to an
assumption of sparsity, that is, that only some of the
covariates are really explaining the outcome. There are
several variants with different penalties available in the
literature, for example, the adaptive lasso of Huang
et al. [20] and the elastic net of Zou and Hastie [38].
Another important extension is the group lasso, where
predefined groups of variables are selected together,
Yuan and Lin [37].

In applications, the penalty parameter � is most
often chosen through k-fold cross-validation which
involves minimizing an estimate of the prediction error.
Typical choices of k are 5 and 10.

The ridge linear regression model can be fitted using
the lm.ridge() function in the MASS package in R.

The glmnet package fits lasso and elastic net model
paths for normal, logistic, Poisson, Cox, and multino-
mial regression models; see details in Friedman et al.
[12]. The glmnet() function is used to fit the model
and the cv.glmnet() function is used to do the
k-fold cross-validation and returns an optimal value for
the penalty parameter �.

The grplasso() function in the grplasso pack-
age in R is used to fit a linear regression model and/or
generalized linear regression model with a group lasso
penalty. One should specify the model argument inside
the function grplasso() as model=LinReg(),
model=LogReg(), model=PoissReg() for lin-
ear, logistic, and Poisson regression models, respec-
tively.

See Bühlmann and van de Geer [4] for further
reading on methods, theory, and applications for
high-dimensional data and penalization methods in
particular.

Another approach to the dimensionality problem is
to use methods like principal components regression
(PCR) or partial least squares (PLS). These methods
derive a small number of linear combinations of the
original explanatory variables and use these as covari-
ates instead of the original variables. This may be very
useful for prediction purposes, but models are often
difficult to interpret [17].

Bayesian Regression

The Bayesian paradigm assumes that all unknowns
are random variables, for which information can be
expressed a priori, before the actual data are analyzed,
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with the help of a prior distribution. In the case of
regression, the coefficients ˇ are random variables with
prior distributions. The posterior distribution of coeffi-
cients given the data is used for inference. Summaries
of the posterior distribution, including point estimates
like the posterior mean, the posterior mode, or the
posterior median of the coefficients, are optimal point
estimates with respect to appropriate loss functions.
Credibility intervals, which cover say 95 % of the
posterior probability of the coefficients, describe the
a posteriori uncertainty of the estimate. Priors might
be conjugate distributions, leading to analytical expres-
sions of the posterior distributions and allowing for
explicit posterior estimation, but in practice, we usually
have to resort to numerical methods (like Markov chain
Monte Carlo) to obtain samples, point estimates, or
marginals from the posterior distribution. The penal-
ized regression models like ridge regression and lasso
above can be interpreted as Bayesian linear regression
models with specific prior distributions (Gaussian and
Laplace, respectively) and focus on the posterior mode.
Joint credibility intervals, for all parameters of a mul-
tiple regression, can be computed. There are several
packages in R implementing Bayesian regression. To
conduct Bayesian linear models and GLM, use the
package arm which contains the bayesglm() func-
tion; see Gelman et al. [13] for details. For multi-
variate response data, the MCMCglmm package can
be used to do generalized linear mixed models using
Markov chain Monte Carlo techniques, described in
Hadfield [14].
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Introduction

Inverse problems aim at the determination of a cause x
from observations y. Let the mathematical model F W
X ! Y describe the connection between the cause x
and the observation y. The computation of y 2 Y from
x 2 X forms the direct problem. Often the operator F
is not directly accessible but given, e.g., via the solution
of a differential equation. The inverse problem is to find
a solution of the equation

F.x/ D y : (1)

from given observations. As the data is usually mea-
sured, only noisy data with

ky � yık � ı (2)

are available.
Such problems appear naturally in all kinds of

applications.
Usually, inverse problems do not fulfill Hadamard’s

definition of well-posedness:

Definition 1 The problem (1) is well posed, if
1. For all admissible data y exists an x with (1),
2. the solution x is uniquely determined by the data,
3. the solution depends continuously on the data.
If one of the above conditions is violated, the prob-
lem (1) is ill posed.

If F is a linear compact operator with an infinite-
dimensional range, e.g., a linear integral equation of
the first kind, then the problem (1) is ill posed [33, 39,
58]. An important application is the inversion of the
Radon transform which models computerized tomog-
raphy (CT): see, e.g., [41].

Numerically, the biggest problem is a violation of
Condition 3 of Definition 1, as numerical algorithms
for the inversion will be unstable. This problem can be
overcome by regularization methods.

Regularization of Linear Inverse Problems
in Hilbert Spaces

We treat first linear operator equations Ax D y where
A W X ! Y and X; Y are Hilbert spaces. If the range
ofA,R.A/, is not the whole space Y , then the operator
equation Ax D y does not necessarily admit a solution.
This can partially be corrected by the concept of best
approximate solutions:

Definition 2 Let

U D



u 2 X W u D arg min
x2X ky � Axk

�
:

The best approximate solution x� 2 U is defined as
the (unique) element from U with the smallest norm.
The generalized inverse is defined as the operator
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A� assigning to each y 2 R.A/ ˚ R.A/? the best
approximate solution x�.

Note that if R.A/ is not closed, e.g., if A is
compact with infinite-dimensional range, thenA� is not
defined on the whole space Y and is unbounded. In
order to control the unboundedness of the generalized
inverse, one has to introduce regularization methods.
The main idea is to replace the unbounded operator
A� by a family of continuous operators that converge
pointwise.

Definition 3 A regularization of an operator A� is a
family of continuous operators .R˛/˛>0, R˛ W Y ! X

with the following properties: there exists a map ˛ D
˛.ı; yı/ such that for all y 2 D.A�/ and all yı 2 Y

with ky � yık � ı,

lim
ı!0

sup
˚kR˛.ı;yı /yı � A�yk j yı 2 Y; ky � yık � ı

�

D 0

and

lim
ı!0

sup
˚
˛.ı; yı/ j yı 2 Y; ky � yık � ı

� D 0 :

The parameter ˛ is called regularization parameter.

Regularization methods are often defined by a
modification of the (also unbounded) operator A�A,
which is due to the fact that the best approximate
solution x� can be computed for y 2 D.A�/ by solving
the normal equation

A�Ax D A�y (3)

in R.A�/. The regularization theory is mainly con-
cerned with the analysis of regularization methods,
including their definition, the derivation of suitable
parameter choice rules, and convergence analysis. For
a given parameter choice rule, the convergence anal-
ysis in particular aims at the estimation of the error
kR˛.ı/yı � x�k. There cannot be a uniform conver-
gence rate for the regularization error if R.A/ is non-
closed, cf. Schock [57], i.e., any regularization method
can converge arbitrarily slow. In order to obtain a
convergence rate, a source condition is needed. Here,
we restrict ourselves to Hölder-type source conditions,
where the solution of the equation can be written
as x� D .A�A/�w, i.e., x� 2 range.A�A/� 
D.A/; � > 0. This condition can be understood as an
abstract smoothness condition. It can be shown that the

best possible convergence rate under the above source

condition is of O
�
ı

2�
2�C1

�
; therefore, a regularization

method is called order optimal if for a given parameter
choice rule ˛ D ˛.ı; yı/ the estimate

kx� � xı
˛.ı;yı /

k D O
�
ı

2�
2�C1

�
(4)

holds for kyı � yk � ı and

x� 2 X�;	 WD fx 2 X j x D .A�A/�w; and kwk � 	g
(5)

For convergence rates w.r.t. generalized source con-
ditions, we refer to [24, 38].

Filter-Based Regularization Methods
In Hilbert spaces, compact operators A can be decom-
posed via their singular system f�i ; ui ; vi gi2N as

Ax D
1X
iD1

�i hx; uiivi

with �i � 0. For y 2 D.A�/, the best approximate
solution is then given as

x� D A�y D
1X
iD1

��1
i hy; vi iui :

As �i ! 0 for i ! 1, the unbounded growth of f��1
i g

has to be compensated by a sufficiently fast decay
of the coefficients fhy; viig of y, which is another
manifestation of a source condition. This is usually not
the case for noisy data yı , which causes the instabilities
in the reconstruction.

Using filter functions F˛ W RC ! R, regularization
methods can be defined by

R˛y
ı WD

X
i2N

��1
i F˛.�i /hyı; vi iui :

In order to ensure convergence and convergence rates,
the filter function F˛ has to satisfy certain conditions,
cf. [16,36]. Well-known regularization methods gener-
ated by filter functions are:
1. Truncated singular value decomposition:

R˛y
ı WD

X
�i�˛

��1
i hyı; vi iui
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In this case, the filter function is given by

F˛.�/ WD


1 if � � ˛

0 if � < ˛
:

2. Landweber method: For ˇ 2
�
0; 2

kKk2
�

and m 2 N,
set

F1=m.�/ D 1 � .1� ˇ�2/m :

The regularization parameter ˛ D 1=m admits
discrete values only. The regularized solution due to
the Landweber method, xı1=m, can be characterized
by the mth iterate of the Landweber iteration,

xmC1 D xm C ˇA�.yı �Axm/;
with 0 < ˇ < 2=kAk2; x0 D 0:

The regularization parameter is the reciprocal of the
stopping index of the iteration.

3. Tikhonov regularization: Here, the filter function is
given by

F˛.�/ D �2

�2 C ˛
:

The regularized solution due to Tikhonov,

xı˛ WD
X
i

�2i

�2i C ˛
� ��1

i hyı; viuii ;

is also the unique minimizer of the Tikhonov functional

J˛.x/ D kyı �Axk2 C ˛kxk2 ; (6)

which is in turn minimized by the unique solution of
the equation

.A�AC ˛I/x D A�yı : (7)

We observe the close connection of (7) to the normal
Eq. (3).

Equipped with a proper parameter choice rule, the
above-presented methods regularize ill-posed prob-
lems. We distinguish between a priori parameter choice
rules, where ˛ depends on the noise level ı only, and a
posteriori parameter choice rules, where the regulariza-
tion parameter depends additionally on the noisy data
yı . For example, Tikhonov regularization converges
with an a priori parameter choice rule fulfilling

lim
ı!0

˛.ı/ D 0; lim
ı!0

ı2

˛.ı/
D 0:

Morozov’s discrepancy principle where ˛�.ı; yı/ is
chosen s.t. kyı � Axı˛

�

k D �ı for fixed � > 1

is an a posteriori parameter choice rule. Tikhonov
regularization together with the discrepancy principle
is an order optimal regularization method for
0 < � � 1=2.

The discrepancy principle can also be used for the
Landweber method: If the iteration is stopped afterm�
iterations, where m� is the first index with

kyı � Axm
�

k � �ı < kyı � Axm��1k (8)

then the iteration is an order optimal regularization
method for all � > 0.

For results concerning different parameter choice
rules, convergence, and convergence rates of related
methods, we refer to [16,36] and the references quoted
there.

Further Methods for Linear Problems
Within this section we will describe regularization
methods for linear operators that are not readily char-
acterized via filter functions.

Projection Methods
A natural approach of approximating a solution of
a linear operator equation in an infinite-dimensional
space X is by projection of the operator equation
to a finite-dimensional subspace Xn and computing
its least-squares approximation in Xn. Given a
sequence of finite-dimensional subspaces of Xn
with

Xn � XnC1
for all n 2 N, the least-squares approximation of Ax D
y in Xn is given as

xn D A�ny

with An D APn, where Pn denotes the orthonormal
projection onto Xn. As A�n has a finite-dimensional
range, it is bounded and xn is therefore a stable ap-
proximation of x�. The convergence xn ! x� can only
be guaranteed under additional conditions, e.g., by the
condition
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lim sup
n!1

k �A�n�� xnk < 1

see [37].
A method that always converges [40] is the dual

least-squares method, where a sequence of finite-
dimensional subspaces

Yn � YnC1

of R.A/ is chosen. Now xn is defined as the least-
squares solution of the equation

Anx D yn

with An D QnA, yn D Qny, and Qn is the orthogonal
projection onto Yn. Again, xn is a stable approximation
of x�. The dual least-squares method is a regularization
if the parameter n is properly linked to the noise
level ı, i.e., the regularization parameter ˛ is given
by 1=n. For a rigorous analysis of projection methods,
see [40]. Projection methods are frequently combined
with other regularization methods as, e.g., Tikhonov
regularization or Landweber iteration [43, 44].

Conjugate Gradient Methods
The conjugate gradient method (cg) is one of the
most powerful methods for the solution of self-adjoint
positive semidefinite well-posed problems. It was orig-
inally introduced in a finite-dimensional setting by
Hestenes and Stiefel [25] but can also be extended
to an infinite-dimensional setting. CGNE is the cg
method applied to the normal Eq. (3). Its iterates can
be characterized as minimizers of the residual over a
Krylov subspace, i.e,

kyı � Axıkk D min
˚kyı � Axk j x � x0

2 Kk.A
�.yı �Ax0/; A�A/

�
;

where the kth Krylov space is defined as Kk.x;A/ D
spanfx;Ax; ; A2x; � � � ; Ak�1xg and x0 is the initial it-
erate. Therefore, CGNE requires the fewest iterations
among all iterative methods if the discrepancy principle
is chosen as a stopping rule for the iteration. Conjugate
gradient-type methods depend in a more direct way
(nonlinearly) on the data yı , which requires a more
complicated analysis of the method. CGNE with an a
priori parameter choice rule is a regularization method.
If CGNE is terminated by the discrepancy principle (8),

then the method is order optimal for x� 2 X�;	 and all
� > 0 [42].

For a deeper analysis of cg and related methods in
the context of inverse problems, we refer to [20].

Mollifier Methods
Regularization can also be viewed as the reconstruc-
tion of a smoothed version of a solution. Consider a
smoothing operatorE� W X ! X satisfying E�x * x

for all x 2 X and � ! 0, and assume that E� can be
represented by a mollifier function e� ,

�
E�x

�
.s/ D he� .s; �/; xi :

Instead of reconstructing x� directly, the aim is to
reconstruct its mollified version E�x

�. If e� has a
representation

A�v�s D e� (9)

then
.E�x

�/.s/ D hv�s ; yi : (10)

The approximate inverse S� W Y ! X is defined as

.S�y/.s/ WD hv�s ; yi :

With known v�s , the evaluation of S� is just the evalua-
tion of an inner product. Therefore, the difficult part is
solving (9), which can be achieved either analytically
or, if this is impossible, numerically. The advantages
for the computation of a numerical solution are that the
right-hand side of (9) is given exactly, which reduces
the errors in the computation of v�s , and that (9) has to
be solved only once for many sets of data y.

Mollifier methods where introduced in [35] and
generalized to nonlinear problems in [34].

Iterative Regularization of Nonlinear
Inverse Problems

In this section, we consider iterative methods for solv-
ing (1) with a nonlinear operator F W X ! Y , X; Y
Hilbert spaces. As some of the iterative algorithms
display rapid convergence, they are in particular used
for solving large-scale inverse problems. Naturally, the
analysis of methods for solving nonlinear problems
is more complicated than in the linear case. It often
needs more or less severe conditions on the operatorF .
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Details on the analysis of the presented methods can be
found in [16, 31].

Nonlinear Landweber Iteration
The nonlinear Landweber iteration can be derived as a
descent method for the minimization of the functional

J.x/ D kF.x/ � yık2 : (11)

The gradient of the functional is given by �F 0.x/�.yı�
F.x//, leading to the fixed-point iteration

xıkC1 D xık C F 0.xık/�.yı � F.xık// : (12)

If the nonlinearity condition

kF.x/ � F. Qx/ � F 0.x/.x � Qx/k
� �kF.x/ � F. Qx/k; � < 1=2

is fulfilled and the iteration is stopped with the smallest
index k� with

kyı � F.xk
�

/k � �ı < kyı � F.xk��1/k ; (13)

then the Landweber iteration is a regularization
method. In order to prove convergence rates, the source
condition (5) has to be adapted to the nonlinear setting.
With the source condition

x � x0 D �
F 0.x�/�F 0.x�/

��
w;

kwk small enough; 0 < � � 1=2 (14)

and assuming additional nonlinearity conditions, it can
be shown that the Landweber iteration is of optimal
order; see [23].

Although the Landweber method is very robust, its
convergence is rather slow. For accelerated/modified
versions of the method, see, e.g., [31, 45].

Newton-Type Methods
In Newton-type methods, the operator F is linearized
around a current approximation xık and an update xıkC1
is obtained by solving the equation

F 0.xık/.xıkC1 � xık/ D yı � F.xık/ : (15)

If the original nonlinear problem is ill posed, then the
linearized problem (15) is in general also ill posed

and requires regularization. Different methods can be
generated by using different approaches for the regular-
ization of the linearized problem. Applying Tikhonov
regularization to the linearized problem (15) yields the
Levenberg-Marquardt method

xıkC1 D xık C �
F 0.xık/�F 0.xık/C ˛kI

��1
F 0.xık/�

�
yı � F.xık/

�
: (16)

In order to prove convergence of the method, the
nonlinearity condition

kF.x/�F. Qx/�F 0.x/.x� Qx/k�ckx� QxkkF.x/�F. Qx/k
(17)

and a strategy for the choice of the regularization
parameters ˛k is needed. In [21], it was proposed to
choose ˛k such that

kyı�F.xık/�F 0.xık/.xıkC1.˛k/�xık/kDqkyı�F.xık/k

for some fixed q 2 .0; 1/, and it was shown that
the resulting method is a regularization. Assuming the
source condition (14) and some additional nonlinearity
conditions, convergence rates were given in [53].

The iterates of the iteratively regularized Gauss-
Newton method are defined as the minimizers of the
functional

kyı � F.xık/� F 0.xık/.x � xık/k2 C ˛kkx � x0k ;

i.e.,

xıkC1 D xık C �
F 0.xık/�F 0.xık/C ˛kI

��1
�
F 0.xık/�

�
yı � F.xık/

�C ˛k.x0 � xık/
�
:

(18)

Convergence and convergence rates with the source
condition (14) were shown for � � 1 in [3] under
the assumption of Lipschitz continuity of F 0. The case
� < 1was treated in [4] but needs stronger nonlinearity
conditions. A possible choice for the sequence of
regularization parameters is

˛k > 0; 1 � ˛k

˛kC1
� r; lim

k!1˛k D 0

for a fixed r > 1.
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A convergence rate analysis for the iteratively
regularized Gauss-Newton method under logarithmic
source conditions was given in [27] and in a Banach
space setting in [30]. For further generalizations of the
method, see [31], and for an analysis of Newton-type
methods using affinely invariant conditions, see [11].

Another way of solving (15) is by using iterative
methods for linear ill-posed problems. As mentioned
above, iterative methods have a regularizing effect
when stopped early enough. For example, Newton’s
method in combination with CGNE for solving (15),
the truncated Newton-CG algorithm, is a regulariza-
tion method if the CGNE iteration is stopped according
to the discrepancy principle and the operator F ful-
fills the nonlinearity condition (17); see [22]. Further
Newton-type methods for nonlinear ill-posed problems
include also a variant of Broyden’s method [29].

Variational Approaches for Regularization

For Tikhonov regularization, the approximations xı˛ to
the least-squares solution x� have been characterized
for linear problems as the minimizer of the func-
tional (6). This motivates the definition of Tikhonov
regularization with a nonlinear operator in Hilbert
spaces via

˚kyı � F.x/k2 C ˛kx � x�k2� �! minŠ: ; (19)

where Nx denotes an a priori guess to a solution x�.
Based on this definition, several variants of Tikhonov
regularization have been proposed by changing either
the penalty or the data fit term.

Tikhonov Regularization in Hilbert Spaces
Consider Tikhonov regularization (19) with a nonlinear
operator F W D.F / � X ! Y , X; Y Hilbert spaces.
The following results have been developed in [15]:
Assume that F is continuous and weakly sequentially
closed, i.e., weak convergence of a sequence xn * x

in X and F.xn/ * y in Y implies x 2 D.F / and
F.x/ D y. As the nonlinear equation F.x/ D y may
have several solutions, the concept of an x� minimum
norm solution is chosen, i.e., x� admits

F.x�/ D y and kx� � x�k
D minfkx � x�k j F.x/ D yg :

Under the above assumptions exists a minimizer xı˛ of
the Tikhonov functional

J˛.x/ D kyı � F.x/k2 C ˛kx � Nxk2

which depends in a stable way on the the data yı .
If Tikhonov regularization (19) is combined with a
parameter choice rule fulfilling

lim
ı!0

˛.ı/ D 0; and lim
ı!0

ı2

˛.ı/
D 0 ; (20)

then each sequence of minimizers xık˛k has for ık ! 0 a
subsequence that converges to an x� minimum norm
solution. Assuming additionally Lipschitz continuity
of the Fréchet derivative of F , convergence rates can
be obtained by requiring the source condition

x� � x� D F 0.x�/�w

with norm of w small enough and by using the param-
eter choice rule ˛ � ı.

As for linear problems, Morozov’s discrepancy
principle can be used as a parameter choice rule. Due
to the nonlinearity of F , the existence of a parameter
˛� fulfilling kyı � F.xı˛

�

/k D �ı, or, slightly more
general,

ı � kyı � F.xı˛
�

/k � �ı (21)

cannot always be guaranteed. However, if such param-
eters exist, then a regularization method is obtained.
For convergence and convergence rates, we refer to
[32, 46, 55].

In the linear case, the Tikhonov functional is strictly
convex and therefore has a unique minimizer. For
nonlinear operators, only local convexity can be ex-
pected, with the consequence that standard methods
for the minimization of the Tikhonov functional might
only recover a local minimizer. For iterative algorithms
and conditions that ensure convergence to a global
minimizer, we refer to [47].

BV Regularization
Tikhonov regularization with a Hilbert space penalty
term usually results in a smooth reconstruction, which
makes a reconstruction of discontinuous functions im-
possible. A suitable space, in particular for images,
that contains functions with discontinuities is the space
of functions with bounded variation over a bounded
region� � Rn,
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BV.�/

D
8<
:x 2 L1.�/ j S.x/D sup

x2V

Z
�

.�x div v/ dt <1
9=
;;

with V being a space of test functions,

V D ˚
v 2 C1

0 .�/ j jv.t/j � 1 for all t 2 �� :
The BV norm is then defined by

kxkBV D kxkL1.�/ C S.x/ : (22)

If x 2 C1.�/, then

S.x/ D
Z
�

jrxj dt :

Note that S.u/ forms a semi-norm for BV.�/. In
order to enable a reconstruction of piecewise constant
functions from noisy data, it is therefore natural to
consider the Tikhonov functional

J˛.x/ D kyı �F.x/k2 C˛P.x/ xı˛ D arg minJ˛.x/
(23)

with P being either the BV norm or the BV semi-
norm. In a slightly different formulation, BV regu-
larization was first considered in [54] for the image
denoising problem (where F is the identity) and for
linear inverse problems in [1, 8]. In the latter papers
also questions concerning the existence of minimizers
of the functional (23) and its stable dependence on the
regularization parameter as well as on the data have
been addressed, and in [1], it was shown that, for linear
F , (23) combined with the parameter choice rule (20)
is a regularization method. Convergence rates for BV
regularization have been obtained for the denoising
case in [7] with respect to the Bregman distance (see
also section “Regularization in Banach Spaces”) and
in [9] with respect to L2.

Several methods have been proposed for the mini-
mization of (23), e.g., a relaxation algorithm in [8] or
fixed-point-based algorithms [12, 59].

Sparsity
Tikhonov regularization with sparsity constraints is
used whenever it is assumed that the exact solution
can be approximated well with few coefficients w.r.t.

some basis. Given an orthonormal system f�j gj2I
with index set I , the Tikhonov functional with sparsity
constraint is defined as

J˛;p.x/ D kyı � F.x/k2 C ˛
X
j2I

wj jhx; �j ijp ;

xı˛;p D arg minJ˛;p.x/ : (24)

The sequence fwj g is bounded from below away from
zero, and p < 2. The properties of the Tikhonov
functional depend crucially on p: if 1 < p, then
the functional is strictly convex and differentiable, for
p D 1 it is convex but not differentiable, and for
p < 1 it is not convex anymore. Nevertheless, the
a priori parameter choice rule (20) still makes (24) a
regularization method. This was first shown for linear
operator equations and 1 � p < 2 in [10], for
nonlinear operator equations and 1 � p < 2 in
[49], and for nonlinear equations and p < 1 in [60].
Note that convergence can be considered in different
metrics. For example, convergence with respect to L2
has been proven for the above-indicated range of p
in [10, 60] and for the stronger metric induced by
the penalty term in [49]. Also, (24) combined with
the discrepancy principle (21) yields a regularization
method [2, 5]. For convergence rates, see [18, 48].

The minimization of the functional (24) causes
additional difficulties, in particular if the penalty term
is non-differentiable. A common approach is the use
of surrogate functionals, which result in an iterative
shrinkage algorithm [10, 49]. Other used optimiza-
tion methods include conditional gradient methods
[6] and semismooth Newton methods [19, 28]. For a
comprehensive review on regularization with sparsity
constraints, we refer to [50], and for its use in systems
biology, we refer to [17].

Regularization in Banach Spaces
A natural extension of the above-presented approaches
toward Tikhonov regularization is to consider the func-
tional (23) with F W U ! Y , U a Banach space
and Y a Hilbert space, where the penalty functional
P W U ! R [ fC1g is now a general convex
functional that is lower semicontinuous in a topology
T of U with sequentially compact sublevel setsM˛ WD
fJ˛ � mg 8˛ > 0;m > 0 in the topology T . In
this setting, convergence rates are usually derived in
the Bregman distance w.r.t. the penalty functional P ,
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DP .x; u/D fP.x/�P.u/ � hp; x � ui jp 2 @P.u/g :
(25)

In the case where @P.u/ is not a singleton, DP .x; u/
represents a family of distances. For the standard pa-
rameter choice rule (20), it can be shown that Tikhonov
regularization with the penalty P is a regularization
method. In order to give quantitative estimates, the
source conditions

R.F 0.x�/�/\ @P.x�/ ¤ ; (26)

R.F 0.x�/�F 0.x�//\ @P.x�/ ¤ ; (27)

can be used, where x� denotes a solution of F.x/ D y

with minimal value of P.x/. With ky � yık � ı, the
source condition (26), and the parameter choice rule
˛ � ı, there exists a d 2 DP .x

ı
˛; x

�/ s.t.

d D O.ı/ ;

see [7]. Assuming that P is twice differentiable with
hP 00.x/.u/; ui � M kuk2 in a neighborhood of x�,
then the parameter choice rule ˛ � ı2=3 yields a
convergence rate of O.ı4=3/ [51, 52]. Note that in
the nonlinear case the operator F has to fulfill some
nonlinearity conditions. For convergence and conver-
gence rates for Tikhonov regularization combined with
the discrepancy principle, see [2]. Further extensions
of Tikhonov regularization in Banach spaces were
proposed in [26], where in particular nonsmooth
operators and variational source conditions were
considered.

The above results can also be partially applied
to BV regularization, to regularization with sparsity
constraints, and to maximum entropy regulariza-
tion. The latter was analyzed in [13, 14], the
penalty for maximum entropy regularization being
given by

P.x/ D
Z
x log

x

x� dt ; with x; x� > 0;

where x� is an a priori guess for the solution. The
recent book [56] also contains many results on regu-
larization in Banach spaces.
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Definition

This entry discusses the methodology employed for
calculating electronic structure of atoms and molecules
in a relativistic framework.

Overview

A relativistic quantum mechanical wave equation for
the electron was formulated by Dirac in 1928. Dirac
did, however, not consider relativistic effects of any
importance in the structure and reactivity of atoms
and molecules because such effects are associated with
the high speeds attained by the chemically inert core
electrons in the vicinity of heavy nuclei [4]. Only in the
1970s did it become clear that relativity propagates out
into the chemically active valence region of atoms and
may have dramatic effects on the chemistry of heavy
elements [5]. Relativistic effects are conveniently di-
vided into scalar relativistic effects, associated with the
relativistic mass increase of electrons, and the spin-
orbit interaction, which is the interaction of the spin
of a reference particle, typically an electron, and the
magnetic field induced by other charges in relative
motion.

The first computer codes for the relativistic calcula-
tion of atomic electronic structure, based on numerical
methods (finite differences/elements), appeared toward
the end of the 1960s. Corresponding molecular codes
are predominantly based on the expansion of one-
electron functions (orbitals) into a suitable basis, thus
converting differential equations into matrix algebra.
The first such codes appeared in the beginning of the
1980s but had a difficult beginning since it was at
first not realized that the basis sets for the large and
small components of the 4-component orbitals must
be constructed such that the correct coupling between
these components can be attained.

Relativistic molecular electronic structure calcu-
lations are carried out within the Born-Oppenheimer
(clamped nuclei) approximation. (See entry
� Schrödinger Equation for Chemistry.) The electronic
Hamiltonian, whether relativistic or not, has the same
generic form

H D
electronsX

i

Oh .i/C 1

2

electronsX
i¤j

Og .i; j /C VNN I

VNN D 1

2

nucleiX
A¤B

ZAZB

RAB
; (1)

where VNN is the classical repulsion of nuclei.
Here and in the following, we will employ SI-based
atomic units. The various electronic Hamiltonians are
distinguished by the choice of one- and two-electron
operators, Oh .i/ and Og .i; j /, respectively. An important
observation is that the derivation of the basic formulas
for most electronic structure methods requires
only the use of the generic form of the electronic
Hamiltonian, Eq. (1). This implies that most methods
known from nonrelativistic theory (See, for instance,
entries �Hartree–Fock Type Methods, �Density
Functional Theory, � Post-Hartree-Fock Methods
and Excited States Modeling, �Coupled-Cluster
Methods) can be extended to the relativistic domain
and that a presentation of relativistic electronic
structure theory should mostly focus on Hamiltonians.
However, there are certain features of relativistic
Hamiltonians, in particular the unboundedness
of the Dirac operator, which warrants special
consideration and which will be discussed in the
following.

More extensive discussions of relativistic elec-
tronic structure theory can be found in recent
textbooks: [2, 3, 6].

The Electronic Hamiltonian

One-Electron Systems
The key equation of relativistic quantum mechanics is
the Lorentz invariant Dirac equation


Oh� i

@

@t

�
Q D 0 (2)

4-component relativistic molecular calculations em-
ploy the Dirac Hamiltonian in the molecular field,

http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
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that is, in the electrostatic potential �N of clamped
nuclei

Oh D Oh0 C VeN I Oh0 D ˇmc2 C c .˛ � Op/ I
VeN D �eI4�N .r/ (3)

where e, m, and c refer to the fundamental charge, the
electron mass, and the speed of light, respectively. A
more complete discussion of this Hamiltonian is found
in the entry �Relativistic Theories for Molecular Mod-
els. The time independence of the Dirac Hamiltonian,
Eq. (3), in the nuclear frame of reference allows the
time dependence of the Dirac equation, Eq. (2), to be
separated out and leads to the Dirac equation on time-
independent form

Oh D E I Q D e�iEt ; (4)

albeit no longer explicitly Lorentz invariant. The spec-
trum of the free-particle Hamiltonian Oh0 consists of two
branches of continuum states, of positive and negative
energy, separated by a large energy gap of 2mc2

�
� Oh0

�
D ˝�1;�mc2	 [ �Cmc2;1˛

: (5)

With the introduction of the molecular field, Eq. (3),
bound solutions appear in the upper part of this en-
ergy gap.

This is illustrated in Fig. 1, where the relativistic
and nonrelativistic energy scales have been aligned by
subtracting the electron rest massmc2; this is formally
done by the substitution ˇ ! ˇ0 D ˇ� I4 in the Dirac
Hamiltonian, Eq. (3). The spectrum resembles that of a
nonrelativistic one, with the exception of the presence
of negative-energy solutions. These pose problem in
that quantum theory allows a bound electron to make a
transition down to a level of negative energy, liberating
an infinite amount of energy on its way down the
negative-energy continuum and making matter unsta-
ble. Dirac therefore postulated that all negative-energy
solutions are occupied and therefore not accessible to
bound electrons due to the Pauli exclusion principle.
On the other hand, since the reference vacuum is now
the occupied “Dirac sea” of electrons, an electron
excited from the negative-energy continuum is observ-
able, as well as the positively charged hole left behind,
identified as a positron, the antiparticle of the electron.

Relativistic Models for the
Electronic Structure of
Atoms andMolecules,
Fig. 1 Spectrum of the Dirac
Hamiltonian in a molecular
field

From a more mathematical point of view, the time-
independent Dirac equation is a system of first-order
partial differential equations coupling the four compo-
nents of the Dirac wave function (denoted 4-spinor)

 D

 L

 S

�
I  X D


 X˛

 Xˇ

�
; X D L; S (6)

The upper and lower two components are referred to
as the large and small components, respectively. In
solutions of positive energy, the small components are
on average a factor c smaller than the large components
and vanish in the nonrelativistic limit, taken as c ! 1.
This can be seen from the coupling of the large and the
small components

 S D OX LI OX D 1

2mc


1C E � V

2mc2

��1
.� � Op/ :

(7)
The situation is reversed for negative-energy solutions.

Many-Electron Systems
In nonrelativistic molecular quantum mechanics,
the two-electron operator Og, Eq. (1), is given by the
Coulomb term

http://dx.doi.org/10.1007/978-3-540-70529-1_240
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OgC .1; 2/ D 1

r12
; (8)

which describes the instantaneous Coulomb interac-
tion. In the relativistic domain, the relative motion
of the electrons leads to magnetic induction and thus
spin-orbit interaction. The electromagnetic interaction
between two charged particles can furthermore be
pictured as an exchange of virtual photons and
is therefore not instantaneous since photons travel
at the finite speed of light. The full relativistic
interaction between two electrons accordingly requires
a complete specification of the history of the
interacting particles and cannot be given on a simple
Lorentz invariant closed form. Relativistic molecular
quantum mechanics therefore employs an expansion
of the full two-electron interaction in powers of
c�2. In Coulomb gauge the zeroth-order term is the
Coulomb term, Eq. (8). The first-order term is the Breit
term

gB .1; 2/ D �ec˛1 � ec˛2
c2r12„ ƒ‚ …
gG

� .ec˛1 � r1/ .ec˛2 � r 2/ r12

2c2„ ƒ‚ …
ggauge

; (9)

which can be further split into the Gaunt term gG

and a gauge-dependent term ggauge. For most chemical
purposes, the Coulomb term suffices and defines the
Dirac-Coulomb Hamiltonian. In a relativistic frame-
work, the Coulomb term not only describes the instan-
taneous Coulomb interaction but also the spin-same
orbit interaction, due to the relative motion of the ref-
erence electron in the nuclear frame. For very precise
calculations of molecular spectra, it is recommended to
add the Breit term, or at least the Gaunt term, which
describes the spin-other orbit interaction, due to the
relative motion of the other electron in the nuclear
frame.

Relativistic Electronic Structure Methods

Relativistic molecular quantum mechanics to a large
extent follows the nonrelativistic program of find-
ing approximate solutions to the N -electron problem:

In the first step, the major part of the electronic en-
ergy is recovered by writing the wave function as
a single Slater determinant and then determining the
orbitals which render the electronic energy stationary
(the Hartree-Fock method). (See entry �Hartree–Fock
Type Methods.) A set of orbitals, both occupied and
empty (virtual), is obtained through the solution of
effective one-particle equations which describe the
motion of a single electron in the mean field of the
others. In the second step, electron correlation is cap-
tured by writing the wave function as a linear com-
bination of Slater determinants generated from the
one-particle basis. The expansion coefficients can be
found by perturbation theory, as in the Møller-Plesset
method, or by optimization, as in the configuration
interaction method. (See entry � Post-Hartree-Fock
Methods and Excited States Modeling.) The coupled-
cluster method provides more efficient electron cor-
relation for a given excitation level than CI, but so-
lutions are obtained by projection rather than opti-
mization. (See �Coupled-Cluster Methods.) In more
complicated cases, such as when chemical bonds are
broken, the single Hartree-Fock determinant of the
initial step may be replaced by a multideterminantal
expansion, as in the multi-configuration self-consistent
field (MCSCF) method. An alternative approach is
density functional theory in which the wave function
is replaced by the one-electron density as the central
object allowing the calculation of the electronic energy
and other properties. (See entry �Density Functional
Theory.)

There are, however, some distinct differences in
relativistic theory due to the fact that the Dirac Hamil-
tonian is unbounded from below:
1. The spectrum of the effective one-electron

equations which are solved to self-consistency in
the Hartree-Fock method and in the Kohn-Sham
formulation of DFT corresponds to that of the Dirac
equation and illustrated in Fig. 1. The large size of
the energy gap between the positive- and negative-
energy continuum usually allows straightforward
identification of the desired bound solutions for
the construction of the mean-field potential. This
selection procedure corresponds to the embedding
of the electronic Hamiltonian by projection opera-
tors, updated in each iteration of the SCF cycle and
projecting out the negative-energy solutions of the
current iteration. More generally, the Hartree-Fock,
MCSCF, or Kohn-Sham energy of the electronic

http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
http://dx.doi.org/10.1007/978-3-540-70529-1_234
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ground state is not found by minimization of orbital
variational parameters, rather by application of
a min-max principle. (As discussed in the entry
�Relativistic Theories for Molecular Models.)

2. As argued by Brown and Ravenhall (1951), the
4-component relativistic electronic Hamiltonian
has no bound solutions. Starting from the one-
electron basis generated by the initial mean-field
procedure, it is in principle always possible to
generate determinants containing orbitals from
both the positive- and negative-energy branch of
the continuum which are degenerate with respect
to the reference Hartree-Fock determinant, thus
“dissolving” the mean-field ground state solution
into the continuum. This Brown-Ravenhall disease
can be eliminated by restricting theN -particle basis
to Slater determinants generated from orbitals of
positive energy only and therefore corresponds
to the embedding of the relativistic electronic
Hamiltonian by projection operators eliminating
negative-energy orbitals. The energy of a full CI
in such an N -particle basis will depend on the
choice of projection operators, that is, the choice of
orbitals defining the projectors. Such ambiguity can
be avoided by carrying out an MCSCF procedure
in which a full CI is carried out in the N -particle
basis generated by the positive-energy solutions of
an arbitrary one-particle basis but in which rotations
between occupied positive-energy orbitals and
virtual negative-energy orbitals are maintained, thus
allowing complete relaxation of the electronic wave
function [9].

3. The absence of a lower bound or even bound
solutions of the 4-component relativistic electronic
Hamiltonian in principle invalidates the Hohenberg-
Kohn theorem which is the formal foundation of
DFT. The situation can be alleviated by formally
occupying the negative-energy one-electron
solutions and subtract from the resulting vacuum
density the density of a reference vacuum, typically
generated from the negative-energy solutions of
the free-particle Hamiltonian Oh0 of Eq. (3). Such
a procedure incorporates vacuum polarization,
albeit not renormalized. The effect of vacuum
polarization on electronic solutions is minute, and
so a pragmatical approach, universally employed in
the relativistic DFT community, is to ignore vacuum
polarization.

One-Particle Basis

For atoms the orbitals obtained from the corresponding
Dirac, Hartree-Fock, or Kohn-Sham equations have the
general form

 .r/ D

RL .r/ �
;mj .�; �/

iRS .r/ ��
;mj .�; �/

�
(10)

The 2-component angular functions �
;mj are

eigenfunctions of the operators Oj 2, Ojz, and O
 D
�
h�

� � Ol
�

C 1
i

with eigenvalues j.j C 1/, mj , and


, respectively, where Oj D Ol C 1
2
� is the operator

of total angular momentum and Ojz its component
along the z-axis. The angular functions incorporate
the effect of spin-orbit coupling, and the eigenvalue

 indicates parallel (j D l C 1

2
I 
 D � .l C 1/)

or antiparallel (j D l � 1
2
I 
 D l) coupling of

orbital angular momentum l and spin s. In the atomic
case, the angular degree of freedom can be handled
efficiently, for instance, by Racah algebra, and the
first-order coupled differential equations for the radial
functions RL and RS by finite difference/element
approaches [3]. Solutions are limited to bound ones by
imposing the appropriate boundary conditions, notably
exponential decay at large radial distance r . A possible
limitation of these numerical approaches is that they
do not easily generate a sufficient number of virtual
orbitals for the inclusion of electron correlation.

For molecules the separation of radial and angular
degrees of freedom is generally not available, and
4-component relativistic calculations of molecular
electronic structure therefore rely on basis set
expansions. As in the nonrelativistic case, the choice
of the mathematical form of basis functions will be a
compromise between the form suggested by relativistic
atomic orbitals, Eq. (10), and computational feasibility,
typically the ease of generating integrals over the
two-electron operator. A crucial feature of relativistic
orbitals is the energy-dependent coupling between the
large and the small components, shown for the Dirac
equation in Eq. (7), and which suggests a separate
expansion of the large and small components. In
practice the large and small component basis sets,˚
�Li
�

and
˚
�Si
�
, respectively, are related by the

nonrelativistic limit of the exact coupling, Eq. (7),
that is ˚

�S
� D ˚

.� � Op/ �Li
�
: (11)

http://dx.doi.org/10.1007/978-3-540-70529-1_240
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The above condition is denoted kinetic balance [10]
since it assures the correct representation of the kinetic
energy operator in the nonrelativistic limit. The final
basis must, however, have sufficient flexibility to assure
that the exact coupling, Eq. (7), can be obtained.

Atomic radial functions display a weak singularity
at the origin for j
j D 1, contrary to the cusp in the
nonrelativistic case. The singularity can be removed
by replacing point nuclei by nuclear charge distribu-
tions of finite extent which makes the radial functions
Gaussian in shape at small radial distance r . This in
turn favors the use of Gaussian-type basis functions.
One option is to introduce 2-component basis functions
using the angular functions � of Eq. (10) combined
with radial functions of Gaussian type

RXn D N rn�1 exp
��˛r2	 ; X D L; S; (12)

where N is a normalization factor. Alternatively the
large and small components may be expanded in
scalar basis functions, such as Cartesian or spherical
Gaussian-type orbitals known from the nonrelativistic
domain and which have the advantage that it allows the
rather straightforward use of nonrelativistic integral
codes.

2-Component Relativistic Hamiltonians

The complications introduced by the presence of
negative-energy solutions in relativistic theory have
motivated the development of 2-component relativistic
Hamiltonians with solutions of positive energy
only. Such Hamiltonians can be generated by a
block diagonalization of the parent 4-component
Hamiltonian Oh4c

OU � Oh4c OU D
" Oh2cCC 0

0 Oh2c��

#
(13)

retaining the 2-component Hamiltonian Oh2cCC which
reproduces the positive-energy spectrum of the parent
Hamiltonian. It turns out, however, that the exact de-
coupling transformation OU is expressed in terms of
the exact coupling OX , Eq. (7), between the large and
small components of the positive-energy solutions of
the parent Hamiltonian, that is

OU D OW1
OW2I OW1 D

"
1 � OX�

OX 1

#
I

OW2 D
2
4

1p
1C OX� OX

0

0 1p
1C OX OX�

3
5 ; (14)

where OW1 decouples the large and small components
and OW2 reestablishes normalization. Due to the en-
ergy dependence of the exact coupling OX , Eq. (7),
various 2-component Hamiltonians can be defined by
approximate decoupling transformations of the Dirac
Hamiltonian in the molecular field.
1. The Pauli Hamiltonian is obtained from the approx-

imate coupling

OX � 1

2mc
.� � Op/ (15)

and retaining terms only to O.c�2/. The Pauli
Hamiltonian benefits from simplicity and physical
transparency but is not bounded from below and
introduces highly singular terms.

2. These disadvantages are alleviated in the regular
approximation (RA) based on the approximate
coupling

OX � c

2mc2 � VeN
.� � Op/ : (16)

Carrying out only the decoupling transformation OW1

gives the zeroth order RA (ZORA) Hamiltonian,
whereas the infinite-order RA (IORA) is obtained
by renormalization OW2.

3. Another approach is to first carry out the exact trans-
formation which decouples the free-particle Hamil-
tonian Oh0 of Eq. (3). This has the advantage of bring-
ing the kinetic energy operator on a square root form
which assures variational stability. Further decou-
pling in terms of the nuclear potential �N , Eq. (3),
gives the Douglas-Kroll-Hess (DKH) Hamiltonian
to various orders. Alternatively, following the free-
particle transformation, the exact coupling relation
can be developed to odd orders 2k � 1 in c�1 and
a single corresponding decoupling transformation
carried out, defining Barysz-Sadlej-Snijders (BSS)
Hamiltonians to even order 2k in c�1.

More recently it has been realized that the exact de-
coupling can be achieved in a simple manner by first
solving the parent Dirac equation on matrix form,
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keeping in mind that the cost of solving the one-
electron problem is negligible compared to the many-
electron problem usually at hand. The exact coupling
can then be extracted from the eigenvectors which al-
lows the construction of the appropriate coupling trans-
formation matrix. This leads to the eXact 2-Component
(X2C) Hamiltonian.

All operators used in conjunction with a specific 2-
component relativistic Hamiltonian should be subject
to the same decoupling transformation as the one-
electron Hamiltonian itself. Otherwise picture change
errors are introduced, which for operators probing the
electron density in the nuclear region may be larger
than the relativistic effects themselves. This also holds
for the two-electron operator, but the forbidding cost
of such a decoupling transformation has led to the
extensive use of atomic approximations to the trans-
formed two-electron operator. Further discussion and
references are found in [7].

Relativistic Symmetry

Symmetry is widely exploited in numerical methods
for atomic and molecular models to reduce computa-
tional cost. In relativistic models the spin-orbit interac-
tion couples spin and spatial degrees of freedom. Sym-
metry operations, such as rotations, reflections, and
inversion, accordingly act in both spaces conjointly.
The introduction of combined spin and spatial symme-
try operations leads to the extension of point groups
to so-called double groups [1] with extra irreducible
representations spanned by (fermion) functions with
half-integer spin such as Dirac spinors. Spatial sym-
metry can be combined with time reversal symmetry
[11] which to some extent replaces spin symmetry
of the nonrelativistic domain. Based on the relation
between basis functions spanning a given irreducible
representation and their time-reversed (Kramers) part-
ners, irreducible representations can be classified by
the Frobenius-Schur test as real, complex, or pseu-
doreal. It can furthermore be shown that matrix rep-
resentation of operators in such a Kramers basis is
expressed in terms of quaternion, complex, and real
algebras, respectively, providing an illustration of the
Frobenius theorem restricting associative real division
algebras to the real, complex, and quaternion num-
bers [8].
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Definition

Relativistic effects play an important role in the chem-
istry of heavy atoms. Indeed, when the number Z of
protons in a nucleus is high, the core electrons can no
longer be described by the nonrelativistic Schrödinger
equation. Instead, one must use the Dirac operator,
which acts on four-components spinors and is not
bounded from below.
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The Dirac Operator

The Dirac operator for a free electron is a constant-
coefficients first-order differential operator which takes
the form (see e.g., [26]):

D0 D �i ˛ � r C ˇ D �i
3X

kD1
˛k@k C ˇ; (1)

where ˛1, ˛2, ˛3, and ˇ are hermitian matrices which
have to satisfy the following anticommutation rela-
tions: 8<

:
˛k˛` C ˛`˛k D 2 ık` ;

˛kˇ C ˇ˛k D 0;

ˇ2 D 1:

(2)

These relations ensure that .D0/2 D �� C 1. This
identity is the quantum-mechanical analogue of the
classical relation between momentum and energy in
special relativity: E2 D c2jpj2 C m2c4. Note that we
have chosen physical units such that c D 1, „ D 1, and
the mass of the electron is m D 1.

The smallest dimension in which (2) can take place
is 4 (i.e., ˛1, ˛2, ˛3, and ˇ should be 4 
 4 hermitian
matrices), meaning that D0 has to act on L2.R3;C4/.
The usual representation in 2 
 2 blocks is given by:

ˇ D
�
I2 0

0 �I2
�
; ˛k D

�
0 �k
�k 0

�
.k D 1; 2; 3/ ;

where the Pauli matrices are defined as

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
:

The spectrum of the Dirac operator is not bounded
from below:

�.D0/ D .�1;�1�[ Œ1;1/: (3)

To explain why there is no observable electron of
negative energy, Dirac [4] made the assumption that the
vacuum (called the Dirac sea) is filled with infinitely
many virtual electrons occupying the negative energy
states. With this interpretation, a real free electron
cannot be in a negative state due to the Pauli principle
which forbids it from being in the same state as a
virtual electron of the Dirac sea.

Actually, in practical computations, it is quite dif-
ficult to deal properly with the Dirac sea. As a conse-
quence, the notion of “ground state” (state of “lowest
energy” which is supposed to be the most “stable”
for the system under consideration) is problematic for
many of the models found in the literature. Numeri-
cally, the unboundedness from below of the spectrum is
also the source of important practical issues concerning
the convergence of the considered algorithms, or the
existence of spurious (unphysical) solutions. For a
discussion and further references on the mathematical
aspects of these questions, we refer to the review paper
[9]. For references on the physics and chemistry side,
we refer to the books [7, 12], the recent review papers
[19, 21], and the contribution of T. Saue in the present
Encyclopedia.

Note that in the simulation of nuclei, relativistic
models also play a role, and the indefiniteness of the
Dirac operator causes similar difficulties (see the entry
by B. Ducomet in this Encyclopedia).

The One-Electron Ion
Near a point-like nucleus with Z protons, a stationary
state of an electron is a normalized wave function
 2 L2.R3;C4/, solution of the linear eigenvalue
problem:

�
D0 � ˛ � � 1

j � j
�
 D � 

Here, ˛ is a dimensionless quantity called the fine-
structure constant. Its physical value is approximately
1=137. The ground state  1 corresponds to the choice:

�1 D min
�
Œ0;1/\ �.D0 � ˛� � 1

j � j/
�
:

However, the standard characterization of the ground
state as minimizer of the Rayleigh quotient cannot be
used, since D0 is not bounded below. A consequence,
in numerical computations, is the existence of “spu-
rious states,” that is, eigenvalues of the discretized
problem that do not approximate eigenvalues of the
exact problem, even when the discretization is refined.
In 1986, Talman [25] proposed a min-max principle
which turns out to be very helpful, from a theoretical
and from a practical viewpoint.

If � is a positive measure of total massZ with ˛Z <

1, then Talman’s principle is:
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�1D inf
'2C1

c .R3;C 2/nf0g
sup

 D. '� /
�2C1

c .R3;C2/

. ; .D0 � ˛� � 1
j�j / /

. ; /

Talman’s principle has been generalized to abstract
operators [5, 14]. The study in [5] has led to the design
of a new algorithm based on Talman’s principle, which
is free of spurious states [6]. It has also led to gen-
eral criteria for the choice of pollution-free Galerkin
bases [20].

No-Photon Mean-Field QED
From a physics point of view, the correct relativistic
theory of electrons in atoms is quantum electrody-
namics (QED), the prototype of field theories. Yet a
direct calculation using only QED is impractical for
atoms with more than one electron because of the
complexity of the calculation, and approximations are
necessary. As in nonrelativistic quantum mechanics, a
natural idea is to try a Hartree–Fock approximation.
In the relativistic case, Hartree–Fock states are special
states in the electron-positron Fock space which are
totally described by their one-body density matrix, an
orthogonal projector P of infinite rank in L2.R3;C4/,
or, more generally, a convex combination of such pro-
jectors. Denoting P0 as the negative spectral projector
of the free Dirac operator D0, it is natural to work
with the difference � WD P � P0. Physically, P0

represents the free Dirac sea, which is taken as a
reference for normal ordering of the QED Hamiltonian.
The Hartree–Fock approximation consists in restrict-
ing the QED Hamiltonian to the Hartree–Fock states.
If we also neglect transverse photons, we obtain an
energy functional depending only on � , called the
Bogoliubov–Dirac–Fock energy (Chaix-Iracane [3])

EBDF.� / D tr.D0� /�˛
“

�.x/	� .y/

jx � yj dx dy

C˛

2

“
	� .x/	� .y/

jx � yj dx dy � ˛

2

“ j� .x; y/j2
jx � yj dx dy

Here: 	� .x/ D trC4 .� .x; x//. The operator �
satisfies the constraints � D � �, �P0 � � � 1�P0,
tr.� / D N.

The last constraint means that we consider a system
of N “real” electrons together with the Dirac sea.

To define properly this energy, one needs an ultra-
violet cutoff � and a new definition of the trace [15].

Then, in order to interpret correctly the solutions, it is
necessary to perform a charge renormalization [13].

It is possible to derive the BDF model as a ther-
modynamic limit by considering the Hartree–Fock
approximation of no-photon QED in a box, with no
a priori choice for normal ordering, and letting the
size of the box go to infinity. But then the reference
projector P0 must be replaced by the solution P0 of a
nonlinear equation. The new reference minimizes the
QED energy per unit volume, and the BDF energy
EBDF.� / is, in a suitable sense, the difference:

< ˝�CP0 ;H�˝�CP0 > � < ˝P0 ;H�˝P0 >

(Hainzl-Lewin-Solovej [17]).
In the sequel, we denote by �I .A/ the spectral pro-

jector of an operator A associated with the interval I.
There exists a BDF ground state for neutral atoms

and positively charged ions:

Theorem 1 [16] Let N � Z, � > 0, � 2 C1
c .

When ˛ is small enough, the functional EBDF possesses
a global minimizer N� in the charge sector N.

The operator N� is a solution of the self-consistent
equation

8<
:

N� D �.�1;/

�
D N�

� � P0

D N� D D0 C ˛
�
	 N� � �

� � 1

j � j � ˛
N� .x; y/
jx � yj

(4)

Moreover, one can split P D N� C P0 D � C ˘

where

� D �Œ0;�.D N� / ; ˘ D �.�1;0/.D N� / :

The “electronic projector” � has rank N and the
“Dirac sea” projector ˘ satisfies trP0.˘ � P0/ D 0

(neutrality of the vacuum).

The Dirac–Fock Model
In practice, ˘ � P0 is small, so it is reasonable to
replace ˘ by P0 and N� by � in (4) (see [1, 2] for
a mathematical justification of this procedure). One
gets the Dirac–Fock equation (Swirles [24]) which is
widely used in relativistic quantum chemistry:
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8<
:
� D �Œ0;�

�
D�

�
D� D D0 C ˛

�
	� � �

� � 1

j � j � ˛�.x; y/jx � yj
(5)

with 2 .0; 1/ such thatD� has exactlyN eigenvalues
between 0 and .

The Dirac–Fock projector � is a critical point, under
the constraints � D ��, �2 D � , tr.� / D N , of the
Dirac–Fock energy functional:

EDF.�/ D tr.D0�/� ˛

“
�.x/	� .y/

jx � yj dx dy

C˛

2

“
	�.x/	� .y/

jx � yj dx dy � ˛

2

“ j�.x; y/j2
jx � yj dx dy

Here, there is no problem in the definition of the
energy. No ultraviolet cutoff is needed. But EDF is
not bounded below. Any of its critical points has an
infinite Morse index. The definition and computation
of the ground state become problematic. The following
existence result holds:

Theorem 2 [10,11,23] Assume thatN andZ D R
R3
�

are two positive integers satisfying ˛Z < 2
�=2C2=� and

N � Z. Then, there exists an infinite sequence .�j /
j�0

of critical points of the Dirac–Fock functional EDF.

Each �j is the projector on a space V j of dimension
N spanned by N eigenvectors ofD�j with eigenvalues
between 0 and 1.

Moreover, for ˛ small enough, �1 D �Œ0;�.D�1/ for
a suitable  2 .0; 1/. It is a ground state, its energy
level is given by:

EDF.�
1/ D min

�D��;tr.�/DN
0 � � � �.0;C1/.D� /

EDF.�/

Correlation
In nonrelativistic quantum chemistry, it is often neces-
sary to go beyond the mean-field approximation. Then
one deals with the N -body Schrodinger Hamiltonian
defined on the very large space of N -electron wave
functions, and this requires subtle numerical strategies
(see the contributions of H. Yserentant and M. Lewin
in this Encyclopedia). In relativistic computations, for
accurate results, one must also take correlation into
account, but the task is harder, since the exact the-
ory (QED) is only defined perturbatively. Several ap-
proaches, inspired of the nonrelativistic case, are used

in practical calculations. After a Dirac–Fock compu-
tation, one can perform, for instance, a CI calculation
or a multiconfiguration SCF calculation. In such a
calculation, pair creation is neglected, and one works
with the so-called no-pair Hamiltonian, which reads:

H np D
NX
iD1

hD .r i /C ˛
X
i<j

Uij ; (6)

where hD .r i / D �C
i .D

0
i C ˛VN .r i //�

C
i is a (pro-

jected) one-electron Dirac Hamiltonian in the external
potential ˛VN created by the atomic nuclei, and

Uij D �C
i �

C
j V

�jr i � rj j��C
i �

C
j (7)

V
�jr i � rj j� D 1

rij

� 1

2rij

"
˛i � ˛j C .˛i � rij /.˛j � rij /

r2ij

#

(8)

is the Breit electron-electron interaction, which com-
bines the Coulomb interaction and a smaller magnetic
term. Here �C

i is a projection operator and its range
is interpreted as the space of electronic states. Un-
fortunately, at the present time, there is no canonical
way of choosing it. If one chooses the positive spectral
projector of the free Dirac operator, the energy levels
are underestimated. A more reasonable choice for �C

i

is the positive spectral projector of hD.ri / , or the pos-
itive spectral projector of a Dirac–Fock ground state.
But better choices might be possible. In 1981, Mittle-
man [22] proposed to look for a “self-consistent” pro-
jector which would maximize the ground state of the
projected energy. In the Dirac–Fock case, for closed-
shell atoms, he identified this optimal projector with
the positive spectral projector of the ground state’s
mean-field Hamiltonian. But in correlated models, his
characterization was less explicit and more difficult
to use.

Another problem encountered in some correlated
models of atomic physics is that the results of rela-
tivistic computations are sometimes incompatible with
their nonrelativistic counterparts in the nonrelativistic
limit. This is due to a symmetry breaking phenomenon
(see [8, 18]).
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In our opinion, further theoretical investigations
are needed for a better understanding of relativistic
correlated models.
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Representation of Floating-Point
Numbers

Bo Einarsson
Linköping University, Linköping, Sweden

Floating-Point Arithmetic

During the 1960s almost every computer manufac-
turer had its own hardware and its own representation
of floating-point numbers. Floating-point numbers are
used for variables with a wide range of values so that
the value is represented by one sign, one “integer” for
the mantissa and one signed integer for the exponent,
as in the representation of an estimated mass of the
observable universe 1:59486 � 1055 kg or the mass of
an electron 9:10938188 � 10�31 kg.

The old and different floating-point representations
had some flaws; on one popular computer, there existed
values a > 0 such that a > 2 � a. This anomaly arose
from the fact that a non-normalized number (a number
with an exponent that is too small to be represented)
was automatically normalized to zero at multiplication.
Consider for example a decimal system with two digits
for the exponent and three digits for the mantissa
normalized so that the mantissa is not less than 1 but
less than 10. Then the smallest positive normalized
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number is 1:00 � 10�99, but the smallest positive non-
normalized number is 0:01 � 10�99.

Such an effect can give rise to problems in a com-
puter code which tries to avoid division by zero by
checking that a ¤ 0; but still 1=a may cause the
condition “division by zero.”

Initial Work on an Arithmetic Standard
During the 1970s Professor William Kahan of the
University of California at Berkeley became interested
in defining a floating-point arithmetic standard; see
[6]. He managed to assemble a group of scientists in-
cluding both academics and industrial representatives
(Apple, DEC, Intel, HP, Motorola) under the auspices
of the IEEE (Institute of Electrical and Electronic
Engineers), the group became known as project 754.
Its purpose was to produce the best possible definition
of floating-point arithmetic. It is now possible to say
that they succeeded; all manufacturers now follow the
representation of IEEE 754. The resulting standard is
rather similar to the digital equipment floating-point
arithmetic on the VAX system; see Table 1.

General references on floating-point are [8],
[2, Chap. 2], and [1, Sect. 2.2]. An excellent discussion
of various problems with floating-point arithmetic is
given by Kahan in [7].

Representation of Floating-Point Numbers, Table 1
Obsolete floating-point formats. Here p is the number of
digits in the mantissa, and emin and emax are the minimum and
maximum exponents

Computer Base p emin emax

CDC cyber 170 2 48 �974 1,070
Convex “native” S 2 24 �127 127
Convex “native” D 2 53 �1,023 1,023
Cray Y MP 2 48 �8,192 8,191
IBM 360 short 16 6 �64 63
IBM 360 long 16 14 �64 63
IBM 360 extended 16 28 �64 63
Prime 50 S 2 23 �128 127
Prime 50 D 2 47 �32,896 32,639
Prime 50 Q 2 95 �32,896 32,639
Unisys “A” S 8 13 �50 76
Unisys “A” D 8 26 �32,754 32,780
Unisys 2200 S 2 27 �128 127
VAX F 2 24 �128 128
VAX G 2 53 �1,023 1,023
VAX H 2 113 �16,383 16,383

IEEE Floating-Point Representation
The document IEEE 754-1985 [4] contains standards
for single, extended single, double, and extended dou-
ble precision. The extended precisions are however
usually not available in programming languages. The
document also became an IEC (International Elec-
trotechnical Commission) standard in 1989. There is
an excellent discussion in the book by Overton [9].

This standard was revised to IEEE 754-2008 [5] to
include also quadruple precision for the binary format
and in addition standards for decimal formats.

In the following subsections, the formats for the
different precisions are given, but the standard includes
much more than these formats. It requires correctly
rounded operations (add, subtract, multiply, divide, re-
mainder, and square root) as well as correctly rounded
format conversions. There are four rounding modes
(round down, round up, round toward zero, and round
to nearest), with round to nearest as the default. There
are also five exception types (invalid operation, divi-
sion by zero, overflow, underflow, and inexact) which
must be signaled by setting a status flag.

IEEE Single Precision
Single precision is based on the 32-bit word, using
1 bit for the sign s, 8 bits for the biased exponent
e, and the remaining 23 bits for the fractional part
f of the mantissa. Since a normalized number in
binary representation must have the integer part of the
mantissa equal to 1, this bit is not stored, leaving an
extra bit for the fractional part of the mantissa.

The floating-point interpretation of the binary bit
string falls under one of five cases:
1. e D 255 and f ¤ 0 gives an x which is not a

number (NaN, not a number).
2. e D 255 and f D 0 gives infinity with its sign,
x D .�1/s � 1.

3. 1 � e � 254, the normal case, x D .�1/s � .1:f / �
2e�127.

Note that the smallest possible exponent gives
numbers of the form x D .�1/s � .1:f / � 2�126.

4. e D 0 and f ¤ 0, gradual underflow, subnormal
numbers, x D .�1/s � .1:f / � 2�126

5. e D 0 and f D 0, zero with its sign, x D .�1/s � 0.
The largest number that can be represented is .2 �

2�23/ � 2127 � 3:4028 � 1038, the smallest positive
normalized number is 1 � 2�126 � 1:1755 � 10�38, and
the smallest positive non-normalized number is 2�23 �
2�126 D 2�149 � 1:4013 � 10�45. The unit roundoff
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u D 2�24 � 5:9605 � 10�8 corresponds to about seven
decimal digits. As an example, the factorial function
overflows (cf. case 2 above) at n D 35 in IEEE single
precision.

The concept of gradual underflow has been rather
difficult for the user community to accept, but it is use-
ful in that there is no unnecessary loss of information.
Without gradual underflow, a positive number less than
the smallest permitted one must either be rounded up to
the smallest permitted one or underflow to zero, in both
cases causing a large relative error.

The NaN can be used to represent (zero/zero),
(infinity-infinity), and other quantities that do not have
a well-defined value. Note that the computation does
not have to stop for overflow, since infinity (case 2)
can be used until a calculation with it does not give a
well-determined value. The sign of zero is useful only
in certain cases.

IEEE Extended Single Precision
The purpose of the extended precision is to make it
possible to evaluate subexpressions to full single pre-
cision. The details are implementation dependent, but
the number of bits in the fractional part f has to be at
least 31, and the exponent, which may be biased, must
at least be in the range �1;022 � exponent � 1;023.
IEEE double precision satisfies these requirements!

IEEE Double Precision
Double precision is based on two 32-bit words (or one
64-bit word), using 1 bit for the sign s, 11 bits for
the biased exponent e, and the remaining 52 bits for
the fractional part f of the mantissa. Similar to single
precision, it uses an implicit bit for the integer part
of the mantissa, a biased exponent, and distinguishes
between five cases:
1. e D 2;047 and f ¤ 0 gives an x which is not a

number (NaN, not a number).
2. e D 2;047 and f D 0 gives infinity with its sign,
x D .�1/s � 1.

3. 1 � e � 2;046, the normal case, x D .�1/s � .1:f / �
2e�1;023.

Note that the smallest possible exponent gives
numbers of the form x D .�1/s � .1:f / � 2�1;022.

4. e D 0 and f ¤ 0, gradual underflow, subnormal
numbers, x D .�1/s � .1:f / � 2�1022.

5. e D 0 and f D 0, zero with its sign, x D .�1/s � 0.

The largest number that can be represented is .2 �
2�52/ � 21;023 � 1:7977 � 10308, the smallest positive
normalized number is 1 �2�1;022 � 2:2251 �10�308, and
the smallest positive non-normalized number is 2�52 �
2�1;022 D 2�1;074 � 4:9407 � 10�324. The unit roundoff
u D 2�53 � 1:1102 � 10�16 corresponds to about 16
decimal digits. The factorial function overflows at n D
171 in IEEE double precision.

The fact that the exponent is wider for double
precision is a useful innovation, not available in some
earlier systems, e.g., the IBM System/360, which uses
a hexadecimal representation, see Table 1. On the DEC
VAX/VMS, two different double precisions D and G
were available, D with the same exponent range as in
single precision and G with a wider exponent range.
An advantage with the same range is that the most
significant part of the double precision word can be
interpreted bitwise as a single precision value of the
same quantity. In addition it had a quadruple precision
H. The choice between the two double precisions was
done via a compiler switch at compile time.

IEEE Extended Double Precision
The purpose of the extended double precision is to
make it possible to evaluate subexpressions to full
double precision. The details are implementation de-
pendent, but the number of bits in the fractional part
f has to be at least 63, and the exponent, which may
be biased, has to have at least the range �16;382 �
exponent � 16;383. IEEE quad precision satisfies
these requirements!

IEEE Quad Precision
Nowadays double precision is not always sufficient,
so quadruple precision is now available in the official
standard,

Quad precision is based on four 32-bit words (or one
128-bit word), using 1 bit for the sign s, 15 bits for the
biased exponent e, and the remaining 112 bits for the
fractional part f of the mantissa. Similar to single and
double precision, it uses an implicit bit for the integer
part of the mantissa, a biased exponent, and has five
cases:
1. e D 32;767 and f ¤ 0 gives an x which is not a

number (NaN, not a number).
2. e D 32;767 and f D 0 gives infinity with its sign,
x D .�1/s � 1.

3. 1 � e � 32;766, the normal case, x D .�1/s �.1:f /�
2e�16;383.
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Note that the smallest possible exponent gives
numbers of the form x D .�1/s � .1:f / � 2�16;382.

4. e D 0 and f ¤ 0, gradual underflow, subnormal
numbers, x D .�1/s � .1:f / � 2�16382.

5. e D 0 and f D 0, zero with its sign, x D .�1/s � 0.
The largest number that can be represented is .2 �

2�112/ � 216;383 � 1:1897 � 104;932, the smallest positive
normalized number is 1 � 2�16;382 � 3:3621 � 10�4;932,
and the smallest positive non-normalized number is
2�112 � 2�16;382 D 2�16;494 � 6:4752 � 10�4;966. The
unit roundoff u D 2�113 � 9:6295 � 10�35 corresponds
to about 34 decimal digits. The factorial function
overflows at n D 1;755 in IEEE quad precision.

Although there is now an official standard avail-
able, some manufacturers previously used other con-
ventions. With, e.g., SGI, the quadruple variables are
represented as the sum or difference of two doubles
normalized so that the smaller double is �0.5 units in
the last position of the larger. This implies that the SGI
quadruple precision has a range which is a little smaller
than in double precision, not much larger as it is with
standard quad.

IEEE ExtendedQuad Precision
The purpose of the extended quad precision is to make
it is possible to evaluate subexpressions to full quad
precision. The details are implementation dependent,
but the number of bits in the fractional part f has to be
at least 128, and the exponent, which may be biased,
has to have at least the range �65;534 � exponent �
65;535.

Other Standards
There was also an IEEE Standard for Radix-
Independent Floating-Point Arithmetic, ANSI/IEEE
854 [3]. This concept is however now included in the
new standard IEEE 754-2008 [5].

Packages for multiple precision also exist, but no
standard for this is yet available.

Acknowledgements I thank Andrew Dienstfrey and Tommy
Elfving for their valuable input.
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Reproducibility: Methods

Randall J. LeVeque
Department of Applied Mathematics, University of
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Summary

The term “reproducible research” in scientific com-
puting and computational mathematics, science, or
engineering generally refers to the archiving and/or
publication of all computer codes and data necessary
to later reconstruct research results.

Description

The requirement of reproducibility of experimental
results has long been an integral part of the “scien-
tific method.” To the extent possible, researchers are
expected to repeat carefully controlled experiments in
order to insure that observed results are not the result
of flawed experimental procedure or external influ-
ences. Experimental scientists are expected to keep

http://math.nist.gov/IFIP-UQSC-2011/slides/Kahan.pdf
http://math.nist.gov/IFIP-UQSC-2011/slides/Kahan.pdf
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careful laboratory notebooks documenting all steps of
experiments, including those that fail to support the
desired result. Such notebooks have a legal standing in
issues of intellectual property rights or investigations
of research falsification and are critical in facilitating
future research by the same scientist or by new per-
sonnel joining an established laboratory. Publications
that result from experimental research are expected to
contain a detailed description of the procedures and
materials used in the experiments. These descriptions
are often used by other researchers to independently
verify the results presented or as a basis for new
research that builds on the published work.

Similar standards are generally not the norm in
computational research, but the development of such
standards and tools to facilitate reproducibility is an
active area of research. There is growing concern
regarding the reproducibility of computational experi-
ments, particularly with the increasing use of computer
simulation to replace physical experiments and the
increased reliance on computational techniques in all
areas of scientific enquiry, engineering design, and
policy making.

At first glance, it may seem that a computational
experiment is much more easily repeatable than a phys-
ical experiment: running the same program a second
time might be expected to give the same results as
the first time, even if running on a different computer.
However, in practice there are several challenges:
• It is not always true that running the same program

twice gives the same results, even if the program
is correctly written. On a computer, the order in
which operations are performed can make a differ-
ence even if operations commute in theory. When
using optimizing compilers or parallel computers,
the order of operations may change from one run to
another.

• Some programs cannot easily be run on a different
computer than the one where the original experi-
ment was performed. This may be because of the
use of proprietary or commercial software that can-
not be transferred or the use of specialized hardware
such as a massively parallel supercomputer.

• Even if the same result is always obtained when
running the program repeatedly on a number of
different computers, this does not guarantee that the
program is correct or that the result is meaning-
ful. Nor does it guarantee that other scientists can
confirm that the program faithfully implements the

ideas contained in a publication or can build on this
work in future research.

• The program and input data may not be available at
a later date, even to the person who wrote it and
originally performed the experiments. Computer
codes often evolve rapidly in the course of research
and are adapted to solve new problems without
carefully documenting or archiving the version of
code and data that were used to obtain previous
results.
Although the first two difficulties above should

not be overlooked, the term “reproducible” in com-
putational science generally means much more than
simply getting the same result in a dependable manner
when the same program is run repeatedly. (This more
limited version of reproducibility is sometimes called
“replicable” or “repeatable” to make this distinction
clear.) Reproducibility also does not directly address
the correctness of computer code for solving the target
problem.

The remainder of this entry addresses the difficulties
inherent in archiving and publishing computer codes
and data and some tools that are currently used to
facilitate this. Approaches and methods are rapidly
evolving and rather than citing specific tools currently
in use, it is recommended that interested readers search
the literature for the latest developments using some
of the terms introduced below. See [4] or [2] for some
further references.

Version Control
A technique that is well established in software de-
velopment communities (and increasingly among com-
putational scientists) is the use of a version control
system (VCS) to track changes to source code and
perhaps data. Once a file is under version control, a
modified version can be “committed” and the system
will keep track of the difference between this version
and the previous version. Only differences are stored,
which greatly reduces the storage required to track
large numbers of changes, but any previous version
of a file or the entire code base can be automatically
regenerated with a few commands.

Popular version control systems include CVS and its
successor Subversion. These are examples of the client-
server model of version control, in which a master
repository exists on a server that contains the full his-
tory. All developers commit changes to this repository
and must have access to the repository (often via the
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Internet) in order to commit changes or reconstruct
previous versions.

More recently, distributed version control systems
have become more popular, in which every “clone” of
the repository contains the entire history and develop-
ers can work independently but easily merge changes
between repositories when convenient. Popular ex-
amples include Mercurial, Git, and Bazaar. A good
introduction to version control can be found in [3].

Web-Based Repositories
Most version control systems have associated web-
based tools to assist in the exploration of past versions
and changes between versions. These tools typically
also provide “issue tracking” facilities to keep track
of bug reports and proposals for enhancements to the
code.

Although version control is extremely useful even
when practiced by a lone researcher on an isolated
computer, for collaboration it is often convenient to
use repositories that are hosted on websites such as
bitbucket.org or github.org that can be used
for a “master copy” of a shared repository and to
host the issue tracker. Public repositories are frequently
used for open-source software projects that allow any-
one to download code and can be a valuable compo-
nent in reproducibility when used to host code associ-
ated with a journal publication. Many institutions also
maintain institutional repositories that can be used to
archive the code or data used in publications, generally
without version control.

Related Ideas

Data Provenance
The term “provenance” refers to the documentation of
the complete history of an object and its ownership
and was originally used primarily for works of art.
Since scientific results now frequently depend on data
that has been collected from numerous sources, or is
generated or processed by computer programs that may
change or be run with different choices of parameters,
the issue of data provenence is an important aspect of
reproducibility.

Literate Programming
The term “literate programming” was coined by the
computer scientist Donald Knuth [1], who developed
a system to combine computer code with its own de-

scription and documentation. Several other approaches
have been developed since that also assist in writing
self-documented code. These systems can be a useful
component in reproducible research and can greatly
assist in deciphering code written by someone else or
in the distant past.

Scientific Workflow Systems
A workflow management system designed to build up
and keep track of a sequence of computational steps
and their data is often called a scientific workflow
system. Their use can aid in preserving a complete
record of all computations performed in the course of
a research project and the provenance of the associated
data.

Virtualization
Often having the computer program that generated
results is insufficient to replicate the same results later,
since subtle changes in compilers, visualization tools,
or other software used by the program can change
the results. With the passage of time, it may not be
possible to run the code at all on a newer operating
system. One approach to archiving or sharing codes
is to use virtualization, in which the entire operating
system and software environment is preserved in a
virtual machine (VM). This machine can then be run
on any computer (with an appropriate player) in order
to emulate the original environment. This approach has
become even more convenient recently with the growth
of commercial cloud computing: a VM can be created
and archived on a public cloud computing platform in
such a way that it can be run by anyone who purchases
sufficient computing time (typically at a rate of pennies
per CPU hour as of this writing). Publicly funded cloud
computing platforms, free for use in scientific research,
are also being deployed, and open-source alternatives
to commercial cloud platforms provide comparable
capabilities.
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Synonyms

Flux function

Definition

Given a set of hyperbolic conservation laws in one
space dimension plus time, the Riemann problem is to
find the solution to the special initial value problem in
which two different constant states each occupy one
half of the initial line. It is an essential building block
in many versions of computational fluid dynamics.

Overview

To understand the definition, it is helpful to consider
a specific example of a Riemann problem, namely, the
shock tube problem. This involves a common experi-
ment in gas dynamics in which a tube is divided into
left and right parts, separated by a diaphragm. One half
of the tube is filled with a gas at high pressure and the
other half with a gas at low pressure. At some moment,
the diaphragm is ruptured, and the high-pressure gas
rushes toward the low-pressure gas, pushing it ahead at
high speed. In the case of a general Riemann problem,
however, the left and right states are entirely arbitrary
(there is no requirement that the initial conditions
could have been created from a plausible history), and
the governing equations could be any hyperbolic set
of conservation laws. Because the initial data does
not contain a length scale, the solution u.x; t/ cannot
depend on either x or t individually, but only on the

ratio � D x=t . The solution is therefore self-similar,
consisting of a set of simple waves spreading from the
initial point of discontinuity.

The Riemann problem is valuable in the analysis of
conservation laws, because it displays all the varieties
of wave motion that are present in solutions having
more general data. However, much of the attention
that it has received recently is due to its utility as a
building block in the numerical solution of hyperbolic
conservation laws.

Exact Solution

Let the given set of hyperbolic conservation laws be

@

@t
u C @

@x
F.u/ D @

@t
u C A

@

@x
u D 0 (1)

where u is the set of conserved quantities, also known
as the state vector, and F is the set of flux quantities,
also known as the flux vector. The matrix A is the
Jacobian matrix aij D @Fi=@uj . As already remarked,
for the Riemann initial data

u.x; 0/ D uL; .x < 0/; u.x; 0/ D uR.x � 0/

(2)

we must have u.x; t/ D u.�/, where � D x=t (see
Fig. 1). In that case, (1) becomes

x

t contact

simple wave

shockwave

Riemann Problem, Fig. 1 Generic solution to the Riemann
problem. The shock tube problem is used as an illustration, but
any of the various types of wave supported by the particular
system being considered may appear
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u D 0 (3)

The possible solutions to these ordinary differential
equations are:
1. @�.u/ D 0 and there is a constant region.
2. � is an eigenvalue of A, say � D �k.u/, and @�u

must lie along the corresponding right eigenvector
rk . In the latter case, we have the set of ordinary
differential equations `m � @�u D 0; m ¤ k which
defines a simple wave trajectory in the state space u.
Here, `m is a left eigenvector of A; we may suppose
that `mrk D ımk. The mapping of this trajectory
into physical space follows from � D �k.u/, and
there are now three subcases:
(a) If d�k=d� > 0, we have a simple wave centered

on the origin.
(b) If d�k=d� D 0, the wave speed is not changed

by the passage of the wave; this is characteristic
of a linearly degenerate field. The wave takes
the form of a contact discontinuity across which
the jump condition ŒF� D �Œu� holds.

(c) If d�=d� < 0, the solution is folded in physical
space and must be replaced by a shockwave
across which the jump condition again holds
that ŒF� D �Œu�. Additionally, the shock should
satisfy requirements for physical admissibility
(although these requirements are still open; see
[1] for a recent treatment with bibliography).

To solve the Riemann problem exactly is to find, for
given uL;R, a set of constant states, simple waves, con-
tact discontinuities, and admissible shockwaves that
can be concatenated into a function u.�/ that equals
uL;R for � ! ˙1. There does not seem to be a reliable
procedure for deciding, for given F.u/, if the Riemann
problem is well-posed for all possible data uL;R . Of
course, for a number of simple cases, well-posedness
has been proved.

Use in Computations

Within a computational method of the finite-volume or
similar type, the role of the Riemann problem can be
thought of as indicating the proper direction for the
flow of information. Given two adjacent computational
cells containing states uj;jC1, then the flux between
them can be taken to be the exact solution at � D 0 of

a Riemann problem with uL D uj ;uR D ujC1. This is
the method proposed by Godunov in 1959 [5], and this
flux is called the Godunov flux. In this paper, he began
with the simplest scalar example of (1),

@tu C a@xu D 0

with a constant, and sought the finite-difference
or finite-volume scheme with the smallest possible
numerical diffusion that enforces monotonicity (the
avoidance of overshoots). He proved that no monotone
scheme of better than first-order accuracy existed and
that the best first-order scheme has the simple form
FjC1=2 D auj ; a > 0; FjC1 D aujC1; a < 0. The
scheme described above is a generalization of this
scheme to nonlinear systems.

Intuitively this appears to be a natural, possibly
even an optimal, generalization, but the situation is not
straightforward. Even in cases where the physics is not
in doubt, and even if it can be proved that the solution
is unique, the Godunov flux is not perfect. Documented
faults arising from its use include:
1. The solution gradient does not converge at the

proper rate near sonic points [10].
2. At high Mach numbers, certain shock equilibria are

unstable [2].
3. Under some circumstances, spurious solutions

called “carbuncles” can occur in higher dimensions.
Much of the material is referenced in [4], although
the title of that paper may be pessimistic.

The fact that these drawbacks are not regarded as fatal
indicates the difficulty of a satisfactory solution, and
there are beneficial properties to offset these faults:
1. For many systems, only a subset of the state space

is realizable; if this subset is convex, the Godunov
method will only yield realizable solutions (put
simply, it never predicts negative densities [3]).

2. Most importantly, the numerical dissipation is in-
deed less than that of alternatives, and this is es-
pecially advantageous when dealing with linearly
degenerate discontinuities such as shear waves and
contact discontinuities. In the absence of this prop-
erty, too much numerical dissipation is added to
such features as boundary layers when, for example,
a method to solve the Euler equations is used as a
basis to solve the Navier-Stokes equations.

In practice, the shortage of fully satisfactory alterna-
tives leads to the Godunov flux being quite commonly
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used when the system of conservation laws being
solved is simple and well known. But since the Go-
dunov method is relatively expensive, and increasingly
so for large and complex systems, alternative methods
have been sought that preserve the desirable properties
while eliminating or minimizing the faults and reduc-
ing the computational cost. They are often described as
approximate Riemann solvers but are not necessarily
to be judged by their success in approximating the
Riemann problem but rather by their utility as flux
functions.

Approximate Solutions

The most widely used approximation is due to Roe
[11], who defined at each interface a local mean value
Jacobian, QAjC1=2.uj ;ujC1/. He then solved the Rie-
mann problem for the locally linearized set of conser-
vation laws, @tu C QA@xu D 0. The linearization is
chosen to have the three properties:
1. QA.u;u/ D A.u/.
2. QA has a complete set of real eigenvalues and distinct

eigenvectors.
3. QAjC1=2.ujC1 � uj / D FjC1 � Fj .
From these properties, it can be shown that when-
ever the exact solution consists of a single wave, this
approximate solution becomes exact. There are many
matrices having these properties, but they are only
useful if easily computed. For the Euler equations, the
Roe linearization is to evaluate the Jacobian at the
averaged state defined by

QAjC1=2.uj ;ujC1/ D A. Qu/ (4)

Qu D 	
1=2
j uj C 	

1=2
jC1ujC1

	
1=2
j C 	

1=2
jC1

(5)

Qh D 	
1=2
j hj C 	

1=2
jC1hjC1

	
1=2
j C 	

1=2
jC1

(6)

Qa2 D .� � 1/. Qh� 1
2 Qu2/ (7)

This approximation inherits the low dissipation of
exact Riemann flux, but a defect of the method is
that it represents all waves by their average speed. In

the case of a simple wave that lies on both sides of
� D 0, this leads to information traveling only in one
direction, when it should travel in both. Because this
wave is effectively represented as an entropy violating
rarefaction shock, the correction is known as an en-
tropy fix (e.g., [6]). Since the approximate solution and
its modifications are available in simple closed forms,
they are usually preferred to the exact solution, which
must be obtained iteratively.

Another widely used class of approximate Riemann
solvers derives from the 1984 paper of Harten, Lax,
and van Leer [6]. In its simplest version, the approxi-
mation uses merely two waves, whose speeds sL; sR are
defined by the user, and normally are estimates of the
fastest and slowest wave speeds. It is assumed that the
region sL < � < sR is occupied by a state u� in which
the flux is F�. Applying conservation to the control
volumes OLT,ORT (see Fig. 2) leads to the estimate

F� D sRFL � sLFR � sLsR.uR � uL/
sR � sL

(8)

A property of this method is that if only one wave is
present, and if its speed is estimated correctly, then the
solution is exact. The method is useful for 2 
 2 sys-
tems but behaves poorly when waves of intermediate
speeds are present. By taking sL D ��x=�t; sR D
�x=�t , the Lax-Friedrichs flux is recovered and can
be regarded as the crudest “solution” to the Riemann
problem. More sophisticated versions that account for
the intermediate waves have been given in [8, 12] and
also in the original paper [6].

t

x

O

L RT

Riemann Problem, Fig. 2 Illustrating the HLL approximation
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Other widely used flux functions are the AUSM
series of Liou [9] and the CUSP scheme of Jameson
[7]. There are numerous others. From the multitude of
solutions that have been proposed, it is safe to conclude
that no perfect flux function exists, and possibly never
will. It is even possible to speculate that the entire
edifice of shock capturing, however useful in practice,
is built on mathematical sand, in a sense that is not yet
apparent.

Cross-References

� Finite Volume Methods
�Hyperbolic Conservation Laws: Computation
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Integrable PDEs
Unified transform method

Short Definition

RH methods employ the so-called Plemelj formu-
lae to solve a plethora of mathematical and physical
problems.

Description

If a function is analytic in the entire complex z-plane
including infinity, then, according to Liouville’s theo-
rem, it is a constant. Thus, in order to construct interest-
ing functions, it is necessary to “break analyticity.” The
simplest such situation occurs when a function loses
analyticity at points; such points are poles and essential
singularities (which are isolated singular points), as
well as branch points (which are non-isolated singular
points). After understanding the lack of analyticity at a
point, the following fundamental question arises: Is it
possible to “break analyticity” on a curve? The answer
to this question is affirmative, and furthermore, a large
class of such analytic functions is characterized via
the solution of the so-called Riemann-Hilbert (RH)
problem. Functions possessing singular points are of
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crucial importance in both theory and applications.
Thus, by analogy, one would expect that functions with
“singular curves” are also of fundamental importance.
In this sense, it is surprising that although the first
mathematical question giving rise to a RH problem was
apparently posed by Riemann in 1851, such problems
until the late 1960s appeared mainly in connection with
the so-called Wiener-Hopf technique (details of this
technique and a plethora of related applications can
be found in [1–3]). However, in the last 40 years, RH
problems have appeared in many different situations,
which is consistent with the fact that, as explained
earlier, the RH formalism provides the answer to a
fundamental mathematical question in the theory of
analytic functions.

In order to understand the mechanism of “breaking
analyticity” on a curve, we analyze the integral

F.z/ D 1

2i�

Z
L

f .�/

� � z
d�; z 2 CnL; (1)

where L is a bounded smooth curve (L may be an
arc or a closed curve) and f .�/ is a given function.
Integrals of the type expressed by (1) are often called
“Cauchy-type integrals.” The first question is whether
F.z/ is well defined. In this respect, we note that z is
not on L; thus, � � z ¤ 0. It turns out that the Cauchy-
type integral defined in (1) makes sense provided that
f .�/ satisfies the so-called Hölder condition:

jf .�1/�f .�2/j � ƒj�1��2j�; ƒ > 0; 0 < � � 1:

(2)
A Hölder function is certainly continuous, but it may
not be differentiable.

If f .�/ is Hölder, then it is possible to show that
F.z/ is analytic for z off the curve L. Thus, Eq. (1)
defines a function for which “analyticity is broken” on
a curve. The value of F.z/ at infinity is given by

F.z/D˛

z
C
�
1

z2

�
; z ! 1; ˛D� 1

2i�

Z
L

f .�/d�:

(3)
In spite of the fact that F.z/ is nonanalytic for z 2 L,
we can still attempt to give a meaning to F.z/ for z 2
L. Actually, we already know from the classical theory
of real functions that a possible way to make sense of
F.z/ for z 2 L is to define the principal value integral:

+

−

Riemann-Hilbert Methods, Fig. 1 The domains “+” and “-”
associated with an arc

�
Z
L

f .�/d�

� � t D lim
"!0

Z
L�L"

f .�/d�

� � t ; t 2 L; (4)

where L" is the part of L which has length 2" and is
centered around the point t 2 L. The only other way to
give meaning to F.z/ for z 2 L is to consider the limits
as z approaches L along a non-tangential curve either
in the “+” domain, which is the domain to the left of the
increasing direction of L, or in the “�” domain, which
is the domain to the right of the increasing direction
of L; see Fig. 1. A priori, it is not clear that such limits
exist (unless f .�/ is locally analytic, in which case one
can compute these limits using Cauchy’s theorem).

It is remarkable that not only these limits exist, but
they can be computed explicitly: Denoting these limits
by FC.t/ and F �.t/, the relevant formulae, known as
the Plemelj formulae, are

FC.t/ D 1

2
f .t/C 1

2i�
�
Z
L

f .�/

� � t
d�; t 2 L (5a)

and

F�.t/ D �1
2
f .t/C 1

2i�
�
Z
L

f .�/

� � t
d�; t 2 L:

(5b)

The proof, which is quite complicated, can be found
in [3].

Additive Riemann-Hilbert Problem for a Closed
Contour
Let L be a smooth closed curve dividing the complex
z-plane into the domainsDC and D�; see Fig. 2.

In this case, the Cauchy-type integral (1) defines a
sectionally analytic function F.z/, namely,
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−

+

Riemann-Hilbert Methods, Fig. 2 The domains D+ and D-
associated with the closed curve L

F.z/ D
"
FC.z/; z 2 DC

F�.z/; z 2 D�:
(6)

The function F.z/ “loses its analyticity” for z 2 L.
However, Plemelj formulae provide an explicit expres-
sion for the “departure from analyticity.” Indeed, the
“jump” of F.z/ across L is given by

FC.t/ � F�.t/ D f .t/; t 2 L: (7)

The above discussion suggests that if a function is
analytic in the entire complex z-plane, including in-
finity, except for z on L, and if the “jump” of this
function across L is known, then this function can be
reconstructed uniquely. This “inverse problem,” which
is the simplest possible RH problem, is known as a
scalar additive RH problem and is defined as follows:
Given a closed curve L which divides the complex z-
plane into DC and D�, and a Hölder function f .t/
on L, construct two functions FC.t/ and F�.t/ such
that:

(i) FC.t/ and F�.t/ are the limits as z approaches
non-tangentially L, of the functions FC.z/ and
F�.z/which are analytic for z 2 DC and z 2 D�.

(ii)
FC.t/ � F �.t/ D f .t/; t 2 L: (8)

(iii)

F�.z/ D O

�
1

z

�
; z ! 1; z 2 D�: (9)

The unique solution of this problem is given by the
evaluation of the RHS of (6) as z D t , where F.z/ is
defined in (1).

Indeed, FC.z/ and F�.z/ are analytic functions
for z 2 DC and z 2 D�, respectively. Furthermore,
Plemelj’s formulae imply (7), i.e., condition (ii). Also
Eq. (3) implies the validity of condition (iii).

The solution is unique, since if there did exist
another solution, their difference denoted by ˆ would
satisfy conditions (i), (iii), as well as

ˆC.t/ D ˆ�.t/; t 2 LI

thus, ˆ.z/ would be analytic in the entire complex
z-plane, including infinity where it vanishes; hence,
Liouville’s theorem would imply that ˆ.z/ D 0.

In many applications,L is the real axis, and then (1)
becomes

F.z/ D 1

2i�

Z 1

�1
f .�/

� � z
d�; Imz ¤ 0: (10)

In this case, if f .x/ is in an appropriate function space,
the Plemelj formulae become

F˙.x/ D ˙f .x/

2
C 1

2i
.Hf /.x/; x 2 R;

(11a)

whereH denotes the Hilbert transform defined by

.Hf /.x/ D 1

�
�
Z 1

�1
f .�/

� � x dx: (11b)

It turns out (p. 87 of [5]) that the map f 7! Hf

is bounded in Lp for all 1 < p < 1. Actually, a
convenient space for the study of a RH problem on
the line is H1. Indeed, it can be shown [7] that if
f 2 H1.L/, then

sup
z2CnL

ˇ̌
ˇ̌Z
L

f .�/

� � z
d�

ˇ̌
ˇ̌ � kf k2

H1.L/
;

where

kf k2
H1.L/

D
Z
L

 
jf .�/j2 C

ˇ̌̌
ˇdf .�/d�

ˇ̌̌
ˇ
2
!
d�:

Multiplicative Riemann-Hilbert problems
A natural generalization of an additive RH problem is a
multiplicative RH problem. In this case, conditions (ii)
and (iii) (see Eqs. (8) and (9)) are now replaced by the
following conditions:
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(ii)
FC.t/ D g.t/F �.t/C h.t/; t 2 L;

where g.t/ and h.t/ are Hölder onL and g.t/ ¤ 0

on L.
(iii)

F�.z/ D Cmzm CO.zm�1/; z ! 1;

where Cm is a constant andm is a positive integer.

The above multiplicative jump can be mapped to the
following additive jump:

FC.t/
XC.t/

� F�.t/
X�.t/

D h.t/; t 2 L;

where

X.z/ D

2
64
eG.z/; z 2 DC

z�keG.z/; z 2 D�; G.z/ D 1

2i�

Z
L

ln
�
g.�/��k� d�

� � z
;

k denotes the index of g.�/, � 2 L, defined by

k D 1

2�
Œargg.�/�L ;

and the function X.z/ solves the homogeneous RH
problem

XC.t/ D g.t/X�.t/; t 2 L (12a)

X�.z/ � z�k; z ! 1; z 2 D�: (12b)

The multiplicative jump condition for X.z/ can be
mapped to an additive jump condition by taking the log
of equation (12a). If g.t/ is Hölder on L and g.t/ ¤ 0

on L, then lng.t/ is Hölder on L iff indexg.t/ ¤
0. Thus, before taking the log of equation (12a), we
rewrite (12a) in the form

XC.t/ D �
g.t/t�k

�
tkX�.t/; t 2 L:

In many applications, F.z/ is a non-singular N 

N matrix, and conditions (ii) and (iii) (see Eqs. (8)
and (9)) are replaced by the following conditions:

FC.t/ D g.t/F �.t/; t 2 L; (13a)

F �.z/ D I CO

�
1

z

�
; z ! 1; z 2 D�;

(13b)

where I denotes the unit matrix.

In contrast to scalar RH problems, multiplicative
matrix RH problems cannot in general be solved in
closed form. However, if g.t/ is in an appropriate
function space, the solution of the above RH problem
can be characterized via a linear Fredholm integral
equation [4]. Furthermore, if g.t/ satisfies certain
symmetry conditions, it is possible to show that there
exists a unique solution [6].

In what follows, we mention some of the ubiquitous
appearances of RH problems with emphasis on recent
applications.

It is important to emphasize that analogous results
exist for the case that L is an arc. However, the associ-
ated theory is more complicated due to the possibility
of singularities at the two end points [6].

Riemann Problem
In 1851, Riemann posed the following problem: Find
a function !.z/ D u.x; y/ C iv.x; y/; z D x C
iy; x; y;2 R, u, and v real functions, which is analytic
inside a domain enclosed by the closed curve L, such
that

f1.t/u.x.t/; y.t//Cf2.t/v.x.t/; y.t//Df3.t/; t2L;
(14)

where ffj .t/g31; t 2 L; are given real functions.
In 1904, Hilbert reduced this problem to a scalar

multiplicative RH problem and also expressed the
solution in terms of a singular integral equation. In
1908, Plemelj gave the first closed form solution of this
problem in the case that the associated index vanishes.
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The closed form solution of a scalar multiplicative
RH problem with a finite index was given by Gakhov
in 1938.

In the particular case of f1 D 1, f2 D 0, L a
circle, (14) reduces to the derivation of the classical
Poisson formula [6].

We note that the terminology RH problem also
refers to the twenty-first problem posed by Hilbert.
This problem addresses the question of whether there
always exists a Fuchsian system with given poles and a
given monodromy group (the N 
N linear system
d‰.�/=d�DA.�/‰.�/ is called Fuchsian if the
N 
N matrix A.�/ is a rational function of � whose
only singularities are simple poles). It is interesting that
subsequent developments placed the above problem in
the framework of what we called earlier “a matrix
multiplicative RH problem.” A negative answer to
the above question was finally given by Bolibruch
(1989) [8].

Singular Integral Equations
In the thin airfoil theory, viscosity is neglected, and
the airfoil is replaced by its mean camper line. In this
approximation, the flow pattern past the airfoil is found
by placing a vortex sheet of strength � per unit length
on the mean line and by requiring that the mean line is
a streamline of this flow and that the circulation around
the airfoil satisfies the so-called Kutta condition, which
implies that � vanishes at the trailing edge.

Let V1 be the velocity at infinity, and let � be the
angle of attack. Then it can be shown [6] that � is
given by the solution of the following singular integral
equation

1

2i�
�
Z c

0

�.�/d�

� � x D ��V1; 0 < x < c; (15)

subject to the condition �.c/ D 0.
This problem is solved in [6] by mapping equa-

tions (15) to an additive RH problem formulated on the
finite segment 0 < x < c.

In order to illustrate the main ideas, we consider
the following problem which is simpler because it
is formulated on a closed curve: Solve the singular
integral equation

f .x/C ˛

i�
�
Z 1

�1
f .�/

� � x d� D sinx

x
; x 2 R; (16)

where ˛ is a constant different than ˙1.

Let F.z/ be defined by (10). Then, Eqs. (11) yield

FC.x/ � F �.x/ D f .x/; (17a)

FC.x/C F�.x/ D 1

i�
�
Z 1

�1
f .�/

� � x
d�: (17b)

Replacing in Eq. (16) the function f .x/ as well as
the Hilbert transform of f .x/ and in front of (15) by
Eqs. (17), and (16) becomes

.1C ˛/FC.x/ � .1 � ˛/F �.x/ D sin x

x
; x 2 R:

(18)

The definition of F.z/ implies that F.z/ D O.1=z/ as
z ! 1. Thus, the functions

QFC.x/ D .1C˛/FC.x/; QF�.x/ D .1�˛/F �.x/;

satisfy an additive RH problem with the jump function
sin x=x. Hence,

.1C ˛/FC.x/ D 1

2

sin x

x
C 1

i
H

�
sin x

x

�
;

.1 � ˛/F �.x/ D �1
2

sin x

x
C 1

i
H

�
sinx

x

�
:

Using

H

�
sinx

x

�
D cos x � 1

x
; x 2 R;

we find explicit formulae for F˙.x/, and then (17a)
yields

f .x/ D � i

2x


eix � 1

1C ˛
� e�ix � 1

1 � ˛
�
:

The linear integral equation

f .x/C
Z 1

0

g1.x � �/f .�/d� D g2.x/; x 2 R
C;

(19)

where the given functions fgj .x/g21; x 2 RC; belong
to an appropriate function space, can also be reduced to
a scalar RH problem [6]. Actually, such equations were
first analyzed by Carleman in 1932 using a method
similar to the Wiener-Hopf technique. This technique
was introduced in 1931 in connection with a particular
case of equation (19).
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Wiener-Hopf Type Problems
Such problems typically arise in the analysis of bound-
ary value problems of linear elliptic PDEs. The sim-
plest such problem is defined as follows: Solve the
Laplace equation for the real function u.x; y/ in the
upper half complex z-plane, where the solution decays
at infinity and furthermore,

u.x; 0/ D f1.x/; �1 < x < 0;

@u

@y
.x; 0/ D f2.x/; 0 < x < 1; (20)

where ffj .x/g21 are given functions in an appropriate
function space.

A novel unified method for analyzing boundary
value problems for linear and for integrable nonlinear
PDEs in two dimensions has recently been introduced
in the literature [9, 10] (see also [15]) and will be dis-
cussed further later in this article. A crucial role in this
method is played by the so-called global relation which
couples the given boundary data with the unknown
boundary values. For the above problem, a convenient
global relation is given by

Z 1

�1
e�ikx �ux.x; 0/�iuy.x; 0/	dxD0; �1<k<0:

(21)

Using the boundary conditions (20), Eq. (21) becomes

D�.k/ � iNC.k/ D ig�
2 .k/ � gC

1 .k/; k 2 R
�;

(22)

where the known functions gC
1 and g�

2 are given by

g�
2 .k/ D

Z 1

0

e�ikxf2.x/dx; Imk � 0I

gC
1 .k/ D

Z 0

�1
e�ikx

�
df1.x/

dx

�
dx; Imk � 0;

whereas the unknown functionsD�.k/ andNC.k/ are
defined by

D�.k/ D
Z 1

0

e�ikxux.x; 0/dx; Imk � 0I

NC.k/ D
Z 0

�1
e�ikxuy.x; 0/dx; Imk � 0:

It is important to note that exp.�ikx/, �1 < x < 0,
is bounded and analytic in k for Imk > 0, similarly for
g�
2 , D�, NC.

Replacing in (22) k with �k and then taking the
complex conjugate of the resulting equation, we find

D�.k/C iNC.k/ D �ig�
2 .k/�gC

1 .k/; k 2 R
C:

(23)

Equations (22) and (23) provide the “jump” of the
analytic function fNC.k/;D�.k/g across the real axis.
Hence,NC.k/ andD�.k/ can be determined in closed
form.

After obtaining the transforms of the Dirichlet and
Neumann boundary values, the novel integral repre-
sentation of the solution of u.x; y/ derived by the
unified method [10] yields an explicit representation
for u.x; y/.

Inverse Problems
There exists a significant generalization of the RH
problem called the d -bar problem. This corresponds to
the case that a function loses its analyticity in a two-
dimensional domain. Motivated by certain mathemati-
cal techniques developed for the solution of the Cauchy
problem of an important class of nonlinear evolution
PDEs in one and two spatial dimensions called inte-
grable, the late Gelfand and the author presented in
[11] a novel derivation of the Fourier transform in one
and two dimensions using a RH and a d -bar problem,
respectively. This led to the realization that the RH
and the d -bar formalism can be employed for inverting
certain integrals arising in important physical appli-
cations. Indeed, using this new approach, the inverse
Radon transform was re-derived in [12]. Although this
transform can be derived using the classical Fourier
transform, the advantage of the new method was illus-
trated in [13], where this technique was used for the
derivation of the inverse attenuated Radon transform
(it was later shown in [14] that this result can be easily
obtained using the main result of [12]). In the same
way that the Radon transform plays a crucial role in
the imaging techniques of computed tomography and
of positron emission tomography, the attenuated Radon
transform is crucial for the medical imaging technique
of single-photon emission computed tomography.

In order to illustrate this new technique, we consider
the linear differential equation:
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@.x; k/

@x
� ik.x; k/ D q.x/; x 2 R; k 2 C;

(24)

where q 2 H1.R/. We first construct a solution
.x; k/ valid for all k. Such a solution is given by

.x; k/ D
"
C.x; k/; Imk � 0;

�.x; k/; Imk � 0; x 2 R;
(25)

whereC and� are the following particular solutions
of (24):

C.x; k/D
Z x

�1
eik.x��/q.�/d�; Imk�0; x2R;

�.x; k/D �
Z 1

x

eik.x��/q.�/d�; Imk�0; x2R:
(26)

It is important to note that .x; k/ is a sectionally
analytic function in the complex k-plane and that

.x; k/ D O

�
1

k

�
; k ! 1: (27)

Indeed, the estimate (27) follows from Eqs. (26) using
integration by parts, whereas the analyticity of ˙ is a
consequence of the fact that expŒik.x � �/� is bounded
and analytic in k for Imk > 0 for x � � > 0 and
Imk < 0 for x � � < 0.

Next, using the analytic properties of , we derive
an alternative representation of  by solving a scalar
additive RH problem: Eqs. (26) imply the jump condi-
tion

C.x; k/ � �.x; k/ D eikx Oq.k/; k 2 R; (28)

where

Oq.k/ D
Z 1

�1
e�ikxq.x/dx; k 2 R: (29)

Equations (27) and (28) imply that the function ,
in addition to the representation (25), also admits the
representation

.x; k/ D 1

2i�

Z 1

�1
eilx Oq.l/
l � k dl; k 2 CnR:

(30)
Substituting (30) into (24), we find

q.x/ D 1

2�

Z 1

�1
eilx Oq.l/d l; x 2 R: (31)

Equations (29) and (31) define the classical Fourier
transform pair.

The Cauchy Problem for Integrable Nonlinear
Evolution PDEs
The simplest integrable nonlinear evolution PDE
in one space dimension is the celebrated nonlinear
Schrödinger equation:

i
@q

@t
C @2q

@x2
˙ 2jqj2q D 0; x 2 R; t > 0: (32)

The defining property of an integrable equation is that
it admits a Lax pair formulation, i.e., it can be written
as the compatibility condition of two matrix eigenvalue
equations. The Cauchy problem for an integrable evo-
lution PDE can be solved as follows: By using the t-
independent part of the Lax pair, it is possible to con-
struct a nonlinear Fourier transform pair. Employing
this nonlinear pair and using the t-dependent part of the
Lax pair to determine the evolution of the associated
nonlinear Fourier transform, q.x; t/ can be expressed
in terms of the nonlinear Fourier transform of the initial
conditions q.x; 0/ D q0.x/.

It is remarkable that the above nonlinear Fourier
transform can be expressed in terms of a linear matrix
RH problem (the fact that it is a matrix and not a scalar
RH problem is a consequence of the fact that the Lax
pair is matrix valued).

In order to illustrate the essential ideas of the above
approach, we consider the linear limit of (32), i.e., we
neglect the last term of (32). The resulting linear PDE
possesses the following scalar Lax pair:

@.x; t; k/

@x
� ik.x; t; k/ D q.x; t/; (33a)

@.x; t; k/

@t
C ik2.x; t; k/ D i

@q.x; t/

@x
� kq.x; t/:

(33b)

Treating t as a fixed parameter, Eq. (33a) can be
analyzed in the same way as Eq. (24); thus, it yields
Eqs. (29) and (31), with q.x/; Oq.k/ replaced by
q.x; t/; Oq.k; t/.

The first of equations (26) implies that

Oq.k; t/ D lim
x!1

�
e�ikxC.x; t; k/

�
:



Riemann-Hilbert Methods 1267

R

Hence, assuming that both q and qx vanish as x ! 1,
Eq. (33b) implies

@ Oq.k; t/
@t

C ik2 Oq.k; t/ D 0:

Thus,

q.x; t/ D 1

2�

Z 1

�1
ei.lx�l2t / Oq0.l/d l;

where Oq0.k/ denotes the Fourier transform of q0.x/.

A UnifiedMethod for Linear and
Integrable Nonlinear PDEs

Linear PDEs with constant coefficients and integrable
nonlinear PDEs share the common feature that they
possess a Lax pair formulation (these Lax pairs are
scalar and matrix valued, respectively). It was realized
in [9, 10] that the analysis of boundary value problems
requires the simultaneous analysis of both equations
defining a Lax pair. The new approach goes beyond
the classical technique of separation of variables, since
a transform in x or a transform in t corresponds to
analyzing either the x- or the t-parts of the Lax pair,
respectively. It is remarkable that this simultaneous
analysis yields again a RH problem!

For integrable nonlinear PDEs, the above approach
appears to be the only effective method for analyzing
a given integrable PDE with generic boundary con-
ditions. However, it was later realized that for linear
PDEs, one can obtain the novel integral representations
obtained by the simultaneous analysis of both parts
of the Lax pair, by classical techniques. We note that
there exist certain problems for which the Lax pair
approach provides the easiest way for obtaining these
novel representations. Furthermore, in general, these
representations are based on the “synthesis” as opposed
to the separation of variables; see [16].

Painlevé Equations and Orthogonal
Polynomials

Following the pioneering work of Ablowitz, Segur,
Flashka, and Newell, it was realized in the early 1980s
that the classical Painlevé transcendents are integrable
ODEs. It appears that these ODEs play in nonlinear

Physics the same role that the classical special func-
tions play in linear Physics. For the latter functions,
it is important to obtain the so-called connection for-
mulae, i.e., to characterize the asymptotic behavior as
z approaches certain singular points in the complex z-
plane (z is the complex extension of the independent
variable). It turns out that the general solution of each
of the six Painlevé equations can be expressed in terms
of a 2 
 2 matrix RH problem [5, 17]. Using this fact,
it is possible to obtain the explicit asymptotic behavior
of the solution in the entire complex z-plane.

A powerful tool for the analysis of the asymptotic
behavior of the solution of a matrix RH problem was
introduced by Deift and Zhou [18].

The Deift-Zhou method, in addition to its crucial
role for obtaining rigorous asymptotic results for the
Painlevé equations, is also very useful for analyzing
the asymptotic behavior of certain random matrices
and orthogonal polynomials. Indeed, it was shown
in [19] that certain random matrices and orthogonal
polynomials can also be formulated in terms of a
matrix RH problem. The combination of this result
and of the Deift-Zhou method has reignited the study
of the relevant asymptotics and has made possible
tremendous advances in this area, well beyond the
earlier classical results [7].

References

1. Noble, B.: Methods Based on the Wiener-Hopf Technique
for the Solution of Partial Differential Equations. Pergamon
Press, New York (1959)

2. Gakhov, F.D.: Boundary Value Problems. Pergamon Press,
New York (1966)

3. Muskhelishvili, N.I.: Singular Integral Equations. Nordhoff
N V, Groningen (1953)

4. Zhou, X.: The Riemann-Hilbert problem and inverse scat-
tering. SIAM J. Math. Anal. 20, 966–986 (1989)

5. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.:
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Rigid Body Dynamics

Gilles Vilmart
Département de Mathématiques, École Normale
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Rennes, IRMAR, CNRS, UEB, Bruz, France

Synonyms

Euler’s equations

Short Definition

Rigid body dynamics is the study of the motion in
space of one or several bodies in which deformation
is neglected.

Description

It was a surprising discovery of Euler [3] that the
motion of a rigid body B in R3 with an arbitrary shape
and an arbitrary mass distribution is characterized by

a differential equation involving only three constants,
the moments of inertia, that we shall denote I1; I2; I3 –
also called the Euler constants of the rigid body –
and related to the principal axis of inertia of the
body. Still, the description of the motion of a general
nonsymmetric rigid body is nontrivial and possesses
several geometric features. It arises in many fields
such as solid mechanics or molecular dynamics. It
is thus a target of choice for the design of efficient
structure preserving numerical integrators. We refer
to the monographs by Leimkuhler and Reich ([8],
Chap. 8) and by Hairer et al. ([6], Sect. VII.5) for a
detailed survey of rigid body integrators in the context
of geometric numerical integration (see also references
therein) and to Marsden and Ratiu [10] for a more
abstract presentation of rigid body dynamics using the
Lie-Poisson theory.

Equations of Motion of a Free Rigid Body
For the description of the rotation of a rigid body B,
we consider two frames: a fixed frame attached to
the laboratory and a body frame attached to the rigid
body itself and moving along time. We consider in
Fig. 1 the classical rigid body example of a hardbound
book (see the body frame in the left picture). We
represent the rotation axis in the body frame by a vector
! D .!1; !2; !3/

T , where each component is the
speed of rotation around each body axis. Its direction
corresponds to the rotation axis and its length is the
speed of rotation. The velocity of a point x in the body
frame with respect to the origin of the body frame is
given by the exterior product v D ! 
 x. Assume that
the rigid body B has mass distribution dm. Then, the
kinetic T energy is obtained by integrating over the
body the energy of the mass point dm.x/,

T D 1

2

Z
B

k! 
 xk2dm.x/ D 1

2
!T�!;

where the symmetric matrix �, called the inertia ten-
sor, is given by �ii D R

B.x
2
j C x2k/dm.x/ and �ij D

� RB xixj dm.x/ for all distinct indices i; j; k. The
kinetic energy T is a quadratic form in !, and thus it
can be reduced into a diagonal form in an orthonormal
basis of the body. Precisely, if the body frame has its
axes parallel to the eigenvectors of � – the principal
axes of the rigid body, see the left picture of Fig. 1 –
then the kinetic energy takes the form
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ω1

ω2

ω3

Rigid Body Dynamics, Fig. 1 Example of a rigid body: the
issue 39 of the Journal de Crelle where the article by Jacobi [7]
was published. Left picture: the rigid body and its three principal
axes of inertia at the gravity center (colored arrows). Right
picture: free rigid body trajectories of the principal axis relative

to the fixed frame (columns ofQ with the corresponding colors).
Computation with the preprocessed DMV algorithm of order 10
(see Algorithm 4) with timestep h D 0:01, 0 � t � 40, and
initial condition y.0/ D .0; 0:6;�0:8/T , Q.0/ D I . Moments
of Inertia: I1 D 0:376; I2 D 0:627; I3 D 1:0

T D 1

2

�
I1!

2
1 C I2!

2
2 C I3!

2
3

�
; (1)

where the eigenvalues I1; I2; I3 of the inertia tensor are
called the moments of inertia of the rigid body. They
are given by

I1 D d2 C d3; I2 D d3 C d1; I3 D d1 C d2;

dk D
Z
B
x2kdm.x/: (2)

Remark 1 Notice that for a rigid body that has interior
points, we have dk > 0 for all k. If one coefficient
dk is zero, then the body is flat, and if two coefficients
dk are zero, then the body is linear. For instance, the
example in Fig. 1 can be considered as a nearly flat
body (d3 	 d1; d2).

Orientation Matrix
The orientation at time t of a rigid body can be
described by an orthogonal matrix Q.t/, which maps
the coordinates X 2 R3 of a vector in the body
frame to the corresponding coordinates x 2 R3 in
the stationary frame via the relation x D Q.t/X . In
particular, taking X D ek , we obtain that the kth
column ofQ seen in the fixed frame corresponds to the
unit vector ek in the body frame, with velocity ! 
 ek
in the body frame, and velocityQ.! 
 ek/ in the fixed
frame. Equivalently, PQek D Qb!ek for all k D 1; 2; 3

and we deduce the equation for the orientation matrix
Q.t/,

PQ D Qb!: (3)

Here, we shall use often the standard hatmap
notation, satisfying b!x D ! 
 x (for all x), for the
correspondence between skew-symmetric matrices and
vectors in R3,

b! D
0
@ 0 �!3 !2
!3 0 �!1

�!2 !1 0

1
A ; ! D

0
@!1!2
!3

1
A :

Since the matrix QT PQ D b! is skew-symmetric,
we observe that the orthogonality QTQ D I of
the orientation matrix Q.t/ is conserved along time.
As an illustration, we plot in right picture of Fig. 1
the trajectories of the columns of Q, corresponding
to orientation of the principal axis of the rigid body
relative to fixed frame of the laboratory. It can be
seen that even in the absence of an external potential,
the solution for Q.t/ is nontrivial (even though the
solution y.t/ of the Euler equations alone is peri-
odic).

Angular Momentum
The angular momentum y 2 R3 of the rigid body is
obtained by integrating the quantity x 
 v over the
body, y D R

B x 
 v dm.x/; and using v D x 
 !,
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a calculation yields the Poinsot relation y D �!.
Based on Newton’s first law, it can be shown that in
the absence of external forces the angular momentum
is constant in the fixed body frame, that is, the quantity
Q.t/y.t/ is constant along time. Differentiating, we
obtain Q Py D � PQy, which yields Py D �! 
 y:

Considering the body frame with principal axis, the
equations of motion of a rigid body in the absence of
an external potential can now be written in terms of the
angular momentum y D .y1; y2; y3/

T , yj D Ij!j , as
follows:

d

dt
y Dby J�1y;

d

dt
Q D Q1J�1y; (4)

where J D diag.I1; I2; I3/ is a diagonal matrix.
We notice that the flow of (4) has several first

integrals. As mentioned earlier,Qy is conserved along
time, and since Q is orthogonal, the Casimir

C.y/ D 1

2

�
y21 C y22 C y23

�
(5)

is also conserved. It also preserves the Hamiltonian
energy

H.y/ D 1

2

�
y21
I1

C y22
I2

C y23
I3

�
; (6)

which is not surprising because the rigid body equa-
tions can be reformulated as a constrained Hamiltonian
system as explained in the next section.

Remark 2 The left equation in (4) is called the Euler
equations of the free rigid body. Notice that it can
be written in the more abstract form of a Lie-Poisson
system

Py D B.y/rH.y/;
where H.y/ is the Hamiltonian (6) and the skew-
symmetric matrix B.y/ D by is the structure matrix
of the Poisson system. (Indeed, the associated
Lie-Poisson bracket is given by fF;Gg.y/ D
rF.y/T B.y/rG.y/ for two functions F.y/;G.y/. It
can be checked that it is antisymmetric and it satisfies
the Jacobi identity.) Notice that it cannot be cast as a
canonical Hamiltonian system in R3 because B.y/ is
not invertible.

Formulation as a Constrained Hamiltonian
System
The dynamics is determined by a Hamiltonian system
constrained to the Lie group SO.3/, and evolving on
the cotangent bundle T �SO.3/. Consider the diagonal
matrix D D diag.d1; d2; d3/ with coefficients defined
in (2) which we assume to be nonzero for simplicity
(see Remark 1). We observe that the kinetic energy T
in (1) can be written as

T D 1

2
trace.bwDbwT / D trace. PQD PQT /;

where we use (3) and QTQ D I . Introducing the
conjugate momenta

P D @T

@ PQ D PQD;

we obtain the following Hamiltonian where bothP and
Q are 3 
 3 matrices

H.P;Q/ D 1

2
trace.PD�1P T /C U.Q/

and where we suppose to have, in addition to T , an
external potential U.Q/. Then, the constrained Hamil-
tonian system for the motion of a rigid body writes

PQ D rPH.P;Q/ D PD�1;
PP D �rQH.P;Q/ �Q�

D �rU.Q/�Q� (� symmetric);

0 D QTQ � I; (7)

where we use the notations rU D .@U=@Qij /,
rQH D .@H=@Qij /, and similarly for rPH . Here,
the coefficients of the symmetric matrix � correspond
to the six Lagrange multipliers associated to the
constraint QTQ � I D 0. Differentiating this
constraint, we obtain QT PQ C PQTQ D 0, which
yields QTPD�1 C D�1P TQ D 0: This implies that
(7) constitute a Hamiltonian system constraint on the
manifold

P D f.P;Q/ 2 R
3�3 
 R

3�3 IQTQ D I;

QTPD�1 CD�1P TQ D 0g:
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Notice that this is not the usual cotangent bundle asso-
ciated to the manifold SO.3/, which can be written as

T �SO.3/ D f.P ;Q/ 2 R
3�3 
 R

3�3 IQTQ D I;

QTP C P
T
Q D 0g;

but if we consider the symplectic change of variable
.P;Q/ 7! .P ;Q/ with P D P � Q� and the
symmetric matrix � D .QTP C PTQ/=2, then we
obtain that (7) define a Hamiltonian system on the
cotangent bundle T �SO.3/ in the variables P ;Q.

Lie-Poisson Reduction
We observe from the identity

T D 1

2
trace.PD�1P T / D 1

2
trace.QTPD�1.QTP /T /

that the Hamiltonian T of the free rigid body depends
on P;Q only via the quantity Y D QTP . We
say that such Hamiltonian is left-invariant. It is
a general result, see Marsden and Ratiu [10] or
Hairer et al. ([6], Sect. VII.5.5), that such a left-
invariant quadratic Hamiltonian on a Lie group can
be reduced to a Lie-Poisson system (see Remark 2)
in terms of Y.t/ D Q.t/T P.t/. Indeed, using the
notation skew.A/ D 1

2
.A �AT /, a calculation yields

skew. PY / D skew. PQTP CQT PP/
D skew.D�1Y T Y / � skew.QTrU.Q//:

Observing 2skew.Y / D Oy, we deduce the reduced
equations of motion of a rigid body in the presence of
an external potential U.Q/,

Py DbyJ�1y � rot.QTrU.Q//; PQ D Q1J�1y;
(8)

where for all square matrices M , we define 1rotM D
M �MT . In the absence of an external potential (U D
0), notice that we recover the equations of motion of
a free rigid body (4). We highlight that the reduced
(8) are equivalent to (7) using the transformation Oy D
QTP � PTQ. Written out explicitly, notice that the
left part of (8) yields

Py1 D
�
1

I3
� 1

I2

�
y2y3

C
3X

kD1

�
Qk2

@U.Q/

@Qk3

�Qk3

@U.Q/

@Qk2

�
;

Py2 D
�
1

I1
� 1

I3

�
y3y1

C
3X

kD1

�
Qk3

@U.Q/

@Qk1

�Qk1

@U.Q/

@Qk3

�
;

Py3 D
�
1

I2
� 1

I1

�
y1y2

C
3X

kD1

�
Qk1

@U.Q/

@Qk2

�Qk2

@U.Q/

@Qk1

�
:

The Hamiltonian associated to (8) can be written as

H.y;Q/ D 1

2

�
y21
I1

C y22
I2

C y23
I3

�
C U.Q/:

Recall that the Hamiltonian represents the mechanical
energy of the system and that it is conserved along
time.

Rigid Body Integrators
We first focus on numerical integrators for the free
rigid body motion (4). We shall see further that such
integrators can serve as basic brick to solve the rigid
body (8) in the presence of external forces.

Quaternion Implementation
For an efficient implementation, it is a standard ap-
proach to use quaternions to represent the rotation
matrices in R3, so that the multiplication of two rota-
tions is equivalent to the product of the corresponding
quaternions. (Other representations of rotations can be
considered, in particular one can use the Euler angles
(which may suffer from discontinuities) or one can
also use simply 3 
 3 orthogonal matrices (usually
more costly and subject to roundoff errors).) Notice
that the geometric properties of a rotation can be read
directly on the corresponding quaternion. Precisely,
any orthogonal matrix Q with detQ D 1 can be
represented by a quaternion q of norm kqk D 1 with
kqk2 D q20 C q21 C q22 C q23 by the relation

Q D kqk2IC2q0beC2be2; q D q0Ciq1Ciq2Ckq3;
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where the vector e D .q1; q2; q3/
T gives the axis

of rotation in R
3 and the rotation angle � satisfies

tan.�=2/ D
q
q21 C q22 C q23=q0. If Q is the orien-

tation matrix of the rigid body, then the coefficients
q0; q1; q2; q3 are called the Euler parameters of the rigid
body.

Jacobi’s Analytic Solution Jacobi [7] derived the
analytic solution for the motion of a free rigid body
and defined to this aim the so-called Jacobi analytic
functions as

sn.u; k/ D sin.'/; cn.u; k/ D cos.'/;

dn.u; k/ D
q
1 � k2 sin2.'/; (9)

where the Jacobi amplitude ' D am.u; k/ with mod-
ulus 0 < k � 1 is defined implicitly by an el-
liptic integral of the first kind (see Jacobi’s formulas
in Fig. 2). This approach can be used to design a
numerical algorithm for the exact solution of the free
rigid body motion. We refer to the article by Celle-
doni et al. [2] (see details on the implementation and
references therein), and we mention that the Jacobi el-
liptic functions (9) can be evaluated numerically using
the so-called arithmetic-geometric mean algorithm.

Algorithm 1 (Resolution of the Euler equations) As-
sume I1 � I2 � I3 (similar formulas hold for other
orderings). Consider the constants

c1 D I1.I3 � I2/

I2.I3 � I1/
; c2 D 1 � c1; (10)

and the quantities

k1 D
q
y21 C c1y

2
2 ; k2 D

q
y21=c1 C y22 ;

k3 D
q
c2y

2
2 C y23 :

For c2k21 � c1k
2
3 , the solution of the Euler equations

at time t D t0 C h is .Notice that k1; k2; k3 are
related to the square root terms in Fig. 2 and depend
on y only via the conserved quantities C.y/;H.y/.
Here, we present a formulation different to Jacobi to
avoid an unexpected roundoff error accumulation in
the numerical implementation, see Vilmart [13]./

y1.t/ D k1cn.u; k/; y2.t/ D k2sn.u; k/;

p = − = −sin J sin j cos am ul
A

l 2−Ch
A(A−C )Ö

q = − = sin J sin j sin am ul
B

l 2−Ch
B(B−C )Ö

r = = ±cos J D am ul
C

Ah−l 2

C(A−C )Ö

Rigid Body Dynamics, Fig. 2 Facsimile of the free rigid body
solution using Jacobi elliptic functions in the historical article of
Jacobi ([7], p. 308). The constants A;B; C denote the moments
of inertia

y3.t/ D ık3dn.u; k/ D ı

q
k23 � c2y2.t/2;

where we use the Jacobi elliptic functions (9) with

k2 D c2k
2
1

c1k
2
3

; u D ıh�k3 C �;

� D
s
.I3 � I2/.I3 � I1/

I1I2I
2
3

;

ı D sign.y3/ D ˙1, and � is a constant of integration
determined from the initial condition y.t0/. We have
similar formulas for c2k21 � c1k

2
3 .

The solution for the rotation matrix Q.t/ can next
be obtained as follows: The angle �.t/ of rotation can
be obtained by an elliptic integral of the third kind,
the conservation of the angular momentum in the body
frame yieldsQ.t/y.t/ D Q.t0/y.t0/, which permits to
recover the axis of the rotationQ.t/ (see [2]).

Splitting Methods � Splitting Methods are a conve-
nient way to derive symplectic geometric integrators
for the motion of a rigid body. This standard approach,
proposed by McLachlan, Reich, and Touma and Wis-
dom in the 1990s, yields easy to implement explicit
integrators. A systematic comparison of the accuracy
of rigid body integrators based on splitting methods
is presented by Fassò [4]. The main idea is to split
the Hamiltonian H.y/ into several parts in such a
way that the equations can be easily solved exactly,
using explicit analytic formulas (in most cases, the
Euler equations shall reduce to the harmonic oscillator
equations).

http://dx.doi.org/10.1007/978-3-540-70529-1_146
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Three Rotation Splitting
One can consider the splitting

H.y/ D R1.y/CR2.y/CR3.y/;

where Rj .y/ D y2j =.2Ij /;

which yields the numerical method

'
R3
h=2 ı 'R2h=2 ı 'R1h ı 'R2h=2 ı 'R1h=2;

where '
Rj
h is the exact flow of (4) where in the matrix

J�1 D diag.I�1
1 ; I�1

2 ; I�1
3 /, the values I�1

k with k¤ j

are replaced by zero.

Symmetric + Rotation Splitting
It is often more efficient to consider the splitting given
by the decomposition

H.y/ D R.y/C S.y/;

where R.y/ D
�
1

I1
� 1

I2

�
y21
2
;

S.y/ D 1

2

�
y21 C y22
I2

C y23
I3

�

and defined by

'Rh=2 ı 'Sh ı 'Rh=2:

Remark 3 Notice that this splitting method is exact if
the rigid body is symmetric, that is, for I1 D I2, but
also for I1 D I3 or I2 D I3, and it is particularly
advantageous in the case of a nearly symmetric body.

Consider for all scalar � and vector ! D
.!1; !2; !3/

T the orthogonal matrices

U.�/ D
0
@1 0 0

0 cos � sin �
0 � sin � cos �

1
A ;

V .�/ D
0
@ cos � sin � 0

� sin � cos � 0
0 0 1

1
A ; exp.b!/;

which can be respectively represented by the
quaternions

u.�/ D cos.�=2/ � i sin.�=2/;

v.�/ D cos.�=2/� k sin.�=2/;

a.!/ D cos.˛=2/C ˛�1 sin.˛=2/.i!1 C j!2 C k!3/;

˛ D
q
!21 C !22 C !23 ;

where the formula for a.!/ is related to the Rodriguez
formula for the exponential of a skew-symmetric ma-
trix. Then, we have the following algorithm.

Algorithm 2 (Symmetric + Rotation splitting for the
free rigid body motion)
1. Apply the flow 'Rt with t D h=2 given by

y.t/ D U.˛t/y.0/;

Q.t/ D Q.0/U.�˛t/;
˛ D y1.0/=I1:

2. Apply the flow 'St with t D h given by

y.t/ D V.ˇt/y.0/;

Q.t/ D Q.0/ exp.I�1
2 tby.0//V .�ˇt/;

ˇ D I�1
3 � I�1

2 :

3. Apply again the flow 'Rt with t D h=2.

RATTLE and the Discrete Moser–Veselov Algo-
rithm The RATTLE integrator is a famous symplectic
numerical method for general constrained Hamiltonian
systems. Applied to the rigid body problem (7), as
proposed by McLachlan and Scovel, and Reich in the
1990s, it can be written as

P1=2 D P0 � h

2
rU.Q0/ � h

2
Q0�0;

Q1 D Q0 C hP1=2D
�1; QT

1 Q1 D I

P1 D P1=2 � h

2
rU.Q1/� h

2
Q1�1;

QT
1 P1D

�1 CD�1P T
1 Q1 D 0; (11)

where �0 and �1 are symmetric matrices which can
be eliminated using the constraints. Several approaches
for the resolution of this system are discussed by
McLachlan and Zanna [11], (see also (14) below).
The angular momentum y can be recovered from the
matrices P;Q using Oy D QTP � PTQ. It can be
checked that in the absence of an external potential



1274 Rigid Body Dynamics

(U D 0) this algorithm exactly conserves all quadratic
invariants: the angular momentum in the body frame
Qy, the Casimir C.y/, the HamiltonianH.y/.

An integrable discretization of the free rigid body
motion is the Discrete Moser–Veselov (DMV) algo-
rithm by Moser and Veselov [12] with update for the
orientation matrix proposed by Lewis and Simo [9].
It turns out that this discretization is equivalent to
the RATTLE algorithm applied to the free rigid body
equations (see (11) with U D 0), as shown by
McLachlan and Zanna [11]. The DMV algorithm can
be formulated as

bynC1 D ˝nbyn ˝T
n ; QnC1 D Qn˝

T
n ; (12)

where the orthogonal matrix ˝n is computed from
˝T
n D � D˝n D hbyn and ˝T

n ˝n D I . Some
algebraic calculations yield the following quaternion
implementation which is obtained by observing that the
orthogonal matrix˝T

n in (12) can be expressed through
the Caylay transform˝T

n D .I Cben/.I Cben/�1 where
en 2 R

3 and ˝T
n can be represented by a quaternion of

norm 1,

	n D 1C ien;1 C jen;2 C ken;3q
1C e2n;1 C e2n;2 C e2n;3

: (13)

Algorithm 3 (Standard DMV algorithm for the free
rigid body motion) Given the angular momentum yn
and the quaternion qn corresponding to the orientation
matrix Qn at time t0, we first compute the vector Yn
from the quadratic equation

Yn D ˛nyn C h

2
bY nJ�1Yn; (14)

where ˛n D 1 C e2n;1 C e2n;2 C e2n;3 with en;j D
hYn;j =.2Ij /: This nonlinear system can be solved by
using a few fixed-point iterations. The solution at time
t D t0 C h is obtained by

ynC1 D yn C ˛�1
n h

bY nJ�1Yn; qnC1 D qn � 	n;
(15)

where the configuration update is given by a simple
multiplication by the quaternion 	n given in (13) with
en;j D hYn;j =.2Ij /:

Remark 4 Suppressing the factor ˛n in (14) and (15)
yields the implicit midpoint rule for problem (4), which
exactly conserves all first integrals of the system (in
particular the orthogonality ofQ) because these invari-
ants are quadratic. Notice, however, that the implicit
midpoint rule is not a symplectic integrator for the
constrained Hamiltonian system (7) formulated in the
variables P;Q.

The RATTLE/DMV algorithm has only order 2 of
accuracy. It is shown by Hairer and Vilmart [5] that a
suitable perturbation of the constant moments of inertia
I1; I2; I3 permits to improve the accuracy up to an
arbitrarily high order of convergence, while sharing
most of the geometric properties of the original DMV

algorithm (see Table 2).

Algorithm 4 (Preprocessed DMV algorithm of high
order 2p for the free rigid body)
1. Compute the modified moments of inertia eI j ; j D
1; 2; 3 defined by

eI�1
j D I�1

j

�
1C h2s3.yn/C : : :C h2s2p�1.yn/

�
Ch2t3.yn/C : : :C h2t2p�1.yn/

where the first scalar functions sk; tk are given in
Table 1 and depend on yn only via the quadratic
invariants C.yn/;H.yn/ in (5) and (6).

2. Apply the standard DMV algorithm (see Algo-
rithm 3) with the modified moments of inertiaeI j ; j D 1; 2; 3 instead of the original ones.

Rigid Body Integrators in the Presence of an Ex-
ternal Potential We now consider the case where the
rigid body is subject to external forces. Consider the
equations of motion of the rigid body (8) with an
external potential U.Q/.

Example 1 (Heavy top) For instance, in the case of an
asymmetric rigid body subject to gravity (heavy top),
assuming that the third coordinate of the fixed frame
is vertical and that the center of gravity of the rigid
body has coordinates .0; 0; 1/T in the body frame, the
potential energy due to gravity is given by U.Q/ D
Q33.

Splitting Method
A standard approach for the numerical treatment of an
external force applied to the rigid body is to consider
the usual Strang splitting method
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Rigid Body Dynamics, Table 1 Scalar functions for the preprocessed DMV algorithm (Algorithm 4)

ı D I1I2I3; �a D I a1 C I a2 C I a3 ; �b;c D I b2 C I b3
I c1

C I b3 C I b1
I c2

C I b1 C I b2
I c3

;

s3.y/ D ���1

3
H.y/C �1

6ı
C.y/; t3.y/ D �1

6ı
H.y/� 1

3ı
C.y/;

s5.y/ D 3�1 C 2ı�
�2

60ı
H.y/2 C 1� �1;1

30ı
C.y/H.y/ C �2 � ı�

�1

30ı2
C.y/2; t5.y/ D �9C �1;1

60ı
H.y/2 C 6ı�

�1 � �2

60ı2
C.y/H.y/

� �1
60ı2

C.y/2;

s7.y/ D 15� ı�
�3 � 2�1;1

630ı
H.y/3 C 6ı�1;2 � 100ı�

�1 C 53�2

2520ı2
C.y/H.y/2 C 9�1 C 10ı�

�2 � 6�2;1

420ı2
C.y/2H.y/

C4ı C 17�3 � 15ı�1;1

2520ı3
C.y/3;

t7.y/ D 9ı�
�1 C ı�1;2 � 11�2

1260ı2
H.y/3 C 47�1 C 13�2;1 � 38ı�

�2

2520ı2
C.y/H.y/2 C �3 C 2ı�1;1 � 85ı

1260ı3
C.y/2H.y/

C34ı�
�1 � 19�2

2520ı3
C.y/3:

Rigid Body Dynamics, Table 2 Geometric properties of free rigid body integrators

Exact preservation of quadratic invariants
Order of

Integrator accuracy Qy C.y/ H.y/ Poisson Symplectic

Jacobi’s analytic solution (see
Algorithm 1)

Exact
p p p p p

Symmetric + Rotation splitting
(Algorithm 2)

2
p p

no
p p

RATTLE/DMV algorithm
(Algorithm 3)

2
p p p p p

Implicit midpoint rule (Remark 4) 2
p p p

no no

Preprocessed DMV algorithm
(Algorithm 4)

2p
p p p p

no

'Uh2 ı ˚T
h ı 'Uh=2; (16)

or higher-order splitting generalizations, or high-order
composition methods based on (16), where 'Ut repre-
sents the exact flow of

PQ D 0; Py D �rot.QTrU.Q//

which can be expressed simply as Q.t/ D
Q.0/; y.t/ D y.0/ � t rot.Q.0/TrU.Q.0///: Here,
˚T
h is a suitable numerical method for the free rigid

body problem (4) in the absence of an external
potential, as presented previously.

High-Order Nyström Splitting Methods
One can also consider standard high-order � Splitting
Methods based on the flows ˚T

h and ˚U
h . It can be

observed that the Poisson bracket fT; fT;U gg vanishes,
while the bracket V D fU; fU; T gg is independent
of y and depends only on the orientation matrix Q.
This implies that classical Nyström splitting methods
originally designed for solving order 2 differential

http://dx.doi.org/10.1007/978-3-540-70529-1_146
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equations can successfully be applied in our context.
These methods involve not only the flows associated
to the Hamiltonian T .y/ and the potential U.Q/, but
also the potential V.Q/. For instance, one can use the
splitting method

'Uh=6 ı 'Th=2 ı 'U2h=3 ı 'V�h3=72 ı 'Th=2 ı 'Uh=6
which is a symmetric scheme of order 4, or other
higher-order generalizations as studied by Blanes
et al. [1]. Notice that in the case of the heavy top
(Example 1) whereU.Q/ D Q33, the flows 'Uh ; '

V
h are

the exact solutions of PQ D 0; Py D .Q32;�Q31; 0/
T ;

and PQ D 0; Py D .Q32Q33=I1;�Q31Q33=I2; 0/
T ;

respectively.

Comparison of the Geometric Properties of the Free
Rigid Body Integrators We compare in Table 2 the
geometric properties of the free rigid body integrators
presented in this entry. Column “symplectic” indicates
whether the method is a symplectic integrator. In the
context of backward error analysis, this means that
the numerical solution yn;Qn formally coincides with
the exact solution at time tn D nh of the modified
differential equation, which is of the form

Py D by reHh.y/; PQ D Q3reHh.y/;

where eHh D H C hK2 C : : : is a formal series
in powers of h. If it has this form only for the y
component, the method is still a Poisson integrator
(column “Poisson”).
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Rosenbrock Methods

Florian Augustin and Peter Rentrop
Technische Universität München, Fakultät
Mathematik, Munich, Germany

Synonyms

Generalized Runge-Kutta methods; Linear-implicit
Runge-Kutta methods; Rosenbrock methods; SDIRK
methods

Definition

Rosenbrock methods are suitable for the numerical
solution of stiff initial value problems

y0 D f .x; y/; y.x0/ D y0; y 2 R
n:

Using the Jacobian J D @f

@y
a fixed number of linear

equation systems must be solved in every integration
step.
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Description

Rosenbrock [14] originally studied stabilization prob-
lems arising from the one-dimensional heat equation
when he applied the method of lines approach. Within
this context he defined a new class of methods, which
he characterized as follows:

Some general implicit processes are given for the solution
of simultaneous first-order differential equations. These
processes, which use successive substitution, are implicit
analogues of the (explicit) Runge-Kutta processes. They
require the solution in each time step of one or more sets
of simultaneous linear equations, usually of a special and
simple form.

Today the most common way to describe these
methods is via singly diagonally implicit Runge-Kutta
methods (SDIRK), see Alexander [1]. SDIRK methods
are given by

y1 D y0 C
sX

jD1
bjKj

Ki D hf

0
@y0 C

iX
jD1

ˇi;jKj

1
A ; i D 1; : : : ; s;

with the special choice ˇi;i D ˇ. About 1973 Wanner
introduced an additional additive sum, leading to the
famous Rosenbrock methods, which can be interpreted
as linearized SDIRK methods. For the numerical solu-
tion of an autonomous stiff ordinary differential equa-
tion (ODE),

y0 D f .y/; y.x0/ D y0; y 2 R
n

the s-stage Rosenbrock method is defined as

y1 D y0 C
sX

jD1
bjKj

Ki D hf

0
@y0 C

i�1X
jD1

ai;jKj

1
A

ChJ

iX
jD1

�i;jKj ; i D 1; : : : ; s

�i;i D �;

where y1 is an approximation of y.x0 C h/, h de-
notes the step size of the method and s the stage
number, bj are the weights, ai;j and �i;j are real
coefficients.

Characterization of the Method
• In each integration step one LR decomposition of

the matrix I � h�J must be performed. In general
one chooses the exact Jacobian J D @f

@y
evaluated

at the respective integration timestep. If J is an
arbitrary matrix, the method is usually called W
method, see [16].

• s linear equations have to be solved with the LR
decomposed matrix.

• Nonautonomous problems are transformed by an
.n C 1/-st differential equation ynC1 D x, i.e.,
y0
nC1 D 1, into autonomous ODEs.

• Implicit systems My0 D f .y/, with a regular
matrix M , can be handled by a direct, structure
preserving decomposition ofM � h�J .

• If all �i;j are chosen to be 0, one gets an explicit
Runge-Kutta (RK) method.

A-Stability Properties
To study the stability properties of Rosenbrock meth-
ods, the scalar test differential equation

y0 D �y; y.x0/ D y0; � 2 C

is used. The Rosenbrock scheme yields a rational
function approximationR.z/,

y1 D R.z/y0; z D �h

where R.z/ D 1

.1 � �z/s

sX
kD0

L
.s�k/
k

�
1

�

�
.��z/k

(if the convergence order p � s, L.˛/k are generalized
Laguerre polynomials).

Remark One has stability at infinity, iff

lim
z!1 jR.z/j D

ˇ̌
ˇ̌Ls

�
1

�

�ˇ̌ˇ̌ � 1; Ls WD L.0/s :

Order Conditions
The simplified equations of conditions for the con-
vergence order p are derived by applying the theory
of Butcher [2] series. They are listed in Kaps and
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Wanner [10] and in Nørsett and Wolfbrandt [11], see
also the monograph Hairer and Wanner [7].

Stepsize Control
An efficient stepsize control is based on two methods
of different order. One can achieve this by h-2h ex-
trapolation or by embedding techniques, see Stoer and
Bulirsch [18]. The codes GRK4T or GRK4A in Kaps
and Rentrop [9] are based on embedded Rosenbrock
pairs of order 3 and 4, respectively. The code GRK4A
is A-stable (� D 0:395), whereas GRK4T is only
89:3ı-stable for � D 0:231, but leads to smaller
truncation errors.

Remarks
Since the end of 1970 there was a real push in publi-
cations for Rosenbrock methods and stiff generalized
RK methods, see, e.g., v.d. Houwen [8], Strehmel
and Weiner [19], and Veldhuizen [20]. The numerous
NUMDIFF conference proceedings from Halle include
further material.

Special Rosenbrock Approaches

Partitioned Runge-Kutta Methods (PRK)
The partitioned approach is quite natural. The treat-
ment of stiff problems with nonstiff integrators leads to
extraordinary computing time, wrong results, or failure
of the methods. The opposite situation, the solution of a
nonstiff problem with a stiff integrator is less sensitive.
However, depending on the problem, computing time is
increased by a factor 2–20. After suitable renumbering
of the components of y, there holds

y D .y1; : : : ; yn/
T ; y 2 R

n

yS D .y1; : : : ; yns /
T stiff components

yN D .ynsC1; : : : ; yn/T nonstiff components

and for the right-hand side f .y/ D .fS .yS ; yN /;

fN .yS ; yN //
T . This gives the partitioned form

y0
S D fS.yS ; yN /; yS .x0/ D yS;0

y0
N D fN .yS ; yN /; yN .x0/ D yN;0:

As a numerical scheme, one can use a Rosenbrock
ansatz for the stiff part and a RK ansatz for the

nonstiff part. On the discretization level this parti-
tioning approach was done in Rentrop [13]. Steihaug
and Wolfbrandt [16] applied this partitioning on the
Jacobian level. In general the number of order condi-
tions explode, since a PRK method has to satisfy the
Rosenbrock conditions, the RK-conditions and addi-
tional coupling conditions.

Nevertheless, in order to improve the reliability of
nonstiff codes it is possible to embed an A-stable
Rosenbrock (3)4-pair into a common 4(5) RK-pair.
Strategies for stiffness detection or componentwise
detections can be found in [13].

Differential-Algebraic Equations
(DAE)
In the 1980s and 1990s, better computer equipment
allowed the transfer of mathematical modeling to
preprocessors. Typical applications from multibody
system dynamics or electric circuit simulation use
modularized techniques, which replace the state
coordinates (minimal number of coordinates) by
descriptor coordinates (redundant information).
Equivalent mathematical models lead to implicit
ODEs or to DAEs. The index-1 DAE in normal form
reads as

y0 D f .y; z/; y 2 R
ny ; z 2 R

nz

0 D g.y; z/;

ny C nz D n, with @g

@z having a bounded inverse.
There are two main approaches to handle these DAEs.
One can treat them as ODEs on manifolds, or one
can embed them in the class of singular perturbed
problems

"z0 D g.y; z/; where " ! 0 (infinite stiffness).

The latter approach can be treated as a Rosenbrock
ansatz. Setting " D 0 creates new method classes,
where stability and convergence must be studied, see
Hairer et al. [6].

Remark In electric circuit simulation the index can
be limited by 2, allowing the construction of a special
Rosenbrock method: CHORAL, see Günther et al. [4].
A combined strategy for partitioning and multirating
can be found in Günther et al. [5].
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Conclusions

The use of the Jacobian J D @f

@y
explicitly in the dis-

cretization characterizes advantages and disadvantages
of Rosenbrock methods. If the solution components
vary a lot and if the Jacobian can be computed with
low costs, Rosenbrock methods with orders up to 4
are superior for low tolerances (up to 4 digits). A
typical code is ode23s in the MATLAB ODE suite, see
Shampine and Reichelt [15].

Since partitioning, multirating and stiffness detec-
tion are well developed, and the Rosenbrock methods
work competitive in applications like electric circuit
simulation [4] [5]. They form the numerical kernel in
the alarm model of the river Rhine for pollution or
high/low water prediction, see Steinebach and Ren-
trop [17].

It does not make sense to construct an all-purpose
ODE Rosenbrock package. The linear-implicit dis-
cretization prevents the use of refined iteration tech-
niques. Moreover, the semi-explicit structure of the
method may lead to order reduction [7] down to or-
der 2. In [7] there are very instructive comparisons of
different Rosenbrock and RK codes.

In education the low overhead of Rosenbrock meth-
ods and their clearly organized structure are advanta-
geous. In the second edition of “Numerical Recipes”
[12] a Rosenbrock code is listed. Gottwald and Wan-
ner [3] presented a Rosenbrock version for chemical
reaction simulations in high-school classes.
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Round-Off Errors

Bo Einarsson
Linköping University, Linköping, Sweden

Two sources leading to inaccuracies in numerical com-
putations are errors in data, and errors when perform-
ing the arithmetic operations. Examples are � and 1=3,
and of course data obtained from measurement. The
errors obtained can co-operate in later calculations,
causing an error growth, which may be quite large.
As an example, rounding is the cause of an error,
while cancellation increases its effect and recursion
may cause a build-up of the final error. The build-up
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of errors may also be disastrous with ill-conditioned
problems.

General references on rounding are Higham
[4, Chap. 1] and Dahlquist and Björck
[3, Sects. 2.1, 2.3–2.4].

Rounding

The calculations are usually performed with a cer-
tain fixed number of significant digits, so after each
operation the result usually has to be rounded, in-
troducing a rounding error whose modulus in the
optimal case (rounding to nearest) is at most half a
unit in the last digit. If rounding upwards or down-
wards (truncation) is performed the rounding error
may be as large as one unit in the last digit. Directed
rounding is essential for example at the implemen-
tation of Interval Arithmetic. Another disadvantage
with truncation is that in many cases the rounding
errors have the same sign and therefore do add up,
while in the round to nearest case a certain cancella-
tion of the errors can occur. At the next computation
the rounding error has to be taken into account, as
well as a possible new rounding error. The prop-
agation of rounding errors is therefore quite com-
plex.

Example 1 (Rounding) Consider the following MAT-
LAB-code for advancing from a to b with the step
h D .b � a/=n:

function step(a,b,n)
\% step from a to b with n steps
h=(b-a)/n;
x=a;
disp(x)
while x $<$ b,
x = x + h;
disp(x)

end

We get one extra step with a D 1, b D 2, and
n D 3, but the correct number of steps with b D 1:1.
In the first case because of the rounding downward of
h D 1=3 after three steps we are almost but not quite
at b, and therefore the loop continues. In the second
case also b is an inexact number on a binary computer,
and the inexact values of x and b happen to compare
as wanted. – It is advisable to let such a loop work

with an integer variable instead of a real variable. If
real variables are used it is advisable to replace while
x < b with while x < b-h/2.

The example was run in IEEE 754 double precision.
In another precision a different result may be obtained!

Cancellation

Cancellation occurs from the subtraction of two almost
equal quantities. Assume x1 D 1:243 ˙ 0:0005 and
x2 D 1:234 ˙ 0:0005. We then obtain x1 � x2 D
0:009˙0:001, a result where several significant leading
digits have been lost, resulting in a large relative error!
Another example is that the calculation of 109C1�109
in IEEE single precision returns zero, while integer
arithmetic returns the correct vale one. The reason is
that 109 times the relative rounding error u D 5:9605 �
10�8 evaluates to 59:605, which is much greater than
1, so that the addition does not change the value. An
example by Kulisch [5, p. 251] with the scalar product
of two vectors, with five components each, returns
both the wrong magnitude and the wrong sign in IEEE
Double Precision.

Example 2 (Quadratic equation) The roots of the
equation ax2 C bx C c D 0; a ¤ 0; are given by
the following mathematically, but not numerically,
equivalent expressions

x˛1;2 D �b ˙ p
b2 � 4ac

2a

x
ˇ
1;2 D �2c

b ˙ p
b2 � 4ac

Using IEEE 754 single precision and a D 1:0 �10�5;
b D 1:0 � 103; and c D 1:0 � 103 we get x˛1 D
�3:0518, x˛2 D �1:0000 � 108, xˇ1 D �1:0000, and

x
ˇ
2 D �3:2768 � 107. We thus get two very different

sets of roots for the equation! The reason is that since
b2 is much larger than 4jacj the square root will get
a value very close to jbj and when the subtraction
of two almost equal values is performed the error in
the square root evaluation will dominate. In double
precision the value of the square root of 106 � 0:04 is
999:9999799999998, which is very close to b D 1000.
The two correct roots in this case are one from each set,
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x˛2 and xˇ1 , for which there is addition of quantities of
the same sign, so no cancellation occurs.

Example 3 (Exponential function) The exponential
function ex can be evaluated using the Maclaurin series
expansion. This works reasonably well for x > 0 but
not for x < �3 where the expansion terms an will
alternate in sign and the modulus of the terms will
increase until n � jxj. Even for moderate values of x
the cancellation can be so severe that a negative value
of the function is obtained!

Using double (or multiple) precision is not the cure
for cancellation, but switching to another algorithm
may help. In order to avoid cancellation in Example 2
we let the sign of b decide which formula to use, and
in Example 3 we use the relation e�x D 1=ex:

Two important ways to circumvent cancellation is
series expansion and multiplication with the conjugate
quantity.

Example 4 (Simple trigonometric expression) Con-
sider f .x/ D 1�cosx

sin x which is of the form 0
0

for x D 0,
but using series expansion we get x

2
C � � � and thus a

finite well determined value at x D 0.
Multiplying both the nominator and denominator

with the conjugate quantity 1 C cosx converts the
expression into f .x/ D sinx

1Ccosx , which is well defined
at x D 0.

Example 5 (Complicated trigonometric expression)
Let’s now look at

f .x/ D 1

x

 
1 � 2

3
sin2

x

2
� sin2 x

2

. x
2
/2

sinx

x

!

D x

12

"
1� 2

15
x2 C 19

1680
x4 � 13

25200
x6

C 293

19958400
x8 � 181

619164000
x10 C � � �

#

In addition to the work in determining the series
expansion it is necessary to perform an error analysis
of the formula in order to determine a switch-over
point; for which values the series expansion is best
and for which values the closed form is preferable.
This switch-over point will depend both on the number
of terms used in the series expansion and the used
precision of the numerical computation.

Recursion

A common method in scientific computing is to cal-
culate a new entity based on the previous one, and
continuing in that way, either in an iterative process
(hopefully converging) or in a recursive process calcu-
lating new values all the time. In both cases the errors
can accumulate and finally destroy the computation.

Example 6 (Differential equation) Let us look at the
solution of a first order differential equation y0 D
f .x; y/. A well known numerical method is the Euler
method ynC1 D yn C h � f .xn; yn/. Two alternatives
with smaller truncation errors are the midpoint method
ynC1 D yn�1 C 2h � f .xn; yn/, which has the obvious
disadvantage that it requires two starting points, and
the trapezoidal method ynC1 D yn C h

2
� Œf .xn; yn/C

f .xnC1; ynC1/�, which has the obvious disadvantage
that it is implicit.

Theoretical analysis shows that the Euler method
is stable for small h, the midpoint method is always
unstable, while the trapezoidal method is always stable.
Numerical experiments on the test problem y0 D �2y
with the exact solution y.x/ D e�2x confirm that
the midpoint method gives a solution which oscillates
wildly. – Stability can be defined such that if the
analytic solution tends to zero as the independent vari-
able tends to infinity, then also the numerical solution
should tend to zero.

Elementary Functions

The previous sections show that there are many prob-
lems associated with even simple calculations. For the
case of elementary functions you also wish to preserve
certain important properties, e.g., monotonicity and
restriction in range. As an example, if the value of sin x
is evaluated as a bit larger than one for some argument
x, an error will occur (or a complex number result)
when evaluating

p
1 � sinx.

Evaluation of elementary functions is treated in the
classical work Cody and Waite [2]. The NIST Hand-
book [6] also treats many other important mathematical
functions, also with references to suitable software.
Another treatment of elementary functions is in [1,
Chap. 4].

Acknowledgements I thank Andrew Dienstfrey and Tommy
Elfving for valuable input.
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Runge–KuttaMethods, Explicit, Implicit

Ernst Hairer and Gerhard Wanner
Section de Mathématiques, Université de Genève,
Genève, Switzerland

Runge–Kutta methods belong to the class of one-
step integrators for the numerical solution of ordi-
nary differential equations. Nonstiff problems can be
efficiently solved with explicit Runge–Kutta meth-
ods, stiff problems with certain implicit Runge–Kutta
methods.

Explicit Runge–Kutta Methods

Classical Runge–Kutta Methods
An initial value problem Py D f .t; y/, y.t0/ D y0,
when integrated from t0 to t0 C h, becomes:

y.t0 C h/ D y0 C
Z t0Ch

t0

f .t; y.t// dt:

To obtain an improvement over the explicit Euler
method, Runge [7] suggested to discretize the integral
by the midpoint rule, and to replace the unknown value
y.t0 C h=2/ by an Euler approximation. This then
yields the method:

k1Df .t0; y0/
k2Df

�
t0 C h

2
; y0 C h

2
k1

�
y1Dy0 C hk2:

Since the midpoint rule is of second order, the error of
this approximation is y1 � y.t0 C h/ D O.h3/. After
several attempts to apply this idea with higher order
quadrature formulas, Kutta [6] formulated the general
scheme of what is now called an (explicit) Runge–
Kutta method:

k1Df .t0; y0/
k2Df .t0 C c2h; y0 C ha21k1/

k3Df .t0 C c3h; y0 C h.a31k1 C a32k2//

� � �
ksDf .t0 C csh; y0 C h.as1k1 C : : :C as;s�1ks�1//
y1Dy0 C h.b1k1 C : : :C bsks/:

The integer s is the number of stages, and the co-
efficients ci ; aij ; bj determine the particular method.
Usually, the coefficients ci are given by ci D P

j aij .
A Runge–Kutta method is called to be of order p,

if p is the largest integer such that for all sufficiently
smooth vector fields we have:

y1 � y.t0 C h/ D O.hpC1/ for h ! 0:

The above method of Runge is a two-stage method of
order 2. The most celebrated Runge–Kutta methods are
the four-stage methods of order 4, derived by Kutta [6].
Their coefficients are presented in Table 1 (aij as a
matrix, ci in the left column, and bj in the bottom row).

Methods of High Order
The construction of Runge–Kutta methods of high
order is a challenging problem. One first expands the
exact solution y.t0 C h/ and the numerical solution y1
into powers of h. A comparison of like powers of h

Runge–Kutta Methods, Explicit, Implicit, Table 1 The
Runge–Kutta method (left tableau) and the 3=8-rule (right
tableau)

0

1/2 1/2

1/2 0 1/2

1 0 0 1
1/6 2/6 2/6 1/6

0

1/3 1/3

2/3 �1=3 1

1 1 �1 1
1/8 3/8 3/8 1/8
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yields conditions on the coefficients ci ; aij ; bj . The
general algebraic structure of these conditions has been
discovered by Butcher, whose paper [1] opened the era
of modern Runge–Kutta theory.

The number of these conditions increases exponen-
tially with the order. For example, there are 200 order
conditions for order p D 8, and 1,205 conditions
for p D 10. Every solution of the system of order
conditions gives the coefficients of a Runge–Kutta
method.

Up to order p D 4, there exist explicit s-stage
Runge–Kutta methods of order p with p D s. For
order p � 5, one needs at least s D p C 1 stages,
and for order p � 7 at least s D p C 2 stages
(Butcher barriers). Much effort has been put into the
construction of methods of order higher than 6. There
exist methods of order 8 with 11 stages, methods of
order 10 with 17 stages, and methods of order 12 with
25 stages.

Embedded Pairs of Runge–Kutta Methods

An efficient implementation of one-step methods re-
quires some knowledge of the local error (i.e., error
after one step of integration). This can be obtained
by considering two explicit Runge–Kutta methods of
different orders p and bp. The difference y1 � by1
of the numerical approximations then typically gives
an excellent approximation of the local error for the
method of lower order.

For reasons of efficiency, one is interested in two
Runge–Kutta methods, for which the internal stages
k1; : : : ; ks are the same, and which differ only in the
coefficients bi . In this situation we speak about a pair
of embedded Runge–Kutta formulae. Fehlberg was the
first to construct such pairs of orders (4,5) and (7,8).
The lower order method was optimized and used for
continuing the integration, and the higher order method
for error estimation. Later, one became aware that
local extrapolation (use of the higher order method
for continuing the integration) is much more efficient.
Efforts of optimizing the higher order method, which
then is used as numerical approximation, were under-
taken by Dormand and Prince [3]. Their embedded pair
(y1 approximation of order p D 5, and by1 of order
bp D 4) is given in Table 2. Further embedded pairs of
orders 6(5) by Verner and of orders 8(7) by Prince and
Dormand are presented in [4].

Runge–Kutta Methods, Explicit, Implicit, Table 2
Embedded pair of order 5(4) by Dormand and Prince

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45

� 56
15

32
9

8
9

19372
6561

� 25360
2187

64448
6561

� 212
729

1 9017
3168

� 355
33

46732
5247

49
176

� 5103
18656

1 35
384

0 500
1113

125
192

� 2187
6784

11
84

y1
35
384

0 500
1113

125
192

� 2187
6784

11
84

0

by1 5179
57600

0 7571
16695

393
640

� 92097
339200

187
2100

1
40

Implicit Runge–Kutta Methods

Basic Implicit Methods
We consider the integrated form of the differential
equation Py D f .y/, approximate the integral by the
midpoint rule, and replace the unknown value y.t0 C
h=2/ by the arithmetic mean of y0 and y1. This yields:

y1 D y0 C hf
�y0 C y1

2

�
;

which is an implicit relation for the unknown approx-
imation y1. Replacing the integral by the trapezoidal
rule results in the scheme:

y1 D y0 C h

2

�
f .y0/C f .y1/

�
:

General Formulation
Both methods can be brought into the form:

kiDf
�
y0 C h

sX
jD1

aij kj

�
; i D 1; : : : ; s

y1Dy0 C h

sX
iD1

biki :

The implicit midpoint rule is with s D 1, a11 D 1=2,
b1 D 1, and the trapezoidal rule with s D 2, a11 D
a12 D 0, a21 D a22 D 1=2, b1 D b2 D 1=2.

Denoting the argument of f with Yi , a general
implicit Runge–Kutta method can also be written in the
form:
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YiDy0 C h

sX
jD1

aij f .Yj /; i D 1; : : : ; s

y1Dy0 C h

sX
iD1

bif .Yi /:

Simplifying Assumptions and Fully Implicit
Methods
The construction of implicit Runge–Kutta methods is
much easier than that of explicit Runge–Kutta meth-
ods. It is based on Butcher’s simplifying assumptions
[2]:

B.p/ W
sX
iD1

bi c
q�1
i D 1

q
; q D 1; : : : ; p;

C.�/ W
sX

jD1
aij c

q�1
j D c

q
i

q
;

i D 1; : : : ; s; q D 1; : : : ; �;

D.�/ W
sX
iD1

bi c
q�1
i aij D bj

q
.1 � c

q
j /;

j D 1; : : : ; s; q D 1; : : : ; �:

Condition B.p/ expresses the fact that the quadrature
formula .bi ; ci / is of orderp, andC.�/ is a similar con-
dition for the internal stages. Some important classes of
methods are summarized in Table 3.

Gauss methods are based on the quadrature for-
mula of maximal order p D 2s. The coefficients
aij are obtained from the condition C.s/ which rep-
resents a linear system. This method is symmetric
and symplectic, and is thus well suited for the long-
time integration of Hamiltonian systems. Radau IA
and Radau IIA are based on the left-hand and right-
hand Radau quadrature, respectively. The latter is a
method of choice for the numerical solution of stiff
differential equations. Lobatto methods are based on
Lobatto quadrature (c1 D 0, cs D 1, and maximal
order 2s � 2). The last column of Table 3 shows the
stability function of the methods. It is the rational
functionR.z/ for which the numerical solution satisfies
y1 D R.h�/y0, when the method is applied to the
scalar test equation Py D �y. In the listed cases R.z/
is a Padé approximation to the exponential ez.

Collocation Methods
An apparently different approach for the numerical
solution of differential equation is by collocation. For
an initial value problem Py D f .t; y/, y.t0/ D y0
collocation methods are defined as follows.

Let c1; : : : ; cs be s real distinct numbers (usually
ordered and in the interval Œ0; 1�). Consider the poly-
nomial u.t/ of degree s that satisfies u.t0/ D y0 and
the collocation conditions:

Pu.t0Ccih/ D f
�
t0Ccih; u.t0Ccih/

�
; i D 1; : : : ; s:

Then, y1 D u.t0 C h/ is the desired approximation to
y.t0 C h/.

Denoting Yi D u.t0 C cih/, this collocation method
can be seen to be mathematically equivalent to an im-
plicit Runge–Kutta method with coefficients aij given
by the symplifying assumption C.s/. The methods
“Gauss,” “Radau IIA,” and “Lobatto IIIA” of Table 3
are collocation methods.

Implementation

Step Size Selection Strategy
For an efficient numerical integration of differential
equations it is important to adapt the step size to the
course of the solution. The most employed strategy
is to select the step size h in such a way that some
measure of the local error remains close to a predefined
tolerance tol. In the situation of an embedded pair of
Runge–Kutta methods this leads to a formula:

hopt D 0:9 hn

� tol

err

�1=q
;

where err D kynC1 � bynC1k D O.hq/ is obtained
from the numerical approximations at tnC1 computed
with step size hn. If err > tol, the step is rejected and
it is recomputed with the new step size hn D hopt. If
err � tol, the step is accepted and the integration is
continued with hnC1 D hopt.

Solving the Nonlinear Runge–Kutta Equations
For implicit Runge–Kutta methods, an efficient numer-
ical solution of the nonlinear system for the internal
stages Yi is a major challenge. Fixed-point iteration
with a carefully chosen starting approximation can
be used for nonstiff differential equations. For stiff
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Runge–Kutta Methods, Explicit, Implicit, Table 3 Fully implicit Runge-Kutta methods

Method Simplifying assumptions Order Stability function

Gauss B.2s/ C.s/ D.s/ 2s .s; s/-Padé

Radau IA B.2s � 1/ C.s � 1/ D.s/ 2s � 1 .s � 1; s/-Padé

Radau IIA B.2s � 1/ C.s/ D.s � 1/ 2s � 1 .s � 1; s/-Padé

Lobatto IIIA B.2s � 2/ C.s/ D.s � 2/ 2s � 2 .s � 1; s � 1/-Padé

Lobatto IIIB B.2s � 2/ C.s � 2/ D.s/ 2s � 2 .s � 1; s � 1/-Padé

Lobatto IIIC B.2s � 2/ C.s � 1/ D.s � 1/ 2s � 2 .s � 2; s/-Padé

differential equations this would result in an unaccept-
able step size restriction. Therefore, usually simplified
Newton iterations are employed, which lead to a linear
system with the matrix:

I ˝ I � hA˝ Jn;

where A is the Runge–Kutta matrix (dimension s) and
Jn is an approximation to the Jacobian matrix f 0.yn/
(dimension d of the differential equation). Transform-
ing A to diagonal (or triangular) form, the tensor
product structure can be exploited, and the solution of
the linear system is reduced to s systems with matrices:

I � h�iJn;

which are of dimension d only.
For diagonally implicit Runge–Kutta methods

(DIRK), where aij D 0 for i < j , no transformation is
necessary, because A is already in lower triangular
form. In this case, the values �i are the diagonal
elements of the matrix A. If all �i D � are equal,
only one LU-decomposition has to be performed per
step, so that the overhead is considerably reduced. Such
methods are called singly diagonally implicit (SDIRK).
There is also a prize to pay for this simplification. The
construction of DIRK and SDIRK is as difficult as that
of explicit Runge–Kutta methods, and for very stiff
problems the order reduction is more pronounced than
for fully implicit methods.

Codes
There are many efficient codes based on explicit
Runge–Kutta methods. All of them use variable

step sizes, some of them have options for detecting
stiffness, and the possibility of automatically switching
between methods of different order. We just mention
the Matlab code ode45 and the codes Dopri5 and
Dop853 [4], which are based on embedded pairs of
explicit Runge–Kutta methods due to Dormand and
Prince.

Mainly due to the nonlinear system of equations,
the implementation of implicit Runge–Kutta methods
is less straightforward. There is a code Radau5 [5],
which is based on the Radau IIA method of order 5,
and which is designed to solve stiff and differential-
algebraic problems.
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Short Definition

The computation of macroscopic properties, as pre-
dicted by the laws of statistical physics, requires sam-
pling phase-space configurations distributed according
to the probability measure at hand. Typically, approx-
imations are obtained as time averages over trajecto-
ries of discrete dynamics, which can be shown to be
ergodic in some cases. Arguably, the greatest interest
is in sampling the canonical (constant temperature)
ensemble, although other distributions (isobaric, mi-
crocanonical, etc.) are also of interest. Focusing on
the case of the canonical measure, three important
types of methods can be distinguished: (1) Markov
chain methods based on the Metropolis–Hastings algo-
rithm; (2) discretizations of continuous stochastic dif-
ferential equations which are appropriate modifications

and/or limiting cases of the Hamiltonian dynamics;
and (3) deterministic dynamics on an extended phase
space.

Description

Applications of sampling methods arise most com-
monly in molecular dynamics and polymer modeling,
but they are increasingly encountered in fluid dynamics
and other areas. In this article, we focus on the treat-
ment of systems of particles described by position and
momentum vectors q and p, respectively, and modeled
by a Hamiltonian energyH D H.q; p/.

Macroscopic properties of materials are obtained,
according to the laws of statistical physics, as the
average of some function with respect to a proba-
bility measure � describing the state of the system
(�Calculation of Ensemble Averages):

E�.A/ D
Z
E
A.q; p/�.dq dp/: (1)

In practice, averages such as (1) are obtained by gener-
ating, by an appropriate numerical method, a sequence
of microscopic configurations .qi ; pi /i�0 such that

lim
n!C1

1

n

n�1X
iD0

A.qi ; pi / D
Z
E
A.q; p/�.dq dp/: (2)

The Canonical Case
For simplicity, we consider the case of the canonical
measure:
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�.dq dp/ D Z�1
� e�ˇH.q;p/ dq dp;

Z� D
Z
E

e�ˇH.q;p/ dq dp; (3)

where ˇ�1 D kBT . Many sampling methods designed
for the canonical ensemble can be extended or adapted
to sample other ensembles.

If the Hamiltonian is separable (i.e., it is the sum
of a quadratic kinetic energy and a potential energy),
as is usually the case when Cartesian coordinates are
used, the measure (3) has a tensorized form, and the
components of the momenta are distributed accord-
ing to independent Gaussian distributions. It is there-
fore straightforward to sample the kinetic part of the
canonical measure. The real difficulty consists in sam-
pling positions distributed according to the canonical
measure

�.dq/ D Z�1
� e�ˇV.q/ dq; Z� D

Z
D

e�ˇV.q/ dq;
(4)

which is typically a high dimensional distribution, with
many local concentrated modes. For this reason, many
sampling methods focus on sampling the configura-
tional part � of the canonical measure.

Since most concepts needed for sampling purposes
can be used either in the configuration space or in the
phase space, the following notation will be used: The
state of the system is denoted by x 2 S � R

d , which
can be the position space q 2 D (and then d D 3N ),
or the full phase space .q; p/ 2 E with d D 6N .
The measure �.dx/ is the canonical distribution to be
sampled (� in configuration space, � in phase space).

General Classification
From a mathematical point of view, most sampling
methods may be classified as (see [2]):
1. “Direct” probabilistic methods, such as the standard

rejection method, which generate identically and
independently distributed (i.i.d) configurations

2. Markov chain techniques
3. Markovian stochastic dynamics
4. Purely deterministic methods on an extended phase-

space
Although the division described above is useful to bear
in mind, there is a blurring of the lines between the dif-
ferent types of methods used in practice, with Markov
chains being constructed from Hamiltonian dynamics

or degenerate diffusive processes being added to deter-
ministic models to improve sampling efficiencies.

Direct probabilistic methods are typically based on
a prior probability measure used to sample configura-
tions, which are then accepted or rejected according
to some criterion (as for the rejection method, for
instance). Usually, a prior probability measure which
is easy to sample should be used. However, due to
the high dimensionality of the problem, it is extremely
difficult to design a prior sufficiently close to the
canonical distribution to achieve a reasonable accep-
tance rate. Direct probabilistic methods are therefore
rarely used in practice.

Markov Chain Methods
Markov chain methods are mostly based on the
Metropolis–Hastings algorithm [5, 13], which is a
widely used method in molecular simulation. The prior
required in direct probabilistic methods is replaced by
a proposal move which generates a new configuration
from a former one. This new configuration is then
accepted or rejected according to a criterion ensuring
that the correct measure is sampled. Here again,
designing a relevant proposal move is the cornerstone
of the method, and this proposal depends crucially on
the model at hand.

The Metropolis–Hastings Algorithm
The Metropolis–Hastings algorithm generates a
Markov chain of the system configurations .xn/n�0
having the distribution of interest �.dx/ as a stationary
distribution. The invariant distribution � has to be
known only up to a multiplicative constant to perform
this algorithm (which is the case for the canonical
measure and its marginal in position). It consists in
a two-step procedure, starting from a given initial
condition x0:
1. Propose a new state QxnC1 from xn according to the

proposition kernel T .xn; �/
2. Accept the proposition with probability min�

1;
�. QxnC1/ T . QxnC1; xn/
�.xn/ T .xn; QxnC1/

�
, and set in this case

xnC1 D QxnC1; otherwise, set xnC1 D xn

It is important to count several times a configuration
when a proposal is rejected.

The original Metropolis algorithm was proposed
in [13] and relied on symmetric proposals in the config-
uration space. It was later extended in [5] to allow for
nonsymmetric propositions which can bias proposals
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toward higher probability regions with respect to the
target distribution � . The algorithm is simple to in-
terpret in the case of a symmetric proposition kernel
on the configuration space (�.x/ / e�ˇV.q/ and
T .q; q0/ D T .q0; q/). The Metropolis–Hastings ratio
is simply

r.q; q0/ D exp
��ˇ.V.q0/� V.q//

�
:

If the proposed move has a lower energy, it is always
accepted, which allows to visit more frequently the
states of higher probability. On the other hand, tran-
sitions to less likely states of higher energies are not
forbidden (but accepted less often), which is important
to observe transitions from one metastable region to
another when these regions are separated by some
energy barrier.

Properties of the Algorithm
The probability transition kernel of the Metropolis–
Hastings chain reads

P.x; dx0/ D min
�
1; r.x; x0/

�
T .x; dx0/

C .1 � ˛.x// ıx.dx0/; (5)

where ˛.x/ 2 Œ0; 1� is the probability to accept a move
starting from x (considering all possible propositions):

˛.x/ D
Z
S

min .1; r.x; y// T .x; dy/:

The first part of the transition kernel corresponds to
the accepted transitions from x to x0, which occur
with probability min .1; r.x; x0//, while the term .1 �
˛.x//ıx.dx

0/ encodes all the rejected steps.
A simple computation shows that the Metropolis–

Hastings transition kernel P is reversible with respect
to � , namely, P.x; dx0/�.dx/ D P.x0; dx/�.dx0/.
This implies that the measure � is an invariant mea-
sure. To conclude to the pathwise ergodicity of the al-
gorithm (2) (relying on the results of [14]), it remains to
check whether the chain is (aperiodically) irreducible,
i.e., whether any state can be reached from any other
one in a finite number of steps. This property depends
on the proposal kernel T , and should be checked for
the model under consideration.

Besides determining the theoretical convergence
of the algorithm, the proposed kernel is also a key

element in devising efficient algorithms. It is observed
in practice that the optimal acceptance/rejection rate,
in terms of the variance of the estimator (a mean of
some observable over a trajectory), for example, is
often around 0.5, ensuring some balance between:
• Large moves that decorrelate the iterates when they

are accepted (hence reducing the correlations in the
chain, which is interesting for the convergence to
happen faster) but lead to high rejection rates (and
thus degenerate samples since the same position
may be counted several times)

• And small moves that are less rejected but do not
decorrelate the iterates much

This trade-off between small and large proposal moves
has been investigated rigorously in some simple cases
in [16,17], where optimal acceptance rates are obtained
in a limiting regime.

Some Examples of Proposition Kernels
The most simple transition kernels are based on ran-
dom walks. For instance, it is possible to modify the
current configuration by a random perturbation applied
to all particles. The problem with such symmetric
proposals is that they may not be well suited to the
target probability measure (creating very correlated
successive configurations for small � , or very unlikely
moves for large �). Efficient nonsymmetric proposal
moves are often based on discretizations of continuous
stochastic dynamics which use a biasing term such as
�rV to ensure that the dynamics remains sufficiently
close to the minima of the potential.

An interesting proposal relies on the Hamiltonian
dynamics itself and consists in (1) sampling new mo-
menta pn according to the kinetic part of the canon-
ical measure; (2) performing one or several steps of
the Verlet scheme starting from the previous position
qn, obtaining a proposed configuration .eqnC1;epnC1/;
and (3) computing rn D expŒ�ˇ.H.eqnC1;epnC1/ �
H.qn; pn//� and accepting the new position qnC1 with
probability min.1; rn/. This algorithm is known as
the Hybrid Monte Carlo algorithm (first introduced
in [3] and analyzed from a mathematical viewpoint
in [2, 20]).

A final important example is parallel tempering
strategies [10], where several replicas of the system
are simulated in parallel at different temperatures, and
sometimes exchanges between two replicas at different
temperatures are attempted, the probability of such an
exchange being given by a Metropolis–Hastings ratio.
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Continuous Stochastic Dynamics
A variety of stochastic dynamical methods are in use
for sampling the canonical measure. For simplicity of
exposition, we consider here systems with the N -body
HamiltonianH D pTM�1p=2C V.q/.

Brownian Dynamics
Brownian dynamics is a stochastic dynamics on the
position variable q 2 D only:

dqt D �rV.qt / dt C
s
2

ˇ
dWt ; (6)

where Wt is a standard 3N -dimensional Wiener pro-
cess. It can be shown that this system is an ergodic pro-
cess for the configurational invariant measure �.dq/ D
Z�1
� exp.�ˇV.q// dq, the ergodicity following from

the elliptic nature of the generator of the process. The
dynamics (6) may be solved numerically using the
Euler–Maruyama scheme:

qnC1 D qn ��trV.qn/C
s
2�t

ˇ
Gn; (7)

where the .Gn/n�0 are independent and identically
distributed (i.i.d.) centered Gaussian random vectors in
R
3N with identity covariance matrix E .Gn ˝Gn/ D

Id3N . Although the discretization scheme does not ex-
actly preserve the canonical measure, it can be shown
under certain boundedness assumptions (see [12, 21]),
that the numerical scheme is ergodic, with an invariant
probability close to the canonical measure � in a
suitable norm. The numerical bias may be eliminated
using a Metropolis rule, see, e.g., [16, 18].

Langevin Dynamics
Hamiltonian dynamics preserve the energy, while a
sampling of the canonical measure requires visiting all
the energy levels. Langevin dynamics is a model of a
Hamiltonian system coupled with a heat bath, defined
by the following equations:

(
dqt DM�1pt dt;

dpt D � rV.qt / dt � �.qt /M�1pt dt C �.qt / dWt ;
(8)

where Wt is a 3N -dimensional standard Brownian
motion, and � and � are (possibly position dependent)

3N � 3N real matrices. The term �.qt / dWt is a fluc-
tuation term bringing energy into the system, this en-
ergy being dissipated through the viscous friction term
��.qt /M�1pt dt . The canonical measure is preserved
precisely when the “fluctuation-dissipation” relation
��T D 2�

ˇ
is satisfied. Many variants and extensions

of Langevin dynamics are available.
Using the Hörmander conditions, it is possible to

demonstrate ergodicity of the system provided �.q/
has full rank (i.e., a rank equal to 3N ) for all q in
position space. A spectral gap can also be demonstrated
under appropriate assumptions on the potential energy
function, relying on recent advances in hypocoercivity
[22] or thanks to Lyapunov techniques.

Brownian motion may be viewed as either the non-
inertial limit (m ! 0) of the Langevin dynamics, or
its overdamped limit (� ! 1) with a different time-
scaling.

The discretization of stochastic differential equa-
tions, such as Langevin dynamics, is still a topic of
research. Splitting methods, which divide the system
into deterministic and stochastic components, are in-
creasingly used for this purpose. As an illustration,
one may adopt a method whereby Verlet integration is
supplemented by an “exact” treatment of the Ornstein–
Uhlenbeck process, replacing

dpt D ��.qt /M�1pt dt C �.qt / dWt

by a discrete process that samples the associated Gaus-
sian distribution. In some cases, it is possible to show
that such a method is ergodic.

Numerical discretization methods for Langevin dy-
namics may be corrected in various ways to exactly
preserve the canonical measure, using the Metropo-
lis technique [5, 13] (see, e.g., the discussion in [9],
Sect. 2.2).

Deterministic Dynamics on Extended Phase
Spaces
It is possible to modify Hamiltonian dynamics by the
addition of control laws in order to sample the canoni-
cal (or some other) distribution. The simplest example
of such a scheme is the Nosé–Hoover method [6, 15]
which replaces Newton’s equations of motion by the
system:
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Pq D M�1p;

Pp D �rV.q/ � 	p;
P	 D Q�1.pTM�1p �NkBT /;

where Q > 0 is a parameter. It can be shown
that this dynamics preserves the product distribution
e�ˇH.q;p/e�ˇQ	2=2 as a stationary macrostate. It is, in
some cases (e.g., when the underlying system is linear),
not ergodic, meaning that the invariant distribution is
not unique [7]. Nonetheless, the method is still popular
for sampling calculations. The best arguments for
its continued success, which have not been founded
rigorously yet, are that (a) molecular systems typically
have large phase spaces and may incorporate liquid
solvent, steep potentials, and other mechanisms that
provide a strong internal diffusion property or (b)
any inaccessible regions in phase space may not
contribute much to the averages of typical quantities of
interest.

The accuracy of sampling can sometimes be im-
proved by stringing together “chains” of additional
variables [11], but such methods may introduce addi-
tional and unneeded complexity (especially as there are
more reliable alternatives, see below). When ergodicity
is not a concern (e.g., when a detailed atomistic model
of water is involved), an alternative to the Nosé–
Hoover method is to use the Nosé–Poincaré method [1]
which is derived from an extended Hamiltonian and
which allows the use of symplectic integrators (pre-
serving phase space volume and, approximately, en-
ergy, and typically providing better long-term stability;
see �Molecular Dynamics).

Hybrid Methods by Stochastic Modification
When ergodicity is an issue, it is possible to enhance
extended dynamics methods by the incorporation of
stochastic processes, for example, as defined by the ad-
dition of Ornstein–Uhlenbeck terms. One such method
has been proposed in [19]. It replaces the Nosé–Hoover
system by the highly degenerate stochastic system:

dqt D M�1pt dt;

dpt D .�rV.qt /� 	pt/ dt;

d	t D
�
Q�1

�
pTt M

�1pt � N

ˇ

�
� �
	
dt C

s
2�

ˇQ
dWt;

which incorporates only a scalar noise process. This
method has been called the Nosé–Hoover–Langevin
method in [8], where also ergodicity was proved in the
case of an underlying harmonic system (V quadratic)
under certain assumptions. A similar technique, the
“Langevin Piston” [4] has been suggested to control the
pressure in molecular dynamics, where the sampling
is performed with respect to the NPT (isobaric–
isothermal) ensemble.
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Short Definition

The Schrödinger equation forms the basis of nonrel-
ativistic quantum mechanics and is fundamental for
our understanding of atoms and molecules. The entry
motivates this equation and embeds it into the general
framework of quantum mechanics.

Description

Introduction
Quantum mechanics links chemistry to physics.
Conceptions arising from quantum mechanics form
the framework for our understanding of atomic and
molecular processes. The history of quantum mechan-
ics began around 1900 with Planck’s analysis of the
black-body radiation, Einstein’s interpretation of
the photoelectric effect, and Bohr’s theory of the

hydrogen atom. A unified framework allowing for
a systematic study of quantum phenomena arose,
however, first in the 1920s. Starting point was de
Broglie’s observation of the wave-like behavior of
matter, finally result- ing in the Schrödinger equation
[8] and [3] for the multiparticle case. The purpose of
this article is to motivate this equation from some
basic principles and to sketch at the same time
the mathematical structure of quantum mechanics.
More information can be found in textbooks on
quantum mechanics like Atkins and Friedman [1]
or Thaller [11,12]. The first one is particularly devoted
to the understanding of the molecular processes
that are important for chemistry. The second and
the third one more emphasize the mathematical
structure and contain a lot of impressive visualizations.
The monograph [4] gives an introduction to the
mathematical theory. A historically very interesting
text, in which the mathematically framework of
quantum mechanics has been established and which
was at the same time a milestone in the development
of spectral theory, is von Neumann’s seminal treatise
[13]. The present exposition is largely taken from
Yserentant [14].

The Schrödinger Equation of a Free Particle
Let us first recall the notion of a plane wave, a complex-
valued function

R
d � R ! C W .x; t/ ! e ik�x�i!t ; (1)

with k 2 R
d the wave vector and ! 2 R the

frequency. A dispersion relation ! D !.k/ assigns
to each wave vector a characteristic frequency. Such
dispersion relations fix the physics that is described by
this kind of waves. Most common is the case ! D
cjkj which arises, for example, in the propagation of
light in vacuum. When the wave nature of matter was
recognized, the problem was to guess the dispersion
relation for the matter waves: to guess, as this hy-
pothesis creates a new kind of physics that cannot be
deduced from known theories. A good starting point
is Einstein’s interpretation of the photoelectric effect.
When polished metal plates are irradiated by light of
sufficiently short wave length they may emit electrons.
The magnitude of the electron current is as expected
proportional to the intensity of the light source, but
their energy surprisingly to the wave length or the
frequency of the incoming light. Einstein’s explanation

http://publications.mi.fu-berlin.de/89/
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was that light consists of single light quanta with
energy and momentum

E D „!; p D „k (2)

depending on the frequency ! and the wave vector k.
The quantity

„ D 1:0545716 � 10�34 kg m2 s�1

is Planck’s constant, an incredibly small quantity of
the dimension energy � time called action, reflecting
the size of the systems quantum mechanics deals with.
To obtain from (2) a dispersion relation, Schrödinger
started first from the energy-momentum relation of
special relativity, but this led by reasons not to be
discussed here to the wrong predictions. He therefore
fell back to the energy-momentum relation

E D 1

2m
jpj2

from classical, Newtonian mechanics. It leads to the
dispersion relation

! D „
2m

jkj2

for the plane waves (1). These plane waves can be
superimposed to wave packets

 .x; t/ D

 1p

2�

�3 Z
e�i „

2m jkj2t b 0.k/ e ik�x dk: (3)

These wave packets are the solutions of the partial
differential equation

i „ @ 

@t
D � „2

2m
� ; (4)

the Schrödinger equation for a free particle of mass m
in absence of external forces.

The Schrödinger equation (4) is of first order in
time. Its solutions, the wavefunctions of free particles,
are uniquely determined by their initial state  0. If  0
is a rapidly decreasing function (in the Schwartz space)
the solution possesses time derivatives of arbitrary
order, and all of them are rapidly decreasing functions
of the spatial variables. To avoid technicalities, we
assume this for the moment. We further observe that

Z
j .x; t/j2 dx D

Z
jb .k; t/j2 dk

remains constant in time. This follows from Plancherel’s
theorem, a central result of Fourier analysis. We
assume in the sequel that this value is normalized
to 1, which is basic for the statistical interpretation
of the wavefunctions  . The quantities j j2 and jb j2
can then be interpreted as probability densities. The
integrals

Z
˝

j .x; t/j2 dx;
Z
b̋ jb .k; t/j2 dk

represent the probabilities to find the particle at time t
in the region ˝ of the position space, respectively, the
region b̋ of the momentum space. The quantity

Z „2
2m

jkj2 jb .k; t/j2 dk;

is the expectation value of the kinetic energy. With help
of the Hamilton operator

H D � „2
2m

�; (5)

this expectation value can be rewritten as

Z
 H dx D . ;H /:

The expectation values of the components of the mo-
mentum are in vector notation

Z
„k jb .k; t/j2 dk:

Introducing the momentum operator

p D � i „ r (6)

their position representation is the inner product
Z
 p dx D . ; p /:

The expectation values of the three components of the
particle position are finally

Z
x j .x; t/j2 dx D . ; q /;
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with q the position operator given by  ! x .
This coincidence between observable physical quanti-
ties like energy, momentum, or position and operators
acting upon the wavefunctions is in no way accidental.
It forms the heart of quantum mechanics.

The Mathematical Framework of Quantum
Mechanics
We have seen that the physical state of a free particle at
a given time t is completely determined by a function
in the Hilbert space L2 that again depends uniquely on
the state at a given initial time. In the case of more
general systems, the space L2 is replaced by another
Hilbert space, but the general concept remains:

Postulate 1. A quantum-mechanical system consists of
a complex Hilbert space H with inner product .�; �/ and
a one-parameter group U.t/, t 2 R, of unitary linear
operators on H with

U.0/ D I; U.s C t/ D U.s/U.t/

that is strongly continuous in the sense that for all  2
H in the Hilbert space norm

lim
t!0

U.t/ D  :

A state of the system corresponds to a normalized vec-
tor in H. The time evolution of the system is described
by the group of the propagators U.t/; the state

 .t/ D U.t/ .0/ (7)

of the system at time t is uniquely determined by its
state at time t D 0.

In the case of free particles considered so far, the
solution of the Schrödinger equation and with that
time evolution is given by (3). The evolution operators
U.t/, or propagators, read therefore in the Fourier or
momentum representation

b .k/ ! e�i „
2m jkj2t b .k/:

Strictly speaking, they have first only been defined
for rapidly decreasing functions, functions in a dense
subspace of L2, but it is obvious from Plancherel’s
theorem that they can be uniquely extended from there
to L2 and have the required properties.

The next step is to move from Postulate 1 to an ab-
stract version of the Schrödinger equation. For that we

have to establish a connection between such strongly
continuous groups of unitary operators and abstract
Hamilton operators. Let D.H/ be the linear subspace
of the given system Hilbert space H that consists of
those elements  in H for which the limit

H D i „ lim

!0

U.
/ � I



 

exists in the sense of norm convergence. The mapping
 ! H from the domain D.H/ into the Hilbert
space H is then called the generator H of the group.
The generator of the evolution operator of the free
particle is the operator

H D � „2
2m

� (8)

with the Sobolev space H2 as domain of definition
D.H/. In view of this observation, the following result
for the general abstract case is unsurprising:

Theorem 1 For all initial values  .0/ in the domain
D.H/ of the generator of the group of the propagators
U.t/, the elements (7) are contained in D.H/, too,
depend continuously differentiable on t , and satisfy the
differential equation

i „ d

dt
 .t/ D H .t/: (9)

It should be noted once more, however, that the dif-
ferential (9), the abstract Schrödinger equation, makes
sense only for initial values in the domain of the
generator H , but that the propagators are defined on
the whole Hilbert space.

A little calculation shows that the generators of one-
parameter unitary groups are necessarily symmetric.
More than that, they are even selfadjoint. There is
a direct correspondence between unitary groups and
selfadjoint operators, Stone’s theorem, a cornerstone in
the mathematical foundation of quantum mechanics:

Theorem 2 If U.t/, t 2 R, is a one-parameter unitary
group as in Postulate 1, the domain D.H/ of its
generatorH is a dense subset of the underlying Hilbert
space and the generator itself selfadjoint. Every selfad-
joint operator H is conversely the generator of such a
one-parameter unitary group, that is usually denoted
as

U.t/ D e� i
„
Ht :
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Instead of the unitary group of the propagators, a
quantum-mechanical system can be thus equivalently
fixed by the generator H of this group, the Hamilton
operator, or in the language of physics, the Hamiltonian
of the system.

In our discussion of the free particle, we have
seen that there is a direct correspondence between
the expectation values of the energy, the momentum,
and the position of the particle and the energy or
Hamilton operator (5), the momentum operator (6), and
the position operator x ! x . Each of these operators
is selfadjoint. This reflects the general structure of
quantum mechanics:

Postulate 2. Observable physical quantities, or ob-
servables, are in quantum mechanics represented by
selfadjoint operators A W D.A/ ! H defined on dense
subspaces D.A/ of the system Hilbert space H. The
quantity

hAi D . ;A / (10)

is the expectation value of a measurement of A for the
system in state  2 D.A/.

At this point, we have to recall the statistical nature
of quantum mechanics. Quantum mechanics does not
make predictions on the outcome of a single mea-
surement of a quantity A but only on the mean result
of a large number of measurements on “identically
prepared” states. The quantity (10) has thus to be
interpreted as the mean result that one obtains from a
large number of such measurements. This gives reason
to consider the standard deviation or uncertainty

�A D kA � hAi k

for states  2 D.A/. The uncertainty is zero if and
only if A D hAi , that is, if  is an eigenvector of
A for the eigenvalue hAi. Only in such eigenstates the
quantity represented by the operator A can be sharply
measured without uncertainty. The likelihood that a
measurement returns a value outside the spectrum of
A is zero.

One of the fundamental results of quantum me-
chanics is that, only in exceptional cases, can different
physical quantities be measured simultaneously with-
out uncertainty, the Heisenberg uncertainty principle.
Its abstract version reads as follows:

Theorem 3 Let A and B two selfadjoint operators
and let  be a normalized state in the intersection of

D.A/ and D.B/ such that A 2 D.B/ and B 2
D.A/. The product of the corresponding uncertainties
is then bounded from below by

�A�B � 1

2
j..BA � AB/ ; /j: (11)

The proof is an exercise in linear algebra. As an
example, we consider the components

qk D xk; pk D � i „ @

@xk

of the position and the momentum operator. Their
commutators are

qkpk � pkqk D i „ I:

This results in the Heisenberg uncertainty principle

�pk �qk � 1

2
„: (12)

Position and momentum therefore can never be
determined simultaneously without uncertainty,
independent of the considered state of the system.
The inequality (12) and with that also (11) are sharp as
the instructive example

 .x/ D

 1p

#

�3
 0


 x
#

�

of the rescaled three-dimensional Gauss functions

 0.x/ D

 1p

�

�3=2
exp



� 1

2
jxj2

�

of arbitrary width demonstrates. For these wavefunc-
tions, the inequality (12) actually turns into an equality.
From b .k/ D .

p
#/3  0.#k/

one recognizes that a sharp localization in space, that
is, a small parameter # determining the width of  , is
combined with a loss of localization in momentum.

States with a well defined, sharp energy E play a
particularly important role in quantum mechanics, that
is, solutions  ¤ 0 in H of the eigenvalue problem

H D E ;
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the stationary Schrödinger equation. The functions

t ! e�iE
„
t 

represent then solutions of the original time-dependent
Schrödinger equation. The main focus of quantum
chemistry is on stationary Schrödinger equations.

The Quantum Mechanics of Multiparticle
Systems
Let us assume that we have a finite collection of N
particles of different kind with the spaces L2.˝i / as
system Hilbert spaces. The Hilbert space describing the
system that is composed of these particles is then the
tensor product of these Hilbert spaces or a subspace
of this space, that is, a space of square integrable
wavefunctions

 W ˝1 � : : : �˝N ! C

with the N -tuples .	1; : : : ; 	N /, 	i 2 ˝i , as arguments.
From the point of view of mathematics, this is of
course another postulate that can in a strict sense not
be derived from anything else, but is motivated by the
statistical interpretation of the wavefunctions and of
the quantity j j2 as a probability density. Quantum-
mechanical particles of the same type, like electrons,
can, however, not be distinguished from each other
by any means or experiment. This is both a physical
statement and a mathematical postulate that needs to
be specified precisely. It has striking consequences for
the form of the physically admissible wavefunctions
and of the Hilbert spaces that describe such systems
of indistinguishable particles.

To understand these consequences, we have to recall
that an observable quantity like momentum or energy
is described in quantum mechanics by a selfadjoint op-
erator A and that the inner product . ;A / represents
the expectation value for the outcome of a measure-
ment of this quantity in the physical state described by
the normalized wavefunction  . At least a necessary
condition that two normalized elements or unit vectors
 and  0 in the system Hilbert space H describe
the same physical state is surely that . ;A / D
. 0; A 0/ for all selfadjoint operators A W D.A/ �
H ! H whose domain D.A/ contains both  and
 0, that is, that the expectation values of all possi-
ble observables coincide. This requirement fixes such

states almost completely. Wavefunctions that describe
the same physical state can differ at most by a constant
phase shift  ! ei� , � a real number. Wavefunctions
that differ by such a phase shift lead to the same
expectation values of observable quantities. The proof
is again an exercise in linear algebra. In view of
this discussion, the requirements on the wavefunctions
describing a system of indistinguishable particles are
rather obvious and can be formulated in terms of the
operations that formally exchange the single particles:

Postulate 3. The Hilbert space of a system of N
indistinguishable particles with system Hilbert space
L2.˝/ consists of complex-valued, square integrable
functions

 W .	1; : : : ; 	N / !  .	1; : : : ; 	N /

on the N -fold cartesian product of ˝ , that is, is a
subspace of L2.˝N /. For every  in this space and
every permutation P of the arguments 	i , the function
	 !  .P	/ is also in this space, and moreover it
differs from  at most by a constant phase shift.

This postulate can be rather easily translated into a
symmetry condition on the wavefunctions that governs
the quantum mechanics of multiparticle systems:

Theorem 4 The Hilbert space describing a system of
indistinguishable particles either consists completely
of antisymmetric wavefunctions, functions  for which

 .P	/ D sign.P / .	/

holds for all permutations P of the components
	1; : : : ; 	N of 	, that is, of the single particles, or
only of symmetric wavefunctions, wavefunctions for
which

 .P	/ D  .	/

holds for all permutations P of the arguments.

Which of the two choices is realized depends solely
on the kind of particles and cannot be decided in
the present framework. Particles with antisymmetric
wavefunctions are called fermions and particles with
symmetric wavefunctions bosons.

Quantum chemistry is mainly interested in elec-
trons. Electrons have a position in space and an internal
property called spin that in many respects behaves like
an angular momentum. The spin � of an electron can
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attain the two values � D ˙1=2. The configuration
space of an electron is therefore not the R

3 but the
cartesian product

˝ D R
3 � f�1=2; C1=2g:

The spaceL2.˝/ consists of the functions W ˝ ! C

with square integrable components x !  .x; �/, � D
˙1=2, and is equipped with the inner product

. ; �/ D
X

�D˙1=2

Z
 .x; �/ �.x; �/ dx:

A system of N electrons is correspondingly described
by wavefunctions

 W .R3/N � f�1=2; 1=2gN ! C (13)

with square integrable components x !  .x; �/,
where x 2 R

3N and � is a vector consisting ofN spins
�i D ˙1=2. These wavefunctions are equipped with
the inner product

. ; �/ D
X
�

Z
 .x; �/ �.x; �/ dx;

where the sum now runs over the 2N possible spin
vectors � .

Electrons are fermions, as all particles with half-
integer spin. That is, the wavefunctions change their
sign under a simultaneous exchange of the positions xi
and xj and the spins �i and �j of electrons i ¤ j .
They are, in other words, antisymmetric in the sense
that

 .Px;P�/ D sign.P / .x; �/

holds for arbitrary simultaneous permutations x!Px

and � ! P� of the electron positions and spins. This
is a general version of the Pauli principle, a principle
that is of fundamental importance for the physics of
atoms and molecules. The Pauli principle has stunning
consequences. It entangles the electrons with each
other, without the presence of any direct interaction
force. A wavefunction (13) describing such a system
vanishes at points .x; �/ at which xi D xj and �i D �j
for indices i ¤ j . This means that two electrons
with the same spin cannot meet at the same place, a
purely quantum-mechanical repulsion effect that has
no counterpart in classical physics.

The Molecular Schrödinger Equation
Neglecting spin, the system Hilbert space of an atom or
molecule consisting of N particles (electrons and nu-
clei) is the space L2.R3/N D L2.R

3N /. The Hamilton
operator

H D �
NX
iD1

1

2mi

�i C 1

2

NX
i;jD1
i¤j

QiQj

jxi � xj j ; (14)

written down here in dimensionless form, is derived
via the correspondence principle from its counterpart
in classical physics, the Hamilton function

H.p; q/ D �
NX
iD1

1

2mi

jpi j2 C 1

2

NX
i;jD1
i¤j

QiQj

jqi � qj j

or total energy of a system of point-like particles in the
potential field

V.q/ D 1

2

NX
i;jD1
i¤j

QiQj

jqi � qj j :

The mi are the masses of the particles in multiples
of the electron mass and the Qi the charges of the
particles in multiples of the electron charge. As has
first been shown by Kato [7], the Hamilton operator
(14) can be uniquely extended from the space of the in-
finitely differentiable functions with bounded support
to a selfadjoint operator H from its domain of defini-
tion D.H/ � L2.R

3N / to L2.R3N /. It fits therefore
into the abstract framework of quantum mechanics
sketched above. The domainD.H/ of the extended op-
erator is the Sobolev space H2 consisting of the twice
weakly differentiable functions with first and second
order weak derivatives in L2, respectively a subspace
of this Sobolev space consisting of components of the
full, spin-dependent wavefunctions in accordance with
the Pauli principle if spin is taken into account. The
resulting Schrödinger equation

i
@ 

@t
D H 

is an extremely complicated object, because of the
high dimensionality of the problem but also because of
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the oscillatory character of its solutions and the many
different time scales on which they vary and which can
range over many orders of magnitude. Comprehensive
survey articles on the properties of atomic and molec-
ular Schrödinger operators are Hunziker and Sigal [6]
and Simon [9].

Following Born and Oppenheimer [2], the full
problem is usually split into the electronic Schrödinger
equation describing the motion of the electrons in
the field of given clamped nuclei, and an equation
for the motion of the nuclei in a potential field
that is determined by solutions of the electronic
equation. The transition from the full Schrödinger
equation taking also into account the motion of the
nuclei to the electronic Schrödinger equation is a
mathematically very subtle problem; see [10] and
the literature cited therein or the article of Hagedorn
(�Born–Oppenheimer Approximation, Adiabatic
Limit, and Related Math. Issues) for more information.
The intuitive idea behind this splitting is that the elec-
trons move much more rapidly than the much heavier
nuclei and almost instantaneously follow their motion.
Most of quantum chemistry is devoted to the solution
of the stationary electronic Schrödinger equation,
the eigenvalue problem for the electronic Hamilton
operator

H D � 1

2

NX
iD1

�i C V0.x/ C 1

2

NX
i;jD1
i¤j

1

jxi � xj j

again written down in dimensionless form, where

V0.x/ D �
NX
iD1

KX
�D1

Z�

jxi � a� j

is the nuclear potential. It acts on functions with ar-
guments x1; : : : ; xN in R

3, which are associated with
the positions of the considered electrons. The a� are
the now fixed positions of the nuclei and the valuesZ�
the charges of the nuclei in multiples of the electron
charge. The equation has still to be supplemented
by the symmetry constraints arising from the Pauli
principle.

The spectrum of the electronic Schrödinger operator
is bounded from below. Its essential spectrum is, by the

Hunziker-van Winter-Zhislin theorem, a semi-infinite
interval; see [4] for details. Of interest for chemistry
are configurations of electrons and nuclei for which
the minimum of the total spectrum is an isolated
eigenvalue of finite multiplicity, the ground state en-
ergy of the system. The assigned eigenfunctions, the
ground states, as well as all other eigenfunctions for
eigenvalues below the essential spectrum decay then
exponentially. That means that the nuclei can bind all
electrons. More information on the mathematical prop-
erties of these eigenfunctions can be found in �Exact
Wavefunctions Properties. Chemists are mainly inter-
ested in the ground states. The position of the nuclei
is then determined minimizing the ground state energy
as function of their positions, a process that treats
the nuclei as classical objects. It is called geometry
optimization.

The Born-Oppenheimer approximation is only a
first step toward the computationally feasible models
that are actually used in quantum chemistry. The his-
torically first and most simple of these models is the
Hartree-Fock model in which the true wavefunctions
are approximated by correspondingly antisymmetrized
tensor products

u.x/ D
NY
iD1

�i .xi /

of functions �i of the electron positions xi 2 R
3. These

orbital functions are then determined via a variational
principle. This intuitively very appealing ansatz
often leads to surprisingly accurate results. Quantum
chemistry is full of improvements and extensions of
this basic approach; see the comprehensive monograph
[5] for further information. Many entries in this
encyclopedia are devoted to quantum chemical models
and approximation methods that are derived from
the Schrödinger equation. We refer in particular
to the article (�Hartree–Fock Type Methods) on
the Hartree-Fock method, to the contributions
(�Post-Hartree-Fock Methods and Excited States
Modeling) on post-Hartree Fock methods and
(�Coupled-Cluster Methods) on the coupled cluster
method, and to the article (�Density Functional
Theory) on density functional theory. Time-dependent
problems are treated in the contribution (�Quantum
Time-Dependent Problems).

http://dx.doi.org/10.1007/978-3-540-70529-1_260
http://dx.doi.org/10.1007/978-3-540-70529-1_233
http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_257
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The Schrödinger Equation

The linear Schrödinger equation is a fundamental
quantum mechanics equation that describes the
complex-valued wave function ˆ.t; x; y/ of molecules
or atoms

i„@tˆ.t; x; y/ D Hˆ.t; x; y/; x 2 R
N ; y 2 R

n;

(1)

where the vectors x and y denote the positions of N
nuclei and n electrons, respectively, while „ is the
reduced Planck constant. The molecular Hamiltonian
operator H consists of two parts, the kinetic energy
operator of the nuclei and the electronic Hamiltonian
He for fixed nucleonic configuration:

H D �
NX
jD1

„2
2Mj

xj C He.y; x/;

with,

He.y; x/ D �
nX

jD1

„2
2mj

yj C
X
j<k

1

jyj � yk j

C
X
j<k

ZjZk

jxj � xkj �
NX
kD1

nX
jD1

Zj

jxj � ykj :

Here mj denotes mass of the j -th electron, and Mj ,
Zj denote mass and charge of the j -th nucleus. The
electronic Hamiltonian He consists of the kinetic en-
ergy of the electrons as well as the interelectronic
repulsion potential, internuclear repulsion potential,
and the electronic-nuclear attraction potential.

The Born-Oppenheimer Approximation

The main computational challenge to solve the
Schrödinger equation is the high dimensionality of
the molecular configuration space RNCn. For example,
the carbon dioxide molecule CO2 consists of 3 nuclei
and 22 electrons; thus one has to solve the full
time-dependent Schrödinger equation in space R

75,
which is a formidable task. The Born-Oppenheimer
approximation [1] is a commonly used approach in
computational chemistry or physics to reduce the
degrees of freedom.

This approximation is based on the mass discrep-
ancy between the light electrons, which move fast, thus
will be treated quantum mechanically, and the heavy
nuclei that move slower and are treated classically.
Here one first solves the following time-independent
electronic eigenvalue problems:
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He.y; x/ k.yI x/ D Ek.x/ k.yI x/; 8x 2 R
N ;

k D 1; 2; : : : : (2)

Assuming that the spectrum of He, a self-adjoint op-
erator, is discrete with a complete set of orthonormal
eigenfunctions f k.yI x/g called the adiabatic basis,
over the electronic coordinates for every fixed nucleus
coordinates x, i.e.,

Z 1

�1
 �
j .yI x/ k.yI x/dy D ıjk;

where ıjk is the Kronecker delta. The electronic eigen-
value Ek.x/, called the potential energy surface, de-
pends on the positions x of the nuclei.

Next the total wave function ˆ.t; x; y/ is expanded
in terms of the eigenfunctions f kg:

ˆ.t; x; y/ D
X
k

�k.t; x/ k.yI x/: (3)

Assume mj D m, and Mj D M , for all j .
We take the atomic units by setting „ D 1;Z D
1 and introduce " D p

m=M . Typically " ranges
between 10�2 and 10�3. Insert ansatz (3) into the time-
dependent Schrödinger equation (1), multiply all the
terms from the left by  �

k .yI x/, and integrate with re-
spect to y, then one obtains a set of coupled differential
equations:

i"
@

@t
�k.t; x/ D

2
4�

NX
jD1

"2

2
xj C Ek.x/

3
5�k.t; x/

C
X
l

Ckl�l .t; x/; (4)

where the coupling operator Ckl is important to de-
scribe quantum transitions between different potential
energy surfaces.

As long as the potential energy surfaces fEk.x/g are
well separated, all the coupling operators Ckl are ig-
nored, and one obtains a set of decoupled Schrödinger
equations:

i"
@

@t
�k.t; x/ D

2
4�

NX
jD1

"2

2
xj C Ek.x/

3
5�k.t; x/;

.t; x/ 2 R
C � R

N : (5)

Thus the nuclear motion proceeds without the transi-
tions between electronic states or energy surfaces. This
is also referred to as the adiabatic approximation.

There are two components in dealing with a quan-
tum calculation. First, one has to solve the eigenvalue
problem (2). Variational methods are usually used [10].
However, for large n, this remains an intractable task.
Various mean field theories have been developed to
reduce the dimension. In particular, the Hartree-Fock
Theory [9] and the Density Function Theory [8] aim
at representing the 3n-dimensional electronic wave
function into a product of one-particle wave function in
3 dimension. These approaches usually yield nonlinear
Schrödinger equations.

The Semiclassical Limit

The second component in quantum simulation is to
solve the time-dependent Schrödinger equation (5). Its
numerical approximation per se is similar to that of
the parabolic heat equation. Finite difference, finite
element or, most frequently, spectral methods can be
used for the spatial discretization. For the time dis-
cretization, one often takes a time splitting of Strong
or Trotter type that separates the kinetic energy from
the potential operators in alternating steps. However,
due to the smallness of „ or ", the numerical resolution
of the wave function remains difficult. A classical
method to deal with such an oscillatory wave problem
is the WKB method, which seeks solution of the form
�.t; x/ D A.t; x/eiS.t;x/=„ (in the sequel, we consider
only one energy level in (5), thus omitting the subscript
k and replacing E by V ). If one applies this ansatz
in (5), by ignoring the O."/ term, one obtains the
eikonal equation for phase S and transport equation
for amplitude A:

@tS C 1

2
jrS j2 C V.x/ D 0I (6)

@tAC rS � rAC A

2
S D 0 : (7)

The eikonal equation (6) is a typical Hamilton-
Jacobi equation, which develops singularities in S ,
usually referred to caustics in the context of geometric
optics. Beyond the singularity, one has to superim-
pose the solutions of S , each of which satisfying
the eikonal equation (6), since the solution becomes
multivalued [6].
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This equation can be solved by the method of char-
acteristics, provided that V.x/ is sufficiently smooth.
Its characteristic flow is given by the following Hamil-
tonian system of ordinary differential equations, which
is Newton’s second law:

dx
dt
.t; y/ D 	.t; y/I d	

dt
.t; y/ D �rxV.x.t; y// :

(8)
Another approach to study the semiclassical limit is

the Wigner transform [12]:

w"Œ�"�.x; 	/ WD 1

.2�/n

Z
Rn

�



x C "

2
�
�
�



x � "

2
�
�
ei	��d� ; (9)

which is a convenient tool to study the limit of �.t; x/
to obtain the classical Liouville equation:

@tw C 	 � r	w � rV.x/ � r	w D 0 : (10)

Its characteristic equation is given by the Hamiltonian
system (8).

Various Potentials

The above Wigner analysis works well if the potential
V is smooth. In applications, E can be discontinuous
(corresponding to potential barriers), periodic (for solid
mechanics with lattice structure), random (with an
inhomogeneous background), or even nonlinear (where
the equation is a field equation, with applications to
optics and water waves, or a mean field equation as
an approximation of the original multiparticle linear
Schrödinger equation). Different approaches need to be
taken for each of these different cases.
• V is discontinuous. Through a potential barrier, the

quantum tunnelling phenomenon occurs and one
has to handle wave transmission and reflections [3].

• V is periodic. The Bloch decomposition is used to
decompose the wave field into sub-fields along each
of the Bloch bands, which are the eigenfunctions as-
sociated with a perturbed Hamiltonian that includes
H plus the periodic potential [13].

• V is random. Depending on the space dimension
and strength of the randomness, the waves can be

localized [2] or diffusive. In the latter case, the
Wigner transform can be used to study the high-
frequency limit [7].

• V is nonlinear. The semiclassical limit (10) fails
after caustic formation. The understanding of this
limit for strong nonlinearities remains a major
mathematical challenge. Not much is known except
in the one-dimensional defocusing nonlinearity case
(V D j�j2) [4].
In (4), when differentEk intersect, or get close, one

cannot ignore the quantum transitions between differ-
ent energy levels. A semiclassical approach, known as
the surface hopping method, was developed by Tully. It
is based on the classical Hamiltonian system (8), with
a Monte Carlo procedure to account for the quantum
transitions [11].

For a survey of semiclassical computational meth-
ods for the Schrödinger equation, see [5].
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Scientific Computing is about practical methods for
solving mathematical problems. One may argue that
the field goes back to the invention of Mathemat-
ics, but today, the term Scientific Computing usually
means application of computers to solve mathematical
problems. The solution process consists of several key
steps, which form the so-called simulation pipeline:
1. Formulation of a mathematical model which de-

scribes the scientific problem and is suited for
computer-based solution methods and some chosen
hardware

2. Construction of algorithms which precisely describe
the computational steps in the model

3. Implementation of the algorithms in software
4. Verification of the implementation
5. Preparation of input data to the model
6. Analysis and visualization of output data from the

model
7. Validation of the mathematical model, with associ-

ated parameter estimation
8. Estimation of the precision (or uncertainty) of the

mathematical model for predictions
In any of the steps, it might be necessary to go back
and change the formulation of the model or previous
steps to make further progress with other items on
the list. When this process of iterative improvement
has reached a satisfactory state, one can perform com-
puter simulations of a process in nature, technological
devices, or society. In essence, that means using the
computer as a laboratory to mimic processes in the
real world. Such a lab enables impossible, unethical,
or costly real-world experiments, but often the process
of developing a computer model gives increased sci-
entific insight in itself. The disadvantage of computer
simulations is that the quality of the results, or more

precisely the quantitative prediction capabilities of the
simulations, may not be well established.

Relations to Other Fields
A term closely related to Scientific Computing (and
that Wikipedia actually treats as a synonym) is Com-
putational Science, which we here define as solving a
scientific problem with the aid of techniques from Sci-
entific Computing. While Scientific Computing deals
with solution techniques and tools, Computational Sci-
ence has a stronger focus on the science, that is, a
scientific question and the significance of the answer.
In between these focal points, the craft of Scien-
tific Computing is fundamental in order to produce
an answer. Scientific Computing and Computational
Science are developing into an independent scientific
discipline; they combine elements from Mathematics
and Computer Science to form the foundations for a
new methodology of scientific discovery. Developing
Computational Science and Scientific Computing may
turn out to be as fundamental to the future progress in
science as was the development of novel Mathematics
in the times of Newton and Euler.

Another closely related term is Numerical Analysis,
which is about the “development of practical algo-
rithms to obtain approximate solutions of mathematical
problems and the validation of these solutions through
their mathematical analysis.” The development of al-
gorithms is central to both Numerical Analysis and
Scientific Computing, and so is the validation of the
computed solutions, but Numerical Analysis has a
particular emphasis on mathematical analysis of the
accuracy of approximate algorithms. Some narrower
definitions of Scientific Computing would say that it
contains all of Numerical Analysis, but in addition
applies more experimental computing techniques to
evaluate the accuracy of the computed results. Scien-
tific Computing is not necessarily restricted to approx-
imate solution methods, although those are the most
widely used. Other definitions of Scientific Computing
may include additional points from the list above,
up to our definition which is wide and includes all
the key steps in creating predictive computer simula-
tions.

The term Numerical Analysis seems to have ap-
peared in 1947 when the Institute for Numerical Analy-
sis was set up at UCLA with funding from the National
Bureau of Standards in the Office Naval Research.
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A landmark for the term Scientific Computing dates
back to 1980 when Gene Golub established SIAM
Journal on Scientific Computing. Computational Sci-
ence, and Computational Science and Engineering, be-
came widely used terms during the late the 1990s. The
book series Lecture Notes in Computational Science
and Engineering was initiated in 1995 and published
from 1997 (but the Norwegian University of Science
and Technology proposed a professor in Computa-
tional Science as early as 1993). The Computational
Science term was further coined by the popular con-
ferences SIAM Conference on Computational Science
and Engineering (from 2000) and the International
Conference on Computational Science (ICCS, from
2001). Many student programs with the same names
appeared at the turn of the century.

In Numerical Analysis the guiding principle is to
perform computations based on a strong theoretical
foundation. This foundation includes a proof that the
algorithm under consideration is computable and how
accurate the computed solution would be. Suppose,
for instance, that our aim is to solve a system of
algebraic equations using an iterative method. If we
have an algorithm providing a sequence of approxima-
tions given by fxi g, the basic questions of Numerical
Analysis are (i) (existence) to prove that xiC1 can be
computed provided that xi already is computed and
(ii) (convergence) how accurate is the i -th approxi-
mation. In general, these two steps can be extremely
challenging. Earlier, the goal of having a solid the-
oretical basis for algorithms was frequently realistic
since the computers available did not have sufficient
power to address very complex problems. That situ-
ation has changed dramatically in recent years, and
we are now able to use computers to study prob-
lems that are way beyond the realm of Numerical
Analysis.

Scientific Computing is the discipline that takes
over where a complete theoretical analysis of the
algorithms involved is impossible. Today, Scientific
Computing is an indispensable tool in science,
and the models, methods, and algorithms under
considerations are rarely accessible by analytical
tools. This lack of theoretical rigor is often addressed
by using extensive, carefully conducted computer
experiments to investigate the quality of computed
solutions. More standardized methods for such
investigations are an important integral part of
Scientific Computing.

Scientific Computing: Mathematics or
Computer Science?
Universities around the world are organized in de-
partments covering a reasonable portion of science or
engineering in a fairly disjoint manner. This organi-
zational structure has caused much headache amongst
researchers in Numerical Analysis and Scientific Com-
puting because these fields typically would have to find
its place either in a Computer Science department or in
a Mathematics department, and Scientific Computing
and Numerical Analysis belong in part to both these
disciplines. Heated arguments have taken place around
the world, and so far no universal solution has been
provided. The discussion may, however, be used to
illustrate the validity of Sayre’s law (From first lines of
wikipedia.org/wiki/Sayres law: Sayre’s law states, in a
formulation quoted by Charles Philip Issawi: “In any
dispute the intensity of feeling is inversely proportional
to the value of the issues at stake.” By way of corollary,
it adds: “That is why academic politics are so bitter.”)
which is often attributed to Henry Kissinger.

Formulation ofMathematical Models

The demand for a mathematical model comes from
the curiosity or need to answer a scientific question.
When the model is finally available for computer
simulations, the results very often lead to reformulation
of the model or the scientific question. This iterative
process is the essence of doing science with aid of
mathematical models.

Although some may claim that formulation of math-
ematical models is an activity that belongs to Engi-
neering and classical sciences and that the models are
prescribed in Scientific Computing, we will argue that
this is seldom the case. The classical scientific subjects
(e.g., Physics, Chemistry, Biology, Statistics, Mathe-
matics, Computer Science, Economics) do formulate
mathematical models, but the traditional focus targets
models suitable for analytical insight. Models suitable
for being run on computers require mathematical for-
mulations adapted to the technical steps of the solution
process. Therefore, experts on Scientific Computing
will often go back to the model and reformulate it to
improve steps in the solution process. In particular,
it is important to formulate models that fit approxi-
mation, software, hardware, and parameter estimation
constraints. Such aspects of formulating models have
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to a large extent been developed over the last decades
through Scientific Computing research and practice.
Successful Scientific Computing therefore demands a
close interaction between understanding of the phe-
nomenon under interest (often referred to as domain
knowledge) and the techniques available in the solution
process. Occasionally, intimate knowledge about the
application and the scientific question enables the use
of special properties that can reduce computing time,
increase accuracy, or just simplify the model consider-
ably.

To illustrate how the steps of computing impacts
modeling, consider flow around a body. In Physics (or
traditional Fluid Dynamics to be more precise), one
frequently restricts the development of a model to what
can be treated by pen and paper Mathematics, which
in the current example means assumption of stationary
laminar flow, that the body is a sphere, and that the
domain is infinite. When analyzing flow around a
body through computer simulations, a time-dependent
model may be easier to implement and faster to run
on modern parallel hardware, even if only a stationary
solution is of interest. In addition, a time-dependent
model allows the development of instabilities and the
well-known oscillating vortex patterns behind the body
that occur even if the boundary conditions are station-
ary. A difficulty with the discrete model is the need for
a finite domain and appropriate boundary conditions
that do not disturb the flow inside the domain (so-called
Artificial Boundary Conditions). In a discrete model,
it is also easy to allow for flexible body geometry
and relatively straightforward to include models of
turbulence. What kind of turbulence model to apply
might be constrained by implementational difficul-
ties, details of the computer architecture, or comput-
ing time feasibility. Another aspect that impacts the
modeling is the estimation of the parameters in the
model (usually done by solving � Inverse Problems:
Numerical Methods). Large errors in such estimates
may favor a simpler and less accurate model over
a more complex one where uncertainty in unknown
parameters is greater. The conclusion on which model
to choose depends on many factors and ultimately
on how one defines and measures the accuracy of
predictions.

Some common ingredients in mathematical models
are Integration; Approximation of Functions (Curve
and Surface Fitting); optimization of Functions or
Functionals; Matrix Systems; Eigenvalue Problems;

Systems of Nonlinear Equations; graphs and networks;
�Numerical Analysis of Ordinary Differential
Equations; �Computational Partial Differential
Equations; Integral Equations; Dynamical System
Theory; stochastic variables, processes, and fields;
random walks; and Imaging Techniques. The entries
on �Numerical Analysis, �Computational Partial
Differential Equations, and �Numerical Analysis
of Ordinary Differential Equations provide more
detailed overview of these topics and associated
algorithms.

Discrete Models and Algorithms

Mathematical models may be continuous or discrete.
Continuous models can be addressed by symbolic
computing, otherwise (and usually) they must be made
discrete through discretization techniques. Many phys-
ical phenomena leave a choice between formulating
the model as continuous or discrete. For example, a
geological material can be viewed as a finite set of
small elements in contact (discrete element model) or
as a continuous medium with prescribed macroscopic
material properties (continuum mechanical model). In
the former case, one applies a set of rules for how
elements interact at a mesoscale level and ends up
with a large system of algebraic equations that must
be solved, or sometimes one can derive explicit for-
mulas for how each element moves during a small
time interval. Another discrete modeling approach is
based on cellular automata, where physical relations
are described between a fixed grid of cells. The Lat-
tice Boltzmann method, for example, uses 2D or 3D
cellular automata to model the dynamics of a fluid
on a meso-scopic level. Here the interactions between
the states of neighboring cells are derived from the
principles of statistical mechanics.

With a continuous medium, the model is expressed
in terms of partial differential equations (with appro-
priate initial and boundary conditions). These equa-
tions must be discretized by techniques like � Finite
Difference Methods, � Finite Element Methods, or
� Finite Volume Methods, which lead to systems of
algebraic equations. For a purely elastic medium, one
can formulate mathematically equivalent discrete and
discretized continuous models, while for complicated
material behavior the two model classes have their pros
and cons. Some will prefer a discrete element model

http://dx.doi.org/10.1007/978-3-540-70529-1_373
http://dx.doi.org/10.1007/978-3-540-70529-1_390
http://dx.doi.org/10.1007/978-3-540-70529-1_292
http://dx.doi.org/10.1007/978-3-540-70529-1_285
http://dx.doi.org/10.1007/978-3-540-70529-1_292
http://dx.doi.org/10.1007/978-3-540-70529-1_390
http://dx.doi.org/10.1007/978-3-540-70529-1_414
http://dx.doi.org/10.1007/978-3-540-70529-1_450
http://dx.doi.org/10.1007/978-3-540-70529-1_433
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because it often has fewer parameters to estimate
than a continuum mechanical constitutive law for the
material.

Some models are spatially discrete but continuous
in time. Examples include �Molecular Dynamics and
planetary systems, while others are purely discrete, like
the network of Facebook users.

The fundamental property of a discrete model, ei-
ther originally discrete or a discretized continuous
model, is its suitability for a computer. It is necessary
to adjust the computational work, which is usually
closely related to the accuracy of the discrete model,
to fit the given hardware and the acceptable time for
calculating the solution. The choice of discretization
is also often dictated by software considerations. For
example, one may prefer to discretize a partial dif-
ferential equation by a finite difference method rather
than a finite element method because the former is
much simpler to implement and thus may lead to more
efficient software and thus eventually more accurate
simulation results.

The entries on �Numerical Analysis, �Compu-
tational Partial Differential Equations, �Numerical
Analysis of Ordinary Differential Equations, and
Imaging present overviews of different discretization
techniques, and more specialized articles go deeper
into the various methods.

The accuracy of the discretization is normally the
most important factor that governs the choice of tech-
nique. Discretized continuous models are based on
approximations, and quantifying the accuracy of these
approximations is a key ingredient in Scientific Com-
puting, as well as techniques for assessing their com-
putational cost. The field of Numerical Analysis has
developed many mathematical techniques that can help
establish a priori or a posteriori bounds on the errors
in numerous types of approximations. The former can
bound the error by properties of the exact solution,
while the latter applies the approximate (i.e., the com-
puted) solution in the bound. Since the exact solution
of the mathematical problem remains unknown, pre-
dictive models must usually apply a posteriori esti-
mates in an iterative fashion to control approximation
errors.

When mathematical expressions for or bounds of
the errors are not obtainable, one has to resort to
experimental investigations of approximation errors.
Popular techniques for this purpose have arisen from
verification methods (see below).

With � Symbolic Computing one can bring
additional power to exact and approximate solution
techniques based on traditional pen and paper
Mathematics. One example is perturbation methods
where the solution is expressed as a power series of
some dimensionless parameter, and one develops a
hierarchy of models for determining the coefficients
in the power series. The procedure originally involves
lengthy analytical computations by hand which can be
automated using symbolic computing software such as
Mathematica, Maple, or SymPy.

When the mathematical details of the chosen dis-
cretization are worked out, it remains to organize those
details in algorithms. The algorithms are computational
recipes to bridge the gap between the mathematical
description of discrete models and their associated
implementation in software. Proper documentation of
the algorithms is extremely important such that others
know all ingredients of the computer model on which
scientific findings are based. Unfortunately, the details
of complex models that are routinely used for impor-
tant industrial or scientific applications may sometimes
be available only through the actual computer code,
which might even be proprietary.

Many of the mathematical subproblems that
arise from a model can be broken into smaller
problems for which there exists efficient algorithms
and implementations. This technique has historically
been tremendously effective in Mathematics and
Physics. Also in Scientific Computing one often
sees that the best way of solving a new problem
is to create a clever glue between existing building
blocks.

Implementation

Ideally, a well-formulated set of algorithms should
easily translate into computer programs. While this
is true for simple problems, it is not in the general
case. A large portion of many budgets for Science
Computing projects goes to software development.
With increasingly complicated models, the complex-
ity of the computer programs appears to grow even
faster, because Computer Languages were not designed
to easily express complicated mathematical concepts.
This is one main reason why writing and maintaining
scientific software is challenging.

http://dx.doi.org/10.1007/978-3-540-70529-1_56
http://dx.doi.org/10.1007/978-3-540-70529-1_285
http://dx.doi.org/10.1007/978-3-540-70529-1_292
http://dx.doi.org/10.1007/978-3-540-70529-1_390
http://dx.doi.org/10.1007/978-3-540-70529-1_429
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The fundamental challenge to develop correct and
efficient software for Scientific Computing is notori-
ously underestimated. It has an inherent complexity
that cannot be addressed by automated procedures
alone, but must be acknowledged as an independent
scientific and engineering problem. Also, testing of
the software quickly consumes even more resources.
Software Engineering is a central field of Computer
Science which addresses techniques for developing and
testing software systems in general, but has so far had
minor impact on scientific software. We can identify
three reasons. First, the structure of the software is
closely related to the mathematical concepts involved.
Second, testing is very demanding since we for most
relevant applications do not know the answer before-
hand. Actually, much scientific software is written
to explore new phenomena where neither qualitative
nor quantitative properties of the computed results
are known. Even when analytical insight is known
about the solution, the computed results will contain
unknown discretization errors. The third reason is that
scientific software quickly consumes the largest com-
putational resources available and hence employs spe-
cial High-Performance Computing (HPC) platforms.
These platforms imply that computations must run
in parallel on heterogeneous architectures, a fact that
seriously complicates the software development. There
has traditionally been little willingness to adopt good
Software Engineering techniques if they cause any loss
of computational performance (which is normally the
case).

In the first decades of Scientific Computing,
FORTRAN was the dominating Computer Language
for implementing algorithms and FORTRAN has still a
strong position. Classical FORTRAN (with the dialects
IV, 66, and 77) is ideal for mathematical formulas and
heavy array computations, but lacks more sophisticated
features like classes, namespaces, and modules to
elegantly express complicated mathematical concepts.
Therefore, the much richer C++ language attracted
significant attention in scientific software projects from
the mid-1990s. Today, C++ is a dominating language
in new projects, although the recent FORTRAN
2003/2008 has many of the features that made
C++ popular. C, C++, and FORTRAN enable the
programmer to utilize almost the maximum efficiency
of an HPC architecture. On the other hand, much less
computationally efficient languages such as MATLAB,
Mathematica, and Python have reached considerable

popularity for implementing Scientific Computing
algorithms. The reason is that these languages are more
high level; that is, they allow humans to write computer
code closer to the mathematical concepts than what is
easily achievable with C, C++, and FORTRAN.

Over the last four decades, numerous high-quality
libraries have been developed, especially for frequently
occurring problems from numerical linear algebra, dif-
ferential equations, approximation of functions, opti-
mization, etc. Development of new software today will
usually maximize the utilization of such well-tested
libraries. The result is a heterogeneous software envi-
ronment that involves several languages and software
packages, often glued together in easy-to-use and easy-
to-program applications in MATLAB or Python.

If we want to address complicated mathematical
models in Scientific Computing, the software needs
to provide the right abstractions to ease the imple-
mentation of the mathematical concepts. That is, the
step from the mathematical description to the com-
puter code must be minimized under the constraint of
minor performance loss. This constrained optimization
problem is the great challenge in developing scientific
software.

Most classical mathematical methods are serial, but
utilization of modern computing platforms requires
algorithms to run in parallel. The development of
algorithms for �Parallel Computing is one of the most
significant activities in Scientific Computing today.
Implementation of parallel algorithms, especially in
combination with high-level abstractions for compli-
cated mathematical concepts, is an additional research
challenge. Easy-to-use parallel implementations are
needed if a broad audience of scientists shall effec-
tively utilize Modern HPC Architectures such as clus-
ters with multi-core and multi-GPU PCs. Fortunately,
many of the well-known libraries for, e.g., linear alge-
bra and optimization are updated to perform well on
modern hardware.

Often scientific progress is limited by the available
hardware capacity in terms of memory and compu-
tational power. Large-scale projects can require ex-
pensive resources, where not only the supercomputers
per se but also their operational cost become limiting
factors. Here it becomes mandatory that the accuracy
provided by a Scientific Computing methodology is
evaluated relative to its cost. Traditional approaches
that just quantify the number of numerical operations
turn often out to be misleading. Worse than that,

http://dx.doi.org/10.1007/978-3-540-70529-1_424
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theoretical analysis often provides only asymptotic
bounds for the error with unspecified constants. This
translates to cost assessments with unspecified con-
stants that are of only little use for quantifying the
real cost to obtain a simulation result. In Scientific
Computing, such mathematical techniques must be
combined with more realistic cost predictions to guide
the development of effective simulation methods. This
important research direction comes under names such
as �Hardware-Oriented Numerics for PDE or system-
atic performance engineering and is usually based on
a combination of rigorous mathematical techniques
with engineering-like heuristics. Additionally, techno-
logical constraints, such as the energy consumption
of supercomputers are increasingly found to become
critical bottlenecks. This in turn motivates genuinely
new research directions, such as evaluating the numer-
ical efficiency of an algorithm in terms of its physical
resource requirements like the energy usage.

Verification

�Verification of scientific software means setting up a
series of tests to bring evidence that the software solves
the underlying mathematical problems correctly.
A fundamental challenge is that the problems are
normally solved approximately with an error that
is quantitatively unknown. Comparison with exact
mathematical results will in those cases yield a
discrepancy, but the purpose of verification is to
ensure that there are no additional nonmathematical
discrepancies caused by programming mistakes.

The ideal tests for verification is to have exact
solutions of the discrete problems. The discrepancy
of such solutions and those produced by the soft-
ware should be limited by (small) roundoff errors due
to Finite Precision Arithmetic in the machine. The
standard verification test, however, is to use exact
solutions of the mathematical problems to compute
observed errors and check that these behave correctly.
More precisely, one develops exact solutions for the
mathematical problem to be solved, or a closely related
one, and establishes a theoretical model for the errors.
Error bounds from Numerical Analysis will very often
suggest error models. For each problem one can then
vary discretization parameters to generate a data set of
errors and see if the relation between the errors and
the discretization parameters is as expected from the

error model. This strategy constitutes the perhaps most
important verification technique and demonstrates how
dependent software testing is on results from Numeri-
cal Analysis.

Analytical insight from alternative or approximate
mathematical models can in many physical problems
be used to test that certain aspects of the solution be-
have correctly. For example, one may have asymptotic
results for the solution far away from the locations
where the main physics is generated. Moreover, prin-
ciples such as mass, momentum, and energy balance
for the whole system under consideration can also be
checked. These types of tests are not as effective for
uncovering software bugs as the tests described above,
but add evidence that the software works.

Scientific software needs to compute correct num-
bers, but must also run fast. Tests for checking that the
computational speed has not changed unexpectedly are
therefore an integral part of any test suite. Especially
on parallel computing platforms, this type of efficiency
tests is as important as the correctness tests.

A fundamental requirement of verification proce-
dures is that all tests are automated and can at any time
be repeated. Version control systems for keeping track
of different versions of the files in a software package
can be integrated with automatic testing such that every
registered change in the software triggers a run of the
test suite, with effective reports to help track down new
errors. It is also easy to roll back to previous versions
of the software that passed all tests. Science papers that
rely heavily on Scientific Computing should ideally
point to web sites where the version history of the
software and the tests are available, preferably also
with snapshots of the whole computing environment
where the simulation results were obtained. These
elements are important for �Reproducibility: Methods
of the scientific findings.

Preparation of Input Data

With increasingly complicated mathematical models,
the preparation of input data for such models has be-
come a very resource consuming activity. One example
is the computation of the drag (fuel consumption) of
a car, which demands a mathematical description of
the car’s surface and a division of the air space outside
the car into small hexahedra or tetrahedra. Techniques
of �Geometry Processing can be used to measure

http://dx.doi.org/10.1007/978-3-540-70529-1_312
http://dx.doi.org/10.1007/978-3-540-70529-1_311
http://dx.doi.org/10.1007/978-3-540-70529-1_332
http://dx.doi.org/10.1007/978-3-540-70529-1_432
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and mathematically represent the car’s surface, while
Meshing Algorithms are used to populate the air flow
domain with small hexahedra or tetrahedra. An even
greater challenge is met in biomedical or geophysical
computing where Segmentation Methods must nor-
mally be accompanied by human interpretation when
extracting geometries from noisy images.

A serious difficulty of preparing input data is related
to lack of knowledge of certain data. This situation
requires special methods for parameter estimation as
described below.

Visualization of Output Data

Computer simulations tend to generate large amounts
of numbers, which are meaningless to the scientists
unless the numbers are transformed to informative
pictures closely related to the scientific investigation at
hand. This is the goal of �Visualization. The simplest
and often most effective type of visualization is to
draw curves relating key quantities in the investiga-
tion. Frequently, curves give incomplete insight into
processes, and one needs to visualize more complex
objects such as big networks or time-dependent, three-
dimensional scalar or vector fields. Even if the goal of
simulating a car’s fuel consumption is a single number
for the drag force, any physical insight into enhancing
geometric features of the car requires detailed visual-
ization of the air velocities, the pressure, and vortex
structures in time and 3D space. Visualization is partly
about advanced numerical algorithms and partly about
visual communication. The importance of effective
visualization in Scientific Computing can hardly be
overestimated, as it is a key tool in software debugging,
scientific investigations, and communication of the
main research findings.

Validation and Parameter Estimation

While verification is about checking that the algorithms
and their implementations are done right, validation is
about checking that the mathematical model is rele-
vant for predictions. When we create a mathematical
model for a particular process in nature, a technolog-
ical device, or society, we think of a forward model
in the meaning that the model requires a set of in-
put data and can produce a set of output data. The

input data must be known for the output data to be
computed. Very often this is not the case, because
some input data remains unknown, while some output
data is known or can be measured. And since we
lack some input data, we cannot run the forward
model. This situation leads to a parameter estimation
problem, also known as a model calibration problem,
a parameter identification problem, or an � Inverse
Problems: Numerical Methods. The idea is to use
some of the known output data to estimate some of
the lacking input data with aid of the model. For-
ward models are for the most part well posed in the
sense that small errors in input data are not amplified
significantly in the output. Inverse problems, on the
other hand, are normally ill posed: small errors in
the measured output may have severe impact on the
precision of our estimates of input data. Much of
the methodology research is about reducing the ill
posedness.

�Validation consists in establishing evidence that
the computer model really models the real phenomena
we are interested in. The idea is to have a range of test
cases, each with some known output, usually measured
in physical experiments, and checking that the model
reproduces the known output. The tests are straightfor-
wardly conducted if all input data is known. However,
very often some input parameters in the model are
unknown, and the typical validation procedure for a
given test case is to tune those parameters in a way
that reproduces the known output. Provided that the
tuned parameters are within realistic regions, the model
passes the validation test in the sense that there exists
relevant input data such that the model predicts the
observed output.

Understanding of the process being simulated
can effectively guide manual tuning of unknown
input parameters. Alternatively, many different
numerical methods exist for automatically fitting input
parameters. Most of them are based on constrained
optimization, where one wants to minimize the
squared distance between predicted and observed
output with respect to the unknown input parameters,
given the constraint that any predicted value
must obey the model. Numerous specific solution
algorithms are found in the literature on deterministic
� Inverse Problems: Numerical Methods. Usually,
the solution of an inverse problems requires a large
number of solutions of the corresponding forward
problem.

http://dx.doi.org/10.1007/978-3-540-70529-1_368
http://dx.doi.org/10.1007/978-3-540-70529-1_373
http://dx.doi.org/10.1007/978-3-540-70529-1_310
http://dx.doi.org/10.1007/978-3-540-70529-1_373


Scientific Computing 1309

S

Many scientific questions immediately lead to
inverse problems. Seismic imaging is an example
where one aims to estimate the spatial properties of the
Earth’s crust using measurements of reflected sound
waves. Mathematically, the unknown properties are
spatially varying coefficients in partial differential
equations, and the measurements contain information
about the solution of the equations. The primary
purpose is to estimate the value of the coefficients,
which in a forward model for wave motion constitute
input data that must be known. When the focus is about
solving the inverse problem itself, one can often apply
simpler forward models (in seismic imaging, e.g.,
ordinary differential equations for ray tracing have
traditionally replaced full partial differential equations
for the wave motion as forward model).

Reliable estimation of parameters requires more
observed data than unknown input data. Then we can
search for the best fit of parameters, but there is
no unique definition of what “best” is. Furthermore,
measured output data is subject to measurement errors.
It is therefore fruitful to acknowledge that the solution
of inverse problems has a variability. Control of this
variability gives parameter estimates with correspond-
ing statistical uncertainties. For this purpose, one may
turn to solving stochastic inverse problems. These
are commonly formulated in a �Bayesian Statistics:
Computation where probability densities for the input
parameters are suggested, based on prior knowledge,
and the framework updates these probability densities
by taking the forward model and the data into account.
The inserted prior knowledge handles the ill posedness
of deterministic inverse problems, but at a much in-
creased computational cost.

Uncertainty Quantification

With stochastic parameter estimation we immediately
face the question: How does the uncertainty in esti-
mated parameters propagate through the model? That
is, what is the uncertainty in the predicted output?
Methods from �Uncertainty Quantification: Computa-
tion can be used to answer this problem. If parameters
are estimated by Bayesian frameworks, we have com-
plete probability descriptions. With simpler estimation
methods we may still want to describe uncertainty
in the parameters in terms of assumed probability
densities.

The simplest and most general method for un-
certainty quantification is Monte Carlo simulation.
Large samples of input data are drawn at random
from the known probability densities and fed as input
to the model. The forward model is run to compute
the output corresponding to each sample. From the
samples of output data, one can compute the aver-
age, variance, and other statistical measures of the
quantities of interest. One must often use of the or-
der 105�107 samples (and hence runs of the forward
model) to compute reasonably precise statistics. Much
faster but less general methods exist. During recent
years, � Polynomial Chaos Expansions have become
popular. These assume that the mapping from stochas-
tic input to selected output quantities is smooth such
that the mapping can be effectively described by a
polynomial expansion with few terms. The expansion
may converge exponentially fast and reduce the num-
ber of runs of the forward model by several orders of
magnitude.

Having validated the model and estimated the
uncertainty in the output, we can eventually perform
predictive computer simulations and calculate the
precision of the predictions. At this point we have
completed the final item in our list of key steps in the
simulation pipeline.

We remark that although the stochastic parameter
estimation framework naturally turns an originally de-
terministic model into a stochastic one, modelers may
early in the modeling process assume that the details
of some effect are not precisely known and therefore
describe the effect as a stochastic quantity. Some input
to the model is then stochastic and the question is
how the statistical variability is propagated through the
model. This basically gives the same computational
problem as in uncertainty quantification. One exam-
ple where stochastic quantities are used directly in
the modeling is environmental forces from wind and
waves on structures. The forces may be described as
stochastic space-time fields with statistical parameters
that must be estimated from measurements.

Laboratory and Field Experiments

The workflow in Scientific Computing to establish pre-
dictive simulation models is seen to involve knowledge
from several subjects, clearly Applied and Numeri-
cal Mathematics, Statistics, and Computer Science,

http://dx.doi.org/10.1007/978-3-540-70529-1_327
http://dx.doi.org/10.1007/978-3-540-70529-1_343
http://dx.doi.org/10.1007/978-3-540-70529-1_331
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but the mathematical techniques and software work
must be closely integrated with domain-specific mod-
eling knowledge from the field where the science
problem originates, say Physics, Mechanics, Geology,
Geophysics, Astronomy, Biology, Finance, or Engi-
neering disciplines. A less emphasized integration is
with laboratory and field experiments, as Scientific
Computing is often applauded to eliminate the need
for experiments. However, we have explained that
predictive simulations require validation, parameter
estimation, and control of the variability of input and
output data. The computations involved in these tasks
cannot be carried out without access to carefully con-
ducted experiments in the laboratory or the field. A
hope is that an extensive amount of large-scale data
sets from experiments can be made openly available
to all computational scientists and thereby acceler-
ate the integration of experimental data in Scientific
Computing.

Self-Consistent Field (SCF) Algorithms

Eric Cancès
Ecole des Ponts ParisTech – INRIA, Université Paris
Est, CERMICS, Projet MICMAC, Marne-la-Vallèe,
Paris, France

Definition

Self-consistent field (SCF) algorithms usually refer
to numerical methods for solving the Hartree-Fock,
or the Kohn-Sham equations. By extension, they
also refer to constrained optimization algorithms
aiming at minimizing the Hartree-Fock, or the Kohn-
Sham energy functional, on the set of admissible
states.

Discretization of the Hartree-Fock Model

As usual in electronic structure calculation, we adopt
the system of atomic units, obtained by setting to
1 the values of the reduced Planck constant „, of
the elementary charge, of the mass of the electron,
and of the constant 4��0, where �0 is the dielectric
permittivity of the vacuum.

The Hartree-Fock model reads, for a molecular
system containing N electrons, as

EHF
0 .N / D inf

(
EHF.˚/; ˚ D .�1; � � � ; �N /

2 .H1.R3˙//
N ;

Z
R
3
˙

�i�
�
j D ıij

)
; (1)

where R3˙ DR
3 � f";#g,

Z
R
3
˙

�i�
�
j D

Z
R
3
˙

�i .x/��
j .x/

dx WD
X

�2f";#g

Z
R3

�i .r; �/ �j .r; �/� dr,

and

EHF.˚/ D 1

2

NX
iD1

Z
R
3
˙

jr�i j2 C
Z
R
3
˙

�˚Vnuc

C1

2

Z
R3

Z
R3

�˚.r/ �˚.r0/
jr � r0j dr dr0

�1
2

Z
R
3
˙

Z
R
3
˙

j�˚.x; x0/j2
jr � r0j dx dx0:

The function Vnuc denotes the nuclear potential. If
the molecular system contains M nuclei of charges
z1; � � � ; zM located at positions R1; � � � ;RM , the fol-
lowing holds

Vnuc.r/ D �
MX
kD1

zk
jr � Rkj :

The density �˚ and the density matrix �˚ associated
with ˚ are defined by

�˚.r/ D
NX
iD1

X
�2f";#g

j�i .r; �/j2 and

�˚.x; x0/ D
NX
iD1

�i .x/�i .x0/�:

The derivation of the Hartree-Fock model from
the N -body Schrödinger equation is detailed in the
contribution by I. Catto to the present volume.

The Galerkin approximation of the minimization
problem (1) consists in approachingEHF

0 .N / by



Self-Consistent Field (SCF) Algorithms 1311

S

EHF
0 .N;V/ D min

(
EHF.˚/; ˚ D .�1; � � � ; �N /

2 VN ;
Z
R
3
˙

�i�
�
j D ıij

)
; (2)

where V � H1.R3˙/ is a finite dimensional approxi-
mation space of dimension Nb. Obviously, EHF

0 .N / �
EHF
0 .N;V/ for any V � H1.R3˙/.
In the sequel, we denote by C

m;n the vector space
of the complex-valued matrices with m lines and n
columns, and by C

m;m
h the vector space of the hermitian

matrices of size m � m. We endow these spaces with
the Frobenius scalar product defined by .A;B/F WD
Tr .A�B/. Choosing a basis .�1; � � � ; �Nb / of V , and
expanding ˚ D .�1; � � � ; �N / 2 VN as

�i .x/ D
NbX
iD1

C�i��.x/;

problem (2) also reads

EHF
0 .N;V/ D min

˚
EHF.CC �/; C 2 C

Nb�N;

C �SC D IN
�
; (3)

where IN is the identity matrix of rank N and where

EHF.D/ D Tr .hD/C 1

2
Tr .G.D/D/:

The entries of the overlap matrix S and of the one-
electron Hamiltonian matrix h are given by

S�� WD
Z
R
3
˙

��
��� (4)

and

h�� WD 1

2

Z
R
3
˙

r��
��r���

MX
kD1

zk

Z
R
3
˙

��.x/���.x/
jr � Rkj dx:

(5)
The linear map G 2 L.CNb�Nb

h / is defined by

ŒG.D/��� WD
NbX

�;�D1
Œ.��j��/� .��j��/� D��;

where .��j��/ is the standard notation for the two-
electron integrals

.��j��/ WD
Z
R
3
˙

Z
R
3
˙

��.x/��.x/���.x0/��.x0/�

jr � r0j dxdx0 :

(6)

We will make use of the symmetry property

Tr .G.D/D0/ D Tr .G.D0/D/: (7)

The formulation (3) is referred to as the molecular
orbital formulation of the Hartree-Fock model, by
contrast with the density matrix formulation defined as

EHF
0 .N;V/ D min

n
EHF.D/; D 2 C

Nb�Nb

h ;

DSD D D; Tr .SD/ D N
o
: (8)

It is easily checked that problems (3) and (8) are equiv-
alent, remarking that the map fC 2 C

Nb�N jC �SC D
IN g 3 C 7! CC � 2 fD 2 C

Nb�Nb

h jDSD D
D;Tr .SD/ D N g is onto. For any ˚ D .�1,
� � � ; �N / 2 VN with �i .x/ D PNb

�D1 C�i��.x/, the
following holds

�˚.x; x0/ D
NbX

�;�D1
D����.x/��.x0/� with D D CC �:

We refer to the contribution by Y. Maday for the
derivation of a priori and a posteriori estimates on the
energy difference EHF

0 .N;V/ � EHF
0 .N /, and on the

distance between the minimizers of (2) and those of
(1), for L2 and Sobolev norms.

Most Hartree-Fock calculations are performed in
atomic orbital basis sets (see, e.g., [9] for details),
and more specifically with Gaussian type orbitals. The
latter are of the form

��.r; �/ D
NgX
gD1

P�;g.r � Rk.�//e
�˛�;g jr�Rk.�/j2 S�.�/;

(9)
where P�;g is a polynomial, ˛�;g > 0, and S� D
˛ or ˇ, with ˛.�/ D ı�;" and ˇ.�/ D ı�;#. The
main advantage of Gaussian type orbitals is that all the
integrals in (4)–(6) can be calculated analytically [5].
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In order to simplify the notation, we assume in the
sequel that the basis .�1; � � � ; �Nb / is orthonormal, or,
equivalently, that S D INb . The molecular orbital and
density matrix formulations of the discretized Hartree-
Fock model then read

EHF
0 .N;V/ D min

˚
EHF.CC �/; C 2 C

�
; (10)

C D ˚
C 2 C

Nb�N jC �C D IN
�
;

EHF
0 .N;V/ D min

˚
EHF.D/; D 2 P

�
; (11)

P D
n
D 2 C

Nb�Nb
h jD2 D D;

Tr .D/ D N
o
:

Hartree-Fock-Roothaan-Hall Equations

The matrix

F.D/ WD hCG.D/ (12)

is called the Fock matrix associated with D. It is the
gradient of the Hartree-Fock energy functional at D,
for the Frobenius scalar product.

It can be proved (see again [9] for details) that if D
is a local minimizer of (11), then

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

D D
NX
iD1

˚i˚
�
i

F .D/˚i D �i ˚i
˚�
i ˚j D ıij

�1 � �2 � � � � � �N are the lowest
N eigenvalues F.D/.

(13)

The above system is a nonlinear eigenvalue problem:
the vectors ˚i are orthonormal eigenvectors of the
hermitian matrix F.D/ associated with the lowest
N eigenvalues of F.D/, and the matrix F.D/ de-
pends on the eigenvectors ˚i through the definition
of D. The first three equations of (13) are called the
Hartree-Fock-Roothaan-Hall equations. The property
that �1; � � � ; �N are the lowest N eigenvalues of the
hermitian matrix F.D/ is referred to as the Aufbau
principle. An interesting property of the Hartree-Fock
model is that, for any local minimizer of (11), there
is a positive gap between the N th and .N C 1/th

eigenvalues of F.D/: � D �NC1 � �N > 0 [2, 9].
From a geometrical viewpoint,D D PN

iD1 ˚i˚�
i is the

matrix of the orthogonal projector on the vector space
spanned by the lowest N eigenvalues of F.D/. Note
that (13) can be reformulated without any reference to
the molecular orbitals ˚i as follows:

D 2 argmin
˚
Tr .F.D/D0/; D0 2 P

�
; (14)

and that, as � D �NC1 � �N > 0, the right-hand side of
(14) is a singleton. This formulation is a consequence
of the following property: for any hermitian matrix
F 2 C

Nb�Nb
h with eigenvalues �1 � � � � � �Nb and any

orthogonal projector D of the form D D PN
iD1 ˚i˚�

i

with ˚�
i ˚j D ıij and F˚i D �i˚i , the following

holds 8D0 2 P ,

Tr .FD0/ � Tr .FD/C �NC1 � �N

2
kD �D0k2F :

(15)

Roothaan Fixed Point Algorithm

It is very natural to try and solve (13) by means of the
following fixed point algorithm, originally introduced
by Roothaan in [24]:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

F.DRth
k /˚i;kC1 D �i;kC1 ˚i;kC1

˚�
i;kC1˚j;kC1 D ıij

�1;kC1 � �2;kC1 � � � � � �N;kC1 are the lowest
N eigenvalues F.DRth

k /

DRth
kC1 D

NX
iD1

˚i;kC1˚�
i;kC1;

(16)

which also reads, in view of (15),

DRth
kC1 2 argmin

˚
Tr .F.DRth

k /D0/; D0 2 P
�
: (17)

Solving the nonlinear eigenvalue problem (13) then
boils down to solving a sequence of linear eigenvalue
problems.

It was, however, early realized that the above algo-
rithm often fails to converge. More precisely, it can be
proved that, under the assumption that

inf
k2N .�NC1;k � �N;k/ > 0; (18)
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which seems to be always satisfied in practice, the
sequence .DRth

k /k2N generated by the Roothaan
algorithm either converges to a solution D of the
Hartree-Fock-Roothaan-Hall equations satisfying the
Aufbau principle

kDRth
k �Dk �!

k!1 0 with D satisfying (13); (19)

or asymptotically oscillates between two states Deven

and Dodd, none of them being solutions to the Hartree-
Fock-Roothaan-Hall equations

kDRth
2k �Devenk �!

k!1 0 and kDRth
2kC1�Doddk �!

k!1 0:

(20)

The behavior of the Roothaan algorithm can be
explained mathematically, noticing that the sequence
.DRth

k /k2N is obtained by minimizing by relaxation the
functional

E.D;D0/ D Tr .hD/C Tr .hD0/C Tr .G.D/D0/:

Indeed, we deduce from ( 7), (12), and (17) that

DRth
1 D argmin

˚
Tr .F.DRth

0 /D0/; D0 2 P
�

D argmin
˚
Tr .hDRth

0 /C Tr .hD0/

CTr .G.DRth
0 /D0/; D0 2 P

�
D argmin

˚
E.DRth

0 ;D0/; D0 2 P
�
;

DRth
2 D argmin

˚
Tr .F.DRth

1 /D/; D 2 P
�

D argmin
˚
Tr .hD/C Tr .hDRth

1 /

CTr .G.DRth
1 /D/; D0 2 P

�
D argmin

˚
Tr .hD/C Tr .hDRth

1 /

CTr .G.D/DRth
1 /; D0 2 P

�
D argmin

˚
E.D;DRth

1 /; D 2 P
�
;

and so on, and so forth. Together with (15) and (18),
this leads to numerical convergence [6]: kDRth

kC2 �
DRth
k kF ! 0. The convergence/oscillation properties

(19)/(20) can then be obtained by resorting to the
Łojasiewicz inequality [17].

Oscillations of the Roothaan algorithm are called
charge sloshing in the physics literature. Replacing

E.D;D0/ with the penalized functional E.D;D0/ C
b
2
kD �D0k2F (b > 0) suppresses the oscillations when
b is large enough, but the resulting algorithm

Db
kC1 2 argmin

˚
Tr .F.Db

k � bDb
k/D

0/; D0 2 P
�

often converges toward a critical point of the Hartree-
Fock-Roothaan-Hall equations, which does not satisfy
the Aufbau principle, and is, therefore, not a local
minimizer. This algorithm, introduced in [25], is called
the level-shifting algorithm. It has been analyzed in
[6, 17].

Direct MinimizationMethods

The molecular orbital formulation (10) and the density
matrix formulation (11) of the discretized Hartree-
Fock model are constrained optimization problems.
In both cases, the minimization set is a (non-convex)
smooth compact manifold. The set C is a manifold
of dimension NNb � 1

2
N.N C 1/, called the Stiefel

manifold; the set P of the rank-N orthogonal projec-
tors in C

Nb is a manifold of dimension N.Nb � N/,
called the Grassmann manifold. We refer to [12] for an
interesting review of optimization methods on Stiefel
and Grassmann manifolds.

From a historical viewpoint, the first minimization
method for solving the Hartree-Fock-Roothaan-Hall
equations, the so-called steepest descent method, was
proposed in [20]. It basically consists in performing
one unconstrained gradient step on the function D 7!
E.D/ (i.e., eDkC1 D Dk�trE.Dk/ D Dk�tF .Dk/),
followed by a “projection” step eDkC1 ! DkC1 2
P . The “projection” can be done using McWeeny’s
purification, an iterative method consisting in replacing
at each stepD with 3D2�2D3. It is easily checked that
if eDkC1 is close enough to P , the purification method
converges quadratically to the point of P closest toeDkC1 for the Frobenius norm. The steepest descent
method has the drawback of any basic gradient method:
it converges very slowly, and is therefore never used in
practice.

Newton-like algorithms for computing Hartree-
Fock ground states appeared in the early 1960s with
Bacskay quadratic convergent (QC) method [3].
Bacskay’s approach was to lift the constraints and
use a standard Newton algorithm for unconstrained
optimization. The local maps of the manifold P used
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in [3] are the following exponential maps: for any
C 2 C

Nb�Nb such that C �SC D INb ,

P D

CeAD0e

�AC �; D0 D
�
IN 0

0 0

	
;

A D
�
0 �A�

vo
Avo 0

	
; Avo 2 C

.Nb�N/�N
�

I

the suffix vo denotes the virtual-occupied off-diagonal
block of the matrix A. Starting from some reference
matrixC, Bacskay QC algorithm performs one Newton
step on the unconstrained optimization problem

min
˚
EC .Avo/ WD EHF.CeAD0e

�AC �/;

Avo 2 C
.Nb�N/�N � ;

and updates the reference matrix C by replacing C

with CeeA, where eA D
�
0 �eA�

voeAvo 0

	
, eAvo denoting the

result of the Newton step. Newton methods being very
expensive in terms of computational costs, various at-
tempts have been made to build quasi-Newton versions
of Bacskay QC algorithm (see, for e.g., [10, 13]).

A natural alternative to Bacskay QC is to use
Newton-like algorithms for constrained optimization
in order to directly tackle problems (10) or (11)
(see, e.g., [26]). Trust-region methods for solving
the constrained optimization problem (10) have also
been developed by Helgaker and co-workers [27],
and independently by Martı́nez and co-workers [14].
Recently, gradient flow methods for solving (10) [1]
and (11) [17] have been introduced and analyzed from
a mathematical viewpoint.

For molecular systems of moderate size, and when
the Hartree-Fock model is discretized in atomic orbital
basis sets, direct minimization methods are usually
less efficient than the methods based on constraint
relaxation or optimal mixing presented in the next two
sections.

Lieb Variational Principle and Constraint
Relaxation

We now consider the variational problem

min
˚
EHF.D/; D 2 eP� ; (21)

eP D
n
D 2 C

Nb�Nb
h ; 0 � D � 1; Tr .D/ D N

o
;

where 0 � D � 1 means that 0 � ˚�D˚ � ˚�˚ for
all ˚ 2 C

Nb , or equivalently, that all the eigenvalues
ofD lay in the range Œ0; 1�. It is easily seen that the seteP is convex. It is in fact the convex hull of the set P.
A fundamental remark is that all the local minimizers
of (21) are on P [9]. This is the discretized version
of a result by Lieb [18]. It is, therefore, possible to
solve the Hartree-Fock model by relaxing the non-
convex constraint D2 D D into the convex constraint
0 � D � 1.

The orthogonal projection of a given hermitian
matrix D on eP for the Frobenius scalar product can
be computed by diagonalizing D [8]. The cost of one
iteration of the usual projected gradient algorithm [4]
is therefore the same at the cost of one iteration of the
Roothaan algorithm.

A more efficient algorithm, the Optimal Damping
Algorithm (ODA), is the following [7]


DkC1 2 argmin

˚
Tr .F.eDk/D

0/; D0 2 P
�

eDkC1 D argmin
˚
EHF.eD/; eD 2 SegŒeDk;DkC1�

�
;

where SegŒeDk;DkC1� D ˚
.1� �/eDk C �DkC1; � 2

Œ0; 1�g denotes the line segment linking eDk and DkC1.
As EHF is a second degree polynomial in the density
matrix, the last step consists in minimizing a quadratic
function of � on Œ0; 1�, which can be done analytically.
The procedure is initialized with eD0 D D0, D0 2 P
being the initial guess. The ODA thus generates two
sequences of matrices:
• The main sequence of density matrices .Dk/k2N 2

PN which is proven to numerically converge to an
Aufbau solution to the Hartree-Fock-Roothaan-Hall
equations [9]

• A secondary sequence .eDk/k�1 of matrices belong-
ing to eP

The Hartree-Fock energy is a Lyapunov functional of
ODA: it decays at each iteration. This follows from the
fact that for all D0 2 P and all � 2 Œ0; 1�,

EHF..1 � �/eDk C �D0/ D EHF.eDk/C �Tr .F.eDk/

.D0 � eDk//C �2

2
Tr
�
G.D0 � eDk/.D

0 � eDk/
�
:

(22)
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The “steepest descent” direction, that is, the
density matrix D for which the slope seDk!D D
Tr .F.eDk/.D � eDk// is minimum, is preciselyDkC1.

In some sense, ODA is a combination of diagonal-
ization and direct minimization. The practical imple-
mentation of ODA is detailed in [7], where numerical
tests are also reported. The cost of one ODA itera-
tion is approximatively the same as for the Roothaan
algorithm. Numerical tests show that ODA is par-
ticularly efficient in the early steps of the iterative
procedure.

Convergence Acceleration

SCF convergence can be accelerated by performing, at
each step of the iterative procedure, a mixing of the
previous iterates:

8̂
<
:̂
DkC1 2 argmin

˚
Tr .eF kD

0/; D0 2 P
�

eF k D
kX

jD0
cj;kF .Dj /;

kX
jD0

cj;k D 1;
(23)

where the mixing coefficients cj;k are optimized ac-
cording to some criterion. Note that in the Hartree-
Fock setting, the mean-field Hamiltonian F.D/ is
affine in D, so that mixing the F.Dj /’s amounts to
mixing the Dj ’s:

eF k D F.eDk/ where eDk D
kX

jD0
cj;kDj :

This is no longer true for Kohn-Sham models.
In Pulay’s DIIS algorithm [22], the mixing coeffi-

cients are obtained by solving

min

8̂
<
:̂

������
kX

jD1
cj ŒF .Dj /;Dj �

������
2

F

;

kX
jD1

cj D 1

9>=
>; :

The commutator ŒF .D/;D� is in fact the gradient
of the functional A 7! EHF.eADe�A/ defined on the
vector space of the Nb � Nb antihermitian matrices
(note that eADe�A 2 P for all D 2 P and A

antihermitian); it vanishes when D is a critical point
of EHF on P .

In the EDIIS algorithm [16], the mixing coeffi-
cients are chosen to minimize the Hartree-Fock energy
of eDk :

min

8<
:EHF

0
@ kX
jD1

cjDj

1
A ; cj � 0;

kX
jD1

cj D 1

9=
;

(note that as the cj ’s are chosen non-negative, eDk is
the element of eP which minimizes the Hartree-Fock
energy on the convex hull of fD0;D1; � � � ;Dkg).

The DIIS algorithm does not always converge. On
the other hand, when it converges, it is extremely fast.
This nice feature of the DIIS algorithm has not yet been
fully explained by rigorous mathematical arguments
(see however [23] for a numerical analysis of DIIS-type
algorithms in an unconstrained setting).

SCF Algorithms for Kohn-ShamModels

After discretization in a finite basis set, the Kohn-Sham
energy functional reads

EKS.D/ D Tr .hD/C 1

2
Tr .J.D/D/C Exc.D/;

where ŒJ.D/��� WD P
��.��j��/D�� is the Coulomb

operator, and where Exc is the exchange-correlation
energy functional [11]. In the standard Kohn-Sham
model [15], EKS is minimized on P , while in the
extended Kohn-Sham model [11], EKS is minimized
on the convex set eP . The algorithms presented in the
previous sections can be transposed mutatis mutandis
to the Kohn-Sham setting, but as Exc.D/ is not a sec-
ond order polynomial in D, the mathematical analysis
is more complicated. In particular, no rigorous result
on the Roothaan algorithm for Kohn-Sham has been
published so far.

Note that the equality F.
P

i ciDi / D P
i ciF .Di /

whenever
P

i ci D 1 is true for Hartree-Fock with
F.D/ D rEHF.D/ D h C G.D/, but not for Kohn-
Sham with F.D/ D rEKS.D/ D h C J.D/ C
rExc.D/. Consequently, in contrast with the situation
encountered in the Hartree-Fock framework, mixing
density matrices and mixing Kohn-Sham Hamiltonians
are not equivalent procedures. This leads to a variety
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of acceleration schemes for Kohn-Sham that boil down
to either DIIS or EDIIS in the Hartree-Fock setting.
For the sake of brevity, and also because the situation
is evolving fast (several new algorithms are proposed
every year, and identifying the best algorithms is a
matter of debate), we will not present these schemes
here.

Let us finally mention that, if iterative methods
based on repeated diagonalization of the mean-field
Hamiltonian, combined with mixing procedures, are
more efficient than direct minimization methods for
moderate size molecular systems, and when the Kohn-
Sham problem is discretized in atomic orbital basis
sets, the situation may be different for very large sys-
tems, or when finite element or planewave discretiza-
tion methods are used (see, e.g., [19,21] and references
therein).
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Definition

Highly integrated electric circuits in computer pro-
cessors mainly consist of semiconductor transistors
which amplify and switch electronic signals. Roughly
speaking, a semiconductor is a crystalline solid whose
conductivity is intermediate between an insulator and
a conductor. The modeling and simulation of semicon-
ductor transistors and other devices is of paramount
importance in the microelectronics industry to reduce
the development cost and time. A semiconductor de-
vice problem is defined by the process of deriving
physically accurate but computationally feasible model
equations and of constructing efficient numerical algo-
rithms for the solution of these equations. Depending
on the device structure, size, and operating conditions,
the main transport phenomena may be very different,
caused by diffusion, drift, scattering, or quantum ef-
fects. This leads to a variety of model equations de-
signed for a particular situation or a particular device.
Furthermore, often not all available physical informa-
tion is necessary, and simpler models are needed, help-
ing to reduce the computational cost in the numerical
simulation. One may distinguish four model classes:
microscopic/mesoscopic and macroscopic semiclassi-
cal models and microscopic/mesoscopic and macro-
scopic quantum models (see Fig. 1).

Description

In the following, we detail only some models from the
four model classes since the field of semiconductor
device problems became extremely large in recent
years. For instance, we ignore compact models, hybrid
model approaches, lattice heat equations, transport in

subbands and magnetic fields, spintronics, and models
for carbon nanotube, graphene, and polymer thin-film
materials. For technological aspects, we refer to [9].

Microscopic Semiclassical Models
We are interested in the evolution of charge carri-
ers moving in an electric field. Their motion can be
modeled by Newton’s law. However, in view of the
huge number of electrons involved, the solution of
the Newton equations is computationally too expen-
sive. Moreover, we are not interested in the trajectory
of each single particle. Hence, a statistical approach
seems to be sufficient, introducing the distribution
function (or “probability density”) f .x; v; t/ of an
electron ensemble, depending on the position x 2 R

3,
velocity v D Px D dx=dt 2 R

3, and time t > 0. By
Liouville’s theorem, the trajectory of f .x.t/; v.t/; t/
does not change during time, in the absence of colli-
sions, and hence,

0 D df

dt
D @tf C Px�rxf CPv�rvf along trajectories;

(1)

where @tf D @f=@t and rxf , rvf are gradients with
respect to x, v, respectively.

Since electrons are quantum particles (and position
and velocity cannot be determined with arbitrary accu-
racy), we need to incorporate some quantum mechan-
ics. As the solution of the many-particle Schrödinger
equation in the whole space is out of reach, we need an
approximate approach. First, by Bloch’s theorem, it is
sufficient to solve the Schrödinger equation in a semi-
conductor lattice cell. Furthermore, the many-particle
interactions are described by an effective Coulomb
force. Finally, the properties of the semiconductor
crystal are incorporated by the semiclassical Newton
equations.

More precisely, let p D „k denote the crystal
momentum, where „ is the reduced Planck constant
and k is the wave vector. For electrons with low
energy, the velocity is proportional to the wave vector,
Px D „k=m, where m is the electron mass at rest.
In the general case, we have to take into account the
energy band structure of the semiconductor crystal (see
[4, 7, 8] for details). Newton’s third law is formulated
as Pp D qrxV , where q is the elementary charge and
V.x; t/ is the electric potential. Then, using Pv D Pp=m
and rk D .m=„/rv, (1) becomes the (mesoscopic)
Boltzmann transport equation:
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Boltzmann transport
equation

Hydrodynamic
equations

Drift-diffusion
equations

Energy-transport
equations

Liouville-von
Neumann equation

Schrödinger equation

Lindblad equation

Wigner-Boltzmann
equation

Quantum hydro-
dynamic equations

Quantum drift-
diffusion equations

Microscopic/mesoscopic semi-classical models Microscopic/mesoscopic quantum models

Macroscopic semi-classical models Macroscopic quantum models

Semi-classical 
Newton’s equations

statistical approach

moment method moment method +
Chapman-Enskog

constant
temperature

moment 
method

moment method +
Chapman-Enskog

collisionless collisional

Quantum energy-
transport equations

constant
temperature

Semiconductor Device Problems, Fig. 1 Hierarchy of some semiconductor models mentioned in the text

@tf C „
m
k � rxf C q

„rxV � rkf

D Q.f /; .x; k/ 2 R
3 � R

3; t > 0; (2)

where Q.f / models collisions of electrons with
phonons, impurities, or other particles. The moments
of f are interpreted as the particle density n.x; t/,
current density J.x; t/, and energy density .ne/.x; t/:

n D
Z
R3

fdk; J D „
m

Z
R3

kfdk;

ne D „2
2m

Z
R3

jkj2fdk: (3)

In the self-consistent setting, the electric potential V
is computed from the Poisson equation "s�V D
q.n�C.x//, where "s is the semiconductor permittivity
and C.x/ models charged background ions (doping
profile). Since n depends on the distribution function
f , the Boltzmann–Poisson system is nonlinear.

The Boltzmann transport equation is defined over
the six-dimensional phase space (plus time) whose
high dimensionality makes its numerical solution a
very challenging task. One approach is to employ the
Monte Carlo method which consists in simulating a
stochastic process. Drawbacks of the method are the
stochastic nature and the huge computational cost. An

alternative is the use of deterministic solvers, for exam-
ple, expanding the distribution function with spherical
harmonics [6].

Macroscopic Semiclassical Models
When collisions become dominant in the semiconduc-
tor domain, that is, the mean free path (the length
which a particle travels between two consecutive col-
lision events) is much smaller than the device size, a
fluid dynamical approach may be appropriate. Macro-
scopic models are derived from (2) by multiplying
the equation by certain weight functions, that is 1,
k, and jkj2=2, and integrating over the wave-vector
space. Setting all physical constants to one in the
following, for notational simplicity, we obtain, using
the definitions (3), the balance equations:

@tnC divx J D
Z
R3

Q.f /dk; x 2 R
3; t > 0; (4)

@tJ C divx

Z
R3

k ˝ kfdk � nrxV D
Z
R3

kQ.f /dk;

(5)

@t .ne/C 1

2
divx

Z
R3

kjkj2fdk � rxV �

J D 1

2

Z
R3

jkj2Q.f /dk: (6)
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The higher-order integrals cannot be expressed in terms
of the moments (3), which is called the closure prob-
lem. It can be solved by approximating f by the
equilibrium distribution f0, which can be justified by
a scaling argument and asymptotic analysis. The equi-
librium f0 can be determined by maximizing the Boltz-
mann entropy under the constraints of given moments
n, nu, and ne [4]. Inserting f0 in (4)–(6) gives explicit
expressions for the higher-order moments, yielding
the so-called hydrodynamic model. Formally, there
is some similarity with the Euler equations of fluid
dynamics, and there has been an extensive discussion
in the literature whether electron shock waves in semi-
conductors are realistic or not [10].

Diffusion models, which do not exhibit shock solu-
tions, can be derived by a Chapman–Enskog expansion
around the equilibrium distribution f0 according to
f D f0 C f̨1, where ˛ > 0 is the Knudsen number
(the ratio of the mean free path and the device length)
which is assumed to be small compared to one. The
function f1 turns out to be the solution of a certain op-
erator equation involving the collision operator Q.f /.
Depending on the number of given moments, this leads
to the drift-diffusion equations (particle density given):

@tnC divx J D 0; J D �rxnC nrxV;

x 2 R
3; t > 0; (7)

or the energy-transport equations (particle and energy
densities given)

@tnC divx J D 0; J D �rxnC n

T
rxV;

x 2 R
3; t > 0; (8)

@t .ne/C divx S C nu � rxV D 0;

S D �3
2
.rx.nT / � nrxV /; (9)

where ne D 3
2
nT , T being the electron temperature,

and S is the heat flux. For the derivation of these
models; we have assumed that the equilibrium distri-
bution is given by Maxwell–Boltzmann statistics and
that the elastic scattering rate is proportional to the
wave vector. More general models can be derived too,
see [4, Chap. 6].

The drift-diffusion model gives a good description
of the transport in semiconductor devices close to
equilibrium but it is not accurate enough for submicron

devices due to, for example, temperature effects, which
can be modeled by the energy-transport equations.

In the presence of high electric fields, the station-
ary equations corresponding to (7)–(9) are convection
dominant. This can be handled by the Scharfetter–
Gummel discretization technique. The key idea is to
approximate the current density along each edge in
a mesh by a constant, yielding an exponential ap-
proximation of the electric potential. This technique is
related to mixed finite-element and finite-volume meth-
ods [2]. Another idea to eliminate the convective terms
is to employ (dual) entropy variables. For instance,
for the energy-transport equations, the dual entropy
variables are w D .w1;w2/ D ..� � V /=T;�1=T /,
where � is the chemical potential, given by n D
T 3=2 exp.�=T /. Then (8) and (9) can be formulated as
the system:

@tb.w/� div.D.w; V /rw/ D 0;

where b.w/ D .n; 3
2
nT /> and D.w; V / 2 R

2�2 is a
symmetric positive definite diffusion matrix [4] such
that standard finite-element techniques are applicable.

Microscopic Quantum Models
The semiclassical approach is reasonable if the car-
riers can be treated as particles. The validity of this
description is measured by the de Broglie wavelength
�B corresponding to a thermal average carrier. When
the electric potential varies rapidly on the scale of
�B or when the mean free path is much larger than
�B , quantum mechanical models are more appropriate.
A general description is possible by the Liouville–von
Neumann equation:

i"@tb� D ŒH;b�� WD Hb� �b�H; t > 0;

for the density matrix operator b�, where i 2 D �1,
" > 0 is the scaled Planck constant, and H is the
quantum mechanical Hamiltonian. The operator b� is
assumed to possess a complete orthonormal set of
eigenfunctions . j / and eigenvalues .�j /. The se-
quence of Schrödinger equations i"@t j D H j
(j 2 N), together with the numbers �j � 0, is called
a mixed-state Schrödinger system with the particle
density n.x; t/ D P1

jD1 �j j j .x; t/j2. In particular,
�j can be interpreted as the occupation probability of
the state j .
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The Schrödinger equation describes the evolution of
a quantum state in an active region of a semiconductor
device. It is used when inelastic scattering is suffi-
ciently weak such that phase coherence can be assumed
and effects such as resonant tunneling and quantum
conductance can be observed. Typically, the device
is connected to an exterior medium through access
zones, which allows for the injection of charge carriers.
Instead of solving the Schrödinger equation in the
whole domain (self-consistently coupled to the Poisson
equation), one wishes to solve the problem only in
the active region and to prescribe transparent boundary
conditions at the interfaces between the active and
access zones. Such a situation is referred to as an
open quantum system. The determination of transpar-
ent boundary conditions is a delicate issue since ad hoc
approaches often lead to spurious oscillations which
deteriorate the numerical solution [1].

Nonreversible interactions of the charge carriers
with the environment can be modeled by the Lindblad
equation:

i"@tb�DŒH;b��CiX
k



Lkb�L�

k� 1
2
.L�

kLkb�Cb�L�
kLk/

�
;

where Lk are the so-called Lindblad operators and L�
k

is the adjoint ofLk . In the Fourier picture, this equation
can be formulated as a quantum kinetic equation, the
(mesoscopic) Wigner–Boltzmann equation:

@tw C p � rxw C �ŒV �w D Q.w/;

.x; p/ 2 R
3 � R

3; t > 0; (10)

where p is the crystal momentum, �ŒV �w is the po-
tential operator which is a nonlocal version of the drift
term rxV �rpw [4, Chap. 11], andQ.w/ is the collision
operator. The Wigner function w D W Œb� �, where W
denotes the Wigner transform, is essentially the Fourier
transform of the density matrix. A nice feature of the
Wigner equation is that it is a phase-space description,
similar to the semiclassical Boltzmann equation. Its
drawbacks are that the Wigner function cannot be
interpreted as a probability density, as the Boltzmann
distribution function, and that the Wigner equation has
to be solved in the high dimensional phase space.
A remedy is to derive macroscopic models which are
discussed in the following section.

Macroscopic Quantum Models
Macroscopic models can be derived from the Wigner–
Boltzmann equation (10) in a similar manner as from
the Boltzmann equation (2). The main difference to
the semiclassical approach is the definition of the equi-
librium. Maximizing the von Neumann entropy under
the constraints of given moments of a Wigner function
w, the formal solution (if it exists) is given by the so-
called quantum MaxwellianMŒw�, which is a nonlocal
version of the semiclassical equilibrium. It was first
suggested by Degond and Ringhofer and is related
to the (unconstrained) quantum equilibrium given by
Wigner in 1932 [3, 5]. We wish to derive moment
equations from the Wigner–Boltzmann equation (10)
for the particle density n, current density J , and energy
density ne, defined by:

n D
Z
R3

M Œw�dp; J D
Z
R3

pM Œw�dp;

ne D 1

2

Z
R3

jpj2M Œw�dp:

Such a program was carried out by Degond et al. [3],
using the simple relaxation-type operator Q.w/ D
MŒw��w. This leads to a hierarchy of quantum hydro-
dynamic and diffusion models which are, in contrast to
their semiclassical counterparts, nonlocal.

When we employ only one moment (the particle
density) and expand the resulting moment model in
powers of " up to order O."4/ (to obtain local equa-
tions), we arrive at the quantum drift-diffusion (or
density-gradient) equations:

@tnC divx J D 0; J D �rxnC nrxV C "2

6
nrx


�x

p
np
n

�
; x 2 R

3; t>0:

This model is employed to simulate the carrier in-
version layer near the oxide of a MOSFET (metal-
oxide-semiconductor field-effect transistor). The main
difficulty of the numerical discretization is the treat-
ment of the highly nonlinear fourth-order quantum
correction. However, there exist efficient exponentially
fitted finite-element approximations, see the references
of Pinnau in [4, Chap. 12].

Formally, the moment equations for the charge
carriers and energy density give the quantum
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energy-transport model. Since its mathematical
structure is less clear, we do not discuss this model
[4, Chap. 13.2].

Employing all three moments n, nu, ne, the moment
equations, expanded up to terms of order O."4/, be-
come the quantum hydrodynamic equations:

@tnC divJ D 0; @tJ C divx

J ˝ J

n
C P

�

C nrxV D �
Z
R3

pQ.MŒw�/dp;

@t .ne/ � divx..P C neI/u � q/C rxV �

J D 1

2

Z
R3

jpj2Q.MŒw�/dp; x 2 R
3; t > 0;

where I is the identity matrix in R
3�3, the quantum

stress tensor P and the energy density ne are given by:

P D nT I � "2

12
nr2

x logn; ne D 3

2
nT

C1

2
njuj2 � "2

24
n�x logn;

u D J=n is the mean velocity, and q D
�."2=24/n.�xu C 2rx divx u/ is the quantum heat
flux. When applying a Chapman–Enskog expansion
around the quantum equilibrium, viscous effects are
added, leading to quantum Navier–Stokes equations
[5, Chap. 5]. These models are very interesting from
a theoretical viewpoint since they exhibit a surprising
nonlinear structure. Simulations of resonant tunneling
diodes using these models give qualitatively reasonable
results. However, as expected, quantum phenomena are
easily destroyed by the occurring diffusive or viscous
effects.
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Synonyms

Shearlets; Shearlet system

Short Description

Shearlets are multiscale systems in L2.R2/ which
efficiently encode anisotropic features. They extend
the framework of wavelets and are constructed by
parabolic scaling, shearing, and translation applied
to one or very few generating functions. The main
application area of shearlets is imaging science, for
example, denoising, edge detection, or inpainting.
Extensions of shearlet systems to L2.Rn/, n � 3 are
also available.
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Description

Multivariate Problems
Multivariate problem classes are typically governed by
anisotropic features such as singularities concentrated
on lower dimensional embedded manifolds. Examples
are edges in images or shock fronts of transport dom-
inated equations. Since due to their isotropic nature
wavelets are deficient to efficiently encode such func-
tions, several directional representation systems were
proposed among which are ridgelets, contourlets, and
curvelets.

Shearlets were introduced in 2006 [10] and are
to date the only directional representation system
which provides optimally sparse approximations
of anisotropic features while providing a unified
treatment of the continuum and digital realm in
the sense of allowing faithful implementations. One
important structural property is their membership
in the class of affine systems, similar to wavelets.
A comprehensive presentation of the theory and
applications of shearlets can be found in [16].

Continuous Shearlet Systems
Continuous shearlet systems are generated by applica-
tion of parabolic scaling Aa, QAa, a > 0, shearing Ss,
s 2 R and translation, where

Aa D
�
a 0

0 a1=2

�
; QAa D

�
a1=2 0

0 a

�
;

and Ss D
�
1 s

0 1

�
;

to one or very few generating functions. For  2
L2.R2/, the associated continuous shearlet system is
defined by

n
 a;s;t D a� 3

4  .A�1
a S

�1
s . � � t// W a > 0; s 2 R;

t 2 R
2
o
;

with a determining the scale, s the direction, and t the
position of a shearlet  a;s;t . The associated continuous
shearlet transform of some function f 2 L2.R2/ is the
mapping

L2.R2/ 3 f 7! hf; a;s;t i; a > 0; s 2 R; t 2 R
2:

The continuous shearlet transform is an isometry, pro-
vided that  satisfies some weak regularity conditions.

One common class of generating functions are clas-
sical shearlets, which are band-limited functions  2
L2.R2/ defined by

O .	/ D O .	1; 	2/ D O 1.	1/ O 2


	2
	1

�
;

where  1 2 L2.R/ is a discrete wavelet, i.e., it
satisfies

P
j2Z j O 1.2�j 	/j2 D 1 for a.e. 	 2 R with

O 1 2 C1.R/ and supp O 1 � Œ� 1
2
;� 1

16
� [ Œ 1

16
; 1
2
�,

and  2 2 L2.R/ is a “bump function” in the sense
that

P1
kD�1 j O 2.	 C k/j2 D 1 for a.e. 	 2 Œ�1; 1�

with O 2 2 C1.R/ and supp O 2 � Œ�1; 1�. Figure 1
illustrates classical shearlets and the tiling of Fourier
domain they provide, which ensures their directional
sensitivity.

From a mathematical standpoint, continuous shear-
lets are being generated by a unitary representation of
a particular semi-direct product, the shearlet group [2].
However, since those systems and their associated
transforms do not provide a uniform resolution of
all directions but are biased towards one axis, for
applications cone-adapted continuous shearlet systems
were introduced. For �; ; Q 2 L2.R2/, the cone-
adapted continuous shearlet system SHcont .�;  ; Q / is
defined by

SHcont .�;  ; Q / D ˚cont .�/[ �cont . / [ Q�cont . Q /;

where

˚cont .�/ D f�t D �.� � t/ W t 2 R
2g;

�cont . / D f a;s;t D a� 3
4  .A�1

a S
�1
s . � � t//

W a 2 .0; 1�; jsj � 1C a1=2; t 2 R
2g;

Q�cont . Q / D f Q a;s;t D a� 3
4 Q . QA�1

a S
�T
s . � � t//

W a 2 .0; 1�; jsj � 1C a1=2; t 2 R
2g:

The associated transform is defined in a similar man-
ner as before. The induced uniform resolution of all
directions by a cone-like partition of Fourier domain is
illustrated in Fig. 2.

The high directional selectivity of cone-adapted
continuous shearlet systems is reflected in the
result that they precisely resolve wavefront sets of
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Shearlets, Fig. 1 Classical shearlets: (a) j a;s;t j for exemplary values of a; s, and t . (b) Support of O . (c) Approximate support of
O a;s;t for different values of a and s

distributions f by the decay behavior of jhf; a;s;t ij
and jhf; Q a;s;t ij as a ! 0 [15].

Discrete Shearlet Systems
Discretization of the parameters a; s, and t by a D
2�j , j 2 Z, s D �k2�j=2, k 2 Z, and t D A�1

2j
S�1
k m,

m 2 Z
2 leads to the associated discrete systems. For

 2 L2.R2/, the discrete shearlet system is defined by

f j;k;m D 2
3
4 j  .SkA2j � �m/ W j; k 2 Z; m 2 Z

2g;

with j determining the scale, k the direction, andm the
position of a shearlet  j;k;m. The associated discrete
shearlet transform of some f 2 L2.R2/ is the mapping

L2.R2/ 3 f 7! hf; j;k;mi; j; k 2 Z; m 2 Z
2:

Similarly, for �; ; Q 2 L2.R2/, the cone-adapted
discrete shearlet system SHdisc.�;  ; Q / is defined by

SHdisc.�;  ; Q / D ˚disc.�/[ �disc. / [ Q�disc. Q /;

where

˚disc.�/ D f�m D �.� �m/ W m 2 Z
2g;

�disc. / D f j;k;m D 2
3
4 j .SkA2j � �m/

W j � 0; jkj � d2j=2e; m 2 Z
2g;

Q�disc. Q / D f Q j;k;m D 2
3
4 j Q .STk QA2j � �m/

W j � 0; jkj � d2j=2e; m 2 Z
2g:

To allow more flexibility in the denseness of the po-
sitioning of shearlets, sometimes the discretization
of the translation parameter t is performed by t D
A�1
2j
S�1
k diag.c1; c2/m, m 2 Z

2; c1; c2 > 0. A very
general discretization approach is by coorbit theory
which is however only applicable to the non-cone-
adapted setting [4].

For classical (band-limited) shearlets as generating
functions, both the discrete shearlet system and the
cone-adapted discrete shearlet system – the latter one
with a minor adaption at the intersections of the cones
and suitable � – form tight frames forL2.R2/. A theory
for compactly supported (cone-adapted) discrete shear-
let systems is also available [14]. For a special class of
separable generating functions, compactly supported
cone-adapted discrete shearlet systems form a frame
with the ratio of frame bounds being approximately 4.

Discrete shearlet systems provide optimally sparse
approximations of anisotropic features. A customarily
employed model are cartoon-like functions, i.e., com-
pactly supported functions in L2.R2/ which are C2

apart from a closed piecewise C2 discontinuity curve.
Up to a log-factor, discrete shearlet systems based on
classical shearlets or compactly supported shearlets
satisfying some weak regularity conditions provide the
optimal decay rate of the best N -term approximation
of cartoon-like functions f [7, 17], i.e.,

kf � fN k22 � C N�2 .logN/3 as N ! 1;

where here fN denotes the N -term shearlet approxi-
mation using the N largest coefficients.
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Shearlets, Fig. 2 Cone-adapted shearlet system: (a) Partition-

ing into cones. (b) Approximate support of O a;s;t and bQ a;s;t for

different values of a and s. (c) j O a;s;t j for some shearlet  and
exemplary values of a; s, and t

Fast Algorithms
The implementations of the shearlet transform can
be grouped into two categories, namely, in Fourier-
based implementations and in implementations in spa-
tial domain.

Fourier-based implementations aim to produce the
same frequency tiling as in Fig. 2b typically by em-
ploying variants of the Pseudo-Polar transform [5, 21].
Spatial domain approaches utilize filters associated
with the transform which are implemented by a con-
volution in the spatial domain. A fast implementa-
tion with separable shearlets was introduced in [22],
subdivision schemes are the basis of the algorithmic
approach in [19], and a general filter approach was
studied in [11].

Several of the associated algorithms are provided at
www.ShearLab.org.

Extensions to Higher Dimensions
Continuous shearlet systems in higher dimensions
have been introduced in [3]. In many situations, these
systems inherit the property to resolve wavefront
sets. The theory of discrete shearlet systems and
their sparse approximation properties have been
introduced and studied in [20] in dimension 3 with the
possibility to extend the results to higher dimensions,
and similar sparse approximation properties were
derived.

www.ShearLab.org
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Applications
Shearlets are nowadays used for a variety of applica-
tions which require the representation and processing
of multivariate data such as imaging sciences. Promi-
nent examples are deconvolution [23], denoising [6],
edge detection [9], inpainting [13], segmentation [12],
and separation [18]. Other application areas are sparse
decompositions of operators such as the Radon opera-
tor [1] or Fourier integral operators [8].
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Synonyms

Approximation by integer translates

Short Definition

Shift-invariant approximation deals with functions f
on the whole real line, e.g., time series and signals.
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It approximates f by shifted copies of a single gen-
erator ', i.e.,

f .x/ 	 Sf;h;'.x/ WD
X
k2ZZ

ck;h.f /'

x
h

� k
�
; x 2 IR:

(1)

The functions '
� �
h

� k
�

for k 2 ZZ span a space that
is shift-invariant wrt. integer multiples of h. Exten-
sions [1, 2] allow multiple generators and multivariate
functions. Shift-invariant approximation uses only a
single scale h, while wavelets use multiple scales and
refinable generators.

Description

Nyquist–Shannon–Whittaker–Kotelnikov sampling
provides the formula

f .x/ D
X
k2ZZ

f .kh/ sinc

x
h

� k
�

for band-limited functions with frequencies in
Œ��=h;C�=h�. It is basic in Electrical Engineering for
AD/DA conversion of signals after low-pass filtering.
Another simple example arises from the hat function
or order 2 B-spline B2.x/ WD 1 � jxj for �1 � x � 1

and 0 elsewhere. Then the “connect-the-dots” formula

f .x/ 	
X
k2ZZ

f .kh/B2


x
h

� k
�

is a piecewise linear approximation of f by connecting
the values f .kh/ by straight lines. These two examples
arise from a generator ' satisfying the cardinal inter-
polation conditions '.k/ D ı0k; k 2 ZZ, and then the
right-hand side of the above formulas interpolates f at
all integers. If the generator is a higher-order B-spline
Bm, the approximation

f .x/ 	
X
k2ZZ

f .kh/Bm


x
h

� k
�

goes back to I.J. Schoenberg and is not interpolatory in
general.

So far, these examples of (1) have very special
coefficients ck;h.f / D f .kh/ arising from sampling
the function f at data locations hZZ. This connects
shift-invariant approximation to sampling theory. If
the shifts of the generator are orthonormal in L2.IR/,

the coefficients in (1) should be obtained instead as
ck;h.f / D .f; '. �

h
� k//2 for any f 2 L2.IR/ to

turn the approximation into an optimal L2 projection.
Surprisingly, these two approaches coincide for the
sinc case.

Analysis of shift-invariant approximation focuses
on the error in (1) for various generators ' and for dif-
ferent ways of calculating useful coefficients ck;h.f /.
Under special technical conditions, e.g., if the gener-
ator ' is compactly supported, the Strang–Fix condi-
tions [4]

O'.j /.2�k/ D ı0k; k 2 ZZ; 0 � j < m

imply that the error of (1) is O.hm/ for h ! 0 in
Sobolev space W m

2 .IR/ if the coefficients are given via
L2 projection. This holds for B-spline generators of
orderm.

The basic tool for analysis of shift-invariant L2
approximation is the bracket product

Œ';  �.!/ WD
X
k2ZZ

O'.! C 2k�/ O .! C 2k�/; ! 2 IR

which is a 2�-periodic function. It should exist point-
wise, be in L2Œ��; �� and satisfy a stability property

0 < A � Œ'; '�.!/ � B; ! 2 IR:

Then the L2 projector for h D 1 has the convenient
Fourier transform

OSf;1;'.!/ D Œf; '�.!/

Œ'; '�.!/
O'.!/; ! 2 IR;

and if Œ'; '�.!/ D 1=2� for all !, the integer shifts
'.� � k/ for k 2 ZZ are orthonormal in L2.IR/.

Fundamental results on shift-invariant approxima-
tion are in [1, 2], and the survey [3] gives a com-
prehensive account of the theory and the historical
background.
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Synonyms

Numerical mathematics; Stochastic analysis; Stochas-
tic numerics

Definition

The development and the mathematical analysis of
stochastic numerical methods to obtain approximate
solutions of deterministic linear and nonlinear par-
tial differential equations and to simulate stochastic
models.

Overview

Owing to powerful computers, one now desires to
model and simulate more and more complex physi-
cal, chemical, biological, and economic phenomena at
various scales. In this context, stochastic models are
intensively used because calibration errors cannot be
avoided, physical laws are imperfectly known (as in
turbulent fluid mechanics), or no physical law exists
(as in finance). One then needs to compute moments or
more complex statistics of the probability distributions
of the stochastic processes involved in the models.
A stochastic process is a collection .Xt / of random
variables indexed by the time variable t .

This is not the only motivation to develop stochastic
simulations. As solutions of a wide family of com-
plex deterministic partial differential equations (PDEs)
can be represented as expectations of functionals of

stochastic processes, stochastic numerical methods are
derived from these representations.

We can distinguish several classes of stochastic nu-
merical methods: Monte Carlo methods consist in sim-
ulating large numbers of independent paths of a given
stochastic process; stochastic particle methods consist
in simulating paths of interacting particles whose em-
pirical distribution converges in law to a deterministic
measure; and ergodic methods consist in simulating
one single path of a given stochastic process up to a
large time horizon. Monte Carlo methods allow one
to approximate statistics of probability distributions of
stochastic models or solutions to linear partial differen-
tial equations. Stochastic particle methods approximate
solutions to deterministic nonlinear McKean–Vlasov
PDEs. Ergodic methods aim to compute statistics of
equilibrium measures of stochastic models or to solve
elliptic PDEs. See, e.g., [2].

In all cases, one needs to develop numerical ap-
proximation methods for paths of stochastic processes.
Most of the stochastic processes used as models or
involved in stochastic representations of PDEs are ob-
tained as solutions to stochastic differential equations

Xt.x/ D x C
Z t

0

b.Xs.x// ds C
Z t

0

�.Xs.x// dWs;

(1)

where .Wt / is a standard Brownian motion or, more
generally, a Lévy process. Existence and uniqueness of
solutions, in strong and weak senses, are exhaustively
studied, e.g., in [10].

Monte CarloMethods for Linear PDEs

Set a.x/ WD �.x/ �.x/t , and consider the parabolic
PDE

@u

@t
.t; x/ D

dX
iD1

bi .x/ @iu.x/C 1

2

dX
i;jD1

aij .x/ @iju.x/

(2)

with initial condition u.0; x/ D f .x/. Under various
hypotheses on the coefficients b and � , it holds that
u.t; x/ D Eu0.t; Xt .x//, where Xt.x/ is the solution
to (1).

Let h > 0 be a time discretization step. Let
.Gp/ be independent centered Gaussian vectors with
unit covariance matrix. Define the Euler scheme by
NXh
0 .x/ D x and the recursive relation
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NXh
.pC1/h.x/ D NXh

ph.x/C b NXh
ph.x/ h

C �. NXh
ph.x//

p
h GpC1:

The simulation of this random sequence only requires
the simulation of independent Gaussian random vari-
ables. Given a time horizonMh, independent copies of
the sequence .Gp; 1 � p � M/ provide independent
paths . NXh;k

ph .x/; 1 � p � M/.
The global error of the Monte Carlo method withN

simulations which approximates u.ph; x/ is

Eu0.XMh/� 1

N

NX
kD1

u0

 NXh;k

Mh

�

D Eu0.XMh/ � Eu0
� NXh

Mh

�
„ ƒ‚ …

DW�d .h/

C Eu0
� NXh

Mh

�� 1

N

NX
kD1

u0

 NXh;k

Mh

�

„ ƒ‚ …
DW�s .h;N /

:

Nonasymptotic variants of the central limit theorem
imply that the statistical error �s.h/ satisfies

8M � 1; 9C.M/ > 0; Ej�s.h/j �C.M/p
N

for all

0 < h < 1:

Using estimates on the solution to the PDE (2) ob-
tained by PDE analysis or stochastic analysis (stochas-
tic flows theory, Malliavin calculus), one can prove
that the discretization error ed .h/ satisfies the so-called
Talay–Tubaro expansion

ed .h/ D C.T; x/ hCQh.f; T; x/ h
2;

where jC.T; x/j C suphjQh.u0; T; x/j depend on b,
� , u0, and T . Therefore, Romberg extrapolation tech-
niques can be used:

E

(
2

N

NX
kD1

u0

 NXh=2;k

Mh

�
� 1

N

NX
kD1

u0

 NXh;k

Mh

�)
DO.h2/:

For surveys of results in this direction and various
extensions, see [8, 14, 17].

The preceding statistical and discretization error
estimates have many applications: computations of

European option prices, moments of solutions to me-
chanical systems with random excitations, etc.

When the PDE (2) is posed in a domain D with
Dirichlet boundary conditions u.t; x/ D g.x/ on @D,
then u.t; x/ D Ef .Xt .x// It<
 C Eg.X
.x// It�
 ,
where 
 is the first hitting time of @D by .Xt .x//.
An approximation method is obtained by substituting
NXh
ph^N
h.x/ to X
.x/, where N
h is the first hitting

time of @D by the interpolated Euler scheme. For a
convergence rate analysis, see, e.g., [7].

Let n.x/ denote the unit inward normal vector at
point x on @D. When one adds Neumann boundary
conditions ru.t; x/ � n.x/ D 0 on @D to (2), then
u.t; x/ D Ef .X

]
t .x//, where X]:= is the solution to

an SDE with reflection

X
]
t .x/ Dx C

Z t

0

b.X]
s .x// ds C

Z t

0

�.X]
s .x// dWs

C
Z tn

0

.Xs/dL]s.X/;

where .Lt .X// is the local time of X at the boundary.
Then one constructs the reflected Euler scheme in such
a way that the simulation of the local time, which
would be complex and numerically instable, is avoided.
This construction and the corresponding error analysis
have been developed in [4].

Local times also appear in SDEs related to PDEs
with transmission conditions along the discontinuity
manifolds of the coefficient a.x/ as in the Poisson–
Boltzmann equation in molecular dynamics, Darcy
law in fluid mechanics, etc. Specific numerical meth-
ods and error analyses were recently developed: see,
e.g., [5].

Elliptic PDEs are interpreted by means of solutions
to SDEs integrated from time 0 up to infinity or their
equilibrium measures. Implicit Euler schemes often
are necessary to get stability: see [12]. An alternative
efficient methods are those with decreasing stepsizes
introduced in [11].

Stochastic Particle Methods for Nonlinear
PDEs

Consider the following stochastic particle system.
The dynamics of the ith particle is as follows:
given N independent Brownian motions .W

.i/
t /,
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multidimensional coefficients B and S , and McKean
interaction kernels b and � , the positions X.i/

t solve
the stochastic differential system

dX.i/t DB
0
@t; X.i/

t ;
1
N

NX
jD1

b


X
.i/
t ; X

.j /
t

�1A dt

C S

0
@t; X.i/

t ;
1
N

NX
jD1

�


X
.i/
t ; X

.j /
t

�1A dW.i/
t :

(3)

Note that the processes X.i/
t are not independent.

However, the propagation of chaos and nonlinear mar-
tingale problems theories developed in a seminal way
by McKean and Sznitman allow one to prove that
the probability distribution of the particles empirical
measure process converges weakly when N goes to
infinity. The limit distribution is concentrated at the
probability law of the process .Xt/ solution to the
following stochastic differential equation which is non-
linear in McKean’s sense (its coefficients depend on the
probability distribution of the solution):

(
dXt D B.t; Xt ;

R
b.Xt ; y/�t .dy//dt C S.t; Xt ;

R
�.Xt ; y/�t .dy//dW t ;

�t .dy/ WD probability distribution of Xt :
(4)

In addition, the flow of the probability distributions �t
solves the nonlinear McKean–Vlasov–Fokker–Planck
equation

d

dt
�t D L�

�t
�t ; (5)

where, A denoting the matrix S � St , L�
� is the formal

adjoint of the differential operator

L� WD
X
k

Bk.t; x;
R
b.x; y/�.dy//@k

C 1
2

X
j;k

Ajk.t; x;
R
�.x; y/�.dy//@jk: (6)

From an analytical point of view, the SDEs (4)
provide probabilistic interpretations for macroscopic
equations which includes, e.g., smoothened versions of
the Navier–Stokes and Boltzmann equations: see, e.g.,
the survey [16] and [13].

From a numerical point of view, whereas the time
discretization of .Xt / does not lead to an algorithm
since �t is unknown, the Euler scheme for the par-
ticle system f.X.i/

t /; i D 1; : : : ; N g can be simu-
lated: the solution �t to (5) is approximated by the
empirical distribution of the simulated particles at
time t , the number N of the particles being cho-
sen large enough. Compared to the numerical resolu-
tion of the McKean–Vlasov–Fokker–Planck equation
by deterministic methods, this stochastic numerical

approach is numerically relevant in the cases of small
viscosities. It is also intensively used, for example, in
Lagrangian stochastic simulations of complex flows
and in molecular dynamics: see, e.g., [9,15]. When the
functions B , S , b, � are smooth, optimal convergence
rates have been obtained for finite time horizons, e.g.,
in [1, 3].

Other stochastic representations have been devel-
oped for backward SDEs related to quasi-linear PDEs
and variational inequalities. See the survey [6].
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Singular Perturbation Problems

Robert O’Malley
Department of Applied Mathematics,
University of Washington, Seattle, WA, USA

Regular perturbation methods often succeed in pro-
viding approximate solutions to problems involving
a small parameter � by simply seeking solutions as
a formal power series (or even a polynomial) in �.
When the regular perturbation approach fails to pro-
vide a uniformly valid approximation, one encounters

a singular perturbation problem (using the nomencla-
ture of Friedrichs and Wasow [4], now universal).

The prototype singular perturbation problem
occurred as Prandtl’s boundary layer theory of 1904,
concerning the flow of a fluid of small viscosity past
an object (cf. [15, 20]). Applications have continued
to motivate the subject, which holds independent
mathematical interest involving differential equations.
Prandtl’s Göttingen lectures from 1931 to 1932
considered the model

�y00 C y0 C y D 0

on 0 � x � 1 with prescribed endvalues y.0/ and
y.1/ for a small positive parameter � (corresponding
physically to a large Reynolds number). Linearly in-
dependent solutions of the differential equation are
given by

e��.�/x and e��.�/x=�

where �.�/ 
 1�p
1�4�
2�

D 1 C O.�/ and �.�/ 

1Cp

1�4�
2

D 1 � � CO.�2/ as � ! 0. Setting

y.x; �/ D ˛e��.�/x C ˇe��.�/x=�;

we will need y.0/ D ˛ C ˇ and y.1/ D ˛e��.�/ C
ˇe��.�/=� . The large decay constant �=� implies that
˛ � y.1/e�.�/, so

y.x; �/ � e�.�/.1�x/y.1/C e��.�/x=�.y.0/� e�.�/y.1//

and

y.x; �/ D e.1�x/y.1/Ce�x=�ex.y.0/�ey.1//CO.�/:

The second term decays rapidly from y.0/ � ey.1/ to
zero in an O.�/-thick initial layer near x D 0, so the
limiting solution

e1�xy.1/

for x > 0 satisfies the reduced problem

Y 0
0 C Y0 D 0 with Y0.1/ D y.1/:

Convergence of y.x; �/ at x D 0 is nonuniform unless
y.0/ D ey.1/. Indeed, to all orders �j , the asymptotic
solution for x > 0 is given by the outer expansion
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Y.x; �/ D e�.�/.1�x/y.1/ �
X
j�0

Yj .x/�
j

(see Olver [12] for the definition of an asymptotic
expansion). It is supplemented by an initial (boundary)
layer correction

	

x
�
; �
�


 e��.�/x=�.y.0/� e�.�/y.1//

�
X
j�0

	j


x
�

�
�j

where terms 	j all decay exponentially to zero as the
stretched inner variable x=� tends to infinity.

Traditionally, one learns to complement regular
outer expansions by local inner expansions in regions
of nonuniform convergence. Asymptotic matching
methods, generalizing Prandtl’s fluid dynamical
insights involving inner and outer approximations,
then provide higher-order asymptotic solutions (cf.
Van Dyke [20], Lagerstrom [11], and I’lin [7], noting
that O’Malley [13] and Vasil’eva et al. [21] provide
more efficient direct techniques involving boundary
layer corrections). The Soviet A.N. Tikhonov and
American Norman Levinson independently provided
methods, in about 1950, to solve initial value problems
for the slow-fast vector system

(
Px D f .x; y; t; �/

� Py D g.x; y; t; �/

on t � 0 subject to initial values x.0/ and y.0/. As we

might expect, the outer limit

�
X0.t/

Y0.t/

�
should satisfy

the reduced (differential-algebraic) system

( PX0 D f .X0; Y0; t; 0/; X0.0/ D x.0/

0 D g.X0; Y0; t; 0/

for an attracting root

Y0 D �.X0; t/

of g D 0, along which gy remains a stable matrix.
We must expect nonuniform convergence of the fast
variable y near t D 0, unless y.0/ D Y0.0/. Indeed,
Tikhonov and Levinson showed that

(
x.t; �/ D X0.t/CO.�/ and

y.t; �/ D Y0.t/C �0.t=�/CO.�/

(at least for t finite) where �0.
/ is the asymptotically
stable solution of the stretched problem

d�0

d

Dg.x.0/;�0CY0.0/; 0; 0/; �0.0/ D y.0/�Y0.0/:

The theory supports practical numerical methods for
integrating stiff differential equations (cf. [5]). A more
inclusive geometric theory, using normally hyperbolic
invariant manifolds, has more recently been exten-
sively used (cf. [3, 9]).

For many linear problems, classical analysis (cf.
[2, 6, 23]) suffices. Multiscale methods (cf. [8, 10]),
however, apply more generally. Consider, for example,
the two-point problem

�y00 C a.x/y0 C b.x; y/ D 0

on 0 � x � 1 when a.x/ > 0 and a and b are smooth.
We will seek the solution as � ! 0C when y.0/ and
y.1/ are given in the form

y.x; �; �/ �
X
j�0

yj .x; �/�
j

using the fast variable

� D 1

�

Z x

0

a.s/ds

to provide boundary layer behavior near x D 0.
Because

y0 D yx C a.x/

�
y�

and

y00 D yxx C 2

�
a.x/yx� C a0.x/

�
y� C a2.x/

�2
y��;

the given equation is converted to the partial differen-
tial equation

a2.x/

�
@2y

@�2
C @y

@�

�
C �

�
2a.x/

@2y

@x@�
C a0.x/

@y

@�

C a.x/
@y

@x
C b.x; y/

�
C �2yxx D 0:
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We naturally ask the leading term y0 to satisfy

@2y0

@�2
C @y0

@�
D 0;

so y0 has the form

y0.x; �/ D A0.x/C B0.x/e
��:

The boundary conditions moreover require that

A0.0/C B0.0/ D y.0/ and A0.1/ � y.1/

(since e�� is negligible when x D 1). From the �
coefficient, we find that y1 must satisfy

a2.x/

�
@2y1

@�2
C @y1

@�

�
D �2a.x/ @

2y0

@x@�
� a0.x/

@y0

@�

�a.x/@y0
@x

� b.x; y0/

D �a.x/A0
0

C �
a.x/B 0

0 C a0.x/B0
�
e��

�b.x;A0 CB0e
��/:

Consider the right-hand side as a power series in e��.
Undetermined coefficient arguments show that its first
two terms (multiplying 1 and e��) will resonate with
the solutions of the homogeneous equation to produce
unbounded or secular solutions (multiples of � and
�e��) as � ! 1 unless we require that
1. A0 satisfies the reduced problem

a.x/A0
0 C b.x;A0/ D 0; A0.1/ D y.1/

(and continues to exist throughout 0 � x � 1)
2. B0 satisfies the linear problem

a.x/B 0
0 C ��by.x; A0/C a0.x/

�
B0 D 0;

B0.0/ D y.0/ � A0.0/:

Thus, we have completely obtained the limiting so-
lution Y0.x; �/. We note that the numerical solution
of restricted two-point problems is reported in Roos
et al. [18]. Special complications, possibly shock lay-
ers, must be expected at turning points where a.x/
vanishes (cf. [14, 24]).

Related two-time scale methods have long been
used in celestial mechanics (cf. [17,22]) to solve initial
value problems for nearly linear oscillators

Ry C y D �f .y; Py/

on t � 0. Regular perturbation methods suffice on
bounded t intervals, but for t D O.1=�/ one must seek
solutions

y.t; 
; �/ �
X
j�0

yj .t; 
/�
j

using the slow time


 D �t:

We must expect a boundary layer (i.e., nonuniform
convergence) at t D 1 to account for the cumulative
effect of the small perturbation �f .

Instead of using two-timing or averaging (cf. [1] or
[19]), let us directly seek an asymptotic solution of the
initial value problem for the Rayleigh equation

Ry C y D � Py
�
1 � 1

3
Py2
�

in the form

y.t; 
; �/ D A.
; �/eit C �B.
; �/e3it C �2C.
; �/e5it

C : : :C complex conjugate

for undetermined slowly varying complex-valued coef-
ficients A;B; C; : : : depending on � (cf. [16]). Differen-
tiating twice and separating the coefficients of the odd
harmonics eit ; e3i t ; e5i t ; : : : in the differential equation,
we obtain

2i
dA
d


� iA �1 � jAj2�C �

�
d2A
d
2

� A2 dA�

d


�dA
d


�
1 � 2jAj2� � 3i.A�/2B

�
C : : : D 0;

�8B � i

3
A3 C : : : D 0; and

�24C � 3iA2B C � � � D 0:

The resulting initial value problem
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dA
d


D A
2

�
.1 � jAj2/C i�

8
.jAj4 � 2/C : : :

�

for the amplitude A.
; �/ can be readily solved for
finite 
 by using polar coordinates and regular pertur-
bation methods on all equations. Thus, we obtain the
asymptotic solution

y.t; 
; �/ D A.
; �/eit � i�

24
A3.
; �/e3it

C �

64

�
A3.
; �/.3jA.
; �/j2 � 2/e3it

� A5.
; �/

3
e5it

�
C : : :C complex

conjugate

there. We note that the oscillations for related coupled
van der Pol equations are of special current interest in
neuroscience.

The reader who consults the literature cited will
find that singular perturbations continue to provide
asymptotic solutions to a broad variety of differential
equations from applied mathematics. The underlying
mathematics is also extensive and increasingly sophis-
ticated.
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Definition/Abstract

Crystalline solids are solids in which the ionic cores
of the atoms are arranged periodically. The dynamics
of a test electron in a crystalline solid can be conve-
niently analyzed by using the Bloch-Floquet transform,
while the localization properties of electrons are better
described by using Wannier functions. The latter can
also be obtained by minimizing a suitable localization
functional, yielding a convenient numerical algorithm.

Macroscopic transport properties of electrons in
crystalline solids are derived, by using adiabatic the-
ory, from the analysis of a perturbed Hamiltonian,
which includes the effect of external macroscopic or
slowly varying electromagnetic potentials. The geo-
metric Berry phase and its curvature play a prominent
role in the corresponding effective dynamics.

The Periodic Hamiltonian

In a crystalline solid, the ionic cores are arranged
periodically, according to a periodicity lattice � Dn
� 2 R

d W � D Pd
jD1nj �j for some nj 2 Z

o
'

Z
d ; where f�1; : : : ; �d g are fixed linearly independent

vectors in R
d .

The dynamics of a test electron in the potential
generated by the ionic cores of the solid and, in a mean-
field approximation, by the remaining electrons is
described by the Schrödinger equation i@t D Hper ,
where the Hamiltonian operator reads (in Rydberg
units)

Hper D �C V� .x/ acting in L2.Rd /: (1)

Here, D r2 is the Laplace operator and the function
V� W R

d ! R is periodic with respect to � , i.e.,
V� .x C �/ D V� .x/ for all � 2 �; x 2 R

d . A math-
ematical justification of such a model in the reduced
Hartree-Fock approximation was obtained in Catto
et al. [3] and Cancès et al. [4], see �Mathematical
Theory for Quantum Crystals and references therein.

To assure that Hper is self-adjoint in L2.Rd / on the
Sobolev space W 2;2.Rd /, we make an usual Kato-type
assumption on the � -periodic potential:

V� 2 L2loc.R
d / for d � 3;

V� 2 Lploc.R
d / with p > d=2 for d � 4: (2)

Clearly, the case of a potential with Coulomb-like
singularities is included.

The Bloch–Floquet Transform (Bloch
Representation)
Since Hper commutes with the lattice translations, it
can be decomposed as a direct integral of simpler
operators by the (modified) Bloch–Floquet transform.
Preliminarily, we define the dual lattice as � � WD˚
k 2 R

d W k � � 2 2�Z for all � 2 � � : We denote by
Y (resp. Y �) the centered fundamental domain of �
(resp. � �), namely,

Y � D

k 2 R

d W k D
Xd

jD1
k0

j �
�

j for k0

j 2
�
�1
2
;
1

2

	�
;

where f��
j g is the dual basis to

˚
�j
�
, i.e., ��

j � �i D
2�ıj;i . When the opposite faces of Y � are identified,
one obtains the torus T�

d WD R
d=� �.

One defines, initially for  2 C0.Rd /, the modified
Bloch–Floquet transform as

. QUBF /.k; y/ WD 1

jY �j 12
X
�2�

e�ik�.yC�/  .y C �/;

y 2 R
d ; k 2 R

d : (3)

For any fixed k 2 R
d ,
� QUBF 

�
.k; �/ is a � -periodic

function and can thus be regarded as an element of
Hf WD L2.TY /, TY being the flat torus R

d=� . The
map defined by (3) extends to a unitary operator QUBF W
L2.Rd / �! R ˚

Y � Hf dk; with inverse given by

� QU�1
BF '

�
.x/ D 1

jY �j 12
Z
Y �

dk eik�x'.k; Œx�/;

where Œ � � refers to the decomposition x D �x C Œx�,
with �x 2 � and Œx� 2 Y .

The advantage of this construction is that the trans-
formed Hamiltonian is a fibered operator over Y �.
Indeed, one checks that

QUBFHper QU�1
BF D

Z ˚

Y �

dk Hper.k/

with fiber operator

Hper.k/ D � � iry C k
�2 C V� .y/ ; k 2 R

d ; (4)

http://dx.doi.org/10.1007/978-3-540-70529-1_262
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acting on the k-independent domain W 2;2.TY / �
L2.TY /. The latter fact explains why it is mathemat-
ically convenient to use the modified BF transform.
Each fiber operatorHper.k/ is self-adjoint, has compact
resolvent, and thus pure point spectrum accumulating
at infinity. We label the eigenvalue increasingly, i.e.,
E0.k/ � E1.k/ � E2.k/ � : : :. With this choice,
they are � �-periodic, i.e., En.k C �/ D En.k/ for all
� 2 � �. The function k 7! En.k/ is called the nth
Bloch band.

For fixed k 2 Y �, one considers the eigenvalue
problem

Hper.k/ un.k; y/ D En.k/ un.k; y/;

kun.k; �/kL2.TY / D 1: (5)

A solution to the previous eigenvalue equation (e.g., by
numerical simulations) provides a complete solution to
the dynamical equation induced by (1). Indeed, if the
initial datum  0 satisfies

. QUBF  0/.k; y/D'.k/ un.k; y/ for some ' 2 L2.Y �/;

(one says in jargon that “ 0 is concentrated on the
nth band”) then the solution  .t/ to the Schrödinger
equation with initial datum  0 is characterized by

. QUBF  .t//.k; y/ D �
e�iEn.k/t'.k/

�
un.k; y/:

In particular, the solution is exactly concentrated on
the nth band at any time. By linearity, one recovers the
solution for any initial datum. Below, we will discuss
to which extent this dynamical description survives
when macroscopic perturbations of the operator (1) are
considered.

Wannier Functions and Charge Localization
While the Bloch representation is a useful tool to
deal with dynamical and energetic problems, it is not
convenient to study the localization of electrons in
solids. A related crucial problem is the construction
of a basis of generalized eigenfunctions of the oper-
ator Hper which are exponentially localized in space.
Indeed, such a basis allows to develop computational
methods which scale linearly with the system size
[6], makes possible the description of the dynamics
by tight-binding effective Hamiltonians, and plays a

prominent role in the modern theories of macroscopic
polarization [9, 18] and of orbital magnetization [21].

A convenient system of localized generalized eigen-
functions has been proposed by Wannier [22]. By defi-
nition, a Bloch function corresponding to the nth Bloch
band is any u satisfying (5). Clearly, if u is a Bloch
function then Qu, defined by Qu.k; y/ D ei#.k/ u.k; y/ for
any � �-periodic function # , is also a Bloch function.
The latter invariance is often called Bloch gauge invari-
ance.

Definition 1 The Wannier function wn 2 L2.Rd /

corresponding to a Bloch function un for the Bloch
band En is the preimage of un with respect to the
Bloch-Floquet transform, namely

wn.x/ WD � QU�1
BF un

�
.x/D 1

jY �j 12
Z
Y �

dk eik�xun.k; Œx�/:

The translated Wannier functions are

wn;� .x/ WD wn.x � �/

D 1

jY �j 12
Z
Y �

dk e�ik�� eik�xun.k; Œx�/; � 2 �:

Thus, in view of the orthogonality of the trigonometric
polynomials and the fact that QUBF is an isometry,
the functions fwn;�g�2� are mutually orthogonal in
L2.Rd /. Moreover, the family fwn;�g�2� is a complete
orthonormal basis of QU�1

BF RanP�, where P�.k/ is the
spectral projection of Hper.k/ corresponding to the

eigenvalueEn.k/ and P� D R ˚
Y � P�.k/ dk.

In view of the properties of the Bloch–Floquet
transform, the existence of an exponentially localized
Wannier function for the Bloch band En is equivalent
to the existence of an analytic and � �-pseudoperiodic
Bloch function (recall that (3) implies that the Bloch
function must satisfy u.k C �; y/ D e�i��y u.k; y/
for all � 2 � �). A local argument assures that
there is always a choice of the Bloch gauge such that
the Bloch function is analytic around a given point.
However, as several authors noticed [5,13], there might
be topological obstruction to obtain a global analytic
Bloch function, in view of the competition between the
analyticity and the pseudoperiodicity.

Hereafter, we denote by ��.k/ the set fEi.k/ W n �
i � nCm� 1g, corresponding to a physically relevant
family ofm Bloch bands, and we assume the following
gap condition:



1336 Solid State Physics, Berry Phases and Related Issues

inf
k2T�

d

dist .��.k/; �.H.k// n ��.k// > 0: (6)

If a Bloch band En satisfies (6) for m D 1 we say that
it is an single isolated Bloch band. Form > 1, we refer
to a composite family of Bloch bands.

Single Isolated Bloch Band
In the case of a single isolated Bloch band, the problem
of proving the existence of exponentially localized
Wannier functions was raised in 1959 by W. Kohn [10],
who solved it in dimension d D 1. In higher dimen-
sion, the problem has been solved, always in the case
of a single isolated Bloch band, by J. des Cloizeaux [5]
(under the nongeneric hypothesis that V� has a center
of inversion) and finally by G. Nenciu under general
hypothesis [12], see also [8] for an alternative proof.
Notice, however, that in real solids, it might happen
that the interesting Bloch band (e.g., the conduction
band in graphene) is not isolated from the rest of the
spectrum and that k 7! P�.k/ is not smooth at the
degeneracy point. In such a case, the corresponding
Wannier function decreases only polynomially.

Composite Family of Bloch Bands
It is well-known that, in dimension d > 1, the
Bloch bands of crystalline solids are not, in general,
isolated. Thus, the interesting problem, in view of real
applications, concerns the case of composite families
of bands, i.e., m > 1 in (6), and in this context, the
more general notion of composite Wannier functions
is relevant [1, 5]. Physically, condition (6) is always
satisfied in semiconductors and insulators by consid-
ering the family of all the Bloch bands up to the Fermi
energy.

Given a composite family of Bloch bands, we con-
sider the orthogonal projector (in Dirac’s notation)

P�.k/ WD
nCm�1X
iDn

jui .k/i hui .k/j ;

which is independent from the Bloch gauge, and we
pose P� D R ˚

Y � P�.k/ dk. A function � is called a
quasi-Bloch function if

P�.k/�.k; �/ D �.k; �/ and �.k; �/ ¤ 0 8k 2 Y �:
(7)

Although the terminology is not standard, we call
Bloch frame a set f�agaD1;:::;m of quasi-Bloch functions
such that f�1.k/; : : : ; �m.k/g is an orthonormal basis
of RanP�.k/ at (almost-)every k 2 Y �. As in the
previous case, there is a gauge ambiguity: a Bloch
frame is fixed only up to a k-dependent unitary matrix
U.k/ 2 U.m/, i.e., if f�agaD1;:::;m is a Bloch frame then
the functionse�a.k/ D Pm

bD1 �b.k/Ub;a.k/ also define
a Bloch frame.

Definition 2 The composite Wannier functions corre-
sponding to a Bloch frame f�agaD1;:::;m are the func-
tions

wa.x/ WD � QU�1
BF �a

�
.x/; a 2 f1; : : : ; mg :

As in the case of a single Bloch band, the expo-
nential localization of the composite Wannier functions
is equivalent to the analyticity of the correspond-
ing Bloch frame (which, in addition, must be � �-
pseudoperiodic). As before, there might be topological
obstruction to the existence of such a Bloch frame. As
far as the operator (1) is concerned, the existence of
exponentially localized composite Wannier functions
has been proved in Nenciu [12] in dimension d D 1;
as for d > 1, the problem remained unsolved for
more than two decades, until recently [2, 16]. Notice
that for magnetic periodic Schrödinger operators the
existence of exponentially localized Wannier functions
is generically false.

The Marzari–Vanderbilt Localization Functional
To circumvent the long-standing controversy about the
existence of exponentially localized composite Wan-
nier functions, and in view of the application to numeri-
cal simulations, the solid-state physics community pre-
ferred to introduce the alternative notion of maximally
localized Wannier functions [11]. The latter are defined
as the minimizers of a suitable localization functional,
known as the Marzari–Vanderbilt (MV) functional.
For a single-band normalized Wannier function w 2
L2.Rd /, the localization functional is

FMV .w/ D
Z
Rd

jxj2jw.x/j2dx

�
dX
jD1

�Z
Rd

xj jw.x/j2dx
�2
; (8)
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which is well defined at least whenever
R
Rd

jxj2
jw.x/j2dx < C1. More generally, for a system
of L2-normalized composite Wannier functions
w D fw1; : : : ;wmg � L2.Rd /, the Marzari–Vanderbilt
localization functional is

FMV .w/ D
mX
aD1

FMV .wa/ D
mX
aD1

Z
Rd

jxj2jwa.x/j2dx

�
mX
aD1

dX
jD1

�Z
Rd

xj jwa.x/j2dx
�2
: (9)

We emphasize that the above definition includes the
crucial constraint that the corresponding Bloch func-
tions 'a.k; �/ D . QUBF wa/.k; �/, for a 2 f1; : : : ; mg, are
a Bloch frame.

While such approach provided excellent results
from the numerical viewpoint, the existence and
exponential localization of the minimizers have been
investigated only recently [17].

Dynamics in Macroscopic Electromagnetic
Potentials

To model the transport properties of electrons in solids,
one modifies the operator (1) to include the effect of
the external electromagnetic potentials. Since the latter
vary at the laboratory scale, it is natural to assume that
the ratio " between the lattice constant a D jY j1=d and
the length-scale of variation of the external potentials is
small, i.e., " � 1. The original problem is replaced by

i"@
 .
; x/

D
�
1

2
.�irx�A."x//2 CV� .x/CV."x/

�
 .
; x/


 H" .
; x/ (10)

where 
 D "t is the macroscopic time, and V 2
C1

b .Rd ;R/ and Aj 2 C1
b .Rd ;R/, j 2 f1; : : : ; d g

are respectively the external electrostatic and magnetic
potential. Hereafter, for the sake of a simpler notation,
we consider only d D 3.

While the dynamical equation (10) is quantum
mechanical, physicists argued [1] that for suitable
wavepackets, which are localized on the nth Bloch
band and spread over many lattice spacings, the main

effect of the periodic potential V� is the modification
of the relation between the momentum and the
kinetic energy of the electron, from the free relation
Efree.k/ D 1

2
k2 to the function k 7! En.k/ given

by the nth Bloch band. Therefore, the semiclassical
equations of motion are

( Pr D rEn.�/
P� D �rV.r/C Pr �B.r/

(11)

where r 2 R
3 is the macroscopic position of the

electron, � D k � A.r/ is the kinetic momentum
with k 2 T

�
d the Bloch momentum, �rV the external

electric field and B D r � A the external magnetic
field.

In fact, one can derive also the first-order correction
to (11). At this higher accuracy, the electron acquires
an effective k-dependent electric moment An.k/ and
magnetic moment Mn.k/. If the nth Bloch band is
non-degenerate (hence isolated), the former is given by
the Berry connection

An.k/ D i hun.k/ ; rkun.k/iHf

D i
Z
Y

un.k; y/
� rkun.k; y/ dy;

and the latter reads Mn.k/ D i
2

˝rkun.k/;�.Hper.k/

�En.k//rkun.k/iHf
; i.e., explicitly

�
Mn.k/

�
i

D i

2

X
1�j; l�3

�ijl
˝
@kj un.k/; .Hper.k/

�En.k//@kl un.k/
˛
Hf

where �ijl is the totally antisymmetric symbol. The
refined semiclassical equations read

( Pr D r� .En.�/� "B.r/ � Mn.�//� " P� �˝n.�/

P� D �rr .V .r/ � "B.r/ � Mn.�//C Pr �B.r/
(12)

where ˝n.k/ D r � An.k/ corresponds to the curva-
ture of the Berry connection. The previous equations
have a hidden Hamiltonian structure [14]. Indeed,
by introducing the semiclassical Hamiltonian function
Hsc.r; �/ D En.�/ C V.r/ � "B.r/ � Mn.�/, (12)
become
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B.r/ �I

I "An.�/

! 
Pr
P�

!
D
 

rrHsc.r; �/

r�Hsc.r; �/

!
(13)

where I is the identity matrix and B (resp. An) is
the 3 � 3 matrix corresponding to the vector field
B (resp. ˝n), i.e., Bl;m.r/ D P

1�j�3 �lmjBj .r/ D
.@lAm � @mAl/.r/. Since the matrix appearing on the
l.h.s corresponds to a symplectic form�B;" (i.e., a non-
degenerate closed 2-form) on R

6, (13) has Hamiltonian
form with respect to �B;".

The mathematical derivation of the semiclassical
model (12) from (10) as " ! 0 has been accomplished
in Panati et al. [14]. The first-order correction to the
semiclassical (11) was previously investigated in Sun-
daram and Niu [19], but the heuristic derivation in the
latter paper does not yield the term of order " in the
second equation. Without such a term, it is not clear if
the equations have a Hamiltonian structure.

As for mathematically related problems, both the
semiclassical asymptotic of the spectrum ofH" and the
corresponding scattering problem have been studied in
detail (see [7] and references therein). The effective
quantum Hamiltonians corresponding to (10) for " !
0 have also been deeply investigated [13].

The connection between (10) and (12) can be ex-
pressed either by an Egorov-type theorem involving
quantum observables, or by using Wigner functions.
Here we focus on the second approach.

First we define the Wigner function. We consider
the space C D C1

b .R2d / equipped with the standard
distance dC , and the subspace of � �-periodic observ-
ables

Cper D fa 2 C W a.r; k C �/ D a.r; k/ 8� 2 � �g:

Recall that, according to the Calderon-Vaillancourt
theorem, there is a constant C such that for a 2 C its
Weyl quantizationba 2 B.L2.R3// satisfies

j h ; ba  iL2.R3/ j � C dC.a; 0/ k k2 :

Hence, the map C 3 a 7! h ; ba  i 2 C is linear
continuous and thus defines an elementW  

" of the dual
space C 0, the Wigner function of  . Writing

h ; ba  i DW hW  
" ; aiC0;C

DW
Z
R2d

a.q; p/W  
" .q; p/ dq dp

and inserting the definition of the Weyl quantization for
a one arrives at the formula

W  
" .q; p/ D 1

.2�/d

Z
Rd

d	 ei	�p  �.q C "	=2/

� .q � "	=2/; (14)

which yields W  
" 2 L2.R2d /. Although W  

" is real-
valued, it attains also negative values in general, so
it does not define a probability distribution on phase
space.
After this preparation, we can vaguely state the link
between (10) and (12), see [20] for the precise for-
mulation. Let En be an isolated, nondegenerate Bloch
band. Denote by ˚




".r; k/ the flow of the dynamical
system (12) in canonical coordinates .r; k/ D .r; � C
A.r// (recall that the Weyl quantization, and hence the
definition of Wigner function, is not invariant under
non-linear changes of canonical coordinates). Then for
each finite time-interval I � R there is a constant
C such that for 
 2 I , a 2 Cper and for  0 “well-
concentrated on the nth Bloch band” one has

ˇ̌
ˇ̌Z

R2d

a.q; p/


W  .
/
" .q; p/�W  0

" ı ˚ �

" .q; p/

�
dq dp

ˇ̌
ˇ̌

� "2 C dC.a; 0/ k 0k2 ;

where  .t/ is the solution to the Schrödinger equation
(10) with initial datum  0.

Slowly Varying Deformations and
Piezoelectricity

To investigate the contribution of the electrons to
the macroscopic polarization and to the piezoelectric
effect, it is crucial to know how the electrons move in
a crystal which is strained at the macroscopic scale.
Assuming the usual fixed-lattice approximation, the
problem can be reduced to study the solutions to

i @t .t; x/ D
�

�1
2
C V� .x; "t/

�
 .t; x/ (15)

for " � 1, where V� .�; t/ is � -periodic for every
t 2 R, i.e., the periodicity lattice does not depend on
time. While a model with a fixed lattice might seem
unrealistic at first glance, we refer to Resta [18] and
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King-Smith and Vanderbilt [9] for its physical justifica-
tion. The analysis of the Hamiltonian H.t/ D � 1

2
C

V� .x; t/ yields a family of time-dependent Bloch func-
tions fun.k; t/gn2N and Bloch bands fEn.k; t/gn2N.

Assuming that the relevant Bloch band is isolated
from the rest of the spectrum, so that (6) holds true
at every time, and that the initial datum is well-
concentrated on the nth Bloch band, one obtains a
semiclassical description of the dynamics analogous to
(12). In this case, the semiclassical equations read

( Pr D rkEn.k; t/ � "�n.k; t/
P� D 0

(16)

where

�n.k; t/ D �@tAn.k; t/ � rk�n.k; t/

with

An.k; t/ D i hun.k; t/ ; rkun.k; t/iHf

�n.k; t/ D �i hun.k; t/ ; @tun.k; t/iHf
:

The notation emphasizes the analogy with the electro-
magnetism: if An.k; t/ and �n.k; t/ are interpreted as
the geometric analogous of the vector potential and
of the electrostatic scalar potential, then �n.k; t/ and
˝n.k; t/ correspond, respectively, to the electric and to
the magnetic field.

One can rigorously connect (15) and the semiclas-
sical model (16), in the spirit of the result stated at
the end of the previous section, see [15]. From (16)
one obtains the King-Smith and Vanderbilt formula
[9], which approximately predicts the contributionP
of the electrons to the macroscopic polarization of a
crystalline insulator strained in the time interval Œ0; T �,
namely,

�P D 1

.2�/d

X
n2Nocc

Z
Y �
.An.k; T /� An.k; 0// dk ;

(17)
where the sum runs over all the occupied Bloch bands,
i.e., Nocc D fn 2 N W En.k; t/ � EF g with EF the
Fermi energy. Notice that (17) requires the computa-
tion of the Bloch functions only at the initial and at
the final time; in view of that, the previous formula

is the starting point of any state-of-the-art numerical
simulation of macroscopic polarization in insulators.

Cross-References

�Born–Oppenheimer Approximation, Adiabatic
Limit, and Related Math. Issues

�Mathematical Theory for Quantum Crystals
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General Problem

Let A be a partial differential operator of second order

Au D f in ˝: (1)

In the inverse source problem, one is looking for the
source term f from the boundary data

u D g0; @�u D g1 on �0 � @˝; (2)

where g0; g1 are given functions. In this short expos-
itory note, we will try to avoid technicalities, so we
assume that (in general nonlinear) A is defined by a
known C2-function and f is a function of x 2 ˝

where ˝ is a given bounded domain in R
n with C2

boundary. � denotes the exterior unit normal to the
boundary of a domain. Hk.˝/ is the Sobolev space
with the norm kk.k/.˝/.

A first crucial question is whether there is enough
data to (uniquely) find f . If A is a linear operator, then
solution f of this problem is not unique. Indeed, let
u0 be a function in the Sobolev space H2.˝/ with
zero Cauchy data u0 D @�u0 D 0 on �0, and let

f0 D Au0. Due to linearity, A.u C u0/ D f C f0.
Obviously, u and u C u0 have the same Cauchy data
on �0, so f and f C f0 produce the same data (2),
but they are different in ˝ . It is clear that there is a
very large (infinite dimensional) manifold of solutions
to the inverse source problem (1) and (2). To regain
uniqueness, one has to restrict unknown distributions to
a smaller but physically meaningful uniqueness class.

Inverse Problems of Potential Theory

We start with an inverse source problem which has a
long and rich history. Let ˚ be a fundamental solution
of a linear second-order elliptic partial differential
operator A in R

n. The potential of a (Radon) measure
� supported in ˝ is

u.xI�/ D
Z
˝

˚.x; y/d�.y/: (3)

The general inverse problem of potential theory is
to find �; supp� � ˝; from the boundary data (2).

Since Au.I�/ D � (in generalized sense), the
inverse problem of potential theory is a particular case
of the inverse source problem. In the inverse problem
of gravimetry, one considers A D ��,

˚.x; y/ D 1

4�jx � yj ;

and the gravity field is generated by volume mass
distribution f 2 L1.˝/. We will identify f with a
measure �. Since f with the data (2) is not unique,
one can look for f with the smallest (L2.˝/-) norm.
The subspace of harmonic functions fh is L2-closed,
so for any f , there is a unique fh such that f D
fh C f0 where f0 is (L2)-orthogonal to fh. Since the
fundamental solution is a harmonic function of y when
x is outside ˝ , the term f0 produces zero potential
outside˝ . Hence, the harmonic orthogonal component
of f has the same exterior data and minimal L2-
norm. Applying the Laplacian to the both sides of the
equation ��u.Ifh/ D fh, we arrive at the biharmonic
equation �2u.Ifh/ D 0 in ˝ . When �0 D @˝ , we
have a well-posed first boundary value problem for
the biharmonic equation for u.Ifh/. Solving this prob-
lem, we find fh from the previous Poisson equation.
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However, it is hard to interpret fh (geo)physically,
knowing fh does not help much with finding f .

A (geo)physical intuition suggests looking for a
perturbing inclusion D of constant density, i.e., for
f D �D (characteristic function of an open set D).

Since (in distributional sense) ��u.I�/ D � in
˝ , by using the Green’s formula (or the definition of
a weak solution), we yield

�
Z
˝

u�d� D
Z
@˝

..@�u/u� � .@�u
�/u/ (4)

for any function u� 2 H1.˝/ which is harmonic in˝ .
If �0 D @˝ , then the right side in (4) is known; we are
given all harmonic moments of �. In particular, letting
u� D 1, we obtain the total mass of�, and by letting u�
to be coordinate (linear) functions, we obtain moments
of � of first order and hence the center of gravity of �.

Even when one assumes that f D �D , there is a
nonuniqueness due to possible disconnectedness of the
complement of D. Indeed, it is well known that if D
is the ball B.a;R/ with center a of radius R, then
its Newtonian potential u.x;D/ D M 1

4�jx�aj , where
M is the total mass of D. So the exterior potentials
of all annuli B.a;R2/ n B.a;R1/ are the same when
R31�R32 D C whereC is a positive constant. Moreover,
by using this simple example and some reflections in
R
n, one can find two different domains with connected

boundaries and equal exterior Newtonian potentials.
Augmenting this construction by the condensation of
singularities argument from the theory of functions
of complex variables, one can construct a continuum
of different domains with connected boundaries and
the same exterior potential. So there is a need to have
geometrical conditions onD.

A domain D is called star shaped with respect to a
point a if any ray originated at a intersects D over an
interval. An open setD is x1 convex if any straight line
parallel to the x1-axis intersects D over an interval.

In what follows �0 is a non-void open subset of @˝ .

Theorem 1 LetD1;D2 be two domains which are star
shaped with respect to their centers of gravity or two
x1 convex domains in Rn. Let u1; u2 be potentials of
D D D1;D2.

If u1 D u2; @�u1 D @�u2 on �0, then D1 D D2.

Returning to the uniqueness proof, we assume that
there are two x1-convex D1;D2 with the same data.
By uniqueness in the Cauchy problem for the Laplace

equation, u1 D u2 near @˝ . Then from (4) (with d� D
.�D1 � �D2/dm, dm is the Lebesgue measure)

Z
D1

u� D
Z
D2

u�

for any function u� which is harmonic in˝ . Novikov’s
method of orthogonality is to assume that D1 and D2

are different and then to select u� in such way that the
left integral is less than the right one. To achieve this
goal, u� is replaced by its derivative, and one integrates
by parts to move integrals to boundaries and makes use
of the maximum principles to bound interior integrals.

The inverse problem of potential theory is a severely
(exponentially) ill-conditioned problem of mathemat-
ical physics. The character of stability, conditional
stability estimates, and regularization methods of nu-
merical solutions of such problems are studied starting
from pioneering work of Fritz John and Tikhonov in
1950–1960s.

To understand the degree of ill conditioning, one can
consider harmonic continuation from the circle �0 D
fx W jxj D Rg onto the inner circle � D fx W jxj D
�g. By using polar coordinates .r; �/, any harmonic
function decaying at infinity can be (in a stable way)
approximated by u.r; �IM/ D PM

mD1 umr�meim� .
Let us define the linear operator of the continuation
as A.@r.; R// D @ru.; �/. Using the formula for
u.IM/, it is easy to see that the condition number of
the corresponding matrix is .R

�
/M which is growing

exponentially with respect to M . If R
�

D 10, then
the use of computers is only possible when M < 16,
and typical practical measurements errors of 0:01 allow
meaningful computational results when M < 3.

The following logarithmic stability estimate holds
and can be shown to be best possible. We denote by
jj2.S2/ the standard norm in the space C2.S2/.

Theorem 2 LetD1;D2 be two domains given in polar
coordinates .r; �/ by the equations @Dj D fr D
dj .�/g where jdj j2.S2/ � M2;

1
M2

< dj ; j D 1; 2.
Let " D jju1 � u2jj.1/.�0/C jj@�.u1 � u2/jj.0/.�0/.

Then there is a constant C depending only on
M2; �0 such that jd1 � d2j � C.�log"/� 1

C .

A proof in [4] is using some ideas from the proof
of Theorem 1 and stability estimates for harmonic
continuation.

Moreover, while it is not possible to obtain (even lo-
cal) existence results, a special local existence theorem



1342 Source Location

is available [4], chapter 5. In more detail, if one
assumes that u0 is a potential of some C3-domain D0,
that the Cauchy data for a function u are close to
the Cauchy data of u0, and that, moreover, u admits
harmonic continuation across @D0, as well as suitable
behavior at infinity, then u is a potential of a domainD
which is close to D0.

The exterior gravity field of a polygon (polyhedron)
D develops singularities at the corner points of D.
Indeed, @j @ku.xI�D/ where D is a polyhedron with
corner at x0 behaves as �C logjx � x0j, [4], section
4.1. Since these singularities are uniquely identified by
the Cauchy data, one has obvious uniqueness results
under mild geometrical assumptions on D. Moreover,
the use of singularities provides us with constructive
identification tools, based on range type algorithms
in the harmonic continuation, using, for example, the
operator of the single layer potential.

For proofs and further results on inverse problems
of potential theory, we refer to the work of V. Ivanov,
Isakov, and Prilepko [4, 7].

An inverse source problem for nonlinear elliptic
equations arises when detecting doping profile (source
term in equations modeling semiconductors).

In the inverse problem of magnetoencephalogra-
phy, A is defined to be Maxwell’s system, and f is
a first-order distribution supported in ˝ (e.g., head
of a patient). As above, there are difficulties due to
nonuniqueness and severe instability. One of the simple
cases is when f D PM

mD1 am@d.m/ı.�x.m//, where
ı.�x.m// is the Dirac delta function with the pole
x.m/ and d.m/ is a direction. Then uniqueness of
f is obvious, and for not large M , the problem of
determining am; x.m/ is well conditioned. However,
such simplification is not satisfactory for medical di-
agnostics. For simplicity of exposition, we let now
A D ��. One of the more realistic assumptions is
that f is a double layer distributed with density g over
a so-called cortical surface � , i.e., f D g@�d� . �
can be found by using different methods, so one can
assume that it is known. So one looks for a function
g 2 L1.� / on � from the Cauchy data (2) for the
double layer potential

u.xIf / D
Z
�

g.y/@�.y/˚.x; y/d� .y/:

Uniqueness of g (up to a constant) is obvious, and
stability is similar to the inverse problem of gravimetry.

For biomedical inverse (source) problems, we refer
to [1].

Finding Sources of Stationary Waves

Stationary waves of frequency k in a simple case are
solutions to the Helmholtz equation, i.e.,A D ���k2.
The radiating fundamental solution of this equation is

˚.x; y/ D eikjx�yj

4�jx � yj :

The inverse source problem at a fixed k has many
similarities with the case k D 0, except that maximum
principles are not valid anymore. In particular, Theo-
rem 1 is not true: potential of a ball u.I�B/ can be zero
outside˝ containingB for certain choices of k and the
radius of B .

Looking for f supported in ND (D is a subdomain
of ˝) can be viewed as finding acoustical sources
distributed over ND. Besides, this inverse source prob-
lem has immediate applications to so-called acoustical
holography. This is a method to detect (mechanical)
vibrations of � D @D from measurements of acousti-
cal pressure u on �0 � @˝ . In simple accepted models,
the normal speed of � is @�u on � . By solving the
exterior Dirichlet problem for the Helmholtz equation
outside ˝ , one can uniquely and in a stable way
determine @�u on �0. One can show that if k is not
a Dirichlet eigenvalue, then any H1.˝/ solution u to
the Helmholtz equation can be uniquely represented by
u.Igd� /, so we can reduce the continuation problem
to the inverse source problem for � D gd� (single
layer distribution over � ).

The continuation of solutions of the Helmholtz
equation is a severely ill-posed problem, but its ill
conditioning is decreasing when k grows, and if one is
looking for the “low frequency” part of g, then stability
is Lipschitz. This “low frequency” part is increasing
with growing k.

As above, the inverse source problem at fixed k

has the similar uniqueness features. However, if f D
f0 C kf1, where f0; f1, depend only on x, one regains
uniqueness. This statement is easier to understand con-
sidering u as the time Fourier transform of a solution of
a wave equation with f0; f1 as the initial data. In tran-
sient (nonstationary) problems, one collects additional
boundary data over a period of time.
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Hyperbolic Equations

The inverse source problem in a wave motion is to find
.u; f / 2 H.2/.˝/ � L2.˝/ from the following partial
differential equation

@2t u ��u D f; @2t f D 0 in ˝ D G � .0; T /;

with natural lateral boundary and initial conditions

@�u D 0 on @˝ � .0; T /; u D @tu D 0 on ˝ � f0g;
(5)

and the additional data

u D g on �0 D S0 � .0; T /;
where S0 is a part of @G. Assuming @2t u 2 H2.˝/ and
letting

v D @2t u (6)

and differentiating twice with respect to t transform
this problem into finding the initial data in the follow-
ing hyperbolic mixed boundary value problem

@2t v ��v D 0 in ˝; (7)

with the lateral boundary condition

@�v D 0 on @G � .0; T /; (8)

from the additional data

v D @2t g on �0: (9)

Indeed, one can find u from (6) and the initial condi-
tions (5).

Theorem 3 Let

2dist.x; S0IG/ < T; x 2 @G:

Then the data (9) on �0 for a solution v of (7) and
(8) uniquely determine v on ˝ .

If, in addition, S0 D @G, then

kv.; 0/k.1/.G/C k@tv.; 0/k.0/.G/ � Ck@2t gk.1/.�0/:
(10)

Here, d.x; S0IG/ is the (minimal) distance from x

to S0 inside G.

The statement about uniqueness for arbitrary S0
follows from the sharp uniqueness of the continua-
tion results for second-order hyperbolic equations and
some geometric ideas [5], section 3.4. For hyperbolic
equations with analytic coefficients, these sharp results
are due to Fritz John and are based on the Holmgren
Theorem. For C1-space coefficients, the Holmgren
Theorem was extended by Tataru. Stability of con-
tinuation (and hence in the inverse source problem)
is (as for the harmonic continuation) at best of the
logarithmic type (i.e., we have severely ill-conditioned
inverse problem).

When S0 D @G, one has a very strong (best
possible) Lipschitz stability estimate (10). This esti-
mate was obtained by Lop-Fat Ho (1986) by using the
technique of multipliers; for more general hyperbolic
equations by Klibanov, Lasiecka, Tataru, and Triggiani
(1990s) by using Carleman-type estimates; and by
Bardos, Lebeau, and Rauch (1992) by propagation of
singularities arguments. Similar results are available
for general linear hyperbolic equations of second or-
der with time-independent coefficients. However, for
Lipschitz stability, one has to assume the existence of a
suitable pseudo-convex function or absence of trapped
bicharacteristics. Looking for the source of the wave
motion (in the more complicated elasticity system), in
particular, can be interpreted as finding location and
intensity of earthquakes. The recent medical diagnostic
technique called thermoacoustical tomography can
be reduced to looking for the initial displacement u0.
One of the versions of this problem is a classical one
of looking for a function from its spherical means.
In a limiting case when radii of spheres are getting
large, one arrives at one of the most useful problems of
tomography whose mathematical theory was initiated
by Radon (1917) and Fritz John (1940s). For a recent
advance in tomography in case of general attenuation,
we refer to [2]. Detailed references are in [4, 5].

In addition to direct applications, the inverse source
problems represent linearizations of (nonlinear) prob-
lems of finding coefficients of partial differential equa-
tions and can be used in the study of uniqueness and
stability of identification of coefficients. For example,
subtracting two equations @2t u2�a2�u2 D 0 and @2t u1�
a1�u1 D 0 yields @2t u�a2�u D f̨ with ˛ D �u1 (as
a known weight function) and unknown f D a2 � a1.
A general technique to show uniqueness and stability
of such inverse source problems by utilizing Carleman
estimates was introduced in [3].
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Definition

The aim of sparse approximation is to represent an
object – usually a vector, matrix, function, image,
or operator – by a linear combination of only few
elements from a basis, or more generally, from a
redundant system such as a frame. The tasks at hand are
to design efficient computational methods for finding
sparse representations and to estimate the approxima-
tion error that can be achieved for certain classes of
objects.

Overview

Sparse approximations are motivated by several types
of applications. An important source is the various
tasks in signal and image processing tasks, where it
is an empirical finding that many types of signals
and images can indeed be well approximated by a

sparse representation in an appropriate basis/frame.
Concrete applications include compression, denois-
ing, signal separation, and signal reconstruction (com-
pressed sensing).

On the one hand, the theory of sparse approximation
is concerned with identifying the type of vectors, func-
tions, etc. which can be well approximated by a sparse
expansion in a given basis or frame and with quantify-
ing the approximation error. For instance, when given
a wavelet basis, these questions relate to the area of
function spaces, in particular, Besov spaces. On the
other hand, algorithms are required to actually find a
sparse approximation to a given vector or function.
In particular, if the frame at hand is redundant or if
only incomplete information is available – as it is the
case in compressed sensing – this is a nontrivial task.
Several approaches are available, including convex
relaxation (`1-minimization), greedy algorithms, and
certain iterative procedures.

Sparsity

Let x be a vector in R
N or C

N or `2.� / for some
possibly infinite set � . We say that x is s-sparse if

kxk0 WD #f` W x` ¤ 0g � s:

For a general vector x, the error of best s-term approx-
imation quantifies the distance to sparse vectors,

�s.x/p WD inf
zWkzk0�s

kx � zkp:

Here, kxkp D .
P

j jxj jp/1=p is the usual `p-norm for
0 < p < 1 and kxk1 D supj jxj j. Note that the
vector z minimizing �s.c/p equals x on the indices
corresponding to the s largest absolute coefficients
of x and is zero on the remaining indices. We say
that x is compressible if �s.x/p decays quickly in s,
that is, for suitable s we can approximate x well by
an s-sparse vector. This occurs for instance in the
particular case when x is taken from the `q-unit ball
Bq D fx W kxkq � 1g for small q. Indeed, an inequality
due to Stechkin (see, e.g., [21, Lemma 3.1]) states that,
for 0 < q < p,

�s.x/p � s1=p�1=qkxkq: (1)
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This inequality enlightens the importance of `q-spaces
with q < 1 in this context.

The situation above describes sparsity with respect
to the canonical basis. For a more general setup, con-
sider a (finite- or infinite-dimensional) Hilbert space H
(often a space of functions) endowed with an orthonor-
mal basis f j ; j 2 J g. Given an element f 2 H, our
aim is to approximate it by a finite linear combination
of the  j , that is, by

X
j2S

xj j ;

where S � J is of cardinality at most s, say. In contrast
to linear approximation, the index set S is not fixed a
priori but is allowed to depend on f . Analogously as
above, the error of best s-term approximation is then
defined as

�s.f /H WD inf
xWkxk0�s

kf �
X
j2J

xj j kH

and the element
P

j xj j with kxk0 � s realizing
the infimum is called a best s-term approximation to
f . Due to the fact that the support set of x (i.e.,
the index set of nonzero entries of x) is not fixed a
priori, the set of such elements does not form a linear
space, so that one sometimes simply refers to nonlinear
approximation [12, 30].

One may generalize this setup further. For instance,
instead of requiring that f j W j 2 J g forms an
orthonormal basis, one may assume that it is a frame
[7,19,23], that is, there are constants 0 < A � B < 1
such that

Akf k2H �
X
j2J

jh j ; f ij2 � Bkf k2H:

This definition includes orthonormal bases but allows
also redundancy, that is, the coefficient vector x in the
expansion f D P

j2J xj j is no longer unique. Re-
dundancy has several advantages. For instance, since
there are more possibilities for a sparse approximation
of f , the error of s-sparse approximation may poten-
tially be smaller. On the other hand, it may get harder to
actually find a sparse approximation (see also below).

In another direction, one may relax the assump-
tion that H is a Hilbert space and only require it to
be a Banach space. Clearly, then the notion of an

orthonormal basis also does not make sense anymore,
so that f j ; j 2 J g is then just some system of
elements spanning the space – possibly a basis.

Important types of systems f j ; j 2 J g consid-
ered in this context include the trigonometric system
fe2�ik�; k 2 Zg � L2Œ0; 1�, wavelet systems [9, 36], or
Gabor frames [23].

Quality of a Sparse Approximation

One important task in the field of sparse approximation
is to quantify how well an element f 2 H or a
whole class B � H of elements can be approximated
by sparse expansions. An abstract way [12, 20] of
describing good approximation classes is to introduce

Bp WD ff 2 H W f D
X
j2J

xj j ; kxkp < 1g

with norm kf kBp D inffkxkp W f D P
j xj j g. If

f j W j 2 J g is an orthonormal basis, then it follows
directly from (1) that, for 0 < p < 2,

�s.f /H � s1=2�1=pkf kBp : (2)

In concrete situations, the task is then to characterize
the spaces Bp . In the case, that f j W j 2 J g
is a wavelet system, then one obtains Besov spaces
[32, 36], and in the case of the trigonometric system,
this results in the classical Fourier algebra whenp D 1.
If f j W j 2 J g is a frame, then (2) remains valid
up to a multiplicative constant. In the special case of
Gabor frames, the space Bp coincides with a class of
modulation spaces [23].

Algorithms for Sparse Approximation

For practical purposes, it is important to have algo-
rithms for computing optimal or at least near-optimal
sparse approximations. When H D C

N is finite di-
mensional and f j ; j D 1; : : : ; N g � C

N is an
orthonormal basis, then this is easy. In fact, the coef-
ficients in the expansion f D PN

jD1 xj j are given
by xj D hf; j i, so that a best s-term approximation
to f in H is given by
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X
j2S

hf; j i j

where S is an index set of s largest absolute entries of
the vector .hf; j i/NjD1.

When f j ; j D 1; : : : ;M g � C
N is redundant, that

is, M > N , then it becomes a nontrivial problem to
find the sparsest approximation to a given f 2 C

N .
Denoting by � the N � M matrix whose columns
are the vectors  j , this problem can be expressed as
finding the minimizer of

min kxk0 subject to k�x � f k2 � "; (3)

for a given threshold " > 0. In fact, this problem
is known to be NP hard in general [11, 25]. Sev-
eral tractable alternatives have been proposed. We
discuss the greedy methods matching pursuit and or-
thogonal matching pursuit as well as the convex re-
laxation method basis pursuit (`1-minimization) next.
Other sparse approximation algorithms include itera-
tive schemes, such as iterative hard thresholding [1]
and iteratively reweighted least squares [10].

Matching Pursuits
Given a possibly redundant system f j ; j 2 J g �
H – often called a dictionary – the greedy algorithm
matching pursuit [24,27,31,33] iteratively builds up the
support set and the sparse approximation. Starting with
r0 D f , S0 D ; and k D 0 it performs the following
steps:

1. jk WD argmax
n jhrk; j ij

k j k W j 2 J
o
.

2. SkC1 WD Sk [ fjkg.

3. rkC1 D rk � hrk; jk i
k jk k2  jk .

4. k 7! k C 1.
5. Repeat from step (1) with k 7! k C 1 until a

stopping criterion is met.

6. Output ef D ef k D Pk
`D1

hr`; j` i
k j`k2  j` .

Clearly, if s steps of matching pursuit are performed,
then the output ef has an s-sparse representation with
respect to ef . It is known that the sequence ef k con-
verges to f when k tends to infinity [24]. A possible
stopping criterion for step (5) is a maximal number of
iterations, or that the residual norm krkk � � for some
prescribed tolerance � > 0.

Matching pursuit has the slight disadvantage that an
index k may be selected more than once. A variation

on this greedy algorithm which avoids this drawback
consists in the orthogonal matching pursuit algorithm
[31, 33] outlined next. Again, starting with r0 D f ,
S0 D ; and k D 0, the following steps are con-
ducted:
1. jk WD argmax

n jhrk; j ij
k j k W j 2 J

o
.

2. SkC1 WD Sk [ fjkg.
3. x.kC1/ WD argminzWsupp.z/�SkC1

kf � P
j2SkC1

zj  j k2.
4. rkC1 WD f �P

j2SkC1
x
.kC1/
j  j .

5. Repeat from step (1) with k 7! k C 1 until a
stopping criterion is met.

6. Output ef D ef k D P
j2Sk x

.k/
j  j .

The essential difference to matching pursuit is the
orthogonal projection step in (3). Orthogonal matching
pursuit may require a smaller number of iterations than
matching pursuit. However, the orthogonal projection
makes an iteration computationally more demanding
than an iteration of matching pursuit.

Convex Relaxation
A second tractable approach to sparse approximation
is to relax the `0-minimization problem to the convex
optimization problem of finding the minimizer of

min kxk1 subject to k�x � f k2 � ": (4)

This program is also known as basis pursuit [6] and
can be solved using various methods from convex
optimization [2]. At least in the real-valued case, the
minimizer x� of the above problem will always have at
mostN nonzero entries, and the support of x� defines a
linear independent set f j W x�

j ¤ 0g, which is a basis
of CN if x� has exactly N nonzero entries – thus, the
name basis pursuit.

Finding the Sparsest Representation
When the dictionary f j g is redundant, it is of great
interest to provide conditions which ensure that a spe-
cific algorithm is able to identify the sparsest possible
representation. For this purpose, it is helpful to define
the coherence � of the system f j g, or equivalently of
the matrix � having the vectors  j as its columns. As-
suming the normalization k j k2 D 1, it is defined as
the maximal inner product between different dictionary
elements,

� D max
j¤k

jh j ;  kij:
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Suppose that f has a representation with s terms, that
is, f D P

j xj j with kxk0 � s. Then s iterations
of orthogonal matching pursuit [3, 33] as well as basis
pursuit (4) with " D 0 [3, 14, 34] find the sparsest
representation of f with respect to f j g provided that

.2s � 1/� < 1: (5)

Moreover, for a general f , both orthogonal matching
pursuit and basis pursuit generate an s-sparse approx-
imation whose approximation error is bounded by the
error of best s-term approximation up to constants; see
[3, 18, 31] for details.

For typical “good” dictionaries f j gMjD1 � C
N , the

coherence scales as � � p
N [29], so that the bound

(5) implies that s-sparse representations in such dictio-
naries with small enough sparsity, that is, s � c

p
N ,

can be found efficiently via the described algorithms.

Applications of Sparse Approximation

Sparse approximation find a variety of applications.
Below we shortly describe compression, denoising,
and signal separation. Sparse representations play also
a major role in adaptive numerical methods for solving
operator equations such as PDEs. When the solution
has a sparse representation with a suitable basis, say
finite elements or wavelets, then a significant accel-
eration with respect to standard linear methods can
be achieved. The algorithms used in this context are
of different nature than the ones described above. We
refer to [8] for details.

Compression
An obvious application of sparse approximation is
image and signal compression. Once a sparse approx-
imation is found, one only needs to store the nonzero
coefficients of the representation. If the representation
is sparse enough, then this requires significantly less
memory than storing the original signal or image.
This principle is exploited, for instance, in the JPEG,
MPEG, and MP3 data compression standards.

Denoising
Often acquired signals and images are corrupted by
noise, that is, the observed signal can be written as ef D
f C �, where f is the original signal and � is a vector

representing the noise. The additional knowledge that
the signal at hand can be approximated well by a
sparse representation can be exploited to clean the
signal by essentially removing the noise. The essential
idea is to find a sparse approximation

P
j xj j of

ef with respect to a suitable dictionary f j g and to
use it as an approximation to the original f . One
algorithmic approach is to solve the `1-minimization
problem (4), where � is now a suitable estimate of
the `2-norm of the noise �. If � is a wavelet basis,
this principle is often called wavelet thresholding or
wavelet shrinkage [16] due to connection of the soft-
thresholding function [13].

Signal Separation
Suppose one observes the superposition f D f1 C f2
of two signals f1 and f2 of different nature, for in-
stance, the “harmonic” and the “spiky” component
of an acoustic signal, or stars and filaments in an
astronomical image. The task is to separate the two
components f1 and f2 from the knowledge of f .
Knowing that both f1 and f2 have sparse represen-
tations in dictionaries f jj g and f 2j g of “different
nature,” one can indeed recover both f1 and f2 by
similar algorithms as outlined above, for instance, by
solving the `1-minimization problem

min
z1;z2

kz1kCkz2k1 subject to f D
X
j

z1j  
1
jC
X
j

z2j  
2
j :

The solution .x1; x2/ defines the reconstructionsef 1 D P
j x

1
j  

1
j and ef 2 D P

j x
2
j  

2
j . If, for instance,

f 1j gNjD1 and f 2j gNjD1 are mutually incoherent bases
in C

N , that is, k 1j k2 D k 2j k2 D 1 for all j and the
maximal inner product � D jh 1j ;  2j ij is small, then
the above optimization problem recovers both f1 and
f2 provided they have representations with altogether
s terms where s < 1=.2�/ [15]. An example of two
mutually incoherent bases are the Fourier basis and
the canonical basis, where � D 1=

p
N [17]. Under

a probabilistic model, better estimates are possible
[5, 35].

Compressed Sensing

The theory of compressed sensing [4,21,22,26] builds
on sparse representations. Assuming that a vector
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x 2 C
N is s-sparse (or approximated well by a sparse

vector), one would like to reconstruct it from only
limited information, that is, from

y D Ax; with A 2 C
m�N

wherem is much smaller thanN . Again the algorithms
outlined above apply, for instance, basis pursuit (4)
with A replacing � . In this context, one would like
to design matrices A with the minimal number m
of rows (i.e., the minimal number of linear measure-
ments), which are required to reconstruct x from y.
The recovery criterion based on coherence � of A
described above applies but is highly suboptimal. In
fact, it can be shown that for certain random matrices
m � cs log.eN=s/ measurements suffice to (stably)
reconstruct an s-sparse vector using `1-minimization
with high probability, where c is a (small) universal
constant. This bound is sufficiently better than the ones
that can be deduced from coherence based bounds as
described above. A particular case of interest arise
when A consists of randomly selected rows of the
discrete Fourier transform matrix. This setup corre-
sponds to randomly sampling entries of the Fourier
transform of a sparse vector. When m � cs log4 N ,
then `1-minimization succeeds to (stably) recover s-
sparse vectors fromm samples [26, 28].

This setup generalizes to the situation that one takes
limited measurements of a vector f 2 C

N , which
is sparse with respect to a basis or frame f j gMjD1.
In fact, then f D �x for a sparse x 2 C

M and with
a measurement matrix A 2 C

m�N , we have

y D Af D A�x;

so that we reduce to the initial situation with A0 D A�

replacing A. Once x is recovered, one forms f D �x.
Applications of compressed sensing can be found in

various signal processing tasks, for instance, in medical
imaging, analog-to-digital conversion, and radar.
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Overview

The special functions of mathematical physics [4]
are those functions that play a key role in many
problems in science and engineering. For example,

Bessel, Legendre, or parabolic cylinder functions are
well known for everyone involved in physics. This is
not surprising because Bessel functions appear in the
solution of partial differential equations in cylindri-
cally symmetric domains (such as optical fibers) or
in the Fourier transform of radially symmetric func-
tions, to mention just a couple of applications. On
the other hand, Legendre functions appear in the so-
lution of electromagnetic problems involving spherical
or spheroidal geometries. Finally, parabolic cylinder
functions are involved, for example, in the analysis of
the wave scattering by a parabolic cylinder, in the study
of gravitational fields or quantum mechanical problems
such as quantum tunneling or particle production.

But there are many more functions under the term
“special functions” which, differently from the ex-
amples mentioned above, are not of hypergeometric
type, such as some cumulative distribution functions
[3, Chap. 10]. These functions also need to be evalu-
ated in many problems in statistics, probability theory,
communication theory, or econometrics.

Basic Methods

The methods used for the computation of special func-
tions are varied, depending on the function under
consideration as well as on the efficiency and the
accuracy demanded. Usual tools for evaluating special
functions are the evaluation of convergent and diver-
gent series, the computation of continued fractions, the
use of Chebyshev approximations, the computation of
the function using integral representations (numerical
quadrature), and the numerical integration of ODEs.
Usually, several of these methods are needed in order
to build an algorithm able to compute a given function
for a large range of values of parameters and argument.
Also, an important bonus in this kind of algorithms
will be the possibility of evaluating scaled functions:
if, for example, a function f .z/ increases exponentially
for large jzj, the factorization of the exponential term
and the computation of a scaled function (without the
exponential term) can be used to avoid degradations in
the accuracy of the functions and overflow problems
as z increases. Therefore, the appropriate scaling of a
special function could be useful for increasing both the
range of computation and the accuracy of the computed
expression.
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Next, we briefly describe three important techniques
for computing special functions which appear ubiqui-
tously in algorithms for special function evaluation:
convergent and divergent series, recurrence relations,
and numerical quadrature.

Convergent and Divergent Series
Convergent series for special functions usually arise in
the form of hypergeometric series:

pFq

0
@a1; � � � ; apI z
b1; � � � ; bq

1
A D

1X
nD0

.a1/n � � � .ap/n

.b1/n � � � .bq/n
zn

nŠ
; (1)

where p � qC 1 and .a/n is the Pochhammer symbol,
also called the shifted factorial, defined by

.a/0 D 1; .a/n D a.a C 1/ � � � .a C n� 1/ .n � 1/;

.a/n D �.a C n/

�.a/
: (2)

The series is easy to evaluate because of the recur-
sion .a/nC1 D .aCn/.a/n, n � 0, of the Pochhammer
symbols. For example, for the modified Bessel function

I�.z/ D


1

2
z
�� 1X

nD0

. 1
4
z2/n

�.� C nC 1/ nŠ

D


1

2
z
��

0F1

 �
� C 1

I 1

4
z2
!
; (3)

this is a stable representation when z > 0 and � � 0

and it is an efficient representation when z is not large
compared with �.

With divergent expansion we mean asymptotic ex-
pansions of the form

F.z/ �
1X
nD0

cn

zn
; z ! 1: (4)

The series usually diverges, but it has the property

F.z/ D
N�1X
nD0

cn

zn
CRN.z/; RN .z/ D O

�
z�N � ;

z ! 1; (5)

for N D 0; 1; 2; : : :, and the order estimate holds for
fixed N . This is the Poincaré-type expansion and for
special functions like the gamma and Bessel functions
they are crucial for evaluating these functions. Other
variants of the expansion are also important, in partic-
ular expansions that hold for a certain range of addi-
tional parameters (this leads to the uniform asymptotic
expansions in terms of other special functions like Airy
functions, which are useful in turning point problems).

Recurrence Relations
In many important cases, there exist recurrence rela-
tions relating different values of the function for differ-
ent values of its variables; in particular, one can usu-
ally find three-term recurrence relations [3, Chap. 4].
In these cases, the efficient computation of special
functions uses at some stage the recurrence relations
satisfied by such families of functions. In fact, it is dif-
ficult to find a computational task which does not rely
on recursive techniques: the great advantage of having
recursive relations is that they can be implemented with
ease. However, the application of recurrence relations
can be risky: each step of a recursive process generates
not only its own rounding errors but also accumulates
the errors of the previous steps. An important aspect
is then the study of the numerical condition of the
recurrence relations, depending on the initial values for
starting recursion.

If we write the three-term recurrence satisfied by the
function yn as

ynC1 C bnyn C anyn�1 D 0; (6)

then, if a solution y
.m/
n of (6) exists that satisfies

lim
n!C1

y.m/n

y.D/n

D 0 for all solutions y.D/n that are linearly

independent of y.m/n , we will call y.m/n the minimal
solution. The solution y.D/n is said to be a dominant
solution of the three-term recurrence relation. From a
computational point of view, the crucial point is the
identification of the character of the function to be
evaluated (either minimal or dominant) because the
stable direction of application of the recurrence relation
is different for evaluating the minimal or a dominant
solution of (6): forward for dominant solutions and
backward for minimal solutions.



Special Functions: Computation 1351

S

For analyzing whether a special function is minimal
or not, analytical information is needed regarding its
behavior as n ! C1.

Assume that for large values of n the coefficients
an; bn behave as follows.

an � an˛; bn � bnˇ; ab ¤ 0 (7)

with ˛ and ˇ real; assume that t1; t2 are the zeros of
the characteristic polynomial ˚.t/ D t2 C bt C a

with jt1j � jt2j. Then it follows from Perron’s theorem
[3, p. 93] that we have the following results:
1. If ˇ > 1

2˛, then the difference equation (6) has two

linearly independent solutions fn and gn, with the
property

fn

fn�1
� �a

b
n˛�ˇ;

gn

gn�1
� �bnˇ; n ! 1:

(8)
In this case, the solution fn is minimal.

2. If ˇ D 1
2˛ and jt1j > jt2j, then the difference

equation (6) has two linear independent solutions fn
and gn, with the property

fn

fn�1
� t1n

ˇ;
gn

gn�1
� t2n

ˇ; n ! 1; (9)

In this case, the solution fn is minimal.
3. If ˇ D 1

2˛ and jt1j D jt2j, or if ˇ < 1
2˛, then

some information is still available, but the theorem
is inconclusive with respect to the existence of
minimal and dominant solutions.
Let’s consider three-term recurrence relations sat-

isfy by Bessel functions as examples. Ordinary Bessel
functions satisfy the recurrence relation

ynC1 � 2n

z
yn C yn�1 D 0; z ¤ 0; (10)

with solutions Jn.z/ (the Bessel function of the first
kind) and Yn.z/ (the Bessel function of the second
kind). This three-term recurrence relation corresponds
to (8), with the values a D 1, ˛ D 0, b D � 2

z , ˇ D 1.
Then, there exist two independent solutions fn and gn
satisfying

fnC1
fn

� z

2n
;

gnC1
gn

� 2n

z
: (11)

As the known asymptotic behavior of the Bessel func-
tions reads

Jn.z/ � 1

nŠ


 z

2

�n
; Yn.z/ � � .n � 1/Š

�

�
2

z

�n
;

n ! 1; (12)

it is easy to identify Jn.z/ and Yn.z/ as the minimal
(fn) and a dominant (gn) solutions, respectively, of the
three-term recurrence relation (10).

Similar results hold for the modified Bessel func-
tions, with recurrence relation

ynC1 C 2n

z
yn � yn�1 D 0; z ¤ 0; (13)

with solutions In.z/ (minimal) and .�1/nKn.z/ (domi-
nant).

Numerical Quadrature
Another example where the study of numerical
stability is of concern is the computation of special
functions via integral representations. It is tempting,
but usually wrong, to believe that once an integral
representation is given, the computational problem
is solved. One has to choose a stable quadrature
rule and this choice depends on the integral
under consideration. Particularly problematic is the
integration of strongly oscillating integrals (Bessel
and Airy functions, for instance); in these cases
an alternative approach consists in finding non-
oscillatory representations by properly deforming the
integration path in the complex plane. Particularly
useful is the saddle point method for obtaining
integral representations which are suitable for
applying the trapezoidal rule, which is optimal for
computing certain integrals in R. Let’s explain the
saddle point method taking the Airy function Ai.z/
as example. Quadrature methods for evaluating
complex Airy functions can be found in, for
example, [1, 2].

We start from the following integral representation
in the complex plane:

Ai.z/ D 1

2�i

Z
C
e
1
3w3�zw dw; (14)
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Special Functions: Computation, Fig. 1 Saddle point con-
tours for � D 0; 1

3
�; 2

3
�; � and r D 5

where z 2 C and C is a contour starting at 1e�i�=3
and terminating at 1eCi�=3 (in the valleys of
the integrand). In the example we take ph z 2
Œ0; 2

3
��.

Let �.w/ D 1
3w3 � zw. The saddle points are

w0 D p
z and �w0 and follow from solving �0.w/ D

w2 � z D 0. The saddle point contour (the path of
steepest descent) that runs through the saddle point w0
is defined by =Œ�.w/� D =Œ�.w0/�.

We write

z D x C iy D rei� ; w D u C iv; w0 D u0 C iv0:

(15)
Then

u0 D p
r cos 1

2
�; v0 D p

r sin 1

2
�; x D u20 � v20;

y D 2u0v0: (16)

The path of steepest descent through w0 is given by the
equation

u D u0 C .v � v0/.v C 2v0/

3

�
u0 C

q
1
3
.v2 C 2v0v C 3u20/

	 ;

�1 < v < 1: (17)

Examples for r D 5 and a few ��values are shown
in Fig. 1. The relevant saddle points are located on

the circle with radius
p
r and are indicated by small

dots.
The saddle point on the positive real axis corre-

sponds with the case � D 0 and the two saddles
on the imaginary axis with the case � D � . It is
interesting to see that the contour may split up and run
through both saddle points ˙w0. When � D 2

3
� both

saddle points are on one path, and the half-line in the
z�plane corresponding with this � is called a Stokes
line.

Integrating with respect to 
 D v � v0 (and writing
� D u � u0), we obtain

Ai.z/ D e��

2�i

Z 1

�1
e r .�;
/

�
d�

d

C i

�
d
; (18)

where � D 2
3
z
3
2 and

� D 
.
 C 3v0/

3

�
u0 C

q
1
3
.
2 C 4v0
 C 3r/

	 ; �1 < 
 < 1;

(19)

 r.�; 
/ D <Œ�.w/ � �.w0/� D u0.�
2 � 
2/

�2v0�
 C 1

3
�3 � �
2: (20)

The integral representation for the Airy function
in (18) is now suitable for applying the trapezoidal
rule. The resulting algorithm will be flexible and
efficient.
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Synonyms

Fractional step methods; Operator-splitting methods

Introduction

Splitting methods constitute a general class of nu-
merical integration schemes for differential equations
whose vector field can be decomposed in such a way
that each subproblem is simpler to integrate than the
original system. For ordinary differential equations
(ODEs), this idea can be formulated as follows. Given
the initial value problem

x0 D f .x/; x0 D x.0/ 2 R
D (1)

with f W R
D �! R

D and solution 't .x0/, assume
that f can be expressed as f D Pm

iD1 f Œi � for certain
functions f Œi�, such that the equations

x0 D f Œi�.x/; x0 D x.0/ 2 R
D; i D 1; : : : ; m

(2)

can be integrated exactly, with solutions x.h/ D
'
Œi�

h .x0/ at t D h, the time step. The different parts of f
may correspond to physically different contributions.
Then, by combining these solutions as

�h D '
Œm�

h ı � � � ı 'Œ2�h ı 'Œ1�h (3)

and expanding into series in powers of h, one finds
that �h.x0/ D 'h.x0/ C O.h2/, so that �h provides a
first-order approximation to the exact solution. Higher-
order approximations can be achieved by introducing
more flows with additional coefficients, 'Œi�aij h, in com-
position (3).

Splitting methods involve thus three steps: (i)
choosing the set of functions f Œi� such that f DP

i f
Œi �, (ii) solving either exactly or approximately

each equation x0 D f Œi�.x/, and (iii) combining these
solutions to construct an approximation for (1) up to
the desired order.

The splitting idea can also be applied to partial
differential equations (PDEs) involving time and one or
more space dimensions. Thus, if the spatial differential
operator contains parts of a different character (such as
advection and diffusion), then different discretization
techniques may be applied to each part, as well as for
the time integration.

Splitting methods have a long history and have
been applied (sometimes with different names)
in many different fields, ranging from parabolic
and reaction-diffusion PDEs to quantum statistical
mechanics, chemical physics, and Hamiltonian
dynamical systems [7].

Some of the advantages of splitting methods are the
following: they are simple to implement, are explicit
if each subproblem is solved with an explicit method,
and often preserve qualitative properties the differential
equation might possess.

SplittingMethods for ODEs

Increasing the Order
Very often in applications, the function f in the ODE
(1) can be split in just two parts, f .x/ D f Œa�.x/ C
f Œb�.x/. Then both �h D '

Œb�

h ı 'Œa�h and its adjoint,

��
h 
 ��1�h D '

Œa�

h ı 'Œb�h , are first-order integration
schemes. These formulae are often called the Lie–
Trotter splitting. On the other hand, the symmetric
version

S Œ2�h 
 '
Œa�

h=2 ı 'Œb�h ı 'Œa�h=2 (4)

provides a second-order integrator, known as the
Strang–Marchuk splitting, the leapfrog, or the
Störmer–Verlet method, depending on the context
where it is used [2]. Notice that S Œ2�h D ��

h=2 ı �h=2.
More generally, one may consider a composition of

the form

 h D '
Œa�

asC1h
ı 'Œb�bsh ı 'Œa�ash ı � � � ı 'Œa�a2h ı 'Œb�b1h ı 'Œa�a1h (5)

and try to increase the order of approximation by
suitably determining the parameters ai , bi . The number
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s of 'Œb�h (or 'Œa�h ) evaluations in (5) is usually referred to
as the number of stages of the integrator. This is called
time-symmetric if  h D  �

h , in which case one has
a left-right palindromic composition. Equivalently, in
(5), one has

a1 D asC1; b1 D bs; a2 D as; b2 D bs�1; : : :
(6)

The order conditions the parameters ai , bi have to
satisfy can be obtained by relating the previous in-
tegrator  h with a formal series �h of differential
operators [1]: it is known that the h-flow 'h of the
original system x0 D f Œa�.x/ C f Œb�.x/ satisfies,
for each g 2 C1.RD;R/, the identity g.'h.x// D
eh.F

Œa�CF Œb�/Œg�.x/, where F Œa� and F Œb� are the Lie
derivatives corresponding to f Œa� and f Œb�, respec-
tively, acting as

F Œa�Œg�.x/ D
DX
jD1

f
Œa�
j .x/

@g

@xj
.x/;

F Œb�Œg�.x/ D
DX
jD1

f
Œb�
j .x/

@g

@xj
.x/: (7)

Similarly, the approximation  h.x/ 	 'h.x/ given
by the splitting method (5) satisfies the identity
g. h.x// D �.h/Œg�.x/, where

�.h/ D ea1hF
Œa�

eb1hF
Œb� � � � eashF

Œa�

ebshF
Œb�

easC1hF
Œa�

:

(8)

Hence, the coefficients ai ; bi must be chosen in such a
way that the operator �.h/ is a good approximation of
eh.F

Œa�CF Œb�/, or equivalently, h�1 log.�/ 	 F Œa�CF Œb�.
Applying repeatedly the Baker–Campbell–

Hausdorff (BCH) formula [2], one arrives at

1

h
log.�.h// D .vaF

Œa� C vbF
Œb�/C hvabF

Œab�

Ch2.vabbF Œabb� C vabaF
Œaba�/

Ch3.vabbbF Œabbb� C vabbaF
Œabba�

CvabaaF Œabaa�/C O.h4/; (9)

where

F Œab�D ŒF Œa�; F Œb��; F Œabb� D ŒF Œab�; F Œb��;

F Œaba� D ŒF Œab�; F Œa��; F Œabbb�D ŒF Œabb�; F Œb��;

F Œabba� D ŒF Œabb�; F Œa��; F Œabaa� D ŒF Œaba�; F Œa��;

the symbol Œ�; �� stands for the Lie bracket, and
va; vb; vab; vabb; vaba; vabbb; : : : are polynomials in
the parameters ai ; bi of the splitting scheme (5). In
particular, one gets va D PsC1

iD1 ai , vb D Ps
iD1 bi ,

vab D 1
2

� Ps
iD1 bi

Pi
jD1 aj . The order conditions

then read va D vb D 1 and vab D vabb D
vaba D � � � D 0 up to the order considered. To
achieve order r D 1; 2; 3; : : : ; 10, the number
of conditions to be fulfilled is

Pr
jD1 nj , where

nj D 2; 1; 2; 3; 6; 9; 18; 30; 56; 99. This number is
smaller for r > 3 when dealing with second-order
ODEs of the form y00 D g.y/ when they are rewritten
as (1) [1].

For time-symmetric methods, the order conditions
at even orders are automatically satisfied, which leads
to n1 C n3 C � � � C n2k�1 order conditions to achieve
order r D 2k. For instance, n1 C n3 D 4 conditions
need to be fulfilled for a symmetric method (5–6) to be
of order 4.

Splitting and CompositionMethods
When the original system (1) is split in m > 2 parts,
higher-order schemes can be obtained by considering
a composition of the basic first-order splitting method

(3) and its adjoint ��
h D '

Œ1�

h ı � � � ı 'Œm�1�
h ı 'Œm�h . More

specifically, compositions of the general form

 h D ��̨
2sh

ı �˛2s�1h ı � � � ı ��̨
2h

ı �˛1h; (10)

can be considered with appropriately chosen coeffi-
cients .˛1; : : : ; ˛2s/ 2 R

2s so as to achieve a prescribed
order of approximation.

In the particular case when system (1) is split in
m D 2 parts so that �h D '

Œb�

h ı 'Œa�h , method (10)
reduces to (5) with a1 D ˛1 and

bj D ˛2j�1 C ˛2j ; ajC1 D ˛2j C ˛2jC1;

for j D 1; : : : ; s; (11)

where ˛2sC1 D 0. In that case, the coefficients ai and
bi are such that

sC1X
iD1

ai D
sX
iD1

bi : (12)
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Conversely, any splitting method (5) satisfying (12) can

be written in the form (10) with �h D '
Œb�

h ı 'Œa�h .
Moreover, compositions of the form (10) make

sense for an arbitrary basic first-order integrator �h
(and its adjoint ��

h ) of the original system (1). Obvi-
ously, if the coefficients ˛j of a composition method
(10) are such that  h is of order r for arbitrary basic
integrators �h of (1), then the splitting method (5) with
(11) is also of order r . Actually, as shown in [6], the
integrator (5) is of order r for ODEs of the form (1)
with f D f Œa� C f Œb� if and only if the integrator (10)
(with coefficients ˛j obtained from (11)) is of order r
for arbitrary first-order integrators �h.

This close relationship allows one to establish in an
elementary way a defining feature of splitting methods
(5) of order r � 3: at least one ai and one bi
are necessarily negative [1]. In other words, splitting
schemes of order r � 3 always involve backward
fractional time steps.

Preserving Properties
Assume that the individual flows 'Œi�h share with the ex-
act flow 'h some defining property which is preserved
by composition. Then it is clear that any composition
of the form (5) and (10) with �h given by (3) also
possesses this property. Examples of such features are
symplecticity, unitarity, volume preservation, conser-
vation of first integrals, etc. [7]. In this sense, splitting
methods form an important class of geometric numer-
ical integrators [2]. Repeated application of the BCH
formula can be used (see (9)) to show that there exists
a modified (formal) differential equation

Qx0 D fh. Qx/ 
 f . Qx/C hf2. Qx/C h2f3. Qx/C � � � ;
Qx.0/ D x0; (13)

associated to any splitting method  h such that the
numerical solution xn D  h.xn�1/ (n D 1; 2; : : :)
satisfies xn D Qx.nh/ for the exact solution Qx.t/
of (13). An important observation is that the vector
fields fk in (13) belong to the Lie algebra generated
by f Œ1�; : : : ; f Œm�. In the particular case of autonomous
Hamiltonian systems, if f Œi� are Hamiltonian, then
each fk is also Hamiltonian. Then one may study
the long-time behavior of the numerical integrator by
analyzing the solutions of (13) viewed as a small
perturbation of the original system (1) and obtain

rigorous statements with techniques of backward error
analysis [2].

Further Extensions
Several extensions can be considered to reduce the
number of stages necessary to achieve a given order
and get more efficient methods. One of them is the
use of a processor or corrector. The idea consists in
enhancing an integrator  h (the kernel) with a map �h
(the processor) as O h D �h ı  h ı ��1

h . Then, after
n steps, one has O nh D �h ı  nh ı ��1

h , and so only
the cost of  h is relevant. The simplest example of a
processed integrator is provided by the Störmer–Verlet
method (4). In that case,  h D �h D '

Œb�

h ı 'Œa�h and

�h D '
Œa�

h=2. The use of processing allows one to get
methods with fewer stages in the kernel and smaller
error terms than standard compositions [1].

The second extension uses the flows corresponding
to other vector fields in addition to F Œa� and F Œb�.
For instance, one could consider methods (5) such
that, in addition to 'Œa�h and 'Œb�h , use the h-flow '

Œabb�

h

of the vector field F Œabb� when its computation is
straightforward. This happens, for instance, for second-
order ODEs y00 D g.y/ [1, 7].

Splitting is particularly appropriate when kf Œa�k �
kf Œb�k in (1). Introducing a small parameter ", we can
write x0 D "f Œa�.x/ C f Œb�.x/, so that the error of
scheme (5) is O."/. Moreover, since in many practi-
cal applications " < h, one is mainly interested in
eliminating error terms with small powers of " instead
of satisfying all the order conditions. In this way, it is
possible to get more efficient schemes. In addition, the
use of a processor allows one to eliminate the errors of
order "hk for all 1 < k < n and all n [7].

Although only autonomous differential equations
have been considered here, several strategies exist
for adapting splitting methods also to nonau-
tonomous systems without deteriorating their overall
efficiency [1].

Some Good Fourth-Order Splitting Methods
In the following table, we collect the coefficients of
a few selected fourth-order symmetric methods of the
form (5–6). Higher-order and more elaborated schemes
can be found in [1, 2, 7] and references therein. They
are denoted as Xs4, where s indicates the number of
stages. S64 is a general splitting method, whereas SN64

refers to a method tailored for second-order ODEs of
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the form y00 D g.y/ when they are rewritten as a first-
order system (1), and the coefficients ai are associated
to g.y/. Finally, SNI54 is a method especially designed
for problems of the form x0 D "f Œa�.x/ C f Œb�.x/.
With s D 3 stages, there is only one solution, S34,
given by a1 D b1=2; b1 D 2=.2 � 21=3/. In all cases,
the remaining coefficients are fixed by symmetry and
consistency (

P
i ai D P

i bi D 1).

S64 a1 D 0:07920369643119565 b1 D 0:209515106613362

a2 D 0:353172906049774 b2 D �0:143851773179818
a3 D �0:04206508035771952

SN64 a1 D 0:08298440641740515 b1 D 0:245298957184271

a2 D 0:396309801498368 b2 D 0:604872665711080

a3 D �0:3905630492234859
SNI54a1 D 0:81186273854451628884 b1 D �0:0075869131187744738

a2 D �0:67748039953216912289 b2 D 0:31721827797316981388

Numerical Example: A Perturbed Kepler
Problem
To illustrate the performance of the previous splitting
methods, we apply them to the time integration of the
perturbed Kepler problem described by the Hamilto-
nian

H D 1

2
.p21 C p22/� 1

r
� "

2r5

�
q22 � 2q21

�
; (14)

where r D
q
q21 C q22 . We take " D 0:001

and integrate the equations of motion q0
i D pi ,

p0
i D �@H=@qi , i D 1; 2, with initial conditions
q1 D 4=5, q2 D p1 D 0, p2 D p

3=2. Splitting
methods are used with the partition into kinetic
and potential energy. We measure the two-norm
error in the position at tf D 2; 000, .q1; q2/ D
.0:318965403761932; 1:15731646810481/, for
different time steps and plot the corresponding error
as a function of the number of evaluations for each
method in Fig. 1. Notice that although the generic
method S64 has three more stages than the minimum
given by S34, this extra cost is greatly compensated by
a higher accuracy. On the other hand, since this system
corresponds to the second-order ODE q00 D g.q/,
method SN64 leads to a higher accuracy with the
same computational cost. Finally, SNI54 takes profit of
the near-integrable character of the Hamiltonian (14)

and the two extra stages to achieve an even higher
efficiency. It requires solving the Kepler problem
separately from the perturbation. This requires a more
elaborated algorithm with a slightly increase in the
computational cost (not reflected in the figure). Results
provided by the leapfrog method S2 and the standard
fourth-order Runge–Kutta integrator RK4 are also
included for reference.

SplittingMethods for PDEs

In the numerical treatment of evolutionary PDEs of
parabolic or mixed hyperbolic-parabolic type, splitting
time-integration methods are also widely used. In this
setting, the overall evolution operator is formally writ-
ten as a sum of evolution operators, typically repre-
senting different aspects of a given model. Consider
an evolutionary PDE formulated as an abstract Cauchy
problem in a certain function space U � fu W R

D �
R ! Rg,

ut D L.u/; u.t0/ D u0; (15)

where L is a spatial partial differential operator. For
instance,

@

@t
u.x; t/ D

dX
jD1

@

@xj

 
dX
iD1

ci .x/
@

@xi
u.x; t/

!

Cf .x; u.x; t//; u.x; t0/ D u0.x/

or in short, L.x; u/ D r � .cru/ C f .u/ corresponds
to a diffusion-reaction problem. In that case, it makes
sense to split the problem into two subequations, cor-
responding to the different physical contributions,

ut D La.u/ 
 r � .cru/; ut D Lb.u/ 
 f .u/;
(16)

solve numerically each equation in (16), thus giving
uŒa�.h/ D '

Œa�

h .u0/, uŒb�.h/ D '
Œb�

h .u0/, respectively,
for a time step h, and then compose the operators
'
Œa�

h , 'Œb�h to construct an approximation to the solu-

tion of (15). Thus, u.h/ 	 '
Œb�

h .'
Œa�

h .u0// provides
a first-order approximation, whereas the Strang split-
ting u.h/ 	 '

Œa�

h=2.'
Œb�

h .'
Œa�

h=2.u0/// is formally second-
order accurate for sufficiently smooth solutions. In
this way, especially adapted numerical methods can
be used to integrate each subproblem, even in parallel
[3, 4].
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Splitting Methods, Fig. 1
Error in the solution
.q1.tf /; q2.tf // vs. the
number of evaluations for
different fourth-order splitting
methods (the extra cost in the
method SNI54, designed for
perturbed problems, is not
taken into account)
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Systems of hyperbolic conservation laws, such as

ut C f .u/x C g.u/x D 0; u.x; t0/ D u0.x/;

can also be treated with splitting methods, in this
case, by fixing a step size h and applying a especially
tailored numerical scheme to each scalar conserva-
tion law ut C f .u/x D 0 and ut C g.u/x D 0.
This is a particular example of dimensional splitting
where the original problem is approximated by solv-
ing one space direction at a time. Early examples of
dimensional splitting are the so-called locally one-
dimensional (LOD) methods (such as LOD-backward
Euler and LOD Crank–Nicolson schemes) and al-
ternating direction implicit (ADI) methods (e.g., the
Peaceman–Rachford algorithm) [4].

Although the formal analysis of splitting methods
in this setting can also be carried out by power se-
ries expansions, several fundamental difficulties arise,
however. First, nonlinear PDEs in general possess
solutions that exhibit complex behavior in small re-
gions of space and time, such as sharp transitions and
discontinuities. Second, even if the exact solution of
the original problem is smooth, it might happen that
the composition defining the splitting method provides
nonsmooth approximations. Therefore, it is necessary
to develop sophisticated tools to analyze whether the
numerical solution constructed with a splitting method

leads to the correct solution of the original problem or
not [3].

On the other hand, even if the solution is sufficiently
smooth, applying splitting methods of order higher
than two is not possible for certain problems. This
happens, in particular, when there is a diffusion term
in the equation; since then the presence of negative
coefficients in the method leads to an ill-posed prob-
lem. When c D 1 in (16), this order barrier has
been circumvented, however, with the use of complex-
valued coefficients with positive real parts: the operator
'
Œa�

zh corresponding to the Laplacian La is still well
defined in a reasonable distribution set for z 2 C,
provided that <.z/ � 0.

There exist also relevant problems where high-order
splitting methods can be safely used as is in the inte-
gration of the time-dependent Schrödinger equation
iut D � 1

2m
u C V.x/u split into kinetic T D

�.2m/�1 and potential V energy operators and
with periodic boundary conditions. In this case,
the combination of the Strang splitting in time and
the Fourier collocation in space is quite popular in
chemical physics (with the name of split-step Fourier
method). These schemes have appealing structure-
preserving properties, such as unitarity, symplecticity,
and time-symmetry [5]. Moreover, it has been shown
that for a method (5) of order r with the splitting into
kinetic and potential energy and under relatively mild
assumptions on T and V , one has an r th-order error
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bound k nh u0 � u.nh/k � CnhrC1 max0�s�nh ku.s/kr
in terms of the r th-order Sobolev norm [5].
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Overview

A problem in differential equations can rarely be
solved analytically, and so often is discretized,
resulting in a discrete problem which can be solved
in a finite sequence of algebraic operations, efficiently
implementable on a computer. The error in a

discretization is the difference between the solution
of the original problem and the solution of the discrete
problem, which must be defined so that the difference
makes sense and can be quantified. Consistency of
a discretization refers to a quantitative measure of
the extent to which the exact solution satisfies the
discrete problem. Stability of a discretization refers to
a quantitative measure of the well-posedness of the
discrete problem. A fundamental result in numerical
analysis is that the error of a discretization may be
bounded in terms of its consistency and stability.

A Framework for Assessing Discretizations
Many different approaches are used to discretize
differential equations: finite differences, finite ele-
ments, spectral methods, integral equation approaches,
etc. Despite the diversity of methods, fundamental
concepts such as error, consistency, and stability are
relevant to all of them. Here, we describe a framework
general enough to encompass all these methods,
although we do restrict to linear problems to avoid
many complications. To understand the definitions, it
is good to keep some concrete examples in mind, and
so we start with two of these.

A Finite Difference Method
As a first example, consider the solution of the Poisson
equation, u D f , on a domain ˝ � R

2, subject to
the Dirichlet boundary condition u D 0 on @˝ . One
possible discretization is a finite difference method,
which we describe in the case˝ D .0; 1/�.0; 1/ is the
unit square. Making reference to Fig. 1, let h D 1=n,
n > 1 integer, be the grid size, and define the grid
domain, ˝h D f .lh;mh/ j 0 < l;m < n g, as the set
of grid points in ˝ . The nearest neighbors of a grid
point p D .p1; p2/ are the four grid points pW D
.p1 � h; p2/, pE D .p1 C h; p2/, pS D .p1; p2 � h/,
and pN D .p1; p2 C h/. The grid points which do
not themselves belong to ˝ , but which have a nearest
neighbor in ˝ constitute the grid boundary, @˝h, and
we set N̋

h D ˝h[@˝h. Now let v W N̋
h ! R be a grid

function. Its five-point Laplacianhv is defined by

hv.p/ D v.pE/Cv.pW /Cv.pS/Cv.pN /�4v.p/
h2

;

p 2 ˝h:

The finite difference discretization then seeks uh W
N̋
h ! R satisfying

http://dx.doi.org/10.1007/978-3-540-70529-1_103
http://dx.doi.org/10.1007/978-3-540-70529-1_130
http://dx.doi.org/10.1007/978-3-540-70529-1_151
http://dx.doi.org/10.1007/978-3-540-70529-1_152
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Stability, Consistency, and
Convergence of Numerical
Discretizations, Fig. 1 The
grid domain N̋

h consists of
the points in ˝h, marked with
solid dots, and in @˝h,
marked with hollow dots. On
the right is the stencil of the
five-point Laplacian, which
consists of a grid point p and
its four nearest neighbors

huh.p/ D f .p/; p 2 ˝h; uh.p/ D 0; p 2 @˝h:

If we regard as unknowns, the N D .n � 1/2 values
uh.p/ for p 2 ˝h, this gives us a systems of N linear
equations in N unknowns which may be solved very
efficiently.

A Finite Element Method
A second example of a discretization is provided by
a finite element solution of the same problem. In this
case we assume that ˝ is a polygon furnished with
a triangulation Th, such as pictured in Fig. 2. The
finite element method seeks a function uh W ˝ !
R which is continuous and piecewise linear with re-
spect to the mesh and vanishing on @˝ , and which
satisfies

�
Z
˝

ruh � rv dx D
Z
˝

f v dx;

for all test functions v which are themselves continuous
and piecewise linear with respect to the mesh and
vanish on @˝ . If we choose a basis for this set of
space of test functions, then the computation of uh
may be reduced to an efficiently solvable system of
N linear equations in N unknowns, where, in this
case, N is the number of interior vertices in the
triangulation.

Discretization
We may treat both these examples, and many other
discretizations, in a common framework. We regard

the discrete operator as a linear map Lh from a vector
space Vh, called the discrete solution space, to a second
vector space Wh, called the discrete data space. In the
case of the finite difference operator, the discrete solu-
tion space is the space of mesh functions on N̋

h which
vanish on @˝h, the discrete data space is the space
of mesh functions on ˝h, and the discrete operator
Lh D h, the five-point Laplacian. In the case of the
finite element method, Vh is the space of continuous
piecewise linear functions with respect to the given
triangulation that vanish on @˝ , and Wh D V �

h , the
dual space of Vh. The operator Lh is given by

.Lhw/.v/ D �
Z
˝

rw � rv dx; w; v 2 Vh:

For the finite difference method, we define the discrete
data fh 2 Wh by fh D f j˝h , while for the finite
element method fh 2 Wh is given by fh.v/ DR
f v dx. In both cases, the discrete solution uh 2 Vh

is found by solving the discrete equation

Lhuh D fh: (1)

Of course, a minimal requirement on the discretization
is that the finite dimensional linear system (1) has
a unique solution, i.e., that the associated matrix is
invertible (so Vh and Wh must have the same dimen-
sion). Then, the discrete solution uh is well-defined.
The primary goal of numerical analysis is to ensure
that the discrete solution is a good approximation of
the true solution u in an appropriate sense.
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Stability, Consistency, and Convergence of Numerical Discretizations, Fig. 2 A finite element mesh of the domain ˝. The
solution is sought as a piecewise linear function with respect to the mesh

Representative and Error
Since we are interested in the difference between u
and uh, we must bring these into a common vector
space, where the difference makes sense. To this end,
we suppose that a representative Uh 2 Vh of u is
given. The representative is taken to be an element of
Vh which, though not practically computable, is a good
approximation of u. For the finite difference method,
a natural choice of representative is the grid function
Uh D uj˝h . If we show that the difference Uh � uh
is small, we know that the grid values uh.p/ which
determine the discrete solution are close to the exact
values u.p/. For the finite element method, a good
possibility for Uh is the piecewise linear interpolant
of u, that is, Uh is the piecewise linear function that
coincides with u at each vertex of the triangulation.
Another popular possibility is to take Uh to be the best
approximation of u in Vh in an appropriate norm. In
any case, the quantity Uh � uh, which is the differ-
ence between the representative of the true solution
and the discrete solution, defines the error of the
discretization.

At this point we have made our goal more concrete:
we wish to ensure that the error, Uh � uh 2 Vh, is
small. To render this quantitative, we need to select a
norm on the finite dimensional vector space Vh with
which to measure the error. The choice of norm is
an important aspect of the problem presentation, and
an appropriate choice must reflect the goal of the
computation. For example, in some applications, a
large error at a single point of the domain could be
catastrophic, while in others only the average error over
the domain is significant. In yet other cases, derivatives
of u are the true quantities of interest. These cases
would lead to different choices of norms. We shall
denote the chosen norm of v 2 Vh by kvkh. Thus, we

now have a quantitative goal for our computation that
the error kUh � uhkh be sufficiently small.

Consistency and Stability

Consistency Error
Having used the representative Uh of the solution to
define the error, we also use it to define a second sort
of error, the consistency error, also sometimes called
the truncation error. The consistency error is defined
to be LhUh � fh, which is an element of Wh. Now
Uh represents the true solution u, so the consistency
error should be understood as a quantity measuring the
extent to which the true solution satisfies the discrete
equation (1). Since Lu D f , the consistency error
should be small if Lh is a good representative of L and
fh a good representative of f . In order to relate the
norm of the error to the consistency error, we need a
norm on the discrete data space Wh as well. We denote
this norm by kwk0

h for w 2 Wh and so our measure of
the consistency error is kLhUh � fhk0

h.

Stability
If a problem in differential equations is well-posed,
then, by definition, the solution u depends continuously
on the data f . On the discrete level, this continuous
dependence is called stability. Thus, stability refers to
the continuity of the mapping L�1

h W Wh ! Vh, which
takes the discrete data fh to the discrete solution uh.
Stability is a matter of degree, and an unstable dis-
cretization is one for which the modulus of continuity
of L�1

h is very large.
To illustrate the notion of instability, and to motivate

the quantitative measure of stability we shall introduce
below, we consider a simpler numerical problem than
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the discretization of a differential equation. Suppose
we wish to compute the definite integral

�nC1 D
Z 1

0

xnex�1 dx; (2)

for n D 15. Using integration by parts, we obtain a
simple recipe to compute the integral in short sequence
of arithmetic operations:

�nC1 D 1 � n�n; n D 1; : : : ; 15;

�1 D 1 � e�1 D 0:632121 : : : : (3)

Now suppose we carry out this computation, beginning
with �1 D 0:632121 (so truncated after six decimal
places). We then find that �16 D �576; 909, which is
truly a massive error, since the correct value is �16 D
0:0590175 : : :. If we think of (3) as a discrete solution
operator (analogous to L�1

h above) taking the data �1
to the solution �16, then it is a highly unstable scheme:
a perturbation of the data of less than 10�6 leads to
a change in the solution of nearly 6 � 105. In fact, it is
easy to see that for (3), a perturbation � in the data leads
to an error of 15Š � � in solution – a huge instability.
It is important to note that the numerical computation
of the integral (2) is not a difficult numerical problem.
It could be easily computed with Simpson’s rule, for
example. The crime here is solving the problem with
the unstable algorithm (3).

Returning to the case of the discretization (1), imag-
ine that we perturb the discrete data fh to some Qfh D
fh C �h, resulting in a perturbation of the discrete
solution to Quh D L�1

h
Qfh. Using the norms in Wh and

Vh to measure the perturbations and then computing
the ratio, we obtain

solution perturbation

data perturbation
D kQuh � uhkh

k Qfh � fhk0
h

D kL�1
h �hkh

k�hk0
h

:

We define the stability constant C stab
h , which is our

quantitative measure of stability, as the maximum value
this ratio achieves for any perturbation �h of the data.
In other words, the stability constant is the norm of the
operator L�1

h :

C stab
h D sup

0¤�h2Wh

kL�1
h �hkh

k�hk0
h

D kL�1
h kL.Wh;Vh/:

Relating Consistency, Stability, and Error

The Fundamental Error Bound
Let us summarize the ingredients we have introduced
in our framework to assess a discretization:
• The discrete solution space, Vh, a finite dimensional

vector space, normed by k � kh
• The discrete data space, Wh, a finite dimensional

vector space, normed by k � k0
h

• The discrete operator, Lh W Vh ! Wh, an invertible
linear operator

• The discrete data fh 2 Wh

• The discrete solution uh determined by the equation
Lhuh D fh

• The solution representative Uh 2 Vh
• The error Uh � uh 2 Vh
• The consistency error LhUh � fh 2 Wh

• The stability constant C stab
h D kL�1

h kL.Wh;Vh/
With this framework in place, we may prove a rigorous
error bound, stating that the error is bounded by the
product of the stability constant and the consistency
error:

kUh � uhkh � C stab
h kLhUh � fhk0

h: (4)

The proof is straightforward. Since Lh is invertible,

Uh � uh D L�1
h ŒLh.Uh � uh/� D L�1

h .LhUh � Lhuh/

D L�1
h .LhUh � fh/:

Taking norms, gives

kUh � uhkh � kL�1
h kL.Wh;Vh/kLhUh � fhk0

h;

as claimed.

The Fundamental Theorem
A discretization of a differential equation always en-
tails a certain amount of error. If the error is not small
enough for the needs of the application, one generally
refines the discretization, for example, using a finer
grid size in a finite difference method or a triangulation
with smaller elements in a finite element method.
Thus, we may consider a whole sequence or family of
discretizations, corresponding to finer and finer grids
or triangulations or whatever. It is conventional to
parametrize these by a positive real number h called
the discretization parameter. For example, in the finite
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difference method, we may use the same h as before,
the grid size, and in the finite element method, we
can take h to be the maximal triangle diameter or
something related to it. We shall call such a family
of discretizations a discretization scheme. The scheme
is called convergent if the error norm kUh � uhkh
tends to 0 as h tends to 0. Clearly convergence is a
highly desirable property: it means that we can achieve
whatever level of accuracy we need, as long as we do a
fine enough computation. Two more definitions apply
to a discretization scheme. The scheme is consistent if
the consistency error norm kLhUh � fhk0

h tends to 0
with h. The scheme is stable if the stability constant
C stab
h is bounded uniformly in h: C stab

h � C stab for
some number C stab and all h. From the fundamental
error bound, we immediately obtain what may be
called the fundamental theorem of numerical analysis:
a discretization scheme which is consistent and stable
is convergent.

Historical Perspective
Consistency essentially requires that the discrete equa-
tions defining the approximate solution are at least
approximately satisfied by the true solution. This is
an evident requirement and has implicitly guided the
construction of virtually all discretization methods,
from the earliest examples. Bounds on the consistency
error are often not difficult to obtain. For finite differ-
ence methods, for example, they may be derived from
Taylor’s theorem, and, for finite element methods, from
simple approximation theory. Stability is another mat-
ter. Its central role was not understood until the mid-
twentieth century, and there are still many differential
equations for which it is difficult to devise or to assess
stable methods.

That consistency alone is insufficient for the conver-
gence of a finite difference method was pointed out in
a seminal paper of Courant, Friedrichs, and Lewy [2]
in 1928. They considered the one-dimensional wave
equation and used a finite difference method, analo-
gous to the five-point Laplacian, with a space-time grid
of points .jh; lk/ with 0 � j � n, 0 � l � m integers
and h; k > 0 giving the spatial and temporal grid size,
respectively. It is easy to bound the consistency error by
O.h2Ck2/, so setting k D �h for some constant � > 0
and letting h tend to 0, one obtains a consistent scheme.
However, by comparing the domains of dependence
of the true solution and of the discrete solution on

the initial data, one sees that this method, though
consistent, cannot be convergent if � > 1.

Twenty years later, the property of stability of dis-
cretizations began to emerge in the work of von Neu-
mann and his collaborators. First, in von Neumann’s
work with Goldstine on solving systems of linear
equations [5], they studied the magnification of round-
off error by the repeated algebraic operations involved,
somewhat like the simple example (3) of an unsta-
ble recursion considered above. A few years later,
in a 1950 article with Charney and Fjørtoft [1] on
numerical solution of a convection diffusion equation
arising in atmospheric modeling, the authors clearly
highlighted the importance of what they called com-
putational stability of the finite difference equations,
and they used Fourier analysis techniques to assess
the stability of their method. This approach developed
into von Neumann stability analysis, still one of the
most widely used techniques for determining stability
of finite difference methods for evolution equations.

During the 1950s, there was a great deal of
study of the nature of stability of finite difference
equations for initial value problems, achieving its
capstone in the 1956 survey paper [3] of Lax and
Richtmeyer. In that context, they formulated the
definition of stability given above and proved that, for a
consistent difference approximation, stability ensured
convergence.

Techniques for Ensuring Stability

Finite Difference Methods
We first consider an initial value problem, for example,
the heat equation or wave equation, discretized by a
finite difference method using grid size h and time step
k. The finite difference method advances the solution
from some initial time t0 to a terminal time T by
a sequence of steps, with the l th step advancing the
discrete solution from time .l � 1/k to time lk. At
each time level lk, the discrete solution is a spatial
grid function ulh, and so the finite difference method
defines an operatorG.h; k/ mapping ul�1h to ulh, called
the amplification matrix. Since the amplification matrix
is applied many times in the course of the calculation
(m D .T � t0/=k times to be precise, a number
which tends to infinity as k tends to 0), the solution
at the final step umh involves a high power of the
amplification matrix, namely G.h; k/m, applied to the
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Stability, Consistency, and Convergence of Numerical Dis-
cretizations, Fig. 3 Finite difference solution of the heat equa-
tion using (5). Left: initial data. Middle: discrete solution at

t D 0:03 computed with h D 1=20, k D 1=2;000 (stable).
Right: same computation with k D 1=1;000 (unstable)

data u0h. Therefore, the stability constant will depend
on a bound for kG.h; k/mk. Usually this can only be
obtained by showing that kG.h; k/k � 1 or, at most,
kG.h; k/k � 1CO.k/. As a simple example, we may
consider an initial value problem for the heat equation
with homogeneous boundary conditions on the unit
square:

@u

@t
D u; x 2 ˝; 0 < t � T;

u.x; t/ D 0; x 2 @˝; 0 < t � T;

u.x; 0/ D u0.x/; x 2 ˝;

which we discretize with the five-point Laplacian and
forward differences in time:

ul .p/� ul�1.p/
k

D hu
l�1.p/; p 2 ˝h;

0 < l � m; (5)

ul .p/ D 0; p 2 @˝h; 0 < l � m;

u0.p/ D u0.p/; p 2 ˝h: (6)

In this case the norm condition on the amplification
matrix kG.h; k/k � 1 holds if 4k � h2, but not
otherwise, and, indeed, it can be shown that this dis-
cretization scheme is stable, if and only if that con-
dition is satisfied. Figure 3 illustrates the tremendous
difference between a stable and unstable choice of time
step.

Several methods are used to bound the norm of the
amplification matrix. If an L1 norm is chosen, one
can often use a discrete maximum principle based on
the structure of the matrix. If an L2 norm is chosen,
then Fourier analysis may be used if the problem
has constant coefficients and simple enough boundary
conditions. In other circumstances, more sophisticated
matrix or eigenvalue analysis is used.

For time-independent PDEs, such as the Poisson
equation, the requirement is to show that the inverse
of the discretization operator is bounded uniformly in
the grid size h. Similar techniques as for the time-
dependent problems are applied.

Galerkin Methods
Galerkin methods, of which finite element methods are
an important case, treat a problem which can be put
into the form: find u 2 V such that B.u; v/ D F.v/ for
all v 2 V . Here, V is a Hilbert space, B W V � V ! R

is a bounded bilinear form, and F 2 V �, the dual
space of V . (Many generalizations are possible, e.g.,
to the case where B acts on two different Hilbert
spaces or the case of Banach spaces.) This problem
is equivalent to a problem in operator form, find u
such Lu D F , where the operator L W V ! V �
is defined by Lu.v/ D B.u; v/. An example is the
Dirichlet problem for the Poisson equation considered

earlier. Then, V D VH1.˝/, B.u; v/ D R
˝

ru � rv dx,
and F.v/ D R

˝
f v dx. The operator is L D � W

VH1.˝/ ! VH1.˝/�.
A Galerkin method is a discretization which seeks

uh in a subspace Vh of V satisfying B.uh; v/ D F.v/

for all v 2 Vh. The finite element method discussed
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Stability, Consistency, and Convergence of Numerical Dis-
cretizations, Fig. 4 Approximation of the problem (7), with
u D cos�x shown on left and � D u0 on the right. The exact
solution is shown in blue, and the stable finite element method,
using piecewise linears for � and piecewise constants for u, is

shown in green (in the right plot, the blue curve essentially
coincides with the green curve, and so is not visible). An unstable
finite element method, using piecewise quadratics for � , is shown
in red

above took Vh to be the subspace of continuous piece-
wise linears. If the bilinear form B is coercive in the
sense that there exists a constant � > 0 for which

B.v; v/ � �kvk2V ; v 2 V;

then stability of the Galerkin method with respect to
the V norm is automatic. No matter how the subspace
Vh is chosen, the stability constant is bounded by 1=� .
If the bilinear form is not coercive (or if we consider
a norm other than the norm in which the bilinear
form is coercive), then finding stable subspaces for
Galerkin’s method may be quite difficult. As a very
simple example, consider a problem on the unit interval
I D .0; 1/, to find .�; u/ 2 H1.I / � L2.I / such
that

Z 1

0

�
 dx C
Z 1

0


 0u dx C
Z 1

0

� 0v dx D
Z 1

0

f v dx;

.
; v/ 2 H1.I / � L2.I /: (7)

This is a weak formulation of system � D u0, � 0 D f ,
with Dirichlet boundary conditions (which arise from
this weak formulation as natural boundary conditions),
so this is another form of the Dirichlet problem for
Poisson’s equation u00 D f on I , u.0/ D u.1/ D 0. In
higher dimensions, there are circumstances where such
a first-order formulation is preferable to a standard
second-order form. This problem can be discretized by
a Galerkin method, based on subspaces Sh � H1.I /

and Wh � L2.I /. However, the choice of subspaces
is delicate, even in this one-dimensional context.

If we partition I into subintervals and choose Sh
and Wh both to be the space of continuous piecewise
linears, then the resulting matrix problem is singular,
so the method is unusable. If we choose Sh to
continuous piecewise linears, and Wh to be piecewise
constants, we obtain a stable method. But if we choose
Sh to contain all continuous piecewise quadratic
functions and retain the space of piecewise constants
for Wh, we obtain an unstable scheme. The stable
and unstable methods can be compared in Fig. 4.
For the same problem of the Poisson equation in
first-order form, but in more than one dimension,
the first stable elements were discovered in 1975
[4].
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To solve an inverse problem means to recover an un-
known object from indirect noisy observations. As an
illustration, consider an idealized example of the blur-
ring of a one-dimensional signal, f .x/, by a measuring
instrument. Assume the function is parametrized so
that x 2 Œ0; 1� and that the actual data can be modeled
as noisy observations of a blurred version of f . We
may model the blurring as a convolution with a ker-
nel, K.x/, determined by the instrument. The forward
operator maps f to the blurred function � given by
�.x/ D R 1

0 K.x � t/f .t/ dt (i.e., a Fredholm integral
equation of the first kind.) The statistical model for
the data is then y.x/ D �.x/ C ".x/; where ".x/
is measurement noise. The inverse problem consists
of recovering f from finitely many measurements
y.x1/,. . . ,y.xn/. However, inverse problems are usu-
ally ill-posed (e.g., the estimates may be very sensitive
to small perturbations of the data) and deblurring is one
such example. A regularization method is required to
solve the problem. An introduction to regularization of
inverse problems can be found in [11] and more general
references are [10, 27].

Since the observations y.xi / are subject to system-
atic errors (e.g., discretization) as well as measure-
ment errors that will be modeled as random variables,
the solution of an inverse problem should include a
summary of the statistical characteristics of the inver-
sion estimate such as means, standard deviations, bias,
mean squared errors, and confidence sets. However, the
selection of proper statistical methods to assess esti-
mators depends, of course, on the class of estimators,
which in turn is determined by the type of inverse
problem and chosen regularization method. Here we
use a general framework that encompasses several
different and widely used approaches.

We consider the problem of assessing the statistics
of solutions of linear inverse problems whose data are
modeled as yi D Ki Œf � C "i .i D 1; : : : ; n/; where
the functions f belong to a linear space H , each Ki

is a continuous linear operator defined on H , and the
errors "i are random variables. Since the errors are
random, an estimate Of of f is a random variable taking
values in H . Given the finite amount of data, we can
only hope to recover components of f that admit a
finite-dimensional parametrization. Such parametriza-
tions also help us avoid defining probability measures
in function spaces. For example, we can discretize
the operators and the function so that the estimate Of

is a vector in R
m. Alternatively, one may be able to

use a finite-dimensional parametrization such as f DPm
kD1 ak k , where  k are fixed functions defined on

H . This time the random variable is the estimate Oa of
the vector of coefficients a D .ak/. In either case the
problem of finding an estimate of a function reduces to
a finite-dimensional linear algebra problem.

Example 1 Consider the inverse problem for a Fred-
holm integral equation:

yi Dy.xi /D
Z 1

0

K.xi�t/f .t/ dtC"i ; .iD1; : : : ; n/:

To discretize the integral, we can usem equally spaced
points ti in Œ0; 1� and define t 0j D .tj C tj�1/=2. Then,

�.xi /D
Z 1

0

K.xi�y/f .y/ dy	 1

m

m�1X
jD1

K.xi�t 0j / f .t 0j /:

Hence we have the approximation � D .�.x1/; : : : ;

�.xn//
t 	 Kf withKij D K.xi � t 0j / and fi D f .t 0i /.

Writing the discretization error as ı D � � Kf , we
arrive at the following model for the data vector y :

y D Kf C ı C ": (1)

Asm ! 1 the approximation of the integral improves
but the matrix K becomes more ill-conditioned. To
regularize the problem, we define an estimate Of of f

using penalized least squares:

Of D arg min
g2Rm ky � Kgk2 C �2kDgk2

D .K tK C �2DtD/�1K t y 
 Ly;

where � > 0 is a fixed regularization parameter and
D is a chosen matrix (e.g., a matrix that computes
discrete derivatives). This regularization addresses the
ill-conditioning of the matrix K ; it is a way of adding



1366 Statistical Methods for Uncertainty Quantification for Linear Inverse Problems

the prior information that we expect kDf k to be small.
The case D D I is known as (discrete) Tikhonov-
Phillips regularization. Note that we may write Of .xi /
as a linear function of y: Of .xi / D etiLy where fei g is
the standard orthonormal basis in R

m. �

In the next two examples, we assume that H is a
Hilbert space, and each Ki W H ! R is a bounded lin-
ear operator (and thus continuous). We write KŒf � D
.K1Œf �; : : : ;KnŒf �/

t .

Example 2 Since K.H/ � R
n is finite dimensional,

it follows that K is compact as is its adjoint K� W
R
n ! H , and K�K is a self-adjoint compact operator

on H . In addition, there is a collection of orthonormal
functions f �k g inH , orthonormal vectors f vk g in R

n,
and a positive, nonincreasing sequence .�k/ such that
[22]: (a) f �k g is an orthonormal basis for Null.K/?;
(b) f vk g is an orthonormal basis for the closure of
Range.K/ in R

n; and (c) KŒ�k� D �kvk and K�Œvk� D
�k�k . Write f D f0 C f1, with f0 2 Null.K/ and
f1 2 Null.K/?. Then, there are constants ak such
that f1 D Pn

kD1 ak�k . The data do not provide any
information about f0 so without any other information
we have no way of estimating such component of
f . This introduces a systematic bias. The problem of
estimating f is thus reduced to estimating f1, that is,
the coefficients ak . In fact, we may transform the data
to hy; vki D �kak C h"; vki and use them to estimate
the vector of coefficients a D .ak/; the transformed
data based on this sequence define a sequence space
model [7, 18]. We may also rewrite the data as y D
V a C "; where V D . �1v1 � � ��nvn /. An estimate of
f is obtained using a penalized least-squares estimate
of a:

Oa D arg min
b2Rn ky � V bk2 C �2kbk2:

This leads again to an estimate that is linear in y; write
it as Oa D Ly for some matrix L. The estimate of f .x/
is then similar to that in Example 1:

Of .x/ D �.x/t Oa D �.x/tLy; (2)

with �.x/ D .�1.x/; : : : ; �n.x//
t . �

If the goal is to estimate pointwise values of f 2
H , then the Hilbert space H needs to be defined
appropriately. For example, if H D L2.Œ0; 1�/, then
pointwise values of f are not well defined. The fol-
lowing example introduces spaces where evaluation

at a point (i.e., f ! f .x/) is a continuous linear
functional.

Example 3 Let I D Œ0; 1�. Let Wm.I / be the linear
space of real-valued functions on I such that f has
m�1 continuous derivatives on I , f .m�1/ is absolutely
continuous on I (so f .m/ exists almost everywhere on
I ), and f .m/ 2 L2.I /. The space Wm.I / is a Hilbert
space with inner product

hf; gi D
m�1X
kD0

f .k/.0/ g.k/.0/C
Z
I

f .m/.x/ g.m/.x/ dx

and has the following properties [2, 29]: (a) For every
x 2 I , there is a function �x 2 Wm.I / such that
the linear functional f ! f .x/ is continuous on
Wm.I / and given by f ! h�x; f i. The function
R W I � I ! R, R.x; y/ D h�x; �yi is called
a reproducing kernel of the Hilbert space, and (b)
Wm.I / D Nm�1 ˚ Hm, where Nm�1 is the space
of polynomials of degree at most m � 1 and Hm D
f f 2 Wm.I / W f .k/.0/ D 0 for k D 0; : : : ; m � 1 g:
Since the space Wm.I / satisfies (a), it is called a
reproducing kernel Hilbert space (RKHS). To control
the smoothness of the Tikhonov estimate, we put a
penalty on the derivative of f1, which is the projection
f1 D PHf onto Hm. To write the penalized sum
of squares, we use the fact that each functional Ki W
Wm.I / ! R is continuous and thus Kif D h�i ; f i
for some function �i 2 Wm.I /. We can then write

k y�Kf k2 C �2
Z
I

.f
.m/
1 .x//2 dx

D
nX

jD1
. yi � h�i ; f i /2 C �2kPHf k2: (3)

Define �k.x/ D xk�1 for k D 1; : : : ; m and �k D
PH�k�m for k D m C 1; : : : ; m C n. Then f DP

k ak�k C ı, where ı belongs to the orthogonal
complement of the span of f�kg. It can be shown that
the minimizer Of of (3) is again of the form (2) [29]. To
estimate a we rewrite (3) as a function of a and use the
following estimate:

Oa D arg min
b

k y � Xb k2 C �2btHPbH ;

where X is the matrix of inner products h�i ; �j i, Pij D
hPH�i ; PH�j i and aH D .amC1; : : : ; amCn/t . �
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These examples describe three different frameworks
where the functional estimation is reduced to a finite-
dimensional penalized least-squares problem. They
serve to motivate the framework we will use in
the statistical analysis. We will focus on frequentist
statistical methods. Bayesian methods for inverse
problems are discussed in [17]; [1,23] provide a tutorial
comparison of frequentist and Bayesian procedures for
inverse problems.

Consider first the simpler case of general linear
regression: the n � 1 data vector is modeled as y D
Ka C ", where K is an n�m matrix, n > m, K tK is
non-singular and " is a random vector with mean zero
and covariance matrix �2I . The least-squares estimate
of a is

Oa D arg min
b

ky � Kbk2 D .K tK /�1K ty; (4)

and it has the following properties: Its expected value
is E. Oa/ D a regardless of the true value a; that is, Oa is
an unbiased estimator of a. The covariance matrix of Oa
is Var. Oa/ 
 �2.K tK /�1. An unbiased estimator of �2

is O�2 D ky�K Oak2=.n�m/:Note that the denominator
is the difference between the number of observations;
it is a kind of “effective number of observations.” It can
be shown thatm D tr.H /, where H D K .K tK /�1K t

is the hat matrix; it is the matrix defined by H y 

Oy D K Oa. The degrees of freedom (dof) of Oy is defined
as the sum of the covariances of .K Oa/i with yi divided
by �2 [24]. For linear regression we have dof.K Oa/ D
m D tr.H /. Hence we may write O�2 as the residual
sum of squares normalized by the effective number of
observations:

O�2 D ky � Oyk2
n � dof. Oy/ D ky � Oyk2

tr.I � H /
: (5)

We now return to ill-posed inverse problems and
define a general framework motivated by Examples 1–
2 that is similar to general linear regression. We assume
that the data vector has a representation of the form
y D KŒf � C " D Ka C ı C "; where K is a linear
operator H ! R

n, K is an n � m matrix, ı is a fixed
unknown vector (e.g., discretization error), and " is
a random vector of mean zero and covariance matrix
�2I . We also assume that there is an n � 1 vector a

and a vector function � such that f .x/ D �.x/ta for
all x. The vector a is estimated using penalized least
squares:

Oa D arg min
b

ky � Kbk2 C �2btSb

D .K tK C �2S /�1K ty ; (6)

where S is a symmetric non-negative matrix and � > 0
is a fixed regularization parameter. The estimate of f
is defined as Of .x/ D �.x/t Oa:

Bias, Variance, and MSE
For a fixed regularization parameter �, the estimator
Of .x/ is linear in y, and therefore its mean, bias,

variance, and mean squared error can be determined
using only knowledge of the first two moments of the
distribution of the noise vector ". Using (6) we find the
mean, bias, and variance of Of .x/:

E. Of .x/ / D �.x/tG�
�1K tKŒf �;

Bias. Of .x/ / D �.x/tG�
�1K tKŒf � � f .x/

Var. Of .x/ / D �2kKG� �.x/k2;

where G� D .K tK C �2S /�1. Hence, unlike the
least-squares estimate of a (4), the penalized least-
squares estimate (6) is biased even when ı D 0. This
bias introduces a bias in the estimates of f . In terms of
a and ı, this bias is

Bias. Of .x/ / D E. Of .x/ / � f .x/
D �.x/tB�a C �.x/tG�K

tı; (7)

where B� D ��2G�S . Prior information about a

should be used to choose the matrix S so that kB�ak
is small. Note that similar formulas can be derived
for correlated noise provided the covariance matrix
is known. Also, analogous closed formulas can be
derived for estimates of linear functionals of f .

The mean squared error (MSE) can be used to
include the bias and variance in the uncertainty eval-
uation of Of .x/; it is defined as the expected value of
. Of .x/�f .x//2, which is equivalent to the squared bias
plus the variance:

MSE. Of .x/ / D Bias. Of .x/ /2 C Var. Of .x/ /:

The integrated mean squared error of Of is

IMSE. Of / D E

Z
j Of .x/ � f .x/ j2 dx

D Bias. Oa/tF Bias. Oa/Ctr.F G�K
tKG� /;
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where F D R
�.x/�.x/t dx.

The bias component of the MSE is the most difficult
to assess as it depends on the unknown f (or a and ı),
but, depending on the available prior information, some
inequalities can be derived [20, 26].

Example 4 If H is a Hilbert space and the functionals
Ki are bounded, then there are function �i 2 H such
that Ki Œf � D h�i ; f i, and we may write

EŒ Of .x/ � D h
X
i

ai .x/�i ; f i D hAx ; f i;

where the function Ax.y/ D P
i ai .x/�i .y/ is called

the Backus-Gilbert averaging kernel for Of at x [3].
In particular, since we would like to have f .x/ D
hAx ; f i, we would like Ax to be as concentrated as
possible around x; a plot of the function Ax may pro-
vide useful information about the mean of the estimate
Of .x/. One may also summarize characteristics of jAxj

such as its center and spread about the center (e.g.,
[20]). Heuristically, jAx j should be like a ı-function
centered at x. This can be formalized in an RKHS H .
In this case, there is a function �x 2 H such that
f .x/ D h�x; f i and the bias of Of .x/ can be written
as Bias. Of .x/ / D hAx � �x; f i and therefore

j Bias. Of .x/ / j � kAx � �x k kf k:

We can guarantee a small bias when Ax is close to �x
in H . In actual computations, averaging kernels can
be approximated using splines. A discussion of this
topic as well as information about available software
for splines and reproducing kernels can be found in
[14, 20]. �

Another bound for the bias follows from (7) via the
Cauchy-Schwarz and triangle inequalities:

j Bias. Of .x/ / j � kG ��.x/k. �2kS ak C kK tık /:

Plots of kG��.x/k (or kAx � �x k) as a function of
x may provide geometric information (usually con-
servative) about the bias. Other measures such as the
worst or an average bias can be obtained depending
on the available prior information we have on f or
its parametric representation. For example, if a and ı

are known to lie in convex sets S1 and S2, respectively,
then we may determine the maximum of j Bias. Of / j
subject to a 2 S1 and ı 2 S2. Or, if the prior

information leads to the modeling of a and ı as random
variables with means and covariance matrices �a D
Ea, ˙ a D Var.a/, �ı D Eı and ˙ ı D Var.ı/, then
the average bias is

EŒBias. Of .x/ / � D �.x/tB��a C �.x/tG�K
t�ı:

Similarly, we can easily derive a bound for the mean
squared bias that can be used to put a bound on the
average MSE.

Since the bias may play a significant factor in the
inference (in some geophysical applications the bias is
the dominant component of the MSE), it is important to
study the residuals of the fit to determine if a significant
bias is present. The mean and covariance matrix of the
residual vector r D y � K Oa are

Er D �KBias. Oa/C ı D �KB�a C .I � H �/ı (8)

Var.r/ D �2.I � H �/
2; (9)

where H � D KG�K
t is the hat matrix. Equation (8)

shows that if there is a significant bias, then we may
see a trend in the residuals. From (8) we see that
the residuals are correlated and heteroscedastic (i.e.,
Var.ri / depends on i ) even if the bias is zero, which
complicates the interpretation of the plots. To stabilize
the variance, it is better to plot residuals that have been
corrected for heteroscedasticity, for example, r 0

i D
ri=.1 � .H�/ii/.

Confidence Intervals
In addition to the mean and variance of Of .x/, we
may construct confidence intervals that are expected to
contain E. Of .x// with some prescribed probability. We
now assume that the noise is Gaussian, " � N.0; �2I/.
We use ˚ to denote the cumulative distribution func-
tion of the standard Gaussian N.0; 1/ and write z˛ D
˚�1.1 � ˛/.

Since Of .x/ is a biased estimate of f .x/, we can
only construct confidence intervals for E Of .x/. We
should therefore interpret the intervals with caution
as they may be incorrectly centered if the bias is
significant.

Under the Gaussianity assumption, a confidence
interval I˛.x; �/ for E Of .x/ of coverage 1 � ˛ is

I˛.x; �/ D Of .x/˙ z˛=2 �kKG� �.x/k:
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That is, for each x the probability that I˛.x; �/ con-
tains E Of .x/ is 1 � ˛. If we have prior information to
find an upper bound for the bias, jBias. Of .x//j � B.x/,
then a confidence interval for f .x/ with coverage at
least 1 � ˛ is Of .x/˙ .z˛=2 �kKG� �.x/k C B.x//:

If the goal is to detect structure by studying the
confidence intervals I˛.x; �/ for a range of values of
x, then it is advisable to correct for the total number of
intervals considered so as to control the rate of incor-
rect detections. One way to do this is by constructing
1 � ˛ confidence intervals of the form I˛.x; �ˇ/ with
simultaneous coverage for all x in some closed set S .
This requires finding a constant ˇ > 0 such that

PŒE Of .x/ 2 I˛.x; �ˇ/;8x 2 S � � 1� ˛;

which is equivalent to

P

�
sup
x2S

jZ tV .x/j � ˇ

	
� ˛;

where V .x/ D KG��.x/=kKG��.x/k and Z1;

: : : ; Zn are independent N.0; 1/. We can use results
regarding the tail behavior of maxima of Gaussian
processes to find an appropriate value of ˇ. For
example, for the case when x 2 Œa; b� [19] (see also
[25]) shows that for ˇ large

P

�
sup
x2S

jZ tV .x/j � ˇ

	
	 v

�
e�ˇ2=2 C 2.1�˚.ˇ//;

where v D R b
a kV 0.x/kdx. It is not difficult to find

a root of this nonlinear equation; the only potential
problem may be computing v, but even an upper bound
for it leads to intervals with simultaneous coverage at
least 1 � ˛. Similar results can be derived for the case
when S is a subset of R2 or R3 [25].

An alternative approach is to use methods based
on controlling the false discovery rate to correct for
the interval coverage after the pointwise confidence
intervals have been selected [4].

Estimating � and �

The formulas for the bias, variance, and confidence
intervals described so far require knowledge of � and
a selection of � that is independent of the data y.
If y is also used to estimate � or choose �, then
Of .x/ is no longer linear in y and closed formulas

for the moments, bias, or confidence intervals are

not available. Still, the formulas derived above with
“reasonable” estimates O� and O� in place of � and �
are approximately valid. This depends of course on the
class of possible functions f , the noise distribution,
the signal-to-noise ratio, and the ill-posedness of the
problem. We recommend conducting realistic simula-
tion studies to understand the actual performance of the
estimates for a particular problem.

Generalized cross-validation (GCV) methods to se-
lect � have proved useful in applications and theoreti-
cal studies. A discussion of these methods can be found
in [13, 14, 29, 30]. We now summarize a few methods
for obtaining an estimate of � .

The estimate of �2 given by (5) could be readily
used for, once again, dof.K Oa/ D tr.H �/, with the
corresponding hat matrix H � (provided ı D 0).
However, because of the bias of K Oa and the fixed error
ı, it is sometimes better to estimate � by considering
the data as noisy observations of � D Ey D KŒf � – in
which case we may assume ı D 0; that is, yi D �iC"i .
This approach is natural as �2 is the variance of the
errors, "i , in the observations of �i .

To estimate the variance of "i , we need to remove
the trend �i . This trend may be seen as the values of
a function �.x/: �i D �.xi /. A variety of nonpara-
metric regression methods can be used to estimate the
function � so it can be removed, and an estimate of
the noise variance can be obtained (e.g., [15, 16]). If
the function can be assumed to be reasonably smooth,
then we can use the framework described in 3 with
Ki Œ�� D �.xi / and a penalty in the second derivative
of �. In this case O�.x/ D P

ai�i .x/ D at�.x/ is
called a spline smoothing estimate because it is a finite
linear combination of spline functions �i [15, 29]. The
estimate of �2 defined by (5) with the corresponding
hat matrix H � was proposed by [28]. Using (8) and (9)
we find that the expected value of the residual sum of
squares is

Eky � Oyk2 D �2 trŒ .I � H �/
2 �C atB�K

tKB�a;

(10)
and thus O�2 is not an unbiased estimator of �2 even
if the bias is zero (i.e., B�a D 0, which happens
when � is linear), but it has been shown to have
good asymptotic properties when � is selected using
generalized cross-validation [13,28]. From (10) we see
that a slight modification of O�2 leads to an estimate that
is unbiased when B�a D 0 [5]
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O�2B D ky � Oyk2
trŒ .I � H �/2 �

:

Simulation studies seem to indicate that this estimate
has a smaller bias for a wider set of values of � [6]. This
property is desirable as � is usually chosen adaptively.

In some cases the effect of the trend can also be
reduced using first- or second-order finite differences
without having to choose a regularization parameter
�. For example, a first-order finite-difference estimate
proposed by [21] is

O�2R D 1

2.n� 1/

n�1X
iD1
.yiC1 � yi /2:

The bias of O�2R is small if the local changes of �.x/
are small. In particular, the bias is zero for a linear
trend. Other estimators of � as well performance com-
parisons can be found in [5, 6].

Resampling Methods
We have assumed a Gaussian noise distribution for
the construction of confidence intervals. In addition,
we have only considered linear operators and linear
estimators. Nonlinear estimators arise even when the
operator K is linear. For example, if � and � are
estimated using the same data or if the penalized least-
squares estimate of a includes interval constraints (e.g.,
positivity), then the estimate Oa is no longer linear in
y . In some cases the use of bootstrap (resampling)
methods allows us to assess statistical properties while
relaxing the distributional and linearity assumptions.

The idea is to simulate data y� as follows: the
function estimate Of is used as a proxy for the unknown
function f . Noise "� is simulated using a parametric
or nonparametric method. In the parametric bootstrap,
"� is sampled from the assumed distribution whose
parameters are estimated from the data. For example,
if the "i are independent N.0; �2/, then "�

i is sampled
from N.0; O�2/. In the nonparametric bootstrap, "�

i is
sampled with replacement from the vector of residuals
of the fit. However, as Eqs. (8) and (9) show, even in
the linear case, the residuals have to be corrected to
behave approximately like the true errors. Of course,
due to the bias and correlation of the residuals, these
corrections are often difficult to derive and implement.
Using "�

i and Of , one generates simulated data vectors
y�
j D KŒ Of � C "�

j . For each such y�
j one computes

an estimate Ofj of f following the same procedure

used to obtain Of . The statistics of the sample of Ofj
are used as estimates of those of Of . One problem
with this approach is that the bias of Of may lead to a
poor estimate of KŒf � and thus to unrealistic simulated
data.

An introduction to bootstrap methods can be found
in [9,12]. For an example of bootstrap methods to con-
struct confidence intervals for estimates of a function
based on smoothing splines, see [31].
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Analysis, Lund University, Lund, Sweden

Introduction

Step size control is used to make a numerical method
that proceeds in a step-by-step fashion adaptive. This
includes time stepping methods for solving initial value
problems, nonlinear optimization methods, and contin-
uation methods for solving nonlinear equations. The
objective is to increase efficiency, but also includes
managing the stability of the computation.

This entry focuses exclusively on time stepping
adaptivity in initial value problems. Special control

algorithms continually adjust the step size in accor-
dance with the local variation of the solution, at-
tempting to compute a numerical solution to within
a given error tolerance at minimal cost. As a typical
integration may run over thousands of steps, the task
is ideally suited to proven methods from automatic
control.

Assume that the problem to be solved is a dynamical
system,

dy

dt
D f .y/I y.0/ D y0; (1)

with y.t/ 2 R
m. Without loss of generality, we may

assume that the problem is solved numerically using
a one-step integration procedure, explicit or implicit,
written formally as

ynC1 D ˆh.yn/I y0 D y.0/; (2)

where the map ˆh advances the solution one step of
size h, from time tn to tnC1 D tn C h. Here the
sequence yn is the numerical approximations to the
exact solution, y.tn/. The difference en D yn � y.tn/

is the global error of the numerical solution. If the
method is of convergence order p, and the vector field
f in (1) is sufficiently differentiable, then kenk D
O.hp/ as h ! 0.

The accuracy of the numerical solution can also be
evaluated locally. The local error ln is defined by

y.tnC1/C ln D ˆh .y.tn// : (3)

Thus, if the method would take a step of size h, starting
on the exact solution y.tn/, it will deviate from the
exact solution at tnC1 by a small amount, ln. If the
method is of order p, the local error will satisfy

klnk D 'nh
pC1 C O.hpC2/ I h ! 0: (4)

Here the principal error function 'n varies along the
solution, and depends on the problem (in terms of
derivatives of f ) as well as on the method.

Using differential inequalities, it can be shown that
the global and local errors are related by the a priori
error bound

kenk / max
m�n

klmk
h

� eMŒf �tn � 1
MŒf �

; (5)
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where MŒf � is the logarithmic Lipschitz constant of
f . Thus, the global error is bounded in terms of the
local error per unit step, ln=h. For this reason, one can
manage the global error by choosing the step size h so
as to keep klnk=h D TOL during the integration, where
TOL is a user-prescribed local error tolerance. The
global error is then proportional to TOL, by a factor
that reflects the intrinsic growth or decay of solutions to
(1). Good initial value problem solvers usually produce
numerical results that reflect this tolerance proportion-
ality. By reducing TOL, one reduces the local error
as well as the global error, while computational cost
increases, as h � TOL1=p .

Although it is possible to compute a posteriori
global error estimates, such estimates are often costly.
All widely used solvers therefore control the local
error, relying on the relation (5), and the possibility of
comparing several different numerical solutions com-
puted for different values of TOL. There is no claim
that the step size sequences are “optimal,” but in all
problems where the principal error function varies by
several orders of magnitude, as is the case in stiff dif-
ferential equations, local error control is an inexpensive
tool that offers vastly increased performance. It is a
necessity for efficient computations.

A time stepping method is made adaptive by provid-
ing a separate procedure for updating the step size as a
function of the numerical solution. Thus, an adaptive
method can be written formally as the interactive
recursion

ynC1 D ˆhn.yn/ (6)

hnC1 D ‰ynC1
.hn/; (7)

where the first equation represents the numerical
method and the second the step size control. If‰y 
 I

(the identity map), the scheme reduces to a constant
step size method. Otherwise, the interaction between
the two dynamical systems implies that step size
control interferes with the stability of the numerical
method. For this reason, it is important that step size
control algorithms are designed to increase efficiency
without compromising stability.

Basic Multiplicative Control

Modern time stepping methods provide a local error
estimate. By using two methods of different orders,

computing two results, ynC1 and OynC1 from yn, the
solver estimates the local error by rn D kynC1� OynC1k.
To control the error, the relation between step size and
error is modeled by

rn D O'nhkn: (8)

Here k is the order of the local error estimator. Depend-
ing on the estimator’s construction, k may or may not
equal pC1, where p is the order of the method used to
advance the solution. For control purposes, however,
it is sufficient that k is known, and that the method
operates in the asymptotic regime, meaning that (8) is
an accurate model of the error for the step sizes in use.

The common approach to varying the step size is
multiplicative control

hnC1 D �n � hn; (9)

where the factor �n needs to be determined so that the
error estimate rn is kept near the target value TOL for
all n.

A simple control heuristic is derived by requiring
that the next step size hnC1 solves the equation TOL D
O'nhknC1; this assumes that 'n varies slowly. Thus,
dividing this equation by (8), one obtains

hnC1 D
�

TOL

rn

�1=k
hn: (10)

This multiplicative control is found in many solvers.
It is usually complemented by a range of safety mea-
sures, such as limiting the maximum step size increase,
preventing “too small” step size changes, and special
schemes for recomputing a step, should the estimated
error be much larger than TOL.

Although it often works well, the control law (10)
and its safety measures have several disadvantages that
call for more advanced feedback control schemes. Con-
trol theory and digital signal processing, both based
on linear difference equations, offer a wide range of
proven tools that are suitable for controlling the step
size. Taking logarithms, (10) can be written as the
linear difference equation

loghnC1 D loghn � 1

k
log Orn; (11)
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where Orn D rn=TOL. This recursion continually
changes the step size, unless log Orn is zero (i.e.,
rn D TOL). If Orn > 1 the step size decreases, and
if Orn < 1 it increases. Thus, the error rn is kept near
the set point TOL. As (11) is a summation process, the
controller is referred to as an integrating controller, or
I control. This integral action is necessary in order to
eliminate a persistent error, and to find the step size
that makes rn D TOL.

The difference equation (11) may be viewed as
using the explicit Euler method for integrating a dif-
ferential equation that represents a continuous control.
Just as there are many different methods for solving
differential equations, however, there are many dif-
ferent discrete-time controllers that can potentially be
optimized for different numerical methods or problem
types, and offering different stability properties.

General Multiplicative Control

In place of (11), a general controller takes the error
sequence log Or D flog Orng as input, and produces a step
size sequence logh D floghng via a linear difference
equation,

.E � 1/Q.E/ logh D �P.E/ log Or: (12)

Here E is the forward shift operator, and P and Q are
two polynomials of equal degree, making the recursion
explicit. The special case (11) has Q.E/ 
 1 and
P.E/ 
 1=k, and is a one-step controller, while (12)
in general is a multistep controller. Finally, the factor
E � 1 in (12) is akin to the consistency condition in
linear multistep methods. Thus, if log Or 
 0, a solution
to (12) is logh 
 const:

If, for example, P.z/ D ˇ1z C ˇ0 and Q.z/ D z C
˛0, then the recursion (12) is equivalent to the two-step
multiplicative control,

hnC1 D
�

TOL

rn

�ˇ1 � TOL

rn�1

�ˇ0 � hn

hn�1

��˛0
hn: (13)

By taking logarithms, it is easily seen to correspond
to (12). One could include more factors following
the same pattern, but in general, it rarely pays off
to use a longer step size – error history than two
to three steps. Because of the simple structure of
(13), it is relatively straightforward to include more

advanced controllers in existing codes, keeping in mind
that a multistep controller is started either by using
(10), or by merely putting all factors representing
nonexistent starting data equal to one. Examples of
how to choose the parameters in (13) are found in
Table 1.

A causal digital filter is a linear difference equation
of the form (12), converting the input signal log Or
to an output logh. This implies that digital control
and filtering are intimately related. There are several
important filter structures that fit the purpose of step
size control, all covered by the general controller (13).
Among them are finite impulse response (FIR) filters;
proportional–integral (PI) controllers; autoregressive
(AR) filters; and moving average (MA) filters. These
filter classes are not mutually exclusive but can be
combined.

The elementary controller (10) is a FIR filter, also
known as a deadbeat controller. Such controllers have
the quickest dynamic response to variations in log O',
but also tend to produce nonsmooth step size se-
quences, and sometimes display ringing or stability
problems. These problems can be eliminated by using
PI controllers and MA filters that improve stability
and suppress step size oscillations. Filter design is
a matter of determining the filter coefficients with
respect to order conditions and stability criteria, and
is reminiscent of the construction of linear multistep
methods [11].

Stability and Frequency Response

Controllers are analyzed and designed by investigating
the closed loop transfer function. In terms of the z
transform of (12), the control action is

logh D �C.z/ log Or (14)

where the control transfer function is given by

C.z/ D P.z/

.z � 1/Q.z/
: (15)

Similarly, the error model (8) can be written

log Or D k � loghC log O' � log TOL: (16)
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−1

log loglog TOL

log ϕ̂

Process

( )

Controller h

StepSizeControl, Fig.1 Time step adaptivity viewed as a feed-
back control system. The computational process takes a stepsize
logh as input and produces an error estimate log r D k loghC
log O'. Representing the ODE, the principal error function log O'

enters as an additive disturbance, to be compensated by the
controller. The error estimate log r is fed back and compared
to log TOL. The controller constructs the next stepsize through
logh D C.z/ � .log TOL � log r/ (From [11])

These relations and their interaction are usually illus-
trated in a block diagram, see Fig. 1.

Overall stability depends on the interaction between
the controller C.z/ and the computational process.
Inserting (16) into (14) and solving for logh yields

logh D �C.z/
1C kC.z/

log O' C C.z/

1C kC.z/
log TOL:

(17)

Here the closed loop transfer functionH.z/ W log O' 7!
logh is defined by

H.z/ D �C.z/
1C kC.z/

D �P.z/
.z � 1/Q.z/C kP.z/

: (18)

It determines the performance of the combined system
of step size controller and computational process, and,
in particular, how successful the controller will be in
adjusting logh to log O' so that log r 	 log TOL.

For a controller or a filter to be useful, the closed
loop must be stable. This is determined by the poles of
H.z/, which are the roots of the characteristic equation
.z � 1/Q.z/C kP.z/ D 0. These must be located well
inside the unit circle, and preferably have positive real
parts, so that homogeneous solutions decay quickly
without oscillations.

To asses frequency response, one takes log O' D
fei!ng with ! 2 Œ0; �� to investigate the output logh D
H.ei!/fei!ng. The amplitude jH.ei!/j measures the
attenuation of the frequency !. By choosing P such
thatP.ei!/ D 0 for some!�, it follows thatH.ei!�

/ D
0. Thus, zeros of P.z/ block signal transmission. The
natural choice is !� D � so that P.�1/ D 0, as
this will annihilate .�1/n oscillations, and produce a
smooth step size sequence. This is achieved by the
two H211 controllers in Table 1. A smooth step size

Step Size Control, Table 1 Some recommended two-step con-
trollers. The H211 controllers produce smooth step size se-
quences, using a moving average low-pass filter. In H211b, the
filter can be adjusted. Starting at b D 2 it is a deadbeat (FIR)
filter; as the parameter b increases, dynamic response slows and
high frequency suppression (smoothing) increases. Note that the
ˇj coefficients are given in terms of the product kˇj for use
with error estimators of different orders k. The ˛ coefficient is
however independent of k (From [11])

kˇ1 kˇ0 ˛0 Type Name Usage

3=5 �1=5 – PI PI.4.2 Nonstiff solvers
1=b 1=b 1=b MA H211b Stiff solvers;

b 2 Œ2; 6�

1=6 1=6 – MA+PI H211 PI Stiff problems,
smooth solutions

sequence is of importance, for example, to avoid higher
order BDF methods to suffer stability problems.

Implementation andModes of Operation

Carefully implemented adaptivity algorithms are cen-
tral for the code to operate efficiently and reliably for
broad classes of problems. Apart from the accuracy
requirements, which may be formulated in many differ-
ent ways, there are several other factors of importance
in connection with step size control.

EPS Versus EPUS
For a code that emphasizes asymptotically correct
error estimates, controlling the local error per unit
step klnk=hn is necessary in order to accumulate a
targeted global error, over a fixed integration range,
regardless of the number of steps needed to complete
the integration. Abbreviated EPUS, this approach is
viable for nonstiff problems, but tends to be costly for
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stiff problems, where strong dissipation usually means
that the global error is dominated by the most recent
local errors. There, controlling the local error per step
klnk, referred to as EPS, is often a far more efficient
option, if less well aligned with theory. In modern
codes, the trend is generally to put less emphasis
on asymptotically correct estimates, and control klnk
directly. This has few practical drawbacks, but it makes
it less straightforward to compare the performance of
two different codes.

Computational Stability
Just as a well-conditioned problem depends continu-
ously on the data, the computational procedure should
depend continuously on the various parameters that
control the computation. In particular, for tolerance
proportionality, there should be constants c andC such
that the global error e can be bounded above and below,

c � TOL� � kek � C � TOL� ; (19)

where the method is tolerance proportional if � D 1.
The smaller the ratio C=c, the better is the compu-
tational stability, but C=c can only be made small
with carefully implemented tools for adaptivity. Thus,
with the elementary controller (10), prevented from
making small step size changes, C=c is typically large,
whereas if the controller is based on a digital filter (here
H211b with b D 4, cf. Table 1) allowing a continual
change of the step size, the global error becomes a
smooth function of TOL, see Fig. 2. This also shows
that the behavior of an implementation is significantly
affected by the control algorithms, and how they are
implemented.

Absolute and Relative Errors
All modern codes provide options for controlling both
absolute and relative errors. If at any given time, the
estimated error is Ol and the computed solution is y, then
a weighted error vector d with components

di D
Oli

�i C jyi j (20)

is constructed, where �i is a scaling factor, determining
a gradual switchover from relative to absolute error as
yi ! 0. The error (and the step) is accepted if kdk �
TOL, and the expression TOL=kdk corresponds to the
factors TOL=r in (10) and (13). By (20),

di

TOL
D

Oli
TOL � �i C TOL � jyi j : (21)

Most codes employ two different tolerance parameters,
ATOL and RTOL, defined by ATOLi D TOL � �i and
RTOL D TOL, respectively, replacing the denominator
in (21) by ATOLi C RTOL � jyi j. Thus, the user controls
the accuracy by the vector ATOL and the scalar RTOL.
For scaling purposes, it is also important to note that
TOL and RTOL are dimensionless, whereas ATOL is
not. The actual computational setup will make the step
size control operate differently as the user-selected
tolerance parameters affect both the set point and the
control objective.

Interfering with the Controller
In most codes, a step is rejected if it exceeds TOL

by a small amount, say 20 %, calling for the step to
be recomputed. As a correctly implemented controller
is expectation-value correct, a too large error is al-
most invariably compensated by other errors being too
small. It is, therefore, in general harmless to accept
steps that exceed TOL by as much as a factor of 2, and
indeed often preferable to minimize interference with
the controller’s dynamics.

Other types of interference may come from con-
ditions that prevent “small” step size changes, as this
might call for a refactorization of the Jacobian. How-
ever, such concerns are not warranted with smooth
controllers, which usually make small enough changes
not to disturb the Newton process beyond what can be
managed. On the contrary, a smoothly changing step
size is beneficial for avoiding instability in multistep
methods such as the BDF methods.

It is however necessary to interfere with the con-
troller’s action when there is a change of method order,
or when a too large step size change is suggested. This
is equivalent to encountering an error that is much
larger or smaller than TOL. In the first case, the step
needs to be rejected, and in the second, the step size
increase must be held back by a limiter.

Special Problems

Conventional multiplicative control is not useful in
connection with geometric integration, where it fails
to preserve structure. The interaction (6, 7) shows that
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Step Size Control, Fig. 2 Global error vs. TOL for a linear
multistep code applied to a stiff nonlinear test problem. Left
panel shows results when the controller is based on (10). In the
right panel, it has been replaced by the digital filter H211b.

Although computational effort remains unchanged, stability is
much enhanced. The graphs also reveal that the code is not
tolerance proportional

adaptive step size selection adds dynamics, interfering
with structure preserving integrators.

A one-step method ˆh W yn 7! ynC1 is called
symmetric if ˆ�1

h D ˆ�h. This is a minimal require-
ment for the numerical integration of, for example,
reversible Hamiltonian systems, in order to nearly pre-
serve action variables in integrable problems. To make
such a method adaptive, symmetric step size control is
also needed. An invertible step size map ‰y W R ! R

is called symmetric if �‰y is an involution, see Fig. 3.
A symmetric ‰y then maps hn�1 to hn and �hn to
�hn�1, and only depends on yn; with these conditions
satisfied, the adaptive integration can be run in reverse
time and retrace the numerical trajectory that was
generated in forward time, [8]. However, this cannot
be achieved by multiplicative controllers (9), and a
special, nonlinear controller is therefore necessary.

An explicit control recursion satisfying the
requirements is either additive or inverse-additive, with
the latter being preferable. Thus, a controller of the
form

1

hn
� 1

hn�1
D G.yn/ (22)

Ψ
−1

−1
Φh h

h

h

h h

h

hΦ−

+1
Φ

Φ−

Ψ− −1 −

Step Size Control, Fig. 3 Symmetric adaptive integration in
forward time (upper part), and reverse time (lower part) illus-
trate the interaction (6, 7). The symmetric step size map ‰y
governs both h and �h (From [8])

can be used, where the function G needs to be chosen
with respect to the symmetry and geometric prop-
erties of the differential equation to be solved. This
approach corresponds to constructing a Hamiltonian
continuous control system, which is converted to the
discrete controller (22) by geometric integration of the
control system. This leaves the long-term behavior of
the geometric integrator intact, even in the presence
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of step size variation. It is also worth noting that (22)
generates a smooth step size sequence, as hn � hn�1 D
O.hnhn�1/.

This type of control does not work with an error
estimate, but rather tracks a prescribed target function;
it corresponds to keeping hQ.y/ D const:, whereQ is
a given functional reflecting the geometric structure of
(1). One can then takeG.y/ D gradQ.y/�f .y/=Q.y/.
For example, in celestial mechanics, Q.y/ could be
selected as total centripetal acceleration; then the step
size is small when centripetal acceleration is large
and vice versa, concentrating the computational effort
to those intervals where the solution of the problem
changes rapidly and is more sensitive to perturbations.

Literature

Step size control has a long history, starting with
the first initial value problem solvers around 1960,
often using a simple step doubling/halving strategy.
The controller (10) was soon introduced, and further
developments quickly followed. Although the schemes
were largely heuristic, performance tests and practical
experience developed working standards. Monographs
such as [1, 2, 6, 7, 10] all offer detailed descriptions.

The first full control theoretic analysis is found
in [3, 4], explaining and overcoming some previously
noted difficulties, developing proportional-integral (PI)
and autoregressive (AR) controllers. Synchronization
with Newton iteration is discussed in [5]. A complete
framework for using digital filters and signal process-
ing is developed in [11], focusing on moving average
(MA) controllers. Further developments on how to
obtain improved computational stability are discussed
in [12].

The special needs of geometric integration are dis-
cussed in [8], although the symmetric controllers are
not based on error control. Error control in implicit,
symmetric methods is analyzed in [13].
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5. Gustafsson, K., Söderlind, G.: Control strategies for the
iterative solution of nonlinear equations in ODE solvers.
SIAM J. Sci. Comp. 18, 23–40 (1997)

6. Hairer, E., N�rsett, S.P., Wanner, G.: Solving Ordinary Dif-
ferential Equations I: Nonstiff Problems, 2nd edn. Springer,
Berlin (1993)

7. Hairer, E., Wanner, G.: Solving Ordinary Differential Equa-
tions II: Stiff and Differential-Algebraic Problems, 2nd edn.
Springer, Berlin (1996)
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Introduction

The behavior of the atmosphere, oceans, and climate
is intrinsically uncertain. The basic physical principles
that govern atmospheric and oceanic flows are well
known, for example, the Navier-Stokes equations for
fluid flow, thermodynamic properties of moist air, and
the effects of density stratification and Coriolis force.



1378 Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science

Notwithstanding, there are major sources of random-
ness and uncertainty that prevent perfect prediction and
complete understanding of these flows.

The climate system involves a wide spectrum of
space and time scales due to processes occurring on
the order of microns and milliseconds such as the
formation of cloud and rain droplets to global phenom-
ena involving annual and decadal oscillations such as
the EL Nio-Southern Oscillation (ENSO) and the Pa-
cific Decadal Oscillation (PDO) [5]. Moreover, climate
records display a spectral variability ranging from 1
cycle per month to 1 cycle per 100;000 years [23]. The
complexity of the climate system stems in large part
from the inherent nonlinearities of fluid mechanics and
the phase changes of water substances. The atmosphere
and oceans are turbulent, nonlinear systems that dis-
play chaotic behavior (e.g., [39]). The time evolutions
of the same chaotic system starting from two slightly
different initial states diverge exponentially fast, so that
chaotic systems are marked by limited predictability.
Beyond the so-called predictability horizon (on the
order of 10 days for the atmosphere), initial state
uncertainties (e.g., due to imperfect observations) have
grown to the point that straightforward forecasts are no
longer useful.

Another major source of uncertainty stems from
the fact that numerical models for atmospheric and
oceanic flows cannot describe all relevant physical
processes at once. These models are in essence
discretized partial differential equations (PDEs), and
the derivation of suitable PDEs (e.g., the so-called
primitive equations) from more general ones that
are less convenient for computation (e.g., the full
Navier-Stokes equations) involves approximations and
simplifications that introduce errors in the equations.
Furthermore, as a result of spatial discretization of
the PDEs, numerical models have finite resolution
so that small-scale processes with length scales
below the model grid scale are not resolved. These
limitations are unavoidable, leading to model error and
uncertainty.

The uncertainties due to chaotic behavior and
unresolved processes motivate the use of stochastic and
statistical methods for modeling and understanding
climate, atmosphere, and oceans. Models can be
augmented with random elements in order to represent
time-evolving uncertainties, leading to stochastic
models. Weather forecasts and climate predictions
are increasingly expressed in probabilistic terms,

making explicit the margins of uncertainty inherent
to any prediction.

Statistical Methods

For assessment and validation of models, a compar-
ison of individual model trajectories is typically not
suitable, because of the uncertainties described earlier.
Rather, the statistical properties of models are used
to summarize model behavior and to compare against
other models and against observations. Examples are
the mean and variance of spatial patterns of rainfall or
sea surface temperature, the time evolution of global
mean temperature, and the statistics of extreme events
(e.g., hurricanes or heat waves). Part of the statistical
methods used in this context is fairly general, not
specifically tied to climate-atmosphere-ocean science
(CAOS). However, other methods are rather specific
for CAOS applications, and we will highlight some of
these here. General references on statistical methods in
CAOS are [61, 62].

EOFs
A technique that is used widely in CAOS is Principal
Component Analysis (PCA), also known as Empirical
Orthogonal Function (EOF) analysis in CAOS. Con-
sider a multivariate dataset ˆ 2 RM�N . In CAOS this
will typically be a time series �.t1/; �.t2/; : : : ; �.tN /
where each �.tn/ 2 RM is a spatial field (of, e.g., tem-
perature or pressure). For simplicity we assume that
the time mean has been subtracted from the dataset, soPN

nD1 ˆmn D 0 8m. Let C be the M � M (sample)
covariance matrix for this dataset:

C D 1

N � 1
ˆˆT :

We denote by .�m; vm/, m D 1; : : : ;M the ordered
eigenpairs of C :

C vm D �m v
m ; �m � �mC1 8m:

The ordering of the (positive) eigenvalues implies that
the projection of the dataset onto the leading eigen-
vector v1 gives the maximum variance among all
projections. The next eigenvector v2 gives the max-
imum variance among all projections orthogonal to
v1, v3 gives maximum variance among all projections
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orthogonal to v1 and v2, etc. The fraction �m=
P

l �l
equals the fraction of the total variance of the data
captured by projection onto the m-th eigenvector vm.

The eigenvectors vm are called the Empirical Or-
thogonal Functions (EOFs) or Principal Components
(PCs). Projecting the original dataset ˆ onto the lead-
ing EOFs, i.e., the projection/reduction

�r.tn/ D
M 0X
mD1

˛m.tn/v
m ; M 0 � M;

can result in a substantial data reduction while retain-
ing most of the variance of the original data.

PCA is discussed in great detail in [27] and [59].
Over the years, various generalizations and alternatives
for PCA have been formulated, for example, Principal
Interaction and Oscillation Patterns [24], Nonlinear
Principal Component Analysis (NLPCA) [49], and
Nonlinear Laplacian Spectral Analysis (NLSA) [22].
These more advanced methods are designed to over-
come limitations of PCA relating to the nonlinear or
dynamical structure of datasets.

In CAOS, the EOFs vm often correspond to spatial
patterns. The shape of the patterns of leading EOFs
can give insight in the physical-dynamical processes
underlying the dataset ˆ. However, this must be done
with caution, as the EOFs are statistical constructions
and cannot always be interpreted as having physical
or dynamical meaning in themselves (see [50] for a
discussion).

The temporal properties of the (time-dependent)
coefficients ˛m.t/ can be analyzed by calculating,
e.g., autocorrelation functions. Also, models for these
coefficients can be formulated (in terms of ordinary
differential equations (ODEs), stochastic differential
equations (SDEs), etc.) that aim to capture the main
dynamical properties of the original dataset or model
variables �.t/. For such reduced models, the emphasis
is usually on the dynamics on large spatial scales and
long time scales. These are embodied by the leading
EOFs vm; m D 1; : : : ;M 0, and their corresponding
coefficients ˛m.t/, so that a reduced model .M 0 � M/

can be well capable of capturing the main large-scale
dynamical properties of the original dataset.

Inverse Modeling
One way of arriving at reduced models is inverse mod-
eling, i.e., the dynamical model is obtained through
statistical inference from time series data. The data can

be the result of, e.g., projecting the dataset ˆ onto the
EOFs (in which case the data are time series of ˛.t/).
These models are often cast as SDEs whose parameters
must be estimated from the available time series. If the
SDEs are restricted to have linear drift and additive
noise (i.e., restricted to be those of a multivariate
Ornstein-Uhlenbeck (OU) process), the estimation can
be carried out for high-dimensional SDEs rather easily.
That is, assume the SDEs have the form

d˛.t/ D B ˛.t/ dt C � dW.t/ ; (1)

in which B and � are both a constant real M 0 �
M 0 matrix and W.t/ is an M 0-dimensional vector
of independent Wiener processes (for simplicity we
assume that ˛ has zero mean). The parameters of this
model are the matrix elements of B an � . They can be
estimated from two (lagged) covariance matrices of the
time series. If we define

R0ij D E˛i .t/˛j .t/ ; R
ij D E˛i .t/˛j .t C 
/ ;

with E denoting expectation, then for the OU process
(1), we have the relations

R
 D exp.B 
/R0

and
BR0 CR0BT C ��T D 0

The latter of these is the fluctuation-dissipation relation
for the OU process. By estimating R0 and R
 (with
some 
 > 0) from time series of ˛, estimates for
B and A WD ��T can be easily computed using
these relations. This procedure is sometimes referred
to as linear inverse modeling (LIM) in CAOS [55].
The matrix � cannot be uniquely determined from A;
however, any � for which A D ��T (e.g., obtained
by Cholesky decomposition of A) will result in an OU
process with the desired covariancesR0 and R
 .

As mentioned, LIM can be carried out rather easily
for multivariate processes. This is a major advantage
of LIM. A drawback is that the OU process (1) cannot
capture non-Gaussian properties, so that LIM can only
be used for data with Gaussian distributions. Also, the
estimated B and A are sensitive to the choice of 
 ,
unless the available time series is a an exact sampling
of (1).
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Estimating diffusion processes with non-Gaussian
properties is much more complicated. There are var-
ious estimation procedures available for SDEs with
nonlinear drift and/or multiplicative noise; see, e.g.,
[30, 58] for an overview. However, the practical use
of these procedures is often limited to SDEs with
very low dimensions, due to curse of dimension or to
computational feasibility. For an example application
in CAOS, see, e.g., [4].

The dynamics of given time series can also be
captured by reduced models that have discrete state
spaces, rather than continuous ones as in the case of
SDEs. There are a number of studies in CAOS that
employ finite-state Markov chains for this purpose
(e.g., [8,48,53]). It usually requires discretization of the
state space; this can be achieved with, e.g., clustering
methods. A more advanced methodology, building on
the concept of Markov chains yet resulting in contin-
uous state spaces, is that of hidden Markov models.
These have been used, e.g., to model rainfall data (e.g.,
[3, 63]) and to study regime behavior in large-scale
atmospheric dynamics [41]. Yet a more sophisticated
methodology that combines the clustering and Markov
chain concepts, specifically designed for nonstationary
processes, can be found in [25].

Extreme Events
The occurrence of extreme meteorological events, such
as hurricanes, extreme rainfall, and heat waves, is
of great importance because of their societal impact.
Statistical methods to study extreme events are there-
fore used extensively in CAOS. The key question for
studying extremes with statistical methods is to be able
to assess the probability of certain events, having only a
dataset available that is too short to contain more than
a few of these events (and occasionally, too short to
contain even a single event of interest). For example,
how can one assess the probability of sea water level
at some coastal location being more than 5 m above
average if only 100 years of observational data for that
location is available, with a maximum of 4 m above
average? Such questions can be made accessible using
extreme value theory. General introductions to extreme
value theory are, e.g., [7] and [11]. For recent research
on extremes in the context of climate science, see, e.g.,
[29] and the collection [1].

The classical theory deals with sequences or obser-
vations of N independent and identically distributed
(iid) random variables, denoted here by r1; : : : ; rN .

Let MN be the maximum of this sequence, MN D
maxfr1; : : : ; rN g. If the probability distribution forMN

can be rescaled so that it converges in the limit of in-
creasingly long sequences (i.e., N ! 1), it converges
to a generalized extreme value (GEV) distribution.
More precisely, if there are sequences aN .> 0/ and
bN such that Prob..MN � bN /=aN � z/ ! G.z/ as
N ! 1, then

G.z/ D exp

�
�
�
1C 	


 z � �

�

��1=		�
:

G.z/ is a GEV distribution, with parameters � (lo-
cation), � > 0 (scale), and 	 (shape). It combines
the Fréchet (	 > 0), Weibull (	 < 0), and Gumbel
(	 ! 0) families of extreme value distributions. Note
that this result is independent of the precise distribution
of the random variables rn. The parameters �; �; 	 can
be inferred by dividing the observations r1; r2; : : : in
blocks of equal length and considering the maxima on
these blocks (the so-called block maxima approach).

An alternative method for characterizing extremes,
making more efficient use of available data than the
block maxima approach, is known as the peaks-over-
threshold (POT) approach. The idea is to set a thresh-
old, say r�, and study the distribution of all observa-
tions rn that exceed this threshold. Thus, the object
of interest is the conditional probability distribution
Prob.rn � r� > z j rn > r�/, with z > 0. Under
fairly general conditions, this distribution converges to
1 � H.z/ for high thresholds r�, where H.z/ is the
generalized Pareto distribution (GPD):

H.z/ D 1 �
�
1C 	 z

Q�
��1=	

:

The parameters of the GPD family of distributions are
directly related to those of the GEV distribution: the
shape parameter 	 is the same in both, whereas the
threshold-dependent scale parameter is Q� D �C	.r��
�/ with � and � as in the GEV distribution.

By inferring the parameters of the GPD or GEV
distributions from a given dataset, one can calculate
probabilities of extremes that are not present them-
selves in that dataset (but have the same underlying
distribution as the available data). In principle, this
makes it possible to assess risks of events that have not
been observed, provided the conditions on convergence
to GPD or GEV distributions are met.
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As mentioned, classical results on extreme value
theory apply to iid random variables. These results
have been generalized to time-correlated random vari-
ables, both stationary and nonstationary [7]. This is
important for weather and climate applications, where
datasets considered in the context of extremes are often
time series. Another relevant topic is the development
of multivariate extreme value theory [11].

Stochastic Methods

Given the sheer complexity of climate-atmosphere-
ocean (CAO) dynamics, when studying the global cli-
mate system or some parts of global oscillation patterns
such ENSO or PDO, it is natural to try to separate
the global dynamics occurring on longer time scales
from local processes which occur on much shorter
scales. Moreover, as mentioned before, climate and
weather prediction models are based on a numerical
discretization of the equations of motion, and due to
limitations in computing resources, it is simply impos-
sible to represent the wide range of space and time
scales involved in CAO. Instead, general circulation
models (GCMs) rely on parameterization schemes to
represent the effect of the small/unresolved scales on
the large/resolved scales. Below, we briefly illustrate
how stochastic models are used in CAO both to build
theoretical models that separate small-scale (noise) and
large-scale dynamics and to “parameterize” the effect
of small scales on large scales. A good snapshot on the
state of the art, during the last two decades or so, in
stochastic climate modeling research can be found in
[26, 52].

Model Reduction for Noise-Driven Large-Scale
Dynamics
In an attempt to explain the observed low-frequency
variability of CAO, Hasselmann [23] splits the system
into slow climate components (e.g., oceans, biosphere,
cryosphere), denoted by the vector x, and fast com-
ponents representing the weather, i.e., atmospheric
variability, denoted by a vector y. The full climate
system takes the form

dx

dt
D u.x; y/ (2)

dy

dt
D v.x; y/;

where t is time and u.x; v/ and v.x; y/ contain the
external forcing and internal dynamics that couple the
slow and fast variables.

Hasselmann assumes a large scale-separation
between the slow and fast time scales: 
y D
O

 
yj

�
dyj
dt

��1!
� 
x D O

 
xi

�
dxi
dt

��1!
, for

all components i and j . The time scale separation
was used earlier to justify statistical dynamical models
(SDM) used then to track the dynamics of the climate
system alone under the influence of external forcing.
Without the variability due to the internal interactions
of CAO, the SDMs failed badly to explain the observed
“red” spectrum which characterizes low-frequency
variability of CAO.

Hasselmann made the analogy with the Brownian
motion (BM), modeling the erratic movements of a few
large particles immersed in a fluid that are subject to
bombardments by the rapidly moving fluid molecules
as a “natural” extension of the SDM models. Moreover,
Hasselmann [23] assumes that the variability of x can
be divided into a mean tendency hdx=dti D hu.x; y/i
(Here h:i denotes average with respect to the joint
distribution of the fast variables.) and a fluctuation
tendency dx0=dt D u.x; y/ � hu.x; y/i D u0.x; y/
which, according to the Brownian motion problem, is
assumed to be a pure diffusion process or white noise.
However, unlike BM, Hasselmann argued that for the
weather and climate system, the statistics of y are
not in equilibrium but depend on the slowly evolving
large-scale dynamics and thus can only be obtained
empirically. To avoid linear growth of the covariance
matrix hx0 ˝ x0i, Hasselmann assumes a damping
term proportional to the divergence of the background
frequency F.0/ of hx0 ˝x0i, where ı.!�!0/Fij.!/ D
hVi.!/Vj .!0/i with V.!/ D 1

2�

R1
�1 u0.t/e�i!tdt.

This leads to the Fokker-Plank equation: [23]

@p.x; t/

@t
Crx �.Ou.x/p.x; t// D rx �.Drxp.x; t// (3)

for the distribution p.x; t/ of x.t/ as a stochastic
process given that x.0/ D x0, where D is the nor-
malized covariance matrix D D hx0 ˝ x0i=2t and
Ou D hui��rx �F.0/. Given the knowledge of the mean
statistical forcing hui, the evolution equation for p can
be determined from the time series of x obtained either
from a climate model simulation of from observations.
Notice also that for a large number of slow variables xi ,
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the PDE in (3) is impractical; instead, one can always
resort to Monte Carlo simulations using the associated
Langevin equation:

dx D Ou.x/dt C†.x/dW t (4)

where †.x/†.x/T D D.x/. However, the functional
dependence of Ou and D remains ambiguous, and rely-
ing on rather empirical methods to define such terms
is unsatisfactory. Nonetheless, Hasselmann introduced
a “linear feedback” version of his model where the
drift or propagation term is a negative definite linear
operator: Ou.x/ D Ux and D is constant, independent
of x as an approximation for short time excursions of
the climate variables. In this case, p.x; t/ is simply a
Gaussian distribution whose time-dependent mean and
variance are determined by the matrices D and U as
noted in the inverse modeling section above.

Due to its simplicity, the linear feedback model is
widely used to study the low-frequency variability of
various climate processes. It is, for instance, used in
[17] to reproduce the observed red spectrum of the
sea surface temperature in midlatitudes using simula-
tion data from a simplified coupled ocean-atmosphere
model. However, this linear model has severe limi-
tations of, for example, not being able to represent
deviations from Gaussian distribution of some climate
phenomena [13, 14, 17, 36, 51, 54]. It is thus natural
to try to reincorporate a nonlinearity of some kind
into the model. The most popular idea consisted in
making the matrix D or equivalently † dependent on
x (quadratically for D or linearly for † as a next
order Taylor correction) to which is tied the notion
of multiplicative versus additive (when D is constant)
noise [37, 60]. Beside the crude approximation, the
apparent advantage of this approach is the maintaining
of the stabilizing linear operator U in place although it
is not universally justified.

A mathematical justification for Hasselmann’s
framework is provided by Arnold and his collaborators
(see [2] and references therein). It is based on the
well-known technique of averaging (the law of large
numbers) and the central limit theorem. However, as in
Hasselmann’s original work, it assumes the existence
and knowledge of the invariant measure of the
fast variables. Nonetheless, a rigorous mathematical
derivation of such Langevin-type models for the slow
climate dynamics, using the equations of motion in

discrete form, is possible as illustrated by the MTV
theory presented next.

The Systematic Mode Reduction MTVMethodology
A systematic mathematical methodology to derive
Langevin-type equations (4) à la Hasselmann, for the
slow climate dynamics from the coupled atmosphere-
ocean-land equations of motion, which yields the
propagation (or drift) and diffusion terms Ou.x/ and
D.x/ in closed form, is presented in [44,45] by Majda,
Timofeyev, and Vanden-Eijnden (MTV).

Starting from the generalized form of the discretized
equations of motion

dz

dt
D Lz C B.z; z/C f .t/

where L and B are a linear and a bilinear operators
while f .t/ represent external forcing, MTV operate
the same dichotomy as Hasselmann did of splitting
the vector z into slow and fast variables x and y, re-
spectively. However, they introduced a nondimensional
parameter � D 
y=
x which measures the degree of
time scale separation between the two sets of variables.
This leads to the slow-fast coupled system

dx D��1 .L11x C L12y/ dt C B1
11.x; x/dt

C ��1 �B1
12.x; y/C B1

22.y; y/
�

dt

C Dxdt C F1.t/dt C ��1f1.��1t/ (5)

dy D��1 �L21x CL22y C B2
12.x; y/C B2

22.y; y/
�

dt

� ��2�ydt C ��1�dW t C ��1f2.��1t/

under a few key assumptions, including (1) the non-
linear self interaction term of the fast variables is
“parameterized” by an Ornstein-Uhlenbeck process:
B2
22.y; y/dt WD ���1�ydt Cp

�
�1

dW t and (2) a small
dissipation term �Dxdt is added to the slow dynamics
while (3) the slow variable forcing term assumes slow
and fast contributions f1.t/ D �F1.�t/C f1.t/. More-
over, the system in (5) is written in terms of the slow
time t �! �t .

MTV used the theory of asymptotic expansion ap-
plied to the backward Fokker-Plank equation associ-
ated with the stochastic differential system in (5) to
obtain an effective reduced Langevin equation (4) for
the slow variables x in the limit of large separation
of time scales � �! 0 [44, 45]. The main advantage
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of the MTV theory is that unlike Hasselmann’s ad
hoc formulation, the functional form of the drift and
diffusion coefficients, in terms of the slow variables,
are obtained and new physical phenomena can emerge
from the large-scale feedback besides the assumed
stabilization effect. It turns out that the drift term is
not always stabilizing, but there are dynamical regimes
where growing modes can be excited and, depending
on the dynamical configuration, the Langevin equation
(4) can support either additive or multiplicative noise.

Even though MTV assumes strict separation of
scales, � � 1, it is successfully used for a wide
range of examples including cases where � D O.1/

[46]. Also in [47], MTV is successfully extended
to fully deterministic systems where the requirement
that the fast-fast interaction term B22.y; y/ in (5) is
parameterized by an Ornstein-Uhlenbeck process is
relaxed. Furthermore, MTV is applied to a wide range
of climate problems. It is used, for instance, in [19] for
a realistic barotropic model and extended in [18] to a
three-layer quasi-geostrophic model. The example of
midlatitude teleconnection patterns where multiplica-
tive noise plays a crucial role is studied in [42]. MTV is
also applied to the triad and dyad normal mode (EOF)
interactions for arbitrary time series [40].

Stochastic Parametrization
In a typical GCM, the parametrization of unresolved
processes is based on theoretical and/or empirical
deterministic equations. Perhaps the area where
deterministic parameterizations have failed the
most is moist convection. GCMs fail very badly
in simulating the planetary and intra-seasonal
variability of winds and rainfall in the tropics due
to the inadequate representation of the unresolved
variability of convection and the associated cross-
scale interactions behind the multiscale organization
of tropical convection [35]. To overcome this problem,
some climate scientists introduced random variables to
mimic the variability of such unresolved processes.
Unfortunately, as illustrated below, many of the
existing stochastic parametrizations were based on
the assumptions of statistical equilibrium and/or of a
stationary distribution for the unresolved variability,
which are only valid to some extent when there is scale
separation.

The first use of random variables in CGMs appeared
in Buizza et al. [6] as means for improving the skill
of the ECMWF ensemble prediction system (EPS).

Buizza et al. [6] used uniformly distributed random
scalars to rescale the parameterized tendencies in the
governing equations. Similarly, Lin and Neelin [38]
introduced a random perturbation in the tendency of
convective available potential energy (CAPE). In [38],
the random noise is assumed to be a Markov process of
the form 	tCt D �t 	t C zt where zt is a white noise
with a fixed standard deviation and �t is a parameter.
Plant and Craig [57] used extensive cloud-permitting
numerical simulations to empirically derive the param-
eters for the PDF of the cloud base mass flux itself
whose Poisson shape is determined according to ar-
guments drawn from equilibrium statistical mechanics.
Careful simulations conducted by Davoudi et al. [10]
revealed that while the Poisson PDF is more or less
accurate for isolated deep convective clouds, it fails to
extend to cloud clusters where a variety of cloud types
interact with each other: a crucial feature of organized
tropical convection.

Majda and Khouider [43] borrowed an idea from
material science [28] of using the Ising model of
ferromagnetization to represent convective inhibition
(CIN). An order parameter � , defined on a rectangular
lattice, embedded within each horizontal grid box of
the climate model, takes values 1 or 0 at a given
site, according to whether there is CIN or there is
potential for deep convection (PAC). The lattice model
makes transitions at a given site according to intuitive
probability rules depending both on the large-scale cli-
mate model variables and on local interactions between
lattice sites based on a Hamiltonian energy principle.
The Hamiltonian is given by

H.�;U / D �1
2

X
x;y

J.jx�yj/�.x/�.y/Ch.U /
X
x

�x

where J.r/ is the local interaction potential and h.U /
is the external potential which depends on the climate
variables U and where the summations are taken over
all lattice sites x; y. A transition (spin-flip by analogy
to the Ising model of magnetization) occurs at a site
y if for a small time 
 , we have �tC
 .y/ D 1 �
�t .y/ and �tC
 .x/ D �t .x/ if x ¤ y. Transitions
occur at a rate C.y; �; U / set by Arrhenius dynamics:
C.x; �; U / D 1


I
exp.�xH.�; U // if �x D 0 and

C.x; �; U / D 1

I

if �x D 1 so that the resulting Markov
process satisfies detailed balance with respect to the
Gibbs distribution �.�; U / / exp.�H.�;U /. Here
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xH.�; U // D H.�CŒ1��.x/�ex/; U /�H.�;U / D
�Pz J.jx � zj/�.z/C h.U / with ex.y/ D 1 if y D x

and 0 otherwise.
For computational efficiency, a coarse graining of

the stochastic CIN model is used in [34] to derive a
stochastic birth-death process for the mesoscopic area
coverage �X D P

x2X �.x/ where X represents a
generic site of a mesoscopic lattice, which in practice
can be considered to be the GCM grid. The stochastic
CIN model is coupled to a toy GCM where it is
successfully demonstrated how the addition of such a
stochastic model could improve the climatology and
waves dynamics in a deficient GCM [34, 42].

This Ising-type modeling framework is extended in
[33] to represent the variability of organized tropical
convection (OTC). A multi-type order parameter is
introduced to mimic the multimodal nature of OTC.
Based on observations, tropical convective systems
(TCS) are characterized by three cloud types, cumulus
congestus whose height does not exceed the freezing
level develop when the atmosphere is dry, and there is
convective instability, positive CAPE. In return conges-
tus clouds moisten the environment for deep convective
towers. Stratiform clouds that develop in the upper
troposphere lag deep convection as a natural freezing
phase in the upper troposphere. Accordingly, the new
order parameter � takes the multiple values 0,1,2,3, on
a given lattice site, according to whether the given site
is, respectively, clear sky or occupied by a congestus,
deep, or stratiform cloud.

Similar Arrhenius-type dynamics are used to build
transition rates resulting in an ergodic Markov process
with a well-defined equilibrium measure. Unphysi-
cal transitions of congestus to stratiform, stratiform
to deep, stratiform to congestus, clear to stratiform,
and deep to congestus were eliminated by setting the
associated rates to zero. When local interactions are
ignored, the equilibrium measure and the transition
rates depend only on the large-scale climate variables
U where CAPE and midlevel moisture are used as
triggers and the coarse-graining process is carried with
exact statistics. It leads to a multidimensional birth-
death process with immigration for the area fractions
of the associated three cloud types. The stochastic
multicloud model (SMCM) is used very successfully
in [20, 21] to capture the unresolved variability of
organized convection in a toy GCM. The simula-
tion of convectively coupled gravity waves and mean

climatology were improved drastically when compared
to their deterministic counterparts. The realistic statis-
tical behavior of the SMCM is successfully assessed
against observations in [56]. Local interaction effects
are reintroduced in [32] where a coarse-graining ap-
proximation based on conditional expectation is used
to recover the multidimensional birth-death process
dynamics with local interactions. A Bayesian method-
ology for inferring key parameters for the SMCM is
developed and validated in [12]. A review of the basic
methodology of the CIN and SMCM models, which is
suitable for undergraduates, is found in [31].

A systematic data-based methodology for inferring
a suitable stochastic process for unresolved processes
conditional on resolved model variables was proposed
in [9]. The local feedback from unresolved processes
on resolved ones is represented by a small Markov
chain whose transition probability matrix is made de-
pendent on the resolved-scale state. The matrix is
estimated from time series data that is obtained from
highly resolved numerical simulations or observations.
This approach was developed and successfully tested
on the Lorenz ’96 system [39] in [9]. [16] applied it to
parameterize shallow cumulus convection, using data
from large eddy simulation (LES) of moist atmospheric
convection. A two-dimensional lattice, with at each
lattice node a Markov chain, was used to mimic (or
emulate) the convection as simulated by the high-
resolution LES model, at a fraction of the computa-
tional cost.

Subsequently, [15] combined the conditional
Markov chain methodology with elements from the
SMCM [33]. They applied it to deep convection
but without making use of the Arrhenius functional
forms of the transition rates in terms of the large-scale
variables (as was done in [33]). Similar to [16], LES
data was used for estimation of the Markov chain
transition probabilities. The inferred stochastic model
in [15] was well capable of generating cloud fractions
very similar to those observed in the LES data. While
the main cloud types of the original SMCM were
preserved, an important improvement in [15] resides
in the addition of a fifth state for shallow cumulus
clouds. As an experiment, direct spatial coupling of
the Markov chains on the lattice was also considered
in [15]. Such coupling amounts to the structure of
a stochastic cellular automaton (SCA). Without this
direct coupling, the Markov chains are still coupled,
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but indirectly, through their interaction with the large-
scale variables (see, e.g., [9]).
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Abstract

We present approaches for the study of fluid-structure
interactions subject to thermal fluctuations. A me-
chanical description is utilized combining Eulerian
and Lagrangian reference frames. We establish general
conditions for the derivation of operators coupling
these descriptions and for the derivation of stochastic
driving fields consistent with statistical mechanics. We
present stochastic numerical methods for the fluid-
structure dynamics and methods to generate efficiently
the required stochastic driving fields. To help establish
the validity of the proposed approach, we perform
analysis of the invariant probability distribution of the
stochastic dynamics and relate our results to statisti-
cal mechanics. Overall, the presented approaches are
expected to be applicable to a wide variety of systems
involving fluid-structure interactions subject to thermal
fluctuations.
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Introduction

Recent scientific and technological advances motivate
the study of fluid-structure interactions in physical
regimes often involving very small length and time
scales [26, 30, 35, 36]. This includes the study of
microstructure in soft materials and complex fluids,
the study of biological systems such as cell motil-
ity and microorganism swimming, and the study of
processes within microfluidic and nanofluidic devices.
At such scales thermal fluctuations play an important
role and pose significant challenges in the study of
such fluid-structure systems. Significant past work has
been done on the formulation of descriptions for fluid-
structure interactions subject to thermal fluctuations.
To obtain descriptions tractable for analysis and nu-
merical simulation, these approaches typically place
an emphasis on approximations which retain only the
structure degrees of freedom (eliminating the fluid
dynamics). This often results in simplifications in the
descriptions having substantial analytic and compu-
tational advantages. In particular, this eliminates the
many degrees of freedom associated with the fluid
and avoids having to resolve the potentially intricate
and stiff stochastic dynamics of the fluid. These ap-
proaches have worked especially well for the study
of bulk phenomena in free solution and the study
of many types of complex fluids and soft materials
[3, 3, 9, 13, 17, 23].

Recent applications arising in the sciences and in
technological fields present situations in which resolv-
ing the dynamics of the fluid may be important and
even advantageous both for modeling and computation.
This includes modeling the spectroscopic responses
of biological materials [19, 25, 37], studying trans-
port in microfluidic and nanofluidic devices [16, 30],
and investigating dynamics in biological systems [2,
11]. There are also other motivations for represent-
ing the fluid explicitly and resolving its stochastic
dynamics. This includes the development of hybrid
fluid-particle models in which thermal fluctuations
mediate important effects when coupling continuum
and particle descriptions [12, 14], the study of hy-
drodynamic coupling and diffusion in the vicinity of
surfaces having complicated geometries [30], and the
study of systems in which there are many interacting
mechanical structures [8, 27, 28]. To facilitate the de-
velopment of methods for studying such phenomena
in fluid-structure systems, we present a rather general

formalism which captures essential features of the
coupled stochastic dynamics of the fluid and struc-
tures.

To model the fluid-structure system, a mechanical
description is utilized involving both Eulerian and
Lagrangian reference frames. Such mixed descriptions
arise rather naturally, since it is often convenient to
describe the structure configurations in a Lagrangian
reference frame while it is convenient to describe
the fluid in an Eulerian reference frame. In practice,
this presents a number of challenges for analysis
and numerical studies. A central issue concerns how
to couple the descriptions to represent accurately
the fluid-structure interactions, while obtaining a
coupled description which can be treated efficiently
by numerical methods. Another important issue
concerns how to account properly for thermal
fluctuations in such approximate descriptions. This
must be done carefully to be consistent with
statistical mechanics. A third issue concerns the
development of efficient computational methods.
This requires discretizations of the stochastic
differential equations and the development of efficient
methods for numerical integration and stochastic field
generation.

We present a set of approaches to address these
issues. The formalism and general conditions for the
operators which couple the Eulerian and Lagrangian
descriptions are presented in section “Stochastic
Eulerian Lagrangian Method.” We discuss a convenient
description of the fluid-structure system useful
for working with the formalism in practice in
section “Derivations for the Stochastic Eulerian
Lagrangian Method.” A derivation of the stochastic
driving fields used to represent the thermal fluctuations
is also presented in section “Derivations for the
Stochastic Eulerian Lagrangian Method.” Stochastic
numerical methods are discussed for the approximation
of the stochastic dynamics and generation of
stochastic fields in sections “Computational Method-
ology.” To validate the methodology, we perform
analysis of the invariant probability distribution
of the stochastic dynamics of the fluid-structure
formalism. We compare this analysis with results
from statistical mechanics in section “Equilibrium
Statistical Mechanics of SELM Dynamics.” A
more detailed and comprehensive discussion of the
approaches presented here can be found in our
paper [6].
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Stochastic Eulerian LagrangianMethod

To study the dynamics of fluid-structure interactions
subject to thermal fluctuations, we utilize a mechanical
description involving Eulerian and Lagrangian refer-
ence frames. Such mixed descriptions arise rather nat-
urally, since it is often convenient to describe the struc-
ture configurations in a Lagrangian reference frame
while it is convenient to describe the fluid in an Eu-
lerian reference frame. In principle more general de-
scriptions using other reference frames could also be
considered. Descriptions for fluid-structure systems
having these features can be described rather generally
by the following dynamic equations

�
du
dt

D Lu C�Œ$ .v � � u/�C �C fthm (1)

m
dv
dt

D �$ .v � � u/� rX˚ŒX�C � C Fthm (2)

dX
dt

D v: (3)

The u denotes the velocity of the fluid, and � the
uniform fluid density. The X denotes the configuration
of the structure, and v the velocity of the structure.
The mass of the structure is denoted bym. To simplify
the presentation, we treat here only the case when

� and m are constant, but with some modifications
these could also be treated as variable. The �; � are
Lagrange multipliers for imposed constraints, such as
incompressibility of the fluid or a rigid body constraint
of a structure. The operator L is used to account for
dissipation in the fluid, such as associated with New-
tonian fluid stresses [1]. To account for how the fluid
and structures are coupled, a few general operators are
introduced, �; $;�.

The linear operators �;�; $ are used to model the
fluid-structure coupling. The � operator describes how
a structure depends on the fluid flow, while �$ is
a negative definite dissipative operator describing the
viscous interactions coupling the structure to the fluid.
We assume throughout that this dissipative operator
is symmetric, $ D $ T . The linear operator � is
used to attribute a spatial location for the viscous
interactions between the structure and fluid. The linear
operators are assumed to have dependence only on the
configuration degrees of freedom � D � ŒX�, � D
�ŒX�. We assume further that $ does not have any
dependence on X. For an illustration of the role these
coupling operators play, see Fig. 1.

To account for the mechanics of structures, ˚ŒX�
denotes the potential energy of the configuration X.
The total energy associated with this fluid-structure
system is given by

Stochastic Eulerian-Lagrangian Methods, Fig. 1 The de-
scription of the fluid-structure system utilizes both Eulerian and
Lagrangian reference frames. The structure mechanics are often
most naturally described using a Lagrangian reference frame.
The fluid mechanics are often most naturally described using
an Eulerian reference frame. The mapping X(q) relates the
Lagrangian reference frame to the Eulerian reference frame. The

operator � prescribes how structures are to be coupled to the
fluid. The operator � prescribes how the fluid is to be coupled
to the structures. A variety of fluid-structure interactions can
be represented in this way. This includes rigid and deformable
bodies, membrane structures, polymeric structures, or point
particles
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EŒu; v;X� D
Z
˝

1

2
�ju.y/j2dy

C 1

2
mv2 C ˚ŒX�: (4)

The first two terms give the kinetic energy of the fluid
and structures. The last term gives the potential energy
of the structures.

As we shall discuss, it is natural to consider cou-
pling operators� and � which are adjoint in the sense

Z
S
.� u/.q/ � v.q/dq D

Z
˝

u.x/ � .�v/.x/dx (5)

for any u and v. The S and˝ denote the spaces used to
parameterize respectively the structures and the fluid.
We denote such an adjoint by � D � % or � D
�%. This adjoint condition can be shown to have the
important consequence that the fluid-structure coupling
conserves energy when $ ! 1 in the inviscid and
zero temperature limit.

To account for thermal fluctuations, a random force
density fthm is introduced in the fluid equations and Fthm

in the structure equations. These account for sponta-
neous changes in the system momentum which occurs
as a result of the influence of unresolved microscopic
degrees of freedom and unresolved events occurring in
the fluid and in the fluid-structure interactions.

The thermal fluctuations consistent with the form of
the total energy and relaxation dynamics of the system
are taken into account by the introduction of stochastic
driving fields in the momentum equations of the fluid
and structures. The stochastic driving fields are taken
to be Gaussian processes with mean zero and with ı-
correlation in time [29]. By the fluctuation-dissipation
principle [29], these have covariances given by

hfthm.s/fTthm.t/i D � .2kBT / .L ��$� / ı.t � s/

(6)

hFthm.s/FTthm.t/i D .2kBT / $ ı.t � s/ (7)

hfthm.s/FTthm.t/i D � .2kBT /�$ ı.t � s/: (8)

We have used that � D �% and $ D $ T . We remark
that the notation ghT which is used for the covariance
operators should be interpreted as the tensor product.
This notation is meant to suggest the analogue to the
outer-product operation which holds in the discrete set-
ting [5]. A more detailed discussion and derivation of

the thermal fluctuations is given in section “Derivations
for the Stochastic Eulerian Lagrangian Method.”

It is important to mention that some care must be
taken when using the above formalism in practice and
when choosing operators. An important issue concerns
the treatment of the material derivative of the fluid,
du=dt D @u=@t C u � ru. For stochastic systems
the field u is often highly irregular and not defined in
a point-wise sense, but rather only in the sense of a
generalized function (distribution) [10, 24]. To avoid
these issues, we shall treat du=dt D @u=@t in this
initial presentation of the approach [6]. The SELM pro-
vides a rather general framework for the study of fluid-
structure interactions subject to thermal fluctuations.
To use the approach for specific applications requires
the formulation of appropriate coupling operators �
and � to model the fluid-structure interaction. We
provide some concrete examples of such operators in
the paper [6].

Formulation in Terms of Total Momentum Field
When working with the formalism in practice, it turns
out to be convenient to reformulate the description in
terms of a field describing the total momentum of the
fluid-structure system at a given spatial location. As we
shall discuss, this description results in simplifications
in the stochastic driving fields. For this purpose, we
define

p.x; t/ D �u.x; t/C�Œmv.t/�.x/: (9)

The operator � is used to give the distribution in
space of the momentum associated with the structures
for given configuration X.t/. Using this approach, the
fluid-structure dynamics are described by

dp
dt

DLu C�Œ�rX˚.X/�

C .rX�Œmv�/ � v C �C gthm (10)

m
dv
dt

D � $ .v � � u/� rX˚.X/C � C Fthm (11)

dX
dt

Dv (12)

where u D ��1 .p ��Œmv�/ and gthm D fthm C
�ŒFthm�. The third term in the first equation arises
from the dependence of � on the configuration of
the structures, �Œmv� D .�ŒX�/Œmv�. The Lagrange
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multipliers for imposed constraints are denoted by
�; �. For the constraints, we use rather liberally the
notation with the Lagrange multipliers denoted here
not necessarily assumed to be equal to the previous
definition. The stochastic driving fields are again Gaus-
sian with mean zero and ı-correlation in time [29]. The
stochastic driving fields have the covariance structure
given by

hgthm.s/gTthm.t/i D � .2kBT /L ı.t � s/ (13)

hFthm.s/FTthm.t/i D .2kBT / $ ı.t � s/ (14)

hgthm.s/FTthm.t/i D 0: (15)

This formulation has the convenient feature that the
stochastic driving fields become independent. This is
a consequence of using the field for the total momen-
tum for which the dissipative exchange of momentum
between the fluid and structure no longer arises. In the
equations for the total momentum, the only source of
dissipation remaining occurs from the stresses of the
fluid. This approach simplifies the effort required to
generate numerically the stochastic driving fields and
will be used throughout.

Derivations for the Stochastic Eulerian
Lagrangian Method

We now discuss formal derivations to motivate the
stochastic differential equations used in each of
the physical regimes. For this purpose, we do not
present the most general derivation of the equations.
For brevity, we make simplifying assumptions when
convenient.

In the initial formulation of SELM, the fluid-
structure system is described by

�
du
dt

DLu C�Œ$ .v � � u/�C �C fthm (16)

m
dv
dt

D � $ .v � � u/� rX˚.X/C �

C Fthm (17)

dX
dt

Dv: (18)

The notation and operators appearing in these
equations have been discussed in detail in section

“Stochastic Eulerian Lagrangian Method.” For these
equations, we focus primarily on the motivation for
the stochastic driving fields used for the fluid-structure
system.

For the thermal fluctuations of the system, we
assume Gaussian random fields with mean zero and ı-
correlated in time. For such stochastic fields, the central
challenge is to determine an appropriate covariance
structure. For this purpose, we use the fluctuation-
dissipation principle of statistical mechanics [22, 29].
For linear stochastic differential equations of the
form

dZt D LZt dt CQdBt (19)

the fluctuation-dissipation principle can be expressed
as

G D QQT D �.LC / � .LC /T : (20)

This relates the equilibrium covariance structure C of
the system to the covariance structureG of the stochas-
tic driving field. The operator L accounts for the
dissipative dynamics of the system. For the Eqs. 16–18,
the dissipative operators only appear in the momentum
equations. This can be shown to have the consequence
that there is no thermal forcing in the equation for X.t/;
this will also be confirmed in section “Formulation in
Terms of Total Momentum Field.” To simplify the pre-
sentation, we do not represent explicitly the stochastic
dynamics of the structure configuration X.

For the fluid-structure system, it is convenient to
work with the stochastic driving fields by defining

q D Œ��1fthm; m
�1Fthm�

T : (21)

The field q formally is given by q D QdBt =dt and de-
termined by the covariance structure G D QQT . This
covariance structure is determined by the fluctuation-
dissipation principle expressed in Eq. 20 with

L D
�
��1 .L ��$� / ��1�$
m�1$ � �m�1$

	
(22)

C D
�
��1kBT I 0
0 m�1kBT I

	
: (23)

The I denotes the identity operator. The covariance
C was obtained by considering the fluctuations at
equilibrium. The covariance C is easily found since
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the Gibbs-Boltzmann distribution is a Gaussian with
formal density �.u; v/ D 1

Z0
exp Œ�E=kBT �. The Z0

is the normalization constant for� . The energy is given
by Eq. 4. For this purpose, we need only consider the
energy E in the case when ˚ D 0. This gives the
covariance structure

G D .2kBT /

����2 .L ��$� / �m�1��1�$
�m�1��1$ � m�2$

	
:

(24)

To obtain this result, we use that � D �% and $ D $ %.
From the definition of q, it is found that the covariance
of the stochastic driving fields of SELM is given by
Eqs. 6–8. This provides a description of the thermal
fluctuations in the fluid-structure system.

Formulation in Terms of Total Momentum Field
It is convenient to reformulate the description of the
fluid-structure system in terms of a field for the total
momentum of the system associated with spatial loca-
tion x. For this purpose we define

p.x; t/ D �u.x; t/C�Œmv.t/�.x/: (25)

The operator � is used to give the distribution in
space of the momentum associated with the structures.
Using this approach, the fluid-structure dynamics are
described by

dp
dt

DLu C�Œ�rX˚.X/�

C .rX�Œmv�/ � v C �C gthm (26)

m
dv
dt

D � $ .v � � u/ � rX˚.X/C �

C Fthm (27)

dX
dt

Dv (28)

where u D ��1 .p ��Œmv�/ and gthm D fthm C�ŒFthm�.
The third term in the first equation arises from the
dependence of� on the configuration of the structures,
�Œmv.t/� D .�ŒX�/Œmv.t/�.

The thermal fluctuations are taken into account by
two stochastic fields gthm and Fthm. The covariance of
gthm is obtained from

hgthmgTthmi DhfthmfTthmi C hfthmFTthm�
T i

C h�FthmfTthmi C h�FthmFTthm�
T i

D.2kBT /
� � L C�$�

��$�T ��$�T C�$�T
�

D � .2kBT /L: (29)

This makes use of the adjoint property of the coupling
operators�% D � .

One particularly convenient feature of this reformu-
lation is that the stochastic driving fields Fthm and gthm

become independent. This can be seen as follows:

hgthmFTthmi D hfthmFTthmi C h�FthmFTthmi (30)

D .2kBT /.��$ C�$ / D 0:

This decoupling of the stochastic driving fields greatly
reduces the computational effort to generate the fields
with the required covariance structure. This shows that
the covariance structure of the stochastic driving fields
of SELM is given by Eqs. 13–15.

Computational Methodology

We now discuss briefly numerical methods for the
SELM formalism. For concreteness we consider the
specific case in which the fluid is Newtonian and
incompressible. For now, the other operators of the
SELM formalism will be treated rather generally. This
case corresponds to the dissipative operator for the
fluid

Lu D �u: (31)

The denotes the Laplacianu D @xxuC@yyuC@zzu.
The incompressibility of the fluid corresponds to the
constraint

r � u D 0: (32)

This is imposed by the Lagrange multiplier �. By the
Hodge decomposition, � is given by the gradient of a
function p with � D �rp. The p can be interpreted
as the local pressure of the fluid.

A variety of methods could be used in practice
to discretize the SELM formalism, such as finite
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difference methods, spectral methods, and finite
element methods [20, 32, 33]. We present here
discretizations based on finite difference methods.

Numerical Semi-discretizations for
Incompressible Newtonian Fluid
The Laplacian will be approximated by central differ-
ences on a uniform periodic lattice by

ŒLu�m D
3X

jD1

umCej � 2um C um�ej

x2
: (33)

The m D .m1;m2;m3/ denotes the index of the lattice
site. The ej denotes the standard basis vector in three
dimensions. The incompressibility of the fluid will be
approximated by imposing the constraint

ŒD � u�m D
3X

jD1

ujmCej � ujm�ej

2x
: (34)

The superscripts denote the vector component. In prac-
tice, this will be imposed by computing the projection
of a vector u� to the subspace fu 2 R

3N j D � u D 0g,
where N is the total number of lattice sites. We denote
this projection operation by

u D }u�: (35)

The semi-discretized equations for SELM to be used in
practice are

dp
dt

D Lu C�Œ�rX˚�C .rX�Œmv�/ � v C �C gthm

(36)

dv
dt

D �$ Œv � � u�C Fthm (37)

dX
dt

D v: (38)

The component um D ��1.pm � �Œmv�m/. Each
of the operators now appearing is understood to be
discretized. We discuss specific discretizations for �
and� in paper [6]. To obtain the Lagrange multiplier �
which imposes incompressibility, we use the projection
operator and

� D �.I � }/ .Lu C $ Œv � � u�C fthm/ (39)

In this expression, we let fthm D gthm � �ŒFthm� for the
particular realized values of the fields gthm and Fthm.

We remark that in fact the semi-discretized equa-
tions of the SELM formalism in this regime can also
be given in terms of u directly, which may provide
a simpler approach in practice. The identity fthm D
gthm � �ŒFthm� could be used to efficiently generate the
required stochastic driving fields in the equations for
u. We present the reformulation here, since it more
directly suggests the semi-discretized equations to be
used for the reduced stochastic equations.

For this semi-discretization, we consider a total
energy for the system given by

EŒu; v;X� D �

2

X
m

ju.xm/j2x3m C m

2
jvj2 C ˚ŒX�:

(40)

This is useful in formulating an adjoint condition 5 for
the semi-discretized system. This can be derived by
considering the requirements on the coupling operators
� and � which ensure the energy is conserved when
$ ! 1 in the inviscid and zero temperature limit.

To obtain appropriate behaviors for the thermal
fluctuations, it is important to develop stochastic driv-
ing fields which are tailored to the specific semi-
discretizations used in the numerical methods. Once
the stochastic driving fields are determined, which is
the subject of the next section, the equations can be
integrated in time using traditional methods for SDEs,
such as the Euler-Maruyama method or a stochastic
Runge-Kutta method [21]. More sophisticated inte-
grators in time can also be developed to cope with
sources of stiffness but are beyond the scope of this
entry [7]. For each of the reduced equations, similar
semi-discretizations can be developed as the one pre-
sented above.

Stochastic Driving Fields for
Semi-discretizations
To obtain behaviors consistent with statistical mechan-
ics, it is important stochastic driving fields be used
which are tailored to the specific numerical discretiza-
tion employed [5–7, 15]. To ensure consistency with
statistical mechanics, we will again use the fluctuation-
dissipation principle but now apply it to the semi-
discretized equations. For each regime, we then discuss
the important issues arising in practice concerning the
efficient generation of these stochastic driving fields.
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Formulation in Terms of Total Momentum Field
To obtain the covariance structure for this regime, we
apply the fluctuation-dissipation principle as expressed
in Eq. 20 to the semi-discretized Eqs. 36–38. This gives
the covariance

G D �2LC D .2kBT /

2
4���2x�3L 0 0

0 m�2$ 0

0 0 0

3
5 :
(41)

The factor of x�3 arises from the form of the energy
for the discretized system which gives covariance for
the equilibrium fluctuations of the total momentum
��1x�3kBT ; see Eq. 40. In practice, achieving the
covariance associated with the dissipative operator of
the fluidL is typically the most challenging to generate
efficiently. This arises from the large number N of
lattice sites in the discretization.

One approach is to determine a factor Q such that
the block Gp;p D QQT ; subscripts indicate block
entry of the matrix. The required random field with
covariance Gp;p is then given by g D Q�, where
� is the uncorrelated Gaussian field with the covari-
ance structure I. For the discretization used on the
uniform periodic mesh, the matrices L and C are
cyclic [31]. This has the important consequence that
they are both diagonalizable in the discrete Fourier
basis of the lattice. As a result, the field fthm can be
generated using the fast Fourier transform (FFT) with
at most O.N log.N // computational steps. In fact, in
this special case of the discretization, “random fluxes”
at the cell faces can be used to generate the field in
O.N/ computational steps [5]. Other approaches can
be used to generate the random fields on nonperiodic
meshes and on multilevel meshes; see [4, 5].

Equilibrium Statistical Mechanics of SELM
Dynamics

We now discuss how the SELM formalism and the
presented numerical methods capture the equilibrium
statistical mechanics of the fluid-structure system. This
is done through an analysis of the invariant probability
distribution of the stochastic dynamics. For the fluid-
structure systems considered, the appropriate proba-
bility distribution is given by the Gibbs-Boltzmann
distribution

�GB.z/ D 1

Z
exp Œ�E.z/=kBT � : (42)

The z is the state of the system, E is the energy,
kB is Boltzmann’s constant, T is the system tem-
perature, and Z is a normalization constant for the
distribution [29]. We show that this Gibbs-Boltzmann
distribution is the equilibrium distribution of both the
full stochastic dynamics and the reduced stochastic
dynamics in each physical regime.

We present here both a verification of the invariance
of the Gibbs-Boltzmann distribution for the general
formalism and for numerical discretizations of the
formalism. The verification is rather formal for the
undiscretized formalism given technical issues which
would need to be addressed for such an infinite dimen-
sional dynamical system. However, the verification is
rigorous for the semi-discretization of the formalism,
which yields a finite dimensional dynamical system.
The latter is likely the most relevant case in practice.
Given the nearly identical calculations involved in the
verification for the general formalism and its semi-
discretizations, we use a notation in which the key
differences between the two cases primarily arise in
the definition of the energy. In particular, the energy is
understood to be given by Eq. 4 when considering the
general SELM formalism and Eq. 40 when considering
semi-discretizations.

Formulation in Terms of Total Momentum Field
The stochastic dynamics given by Eqs. 10–12 is a
change of variable of the full stochastic dynamics of
the SELM formalism given by Eqs. 1–3. Thus verifying
the invariance using the reformulated description is
also applicable to Eqs. 1–3 and vice versa. To verify
the invariance in the other regimes, it is convenient to
work with the reformulated description. The energy as-
sociated with the reformulated description is given by

EŒp; v;X� D 1

2�

Z
˝

jp.y/��Œmv�.y/j2dy

C m

2
jvj2 C˚ŒX�: (43)

The energy associated with the semi-discretization is

EŒp; v;X� D 1

2�

X
m

jp.xm/ ��Œmv�mj2x3m (44)

C m

2
jvj2 C ˚ŒX�:
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The probability density �.p; v;X; t/ for the current
state of the system under the SELM dynamics is
governed by the Fokker-Planck equation

@�

@t
D �r � J (45)

with probability flux

J D
2
4L C�C rX� � v C �

�$ � rX˚ C �

v

3
5�

� 1

2
.r �G/� � 1

2
Gr�: (46)

The covariance operatorG is associated with the Gaus-
sian field gD Œgthm;Fthm; 0�

T byhg.s/gT .t/iDGı.t � s/.

In this regime, G is given by Eq. 13 or 41. In the
notation Œr � G.z/�i D @zj Gij .z/ with the summation
convention for repeated indices. To simplify the
notation, we have suppressed denoting the specific
functions on which each of the operators acts; see
Eqs. 10–12 for these details.

The requirement that the Gibbs-Boltzmann distri-
bution �GB given by Eq. 42 be invariant under the
stochastic dynamics is equivalent to the distribution
yielding r �J D 0. We find it convenient to group terms
and express this condition as

r � J D A1 C A2 C r � A3 C r � A4 D 0 (47)

where

A1 D �
.�C rX� � v C �1/ � rpE C .�rX˚ C �1/ � rvE C .v/ � rXE

�
.�kBT /�1�GB

A2 D �rp � .�C rX� � v C �1/C rv � .�rX˚ C �2/C rX � .v/��GB

A3 D �1
2
.r �G/�GB

A4 D
2
4Lu C �2 C �

GpprpE CGpvrvE CGpXrXE
�
.2kBT /

�1
�$ C �2 C �

GvprpE CGvvrvE CGvXrXE
�
.2kBT /

�1�
GXprpE CGXvrvE CGXXrXE

�
.2kBT /

�1

3
5�GB: (48)

We assume here that the Lagrange multipliers can be
split � D �1 C �2 and � D �1 C �2 to impose the
constraints by considering in isolation different terms
contributing to the dynamics; see Eq. 48. This is always
possible for linear constraints. The block entries of
the covariance operator G are denoted by Gi;j with
i; j 2 fp; v;Xg. For the energy of the discretized
system given by Eq. 4, we have

rpnE D u.xn/x
3
n (49)

rvqE D
X

m

u.xm/ � ��rvq�Œmv�m
�
x3m Cmvq

(50)

rXqE D
X

m

u.xm/ � ��rXq�Œmv�m
�
x3m C rXq˚:

(51)

where u D ��1.p��Œmv�/. Similar expressions for the
energy of the undiscretized formalism can be obtained
by using the calculus of variations [18].

We now consider r�J and each termA1;A2;A3;A4.
The term A1 can be shown to be the time derivative
of the energy A1 D dE=dt when considering only a
subset of the contributions to the dynamics. Thus, con-
servation of the energy under this restricted dynamics
would result in A1 being zero. For the SELM formal-
ism, we find by direct substitution of the gradients of
E given by Eqs. 49–51 into Eq. 48 that A1 D 0. When
there are constraints, it is important to consider only
admissible states .p; v;X/. This shows in the inviscid
and zero temperature limit of SELM, the resulting dy-
namics are nondissipative. This property imposes con-
straints on the coupling operators and can be viewed as
a further motivation for the adjoint conditions imposed
in Eq. 5.
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The term A2 gives the compressibility of the phase-
space flow generated by the nondissipative dynamics
of the SELM formalism. The flow is generated by the
vector field .� C rX� � v C �1; �rX˚ C �1; v/ on
the phase-space .p; v;X/. When this term is nonzero,
there are important implications for the Liouville the-
orem and statistical mechanics of the system [34].
For the current regime, we have A2 D 0 since in
the divergence each component of the vector field is
seen to be independent of the variable on which the
derivative is computed. This shows in the inviscid and
zero temperature limit of SELM, the phase-space flow
is incompressible. For the reduced SELM descriptions,
we shall see this is not always the case.

The term A3 corresponds to fluxes arising from
multiplicative features of the stochastic driving fields.
When the covariance G has a dependence on the
current state of the system, this can result in pos-
sible changes in the amplitude and correlations in
the fluctuations. These changes can yield asymmetries
in the stochastic dynamics which manifest as a net
probability flux. In the SELM formalism, it is found
that in the divergence of G, each contributing entry is
independent of the variable on which the derivative is
being computed. This shows for the SELM dynamics
there is no such probability fluxes, A3 D 0.

The last term A4 accounts for the fluxes arising from
the primarily dissipative dynamics and the stochastic
driving fields. This term is calculated by substituting
the gradients of the energy given by Eqs. 49–51 and us-
ing the choice of covariance structure given by Eq. 13
or 41. By direct substitution this term is found to be
zero, A4 D 0.

This shows the invariance of the Gibbs-Boltzmann
distribution under the SELM dynamics. This provides
a rather strong validation of the stochastic driving
fields introduced for the SELM formalism. This shows
the SELM stochastic dynamics are consistent with
equilibrium statistical mechanics [29].

Conclusions

An approach for fluid-structure interactions subject
to thermal fluctuations was presented based on a
mechanical description utilizing both Eulerian and
Lagrangian reference frames. General conditions were
established for operators coupling these descriptions.
A reformulated description was presented for the

stochastic dynamics of the fluid-structure system
having convenient features for analysis and for
computational methods. Analysis was presented
establishing for the SELM stochastic dynamics that
the Gibbs-Boltzmann distribution is invariant. The
SELM formalism provides a general framework
for the development of computational methods for
applications requiring a consistent treatment of
structure elastic mechanics, hydrodynamic coupling,
and thermal fluctuations. A more detailed and
comprehensive discussion of SELM can be found
in our paper [6].
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Short Definition

Let T1 and T2 be either a time interval Œ0; T � or a
discrete set. The stochastic filtering problem consists
in estimating an unobservable signalXt ; t 2 T1; based
on an observation fys; s � t; s 2 T2g; where the
process yt is related to Xt via a stochastic model.

Description

We restrict ourselves to the case when an unobservable
signal and observation are continuous time processes
with T1 D T2 D Œ0; T � (see discrete filtering in,
e.g., [1, 3, 7]). Let .&;F ;P/ be a complete probability
space, Ft ; 0 � t � T; be a filtration satisfying
the usual hypotheses, and .wt ;Ft / and .vt ;Ft / be d1-
dimensional and r-dimensional independent standard
Wiener processes, respectively. We consider the classi-
cal filtering scheme in which the unobservable signal
process (“hidden” state) Xt 2 R

d and the observation
process yt 2 R

r satisfy the system of Îto stochastic
differential equations (SDE):

dX D ˛.X/ds C �.X/dws C �.X/dvs;

X0 D x; (1)

dy D ˇ.X/ds C dvs; y0 D 0; (2)
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where ˛.x/ and ˇ.x/ are d -dimensional and r-
dimensional vector functions, respectively, and �.x/
and �.x/ are d�d1-dimensional and d�r-dimensional
matrix functions, respectively. The vector X0 D x in
the initial condition for (1) is usually random (i.e.,
uncertain), it is assumed to be independent of both w
and v, and its density '.�/ is assumed to be known.

Let f .x/ be a function on R
d . We assume that the

coefficients in (1), (2) and the function f are bounded
and have bounded derivatives up to some order. The
stochastic filtering problem consists in constructing
the estimate Of .Xt / based on the observation ys; 0 �
s � t; which is the best in the mean-square sense,
i.e., the problem amounts to computing the conditional
expectation:

�t Œf � D Of .Xt / D E .f .Xt / j ys; 0 � s � t/

D W Eyf .Xt /: (3)

Applications of nonlinear filtering include track-
ing, navigation systems, cryptography, image process-
ing, weather forecasting, financial engineering, speech
recognition, and many others (see, e.g., [2,11] and ref-
erences therein). For a historical account, see, e.g., [1].

Optimal Filter Equations
In this section we give a number of expressions for the
optimal filter which involve solving some stochastic
evolution equations. Proofs of the results presented in
this section and their detailed exposition and exten-
sions are available, e.g., in [1, 4, 6–11].

The solution �t Œf � to the filtering problem (3), (1)–
(2) satisfies the nonlinear stochastic evolution equa-
tion:

d�t Œf � D �t ŒLf �dt C �
�t ŒM>f � � �t Œf ��t Œˇ

>�
�

.dy � �t Œˇ�dt/ ; (4)

where L is the generator for the diffusion processXt :

Lf WD 1

2

dX
i;jD1

aij
@2f

@xi@xj
C

dX
iD1

˛i
@f

@xi

with a D faij g being a d � d -dimensional matrix de-
fined by a.x/ D �.x/�>.x/ C �.x/�>.x/ and M D
.M1; : : : ;Mr /

> is a vector of the operators Mj f WDPd
iD1 �ij

@f

@xi
Cˇj f: The equation of optimal nonlinear

filtering (4) is usually called the Kushner-Stratonovich
equation or the Fujisaki-Kallianpur-Kunita equation. If
the conditional measure E.I.X.t/ 2 dx/ j ys; 0 �
s � t/ has a smooth density �.t; x/ with respect to
the Lebesgue measure, then it solves the following
nonlinear stochastic equation:

d�.t; x/ D L��.t; x/dt C .M� � �t Œˇ�/
>�.t; x/

.dy � �t Œˇ�dt/ ; �.0; x/ D '.x/; (5)

where L� is an adjoint operator to L W L�f WD
1
2

Pd
i;jD1 @2

@xi @xj

�
aij f

� � Pd
iD1 @

@xi
.˛if / and M� is

an adjoint operator to M W M� D .M�
1 ; : : : ;M�

r /
>

with M�
j f D �Pd

iD1 @
@xi

�
�ij f

�Cˇj f:We note that
�t Œf � D R

Rd
f .x/�.t; x/dx: We also remark that the

process Nvt WD yt � R t
0
�sŒˇ�ds is called the innovation

process.
Now we will give another expression for the optimal

filter. Let

�t W D exp

Z t

0

ˇ>.Xs/dvs C 1

2

Z t

0

ˇ2.Xs/ds

�

D exp

Z t

0

ˇ>.Xs/dys � 1

2

Z t

0

ˇ2.Xs/ds

�
:

According to our assumptions, we have E��1
t D 1;

0 � t � T: We introduce the new probability
measure QP on .&;F/ W QP.�/ D R

� �
�1
T dP.!/: The

measures P and QP are mutually absolutely continuous.
Due to the Girsanov theorem, ys is a Wiener process on
.&;F ;Ft ; QP/; the processesXs and ys are independent
on .&;F ;Fs; QP/; and the process Xs satisfies the Îto
SDE

dX D .˛.X/ � �.X/ˇ.X// ds C �.X/dws

C�.X/dys; X0 D x: (6)

Due to the Kallianpur-Striebel formula (a particular
case of the general Bayes formula [7, 9]) for the
conditional mean (3), we have

�t Œf �D
QE .f .Xt /�t j ys; 0 � s � t/

QE .�t j ys; 0 � s � t/
D

QEy .f .Xt /�t /
QEy�t

;

(7)
where Xt is from (6), QE means expectation according
to the measure QP; and QEy .�/ WD QE .� j ys; 0 � s � t/ :

Let
�t Œg� WD QEy .g.Xt /�t / ;
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where g is a scalar function on R
d : The process �t is

often called the unnormalized optimal filter. It satisfies
the linear evolution equation

d�t Œg� D �t ŒLg�dt C �t ŒM>g�dyt ; �0Œg� D �0Œg�;

(8)

which is known as the Zakai equation. Assuming
that there is the corresponding smooth unnormalized
filtering density �.t; x/, it solves the linear stochastic
partial differential equation (SPDE) of parabolic type:

d�.t; x/ D L��.t; x/dt C �
M��.t; x/

�>
dyt ;

�.0; x/ D '.x/: (9)

We note that �t Œg� D R
Rd
g.x/�.t; x/dx:

The unnormalized optimal filter can also be found
as a solution of a backward SPDE. To this end, let us
fix a time moment t and introduce the function

ug.s; xI t/ D QEy


g.X

s;x
t /�

s;x;1
t

�
; (10)

where x 2 R
d is deterministic and Xs;x

s0 ; �
s;x;1
s0 ; s0 � s;

is the solution of the Îto SDE

dX D .˛.X/ � �.X/ˇ.X//ds0 C �.X/dws0

C�.X/dys0 ; Xs D x;

d� D ˇ>.X/�dys0 ; �s D 1:

The function ug.s; xI t/; s � t; is the solution of the
Cauchy problem for the backward linear SPDE:

� du D Luds C M>u  dys; u.t; x/ D g.x/: (11)

The notation “dy” means backward Îto integral [5,9].
If X0 D x D 	 is a random variable with the density
'.�/; we can write

�t Œf � D uf;'.0; t/

u1;' .0; t/
; (12)

where ug;'.0; t/ WD R
Rd

ug.0; xI t/'.x/dx D
QEy


g.X

0;	
t /�

0;	;1
t

�
D �t Œg�:

Generally, numerical methods are required to solve
optimal filtering equations. For an overview of various
numerical approximations for the nonlinear filtering
problem, see [1, Chap. 8] together with references

therein and for a number of recent developments
see [2].

Linear Filtering and Kalman-Bucy Filter
There are a very few cases when explicit formulas for
optimal filters are available [1, 7]. The most notable
case is when the filtering problem is linear. Consider
the system of linear SDE:

dX D .as C AsX/ds CQsdws CGsdvs;

X0 D x; (13)

dy D .bs C BsX/ ds C dvs; y0 D 0; (14)

where As; Bs; Qs; and Gs are deterministic matrix
functions of time s having the appropriate dimensions;
as and bs are deterministic vector functions of time s
having the appropriate dimensions; the initial condition
X0 D x is a Gaussian random vector with mean
M0 2 R

d and covariance matrix C0 2 R
d � R

d and
it is independent of both w and v; the other notation is
as in (1) and (2).

We note that the solutionXt; yt of the SDE (13) and
(14) is a Gaussian process. The conditional distribution
of Xt given fys; 0 � s � tg is Gaussian with mean OXt
and covariance Pt ; which satisfy the following system
of differential equations [1, 7, 10, 11]:

d OX D


as CAs OX

�
ds C �

Gs C PB>
s

�

.dys � .bs C Bs OX/ds/; OX0 D M0; (15)

d

dt
P D PA>

s C AsP � �
Gs C PB>

s

� �
Gs C PB>

s

�>

CQsQ
>
s CGsG

>
s ; P0 D C0: (16)

The solution OXt ; Pt is called the Kalman-Bucy filter
(or linear quadratic estimation). We remark that (15)
for the conditional mean OXt D E.Xt j ys; 0 � s � t/

is a linear SDE, while the solution Pt of the matrix
Riccati equation (16) is deterministic and it can be pre-
computed off-line. Online updating of OXt with arrival
of new data yt from observations is computationally
very cheap, and the Kalman-Bucy filter and its various
modifications are widely used in practical applications.



Stochastic ODEs 1399

S

References

1. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering.
Springer, New York/London (2008)

2. Crisan, D., Rozovskii, B. (eds.): Handbook of Nonlinear
Filtering. Oxford University Press, Oxford (2011)

3. Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction:
A Primer. AMS, Providence (2007)

4. Kallianpur, G.: Stochastic Filtering Theory. Springer,
New York (1980)

5. Kunita, H.: Stochastic Flows and Stochastic Differential
Equations. Cambridge University Press, Cambridge/New
York (1990)

6. Kushner, H.J.: Probability Methods for Approximations in
Stochastic Control and for Elliptic Equations. Academic,
New York (1977)

7. Liptser, R.S., Shiryaev, A.N.: Statistics of Random
Processes. Springer, New York (1977)
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Stochastic ODEs
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FB Mathematik, J.W. Goethe-Universität,
Frankfurt am Main, Germany

A scalar stochastic ordinary differential equation
(SODE)

dXt D f .t; Xt / dt C g.t; Xt / dWt (1)

involves a Wiener process Wt , t � 0, which is one
of the most fundamental stochastic processes and is
often called a Brownian motion. A Wiener process is a
Gaussian process with W0 D 0 with probability 1 and
normally distributed incrementsWt �Ws for 0 � s < t

with

E .Wt �Ws/ D 0; E .Wt �Ws/
2 D t � s;

where the incrementsWt2 �Wt1 andWt4 �Wt3 on non-
overlapping intervals (i.e., with 0 � t1 < t2 � t3 < t4)
are independent random variables. The sample paths of
a Wiener process are continuous, but they are nowhere
differentiable.

Consequently, an SODE is not a differential equa-
tion at all, but just a symbolic representation for the
stochastic integral equation

Xt D Xt0 C
Z t

t0

f .s; Xs/ ds C
Z t

t0

g.s; Xs/ dWs;

where the first integral is a deterministic Riemann
integral for each sample path. The second integral
cannot be defined pathwise as a Riemann-Stieltjes in-
tegral because the sample paths of the Wiener process
do not have even bounded variation on any bounded
time interval. Thus, a new type of stochastic integral
is required. An Itô stochastic integral

R T
t0
f .t/dWt is

defined as the mean-square limit of sums of products of
an integrand f evaluated at the left end point of each
partition subinterval times Œtn; tnC1�, the increment of
the Wiener process, i.e.,

Z T

t0

f .t/dWt WD m.s. � lim
N!1

N�1X
jD0

f .tn/

�
WtnC1

�Wtn

�
;

where tnC1�tn D =N for n D 0, 1, : : :,N�1. The
integrand function f may be random or even depend
on the path of the Wiener process, but f .t/ should
be independent of future increments of the Wiener
process, i.e., WtCh �Wt for h > 0.

The Itô stochastic integral has the important proper-
ties (the second is called the Itô isometry) that

E

�Z T

t0

f .t/dWt

	
D 0; E

"�Z T

t0

f .t/dWt

�2#

D
Z T

t0

E
�
f .t/2

�
dt:

However, the solutions of Itô SODE satisfy a different
chain rule to that in deterministic calculus, called the
Itô formula, i.e.,
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U.t; Xt/ D U.t0; Xt0/C
Z t

t0

L0U.s;Xs/ ds

C
Z t

t0

L1.s; Xs/ dWs;

where

L0U D @U

@t
C f

@U

@x
C 1

2
g2
@2U

@x2
; L1U D g

@U

@x
:

An immediate consequence is that the integration rules
and tricks from deterministic calculus do not hold and
different expressions result, e.g.,

Z T

0

Ws dWs D 1

2
W 2
T � 1

2
T:

The situation for vector-valued SODE and vector-
valued Wiener processes is similar. Details can be
found in Refs. [3, 4, 6].

Stratonovich SODEs

There is another stochastic integral called the
Stratonovich integral, for which the integrand function
is evaluated at the midpoint of each partition
subinterval rather than at the left end point. It is written
with ıdWt to distinguish it from the Itô integral. A
Stratonovich SODE is thus written

dXt D f .t; Xt / dt C g.t; Xt / ı dWt :

Stratonovich stochastic calculus has the same chain
rule as deterministic calculus, which means that
Stratonovich SODE can be solved with the same
integration tricks as for ordinary differential equations.
However, Stratonovich stochastic integrals do not
satisfy the nice properties above for Itô stochastic
integrals, which are very convenient for estimates in
proofs. Nor does the Stratonovich SODE have same
direct connection with diffusion process theory as the
Itô SODE, e.g., the coefficient of the Fokker-Planck
equation correspond to those of the Itô SODE (1), i.e.,

@p

@t
C f

@

@x
C 1

2
g2
@2p

@x2
D 0:

The Itô and Stratonovich stochastic calculi are both
mathematically correct. Which one should be used is
really a modeling issue, but once one has been chosen,
the advantages of the other can be used through a mod-
ification of the drift term to obtain the corresponding
SODE of the other type that has the same solutions.

Numerical Solution of SODEs

The simplest numerical method for the above
SODE (1) is the Euler-Maruyama scheme given by

YnC1 D Yn C f .tn; Yn/n C g.tn; Yn/Wn;

wheren D tnC1� tn andWn D WtnC1
�Wtn . This is

intuitively consistent with the definition of the Itô inte-
gral. Here Yn is a random variable, which is supposed
to be an approximation on Xtn . The stochastic incre-
ments Wn, which are N .0;n/ distributed, can be
generated using, for example, the Box-Muller method.
In practice, however, only individual realizations can
be computed.

Depending on whether the realizations of the solu-
tions or only their probability distributions are required
to be close, one distinguishes between strong and weak
convergence of numerical schemes, respectively, on
a given interval Œt0; T �. Let  D maxn n be the
maximum step size. Then a numerical scheme is said
to converge with strong order � if, for sufficiently
small ,

E


ˇ̌
ˇXT � Y ./NT

ˇ̌
ˇ
�

� KT 
�

and with weak order ˇ if

ˇ̌
ˇE .p.XT // � E



p.Y

./
NT
/
�ˇ̌
ˇ � Kp;T 

ˇ

for each polynomial p. These are global discretization
errors, and the largest possible values of � and ˇ

give the corresponding strong and weak orders, re-
spectively, of the scheme for a whole class of stochas-
tic differential equations, e.g., with sufficiently often
continuously differentiable coefficient functions. For
example, the Euler-Maruyama scheme has strong order
� D 1

2
and weak order ˇ D 1, while the Milstein

scheme
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YnC1 D Yn C f .tn; Yn/n C g.tn; Yn/Wn

C1

2
g.tn; Yn/

@g

@x
.tn; Yn/

˚
.Wn/

2 �n

�

has strong order � D 1 and weak order ˇ D 1; see
[2, 3, 5].

Note that these convergence orders may be better for
specific SODE within the given class, e.g., the Euler-
Maruyama scheme has strong order � D 1 for SODE
with additive noise, i.e., for which g does not depend
on x, since it then coincides with the Milstein scheme.

The Milstein scheme is derived by expanding the in-
tegrand of the stochastic integral with the Itô formula,
the stochastic chain rule. The additional term involves
the double stochastic integral

R tnC1

tn

R s
tn
dWu dWs,

which provides more information about the non-
smooth Wiener process inside the discretization
subinterval and is equal to 1

2

˚
.Wn/

2 �n

�
.

Numerical schemes of even higher order can be
obtained in a similar way.

In general, different schemes are used for strong
and weak convergence. The strong stochastic Taylor
schemes have strong order � D 1

2
, 1, 3

2
, 2, : : :,

whereas weak stochastic Taylor schemes have weak
order ˇ D 1,2, 3, : : :. See [3] for more details. In
particular, one should not use heuristic adaptations of
numerical schemes for ordinary differential equations
such as Runge-Kutta schemes, since these may not
converge to the right solution or even converge at all.

The proofs of convergence rates in the literature
assume that the coefficient functions in the above
stochastic Taylor schemes are uniformly bounded, i.e.,
the partial derivatives of appropriately high order of
the SODE coefficient functions f and g exist and are
uniformly bounded. This assumption, however, is not
satisfied in many basic and important applications, for
example, with polynomial coefficients such as

dXt D �.1CXt/.1 �X2
t / dt C .1 � X2

t / dWt

or with square-root coefficients such as in the Cox-
Ingersoll-Ross volatility model

dVt D � .# � Vt / dt C �
p
Vt dWt ;

which requires Vt � 0. The second is more difficult
because there is a small probability that numerical
iterations may become negative, and various ad hoc

methods have been suggested to prevent this. The paper
[1] provides a systematic method to handle both of
these problems by using pathwise convergence, i.e.,

sup
nD0;:::;NT

ˇ̌
Xtn.!/ � Y ./n .!/

ˇ̌ �! 0 as  ! 0;

! 2 &:

It is quite natural to consider pathwise convergence
since numerical calculations are actually carried out
path by path. Moreover, the solutions of some SODE
do not have bounded moments, so pathwise conver-
gence may be the only option.

Iterated Stochastic Integrals

Vector-valued SODE with vector-valued Wiener
processes can be handled similarly. The main new
difficulty is how to simulate the multiple stochastic
integrals since these cannot be written as simple
formulas of the basic increments as in the double
integral above when they involve different Wiener
processes. In general, such multiple stochastic integrals
cannot be avoided, so they must be approximated
somehow. One possibility is to use random Fourier
series for Brownian bridge processes based on the
given Wiener processes; see [3, 5].

Another way is to simulate the integrals themselves
by a simpler numerical scheme. For example, double
integral

I.2;1/;n D
Z tnC1

tn

Z t

tn

dW 2
s dW

1
t

for two independent Wiener processes W 1
t and W 2

t

can be approximated by applying the (vector-valued)
Euler-Maruyama scheme to the 2-dimensional Itô
SODE (with superscripts labeling components)

dX1
t D X2

t dW
1
t ; dX2

t D dW 2
t ; (2)

over the discretization subinterval Œtn; tnC1� with a
suitable step size ı D .tnC1 � tn/=K . The solution
of the SODE (2) with the initial condition X1

tn
D 0,

X2
tn

D W 2
tn

at time t D tnC1 is given by

X1
tnC1

D I.2;1/;n; X2
tnC1

D W 2
n :
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Writing 
k D tn C kı and ıW j

n;k D W
j

kC1

� W
j

k , the

stochastic Euler scheme for the SDE (2) reads

Y 1kC1 D Y 1k C Y 2k ıW
1
n;k; Y 2kC1 D Y 2k C ıW 2

n;k;

for 0 � k � K � 1; (3)

with the initial value Y 10 D 0, Y 20 D W 2
tn

. The strong
order of convergence of � D 1

2
of the Euler-Maruyama

scheme ensures that

E
�ˇ̌
Y 1K � I.2;1/;n

ˇ̌� � C
p
ı;

so I.2;1/;n can be approximated in the Milstein scheme
by Y 1K with ı 	 2

n, i.e., K 	 �1
n , without affecting

the overall order of convergence.

Commutative Noise

Identities such as

Z tnC1

tn

Z t

tn

dW j1
s dW

j2
t C

Z tnC1

tn

Z t

tn

dW j2
s dW

j1
t

D W j1
n W j2

n

allow one to avoid calculating the multiple integrals if
the corresponding coefficients in the numerical scheme
are identical, in this case if L1g2.t; x/ 
 L2g1.t; x/

(where L2 is defined analogously to L1) for an SODE
of the form

dXt D f .t; Xt / dtCg1.t; Xt/ dW
1
t Cg2.t; Xt / dW

2
t :

(4)
Then the SODE (4) is said to have commutative noise.

Concluding Remarks

The need to approximate multiple stochastic integrals
places a practical restriction on the order of strong
schemes that can be implemented for a general SODE.
Wherever possible special structural properties like
commutative noise of the SODE under investigation
should be exploited to simplify strong schemes as
much as possible. For weak schemes the situation
is easier as the multiple integrals do not need to be
approximated so accurately. Moreover, extrapolation
of weak schemes is possible.

The important thing is to decide first what kind of
approximation one wants, strong or weak, as this will
determine the type of scheme that should be used, and
then to exploit the structural properties of the SODE
under consideration to simplify the scheme that has
been chosen to be implemented.
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Synonyms

Brownian Dynamics Simulation; Langevin Simulation;
Monte Carlo Simulations

Modelling a system or data one is often faced with the
following:
• Exact data is unavailable or expensive to obtain
• Data is uncertain and/or specified by a probability

distribution
or decisions have to be made with respect to the de-
grees of freedom that are taken explicitly into account.
This can be seen by looking at a system with two
components. One of the components could be water
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molecules and the other component large molecules.
The decision is to take the water molecules explicitly
into account or to treat them implicitly. Since the water
molecules move much faster than the large molecules,
we can eliminate the water by subsuming their action
on the larger molecules by a stochastic force, i.e., as
a random variable with a specific distribution. Thus
we have eliminated some details in favor of a prob-
abilistic description where perhaps some elements of
the model description are given by deterministic rules
and other contributes stochastically. Overall a model
derived along the outlined path can be viewed as if an
individual state has a probability that may depend on
model parameters.

In most of the interesting cases, the number of
available states the model has will be so large that
they simply cannot be enumerated. A sampling of the
states is necessary such that the most relevant states
will be sampled with the correct probability. Assume
that the model has some deterministic part. In the above
example, the motion of larger molecules is governed
by Newton’s equation of motion. These are augmented
by stochastic forces mimicking the water molecules.
Depending on how exactly this is implemented results
in Langevin equations

m Rx D �rU.x/ � �m Px C 	.t/
p
2�kBTm; (1)

where x denotes the state (here the position), U the
potential, m the mass of the large molecule, kB the
Boltzmann constant, T the temperature, and 	 the
stochastic force with the properties:

h	.t/i D 0 (2)˝
	.t/	.t 0/

˛ D ı.t � t 0/: (3)

Neglecting the acceleration in the Langevin equa-
tion yields the Brownian dynamics equation of motion

Px.t/ D �rU.x/=� C 	.t/
p
2D (4)

with � D �m and D D kBT=�.
Hence the sampling is obtained using the equations

of motion to transition from one state to the next. If
enough of the available states (here x) are sampled,
quantities of interest that depend on the states can be
calculated as averages over the generated states:

NA D
X
x

A.x/P.x; ˛/; (5)

where P.x; ˛/ is the probability of the state and ˛ a set
of parameters (e.g., the temperature T , mass m, etc.).

A point of view that can be taken is that what
the Eqs. (1) and (4) accomplish is the generation of
a stochastic trajectory through the available states.
This can equally be well established by other means.
As long as we satisfy the condition that the right
probability distribution is generated, we could generate
the trajectory by a Monte Carlo method [1].

In a Monte Carlo formulation, a transition probabil-
ity from a state x to another state x0 is specified

W.x0jx/: (6)

Together with the proposition probability for the
state x0, a decision is made to accept or reject the
state (Metropolis-Hastings Monte Carlo Method). An
advantage of this formulation is that it allows freedom
in the choice of proposition of states and the efficient
sampling of the states (importance sampling). In more
general terms, what one does is to set up a biased ran-
dom walk that explores the target distribution (Markov
Chain Monte Carlo).

A special case of the sampling that yields a Markov
chain is the Gibbs sampler. Assume x D .x1; x2/ with
target P.x; ˛/

Algorithm 1 Gibbs Sampler Algorithm:

1: initialize x0 D .x10 ; x
2
0/

2: while i � max number of samples do
3: sample x1i 	 P.x1jx2i�1; ˛/

4: sample x2i 	 P.x2jx1i ; ˛/
5: end while

then fx1; x2g is a Markov chain. Thus we obtain a
sequence of states such that we can again apply (5) to
compute the quantities of interest.

Common to all of the above stochastic simulation
methods is the use of random numbers. They are either
used for the implementation of the random contribution
to the force or the decision whether a state is accepted
or rejected. Thus the quality of the result depends on
the quality of the random number generator.
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Synonyms

Noisy Systems; Random Systems; Stochastic Systems

Short Definition

A stochastic system may contain one or more elements
of random, i.e., nondeterministic behavior. Compared
to a deterministic system, a stochastic system does not
always generate the same output for a given input. The
elements of systems that can be stochastic in nature
may include noisy initial conditions, random boundary
conditions, random forcing, etc.

Description

Stochastic systems (SS) are encountered in many appli-
cation domains in science, engineering, and business.
They include logistics, transportation, communication
networks, financial markets, supply chains, social sys-
tems, robust engineering design, statistical physics,

systems biology, etc. Stochasticity or randomness is
perhaps associated with a bad outcome, but harnessing
stochasticity has been pursued in arts to create beauty,
e.g., in the paintings of Jackson Pollock or in the music
of Iannis Xenakis. Similarly, it can be exploited in
science and engineering to design new devices (e.g.,
stochastic resonances in the Bang and Olufsen speak-
ers) or to design robust and cost-effective products
under the framework of uncertainty-based design and
real options [17].

Stochasticity is often associated with uncertainty,
either intrinsic or extrinsic, and specifically with the
lack of knowledge of the properties of the system;
hence quantifying uncertain outcomes and system
responses is of great interest in applied probability and
scientific computing. This uncertainty can be further
classified as aleatory, i.e., statistical, and epistemic
which can be reduced by further measurements or
computations of higher resolution. Mathematically,
stochasticity can be described by either deterministic
or stochastic differential equations. For example, the
molecular dynamics of a simple fluid is described by
the classical deterministic Newton’s law of motion or
by the deterministic Navier-Stokes equations whose
outputs, in both cases, however may be stochastic. On
the other hand, stochastic elliptic equations can be
used to predict the random diffusion of water in porous
media, and similarly a stochastic differential equation
may be used to model neuronal activity in the brain
[9, 10].

Here we will consider systems that are governed
by stochastic ordinary and partial differential equations
(SODEs and SPDEs), and we will present some ef-
fective methods for obtaining stochastic solutions in
the next section. In the classical stochastic analysis,
these terms refer to differential equations subject to
white noise either additive or multiplicative, but in
more recent years, the same terminology has been
adopted for differential equations with color noise, i.e.,
processes that are correlated in space or time. The
color of noise, which can also be pink or violet, may
dictate the numerical method used to predict efficiently
the response of a stochastic system, and hence it is
important to consider this carefully at the modeling
stage. Specifically, the correlation length or time scale
is the most important parameter of a stochastic process
as it determines the effective dimension of the process;
the smaller the correlation scale, the larger the dimen-
sionality of the stochastic system.
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Example: To be more specific in the following,
we present a tumor cell growth model that involves
stochastic inputs that need to be represented according
to the correlation structure of available empirical data
[27]. The evolution equation is

Px.t I!/ DG.x/C g.x/f1.t I!/C f2.t I!/;
x.0I!/ Dx0.!/; (1)

where x.t I!/ denotes the concentration of tumor cell
at time t ,

G.x/ D x.1 � �x/ � ˇ x

x C 1
; g.x/ D � x

x C 1
;

ˇ is the immune rate, and � is related to the rate of
growth of cytotoxic cells. The random process f1.t I!/
represents the strength of the treatment (i.e., the dosage
of the medicine in chemotherapy or the intensity of
the ray in radiotherapy), while the process f2.t I!/ is
related to other factors, such as drugs and radiotherapy,
that restrain the number of tumor cells. The parameters
ˇ, � and the covariance structure of random processes
f1 and f2 are usually estimated based on empirical
data.

If the processes f1.t; !/ and f2.t; !/ are indepen-
dent, they can be represented using the Karhunen-
Loeve (K-L) expansion by a zero mean, second-order
random process f .t; !/ defined on a probability space
.&;F;P/ and indexed over t 2 Œa; b�. Let us denote the
continuous covariance function of f .t I!/ as C.s; t/.
Then the process f .t I!/ can be represented as

f .t I!/ D
NdX
kD1

p
�kek.t/	k.!/;

where 	k.!/ are uncorrelated random variables with
zero mean and unitary variance, while �k and ek.t/ are,
respectively, eigenvalues and (normalized) eigenfunc-
tions of the integral operator with kernel C.s; t/, i.e.,

Z b

a

C.s; t/ek.s/ds D �kek.t/:

The dimensionNd depends strongly on the correlation
scale of the kernel C.s; t/. If we rearrange the eigen-
values �k in a descending order, then any truncation
of the expansion f .t I!/ is optimal in the sense that it

minimizes the mean square error [3, 18, 20]. The K-L
expansion has been employed to represent random
input processes in many stochastic simulations (see,
e.g., [7, 20]).

Stochastic Modeling and Computational
Methods

We present two examples of two fundamentally differ-
ent descriptions of SS in order to show some of the
complexity but also rich stochastic response that can
be obtained: the first is based on a discrete particle
model and is governed by SODEs, and the second is
a continuum system and is governed by SPDEs.

A Stochastic Particle System: We first describe a
stochastic model for a mesoscopic system governed
by a modified version of Newton’s law of motion, the
so-called dissipative particle dynamics (DPD) equa-
tions [19]. It consists of particles which correspond
to coarse-grained entities, thus representing molecular
clusters rather than individual atoms. The particles
move off-lattice interacting with each other through
a set of prescribed (conservative and stochastic) and
velocity-dependent forces. Specifically, there are three
types of forces acting on each dissipative particle: (a)
a purely repulsive conservative force, (b) a dissipative
force that reduces velocity differences between the
particles, and (c) a stochastic force directed along the
line connecting the center of the particles. The last
two forces effectively implement a thermostat so that
thermal equilibrium is achieved. Correspondingly, the
amplitude of these forces is dictated by the fluctuation-
dissipation theorem that ensures that in thermodynamic
equilibrium the system will have a canonical distri-
bution. All three forces are modulated by a weight
function which specifies the range of interaction or
cutoff radius rc between the particles and renders the
interaction local.

The DPD equations for a system consisting of N
particles have equal mass (for simplicity in the pre-
sentation) m, position ri , and velocities ui , which are
stochastic in nature. The aforementioned three types of
forces exerted on a particle i by particle j are given by

Fcij D F .c/.rij /eij ; Fdij D ��!d .rij /.vij � eij /eij ;

Frij D �!r .rij /	ij eij ;
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Stochastic Systems, Fig. 1 Left: Lennard-Jones potential and its averaged soft repulsive-only potential. Right: Polymer chains
flowing in a sea of solvent in DPD. For more details see [19]

where rij D ri � rj , vij D vi � vj , rij D jrij j
and the unit vector eij D rij

rij
. The variables � and �

determine the strength of the dissipative and random
forces, respectively, 	ij are symmetric Gaussian ran-
dom variables with zero mean and unit variance, and
!d and !r are weight functions.

The time evolution of DPD particles is described by
Newton’s law

dri D vi ıt I dvi D Fci ıt C Fdi ıt C Fri
p
ıt

mi

;

where Fci D P
i¤j Fcij is the total conservative force

acting on particle i ; Fdi and Fri are defined similarly.
The velocity increment due to the random force has
a factor

p
ıt since it represents Brownian motion,

which is described by a standard Wiener process with

a covariance kernel given by CFF .ti ; tj / D e� jt1�t2 j

A ,
where A is the correlation time for this stochastic
process. The conservative force Fc is typically given
in terms of a soft potential in contrast to the Lennard-
Jones potential used in molecular dynamics studies
(see Fig. 1(left)). The dissipative and random forces are
characterized by strengths !d .rij / and !r.rij / coupled
due to the fluctuation-dissipation theorem.

Several complex fluid systems in industrial and
biological applications (DNA chains, polymer gels,

lubrication) involve multiscale processes and can be
modeled using modifications of the above stochastic
DPD equations [19]. Dilute polymer solutions are a
typical example, since individual polymer chains form
a group of large molecules by atomic standards but
still governed by forces similar to intermolecular ones.
Therefore, they form large repeated units exhibiting
slow dynamics with possible nonlinear interactions
(see Fig. 1(right)).

A Stochastic Continuum System: Here we present
an example from classical aerodynamics on shock
dynamics by reformulating the one-dimensional piston
problem within the stochastic framework, i.e., we allow
for random piston motions which may be changing in
time [11]. In particular, we superimpose small random
velocity fluctuations to the piston velocity and aim to
obtain both analytical and numerical solutions of the
stochastic flow response. We consider a piston having
a constant velocity, Up , moving into a straight tube
filled with a homogeneous gas at rest. A shock wave
will be generated ahead of the piston. A sketch of the
piston-driven shock tube with random piston motion
superimposed is shown in Fig. 2(left).

As shown in Fig. 2 (left), Up and S are the deter-
ministic speed of the piston and deterministic speed of
the shock, respectively, and �0, P0, C0, �1, P1, and C1
are the deterministic density, pressure, and local sound
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Up + vp ( t )

S + vs ( t ) 

U = 0
P = P0
ρ = ρ0
C = C0

U = Up + vp ( t )
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ρ = ρ1
C = C1
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Stochastic Systems, Fig. 2 Left: Sketch of piston-driven shock
tube with random piston motion. Right: Normalized variance of
perturbed shock paths. Solid line: perturbation analysis results.

Dashed line: early-time asymptotic results, h	2.
/i 	 
2. Dash-
dotted line: late-time asymptotic results, h	2.
/i 	 


speed ahead and after of the shock, respectively. We
now define the stochastic motion of the piston by super-
imposing a small stochastic component to the steady
speed of the piston, i.e., up.t/ D UpŒ1 C �V .t; !/�,
where � is the amplitude of the random perturbation.
Here V.t; !/ is modeled as a random process with zero

mean and covariance hV.t1; !/; V .t2; !/i D e� jt1�t2 j

A ,
where A is the correlation time; it can be represented
by a truncated K-L expansion as explained earlier. Our
objective is to quantify the deviation of the perturbed
shock paths due to the random piston motion from
the unperturbed ones, which are given by X.t/ D
S � t . If the amplitude � is small, 0 < � � 1, the
analytical solutions for the perturbed shock paths can
be expressed as follows:

h	2.
/i D.UpqS 0A=˛/2
"
2

1X
nD1

n�1X
mD0

.�r/nCmIn;m.
/C

1X
nD0

r2nIn;n.
/

#
(2)

where 
 D ˛t=A, and

In;m.
/ D 2


ˇm
C 1

ˇnCm
h
e�ˇm
 C e�ˇn


�1 � e�.ˇm�ˇn/
i ;

where S 0 D dS
dUp

, m < n, ˛ D C1CUp�S
C1

, ˇ D
C1CUp�S
C1CS�Up , q D 2

1Ck and r D 1�k
1Ck . Here k D C

SCS 0Up
1C�SUp

and � D cp=cv is the ratio of specific heats.
In Fig. 2 (right), the variance of the perturbed shock

path, h	2.
/i=.UpqS 0A=˛/2, is plotted as a function
of 
 with Up D 1:25, i.e., corresponding to Mach
number of the shockM D 2. The asymptotic formulas
for small and large 
 are also included in the plot.
In Fig. 2 (right), we observe that the variance of the
shock location grows quadratically with time for
early times and switches to linear growth for longer
times.

The stochastic solutions for shock paths, for either
small or large piston motions, can also be obtained
numerically by solving the full nonlinear Euler equa-
tions with an unsteady stochastic boundary, namely,
the piston position to model the stochastic piston prob-
lem. Classic Monte Carlo simulations [4] or quasi-
Monte Carlo simulations [2] can be performed for
these stochastic simulations. However, due to the slow
convergence rate of Monte Carlo methods, it may take
thousands of equivalent deterministic simulations to
achieve acceptable accuracy. Recently, methods based
on generalized polynomial chaos (gPC) expansions
have become popular for such SPDEs due to their fast
convergence rate for SS with color noise. The term
polynomial chaos was first coined by Norbert Wiener
in 1938 in his pioneering work on representing Gaus-
sian stochastic processes [22] as generalized Fourier
series. In Wiener’s work, Hermite polynomials serve
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as an orthogonal basis. The gPC method for solving
SPDEs is an extension of the polynomial chaos method
developed in [7], inspired by the theory of Wiener-
Hermite polynomial chaos. The use of Hermite poly-
nomials may not be optimum in applications involving
non-Gaussian processes, and hence gPC was proposed
in [25] to alleviate the difficulty. In gPC, different
kinds of orthogonal polynomials are chosen as a basis
depending on the probability distribution of the random
inputs. The P th-order, gPC approximations of the
solution u.x; 	/ can be obtained by projecting u onto
the space W P

N , i.e.,

P
P
N u D uPN .x; 	/ D

MX
mD1

Oum.x/�m.	/; (3)

where P
P
N u denotes the orthogonal projection operator

from L2�.
/ onto W P
N , M C 1 D .NCP/Š

N ŠP Š
, and Oum are

the coefficients, and � the probability measure.
Although gPC was shown to exhibit exponential

convergence in approximating stochastic solutions
at finite times, gPC may converge slowly or fail
to converge even in short-time integration due to a
discontinuity of the approximated solution in random
space. To this end, the Wiener-Haar method [14, 15]
based on wavelets, random domain decomposi-
tion [12], multielement-gPC (ME-gPC) [21], and
multielement probabilistic collocation method (ME-
PCM) [5] were developed to address problems related
to the aforementioned discontinuities in random
space. Additionally, a more realistic representation
of stochastic inputs associated with various sources of
uncertainty in the stochastic systems may lead to high-
dimensional representations, and hence exponential
computational complexity, running into the so-
called curse of dimensionality. Sparse grid stochastic
collocation method [24] and various versions ANOVA
(ANalysis Of VAriance) method [1, 6, 8, 13, 23, 26]
have been employed as effective dimension-reduction
techniques for quantifying the uncertainty in stochastic
systems with dimensions up to 100.

Conclusion

Aristotle’s logic has ruled our scientific thinking in the
past two millennia. Most scientific models and theories
have been constructed from exact models and logic

reasoning. It is argued in [16] that SS models and
statistical reasoning are more relevant “i) to the world,
ii) to science and many parts of mathematics and iii)
particularly to understanding the computations in our
own minds, than exact models and logical reasoning.”
Indeed, many real-world problems can be viewed or
modeled as SS with great potential benefits across
disciplines from physical sciences and engineering
to social sciences. Stochastic modeling can bring in
more realism and flexibility and account for uncertain
inputs and parametric uncertainty albeit at the ex-
pense of mathematical and computational complexity.
However, the rapid mathematical and algorithmic ad-
vances already realized at the beginning of the twenty-
first century along with the simultaneous advances
in computer speeds and capacity will help alleviate
such difficulties and will make stochastic modeling the
standard norm rather than the exception in the years
ahead. The three examples we presented in this chapter
illustrate the diverse applications of stochastic mod-
eling in biomedicine, materials processing, and fluid
mechanics. The same methods or proper extensions
can also be applied to quantifying uncertainties in cli-
mate modeling; in decision making under uncertainty,
e.g., in robust engineering design and in financial mar-
kets; but also for modeling the plethora of emerging
social networks. Further work on the mathematical
and algorithmic formulations of such more complex
and high-dimensional systems is required as current
approaches cannot yet deal satisfactorily with white
noise, system discontinuities, high dimensions, and
long-time integration.
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Definition Terms/Glossary

Boundary layer It refers to the layer of fluid in the
immediate vicinity of a bounding surface where the
effects of viscosity are significant.

GMRES Abbreviation for the generalized minimal
residual algorithm. It refers to an iterative method
for the numerical solution of a nonsymmetric sys-
tem of linear equations.

Precondition It consists in multiplying both sides of
a system of linear equations by a suitable matrix,
called the preconditioner, so as to reduce the condi-
tion number of the system.

The Incompressible Navier-Stokes Model

The incompressible Navier-Stokes system of equations
is a widely accepted model for viscous Newtonian
incompressible flows. It is extensively used in me-
teorology, oceanography, canal flows, pipeline flows,
automotive industry, high-speed trains, wind turbines,
etc. Computing accurately its solutions is a difficult and
important challenge.

A Newtonian fluid is a model whose Cauchy stress
tensor depends linearly on the strain tensor, in contrast
to non-Newtonian fluids for which this relation is
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nonlinear and possibly implicit. For a Navier-Stokes
fluid model, the constitutive equation defining the
Cauchy stress tensor T is:

T D ��I C 2�D.u/; (1)

where � > 0 is the constant viscosity coefficient, rep-
resenting friction between molecules,� is the pressure,
u is the velocity, D.u/ D 1

2

�r u C r uT
�

is the strain
tensor, and .r u/ij D @ui

@xj
is the gradient tensor. When

substituted into the balance of linear momentum

�
du
dt

D div T C �f ; (2)

where � > 0 is the fluid’s density, f is an external
body force (e.g., gravity), and du

dt
is the material time

derivative

du
dt

D @u
@t

Cu�r u; where u�r uD Œr u�uD
X
i

ui
@u
@xi

;

(3)
(1) gives, after division by �,

@u
@t

C u � r u D �1
�

r � C 2
�

�
div D.u/C f :

But the density � is constant, since the fluid is incom-
pressible. Therefore renaming the quantities p D �

�

and the kinematic viscosity � D �

�
, the momentum

equation reads:

@u
@t

C u � r u D �r p C 2� div D.u/C f : (4)

As the fluid is incompressible, the conservation of mass

@�

@t
C div.�u/ D 0;

reduces to the incompressibility condition

div u D 0: (5)

From now on, we assume that ˝ is a bounded, con-
nected, open set in R

3, with a suitably piecewise
smooth boundary @˝ (essentially, without cusps or
multiple points). The relations (4) and (5) are the
incompressible Navier-Stokes equations in ˝ . They

are complemented with boundary conditions, such as
the no-slip condition

u D 0; on @˝; (6)

and an initial condition

u.�; 0/ D u0.�/ in ˝;

satisfying divu0 D 0; and u0 D 0; on @˝: (7)

In practical situations, other boundary conditions may
be prescribed. One of the most important occurs in
flows past a moving obstacle, in which case (6) is
replaced by

u D g; on @˝ where
Z
@˝

g � n D 0; (8)

where g is the velocity of the moving body and n

denotes the unit exterior normal vector to @˝ . To
simplify, we shall only discuss (6), but we shall present
numerical experiments where (8) is prescribed.

If the boundary conditions do not involve the bound-
ary traction vector T n, (4) can be substantially simpli-
fied by using the fluid’s incompressibility. Indeed, (5)
implies 2div D.u/ D � u, and (4) becomes

@u
@t

C u � r u � �� u C r p D f : (9)

When written in dimensionless variables (denoted by
the same symbols), (9) reads

@u
@t

C u � r u � 1

Re
� u C r p D f ; (10)

where Re is the Reynolds number, ReD LU
�

, L is a
characteristic length, and U a characteristic velocity.
When 1 � Re � 105, the flow is said to be laminar.
Finally, when the Reynolds number is small and the
force f does not depend on time, the material time
derivative can be neglected. Then reverting to the
original variables, this yields the Stokes system:

� �� u C r p D f ; (11)

complemented with (5) and (6).
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Some Theoretical Results

Let us start with Stokes problems (11), (5), and (6). In
view of both theory and numerics, it is useful to write
it in variational form. Let

H1.˝/ D fv 2 L2.˝/ I r v 2 L2.˝/3g ;
H1
0 .˝/ D fv 2 H1.˝/ I v D 0 on @˝g;

L2ı.˝/ D fv 2 L2.˝/ I .v; 1/ D 0g;
where .�; �/ denotes the scalar product of L2.˝/:

.f; g/ D
Z
˝

f g:

Let H�1.˝/ denote the dual space of H1
0 .˝/ and

h�; �i the duality pairing between them. The space H1
0

takes into account the no-slip boundary condition on
the velocity, and the space L2ı is introduced to lift
the undetermined constant in the pressure; note that
it is only defined by its gradient and hence up to one
additive constant in a connected region. Assume that
f belongs to H�1.˝/3. For our purpose, a suitable
variational form is: Find a pair .u; p/ 2 H1

0 .˝/
3 �

L2ı.˝/ solution of

8.v; q/ 2H1
0 .˝/

3 � L2ı.˝/ ;
�.r u;r v/ � .p; div v/�.q; div u/Dhf ; vi:

(12)

Albeit linear, this problem is difficult both from theo-
retical and numerical standpoints. The pressure can be
eliminated from (12) by working with the space V of
divergence-free velocities:

V D fv 2 H1
0 .˝/

3 I div v D 0g;

but the difficulty lies in recovering the pressure. Ex-
istence and continuity of the pressure stem from the
following deep result: The divergence operator is an
isomorphism from V ? onto L2ı.˝/, where V ? is the
orthogonal of V in H1

0 .˝/
3. In other words, for every

q 2 L2ı.˝/, there exists one and only one v 2 V ? so-
lution of div v D q. Moreover v depends continuously
on q:

kr vkL2.˝/ � 1

ˇ
kqkL2.˝/; (13)

where ˇ > 0, only depends on ˝ . This inequality is
equivalent to the following “inf-sup condition”:

inf
q2L2ı.˝/

sup
v2H1

0 .˝/
3

.div v; q/

kr vkL2.˝/kqkL2.˝/
� ˇ: (14)

Interestingly, (14) is not true when @˝ has an outward
cusp, a situation that occurs, for instance, in a flow
exterior to two colliding spheres. There is no simple
proof of (14). Its difficulty lies in the no-slip boundary
condition prescribed on v: The proof is much simpler
when it is replaced by the weaker condition v � n D 0.
The above isomorphism easily leads to the following
result:

Theorem 1 For any f in H�1.˝/3 and any � > 0,
Problem (12) has exactly one solution and this solution
depends continuously on the data:

kr ukL2.˝/� 1

�
kf kH�1.˝/; kpkL2.˝/� 1

ˇ
kf kH�1.˝/:

(15)

Next we consider the steady Navier-Stokes system.
The natural extension of (12) is: Find a pair .u; p/ 2
H1
0 .˝/

3 � L2ı.˝/ solution of

8.v; q/ 2 H1
0 .˝/

3 � L2ı.˝/ ;
�.r u;r v/C .u � r u; v/

� .p; div v/ � .q; div u/ D hf ; vi: (16)

Its analysis is fairly simple because on one hand the
nonlinear convection term u � r u has the following
antisymmetry:

8u 2 V;8v 2 H1.˝/3 ; .u � r u; v/ D �.u � r v;u/;
(17)

and on the other hand, it belongs to L3=2.˝/3, which,
roughly speaking, is significantly smoother than the
data f inH�1.˝/3. This enables to prove existence of
solutions, but uniqueness is only guaranteed for small
force or large viscosity. More precisely, let

N D sup
w;u;v2V;w;u;v¤0

.w � r u; v/
kr wkL2.˝/kr ukL2.˝/kr vkL2.˝/

:

Then we have the next result.
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Theorem 2 For any f in H�1.˝/3 and any � > 0,
Problem (16) has at least one solution. A sufficient
condition for uniqueness is

N
�2

kf kH�1.˝/ < 1: (18)

Now we turn to the time-dependent Navier-Stokes
system. Its analysis is much more complex because
in R

3 the dependence of the pressure on time holds
in a weaker space. To simplify, we do not treat the
most general situation. For a given time interval Œ0; T �,
Banach space X , and number r � 1, the relevant
spaces are of the form Lr.0; T IX/, which is the space
of functions defined and measurable in �0; T Œ, such that

Z T

0

kvkrXdt < 1;

and

W 1;r .0; T IX/Dfv2Lr.0; T IX/ Idv
dt

2Lr.0; T IX/g;

W
1;r
0 .0; T IX/Dfv 2W 1;r .0; T IX/ Iv.0/Dv.T /D0g;

with dual space W �1;r 0

.0; T IX/, 1
r

C 1
r 0 D 1. There

are several weak formulations expressing (4)–(7). For
numerical purposes, we shall use the following one:
Find u 2 L2.0; T IV / \ L1.0; T IL2.˝/3/, with
du
dt

in L3=2.0; T IV 0/, and p 2 W �1;1.0; T IL2ı.˝//
satisfying a.e. in �0; T Œ

8.v; q/ 2 H1
0 .˝/

3 � L2ı.˝/;
d

dt
.u.t/; v/C�.r u.t/;r v/C.u.t/ � r u.t/; v/

� .p.t/; div v/ � .q; div u.t// D hf .t/; vi;
(19)

with the initial condition (7). This problem always has
at least one solution.

Theorem 3 For any f in L2.0; T IH�1.˝/3/, any
� > 0, and any initial data u0 2 V , Problem (19), (7)
has at least one solution.

Unfortunately, unconditional uniqueness (which is
true in R

2) is to this date an open problem in R
3. In

fact, it is one of the Millennium Prize Problems.

Discretization

Solving numerically a steady Stokes system is costly
because the theoretical difficulty brought by the pres-
sure is inherited both by its discretization, whatever
the scheme, and by the computer implementation of
its scheme. This computational difficulty is aggra-
vated by the need of fine meshes for capturing com-
plex flows produced by the Navier-Stokes system. In
comparison, when the flow is laminar, at reasonable
Reynolds numbers, the additional cost of the nonlinear
convection term is minor. There are some satisfac-
tory schemes and algorithms but so far no “miracle”
method.

Three important methods are used for discretiz-
ing flow problems: Finite-element, finite-difference, or
finite-volume methods. For the sake of simplicity, we
shall mainly consider discretization by finite-element
methods. Usually, they consist in using polynomial
functions on cells: triangles or quadrilaterals in R

2 or
tetrahedra or hexahedra in R

3. Most finite-difference
schemes can be derived from finite-element methods
on rectangles in R

2 or rectangular boxes in R
3, coupled

with quadrature formulas, in which case the mesh
may not fit the boundary and a particular treatment
may be required near the boundary. Finite volumes
are closely related to finite differences but are more
complex because they can be defined on very general
cells and do not involve functions. All three methods
require meshing of the domain, and the success of
these methods depends not only on their accuracy but
also on how well the mesh is adapted to the problem
under consideration. For example, boundary layers
may appear at large Reynolds numbers and require
locally refined meshes. Constructing a “good” mesh
can be difficult and costly, but these important meshing
issues are outside the scope of this work. Last, but not
least, in many practical applications where the Stokes
system is coupled with other equations, it is important
that the scheme be locally mass conservative, i.e., the
integral mean value of the velocity’s divergence be zero
in each cell.

Discretization of the Stokes Problem
Let Th be a triangulation of˝ made of tetrahedra (also
called elements) in R

3, the discretization parameter h
being the maximum diameter of the elements. For ap-
proximation purposes, Th is not completely arbitrary:
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it is assumed to be shape regular in the sense that
its dihedral angles are uniformly bounded away from
0 and � , and it has no hanging node in the sense
that the intersection of two cells is either empty, or a
vertex, or a complete edge, or a complete face. For
a given integer k � 0, let Pk denote the space of
polynomials in three variables of total degree k and
Qk that of degree k in each variable. The accuracy
of a finite-element space depends on the degree of
the polynomials used in each cell; however, we shall
concentrate on low-degree elements, as these are most
frequently used.

Let us start with locally mass conservative methods
and consider first conforming finite-element methods,
i.e., where the finite-element space of discrete veloci-
ties, sayXh, is contained inH1

0 .˝/
3. Strictly speaking,

the space of discrete pressures should be contained
in L2ı.˝/. However, the zero mean-value constraint
destroys the band structure of the matrix, and therefore,
this constraint is prescribed weakly by means of a
small, consistent perturbation. Thus the space of dis-
crete pressures, say Qh, is simply a discrete subspace
of L2.˝/, and problem (12) is discretized by: Find
.uh; ph/ 2 Xh �Qh solution of

8.vh; qh/ 2 Xh �Qh ;

�.r uh;r vh/�.ph; div vh/� .qh; div uh/� ".ph; qh/

D hf ; vhi; (20)

where " > 0 is a small parameter. Let Mh D Qh \
L2ı.˝/. Regardless of their individual accuracy, Xh
and Mh cannot be chosen independently of each other
because they must satisfy a uniform discrete analogue
of (14), namely,

inf
qh2Mh

sup
vh2Xh

.div vh; qh/

kr vhkL2.˝/kqhkL2.˝/
� ˇ�; (21)

for some real number ˇ� > 0, independent of h.
Elements that satisfy (21) are called inf-sup stable. For
such elements, the accuracy of (20) depends directly on
the individual approximation properties of Xh andQh.

Roughly speaking, (21) holds when a discrete ve-
locity space is sufficiently rich compared to a given
discrete pressure space. Observe also that the discrete
velocity’s degree in each cell must be at least one

in order to guarantee continuity at the interfaces of
elements.

We begin with constant pressures with one degree
of freedom at the center of each tetrahedron. It can be
checked that, except on some very particular meshes,
a conforming P1 velocity space is not sufficiently rich
to satisfy (21). This can be remedied by adding one
degree of freedom (a vector in the normal direction) at
the center of each face, and it is achieved by enriching
the velocity space with one polynomial of P3 per face.
This element, introduced by Bernardi and Raugel, is
inf-sup stable and is of order one. It is frugal in number
of degrees of freedom and is locally mass conserva-
tive but complex in its implementation because the
velocity components are not independent. Of course,
three polynomials of P3 (one per component) can be
used on each face, and thus each component of the
discrete velocity is the sum of a polynomial of P1,
which guarantees accuracy, and a polynomial of P3,
which guarantees inf-sup stability, but the element is
more expensive.

The idea of degrees of freedom on faces motivates
a nonconforming method where Xh is contained in
L2.˝/3 and problem (12) is discretized by the follow-
ing: Find .uh; ph/ 2 Xh �Qh solution of

8.vh; qh/ 2 Xh �Qh ;

�
X
T2Th

.r uh;r vh/T �
X
T2Th

.ph; div vh/T

�
X
T2Th

.qh; div uh/T � ".ph; qh/ D hf ; vhi: (22)

The inf-sup condition (21) is replaced by:

inf
qh2Mh

sup
vh2Xh

P
T2Th .div vh; qh/T

kr vhkhkqhkL2.˝/
� ˇ� where

k � kh D

 X
T2Th

k � k2
L2.˝/

�1=2
: (23)

The simplest example, introduced by Crouzeix and
Raviart, is that of a constant pressure and each veloc-
ity’s component P1 per tetrahedron and each velocity’s
component having one degree of freedom at the center
of each face. The functions of Xh must be continuous
at the center of each interior face and vanish at the
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center of each boundary face. Then it is not hard to
prove that (23) is satisfied. Thus this element has order
one, it is fairly economical and mass conservative, and
its implementation is fairly straightforward.

The above methods easily extend to hexahedral
triangulations with Cartesian structure (i.e., eight hexa-
hedra meeting at any interior vertex) provided the poly-
nomial space Pk is replaced by the inverse image of Qk

on the reference cube. Furthermore, such hexahedral
triangulations offer more possibilities. For instance, a
conforming, inf-sup stable, locally mass conservative
scheme of order two can be obtained by taking, in each
cell, a P1 pressure and each component of the velocity
in Q2.

Now we turn to conforming methods that use con-
tinuous discrete pressures; thus the pressure must be at
least P1 in each cell and continuous at the interfaces.
Therefore the resulting schemes are not locally mass
conservative. It can be checked that velocities with
P1 components are not sufficiently rich. The simplest
alternative, called “mini-element” or “P1–bubble,” en-
riches each velocity component in each cell with a
polynomial of P4 that vanishes on the cell’s boundary,
whence the name bubble. This element is inf-sup
stable and has order one. Its extension to order two,
introduced in R

2 by Hood and Taylor, associates with
the same pressure, velocities with components in P2. It
is inf-sup stable and has order two.

Discretization of the Navier-Stokes System
Here we present straightforward discretizations of (19).
The simplest one consists in using a linearized back-
ward Euler finite-difference scheme in time. LetN > 1

be an integer, ı t D T=N the corresponding time step,
and tn D nı t the discrete times. Starting from a finite-
element approximation or interpolation, say u0h of u0
satisfying the discrete divergence constraint of (20), we
construct a sequence .unh; p

n
h/ 2 Xh �Qh such that for

1 � n � N :

8.vh; qh/ 2 Xh �Qh;

1

ı t
.unh � un�1

h ; vh/C�.r unh;r vh/Cc.un�1
h I unh; vh/

� .pnh; div vh/� .qh; div unh/� ".pnh; qh/Dhf n; vhi;
(24)

where f n is an approximation of f .tn; �/ and
c.whI uh; vh/ a suitable approximation of the

convection term .w � r u; v/. As (17) does not
necessarily extend to the discrete spaces, the preferred
choice, from the standpoint of theory, is

c.whI uh; vh/ D 1

2

h
.wh � r uh; vh/� .wh � r vh;uh/

i
;

(25)

because it is both consistent and antisymmetric, which
makes the analysis easier. But from the standpoint of
numerics, the choice

c.whI uh; vh/ D .wh � r uh; vh/ (26)

is simpler and seems to maintain the same accuracy.
Observe that at each step n, (24) is a discrete Stokes
system with two or three additional linear terms, ac-
cording to the choice of form c. In both cases, the
matrix of the system is not symmetric, which is a strong
disadvantage. This can be remedied by completely
time lagging the form c, i.e., replacing it by .un�1

h �
r un�1

h ; vh/.
There are cases when none of the above lineariza-

tions are satisfactory, and the convection term is ap-
proximated by c.unhI unh; vh/ with c defined by (25)
or (26). The resulting scheme is nonlinear and must be
linearized, for instance, by an inner loop of Newton’s
iterations. Recall Newton’s method for solving the
equation f .x/ D 0 in R: Starting from an initial guess
x0, compute the sequence .xk/ for k � 0 by

xkC1 D xk � f .xk/

f 0.xk/
:

Its generalization is straightforward and at step n,
starting from uh;0 D un�1

h , the inner loop reads: Find
.uh;kC1; ph;kC1/ 2 Xh �Qh solution of

8.vh; qh/2Xh�Qh;
1

ı t
.uh;kC1; vh/C�.r uh;kC1;r vh/

C c.uh;kC1I uh;k ; vh/C c.uh;k I uh;kC1; vh/

� .ph;kC1; div vh/� .qh; div uh;kC1/� ".ph;kC1; qh/

D c.uh;k I uh;k; vh/C hf n; vhi C 1

ı t
.un�1
h ; vh/:

(27)

Experience shows that only a few iterations are suffi-
cient to match the discretization error. Once this inner
loop converges, we set unh WD uh;kC1, pnh WD ph;kC1.
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An interesting alternative to the above schemes is
the characteristics method that uses a discretization of
the material time derivative (see (3)):

d

dt
u.tn;x/ ' 1

ı t

�
unh.x/� un�1

h .�n�1.x//
�
;

where �n�1.x/ gives the position at time tn�1 of a parti-
cle located at x at time tn. Its first-order approximation
is

�n�1.x/ D x � .ı t/un�1
h .x/:

Thus (24) is replaced by

8.vh; qh/ 2 Xh �Qh;

1

ı t

�
unh � un�1

h ı �n�1; vh
�C �.r unh;r vh/

� .pnh; div vh/� .qh; div unh/� ".pnh; qh/Dhf n; vhi;
(28)

whose matrix is symmetric and constant in time and
requires no linearization. On the other hand, computing
the right-hand side is more complex.

Algorithms

In this section we assume that the discrete spaces
are inf-sup stable, and to simplify, we restrict
the discussion to conforming discretizations. Any
discretization of the time-dependent Navier-Stokes
system requires the solution of at least one Stokes
problem per time step, whence the importance of an
efficient Stokes solver. But since the matrix of the
discrete Stokes system is large and indefinite, in R

3 the
system is rarely solved simultaneously for uh and ph.
Instead the computation of ph is decoupled from that
of uh.

Decoupling the Pressure and Velocity
Let U be the vector of velocity unknowns, P that of
pressure unknowns, and F the vector of data repre-
sented by .f ; vh/. Let A be the (symmetric positive
definite) matrix of the discrete Laplace operator repre-
sented by �.r uh;r vh/, B the matrix of the discrete
divergence operator represented by .qh; div uh/, and C

the matrix of the operator represented by ".ph; qh/.
Owing to (21), the matrix B has maximal rank. With
this notation, (20) has the form:

A U � BTP D F ; �B U � C P D 0; (29)

whose matrix is symmetric but indeed indefinite. Since
A is nonsingular, a partial solution of (29) is

�
BA�1BT C C

�
P D �BA�1F ;

U D A�1.F C BTP/: (30)

As B has maximal rank, the Schur complement
BA�1BT C C is symmetric positive definite, and
an iterative gradient algorithm is a good candidate for
solving (30). Indeed, (30) is equivalent to minimizing
with respect to Q the quadratic functional

K.Q/ D 1

2

�
AvQ; vQ

�C 1

2

�
C Q;Q

�
; with

AvQ D F C BTQ: (31)

A variety of gradient algorithms for approximating
the minimum are obtained by choosing a sequence
of direction vectors W k and an initial vector P0 and
computing a sequence of vectors Pk defined for each
k � 1 by:

Pk D Pk�1 � �k�1W k�1; where

K.Pk�1 � �k�1W k�1/ D inf
�2RK.Pk�1 � �W k�1/:

(32)

Usually the direction vectors W k are related to the
gradient ofK , whence the name of gradient algorithms.
It can be shown that each step of these gradient al-
gorithms requires the solution of a linear system with
matrix A, which is equivalent to solving a Laplace
equation per step. This explains why solving the Stokes
system is expensive.

The above strategy can be applied to (28) but not
to (24) because its matrix A is no longer symmetric. In
this case, a GMRES algorithm can be used, but this
algorithm is expensive. For this reason, linearization
by fully time lagging c may be preferable because
the matrix A becomes symmetric. Of course, when
Newton’s iterations are performed, as in (27), this
option is not available because A is not symmetric. In
this case, a splitting strategy may be useful.

Splitting Algorithms
There is a wide variety of algorithms for splitting the
nonlinearity from the divergence constraint. Here is an



1416 Stokes or Navier-Stokes Flows

example where the divergence condition is enforced
once every other step. At step n,
1. Knowing .un�1

h ; pn�1
h / 2 Xh �Qh, compute an in-

termediate velocity .wnh; p
n
h/ 2 Xh �Qh solution of

8.vh; qh/ 2 Xh �Qh ;

1

ı t
.wnh � un�1

h ; vh/ � .pnh; div vh/�.qh; div wnh/

� ".pnh; qh/ D hf n; vhi � �.r un�1
h ;r vh/

� c.un�1
h I un�1

h ; vh/: (33)

2. Compute unh 2 Xh solution of

8vh 2 Xh ; 1
ı t
.unh � un�1

h ; vh/C �.r unh;r vh/

C c.wnhI unh; vh/ D hf n; vhi C .pnh; div vh/: (34)

The first step is fairly easy because it reduces to a
“Laplace” operator with unknown boundary conditions

and therefore can be preconditioned by a Laplace
operator, while the second step is an implicit linearized
system without constraint.

Numerical Experiments

We present here two numerical experiments of bench-
marks programmed with the software FreeFem++.
More details including scripts and plots can be found
online at http://www.ljll.math.upmc.fr/	hecht/ftp/
ECM-2013.

The Driven Cavity in a Square
We use the Taylor-Hood P2 � P1 scheme to solve the
steady Navier-Stokes equations in the square cavity
˝ D�0; 1Œ��0; 1Œ with upper boundary�1 D�0; 1Œ�f1g:

� 1

Re
� u C u � r u C r p D 0 ; div u D 0;

uj�1 D .1; 0/ ; uj@˝n�1 D .0; 0/;

Stokes or Navier-Stokes Flows, Fig. 1 From left to right: pressure at Re 9;000, adapted mesh at Re 8;000, stream function at Re
9;000. Observe the cascade of corner eddies

Stokes or Navier-Stokes Flows, Fig. 2 Von Kármán’s vortex street

http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
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with different values of Re ranging from 1 to
9;000. The discontinuity of the boundary values
at the two upper corners of the cavity produces a
singularity of the pressure. The nonlinearity is solved
by Newton’s method, the initial guess being obtained
by continuation on the Reynolds number, i.e., from
the solution computed with the previous Reynolds
number. The address of the script is cavityNewton.edp
(Fig. 1).

Flow Past an Obstacle: Von Kármán’s Vortex
Street in a Rectangle
The Taylor-Hood P2 � P1 scheme in space and
characteristics method in time are used to solve the
time-dependent Navier-Stokes equations in a rectangle
2:2 � 0:41m with a circular hole of diameter 0:1m
located near the inlet. The density � D 1:0

Kg
m3 and the

kinematic viscosity � D 10�3 m2

s . All the relevant data
are taken from the benchmark case 2D-2 that can be
found online at http://www.mathematik.tu-dortmund.
de/lsiii/cms/papers/SchaeferTurek1996.pdf. The
address of the script is at http://www.ljll.math.upmc.
fr/	hecht/ftp/ECM-2013 is NSCaraCyl-100-mpi.edp
or NSCaraCyl-100-seq.edp and func-max.idp (Fig. 2).

Bibilographical Notes

The bibliography on Stokes and Navier-Stokes equa-
tions, theory and approximation, is very extensive and
we have only selected a few references.

A mechanical derivation of the Navier-Stokes equa-
tions can be found in the book by L.D. Landau and
E.M. Lifshitz:

Fluid Mechanics, Second Edition, Vol. 6 (Course of
Theoretical Physics), Pergamon Press, 1959.

The reader can also refer to the book by C. Truesdell
and K.R. Rajagopal:

An Introduction to the Mechanics of Fluids, Model-
ing and Simulation in Science, Engineering and Tech-
nology, Birkhauser, Basel, 2000.

A thorough theory and description of finite element
methods can be found in the book by P.G. Ciarlet:

Basic error estimates for elliptic problems - Finite
Element Methods, Part 1, in Handbook of Numerical
Analysis, II, P.G. Ciarlet and J.L. Lions, eds., North-
Holland, Amsterdam, 1991.

The reader can also refer to the book by T. Oden and
J.N. Reddy:

An introduction to the mathematical theory of finite
elements, Wiley, New-York, 1976.

More computational aspects can be found in the
book by A. Ern and J.L. Guermond:

Theory and Practice of Finite Elements, AMS 159,
Springer-Verlag, Berlin, 2004.

The reader will find an introduction to the theory
and approximation of the Stokes and steady Navier-
Stokes equations, including a thorough discussion on
the inf-sup condition, in the book by V. Girault and
P.A. Raviart:

Finite Element Methods for Navier-Stokes
Equations. Theory and Algorithms, SCM 5, Springer-
Verlag, Berlin, 1986.

An introduction to the theory and approximation of
the time-dependent Navier-Stokes problem is treated in
the Lecture Notes by V. Girault and P.A. Raviart:

Finite Element Approximation of the Navier-Stokes
Equations, Lect. Notes in Math. 749, Springer-Verlag,
Berlin, 1979.

Non-conforming finite elements can be found in the
reference by M. Crouzeix and P.A. Raviart:

Conforming and non-conforming finite element
methods for solving the stationary Stokes problem,
RAIRO Anal. Numér. 8 (1973), pp. 33–76.

We also refer to the book by R. Temam:
Navier-Stokes Equations, Theory and Numerical

Analysis, North-Holland, Amsterdam, 1979.
The famous Millennium Prize Problem is described

at the URL:
http://www.claymath.org/millennium/Navier-Stokes

Equations.
The reader will find a wide range of numerical

methods for fluids in the book by O. Pironneau:
Finite Element Methods for Fluids, Wiley, 1989.

See also http://www.ljll.math.upmc.fr/	pironneau.
We also refer to the course by R. Rannacher avail-

able online at the URL:
http://numerik.iwr.uni-heidelberg.de/Oberwolfach-

Seminar/CFD-Course.pdf.
The book by R. Glowinski proposes a vey extensive

collection of numerical methods, algorithms, and ex-
periments for Stokes and Navier-Stokes equations:

Finite Element Methods for Incompressible Viscous
Flow, in Handbook of numerical analysis, IX, P.G. Cia-
rlet and J.L .Lions, eds., North-Holland, Amsterdam,
2003.

http://cavityNewton.edp
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/SchaeferTurek1996.pdf
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.ljll.math.upmc.fr/~hecht/ftp/ECM-2013
http://www.claymath.org/millennium/Navier-Stokes Equations
http://www.ljll.math.upmc.fr/~pironneau
http://numerik.iwr.uni-heidelberg.de/Oberwolfach-Seminar/CFD-Course.pdf
http://numerik.iwr.uni-heidelberg.de/Oberwolfach-Seminar/CFD-Course.pdf
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Synonyms

Middle atmosphere

Glossary

Mesosphere an atmospheric layer between approxi-
mately 50 and 100 km height

Middle atmosphere a region of the atmosphere in-
cluding the stratosphere and mesosphere

Stratosphere an atmospheric layer between approxi-
mate 12 and 50 km

Stratospheric polar vortex a strong, circumpolar
jet that forms in the extratropical stratosphere
during the winter season in each respective
hemisphere

Sudden stratospheric warming a rapid break down
of the stratospheric polar vortex, accompanied by a
sharp warming of the polar stratosphere

Tropopause boundary between the troposphere and
stratosphere, generally between 10 to 18 km.

Troposphere lowermost layer of the atmosphere,
extending from the surface to between 10 and 18
km.

Climate engineering the deliberate modification of
the Earth’s climate system, primarily aimed at re-
ducing the impact of global warming caused by
anthropogenic greenhouse gas emissions

Geoengineering see climate engineering
Quasi-biennial oscillation an oscillating pattern of

easterly and westerly jets which propagates down-
ward in the tropical stratosphere with a slightly
varying period around 28 months

Solar radiation management a form of climate en-
gineering where the net incoming solar radiation to
the surface is reduced to offset warming caused by
greenhouse gases

Definition

As illustrated in Fig. 1, the Earth’s atmosphere can
be separated into distinct regions, or “spheres,” based
on its vertical temperature structure. In the lowermost
part of the atmosphere, the troposphere, the temper-
ature declines steeply with height at an average rate
of approximately 7 ıC per kilometer. At a distinct
level, generally between 10–12 km in the extratropics
and 16–18 km in the tropics (The separation between
these regimes is rather abrupt and can be used as a
dynamical indicator delineating the tropics and ex-
tratropics.) this steep descent of temperature abruptly
shallows, transitioning to a layer of the atmosphere
where temperature is initially constant with height, and
then begins to rise. This abrupt change in the vertical
temperature gradient, denoted the tropopause, marks
the lower boundary of the stratosphere, which extends
to approximately 50 km in height, at which point the
temperature begins to fall with height again. The re-
gion above is denoted the mesosphere, extending to a
second temperature minimum between 85 and 100 km.
Together, the stratosphere and mesosphere constitute
the middle atmosphere.

The stratosphere was discovered at the dawn of the
twentieth century. The vertical temperature gradient, or
lapse rate, of the troposphere was established in the
eighteenth century from temperature and pressure mea-
surements taken on alpine treks, leading to speculation
that the air temperature would approach absolute zero
somewhere between 30 and 40 km: presumably the top
of the atmosphere. Daring hot air balloon ascents in the
late nineteenth century provided hints at a shallowing
of the lapse rate – early evidence of the tropopause –
but also led to the deaths of aspiring upper-atmosphere
meteorologists. Teisserenc de Bort [15] and Assmann
[2], working outside of Paris and Berlin, respectively,
pioneered the first systematic, unmanned balloon ob-
servations of the upper atmosphere, establishing the
distinct changes in the temperature structure that mark
the stratosphere.

Overview

The lapse rate of the atmosphere reflects the stability of
the atmosphere to vertical motion. In the troposphere,
the steep decline in temperature reflects near-neutral
stability to moist convection. This is the turbulent
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Stratosphere and Its Coupling to the Troposphere and
Beyond, Fig. 1 The vertical temperature structure of the at-
mosphere. This sample profile shows the January zonal mean
temperature at 40Å N from the Committee on Space Research
(COSPAR) International Reference Atmosphere 1986 model
(CIRA-86). The changes in temperature gradients and hence
stratification of the atmosphere reflect a difference in the dynam-
ical and radiative processes active in each layer. The heights of
the separation points (tropopause, stratopause, and mesopause)
vary with latitude and season – and even on daily time scales due
to dynamical variability – but are generally sharply defined in
any given temperature profile

weather layer of the atmosphere where air is in close
contact with the surface, with a turnover time scale on
the order of days. In the stratosphere, the near-zero or
positive lapse rates strongly stratify the flow. Here the
air is comparatively isolated from the surface of the
Earth, with a typical turnover time scale on the order
of a year or more. This distinction in stratification and
resulting impact on the circulation are reflected in the
nomenclature: the “troposphere” and “stratosphere”
were coined by Teisserenc de Bort, the former the
“sphere of change” from the Greek tropos, to turn or
whirl while the latter the “sphere of layers” from the
Latin stratus, to spread out.

In this sense, the troposphere can be thought of
as a boundary layer in the atmosphere that is well
connected to the surface. This said, it is important to
note that the mass of the atmosphere is proportional
to the pressure: the tropospheric “boundary” layer
constitutes roughly 85 % of the mass of the atmo-
sphere and contains all of our weather. The strato-
sphere contains the vast majority of the remaining
atmospheric mass and the mesosphere and layers above
just 0.1 %.

Why Is There a Stratosphere?
The existence of the stratosphere depends on the ra-
diative forcing of the atmosphere by the Sun. As the
atmosphere is largely transparent to incoming solar
radiation, the bulk of the energy is absorbed at the
surface. The presence of greenhouse gases, which
absorb infrared light, allows the atmosphere to interact
with radiation emitted by the surface. If the atmosphere
were “fixed,” and so unable to convect (described as
a radiative equilibrium), this would lead to an unsta-
ble situation, where the air near the surface is much
warmer – and so more buoyant – than that above it.
At height, however, temperature eventually becomes
isothermal, given a fairly uniform distribution of the
infrared absorber throughout the atmosphere (The sim-
plest model for this is the so-called gray radiation
scheme, where one assumes that all solar radiation
is absorbed at the surface and a single infrared band
from the Earth interacts with a uniformly distributed
greenhouse gas.).

If we allow the atmosphere to turn over in the
vertical or convect in the nomenclature of atmospheric
science, the circulation will produce to a well-mixed
layer at the bottom with near-neutral stability: the
troposphere. The energy available to the air at the
surface is finite, however, only allowing it to penetrate
so high into the atmosphere. Above the convection will
sit the stratified isothermal layer that is closer to the
radiative equilibrium: the stratosphere. This simplified
view of a radiative-convective equilibrium obscures
the role of dynamics in setting the stratification in
both the troposphere and stratosphere but conveys the
essential distinction between the layers. In this respect,
“stratospheres” are found on other planets as well,
marking the region where the atmosphere becomes
more isolated from the surface.

The increase in temperature seen in the Earth’s
stratosphere (as seen in Fig. 1) is due to the fact that
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the atmosphere does interact with the incoming solar
radiation through ozone. Ozone is produced by the
interaction between molecular oxygen and ultraviolet
radiation in the stratosphere [4] and takes over as
the dominant absorber of radiation in this band. The
decrease in density with height leads to an optimal level
for net ultraviolet warming and hence the temperature
maximum near the stratopause, which provides the
demarcation for the mesosphere above.

Absorption of ultraviolet radiation by stratospheric
ozone protects the surface from high-energy radiation.
The destruction of ozone over Antarctica by halo-
genated compounds has had significant health impacts,
in addition to damaging all life in the biosphere.
As described below, it has also had significant im-
pacts on the tropospheric circulation in the Southern
Hemisphere.

Compositional Differences
The separation in the turnover time scale between the
troposphere and stratosphere leads to distinct chemical
or compositional properties of air in these two regions.
Indeed, given a sample of air randomly taken from
some point in the atmosphere, one can easily tell
whether it came from the troposphere or the strato-
sphere. The troposphere is rich in water vapor and
reactive organic molecules, such as carbon monoxide,
which are generated by the biosphere and anthro-
pogenic activity. Stratospheric air is extremely dry,
with an average water vapor concentration of approx-
imate 3–5 parts per billion, and comparatively rich in
ozone. Ozone is a highly reactive molecule (causing
lung damage when it is formed in smog at the surface)
and does not exist for long in the troposphere.

Scope and Limitations of this Entry
Stratospheric research, albeit only a small part of the
Earth system science, is a fairly mature field covering
a wide range of topics. The remaining goal of this brief
entry is to highlight the dynamical interaction between
the stratosphere and the troposphere, with particular
emphasis on the impact of the stratosphere on surface
climate. In the interest of brevity, references have been
kept to a minimum, focusing primarily on seminal
historical papers and reviews. More detailed references
can be found in the review articles listed in further
readings.

The stratosphere also interacts with the troposphere
through the exchange of mass and trace chemical

species, such as ozone. This exchange is critical for
understanding the atmospheric chemistry in both the
troposphere and stratosphere and has significant impli-
cations for tropospheric air quality, but will not be dis-
cussed. For further information, please see two review
articles, [8] and [11]. The primary entry point for air
into the stratosphere is through the tropics, where the
boundary between the troposphere and stratosphere is
less well defined. This region is known as the tropical
tropopause layer and a review by [6] will provide the
reader an introduction to research on this topic.

Dynamical Coupling Between the
Stratosphere and Troposphere

The term “coupling” suggests interactions between
independent components and so begs the question as
to whether the convenient separation of the atmosphere
into layers is merited in the first place. The key dy-
namical distinction between the troposphere and strato-
sphere lies in the differences in their stratification and
the fact that moist processes (i.e., moist convection and
latent heat transport) are restricted to the troposphere.
The separation between the layers is partly historical,
however, evolving in response to the development of
weather forecasting and the availability of computa-
tional resources.

Midlatitude weather systems are associated with
large-scale Rossby waves, which owe their existence
to gradients in the effective rotation, or vertical com-
ponent of vorticity, of the atmosphere due to varia-
tions in the angle between the surface plain and the
axis of rotation with latitude. Pioneering work by [5]
and [10] showed that the dominant energy containing
waves in the troposphere, wavenumber roughly 4–8,
the so-called synoptic scales, cannot effectively propa-
gate into the stratosphere due the presence of easterly
winds in the summer hemisphere and strong westerly
winds in the winter hemisphere. For the purposes of
weather prediction, then, the stratosphere could largely
be viewed as an upper-boundary condition. Models
thus resolved the stratosphere as parsimoniously as
possible in order to focus numerical resources on the
troposphere. The strong winds in the winter strato-
sphere also impose a stricter Courant-Friedrichs-Lewy
condition on the time step of the model, although
more advanced numerical techniques have alleviated
this problem.
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Despite the dynamical separation for weather
system-scale waves, larger-scale Rossby waves
(wavenumber 1–3, referred to as planetary scales)
can penetrate into the winter stratosphere, allowing for
momentum exchange between the layers. In addition,
smaller-scale (on the order of 10–1,000 km) gravity
waves (Gravity waves are generated in stratified
fluids, where the restoring force is the gravitational
acceleration of fluid parcels or buoyancy. They
are completely distinct from relativistic gravity
waves.) also transport momentum between the
layers. As computation power increased, leading
to a more accurate representation of tropospheric
dynamics, it became increasingly clear that a better
representation of the stratosphere was necessary to
fully understand and simulate surface weather and
climate.

Coupling on Daily to Intraseasonal Time Scales
Weather prediction centers have found that the in-
creased representation of the stratosphere improves
tropospheric forecasts. On short time scales, however,
much of the gain comes from improvements to the tro-
pospheric initial condition. This stems from better as-
similation of satellite temperature measurements which
project onto both the troposphere and stratosphere.

The stratosphere itself has a more prominent impact
on intraseasonal time scales, due to the intrinsically
longer time scales of variability in this region of the
atmosphere. The gain in predictability, however, is con-
ditional, depending on the state of the stratosphere. Un-
der normal conditions, the winter stratosphere is very
cold in the polar regions, associated with a strong west-
erly jet, or stratospheric polar vortex. As first observed
in the 1950s [12], this strong vortex is sometimes
disturbed by the planetary wave activity propagating
below, leading to massive changes in temperature (up
to 70 ıC in a matter of days) and a reversal of the
westerly jet, a phenomenon known as a sudden strato-
spheric warming, or SSW. While the predictability of
SSWs are limited by the chaotic nature of tropospheric
dynamics, after an SSW the stratosphere remains in an
altered state for up to 2–3 months as the polar vortex
slowly recovers from the top down.

Baldwin and Dunkerton [3] demonstrated the im-
pact of these changes on the troposphere, showing that
an abrupt warming of the stratosphere is followed by an
equatorward shift in the tropospheric jet stream and as-
sociated storm track. An abnormally cold stratosphere

is conversely associated with a poleward shift in the
jet stream, although the onset of cold vortex events is
not as abrupt. More significantly, the changes in the
troposphere extend for up to 2–3 months on the slow
time scale of the stratospheric recovery, while under
normal conditions the chaotic nature of tropospheric
flow restricts the time scale of jet variations to ap-
proximately 10 days. The associated changes in the
stratospheric jet stream and tropospheric jet shift are
conveniently described by the Northern Annular Mode
(The NAM is also known as the Arctic Oscillation,
although the annular mode nomenclature has become
more prominent.) (NAM) pattern of variability.

The mechanism behind this interaction is still an
active area of research. It has become clear, however,
that key lies in the fact that the lower stratosphere
influences the formation and dissipation of synoptic-
scale Rossby waves, despite the fact that these waves
do not penetrate far into the stratosphere.

A shift in the jet stream is associated with a large-
scale rearrangement of tropospheric weather patterns.
In the Northern Hemisphere, where the stratosphere
is more variable due to the stronger planetary wave
activity (in short, because there are more continents),
an equatorward shift in the jet stream following an
SSW leads to colder, stormier weather over much of
northern Europe and eastern North America. Forecast
skill of temperature, precipitation, and wind anomalies
at the surface increases in seasonal forecasts follow-
ing an SSW. SSWs can be further differentiated into
“vortex displacements” and “vortex splits,” depending
on the dominant wavenumber (1 or 2, respectively)
involved in the breakdown of the jet, and recent work
has suggested this has an effect on the tropospheric
impact of the warming.

SSWs occur approximately every other year in the
Northern Hemisphere, although there is strong inter-
mittency: few events were observed in the 1990s, while
they have been occurring in most years in the first
decades of the twenty-first century. In the Southern
Hemisphere, the winter westerlies are stronger and less
variable – only one SSW has ever been observed, in
2002 – but predictability may be gained around the
time of the “final warming,” when the stratosphere
transitions to it’s summer state with easterly winds.
Some years, this transition is accelerated by planetary
wave dynamics, as in an SSW, while in other years it is
gradual, associated with a slow radiative relaxation to
the summer state.
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Coupling on Interannual Time Scales
On longer time scales, the impact of the stratosphere
is often felt through a modulation of the intraseasonal
coupling between the stratospheric and tropospheric
jet streams. Stratospheric dynamics play an important
role in internal modes of variability to the atmosphere-
ocean system, such as El Niño and the Southern Os-
cillation (ENSO), and in the response of the climate
system to “natural” forcing by the solar cycle and
volcanic eruptions.

The quasi-biennial oscillation (QBO) is a nearly
periodic oscillation of downward propagating easterly
and westerly tropical jets in the tropical stratosphere,
with a period of approximately 28 months. It is perhaps
the most long-lived mode of variability intrinsic to the
atmosphere alone. The QBO influences the surface by
modulating the wave coupling between the troposphere
and stratosphere in the Northern Hemisphere winter,
altering the frequency and intensity of SSWs depend-
ing on the phase of the oscillation.

Isolating the impact of the QBO has been com-
plicated by the possible overlap with the ENSO, a
coupled mode of atmosphere-ocean variability with a
time scale of approximately 3–7 years. The relatively
short observational record makes it difficult to untangle
the signals from measurements alone, and models
have only recently been able to simulate these phe-
nomenon with reasonable accuracy. ENSO is driven
by interaction between the tropical Pacific Ocean and
the zonal circulation of the tropical atmosphere (the
Walker circulation). Its impact on the extratropical
circulation in the Northern Hemisphere, however, is in
part effected through its influence on the stratospheric
polar vortex. A warm phase of ENSO is associated with
stronger planetary wave propagation into the strato-
sphere, hence a weaker polar vortex and equatorward
shift in the tropospheric jet stream.

Further complicating the statistical separation be-
tween the impacts of ENSO and the QBO is the
influence of the 11-year solar cycle, associated with
changes in the number of sunspots. While the overall
intensity of solar radiation varies less than 0.1 % of
its mean value over the cycle, the variation is stronger
in the ultraviolet part of the spectrum. Ultraviolet
radiation is primarily absorbed by ozone in the strato-
sphere, and it has been suggested that the associated
changes in temperature structure alter the planetary
wave propagation, along the lines of the influence of
ENSO and QBO.

The role of the stratosphere in the climate response
to volcanic eruptions is comparatively better under-
stood. While volcanic aerosols are washed out of the
troposphere on fairly short time scales by the hydrolog-
ical cycle, sulfate particles in the stratosphere can last
for 1–2 years. These particles reflect the incoming solar
radiation, leading to a global cooling of the surface;
following Pinatubo, the global surface cooled to 0.1–
0.2 K. The overturning circulation of the stratosphere
lifts mass up into the tropical stratosphere, transporting
it poleward where it descends in the extratropics. Thus,
only tropical eruptions have a persistent, global impact.

Sulfate aerosols warm the stratosphere, therefore
modifying the planetary wave coupling. There is some
evidence that the net result is a strengthening of the
polar vortex which in turn drives a poleward shift in
the tropospheric jets. Hence, eastern North America
and northern Europe may experience warmer winters
following eruptions, despite the overall cooling impact
of the volcano.

The Stratosphere and Climate Change
Anthropogenic forcing has changed the stratosphere,
with resulting impacts on the surface. While green-
house gases warm the troposphere, they increase the
radiative efficiency of the stratosphere, leading to a net
cooling in this part of the atmosphere. The combination
of a warming troposphere and cooling stratosphere
leads to a rise in the tropopause and may be one of
the most identifiable signatures of global warming on
the atmospheric circulation.

While greenhouse gases will have a dominant long-
term impact on the climate system, anthropogenic
emissions of halogenated compounds, such as chlo-
rofluorocarbons (CFCs), have had the strongest im-
pact on the stratosphere in recent decades. Halogens
have caused some destruction of ozone throughout the
stratosphere, but the extremely cold temperatures of the
Antarctic stratosphere in winter permit the formation
of polar stratospheric clouds, which greatly accelerate
the production of Cl and Br atoms that catalyze ozone
destruction (e.g., [14]). This led to the ozone hole,
the effective destruction of all ozone throughout the
middle and lower stratosphere over Antarctica. The
effect of ozone loss on ultraviolet radiation was quickly
appreciated, and the use of halogenated compounds
regulated and phased out under the Montreal Proto-
col (which came into force in 1989) and subsequent
agreements. Chemistry climate models suggest that
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the ozone hole should recover by the end of this
century, assuming the ban on halogenated compounds
is observed.

It was not appreciated until the first decade of
the twenty-first century, however, that the ozone hole
also has impacted the circulation of the Southern
Hemisphere. The loss of ozone leads to a cooling of
the austral polar vortex in springtime and a subsequent
poleward shift in the tropospheric jet stream. Note
that this poleward shift in the tropospheric jet in
response to a stronger stratospheric vortex mirrors
the coupling associated with natural variability in
the Northern Hemisphere. As reviewed by [16],
this shift in the jet stream has had significant
impacts on precipitation across much of the Southern
Hemisphere.

Stratospheric trends in water vapor also have the po-
tential to affect the surface climate. Despite the minus-
cule concentration of water vapor in the stratosphere
(just 3–5 parts per billion), the radiative impact of a
greenhouse gases scales logarithmically, so relatively
large changes in small concentrations can have a strong
impact. Decadal variations in stratospheric water vapor
can have an influence on surface climate comparable to
decadal changes in greenhouse gas forcing, and there is
evidence of a positive feedback of stratospheric water
vapor on greenhouse gas forcing.

The stratosphere has also been featured prominently
in the discussion of climate engineering (or geoengi-
neering), the deliberate alteration of the Earth sys-
tem to offset the consequences of greenhouse-induced
warming. Inspired by the natural cooling impact of
volcanic aerosols, the idea is to inject hydrogen sulfide
or sulfur dioxide into the stratosphere, where it will
form sulfate aerosols. To date, this strategy of the
so-called solar radiation management appears to be
among the most feasible and cost-effective means of
cooling the Earth’s surface, but it comes with many
dangers. In particular, it does not alleviate ocean acid-
ification, and the effect is short-lived – a maximum of
two years – and so would require continual action ad
infinitum or until greenhouse gas concentrations were
returned to safer levels. (In saying this, it is important
to note that the natural time scale for carbon dioxide
removal is 100,000s of years, and there are no known
strategies for accelerating CO2 removal that appear
feasible, given current technology.) In addition, the
impact of sulfate aerosols on stratospheric ozone and
the potential regional effects due to changes in the

planetary wave coupling with the troposphere are not
well understood.

Further Reading

There are a number of review papers on stratosphere-
tropospheric coupling in the literature. In particular,
[13] provides a comprehensive discussion of
stratosphere-troposphere coupling, while [7] highlights
developments in the last decade. Andrews et al.
[1] provide a classic text on the dynamics of the
stratosphere, and [9] provides a wider perspective
on the stratosphere, including the history of
field.
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Description

The computational structural dynamics is devoted to
the computation of the dynamical responses in time or
in frequency domains of complex structures, submitted
to prescribed excitations. The complex structure is
constituted of a deformable medium constituted of
metallic materials, heterogeneous composite materials,
and more generally, of metamaterials.

This chapter presents the linear dynamic analysis
for complex structures, which is the most frequent case
encountered in practice. For this situation, one of the
most efficient modeling strategy is based on a formu-
lation in the frequency domain (structural vibrations).
There are many advantages to use a frequency domain
formulation instead of a time domain formulation be-
cause the modeling can be adapted to the nature of the
physical responses which are observed. This is the rea-
son why the low-, the medium-, and the high-frequency
ranges are introduced. The different types of vibration
responses of a linear dissipative complex structure lead
us to define the frequency ranges of analysis. Let
uj .x; !/ be the Frequency Response Function (FRF) of
a component j of the displacement u.x; !/, at a fixed

point x of the structure and at a fixed circular frequency
! (in rad/s). Figure 1 represents the modulus juj .x; !/j
in log scale and the unwrapped phase 'j .x; !/ of the
FRF such that uj .x; !/ D juj .x; !/j expf�i'j .x; !/g.
The unwrapped phase is defined as a continuous func-
tion of ! obtained in adding multiples of ˙2� for
jumps of the phase angle. The three frequency ranges
can then be characterized as follows:
1. The low-frequency range (LF) is defined as the

modal domain for which the modulus of the FRF
exhibits isolated resonances due to a low modal
density of elastic structural modes. The amplitudes
of the resonances are driven by the damping and the
phase rotates of � at the crossing of each isolated
resonance (see Fig. 1). For the LF range, the strategy
used consists in computing the elastic structural
modes of the associated conservative dynamical
system and then to construct a reduced-order model
by the Ritz-Galerkin projection. The resulting ma-
trix equation is solved in the time domain or in
the frequency domain. It should be noted that sub-
structuring techniques can also be introduced for
complex structural systems. Those techniques con-
sist in decomposing the structure into substructures
and then in constructing a reduced-order model for
each substructure for which the physical degrees of
freedom on the coupling interfaces are kept.

2. The high-frequency range (HF) is defined as the
range for which there is a high modal density which
is constant on the considered frequency range. In
this HF range the modulus of the FRF varies slowly
as the function of the frequency and the phase is
approximatively linear (see Fig. 1). Presently, this
frequency range is relevant of various approaches
such as Statistical Energy Analysis (SEA), diffusion
of energy equation, and transport equation. How-
ever, due to the constant increase of computer power
and advances in modeling of complex mechanical
systems, this frequency domain becomes more and
more accessible to the computational methods.

3. For complex structures (complex geometry,
heterogeneous materials, complex junctions,
complex boundary conditions, several attached
equipments or mechanical subsystems, etc.), an
intermediate frequency range, called the medium-
frequency range (MF), appears. This MF range
does not exist for a simple structure (e.g., a simply
supported homogeneous straight beam). This MF
range is defined as the intermediate frequency range
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Structural Dynamics, Fig. 1 Modulus (left) and unwrapped phase (right) of the FRF as a function of the frequency. Definition of
the LF, MF, and HF ranges

for which the modal density exhibits large variations
over the frequency band. Due to the presence
of the damping which yields an overlapping of
elastic structural modes, the frequency response
functions do not exhibit isolated resonances, and
the phase slowly varies as a function of the
frequency (see Fig. 1). In this MF range, the
responses are sensitive to damping modeling (for
weakly dissipative structure), which is frequency
dependent, and sensitive to uncertainties. For this
MF range, the computational model is constructed
as follows: The reduced-order computational model
of the LF range can be used in (i) adapting the
finite element discretization to the MF range,
(ii) introducing appropriate damping models (due
to dissipation in the structure and to transfer of
mechanical energy from the structure to mechanical
subsystems which are not taken into account in
the computational model), and (iii) introducing
uncertainty quantification for both the system-
parameter uncertainties and the model uncertainties
induced by the modeling errors.
For sake of brevity, the case of nonlinear dynamical

responses of structures (involving nonlinear constitu-
tive equations, nonlinear geometrical effects, plays,
etc.) is not considered in this chapter (see Bibliograph-
ical comments).

Formulation in the Low-Frequency Range
for Complex Structures

We consider linear dynamics of a structure around a
position of static equilibrium taken as the reference
configuration, &, which is a three-dimensional

bounded connected domain of R
3, with a smooth

boundary @& for which the external unit normal
is denoted as n. The generic point of & is x D
.x1; x2; x3/. Let u.x; t/ D .u1.x; t/; u2.x; t/; u3.x; t//
be the displacement of a particle located at point
x in & and at a time t . The structure is assumed
to be free (�0 D ;), a given surface force field
G.x; t/ D .G1.x; t/; G2.x; t/; G3.x; t// is applied to
the total boundary � D @&, and a given body force
field g.x; t/ D .g1.x; t/; g2.x; t/; g3.x; t// is applied
in &. It is assumed that these external forces are in
equilibrium. Below, if w is any quantity depending on
x, then w;j denotes the partial derivative of w with
respect to xj . The classical convention for summations
over repeated Latin indices is also used.

The elastodynamic boundary value problem is writ-
ten, in terms of u and at time t , as

� @2t ui .x; t/ � �ij;j .x; t/ D gi .x; t/ in &; (1)

�ij .x; t/ nj .x/ D Gi.x; t/ on �; (2)

�ij;j .x;t/ D aijkh.x/ "kh.u/C bijkh.x/"kh.@tu/;

"kh.u/ D .uk;h C uh;k/=2: (3)

In (1), �.x/ is the mass density field, �ij is the Cauchy
stress tensor. The constitutive equation is defined by (3)
exhibiting an elastic part defined by the tensor aijkh.x/
and a dissipative part defined by the tensor bijkh.x/,
independent of t because the model is developed for
the low-frequency range, and ".@tu/ is the linearized
strain tensor.

Let C D .H1.&//3 be the real Hilbert space
of the admissible displacement fields, x 7! v.x/,
on &. Considering t as a parameter, the variational
formulation of the boundary value problem defined by
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(1)–(3) consists, for fixed t , in finding u.:; t/ in C, such
that

m.@2t u; v/Cd.@tu; v/C k.u; v/ D f .t I v/; 8v 2 C;
(4)

in which the bilinear formm is symmetric and positive
definite, the bilinear forms d and k are symmetric,
positive semi-definite, and are such that

m.u; v/ D
Z
&

� uj vj dx;

k.u; v/ D
Z
&

aijkh "kh.u/ "ij .v/dx; (5)

d.u; v/ D
Z
&

bijkh "kh.u/ "ij .v/dx;

f .t I v/ D
Z
&

gj .t/ vj dx C
Z
�

Gj .t/ vj ds.x/: (6)

The kernel of the bilinear forms k and d is the set of
the rigid body displacements, Crig � C of dimension 6.
Any displacement field urig in Crig is such that, for all
x in &, urig.x/ D t C � � x in which t and � are two
arbitrary constant vectors in R

3.
For the evolution problem with given Cauchy initial

conditions u.:; 0/ D u0 and @tu.:; 0/ D v0, the analysis
of the existence and uniqueness of a solution requires
the introduction of the following hypotheses: � is a
positive bounded function on &; for all x in &, the
fourth-order tensor aijkh.x/ (resp. bijkh.x/) is symmet-
ric, aijkh.x/ D aj ikh.x/ D aijhk.x/ D akhij .x/, and
such that, for all second-order real symmetric tensor
�ij , there is a positive constant c independent of x,
such that aijkh.x/ �kh �ij � c �ij �ij I the functions
aijkh and bijkh are bounded on &; finally, g and G are
such that the linear form v 7! f .t I v/ is continuous
on C. Assuming that for all v in C, t 7! f .t I v/
is a square integrable function on R. Let Cc be the
complexified vector space of C and let v be the complex
conjugate of v. Then, introducing the Fourier trans-
forms u.x; !/ D R

R
e�i!tu.x; t/ dt and f .!I v/ DR

R
e�i!tf .t I v/ dt , the variational formulation defined

by (4) can be rewritten as follows: For all fixed real
! 6D 0, find u.:; !/ with values in Cc such that

� !2 m.u; v/ C i! d.u; v/ C k.u; v/

D f .!I v/; 8v 2 Cc: (7)

The finite element discretization with n degrees of
freedom of (4) yields the following second-order dif-
ferential equation on R

n:

ŒM � RU.t/C ŒD� PU.t/C ŒK�U.t/ D F.t/; (8)

and its Fourier transform, which corresponds to the
finite element discretization of (7), yields the complex
matrix equation which is written as

.�!2 ŒM �C i! ŒD�C ŒK�/U.!/ D F.!/; (9)

in which ŒM � is the mass matrix which is a symmetric
positive definite .n� n/ real matrix and where ŒD� and
ŒK� are the damping and stiffness matrices which are
symmetric positive semi-definite .n� n/ real matrices.
Case of a fixed structure. If the structure is fixed on a
part �0 of boundary @& (Dirichlet condition u D 0 on
�0), then the given surface force field G.x; t/ is applied
to the part � D @&n�0. The space C of the admissible
displacement fields must be replaced by

C0 D fv 2 C; v D 0 on �0g: (10)

The complex vector space Cc must be replaced by the
complex vector space Cc0 which is the complexified
vector space of C0. The real matrices ŒD� and ŒK� are
positive definite.

Associated Spectral Problem and
Structural Modes

Setting � D !2, the spectral problem, associated with
the variational formulation defined by (4) or (7), is
stated as the following generalized eigenvalue prob-
lem. Find real � � 0 and u 6D 0 in C such that

k.u; v/ D �m.u; v/; 8v 2 C: (11)

Rigid body modes (solutions for � D 0). Since the
dimension of Crig is 6, then � D 0 can be consid-
ered as a “zero eigenvalue” of multiplicity 6, denoted
as ��5; : : : ; �0. Let u�5; : : : ;u0 be the corresponding
eigenfunctions which are constructed such that the
following orthogonality conditions are satisfied: for
˛ and ˇ in f�5; : : : ; 0g, m.u˛;uˇ/ D �˛ ı˛ˇ and
k.u˛;uˇ/ D 0. These eigenfunctions, called the rigid
body modes, form a basis of Crig � C and any rigid
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body displacement urig in Crig can then be expanded as
urig D P0

˛D�5 q˛ u˛ .

Elastic structural modes (solutions for � 6D 0). We
introduce the subset Celas D C n Crig. It can be shown
that C D Crig˚Celas which means that any displacement
field u in C has the following unique decomposition
u D urig C uelas with urig in Crig and uelas in Celas.
Consequently, k.uelas; velas/ defined on Celas � Celas is
positive definite and we then have k.uelas;uelas/ > 0

for all uelas 6D 0 2 Celas.

Eigenvalue problem restricted to Celas. The eigenvalue
problem restricted to Celas is written as follows: Find
� 6D 0 and uelas 6D 0 in Celas such that

k.uelas; velas/ D �m.uelas; velas/; 8velas 2 Celas:

(12)

Countable number of positive eigenvalues. It can be
proven that the eigenvalue problem, defined by (12),
admits an increasing sequence of positive eigenvalues
0 < �1 � �2 � : : : � �˛ � : : :. In addition, any
multiple positive eigenvalue has a finite multiplicity
(which means that a multiple positive eigenvalue is
repeated a finite number of times).

Orthogonality of the eigenfunctions corresponding to
the positive eigenvalues. The sequence of eigenfunc-
tions fu˛g˛ in Celas corresponding to the positive eigen-
values satisfies the following orthogonality conditions:

m.u˛;uˇ/ D �˛ ı˛ˇ; k.u˛;uˇ/ D �˛ !
2
˛ ı˛ˇ; (13)

in which !˛ D p
�˛ and where �˛ is a positive real

number depending on the normalization of eigenfunc-
tion u˛ .

Completeness of the eigenfunctions corresponding to
the positive eigenvalues. Let u˛ be the eigenfunction
associated with eigenvalue�˛ > 0. It can be shown that
eigenfunctions fu˛g˛�1 form a complete family in Celas

and consequently, an arbitrary function uelas belonging
to Celas can be expanded as uelas D PC1

˛D1 q˛ u˛ in
which fq˛g˛ is a sequence of real numbers. These
eigenfunctions are called the elastic structural modes.

Orthogonality between the elastic structural modes
and the rigid body modes. We have k.u˛;urig/ D 0

and m.u˛;urig/ D 0. Substituting urig.x/ D t C � � x
into (13) yields

Z
&

u˛.x/ �.x/ dx D 0;
Z
&

x � u˛.x/ �.x/ dx D 0;

(14)

which shows that the inertial center of the structure de-
formed under the elastic structural mode u˛ , coincides
with the inertial center of the undeformed structure.

Expansion of the displacement field using the rigid
body modes and the elastic structural modes. Any
displacement field u in C can then be written as u DP0

˛D�5 q˛ u˛ CPC1
˛D1 q˛ u˛ .

Terminology. In structural vibrations, !˛ > 0 is called
the eigenfrequency of elastic structural mode u˛ (or
the eigenmode or mode shape of vibration) whose
normalization is defined by the generalized mass �˛ .
An elastic structural mode ˛ is defined by the three
quantities f!˛;u˛; �˛g.

Finite element discretization. The matrix equation of
the generalized symmetric eigenvalue problem corre-
sponding to the finite element discretization of (11) is
written as

ŒK �U D � ŒM �U: (15)

For large computational model, this generalized eigen-
value problem is solved using iteration algorithms such
as the Krylov sequence, the Lanczos method, and the
subspace iteration method, which allows a prescribed
number of eigenvalues and associated eigenvectors to
be computed.
Case of a fixed structure. If the structure is fixed on �0,
Crig is reduced to the empty set and admissible space
Celas must be replaced by C0. In this case the eigenval-
ues are strictly positive. In addition, the property given
for the free structure concerning the inertial center of
the structure does not hold.

Reduced-Order Computational Model in
the Frequency Domain

In the frequency range, the reduced-order computa-
tional model is carried out using the Ritz-Galerkin
projection. Let CS be the admissible function space
such that CS D Celas for a free structure and CS D C0
for a structure fixed on �0. Let CS;N be the subspace
of CS , of dimension N � 1, spanned by the finite
family fu1; : : : ;uN g of elastic structural modes u˛ .
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For all fixed !, the projection uN .!/ of u.!/ on the
complexified vector space of CS;N can be written as

uN .x; !/ D
NX
˛D1

q˛.!/ u˛.x/; (16)

in which q.!/ D .q1.!/; : : : ; qN .!// is the complex-
valued vector of the generalized coordinates which
verifies the matrix equation on C

N ,

.�!2 ŒM �C i! ŒD�C ŒK �/ q.!/ D F.!/; (17)

in which ŒM �, ŒD�, and ŒK � are .N � N/ real sym-
metric positive definite matrices (for a free or a fixed
structure). Matrices ŒM� and ŒK � are diagonal and
such that

ŒM �˛ˇ D m.uˇ;u˛/ D �˛ ı˛ˇ;

ŒK �˛ˇ D k.uˇ;u˛/ D �˛ !
2
˛ı˛ˇ: (18)

The damping matrix ŒD� is not sparse (fully populated)
and the componentF˛ of the complex-valued vector of
the generalized forces F D .F1; : : : ;FN / are such that

ŒD�˛ˇ D d.uˇ;u˛/; F˛.!/ D f .!I u˛/: (19)

The reduced-order model is defined by (16)–(19).
Convergence of the solution constructed with the
reduced-order model. For all real !, (17) has a unique
solution uN .!/ which is convergent in CS when N
goes to infinity. Quasi-static correction terms can be
introduced to accelerate the convergence with respect
to N .

Remarks concerning the diagonalization of the damp-
ing operator. When damping operator is diagonalized
by the elastic structural modes, matrix ŒD� defined by
(19), is an .N � N/ diagonal matrix which can be
written as ŒD�˛ˇ D d.uˇ;u˛/ D 2�˛ !˛ 	˛ ı˛ˇ in
which �˛ and !˛ are defined by (18). The critical
damping rate 	˛ of elastic structural mode u˛ is a
positive real number. A weakly damped structure is a
structure such that 0 < 	˛ � 1 for all ˛ in f1; : : : ; N g.
Several algebraic expressions exist for diagonalizing
the damping bilinear form with the elastic structural
modes.

Bibliographical Comments

The mathematical aspects related to the variational
formulation, existence and uniqueness, and finite el-
ement discretization of boundary value problems for
elastodynamics can be found in Dautray and Lions [6],
Oden and Reddy [11], and Hughes [9]. More details
concerning the finite element method can be found
in Zienkiewicz and Taylor [14]. Concerning the time
integration algorithms in nonlinear computational dy-
namics, the readers are referred to Belytschko et al. [3],
and Har and Tamma [8]. General mechanical formula-
tions in computational structural dynamics, vibration,
eigenvalue algorithms, and substructuring techniques
can be found in Argyris and Mlejnek [1], Geradin
and Rixen [7], Bathe and Wilson [2], and Craig and
Bampton [5]. For computational structural dynamics
in the low- and the medium-frequency ranges and
extensions to structural acoustics, we refer the reader
to Ohayon and Soize [12]. Various formulations for the
high-frequency range can be found in Lyon and Dejong
[10] for Statistical Energy Analysis, and in Chap. 4 of
Bensoussan et al. [4] for diffusion of energy and trans-
port equations. Concerning uncertainty quantification
(UQ) in computational structural dynamics, we refer
the reader to Soize [13].
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Definition

A subdivision scheme is a method for generating a
continuous function from discrete data, by repeated
applications of refinement rules. A refinement rule
operates on a set of data points and generates a denser
set using local mappings. The function generated by
a convergent subdivision scheme is the limit of the
sequence of sets of points generated by the repeated
refinements.

Description

Subdivision schemes are efficient computational meth-
ods for the design, representation, and approximation
of curves and surfaces in 3D and for the generation

of refinable functions, which are instrumental in the
construction of wavelets.

The “classical” subdivision schemes are stationary
and linear, applying the same linear refinement rule at
each refinement level. The theory of these schemes is
well developed and well understood; see [2, 7, 9, 15],
and references therein.

Nonlinear schemes were designed for the approxi-
mation of piecewise smooth functions (see, e.g., [1,4]),
for taking into account the geometry of the initial
points in the design of curves/surfaces (see, e.g., [5,
8,11]), and for manifold-valued data (see, e.g., [12,14,
16]). These schemes were studied at a later stage, and
in many cases their analysis is based on their proximity
to linear schemes.

Linear Schemes
A linear refinement rule operates on a set of points in
Rd with topological relations among them, expressed
by relating the points to the vertices of a regular grid in
Rs . In the design of 3D surfaces, d D 3 and s D 2.

The refinement consists of a rule for refining the
grid and a rule for defining the new points corre-
sponding to the vertices of the refined grid. The most
common refinement is binary, and the most common
grid is Zs .

For a set of points P D fPi 2 Rd W
i 2 Zsg, related to 2�kZs , the binary refinement
rule R generates points related to 2�k�1Zs , of
the form

.RP/i D
X
j2Zs

ai�2j Pj ; i 2 Zs; (1)

with the point .RP/i related to the vertex i2�k�1. The
set of coefficients fai 2 R W i 2 Zsg is called the mask
of the refinement rule, and only a finite number of the
coefficients are nonzero, reflecting the locality of the
refinement.

When the same refinement rule is applied in all
refinement levels, the scheme is called stationary,
while if different linear refinement rules are applied
in different refinement levels, the scheme is called
nonstationary (see, e.g., [9]).

A stationary scheme is defined to be convergent (in
the L1-norm) if for any initial set of points P , there
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exists a continuous function F defined on .Rs/d such
that

lim
k!1 sup

i2Zs
jF.i2�k/� .RkP/i j D 0; (2)

and if for at least one initial set of points, F 6
 0. A
similar definition of convergence is used for all other
types of subdivision schemes, with Rk replaced by the
appropriate product of refinement rules.

Although the refinement (1) is defined on all Zs , the
finite support of the mask guarantees that the limit of
the subdivision scheme at a point is affected only by a
finite number of initial points.

When the initial points are samples of a smooth
function, the limit function of a convergent linear sub-
division scheme approximates the sampled function.
Thus, a convergent linear subdivision scheme is a linear
approximation operator.

As examples, we give two prototypes of stationary
schemes for s D 1. Each is the simplest of its kind,
converging to C1 univariate functions. The first is the
Chaikin scheme [3], called also “Corner cutting,” with
limit functions which “preserve the shape” of the initial
sets of points. The refinement rule is

.RP/2i D 3

4
Pi C 1

4
PiC1;

.RP/2iC1 D 1

4
Pi C 3

4
PiC1; i 2 Z:

(3)

The second is the 4-point scheme [6, 10], which in-
terpolates the initial set of points (and all the sets of
points generated by the scheme). It is defined by the
refinement rule

.RP/2i D Pi ; .RP/2iC1 D 9

16
.Pi C PiC1/

� 1

16
.Pi�1 C PiC2/; i 2 Z:

(4)

While the limit functions of the Chaikin scheme can
be written in terms of B-splines of degree 2, the limit
functions of the 4-point scheme for general initial sets
of points have a fractal nature and are defined only
procedurally by (4).

For the design of surfaces in 3D, s D 2 and the com-
mon grids are Z2 and regular triangulations. The latter
are refined by dividing each triangle into four equal
ones. Yet regular grids (with each vertex belonging to
four squares in the case of Z2 and to six triangles in
the case of a regular triangulation) are not sufficient for

representing surfaces of general topology, and a finite
number of extraordinary points are required [13].

The analysis on regular grids of the convergence of
a stationary linear scheme, and of the smoothness of
the generated functions, is based on the coefficients
of the mask. It requires the computation of the joint
spectral radius of several finite dimensional matrices
with mask coefficients as elements in specific positions
(see, e.g., [2]) or an equivalent computation in terms
of the Laurent polynomial a.z/ D P

i2Zs ai zi (see,
e.g., [7]).

When dealing with the design of surfaces, this
analysis applies only in all parts of the grids away
from the extraordinary points. The analysis at these
points is local [13], but rather involved. It also dictates
changes in the refinement rules that have to be made
near extraordinary points [13, 17].
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Synonyms
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Glossary/Definition Terms

Numerical computing Computing that is based on
finite precision arithmetic.

Symbolic computing Computing that uses symbols
to manipulate and solve mathematical formulas and
equations in order to obtain mathematically exact
results.

Definition

Scientific computing can be generally divided into two
subfields: numerical computation, which is based on
finite precision arithmetic (usually single or double
precision), and symbolic computing which uses sym-
bols to manipulate and solve mathematical equations
and formulas in order to obtain mathematically exact
results.

Symbolic computing, also called symbolic manip-
ulation or computer algebra system (CAS), typically
includes systems that can focus on well-defined com-
puting areas such as polynomials, matrices, abstract
algebra, number theory, or statistics (symbolic), as
well as on calculus-like manipulation such as limits,
differential equations, or integrals. A full-featured CAS
should have all or most of the listed features. There
are systems that focus only on one specific area like
polynomials – those are often called CAS too.

Some authors claim that symbolic computing and
computer algebra are two views of computing with
mathematical objects [1]. According to them, symbolic
computation deals with expression trees and addresses
problems of determination of expression equivalence,
simplification, and computation of canonical forms,
while computer algebra is more centered around the
computation of mathematical quantities in well-defined
algebraic domains. The distinction between symbolic
computing and computer algebra is often not made;
the terms are used interchangeably. We will do so in
this entry as well.

History

Algorithms for Computer Algebra [2] provides a con-
cise description about the history of symbolic compu-
tation. The invention of LISP in the early 1960s had a
great impact on the development of symbolic computa-
tion. FORTRAN and ALGOL which existed at the time
were primarily designed for numerical computation. In
1961, James Slagle at MIT (Massachusetts Institute of
Technology) wrote a heuristics-based LISP program
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for Symbolic Automatic INTegration (SAINT) [3]. In
1963, Martinus J. G. Veltman developed Schoonschip
[4, 5] for particle physics calculations. In 1966, Joel
Moses (also from MIT) wrote a program called SIN
[6] for the same purpose as SAINT, but he used a more
efficient algorithmic approach. In 1968, REDUCE [7]
was developed by Tony Hearn at Stanford University
for physics calculations. Also in 1968, a specialized
CAS called CAMAL [8] for handling Poisson series
in celestial mechanics was developed by John Fitch
and David Barton from the University of Cambridge.
In 1970, a general purposed system called REDUCE 2
was introduced.

In 1971 Macsyma [9] was developed with capa-
bilities for algebraic manipulation, limit calculations,
symbolic integration, and the solution of equations.
In the late 1970s muMATH [10] was developed by
the University of Hawaii and it came with its own
programming language. It was the first CAS to run
on widely available IBM PC computers. With the
development of computing in 1980s, more modern
CASes began to emerge. Maple [11] was introduced
by the University of Waterloo with a small compiled
kernel and a large mathematical library, thus allowing
it to be used powerfully on smaller platforms. In 1988,
Mathematica [12] was developed by Stephen Wolfram
with better graphical capabilities and integration with
graphical user interfaces. In the 1980s more and more
CASes were developed like Macaulay [13], PARI [14],
GAP [15], and CAYLEY [16] (which later became
Magma [17]). With the popularization of open-source
software in the past decade, many open-source CASes
were developed like Sage [18], SymPy [19], etc. Also,
many of the existing CASes were later open sourced;

for example, Macsyma became Maxima [20]; Scratch-
pad [21] became Axiom [22].

Overview

A common functionality of all computer algebra
systems typically includes at least the features
mentioned in the following subsections. We use SymPy
0.7.5 and Mathematica 9 as examples of doing the
same operation in two different systems, but any other
full-featured CAS can be used as well (e.g., from
the Table 1) and it should produce the same results
functionally.

To run the SymPy examples in a Python session,
execute the following first:

from sympy import *
x, y, z, n, m = symbols(’x, y, z,

n, m’)
f = Function(’f’)

To run the Mathematica examples, just execute them in
a Mathematica Notebook.

Arbitrary Formula Representation
One can represent arbitrary expressions (not just poly-
nomials). SymPy:

In [1]: (1+1/x)**x
Out[1]: (1 + 1/x)**x
In [2]: sqrt(sin(x))/z
Out[2]: sqrt(sin(x))/z

Mathematica:

In[1]:= (1+1/x)ˆx
Out[1]= (1+1/x)ˆx

Symbolic Computing, Table 1 Implementation details of various computer algebra systems

Program License Internal implementation language CAS language

Mathematica [12] Commercial C/C++ Custom
Maple [11] Commercial C/C++ custom
Symbolic MATLAB toolbox [23] Commercial C/C++ Custom
Axioma [22] BSD Lisp Custom
SymPy [19] BSD Python Python
Maxima [20] GPL Lisp Custom
Sage [18] GPL C++/Cython/Lisp Pythonb

Giac/Xcas [24] GPL C++ Custom
aThe same applies to its two forks FriCAS [25] and OpenAxiom [26]
bThe default environment in Sage actually extends the Python language using a preparser that converts things like 2ˆ3 into
Integer(2)**Integer(3), but the preparser can be turned off and one can use Sage from a regular Python session as well
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In[2]:= Sqrt[Sin[x]]/z
Out[2]= Sqrt[Sin[x]]/z

Limits
SymPy:

In [1]: limit(sin(x)/x, x, 0)
Out[1]: 1
In [2]: limit((2-sqrt(x))/(4-x),x,4)
Out[2]: 1/4

Mathematica:

In[1]:= Limit[Sin[x]/x,x->0]
Out[1]= 1
In[2]:= Limit[(2-Sqrt[x])/(4-x),x->4]
Out[2]= 1/4

Differentiation
SymPy:

In [1]: diff(sin(2*x), x)
Out[1]: 2*cos(2*x)
In [1]: diff(sin(2*x), x, 10)
Out[1]: -1024*sin(2*x)

Mathematica:

In[1]:= D[Sin[2 x],x]
Out[1]= 2 Cos[2 x]
In[2]:= D[Sin[2 x],{x,10}]
Out[2]= -1024 Sin[2 x]

Integration
SymPy:

In [1]: integrate(1/(x**2+1), x)
Out[1]: atan(x)
In [1]: integrate(1/(x**2+3), x)
Out[1]: sqrt(3)*atan(sqrt(3)*x/3)/3

Mathematica:

In[1]:= Integrate[1/(xˆ2+1),x]
Out[1]= ArcTan[x]
In[2]:= Integrate[1/(xˆ2+3),x]
Out[2]= ArcTan[x/Sqrt[3]]/Sqrt[3]

Polynomial Factorization
SymPy:

In [1]: factor(x**2*y + x**2*z
+ x*y**2 + 2*x*y*z
+ x*z**2 + y**2*z
+ y*z**2)

Out[1]: (x + y)*(x + z)*(y + z)

Mathematica:

In[1]:= Factor[xˆ2 y+xˆ2 z+x
yˆ2+2 x y z+x
zˆ2+yˆ2 z+y zˆ2]

Out[1]= (x+y) (x+z) (y+z)

Algebraic and Differential Equation Solvers
Algebraic equations, SymPy:

In [1]: solve(x**4+x**2+1, x)
Out[1]: [-1/2 - sqrt(3)*I/2, -1/2

+ sqrt(3)*I/2,
1/2 - sqrt(3)*I/2, 1/2

+ sqrt(3)*I/2]

Mathematica:

In[1]:= Reduce[1+xˆ2+xˆ4==0,x]
Out[1]= x==-(-1)ˆ(1/3)||x

==(-1)ˆ(1/3)||
x==-(-1)ˆ(2/3)||x
==(-1)ˆ(2/3)

and differential equations, SymPy:

In [1]: dsolve(f(x).diff(x, 2)
+f(x), f(x))

Out[1]: f(x) == C1*sin(x)
+ C2*cos(x)

In [1]: dsolve(f(x).diff(x, 2)
+9*f(x), f(x))

Out[1]: f(x) == C1*sin(3*x)
+ C2*cos(3*x)

Mathematica:

In[1]:= DSolve[f’’[x]+f[x]==0,f[x],x]
Out[1]= {{f[x]->C[1] Cos[x]

+C[2] Sin[x]}}
In[2]:= DSolve[f’’[x]+9 f[x]

==0,f[x],x]
Out[2]= {{f[x]->C[1] Cos[3 x]

+C[2] Sin[3 x]}}

Formula Simplification
Simplification is not a well-defined operation (i.e.,
there are many ways how to define the complexity of an
expression), but typically the CAS is able to simplify,
for example, the following expressions in an expected
way, SymPy:

In [1]: simplify(-1/(2*(x**2 + 1))
- 1/(4*(x + 1))+1/(4*(x - 1))
- 1/(x**4-1))
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Out[1]: 0

Mathematica:

In[1]:= Simplify[-1/(2(xˆ2+1))
-1/(4(x+1))+1/(4(x-1))
-1/(xˆ4-1)]

Out[1]= 0

or, SymPy:

In [1]: simplify((x - 1)/(x**2 - 1))
Out[1]: 1/(x + 1)

Mathematica:

In[1]:= Simplify[(x-1)/(xˆ2-1)]
Out[1]= 1/(1+x)

Numerical Evaluation
Exact expressions like

p
2, constants, sums, integrals,

and symbolic expressions can be evaluated to a desired
accuracy using a CAS. For example, in SymPy:

In [1]: N(sqrt(2),30)
Out[1]: 1.4142135623730950488016-

8872421
In [2]: N(Sum(1/n**n, (n,1,oo)),30)
Out[2]: 1.2912859970626635404072-

8259060

Mathematica:

In[1]:= N[Sqrt[2],30]
Out[1]= 1.4142135623730950488016-

8872421
In[2]:= N[Sum[1/nˆn,{n,1,

Infinity}],30]
Out[2]= 1.2912859970626635404072-

8259060

Symbolic Summation
There are circumstances where it is mathematically
impossible to get an explicit formula for a given sum.
When an explicit formula exists, getting the exact result
is usually desirable. SymPy:

In [1]: Sum(n, (n, 1, m)).doit()
Out[1]: m**2/2 + m/2
In [2]: Sum(1/n**6,(n,1,oo)).doit()
Out[2]: pi**6/945
In [3]: Sum(1/n**5,(n,1,oo)).doit()
Out[3]: zeta(5)

Mathematica:

In[1]:= Sum[n,{n,1,m}]
Out[1]= 1/2 m (1+m)
In[2]:= Sum[1/nˆ6,{n,1,Infinity}]
Out[2]= Piˆ6/945
In[3]:= Sum[1/nˆ5,{n,1,Infinity}]
Out[3]= Zeta[5]

Software

A computer algebra system (CAS) is typically com-
posed of a high-level (usually interpreted) language
that the user interacts with in order to perform cal-
culations. Many times the implementation of such a
CAS is a mix of the high-level language together with
some low-level language (like C or C++) for efficiency
reasons. Some of them can easily be used as a library
in user’s programs; others can only be used from the
custom CAS language.

A comprehensive list of computer algebra software
is at [27]. Table 1 lists features of several established
computer algebra systems. We have only included sys-
tems that can handle at least the problems mentioned
in the Overview section.

Besides general full-featured CASes, there exist
specialized packages, for Example, Singular [28] for
very fast polynomial manipulation or GiNaC [29] that
can handle basic symbolic manipulation but does not
have integration, advanced polynomial algorithms, or
limits. Pari [14] is designed for number theory compu-
tations and Cadabra [30] for field theory calculations
with tensors. Magma [17] specializes in algebra, num-
ber theory, algebraic geometry, and algebraic combina-
torics.

Finally, a CAS also usually contains a notebook
like interface, which can be used to enter commands
or programs, plot graphs, and show nicely format-
ted equations. For Python-based CASes, one can use
IPython Notebook [31] or Sage Notebook [18], both of
which are interactive web applications that can be used
from a web browser. C++ CASes can be wrapped in
Python, for example, GiNaC has several Python wrap-
pers: Swiginac [32], Pynac [33], etc. These can then be
used from Python-based notebooks. Mathematica and
Maple also contain a notebook interface, which accepts
the given CAS high-level language.
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Applications of Symbolic Computing

Symbolic computing has traditionally had numerous
applications. By 1970s, many CASes were used for ce-
lestial mechanics, general relativity, quantum electro-
dynamics, and other applications [34]. In this section
we present a few such applications in more detail, but
necessarily our list is incomplete and is only meant as
a starting point for the reader.

Many of the following applications and scientific
advances related to them would not be possible without
symbolic computing.

Code Generation
One of the frequent use of a CAS is to derive some
symbolic expression and then generate C or Fortran
code that numerically evaluates it in a production high-
performance code. For example, to obtain the best
rational function approximation (of orders 8, 8) to
a modified Bessel function of the first kind of half-
integer argument I9=2.x/ on an interval Œ4; 10�, one can
use (in Mathematica):

In[1]:= Needs["FunctionApproximations‘"]
In[2]:= FortranForm[HornerForm[MiniMaxApproximation[

BesselI[9/2, x]*Sqrt[Pi*x/2]/Exp[x],
{x,{4,10},8,8},WorkingPrecision->30][[2,1]]]]

Out[2]//FortranForm=
(0.000395502959013236968661582656143 +

x*(-0.001434648369704841686633794071 +
x*(0.00248783474583503473135143644434 +
x*(-0.00274477921388295929464613063609 +
x*(0.00216275018107657273725589740499 +
x*(-0.000236779926184242197820134964535 +
x*(0.0000882030507076791807159699814428 +

(-4.62078105288798755556136693122e-6 +
8.23671374777791529292655504214e-7*x)*x)))))))

/
(1. + x*(0.504839286873735708062045336271 +

x*(0.176683950009401712892997268723 +
x*(0.0438594911840609324095487447279 +
x*(0.00829753062428409331123592322788 +
x*(0.00111693697900468156881720995034 +
x*(0.000174719963536517752971223459247 +

(7.22885338737473776714257581233e-6 +
1.64737453771748367647332279826e-6*x)*x)))))))

The result can be readily used in a Fortran code (we
reformatted the white space in the output Out[2] to
better fit into the page).

Particle Physics
The application of symbolic computing in particle
physics typically involves generation and then calcu-
lation of Feynman diagrams (among other things that
involves doing fast traces of Dirac gamma matrices
and other tensor operations). The first CAS that was

designed for this task was Schoonschip [4, 5], and in
1984 FORM [35] was created as a successor. FORM
has built-in features for manipulating formulas in parti-
cle physics, but it can also be used as a general purpose
system (it keeps all expressions in expanded form, so
it cannot do factorization; it also does not have more
advanced features like series expansion, differential
equations, or integration).

Many of the scientific results in particle physics
would not be possible without a powerful CAS;
Schoonschip was used for calculating properties of the
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W boson in the 1960s and FORM is still maintained
and used to this day.

Another project is FeynCalc [36], originally written
for Macsyma (Maxima) and later Mathematica. It is a
package for algebraic calculations in elementary par-
ticle physics, among other things; it can do tensor and
Dirac algebra manipulation, Lorentz index contraction,
and generation of Feynman rules from a Lagrangian,
Fortran code generation. There are hundreds of publi-
cations that used FeynCalc to perform calculations.

Similar project is FeynArts [37], which is also a
Mathematica package that can generate and visualize
Feynman diagrams and amplitudes. Those can then be
calculated with a related project FormCalc [38], built
on top of FORM.

PyDy
PyDy, short for Python Dynamics, is a work flow
that utilizes an array of scientific tools written in the
Python programming language to study multi-body
dynamics [39]. SymPy mechanics package is used to
generate symbolic equations of motion in complex
multi-body systems, and several other scientific Python
packages are used for numerical evaluation (NumPy
[40]), visualization (Matplotlib [41]), etc. First, an ide-
alized version of the system is represented (geometry,
configuration, constraints, external forces). Then the
symbolic equations of motion (often very long) are
generated using the mechanics package and solved
(integrated after setting numerical values for the pa-
rameters) using differential equation solvers in SciPy
[42]. These solutions can then be used for simulations
and visualizations. Symbolic equation generation guar-
antees no mistakes in the calculations and makes it easy
to deal with complex systems with a large number of
components.

General Relativity
In general relativity the CASes have traditionally been
used to symbolically represent the metric tensor g��

and then use symbolic derivation to derive various
tensors (Riemann and Ricci tensor, curvature, : : :) that
are present in the Einstein’s equations [34]:

R�� � 1

2
g�� RC g��� D 8�G

c4
T�� : (1)

Those can then be solved for simple systems.

Celestial Mechanics
The equations in celestial mechanics are solved using
perturbation theory, which requires very efficient ma-
nipulation of a Poisson series [8, 34, 43–50]:

X
P.a; b; c; : : : ; h/

sin

cos
.�u C �v C � � � C �z/ (2)

where P.a; b; c; : : : ; h/ is a polynomial and each term
contains either sin or cos. Using trigonometric rela-
tions, it can be shown that this form is closed to ad-
dition, subtraction, multiplication, differentiation, and
restricted integration. One of the earliest specialized
CASes for handling Poisson series is CAMAL [8].
Many others were since developed, for example, TRIP
[43].

QuantumMechanics
Quantum mechanics is well known for many tedious
calculations, and the use of a CAS can aid in doing
them. There have been several books published with
many worked-out problems in quantum mechanics
done using Mathematica and other CASes [51, 52].

There are specialized packages for doing computa-
tions in quantum mechanics, for example, SymPy has
extensive capabilities for symbolic quantum mechanics
in the sympy.physics.quantum subpackage. At
the base level, this subpackage has Python objects to
represent the different mathematical objects relevant in
quantum theory [53]: states (bras and kets), operators
(unitary, Hermitian, etc.), and basis sets as well as
operations on these objects such as tensor products,
inner products, outer products, commutators, anticom-
mutators, etc. The base objects are designed in the
most general way possible to enable any particular
quantum system to be implemented by subclassing the
base operators to provide system specific logic. There
is a general purpose qapply function that is capable
of applying operators to states symbolically as well
as simplifying a wide range of symbolic expressions
involving different types of products and commuta-
tor/anticommutators. The state and operator objects
also have a rich API for declaring their representation
in a particular basis. This includes the ability to specify
a basis for a multidimensional system using a complete
set of commuting Hermitian operators.

On top of this base set of objects, a number of
specific quantum systems have been implemented.
First, there is traditional algebra for quantum angular
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momentum [54]. This allows the different spin
operators (Sx, Sy , Sz) and their eigenstates to be
represented in any basis and for any spin quantum
number. Facilities for Clebsch-Gordan coefficients,
Wigner coefficients, rotations, and angular momentum
coupling are also present in their symbolic and
numerical forms. Other examples of particular
quantum systems that are implemented include
second quantization, the simple harmonic oscillator
(position/momentum and raising/lowering forms), and
continuous position/momentum-based systems.

Second there is a full set of states and operators
for symbolic quantum computing [55]. Multidimen-
sional qubit states can be represented symbolically
and as vectors. A full set of one (X , Y , Z, H , etc.)
and two qubit (CNOT, SWAP, CPHASE, etc.) gates
(unitary operators) are provided. These can be repre-
sented as matrices (sparse or dense) or made to act on
qubits symbolically without representation. With these
gates, it is possible to implement a number of basic
quantum circuits including the quantum Fourier trans-
form, quantum error correction, quantum teleportation,
Grover’s algorithm, dense coding, etc.

There are other packages that specialize in quantum
computing, for example, [56].

Number Theory
Number theory provides an important base for modern
computing, especially in cryptography and coding the-
ory [57]. For example, LLL [58] algorithm is used in
integer programming; primality testing and factoring
algorithms are used in cryptography [59]. CASes are
heavily used in these calculations.

Riemann hypothesis [60, 61] which implies results
about the distribution of prime numbers has important
applications in computational mathematics since it can
be used to estimate how long certain algorithms take to
run [61]. Riemann hypothesis states that all nontrivial
zeros of the Riemann zeta function, defined for com-
plex variable s defined in the half-plane < .s/ > 1 by
the absolutely convergent series � .s/ D P1

nD1 n�s ,
have real part equal to 1

2
. In 1986, this was proven

for the first 1,500,000,001 nontrivial zeros using com-
putational methods [62]. Sebastian Wedeniwski using
ZettaGrid (a distributed computing project to find roots
of the zeta function) verified the result for the first 400
billion zeros in 2005 [63].

Teaching Calculus and Other Classes
Computer algebra systems are extremely useful for
teaching calculus [64] as well as other classes where
tedious symbolic algebra is needed, such as many
physics classes (general relativity, quantum mechanics
and field theory, symbolic solutions to partial dif-
ferential equations, e.g., in electromagnetism, fluids,
plasmas, electrical circuits, etc.) [65].

Experimental Mathematics
One field that would not be possible at all without com-
puter algebra systems is called “experimental mathe-
matics” [66], where CASes and related tools are used
to “experimentally” verify or suggest mathematical
relations. For example, the famous Bailey–Borwein–
Plouffe (BBP) formula

� D
1X
kD0

�
1

16k

�
4

8k C 1
� 2

8k C 4

� 1

8k C 5
� 1

8k C 6

�	
(3)

was first discovered experimentally (using arbitrary-
precision arithmetic and extensive searching using an
integer relation algorithm), only then proved rigorously
[67].

Another example is in [68] where the authors first
numerically discovered and then proved that for ratio-
nal x, y, the 2D Poisson potential function satisfies

 .x; y/ D 1

�2

X
a;b odd

cos.a�x/ cos.b�y/

a2 C b2
D 1

�
log˛

(4)

where ˛ is algebraic (a root of an integer polynomial).
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31. Pérez, F., Granger, B.E.: IPython: a system for interactive
scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007)

32. Swiginac, Python interface to GiNaC: http://sourceforge.
net/projects/swiginac.berlios/ (2015)

33. Pynac, derivative of GiNaC with Python wrappers: http://
pynac.org/ (2015)

34. Barton, D., Fitch, J.P.: Applications of algebraic manipula-
tion programs in physics. Rep. Prog. Phys. 35(1), 235–314
(1972)

35. Vermaseren, J.A.M.: New features of FORM. Math. Phys.
e-prints (2000). ArXiv:ph/0010025
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Synonyms

Time reversible

Definition

This entry is concerned with symmetric methods for
solving ordinary differential equations (ODEs) of the
form

Py D f .y/ 2 R
n; y.0/ D y0: (1)

Throughout this article, we denote by 't;f .y0/ the flow
of equation (1) with vector field f , i.e., the exact
solution at time t with initial condition y.0/ D y0,
and we assume that the conditions for its well defi-
niteness and smoothness for .y0; jt j/ in an appropriate
subset˝ of Rn �RC are satisfied. Numerical methods
for (1) implement numerical flows ˚h;f which, for
small enough stepsizes h, approximate 'h;f . Of central
importance in the context of symmetric methods is the
concept of adjoint method.

Definition 1 The adjoint method˚�
h;f is the inverse of

˚t;f with reversed time step �h:

˚�
h;f WD ˚�1�h;f (2)

A numerical method ˚h is then said to be symmetric if
˚h;f D ˚�

h;f .

Overview

Symmetry is an essential property of numerical meth-
ods with regard to the order of accuracy and geometric
properties of the solution. We briefly discuss the im-
plications of these two aspects and refer to the corre-
sponding sections for a more involved presentation:
• A method ˚h;f is said to be of order p if

˚h;f .y/ D 'h;f .y/C O.hpC1/;
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˚h;f

and, if the local error has the following first-term
expansion

˚h;f .y/ D 'h;f .y/C hpC1C.y/C O.hpC2/;

then straightforward application of the implicit func-
tion theorem leads to

˚�
h;f .y/ D 'h;f .y/ � .�h/pC1C.y/C O.hpC2/:

This implies that a symmetric method is necessarily
of even order p D 2q, since ˚h;f .y/ D ˚�

h;f .y/

means that .1 C .�1/pC1/C.y/ D 0. This property
plays a key role in the construction of composition
methods by triple jump techniques (see section on
“Symmetric Methods Obtained by Composition”), and
this is certainly no coincidence that Runge-Kutta meth-
ods of optimal order (Gauss methods) are symmetric
(see section on “Symmetric Methods of Runge-Kutta
Type”). It also explains why symmetric methods are
used in conjunction with (Richardson) extrapolation
techniques.
• The exact flow 't;f is itself symmetric owing to

the group property 'sCt;f D 's;f ı 't;f . Consider
now an isomorphism � of the vector space R

n (the
phase space of (1)) and assume that the vector field
f satisfies the relation � ıf D �f ı � (see Fig. 1).
Then, 't;f is said to be �-reversible, that is it to say
the following equality holds:

� ı 't;f D '�1
t;f ı � (3)

Example 1 Hamiltonian systems

Py D @H

@z
.y; z/

Pz D �@H
@y
.y; z/

with a Hamiltonian function H.q; p/ satisfying
H.y;�z/ D H.y; z/ are �-reversible for �.y; z/ D
.y;�z/.

Definition 2 A method ˚h, applied to a �-reversible
ordinary differential equation, is said to be �-reversible
if

� ı ˚h;f D ˚�1
h;f ı �:

Note that if ˚h;f is symmetric, it is �-reversible if and
only if the following condition holds:

� ı ˚h;f D ˚�h;f ı �: (4)

Besides, if (4) holds for an invertible �, then ˚h;f is
�-reversible if and only if it is symmetric.

Example 2 The trapezoidal rule, whose flow is defined
by the implicit equation

˚h;f .y/ D y C hf

�
1

2
y C 1

2
˚h;f .y/

�
; (5)

is symmetric and is �-reversible when applied to
�-reversible f .

Since most numerical methods satisfy relation (4),
symmetry is the required property for numerical meth-
ods to share with the exact flow not only time re-
versibility but also �-reversibility. This illustrates that a
symmetric method mimics geometric properties of
the exact flow. Modified differential equations sustain
further this assertion (see next section) and allow for
the derivation of deeper results for integrable reversible
systems such as the preservation of invariants and
the linear growth of errors by symmetric meth-
ods (see section on “Reversible Kolmogorov-Arnold–
Moser Theory”).

Modified Equations for Symmetric
Methods

Constant stepsize backward error analysis. Con-
sidering a numerical method ˚h (not necessarily sym-
metric) and the sequence of approximations obtained
by application of the formula ynC1 D ˚h;f .yn/; n D
0; 1; 2; : : :, from the initial value y0, the idea of back-
ward error analysis consists in searching for a modified
vector field f N

h such that

'h;f Nh
.y0/ D ˚h;f .y0/C O.hNC2/; (6)
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where the modified vector field, uniquely defined by a
Taylor expansion of (6), is of the form

f N
h .y/ D f .y/Chf1.y/Ch2f2.y/C : : :ChNfN .y/:

(7)

Theorem 1 The modified vector field of a symmetric
method ˚h;f has an expansion in even powers of h,
i.e., f2jC1 
 0 for j D 0; 1; : : : Moreover, if f and
˚h;f are �-reversible, then f N

h is �-reversible as well
for any N � 0.

Proof. Reversing the time step h in (6) and taking the
inverse of both sides, we obtain

.'�h;f N
�h
/�1.y0/ D .˚�h;f /�1.y0/C O.hNC2/:

Now, the group property of exact flows implies that
.'�h;f N

�h
/�1.y0/ D 'h;f N

�h
.y0/, so that

'h;f N
�h
.y0/ D ˚�

h;f .y0/C O.hNC2/;

and by uniqueness, .f N
h /

� D f N�h. This proves the
first statement. Assume now that f is �-reversible, so
that (4) holds. It follows from f N�h D f N

h that

� ı '�h;f Nh D � ı '�h;f N
�h

O.hNC2/D � ı ˚�h;f

D ˚h;f ı � O.hNC2/D 'h;f Nh
ı �;

where the second and last equalities are valid up to
O.hNC2/-error terms. Yet the group property then
implies that � ı '�nh;f Nh D 'nh;f Nh

ı � C On.h
NC2/

where the constant in the On-term depends on n and
an interpolation argument shows that for fixed N and
small jt j

� ı '�t;f Nh D 't;f Nh
ı �C O.hNC1/;

where the O-term depends smoothly on t and on N .
Finally, differentiating with respect to t , we obtain

�� ı f N
h D d

dt
� ı '�t;f Nh

ˇ̌
ˇ̌
tD0

D d

dt
't;f Nh

ı �
ˇ̌
ˇ̌
tD0

CO.hNC2/ D f N
h ı � C O.hNC1/;

and consequently �� ı f N
h D f N

h ı �. ut

Remark 1 The expansion (7) of the modified vector
field f N

h can be computed explicitly at any order N
with the substitution product of B-series [2].

Example 3 Consider the Lotka-Volterra equations in
Poisson form

� Pu
Pv
�

D
�

0 uv
�uv 0

��ruH.u; v/
rvH.u; v/

�
;

H.u; v/ D log.u/C log.v/ � u � v;

i.e., y0 D f .y/ with f .y/ D .u.1 � v/; v.u � 1//T .
Note that � ı f D �f ı � with �.u; v/ D .v; u/.
The modified vector fields f 2

h;iE for the implicit Euler
method and f 2

h;mr for the implicit midpoint rule read
(with N D 2)

f 2
h;iE D f C 1

2
hf 0f C h2

12
f 00.f; f /C h2

3
f 0f 0f

and f 2
h;mr D f � h2

24
f 00.f; f /C h2

12
f 0f 0f:

The exact solutions of the modified ODEs are plotted
on Fig. 2 together with the corresponding numerical
solution. Though the modified vector fields are trun-
cated only at second order, the agreement is excellent.
The difference of the behavior of the two solutions is
also striking: only the symmetric method captures the
periodic nature of the solution. (The good behavior of
the midpoint rule cannot be attributed to its symplectic-
ity since the system is a noncanonical Poisson system.)
This will be further explored in the next section.

Variable stepsize backward error analysis. In prac-
tice, it is often fruitful to resort to variable stepsize
implementations of the numerical flow ˚h;f . In ac-
cordance with [17], we consider stepsizes that are
proportional to a function �s.y; �/ depending only on
the current state y and of a parameter � prescribed
by the user and aimed at controlling the error. The
approximate solution is then given by

ynC1 D ˚�s.yn;�/;f .yn/; n D 0; : : : :

A remarkable feature of this algorithm is that it pre-
serves the symmetry of the exact solution as soon as
˚h;f is symmetric and s satisfies the relation

s.˚�s.y;�/;f .y/;��/ D s.y; �/
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and preserves the �-reversibility as soon as ˚h;f is
�-reversible and satisfies the relation

s.��1 ı ˚�s.y;�/;f .y/;��/ D s.y; �/:

A result similar to Theorem 1 then holds with h

replaced by �.

Remark 2 A recipe to construct such a function s,
suggested by Stoffer in [17], consists in requiring that
the local error estimate is kept constantly equal to a
tolerance parameter. For the details of the implementa-
tion, we refer to the original paper or to Chap. VIII.3
of [10].

Reversible Kolmogorov-Arnold-Moser
Theory

The theory of integrable Hamiltonian systems has its
counterpart for reversible integrable ones. A reversible
system

Py D f .y; z/; Pz D g.y; z/ where � ı .f; g/

D �.f; g/ ı � with �.y; z/ D .y;�z/; (8)

is reversible integrable if it can be brought, through a
reversible transformation .a; �/ D .I.y; z/;‚.y; z//,
to the canonical equations

Pa D 0; P� D !.a/:

An interesting instance is the case of completely inte-
grable Hamiltonian systems:

Py D @H

@z
.y; z/; Pz D �@H

@y
.y; z/;

with first integrals Ij ’s in involution (That is to say
such that .ryIi / � .rzIj / D .rzIi / � .ryIj / for all i; j .)
such that Ij ı � D Ij . In the conditions where Arnold-
Liouville theorem (see Chap. X.1.3. of [10]) can be
applied, then, under the additional assumption that

9.y�; 0/ 2 f.y; z/;8j; Ij .y; z/ D Ij .y0; z0/g; (9)

such a system is reversible integrable. In this situation,
�-reversible methods constitute a very interesting way
around symplectic method, as the following result
shows:

Theorem 2 Let ˚h;.f;g/ be a reversible numerical
method of order p applied to an integrable reversible
system (8) with real-analytic f and g. Consider
a
 D .I1.y


; z
/; : : : ; Id .y
; z
//: If the condition

8k 2 Z
d =f0g; jk � !.a
/j � �

 
dX
iD1

jki j
!��

is satisfied for some positive constants � and �, then
there exist positive C , c, and h0 such that the following
assertion holds:
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8h � h0;8.x0; y0/ such that max
jD1;:::;d jIj .y0; z0/� a
j � cj log hj���1; (10)

8t D nh � h�p;
(

k˚n
h;.f;g/.x0; y0/ � .y.t/; z.t//k � C thp

jIj .˚n
h;.f;g/.y0; z0// � Ij .y0; z0/j � Chp for all j:

Analogously to symplectic methods, �-reversible
methods thus preserve invariant tori Ij D cst over
long intervals of times, and the error growth is linear
in t . Remarkably and in contrast with symplectic
methods, this result remains valid for reversible
variable stepsize implementations (see Chap. X.I.3
of [10]). However, it is important to note that for a
Hamiltonian reversible system, the Hamiltonian ceases
to be preserved when condition (9) is not fulfilled. This
situation is illustrated on Fig. 3 for the Hamiltonian
system with H.q; p/ D 1

2
p2 C cos.q/C 1

5
sin.2q/, an

example borrowed from [4].

Symmetric Methods of Runge-Kutta Type

Runge-Kutta methods form a popular class of numer-
ical integrators for (1). Owing to their importance
in applications, we consider general systems (1) and
subsequently partitioned systems.

Methods for general systems. We start with the
following:

Definition 3 Consider a matrix A D .ai;j / 2 R
s � R

s

and a vector b D .bj / 2 R
s . The Runge-Kutta method

denoted .A; b/ is defined by

Yi D y C h

sX
jD1

ai;j f .Yj /; i D 1; : : : ; s (11)

Qy D y C h

sX
jD1

bj f .Yj /: (12)

Note that strictly speaking, the method is properly de-
fined only for small jhj. In this case, the corresponding
numerical flow ˚h;f maps y to Qy. Vector Yi approxi-
mates the solution at intermediate point t0Ccih, where
ci D P

j ai;j , and it is customary since [1] to represent
a method by its tableau:

c1 a1;1 : : : a1;s
:::

:::
:::

cs as;1 : : : as;s
b1 : : : bs

(13)

Runge-Kutta methods automatically satisfy the
�-compatibility condition (4): changing h into �h
in (11) and (12), we have indeed by linearity of �
and by using � ı f D �f ı �

�.Yi/ D �.y/� h

sX
jD1

ai;j f


�.Yj /

�
; i D 1; : : : ; s

�. Qy/ D �.y/� h

sX
jD1

bj f


�.Yj /

�
:

By construction, this is �.˚�h;f .y// and by previous
definition ˚h;f .�.y//. As a consequence, �-reversible
Runge-Kutta methods coincide with symmetric meth-
ods. Nevertheless, symmetry requires an additional
algebraic condition stated in the next theorem:

Theorem 3 A Runge-Kutta method .A; b/ is symmet-
ric if

PACAP D ebT and b D Pb; (14)

where e D .1; : : : ; 1/T 2 R
s and P is the permutation

matrix defined by pi;j D ıi;sC1�j .

Proof. Denoting Y D


Y T1 ; : : : ; Y

T
s

�T
and F.Y / D


f .Y1/
T ; : : : ; f .Ys/

T
�T

, a more compact form

for (11) and (12) is

Y D e ˝ y C h.A˝ I /F.Y /; (15)

Qy D y C h.bT ˝ I /F.Y /: (16)
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On the one hand, premultiplying (15) by P ˝ I and
noticing that

.P ˝ I /F.Y / D F


.P ˝ I /Y

�
;

it is straightforward to see that ˚h;f can also be
defined by coefficients PAPT and Pb. On the other
hand, exchanging h and �h, y, and Qy, it appears that
˚�
h;f is defined by coefficients A� D ebT � A and

b� D b. The flow ˚h;f is thus symmetric as soon as
ebT � A D PAP and b D Pb, which is nothing but
condition (14). ut

Remark 3 For methods without redundant stages, con-
dition (14) is also necessary.

Example 4 The implicit midpoint rule, defined byA D
1
2

and b D 1, is a symmetric method of order 2. More
generally, the s-stage Gauss collocation method based
on the roots of the sth shifted Legendre polynomial is
a symmetric method of order 2s. For instance, the 2-
stage and 3-stage Gauss methods of orders 4 and 6 have
the following coefficients:

1
2

�
p
3
6

1
4

1
4

�
p
3
6

1
2

C
p
3
6

1
4

C
p
3
6

1
4

1
2

1
2

1
2

�
p
15
10

5
36

2
9

�
p
15
15

5
36

�
p
15
30

1
2

5
36

C
p
15
24

2
9

5
36

�
p
15
24

1
2

C
p
15
10

5
36

C
p
15
30

2
9

C
p
15
15

5
36

5
18

4
9

5
18

(17)

Methods for partitioned systems. For systems of the
form

Py D f .z/; Pz D g.y/; (18)

it is natural to apply two different Runge-Kutta meth-
ods to variables y and z: Written in compact form, a
partitioned Runge-Kutta method reads:

Y D e ˝ y C h.A˝ I /F.Z/;

Z D e ˝ y C h. OA˝ I /G.Y /;

Qy D y C h.bT ˝ I /F.Z/;

Qz D y C h. ObT ˝ I /G.Y /;

and the method is symmetric if both .A; b/ and . OA; Ob/
are. An important feature of partitioned Runge-Kutta
method is that they can be symmetric and explicit for
systems of the form (18).

Example 5 The Verlet method is defined by the fol-
lowing two Runge-Kutta tableaux:
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0 0 0

1 1
2

1
2

1
2

1
2

and

1
2

1
2

0

1
2

1
2

0

1
2

1
2

(19)

The method becomes explicit owing to the special
structure of the partitioned system:

Y1 D y0; Z1 D z0 C h
2
f .Y1/;

Y2 D y0 C hg.Z1/; Z2 D Z1;

y1 D Y2; z1 D z0C h
2



f .Y1/Cf .Y2/

�

The Verlet method is the most elementary method of
the class of partitioned Runge-Kutta methods known
as Lobatto IIIA-IIIB. Unfortunately, methods of higher
orders within this class are no longer explicit in gen-
eral, even for the equations of the form (18). It is
nevertheless possible to construct symmetric explicit
Runge-Kutta methods, which turn out to be equivalent
to compositions of Verlet’s method and whose intro-
duction is for this reason postponed to the next section.

Note that a particular instance of partitioned sys-
tems are second-order differential equations of the
form

Py D z; Pz D g.y/; (20)

which covers many situations of practical interest (for
instance, mechanical systems governed by Newton’s
law in absence of friction).

Symmetric Methods Obtained by
Composition

Another class of symmetric methods is constituted of
symmetric compositions of low-order methods. The
idea consists in applying a basic method ˚h;f with a
sequence of prescribed stepsizes: Given s real numbers
�1; : : : ; �s , its composition with stepsizes �1h; : : : ; �sh
gives rise to a new method:

‰h;f D ˚�sh;f ı : : : ı ˚�1h;f : (21)

Noticing that the local error of ‰h;f , defined by
‰h;f .y/� 'h;f .y/, is of the form

.�
pC1
1 C : : :C �pC1

s /hpC1C.y/C O.hpC2/;

as soon as �1 C : : : C �s D 1, ‰h;f is of order at least
p C 1 if

�
pC1
1 C : : :C �pC1

s D 0:

This observation is the key to triple jump compositions,
as proposed by a series of authors [3,5,18,21]: Starting
from a symmetric method ˚h;f of (even) order 2q, the
new method obtained for

�1 D �3 D 1

2 � 21=.2qC1/ and

�2 D 21=.2qC1/

2� 21=.2qC1/

is symmetric

‰�
h;f D ˚�

�1h;f
ı ˚�

�2h;f
ı ˚�

�3h;f

D ˚�3h;f ı ˚�2h;f ı ˚�1h;f D ‰h;f

and of order at least 2q C 1. Since the order of a
symmetric method is even, ‰h;f is in fact of order
2qC2. The procedure can then be repeated recursively
to construct arbitrarily high-order symmetric methods
of orders 2qC2, 2qC4, 2qC6, : : :., with respectively
3, 9, 27, : : :, compositions of the original basic method
˚h;f . However, the construction is far from being the
most efficient, for the combined coefficients become
large, some of which being negatives. A partial remedy
is to envisage compositions with s D 5. We hereby give
the coefficients obtained by Suzuki [18]:

�1 D �2 D �4 D �5 D 1

4 � 41=.2qC1/ and

�3 D � 41=.2qC1/

4 � 41=.2qC1/

which give rise to very efficient methods for q D 1

and q D 2. The most efficient high-order composition
methods are nevertheless obtained by solving the full
system of order conditions, i.e., by raising the order di-
rectly from 2 to 8, for instance, without going through
the intermediate steps described above. This requires
much more effort though, first to derive the order
conditions and then to solve the resulting polynomial
system. It is out of the scope of this article to describe
the two steps involved, and we rather refer to the paper
[15] on the use of 1B-series for order conditions
and to Chap. V.3.2. of [10] for various examples and
numerical comparisons. An excellent method of order
6 with 9 stages has been obtained by Kahan and Li [12]
and we reproduce here its coefficients:
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�1 D �9 D 0:3921614440073141;

�2 D �8 D 0:3325991367893594;

�3 D �7 D �0:7062461725576393;
�4 D �6 D 0:0822135962935508;

�5 D 0:7985439909348299:

For the sake of illustration, we have computed the
solution of Kepler’s equations with this method and
the method of order 6 obtained by the triple jump
technique. In both cases, the basic method is Verlet’s
scheme. The gain offered by the method of Kahan and
Li is impressive (it amounts to two digits of accuracy
on this example). Other methods can be found, for
instance, in [10, 14].

Remark 4 It is also possible to consider symmetric
compositions of nonsymmetric methods. In this situa-
tion, raising the order necessitates to compose the basic
method and its adjoint.

Symmetric Methods for Highly Oscillatory
Problems

In this section, we present methods aimed at solving
problems of the form

Rq D �rVfast .q/ � rVslow.q/ (22)

where Vfast and Vslow are two potentials acting on
different time scales, typically such that r2Vfast is
positive semi-definite and kr2Vfastk >> kr2Vslowk.
Explicit standard methods suffer from severe stability
restrictions due to the presence of high oscillations
at the slow time scale and necessitate small steps
and many evaluations of the forces. Since slow forces
�rVslow are in many applications much more expen-
sive to evaluate than fast ones, efficient methods in this
context are thus devised to require significantly fewer
evaluations per step of the slow force.

Example 6 In applications to molecular dynamics, for
instance, fast forces deriving from Vfast (short-range
interactions) are much cheaper to evaluate than slow
forces deriving from Vslow (long-range interactions).
Other examples of applications are presented in [11].

Methods for general problems with nonlinear fast
potentials. Introducing the variable p D Pq in (22),
the equation reads

� Pq
Pp
�

„ƒ‚…
Py

D
�
p

0

�

„ƒ‚…
fK.y/

C
�

0

�rqVfast .q/

�

„ ƒ‚ …
fF .y/
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C
�

0

�rqVslow.q/

�

„ ƒ‚ …
fS .y/

:

The usual Verlet method [20] would consist in compos-
ing the flows 'h;.fF CfS / and 'h;fK as follows:

'h
2 ;.fF CfS / ı 'h;fK ı 'h

2 ;.fF CfS /

or, if necessary, numerical approximations thereof and
would typically be restricted to very small stepsizes.
The impulse method [6,8,19] combines the three pieces
of the vector field differently:

'h
2 ;fS

ı 'h;.fKCfF / ı 'h
2 ;fS

:

Note that 'h;fS is explicit

'h;fS

�
q

p

�
D
�

q

p � hrqVslow.q/

�

while 'h;.fKCfF / may require to be approximated by a
numerical method˚h;.fKCfF / which uses stepsizes that
are fractions of h. If ˚h;.fKCfF / is symmetric (and/or
symplectic), the overall method is symmetric as well

(and/or symplectic) and allows for larger stepsizes.
However, it still suffers from resonances and a better
option is given by the mollified impulse methods,
which considers the mollified potential NVslow.q/ D
Vslow.a.q// in loco of Vslow.q/, where a.q/ and a0.q/
are averaged values given by

a.q/ D 1

h

Z h

0

x.s/ds; a0.q/ D 1

h

Z h

0

X.s/ds

where

Rx D �rVfast .x/; x.0/ D q; Px.0/ D p;

RX D �r2Vfast .x/X;X.0/ D I; PX.0/ D 0: (23)

The resulting method uses the mollified force
�a0.q/T .rqVslow/.a.q// and is still symmetric (and/or
symplectic) provided (23) is solved with a symmetric
(and/or symplectic) method.

Methods for problems with quadratic fast poten-
tials. In many applications of practical importance,
the potential Vfast is quadratic of the form Vfast .q/ D
1
2
qT˝2q. In this case, the mollified impulse method

falls into the class of trigonometric symmetric methods
of the form

ˆh

�
p

q

�
D R.h˝/

�
p

q

�
� 1

2
h

0
@ 0.h˝/rVslow



�.h˝/q0

�
C  1.h˝/rVslow



�.h˝/q1

�

h .h˝/rVslow



�.h˝/q0

�
1
A

where R.h˝/ is the block matrix given by

R.h˝/ D
�

cos.h˝/ �˝ sin.h˝/
˝�1 sin.h˝/ cos.h˝/

�

and the functions �,  ,  0 and  1 are even functions
such that

 .z/ D sin.z/

z
 1.z/;  0.z/ D cos.z/ 1.z/; and

 .0/ D �.0/ D 1:

Various choices of functions  and � are possible
and documented in the literature. Two particularly

interesting ones are  .z/ D sin2.z/
z2

, �.z/ D 1 (see [9])

or  .z/ D sin3.z/
z3

, �.z/ D sin.z/
z (see [7]).

Conclusion

This entry should be regarded as an introduction to the
subject of symmetric methods. Several topics have not
been exposed here, such as symmetric projection for
ODEs on manifolds, DAEs of index 1 or 2, symmet-
ric multistep methods, symmetric splitting methods,
and symmetric Lie-group methods, and we refer the
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interested reader to [10, 13, 16] for a comprehensive
presentation of these topics.
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Symmetries and FFT
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Synonyms

Fourier transform; Group theory; Representation the-
ory; Symmetries

Synopsis

The fast Fourier transform (FFT), group theory, and
symmetry of linear operators are mathematical topics
which all connect through group representation theory.
This entry provides a brief introduction, with emphasis
on computational applications.

Symmetric FFTs

The finite Fourier transform maps functions on a pe-
riodic lattice to a dual Fourier domain. Formally, let
Zn D Zn1 � Zn2 � � � � � Zn` be a finite abelian
(commutative) group, where Znj is the cyclic group
Znj D f0; 1; : : : ; nj �1g with group operation C.mod
nj / and n D .n1; : : : ; n`/ is a multi-index with
jnj D n1n2 � � �n`. Let CZn denote the linear space
of complex-valued functions on Zn. The primal do-
main Zn is an `-dimensional lattice periodic in all
directions, and the Fourier domain is bZn D Zn (this
is the Pontryagin dual group [12]). For infinite abelian
groups, the primal and Fourier domains in general dif-
fer, such as Fourier series on the circle where bR=Z D
Z. The discrete Fourier transform (DFT) is an (up to
scaling) unitary map F WCZn ! CbZn. Letting F.f / 
bf , we have
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bf .k/ D
X
j2Zn

f .j/e2�i


k1j1
n1

C���C k`j`
n`

�
;

for k D .k1; : : : ; k`/ 2 bZn, (1)

f .j/ D 1

jnj
X
k2bZn

bf .k/e�2�i


k1j1
n1

C���C k`j`
n`

�
;

for j D .j1; : : : ; j`/ 2 Zn. (2)

A symmetry for a function f 2 CZn is an R-linear
map S WCZn ! CZn such that Sf D f . As examples,
consider real symmetry SRf .j/ D f .j/, even sym-
metry Sef .j/ D f .�j/ and odd symmetry Sof .j/ D
�f .�j/. If f has a symmetry S , then bf has an adjoint
symmetry bS D FSF�1, example bSe D Se, bSo D So

and cSRbf .k/ D bf .�k/. The set of all symmetries
of f forms a group, i.e., the set of symmetries is
closed under composition and inversion. Equivalently,
the symmetries can be specified by defining an abstract
group G and a map RWG ! LinR.CZn/, which for
each g 2 G defines an R-linear map R.g/ on CZn,
such that R.gg0/ D R.g/R.g0/ for all g; g0 2 G. R is
an example of a real representation of G.

The DFT on Zn is computed by the fast Fourier
transform (FFT), costing O.jnj log.jnj// floating point
operations. It is possible to exploit may symmetries in
the computation of the FFT, and for large classes of
symmetry groups, savings a factor jGj can be obtained
compared to the nonsymmetric FFT.

Equivariant Linear Operators and the GFT

Representations
Let G be a finite group with jGj elements. A dR-
dimensional unitary representation of G is a map
RWG ! U.dR/ such that R.gh/ D R.g/R.h/ for
all g; h 2 G, where U.dR/ is the set of dR � dR
unitary matrices. More generally, a representation is
a linear action of a group on a vector space. Two
representations R and eR are equivalent if there exists
a matrix X such that eR.g/ D XR.g/X�1 for all
g 2 G. A representation R is reducible if it is equiv-
alent to a block diagonal representation; otherwise it
is irreducible. For any finite group G, there exists a
complete list of nonequivalent irreducible representa-
tions R D f�1; �2; : : : ; �ng, henceforth called irreps,

such that
P

�2R d2� D jGj. For example, the cyclic
group Zn D f0; 1; : : : ; r � 1g with group operation
C.modn/ has exactly n 1-dimensional irreps given as
�k.j / D exp.2�ikj=n/. A matrix A is equivariant
with respect to a representation R of a group G if
AR.g/ D R.g/A for all g 2 G. Any representation
R can be block diagonalized, with irreducible repre-
sentations on the diagonal. This provides a change of
basis matrix F such that FAF �1 is block diagonal
for any R-equivariant A. This result underlies most of
computational Fourier analysis and will be exemplified
by convolutional operators.

Convolutions in the Group Algebra
The group algebra CG is the complex jGj-dimensional
vector space where the elements ofG are the basis vec-
tors; equivalently CG consists of all complex-valued
functions on G. The product in G extends linearly to
the convolution product WCG � CG ! CG, given
as .a  b/.g/ D P

h2G a.h/b.h�1g/ for all g 2 G.
The right regular representation of G on CG is, for
every h 2 G, a linear map R.h/WCG ! CG given
as right translation R.h/a.g/ D a.gh/. A linear map
AWCG ! CG is convolutional (i.e., there exists an
a 2 CG such that Ab D a  b for all b 2 CG) if and
only if A is equivariant with respect to the right regular
representation.

The Generalized Fourier Transform (GFT)
The generalized Fourier transform [6, 10] and the
inverse are given as

ba.�/ D
X
g2G

a.g/�.g/ 2 C
d��d� ; for all � 2 R (3)

a.g/ D 1

jGj
X
�2R

d�trace
�
�.g�1/ba.�/� ; for all g 2 G.

(4)

From the convolution formula 1a  b.�/ D ba.�/bb.�/,
we conclude: The GFT block-diagonalizes convolu-
tional operators on CG. The blocks are of size d�, the
dimensions of the irreps.

Equivariant Linear Operators
More generally, consider a linear operator AWV ! V
where V is a finite-dimensional vector space and A is
equivariant with respect to a linear right action of G
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on V . If the action is free and transitive, then A is
convolutional on CG. If the action is not transitive,
then V splits in s separate orbits under the action of
G, and A is a block-convolutional operator. In this
case, the GFT block diagonalizesA with blocks of size
approximately sd�. The theory generalizes to infinite
compact Lie groups via the Peter–Weyl theorem and
to certain important non-compact groups (unimodular
groups), such as the group of Euclidean transforma-
tions acting on R

n; see [13].

Applications

Symmetric FFTs appear in many situations, such as
real sine and cosine transforms. The 1-dim real cosine
transform has four symmetries generated by SR and Se,
and it can be computed four times faster than the full
complex FFT. This transform is central in Chebyshev
approximations. More generally, multivariate Cheby-
shev polynomials possess symmetries of kaleidoscopic
reflection groups acting upon Zn [9, 11, 14].

Diagonalization of equivariant linear operators is
essential in signal and image processing, statistics, and
differential equations. For a cyclic group Zn, an equiv-
ariantA is a Toeplitz circulant, and the GFT is given by
the discrete Fourier transform, which can be computed
fast by the FFT algorithm. More generally, a finite
abelian group Zn has jnj one-dimensional irreps, given
by the exponential functions. Zn-equivariant matrices
are block Toeplitz circulant matrices. These are diago-
nalized by multidimensional FFTs. Linear differential
operators with constant coefficients typically lead to
discrete linear operators which commute with trans-
lations acting on the domain. In the case of periodic
boundary conditions, this yields block circulant matri-
ces. For more complicated boundaries, block circulants
may provide useful approximations to the differential
operators.

More generally, many computational problems pos-
sess symmetries given by a (discrete or continuous)
group acting on the domain. For example, the Lapla-
cian operator commutes with any isometry of the do-
main. This can be discretized as an equivariant discrete
operator. If the group action on the discretized domain
is free and transitive, the discrete operator is a convolu-
tion in the group algebra. More generally, it is a block-
convolutional operator. For computational efficiency,
it is important to identify the symmetries (or approx-

imate symmetries) of the problem and employ the
irreducible characters of the symmetry group and the
GFT to (approximately) block diagonalize the opera-
tors. Such techniques are called domain reduction tech-
niques [7]. Block diagonalization of linear operators
has applications in solving linear systems, eigenvalue
problems, and computation of matrix exponentials.
The GFT has also applications in image processing,
image registration, and computational statistics [1–
5, 8].
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Definition

This entry, concerned with the practical task of in-
tegrating numerically Hamiltonian systems, follows
up the entry �Hamiltonian Systems and keeps the
notation and terminology used there.

Each one-step numerical integrator is specified by
a smooth map �H

tnC1;tn
that advances the numerical

solution from a time level tn to the next tnC1

.pnC1; qnC1/ D �H
tnC1;tn

.pn; qn/I (1)

the superscript H refers to the Hamiltonian function
H.p; qI t/ of the system being integrated. For instance
for the explicit Euler rule

.pnC1; qnC1/ D .pn; qn/C .tnC1 � tn/
�
f .pn; qnI tn/;

g.pn; qnI tn/
�I

here and later f and g denote the d -dimensional
real vectors with entries �@H=@qi , @H=@pi (d is the
number of degrees of freedom) so that .f; g/ is the
canonical vector field associated with H (in simpler
words: the right-hand side of Hamilton’s equations).
For the integrator to make sense, �H

tnC1;tn
has to approx-

imate the solution operator ˚H
tnC1;tn

that advances the
true solution from its value at tn to its value at tnC1:

�
p.tnC1/; q.tnC1/

� D ˚H
tnC1;tn

�
p.tn/; q.tn/

�
:

For a method of (consistency) order �, �H
tnC1;tn

differs

from ˚H
tnC1;tn

in terms of magnitude O
�
.tnC1� tn/�C1�.

The solution map ˚H
tnC1;tn

is a canonical (symplec-
tic) transformation in phase space, an important fact
that substantially constrains the dynamics of the true
solution

�
p.t/; q.t/

�
. If we wish the approximation

�H to retain the “Hamiltonian” features of ˚H , we
should insist on �H also being a symplectic transfor-
mation. However, most standard numerical integrators
– including explicit Runge–Kutta methods, regardless

of their order � – replace ˚H by a nonsymplectic
mapping �H . This is illustrated in Fig. 1 that corre-
sponds to the Euler rule as applied to the harmonic
oscillator Pp D �q, Pq D p. The (constant) step size
is tnC1 � tn D 2�=12. We have taken as a family
of initial conditions the points of a circle centered at
p D 1, q D 0 and seen the evolution after 1, 2, . . . , 12
steps. Clearly the circle, which should move clockwise
without changing area, gains area as the integration
proceeds: The numerical �H is not symplectic. As
a result, the origin, a center in the true dynamics, is
turned by the discretization procedure into an unstable
spiral point, i.e., into something that cannot arise in
Hamiltonian dynamics. For the implicit Euler rule, the
corresponding integration loses area and gives rise to a
family of smaller and smaller circles that spiral toward
the origin. Again, such a stable focus is incompatible
with Hamiltonian dynamics.

This failure of well-known methods in mimicking
Hamiltonian dynamics motivated the consideration of
integrators that generate a symplectic mapping �H

when applied to a Hamiltonian problem. Such methods
are called symplectic or canonical. Since symplec-
tic transformations also preserve volume, symplectic
integrators applied to Hamiltonian problems are au-
tomatically volume preserving. On the other hand,
while many important symplectic integrators are time-
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Symplectic Methods, Fig. 1 The harmonic oscillator inte-
grated by the explicit Euler method
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reversible (symmetric), reversibility is neither suffi-
cient nor necessary for a method to be symplectic ([8],
Remark 6.5).

Even though early examples of symplectic integra-
tion may be traced back to the 1950s, the systematic
exploration of the subject started with the work of Feng
Kang (1920–1993) in the 1980s. An early short mono-
graph is [8] and later books are the comprehensive
[5] and the more applied [6]. Symplectic integration
was the first step in the larger endeavor of developing
structure-preserving integrators, i.e., of what is now
often called, following [7], geometric integration.

Limitations of space restrict this entry to one-step
methods and canonical Hamiltonian problems. For
noncanonical Hamiltonian systems and multistep inte-
grators the reader is referred to [5], Chaps. VII and XV.

Integrators Based on Generating
Functions

The earliest systematic approaches by Feng Kang and
others to the construction of symplectic integrators (see
[5], Sect. VI.5.4 and [8], Sect. 11.2) exploited the fol-
lowing well-known result of the canonical formalism:
The canonical transformation ˚H

tnC1;tn
possesses a gen-

erating function S2 that solves an initial value problem
for the associated Hamilton–Jacobi equation. It is then
possible, by Taylor expanding that equation, to obtain
an approximationeS2 to S2. The transformation�H

tnC1;tn

generated by eS2 will automatically be canonical and
therefore will define a symplectic integrator. If eS2
differs from S2 by terms O

�
.tnC1 � tn/

�C1�, the inte-
grator will be of order �. Generally speaking, the high-
order methods obtained by following this procedure are
more difficult to implement than those derived by the
techniques discussed in the next two sections.

Runge–Kutta and Related Integrators

In 1988, Lasagni, Sanz-Serna, and Suris (see
[8], Chap. 6) discovered independently that some
well-known families of numerical methods contain
symplectic integrators.

Runge–Kutta Methods

Symplecticness Conditions
When the Runge–Kutta (RK) method with s stages
specified by the tableau

a11 � � � a1s
:::

: : :
:::

as1 � � � ass
b1 � � � bs

(2)

is applied to the integration of the Hamiltonian system
with Hamiltonian functionH , the relation (1) takes the
form

pnC1 D pn C hnC1
sX
iD1

bi f .Pi ;Qi I tn C cihnC1/;

qnC1 D qn C hnC1
sX
iD1

bi g.Pi ;Qi I tn C cihnC1/;

where ci D P
j aij are the abscissae, hnC1 D tnC1� tn

is the step size and Pi ,Qi , i D 1; : : : ; s are the internal
stage vectors defined through the system

Pi D pn C hnC1
sX

jD1
aij f .Pj ;Qj I tn C cj hnC1/;

(3)

Qi D qn C hnC1
sX

jD1
aij g.Pj ;Qj I tn C cj hnC1/:

(4)

Lasagni, Sanz-Serna, and Suris proved that if the
coefficients of the method in (2) satisfy

biaij C bj aj i � bibj D 0; i; j D 1; : : : ; s; (5)

then the method is symplectic. Conversely ([8],
Sect. 6.5), the relations (5) are essentially necessary
for the method to be symplectic. Furthermore for
symplectic RK methods the transformation (1) is in
fact exact symplectic ([8], Remark 11.1).

Order Conditions
Due to symmetry considerations, the relations (5) im-
pose s.s C 1/=2 independent equations on the s2 C s
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elements of the RK tableau (2), so that there is no
shortage of symplectic RK methods. The available free
parameters may be used to increase the accuracy of the
method. It is well known that the requirement that an
RK formula has a target order leads to a set of nonlinear
relations (order conditions) between the elements of
the corresponding tableau (2). For order � � there
is an order condition associated with each rooted tree
with � � vertices and, if the aij and bi are free
parameters, the order conditions are mutually inde-
pendent. For symplectic methods however the tableau
coefficients are constrained by (5), and Sanz-Serna and
Abia proved in 1991 that then there are redundancies
between the order conditions ([8], Sect. 7.2). In fact
to ensure order � � when (5) holds it is necessary
and sufficient to impose an order condition for each
so-called nonsuperfluous (nonrooted) tree with � �

vertices.

Examples of Symplectic Runge–Kutta Methods
Setting j D i in (5) shows that explicit RK methods
(with aij D 0 for i � j ) cannot be symplectic.

Sanz-Serna noted in 1988 ([8], Sect. 8.1) that the
Gauss method with s stages, s D 1; 2; : : : , (i.e., the
unique method with s stages that attains the maximal
order 2s) is symplectic. When s D 1 the method is
the familiar implicit midpoint rule. Since for all Gauss
methods the matrix .aij / is full, the computation of
the stage vectors Pi and Qi require, at each step,
the solution of the system (3) and (4) that comprises
s � 2d scalar equations. In non-stiff situations this
system is readily solved by functional iteration, see
[8] Sects. 5.4 and 5.5 and [5] Sect. VIII.6, and then the
Gauss methods combine the advantages of symplectic-
ness, easy implementation, and high order with that of
being applicable to all canonical Hamiltonian systems.

If the system being solved is stiff (e.g., it arises
through discretization of the spatial variables of a
Hamiltonian partial differential equation), Newton it-
eration has to be used to solve the stage equations (3)
and (4), and for high-order Gauss methods the cost
of the linear algebra may be prohibitive. It is then
of interest to consider the possibility of diagonally
implicit symplectic RK methods, i.e., methods where
aij D 0 for i < j and therefore (3) and (4) demand
the successive solution of s systems of dimension
2d , rather than that of a single .s � 2d/–dimensional
system. It turns out ([8], Sect. 8.2) that such meth-
ods are necessarily composition methods (see below)

obtained by concatenating implicit midpoint sub-steps
of lengths b1hnC1, . . . , bshnC1. The determination of
the free parameters bi is a task best accomplished by
means of the techniques used to analyze composition
methods.

The B-series Approach
In 1994, Calvo and Sanz-Serna ([5], Sect. VI.7.2) pro-
vided an indirect technique for the derivation of the
symplecticness conditions (5). The first step is to iden-
tify conditions for the symplecticness of the associated
B-series (i.e., the series that expands the transformation
(1)) in powers of the step size. Then the conditions
(on the B-series) obtained in this way are shown to be
equivalent to (5). This kind of approach has proved to
be very powerful in the theory of geometric integration,
where extensive use is made of formal power series.

Partitioned Runge–Kutta Methods
Partitioned Runge–Kutta (PRK) methods differ from
standard RK integrators in that they use two tableaux of
coefficients of the form (2): one to advance p and the
other to advance q. Most developments of the theory
of symplectic RK methods are easily adapted to cover
the partitioned situation, see e.g., [8], Sects. 6.3, 7.3,
and 8.4.

The main reason ([8], Sect. 8.4) to consider the
class of PRK methods is that it contains integrators
that are both explicit and symplectic when applied
to separable Hamiltonian systems with H.p; qI t/ D
T .p/CV.qI t/, a format that often appears in the appli-
cations. It turns out ([8], Remark 8.1, [5], Sect. VI.4.1,
Theorem 4.7) that such explicit, symplectic PRK meth-
ods may always be viewed as splitting methods (see
below). Moreover it is advantageous to perform their
analysis by interpreting them as splitting algorithms.

Runge–Kutta–NyströmMethods
In the special but important case where the (separable)
Hamiltonian is of the form H D .1=2/pTM�1p C
V.qI t/ (M a positive-definite symmetric matrix) the
canonical equations

d

dt
p D �rV.qI t/; d

dt
q D M�1p (6)

lead to
d2

dt2
q D �M�1rV.qI t/;
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a second-order system whose right-hand side is in-
dependent of .d=dt/q. Runge–Kutta–Nyström (RKN)
methods may then be applied to the second-order form
and are likely to improve on RK integrations of the
original first-order system (6).

There are explicit, symplectic RKN integrators
([8], Sect. 8.5). However their application (see [8],
Remark 8.5) is always equivalent to the application
of an explicit, symplectic PRK method to the first-
order equations (6) and therefore – in view of a
consideration made above – to the application of a
splitting algorithm.

Integrators Based on Splitting and
Composition

The related ideas of splitting and composition are
extremely fruitful in deriving practical symplectic in-
tegrators in many fields of application. The corre-
sponding methods are typically ad hoc for the problem
at hand and do not enjoy the universal off-the-shelf
applicability of, say, Gaussian RK methods; however,
when applicable, they may be highly efficient. In order
to simplify the exposition, we assume hereafter that the
Hamiltonian H is time-independent H D H.p; q/;
we write �HhnC1

and  HhnC1
rather than ˚H

tnC1;tn
and

�H
tnC1;tn

. Furthermore, we shall denote the time step
by h omitting the possible dependence on the step
number n.

Splitting

Simplest Splitting
The easiest possibility of splitting occurs when the
Hamiltonian H may be written as H1 C H2 and the
Hamiltonian systems associated with H1 and H2 may
be explicitly integrated. If the corresponding flows
are denoted by �H1t and �H2t , the recipe (Lie–Trotter
splitting, [8], Sect. 12.4.2, [5], Sect. II.5)

 Hh D �
H2
h ı �H1h (7)

defines the map (1) of a first-order integrator that
is symplectic (the mappings being composed in the
right-hand side are Hamiltonian flows and therefore
symplectic). Splittings of H in more than two pieces
are feasible but will not be examined here.

A particular case of (7) of great practical
significance is provided by the separable Hamiltonian
H.p; q/ D T .p/ C V.q/ with H1 D T , H2 D V ;
the flows associated with H1 and H2 are respectively
given by

�
p; q

� 7!�
p; qC trT .p/�; �p; q� 7!�

p� trV.q/; q�:
Thus, in this particular case the scheme (7) reads

pnC1 D pn � hrV.qnC1/; qnC1 D qn C hrT .pn/;
(8)

and it is sometimes called the symplectic Euler rule
(it is obviously possible to interchange the roles of
p and q). Alternatively, (8) may be considered as a
one-stage, explicit, symplectic PRK integrator as in [8],
Sect. 8.4.3.

As a second example of splitting, one may consider
(nonseparable) formatsH D H1.p; q/CV �.q/, where
the Hamiltonian system associated with H1 can be
integrated in closed form. For instance, H1 may cor-
respond to a set of uncoupled harmonic oscillators and
V �.q/ represent the potential energy of the interactions
between oscillators. Or H1 may correspond to the
Keplerian motion of a point mass attracted to a fixed
gravitational center and V � be a potential describing
some sort of perturbation.

Strang Splitting
With the notation in (7), the symmetric Strang formula
([8], Sect. 12.4.3, [5], Sect. II.5)

N Hh D �
H2
h=2 ı �H1h ı �H2h=2 (9)

defines a time-reversible, second-order symplectic in-
tegrator N Hh that improves on the first order (7).

In the separable Hamiltonian case H D T .p/ C
V.q/, (9) leads to

pnC1=2 D pn � h

2
rV.qn/;

qnC1 D qn C hrT .pnC1=2/;

pnC1 D pnC1=2 � h

2
rV.qnC1/:

This is the Störmer–Leapfrog–Verlet method that plays
a key role in molecular dynamics [6]. It is also possible
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to regard this integrator as an explicit, symplectic PRK
with two stages ([8], Sect. 8.4.3).

More Sophisticated Formulae
A further generalization of (7) is

�
H2
ˇsh

ı �H1˛sh ı �H2ˇs�1h ı � � � ı �H2ˇ1h ı �H1˛1h (10)

where the coefficients˛i andˇi ,
P

i ˛i D 1,
P

i ˇi D 1,
are chosen so as to boost the order � of the method.
A systematic treatment based on trees of the required
order conditions was given by Murua and Sanz-Serna
in 1999 ([5], Sect. III.3). There has been much recent
activity in the development of accurate splitting coef-
ficients ˛i , ˇi and the reader is referred to the entry
� Splitting Methods in this encyclopedia.

In the particular case where the splitting is given by
H D T .p/C V.q/, the family (10) provides the most
general explicit, symplectic PRK integrator.

Splitting Combined with Approximations
In (7), (9), or (10) use is made of the exact solution
flows �H1t and �H2t . Even if one or both of these flows
are not available, it is still possible to employ the
idea of splitting to construct symplectic integrators. A
simple example will be presented next, but many others
will come easily to mind.

Assume that we wish to use a Strang-like method
but �H1t is not available. We may then advance the
numerical solution via

�
H2
h=2 ı b H1

h ı �H2h=2; (11)

whereb H1
h denotes a consistent method for the integra-

tion of the Hamiltonian problem associated with H1.
If b H1

h is time-reversible, the composition (11) is also
time-reversible and hence of order � D 2 (at least).
And if b H1

h is symplectic, (11) will define a symplectic
method.

Composition
A step of a composition method ([5], Sect. II.4) con-
sists of a concatenation of a number of sub-steps
performed with one or several simpler methods. Often
the aim is to create a high-order method out of low-
order integrators; the composite method automatically
inherits the conservation properties shared by the meth-
ods being composed. The idea is of particular appeal

within the field of geometric integration, where it is
frequently not difficult to write down first- or second-
order integrators with good conservation properties.

A useful example, due to Suzuki, Yoshida, and
others (see [8], Sect. 13.1), is as follows. Let  Hh be
a time-reversible integrator that we shall call the basic
method and define the composition method b H

h by

b H
h D  H˛h ı  H.1�2˛/h ı  H˛hI

if the basic method is symplectic, then b H
h will obvi-

ously be a symplectic method. It may be proved that,
if ˛ D .1=3/.2 C 21=3 C 2�1=3/, then b H

h will have
order � D 4. By using this idea one may perform
symplectic, fourth-order accurate integrations while
really implementing a simpler second-order integra-
tor. The approach is particularly attractive when the
direct application of a fourth-order method (such as
the two-stage Gauss method) has been ruled out on
implementation grounds, but a suitable basic method
(for instance the implicit midpoint rule or a scheme
derived by using Strang splitting) is available.

If the (time-reversible) basic method is of order 2�
and ˛ D �

2�21=.2�C1/��1 thenb H
h will have order � D

2�C2; the recursive application of this idea shows that
it is possible to reach arbitrarily high orders starting
from a method of order 2.

For further possibilities, see the entry �Composition
Methods and [8], Sect. 13.1, [5], Sects. II.4 and III.3.

TheModified Hamiltonian

The properties of symplectic integrators outlined in the
next section depend on the crucial fact that, when a
symplectic integrator is used, a numerical solution of
the Hamiltonian system with Hamiltonian H may be
viewed as an (almost) exact solution of a Hamiltonian
system whose Hamiltonian function eH (the so-called
modified Hamiltonian) is a perturbation of H .

An example. Consider the application of the sym-
plectic Euler rule (8) to a one-degree-of-freedom sys-
tem with separable Hamiltonian H D T .p/ C V.q/.
In order to describe the behavior of the points .pn; qn/
computed by the algorithm, we could just say that they
approximately behave like the solutions .p.tn/; q.tn//
of the Hamiltonian system S being integrated. This
would not be a very precise description because the

http://dx.doi.org/10.1007/978-3-540-70529-1_146
http://dx.doi.org/10.1007/978-3-540-70529-1_103
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true flow �Hh and its numerical approximation  Hh
differ in O.h2/ terms. Can we find another differential
system S2 (called a modified system) so that (8) is
consistent of the second order with S2? The points
.pn; qn/ would then be closer to the solutions of
S2 than to the solutions of the system S we want
to integrate. Straightforward Taylor expansions ([8],
Sect. 10.1) lead to the following expression for S2
(recall that f D �@H=@q, g D @H=@p)

d

dt
p D f .q/C h

2
g.p/f 0.q/;

d

dt
q D g.p/

�h
2
g0.p/f .q/; (12)

where we recognize the Hamiltonian system with (h-
dependent!) Hamiltonian

eHh
2 D T .p/C V.q/C h

2
T 0.p/V 0.q/ D H C O.h/:

(13)

Figure 2 corresponds to the pendulum equations
g.p/ D p, f .q/ D � sin q with initial condition
p.0/ D 0, q.0/ D 2. The stars plot the numerical
solution with h D 0:5. The dotted line H D constant
provides the true pendulum solution. The dash–dot lineeHh
2 D constant gives the solution of the modified

system (12). The agreement of the computed points
with the modified trajectory is very good.

The origin is a center of the modified system (recall
that a small Hamiltonian perturbation of a Hamiltonian
center is still a center); this matches the fact that, in
the plot, the computed solution does not spiral in or
out. On the other hand, the analogous modified system
for the (nonsymplectic) integration in 1 is found not be
a Hamiltonian system, but rather a system with neg-
ative dissipation: This agrees with the spiral behavior
observed there.

By adding extra O.h2/ terms to the right-hand sides
of (12), it is possible to construct a (more accurate)
modified system S3 so that (8) is consistent of the third
order with S3; thus, S3 would provide an even better
description of the numerical solution. The procedure
may be iterated to get modified systems S4, S5, . . . and
all of them turn out to be Hamiltonian.
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General case. Given an arbitrary Hamiltonian sys-
tem with a smooth Hamiltonian H , a consistent sym-
plectic integrator  Hh and an arbitrary integer � > 0,
it is possible ([8], Sect. 10.1) to construct a modified
Hamiltonian system S� with Hamiltonian function eHh

�,

such that  Hh differs from the flow �
eHh
�

h in O.h�C1/
terms. In fact, eHh

� may be chosen as a polynomial of
degree < � in h; the term independent of h coincides
withH (cf. (13)) and for a method of order � the terms
in h, . . . , h��1 vanish.

The polynomials in h eHh
�, � D 2; 3; : : : are the

partial sums of a series in powers of h. Unfortunately
this series does not in general converge for fixed h,

so that, in particular, the modified flows �
eHh
�

h cannot
converge to  Hh as � " 1. Therefore, in general, it

is impossible to find a Hamiltonian eHh such that �eHh

h

coincides exactly with the integrator  Hh . Neishtadt
([8], Sect. 10.1) proved that by retaining for each h >
0 a suitable number N D N.h/ of terms of the
series it is possible to obtain a Hamiltonian eHh such
that �eHh

h differs from  Hh in an exponentially small
quantity.

Here is the conclusion for the practitioner: For
a symplectic integrator applied to an autonomous
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Hamiltonian system, modified autonomous Hamil-
tonian problems exist so that the computed points lie
“very approximately” on the exact trajectories of the
modified problems. This makes possible a backward
error interpretation of the numerical results: The
computed solutions are solving “very approximately”
a nearby Hamiltonian problem. In a modeling situation
where the exact form of the Hamiltonian H may be in
doubt, or some coefficients in H may be the result of
experimental measurements, the fact that integrating
the model numerically introduces perturbations to H
comparable to the uncertainty in H inherent in the
model is the most one can hope for.

On the other hand, when a nonsymplectic formula
is used the modified systems are not Hamiltonian: The
process of numerical integration perturbs the model in
such a way as to take it out of the Hamiltonian class.

Variable steps. An important point to be noted is
as follows: The backward error interpretation only
holds if the numerical solution after n steps is com-
puted by iterating n times one and the same symplec-
tic map. If, alternatively, one composes n symplectic
maps (one from t0 to t1, a different one from t1
to t2, etc.) the backward error interpretation is lost,
because the modified system changes at each step ([8],
Sect. 10.1.3).

As a consequence, most favorable properties of
symplectic integrators (and of other geometric inte-
grators) are lost when they are naively implemented
with variable step sizes. For a complete discussion of
this difficulty and of ways to circumvent it, see [5],
Sects. VIII 1–4.

Finding explicitly the modified Hamiltonians. The
existence of a modified Hamiltonian system is a general
result that derives directly from the symplecticness of
the transformation  Hh ([8], Sect. 10.1) and does not
require any hypothesis on the particular nature of such
a transformation. However, much valuable information
may be derived from the explicit construction of the
modified Hamiltonians. For RK and related methods,
a way to compute systematically the eHh

�’s was first
described by Hairer in 1994 and then by Calvo, Mu-
rua, and Sanz-Serna ([5], Sect. IX.9). For splitting and
composition integrators, the eHh

�’s may be obtained by
use of the Baker–Campbell–Hausdorff formula ([8],
Sect. 12.3, [5], Sect. III.4) that provides a means to
express as a single flow the composition of two flows.

This kind of research relies very much on concepts and
techniques from the theory of Lie algebras.

Properties of Symplectic Integrators

We conclude by presenting an incomplete list of favor-
able properties of symplectic integrators. Note that the
advantage of symplecticness become more prominent
as the integration interval becomes longer.

Conservation of energy. For autonomous Hamilto-
nians, the value ofH is of course a conserved quantity
and the invariance of H usually expresses conser-
vation of physical energy. Ge and Marsden proved
in 1988 ([8], Sect. 10.3.2) that the requirements of
symplecticness and exact conservation of H cannot
be met simultaneously by a bona fide numerical inte-
grator. Nevertheless, symplectic integrators have very
good energy behavior ([5], Sect. IX.8): Under very
general hypotheses, for a symplectic integrator of or-
der �: H.pn; qn/ D H.p0; q0/ C O.h�/, where the
constant implied in the O notation is independent
of n over exponentially long time intervals nh �
exp

�
h0=.2h/

�
.

Linear error growth in integrable systems. For a
Hamiltonian problem that is integrable in the sense
of the Liouville–Arnold theorem, it may be proved
([5], Sect. X.3) that, in (long) time intervals of length
proportional to h�� , the errors in the action variables
are of magnitude O.h�/ and remain bounded, while
the errors in angle variables are O.h�/ and exhibit a
growth that is only linear in t . By implication the error
growth in the components ofp and q will be O.h�/ and
grow, at most, linearly. Conventional integrators, in-
cluding explicit Runge–Kutta methods, typically show
quadratic error growth in this kind of situation and
therefore cannot be competitive in a sufficiently long
integration.

KAM theory. When the system is closed to inte-
grable, the KAM theory ([5], Chap. X) ensures, among
other things, the existence of a number of invariant tori
that contribute to the stability of the dynamics (see [8],
Sect. 10.4 for an example). On each invariant torus the
motion is quasiperiodic. Symplectic integrators ([5],
Chap. X, Theorem 6.2) possess invariant tori O.h�/
close to those of the system being integrated and
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furthermore the dynamics on each invariant torus is
conjugate to its exact counterpart.

Linear error growth in other settings. Integrable
systems are not the only instance where symplectic
integrators lead to linear error growth. Other cases
include, under suitable hypotheses, periodic orbits,
solitons, relative equilibria, etc., see, among others,
[1–4].
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Introduction

Systems biology may be defined as the study of how
physiology emerges from molecular interactions [11].
Physiology tells us about function, whether at the
organismal, tissue, organ or cellular level; molecular
interactions tell us about mechanism. How do we relate
mechanism to function? This has always been one of
the central problems of biology and medicine but it
attains a particular significance in systems biology be-
cause the molecular realm is the base of the biological
hierarchy. Once the molecules have been identified,
there is nowhere left to go but up.

This is an enormous undertaking, encompassing,
among other things, the development of multicellular
organisms from their unicellular precursors, the hier-
archical scales from molecules to cells, tissues, and
organs, and the nature of malfunction, disease, and re-
pair. Underlying all of this is evolution, without which
biology can hardly be interpreted. Organisms are not
designed to perform their functions, they have evolved
to do so—variation, transfer, drift, and selection have
tinkered with them over 3:5 � 109 years—and this has
had profound implications for how their functions have
been implemented at the molecular level [12].

The mechanistic viewpoint in biology has nearly
always required a strongly quantitative perspective and
therefore also a reliance on quantitative models. If this
trend seems unfamiliar to those who have been reared
on molecular biology, it is only because our histori-
cal horizons have shrunk. The quantitative approach
would have seemed obvious to physiologists, geneti-
cists, and biochemists of an earlier generation. More-
over, quantitative methods wax and wane within an
individual discipline as new experimental techniques
emerge and the focus shifts between the descriptive
and the functional. The great Santiago Ramón y Cajal,
to whom we owe the conception of the central ner-
vous system as a network of neurons, classified “theo-
rists” with “contemplatives, bibliophiles and polyglots,
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megalomaniacs, instrument addicts, misfits” [3]. Yet,
when Cajal died in 1934, Alan Hodgkin was already
starting down the road that would lead to the Hodgkin-
Huxley equations.

In a similar way, the qualitative molecular biology
of the previous era is shifting, painfully and with much
grinding of gears, to a quantitative systems biology.
What kind of mathematics will be needed to support
this? Here, we focus on the level of abstraction for
modelling cellular physiology at the molecular level.
This glosses over many other relevant and hard prob-
lems but allows us to bring out some of the distinctive
challenges of molecularity. We may caricature the
current situation in two extreme views. One approach,
mindful of the enormous complexity at the molecular
level, strives to encompass that complexity, to dive into
it, and to be exhaustive; the other, equally mindful
of the complexity but with a different psychology,
strives to abstract from it, to rise above it, and to be
minimalist. Here, we examine the requirements and the
implications of both strategies.

Models as Dynamical Systems

Many different kinds of models are available for de-
scribing molecular systems. It is convenient to think of
each as a dynamical system, consisting of a description
of the state of the system along with a description
of how that state changes in time. The system state
typically amalgamates the states of various molecular
components, which may be described at various levels
of abstraction. For instance, Boolean descriptions are
often used by experimentalists when discussing gene
expression: this gene is ON, while that other is OFF.
Discrete dynamic models can represent time evolution
as updates determined by Boolean functions. At the
other end of the abstraction scale, gene expression may
be seen as a complex stochastic process that takes place
at an individual promoter site on DNA: states may be
described by the numbers of mRNA molecules and
the time evolution may be described by a stochastic
master equation. In a different physiological context,
Ca2C ions are a “second messenger” in many key
signalling networks and show complex spatial and
temporal behaviour within an individual cell. The state
may need to be described as a concentration that varies
in space and time and the time evolution by a partial
differential equation. In the most widely-used form

of dynamical system, the state is represented by the
(scalar) concentrations of the various molecular com-
ponents in specific cellular compartments and the time
evolution by a system of coupled ordinary differential
equations (ODEs).

What is the right kind of model to use? That depends
entirely on the biological context, the kind of biological
question that is being asked and on the experimental
capabilities that can be brought to bear on the problem.
Models in biology are not objective descriptions of
reality; they are descriptions of our assumptions about
reality [2].

For our purposes, it will be simplest to discuss
ODE models. Much of what we say applies to other
classes of models. Assume, therefore, that the system is
described by the concentrations within specific cellular
compartments of n components, x1; � � � ; xn, and the
time evolution is given, in vector form, by dx=dt D
f .xI a/. Here, a 2 R

m is a vector of parameters.
These may be quantities like proportionality constants
in rate laws. They have to take numerical values before
the dynamics on the state space can be fully defined
and thereby arises the “parameter problem” [6]. In any
serious model, most of the parameter values are not
known, nor can they be readily determined experimen-
tally. (Even if some of them can, there is always a
question of whether an in-vitro measurement reflects
the in-vivo context.)

The dynamical behaviour of a system may depend
crucially on the specific parameter values. As these
values change through a bifurcation, the qualitative
“shape” of the dynamics may alter drastically; for
instance, steady states may alter their stability or ap-
pear or disappear [22]. In between bifurcations, the
shape of the dynamics only alters in a quantitative way
while the qualitative portrait remains the same. The
geography of parameter space therefore breaks up into
regions; within each region the qualitative portrait of
the dynamics remains unaltered, although its quantita-
tive details may change, while bifurcations take place
between regions resulting in qualitative changes in the
dynamics (Fig. 1).

Parameterology

We see from this that parameter values matter. They are
typically determined by fitting the model to experimen-
tal data, such as time series for the concentrations of
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Fig. 1 The geography of parameter space. (a) A dynamical
system with one state variable, x1 and two parameters, a1, a2.
(b) Graphs of f1.x1/ (dashed curve) and of the terms in it (solid
curves), showing the steady states, where dx1=dt D f1.x1/ D
0. (c) Parameter space breaks up into two regions: (1) a1 � a2,
in which the state space has a single stable steady state at x1 D 0

to which any positive initial condition tends (arrow); and (2)

a1 > a2, in which there are two steady states, a positive stable
state at x1 D 1� a2=a1, to which any positive initial conditions
tends (arrows), and an unstable state at x1 D 0. Here, the
state space is taken to be the nonnegative real line. A magenta
dot indicates a stable state and a cyan dot indicates an unstable
state. The dynamics in the state space undergoes a transcritical
bifurcation at a1 D a2 [22]

some of the components. The fitting may be undertaken
by minimizing a suitable measure of discrepancy be-
tween the calculated and the observed data, for which
several nonlinear optimization algorithms are available
[10]. Empirical studies on models with many (>10)
parameters have revealed what could be described as
a “80/20” rule [9, 19]. Roughly speaking, 20 % of the
parameters are well constrained by the data or “stiff”:
They cannot be individually altered by much without
significant discrepancy between calculated and ob-
served data. On the other hand, 80 % of the parameters
are poorly constrained or “sloppy,” they can be individ-
ually altered by an order of magnitude or more, without
a major impact on the discrepancy. The minimization
landscape, therefore, does not have a single deep hole
but a flat valley with rather few dimensions orthogonal
to the valley. The fitting should have localized the
valley within one of the parameter regions. At present,
no theory accounts for the emergence of these valleys.

Two approaches can be taken to this finding. On the
one hand, one might seek to constrain the parameters

further by acquiring more data. This raises an inter-
esting problem of how best to design experiments to
efficiently constrain the data. Is it better to get more
of the same data or to get different kinds of data?
On the other hand, one might seek to live with the
sloppiness, to acknowledge that the fitted parameter
values may not reflect the actual ones but nevertheless
seek to draw testable conclusions from them. For
instance, the stiff parameters may suggest experimen-
tal interventions whose effects are easily observable.
(Whether they are also biological interesting is another
matter.) There may also be properties of the system
that are themselves insensitive, or “robust,” to the
parameter differences. One can, in any case, simply
draw conclusions based on the fits and seek to test these
experimentally.

A successful test may provide some encouragement
that the model has captured aspects of the mechanism
that are relevant to the question under study. However,
models are working hypotheses, not explanations. The
conclusion that is drawn may be correct but that may
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be an accident of the sloppy parameter values or the
particular assumptions made. It may be correct for
the wrong reasons. Molecular complexity is such that
there may well be other models, based on differ-
ent assumptions, that lead to the same conclusions.
Modellers often think of models as finished entities.
Experimentalists know better. A model is useful only
as a basis for making a better model. It is through
repeated tests and revised assumptions that a firmly
grounded, mechanistic understanding of molecular be-
haviour slowly crystallizes.

Sometimes, one learns more when a test is not
successful because that immediately reveals a problem
with the assumptions and stimulates a search to correct
them. However, it may be all too easy, because of the
sloppiness in the fitting, to refit the model using the
data that invalidated the conclusions and then claim
that the newly fitted model “accounts for the new data.”
From this, one learns nothing. It is better to follow
Popperian principles and to specify in advance how a
model is to be rejected. If a model cannot be rejected, it
cannot tell you anything. In other areas of experimental
science, it is customary to set aside some of the data to
fit the model and to use another part of the data, or
newly acquired data, to assess the quality of the model.
In this way, a rejection criterion can be quantified and
one can make objective comparisons between different
models.

The kind of approaches sketched above only work
well when modelling and experiment are intimately
integrated [18,21]. As yet, few research groups are able
to accomplish this, as both aspects require substantial,
but orthogonal, expertise as well as appropriate inte-
grated infrastructure for manipulating and connecting
data and models.

Model Simplification

As pointed out above, complexity is a relative matter.
Even the most complex model has simplifying assump-
tions: components have been left out; posttranslational
modification states collapsed; complex interactions ag-
gregated; spatial dimensions ignored; physiological
context not made explicit. And these are just some
of the things we know about, the “known unknowns.”
There are also the “unknown unknowns.” We hope that
what has been left out is not relevant to the question

being asked. As always, that is a hypothesis, which
may or may not turn out to be correct.

The distinction between exhaustive and minimal
models is therefore more a matter of scale than of sub-
stance. However, having decided upon a point on the
scale, and created a model of some complexity, there
are some systematic approaches to simplifying it. Here,
we discuss just two.

One of the most widely used methods is separation
of time scales. A part of the system is assumed to be
working significantly faster than the rest. If the faster
part is capable of reaching a (quasi) steady state, then
the slower part is assumed to see only that steady
state and not the transient states that led to it. In some
cases, this allows variables within the faster part to be
eliminated from the dynamics.

Separation of time scales appears in Michaelis and
Menten’s pioneering study of enzyme-catalysed reac-
tions. Their famous formula for the rate of an en-
zyme arises by assuming that the intermediate enzyme-
substrate complex is in quasi-steady state [8]. Although
the enzyme-substrate complex plays an essential role,
it has been eliminated from the formula. The King-
Altman procedure formalizes this process of elimina-
tion for complex enzyme mechanisms with multiple
intermediates. This is an instance of a general method
of linear elimination underlying several well-known
formulae in enzyme kinetics, in protein allostery and
in gene transcription, as well as more modern simpli-
fications arising in chemical reaction networks and in
multienzyme posttranslational modification networks
[7].

An implicit assumption is often made that, after
elimination, the behaviour of the simplified dynamical
system approximates that of the original system. The
mathematical basis for confirming this is through a
singular perturbation argument and Tikhonov’s Theo-
rem [8], which can reveal the conditions on parameter
values and initial conditions under which the approx-
imation is valid. It must be said that, aside from
the classical Michaelis–Menten example, few singular
perturbation analyses have been undertaken. Biological
intuition can be a poor guide to the right conditions. In
the Michaelis–Menten case, for example, the intuitive
basis for the quasi-steady state assumption is that
under in vitro conditions, substrate, S , is in excess
over enzyme, E: Stot � Etot . However, singular
perturbation reveals a broader region, Stot C KM �
Etot , where KM is the Michaelis–Menten constant, in



1462 Systems Biology, Minimalist vs Exhaustive Strategies

which the quasi-steady state approximation remains
valid [20]. Time-scale separation has been widely used
but cannot be expected to provide dramatic reductions
in complexity; typically, the number of components are
reduced twofold, not tenfold.

The other method of simplification is also based
on an old trick: linearization in the neighbourhood of
a steady state. The Hartman–Grobman Theorem for
a dynamical system states that, in the local vicinity of a
hyperbolic steady state—that is, one in which none of
the eigenvalues of the Jacobian have zero real part—
the nonlinear dynamics is qualitatively similar to the
dynamics of the linearized system, dy=dt D .Jf /ssy,
where y D x � xss is the offset relative to the steady
state, xss , and .Jf /ss is the Jacobian matrix for the
nonlinear system, dx=dt D f .x/, evaluated at the
steady state. Linearization simplifies the dynamics but
does not reduce the number of components.

Straightforward linearization has not been particu-
larly useful for analysing molecular networks, because
it loses touch with the underlying network structure.
However, control engineering provides a systematic
way to interrogate the linearized system and, poten-
tially, to infer a simplified network. Such methods
were widely used in physiology in the cybernetic era
[5], and are being slowly rediscovered by molecular
systems biologists. They are likely to be most use-
ful when the steady state is homeostatically main-
tained. That is, when the underlying molecular net-
work acts like a thermostat to maintain some internal
variable within a narrow range, despite external fluc-
tuations. Cells try to maintain nutrient levels, energy
levels, pH, ionic balances, etc., fairly constant, as
do organisms in respect of Claude Bernard’s “milieu
intérieure”; chemotaxing E. coli return to a constant
tumbling rate after perturbation by attractants or repel-
lents [23]; S. cerevisiae cells maintain a constant os-
motic pressure in response to external osmotic shocks
[16].

The internal structure of a linear control system can
be inferred from its frequency response. If a stable
linear system is subjected to a sinusoidal input, its
steady-state output is a sinuosoid of the same frequency
but possibly with a different amplitude and phase.
The amplitude gain and the phase shifts, plotted as
functions of frequency—the so-called Bode plots, after
Hendrik Bode, who developed frequency analysis at
Bell Labs—reveal a great deal about the structure of
the system [1]. More generally, the art of systems

engineering lies in designing a linear system whose
frequency response matches specified Bode plots.

The technology is now available to experimentally
measure approximate cellular frequency responses in
the vicinity of a steady state, at least under simple con-
ditions. Provided the amplitude of the forcing is not too
high, so that a linear approximation is reasonable, and
the steady state is homeostatically maintained, reverse
engineering of the Bode plots can yield a simplified
linear control system that may be an useful abstraction
of the complex nonlinear molecular network responsi-
ble for the homeostatic regulation [15]. Unlike time-
scale separation, the reduction in complexity can be
dramatic. As always, this comes at the price of a more
abstract representation of the underlying biology but,
crucially, one in which some of the control structure is
retained. However, at present, we have little idea how
to extend such frequency analysis to large perturba-
tions, where the nonlinearities become significant, or
to systems that are not homeostatic.

Frequency analysis, unlike separation of time
scales, relies on data, reinforcing the point made
previously that integrating modelling with experiments
and data can lead to powerful synergies.

Looking Behind the Data

Experimentalists have learned the hard way to de-
velop their conceptual understanding from experimen-
tal data. As the great Otto Warburg advised, “Solutions
usually have to be found by carrying out innumerable
experiments without much critical hesitation” [13].
However, sometimes the data you need is not the data
you get, in which case conceptual interpretation can
become risky. For instance, signalling in mammalian
cells has traditionally relied on grinding up 106 cells
and running Western blots with antibodies against
specific molecular states. Such data has told us a great
deal, qualitatively. However, a molecular network oper-
ates in a single cell. Quantitative data aggregated over
a cell population is only meaningful if the distribution
of responses in the population is well represented by
its average. Unfortunately, that is not always the case,
most notoriously when responses are oscillatory. The
averaged response may look like a damped oscillation,
while individual cells actually have regular oscillations
but at different frequencies and phases [14, 17]. Even
when the response is not oscillatory single-cell analysis
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may reveal a bimodal response, with two apparently
distinct sub-populations of cells [4]. In both cases, the
very concept of an “average” response is a statistical
fiction that may be unrelated to the behaviour of any
cell in the population.

One moral of this story is that one should al-
ways check whether averaged data is representative
of the individual, whether individual molecules, cells,
or organisms. It is surprising how rarely this is done.
The other moral is that data interpretation should
always be mechanistically grounded. No matter how
intricate the process through which it is acquired, the
data always arises from molecular interactions taking
place in individual cells. Understanding the molecular
mechanism helps us to reason correctly, to know what
data are needed and how to interpret the data we get.
Mathematics is an essential tool in this, just as it was
for Michaelis and Menten. Perhaps one of the reasons
that biochemists of the Warburg generation were so
successful, without “critical hesitation,” was because
Michaelis and others had already provided a sound
mechanistic understanding of how individual enzymes
worked. These days, systems biologists confront ex-
traordinarily complex multienzyme networks and want
to know how they give rise to cellular physiology. We
need all the mathematical help we can get.
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Short Definition

The Taylor series method term stands for any method
to solve differential equations based on the classical
Taylor series expansion. Numerical versions of these
methods can be applied to different kinds of differential
systems, especially to ordinary differential equations.
They are very well suited for solving low-medium
dimensional systems of differential equations at any
specified degree of accuracy.

Description

The Taylor series method has a long history, and in the
works of Euler [5] [�663 E342] we can see a nice and

complete introduction of the method. Besides, it has
been rediscovered several times with different names.

The main idea behind Taylor series method is to
approximate the solution of a differential system by
means of a Taylor polynomial approximation. To state
the method, we fix the concept for solving an initial
value problem of the form

dy.t/

dt
D f .t;y.t//; y.t0/ D y0; y 2 R

s: (1)

Now, the value of the solution at tiC1 D ti C hi
(i.e., y.tiC1/) is approximated from the nth degree
Taylor series of y.t/ about ti and evaluated at hi (it
is understood that the function f has to be smooth
enough).

y.t0/ � y0;

y.tiC1/ ' y.ti /C dy.ti /

dt
hi C : : :

C 1
nŠ

dny.ti /

dtn
hni

' y i C f .ti ;y i / hi C : : :

C 1
nŠ

dn�1f .ti ;y i /
dtn�1 hni � y iC1:

(2)

From the formulation of the Taylor series method
(TSM and TSM(n) for the nth degree TSM), the prob-
lem is reduced to compute the Taylor coefficients. If the
computation is based on numerical schemes the TSM
will be a numerical method (there are also symbolic
versions of the TSM).
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Basics
TSMs are frequently used in literature as first examples
when introducing numerical methods for ODEs, and in
particular, the simplest method, Euler’s method

y iC1 ' y i C f .ti ;y i / hi ;

which corresponds to TSM(1).

Order of the Method
The order of TSM(n) is obtained in a straightforward
way from the definition (2) since the Local Truncation
Error (LTE) at step i C 1 is given by the remainder

LTE D 1

.nC 1/Šh
nC1
i y.nC1/.ti /CO.hnC2

i /

� 1

.nC 1/Šh
nC1
i f .n/.ti ;y i /CO.hnC2

i /:

Therefore, the TSM(n) of degree n is also of order n.

Computation of the Taylor Coefficients
The main point to convert the TSM in a practical
numerical method consists of providing efficient for-
mulas to evaluate the Taylor coefficients. Classically,
this is solved with the recursive differentiation of the
function f , but this approach is not affordable in real
situations. In contrast, this can be done quite efficiently
by using Automatic Differentiation (AD) techniques
[6]. To obtain the successive derivatives of a function,
first we have to decompose it into a sequence of
arithmetic operations and calls to standard unary or
binary functions. This part is the trickiest step of the
TSM, since it has to be done manually for each ODE or
automatically by using some of the nowadays available
codes. For instance, if we want to evaluate the second

member f of the two-body problem Px D X; Py D
Y; PX D �x=.x2 C y2/3=2; PY D �y=.x2 C y2/3=2,
we can decompose it as shown in Fig. 1.

This decomposition of the function can be used,
together with the chain rule, to evaluate the derivatives
of the function f and any optimization at this point
will give faster TSMs. Thus, the next step is to obtain
a list of rules to compute the coefficients of the Taylor
series. If we denote by f Œj �.t/ D f .j /.t/=j Š the j th
normalized Taylor coefficient of f .t/ at t , some basic
rules (for a complete list see [9]) are as follows:
• If h.t/ D f .t/˙ g.t/ then

hŒm�.t/ D f Œm�.t/˙ gŒm�.t/:

• If h.t/ D f .t/ � g.t/ then

hŒm�.t/ � TIMES.f; g;m/ D
mX

iD0
f Œm�i �.t/ gŒi �.t/:

• If h.t/ D f .t/˛ with ˛, .f Œ0�.t//˛ 2 Rnf0g then

hŒ0�.t/ D .f Œ0�.t//˛;

hŒm�.t/ � POWER.f; h; ˛;m/ D 1

mf Œ0�.t/

�
m�1X

iD0

�
m˛ � i.˛ C 1/�f Œm�i �.t/ hŒi �.t/:

• If g.t/ D cos.f .t// and h.t/ D sin.f .t// then

Taylor Series Methods,
Fig. 1 Left: Decomposition
of the two-body problem in
unary and binary functions.
Right: AD rules

Times

−x Power

Plus

x y
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Times
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f3 = f4 =

s1 = s2 =

s3 =

s4 =

Times Times

x y

f3

f4

s2

s1
[m]

[m]

[m]

[m]
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s3 = s1   +  s2
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[m]
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f2 = Y f1     = X
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T

gŒ0�.t/ D cos
�
f Œ0�.t/

�
;

gŒm�.t/ � COS.f; h;m/

D � 1
m

mX

iD1
i hŒm�i �.t/ f Œi �.t/;

hŒ0�.t/ D sin
�
f Œ0�.t/

�
;

hŒm�.t/ � SIN.f; g;m/

D 1

m

mX

iD1
i gŒm�i �.t/ f Œi �.t/:

The set of formulas may be easily increased with
the recurrences of other elementary functions like
exp; log; tan; cosh; sinh; arccos; arcsin, and so on.
Note that some functions have to be evaluated in
groups, like sin and cos.

Once we have the way to construct, order by order,
the Taylor coefficients of the second member of (1),
we easily obtain the coefficients of the Taylor series
solution

y ŒiC1� D f Œi �.y Œ0�; : : : ;y Œi �/

.i C 1/ :

Domain of Stability
The stability function of TSM(n) is

Rn.z/ D 1C zC z2

2Š
C : : :C zn

nŠ
D ez �

1X

iDnC1

zi

i Š

D e<.z/ � .nC 1; z/
nŠ

;

where � .k; z/ is the incomplete Gamma function.
TSM, as an explicit method, is not an A-stable method.
Low-order TSMs (order n � 4) have the same stability
domain as any explicit Runge-Kutta method of n stages
and also order n. For higher orders the stability domain
of the TSM(n) tends to a semicircle in the negative
complex plane whose radius r behaves asymptotically
like O.n/, and it can be approximated (numerically
fitted) by r.n/ � rapprox.n/ D 1:3614C 0:3725 n.

In Fig. 2 the stability domain for several TSMs is
shown. For large n, the stability domain is reasonably
large and thus TSMs can be used with moderately stiff
equations (obviously, it cannot be used for highly stiff
systems, where it is necessary to use implicit Taylor
methods).

Variable-Stepsize and Variable-Order
Formulation
In practical implementations of a numerical method
for the solution of ODEs, the use of variable-stepsize
is a crucial point because it permits to automatize the
control of the error. To use TSMs, first we have to
select the order n of the method. One option, given an
user-requested tolerance error TOL, is just to use the
asymptotic optimal order

n D d� ln.TOL/=2e C ninc;
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Taylor Series Methods, Fig. 2 Stability domains of several TSM(n)
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where ninc is an increment of the order with respect
to the asymptotic formula. More sophisticated formu-
las take into account the evolution of the system and
adapt the order at each step.

Once the order of the TSM is fixed and we have
the Taylor coefficients via AD, we determine the step-
size, whose maximum value is given by the radius
of convergence of the Taylor series. One very simple
method is based on estimating the error by taking the
last term in the Taylor series (to avoid problems with
odd/even functions it is advisable to take the last two
terms different from zero, say the n and .n�1/th, which
avoids also problems with polynomial solutions). Note
that this strategy is similar to the concept of Runge-
Kutta embedded pairs and also it is related to the
estimation of the radius of convergence of the power
series using the root criterion. So, an estimated stepsize
at the i C 1 step is given by

hi D fac� min

8
<

:

 
TOL

ky Œn�1�
i k

1

!1=.n�1/

;

 
TOL

ky Œn�i k
1

!1=n9=

; ;

(3)

with fac a safety factor. Some authors use more terms
giving better estimations of the radius of convergence
of the power series.

Note that there is no rejected step in the TSM, as
occurs in any variable-stepsize formulation of Runge-
Kutta or multistep methods, because we choose the
stepsize once the series are generated to obtain a
required precision level. However, to give more guar-
antee about the stepsize, after its selection, we may
enter in a refinement process which is based on the
defect error control technique. This extra error control
also permits to avoid the use of too large stepsizes for
entire functions, that can lead to large rounding errors
in the evaluation process.

Therefore, a complete algorithm of the TSM is:
1. Use a preprocessor for the generation of the de-

composition in elementary functions of the second
member of the differential system.

2. On each step i C 1
(a) Select the degree ni using a variable-order

scheme.
(b) Compute each Taylor coefficient using the AD

rules (Fig. 1).
(c) Select the stepsize hi using a variable-stepsize

formula.
(d) (OPTIONAL) Use defect error control to cor-

rect the stepsize.

(e) Evaluate the Taylor series at hi obtaining y iC1.
Note that for differential systems of order greater

than one, we may use the high order formulation of the
problem directly, without passing to a first order ODE
system, obtaining a slightly more optimized code. This
is another property of the TSM; it can work directly
with high order ODEs.

Computational Complexity
The complexity of the AD computation of the Taylor
coefficients of the TSM(n) is O.n2/ (in the case of lin-
ear systems O.n/). The global complexity of the TSM
[3] takes into account the requested correct digitsD D
� log10.TOL/, and it states that the global minimal cost
of computing the solution of an ODE system with the
TSM is O.D4/. Note that the global computational
cost is polynomial in D (see right plot of Fig. 3) and
it has to be obtained for a TSM whose order and step-
size depends on the user tolerance (variable-stepsize
variable-order codes using adaptive arithmetic).

Applications
The TSM has several advantages. One of them is that
it gives directly a dense output in the form of a power
series, and therefore, we can evaluate the solution at
any time using the Horner algorithm. This option is
quite useful in event detection.

High-Precision Integration of ODEs
In recent studies in physics, engineering, and math-
ematics, a crucial point is to obtain solutions up to
very high precision levels. The problem is that standard
numerical ODE solvers use a fixed order, and therefore,
they are not suitable for high precision. As TSM of
degree n is of order n, the use of TSMs of high degree
gives us a numerical method of high order. Therefore,
they can be very useful for high-precision solution of
ODEs [2].

In Fig. 3 we show some CPU time-relative error
diagrams in double, quadruple, and multiple precision
performed for the classical chaotic Lorenz model. We
observe that in double precision TSM is not the best op-
tion for low precision, whereas in quadruple precision
TSM presents a much better performance, compared
with other standard methods. In multiple precision, (up
to 500 precision digits in the picture) TSM is one of the
few methods capable to reach the goal in a reasonable
time.
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Taylor Series Methods, Fig. 3 CPU time in seconds versus Computational relative error diagrams in double, quadruple (using
TSM(n), a standard Runge-Kutta code and an extrapolation method), and multiple precision (only for the TSM(n))

Sensitivity Analysis and Rigorous Computing
An important extension of the TSM is the construc-
tion of validated methods (or interval methods) for
ODEs. When these methods return a solution to a
problem, then the problem is guaranteed to have a
unique solution, and an enclosure of the true solution
is produced. Note that a solution with a guaranteed
error bound could be used to prove a theorem or
when we have uncertain initial conditions or param-
eters on the system. Most of the validated methods,
like the Moore [9] and Lohner algorithms, are based
on TSM due to the simple form of the error term,
and they have two main steps: first to compute an
a priori enclosure of the solution, and later to com-
pute a tighter enclosure (a kind of predictor-corrector
procedure).

Another approach consists of using a multivariable
Taylor polynomial, that is, the Taylor models of Berz
[8]. Now, the goal is the propagation of a box of initial
conditions or parameters, and to determine the shape
of the box at the final time by using the Taylor series
expansion of the solution taking the initial conditions
(and/or parameters) as variables. This approach can
be used, in combination with interval arithmetic, in
validated methods or, using extended AD formulas for
computing sensitivity values (partial derivatives of the
solution) just to propagate a box of data like in Fig. 4.

Numerical Solution of High-Index DAEs
TSM can be applied to solve differential algebraic
equation systems (DAEs) for the state variables yj .t/
of the general form
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Taylor Series Methods, Fig. 4 Left: Evolution of the boxes at different times for the two-body problem with eccentricity e D 0:5.
Right: Boxes of different order of the multivariable approximation

fi .t; the yj and derivatives of them/D 0; i D 1; : : : ; n:

The advantage of the TSM for DAEs is that it can
be used for systems of high differentiation index as
the TSM is not affected by high index. The method
[10] is based on the Taylor series expansion approach
combined with Pryce’s structural analysis.

Numerical Solution of BVPs, SDEs, : : :
In the literature, there are several extensions of the
TSM for other kind of differential equations as bound-
ary value problems (BVPs), where shooting algorithms
based on TSM have been developed. In the numerical
solution of stochastic differential equations (SDEs) one
important class of schemes to approximate the solution
are stochastic Taylor methods based on the stochastic
Itô or Stratonovich Taylor expansions, both explicit
and implicit (for stiff SDEs). Besides, some versions
of the TSM have been applied to functional differ-
ential equations (FDEs), partial differential equations
(PDEs), and so on.

Software
There are several available software implementations
of the TSM. Some of the most important ones are as
follows:
• ATOMFT [4] is a TSM ODE solver in Fortran.
• COSY INFINITY [8] is a rigorous ODE solver

based on the Taylor model arithmetic of M. Berz.
• DAETS [10] is a TSM DAE solver in C++.

• TAYLOR [7] is a TSM ODE solver in C.
• TIDES [1] is a TSM ODE solver in C and Fortran

that supports multiple-precision, direct computation
of partial derivatives, etc.
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Short Definition

Thomas–Fermi theory sometimes also called the sta-
tistical theory is the simplest among the density func-
tional theories, i.e., models where the energy of a
charged quantum gas of fermions is expressed entirely
in terms of its density. Thomas–Fermi theory gives,
in the limit of large nuclear charge, the leading order
asymptotics of the exact ground state energy of atoms
and molecules.

Description

Defintion and Basic Properties of
Thomas–Fermi Theory
Thomas–Fermi theory goes back to the very early
days of quantum mechanics where Thomas [20] and
Fermi [4] independently invented the model shortly af-
ter Schrödinger’s formulation of quantum mechanics.
The model was invented as an approximate theory for
atoms and molecules.

We formulate the model for a gas of identical
negatively charged fermions with q internal (e.g., spin)
states. For the usual situation with spin 1=2 electrons,
we have q D 2. Assume the units are chosen in such
a way that Planck’s constant „ and the mass of the
fermion are both 1, and that the charge of the fermion
is �1. The Thomas–Fermi model for such a gas in

an exterior electric potential V W R3 ! R may be
expressed from the energy functional

ETF
V .�/ D �

Z

R3

�.x/5=3dx �
Z

R3

V .x/�.x/dx

C1
2

Z Z

R3�R3

�.x/�.y/

jx � yj dxdy C U :

Here, the function �.x/ � 0 is the particle number
density (which is minus the charge density in our
units), � is a parameter, whose physical value, as we
shall explain below, is

�physical D 3

10

�
6�2=q

�2=3
:

The term U has been included to allow a contribution
that does not depend on �. An important property of
the functional ETF

V is that it is strictly convex.
Assuming that V 2 L5=2.R3/C L1.R3/, all terms

in ETF
V .�/ are finite if � 2 L5=3.R3/ \ L1.R3/. Hence,

under this asumption on V , we can define the energy
of the Thomas–Fermi gas with N particles by the
variational expression

ETF
V .N / D inf

n
ETF
V .�/

ˇ̌
ˇ 0 � � 2 L5=3 �R3� ;

Z

R3

�.x/dx D N
o
: (1)

Moreover, the energy is finite, i.e., ETF
V .N / > �1. In

order to define a finite energy, it is, in fact, enough to
assume that VC D maxfV; 0g 2 L5=2.R3/ C L1.R3/
and V� D minfV; 0g 2 L5=2loc .R

3/.
Let us briefly explain the different terms in the

functional. The third term in ETF
V is the Coulomb self-

energy of the classical charge distribution ��. In the
context of using Thomas–Fermi theory to describe a
quantum gas, it should be considered as an approxima-
tion to the electrostatic energy of the particles.

The second term in ETF
V is the energy due to the

interaction of the particles with the exterior potential.
Finally, the source of the first term in ETF

V is moti-
vated by the semiclassical integral

.2�/�3q
Z

jpj�F
1

2
p2dp D �physical �

5=3;
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if F � 0 is chosen such that � D q.2�/�3
R

jpj�F 1dp
(the factor q in front of the two integrals is due to
the internal degrees of freedom). In other words, the
Fermi gas is assumed to fill a ball (the Fermi sphere) in
momentum space. The density of the gas is (q times)
the volume of the ball, and the kinetic energy density
of the gas is (q times) the momentum integral of the
kinetic energy 1

2
p2 over the ball. The parameter F that

we introduced is the Fermi momentum.
As already stated above, Thomas–Fermi theory was

introduced by Thomas and Fermi in the 1920s as a
model for atoms and molecules. The first rigorous
results were due to Hille [6], but it was not until 1973
that Lieb and Simon [13, 14] did a complete rigorous
analysis of the model. Unless otherwise stated, the
results given in this review are from these papers and
can also be found in the detailed review [10] (see also
[8]). The basic properties of Thomas–Fermi theory are
collected in the following theorem.

Theorem 1 (Basic properties of the Thomas–Fermi
variational problem) If V 2 L5=2.R3/ C L1.R3/
and tends to zero at infinity, then the energy ETF

V is
a convex, nonincreasing function of particle number.
There exists a critical particle number Nc � 0 (pos-
sibly infinity) such that the variational problem (1) has
a unique minimizer � if and only ifN � Nc. Moreover,
there exists a unique chemical potential � � 0 such
that the minimizing � satisfies the Thomas–Fermi
equation

5

3
��.x/2=3 D ŒV .x/ � � 	 jxj�1 � ��C;

where Œt � DC maxf0; tg. Here, 	 refers to convolution.
If N D Nc then � D 0.

This theorem is proved by standard functional analytic
methods using the strict convexity of ETF to show that
for all N � 0,

ETF
V .N / D inf

n
ETF
V .�/

ˇ̌
ˇ 0 � � 2 L5=3 �R3� ;

Z

R3

�.x/dx � N
o

and that the minimizer for this problem exists and is
unique for all N � 0. For the Thomas–Fermi model,
the energy ETF

V .N / D ETF
V .Nc/ if N � Nc .

Thomas–Fermi Theory for Atoms and Molecules
In the case of a molecule consisting of K atoms,
i.e., with K nuclei which we assume to have charges
Z1; : : : ; ZK>0 (in our units the physical nuclei have
integer charges, but it is not necessary to make this
assumption) and to be situated at points R1; : : : ; RK 2
R
3, we have

V.x/ D
KX

iD1

Zk

jx �Rkj ; U D
X

1�k<`�K

ZkZ`

jRk � R`j :
(2)

We note that in this case, indeed, V 2 L5=2.R3/ C
L1.R3/ and tends to zero at infinity.

It is an important result that in the Thomas–Fermi
theory for molecules, there are no negative ions.

Theorem 2 (Absence of negative ions) If V is given
by (2), then Nc D Z1 C : : :CZK .

The absence of negative ions in Thomas–Fermi theory
is of course a wrong feature in a model that is supposed
to qualitatively describe real atoms and molecules.
As we shall see later, it is, however, correct from a
quantitative point of view.

Another qualitative problem with Thomas–Fermi
theory is that molecules cannot bind in the model.
More precisely, the energy of a molecule is always
greater than the energy of the individual atoms.
This is the famous no-binding result first noticed
by Teller [19]. For molecules, we write R D
.R1; : : : ; RK/ andZ D .Z1; : : : ; ZK/. We then denote
the energy ETF.N;Z;R/ and the minimizing density
�TF.x;N;Z;R/. We can then state the no-binding
result as the following more general result.

Theorem 3 (No-binding) Let Z D Z1 C Z2, where
Z1, Z2 have nonnegative components. Then given
N > 0 there existsN1;N2 � 0 such thatN D N1CN2
and

ETF.N;Z;R/ � ETF.N1;Z1;R/C ETF.N2;Z2;R/:

(Note that we allow some components of Z1, Z2 to
vanish, which simply means that the molecule has
fewer nuclei. In particular, the energy does not depend
on the corresponding components of R1, R2.)

In this theorem, the presence of the nuclear repulsion
term U is important. In the Thomas–Fermi theory, the
inequality in the no-binding theorem is, in fact, strict,
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but this fails in some of the generalizations discussed
below.

The minimal energy and the minimizing density in
Thomas–Fermi theory satisfy the exact scaling rela-
tions that for all 	 > 0:

ETF.	N; 	Z; 	�1=3R/ D 	7=3ETF.N;Z;R/

and

�TF.	�1=3x; 	N; 	Z; 	�1=3R/ D 	2�TF.x;N;Z;R/:

For positive ions, i.e., if N < Z1 C : : : C ZK , the
density �TF.x;N;Z;R/ has compact support. In the
neutral case, N D Nc D Z1 C : : : C ZK , the density
satisfies the large x asymptotics

�TF.x;Nc;Z;R/ 
 27
�
5�

3�

�3
jxj�6:

In particular, it follows that we have a limit of an
infinite molecule

lim
	!1 �TF.x; 	Nc; 	Z; 	

�1=3R/ D 27
�
5�

3�

�3
jxj�6:

Validity of Thomas–Fermi Theory as an
Approximation
As already, stated Thomas–Fermi theory is motivated
by a semiclassical calculation for the kinetic energy. It
is therefore natural to guess that it will be a good ap-
proximation to the exact quantum model in a semiclas-
sical regime, i.e., when the average particle distance is
small compared to the scale on which the density and
the potential vary. From the Thomas–Fermi scaling, we
see that this is the case in the large nuclear charge limit.
To make this precise, consider the molecular quantum
Hamiltonian

HN D
NX

iD1

�
�1
2

i � V.xi /

�
C

X

1�i<j�N

1

jxi � xj jCU
(3)

with V and U given in (2). The allowed fermionic
wave functions are in the antisymmetric subspaceVN

H2.R3ICq/ of
NN

L2.R3ICq/ (note that
the internal degeneracy is still q). The density
corresponding to a fermionic wave function is

� .x/ D N
qX

s1D1
� � �

qX

sND1

�
Z
j .x; s1; x2; s2; : : : ; xN ; sN /j2dx2 : : : dxN :

The quantum energy is then defined as

EQ.N;Z; R/ D inf
n
h ;HN iL2 j 2

N̂

H2.R3ICq/;

k k2
L2
D 1

o
: (4)

The following asymptotic exactness of Thomas–Fermi
theory was proved in [13].

Theorem 4 (Large Z asymptotic exactness of TF
theory) As 	!1, we have

EQ
�
	N; 	Z; 	�1=3R

� D ETF
�
	N; 	Z; 	�1=3R

�

Co �	7=3�

D 	7=3ETF.N;Z;R/

Co �	7=3� : (5)

In the last equality above, we used the TF scaling
relation. For the density of a ground state, i.e., a
minimizer  for the problem in (4), we have that

lim
	!1

Z

R3

	�2� .	�1=3x; 	N; 	Z; 	�1=3R/W.x/dx

D
Z

R3

�TF.x;N;Z;R/W.x/dx

for all W 2 L5=2.R3/. Strictly speaking, 	 has to run
through a sequence such that 	N is an integer.

The proof of this theorem relies on a semiclassical
approximation and a control of the interaction in terms
of the energy of the charge distribution � .

This theorem shows that the TF model describes
the energy correctly to leading order. The absence of
negative ions and the no-binding in TF theory can now
be understood as saying that binding and ionization
correspond to energies that are of lower order.
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Generalizations of Thomas–Fermi Theory
All density functional theories can be thought of as
generalizations of the Thomas–Fermi model. The three
simplest are
1. The Thomas–Fermi-Dirac (TFD) theory [2]: in

which an exchange correlation term has been added
(CD > 0)

ED.�/ D �

Z

R3

�.x/5=3dx �
Z

R3

V .x/�.x/dx

C1
2

Z Z

R3�R3

�.x/�.y/

jx � yj dxdy

�CD

Z

R3

�.x/4=3dx C U

2. The Thomas–Fermi-von Weizsäcker (TFW)
theory [21]: in which a correction to the kinetic
energy has been added (CW > 0)

ETFW.�/ D CW
Z

R3

.rp�.x//2dx

C�
Z

R3

�.x/5=3dx �
Z

R3

V .x/�.x/dx

C1
2

Z Z

R3�R3

�.x/�.y/

jx � yj dxdy C U :

3. The combined Thomas–Fermi-Dirac-von Weizsä-
cker (TFDW) theory:

ETFDW.�/ D CW
Z

R3

.rp�.x/2dx

C�
Z

R3

�.x/5=3dx�
Z

R3

V .x/�.x/dx

C1
2

Z Z

R3�R3

�.x/�.y/

jx � yj dxdy

�CD

Z

R3

�.x/4=3dx C U

The energies in these models are defined similarly
to the Thomas–Fermi energy with the appropriate
changes to the domain of the functionals. For the
TFD and TFW theories, the energies are convex
and nonincreasing. In the molecular case, we have
for the TFD model, as for the TF model that
Nc D Z1 C : : : C ZK , and the no-binding theorem
holds. For the TFW model, Nc > Z1 C : : :CZK , and
the no-binding theorem does not hold. For these results

on TFD and TFW, see [1, 10]. For the TFDW model,
it was shown in [7] (see also [18]) that there exist
minimizers forN < Nc for someNc > Z1C: : :CZK .

A natural question is what are the physically cor-
rect values of the parameters CD and CW . Dirac [2]
suggested that CD D .3=2/4=3.2�q/�1=3 which was
confirmed to give the correct asymptotics for the high-
density uniform gas in [5]. It is not entirely clear how
to choose the constant CW . One possibility is to note,
see [10], that it may be chosen in such a way that the
TFW energy reproduces the leading 	2 correction, also
called the Scott correction, to the energy asymptotics
in (5).

An interesting observation is that as a consequence
of the Lieb-Thirring inequality [15, 16] and the Lieb
exchange estimate [9, 11], the TFD functional gives an
exact lower bound to the expected quantum energy.

Theorem 5 (Thomas–Fermi-Dirac functional as an
exact lower bound) There exist positive values for the
constants � and CD such that if  2 VN

H2.R3ICq/
is a fermionic wave function with density � and HN

denotes the quantum Hamiltonian (3), then

h ;HN i � ETFD.� /:

The famous Lieb-Thirring conjecture [16] suggests that
we may choose � D �physical here.

Combining this lower bound with the no-binding The-
orem shows that the quantum energy is bounded below
by a sum of atomic TFD energies. This indeed proves
stability of matter, i.e., that the energy is bounded
proportionally to the number of nuclei [3, 12, 15].

Magnetic Thomas–Fermi Theory
In the presence of a strong magnetic field, a modifica-
tion of Thomas–Fermi theory is needed, in particular,
because of the interaction of the electron spin with the
magnetic field. In the case of a homogeneous magnetic
field of strength B , the appropriate modification is to
replace the kinetic energy function ��5=3 by the Legen-
dre transform supV�0.V� � PB.V // of the pressure of
the free Landau gas

PB.V / D .3�2/�1B
 
V 3=2 C 2

1X

�D1
ŒV � 2�B�3=2C

!
;

P0.v/ D lim
B!0CPB.V / D �

2

15�2
V 5=2:
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The corresponding Thomas–Fermi model was studied
in [17, 22]. It again satisfies Nc D Z1 C : : :CZK and
the no-binding Theorem. Moreover, it was shown that
the magnetic Thomas–Fermi energy approximates the
exact quantum energy (as in Theorem 4) if B=Z3 ! 0

as Z !1.
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Tight Frames and Framelets

Raymond Chan
Department of Mathematics, The Chinese University
of Hong Kong, Shatin, Hong Kong

The construction of compactly supported (bi-)ortho-
normal wavelet bases of arbitrarily high smoothness
has been widely studied since Ingrid Daubechies’ cel-
ebrated works [3,4]. Tight frames generalize orthonor-
mal systems and give more flexibility in filter designs.
A system X � L2.R/ is called a tight frame of L2.R/
if X

h2X
jhf; hij2 D kf k2;

holds for all f 2 L2.R/, where h�; �i and k � k D
h�; �i1=2 are the inner product and norm of L2.R/; see
[5, Chapter 5]. This is equivalent to

X

h2X
hf; hih D f; f 2 L2.R/:

Hence, like an orthonormal system, one can use the
same system X for both the decomposition and re-
construction processes. The tight frame system X is
usually linear dependent in order to get more flexibility.

Tight framelet systems are of particular interest.
A tight framelet system is constructed from a refinable
function. Let � 2 L2.R/ be a refinable function whose
refinement equation is

� D 2
X

k2Z
h0Œk��.2 � �k/:

The sequence h0 is called refinement mask or low-
pass filter. Let hi , i D 1; : : : ; m be high-pass filters
satisfying
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mX

iD0
bhi .!/bhi .!/ D 1 and

mX

iD0
bhi .!/bhi .! C �/ D 0; 8! 2 Œ��; ��; (1)

where bhi .!/ WDP
k2Z hi Œk�e�ik! is the Fourier series

of hi . Equation (1) is called the perfect reconstruction
formula, and fhi gmiD1 are called framelet masks. Define
 WD f 1; : : : ;  mg with

 i D 2
X

k2Z
hi Œk��.2 � �k/:

Then X ./ D f2j=2 i .2j � �k/ W k; j 2 ZI i D
1; : : : ; mg is a tight frame of L2.R/, and f i gmiD1 are
called framelets.

As an example, consider the piecewise linear B-
spline (the hat function):

�.x/ D
�
1C x; �1 � x � 0;
1 � x; 0 � x � 1:

Its refinement equation is

�.x/ D 1

2
�.2x C 1/C 1 � �.2x/C 1

2
�.2x � 1/:

Thus, the low-pass filter is

h0 D 1

4
Œ1; 2; 1� (2)

and the corresponding Fourier series is

bh0.!/ D 1

4
ei! C 1

2
C 1

4
e�i!:

If we define the high-pass filters as

h1 D
p
2

4
Œ1;�1�; h2 D 1

4
Œ�1; 2;�1� (3)

with Fourier series

bh1.!/ D
p
2

4
ei! �

p
2

4
e�i! and

bh2.!/ D �1
4
ei! C 1

2
� 1
4
e�i!:

Then the perfect reconstruction formula (1) holds. The
framelets corresponding to the high-pass filters (3) are:

 1.x/ D 1p
2
�.2x C 1/� 1p

2
�.2x � 1/

 2.x/ D �1
2
�.2x C 1/C 1 � �.2x/� 1

2
�.2x � 1/

The system obtained by dilation and translation
f2k=2 i .2k � �j / W k; j 2 ZI i D 1; 2g is the piecewise
linear tight framelet system.

There is a general process for constructing high-
pass filters for B-splines; see [6]. Here we give the
filters for the piecewise cubic tight framelet system
which, like the piecewise linear one, is also used very
often in image processing; see [1]:

h0 D 1

16
Œ1; 4; 6; 4; 1�I h1 D 1

8
Œ1; 2; 0;�2;�1�I

h2 D
p
6

16
Œ�1; 0; 2; 0;�1�I h3 D 1

8
Œ�1; 2; 0;�2; 1�I

h4 D 1

16
Œ1;�4; 6;�4; 1�:

Similar to the orthonormal wavelet system, we also
have analysis and synthesis tight frame transform and
multi-resolution analysis. The forward (or analysis)
tight frame transform is obtained by

T D
2

4
H0

H1

H2

3

5

where Hi are filter matrices that correspond to the
filters. For example,

h0 D 1

4
Œ1; 2; 1� ! H0 D 1

4

2
666664

2 1 0 1

1 2 1 0

: : :
: : :

: : :

0 1 2 1

1 0 1 2

3
777775

where we have used the periodic extension at the
boundary. The backward (or synthesis) tight frame
transform is obtained by taking the transpose of the
forward transform:

T t D �H0
t H1

t H2
t
�
:
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Notice that the perfect reconstruction formula (1) guar-
antees that T tT D I, but T T t may not be equal to I.
In fact,

T tT D I , Ht
0H0 CHt

1H1 CHt
2H2 D I

To obtain multi-resolution analysis, define h0 at
level ` to be

h
.`/
0 D

2

64
1

4
; 0; : : : ; 0„ ƒ‚ …
2.`�1/�1

;
1

2
; 0; : : : ; 0„ ƒ‚ …
2.`�1/�1

;
1

4

3

75 :

The masks h.`/1 and h.`/2 can be given similarly. LetH.`/
i

be the matrix corresponding to h.`/i . Then

A D

2

66666666664

QL�1
`D0 H

.L�`/
0

H
.L/
1

QL�1
`D1 H

.L�`/
0

H
.L/
2

QL�1
`D1 H

.L�`/
0

:::

H
.1/
1

H
.1/
2

3

77777777775

�

2
66664

AL

AH

3
77775
;

and we also have the perfect reconstruction property:
AtA D At

LAL CAt
HAH D I .

In image processing where the problems are two-
dimensional, we use tensor products of the univariate
tight frames to produce tight framelet systems in
L2.R2/, i.e., the filters are given by hij D htihj , where
hi are the filters from the univariate tight framelet sys-
tem. As an example, the filters for the two-dimensional
piecewise linear tight framelet system are as
follows:

1
16

2

4
1 2 1

2 4 2

1 2 1

3

5;
p
2

16

2

4
1 0 �1
2 0 �2
1 0 �1

3

5; 1
16

2

4
�1 2 �1
�2 4 �2
�1 2 �1

3

5;

p
2

16

2

4
1 2 1

0 0 0

�1 �2 �1

3

5 ; 1
8

2

4
1 0 �1
0 0 0

�1 0 1

3

5;
p
2

16

2

4
�1 2 �1
0 0 0

1 �2 1

3

5;

1
16

2

4
�1 �2 �1
2 4 2

�1 �2 �1

3

5;
p
2

16

2

4
�1 0 1

2 0 �2
�1 0 1

3

5; 1
16

2

4
1 �2 1

�2 4 �2
1 �2 1

3

5:

A good reference for the material mentioned
here is [2].

References

1. Cai, J., Chan, R., Shen, L., Shen, Z.: Convergence analysis
of tight framelet approach for missing data recovery. Adv.
Comput. Math. 31, 87–113 (2009)

2. Cai, J., Dong, B., Osher, S., Shen, Z.: Image restoration: total
variation; wavelet frames, and beyond (submitted). http://
math.arizona.edu/�dongbin/Publications/CDOS.pdf

3. Daubechies, I.: Orthogonal bases of compactly supported
wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

4. Daubechies, I.: Ten Lectures on Wavelets. Volume 61 of
CBMS Conference Series in Applied Mathematics. SIAM,
Philadelphia (1992)

5. Mallat, S.: A Wavelet Tour of Signal Processing. Academic,
San Diego (1998)

6. Ron, A., Shen, Z.: Affine system in L2.Rd /: the analysis of
the analysis operator. J. Funct. Anal. 148, 408–447 (1997)

Time Reversal, Applications
and Experiments

Mathias Fink
Institut Langevin, ESPCI ParisTech, Paris, France

Taking advantage of the time-reversal invariance of the
acoustic wave equation, the concept of time-reversal
mirror has been developed and several devices have
been built which illustrated the efficiency of this con-
cept [1–3]. In such a device, an acoustic source, located
inside a lossless medium, radiates a brief transient
pulse that propagates and is potentially distorted by
the medium. Time reversal as described above would
entail the reversal, at some instant, of every particle
velocity in the medium. As an alternative, the acoustic
field could be measured on every point of an enclosing
surface (acoustic retina) and retransmitted in time-
reversed order; then, the wave will travel back to its
source; see Fig. 1. From an experimental point of view,
a closed TRM consists of a two-dimensional piezoelec-
tric transducer array that samples the wave field over a
closed surface. An array pitch of the order of 	/2 where
	 is the smallest wavelength of the pressure field is
needed to insure the recording of all the information
on the wave field. Each transducer is connected to its
own electronic circuitry that consists of a receiving
amplifier, an A/D converter, a storage memory, and a
programmable transmitter able to synthesize a time-
reversed version of the stored signal. In practice, closed

http://math.arizona.edu/~dongbin/Publications/CDOS.pdf
http://math.arizona.edu/~dongbin/Publications/CDOS.pdf
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Heterogeneous
Medium Elementary transducers

RAMs b

p(r,t ) p(r,T-t )

ACOUSTIC
SOURCE

a

Time Reversal, Applications and Experiments, Fig. 1 (a)
Recording step: a closed surface is filled with transducer ele-
ments. A point-like source generates a wave front which is dis-
torted by heterogeneities. The distorted pressure field is recorded

on the cavity elements. (b) Time-reversed or reconstruction step:
the recorded signals are time reversed and reemitted by the cavity
elements. The time-reversed pressure field back-propagates and
refocuses exactly on the initial source

Time Reversal, Applications and Experiments, Fig. 2 One
part of the transducers is replaced by reflecting boundaries. In
(a) the wave radiated by the source is recorded by a set of

transducers through the reverberation inside the cavity. In (b),
the recorded signals are time reversed and reemitted by the
transducers

TRMs are difficult to realize and the TR operation
is usually performed on a limited angular area, thus
apparently limiting focusing quality. A TRM consists
typically of a small number of elements or time-
reversal channels. The major interest of TRM, com-
pared to classical focusing devices (lenses and beam
forming) is certainly the relation between the medium
complexity and the size of the focal spot. A TRM
acts as an antenna that uses complex environments to
appear wider than it is, resulting in a refocusing quality
that does not depend of the TRM aperture.

It is generally difficult to use acoustic arrays that
completely surround the area of interest, so the closed
cavity is usually replaced by a TRM of finite angular
aperture. However, wave propagation in media with

complex boundaries or random scattering medium can
increase the apparent aperture of the TRM, resulting
in a focal spot size smaller than that predicted by
classical formulas. The basic idea is to replace one
part of the transducers needed to sample a closed time-
reversal surface by reflecting boundaries that redirect
one part of the incident wave towards the TRM aper-
ture (see Fig. 2). When a source radiates a wave field
inside a closed cavity or in a waveguide, multiple
reflections along the medium boundaries can signif-
icantly increase the apparent aperture of the TRM.
Such a concept is strongly related to a kaleidoscopic
effect that appears, thanks to the multiple reverbera-
tions on the waveguide boundaries. Waves emitted by
each transducer are multiply reflected, creating at each
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reflection “virtual” transducers that can be observed
from the desired focal point. Thus, we create a large
virtual array from a limited number of transducers and
a small number of transducers is multiplied to create
a “kaleidoscopic” transducer array. Three different ex-
periments illustrating this concept will be presented (a
waveguide, a chaotic cavity, and a multiply scattering
medium).

Time Reversal in Acoustic Waveguide

The simplest boundaries that can give rise to such a
kaleidoscopic effect are plane boundaries as in rect-
angular waveguides or cavities. The first experiment

conducted in the ultrasonic regime by Roux and Fink
[3] showed clearly this effect with a TRM made of a
1D transducer array located in a rectangular ultrasonic
waveguide (see Fig. 3a). For an observer, located in
the waveguide, the TRM seems to be escorted by
a periodic set of virtual images related to multipath
propagation and effective aperture 10 times larger than
the real aperture was observed.

The experiment was conducted in a waveguide
whose interfaces (water-air or water-steel interfaces)
are plane and parallel. The length of the guide was
L
 800 mm, on the order of 20 times the water depth
of H
 40 mm. A subwavelength ultrasonic source is
located at one end of the waveguide. On the other
end, a 1D time-reversal mirror made of a 96-element
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Time Reversal, Applications and Experiments, Fig. 3 (a)
Schematic of the acoustic waveguide: the guide length ranges
from 40 to 80 cm and the water depth from 1 to 5 cm. The central
acoustic wavelength (	) is 0.5 mm. The array element spacing
is 0.42 mm. The TRM is always centered at the middle of the

water depth. (b) Spatial-temporal representation of the incident
acoustic field received by the TRM; the amplitude of the field
is in dB. (c) Temporal evolution of the signal measured on one
transducer of the array
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array spanned the waveguide. The transducers had a
center frequency of 3.5 MHz and 50 % bandwidth.
Due to experimental imitations, the array pitch was
greater than 	=2. A time-reversal experiment was
then performed in the following way: (1) the point
source emits a pulsed wave (1�s duration); (2) the
TRM receives, selects a time-reversal window and
time reverses, and retransmits the field; (3) after back
propagation the time-reversed field is scanned in the
plane of the source.

Figure 3b shows the incident field recorded by the
array after forward propagation through the channel.
After the arrival of the first wave front corresponding
to the direct path, we observe a set of signals, due to
multiple reflections of the incident wave between the
interfaces that spread over 100�s. Figure 3c represents
the signal received on one transducer of the TRM.

After retransmission and propagation of the time-
reversed signals recorded by the array during a window
of 100�s, we observe a remarkable temporal compres-
sion at the source location (see Fig. 4). This means
that multipath effects are fully compensated. It shows
that the time-reversed signal observed at the source is
nearly identical to the one received in a time-reversed
experiment conducted in free space. The peak signal
exceeds its temporal side lobes by 45 dB.

The spatial focusing of the time-reversed field is
also of interest. Figure 5 shows the directivity pattern
of the time-reversed field observed in the source plane.
The time-reversed field is focused on a spot which
is much smaller than the one obtained with the same
TRM working in free space. In our experiment, the
�6 dB lateral resolution is improved by a factor of 9.
This can be easily interpreted by the images theorem
in a medium bounded by two mirrors. For an observer,
located at the source point, the 40-mm TRM appears
to be accompanied by a set of virtual images related to
multipath reverberation.

Acoustic waveguides are currently found in un-
derwater acoustic, especially in shallow water, and
TRMs can compensate for the multipath propaga-
tion in oceans that limits the capacity of underwa-
ter communication systems. The problem arises be-
cause acoustic transmissions in shallow water bounce
off the ocean surface and floor, so that a transmit-
ted pulse gives rise to multiple copies of itself that
arrive at the receiver. Underwater acoustic experi-
ments have been conducted by W. Kuperman and
his group from San Diego University in a seawater
channel of 120 m depth, with a 24-element TRM work-
ing at 500 Hz and 3.5 kHz. They observed focusing
with super-resolution and multipath compensation at

Time Reversal, Applications
and Experiments, Fig. 4
Time-reversed signal
measured at the point source
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Directivity pattern of the
time-reversed field in the
plane of source: dotted line
corresponds to free space, full
line to the waveguide
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a distance up to 30 kms [4]. Such properties open the
field of new discrete communication systems in un-
derwater applications as it was experimentally demon-
strated by different groups [5].

Time Reversal in Chaotic Cavities

In this paragraph, we are interested in another aspect of
multiply reflected waves: waves confined in closed re-
flecting cavities with nonsymmetrical geometry. With
closed boundary conditions, no information can escape
from the system and a reverberant acoustic field is
created. If, moreover, the geometry of the cavity shows
ergodic and mixing properties, one may hope to collect
all information at only one point. Ergodicity means
that, due to the boundary geometry, any acoustic ray
radiated by a point source and multiply reflected would
pass every location in the cavity. Therefore, all the
information about the source can be redirected towards
a single time-reversal transducer. This is the regime of
fully diffuse wave fields that can be also defined as in
room acoustics as an uncorrelated and isotropic mix of
plane waves of all propagation directions. Draeger and
Fink [6] showed experimentally and theoretically that
in this particular case, a time reversal focusing with
	/2 spot can be obtained using only one TR channel
operating in a closed cavity.

The first experiments were made with elastic waves
propagating in a 2D cavity with negligible absorption.
They were carried out using guided elastic waves in
a monocrystalline D-shaped silicon wafer known to
have chaotic ray trajectories. This property eliminates
the effective regular gratings of the previous section.
Silicon was selected also for its weak absorption.
Elastic waves in such a plate are akin to Lamb waves.

An aluminum cone coupled to a longitudinal trans-
ducer generated waves at one point of the cavity.
A second transducer was used as a receiver. The
central frequency of the transducers was 1 MHz, and
their bandwidth was 100 %. At this frequency, only
three propagating modes are possible (one flexural,
one quasi-extensional, one quasi-shear). The source
was considered point-like and isotropic because the
cone tip is much smaller than the central wavelength.
A heterodyne laser interferometer measures the dis-
placement field as a function of time at different points
on the cavity. Assuming that there is no mode conver-
sion at the boundaries between the flexural mode and

other modes, we have only to deal with one field, the
flexural-scalar field.

The experiment is a “two-step process” as described
above: In the first step, one of the transducers, located
at point A, transmits a short omnidirectional signal
of duration 0.5�s. Another transducer, located at B,
observes a long random-looking signal that results
from multiple reflections along the boundaries of the
cavity. It continues for more than 50 ms corresponding
to some hundred reflections at the boundaries. Then,
a portion �T of the signal is selected, time reversed,
and reemitted by point B. As the time-reversed wave is
a flexural wave that induces vertical displacements of
the silicon surface, it can be observed using the optical
interferometer that scans the surface around point A
(see Fig. 6).

For time-reversal windows of sufficiently long-
duration�T , one observes both an impressive time
recompression at point A and a refocusing of the time-
reversed wave around the origin (see Fig. 7a, b for
�T D 1ms), with a focal spot whose radial dimension
is equal to half the wavelength of the flexural wave.
Using reflections at the boundaries, the time-reversed
wave field converges towards the origin from all
directions and gives a circular spot, like the one that
could be obtained with a closed time-reversal cavity
covered with transducers. A complete study of the
dependence of the spatiotemporal side lobes around
the origin shows a major result: a time-duration �T
of nearly 1 ms is enough to obtain good focusing.
For values of �T larger than 1 ms, the side lobes’
shape and the signal-to-noise ratio (focal peak/side
lobes) do not improve further. There is a saturation
regime. Once the saturation regime is reached, point
B will receive redundant information. The saturation
regime is reached after a time �heisenberg called the
Heisenberg time. It is the minimum time needed to
resolve the eigenmodes in the cavity. It can also be
interpreted as the time it takes for all single rays to
reach the vicinity of any point in the cavity within
a distance 	/2. This guarantees enough interference
between all the multiply reflected waves to build each
of the eigenmodes in the cavity. The mean distance
�! between the eigenfrequencies is related to the
Heisenberg time; �Heisenberg D 1

�!
.

The success of this time-reversal experiment in
closed chaotic cavity is particularly interesting with
respect to two aspects. Firstly, it proves the feasibil-
ity of acoustic time reversal in cavities of complex
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Time Reversal, Applications and Experiments, Fig. 6 (a)
Geometry of the chaotic cavity. (b) Time-reversal experiment
conducted in a chaotic cavity with flexural waves. In a first step,
a point transducer located at point r0 transmits a 1�s long signal.

The signal is recorded at point rtrm by a second transducer. The
signal spreads on more than 30 ms due to reverberation. In the
second step of the experiment, a 1 ms portion of the recorded
signal is time reversed and retransmitted back in the cavity

geometry that give rise to chaotic ray dynamics. Para-
doxically, in the case of one-channel time reversal,
chaotic dynamics is not only harmless but even useful,
as it guarantees ergodicity and mixing. Secondly, using
a source of vanishing aperture, there is an almost
perfect focusing quality. The procedure approaches the
performance of a closed TRM, which has an aperture
of 360ı. Hence, a one-point time reversal in a chaotic
cavity produces better results than a limited aperture
TRM in an open system. Using reflections at the
edge, focusing quality is not aperture limited; the time-
reversed collapsing wave front approaches the focal
spot from all directions.

Although one obtains excellent focusing, a one-
channel time reversal is not perfect, as residual fluctua-
tions can be observed. Residual temporal and spatial
side lobes persist even for time-reversal windows of
duration larger than the Heisenberg time. These are due
to multiple reflections passing over the locations of the
TR transducer and have been expressed in closed form
by Draeger and Fink. Using an eigenmode analysis of

the wave field, they explain that, for long time-reversal
windows, there is a minimum signal-to-noise ratio
(SNR) even after the Heisenberg time.

Time reversal in reverberant cavities at audible fre-
quencies has been shown to be an efficient localizing
technique in solid objects. The idea consists in de-
tecting acoustic waves in solid objects (e.g., a table
or a glass plate) generated by a slight finger knock.
As in a reverberating object, a one-channel TRM has
the memory of many distinct source locations, and the
information location of an unknown source can then
be extracted from a simulated time-reversal experiment
in a computer. Any action, turn on the light or a
compact disk player, for example, can be associated
with each source location. Thus, the system transforms
solid objects into interactive interfaces. Compared to
the existing acoustic techniques, it presents the great
advantage of being simple and easily applicable to
inhomogeneous objects whatever their shapes. The
number of possible touch locations at the surface of
objects is directly related to the number of independent
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Time Reversal, Applications and Experiments, Fig. 7 (a) Time-reversed signal observed at point r0. The observed signal is
210�s long. (b) Time-reversed wave field observed at different times around point r0 on a square of 15� 15mm

time-reversed focal spots that can be obtained. For
example, a virtual keyboard can be drawn on the
surface of an object; the sound made by fingers when
a text is captured is used to localize impacts. Then,
the corresponding letters are displayed on a computer
screen [7].

Time Reversal in Open Systems:
RandomMedium

The ability to focus with a one-channel time-reversal
mirror is not only limited to experiments conducted
inside closed cavity. Similar results have also been
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observed in time-reversal experiments conducted in
open random medium with multiple scattering [8].
Derode et al. carried out the first experimental demon-
stration of the reversibility of an acoustic wave propa-
gating through a random collection of scatterers with
strong multiple-scattering contributions. A multiple-
scattering sample is immersed between the source and
a TRM array made of 128 elements. The scattering
medium consists of 2,000 randomly distributed parallel
steel rods (diameter 0.8 mm) arrayed over a region of
thickness L D 40 mm with average distance between
rods 2.3 mm. The elastic mean free path in this sample
was found to be 4 mm (see Fig. 8). A source 30 cm
from the 128-element TRM transmitted a short (1�s)
ultrasonic pulse (3 cycles of a 3.5 MHz).

Figure 9a shows one part of the waveform received
by one element of the TRM. It spread over more than
200 ms, i.e., �200 times the initial pulse duration.
After the arrival of a first wave front corresponding
to the ballistic wave, a long diffuse wave is observed
due to the multiple scattering. In the second step
of the experiment, any number of signals (between
1 and 128) is time reversed and transmitted, and a
hydrophone measures the time-reversed wave in the
vicinity of the source. For a TRM of 128 elements, with

a time-reversal window of 300�s, the time-reversed
signal received on the source is represented in Fig. 9b:
an impressive compression is observed, since the re-
ceived signal lasts about 1�s, against over 300�s for
the scattered signals. The directivity pattern of the
TR field is also plotted on Fig. 10. It shows that the
resolution (i.e., the beam width around the source) is
significantly finer than it is in the absence of scattering:
the resolution is 30 times finer, and the background
level is below �20 dB. Moreover, Fig. 11 shows that
the resolution is independent of the array aperture:
even with only one transducer doing the time-reversal
operation, the quality of focusing is quite good and
the resolution remains approximately the same as with
an aperture 128 times larger. This is clearly the same
effect as observed with the closed cavity. High trans-
verse spatial frequencies that would have been lost in a
homogeneous medium are redirected by the scatterers
towards the array.

In conclusion, these experiments illustrated the fact
that in the presence of multiple reflections or multiple
scattering, a small-size time-reversal mirror manages
to focus a pulse back to the source with a spatial
resolution that beats the diffraction limit. The reso-
lution is no more dependent on the mirror aperture

Time Reversal, Applications
and Experiments, Fig. 8
Time-reversal focusing
through a random medium. In
the first step, the source r0
transmits a short pulse that
propagates through the rods.
The scattered waves are
recorded on a 128-element
array. In the second step, N
elements of the array
(0<N< 128) retransmit the
time-reversed signals through
the rods. The piezoelectric
element located at r0 is now
used as a detector and
measures the signal
reconstructed at the source
position. It can also be
translated along the x-axis,
while the same time-reversed
signals are transmitted by the
array, in order to measure the
directivity pattern
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Time Reversal, Applications
and Experiments, Fig. 9
Experimental results. (a)
Signal transmitted through the
sample (L D 40 mm) and
recorded by the array element
nı 64 and (b) signal recreated
at the source after time
reversal
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Time Reversal, Applications
and Experiments, Fig. 11
Directivity pattern of the
time-reversed waves around
the source position through
L D 40 mm, with N D 128
transducers (thin line) and
N D 1 transducer (thick line).
The �6 dB resolutions are
0.84 and 0.9 mm, respectively
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size, but it is only limited by the spatial correlation
of the wave field. In these media, due to a sort of
kaleidoscopic effect that creates virtual transducers, the
TRM appears to have an effective aperture that is much
larger that it’s physical size. Various applications of
these concepts have been developed as acoustic tactile
screens and underwater acoustic telecommunication
systems.
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Toeplitz Matrices: Computation
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Description

Structured matrices have been around for a long time
and are encountered in various fields of application:
Toeplitz matrices, matrices with constant diagonals,
i.e., ŒT �i;j D ti�j for all 1 � i; j � n:

T D

2
6666664

t0 t�1 � � � t2�n t1�n
t1 t0 t�1 t2�n
::: t1 t0

: : :
:::

tn�2
: : :

: : : t�1
tn�1 tn�2 � � � t1 t0

3
7777775
: (1)
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Circulant matrices: Toeplitz matrices where each col-
umn is a circular shift of its preceding column:

C D

2

6666666664

c0 cn�1 � � � c2 c1
c1 c0 cn�1 c2

c2 c1 c0
:::

:::
: : :

: : :
: : :

: : :

cn�2
: : :

: : : cn�1
cn�1 cn�2 � � � c2 c1 c0

3

7777777775

: (2)

The name Toeplitz originates from the work of Otto
Toeplitz [6] in the early 1900s on bilinear forms related
to Laurent series. More details about his work can
be found in [2]. Toeplitz systems are sets of linear
equations with coefficient matrices having a Toeplitz
structure. These systems arise in a variety of applica-
tions in mathematics and engineering. In fact, Toeplitz
structure was one of the first structures analyzed in
signal processing; see, for instance, [4]. For a dis-
cussion of direct Toeplitz solvers, refer to the book
by Kailath and Sayed [3]. Fast direct Toeplitz solvers
of complexity O.n log2 n/ were developed for n-by-n
Toeplitz systems.

In the 1970s, researchers have considered the de-
velopment of solely iterative methods for Toeplitz
systems; see, for instance, [4]. In the 1980s, the idea
of using the preconditioned conjugate gradient method
as an iterative method for solving Toeplitz systems
has brought much attention. In each iteration, the
Toeplitz matrix-vector multiplication can be reduced
to a convolution and can be computed via Fast Fourier
Transform in O.n logn/ operations. To speed up the
convergence of the conjugate gradient method, one can
precondition the system. Instead of solving Tnx D b,
we solve the preconditioned system P�1

n Tnx D P�1
n b.

The preconditioner Pn should be chosen according to
the following criteria: (i) Pn should be constructed
within O.n log n/ operations; (ii) Pnv D y should
be solved in O.n logn/ operations for any vector y;
(iii) The spectrum of P�1

n Tn should be clustered and/or
the condition number of the preconditioned matrix
should be close to 1. The first two criteria (i) and (ii)
are to keep the operation count per iteration within
O.n logn/, as it is the count for the non-preconditioned

system. The third criterion (iii) comes from the fact that
the more well condition or clustered the eigenvalues
are, the faster the convergence of the method will be.

Strang and Olkin independently proposed using
circulant matrices as preconditioners for Toeplitz sys-
tems. Several other circulant preconditioners have then
been proposed and analyzed. The main important re-
sult of this methodology is that the complexity of
solving a large class of n � n Toeplitz systems can
be reduced to O.n logn/ operations, provided that a
suitable preconditioner is used. Besides the reduction
of the arithmetic complexity, there are important types
of Toeplitz matrix where the fast direct Toeplitz solvers
are notoriously unstable, for example, indefinite and
certain non-Hermitian Toeplitz matrices. Therefore,
iterative methods provide alternatives for solving these
Toeplitz systems; see [4].

Recent research in this area is to find good precon-
ditioners for Toeplitz-related systems with large dis-
placement rank arising from image processing. Good
examples are Toeplitz-plus-band systems and weighted
Toeplitz least squares problems [4]. Direct Toeplitz-
like solvers cannot be employed because of the large
displacement rank. However, iterative methods are at-
tractive since the involved coefficient matrix-vector
products can be computed efficiently at each iteration.
Some recent results using splitting-type precondition-
ers and approximate inverse-type preconditioners can
be found in [1] and [5], respectively.
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Synonyms

CT Computerized Tomography; PAT Photoacoustic
Tomography; QPAT Quantitative Photoacoustic
Tomography

Description of theModality

Photoacoustic imaging is one of the recent hybrid
imaging (recently this also runs under the name Cou-
pled Physics Imaging [6]) techniques that attempts
to visualize the distribution of the electromagnetic
absorption coefficient inside a biological object. In
photoacoustic experiments, the medium is exposed to
a short pulse of an electromagnetic (EM) wave. The
exposed medium absorbs a fraction of the EM energy,
heats up, and reacts with thermoelastic expansion. This
consequently induces acoustic waves, which can be
recorded outside the object and are used to determine
the electromagnetic absorption coefficient. The com-
bination of EM and ultrasound waves (which explains
the usage of the term “hybrid”) allows one to combine
high contrast in the EM absorption coefficient with
high resolution of ultrasound.

In fact, what is commonly called PAT, only recovers
the distribution of an intermediate quantity, namely,
of the absorbed EM energy. The consequent recon-
struction of the true EM absorption coefficient is an
interesting problem by itself and is usually called the
quantitative PAT (QPAT).

The PAT technique has demonstrated great potential
for biomedical applications, including functional brain
imaging of animals [109], soft-tissue characterization,
and early-stage cancer diagnostics [52], as well

as imaging of vasculature [116]. In comparison
with the X-ray CT, photoacoustics is non-ionizing.
Its further advantage is that soft biological tissues
display high contrasts in their ability to absorb
electromagnetic waves in certain frequency ranges.
For instance, for radiation in the near-infrared domain,
as produced by a Nd:YAG laser, the absorption
coefficient in human soft tissues varies in the range
of 0:1–0:5=cm [19]. The contrast is also known
to be high between healthy and cancerous cells,
which makes photoacoustics a promising early cancer
detection technique. Another application arises in
biology: multispectral photoacoustic technique is
capable of high-resolution visualization of fluorescent
proteins deep within highly light-scattering living
organisms [71,90]. In contrast, the current fluorescence
microscopy techniques are limited to the depth
of several hundred micrometers, due to intense
light scattering. Mathematically, the problem of
multispectral optoacoustic tomography was considered
in [10].

Different terms are often used to indicate different
excitation sources: optoacoustics refers to illumina-
tion in the visible light spectrum, photoacoustics is
associated with excitations in the visible and infrared
range, and thermoacoustics corresponds to excitations
in the microwave or radio-frequency range. In fact, the
carrier frequency of the illuminating pulse is varying,
which is usually not taken into account in mathematical
modeling. Since the corresponding mathematical mod-
els are equivalent, in the mathematics literature, the
terms opto-, photo-, and thermoacoustics are used in-
terchangeably. In this entry, we will be addressing only
the photoacoustic tomographic technique PAT (which
is mathematically equivalent to the thermoacoustic
tomography TAT, although the situation changes when
moving to QPAT).

Various kinds of photoacoustic imaging techniques
have been implemented. One should distinguish be-
tween photoacoustic microscopy (PAM) and photoa-
coustic tomography (PAT). In microscopy, the object is
scanned pixel by pixel (voxel by voxel). The measured
pressure data provides an image of the electromag-
netic absorption coefficient [115]. Tomography, on the
other hand, measures pressure waves with detectors
surrounding completely or partially the object. Then
the internal distribution of the absorption coefficients is
reconstructed using mathematical inversion techniques
(see the sections below).
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The underlying mathematical equation of PAT is the
wave equation for the pressure

1

v2s

@2p

@t2
.x; t/�
p.x; t/D dj

dt
.t/u.x/; x 2 R

3; t > 0;

(1)
where u.x/ is the absorption density and vs denotes the
speed of sound. In the most general case of Maxwell’s
equation (see [13]),

u.x/ D O�.x/jE.x/j2 : (2)

Here O� denotes the absorption coefficient and E is
the amplitude of a time-harmonic wave ei!tE.x/ and
solves Maxwell’s equations

�r � r � E C .!2n.x/C i! O�.x//E D 0 ; in ˝ ;

N � E D f in @˝ ;
(3)

with n being the refractive index and N the normal
vector to @˝ .

In [13] it is assumed that the support of the specimen
of interest is compact and contained in ˝ and the flux
of the electric field f is applied. Also note that due
to the initialization with a time-harmonic wave, the
equation is independent of time. The reconstruction of
the refractive n and absorption coefficient O� are typical
problems of QPAT.

The assumption that there is no acoustic pressure
before the object is illuminated at time t D 0 is
expressed by

p.x; t/ D 0 ; t < 0 : (4)

In PAT, j.t/ approximates a pulse and can be consid-
ered as a ı-impulse in time.

Therefore (1) and (4) reduce to

1

v2s .x/

@2p

@t2
.x; t/ �
p.x; t/ D 0 ;

p.x; 0/ D u.x/;

@p

@t
.x; 0/ D 0 :

(5)

The quantity u in (5) can be explained in terms of a
combination of several physical parameters (see [94]).
In PAT, some data about the pressure p.x; t/ are

measured, and the main task is to reconstruct the
initial pressure u from these data. While the excitation
principle is always as described above and thus (5)
holds, the specific type of data measured depends on
the type of transducers used and thus influences the
mathematical model. We address this issue in the next
section.

Mathematical Models for PAT with Various
Detector Types

In the following we describe several detector setups
used in PAT.

Point Detectors
In the initial experimental realization of Kruger et al.
[52], as well as in many other experimental setups,
small piezocrystal ultrasound detectors (transducers)
are placed along an observation surface S surrounding
the object and measure pressure over a period of time.
We assume that detectors are sufficiently small (In fact,
transducers have a finite size, which can be taken into
account (e.g., [110]) and a finite bandwidth, which has
been taken into account in [39]) to be considered as
points. Then the measurement operator maps the initial
pressure u.x/ in (5) to the values of pressure p on S
over time:

M W u.�/ 7! g.x; t/ WD p.x; t/; x 2 S; t � 0: (6)

Thus, the PAT inverse problem consists in inverting the
operator M, i.e., reconstructing the initial value u of
the solution of the wave equation problem (5) from its
observed values g on the surface S .

Planar Integrating Detectors
Using planar integrating detectors that measure the
integral of the pressure over a plane was proposed
in [40]. The detector planes are moved around the
object (e.g., as tangent planes to a fixed sphere) and
measure the integrated pressure over a period of time.
In this case, the forward operator M reduces to the 3D
Radon transform of u.x/, which allows a well-known
inversion.

Line Integrating Detectors
Line integrating detectors, for instance, realized using
optical sensors or Fabry-Perot interferometers, were
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suggested in [17]. The mathematical formulation in
this case depends on the specific geometry of placing
the detectors. For instance, if the detectors are tangent
to a fixed cylinder and orthogonal to its axis, one
can show [94] that PAT reconstruction reduces to
the familiar in X-ray tomography inversion of the X-
ray transform and solving the 2D analog of the PAT
problem for point detectors.

Focusing Detectors
Photoacoustic sectional or single slice imaging re-
constructs a set of two-dimensional slices, each by a
single scan procedure. The advantages of the latter
approach are a considerable increase in measurement
speed and the possibility to do selective plane imaging.
In general, this can only be obtained by the cost of
decreased out-of-plane resolution (i.e., the direction
orthogonal to the focusing plane). Experimentally, one
can obtain photoacoustic sectional imaging by illumi-
nating a single plane of the object and by using a
focused detector. For more details on focusing point
detectors, see [71, 90], and for focusing line detectors,
see [34, 35]. Mathematical reconstruction formulas
have been investigated in [26, 27].

Other Versions
Circular detectors and reconstruction formulas were
proposed in [113]. An alternative approach (called
real-time PAT) is to speed up the data acquisition by
using the spatial information contained in a single
captured image at a certain time, instead of using time-
resolved signals recorded at fixed detector positions.
Under certain conditions, a single captured image of
the acoustic wave pattern contains information suf-
ficient for reconstruction of a two-dimensional (2D)
projection of the initial pressure distribution. The proof
of the real-time PAT principle, using a CCD camera,
was demonstrated in [79]. One can find a discussion of
interesting use of reflecting cavities in [64], which can
help improve the image quality.

Mathematical Reconstruction Issues

As the previous discussion shows, the main mathe-
matical model to consider in PAT is finding the initial
function u in the wave equation problem (5) from
the observations g.x; t/ of its solution p.x; t/ on a
surface S . Both the 3D and 2D cases are important
(the latter one arises when linear detectors are used).

We briefly survey below the main mathematical issues
and results concerning this problem. The reader is
directed to the recent surveys [2, 15, 29, 30, 53–56, 74,
81, 85, 93, 97, 106–108] for the details. References are
provided below only when these surveys do not cover
completely the corresponding topic.

One has to distinguish between the cases of a
constant and variable sound speeds c.x/. In the case of
a constant speed, due to the well-known formulas for
solutions of the wave equation in the whole space, the
reconstruction problem can be reduced to inverting the
spherical mean operator R that averages the function
u over the spheres of arbitrary radii centered on the
observation surface S :

R W u.x/ 7! g.y; r/ WD
Z

j!jD1
u.yCr!/d!; y2S; r�0:

(7)

In the variable speed case, one has to deal with the
wave equation problem directly, without being able to
reduce it to an integral geometric transform. Through-
out this section, we make the practically reasonable
and in several instances crucial assumption that u.x/
is compactly supported.

Uniqueness of Reconstruction
Uniqueness means that the collected measurement data
is sufficient for (at least theoretical) reconstruction of
the image. In other words, the forward operator M
has zero kernel on an appropriate space of functions u
(e.g., continuous and compactly supported). Although
the uniqueness question for a general observation set S
is hard and not completely resolved, in all practically
important situations, the uniqueness is known. For a
constant sound speed, each of the following conditions
guarantees uniqueness:
• S is a closed surface.
• A more general condition is that there is no nonzero

harmonic polynomial vanishing on S .
If the sound speed is variable, but non-trapping, and S
is closed, uniqueness is also known [55]. There exist
also uniqueness results [54, 95, 100] for the case when
S only partially surrounds the object (the support of u).

Reconstruction
There exist several types of PAT inversion procedures
and algorithms (a closed surface S is assumed
below):
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• Explicit inversion formulas of backprojection type
are known only for a constant sound speed and
S being a sphere or an ellipsoid surrounding the
support of u. Besides the details and references pro-
vided in the surveys [54–56], one can also look for
a unified approach to such formulas and to cases of
some convex polyhedra in [36–38,60,63,77,78,83].

• Time reversal assumes that at some moment T the
pressure inside S becomes sufficiently close to zero
and then solves the wave equation in reverse time
starting from t D T , using the measured data as
boundary values, and reaching the initial value u at
t D 0. This method is easy to implement for closed
surfaces S and works well, as long as the sound
speed is non-trapping. See, e.g., [31, 42, 43, 95, 96]
for the general time-reversal technique in acoustics
and its applications in PAT (including a more so-
phisticated technique [89,95] than the one sketched
above).

• Series expansions into eigenfunctions of the
Laplace operator with Dirichlet boundary con-
ditions on S work theoretically for variable
non-trapping sound speed. However, it has been
implemented only for constant speeds and S being
a cube. In this case, the method is extremely fast
and efficient [61, 62].

• Algebraic iterative methods, popular in various
types of tomography, are also applicable in PAT.

• Fast Fourier transform (FFT) methods have been
used in various kinds of tomography and are also
very efficient in PAT (see, e.g., [41]).
A detailed comparison of the features of these

methods can be found, for instance, in [43, 54–56]. In
particular, existing backprojection formulas fail if the
initial pressure u.x/ is not completely supported inside
S . The software package implementing several recon-
struction formulas is the k-wave toolbox [104, 105].

Stability
Let S be closed and surrounding the support of u.
If the speed is constant, the reconstruction is known
to be stable, with stability comparable with the one
encountered during inversion of the Radon transform.
The same is true for variable non-trapping sufficiently
smooth speeds. However, reconstruction in the case of
a trapping speed is unstable, and parts of the image
might be blurred, similarly to limited data problems in
X-ray CT. If S is not surrounding the support of u com-

pletely (even if S is closed), significant instabilities do
arise.

PAT and QPAT are particular instances of the so-
called imaging with internal information techniques.
The observation that such internal information usually
improves stability was made and its causes explained
in [57]; see also [7, 8, 54, 57, 58, 75].

Range
Necessary and sufficient conditions for a function g to
belong to the range of the forward operator have been
described only when the sound speed is constant, and
S is a sphere surrounding the support of u (see [1, 54]
and references therein). There are some necessary (but
incomplete) range conditions known for more general
S and even for variable sound speeds.

Limited Data
It is usually necessary to use observation surfaces that
are not closed (as it is the case, for instance, in breast
imaging). Then one faces a limited data problem. It is
known that in this case, only some of the singularities
of u.x/ can be stably reconstructed, while some will
be blurred away. For instance, in the case of a constant
sound speed and under some technical conditions on
S , only such wavefront vectors .x; �/ 2 WF.u/ [101]
can be stably recovered in the reconstruction, for which
there exists a point y 2 S such that the sphere centered
at y and passing throughx is co-normal to � at the point
x. In a simpler form, this says in particular that if there
is an interface in the image passing through x, it can
be stably reconstructed near x only if the normal to the
interface at x passes through a detector position. One
can thus describe the visible singularities of the image
and a visible region, where all singularities are stably
recoverable.

A more technical analog of this statement holds for
variable speeds, where now the condition is that the
geometric ray started at .x; �/ should reach S . One thus
concludes that even if S surrounds the support of x
completely, incomplete data effects (blurring of some
parts of the image) can arise, if there are trapped rays.
One can find more details about this issue in [54–56,
95, 111].

Reconstruction algorithms of algebraic iterative
(rather computationally expensive), as well as of
analytic (much more frugal) nature, have been
developed for reconstructions from incomplete data,
when the object is located in the visible region [59].
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This work, however, is not complete and should be
extended to handling acoustically inhomogeneous
objects (see the references in [56]).

Sound Speed Recovery
All reconstruction algorithms relay upon knowledge of
the sound speed inside the object. Getting the speed
wrong might lead to significant artifacts. How can one
determine c.x/? One approach is to run a transmission
ultrasound scan beforehand in order to find c.x/ (see
the references in [43]).

It is believed that, at least “generically,” both c.x/
and the initial pressure u.x/ are uniquely determined
by the PAT scan data alone. However, such recon-
structions of the speed would be unstable [68, 80, 98,
99]. A potential way to overcome this instability is
by focusing, which has been demonstrated in [47].
However, this approach requires uneconomically many
measurements.

Quantitative PAT Imaging (QPAT)
As it was described above, the initial pressure u.x/
in (5) is the quantity recovered in most PAT studies.
However, often the actual optical parameters of the
medium (e.g., electromagnetic absorption coefficient)
are needed. Thus, starting with the already recovered
u.x/, one can attempt to reconstruct the optical param-
eter in question. This is a nontrivial problem that boils
down to a parameter identification problem for the
radiative transport equation with internal measurement

data u.x/. This QPAT problem has been intensively
studied lately; see, e.g., [3, 9–14, 16, 20–23, 32, 66, 72,
86–88,91,92,103,112,114] and the survey [24], where
a more comprehensive list of references can be found.
A very much similar modeling to determine the specific
conductivity was provided in [33, 67].

In particular, it was shown in [9] that unique re-
construction of all appearing parameters is impossible,
independent of the number of measurements. It is
suggested to overcome this non-uniqueness by the use
of multispectral data (i.e., multiple photoacoustic mea-
surements generated by laser excitations at different
wavelengths) [10].

A different approach, which guarantees uniqueness,
was proposed in [76], where piecewise constant mate-
rial parameters have been assumed.

Attenuation Correction

The difficult issue of effects of and corrections for
the attenuation of acoustic waves in PAT has been
studied [4, 5, 18, 44, 45, 48–51, 65, 73, 84], although no
complete resolution has been reached. Mathematical
models of attenuation are formulated in the frequency
domain, since the attenuation is known to be strongly
frequency dependent. LetG0,G be the Green functions
of the wave equation and of the attenuated operator
correspondingly. The common attenuation model reads
as follows:

.FG/.x; !/ D exp .�ˇ.jxj; !// � .FG0/.x; !/ for all x 2 R
3; ! 2 R: (8)

Here F denotes the time Fourier transform and
�ˇ.jxj; !/ is the attenuation coefficient. Various
“standard” models describing attenuation are at hand.
For instance, power laws, Szabo’s model [102], and
the thermoviscous wave equation (see, e.g., [46]),
provide different versions of the function ˇ. With
such a model, the PAT problem decouples into
a deconvolution problem and the standard (non-
attenuated) reconstruction.

Dual Modes for Quantitative Imaging

Recently, there have been developed experimental se-
tups that can perform photoacoustic (PAT) and optical

coherence tomography (OCT) experiments in parallel.
This was introduced in [117] and further developed in
[69, 70]. In the current state of experiments, the two
recorded modalities are visualized by superposition af-
ter registration; we refer the reader to the review paper
[25]. The combined setup can be used for quantitative
imaging, because OCT provides measurements of the
electric field.
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Short Definition

Transform methods replace differentiation in one vari-
able with multiplication by a “transform” variable.

Description

The utility of transform methods essentially stems from
the fact that they replace differentiation in one variable
with multiplication by a transform variable. Hence, a
PDE inm variables can be converted into a PDE inm�
1 variables, and thus ultimately to an ODE, or algebraic
equation.

This is best illustrated by an example. Possibly the
most well-known transform is the Fourier transform:
given a smooth function f on R with sufficient decay
at infinity, its Fourier transform bf is defined by

bf .�/ WD
Z 1

�1
e�i�xf .x/ dx; � 2 R:

If we are given the Fourier transform of f , then the
function itself can be recovered through the inversion
formula

f .x/ D 1

2�

Z 1

�1
ei�xbf .�/ d�; x 2 R: (1)
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Using integration by parts and the fact that f vanishes
at ˙1, we have that

bdf

dx
.�/ WD

Z 1

�1
e�i�x df

dx
.x/ dx D i�bf .�/; (2)

i.e., when taking the Fourier transform, differentiation
is replaced by multiplication by i�, where � is the
transform variable.

Example 1: The Heat/Diffusion Equation
on the Infinite Line
To illustrate one of the uses of the Fourier transform
(and transform methods in general), consider the fol-
lowing boundary value problem (BVP) for the heat
(or diffusion) equation in one space and one time
dimension:

@u

@t
.x; t/ D @2u

@x2
.x; t/; x 2 .�1;1/; t 2 .0;1/;

(3)
with the initial condition u.x; 0/ D u0.x/ (for a given
function u0.x/ that decays as jxj ! 1) and the
condition that u.x; t/ and all its derivatives tend to zero
as jxj ! 1 for all t > 0.

Taking the Fourier transform of (3) in the variable x
(i.e., multiplying (3) by e�i�x and integrating over R)
and using the rule (2) twice, we obtain

dbu
dt
.�; t/ D ��2bu.�; t/; (4)

where

bu.�; t/ D
Z 1

�1
e�i�xu.x; t/ dx:

Thus, by taking the Fourier transform, we have reduced
the PDE (3) to the ODE (4). Solving (4) and using
the inversion formula (1), we obtain the following
expression for the solution of the BVP:

u.x; t/ D 1

2�

Z 1

�1
ei�x��2tbu0.�/ d�: (5)

From this expression we can then extract information
about the solution u.x; t/ (we will return to this below).

Why was the Fourier transform an appropriate trans-
form to use? The answer is that the functions ei�x

are eigenfunctions of the differential operator d2=dx2

with eigenvalue ��2, and the expression (5) is then
the expansion of the solution u.x; t/ in terms of these

eigenfunctions (i.e., a linear superposition of them, in
this case an integral).

Instead of expanding the solution in terms of the
eigenfunctions of d2=dx2, we could have chosen to
expand the solution in terms of the eigenfunctions of
d=dt . These eigenfunctions are again exponentials, and
it turns out that the relevant transform is the Laplace
transform. Given a smooth function g on .0;1/ with
sufficient decay at infinity, its Laplace transform, eg,
and inverse are given by

eg.s/ WD
Z 1

0

e�st g.t/ dt; <.s/ � 0;

g.t/ D 1

2�i

Z i1

�i1
esteg.s/ ds; t 2 .0;1/: (6)

Integration by parts shows that

fdg
dt
.s/ D seg.s/ � g.0/;

and thus, similar to the Fourier transform, the Laplace
transform replaces differentiation with multiplication.

Applying the Laplace transform to (3) yields an
inhomogeneous ODE in x. Solving this ODE using
standard, but slightly involved, calculation and then
using the inversion formula in (6), we eventually obtain
the expression for the solution

u.x; t/ D 1

4�i

Z i1

�i1
estp
s

�Z x

�1
e�p

s.x��/u0.�/ d�

C
Z 1

x

e
p
s.x��/u0.�/ d�

�
ds; (7)

(see, e.g., [11, Example 6.4]). Since s is now a complex
variable, we need to specify what branch of

p
s we

have chosen; in the expression (7) the branch cut forp
s is on the negative imaginary axis and the real part

of
p
s is positive. Deforming the contour to enclose

the branch cut (using Cauchy’s theorem) and making
the change of variables s D ��2, we obtain the
expression (5).

We have gone through this particular example in-
volving the heat equation in some detail because it il-
lustrates the following general features of the classical
transform method:
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1. The solution is expressed as an expansion in eigen-
functions of one of the ODEs.

2. If the PDE has m variables, then there are m

different transforms one can apply.
3. Understanding how the different expressions for the

solution (obtained via different transforms) are re-
lated to one another requires considering the trans-
form variables as complex variables, and deforming
contours in the complex plane.

Example 2: The Heat/Diffusion Equation
on the Finite Interval
We now give another example, which emphasizes the
fact that the appropriate transform to use is an expan-
sion in eigenfunctions. Consider the heat equation (3),
but posed on a finite interval, 0 < x < L, with
boundary conditions u.0; t/ D u.L; t/ D 0.

Now the appropriate transform in x is the discrete
sine transform, i.e.,

bf .n/ WD
Z L

0

sin
	n�x
L



f .x/ dx; n 2 Z

C;

f .x/ D 2

L

1X

nD1
sin
	n�x
L



bf .n/; 0 < x < L:

(8)

The functions sin.n�x=L/; n 2 Z
C, are eigenfunc-

tions of the differential operator d2=dx2 on 0 < x < L,
with zero boundary conditions at the endpoints.

Applying the transform (8) to the PDE, we obtain
an ODE similar to (4). Solving this ODE and then
using the inversion formula yields the expression for
the solution

u.x; t/ D 2

L

1X

nD1
e� n2�2

L2
t sin

	n�x
L



bu0.n/; (9)

wherebu0.n/ is the discrete sine transform of the initial
condition u0.x/.

Similar to the case of the infinite line, the appro-
priate transform in t is the Laplace transform, and this
yields an expression for the solution as an integral over
the imaginary axis, similar to (7).

Having illustrated the classical transform method
for solving separable PDEs in these two examples, we
now discuss it more generally.

The Classical TransformMethod

The Algorithm
For simplicity, consider BVPs in two dimensions (by
the very nature of separation of variables, the three
dimensional case is similar!). The method requires
that the domain, PDE, and boundary conditions are
all separable; see Moon and Spencer [8] or Morse and
Feshbach [9, �5.1] for accounts of the various coordi-
nate systems in which the Laplacian (the higher dimen-
sional analogue of d2=dx2) is separable (these include,
e.g., cartesian coordinates, polar coordinates, and el-
liptic coordinates). The classical transform method
then consists of the following four steps (see, e.g., [7,
�8.1.3], [6, p. 259], and [11, �4.4, �5.7, �5.8]).
1. Separate the PDE into 2 ODEs.
2. Choose one of the ODEs and derive the associated

transform pair (which depends on the ODE, the
domain, and the boundary conditions) by spectral
analysis of the ODE; see, e.g., [7, Chap. 7], [12,
Chap. 4], and [14, Chap. 7].

3. Apply the transform to the PDE and use integration
by parts to derive the ODE associated with this
transform (thus, one differential operator in the
PDE is replaced by multiplication by a transform
variable).

4. Solve the ODE of Step 3 and then apply the appro-
priate inverse transform.

In many cases it is possible to guess the appropriate
transform pair in Step 2, and thus the spectral analysis
can be avoided. We emphasize, however, that one
always has the option of deriving the appropriate trans-
form pair algorithmically via spectral analysis, since
many texts on transform methods just list different
transform pairs without explaining that each one is
tailor made for a particular BVP and can be found
without any guesswork.

As emphasized in the examples, the solution
to the given BVP is expressed as a superposition
of eigenfunctions of the ODE chosen in Step 2,
involving either an integral or a series depending
on whether this ODE has a continuous or discrete
spectrum.

Into the Complex Plane
As noted in Example 1, the different expressions for
the solution obtained by different transforms can be
shown to be equivalent by going into the complex plane
(i.e., considering the transform variables as complex
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variables). If the two expressions are both integrals
(like (5) and (7)), this procedure only requires deform-
ing the contours of integration and possibly making
a change of variables (as in Example 1). If one of
the expressions is a sum, and the other an integral
(like (9) and the analogue of (7) for this case), then
deforming the contour of integration and evaluating
the integral as residues gives the sum (see, e.g., [13,
pp. 161, 219]). If both the expressions are sums, then
they can be converted into integrals via a “reverse”
residue calculation (i.e., finding an integral in the com-
plex plane that can be evaluated as residues to give the
sum), and then, in principle, their contours deformed to
show that they are equal (see, e.g., [6, p. 274]). Given
a sum, however, there are many different integrals that
evaluate as residues to the sum, and thus choosing one
whose integrand has the right analyticity properties in
the complex plane is often difficult.

Recently an extension of the classical transform
method has been developed that can obtain explicit
expressions for the solution of certain non-separable
problems; see Fokas [4]. In addition, for a separa-
ble BVP, this method provides an algorithmic way
to obtain directly the expression for the solution as
an integral in the complex plane, which can then be
deformed (and evaluated as residues if necessary) to
give the two expressions for the solution obtained by
the classical transforms; see Fokas and Spence [5] for
an introduction to this method.

Using the Expressions for the Solution
Having obtained an explicit expression for the solution
of a PDE via the classical transform method, one often
wants to either (i) compute the solution via evaluating
the integral or sum numerically or (ii) obtain the
asymptotic behavior of the solution as some parameter
becomes either large or small.

It is difficult to make any remarks on how to do
either of these tasks in general (since the expressions
for the solutions vary widely); however, we note that
both for numerics and asymptotics, the fact that we
can always express the solution as an integral in the
complex plane (with the possibility of deforming the
contour so that the integrand decays exponentially) is
usually advantageous. For example, such deformations
are the basis of the method of steepest descent for
obtaining asymptotics of integrals (see, e.g., [2, �6.6])
and Talbot’s method for inverting Laplace transforms
(see, e.g., [3, Chap. 6]).

Generalizations and Extensions
So far we have only discussed the case when, after
taking an appropriate transform, the BVP reduces to an
ODE that can be solved explicitly. In some situations,
for example, when certain mixed boundary conditions
are prescribed, the resulting ODE cannot be solved
explicitly, but instead the transform of the solution
can be expressed in terms of a Wiener–Hopf problem
(see, e.g., [10]), or, more generally, a Riemann–Hilbert
problem �Riemann-Hilbert Methods (note that these
problems can only be formulated if the transform
variable is thought of as a complex variable). In a
similar vein, BVPs for the Helmholtz equation in
wedge and cone geometries can be expressed in terms
of functional–difference equations by the Sommerfeld–
Malyuzhinets technique (see, e.g., [1]). In both these
cases we obtain an expression for the solution of the
BVP not in terms of an integral or a sum, but instead
in terms of a more complicated mathematical object.
It is often still possible to obtain useful asymptotic or
numerical information about the solution of the BVP,
but this is considerably harder than in the case of an
integral or sum.

In another direction, we can abandon trying to
find an explicit (or semi-explicit) expression for the
solution and instead concentrate on designing efficient
ways to compute the solution (which one would hope
would then be applicable to a wider range of BVPs).
The ideas behind transform methods give rise to Spec-
tral Methods.

Finally, we note that transform methods are used
more widely in the analysis of PDEs (i.e., not just
for obtaining explicit expressions for the solution)
(�Distributions and the Fourier Transform).
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Short Definition

Reaction rates in biomolecular systems such as pro-
teins are rates of transitions between two (perhaps

more) conformations of the molecule. They can be
computed using an ensemble of transition pathways,
which are pathways connecting the two conformations
of interest. Another approach consists in building a
Markov state model of the molecular system, which,
once constructed, allows computing these rates in a
computationally efficient way.

Description

Computing reaction rates in biomolecular systems is
a common goal of molecular dynamics simulations.
The reactions considered often involve conformational
changes in the molecule, either changes in the structure
of a protein or the relative position of two molecules,
for example, when modeling the binding of a protein
and ligand. Here we will consider the general problem
of computing the rate of transfer from a subset A of
the conformational space ˝ to a subset B 2 ˝ . It is
assumed that A and B are associated with minimum
energy basins and are long-lived states. We will assume
that the system is in some thermodynamic equilibrium
such as as constant temperature (canonical ensemble)
or constant pressure (isobaric-isothermal ensemble).
For a discussion of these ensembles and ensemble
averages, see the entry �Calculation of Ensemble
Averages.

Rates can be obtained using many different
methods. We will review some of the most popular
approaches. We organize the different approaches
roughly in chronological order and under four main
categories: reactive flux, transition path sampling,
conformation dynamics. The fourth class of method, to
which we do not assign any particular name, in some
sense attempts to combine features from transition
path sampling and conformation dynamics. They
include weighted ensemble Brownian dynamics [21]
and nonequilibrium umbrella sampling [15, 36].

Most of these methods and associated numerical
analysis and mathematical proofs assume that the
molecular system is modeled using a stochastic
equation such as a Langevin equation, Brownian
dynamics (overdamped dynamics), or a Markov chain
technique. See the entry � Sampling Techniques for
Computational Statistical Physics for a discussion of
these methods. Extensions to Newtonian (determinis-
tic) dynamics are more difficult and fewer theoretical
results are available in that case.

http://dx.doi.org/10.1007/978-3-540-70529-1_265
http://dx.doi.org/10.1007/978-3-540-70529-1_268
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Reactive Flux
The first methods were derived around 1930s and revis-
ited later by, for example, [4, 5], and are based on the
concept of reactive flux. In these methods, the rate is
derived from the free energy, and it is assumed that it is
controlled by the flux at a saddle point at the top of the
energy barrier separating A and B . The advantages of
this approach, based on transition state theory (TST),
is that it involves quantities which are relatively easy
to calculate, such as the free energy. Among the many
methods to calculate the free energy (in this context the
potential of mean force), see for example [8, 9, 20, 22,
23, 26]. See the entry �Computation of Free Energy
Differences for an in-depth discussion of this topic.
Kramers’ method [18, 19], which applies to systems
modeled using Langevin dynamics and overdamped
dynamics, is closely related to this class of method.

These methods make relatively strong assumptions
about the system and in practice assume that a lot
is already known about the transition mechanism and
important pathways between A and B . This basic
approach using TST has been improved in many ways
including the use of harmonic approximations to model
the minimum energy basins and transition region [10].
In variational TST, one attempts to improve the pre-
dicted rate by finding a dividing surface betweenA and
B that minimizes the rate. See for example [32, 33].

We will discuss this approach in more detail since
this is probably the most widely used approach and
also, relatively speaking, the easiest to apply. We as-
sume that region A is a subset of the conformational
space of the molecular system and that it represents in
the system in its reactant state. Similarly B denotes the
region defining the product states. Analytical approx-
imation for the rate can be obtained if one assumes
that a coordinate � (reaction coordinate) can be defined
which describes the reaction. It is assumed that when
� D 0 the system is in A and when � D 1 the system
is in B . The value � D �� corresponds to the transition
region or barrier between A and B .

We define the characteristic function �A (resp. B)
which is 1 in the set A and 0 outside. Then using these
functions, we can express the conditional probability to
find the system in state B at time t provided it was in
A at time 0:

C.t/ D h�AŒ�.0/� �B.�.t/ ih�Ai (1)

Brackets h i are used to denote a statistical average.
Regions A and B are separated by a transition region
and the rate is determined by the rate at which this
transition or barrier is crossed. At the molecular scale,
there is some correlation time �mol associated with this
crossing. That is, for times larger than �mol, the system
forgets how it went from A to B . Then for times t
between �mol and the reaction time �rxn, �mol < t �
�rxn, the time derivative ofC.t/, called the reactive flux,
reaches a plateau [4], and

PC.t/ � kAB (2)

where kAB is the reation rate. The symbol P denotes
a time derivative.

Using transition state theory (TST), under the as-
sumption that the recrossing of the barrier between
A andB can be neglected, one can derive an expression
for kAB using (1) and (2) [4, 5]:

kTST D 1

2
hj P�ji�D��

e�ˇA.��/

R ��

�1 e�ˇA.�/d�
(3)

where A.�/ is the free energy, and hi�D�� denotes
an ensemble average with � constrained at ��. This
approach has some drawbacks. It always overestimates
the rate. It requires a good reaction coordinate and a
precise determination of the free energy maximum to
locate the barrier. Nevertheless the method is computa-
tionally efficient and involves only quantities that can
be computed with relatively low computational cost.

Related approaches include Kramers’ rate theory
[18, 19], which was developed in the context of
Langevin equations and overdamped dynamics. There
are many connections between transition state theory
and Kramers’ theory [19]. In particular Kramers’ rate
can be related to the “simple” TST rate through:

kKramers D 	C
!bar

kTST (4)

In this expression the potential at the transition point is
assumed to be locally quadratic with stiffness !2bar D
�m�1 U 00.xbar/ (m is the mass of the particle in a
1D model), and 	C is a function of the friction in the
Langevin model and !bar. It can be shown that kKramers

is equal to the multidimensional TST rate for a heat
bath describing strict Ohmic friction (see [19], pp. 268,
272). As the friction in the Langevin model goes to

http://dx.doi.org/10.1007/978-3-540-70529-1_267
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zero 	C ! !bar and kKramers ! kTST. Moreover we
always have kKramers < kTST. The rate kKramers is itself
an upper bound on the true rate given by

k.t/ D h
P�.0/ �.�.t/ � ��/ i�.0/D��

h �.�� � �.0// i (5)

where � is the Heaviside function.

Transition Path Sampling
Many of the ideas developed in the context of TST
were used to develop another class of methods based
on sampling transition pathways between A and B

[3, 11, 12]. From the ensemble of transition pathways,
rates and other properties can be obtained. The advan-
tages of some of these approaches is that they do not
require finding the saddle point separating A and B
and they apply to more general situations, for example
when multiple pathways make significant contributions
to the rate. To address shortcomings of some of these
approaches, other methods were pursued along simi-
lar lines, including transition interface sampling (TIS,
[16]) and forward flux sampling (FFS, [1]).

The milestoning technique, although different in
spirit, will be included in this category. See [17, 37]. It
is based on constructing hypersurfaces (the milestones)
that are used to measure the progress of the reaction.
Simulations are started from each milestone and the
time required to reach another milestone is recorded.
This approach requires that the system “loses” memory
when moving from a milestone to the next, and there-
fore that the milestones are sufficiently separated from
one another. Recent advances of this method include
the work of Vanden-Eijnden and Venturoli [34, 35],
who introduced the concept of optimal milestones
using the committor function. The committor function
is an important theoretical concept. One may define
a forward and a backward committor function, often
denoted qC.x/ and q�.x/ (where x 2 ˝ is a point
in the conformational space of the molecular system).
The forward committor function for example is the
probability, when starting from x, to reach B before
A. We therefore have qC.x/ D 1 when x 2 B , and
qC.x/ D 0 when x 2 A.

Conformation Dynamics and Markov State
Models
This is a large class of methods that can be traced
back to Deuflhard and Schütte [13, 14, 27, 28], and is
based on the concept of metastable states and transfer

operator (or transition matrix). Broadly speaking,˝ is
decomposed into metastable sets, which are sets that
are long-lived and in which the system gets trapped.
Then a transition matrix Pij .�/ is defined as the prob-
ability to reach a metastable set j if one starts a
trajectory of length � (the lag-time) in set i . The anal-
ysis of the eigenvalues leads to the concept of Perron
cluster, which is the cluster of eigenvalues near 1. From
the eigenvectors and eigenvalues one can derive the
metastable sets, the rate, and other kinetic information.

A related approach was developed by Shalloway
and his group using the concept of Gaussian packets
to model probability density functions. See [7, 25, 29].

Although derived apparently independently and at
a later date, some groups explored how one could
model molecular systems using Markov state models
(MSM), a well-known theory but which has been only
(relatively) recently applied to modeling bio-molecular
systems. In this approach the conformation space ˝ is
subdivided into discrete cells or macro-states (which
form a partition of ˝). A large number of macro-
states are typically used, many more than the number
of metastable sets mentioned above. Then, one cal-
culates Pij .�/ (the probability to reach macro-state j
after lag time � when starting from macro-state i ).
Most of theory from MSM can be derived from the
conformation dynamics theory. In particular rates can
be obtained from the eigenvalues of the matrix P.�/.
In some sense, MSM can be viewed as a practical
implementation of conformation dynamics, that attacks
the high-dimensionality of˝ by subdividing the space
into discrete macro-states. An important numerical
issue is the effect of the lag time � , which affects the
accuracy of the model and may introduce a systematic
bias when it is too small. See the entry �Calculation of
Ensemble Averages for a discussion of statistical bias
and error. See [6,24,30,31] for a numerical analysis of
this method.

Reactive Trajectory Sampling
The last class of methods groups two separate ap-
proaches that combine ideas from transition path sam-
pling and a subdivision of space into macro-states simi-
lar to MSM. One such method, called weighted ensem-
ble Brownian dynamics, originates in [21]. Although
this entry is similar in spirit to transition interface
sampling or milestoning, it can be easily extended to
a general partitioning of space, e.g., macro-states from
MSM. This approach leads to a sampling of transition
pathways between A and B and therefore does not

http://dx.doi.org/10.1007/978-3-540-70529-1_265


Transition Pathways, Rare Events and Related Questions 1503

T

Generality of method / assumptions required

C
om

pu
ta
ti
on

al
co
st

Reactive flux

Transition path sampling

Transition interface sampling

Forward flux sampling

Milestoning

Markov state models

Weighted ensemble Brownian dynamics

Non-equilibrium umbrella sampling
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Fig. 1 Approximate comparison chart of the different methods
mentioned in this entry. This figure illustrates roughly how

methods compare. This is only indicative as the performance or
accuracy of each method is very system dependent

rely on the Markovian assumption made in MSM. A
large number of walkers (simulations) are run in each
macro-state. In order to maintain the population of
walkers in each macro-state, a procedure is created to
kill walkers in macro-states that are too crowded, and
to split walkers when the number of walkers becomes
too low, in a statistically correct manner. This method
was recently revisited by [38] and [2] who showed how
the original approach could be extended. The technique
of nonequilibrium umbrella sampling of [36] and [15]
is similar in spirit.

For the reader interested in getting an overall picture
of these methods, their strength and weaknesses, we
organized them in a chart (see Fig. 1). The figure has
no scale and should be carefully interpreted. Gener-
ality refers to the assumptions made by the method
or whether certain a priori knowledge is required to
run a calculation. Computational cost is very system
dependent or should be considered merely as a guide-
line rather than a strict ranking. Let us mention that
most of these methods are very scalable on parallel
computers, that is, one can run these calculations
using a large number of processors with great parallel
efficiency.
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9. Darve, E., Rodrı́guez-Gómez, D., Pohorille, A.: Adaptive
biasing force method for scalar and vector free energy
calculations. J. Chem. Phys. 128(14), 144120 (2008)

10. Dellago, C., Bolhuis, P.G.: Transition path sampling and
other advanced simulation techniques for rare events. Adv.
Polym. Sci. 221, 167–233 (2009)

11. Dellago, C., Bolhuis, P.G., Csajka, F.S., Chandler, D.: Tran-
sition path sampling and the calculation of rate constants.
J. Chem. Phys. 108(5), 1964–1977 (1998)

12. Dellago, C., Bolhuis, P.G., Geissler, P.L.: Transition path
sampling. Adv. Chem. Phys. 123, 1–78 (2002)



1504 Transition Pathways, Rare Events and Related Questions

13. Deuflhard, P.: From molecular dynamics to conformation
dynamics in drug design. In: Kirkilionis, M., Krömker, S.,
Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis,
p. 269. Springer, Berlin/Heidelberg (2003)

14. Deuflhard, P., Dellnitz, M., Junge, O., Schütte, C.:
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22. Lelièvre, T., Rousset, M., Stoltz, G.: Computation of free
energy differences through nonequilibrium stochastic dy-
namics: the reaction coordinate case. J. Comput. Phys.
222(2), 624–643 (2007)
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Uncertainty quantification (UQ) is largely concerned
with quantification of the impact of uncertain inputs
to scientific computing and prediction. Its computation
has long been routinely performed in many engineering
fields such as structural dynamics, hydrology, and
control. Consequently many methods have been de-
veloped to conduct UQ computation. The prominent
feature and central challenge of UQ computation is
the simulation cost since for most practical systems
it is highly time consuming to compute even the de-
terministic results. UQ computation introduces more
variables into the simulation to model the uncertain in-
puts and hence can significantly increase the simulation
burden.

Sampling Methods

These are probabilistic/statistical methods, in the
sense that the uncertain inputs are modelled as
random variables or random processes. The goal
of sampling methods is usually to extract statistical
information of the solution via proper sampling

of the inputs. The fundamental method is Monte
Carlo sampling (MCS), where one generates random
realizations/samples of the inputs based on their
probability distributions and conducts independent
simulations to obtain the corresponding output
realizations/samples. The statistical information, e.g.,
moments such as mean and variance, is then obtained
using the solution ensemble. A well-known feature of
MCS is that its rate of convergence scales as 1=

p
N ,

where N is the number of realizations. This rate, albeit
considered slow for many problems, is independent of
the number of independent uncertain inputs – the
dimensionality of the inputs as a remarkable and
unique feature of MCS. Methods to increase the
convergence rate of MCS have long been studied,
such as Latin hypercube sampling [5] and quasi Monte
Carlo (cf. [1, 4]) as examples. These methods have
faster rate of convergence compared to the MCS,
at the expense of the rates becoming dependent of
the dimensionality and slower with larger number of
uncertain inputs.

Sampling can also be conducted in a deterministic
manner – deterministic sampling. Here one utilizes
integration theory and generates realizations at prede-
termined and nonrandom sample points and obtains
estimation of the statistical moments via integration
rules, often known as quadrature or cubature rules.

PerturbationMethods

A widely used non-sampling methods is the pertur-
bation method, where random fields are expanded via
Taylor series around their mean and truncated at certain
order. Typically, at most second-order expansion is

© Springer-Verlag Berlin Heidelberg 2015
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employed since the resulting system of equations of-
ten becomes too complex to handle beyond second-
order. This approach has been used extensively in
various engineering fields [3]. An inherent limitation
of perturbation methods is that the magnitude of the
uncertainties, both at the inputs and outputs, cannot be
too large (typically less than 10 %), and the methods do
not perform well otherwise.

Moment Equations

In this approach one attempts to compute the moments
of the solution directly. To accomplish this one seeks
to derive the equations governing the moments of
the solution by taking the averages of the underlying
governing equations. For example, the equation of
the solution mean is determined by taking the mean
of the governing equations. A notable challenge of
this approach is that, except in some rare cases, the
derivation of the equations for certain moments almost
always requires the information of higher moments.
This results in a never-ending process of deriving equa-
tions for higher and higher moments – the so-called
“closure” problem. There exists no known general and
rigorous way to deal with the closure problem. In many
applications it is treated in certain ad hoc manner, with
no clear understanding of the errors induced by the
treatment.

Response Surface Methods

The goal of response surface methods (RSM) is to con-
struct an approximation of the uncertain input-output
relation directly. To accomplish this, one first conducts
sampling-like simulations to obtain information of the
input-output responses at the sampling points. These
samples can be random, as in MCS, or non-random,
as in deterministic sampling. The ensemble of these
input-output responses is then used to construct a
global function, i.e., the surface, to approximate the
real response. The typical construction techniques are
usually of linear regression type. The most commonly
adopted approach employs polynomial type response
surfaces and uses least-square fitting to determine the
polynomial approximation.

Though random samples suits the purpose for RSM,
in practice it is more common to utilize sample points

that are “spacefilling,” to gain numerical efficiency.
To this end, the idea of design of experiments (DOE)
has been extensively studied, with the more popular
approach including lattice rules, orthogonal array, and
other techniques [7].

Generalized Polynomial Chaos (gPC)

This is a probabilistic approach and relies heavily
on probability theory and approximation theory. The
idea is to use orthogonal polynomials in terms of
random variables to approximate the solution of the
stochastic problem. In its original setting, the Her-
mite polynomials of Gaussian variables are utilized
as the basis functions and proven to be effective in
many practical simulations [2]. The name, polynomial
chaos (PC), originated from the earlier work of [6],
where the Hermite basis was used in stochastic anal-
ysis involving Gaussian process, and bears no con-
nection to the “chaos” in dynamical systems. The use
of Hermite polynomials in PC, though mathemati-
cally sound, poses practical concerns, as the conver-
gence properties are not always desirable, especially
for non-Gaussian system responses. The generaliza-
tion of PC, the gPC, was developed to address the
issue [9]. In gPC, more general orthogonal polyno-
mials can be used as the basis functions, and the
choice of the orthogonal polynomials is closely tied
to the probability distribution of the input uncertainty.
For example, one can use Legendre polynomials in
terms of uniformly distributed random variables. The
gPC method takes advantage of the sound approxima-
tion properties of orthogonal polynomials and achieves
high accuracy whenever the stochastic solution is rea-
sonably smooth. Since its introduction it has been
extensively studied and many efficient algorithms have
been developed [8].
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Short Definition

Validation is the quantitative assessment of a model
relative to experimental observations.

Introduction

Mathematical models are used in science and engineer-
ing to describe the behavior of a system. In many cases,
these models take the form of differential equations
which require approximate numerical solutions (i.e.,
simulations) due to their complexity. While the focus
of this entry is on models based on partial differential
equations, the concepts and techniques apply equally
well to models based on ordinary differential equa-
tions, algebraic models, etc. Verification and valida-
tion provide a means for assessing the credibility and
accuracy of models and their subsequent simulations
[1, 2]. Verification deals with assessing the numerical

accuracy of a simulation relative to the exact (but rarely
known) result of the model. On the other hand, the
assessment of the accuracy of the model itself is termed
validation and requires the comparison of model pre-
dictions to observations of nature which are typically
embodied in experimental measurements. While there
are many approaches to model validation, we will focus
on validation methods which provide a quantitative
assessment of model accuracy and which also account
for the presence of uncertainty in both the simulation
results and the experimental data.

Uncertainty

There are many sources of uncertainty in compu-
tational mathematics including the model inputs,
the form of the model (which embodies all of the
assumptions in the formulation of the model), and
poorly characterized numerical approximation errors.
These sources of uncertainty can be classified as
(1) aleatory – the inherent variation in a quantity,
(2) epistemic – uncertainty due to lack of knowledge,
or (3) a mixture of the two. Aleatory uncertainty is
generally characterized probabilistically by either
a probability density function or a cumulative
distribution function (CDF), the latter being simply
the integral of the probability density function from
minus infinity up to the value of interest. A purely
epistemic uncertainty should be characterized as an
interval (with no associated probability distribution),
which is the weakest statement that one can make about
the value (or distribution) of a quantity. One approach
for characterizing mixed aleatory and epistemic
uncertainty is a probability box, or p-box, which
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Validation, Fig. 1 Simple
example of a p-box
(Reproduced from [8])
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characterizes the infinite set of all possible probability
distributions that could exist within the bounds of the
p-box [3]. The two outer bounding CDFs reflect the
combined aleatory and epistemic uncertainty in the
quantity of interest (see Fig. 1). The width of the p-box
represents the range of values that are possible for a
given cumulative probability, whereas the height of
the p-box represents the interval range of cumulative
probabilities associated with a given value.

In general, there may be one or more system out-
puts, which we will refer to as system response quan-
tities (SRQs) that the analyst is interested in predicting
with a computational mathematics model. When un-
certain model inputs are aleatory, there are a number
of different approaches for propagating this uncertainty
through the model. The simplest approach is sampling
(e.g., Monte Carlo or Latin Hypercube) where inputs
are sampled from their probability distribution and then
used to generate a sequence of values for one or more
SRQs; however, sampling methods tend to converge
slowly as a function of the number of samples. Other
approaches that can be used to propagate aleatory un-
certainty include perturbation methods and polynomial
chaos (both intrusive and nonintrusive formulations).
Furthermore, when a response surface approximation

of an SRQ as a function of the uncertain model in-
puts is available, then any nonintrusive method dis-
cussed above (including sampling) can be computed
efficiently.

When all uncertain inputs are characterized by in-
tervals, there are two popular approaches for propagat-
ing these uncertainties to the SRQs. The simplest is
sampling over the input intervals in order to estimate
the interval bounds of the SRQs. However, the propa-
gation of interval uncertainty can also be formulated
as a bound-constrained optimization problem: given
the possible interval range of the inputs, determine the
resulting minimum and maximum values of the SRQs.
Thus, standard approaches for constrained optimiza-
tion such as local gradient-based searches and global-
search techniques can be used.

When some uncertain model inputs are aleatory
and others are epistemic, then a segregated approach
to uncertainty propagation should be used [2–4].
For example, in an outer loop, samples from the
epistemic uncertain model inputs may be drawn.
For each of these sample values, the aleatory-
uncertain model inputs are propagated assuming fixed
sample value of the epistemic-uncertain variable. The
completion of each step in the outer loop results in
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a possible CDF of the SRQ. The total result of the
segregated uncertainty propagation process will be
an ensemble of possible CDFs of the SRQ, the outer
bounding values of which can be used to form a p-box.
An advantage of this segregated approach is that the
inner aleatory propagation loop can be achieved using
any of the techniques described above for propagating
probabilistic uncertainty (i.e., it is not limited to simple
sampling approaches).

Validation Experiments

A validation experiment is an experiment conducted
with the primary purpose of assessing the predictive
capability of a model. Validation experiments differ
from traditional experiments used for exploring a phys-
ical phenomenon or obtaining information about a
system because the customer for the experiment is the
model which is generally embodied within a simulation
code. There are six primary guidelines for validation
experiments [2]. Validation experiments should:
1. Be jointly designed by experimentalists and model-

ers, with the simulation code used to provide pretest
computations of the proposed experiment

2. Be designed to capture the relevant physics and
measure all initial conditions, boundary conditions,
and other relevant modeling data required by the
simulation

3. Strive to emphasize the inherent synergism that is
attainable between computational and experimental
approaches

4. Be a blind comparison between simulation and
experiment, i.e., the experiment should provide all
required model inputs and boundary conditions, but
not the measured SRQs

5. Be designed to ensure that a hierarchy of SRQs is
measured, e.g., from globally integrated quantities
to local quantities

6. Be constructed to analyze and estimate the compo-
nents of random (precision) and systematic (bias)
experimental uncertainties in both the SRQs and the
model inputs

Validation Metrics

Validation metrics provide a means by which the
accuracy of a model can be assessed relative to

experimental observations. Liu et al. [5] proposed a
classification system for validation metrics based on
whether or not (1) the metric incorporates uncertainty
sources in the simulation predictions and the experi-
mental measurements (i.e., the metric is classified as
either deterministic or stochastic), (2) the comparison
is made for a single SRQ or multiple SRQs (i.e., uni-
variate or multivariate), and (3) the metric provides a
quantitative distance-based method that can be used to
quantify modeling error. (Note that the latter criterion
is also related to the mathematical requirements for a
metric.) Liu et al. [5] also recommend that the metric
be objective with a given set of simulations and data
resulting in a single metric value (i.e., it should not
depend on the analyst evaluating the metric, their
preferences, or prior assumptions). The field of vali-
dation metrics is an area of active research, but for the
purposes of this entry, we focus only on stochastic val-
idation metrics that provide distance-based measures
of the agreement/disagreement between the model and
experimental data; thus, we omit any discussion of
approaches such as classical hypothesis testing and
Bayesian model comparison employing Bayes factors.

It is important to draw clear distinctions between
the concepts of validation and calibration. While val-
idation involves the quantitative assessment of a model
relative to experimental data, calibration (a.k.a., pa-
rameter estimation, parameter optimization, or model
updating) instead involves the adjustment of input pa-
rameters to improve agreement with experimental data.
For example, if all uncertain model inputs are proba-
bilistic, then Bayesian updating can be used to update
model input parameters. While calibration may be an
important part of the model building and improvement
process, it does not in itself provide quantitative esti-
mates of model accuracy. The key difference is that
model calibration results in a modified model that must
still be assessed for accuracy when new experimental
data become available.

While there are many possible validation metrics,
we will focus on one implementation called the area
validation metric [6] which is a mathematical met-
ric that provides quantitative assessment of disagree-
ment between a stochastic model and experimental
data. When only aleatory uncertainties are present in
the model inputs, then propagating these uncertainties
through the model produces a CDF of the SRQ. Ex-
perimental measurements are then used to construct an
empirical CDF of the SRQ. The area between these two
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Validation, Fig. 2 Area validation metric example (Reproduced from [6])

CDFs is referred to as the area validation metric d (also
called the Minkowski L1 norm) and is given by

d.F; Sn/ D
1Z

�1
jF.x/ � Sn.x/ j dx (1)

where F.x/ is the CDF from the simulation, Sn.x/
is the CDF from the experiment, and x is the SRQ.
The area validation metric d has the same units as
the SRQ and thus provides a measure of the evi-
dence for disagreement between the simulation and the
experiment [6]. Note that the area validation metric
represents an epistemic uncertainty since additional
experiments and/or model improvements can be con-
ducted (i.e., information can be added) in order to
reduce it. This epistemic uncertainty is commonly
referred to as model form uncertainty.

An example of this area validation metric for a
case with only aleatory uncertainty occurring in the
model input parameters is given in Fig. 2. In this
figure, the aleatory uncertainties have been propagated
through the model (e.g., with a large number of Monte
Carlo samples), but only four experimental replicate
measurements are available. The stair steps in the
experimental CDF are due to the different values ob-
served in each of the four experimental measurements.
The stochastic nature of the measurements can be
due to variability of the experimental conditions and
random measurement uncertainty. This metric can also
be computed for cases involving both aleatory and
epistemic uncertainty in the model inputs (e.g., see
Ref. [2]).

Extrapolation

In general, it is too expensive (or even impossible) to
obtain experimental data over the entire multidimen-
sional space of model input parameters for the applica-
tion of interest. As a result, techniques are needed for
estimating model form uncertainty at conditions where
there are no experimental data. Consider a simple
example where there are only two input parameters for
the model: ˛ and ˇ (Fig. 3). The validation domain
consists of the set of points in this parameter space
where experiments have been conducted and the val-
idation metric has been computed (denoted by a “V”
in the figure). In this example, the application domain
(sometimes referred to as the operating envelope of the
system) is larger than the validation domain, although
many other set relationships are possible. Thus, one
must choose between (1) ignoring the inaccuracy in the
model, (2) using the flexibility of the model by way of
calibrating the model parameters at the validation con-
ditions, (3) extrapolating the validation metric outside
of the validation domain, or (4) performing additional
validation experiments (Fig. 3 denotes conditions for
candidate validation experiments by a “C”). The key
point is that the validation domain is generally not
coincident with the application domain; thus, either
interpolation or extrapolation of the model form uncer-
tainty to the conditions of interest is needed.

One method for estimating the model form
uncertainty at the conditions of interest is as
follows [4]. First, a regression fit of the validation
metric is performed using data from the validation
domain. Next, a statistical analysis is performed to
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Validation, Fig. 3 Schematic showing a possible relationship between the validation domain and the application domain
(Reproduced from [2])

compute the prediction interval at the conditions
of interest. This prediction interval is similar to a
confidence interval, but it will be larger because we
are interested in a future random deviate predicted by
the regression fit of the validation metric data, i.e.,
the uncertainty due both to the regression fit and the
variability of the validation metric evaluated at an
arbitrary set of conditions. The computation of the
prediction interval requires a level of confidence to
be specified (e.g., 95 % confidence). The model form
uncertaintyUMODEL at the prediction conditions is then
found by taking the maximum of zero and the value
found from the regression fit of the validation metric Od
and adding in the upper value of the prediction interval,
P , i.e.,

UMODEL D max
� Od; 0

�
C P: (2)

A simple example showing the extrapolation of
model form uncertainty in nozzle thrust (in New-
tons) as a function of a single model input, stagnation
pressure (in megapascals), is given in Fig. 4. In this

example, area validation metrics are computed from
simulations and (hypothetical) experiments at stag-
nation pressures of 1.0, 1.5, 2.0, 2.5, and 3.0 MPa,
yielding validation metric results of 23.0, 25.0, 24.0,
26.2, and 28.8 N, respectively. In order to extrapolate
this model form uncertainty to the prediction condition,
we first compute a linear regression fit of the validation
metric as a function of the stagnation pressure. The
resulting regression fit is

Od D 20:28C 2:56p0 N (3)

with p0 given in MPa. The computed values of the
validation metric, along with the above regression fit,
are shown graphically in Fig. 4. A prediction interval
for the regression fit is then computed at the 95 % con-
fidence level as shown in the figure. The upper value
of the prediction interval is then used to estimate the
model form uncertainty at the prediction conditions.
In this case, the regression fit of the validation metric
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Validation, Fig. 4 Example
of extrapolation of validation
metric to the prediction
conditions .p0 D 6MPa/
including prediction intervals
(Reproduced from [8])
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evaluated at the prediction conditions (6 MPa) gives
Od D 35:6N. The magnitude of the 95 % prediction

interval at this location is P D ˙9:7N (i.e., Od ˙ P );
thus, the estimated model form uncertainty UMODEL is

UMODEL D max. Od; 0/C P D 35:6C 9:7 N D 45:3 N.

Since this estimated model form uncertainty is epis-
temic in nature, it will be treated as an interval about
the simulation prediction.

Predictive Capability

The total prediction uncertainty can be estimated by
combining the propagated uncertainty from the model
inputs (aleatory and epistemic) with the uncertainty
due to the form of the model and the uncertainty due
to the numerical error estimation process. For example,
if F.x/ is the CDF resulting from propagating random
uncertainties through the model, then accounting for
the model form and numerical uncertainties would
result in the p-box F (x ˙ UTOTAL) where UTOTAL D

UMODEL CUNUM. In the more general case where there
are both aleatory and epistemic uncertainties in the
model inputs, the propagation of these uncertainties
through the model results in a p-box. The uncertainties
due to model form and numerical approximations sim-
ply result in a broadening of this p-box. Although un-
certainties are not necessarily additive in this way [7],
this approach estimates the compounding roles of the
various sources of epistemic uncertainty. An example
of this “extended” p-box is shown in Fig. 5, where
the estimated modeling and numerical uncertainties are
UMODEL D 45:3N and UNUM D 36:8N (see Ref. [8]
for details).

There are various ways that a decision maker can
use the uncertainty information provided in Fig. 5.
First, if one is interested in the minimum range of the
SRQ (thrust) that is predicted with a probability of
0.90, then one has an interval range of [2565,2815]N
for the SRQ at a cumulative probability of 0.05 and a
range of [2695,2930]N at a cumulative probability of
0.95. Taking the lowest possible value of the former
and the highest possible value of the latter, there is a
0.90 probability that the SRQ lies in the range 2,565 N
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Validation, Fig. 5 Example
of extended p-box for the
SRQ of nozzle thrust
(Reproduced from [8])

� SRQ � 2,930 N. If instead there were a requirement
that the nozzle produces a thrust greater than or equal
to 2,600 N, Fig. 5 shows that there is at most a 0.22
probability that the system would fail to achieve this
required minimum thrust, i.e., the cumulative proba-
bility that the thrust is less than or equal to 2,600 N
is the interval [0, 0.22]. Finally, Fig. 5 provides a
significant amount of information to a decision maker
regarding the impact of each source of uncertainty in
the simulation prediction.
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Description

Variable metric algorithms are a class of algorithms
for unconstrained optimization. Consider the uncon-
strained optimization problem

min
x2<n

f .x/: (1)

Line search type variable metric algorithms have the
following form:

xkC1 D xk � ˛kHkgk; (2)

where gk D rf .xk/, ˛k > 0 is a steplength obtained
by some line search techniques and Hk 2 <n�n
is a symmetric positive definite matrix updated from
iteration to iteration.

The name “variable metric” was first given by
Davidon [1] to reflect the facts that Hk is changed
after each iteration and that each positive symmetric
matrix Hk specifies a metric jjd jjHk D p

dTHkd .
In particular, if f .x/ is a strictly convex quadratic
function, 1

2
jjrf .xk/jj2.r2f .xk//�1

D f .xk/ � minf .x/
is the amount by which f .x/ exceeds its minimum
value. In a variable metric algorithm, we use Hk to
approximate .r2f .xk//

�1 because the Hessian matrix
r2f .xk/ is not computed.

The search direction dk D �Hkgk of a variable
metric algorithm is the minimizer of the quadratic
function

Qk.d/ D f .xk/C dTrf .xk/C 1

2
dT Bkd; (3)

where Bk D H�1
k . Normally, we require the matrix Bk

to satisfy the quasi-Newton condition:

Bk.xk � xk�1/ D gk � gk�1: (4)

Thus, variable metric algorithms are special quasi-
Newton methods when the quasi-Newton matrices Bk
are positive definite.

Variable metric algorithm with trust region tech-
nique was first studied by Powell [2]. In a trust region
type variable metric algorithm, we compute the trial
step dk by solving the trust region subproblem:

min
d2<n

gTk d C 1

2
dTBkd (5)

s. t. jjd jj2 � �k; (6)

where �k > 0 is the trust region bound updated from
iteration to iteration.

History

The first variable metric algorithm is the Davidon-
Fletcher-Powell (DFP) method which was invented by
Davidon [1] and reformulated by Fletcher and Powell
[3]. The DFP method updates the matrix Hk by the
following formula:

HkC1 D Hk � Hkyky
T
kHk

yT
kHkyk

C sks
T
k

sT
k yk

; (7)

where sk D xkC1 � xk and yk D gkC1 � gk .

BkC1DBk�Bksky
T
k C yks

T
kBk

sT
k yk

C
�
1C sT

kBksk

sT
k yk

�ykyT
k

sT
k yk

:

(8)

It is easy to verify that BkC1 defined by (8) satisfies
quasi-Newton condition (4). One good property of the
DFP update is that BkC1 remains positive definite if Bk
is positive definite and if sTk yk > 0. Please notice that
the condition sTk yk > 0 is always true for strictly con-
vex function. Even for non-convex functions, sTk yk > 0
also holds if ˛k is computed by certain line search
techniques.

Perhaps the most famous variable metric algorithm
is the BFGS method, which was discovered by
Broyden [4], Fletcher [5], Goldfarb [6], and Shanno
[7] independently. The BFGS method updates the
quasi-Newton matrices by

BkC1 D Bk � Bksks
T
kBk

sT
kBksk

C yky
T
k

sT
k yk

; (9)

HkC1 D Hk � Hkyks
T
k C sky

T
kHk

yT
k sk

C
�
1C yT

kHkyk

sT
k yk

� sksT
k

sT
k yk

: (10)

The BFGS update can be obtained by interchangingH
and B and interchanging s and y in the DFP update.
Hence, BFGS is called as the dual update of DFP .
Numerical results indicate that for most problems, the
BFGS method is much better than the DFP method,
and it is widely believed that it is very difficult to find
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a variable metric method which is much better than the
BFGS method.

There are many variable metric methods. For ex-
ample, Broyden [4] gives a family of quasi-Newton
updates:

BkC1.�/ D Bk � Bksks
T
kBk

sT
kBksk

C yky
T
k

sT
k yk

C�wkwT
k ; (11)

where

wk D
q
sT
kBksk

� yk

sT
k yk

� Bksk

sT
kBksk

�
;

� 2 <1 being a parameter. As long as � 6D 1=.1�ˇk�k/
where ˇk D yTk Hkyk=s

T
k yk and �k D sTk Bksk=s

T
k yk ,

we have

HkC1.�/ D Hk�Hkyky
T
kHk

yT
kHkyk

C sks
T
k

sT
k yk

C�vkvT
k ; (12)

where

vk D
q
yT
kHkyk

� sk

sT
k yk

� Hkyk

yT
kHkyk

�
;

and � D �.�/ D .1 � �/=.1 C �.ˇk�k � 1//. If
� > 1=.1� ˇk�k/, BkC1.�/ defined by (11) is positive
definite, as long as Bk is positive definite and sTk yk >
0. Thus, in this case, it leads to a variable metric
algorithm. In particularly, if we restrict � 2 Œ0; 1�, we
obtain an important special family of variable metric
algorithms, which is called the Broyden convex family.

Properties of Variable Metric Algorithms

Variable metric algorithms have very nice properties.
First of all, it has the invariance property, which says
that variable metric algorithms is invariance under
linear transformations.

Another important property of the variable metric
algorithms is quadratic termination. Namely, variable
metric algorithms with exact line searches can find the
unique minimizer of a strict convex quadratic function
after at most n iterations.

Variable metric algorithms have a so-called least
change property. Namely, the quasi-Newton updates
usually imply that the new quasi-Newton matrix is a

least change from the previous one among all the matri-
ces satisfying the current quasi-Newton condition. For
example, we have the following result (see [8]):

Theorem 1 Assume that Bk is symmetric, sT
k yk > 0.

Let M be any symmetric non-singular matrix M that
satisfies M�2sk D yk; the solution of problem

min kB � BkkM;F (13)

s. t. Bsk D yk; B D BT (14)

is the DFP update (8), where jjAjjM;F D jjMAM jjF .

The first convergence result on variable metric algo-
rithms was given by Powell [9].

Theorem 2 Assume that f .x/ is uniformly convex and
twice continuously differentiable. Then, fxkg generated
by the DFP method with exact line search converges
to the unique minimizer x� of f .x/. Moreover, the
convergence rate is Q-superlinear, namely,

lim
k!1

kxkC1 � x�k
kxk � x�k D 0: (15)

Many important results on convergence properties
of quasi-Newton methods are given by Dennis and
Moré [8]. One of them is given as follows.

Theorem 3 Assume that f .x/ is twice continuously
differentiable and r2f .x/ is Lipschitz continuous. Let
x� be a minimizer of f .x/ and r2f .x�/ positive
definite. Then the DFP method and the BFGS method
with ˛k D 1 converges locally Q-superlinearly if x1
is sufficiently close to x� and B1 is sufficiently close to
r2f .x�/.

For the global convergence of inexact line search
quasi-Newton methods, the following pioneer result
was obtained by Powell [10].

Theorem 4 Assume that f .x/ is convex and twice
continuously differentiable in fxIf .x/ � f .x1/g. For
any positive definite B1, BFGS method with Wolfe line
search xk either terminates finitely or

lim
k!1 kgkk2 D 0: (16)

holds.
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The above result can be extended from BFGS
method to all methods in the Broyden convex family
except DFP [11].

Theorem 5 Under the assumptions of the above the-
orem, let BkC1 be given by Broyden convex family,
namely, BkC1 D BkC1.�k/. If there exists ı > 0, such
that 1 � �k � ı, then either fxkg terminates finitely
or (16) holds.

The proof of the above theorem cannot be extended
to the DFP method, which lacks the “self-correction”
�BksksTk Bk=sTk Bksk . Therefore, the convergence of
the DFP method with inexact line search remains as
an open problem [12]:

Open Question Assume that the objective function
f .x/ is uniformly convex and twice continuously dif-
ferentiable. Does the DFP method with Wolfe inexact
line search converge to the unique minimizer of f .x/
for any starting point x1 and any positive definite initial
matrix B1?

Numerical performances indicate that variable met-
ric methods can also be applied to non-convex mini-
mizations. However, there are no theoretical results that
ensure the global convergence of inexact line search
type variable metric algorithms. Indeed, Dai [13] gives
a 2-dimensional example in which the BFGS method
with Wolfe line search cycles near 6 points and kgkk
are bounded away from 0.

LimitedMemory and Subspace
Technique

For middle and small problems, variable metric algo-
rithms are very efficient, and BFGS method is one of
most widely used algorithm for solving middle and
small problems. However, for large-scale problems
(when n is very large), variable metric algorithms
need huge storage and the linear algebra computation
cost per iteration is very high. One approach is the
limited memory quasi-Newton methods, which try to
reduce the memory requirement while maintaining
certain quasi-Newton property. Let us write the BFGS
update (10) in the following form:

HkC1 D
�
I � sky

T
k

sT
k yk

�
Hk

�
I � yks

T
k

sT
k yk

�
C sks

T
k

sT
k yk

: (17)

Let �k D 1=sT
k yk and Vk D .I � �kyks

T
k /; repeatedly

applying (17) gives the following formula:

HkC1 D .V T
k � � �V T

k�i /Hk�i .Vk�i � � �Vk/

C
iX

jD0
�k�iCj

� i�j�1Y
lD0

V T
k�l

�
sk�iCj sT

k�iCj

� i�j�1Y
lD0

V T
k�l

�T
: (18)

Thus, the m C 1 step limited memory BFGS method
uses the following update:

HkC1 D V T
k � � �V T

k�mH
.0/

k Vk�m � � �Vk

C
mX
jD0

�k�mCj
�m�j�1Y

lD0
V T
k�l

�
sk�mCj sT

k�mCj

�m�j�1Y
lD0

V T
k�l

�T
: (19)

Assume we know H
.0/

k ; we only need to store

si ; yi .i D k � m; � � � ; k/. One particular H.0/

k is

H
.0/

k D sT
k yk

kykk22
I . Other choices of H.0/ can be found in

Liu and Nocedal [14].
Another approach for reducing storage and com-

puting cost is subspace technique. Subspace quasi-
Newton methods are based on the following result
(e.g., see [15]).

Theorem 6 Consider the BFGS method applied to
a general nonlinear function. If H1 D �I.� >

0/, then the search direction dk 2 Gk D SPAN

fg1; g2; : : : ; gkg for all k. Moreover, if z 2 Gk and
w 2 G?

k , then Hkz D Gk and Hkw D �w.

The above theorem is also true if BFGS method is
replaced by any method in the Broyden family. Due to
this subspace property, in iteration k, we can obtain the
search direction dk by solving a subproblem defined in
the lower dimensional subspace Gk instead of working
in the whole space <n. It is proved (see [15]) that
the subspace BFGS method and conventional BFGS
method in the full space generate the identical iterate
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sequence fxkg. Similar result is also true for quasi-
Newton methods with trust region (see [16]).

Another type of special quasi-Newton methods is
that the quasi-Newton matrices are sparse. It is quite
often that large-scale problems have separable struc-
ture, which leads to special structure of the Hessian
matrices. In such cases we can require the quasi-
Newton matrices to have similar structures.
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Short Definition

Variational integrators are a class of geometric
structure-preserving numerical methods that are based
on a discrete Hamilton’s variational principle, and are
automatically symplectic and momentum preserving.

Introduction

Geometric numerical integrators are numerical meth-
ods that preserve the geometric structure of a continu-
ous dynamical system (see, e.g., [8,11], and references
therein), and variational integrators provide a system-
atic framework for constructing numerical integrators
that preserve the symplectic structure and momentum,
of Lagrangian and Hamiltonian systems, while exhibit-
ing good energy stability for exponentially long times.

In many problems, the underlying geometric struc-
ture affects the qualitative behavior of solutions, and as
such, numerical methods that preserve the geometry of
a problem typically yield more qualitatively accurate
simulations. This qualitative property of geometric
integrators can be better understood by viewing a
numerical method as a discrete dynamical system that
approximates the flow map of the continuous system
(see, e.g., [1, 21]), as opposed to the traditional view
that a numerical method approximates individual tra-
jectories. In particular, this viewpoint allows questions
about long-time stability to be addressed, which would
otherwise be difficult to answer.

Variational Integrators

Discrete Lagrangian mechanics [16] is based on a
discrete analogue of Hamilton’s principle. Given a
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configuration manifold Q, we introduce the discrete
action sum, Sd W QnC1 ! R, which is given by

Sd .q0; q1; : : : ; qn/ D
Xn�1

iD0 Ld .qi ; qiC1/;

where QnC1 can be viewed as the space of discrete
trajectories on Q. The discrete Hamilton’s principle
states that

ıSd .q0; q1 : : : ; qn/ D 0;

when taking variations that leave the endpoints q0 and
qn fixed. The discrete Lagrangian, Ld W Q �Q ! R,
is a generating function of the symplectic flow, and is
an approximation to the exact discrete Lagrangian,

LEd .q0; q1Ih/ D
Z h

0

L.q01.t/; Pq01.t//dt; (1)

where q01.0/ D q0; q01.h/ D q1; and q01 satis-
fies the Euler–Lagrange equation in the time interval
.0; h/. The exact discrete Lagrangian is related to
the Jacobi solution of the Hamilton–Jacobi equation.
Alternatively, one can characterize the exact discrete
Lagrangian in the following way:

LEd .q0; q1Ih/ D ext
q2C2.Œ0;h�;Q/
q.0/Dq0;q.h/Dq1

Z h

0

L.q.t/; Pq.t//dt:

(2)
The exact discrete Lagrangian generates the exact
discrete time flow of a Lagrangian system, but cannot
be computed explicitly. Instead, these two characteriza-
tions of the exact discrete Lagrangian lead to two gen-
eral approaches for constructing variational integrators.

The discrete variational principle then yields the
discrete Euler–Lagrange (DEL) equation,

D2Ld .qk�1; qk/CD1Ld.qk; qkC1/ D 0; (3)

where Di denotes a partial derivative with respect to
the i -th argument. This implicitly defines the discrete
Lagrangian map FLd W .qk�1; qk/ 7! .qk; qkC1/ for
initial conditions .qk�1; qk/ that are sufficiently close
to the diagonal of Q � Q. This is equivalent to the
implicit discrete Euler–Lagrange (IDEL) equations,

pk D �D1Ld .qk; qkC1/; pkC1 D D2Ld.qk; qkC1/;
(4)

which implicitly defines the discrete Hamiltonian map
QFLd W .qk; pk/ 7! .qkC1; pkC1/, where the discrete

Lagrangian is the Type I generating function of the
symplectic transformation.

Störmer–VerletMethod as a Variational
Integrator
The Störmer–Verlet method is an example of a varia-
tional integrator, which can also be viewed as a com-
position method and a splitting method (see, e.g., [7]).
As a variational integrator, the Störmer–Verlet method
is obtained from the following discrete Lagrangian:

Ld .q0; q1/D h

2

h
L

�
q0;

q1 � q0

h

�
CL

�
q1;

q1 � q0

h

�i
:

(5)
This can be interpreted as the trapezoidal rule approx-
imation of the action integral, applied to the linear
path that joins the boundary points q0 and q1. More
generally, we will see that discrete Lagrangians can
be constructed with a suitable choice of quadrature
formula, and some prescription for specifying the state
of the system at the quadrature points, subject to the
boundary conditions.

To see that the discrete Lagrangian (5) recovers
the Störmer–Verlet method, we consider a Lagrangian
given by L.q; Pq/ D 1

2
PqTM Pq � V.q/, which is the

difference of the kinetic and the potential energy. Then,
the discrete Euler–Lagrange equations yield

0 D D2Ld.qk�1; qk/CD1Ld .qk; qkC1/

D h

2

�
1

h

@L

@ Pq
�
qk�1;

qk � qk�1
h

�
C @L

@q

�
qk;

qk � qk�1
h

�
C 1

h

@L

@ Pq
�
qk;

qk � qk�1
h

��

Ch

2

�
@L

@q

�
qk;

qkC1 � qk
h

�
� 1

h

@L

@ Pq
�
qk;

qkC1 � qk

h

�
� 1

h

@L

@ Pq
�
qkC1;

qkC1 � qk
h

��

D h

2

�
2

h
M
qk � qk�1

h
� rV.qk/

�
C h

2

�
�rV.qk/ � 2

h
M
qkC1 � qk

h

�

D M

h
.�qkC1 C 2qk � qk�1/ � hrV.qk/:
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This is equivalent to

M.qkC1 � 2qk C qk�1/C h2rV.qk/ D 0;

which is the two-step formulation of the Störmer–
Verlet method with the force given by f .q/ D
�M�1rV.q/.

Desirable Properties of Variational Integrators

Symplecticity
Given a discrete Lagrangian Ld , one obtains
a discrete fiber derivative, FLd W .q0; q1/ 7!
.q0;�D1Ld .q0; q1//. Variational integrators are
symplectic, i.e., the pullback under FLd of the
canonical symplectic form ˝ on the cotangent bundle
T �Q is preserved. Pushing forward the discrete Euler–
Lagrange equations yields a symplectic-partitioned
Runge–Kutta method.

Momentum Conservation
Noether’s theorem states that if a Lagrangian is invari-
ant under the lifted action of a Lie group, then the
associated momentum is preserved by the flow. If a dis-
crete Lagrangian is invariant under the diagonal action
of a symmetry group, a discrete version of Noether’s
theorem holds, and the discrete flow preserves the
discrete momentum map. For PDEs with a uniform
spatial discretization, a backward error analysis implies
approximate spatial momentum conservation [19].

Approximate Energy Conservation
While variational integrators do not exactly preserve
energy, backward error analysis [1, 5, 6, 20] shows that
they preserve a modified Hamiltonian that is close to
the original Hamiltonian for exponentially long times.
In practice, the energy error is bounded and does not
drift. This is the temporal analogue of the approximate
momentum conservation result for PDEs, as energy is
the momentum map associated with time invariance.

Variational Error Analysis and Discrete
Noether’s Theorem
The variational integrator approach to constructing
symplectic integrators has a few important advantages
from the point of view of numerical analysis. In partic-
ular, the task of establishing properties of the discrete
Lagrangian map FLd W Q � Q ! Q � Q reduces
to the simpler task of verifying certain properties of

the discrete Lagrangian instead. Here, we summarize
the results from Theorems 1.3.3 and 2.3.1 of Marsden
and West [16] that relate to the order of accuracy and
momentum conservation properties of the variational
integrator.

Discrete Noether’s Theorem
Given a discrete LagrangianLd W Q�Q ! R which is
invariant under the diagonal action of a Lie groupG on
Q �Q, then the discrete Lagrangian momentum map,
JLd W Q �Q ! g�, given by

JLd .qk; qkC1/ � 	 D h�D1Ld.qk; qkC1/; 	Q.qk/i

is invariant under the discrete Lagrangian map, i.e.,
JLd ı FLd D JLd .

Variational Error Analysis
The natural setting for analyzing the order of accuracy
of a variational integrator is the variational error anal-
ysis framework introduced in Marsden and West [16].
In particular, Theorem 2.3.1 of Marsden and West [16]
states that if a discrete Lagrangian, Ld W Q �Q ! R,
approximates the exact discrete Lagrangian,LEd W Q �
Q ! R, given in (1) and (2) to order p, i.e.,

Ld .q0; q1Ih/ D LEd .q0; q1Ih/C O.hpC1/;

then the discrete Hamiltonian map, QFLd W .qk; pk/ 7!
.qkC1; pkC1/, viewed as a one-step method, is order p
accurate.

General Techniques for Constructing
Variational Integrators

Shooting-Based Variational Integrators
The exact discrete Lagrangian associated with Jacobi’s
solution (1) can be interpreted as the action integral
evaluated on a solution of a two-point boundary-value
problem. As such, a computable approximation to
the exact discrete Lagrangian can be obtained in two
stages: (1) apply a numerical quadrature formula to
the action integral, evaluated along the exact solu-
tion of the Euler–Lagrange boundary-value problem;
(2) replace the exact solution of the Euler–Lagrange
boundary-value problem with a numerical solution
of the boundary-value problem, in particular, by a
converged shooting solution associated with a given
one-step method. More generally, the shooting-based
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solution of the Euler–Lagrange boundary-value prob-
lem can also be replaced with approximate solutions
based on other numerical schemes, including Taylor
integrators, and collocation methods applied to either
the Euler–Lagrange vector field or its prolongation.

Given a one-step method 
h W TQ ! TQ,
and a numerical quadrature formula

R h
0
f .x/dx �

h
Pn

iD0 bif .x.ci h//, with quadrature weights bi and
quadrature nodes 0 D c0 < c1 < : : : < cn�1 < cn D 1,
we construct the shooting-based discrete Lagrangian,

Ld.q0; q1Ih/ D h
Xn

iD0 biL.q
i ; vi /;

where

.qiC1; viC1/ D 
.ciC1�ci /h.qi ; vi /; q0 D q0; q
n D q1:

These equations, together with the implicit discrete
Euler–Lagrange equations (4), can be solved iteratively
using a shooting method. If one uses a p-th order
accurate one-step method and a q-th order accurate
quadrature formula to construct the variational integra-
tor, then the resulting variational integrator will have
order of accuracy min.p; q/.

Galerkin Variational Integrators
The variational characterization of the exact discrete
Lagrangian (2) leads to a class of Galerkin variational
integrators, where one replaces the integral with a
quadrature formula and replaces the space ofC2 curves
with a finite-dimensional function space.

Let f i.�/gsiD1, � 2 Œ0; 1�, be a set of basis functions
for a s-dimensional function space C s

d , and choose a
numerical quadrature formula with quadrature weights
bi and quadrature nodes ci . Then, a Galerkin varia-
tional integrator is given by,

q1 D q0 C h

sX
iD1

BiV
i ;

p1 D p0 C h

sX
iD1

bi
@L

@q
.Qi ; PQi /;

Qi D q0 C h

sX
jD1

Aij V
j ; i D 1; : : : ; s

0 D
sX

iD1

bi
@L

@ Pq .Q
i ; PQi/ j .ci /� p0Bj

� h

sX
iD1

.biBj � biAij /
@L

@q
.Qi ; PQi/; j D 1; : : : ; s

0 D
sX

iD1

 i .cj /V
i � PQj ; j D 1; : : : ; s

where .bi ; ci / are the quadrature weights and quadra-
ture points, Bi D R 1

0  i .�/d� , Aij D R ci
0  j .�/d� .

When the chosen basis functions satisfy a Kronecker
delta property, the last equation states that V i D PQi ,
and the method reduces to a symplectic-partitioned
Runge–Kutta method.

While variational integrators are typically described
in terms of the Lagrangian, an analogous theory of vari-
ational integrators formulated in terms of the Hamilto-
nian was developed in Leok and Zhang [13]. When the
Lagrangian and Hamiltonian are hyperregular, these
two approaches yield equivalent variational integrators,
but the Hamiltonian approach remains valid in the case
of degenerate Hamiltonian systems, for which there is
no Lagrangian analogue.

Generalizations of Variational Integrators

Lie Group and Homogeneous Space Variational
Integrators
Lie groups are smooth manifolds that have a group
structure. More explicitly, a Lie group can be locally
identified with Euclidean space, and it has a smooth
group operation. Such manifolds often arise as config-
uration spaces in applications involving robotics and
other modern engineering systems. The basic idea of
Lie group integrators is to express the update map on a
Lie group G in terms of the group operation:

gkC1 D gk ı fk; (6)

where gk; gkC1 2 G are configuration variables,
fk 2 G is the incremental update, and the group
operation is denoted by ı. Since the group element
is updated by a group operation, the group structure
is preserved automatically without the need for local
parameterizations, explicit constraints, or reprojection.
This is in contrast to conventional numerical
integrators that update group elements using addition,
which does not preserve the Lie group structure, since
the addition operation on the embedding linear space
is not closed when restricted to the Lie group.
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On a Lie group G that acts on the left, one uses the
exponential map, which is a local diffeomorphism, to
obtain an open neighborhood U � G of e such that
exp�1

e W U ! u � g. This yields a natural chart  g W
LgU ! u at g 2 G given by  g D exp�1

e ıLg�1 .
Consider an interpolatory function at the level of the
Lie algebra g that is described by a set of control points
	� D  �1

g0
.g�/ at control times 0 D d0 < d1 < d2 <

: : : < ds�1 < ds D 1. Lifting thiscurve to the Lie

group yields the followingG-equivariant interpolant,

'.g� I �h/ D  �1
g0

� Xs

�D0  g0.g
�/ Ql�;s.�/

�
;

where Ql�;s.t/ denote the Lagrange polynomials associ-
ated with the control times d� . A quadrature approxi-
mation of the integral then yields the following discrete
Lagrangian:

Ld.g0; g1/ D ext
g�2GIg0Dg0IgsDg�1

0 g1

h
Xs

iD1 biL.T '.fg
�gs�D0I cih//:

This can be expressed in terms of the Lie algebra
element 	� D  g0.g

�/ associated with the �-th control
point g� , which yields the following expression for the
discrete Lagrangian:

Ld.g0; g1/ D ext
	�2gI	0D0I	sD g0.g1/

h
Xs

iD1 biL
�
Lg0 exp.	.cih//;

Texp.	.ci h//Lg0 � TeLexp.	.cih// � dexpad	.ci h/
. P	.cih//

�
:

The extremal conditions for the Lie algebra elements
can be explicitly computed to give

Ld .g0; g1/ D h
Xs

iD1 biL
�
Lg0 exp.	.cih//; Texp.	.ci h//Lg0 � TeLexp.	.cih// � dexpad	.ci h/

. P	.cih//
�

with 	0 D 0, 	s D  g0.g1/, and the other Lie algebra
elements are implicitly defined by,

0 D h
Xs

iD1 bi
�
@L

@g
.cih/Texp.	.ci h//Lg0 � TeLexp.	.ci h// � dexpad	.ci h/

Ql�;s.ci /

C 1

h

@L

@ Pg .cih/T
2

exp.	.cih//Lexp.	.ci h// � T 2e Lexp.	.cih// � ddexpad	.ci h/
PQl�;s.ci /

�
;

for � D 1; : : : ; s�1, and where dexpw D P1
nD0 wn

.nC1/Š ,
and ddexpw D P1

nD0 wn

.nC2/Š . These conditions are anal-
ogous to the internal stages of a Runge–Kutta method.
The expression for the Lie group discrete Lagrangian
yields a Lie group variational integrator [9].

Another important related class of manifolds are
homogeneous spaces, which are manifolds with a tran-
sitive Lie group action. Given a homogeneous spaceH
and a Lie groupG, a curve h W R ! H on the homoge-
neous space can be lifted to a curve g W R ! G, where

h.t/ D g.t/ � h.0/, and g.0/ D e. One complication
is that the lifting is not unique, due to the presence of
isotropy, which are elements of the Lie group G that
fix a given point of the homogeneous space. The lifted
curve can be made unique if we choose a connection
and require that the lifted curve is horizontal with
respect to this connection. This procedure allows one
to develop homogeneous space variational integra-
tors [10], by relating them to flows on Lie groups, and
applying Lie group variational integrators.
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Multisymplectic Variational Integrators
The variational principle for Lagrangian PDEs in-
volves a multisymplectic formulation [17, 18]. The
base space X consists of independent variables, de-
noted by .x0; : : : ; xn/ 	 .t; x/, where x0 	 t is
time, and .x1; : : : ; xn/ 	 x are space variables. The
dependent field variables, .y1; : : : ; ym/ 	 y, form a
fiber over each spacetime basepoint. The independent
and field variables form the configuration bundle,  W
Y ! X . The configuration of the system is specified
by a section of Y over X , which is a continuous map
� W X ! Y , such that  ı� D 1X . This means that for
every .t; x/ 2 X , �..t; x// is in the fiber over .t; x/,
which is �1..t; x//.

For ODEs, the Lagrangian depends on position and
its time derivative, which is an element of the tangent
bundle TQ, and the action is obtained by integrating
the Lagrangian in time. In the multisymplectic case, the
Lagrangian density is dependent on the field variables
and the partial derivatives of the field variables with re-
spect to the spacetime variables, and the action integral
is obtained by integrating the Lagrangian density over
a region of spacetime. The multisymplectic analogue
of the tangent bundle is the first jet bundle J 1Y ,
consisting of the configuration bundle Y , and the first
partial derivatives of the field variables with respect
to the independent variables. In coordinates, we have
�.x0; : : : ; xn/ D .x0; : : : xn; y1; : : : ym/, which allows
us to denote the partial derivatives by va� D ya; � D
@ya=@x�. We can think of J 1Y as a fiber bundle over
X . Given a section � W X ! Y , we obtain its first jet
extension, j 1� W X ! J 1Y , that is given by

j 1�.x0; : : : ; xn/ D �
x0; : : : ; xn; y1; : : : ; ym;

y1;0; : : : ; y
m
;n

�
;

which is a section of the fiber bundle J 1Y over X . The
Lagrangian density is a map L W J 1Y ! ˝nC1.X /.
Given the action functional, S.�/ D R

X L.j
1�/;

Hamilton’s principle states that the physical solutions
are extremals of the functional S, i.e., ıS D 0.

With the generalization of Hamilton’s principle to
Lagrangian field theories, one can develop variational
integrators for PDEs. A discrete action Sd is con-
structed by choosing a finite-dimensional approxima-
tion of the space of sections of the configuration
bundle, e.g., spacetime finite elements or spectral ex-
pansions, and integrating the Lagrangian density over

spacetime with a suitable quadrature formula. The
discrete Hamilton’s principle, which states that ıSd D
0 for variations of the discrete sections that fix the
boundary conditions, leads to a multisymplectic varia-
tional integrator. This is a more general framework than
applying a symplectic integrator to a semidiscretized
Lagrangian PDE, since it allows for discretizations of
spacetime that are not tensor products. This flexibility
is used in asynchronous variational integrators [14],
where each element may have a different timestep.
Analogous to the ODE case, variational integrators
for Lagrangian PDEs preserve a multisymplectic form,
and for problems with symmetries, a multimomentum
map is preserved as well.

Conclusions

Variational integrators provide a systematic framework
for leveraging existing knowledge in approximation
theory, one-step numerical methods, and quadrature
rules, to construct a large class of geometric structure-
preserving numerical integrators that are applicable
to a wide range of problems. In particular, this leads
to methods for PDEs [14], nonsmooth collisions [4],
stochastic systems [2], nonholonomic systems [3], and
constrained systems [15]. Furthermore, generalizations
involving Dirac structures and mechanics [12] allow
one to consider interconnections between discrete La-
grangian systems, which will potentially provide a
unified approach for multiphysics systems.

References

1. Benettin, G., Giorgilli, A.: On the Hamiltonian interpolation
of near to the identity symplectic mappings with applica-
tion to symplectic integration algorithms. J. Stat. Phys. 74,
1117–1143 (1994)

2. Bou-Rabee, N., Owhadi, H.: Stochastic variational integra-
tors. IMA J. Numer. Anal. 29(2), 421–443 (2009)

3. Cortés, J., Martı́nez. S.: Non-holonomic integrators. Nonlin-
earity 14(5), 1365–1392 (2001)

4. Fetecau, R., Marsden, J., Ortiz, M., West, M.: Nonsmooth
Lagrangian mechanics and variational collision integrators.
SIAM J. Appl. Dyn. Syst. 2(3), 381–416 (2003)

5. Hairer, E.: Backward analysis of numerical integrators and
symplectic methods. Ann. Numer. Math. 1, 107–132 (1994)

6. Hairer, E., Lubich, C.: The life-span of backward error anal-
ysis for numerical integrators. Numer. Math. 76, 441–462
(1997)

7. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical
integration illustrated by the Störmer-Verlet method. Acta.
Numer. 12, 399–450 (2003)



Variational Problems in Molecular Simulation 1525

V

8. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations. Springer Series in Computational
Mathematics, vol 31, 2nd edn. Springer, Berlin (2006)

9. Lee, T., Leok, M., McClamroch, N.: Lie group variational
integrators for the full body problem. Comput. Method.
Appl. Mech. Eng. 196(29–30), 2907–2924 (2007)

10. Lee, T., Leok, M., McClamroch, N.: Lagrangian mechanics
and variational integrators on two-spheres. Int. J. Numer.
Method Eng. 79(9), 1147–1174 (2009)

11. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynam-
ics. Cambridge Monographs on Applied and Computational
Mathematics, vol 14. Cambridge University Press, Cam-
bridge (2004)

12. Leok, M., Ohsawa, T.: Variational and geometric structures
of discrete Dirac mechanics. Found. Comput. Math. (2011).
doi:10.1007/s10208-011-9096-2

13. Leok, M., Zhang, J.: Discrete Hamiltonian
variational integrators. IMA J. Numer. Anal. (2011).
doi:10.1093/imanum/drq027

14. Lew, A., Marsden, J., Ortiz, M., West, M.: Asynchronous
variational integrators. Arch. Ration. Mech. Ana. 167(2),
85–146 (2003)

15. Leyendecker, S., Marsden, J., Ortiz, M.: Variational integra-
tors for constrained mechanical systems. ZAMM Angew.
Math. Mech. 88, 677–708 (2008)

16. Marsden, J., West, M.: Discrete mechanics and variational
integrators. Acta Numer. 10, 317–514 (2001). Cambridge
University Press

17. Marsden, J., Patrick, G., Shkoller, S.: Multisymplectic ge-
ometry, variational integrators, and nonlinear PDEs. Com-
mun. Math. Phys. 199(2), 351–395 (1998)

18. Marsden, J., Pekarsky, S., Shkoller, S., West, M.: Varia-
tional methods, multisymplectic geometry and continuum
mechanics. J. Geom. Phys. 38(3–4), 253–284 (2001)

19. Oliver, M., West, M., Wulff, C.: Approximate momentum
conservation for spatial semidiscretizations of nonlinear
wave equations. Numer. Math. 97, 493–535 (2004)

20. Reich, S.: Backward error analysis for numerical integra-
tors. SIAM J. Numer. Anal. 36, 1549–1570 (1999)

21. Tang, Y.: Formal energy of a symplectic scheme for Hamil-
tonian systems and its applications (I). Comput. Math. Appl.
27, 31–39 (1994)

Variational Problems in Molecular
Simulation

Maria J. Esteban
CEREMADE, CNRS and Université Paris-Dauphine,
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Short Definition

At the basis of all computations in atomic and molec-
ular physics and chemistry lies the fact that all their

possible states are given as critical points of some
functional. The ground states are minimizers. So, most
computations in this area are based on the analytical
study of the corresponding variational problems, and
their numerical discretization.

General Presentation

When trying to understand the properties of a (non-
relativistic) molecule with M atomic nuclei and N

electrons, the basic tool is the so-called Schrödinger
Hamiltonian [29]

H WD �
NX
iD1

1

2
�xi �

NX
iD1

MX
kD1

zk
jxi � Nxk j

C
X

1�i<j�N

1

jxi � xj j ;

where for i D 1; : : : ;M , the i -th nucleus is supposed
to be at Nxi 2 R

3 and have charge zi . In writing the
above Hamiltonian, we have assumed that

me D 1; e D 1; „ D 1;
1

4�0
D 1;

where me is the mass of the electron, e its charge, „
Planck’s constant, and �0 is the vacuum’s electric per-
mittivity constant. For the sake of simplicity, we have
not included spin variables in the above Hamiltonian.

The first term of H corresponds to the kinetic
energy of the electrons. The second one models the
attraction of the electrons by the nuclei, and the last
one, the repulsion between the electrons. Moreover,
let us stress that by writing the above Hamiltonian
we are assuming to be in the Born–Oppenheimer
approximation in which the nuclei are supposed to
be static and fixed: This can be justified by the fact
that the nuclei are much heavier than the electrons,
and so, the latter’s dynamics can be decoupled from
the former’s [1]. In this approximation, the M nuclei
are treated as classical particles. On the other hand,
the N electrons are treated quantum mechanically, and
thus, they are supposed to be described by the wave
function  .x1; � � � ; xN /, where for all i 2 Œ1; N �, xi is
a vector in R

3.
When relativistic effects are important, other

methods have to be used. For more details, see

http://dx.doi.org/10.1007/s10208-011-9096-2
http://dx.doi.org/10.1093/imanum/drq027
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the entry �Relativistic Theories for Molecular
Models.

One of the most important problems in atomic and
molecular computations is the determination of the
system’s ground state, that is, the eigenfunction corre-
sponding to the lowest eigenvalue of the Hamiltonian
H (the ground-state energy). Actually, looking for the
smallest eigenvalue of H is equivalent to solving the
following minimization problem:

U. Nx1; � � � ; NxM / WD inf fh ;H i;  2 H;

k kL2.R3N / D 1
�
; H D

N̂

iD1
H1.R3/: (1)

The constraint of antisymmetry contained in H’s defi-
nition is due to the so-called Pauli exclusion principle
which states that no two identical fermions (particles
with half-integer spin, and electrons are fermions) may
occupy the same quantum state simultaneously.

Once one has solved the above minimization
problem, a second step consists in minimizing
the function W. Nx1; � � � ; NxM/ D U. Nx1; � � � ; NxM/ CP

1�k<l�M
zk zlj Nxk�Nxl j : This number is the ground-state

energy of the molecule when the positions of the
nuclei are free. This second minimization problem
corresponds to the geometric optimization of the
positions of the nuclei. Good references for the
geometry optimization are [20, 28].

Excited states of the same molecule correspond to
critical points of the energy functional h ;H i again
in the set f 2 H; k kL2.R3N / D 1g, which are at
energy levels higher than U. Nx1; � � � ; NxM /. In the sequel
of this section, we will only address questions related
to the ground state and ground-state energy. Questions
related to excited states will be addressed in the last
section of this entry.

Of course, obtaining the energy levels of bound
states of the molecule is not the only problem of
interest from the physics and chemistry point of view,
but they are at the basis of many other computations.
So, the resolution of the above variational problems
is of fundamental importance in quantum chemistry.
There are many references about the role of the vari-
ational theory in quantum chemistry. Let us just quote
a classical old book [6] and one of the newest one on
this topic [7].

As we will explain later, solving the above mini-
mization/variational problems is very difficult. Indeed,

there is no way to solve the problem in a closed way,
explicitly, except in one or two almost trivial cases.
But even if some theorem about the existence of a
solution for such a problem can be proved, the main
challenge is to approach the problem numerically, after
discretization. This is also a difficult or even unattain-
able case; indeed for an atom or a molecule containing
N electrons, the discretization space is R3N ! So, a very
large dimension for any realistic atom or molecule.
Good reviews about the existence of ground states for
the whole problem (1) can be for instance found in
[9, 14, 30].

Before these extremely difficult obstacles, two main
directions have been taken in practice. The two consist
in approaching the above problem by some approxi-
mate problems which capture as best as possible both
the value of that ground-/bound-state energies and the
structure of the corresponding ground/bound states.
These models are of two kinds:
• Models based on the approximation of the space

where the wave functions live (see, for instance, [2]
for a mathematical introduction to these models):
the best known of these models is Hartree–Fock,
described below. Some old and new references for
different aspects of these models are [11, 12, 22, 26,
31, 32].

• The models of the density functional theory (DFT),
and in particular the Kohn–Sham model [16] also
described below [16], and the Thomas–Fermi,
introduced in [10, 32] and extended Thomas–
Fermi models, in which one replaces a problem
where the unknowns are the wave functions of
the electrons with the electronic density � .x/ WD
N

R
R3.N�1/ j .x; x2; : : : ; xN /j2 dx2 : : : dxN :. Some

general references for DFT are [13, 15, 16, 19, 21].

Models Based onWave Functions: The
Hartree–FockModel and Related Ones
The Hartree–Fock consists in approximating the space
H1.R3N / by the space product H1.R3/ � � � � �
H1.R3/: Numerically the difference is huge, since
now the problem is posed in R

3 instead that in R
3N .

Naturally, the new set where the problem is posed
has also to respect the antisymmetry constraint for the
wave functions. Within the above product space, this
is equivalent to considering as unknowns the so-called
Slater determinants, that is, the functions that can be
written as:

http://dx.doi.org/10.1007/978-3-540-70529-1_240
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 .x1; � � � ; xN / D 1p
NŠ

det.'i .xj //

D 1p
NŠ

ˇ̌
ˇ̌
ˇ̌
'1.x1/ � � � '1.xN /

� � � � � �
'N .x1/ � � � 'N .xN /

ˇ̌
ˇ̌
ˇ̌

where 'i are functions in H1.R3/ and are called
molecular orbitals and they have to satisfy the or-
thonormality condition

R
R3
'i'j D ıij . If we denote by

WN D
	
˚ D f'ig1�i�N ; 'i 2 H1.R3/;

Z
R3

'i'j D ıij ; 1 � i; j � N




the set of N molecular orbital configurations, and

SN D
	
 2 H; 9˚ D f'i g1�i�N 2 WN ;

 D 1p
NŠ

det.'i .xj //




the set of Slater determinants, the Hartree–Fock min-
imization problem can be defined as inf fh ;H i;
 2 SN g.

For a wave function  in SN ; h ;H i can be
written as h ;H i D EHF .˚/; ˚ D .'1; � � � ; 'N /;
where the Hartree–Fock energy functional EHF is
given by

EHF .˚/ D
NX
iD1

1

2

Z
R3

jr'i j2 C
Z
R3

�˚ V

C1

2

Z
R3

Z
R3

�˚ .x/ �˚.y/

jx � yj dx dy

�1
2

Z
R3

Z
R3

�˚.x; y/
2

jx � yj dx dy;

with �˚.x; y/ D PN
iD1 'i .x/ 'i .y/ and �˚.x/ D

�˚.x; x/ D PN
iD1 j'i.x/j2.

The function �˚ is the electronic density associated
with the Slater determinant built from ˚ . The integral
of this density function over R

3 is equal to N . The
function �˚.x; y/ is an operator fromL2.R3/ into itself
and is called the density matrix of order 1; it will
play a role in the definition of the density functional

models, like that of Kohn–Sham, which will be de-
scribed below.

Based on the above observations the Hartree–Fock
problem for the ground state can be written as

inf
˚EHF .˚/; ˚ 2 WN

�
: (2)

The minimization set of problem (2) being smaller
than that of the initial problem (1), the ground-state
energy given by (2) is higher than the exact one. The
difference is called correlation energy [27] and much
work has been devoted to its calculation.

For details about this model and others, more
elaborate, built on the same kind of ideas, see
the entries �Hartree–Fock Type Methods and
� Post-Hartree-Fock Methods and Excited States
Modeling.

From the mathematical point of view, the minimiza-
tion problem (2) is not simple, because the energy
functional is not convex, the Coulomb potential with
appears in the two last terms of EHF is long range,
it does not decay quickly enough, and therefore all
scales, large or small, are equally important. Last, but
not least, the unboundedness of R3 creates difficulties
when analyzing the behavior of the minimizing se-
quences, and in particular their possible (and desirable)
convergence toward a minimizer. Unless there is some
external field involved, all the models will be invari-
ant by translation and that implies a possible loss of
compactness for the minimizing sequences. Indeed the
Rellich theorem stating the relative compactness of the
space H1.R3/ into L6.R3/ does not hold here. There
are two big “dangers” for the minimizers, sequences.
The first one is that the nuclei present in the molecule
are not enough to bind the N electrons, and then at
least one of them will want to “escape to infinity.” The
second “danger” is that the molecule is not stable in
the sense that it has the same ground-state energy as
two separate submolecules. These behaviors can be
described mathematically in a very precise way and
then one can try to check whether they are possible or
not. A general method to deal with these issues is the
so-called concentration-compactness method [24–26],
which has been used so far with success in a number
or situations, and that in all cases characterizes very
precisely the meaning of the above “bad behaviors”
and establishes precise conditions in order to avoid
them. From the mathematical viewpoint, these pos-
sible “bad” situations arise because the constraint of

http://dx.doi.org/10.1007/978-3-540-70529-1_236
http://dx.doi.org/10.1007/978-3-540-70529-1_237
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orthonormality of the wave functions is not relatively
compact for the weak topology of H1.R3/.

The lack of convexity of the functional does not
help either to find solutions of the minimization
problem. For that reason, in some cases, people
consider the so-called reduced Hartree–Fock model,
in which the last term in the expression of EHF is
dropped. This new energy functional is convex and
thanks to it, many mathematical issues related to
the study of the minimization problem become much
simpler.

The long-range character of the Coulomb potential
makes this problem much more difficult to deal with
than, for instance, some problems appearing in nuclear
models, where the interaction potential is not electro-
static, and the Coulomb potential is replaced by for
instance the Yukawa potential eajxj=jxj. This problem,
where the interaction potential is short range, can be
approximated by problems posed on bounded domains,
which simplifies many technical questions.

The difficulty of dealing with this problem can be
readily understood if we say that the Euler–Lagrange
equations corresponding to the Hartree–Fock mini-
mization problem are a system of N nonlinear eigen-
value equations, elliptic, and containing nonlinear non-
local terms. This plus the fact the convolution kernel
present in the nonlocal terms is invariant by translation
shows well the full difficulty of dealing with this
problem.

Methods Based on the Electronic Density:
Density Functional Theory (DFT) Models
The basic purpose of the DFT is to express the ground-
state energy (and other quantities) by using mod-
els that are defined not via the wave functions of
the electrons, but instead via the electronic density
� .x/ WD N

R
R3.N�1/ j .x; x2; : : : ; xN /j2 dx2 : : : dxN :

Again, by doing this one works in R
3 instead that in

R
3N . The whole theory has its origin in two theo-

rems due to Hohenberg and Kohn who state first that
in a model Hamiltonian like H , the electron–nuclei
potential

V.xi / WD
NX
iD1

MX
kD1

zk
jxi � Nxkj ;

can be obtained, up to an additive constant, from
the electronic density �.x/ WD PN

iD1 j˚i j2. Then,

the second theorem states that the exact energy
density defined via the Hamiltonian H is bounded
from below by the minimal energy defined with
the help of a functional of the density E.�/
defined by:

E.�/ WD T Œ��C
Z
R3

V .x/�.x/ dx C VeeŒ�� ;

where T Œ�� is the kinetic energy, VeeŒ�� is the electron–
electron repulsion term, and

R
R3
V .x/�.x/ dx stands

for the electron–nuclei attraction.
The different models of the DFT depend on how one

defines the first term of the above energy functional in
a more or less exact way, and above all, on how one
models the electron–electron repulsion term Vee .

A first very simple model is the so-called Thomas–
Fermi (TF) model, in which the kinetic energy
term is replaced by the semiclassical approximation
�

R
R3
�5=3, � being a physical constant. Here the

exchange term is still the term 1
2

RR
R3�R3

�.x/ �.y/

jx�y� . The
Thomas–Fermi functional is convex in � and that
simplifies several mathematical difficulties. But this
model is only a very rough approximation of (1).
In order to better approximate it, other models
have been introduced in the sequel of Thomas–
Fermi. In the Thomas–Fermi–Dirac (TFD) model,
a term �CD

R
R3
�4=3 is added to the TF energy. In

the Thomas–Fermi–von Weizsäcker (TFW) model,
the kinetic energy term is more sophisticated:
CW

R
R3

jrp
�j2 dx replaces �

R
R3
�5=3. Finally, in

the Thomas–Fermi–Dirac–von Weizsäcker (TFDW)
model, both modifications are made at the same time.
These generalized TF models, which are based on
functionals which are not convex anymore, aim at a
better description of the physical phenomena present
in atoms and molecules, but the lack of convexity
creates new difficulties not present in the TF model.
Good references for these problems are [4, 17].

From the mathematical viewpoint, the above prob-
lems, even if they look easier than Hartree–Fock,
present also many difficulties, like the a priori lack
of compactness of minimization sequences, again be-
cause of the unboundedness of R3.

To end this section, let us present the Kohn–Sham
(KS) model, probably the one most used among the
density functional theory (DFT) models. This model
derives directly from the use of the Hohenberg–Kohn
theorem and it can be described as follows.
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EKS D inf

(
1

2

NX
i

Z
R3

jr'i j2 dx C
Z
R3
� V

C1

2

ZZ
R3�R3

�.x/ �.y/

jx � y� C EexŒ��

where the exchange term is made precise in the various
declinations of the KS model. For instance, in the so-
called local density approximation (LDA) models, the
exchange term is an integral of some function of the
density �, while in the more sophisticated generalized
gradient approximation (GGA) models, the exchange
term contains integrals where derivatives of the density
appear. A very good reference for these families of
models is [3].

More details about DFT and the various models that
can be used there can be found in the entries �Density
Functional Theory and �Thomas–Fermi Type Theo-
ries (and Their Relation to Exact Models).

Min-Max Problems for Atoms
and Molecules
As pointed out above, minimization is a natural pro-
cedure for dealing with the ground-state energy on
a atom or a molecule. Indeed, one is looking for
states which minimize the energy in a given class of
functions. But this is something that happens only in
the nonrelativistic case, where the underlying operator
is the Schrödinger one. In the relativistic case, the
Schrödinger operator has to be replaced by the Dirac
operator which an unbounded spectrum, both above
and below. In order to find bound states, and even
ground states, for relativistic models based on the
Dirac operator, minimization is not possible anymore,
because all the functionals built on the Dirac operator
are unbounded below. In this case, sophisticated min-
max methods have to be used to find bound states for
modeling atoms or molecules. A good reference for
this kind of models and their mathematical treatment is
[8]. In the literature one also finds the so-called pseudo-
relativistic models, involving an operator which in-
termediate between the Schrödinger and the Dirac
operator. This operator is nonlocal, but is bounded
from below, which allows to treat it with minimization
methods (see [5, 23]).

Other cases where min-max models are necessary
are those aiming at finding excited states for atoms
or molecules. A good example of these techniques is
contained in [26], where the existence of an infinity

of bound (excited) states for the Hartree–Fock mod-
els is proved. The same happens, for instance, when
dealing with nonrelativistic models like the multicon-
figuration Hartree–Fock model described in the en-
try �Post-Hartree-Fock Methods and Excited States
Modeling and other problems dealing with chemical
reactions (see, for instance, [18]).

Other Variational Problems
Very interesting variational problems arise also in mod-
els which go beyond the simple description of isolated
atoms or molecules, like for instance when modeling
crystals or when considering the action of magnetic
fields on matter or matter interacting with other kinds
of fields or media.

Cross-References

�Coupled-Cluster Methods
�Exact Wavefunctions Properties
�Mathematical Theory for Quantum Crystals
�Nuclear Modeling
�Relativistic Theories for Molecular Models
� Schrödinger Equation for Chemistry
�Thomas–Fermi Type Theories (and Their Relation to

Exact Models)
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molecules. J. Phys. B 18, 1045–1059 (1985)

5. Daubechies, I., Lieb, E.H.: Relativistic molecules with
Coulomb interaction. In: Knowles, I.W., Lewis, R.T. (eds.)
Differential Equations (Birmingham, Ala., 1983). North-
Holland Mathematical Studies, vol. 92, pp. 143–148. North-
Holland, Amsterdam (1984)

6. Epstein, S.T.: The Variation Method in Quantum Chemistry.
Academic, New York (1974)

7. Nesbet, R.K.: Variational Principles and Methods in Theo-
retical Physics and Chemistry. Cambridge University Press,
Cambridge (2004)

http://dx.doi.org/10.1007/978-3-540-70529-1_234
http://dx.doi.org/10.1007/978-3-540-70529-1_235
http://dx.doi.org/10.1007/978-3-540-70529-1_237
http://dx.doi.org/10.1007/978-3-540-70529-1_246
http://dx.doi.org/10.1007/978-3-540-70529-1_233
http://dx.doi.org/10.1007/978-3-540-70529-1_262
http://dx.doi.org/10.1007/978-3-540-70529-1_243
http://dx.doi.org/10.1007/978-3-540-70529-1_240
http://dx.doi.org/10.1007/978-3-540-70529-1_232
http://dx.doi.org/10.1007/978-3-540-70529-1_235


1530 Verification

8. Esteban, M.J., Lewin, M., Séré, E.: Variational methods in
relativistic quantum mechanics. Bull. Am. Math. Soc. 45,
535–593 (2008)

9. Fefferman, C.: TheN -body problem in quantum mechanics.
Commun. Pure Appl. Math. 39, S67–S109 (1986)

10. Fermi, E.: Un metodo statistico per la determinazione di
alcune proprieta del atomo. Rend. Accad. Nat. Lincei 6,
602–607 (1927)
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Weizsäcker model. Diff. Int. Eq. 6, 337–353 (1993)

18. Lewin, M.: A mountain pass for reacting molecules. Ann.
Henri Poincar 5(3), 477–521 (2004)

19. Lieb, E.H.: Thomas–Fermi and related theories of atoms and
molecules. Rev. Mod. Phys. 53, 603–642 (1981)

20. Lieb, E.H., Thirring, W.E.: Universal nature of van der
Waals forces for Coulomb systems. Phys. Rev. A 34, 40–46
(1986)

21. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms,
molecules and solids. Adv. Math. 23, 22–116 (1977)

22. Lieb, E.H., Simon, B.: The Hartree–Fock theory for
Coulomb systems. Commun. Math. Phys. 53(3), 185–194
(1977)

23. Lieb, E.H., Yau, H-T.: The stability and instability of rel-
ativistic matter. Commun. Math. Phys. 118(2), 177–213
(1988)

24. Lions, P.-L.: The concentration-compactness principle in the
calculus of variations. The locally compact case. II. Ann.
Inst. H. Poincar Anal. Non Linaire 1(4), 223–283 (1984)

25. Lions, P.-L.: The concentration-compactness principle in the
calculus of variations. The locally compact case. I. Ann.
Inst. H. Poincar Anal. Non Linaire 1(2), 109–145 (1984)

26. Lions, P.-L.: Solutions of Hartree-Fock equations for
Coulomb systems. Commun. Math. Phys. 109(1), 33–97
(1987)
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Synonyms

Calculation verification; Code verification; Numerical
uncertainty; Solution verification

Short Definition

Verification is the process of ensuring that numerical
simulation results are a sufficiently accurate represen-
tation of the exact solution to a mathematical model.

Introduction

Mathematical models are used in science and engi-
neering to describe the behavior of a system. In many
cases, these models take the form of partial differential
equations (PDEs) which require numerical solutions
(i.e., simulations) due to their complexity. Verifica-
tion and validation provide a means for assessing the
credibility and accuracy of mathematical models and
their subsequent simulations [1–3]. Verification deals
with assessing the numerical accuracy of a simulation
relative to the true result of the model. Validation,
on the other hand, is the assessment of the accuracy
of the model relative to experimental observations.
For models based on PDEs (which we will consider
exclusively in this entry), the verification process in-
volves a number of steps as shown in Fig. 1. Start-
ing with a PDE-based mathematical model, one must
first choose the discretization algorithm (e.g., finite
difference, finite volume, finite element). Next, this
algorithm must be implemented in the computational
mathematics software. Finally, the software is used,
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Verification, Fig. 1 Schematic of the simulation process showing code and solution verification activities

along with appropriate grids, time steps, iterative tol-
erances, etc., to produce a simulation prediction. The
first two steps in this process require that evidence be
gathered that there are no algorithm inconsistencies or
coding mistakes and is called code verification. The
last step involves the quantitative estimation of the
numerical errors that arise during the simulation pro-
cess and is termed solution verification. The end result
from the verification process is an estimated numerical
uncertainty in the simulation predictions that can be
used in assessing the overall prediction uncertainty.

Code Verification

Code verification ensures that the computational soft-
ware is an accurate representation of the underlying
PDEs. It is accomplished by employing appropriate
software engineering practices and by using code order
of accuracy verification to ensure that there are no
mistakes in the computer code or inconsistencies in
the discrete algorithm. While software engineering
is a vast subject unto itself, some aspects that are
particularly useful for computational mathematics soft-
ware include version control, static analysis, dynamic
testing, and regression testing (see Ref. [2] for more
details). Before proceeding with a discussion of code
verification, it is important to identify what simulation
output quantities should be evaluated. In general, one
should examine error norms in the solution-dependent
variables (typically L1, L2, and L1 norms) as well as
any global system response quantities (SRQs) that one
is interested in predicting. For example, the discreteL2

norm appropriate for a steady finite volume solution
can be computed as

ku � Quk2 D
"
1

�

NX
nD1

!n jun � Qunj2
#1=2

(1)

where un is the discrete solution in cell n, Qu is the exact
solution to the PDEs, and � is the total volume of the
domain.

Order of Accuracy Testing
There are various criteria that can be used during
code verification. However, the most rigorous code
verification criterion is the order of accuracy test,
where one assesses whether the numerical solutions
converge to the exact solution to the PDEs at the
expected rate (i.e., the formal order of accuracy) for
the discrete algorithm. The formal order of accuracy
of an algorithm is commonly found from a truncation
error analysis which addresses the convergence of the
discrete equations to the PDEs; however, there are
pitfalls with using this approach, especially on unstruc-
tured grids [2]. For consistent algorithms, the trun-
cation error will be proportional to the discretization
parameters (e.g., spatial element size �x, time step
size �t) to some exponents which usually correspond
to the formal order of accuracy of the discretization
scheme. For example, consider a simple Euler explicit
finite difference discretization of the 1D heat equation
with diffusivity ˛ on a uniform mesh with node spacing
�x. The leading truncation error terms at any node i
and time step n are

TEn
i D

"
1

2

@2T

@t2

ˇ̌
ˇ̌n
i

#
�t1

�
"
˛

12

@4T

@x4

ˇ̌
ˇ̌n
i

#
�x2 CO.�t2;�x4/ (2)
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which indicates that the discretization scheme is for-
mally first order accurate in time and second order
accurate in space.

The observed order of accuracy is the actual rate
at which the numerical solutions converge to the exact
solution to the PDEs with systematic refinement of the
mesh and/or time step. Consider a power series expan-
sion of some SRQ in terms of a generic discretization
parameter h about the exact solution to the PDEs Qf :

fh D Qf C gph
p CO.hpC1/: (3)

A similar expansion with a discretization parameter
that is r times larger (e.g., r D hcoarse=hfine is the grid
refinement factor) gives:

frh D Qf C gp .rh/
p CO.hpC1/: (4)

Combining these two expressions, neglecting the
higher-order terms, and solving for p yields an
expression for the observed order of accuracy Op:

Op D
ln

�
frh� Qf
fh� Qf

�

ln.r/
(5)

where frh and fh are the coarse and fine grid SRQs,
respectively. This expression for the observed order
of accuracy requires solutions on two mesh levels as
well as knowledge of the exact solution to the PDEs
Qf . The order of accuracy test examines the limiting

behavior of Op to ensure that it approaches the formal
order of accuracy with systematic mesh refinement
(see below). In addition to mistakes in the software
programming, the following conditions are required
to pass the order of accuracy test. First, the iterative
and round-off errors in the numerical solution must be
significantly less than the fine grid discretization error
(typically two orders of magnitude). Second, the mesh
and time step must be sufficiently small so that the
lowest-order terms in the truncation and discretization
error expansions dominate the higher-order terms (i.e.,
the numerical solutions must be in the asymptotic
convergence range). Third, the mesh and time step
must be systematically refined as discussed in the next
section.

Systematic Mesh Refinement
Systematic mesh refinement [2] requires that the mesh
be refined uniformly by a factor h in each coordinate
direction, e.g.,

h D �x

�xref
D �y

�yref
D �z

�zref
(6)

and that the mesh quality be constant or improve with
mesh refinement. Ensuring systematic mesh refinement
can be challenging, especially for unstructured meshes
which contain more than one type of mesh topology
(e.g., hexahedral, tetrahedral, and prismatic elements).
For structured grids, where grid transformations can be
used to transform the grid to a Cartesian computational
space, systematic refinement can be ensured by starting
with the fine grid and removing every other grid line,
resulting in a grid refinement factor of r D 2. The
drawback to this approach is that each level of refine-
ment requires a factor of 8 increase in cells/elements
for three-dimensional problems.

Exact Solutions
Rigorous code order of accuracy testing requires an
exact solution to the PDEs. Traditional methods of
obtaining exact solutions to PDEs (e.g., separation of
variables, series solutions, transformations) often fail
for PDEs involving complicated geometry, nonlinear-
ity, nonconstant coefficients, complicated sub-models,
and/or multi-physics coupling. When exact solutions
are found for complex equations, they often depend on
significant simplifications in dimensionality, geometry,
physics, etc.

An alternative to the traditional approach for ob-
taining exact solutions to PDEs is the method of
manufactured solutions (MMS). The concept behind
MMS is to take an original PDE and modify it by
appending an analytic source term so that it satisfies
a chosen (usually nonphysical) solution. Consider an
original PDE with dependent variable u written in
operator notation as L.u/ D 0. Next, choose an
analytic-manufactured solution Ou which has nontrivial
analytic derivatives. The PDE is then operated onto the
manufactured solution in order to obtain the analytic
source term: s D L.Ou/. The modified PDE is found
by appending this source term to the original PDE
L.u/ D s, which will be exactly solved by the chosen
manufactured solution Ou.
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Verification, Fig. 2
Manufactured solution for
temperature for the 2D steady
heat conduction problem
(Reproduced from Ref. [2])
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Manufactured solutions should be chosen to be
analytic functions with smooth derivatives, and it is
important to ensure that all of the derivatives appearing
in the PDE are nonzero. Trigonometric and exponential
functions are recommended since they are smooth and
infinitely differentiable. Although the manufactured
solutions do not need to be physically realistic when
used for code verification, they should be chosen to
obey the physical constraints that are embodied in the
code (e.g., positive temperatures, species concentra-
tions). Finally, care should be taken that one term in the
PDEs does not dominate the other terms. For example,
even if the applications of interest for a Navier-Stokes
code are high-Reynolds number flows, when perform-
ing code verification studies, the manufactured solution
should be chosen to give Reynolds numbers of order
unity so that convective and diffusive terms will be the
same order of magnitude.

As an example of order verification using MMS [2],
consider steady-state heat conduction with a constant
thermal diffusivity, which reduces to Poisson’s equa-
tion for the temperature T :

@2T

@x2
C @2T

@y2
D s.x; y/ (7)

where s.x; y/ is the manufactured solution source
term. The following manufactured solution is chosen

OT .x; y/ D T0 C Tx cos
�axx

L

�
C Ty sin

�ayy
L

�

CTxy sin
�axyxy

L2

�
(8)

where

T0 D 400 K; Tx D 45 K; Ty D 35 K;
Txy D 27:5 Kax D 1=3; ay D 1=4; axy D 1=2;

L D 5 m

and Dirichlet (fixed-value) boundary conditions are
applied on all four boundaries as determined by (8).
A family of stretched Cartesian meshes is created by
first generating the finest mesh (129 � 129 nodes) and
then successively eliminating every other gridline to
create the coarser meshes, thus ensuring systematic
refinement. The manufactured solution from (8) is
shown graphically in Fig. 2. Discrete L2 norms of
the discretization error (i.e., the difference between the
numerical solution and the manufactured solution) are
computed for grid levels from 129�129 nodes .h D 1/

to 9 � 9 nodes .h D 16/. The observed order of
accuracy of theseL2 norms is computed for successive
mesh levels, and the results are shown in Fig. 3. The
observed order of accuracy is shown to converge to the
formal order of two as the meshes are refined; thus,
the code is considered to be verified for the options
exercised.

Solution Verification

The main focus of solution verification is the estima-
tion of the numerical errors that occur when PDEs
are discretized and solved numerically. Numerical
errors can arise in computational mathematics due
to computer roundoff, iteration, and discretization.
Round-off errors occur due to the fact that only a
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Verification, Fig. 3 Observed order of accuracy for the 2D
steady heat conduction problem (Reproduced from Ref. [2])

finite number of significant figures can be used to store
floating point numbers in a digital computer. Roundoff
errors are usually small, but can be reduced if necessary
by increasing the number of significant figures used
in floating point computations (e.g., by changing
from single to double precision arithmetic). Iterative
convergence errors are present when discretization of
the PDEs results in a simultaneous set of algebraic
equations that are solved approximately or when
relaxation techniques are used to obtain a solution.
Discretization error arises due to the fact that the
spatial domain is decomposed into a finite number
of nodes/elements and, for unsteady problems, time
is advanced with a finite time step. Iterative and
discretization errors are discussed in detail below.

Iterative Error
In computational mathematics, the iterative error is the
difference between the current approximate solution to
the discretized equations and the exact solution to the
discretized equations. For a global SRQ f , we can thus
define the iterative error at iteration k as

"kh D f k
h � fh (9)

where h refers to the discrete solution on a mesh with
discretization parameters (�x, �y, �t , etc.) repre-
sented collectively by h, f k

h is the current iterative
solution, and fh is the exact solution to the discrete

equations (not to be confused with the exact solution
to the PDEs Qf /. We might instead be concerned with
the iterative error in the entire solution over the domain
(i.e., the dependent variables in the PDEs), in which
case the iterative error for each dependent variable u
should be measured as a norm over the domain.

For stationary iterative methods (e.g., Jacobi,
Gauss-Seidel, multigrid) applied to linear systems,
iterative convergence is governed by the eigenvalues
of the iteration matrix. For linear problems, when the
maximum eigenvalue of the iteration matrix is real,
the limiting iterative convergence behavior will be
monotone. When it is complex, however, the limiting
iterative convergence behavior will generally be
oscillatory. In these cases, convergence of the iterative
method requires that the spectral radius of the iteration
matrix be less than one [4]. For nonlinear problems, the
linearized system is often not solved to convergence,
but only solved for a few iterations (sometimes as few
as one) before the nonlinear terms are updated, and the
form of the convergence is often much more difficult
to characterize.

The discrete equations can be written in the form

Lh.uh/ D 0 (10)

where Lh is the linear or nonlinear discrete operator
and uh is the exact solution to the discrete equations.
The iterative residual is found by plugging the current
iterative solution ukC1

h into (10), i.e.,

<kC1
h D Lh.u

kC1
h / (11)

where <kC1
h ! 0 as ukC1

h ! uh. Although monitoring
the iterative residuals often serves as an adequate
indication as to whether iterative convergence of the
solution has been achieved, it does not by itself provide
any guidance as to the size of the iterative error in
the solution quantities of interest. Since the iterative
residual norms have been shown to follow closely
with actual iterative errors for many problems [2], a
small number of computations should be sufficient to
determine how the iterative errors in the SRQ scale
with the iterative residuals for the cases of interest.

An example of this procedure is given in Fig. 4 for
laminar viscous flow through a packed bed of spherical
particles [5]. The quantity of interest is the average
pressure gradient across the bed, and the desired it-
erative error level in the pressure gradient is 0.01 %.
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Verification, Fig. 4 Norms
of the iterative residuals (left
axis) and percentage error in
pressure gradient (right axis)
for laminar flow through a
packed bed (Reproduced from
Ref. [5])
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The iterative residuals in the conservation of mass
and conservation of momentum equations are first
converged to 10�7 (relative to their initial levels) then
the value of the pressure gradient at this point is
taken as an approximation to the exact solution to
the discrete equations Ofh. The iterative error for all
previous iterations is then approximated as "kh � f k

h �
Ofh. Figure 4 shows that for the desired iterative error

level in the pressure gradient of 0.01 %, the iterative
residual norms should be converged down to approxi-
mately 10�6. Simulations for similar problems can be
expected to require approximately the same level of
iterative residual convergence in order to achieve the
same iterative error tolerance in the pressure gradient.

Discretization Error
The discretization error is the difference between the
exact solution to the discretized equations and the
exact solution to the PDEs. It is difficult to estimate
for practical problems and is often the largest of the
numerical error sources. As shown in Fig. 5, meth-
ods for estimating discretization error can be broadly
categorized as either recovery methods or residual-
based estimators [2, 6]. Recovery methods involve
post-processing of the solution(s) and include Richard-
son extrapolation [1–3, 6], order extrapolation [2, 6],
and recovery methods from finite elements [7]. The
residual-based methods employ additional information

about the problem being solved and include discretiza-
tion error transport equations [2, 6], defect correction
methods [8], implicit/explicit residual methods in finite
elements [2, 7], and adjoint methods for estimating
the error in solution functionals (i.e., SRQs) [7]. Due
to space limitations, we will limit our discussion to
Richardson extrapolation.

Richardson extrapolation uses solutions on two or
more systematically refined meshes to estimate the
exact solution to the PDEs, which can in turn be
used to provide an error estimate for the numerical
solutions. Consider the two series expansions for the
numerical solution about the exact solution to the PDEs
given earlier by (3) and (4) for systematically refined
meshes with spacing h and rh, respectively. Assuming
for now that the solutions are in the asymptotic range
(i.e., that the observed order of accuracy matches the
formal order), these two equations can be solved for an
estimate of the exact solution to the PDEs by neglect-
ing the higher-order terms to obtain the Richardson
extrapolation estimate

f D fh C fh � frh

rp � 1 (12)

which is generally a .p C 1/-order accurate estimate
of the exact solution to the PDEs Qf . It can be used
to estimate the discretization error in the fine grid
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Verification, Fig. 5
Overview of discretization
error estimation approaches
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solution, i.e., N"h D fh � Qf , resulting in the error
estimate:

N"h D frh � fh
rp � 1

: (13)

Note that in addition to the assumption that both solu-
tions are in the asymptotic range, this error estimate
will be accurate only when iterative and round-off
errors are much smaller than the fine grid discretization
error.

Regardless of the approach used for estimating the
discretization error, the reliability of the discretiza-
tion error estimate depends on the solutions being in
the asymptotic mesh convergence range, which is ex-
tremely difficult to achieve for complex computational
mathematics applications. Verifying that the solutions
are in the asymptotic range can be done by comput-
ing the observed order of accuracy using numerical
solutions on three systematically refined meshes. For
systematic refinement by the factor r , one has hfine D
h; hmedium D rh, and hcoarse D r2h and the observed
order of accuracy can be found as [1]:

Op D
ln

�
f
r2h

�frh
frh�fh

�

ln.r/
: (14)

The case when the grid refinement factor between the
fine and medium meshes differs from that between
the medium and coarse meshes is addressed in [1].
Note that the observed order of accuracy will only
match the formal order when all three grid levels are
in the asymptotic range. A similar expression for the
observed order of accuracy can be derived in terms

of the error estimates found on two systematically
refined meshes (e.g., for use with residual-based error
estimators):

Op D
ln

� N"rhN"h
�

ln.r/
: (15)

Numerical Uncertainty

In some cases, when numerical errors can be estimated
with a high degree of confidence, they can be removed
from the numerical solution – a process similar to
that used for well-characterized bias errors in an ex-
periment. More often, however, the numerical errors
are estimated with significantly less certainty, and thus
they should be converted into numerical uncertainties,
with the uncertainty coming from the error estimation
process itself [2, 9]. One of the simplest methods for
converting an error estimate to an uncertainty is to use
the magnitude of the error estimate to apply uncertainty
bands about the simulation prediction, possibly with an
additional factor of safety included. For example, the
Richardson extrapolation estimate of discretization er-
ror N"h discussed above can be converted to a numerical
uncertainty UDiscretization as

UDiscretization D Fs j N"hj (16)

where Fs � 1 is the factor of safety. The resulting
interval for the numerical solution, accounting for nu-
merical uncertainties, can be approximated by applying
this uncertainty to the fine grid solution
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Verification, Fig. 6 Example
of converting a discretization
error estimate to a numerical
uncertainty (Reproduced from
Ref. [10])

fh ˙ UDiscretization D fh ˙ Fs j N"hj : (17)

These concepts are shown graphically in Fig. 6 with a
factor of safety of approximately Fs D 1:5. When the
error estimate is poor (i.e., when the true model solu-
tion Qf differs significantly from the estimated model
solution f , as suggested by the figure), this approach
is designed to still potentially provide conservative nu-
merical uncertainty estimates, depending of course on
the chosen factor of safety. It is recommended that this
uncertainty be centered about the numerical solution
fh rather than the estimated exact solution f since
the latter can lead to erroneous (and possibly phys-
ically non-realizable) values. When multiple sources
of numerical error are present, then a conservative
approach is to simply add the numerical uncertainties
together [2, 9], i.e.,

UNUM D URound Off C UIteration C UDiscretization: (18)

While numerical uncertainties are epistemic (i.e., due
to a lack of knowledge rather than inherent random-
ness), it is currently an open question as to whether
these uncertainties should be characterized probabilis-
tically or in some other fashion (e.g., as intervals)
[9, 10].
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Introduction

Computers are now extensively used throughout
science, engineering, and medicine. Advances in
computational geometric modeling, imaging, and
simulation allow researchers to build and test models
of increasing complexity and thus to generate unprece-
dented amounts of data. As noted in the NIH-NSF Vi-
sualization Research Challenges report, to effectively
understand and make use of the vast amounts of infor-
mation being produced is one of the greatest scientific
challenges of the twenty-first century [1]. Visualiza-
tion, namely, helping researchers explore measured or
simulated data to gain insight into structures and rela-
tionships within the data, will be critical in achieving
this goal and is fundamental to understanding models
of complex phenomena. In this brief chapter, I will
highlight visualization techniques for two common
scientific data types, scalar fields, and vector fields with
pointers to readily available visualization software.

Schroeder, Martin, and Lorensen have offered the
following useful definition of visualization [2]:

Scientific visualization is the formal name given to the
field in computer science that encompasses user interface,
data representation and processing algorithms, visual rep-
resentations, and other sensory presentation such as sound
or touch. The term data visualization is another phrase
to describe visualization. Data visualization is generally
interpreted to be more general than scientific visualiza-
tion, since it implies treatment of data sources beyond the
sciences and engineering. : : : Another recently emerging
term is information visualization. This field endeavors to
visualize abstract information such as hyper-text docu-
ments on the World Wide Web, directory/file structures
on a computer, or abstract data structures.

The field of visualization is focused on creating im-
ages that convey salient information about underlying
data and processes. In the past three decades, there
has been unprecedented growth in computational and
acquisition technologies, a growth that has resulted in
an increased ability both to sense the physical world
in precise detail and to model and simulate complex
physical phenomena. As such, visualization plays a
crucial role in our ability to comprehend such large and
complex data – data which, in two, three, or more di-
mensions, convey insight into such diverse applications

as understanding the bioelectric currents within the
heart, characterizing white matter tracts by diffusion
tensor imaging, and understanding flow features within
a fluid dynamic simulation, among many others.

Shown in Fig. 1, the “visualization pipeline” is
one method of describing the process of visualization.
The filtering step in the pipeline involves processing
raw data and includes operations such as resampling,
compression, and other image processing algorithms
such as feature-preserving noise suppression. In what
can be considered the core of the visualization process,
the mapping stage transforms the preprocessed filtered
data into geometric primitives along with additional
visual attributes, such as color or opacity, determining
the visual representation of the data. Rendering utilizes
computer graphics techniques to generate the final im-
age using the geometric primitives from the mapping
process.

While the range of different visualization appli-
cations is vast, the scientific visualization research
community has found it useful to characterize scien-
tific visualization techniques using a taxonomy asso-
ciated with the dimensionality of the physical field to
visualize:
• Scalar fields (temperature, voltage, density, magni-

tudes of vector fields, most image data)
• Vector fields (pressure, velocity, electric field, mag-

netic field)
• Tensor fields (diffusion, electrical and thermal con-

ductivity, stress, strain, diffusion tensor image data)
I use this taxonomy to discuss visualization techniques
in this entry.

Scalar Field Visualization

Scalar data is prevalent throughout science, engineer-
ing, and medicine. In scientific computing, scalar fields
represent a quantity associated with a single (scalar)
number, such as voltage, temperature, and the mag-
nitude of velocity. Scalar fields are among the most
common datasets in scientific visualization, and thus
they have received the most research attention (see [3]
for an overview of scalar field visualization research).

Visualization, Fig. 1 The visualization pipeline
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There are two main techniques for visualizing three-
dimensional scalar data: volume rendering and isosur-
face extraction.

Volume Rendering
Volume rendering is a method of displaying three-
dimensional volumetric scalar data as two-dimensional
images and is one of the simplest ways to visualize
volume data. The individual values in the dataset are
made visible by the choice of a transfer function that
maps the data to optical properties, like color and
opacity, which are then projected and composited to
form an image. As a tool for scientific visualization, the
appeal of direct volume rendering is that no intermedi-
ate geometric information need be calculated, so the
process maps from the dataset “directly” to an image.
This is in contrast to other rendering techniques such as
isosurfacing or segmentation, in which one must first
extract elements from the data before rendering them.
To create an effective visualization with direct volume
rendering, the researcher must find the right transfer
function to highlight regions and features of interest.

A common visualization goal in volume rendering
is the depiction of the interface between two different
materials in a volume dataset. The material surface
can usually be seen with a simple transfer function
that assigns opacity only to a narrow range of values

between the data values associated with each of the two
materials. In datasets characterized by noise or a more
complicated relationship among multiple materials,
statistical analysis of the dataset values can help to
guide the transfer function design process. Moreover,
in cases where datasets and associated volume render-
ing methods are more complex (such as volumetric
fields of vector or tensor values), methods for guiding
the user toward useful parameter settings, based on in-
formation about the goals of the visualization, become
necessary to generate informative scientific visualiza-
tions. Figure 2a shows a maximum intensity projection
(MIP) of a tooth from x-ray CT data. The maximum
intensity projection volume rendering method is the
most simple form of volume rendering.

The MIP algorithm works by projecting parallel
rays (ray casting) through the volume from the
viewpoint of the user. For each ray, the algorithm
selects the maximum scalar value and uses that value
to determine the color of the corresponding pixel on
the two-dimensional image plane. Volume rendering
using MIP yields what looks like “three-dimensional
x-rays” in gray scales of the scalar volume data. Full
volume rendering, on the other hand, traverses the
rays and accumulates (integrates) color and opacity
contributions along the ray. Volume rendering using
full volume rendering techniques yields an image

Visualization, Fig. 2
(a) Maximum intensity
projection (MIP) volume
rendering of a tooth from CT
data and (b) a full volume
rendering of the same data
using multidimensional
transfer functions with
ImageVis3D
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that looks much more like what you might expect a
three-dimensional volume projection to look like in
color. The differences are evident as shown below
in Fig. 2b.

Finding a good transfer function is critical to
producing an informative rendering, but this can be a
difficult task even if the only variable to set is opacity.
Recently, multidimensional transfer functions were
created to allow for more specificity in exploring and
visualizing the data [4]. Multidimensional transfer
functions are sensitive to more than one aspect of the
volume data, for example, both the intensity and one or
more spatial gradients or other derived parameters.
Such transfer functions have wide applicability
in volume rendering for biomedical imaging and
scientific visualization of complex three-dimensional
scalar fields (Fig. 3). For more on volume rendering,
see [4–9].

Isosurface Extraction
Isosurface extraction is a powerful tool for investi-
gating volumetric scalar fields. An isosurface in a
scalar volume is a surface on which the data value
is constant, separating regions of higher and lower
value. Given the physical or biological significance of
the scalar data value, the position of an isosurface, as

well as its relation to other neighboring isosurfaces,
can provide clues to the underlying structure of the
scalar field. In imaging applications, isosurfaces permit
the extraction of particular anatomical structures and
tissues; however, these isosurfaces are typically static
in nature. A more dynamic use of isosurfaces can
provide better visualization of complex space- or time-
dependent behaviors in many scientific applications.

Within the last 15 years, isosurface extraction
methods have advanced significantly from an off-
line, single-surface extraction process into an
interactive, exploratory visualization tool. Interactivity
is especially important in exploratory visualization
where the user has no a priori knowledge of any
underlying structures in the data. A typical data
exploration session therefore requires the researcher
to make many isovalue changes in search of interesting
features. In addition, it is helpful to provide global
views (to place an isosurface in the context of the
entire dataset) and detailed views of small sections of
interest. Maintaining interactivity while meeting these
visualization goals is especially challenging for large
datasets and complex isosurface geometry.

The marching cubes [10, 11] method, introduced
in 1986, was the first practical and most successful
isosurface extraction algorithm. Its simplicity has made

Visualization, Fig. 3 A volume-rendered image using multidimensional transfer functions. This view highlights the detailed
vasculature of the lungs (Data courtesy of George Chen, MGH)
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Visualization, Fig. 4
Isosurface extraction of the
full CT data
(512 � 512� 1;734, 1 mm
spacing) of the NIH NLM
Visible Female. Left: a section
of the skeleton extracted by
the PISA algorithm [17].
Right: a close-up view of the
extracted points. Point
shading is determined by an
image-based normal
computation technique that
ensures high-quality results

it the de facto standard extraction method even to this
date. The marching cubes algorithm demonstrated that
isosurface extraction can be reduced, using a divide
and conquer approach, to solving a local triangulation
problem. In addition, the marching cubes method pro-
posed a simple and efficient local triangulation scheme
that uses a lookup table. Subsequently, researchers
created methods for accelerating the search phase for
isosurface extraction [12, 13] all of which have a com-
plexity ofO.n/, where n is the number of voxels in the
volume. We introduced the span space [14] as a means
for mapping the search onto a two-dimensional space
and then used it to create a near optimal isosurface ex-
traction (NOISE) algorithm that has a time complexity
of O.

p
n C k/, where k is the size of the isosurface.

Cignoni et al. [15] employed another decomposition
of the span space leading to a search method with
optimal time complexity of O.logn C k/, albeit with
larger storage requirements. In addition, Bajaj et al.
introduced the contour spectrum, which provides a fast
isosurface algorithm and a user interface component
that improves qualitative user interaction and provides
real-time exact quantification in the visualization of
isocontours [16].

We improved further on these isosurface extraction
methods by using a different visibility testing approach
and virtual buffer rendering to achieve a real-time,
view-dependent isosurface extraction [17]. We also
presented a progressive hardware-assisted isosurface
extraction (PHASE) that is suitable for remote visual-
ization, i.e., when the data and display device reside on
separate computers. This approach works by reusing,
when a view point is changed, the information and
triangles that were extracted from the previous view

point. Using this approach, we can extract only newly
visible sections of the isosurface and thus improve
visualization performance.

Following the same view-dependent approach, we
have recently proposed a novel point-based approach
to isosurface extraction [17]. The basic idea of our
method is to address the challenge posed by the geo-
metric complexity of very large isosurfaces by a point-
based representation of sub-pixel triangles. Combined
with a new fast visibility query and a robust normal es-
timation scheme, our method allows for the interactive
interrogation of large datasets on a single desktop
computer (Fig. 4).

Vector Field Visualization

Vector fields are a fundamental quantity that describe
the underlying continuous flow structures of phys-
ical processes. Examples of important vector fields
include electric fields, magnetic fields, the velocities
and pressures of fluids, and the forces associated with
mechanics. Vector-valued quantities also appear in the
form of derivatives of scalar fields.

Visualizing vector field data is challenging because
no existing natural representation can visually convey
large amounts of three-dimensional directional infor-
mation. Visualization methods for three-dimensional
vector fields must balance the conflicting goals of dis-
playing large amounts of directional information while
maintaining an informative and uncluttered display.

The methods used to visualize vector field datasets
take their inspiration in real-world experiments where
a wealth of physical flow visualization techniques have
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been designed to gain insight into complex natural flow
phenomena. To this end external materials such as dye,
hydrogen bubbles, or heat energy can be injected into
the flow. As these external materials are carried through
the flow, an observer can track them visually and thus
infer the underlying flow structure.

Analogues to these experimental techniques have
been adopted by scientific visualization researchers,
particularly in the computational fluid dynamics (CFD)
field. CFD practitioners have used numerical methods
and three-dimensional computer graphics techniques to
produce graphical icons such as arrows, motion parti-
cles, and other representations that highlight different
aspects of the flow.

Among existing flow visualization methods, the
techniques relevant to the visual analysis of vector
fields can be categorized as follows:
1. The simplest techniques correspond to an intuitive,

straightforward mapping of the discrete vector in-
formation to so-called glyphs. Glyphs are graphical
primitives that range from mere arrows to fairly
complex graphical icons that display directional
information, magnitude, as well as additional de-
rived quantities such as the curl and divergence
altogether.

2. The second category corresponds to the set of tech-
niques that are based on the integration of stream-
lines. Streamlines are fast to compute and offer an
intuitive illustration of the local flow behavior.

3. Stream surfaces constitute a significant improve-
ment over individual streamlines for the exploration
of three-dimensional flows since they provide a
better understanding of depth and spatial relation-
ships. Conceptually they correspond to the surface
spanned by an arbitrary starting curve advected
along the flow.

4. Textures and other dense representations offer a
complete picture of the flow, thus avoiding the
shortcomings of discrete samples. Their major ap-
plication is the visualization of flows defined over a
plane or a curved surface.

5. The last type of flow visualization techniques is
based on the notion of flow topology. Topology
offers an abstract representation of the flow and its
global structure. Sinks and sources are the basic
ingredients of a segmentation of the volume into
regions connecting the same spots along the flow.
Next, we describe a few of these vector field visual-

ization techniques.

Streamline-Based Techniques
Streamlines offer a natural way to interrogate a vector
dataset. Given a starting position selected by the user,
numerical integration over the continuous represen-
tation of the vector field yields a curve that can be
readily visualized. The numerical schemes commonly
used for the integration range from the first-order Euler
scheme with fixed step size to Runge-Kutta methods
with higher-order precision and adaptive step size. The
choice of the appropriate method requires to take into
account the complexity of the structures at play and the
smoothness of the flow.

Since streamlines are unable to fill the space without
visual clutter, the task of selecting an appropriate set of
starting points (commonly called seed points) is critical
to obtaining an effective visualization. A variety of
solutions have been proposed over the years to address
this problem. A simple interactive solution consists
in letting the user place a probe in the data volume
over which seed points are evenly distributed. The
orientation and spatial extent of the rack, as well as the
number of seed points, can be adjusted to allow for the
selective exploration of a particular region of interest,
as shown in Fig. 5.

An additional limitation of flow visualizations based
upon streamline techniques concerns the difficult inter-
pretation of the depth and relative position of curves in

Visualization, Fig. 5 Applications of streamlines to a finite
element simulation of the bioelectric field in the torso visualized
through streamlines seeded randomly around the epicardium
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Visualization, Fig. 6 An extension of streamline-based flow
visualization. The image shows a combination of streamlines and
3D textures in the visualization of a tornado dataset. Textures
permit to embed additional information and ease the interpreta-
tion of the spatial context (From [19])

a three-dimensional space. A solution consists in cre-
ating artificial lighting effects that emphasize curvature
and assist the user in his/her perception of depth [18].
An alternative method that can be implemented on
the graphics hardware assigns a nonzero volume to
individual streamlines. These streamlines are then de-
picted as tubes and filled with 3D textures to create
expressive images in which various visual cues are
used to enhance perception [19]. Refer to Fig. 6.

Stream Surfaces
The intuitive representations offered by stream
surfaces make them a very valuable tool in the
exploration of three-dimensional flows. The standard
method for stream surface integration is Hultquist’s
advancing front algorithm [20]. The basic idea is to
propagate a polygonal front along the flow, while
accounting for possible divergence and convergence
by adapting the front resolution. Yet, this method
yields triangulated surfaces of poor quality when
the flow exhibits complex structures. We recently
proposed a modified stream surface algorithm that
improves on Hultquist’s original scheme by allowing

for an accurate control of the front curvature [21].
This method creates smooth, high-quality surfaces,
even for very intricate flow patterns. For example,
as shown in Fig. 7, stream surfaces were used to
visualize the electric current computed by a high-
resolution finite element simulation using a realistic
head model. In this case stream surfaces proved
instrumental in assessing the impact of various models
of the white matter anisotropy on the current pattern
and its interconnection with anatomical structures.

Texture Representations
Texture-based flow visualization methods provide a
unique means to address the limitations of depictions
based on a limited set of streamlines. They yield an
effective, dense representation which conveys essential
patterns of the vector field and does not require the
tedious seeding of individual streamlines to capture
all the structure of interest [22]. Arguably the most
prominent of those methods is Line Integral Convolu-
tion (LIC) proposed by Cabral and Leedom [23]. The
basic idea is to apply a one-dimensional low-pass filter
to a white noise texture covering the two-dimensional
flow domain. The filter kernel at each pixel is aligned
with streamlines of the underlying flow. Consequently
the resulting image exhibits a high correlation of the
color values along the flow and little or no correlation
across the flow. Hence this method produces a dense
set of streamline-type patterns that fill the domain and
reveal all the flow structures that are large enough to
be captured by the fixed resolution of the texture. This
seminal work has inspired a number of other methods.
In particular, improvements were proposed to per-
mit the texture-based visualization of time-dependent
flows [24], flows defined over arbitrary surfaces [25],
and dye advection. Some attempts were made to extend
this visual metaphor to three-dimensional flows [26].

Topology
The topological approach provides a powerful frame-
work for flow visualization in a broad range of appli-
cations [27]. For planar vector fields, as well as vector
fields defined over curved surfaces, it has established
itself as a method of reference to characterize and
visualize flow structures. The excessive complexity
of the topology of intricate flows can be addressed
by simplifying the resulting graphs while preserving
essential properties in order to facilitate the analysis of
large-scale flow patterns. Refer to Fig. 8.
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Visualization, Fig. 7 Stream surface visualization of bioelec-
tric field induced by a dipolar source in left thalamus. Left
top. Stream surfaces seeded along isocontour of electric flux
on sphere enclosing the source. Culling is used to address oc-
clusion. White matter has anisotropic conductivity. Left bottom.
Stream surface started along circle contained in coronal slice

and centered around source location. White matter is assumed
isotropic. Color coding corresponds to magnitude of electric
field. Right. Similar image obtained for anisotropic white matter.
Glyphs visualize major eigenvector of conductivity tensor. Color
coding shows magnitude of return current

Visualization, Fig. 8 Topology simplification. The left image
shows the original topology obtained for a CFD simulation of
a streaming jet with inflow into a steady medium. Numerous

small-scale structures lead to a cluttered depiction. The right
image shows the same dataset after topology simplification

Visualization Software

There are a variety of commercially available and
research-based general visualization systems that may
be useful for scientific visualization (see [3] for an
overview of visualization systems). While certainly not
an exhaustive list, examples of these systems are:

Amira: Amira is a professional image segmentation,
reconstruction, and 3D model generation appli-
cation produced by Mercury Computer Systems

GmbH (www.amiravis.com). It is used by research
and development groups in chemistry, biology,
medicine, material science, etc. Amira is designed
to handle confocal microscopy, MRI, or CT data.
It uses the Tcl language as a command interface
for scripting and is built on top of the OpenGL and
Open Inventor toolkits. Modules can be developed
to extend the Amira system and can use paralleliza-
tion techniques if the developer so desires.

ImageVis3D: ImageVis3D (www.imagevis3D.org)
is an open-source, cross-platform volume

http://www.amiravis.com
http://www.imagevis3D.org
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visualization program that scales to very large
data on modest hardware. The main design goals
of ImageVis3D are simplicity, scalability, and
interactivity. Simplicity is achieved with a new user
interface that gives an increased level of flexibility.
Scalability and interactivity for ImageVis3D mean
that the user can interactively explore very large
(gigabyte and terabyte) sized datasets on either a
notebook computer or a high-end graphics work-
station. The open-source nature of ImageVis3D, as
well as the strict component-by-component design,
allows developers not only to extend ImageVis3D
itself but also to reuse parts of it, such as the volume
rendering core for other visualization applications.

ParaView: ParaView (www.paraview.org) is an
open-source, multi-platform data analysis and
visualization application. ParaView users can
quickly build visualizations to analyze their data
using qualitative and quantitative techniques. The
data exploration can be done interactively in
3D or programmatically using ParaView’s batch
processing capabilities. ParaView was developed to
analyze extremely large datasets using distributed
memory computing resources. It can be run on
supercomputers to analyze datasets of terascale as
well as on laptops for smaller data.

SCIRun: SCIRun is an open-source scientific
computing problem-solving environment created
by the Scientific Computing and Imaging (SCI)
Institute (www.sci.utah.edu) [28]. SCIRun provides
software modules for scalar, vector, and some tensor
field visualization. In addition, SCIRun has modules
for geometric modeling and simulation.

VisIt: VisIt (wci.llnl.gov/codes/visit) is a free
interactive parallel visualization and graphical
analysis tool for viewing scientific data on Unix
and PC platforms. Users can quickly generate
visualizations from their data, animate them through
time, manipulate them, and save the resulting
images for presentations. VisIt contains a rich
set of visualization features so that you can view
your data in a variety of ways. It can be used to
visualize scalar and vector fields defined on two-
and three-dimensional (2D and 3D) structured and
unstructured meshes. VisIt was designed to handle
very large dataset sizes in the terascale range and yet
can also handle small datasets in the kilobyte range.

VTK: VTK, the Visualization Toolkit (www.
kitware.com), is an open-source visualization

package that is widely used in both classroom
settings and research labs. It provides general
visualization capabilities for scalars, vectors,
tensors, textures, and volumetric data. Written in
CCC, VTK includes Tcl, Python, and Java bindings
for application development and prototyping. VTK
contains some built-in parallelization pieces for
both threading and MPI. Both ParaView and VisIt
are built upon the VTK libraries.
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Voronoi Tessellation

Yasushi Ito
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32B25

Synonyms

Dirichlet tessellation; Voronoi diagram

Short Definition

For a set P of points in the n-dimensional Euclidean
space, the Voronoi tessellation is the partition V (P) of
the space such that each point in P has a region which
is closer to that point than to any other points in P. The
region is called as a Voronoi cell, Dirichlet region, or
Thiessen polytope. V (P) is the dual of the Delaunay
triangulation of P.

Voronoi Tessellation, Fig. 1 Voronoi tessellation (Voronoi
boundaries shown as black lines) and Delaunay triangulation
(gray Delaunay triangles) for black points in 2D

http://www.scirun.org
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Description

The Voronoi tessellation was introduced by Dirichlet
[1], Voronoi [2], and Thiessen [3] for subdividing
a given space into convex n-polytopes (e.g., poly-
gons in two dimensions (2D) and polyhedra in three
dimensions (3D)). If all point pairs in the Voronoi
tessellation that share a common Voronoi boundary are
joined, the result is a triangulation of the convex hull
of the set of the points. Figure 1 shows an example
in 2D. This triangulation is known as the Delaunay
triangulation, which is more widely used for mesh
generation purposes.
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Synonyms

Dynamic iteration

Short Description

Waveform relaxation methods are iterative methods
to solve time-dependent problems. They start with an
initial guess of the solution over the entire time interval
of interest and produce iteratively better and better
approximations to the solution over the entire time
interval at once.

Description

Classical Waveform Relaxation Methods
Waveform relaxation algorithms were invented for
circuit simulation [9]. The idea is to partition large-
scale circuits into subcircuits, as shown for the

historical MOS-ring oscillator from [9] in Fig. 1. Using
Kirchhoff’s and Ohm’s laws, one obtains a system of
ordinary differential equations (ODEs) of the form

dv1

dt
D f1.v1; v2; v3/;

dv2

dt
D f2.v1; v2; v3/;

dv3

dt
D f3.v1; v2; v3/; (1)

for the unknown voltages v1, v2, v3. When the cir-
cuit is partitioned into subcircuits, coupling terms are
replaced by artificial sources, providing signals from
the previous iteration, as shown in Fig. 1 on the
right. This relaxation of signals, called waveforms in
the community, led to the name waveform relaxation.
Mathematically, this relaxation corresponds for given
initial waveforms v0

1.t/, v0
2.t/, v0

3.t/ to the iteration

dvk
1

dt
Df1.vk

1 ; vk�1
2 ; vk�1

3 /;
dvk

2

dt
D f2.vk

1 ; vk
2 ; vk�1

3 /;

dvk
3

dt
Df3.vk

1 ; vk
2 ; vk

3 /; k D 1; 2; : : : ; (2)

which is like a Gauss-Seidel method for linear systems
and is thus called Gauss-Seidel waveform relaxation.
Naturally also a more parallel Jacobi waveform relax-
ation can be used.

Waveform relaxation methods are very much related
to the classical method of successive approximations
by Picard in 1890 [16], where all arguments on the
right in (2) would be taken at iteration index k � 1, and
they have similar convergence properties: convergence
is superlinear, i.e.,
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Waveform Relaxation, Fig. 1 Historical example of a waveform relaxation decomposition

jjvk � vjj � .C T /k

kŠ
jjv0 � vjj; v WD .v1; v2; v3/;

vk WD .vk
1 ; vk

2 ; vk
3 /; k D 0; 1; : : : ; (3)

where .0; T / is the time interval of simulation and
C is a constant related to the Lipschitz constant of
f WD .f1; f2; f3/. This result was shown for the Picard
iteration by Lindelöf in 1894 [10] and for waveform
relaxation by Miekkala and Nevanlinna [12]; see also
[14, 15] and the review paper [13]. From (3), we see
that convergence is very fast for T small, and hence
it is good to partition long time intervals into shorter
so-called time windows to apply the algorithm on each
time window separately.

Schwarz Waveform Relaxation
Waveform relaxation can be applied to evolution partial
differential equations (PDEs) after discretization in
space. It is however more interesting to decompose
directly the domain, like the circuit, by domain de-
composition, as proposed in the PhD thesis of Morten
Bjørhus for hyperbolic systems and by Gander and
Stuart for parabolic problems [4]. Classical Schwarz
waveform relaxation for the heat equation,

x1

x2

t

0

T

Ωj Γij Ωi

Waveform Relaxation, Fig. 2 Space-time domain
decomposition for Schwarz waveform relaxation, where
e˝i are the non-overlapping subdomains from which the
overlapping decomposition ˝i is constructed by enlarging each
e˝i by a layer of width ı

2
, leading to the overlapping space-time

subdomains ˝i � .0; T /

@u

@t
D ��u 2 ˝ � R

2; (4)

is based on an overlapping decomposition of ˝ into
subdomains ˝i as shown in Fig. 2, and given by the
iteration
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W

@uk
i

@t
D ��uk

i C f in ˝i � .0; T /;

uk
i .�; �; 0/ D u0 in ˝i ;

uk
i D uk�1

j on �ij � .0; T /:

(5)

The global iterate can then, for example, be defined by
uk WD uk

i in e˝i � Œ0; T �, or using a partition of unity
for more smoothness. Schwarz waveform relaxation
algorithms also converge superlinearly for diffusive
problems [5, 6], like the heat equation, with an error
estimate of the form

jjuk � ujj � C kerfc

�

kı

2
p

�T

�

jju0 � ujj;

where ı represents the overlap. However, they con-
verge asymptotically faster than classical waveform

relaxation algorithms, since C kerfc
�

kıp
�T

�

� e�k2
,

whereas for classical waveform relaxation, we have
.C T /k

kŠ
� e�k ln k. One can furthermore show that

Schwarz waveform relaxation algorithms applied to
diffusive problems still converge linearly over long
time intervals (see [4]), a result that also holds for
classical waveform relaxation applied to dissipative
systems of ODEs. For the wave equation, and more
generally for hyperbolic systems, where the speed
of propagation is finite, one can show that Schwarz
waveform relaxation algorithms converge in a finite
number of steps; see, for example, [2].

One can obtain much faster Schwarz waveform
relaxation algorithms, if one replaces the transmission
conditions in (5) by

Bij .uk
i / D Bij .uk�1

j / on �ij � .0; T /; (6)

where the transmission operators Bij are chosen to
improve information transfer between subdomains. For
Robin transmission conditions, Bij WD @nij C p with
@nij denoting the normal derivative, the parameter p

was optimized for advection reaction diffusion equa-
tion in [3], and higher-order transmission operators
were optimized in [1], for the wave equation; see [2].
For fixed overlap, these optimized Schwarz waveform
relaxation algorithms converge very rapidly, indepen-
dently of the mesh parameters, and over short time
intervals also independently of the number of sub-
domains, there is no need for a coarse grid. Opti-
mized waveform relaxation algorithms have also been

developed for circuits, where better information trans-
fer was obtained by exchanging combinations of volt-
age and current values.

Since optimized Schwarz waveform relaxation
methods converge even without overlap, they are
also an excellent modeling tool to couple different
physics or different mathematical models directly in
space-time, like in fluid-structure interaction or in
ocean-atmosphere coupling.

Multigrid Waveform Relaxation
In the case of linear systems of equations, one can
accelerate the basic Jacobi or Gauss-Seidel iterations
by using them only as a smoother on coarser and
coarser grids to obtain a multigrid method. Lubich and
Ostermann [11] proposed in the same spirit to use the
Jacobi or Gauss-Seidel waveform relaxation algorithm
as a smoother on coarser and coarser spatial grids in
the space-time waveform relaxation iteration. Note that
there is no coarsening in time in this multigrid wave-
form relaxation algorithm, time is kept continuous. The
algorithm has convergence properties like multigrid
applied to stationary problems and is also more robust
than the parabolic multigrid method proposed earlier
by Hackbusch in [7], where one applies the smoother
for the stationary problem on several time levels in
parallel. A complete space-time multigrid method was
proposed by Horton and Vandewalle in [8]: this method
considers the entire space-time grid and the problem
posed thereon and performs a multigrid iteration by
both coarsening in space and time. The authors show
that care must be taken in choosing the coarsening
strategy, as well as the prolongation and restriction op-
erations, in order to obtain a good space-time multigrid
method.
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X-Ray Transmission Tomography
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Synonyms

Computed tomography; Computer-assisted tomog-
raphy; Computerized axial tomography; x-ray
tomography

Definition

Transmission x-ray tomography is a method to image
the internal structure of an opaque body or object by
combining measurements of the intensity attenuation
of many x-ray beams that have passed through the
object.

Overview

The possibility of x-ray CT was first foreseen by Allan
M. Cormack [1, 2]. The first practical implementation
was done by Godfrey M. Hounsfield. Both Cormack
and Hounsfield shared the 1979 Nobel Prize in Physi-
ology or Medicine for their discovery. See http://www.
nobelprize.org/nobel prizes/medicine/1979

The detected intensity ID of an x-ray beam after
passing through the object is related to the original
intensity I0 by

ID D I0e
� R

L f .x/dx

where L denotes the line of the ray and f is the lin-
ear attenuation coefficient. Therefore, the line integralR

L
f .x/dx can be determined from the measurement

of the transmitted intensity. The goal of x-ray tomogra-
phy is to reconstruct the linear attenuation coefficient
f .x/ from such measurements. Mathematically this
amounts to recovering a function from its line integrals.
This mathematical problem was first solved by Johann
Radon [12]. This entry surveys exact reconstruction
formulas in two and three dimensions.

Notation andMathematical Tools

In this entry, Rn will denote Euclidean n-space: the
set of n-tuples .x1; : : : ; xn/ of real numbers, with inner
product x � y D Pn

kD1 xkyk; and length jxj D p
x � x:

The unit sphere, Sn�1, is the set of elements of length
equal to 1. When the dimension n D 2, we often
parameterize � 2 S1 by � D .cos '; sin '/ for ' 2
Œ0; 2�� and write integrals over the unit circle either asR

S1 f .�/ d� or
R 2�

0
f .�/ d': The convolution of two

functions is defined by

f � g.x/ D
Z

Rn

f .x � y/g.y/ dy: (1)

The Fourier transform of an integrable function is
defined by

Of .�/ D .2�/�n=2

Z

Rn

f .x/e�ix�� dx; (2)
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and is extended to larger classes of functions or dis-
tributions by continuity or duality. The inverse Fourier
transform is defined by

Lg.x/ D .2�/�n=2

Z

Rn

g.�/eix�� d�: (3)

The basic object of x-ray tomography is the line in-
tegral transform. It is given in several forms, depending
on the geometry of data collection. The set of lines in
Rn can be parameterized in parallel families, using as
parameters a direction and a point in the hyperplane or-
thogonal to the given direction. This is called parallel-
beam geometry. If � 2 Sn�1 is direction, denote ‚?
the hyperplane through the origin orthogonal to �:

If f is a function which is integrable over (almost)
every line, the parallel-beam x-ray transform of f is
defined by

P� f .x/ D Pf .�; x/

D
Z 1

�1
f .x C t�/ dt � 2 Sn�1; x 2 ‚?:

(4)

To emphasize that a line passes through a given point
x in space, one can introduce a new notation L by

Lf .x; �/ D
Z

f .x C t�/ dt: (5)

Each line now corresponds to many parameter pairs.
The divergent beam transform of f with source point
a and direction � is defined by

Daf .�/ D Df .a; �/ D
Z 1

0

f .a C t�/ dt: (6)

It corresponds to placing an x-ray source at the point a

and measuring attenuation along rays emanating from
a. In the engineering community, the divergent beam
transform is known as the fan-beam transform (n D 2)
or cone-beam transform (n D 3). Finally, there is
the Radon transform, which integrates functions over
hyperplanes. Hyperplanes are parameterized (doubly)
by normal vector and signed distance to the origin:
.�; p/ corresponds to the hyperplane H.�;p/ D fx 2
Rnjx � � D pg: The Radon transform of a function
integrable over (almost) every hyperplane is

R� f .p/ D Rf .�; p/ D
Z

H�;p

f .x/dxH : (7)

The symmetry

Rf .�; p/ D Rf .��; �p/ (8)

is clear from the definition.
Several operators defined by (singular) convolu-

tions or by multiplication of the Fourier transform are
important to reconstruction formulas for the integral
transforms of tomography. The Hilbert transform acts
on functions of one real variable,

Hf .s/ D 1

�

Z
f .t/

s � t
dt; (9)

where the singular integral is interpreted as the Cauchy
principal value. Its representation as a Fourier multi-
plier is

bHf .�/ D �i sgn.�/ Of .�/; (10)

with sgn.u/ equal to 1 for u > 0 and �1 for u < 0: The
ƒ operator of Calderón is defined in all dimensions as
a Fourier multiplier operator by

bƒf .�/ D j�j Of .�/: (11)

In 1D, ƒ is the composition of the Hilbert transform
with the derivative operator. In higher dimensions it is
the sum of partial derivatives composed with the Riesz
transforms. The Hilbert transform and ƒ operators are
nonlocal: to compute the value of the transform at a
point requires knowledge of the function throughout its
domain.

2D Reconstruction

Throughout this section it is assumed that f vanishes
outside the unit disk.

Parallel-Beam Geometry
In 2D both the parallel-beam x-ray transform and the
Radon transform correspond to integrals over parallel
families of lines. For given � D .cos '; sin '/ 2
S1, let �? denote the perpendicular vector �? D
.� sin '; cos '/. The x-ray and Radon transforms then
are related by Pf .�; p�?/ D Rf .�?; p/. Since any
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y 2 ‚? can be written as y D p�? for some p 2 R,
one can write Pf .�; p/ for Pf .�; p�?/.

The first inversion formula was given by Johann
Radon [12]. Radon first defined the auxiliary function
F x.q/ as the average of the integrals of f over the lines
tangent to the circle with center x 2 R2 and radius q:

F x.q/ D 1

2�

Z 2�

0

Rf .�; x � � C q/ d'

D 1

2�

Z 2�

0

Pf .�; x � �? C q/ d'; x 2 R2; q � 0:

He then stated conditions on f that assure validity of
the following inversion formula:

f .x/ D � 1

�

Z 1

0

dF x.q/

q

D 1

�
lim
�!0

 
F x.�/

�
�
Z 1

�

F x.q/

q2
dq

!

: (12)

Cormack [1], unaware of Radon’s work, proceeded
quite differently, relating Fourier coefficients of f and
Rf . Let

fn.r/ D 1

2�

Z 2�

0

f .r�/ e�in' d';

gn.p/ D 1

2�

Z 2�

0

Rf .�; p/ e�in' d':

Cormack obtained the relation

fn.r/ D � 1

�

d

dr

Z 1

r

rgn.p/Tn.p=r/

.p2 � r2/1=2p
dp (13)

and showed that this determines fn uniquely. The Tn

denote the Chebyshev polynomials of the first kind.
Cormack’s inversion formula has the very interesting
feature that reconstruction of f at the point x D r�

only requires integrals over lines with distance from the
origin at least r D jxj. However, this has the downside
of inherent instability; see, e.g., Natterer [9].

Hounsfield, unaware of both Radon’s and
Cormack’s work, found and successfully implemented
a third approach to reconstruction by first discretizing
f and then solving the resulting large but sparse
linear system of equations. For more information on

such “algebraic reconstruction techniques,” see, e.g.,
Herman [6].

The most popular reconstruction method is based
on an inversion formula obtained from the following
fundamental relationship, called the Fourier slice theo-
rem, which follows directly from the definition of the
transforms.

Theorem 1 Let f 2 L1.Rn/. Then

bP� f .�/ D .2�/
1�n

2

Z

‚?

P� f .y/ e�ihy;�i dy

D p
2� Of .�/; � 2 ‚?

1R� f .�/ D .2�/�1=2

Z 1

�1
R� f .p/e�ip� dp

D .2�/
n�1

2 Of .��/; � 2 R

An inversion formula now follows directly from tak-
ing an inverse Fourier transform in polar coordinates.

f .x/ D .2�/�1

Z

R2

Of .�/ eix�� d�

D .2�/�1

Z 2�

0

Z 1

0

� Of .��/ei�x�� d�d'

D 1

2
.2�/�1

Z 2�

0

Z 1

�1
j� j Of .��/ei�x�� d�d'

(14)

D 1

2
.2�/�3=2

Z 2�

0

Z 1

�1
j� j1R� f .�/ei�x�� d�d'

(15)

D .4�/�1

Z 2�

0

ƒR� f .x � �/ d' (16)

D .4�/�1

Z 2�

0

H.R� f /0.x � �/ d' (17)

with H , ƒ as in (9)–(11). Denoting the formal adjoint
of R as

R#g.x/ D
Z

Sn�1

g.�; x � �/ d�;

called the backprojection operator, the above 2D inver-
sion formula can be compactly written as

f D 1

4�
R#ƒRf D 1

4�
R#H

@

@p
Rf: (18)
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An alternate inversion formula is

f D 1

4�
ƒR#Rf (19)

where ƒ now denotes the 2D version of the operator
defined by (11). For mathematically rigorous deriva-
tions of inversion formulas with sharp conditions on
f , see Smith and Keinert [13].

Formula (15) provides insight into the degree of in-
stability of the inversion. The high frequencies of R� f

are being amplified by a factor j� j that is unbounded
as j� j ! 1. This leads to the reconstruction problem
being moderately ill-posed [9] and the need for regu-
larization. An elegant way to achieve this is to derive
approximate inversion formulas [13]. A point spread
function e is chosen and the goal is to reconstruct the
convolution e�f . If e is an approximate delta function,
this gives a slightly blurred version of f . A derivation
entirely analogous to the one given above now yields

e � f .x/ D
Z 2�

0

k� � R� f .x � �/ d' (20)

where the point spread function e and the convolution
kernel k� are related via

k� .p/ D 1

4�
ƒR� e.p/;

e.x/ D
Z 2�

0

k� .x � �/ d': (21)

It follows from the symmetry relation (8) that in
formulas (15)–(20), data R� f are only required for
directions � from a 180ı angular range.

The widely used parallel-beam filtered backprojec-
tion algorithm is now obtained by discretizing (20),
usually with a radial function e so that the convo-
lution kernel k� is independent of � . Another way

to numerically implement (15) is to go back to (14),
interpolate to a rectangular grid in Fourier space, and
then use a 2D fast Fourier transform. This so-called
Fourier reconstruction method is the fastest 2D algo-
rithm, but the interpolation in Fourier space makes it
more difficult to achieve the same degree of accuracy as
with the filtered backprojection algorithm. Numerical
implementation of (19) is known as the rho-filtered
layergram algorithm but has not become popular, one
drawback being the need to compute R#Rf .x/ for
points x in a region much larger than the support of
f due to the nonlocality of the operator ƒ.

Fan-Beam Geometry
In many applications of tomography, the x-ray source
moves on a path y.s/ outside the object and the data
are given by the divergent beam transform Df defined
in (6). Inversion formulas for the fan-beam geometry
can be derived using the following relationship be-
tween the Hilbert transforms of Df and Rf .

Z

S1

Df .y; !/

! � �
d! D ��.HR� f /.y � �/: (22)

The integral on the left side is understood as
a principal value, that is,

R
S1

Df .y;!/

!�� d! D
lim�!0C

R
S1\j!�� j>�

Df .y;!/

!�� d!.
Let x 2 supp(f) and y.s/ be a curve that does

not intersect the support of f , and assume that if the
ray with vertex y.s/ and direction � intersects supp(f),
then the ray in the opposite direction does not. Let
ˇ D ˇ.s; x/ D .x �y.s//=jx �y.s/j, ˇ? D .�ˇ2; ˇ1/

and let there be an interval IPI .x/ D Œsb; st � with sb , st

such that the line segment connecting y.sb/ and y.st /

contains x. Furthermore, as s varies from sb to st , let
the polar angle '.s/ of ˇ.s; x/ change smoothly and be
strictly monotone. Then (8), (17), and (22) imply the
inversion formula

f .x/ D 1

2�2

Z

IPI .x/

1

jx � y.s/j
Z 2�

0

@

@q
Df .y.q/; cos 	 ˇ C sin 	 ˇ?/

ˇ
ˇ
qDs

1

sin 	
d	 ds: (23)

Integrating over the “�-interval” IPI .x/ en-
sures that the point x is irradiated from di-
rections spanning a 180ı angular range. An
appropriate discretization and regularization of

(23) lead again to a filtered backprojection-
type reconstruction algorithm, cf. [7, 11]. For
further details and references, see Faridani et al.
[4].
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3D Reconstruction

The objects to be reconstructed in either medical or
industrial tomography are usually three dimensional.
For the complete parallel-beam x-ray transform, we
have the following inversion formula in 3D:

f .x/ D 1

4�2

Z

S2

ƒP� f .E‚?
x/ d�; (24)

where E‚?
is orthogonal projection on ‚?: There is

a corresponding formula, by change of variables, for
the recovery of f from its divergent beam transform,
Daf , when Daf is known for all directions and all
source positions a on a sphere containing the support of
f . Neither is much used in practice, since the amount
of data to be collected is excessive. In most industrial
applications, rather few data are collected, and in
medical applications, it is important to limit radiation
dose to the patient. It is also clear that in all dimensions
greater than two, the problem of reconstructing from
all line integrals is overdetermined, since already the
knowledge of the family of line integrals parallel to
a given two-dimensional plane reduces the reconstruc-
tion problem to a family of two-dimensional problems.

The focus in 3D problems has been to find inversion
formulas applicable when only the line integrals for a
three-dimensional family of lines are known. Several
special cases are of interest. The first occurs when
P� f is known for � lying in a curve on the sphere.
This arises, for example, in a simplified analysis of
electron tomography, Fanelli and Öktem [3], and for
a C-arm medical scanner. For medical applications, the
most studied situation is that of lines passing through
a curve, where the curve represents the path of an
x-ray source. It is motivated by the design of current
generation hospital tomographic scanners, where the x-
ray source and detector system rotate in a ring around
the patient. If the patient remains stationary during a
scan, then the source curve consists of a circle. If the
patient is translated parallel to the axis of rotation,
then with respect to the patient, the source moves on
a curve on a cylinder. Most effort has been applied to
the special case of a helix, which arises from linear
translation.

The remainder of this section will detail some of
the reconstruction formulas for sources on a curve,
with special attention to the helix. Two further con-
straints require comment. In medical applications it is

important to limit both the total dose received by the
patient and the dose delivered to sensitive tissues: it is
undesirable to x-ray the head and toes to investigate the
stomach. Therefore, measurements can only be taken
in an axial range not much greater than the region of
interest. The second is that the detector arrays are much
larger in the transaxial direction than in axial extent, so
reconstruction methods must be found which respect
this limitation. These requirements have prompted a
great many ingenious constructions, whose precise
description is complicated.

Radon-Based Methods
There are two useful relations between the line inte-
grals of f passing through a point exterior to the sup-
port of f and the Radon transform of f . Both can be
obtained formally (see Natterer and Wübbeling [10])
by integrating the line integral data against the restric-
tion to the sphere of a distribution homogeneous of
degree �2. The first is the formula of B. Smith:

Z

S2

Daf .!/.� � !/�2 d� D ƒRf .�; a � �/; (25)

where integration is to be interpreted as a regular-
ization of the distribution. This should be compared
to formula (22) above. The second is the formula of
Grangeat:

Z

S2

Daf .!/ı0.� � !/ d! D �.Rf /0.� � a/; (26)

relating the integral of a directional derivative of the
divergent beam transform over a great circle on the
sphere to the derivative of the Radon transform. Both
formulas give the possibility to compute a function of
the Radon transform from divergent beam data. Vari-
ous Radon inversion formulas can then be transferred
to the source curve, compensating for the number of
points on the curve which intersect a given plane,
although this procedure is more awkward for (25),
since ƒ is nonlocal. Formula (25) requires the diver-
gent beam transform in all directions. The formula of
Grangeat requires that Df is known in a neighbor-
hood of S2 \ ‚?; but there is a variation where the
integration extends only over a segment of the great
circle. Cleverly combined, the integrals from different
source points may be used to compute different parts of
the planar integral giving the derivative of the Radon
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transform. This has been used to address axial data
truncation in helical CT.

The Helix
In 2002, Katsevich introduced an exact reconstruction
formula for helical cone-beam reconstruction with one-
dimensional filtering. To present the formula, some
aspects of the geometry must be considered; see Fig. 1.
It is assumed that helix lies on a cylinder of radius
R centered on the x3-axis in R3 and is parameterized
by

y.s/ D
�

R cos.s/; R sin.s/;
P

2�
s

�

:

The pitch, P , is the vertical distance advanced in
one full turn of the helix. The object to be imaged
lies in a coaxial cylinder of smaller radius. It is a
geometric property of the helix that each point x in the
interior of its cylinder lies on a unique line segment
connecting two points of the helix y.sb.x//, y.st .x//,
whose parameter values differ by less than 2�: This
line segment is called a PI line, and the parameter
interval Œsb.x/; st .x/� is called the parametric interval.
Katsevich’s formula, [8], reads

y(s_b)

source y(s)

y(s_t)

X-Ray Transmission Tomography, Fig. 1 Helical scanning
with PI line (in blue)

f .x/ D � 1

2�2

Z st

sb

1

jx � y.s/j

Z 2�

0

@

@q
Df .y.q/; ‚.s; x; 	//jqDs

d	

sin 	
ds;

(27)

where ‚.s; x; 	/ D cos.	/ˇ.s; x/ C sin.	/ˇ?.s; x/,
ˇ.s; x/ D .x � y.s//=jx � y.s/j, and ˇ?.s; x/ D
ˇ.s; x/ � u.s; s2/: The unit vector u is normal to the
plane passing through y.s/; y.s2/ and y.s1/, where s1

is a specified smooth function of s; s2 and s2 is chosen
so that the plane also contains x. The existence of such
a plane is an important ingredient of the formula. The
inner integral is a filtration operation corresponding to
data from this plane. The specification of s1 depends
on an auxiliary function, but the final reconstruction
does not. The formal similarity of (23)–(27) is striking.
Formula (27) is exact on sufficiently smooth functions,
but is not exact on more singular objects such as
distributions.

Backprojection Filtration
Not long after the Katsevich formula was established,
another reconstruction method was found which has
versions in both two and three dimensions. It is based
on a formula relating the Hilbert transform along a line
of the object function with a directional derivative of
the line integral transform. For a sufficiently smooth
function f of bounded support in Rn, the Hilbert
transform in direction � at the point x is given by

H� f .x/ D 1

�

Z

R

f .x � t�/

t
dt

D 1

2�

Z

R

f .x � t�/ � f .x C t�/

t
dt: (28)

(The first integral is taken in principal value sense; the
second is convergent.) Let �.s/ be a curve of directions
in the unit sphere. Differentiation gives

�
d

ds
H�.s/f .x/ D �� 0.s/ � rLf .x; �.s//; (29)

where the gradient is with respect to the spatial
variable. Integrating over a curve C from ��� to ��
on the sphere gives a formula found by Gel’fandand
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Graev [5] and rediscovered (independently) in the
tomography community about 2004; see Zou and
Pan [14].

2�H��f .x/ D �
Z

C

� 0.s/ � rLf .x; �.s// ds: (30)

Let x lie on the oriented line segment L D
Œy.sb/; y.st /� between two source positions, let
�� be the direction of the segment, and let �.s/

be the curve of directions subtended at x by the
source curve over the corresponding interval. The
integration can be transferred to the source curve to
produce

H��f .x/

D � 1

2�

Z st

sb

1

jx � y.s/j
@

@q
Df .y.q/; ˇ.s//

ˇ
ˇ
qDs

ds;

(31)

where ˇ.s/ is the unit vector pointing from y.s/ to x:

If data is available for this to be done for each point
x in L, and if f is known to have support in L, the
finite Hilbert transform can be inverted analytically.
Otherwise some partial information of the Hilbert
transform is available. In the last decade, this circle
of ideas has been used to produce inversion formulas
for cone-beam tomography and to treat limited data
problems in two dimensions.

Summary

This entry has presented some exact reconstruction for-
mulas used in x-ray transmission tomography. Outside
its scope are the many issues arising in implementation
and approximation. For this, we can only refer the
reader to some of the references listed below.
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