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Preface 

This book is intended for advanced engineering students in university or 
college and could serve as a reference for practical engineers. In recent 
years the development of fluid machineries has required a wider range of 
study in order to achieve a new level of developmental and conceptual 
progress. The field of fluid engineering is quite diverse in the sense that so 
many variations of flow exist in fluid machinery or an installation, whose 
characteristics are wholly dependent upon the flow field which is deter-
mined by the function of the machine setting itself. One who is studying 
fluid engineering, for the purpose of gaining a working knowledge of fluid 
machineries and their relevant installations, must understand not only the 
type of fluids used in practice, but also the fundamental flow problems as-
sociated with actual fluid machineries. Hence, the intended purpose of this 
book is to provide the fundamental and physical aspects of fluid mechanics 
and to develop engineering practice for fluid machineries. 

The subject of fluid engineering is most often approached at the senior 
undergraduate or postgraduate level of study. At this stage, the student or 
practical engineer is assumed to already have a basic mathematical back-
ground of vector and tensor analysis with a fair understanding of elemen-

Poiseuille flow. The information in this book is organized by subject mat-
ter in such a way that students can understand basic theory and progres-
sively deepen their level of knowledge, following the order of presentation. 
In each section chapter exercises are provided, and problems are also given 
so as to enable students to understand the theoretical implications and to 
apply them to engineering problems. Suggestions of further readings and 
relevant references are listed at the end of each chapter for students eager 
to delve more deeply into various topics. The SI units system has been 
provided at the end of the introduction. Exercises and problems are worked 
out by SI Units throughout this text. 

Chapter 1 concerns the fundamentals of continuum mechanics. The 
chapter involves a description of the nature of continuum, and the basis of 
kinematic fluid flow. Mathematical treatments necessary for describing 
quantities of fluid motion, which lay the groundwork for proceeding chap-
ters, are also dealt with at this stage. 
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tary fluid mechanics, such as Bernoulli equation, potential flow, and 



Chapter 2 encompasses the general conservation laws of fluid flow, in-
volving mass, linear momentum, angular momentum and energy conserva-
tion. These will allow us to provide constitutive equations (relations) for 
the (unconstituted) conservation equations; thus, a closed system of equa-
tions, namely the governing equations of a specified fluid flow, can be ob-
tained. Newtonian fluid, non-Newtonian fluid, viscoelastic fluid, and mag-
netic fluid are developed in later chapters. 

Chapters 3 and 4 provide the basic theory for fluid engineering in an 
inviscid flow, from which hydrostatics, potential flows and incompressible 
flows are derived for practical use in Chapter 3. Thermodynamics equa-
tions are also introduced for analysis in this chapter. Specific engineering 
terms and concepts are defined in the proceeding chapters when appropri-
ate. The importance in derivation of the Bernoulli equation is considered 
from the view of applying the equation to various engineering problems. 

In consideration of engineering applications, Chapter 4 deals with fun-
damental methods to characterize turbomachines, and provides definitions 
of efficiencies. The concept of efficiencies is largely based on energy 
transfer and conversion. This chapter in particular explicates the basic 
treatments of hydraulic machineries, which are widely used in engineering 
practice. Although there are a large variety of hydraulic machineries avail-
able, each serving its needs and purposes, the treatment for these fluid ma-
chineries in this chapter is oriented more towards the turbomachineries in 
general rather than the specific type.  

Chapter 5 is concerned with basic theory for compressible flow. In par-
ticular, unidirectional steady state flow process is considered. Fanno and 
Rayleigh processes in compressible flows are treated in more detail in 
view of wider applications to engineering practice. Shock waves are also 
touched on in this chapter. 

Chapter 6 focuses on Newtonian flow. Viscosity, the most important 
concept in fluid mechanics is brought into the discussion, which leads us to 
the derivation of Navier-Stokes equations. Viscous flows are the objective 
in this chapter. Basic flows in many engineering applications are intro-
duced, in which boundary layer theories are more thoroughly examined.  

Chapter 7 explores some of the more advanced topics in fluid engineer-
ing so that the student wishing to further develop their interest in research 
fields or gain perspective for their future careers may glean some insight 
from these discussions. This chapter concerns non-Newtonian fluid flow in 
particular, which cannot be characterized in the same way as Newtonian 
fluids. The topic chiefly discussed here is polymeric fluid in light of more 
advanced applications, involving not only non-Newtonian viscosity, but 
also elasticity in regard to the rheological properties of fluids. Some con-
stitutive equations of viscoelastic fluids are introduced in this chapter, for 

viii      Preface 



the purpose of applying them to numerical work. 
In the final chapter, Chapter 8, ferrohydrodynamics is introduced along 

side recent developments in magnetic fluids. The fundamental treatment of 
magnetic fluids is based on the modeling of suspensions of magnetic 
grains, whose scale is in the order of 10nm. The novel idea of suspension 
through the process of magnetization is introduced in deriving a closure 
system of ferrohydrodynamics equations. Some engineering applications 
of magnetic fluids are outlined. 

There are four appendixes in which further details have been included. 
The appendixes are arranged in such a way that readers can, when neces-
sary, refer to basic mathematical treatments and extend their understanding
on a specific subject in the main text. Tables of physical properties are also 
provided as reference for readers requiring data for solving problems in the 
text or for more practical designing works. References are provided at the 
end of each chapter, some of which are to be regarded as suggestions for 
further reading and others as cited sources. 

Finally the author wishes to acknowledge his indebtedness to Ms. Ja-
cobs, associated editor of SPRINGER, for her encouragement in the publi-
cation of this book. The author also wish to express his appreciation to 
Professor Mingjun Li, Dr. Xin-Rong Zhang, Mr. Takuya Kuwahara, Mr. 
Yuta Ito, Mr. Minoru Masuda and postgraduate students from the fluid en-
gineering laboratory in Doshisha University for their useful suggestions 
and assistance after reading parts of the manuscript. And thanks also to 
Professor Sigemitsu Shuchi and Ms. Cleito Feugas for offering amend-
ments and proofing the manuscript. 
 
Kyoto, Japan 

Hiroshi Yamaguchi 
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Introduction 

Since the beginning of human civilization, communities have consistently 
been established at locations that feature a viable source of flowing water. 
Throughout history, people have continuously attempted to manipulate the 
natural flow of water, in order to affect an improvement in such areas as 
agricultural stability, living environment, and transportation. Indeed, even 

opment of civilization’s ability to adapt, and adapt to, the natural environ-
ment. Along with a reliable source of water, weather prediction and aware-
ness of seasonal changes have been critical to basic social structures like 
farming, animal husbandry, and housing. 

As understanding of the natural world has grown, and modern tech-
nologies have emerged, we have become increasingly reliant on the fun-
damental principles of fluid flow.  Humanity has come to depend upon the 
development and design of modern transport, like cars and aircraft, which 
are rooted in an essential understanding and knowledge of fluid flows.   
Not only are fluid flows critical for solving aerodynamics problems, but 
also for a plethora of engineering problems concerning energy conserva-
tion and transmission. Time and again, methodological engineering, and 
even bio-medical studies, have proven the universally accepted tenant that 
understanding fluid flow is critical to the development of applied knowl-
edge.  Furthermore, it is clear that they are all, in the end, derived from the 
field of fluid engineering, which is key to opening the mental door to vari-
ous forms of inspiration. 

Topics covered in fluid engineering are quite diverse. However, the 
theoretical background of fluid engineering is based upon fluid mechanics 
(or hydrodynamics), which assumes that all basic equations relating to the 
conservation law, i.e. mass, linear momentum, angular momentum and en-
ergy, are derived from the concept of continuum mechanics. From the 

characteristics, it is seen that both the gaseous and liquid phases of matter 
can customarily be qualified as fluids. In dealing with the mechanics of 
fluid flow, a continuum concept has to be introduced before commencing 
discussion on the kinematics of fluid. We can treat fluids as continuum if 
they are homogeneous, uniform and of macroscopic volume, in which only 
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sensitivity to air currents and cloud flow has been important to the devel-

common definition of a fluid, avoiding complicated discussions on fluid 
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bulk properties are interested by taking mean molecules, atoms and aggre-
gations of the like, which consist of the fluid.  

When deriving governing fluid mechanics equations, particularly for 
fluids of low molecular weight, for instance water or air, the Navier-Stokes 
equation can be obtained directly through Newton’s law of viscosity. These 
have been called Newtonian fluids in consideration of their conservation of 
linear momentum. Based on the Navier-Stokes equation together with con-
tinuity and energy equations, all the practical equations and formula in 
fluid engineering dealing with conventional hydraulic and air machineries 
can be satisfactorily obtained. Moreover, decades of experiments and engi-
neering practices have demonstrated the dependability of this theory. 

However, there exist fluids, which do not necessarily obey Newton’s 
law of viscosity, and those fluids, so-called non-Newtonian fluids, include 
polymeric fluids – polymer solutions, polymer melts and multi-phase sys-
tems, and electro-magnetic fluids – magnetic fluids, plasmas, and so forth. 
All basic equations of the conservation law derived from continuum me-
chanics can still be upheld, but in each case for non-Newtonian fluid the 
relationship between the internal stress and the applied strain, namely the 
constitutive equation (or relation) must be specified, instead of Newton’s 
law of viscosity. Due to growing interest in industrial applications, flows 
of non-Newtonian polymeric fluids and magnetic fluids are introduced in 
this book as advanced topics in fluid engineering, which may serve to cata-
lyze interest in very challenging subjects for readers who wish to further 
extend their knowledge. 

In science and engineering, when converting from absolute to engi-
neering unit and vice versa, some confusion occasionally arises. In 1960, 
the metric system of units (Système International d’Unités or more com-
monly known as the S.I. system) was introduced to overcome this problem. 
The S.I. system, is dimensionally consistent as it uses the absolute M.K.S 
system (M for Meter [m]; K for Kilogram [kg]; and S for Second [s]). 
Other fundamental units include the Ampere [A] for electric current; mol 
[mol] for molecular weight; and Candela [Cd] for brightness of light. It 
also includes the two supplementary units radian [rad] for angle and stera-
dian [st rad] for solid angle, as well as degrees Kelvin [K] for temperature. 
With the S.I. system the units for heat, work and energy are the same (i.e. 
Joule [J], which is defined as the work done when a force of 1N is dis-
placed through 1m along its direction). This is one of the advantages of the 
S.I. system. 

Furthermore, it is noted that in the S.I. system of units, some of the 
units are named after scientists, such as Newton [N] for force; Kelvin [K] 
for temperature; Stokes [St] for dynamic viscosity; Poise [P] for kinematic 
viscosity; Watt [W] for power; Pascal [Pa] for pressure; Hertz [Hz] for  
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frequency; Joule [J] for energy: Coulomb [C] for electric charge; Ampere 
[A] for electric current; and Tesla [T] for magnetic flux density.  These 
units, and combinations thereof, are the fundamental units of the S.I. sys-
tem. The typically combined units frequently used in fluid engineering are 
listed in Table 1.1. Throughout this book, the numerical examples and 
problems are given in the S.I. system of units. 
 

Table 1 Named-combined unit 

Unit Abbreviation  Combined relation 
Ampere A  sC1A1  
Gauss G  T10G1 4  
Hertz Hz  1Cycle s1 Hz  
Joule J  mN1J1  
Newton N  2smKg1N1  
Oersted Oe  mA41000  
Pascal Pa  2mN1Pa1  
Poise P  sPa0.1cmsdyn1 2  
Stokes St  sm10scm1St1 242  
Tesla T  mANT1  
Watt W  sJ1W1  

Non-S.I. system of units                                            C ;electric charge, Coulomb 
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1. Fundamentals in Continuum Mechanics 

description of the motion of flow is given in three dimensional space with 
respect to the reference frame or relative to the rotational frame. Dynamics 
involves the frequent use of derivatives of scalars, vectors and tensors. Ve-
locity and acceleration are the time derivatives, which are important kine-
matic parameters necessary to set an equation of motion in Newtonian me-
chanics, on which continuum mechanics is based. Also given are forces 
connected with space derivatives in regard to displacement gradient and 
relative strain, which are other important aspects of continuum mechanics. 
In this chapter, definitions of stress tensors and strain tensors are also pro-
vided, and will be developed in more detail in the chapters to follow. 

1.1 Dynamics of Fluid Motion 

When we deal with fluid motion, in many fluid engineering cases the dy-
namics of a molecule, or the molecular structure of the fluid body, does not 
explicitly come into effect. At the scale of molecular motion, properties of 
the fluid body, such as density, are typically subject to extreme variation 
with respect to the instantaneous distance of the frame. While, for the mo-
tion of fluid flow, the macro-motion with the scale of flow channel or ex-
ternal object takes place, thus we may apply the “continuum hypothesis”, 
with which the fluid body has a continuous structure in the instantaneous 
frame of space, as schematically indicated in Fig. 1.1. In Fig. 1.1, let us 
denote mL  as the small scale (molecular scale), which can be taken as the 
mean free path of the molecule; lL  as the large scale, which can be the 
characteristic length of the geometric configuration of fluid motion. More-
over, there may exist an intermediate length scale iL , where a certain ef-
fect of a molecule or the molecular structure retains the properties of fluid. 
In order to quantify the effect of the scale in the properties of fluid, and 
consequently to the dynamics of fluid motion, we will take the ratio be-
tween the actual characteristic length of flow geometry, typically lL , and 

Certain concepts and definitions are basic to the study of continuum 
mechanics, and they should be thoroughly understood at the outset. Below, a 
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the mean free path of the molecules (the correlation length of the mole-
cules) mL , such that we get the following formula where  is called the 
Knudsen number. 

l

m

L
L  (1.1.1) 

 “Continuum Mechanics” in a general sense, and “Fluid Mechanics” in 
particular, is normally valid when 1 , where the continuum hypothe-
sis can be assured. Henceforth we shall make two assumptions: first, that 
in every case, the flow of fluid has a small Knudsen Number, with which 
the scale of momentum of flow is far longer than the correlation length of 
the molecules; and second, that the fluid body has a continuous structure. 

 
Fig. 1.1 Property variation with scale (as typically seen with properties 

such as density ) 

It is interesting to mention, although we will not deal with the problem 
in this text, that there is a field of study that deals with small scaled flow 
phenomena in continuum mechanics. These phenomena have been dubbed 
fluid flows in a micro-channel, or micro-fluid-mechanics as it is more 
commonly referred to. The reader may wish to refer to a more detailed de-
scription provided by Kim and Kavila, 1991, and Tabeling, 2005. 

The motion of a fluid can be perfectly determined, when the velocity at 
every point of the space is occupied by fluid motion. Therefore, to express 
the velocity with independent variables, there are two distinct methods, the 
so-called Eulerian and Lagrangian specifications. 
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One method is to trace the motion of a particle in space with time. In 
particular, a particle in fluid is called “fluid particle”, which is a subdivi-
sion of the fluid around a specific point x . This method is called Lagran-
gian specification. The position vector of the fluid particle, considering a 
motion relative to a given frame of reference at time t , can be expressed 
as 

t,0xxx (1.1.2) 

where 0x  and t  are independent parameters, and 0x  is the original posi-
tion at 0t , 000 ,xxx . The velocity u  and acceleration a  at time t  
can be written similarly as 

t
t, xxuu 0  (1.1.3)

t
t, uxaa 0  (1.1.4) 

As seen in Fig. 1.2(a), Lagrangian specification describes the motion of a 
body of mass (fluid particle) and its variation of flow state along the parti-
cle path. 

Another method is to give the spatial distribution of flow state as a 
function of spatial coordinates x ( zyx ,,x ; zyx ,, are Euler variables) 
and time t , where x  and t  are independent variables. This method is 
called Eulerian specification, and describes the variation of flow state in a 
position x  (position vector in spatial coordinates x ) at a given time t , not 
describing the behavior of each particle, see Fig. 1.2(b). In the Eulerian 
specification the velocity u  can be expressed as 

t,xuu  (1.1.5) 

The expression of the acceleration a  in an Eulerian specification is given 
by differentiation following the motion of a fluid particle and the rate of 
change of the velocity of that particle with respect to time 

)(),(),( uxuxuxxua
ttt

ttt
0t0t

limlim  (1.1.6)

Particularly in fluid mechanics, a  in Eq. (1.1.6) is called the material de-
rivative or substantial derivative, and is often expressed as 

)(

)(

( )

( )
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uua u
tDt

D  (1.1.7) 

In general, the rate of change over time of material parameter A , where A  
can be a scalar, vector or tensor associated with the (material) point at time 
t, can be expressed by the material derivative (the differential operator 

DtD  is also called Lagrangian derivative) as 

tAtA
tDt

tDA ,,, xuxx0  (1.1.8) 

 
 (a) Lagrangian specification             (b) Eulerian specification 

Fig. 1.2 Description of fluid motion 

The derivative defined in Eq. (1.1.7) can be further written, using vector 
identities (see section of Appendix B-5), as follows 

uuuuu 2

2
1

tDt
D  (1.1.9) 

The term uu  or Au , operating in Eqs. (1.1.7) and (1.1.8) respec-
tively, are called the convective term, which express the fact that, for time 
independent flow 0t , the fluid properties, such u  or A , depend only 
upon the spatial coordinates x. Namely, the changes in fluid properties are 
due to the changing spatial position of a given fluid particle as it flows. 
The terms tu , tA are the Eulerian time derivatives evaluated at a 
position x. 
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Having established the conceptual and mathematical representation of 
the kinematic description of motion, we will now consider the decomposi-
tion of motion.  This will be done in order to establish the concept and 
mathematical description of that rate. An important concept in a motion of 
continuum is to know how the deformation can be expressed from the ve-
locity field t,xuu . 

Fig. 1.3 Material line L  change 

Let us consider the configuration of an infinitesimal element tL  of a 
straight material line. It undergoes translation, rotation, and stretching, as a 
result of the nonuniform velocity field of dtdxu . As time elapses, the 

tL  becomes dttL . From the figure in Fig. 1.3, it is clear that 

dttdttt
dtttdttttdtt

,,
,,)()(

xuLxuL
xuxLxuLxL

 
(1.1.10)

so that, the changing rate of tL  as dttt can be written as 

...,,,
L
xuLxuLxuLL ttt

dt
tdtt  (1.1.11)

where the right hand side of Eq. (1.1.11) is a Taylor series expansion for 
t,xu  around )(tL . Equation (1.1.11) can be further modified as 

material line element tL  moves to the new positions P and Q, where 
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t
t

dt
t

tdtt

L
xuL

LL
,  

(1.1.12) 

Let us denote ttt LL  and xL t , since we are taking 
tL  as an infinitesimal line element, so that we have 

E
x
X

x
X

L
LL

t
ttt  (1.1.13)

and 

u
x
u

x
u

L
xu

0
lim
xt

t,  (1.1.14)

where E  is called the displacement gradient tensor and u  is called the 
velocity gradient tensor. Using the notation defined in Eqs. (1.1.13) and 
(1.1.14). Thus, the change rate of material line element tL , which is 
given by Eq. (1.1.11), will be written by the formula 

ex

uuuuxux TT

2
1

2
1

 
(1.1.15)

where superscript T  denotes the transpose of tensor. It is noted here that in 
expanding Eq. (1.1.15) the velocity gradient tensor u ,  arbitrary second 
order tensor is decomposed into symmetric and skew-symmetric (or anti-
symmetric) parts. We now define the rate of strain (or the rate of deforma-
tion) tensor, as the symmetric part of the velocity gradient tensor 

Tuu
2
1e  (1.1.16)

and the vorticity (or spin) tensor, as the skew-symmetric part of the veloc-
ity gradient tensor 

Tuu
2
1  (1.1.17)

Thus, the change rate of tL  due to translation t,xu  can be straining 
ex  and rotation x . Consequently the velocity gradient tensor can 

be written by 
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eu  (1.1.18)

In order to gain more physical insight for tensors e  and  in contin-
uum mechanics, we will examine e  in the first place. Referring Eq. 
(1.1.16), e  can be written by the Cartesian suffix convention for three val-
ues, i  = 1, 2 and 3, or j  = 1, 2 and 3, which correspond to x , y  and z  
respectively as follows 

i

j

j

i
jiijji

x
u

x
ue

2
1eeee ˆˆˆˆe  (1.1.19)

where ji ˆˆ ee  is the unit dyad (see Appendix B-1), and the components of 

the rate of strain tensor ije  is presented by 

333231

232221
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x
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x
u

x
u

x
u

x
u

x
u

x
u

x
u

x
u

eij
 

 (1.1.20) 
It is easily known from Eq. (1.1.20) that ije  is the symmetric and has 6 in-
dependent components, i.e. 11e , 22e , 33e , 2112 ee , 3223 ee and 1331 ee . The 
orthogonal components 11e , 22e , and 33e  are the rate of elongational strain, 
due to a local deformation of fluid in stretching or contraction in x , y , 
and z  axis respectively. In addition the off-orthogonal components 12e , 

23e , and 31e  (as well as 21e , 32e , and 13e ) are, on the other hand, due to a 
local deformation of fluid in shearing in the plane of x – y , y – z , and z – x  
respectively. Figure 1.4 gives an idea of the deformation rate occurring in 
fluid in x y  plane. Figure 1.4 (1)-a shows the simple elongational (or ex-
tensional) flow field as one of typical stretching and contraction of flow, 
where the rate of elongational strain appears. Furthermore, in order to 
make the point clear, in Fig. 1.4 (1)-b the stretching of a fluid element in 
the elongational flow field is indicated. Similarly in Fig. 1.4 (2)-a the dia-
gram shows the simple shear flow field, where the shear strain takes place 
and (2)-b a sketch of the shear field is displayed, where a fluid element is 
sheared in the flow direction. 

–
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The symmetry of the tensor e  guarantees that there will always be 
three mutual orthogonal orientations of xXp̂ , for each of which the 
corresponding rate of deformation is either elongation or contraction, that 
is the principal rates of deformation, to which we can assign 111 ee , 

222 ee  and 333 ee . The summations of 1e , 2e  and 3e  are invariant for 
coordinate transformation, which give the proportional rate of increase of 
an infinitesimal material volume 

321 eeedivuu  (1.1.21)

 

(1)-a Simple elongational                       (2)-a Simple shear flow field                            
(or extensional ) flow field 

 
Fig. 1.4 Local deformation of fluid 

 
This quantity defined in Eq. (1.1.21) is called the divergence of the veloc-
ity field of t,xu . Furthermore, a definition that is independent from a 
coordinates system can be given by 
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V

S

dV
V

dS
VDt

VD
V

div

u

unu

1

11 ˆ
 

(1.1.22)

Equation (1.1.22) is called the Euler’s relation, which implies the physical 
rate of change over time of the volume of moving fluid particles per unit 
volume. It is noted that to write the volume integral 

V
dVu  from the 

surface integral 
S

dSun̂  the Gauss’ divergence theorem is applied. 

The skew-symmetric part  given by Eq. (1.1.17) of the velocity gra-
dient tensor u  can be similarly written by the Cartesian suffix conven-
tion as 

i

j

j

i
jiijji x

u
x
u

2
1eeee ˆˆˆˆ  (1.1.23)

and ij  can be further written in matrix form 

0
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u
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u
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u
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u
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u
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u
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(1.1.24) 

Components, which appear in Eq. (1.1.23), as the components of 
u, are related with the following formula 

332211
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2
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1

eee

eeeu
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x
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(1.1.25)
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It may be useful to consider u  in a little more detail for the 
sake of coupling equations in the following chapters. The nature of  u  
can be examined by introducing the alternator or alternating unit tensor 

ijkkji eee ˆˆˆ  as follows 

332211
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 (1.1.26) 

Thus, in comparison with (1.1.23) and (1.1.25), a vector (in this case 
u ) with components 1 , 2  and 3  can be reduced from a general 

second order tensor S (in the present case ji xu , xu , u  or 
ugrad ), whose components of skew-symmetric part (in this case ) are 

written by 

0
0

0

2
1

12

13

23

 (1.1.27) 

Note that the vector 321 ,,  is called the pseudovector of the tensor 
S  or simply the vector of tensor S . See Exercise 1.4. 

By employing the alternator , the vector  may be found from S , 
more specifically from the skew-symmetric part aS  of S, denoting 

2aS  while the symmetric part sS  of S  may be expressed by 
2s eS . The following relationships are particularly useful; 

S  (1.1.28)

S
2
1

a  (1.1.29)

Note that from Eqs. (1.1.28) and (1.1.29) the pseudovector  is zero, 
0 , if a second order tensor S  is symmetric 0aS , and vice versa. 
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For the sake of clarity and convenience, the unit tensor I  and the al-
ternator  are defined below. I  is defined such that  

ijjiee ˆˆI  (1.1.30) 

where ij  is the Kronecker delta and jiee ˆˆ  is the unit dyad. ij  is defined 
as 

ji
ji

ij if0
if1

 (1.1.31) 

 is similarly defined by 

ijkkji eee ˆˆˆ  (1.1.32) 

where ijk  is the Eddington notation and kji eee ˆˆˆ  is the unit polyadic. Thus, 
the alternator is a polyadic. ijk  is defined in the following manner 

kjkiji
ijk
ijk

ijk

or,,if0
213or,132,321if1
312or,231,123if1

 
 

(1.1.33) 

It is useful for  to be alternatively expressed with the form 

123312231213132321 ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ eeeeeeeeeeeeeeeeee  (1.1.34) 

After giving mathematical formalities for the tensor , we will see 
how  may cause a local deformation in the flow field t,xu . The de-
formation due to  can be examined from Eq. (1.1.11) as 

dttdtt
aL

uLLLX )()(  (1.1.35)

Note that aLu is a skew-symmetric part of the velocity gradient ten-
sor. It is further noted that by taking an infinitesimal time duration tdt  
and on infinitesimal line element xxL , we can obtain the deforma-
tion in x - y  plane, for example 

333

33

3

2
1

2
1

000
00
00

0
2
1

e

exX

ˆ

ˆ,,

txy

tyxt
 

 

 

 (1.1.36) 



16      1 Fundamentals in Continuum Mechanics 

The implication of Eq. (1.1.36) is, in the x – y  plane, that as indicated in 
Fig. 1.5, the fluid element x – y  is rotated around the z  axis with its an-
gular velocity 233 . Thus, as easily speculated from Fig. 1.5, the 
vorticity tensor   represents a rigid body rotation of fluid element with 
angular velocity 2 . The pseudovector of the velocity gradient ten-
sor, i.e. uu : , is called the vorticity vector. The vorticity 
vector   is an important flow parameter in fluid mechanics. 

 
Fig. 1.5 Rigid body rotation of fluid element x y  

1.2 Dynamics in Rotating Reference Frame 

In consideration of kinematics let us explore the relationship between an 
inertial and a rotating reference frame. For brevity, let the rotating refer-
ence frame be rotated with a constant angular velocity  with respect to 
the inertial reference frame, supposing no translation of the rotating refer-
ence frame to the inertial reference frame, see Fig. 1.6. It is noted that we 
adopt a right-handed orthogonal coordinates system, where 0  is an 
angular velocity vector, which rotates to the direction of a right-handed 
screw. The position vectors 0x  and rx  of a material point x  in the iner-
tial frame and rotating frame respectively are related as 

0xx Qr  (1.2.1) 

where Q  is a rotation tensor, which is an orthogonal tensor with a relation 
of IQQT , and 1QQT  (where Q  is an unitary matrix); 1Q   

–
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denotes the inverse of the tensor Q  and TQ  denotes the transpose of the 
tensor Q . 

 

 
Fig. 1.6 Rotating reference frame with inertial reference frame 

In order to correlate two frames kinematically, we shall consider a ve-
locity and acceleration at the material point. To start with, apply DtD , 
the material derivative, to Eq. (1.2.1) to obtain the relative velocity ru  

Dt
D

Dt
D

Dt
D

Dt
D

Dt
D

r

r
r

01

0
0

x
x

x
x

x
u

QQQ

QQ

 
(1.2.2) 

Equation (1.2.2) can be further written with the velocity 0u  in the inertial 
frame, letting 00 ux DtD  by 

0uxu Qrr  (1.2.3) 

Here we used tensor calculus (for relative position vector rx , see Problem 
1-1) as 

rrTr
Dt

D
Dt

D xxx 1QQQQ  (1.2.4) 
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It is noted that  is the pseudovector of the skew-symmetric tensor 
TDtD QQ  in the same manner explained for the vorticity vector  

previously. Next, by taking the material derivative again to Eq. (1.2.3), we 
can obtain the relative acceleration ra  of the material point x  as follows 

011 axuu

ua

QQQQQ
rrr

r
r

Dt
D

Dt
D

Dt
D

 

 

(1.2.5) 

Consequently from Eq. (1.1.4), we can obtain the acceleration vector 0a , 
i.e. the acceleration of the inertial frame, by relating Eq. (1.2.5) in the ro-
tating frame as 

rrr xuaa 20  (1.2.6) 

where it is derived when an inertial frame is instantaneously coincident 
with the rotating frame , as IQ . In Eq. (1.2.6), the first term in the right 
hand side of the equation is the rectilinear acceleration, the second is the 
Corioli’s acceleration, and the third is the centripetal acceleration. With  
identical vectors, it is easy to show that the third term of Eq. (1.2.6), i.e. 
the centripetal acceleration can be reduced to the potential form as 

222

2
1

2
1 rrr xx  (1.2.7) 

so that, defining a potential function , and setting 222r  , where r  
simply denotes distance from the axis of rotation, the centripetal accelera-
tion can be expressed as  

rx  (1.2.8) 

It may be worthwhile to note that the operation to reduce the relation 
(1.2.6) can be simply understood by a vector algebra for a fluid particle ro-
tating at a constant angular velocity  along an axis of rotation in the in-
ertial reference frame at a material point x 

rxx0  (1.2.9) 
and 

rr xuu0  (1.2.10) 
Equation (1.2.9) refers to the instantaneous moment, when IQ , and  Eq. 
(1.2.10) implies the relative velocity of the fluid particle rotating to the  
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inertial frame. Thus, taking the time derivative to Eq. (1.2.10), as we have 
similarly done to Eq. (1.2.3), we can obtain the acceleration of the fluid 
particle relative to the inertial frame as 

rr
r

dt
d

Dt
D xuuua 20

0  (1.2.11) 

which is exactly the same form as Eq. (1.2.6). The relation given by Eq. 
(1.2.11) can again be written, using the potential  

20 rr uaa  (1.2.12) 

where 222r . 

1.3 Material Objectivity and Convective Derivatives 

On the microstructure level material elements may be affected by strong 
electromagnetic field or strong inertial forces; however, on the continuum 
level the physical characteristic of a material, such as demonstrated by the 
Hooke’s law (the relationship between the extension and the force can be 
regarded as a physical property of spring itself), is independent of the mo-
tion of the observer. This concept is called “the material objectivity” or 
“the principle of frame invariance”. Particularly in dealing with the rela-
tionship between a deformation and a stress in continuum, so-called consti-
tutive equation, this concept is of some importance. 

In order to satisfy the principle of frame invariance, the following lin-
ear transformation by E (see Q and E  in Eqs. (1.2.1) and (1.3.4) for 
equivalence) must be satisfied for any arbitrary vectors (say a velocity vec-
tor ),( txu ) and second order tensor (say a stress tensor )( t,T x ) in the 
Cartesian reference frame.  This can be set in the inertial reference frame 
in such a way that 

0uu Qr   to  E uu  (1.3.1) 

T
r QTQT 0  to TETET  (1.3.2) 

where the suffix r  denotes the rotating reference frame. Note that scalar 
properties (such temperature, density, etc.) are always frame invariant. 

Now we will direct our attention to how the time derivative of vectors 
and tensors are affected in order for the principle of frame invariance to be 
satisfied. We will consider this problem with respect to the transformation 

'

'
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of a material line element as displayed in Fig. 1.3, where the material line 
element xL )(t  (in the material reference frame) is transformed to 

)( dttL (in the new space frame), noting that XLL tdtt )( and 
defining the displacement gradient tensors as  

E
x
X

x
Xlim

0x
 (1.3.3) 

so that Eq. (1.3.3) can be further written as 

xX E  (1.3.4) 

and 

Xx 1E  (1.3.5) 

Eventually E  is a linear transformation tensor, and in order to verify the 
principle of frame invariance we will transform a tensor T  (in the mate-
rial reference frame) to T  (in the new space frame). This transformation 
can be written 

TETET  (1.3.6) 

and the reverse transformation is defined by 
T)( 11 ETET  (1.3.7) 

Thus, the material derivative of T  in Eq. (1.3.7) will be 

TTT

Dt
D )()( 111111 ETEETEETET  (1.3.8) 

denoting the material derivative, i.e. TT DtD . Equation (1.3.8) can be 
further reduced to the form 

TT

TTTT

)()(
)()()()()(

11

111111

ETTTE
ETEETEETET

uu
uu

 
(1.3.9)

It is noted that to derive Eq. (1.3.9) we have used the relations 
111 EEEE  and 1EExuu . The relations are obtained 

from Eq. (1.3.4) for the velocity u  as 

x
d
d E

t
Xu   (1.3.10) 

and 

'

'

'

'

'

' '

'
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1EEE
X
x

X
uu  (1.3.11)

Consequently, the tensor ( Tuu TTT ) is linearly transformed by a 
material line element of 1E , and we denote Eq. (1.3.9) as 

T)( 11 ETET   (1.3.12) 

where  is called the upper convective derivative, which is defined as fol-
lows 

T

T

Dt
D

uu

uu

TTT

TTTT
  

 (1.3.13) 

In the upper convective derivative, the base vectors are ‘‘contravariant’’ 
base vectors. That is, the base coordinate vectors are parallel to material 
lines, which are deformed (stretched and rotated) with a material line. 

In a similar manner, with ‘‘covariant’’ base vectors, that are normal to 
material planes, where in a deformation each base vector rotates to remain 
normal and stretches so that its length remains proportional to the area of 
the material plane to which it is normal, we have the lower convective de-
rivative defined by 

uu TTTT T   (1.3.14) 

If we extend further, we will see that when material lines are in a de-
formation with rotational coordinates, we can define the derivative in the 
following manner  

TTTT  
 

(1.3.15a) 

or alternatively 

TTTT
2
1  (1.3.15b)

where  is the spin tensor and the derivative T  is called the corotational 
derivative (a) or the Jaumann derivative (b). The corotational (Jaumann) 
derivative can be gotten from the upper convective derivative directly by 
setting e 0u , and using T. 

'
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The three derivatives, Eqs. (1.3.13), (1.3.14) and (1.3.15), can satisfy 
the principle of frame invariance, and this can be easily demonstrated to 
meet the condition in Eq. (1.3.2) for the rotation tensor Q  to give 

TT

TTTT

TTT

T

Dt
D

Dt
D

Dt
D

Q)TTT(Q

)Q(QQTQ

QTQ)Q(Q)QT(Q

TTT

uu

u

u

uu

 

 
(1.3.16) 

So, T  meets the sufficient condition for the principle of frame invariance. 
Observe that in deriving Eq. (1.3.16), the following relation was used 

        TTT QQQQ  (1.3.17)

since we have ITQQ , where Q  is the unitary matrix, which is written 
by TT QQQQ . It is further noted that the velocity gradient tensor 

u  itself does not satisfies the principle of frame invariance as it is shown 
that 

QQ
QQQQ

T

TT

u
uu  

(1.3.18)

XXXXxx ddds TTTT 1112 EEEE  (1.4.1)

xxxxXX dddS TTTT E)(E)(E)(E2  (1.4.2)

'
' ' ' '

'

'

The displacement gradient tensor E , defined in Eqs. (1.1.13) and (1.3.3), is 
not generally symmetric and contains both deformation and rotation of a 
material line. Thus, E  itself is not a quantity of the frame invariance and 
one may have to exclude the effect of rotation of a material line, particu-
larly when a constitutive equation is considered. In order to define finite 
strain tensors, which are free from rotation, we can simply take the square 
of the length of x  or X , for the material lines before and after deforma-
tion respectively (see Fig. 1.3), such that 

1.4 Displacement Gradient and Relative Strain 
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Equations (1.4.1) and (1.4.2) contain metric tensors, 1)E(E T  and 
E)(ET respectively. 

Hereafter we define strain tensors, one of which is called the Cauchy 
strain tensor C  defined by 

EEC T  (1.4.3) 

and the other is called the Finger strain tensor defined by 
T111 EEC  (1.4.4) 

These two tensors are both positive symmetric, and describe the deforma-
tion from t  to tt  of a material line, which are free from rotation. Con-
sidering the character of two tensors, C  and 1C , we can define two 
closely related relative strain tensors as follows 

CIR  (1.4.5)

  IC 1
R  (1.4.6)

These two relative strain tensors are very useful and are often used in de-
riving integral constitutive equations for viscoelastic fluids. 

1.5 Reynolds’ Transport Theorem  

In deriving conservation equations of flow, it is particularly important to 
consider the volume integral 

)(
),(

tV
dVtFI x , of which material deriva-

tive is defined as DtDI . tVV  is a closed volume of fluid particles, or 
otherwise known as a material volume (element) consisting of a represen-
tative material line, and ),( tF x  is any scalar, vector, or tensor function. 
Reynolds’ transport theorem concerns the rate of change of any volume in-
tegral, i.e. DtDI .  

Before proceeding further, it may be useful to consider the change of a 
material volume 0dV from coordinates  at time 0t  to coordinates x  at 
time t , where  is the material coordinates, and they are Cartesian coor-
dinates, ),,( 321 . Also let the volume element 0dV  be 321 ddd ,,  
of an elementary parallelepiped, as sketched in Fig. 1.7. Due to the fluid 
motion, this parallelepiped 0dV  is moved to some neighborhood of the 
Cartesian point ),( txx at time t , with the volume element of dV, 
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whose sides are 1dx , 2dx  and 3dx , i.e. 321 dxdxdxdV . The change of co-
ordinates ),,( 321 xxxx  must be given to the corresponding coordinates 

),,( 321  by 

),,( 321ii xx  (1.5.1) 

The sides 1dx , 2dx  and 3dx of the volume element can be given by chain 
rule as 

j
j

i
i dxdx       for    3,2,1i  (1.5.2) 

 
 

Fig. 1.7 Change of material volume at time t  

The resultant volume element dV  can be calculated by the box product 
 of vectors’ 1xd , 2xd , and 3xd  three sides, representing material line 

elements of dV  

321

321321
ddJd

dddddddV xxxxxx  
(1.5.3) 

where J  is called the Jacobian of the transformation of the variables, and 
is defined as 
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From the relation given by Eq. (1.5.3), J  is the ratio of a material vol-
ume element to its initial volume as 

0dV
dVJ  (1.5.5) 

and 0VJdVd . This is called the dilatation. 
In consideration of the dilatation, the time derivative (the material de-

rivative) of the volume integral 
)(

,
tV

dVtFI x  can be written (by 

means of the Lagrangian description) 
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D
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(1.5.6) 

Using the definition of the divergence in Eq. (1.1.22), we can obtain 
the dilatation’s relative rate of change along a path line of a fluid particle 
as follows 

tD
DJ

JtD
JdVD

JdVDt
dVD

dV
div 111 0

0
u  (1.5.7) 

Thus, from Eqs. (1.5.6) and (1.5.7) we can obtain the following relation-
ship 

dVF
tD

DFJdVF
Dt
DF

tD
DI

VV
uu 0

0

 (1.5.8)

The formula (1.5.8) is called the Reynolds’ transport theorem, and can be 
further extended into a number of different forms, using the definition of 
the material derivative given by Eq. (1.1.7) as 
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dVF
t

F
tD

DI
V

u  (1.5.9)

          dSFdV
t

F
SV

un̂  (1.5.10)

It should be noted that the Gauss’ divergence theorem was applied in order 
to write the surface integral 

S
dS~  from the volume integral 

V
dV~ . 

The physical picture of the Reynolds’ transport theorem is that the rate 
of change of the integral of F  in Lagrangian description is the sum of the 
integral of the rate of change at a point, and the net flow of F over the 
control volume surface in Eulerian description. 

1.6 Forces on Volume Element 

There are two kinds of forces acting on a volume element of a continuum 
medium. The volume element taken in a flow field is called the control 
volume in Eulerian description and equivalently called the fluid particle in 
Lagrangian description. In both cases, as depicted in Fig. 1.8, “Body 
forces” as one of the two kinds, can be regarded as reaching the medium 
and acting over the entire volume. Body forces, which are represented by a 
symbol g, are due to long-range forces, such as gravitation (with the 
gravitational acceleration g) or electromagnetic forces, etc. They are usu-
ally independent from a deformation of the volume element and are caused 
by an external field of source.  

“Surface forces”, of another kind, are to be regarded as acting upon the 
surface of each part of the volume element. The origins of surface forces 
are chiefly due to two short-range forces, viscous and elastic forces, those 
have strong dependence on a deformation of the volume element. The sur-
face forces have molecular origin in the vicinity of the surface, and act on 
internal forces through the surface. Surface forces may also be generated 
by an externally applied field, such as electromagnetic field, through sur-
face coupling. We shall see detailed descriptions of body forces and sur-
face forces in later chapters, such as Chapter 7 and Chapter 8. However, at 
present we will treat the surface forces, with reference to stresses, that can 
be represented by a stress tensor. We follow to define a general stress ten-
sor in a continuum medium, in this chapter, through Cauchy’s fundamental 
theorem for stress. 
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Stress is a vector quantity defined as a force per unit area. Let F  be a 
force exerted across an area dS , on which the unit outward normal vector 
n̂  is acting by the material. From Cauchy’s theorem, the stress vector at 
the point a  of S  located by a position vector x  at time t  can be defined 
by  

t
dS
d

S ns
,lim

0
xtFF  (1.6.1)

Fig. 1.8 Body and surface forces 

Fig. 1.9 Stresses on surface elements 
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In order to give an insight to the nature of the stress nt  at point a, we 
consider an elementary tetrahedron of the body as schematically displayed 
in Fig. 1.9, where the front surface dS  has a normal unit vector of n̂ . As 
elucidated in Fig. 1.9, the small tetrahedron has three of its faces, where 
the surface elements are 111 dSd nS ˆ , 222 dSd nS ˆ  and 333 dSd nS ˆ , 
denoting in̂  the normal unit vector and idS  the area of each element. We 
may further indicate the stress vectors over each of three faces, by it  for 1, 
2, 3 and n. Since the surface of the tetrahedron is closed, owing that four 
faces 1i , 2, 3  and n bind the tetrahedron, we apply the principle of local 
equilibrium to the stress forces, subjecting to infinitesimal tetrahedron, so 
that 

0332211 dSdSdSdSn tttt  (1.6.2) 

Then, in the limit of 0idS , we can write the components of the surface 
element in such a way that 

dSdSdSdS 321332211 ˆ,ˆ,ˆˆ,ˆ,ˆ nnnnnn  (1.6.3) 

since 321 dSdSdSdS  can certainly be true. Thus Eq. (1.6.2) 
becomes  

332211 tntntnnt ˆˆˆˆn  (1.6.4) 

The expression in the parenthesis is a dyadic and each term in the paren-
thesis has three components, that is 

jjj

T
T
T

T
T
T

T
T
T

eetneetneetn ˆˆˆ,ˆˆˆ,ˆˆˆ 3

33

32

31

332

23

22

21

221

13

12

11

11      (1.6.5)

where 11 tn̂  shows the vector components of 1t  on the surface of 
11 dSn̂  facing 1n̂  direction, and so on. 

Using the dyadic notation, Eq. (1.6.5) can be written as 

jiij

ji

T

TTT
TTT
TTT

ee

ee

ˆˆ

ˆˆT
333231

232221

131211

 

 

 

(1.6.6) 
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where T  is called the stress tensor, which has components of a second or-
der matrix. Therefore, Eq. (1.6.4) can be written alternatively with the 
stress T  by 

ijij Tnt  (1.6.7) 

or 

  Tn̂t n  (1.6.8) 

The expression of Eq. (1.6.6) is called Cauchy’s stress formula. It can 
be verified by some tensor calculus that nn ˆTTˆ T , where TT  is the 
transpose of T . It is, however, only true that when the tensor T  is sym-
metric, the relationship of nn ˆTTˆ T  can be held. 

The diagonal components 11T , 22T  and 33T  of the stress tensor T  are 
called the normal stresses and the off-diagonal components 12T , 

21T , 31T , 13T , 23T and 32T  are called the shear stresses. 
When continuum medium is at rest, implying that fluid velocity is 

identically zero at any given time, any stress acting upon a volume element 
is called hydrostatic stress, except for very specific cases in non-
Newtonian fluids or electromagnetic medium, which will be introduced in 
the later chapters. The hydrostatic stress is a normal stress, which is inde-
pendent of the orientation. The hydrostatic stress can be expressed by de-
noting p  as 

jiji pnTn  (1.6.9) 

and this expression yields the following relationship as  

ijij pT  (1.6.10)

or alternatively 

IT p  (1.6.11)

where I  is the unit tensor. p  in Eqs. (1.6.10) and (1.6.11) can be identi-
fied as the thermodynamic pressure in a compressive fluid under assump-
tion that the fluid is in equilibrium even when the fluid is in motion. How-
ever, in incompressible limit, p  can be treated as an independent dynamic 
variable, retaining p as a pressure. Including the hydrostatic stress, the 
stress tensor may be written as  

     ijijij pT  (1.6.12)
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or alternatively  

IT p  (1.6.13)

The stress tensor , which is often termed as deviatoric stress tensor, 
may include various contributions, depending upon the physical character 
of the continuum medium, such as compressibility, viscoelastic nature, and 
external (such as electromagnetic) field effects, likewise for p  mentioned 
above. A general expression of the total stress T  may be expressed by 

*
ijij

*
ij pT  (1.6.14)

where *p  and *ij  are the extended pressure and stress tensor respectively. 
The mean of ijT  is defined as 

*
ii

*
iim pTT

3
1

3
1  (1.6.15)

and the deviatoric stress ij  is defined as 

ijmijij TT  (1.6.16)

In viscous, incompressible Newtonian fluid, i.e 0*ii  and pp* , the 
mean stress is equal to the pressure p  as 

pTm  (1.6.17)

This fluid is sometimes called the perfect fluid. 

Exercise 

Exercise 1.1 Dyadic Product u  

u  is called the gradient of vector u  and is sometimes written xu  or 
grad u . u  is the second order tensor in the Cartesian coordinates system. 
Show u  as the dyadic product, using suffix notation of tensor with unit 

Ans. 

i

j
jijj

i
i x

u
u

x
eeeeu ˆˆˆˆ  (1)

dyads jiee ˆˆ . 
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Equation (1) shows that u  is a second order tensor whose ij  compo-
nents are ij uu . 

Exercise 1.2 Convective Term 

In Eq. (1.1.7), the term uuuu  is called the convective term in 
fluid mechanics. Using the vector identities in Appendix B-5 (B.5-6), re-
duce Eq. (1.1.9). 

uvvuuvvuvu  (1) 

Ans. 

Set uv  , which gives 

     uuuuu 2

2
1  (2)

When the vorticity vector u  , Eq. (2) becomes 

uuuu 2

2
1  (3)

If the velocity field u  is irrotational, i.e. 0u , u  has a scalar po-
tential  such that  

u  (4)

and with the scalar potential the convective term will be written 

2uu
2
1  (5)

Exercise 1.3 Euler’s Relation 

Proof the Euler Relation given by Eq. (1.1.22) 

uJ
Dt
DJ  (1) 

where 
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ijk  (2)

Ans. 
We firstly write the following relation, for the velocity gradient 

j

ii

jj

i u
Dt
Dxx

Dt
D  (3)

With this relation, we are able to set an expression of the time change of 
the Jacobian as follows 

kji
ijk

kji
ijk

kji
ijk

uxxxuxxxu
Dt
DJ 321321321  (4)

While Eq. (3) may be formulated by chain rule 
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Thus, finally Eq. (4) can be reduced to give the required form 
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(6) 
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Exercise 1.4 Pseudovector 

If  is a pseudovector of a second order tensor S , examine the nature of 
 in consideration of Eq. (1.1.28). 

S  (1) 

Ans. 

Decompose S  into the symmetric part and skew-symmetric part as 

as

2
1

2
1

SS

SSSSS TT
 (2)

where the skew-symmetric part is written by components 

0
0

0

2
1

0
0

0

2
1

12

13

23

23321331

32231221

31132112

a

ssss
ssss
ssss

S

 

(3)

Namely vector  is expressed with components 1 , 2  and 3  as 

332211 eee ˆˆˆ  (4)

where  is obtained by S  (see Eq. (1.1.26) for example), this implies 
that components of the skew-symmetric part of the second order tensor are 
composed of components of the pseudovector. If S  is assumed to be a ve-
locity gradient u , the vorticity vector  is derived from components of 
the spin tensor, which is the skew-symmetric part of the tensor u . 

Exercise 1.5 Material Objectivity 

The upper convective Maxwell model constitutive equation (a linear vis-
coelastic model, in Chapter 7) can be written by  

e02  (1) 
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where  is a second order tensor,  and 0  are constant and e  is the rate 
of deformation tensor (see Eq. (1.1.16)). Show that Eq. (1) satisfy the ma-
terial objectivity. 

Ans. 

The material objectivity has to be met by the linear transformation for 
tensor A  as follows 

Ttt QAQA  (2)

where tQ  is a rotation tensor, defined in Eq. (1.2.1). Therefore, the con-
stitutive Equation of Eq. (1) has to be invariant by the transformation of Eq. 
(2), that is 

e02  (3)

where 
TQQ  (4)

TQQ  
(5)

and 
TQeQe  (6) 

knowing that scalar constants are frame invariants. 
In order to verify the invariance of Eq. (1), take the transformation to the 

model equation 

TQeQ 02  (7)

Since Eq. (7) is linear, we can write 

TTT QeQQQQQ 02  (8)

Thus we can recover the given equation by knowing Eqs. (4), (5) and (6)  

e02  (9) 

 

'

' ' '

'

'

'

' ' '
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In deriving Eq. (9), we used the principal of frame invariance (the ma-
terial objectivity) for the upper convective derivative given in Eq. (1.3.16). 

Exercise 1.6 Reynolds’ Transport Theorem 

Give a physical picture of the Reynolds’ transport theorem, considering the 
rate of change of a certain quantity F  of matter moving through a control 
volume, as depicted in Fig. 1.10, 

Ans. 

Consider a control volume of region A , which contains a quantity of 
matter at some time t , indicated by the solid line. At some time later 
time tt , the boundary of the system has a new physical location as 
shown by the dotted line, at which the control volume occupies regions B  
and A  minus C . The increment of the matter is written 

tmttmttmttmm ABCA  (1)

Fig. 1.10 System of moving control volume and fixed control volume 

Taking differentiation to Eq. (1) with respect to time t  and after rear-
rangement, we can write 

t
ttmttm

t
tmttm

t
m CBAA (2)
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The rate of change of m  is calculated by taking the limit of Eq. (2) as 
0t . The first term on the right hand side of Eq. (2) thus becomes 

V
AA

AA
t

FdV
t

mm
tt

tmttm
0

lim  (3)

Since region A  is fixed in the coordinates, we can write 

V V
dV

t
FFdV

t
 (4)

In a similar manner as the second term becomes 

CB
CB

t
mm

t
ttmttm

0
lim  (5)

where Bm  is the rate of change of m  through surface area 1S  from control 
volume (region A ), and which is expressed by surface integral 

1S
B dFm Su  (6)

where uF  is the flux of F ( F  is transported through the surface of the 
control volume by stream of flow with velocity u ). 

Similarly Cm  is expressed 

2S
C dFm Su  (7)

where the minus sign means the inward to the surface of the control vol-
ume. With Eqs. (6) and (7). Equation (5) becomes 

S
CB dFmm Su  (8)

Therefore, the rate of change of m  is altogether written 

SVVt
dFdV

t
FFdV

Dt
D

t
m Su

0
lim  (9) 

This is a Lagrangian-to-Eulerian description of the rate of change of an 
extensive integral quantity given by Eq. (1.5.10). 
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Exercise 1.7 Principal Axes of Stress 

The pressure p  defined in Eq. (1.6.17) is the mean of the normal stresses, 
that is, one third of the trace of the total stress tensor T . It appears that p  
is meant to be the mean of the principal stresses. Give the definition of the 
principal stresses and its direction of the principal axis. 

Ans . 

When the direction of a stress vector nt  is equal to that of an unit 
normal vector n̂ , if nt  is derived from a stress tensor T  by Cauchy’s 
stress formula, the direction of n̂  is called the direction of the principal 
axes of stress and the stresses are the principal stresses. 

Thus, in case of n̂  being parallel with the principal axes, we can write 

nnt ˆTˆn  (1) 

where  is a scalar quantity. Equation (1) gives a relationship written as 

0ITn̂  (2) 

and Eq. (2) has to satisfy 

0IT  (3) 

for the condition of 0n̂ . Equation (3) is called the characteristic equa-
T . Roots of Eq. (3) give eigenvalues, which are the 

The perfect fluid given by Eq. (1.6.17) is an isotropic fluid in a sense 
that a simple direct stress acting in it does not produce a shearing deforma-
tion. In the functional relation between stress and deformation must be in-
dependent of the orientation of the coordinates system. 

The component form of Eq. (3) is written by 

0

333231

232221

131211

TTT
TTT
TTT

 (4)

with which we have a third order polynomial equation for  as follows 

032
2

1
3 III  (5)

tion of stress tensor 
principal stresses for the principal axes. 
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Since  is independent of choice of the coordinates system, the coeffi-
cients of 1I , 2I and 3I  in Eq. (5) are also independent of the choice of the 
coordinates. Therefore, 1I , 2I and 3I  are frame invariants. Equation (5) is 
also true for other tensors such as the rate of deformation tensor, which is 
discussed in more detail in Chapter 7, 1I , 2I and 3I  are respectively given by 

TrtI1  (6)

222
2

2
1

2
1 TTT:T rrr tttI  (7)

if T  is symmetric, i.e. T:TT2rt , 
and 

Tdet3I  (8)

Note that if 1 , 2 and 3  are the principal stresses, 1I , 2I and 3I  are re-
spectively given by 

321

3

1
m

miiI  (9)

         1332212
2
1

jiijjjiiI  (10)

and  

3213 det ijI  (11)

Problems 

1-1. Show that TQQ  is a skew-symmetric tensor, and whose pseudovec-
tor is . 

Ans. 

rur
rrrrr

rrr

where

fixedforrotationrigid
thatso

0

1
0

00
T

TTTT

TTT

tt

QQQQQ

)(Q
QQQQQQ

QQQQI,QQ
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 1-2. If Q  is a rotation tensor, show that Q  is a unitary matrix, which satis-
fies 1T QQ . Consider the two dimensional axis rotation by  
where the frame is transferred x' – y'  to x – y . 

Ans. 
1

cossin
sincos

QQ

Q
T

y
x

y
x

xx  

 
1-3. Proof for Cartesian vectors u  and v , that 

uvvuvuvvu  

Ans.
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1-4. When a scalar function t,p x  differs form a material surface, but 

tp ,x  moves with a velocity v  different from the stream velocity u , 
show that 

p
dt
dp

nvu ˆ  

 

 

Ans. 

pp
dt
dp

t
p

p
t
p

dt
dp

txp

nvuvu

vuw

w

ˆ

,

,

0pointmaterialwithnotand

,velocityrelativewithmovebut

surface,is the materialIf

 

u
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1-6.  Obtain components xxT , xyT  and xzT  of tensor T. 

Ans. 
ki
ji
ii

T
T
T

xz

xy

xx

T
T
T

 

 
1-7.  Show that the velocity gradient tensor u  does not satisfy the princi-

ple of frame invariance. 

Ans. 

.oftiontransfortalinearnotis
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Nomenclature  

A  : material parameter 
a  : acceleration 
C  : Cauchy strain tensor 

-1C  : Finger tensor 
E  : displacement gradient tensor 
e  : rate of strain tensor 

iê  : unit base vector kj,i,  

 

1-5. Verify that the Finger tensor defined in Eq. (1.4.4), T111i.e. EEC  
is symmetric. Consider E  in the Cartesian coordinates system. 

Ans. 
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jiee ˆˆ  : unit dyad 
F  : force 
g  : body force 
g  : gravitation acceleration 
I  : unit tensor 
J  : Jacobian 
L  : material line element 

iL  : Intermediate scale 

lL  : large scale 

mL  : molecular scale 
n̂  : unit normal vector 
p  : pressure 
Q  : rotation tensor 
S  : general second order tensor 
S  : surface area 
T  : total stress tensor 

nt  : stress vector 
t  : time 
u  : velocity 
x  : position vector in vector space 

 : Knudsen number 
ij  : Kronecker delta 
 : (polyadic) alternator 
ijk  : Eddington notation 
 : eigenvalue 
 : scalar potential 
 : angular velocity 
 : spin tensor 
 : vorticity vector 
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2. Conservation Equations in Continuum 
Mechanics 

Sir Isaac Newton was the first to correctly state the basic laws governing 
the motion of a particle and to demonstrate their validity. The dynamics of 
continuum uses the concept of a particle, called the fluid particle, which 
follows Newton’s second law of motion. In continuum mechanics, they are 
written in the form of conservation equations. In this chapter, the basic 
forms of conservation laws are introduced to mass, linear momentum, an-
gular momentum and energy. One of which is Cauchy’s equation, which is 
equivalent to Newton’s second law of motion. These conservation equa-
tions are unconstituted; however, later chapters looking at specific types of 
fluid flow will consider constituted equations as well. 

2.1 Mass Conservation 

Let us begin to consider the flow system of a continuum medium, which 
consists of fluid particles. A fluid particle, that moves with a velocity u  
and has the density t),(x  at position ),( 0 txxx , is a representative ob-
ject of the medium, having the mass of finite volume V . The mass of the 
fluid particle can be obtained, see Fig. 2.1, using volume integral by 

V
dVm  (2.1.1) 

If we postulate that there are no sources or sinks in the medium, the 
mass of the fluid particle does not change in position and time, i.e. the 
mass is conserved in space and time as follows 

0
V

dV
Dt
D

Dt
Dm  (2.1.2) 

By setting F  as F  in the Reynolds’ transport theorem given by Eq. 
(1.5.8), we have 

43
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            0
V

dV
Dt
D u  (2.1.3) 

Since the volume of the fluid particle is arbitrary, the volume integral in Eq. 
(2.1.3) can be made to vanish in an identical manner from the fluid system 
of the continuum, which gives 

0u
Dt
D

 (2.1.4) 

Equation (2.1.4) can be further expanded, using the definition of the mate-
rial derivative of Eq. (1.1.7) to give 

0u
t

 (2.1.5) 

Equations (2.1.4) and (2.1.5) are both called the equation of continuity (or 
the continuity equation). Considering the nature of derivation and for the 
sake of distinguishing between the two, Eq. (2.1.4) is often called the non-
conservation form of the continuity equation, and Eq. (2.1.5) is called the 
conservation form of the continuity equation. u  in Eq. (2.1.5) is identi-
fied as the mass flux. 

If the medium of continuum is incompressible, the density  of each 
material point x  is kept constant with respect to time t . This will lead Eq. 
(2.1.4) to a form, setting 0DtD , as follows 

0u  (2.1.6) 

The flow field described by Eq. (2.1.6) is called the solenoidal velocity 
field. When, in fact, the flow of a medium is incompressible, the flow is an 
isotropic flow, in which pressure change does not affect its density. 

2.2 Linear Momentum Conservation 

Studying the dynamics of flow in a continuous medium requires the forces 
acting on a fluid particle and the acceleration of the fluid particle to be in 
an inertial frame of reference. The law that governs the dynamic motion 
of continuum medium is given by the conservation of linear momentum. 
Note that “linear” is understood as the motion of a particle in the direc-
tion of the acceleration, and is used in order to distinguish it from the 
“angular” momentum. Below we have shown two kinds of forces seen 
when in dealing with the motion of a continuum medium. As previously 
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descried in Section 1.6, they are surface forces, representatively written as 
dn St  for a surface element ˆdSn , and body forces, similarly expressed 
dVg  for a volume element dV . The linear momentum at a position of 

t,0xxx  can be written dVu  for a volume element inside the finite 
volume of the fluid particle. 
 

Fig. 2.1 A fluid particle moving with velocity u  

The volume element, the density of which is , is in motion with a ve-
locity of u, as shown in Fig. 2.2. The conservation of the linear momen-
tum of the fluid particle can be written 

d d dnV S V

D V S VDt u t g  (2.2.1) 

where the left hand side of Eq. (2.2.1) represents the change of linear mo-
mentum, and the first term of the right hand side of Eq. (2.2.1) corresponds 
to the net surface force and the second term signifies the net body force 
acting on the fluid particle. This is an integral form of the equation of mo-
tion, derived from the principle of the conservation of linear momentum. 
The equation of (2.2.1) can be changed by considering Cauchy’s stress 
formula given by Eq. (1.6.8) and can be reduced into the volume integral 
form, using Gauss’ divergence theorem. After applying Reynolds’ transport 
theorem from Eq. (1.5.8) to the change of linear momentum, specifically 
setting uF  in Eq. (2.2.1), we can obtain the conservation of linear 
momentum in volume integral form 
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Fig. 2.2 Force acting on a fluid 

VVV
dVdVdV

Dt
D guuu T  (2.2.2) 

However, since the volume V of the fluid particle is arbitrary, this equation 
is only satisfied if 

guuu T
Dt

D  (2.2.3) 

which can alternatively be expressed 

guuu T
t

 (2.2.4) 

Considering the continuity equation, Eq. (2.2.4), where uu  is called the 
linear momentum flux, can be re-arranged as Eq. (2.1.5) 

              guuu T
tDt

D  (2.2.5) 

and thus 

gu T
Dt
D

 (2.2.6) 

The Eq. (2.2.6) is called Cauchy’s equation of motion. The equation is 
valid for any continuum when the stress tensor T  and the body force g  
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are specified. It should be noted that the body force of gravity furnishes an 
example of g  for problems we consider in the text. Equation (2.2.6) can 
be further reduced to a form, using the definition of the substantial deriva-
tive given by Eq. (1.1.7) as follows 

guuu T
t

 (2.2.7) 

Again considering the nature of derivation, and to clearly distinguish 
between Eqs. (2.2.4) and (2.2.7), Eq. (2.2.4) is often called the conserva-
tion form of the linear momentum and Eq. (2.2.7) the non-conservation 
form of the linear momentum. 

If the continuum is incompressible, i.e. 0=u , and we take the rota-
tion, i.e. (  ), of each of the terms in Eq. (2.2.7), we can then obtain 

Tuu
t

 (2.2.8) 

Equation (2.2.8) is called the vorticity transport equation. The advantage of 
using Eq. (2.2.8) is that the gravitational acceleration g , where zêgg , 
can be eliminated in the same way, if the force can be identified as a 

xgpp * , with the pressure gradient 
gpp* . As a result of this reduction, Eq. (2.2.8) may be expressed 

in the following form 

uu
t

 (2.2.9) 

where  is the deviatoric stress tensor, as introduced in Eq. (1.6.13). Equa-
tion (2.2.9) is particularly useful when a velocity field is described by a 
stream function. In this case, the system of flow can be expressed with a 
component of the vorticity vector normal to the flow plane and the stream 
function. The terms appearing in the left hand side of Eqs. (2.2.8) and 
(2.2.9) in kinematics of are respectively the transient term, the convec-
tive term and the straining term. 

2.3 Angular Momentum Conservation  

Some continuum while in motion are strongly effected by an external field. 
As such, the angular momentum per unit mass does not simply equate to 
the moments of the linear momentum per unit mass.  This is particularly 

potential force, such that 
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true when there are other torques, which are not part of the moments of 
force, appearing in the linear momentum equation. Such material of con-
tinuum is called polar material. Within the frame of the continuum me-
chanic, speaking in general terms, we will derive a conservation equation 
of angular momentum. Before proceeding to the polar fluid, we will exam-
ine non-polar fluid in great detail, so that its properties and character are 
clearly understood. 

We shall designate dVux  as the angular momentum of a volume 
element in a fluid particle while dVgx  and dSntx  are torques due 
to body force and surface force respectively. Next, applying the conserva-
tion law to these forces, it suggests that the net change of the angular mo-
mentum is equal to the net torque acting upon the fluid particle, see Fig. 
2.3. The conservation equation of the angular momentum can be thus writ-
ten as follows 

S nVV
dSdVdV

Dt
D txgxux  (2.3.1) 

With the aid of the Reynolds’ transport theorem of Eq. (1.5.8) and the con-
tinuity equation of Eq. (2.1.5), setting uxF  and using the relation 

0uu  and dtdDtD uxux , we have  

V S nV
dSdVdV

dt
d txgxux  (2.3.2) 

The second term of the right hand side of Eq. (2.3.2) can be further re-
duced to the following forms, using Cauchy’s stress formula given by Eq. 
(1.6.8). 

Fig. 2.3 Torques due to body force and surface force 
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Fig. 2.4 Body couple and surface couple 

dV

dSdSdS

V

SSS
n

x

xnxntx

T

TˆTˆ
 

(2.3.3)

Here, we used the polyadic alternator kijkji ˆˆˆ eee  and the Gauss’ diver-
gence theorem, shown as 

V l

lkjijk

S lkljijk dV
x

Tx
SdnTx  (2.3.4) 

Furthermore, it will be shown that the i th component of  xT  , i.e. 

llkjijk xTx , can be expressed by the following relations 

Ax Tjkijk
l

lk
jijk

l

lkjijk T
x
Tx

x
Tx

 (2.3.5)

where we used jllj xx . The vector A  in Eq. (2.3.5) is a pseudovec-
tor, which has these components of the skew-symmetric part of the stress 
tensor T , which is demonstrated here as 

        332211211231331232231 AAATTTTTT eeeeeeA ˆˆˆˆˆˆ  (2.3.6)

where the components of A  are derived from the matrix 
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0
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AA

aT  

 

(2.3.7) 

 

where aT  is the skew-symmetric part of the tensor T  derived from the fol-
lowing relationship 

as
TT TTTTTTT

2
1

2
1

 (2.3.8) 

where sT  is the symmetric part of the tensor T .  
Equation (2.3.6) implies the fact that A  is the vector of the tensor T , 

indicating that A  can be obtained from the tensor T  and conversely aT  
can be found from the pseudovector A  as follows 

T:A  (2.3.9) 

and 

AT
2
1

a  (2.3.10)

Employing Eqs. (2.3.3) and (2.3.5) to the integral equation of Eq. (2.3.2), 
we have the resultant integral equation 

VV
dVdV

Dt
D Agux T  (2.3.11)

The volume integral vanishes identically since the volume is arbi-
trary, so that 

Agux T
Dt
D  (2.3.12)

The left hand side vanishes identically by Cauchy’s equation of motion 
(see given by Eq. (2.2.6)), the conservation law of linear momentum, con-
sequently, we reach the conclusion that A =0. This implies from Eq. 
(2.3.10), that the skew-symmetric part of the stress tensor T  vanishes, so 
that the stress is written 

sTT  or jiij TT  (2.3.13)
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Considering the angular momentum of the linear momentum equation 
(Cauchy’s equation of motion), for a non-polar fluid it can be concluded 
that the stress tensor is symmetric. If, in other words, the stress tensor of a 
continuum medium in motion is symmetric, the angular momentum of a 
linear momentum equation is always conserved so that the motion of fluid 
can only be determined by the linear momentum equation.   

In treating a polar fluid, however, an angular momentum due to a long- 
range force may be exerted on a fluid particle, and likewise for the body 
force per unit mass from distant surroundings. As displayed schematically 
in Fig. 2.4, for example, the extra angular momentum we introduce to a 
polar fluid may be a body couple f  in addition to the body torque 

gx ,  i.e. f  per unit mass. In similar fashion, a surface couple nC  per 
unit surface may also be introduced to the surface of a fluid particle, as a 
surface traction couple, due to a short-range force, and likewise for the sur-
face torque ntx . The total angular momentum L  of a fluid particle is 
considered in a certain way that L  may consist of the sum of the moment 
of linear momentum ux  per unit mass and an internal angular momen-
tum (or intrinsic angular momentum s ) per unit mass, which accounts for 
the local spin field of a material element. Thus, in consideration of the bal-
ance of total angular momentum, we have 

S
nn

V

V

dSdV

dV
tD

D
Dt
D

Ctxfgx

suxL

 
(2.3.14)

In Eq. (2.3.14), nt can be given by Cauchy’s stress formula, as seen earlier 
in Eq. (1.6.8), i.e. Tn̂t n . Analogously, nC  can also be found by a 
similar expression given below, since nC  arises from diffusive transport 
of internal angular momentum where c  is called the couple stress tensor. 

cn̂C n  (2.3.15)

Introducing Eqs. (1.6.8) and (2.3.15) to Eq. (2.3.14) yields, after tensor 
calculus likewise deriving Eq. (2.3.5), we have 

V

V

dV

dV
Dt
D

Tc xgxf

sux
 

(2.3.16)
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Applying the Reynolds’ transport theorem and the continuity equation to 
the left hand side of Eq. (2.3.16), and vanishing the volume integration due 
to an arbitrary volume, we have  

Axgxfsux Tc
tD

D  (2.3.17)

Equation (2.3.17) is an equation of the total angular momentum of general 
form for polar fluids. In order to exploit the conservation of angular mo-
mentum, Eq. (2.3.17) can be further reduced to simpler form with the fol-
lowing procedure. That is, first taking the vector product of x  to 
Cauchy’s equation of motion, we can obtain 

Txgxux
Dt
D

 (2.3.18)

and then using the relationship DtDDtD uxux  , Eq. (2.3.17) can 
be reduced to the following expression after subtracting Eq. (2.3.18) from 
(2.3.17)  as follows 

Afs c
Dt
D  (2.3.19)

This is a resultant equation for the internal angular momentum for a polar 
fluid.  

In the case of a polar fluid, the skew-symmetric part of the stress ten-
sor aT  from Eq. (2.3.10) would be generated by an effect of the body cou-
ple f  and the diffusion of the surface couple c  to the net change of 
the internal angular momentum DtDs . Equation (2.3.19) is a non-
conservation form. The conservation form of the equation for the internal 
angular momentum can be reduced to the following form, after the mass 
conservation is taken in account, so as to yield the following, where us  
is called the spin flux. 

         Afuss c)(
t

 (2.3.20)

2.4 Energy Conservation 

The energy conservation of a continuum medium can be considered from the 
first law of thermodynamics, when the law is applied to the thermodynamic 
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system of a particle. The first law of thermodynamics in a dynamic system 
implies the conservation of thermal energy and work, which means that 

WQukd )(  (2.4.1)

where  W  and Q  are the work done by the system, and the heat sup-
plied to the system respectively. k  and u  in Eq. (2.4.1) are the kinetic en-
ergy and the internal energy of the system respectively. When the system is 
at equilibrium, Eq. (2.4.1) can be written with a unit of power by 

WQ
t

W
t
Q

dt
ukd

              

)(
 

(2.4.2)

where W  and Q  are the work output by the system and the heat input to 
the system respectively.  

In consideration of the first law of thermodynamics as applied to a sys-
tem of a certain fluid particle as depicted in Fig. 2.5, we may be able to ob-
tain the work output W  in the first place, taking a dot product to the forces 
of the fluid particle as follows 

VS
n dVdSW ugut  (2.4.3)

The first term of the right hand side is the work output by a surface force 
and the second term is the work output by a body force. While applying a 
dot product of u  to Cauchy’s equation of motion from Eq. (2.2.6), we can 
have the following expression  

              

uguu

uguu

)(                

)(
2

2

:TT

T
Dt
D

 
(2.4.4)

Equation (2.4.4) can also be written by a volume integral form as 

dVdV

dVdV
Dt
D

VV

VV

uu

uuu

gT

:T

)(

)(
2
1

 
 

(2.4.5) 
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Fig. 2.5 The first law of thermodynamics to a fluid particle 

 
Denoting Cauchy’s stress formula from Eq. (1.6.8), i.e. Tn̂t n  and 

applying Gauss’ divergence theorem to the surface integral in Eq. (2.4.3), 
we can write the work output W  as 

dVdVW
VV

uguT  (2.4.6)

Thus, equating the right hand side of Eq. (2.4.5) with Eq. (2.4.6), we can 
newly express the work output W  as 

        dVdV
Dt
DW

VV
uuu

2
1 :T  (2.4.7)

Equation (2.4.7) indicates that the work output of a system of a fluid parti-
cle can be divided into two parts; the change of kinetic energy and the rate 
at which the internal stresses do work. 

Let us examine further the scenario where T  is not symmetric. Denot-
ing again sa TTT  in Eq. (2.3.8), and eu  in Eq. (1.1.18), the 
work output due to the internal stress can be written as 

:Te:T
e:TT:T

as

as

          
u

 
(2.4.8)
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second term of Eq. (2.4.8) from Eq. (1.1.29) for the spin tensor 

ee ˆˆ
2
1

2
1

i

j

j

i
ji

x
u

x
u  (2.4.9)

Furthermore, aT  as given by Eq. (2.3.10), utilizing these identities, we can 
reduce the term to 

A

A

2
1          

2
1          
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1          
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pkkp

pkijpijk
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A

A

:T

 

(2.4.10)

As a result, Eq. (2.4.10) indicates that the skew-symmetric part of the 
stress tensor does produce an output work, owing to the vorticity. However, 
as easily demonstrated when the stress is symmetric, the work output due 
to the internal stress is simply shown by the deformation as 

e:TT su:  (2.4.11)

  The heat input of the system of a fluid particle is conceived to consist of 
heat transferred to the system through the surface and heat generated in the 
system, so that Q  can be written as  

 
VS

bdVdQ Sq  (2.4.12)

Here, q  is the heat flux vector; the negative sign is assigned toward the 
surface, i.e. opposite to the surface direction n̂. Moreover, b  is the 
amount of heat generated per unit mass in the system. Equation (2.4.12) 
can be converted into a volume integral by applying Gauss’ divergence 
theorem as follows 

V
dVbQ q  (2.4.13)

The total change of the system energy expressed with k  and u  in Eq. 
(2.4.2) can be written as 

Thus, we have decomposed u  into the symmetric and skew-symmetric 
parts so that other products vanish identically. Let us further consider the 
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dVu
Dt
D

dt
ukd

V 2
1 uu  (2.4.14)

As we can see, u  is the internal energy per unit mass. The energy pos-
sessed by the system may include spin energy if the continuum has an in-
ternal structure and field energy derived from an externally imposed filed, 
depending upon the circumstance and property of the continuum in motion. 
Generally speaking, within the continuum mechanics we write the energy 
equation of a fluid, by substituting Eqs. (2.4.7) and (2.4.13) together with  
Eq. (2.4.14) into Eq. (2.4.2), we can obtain the equation of the energy con-
servation as 

dVbdVu
tD

D
VV  

qu:T  (2.4.15)

Note that the power W  is chosen as to the work input to the system in Eq. 
(2.4.15), where the sign of plus is assigned. After vanishing the volume in-
tegral from both sides of equation (2.4.15) for an arbitrary volume and 
with Reynolds’ transport theorem to the right hand side of Eq. (2.4.15), we 
can obtain the resultant equation to yield 

bu
t

uq :T  (2.4.16)

This is the conservation equation of energy, which is called the Neumann 
energy equation in the conservation form. The equation can also be re-
duced to the non-conservation form, as practiced previously by consider-
ing the equation of mass continuity, which yield the form 

b
tD
uD uq :T  (2.4.17)

The Neumann energy equation given by Eq. (2.4.16) or (2.4.17) is an ex-
pression derived from the first law of thermodynamics. The equations con-
tain thermodynamic properties, such as u  and , so that the equations can 
be further expanded thermodynamically in order to define the state of con-
tinuum undergoing thermal process. 

2.5 Thermodynamic Relations 

The state of a thermodynamic system can be determined by its thermody-
namic properties, which are connected by its relationship to the general term 
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0),,( Tvpf  (2.5.1)

As such, p  is the thermodynamic pressure, or simply the pressure, v  is 
the specific volume 1v  and T  is the absolute temperature. Equation 
(2.5.1) is called the equation of state, where its functional form depends 
upon the state of the thermodynamic properties of the substance contained 
in the system. Any one of the three variables in Eq. (2.5.1) can be ex-
pressed as a function of the other two by solving Eq. (2.5.1). This means 
that the thermodynamic state is completely determined by two remaining 
thermodynamic properties. An important concept to note here is the state 
of equilibrium, which we can determine through the thermodynamic state 
from Eq. (2.5.1). The state of equilibrium is that property which does not 
vary over time when the external conditions remain unchanged. 

In some situations, when a continuum is in motion with chemical 
reaction, a relaxation process or in a large temperature gradient, that is a 
process that results in the inability of the system to reach the state of 
equilibrium in the time available, some processes have to be considered by 
the states of non-equilibrium. However, the majority of processes in 
engineering fluid mechanics are in the state of equilibrium, and the system 
undergoes the reversible process where the process is connected only 
between those initial and final states which are states of equilibrium. 

 As introduced in Eq. (2.4.1), the first law of thermodynamics in a dy-
namic system of a continuum, the internal energy u  can be regarded as in-
dependent of the kinematics of the motion of flow in the limit of the equi-
librium thermodynamics (thermostatics) as follows 

WQdu  (2.5.2)

The first law of thermodynamics, demonstrated by Eq. (2.5.2), gives the 
conservation of energy in quantity, but does not have any information on 
the quality of the energy. The work done by the system W  and the heat 
supplied to the system Q  are not thermodynamic properties, which can-
not be determined by being given two equilibrium states between a trans-
formation process. However, W  may be determined by a known reversi-
ble process of work transfer, considering p  and v  at two given 
equilibrium points of states as follows 

pdvW  (2.5.3)

It is the Q  that can not be determined by any other known thermody-
namic properties, but only by the thermodynamic property s, the entropy.  
The second law of thermodynamics gives a corollary that there exists a 
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thermodynamic property of a system such that a change in its value from 
state 1 to 2 is equal to 

s

ss
T
Q

       

12

2

1  
(2.5.4)

For any reversible process, Q  can be written by the change (the differen-
tiation) of the entropy as 

TdsQ  (2.5.5)

Thus, Eq. (2.5.2) can be written with Eqs. (2.5.3) and (2.5.5) as follows 

pdvTdsdu  (2.5.6)

or 

1pdTdsdu  (2.5.7)

Obtaining a new thermodynamic property s, we have the following 
thermodynamic relationship between the thermodynamic properties of 

sTvp ,,, :  
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s
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v

 
  (2.5.11)

Equations (2.5.8) to (2.5.11) are called the Maxwell equations, which 
form the basis for obtaining further important thermodynamic relationships 
which may be utilized for evaluation of thermal properties of continuum 
substance. 
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Among others, an important thermal property is the specific heat, 
which is a quantity that gives the heat supplied to the system when the 
temperature difference is given, so that 

cdTQ  (2.5.12)

where c is the specific heat. Substituting Eq. (2.5.12) to the first law of 
thermodynamics Eq. (2.5.2) and denoting pdvW  from Eq. (2.5.3), we 
have the following relationships; 

pdvducdT  (2.5.13)

or 

vdpdhcdT  (2.5.14)

Such that h is defined as 

pvuh  

1pu  (2.5.15)

In Eq. (2.5.15) h  is the enthalpy per unit mass, which is a specific energy 
function. From Eqs. (2.5.13) and (2.5.14), therefore, we can obtain two 
kinds of specific heat: 

v
v T

uc  (2.5.16)

and 

p
p

T
hc  (2.5.17)

vc  denotes the specific heat evaluated at constant volume (constant den-
sity) and pc  denotes the specific heat evaluated at constant pressure. 

Considering the thermodynamic relations, we are now in position to 
expand the Neumann energy equation of Eq. (2.4.17) by decomposing the 
total stress tensor T  into  and p  as described in Eq. (1.6.13). Denoting 
that p  in Eq. (1.6.13) is regarded as the thermodynamic pressure in the 
state of equilibrium, so that Eq. (2.4.17) becomes 

bp
Dt
Du uuq  (2.5.18)
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Since Du  in Eq. (2.5.18) can be regarded as the total differentiation by the 
two thermodynamic properties v  andT, it then yields 

dTdv
vT T

u
v
uDu  (2.5.19)

From Eq. (2.5.6), we can write Eq. (2.5.19) as 

Dt
DT

T
u

Dt
Dv

v
sTp

Dt
Du

vT

 (2.5.20)

Tvs is obtained from the Maxwell equation of Eq. (2.5.10). The mate-
rial derivative of v  in Eq. (2.5.20) in a limit of 1v  can be written as 
follows 

u
Dt
D

Dt

D

Dt
Dv 11

1

2  (2.5.21)

Thus, using Eqs. (2.5.20) and (2.5.21), Eq. (2.5.18) can be rewritten as 

b
T
pT

Dt
DTc

v
v uuq  (2.5.22)

(2.5.16). With a similar manipulation, using the enthalpy h  defined in  Eq. 
(2.5.15), i.e. pvhu , into Eq. (2.5.18), we can obtain the following ex-
pressions for the conservation equation of energy as follows; 

   b
Dt
Dp

TDt
DTc

p
p

ln
1lnuq  

(2.5.23)

and 

b
Dt
DpT

Dt
DTc Tp uq  (2.5.24)

pc defined by  Eq. (2.5.17). In Eq. (2.5.24), T  is the coefficient of ther-
mal expansion, which is made apparent by 

Here, the term vTu  was replaced by the specific heat vc  given by Eq. 

We can now see that the term pTh  was replaced by the specific heat 
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p
T T

1
 (2.5.25)

Note that for an ideal gas TT 1 and for a liquid, T  is usually smaller 
than T1 . The enthalpy change dh  is also written by using the quantity T , 
and it can be thus derived from the thermodynamics relationship; 

dpTdTcdh Tp 1  (2.5.26)

In the case of an incompressible flow, i.e. 0u , or if the pressure 
variation is supposed to be small enough that the term DtDp in Eq. 
(2.5.23) can be disregarded, which is really limited to nearly incompressi-
ble material, the conservation equation of energy will become 

b
Dt
DTc p uq :  (2.5.27)

It should be kept in mind that in a compressible flow or a nearly in-
compressible flow of continuum, the specific heat is pc . In most practice 
flows of nearly incompressible materials, it is satisfactory to say that 

vp cc .  
Considering Eq. (2.4.12), the heat transfer q  to a fluid particle is con-

sidered to be carried out by heat conduction through the surface. In this 
case q  is given by Fourier’s law; 

Tkcq  (2.5.28)

Here, ck  is the thermal conductivity, noting that n̂  is directed toward the 
surface in Eq. (2.4.12). It is further to be noted that Eq. (2.5.28) stands for 
homogeneous and non-diffusing mixtures. Thus, using Eqs. (2.5.28), 
(2.5.27) is written 

       bTk
Dt
DTc cp u:  (2.5.29)

Moreover, for a constant ck , Eq. (2.5.29) can be further simplified: 

pp c
b

c
Tk

Dt
DT u:12  (2.5.30)
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where, pc ckk  is called the thermal diffusivity. Equation (2.5.30) 
gives an equation for the temperature field of the flow. 

Exercise 

Exercise 2.1 Mass Conservation 

Consider a steady state flow in a branching channel, entering inlet section 
1 and leaving sections 2 and 3 with mean velocity vectors 1u , 2u  and 3u  
respectively, normal to the cross sectional area (surface element) of 1A , 

2A  and 3A  as shown in Fig. 2.6. Write the continuity equation of the sys-
tem. If outlet section 3 is blocked, what will the continuity equation be? 

Ans. 

Using the continuity equation of (2.1.5) for the steady state, i.e. 
0t , the integral equation may be recovered by Gauss’s divergence 

theorem 

0
SV

ddV Suu  (1)

Applying Eq. (1) to the current system gives 

0
321

332211 SAAA
ddSudSudSu Su  (2)

Since at the channel surface there is a relationship of Su d , which is to 
say that there will be no flow across the wall, the last term of Eq. (2) van-
ishes. So that 

333222111 uAuAuA  (3)

This is the continuity equation of the system. If 03u , Eq. (3) becomes 

222111 uAuA  (4)
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Fig. 2.6 Flow in branching channel 

21 mm  (5)

Equation (5) indicates that the mass flow rate m  is conserved from the 
inlet to the outlet of the channel. 

Exercise 2.2 Conservation of Linear Momentum 

A steady state flow is passing through a section of a channel as shown in 
Fig. 2.7. The forces 1F  and 2F  acting on the control volume (the channel 
volume) are due to the surface force and body force respectively. Assum-
ing the inlet’s mean velocity 1u  and outlet’s mean velocity 2u  are respec-
tively parallel to the surface element 1A  and 2A , write a linear momentum 
equation of this system. 

Ans. 

For steady state of flow, the conservation equation of linear momentum 
can be written by referring to Eq. (2.2.4) as follows 

gTuu  (1)

Using the volume integral in the equation and applying Gauss’s divergence 
theorem we have 

and 
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Fig. 2.7 Forces acting on a section of channel 

21 FFSuu
VS V

dVdVd gT  (2)

The left hand side of Eq. (2) is calculated as follows when applied to the 
system 

22221111

21

uu

SuuSuuSuu

AuAu

ddd
SAA  (3)

The integral over the channel wall becomes null due to no cross flow 
through the wall. Therefore, Eq. (2) can be reduced to the form 

211122 FFuu mm  (4)

With the continuity equation from Exercise 2.1, i.e. 21 mmm , we can 
derive the conservation equation of linear momentum for this system as 
follows 

2112 FFuum  (5)

Equation (5) is nothing but Newton’s second law of motion, stating the 
change of momentum is equal to the sum of forces applied to the system. 
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Exercise 2.3 Torque on Control Volume 

When considering non-polar fluid, the conservation equation of the angu-
lar momentum given by Eq. (2.3.1) can be alternatively expressed by the 
general form 

NL
Dt
D

 (1)

where L  is the net angular momentum acting on a control volume (in the 
Eulerian description) and N  is defined as the net torque exerted on the 
system. Verify the steady torque zN  around the z  axis due to the change 
of L , where L  is obtained from 

dV
V

uxL  (2)

See Fig. 2.8 for the flow configuration.  

Ans. 

With the aid of Reynolds’ transport theorem, to the left hand side of Eq. 
(1) we have 

SVV
d

t
dV

Dt
D Suuxnuxux ˆ  (3)

Additionally, for a steady state, i.e. 0t , Eq. (3) will be 

dS
Dt
D

S
nuuxL ˆ  (4)

Equation (4) can be integrated, as depicted schematically in Fig. 2.8, to 
give the surface of the control volume; 

dSdSdS

dS

SAA

S

nuuxnuuxnuux

nuux

ˆˆˆ

ˆ

22221111
21

 
(5)

Since there would not be any cross flow through the channel wall, the 
last term of Eq. (5) vanishes and we have 

222111

2222211111

uxux

uxuxL

mm

AuAu
Dt
D

 
(6)
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Therefore the change of angular momentum around the z axis can be ob-
tained by applying the dot product of zê  to Eq. (6), which is 

tt
z urmurm

Dt
DL

111222
 (7)

Note that tu2  and tu1  are the tangential components of the velocity vector 
1u  and 2u  respectively, perpendicular to the z  axis. Considering the equa-

tion of continuity, i.e. 21 mmm , we can finally derive the torque zN , 
which is given by the following formula; 

ttz ururmN 1122  (8)

 
Fig. 2.8 Torque exerted on control volume 

From the perspective of engineering application, torque is a very im-
portant parameter to characterize rotating machineries, particularly for the 
rotors of turbomachines in fluid engineering. Equation (8) is often referred 
to as Euler’s pump or turbine equation, which will be studied in more de-
tail for turbomachines in a few sections of Chapter 4. 

Exercise 2.4 Energy Conservation of a System 

Consider a control volume as a thermodynamic system, where a perfect 
fluid enters from section 1 and leaves from section 2. Velocities 1u  and 2u  
at each section are parallel to the surface elements 1A  and 2A  respectively, 
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as shown in Fig. 2.9. If we assume that the system gives mechanical work 
mW  to the surrounding, besides its work input sW  to the system, the first 

law of thermodynamics in the system may be applied to the system by 
writing the conservation of energy as follows 

ms WWQuk
tD

D  (1)

Derive an expression of an energy conservation equation at a steady 
state for the system in Fig. 2.9. Note that the minus sign of the mechanical 
work done mW  by the system is meant to be toward the outside (surround-

ing) of the system and the plus sign of Q  is heat transferred to the system 
from the outside (the surrounding). 

Fig. 2.9 Energy conservation of a system 

Ans. 

We shall derive an expression for the energy balance to the heat input 
and the mechanical work by writing 

sm Wuk
tD

DWQ  (2)

The right hand side of Eq. (2) can be expanded in consideration of Eqs. 
(2.4.3) and (2.4.14) as follows 
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S V
n

V
s

dVdS

dVu
tD

DWuk
tD

D

uut

uu

g

2
1

 
(3)

Furthermore, for the stress vector nt , Cauchy’s stress formula of Eq. 
(1.6.8) can be applied as 

IˆTˆ pn nnt  (4)

Note that the flow is assumed to be a perfect fluid as given by Eq. (1.6.11). 
Substituting Eq. (4) into (3) and applying Reynolds’ transport theorem to 
the first term of right hand side of Eq. (3) with the condition 0t  
yields 

SS

S
m

dSzdSp

dSuWQ

nunu

nuuuu

ˆˆ

ˆ

g

2
1

 

 

 

(5) 

Here, the volume integration of Eq. (3) was transformed into the surface 
integral by Gauss’s divergence theorem, and it is noted that the gravita-
tional acceleration g  is given by the potential zgg . Carrying over 
the surface integral of Eq. (5) to the control volume, noting that there 
would not be any cross flow through the wall of the control volume, but 
only through the inlet and outlet sections, as depicted Fig. 2.9, we can ob-
tain 

    

uuzzppuum

zAuzAupAupAu

uAuuAuuAuuAuWQ m

12
1

1

2

22
1

2
2

11112222
1

1
111

2

2
222

111222
2
1111

2
2222

2
1

2
1

2
1

g

gg  

(6)

Here, notations of u  and u  are the internal energy per unit mass at the 
outlet and inlet respectively (in order to distinguish between the velocity 
components and the internal energy). In deriving Eq. (6), the equation of 
continuity is used by setting 21 mmm . 
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Problems 

2-1. Give some examples, in which the equation of continuity given by Eq. 
(2.1.5) does not follow; provide reasons as well. 

 
Ans. etc. process, flow in the reactions Chemical  

 
2-2. In incompressible irrotational flow, the velocity field is entirely de-

scribed by a scalar function of x , by solving the Laplace’s equa-
tion 02 . Give proof of this problem. 

 

Ans. 
0thatSo

0since0and
2

,, uuu  

 
2-3. Write the non-conservation form of the linear momentum given by Eq. 

(2.2.7), in Cartesian coordinates system, using x , y , z  as coordi-
nates and zyx uuuu ,,u , ...,,T xyxx TT , zyx ggg ,,g , and p . 

Ans. 7-BAppendix  See  
 
2-4. Write the vorticity transport equation given by Eq. (2.2.9) on a two- 

dimensional plane (the x – y  plane), setting zzê . Use notations 
similar to those of Problem 2-3. 

Ans. 

yxyyxx

y
u

x
u

t
D

yxxxyyxy

z
y

z
x

z

 

 
2-5. If the stress tensor T  has the skew-symmetric part, what care has to  

be taken in order to analyze the flow system? 
 

Ans. 
equations. of system

 the toincluded be  tohas
equation momentumAngular 
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2-6. Obtain a form to calculate the power from Eq. (8) in Exercise 2.3. 
 

Ans.
22

1
2
2

1122

 axis.

aroundrotation  flow  theof
locity angular ve  theiswhich in

 Assume

rrmNP

z

ruru

z

tt ,,

 

 
2-7. In the energy conservation equation, Eq. (2.5.29), if the stress is sym-

metric, write a two-dimensional equation using the Cartesian coordi-
nates system (the x – y  plane) assuming the thermal conductivity is 
constant, and ignore the internal heat generation. 

 

Ans.

y
u

x
u

y
u

x
u

t
y

yy
y

yx
x

xy
x

xxu:

useand0for 

9-BAppendix  See

 

Nomenclature  

A  : pseudovector 
321 A,A,A : components of pseudovector 

nC  : diffusive transport of internal angular momentum 
c  : couple stress tensor 

pc  : specific heat evaluated at constant pressure 

vc  : specific heat evaluated at constant volume 
g  : body force 
g  : gravitational acceleration 
h  : specific enthalpy 
k  : specific kinetic energy 

ck  : thermal conductivity 
k  : thermal diffusivity 
L  : external angular momentum 
m  : mass 
m  : mass flow rate 
n̂  : unit normal (surface direction) vector 
p  : thermodynamic pressure 
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Q  : heat input 
q  : heat flux vector 
s  : specific entropy 

Ad ,S  : surface element and surface areas 
T  : total stress tensor 

aT  : skew-symmetric part of the tensor 

sT  : symmetric part of the tensor 
T  : absolute temperature 
t  : time 

nt  : stress vector 
u  : velocity vector 
u  : specific internal energy and x -directional velocity component 
V  : finite volume of fluid particle or control volume 
v  : specific volume (1 ) 
W  : work output 

T  : coefficient of thermal expansion 
 : density 
 : deviatoric stress 
 : vorticity 
 : angular velocity 
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3. Fluid Static and Interfaces 

Now we will look at how the four general conservation laws we developed 
in previous chapters can be applied to a great many important engineering 
problems when we constitute the system of equations. For many physical 
flows in engineering problems, the assumptions of frictionless or inviscid 
and incompressible flows allow us to create a reasonably accurate model 
representing practical situations. 

For the sake of aiding understanding of how to apply the laws we have 
just developed in closed systems, we will begin to consider a number of 
simpler but still very useful models demonstrated in practical cases. 

Fluid static is the simplest case in fluid engineering where the fluid is 
at the static state in equilibrium, where the concept of pressure is of par-
ticular importance.  

When fluids considered as continuum medium do not involve relative 
motion between any parts of the fluid, the state of fluid motion is in static 
equilibrium. Without the presence of velocity gradients in static equilib-
rium, the only stress present is the hydrostatic stress, except for in very 
specific cases involving non-Newtonian fluids or electromagnetic medium. 
The isotropic pressure, which acts normal to the surface of any orientation 
of a fluid particle in static equilibrium, is the hydrostatic pressure, which is 
identical to the thermodynamic pressure, as verified in Section 2.5.  

Fluid static or hydrostatics deals with the mechanics of fluid in static 
equilibrium. Fluids in static equilibrium may have common boundaries, 
where two single phases are in contact. The pressure discontinuity across 
the interface occurs due to surface tension, having the curvature of the in-
terface. This chapter also deals with a basic interfacial phenomenon, which 
is often encountered in engineering applications. 

3.1 Fluid Static 

Let us consider linear momentum conservation with a fluid particle rotat-
ing in an inertial reference frame. From Cauchy's equation of motion, 

73
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inertial reference frame, given in Eq. (1.2.12), we can write 

gua T)2( rr  (3.1.1) 

Here ra  is the relative acceleration and ru  is the relative velocity to the 
inertial reference frame. Since in static equilibrium there is no relative mo-
tion of fluid particles, ru  can be set identically at zero. The total stress ten-
sor T  can be only written in term of the hydrostatic pressure p , which is 
given in Eq. (1.6.11), and the body force g  can be regarded as the force 
due to gravity g . Thus, Eq. (3.1.1) can be written as 

gpra  (3.1.2) 

Thus,  represents the centripetal acceleration and  is 222r , 

In applications of hydrostatics, the body force is due to the gravity and 
its direction is toward the center of Earth, where we can take the coordi-
nate z  for the positive direction opposite to the gravity as shown in Fig. 
3.1. In an inertial reference frame, supposing there would not be rigid-
body rotational acceleration, i.e. 0  so that 0  and 0ra , Eq. 
(3.1.2) can thus be written by the following ordinary differential equation 
as 

g
dz
dp  (3.1.3)

It is noted that dp  is positive when dz  is negative, so that the pressure in-
creases when z  decreases, as depicted in Fig. 3.1. 

With incompressible flows, we can assume the density  in Eq. 
(3.1.3) to be constant. The variation of the pressure p  in the z -direction 
can be obtained by the integrating Eq. (3.1.3) with respect to z  as follows 

zpp g0  (3.1.4) 

where 0p  is the reference pressure at 0z . By converting pressure to 
equate to the height of a liquid column, Eq. (3.1.4) can be written as 

const.0

gg
pzp  (3.1.5) 

given in Eq. (2.2.6), and the acceleration of the fluid particle relative to the 

in which  is the angular velocity and r  is the radius of rotation. Equa-
tion (3.1.2) is the hydrostatic equation, which relates pressure distribution to 
acceleration, body force and density. 
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Fig. 3.1 Coordinate z  aand pressure p  

The quantity g0p  that appeared in Eq. (3.1.5) is referred to as the 
piezometric head. Using columns of liquid, pressures are measured by ma-
nometers. Figure 3.2 shows a U-tube manometer, which may be used to 
measure pressure 1p  in a pipe or a vessel containing a fluid of density 1 . 
The tube contains a liquid of greater density 2  than that of the metered 
fluid. The datum line, from which the liquid columns levels of 1z  and 2z  
are measured, is located at 0z  as shown in Fig. 3.2. ap  the atmospheric 
pressure acts on the liquid column level of 2z  side, so that in static equi-
librium of the balance of pressure at the datum line can be written as 

 
Fig. 3.2 U-tube manometer and inclined tube manometer 
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22111 zpzp a gg  (3.1.6)

and solving for 1p  

apzzp 11221 gg  (3.1.7) 

Thus, according to Eq. (3.1.7), the absolute pressure 1p  can be measured 
by reading the scales of 1z  and 2z . The read pressure ( 1122 zz gg ) is 
referred to as a gauge pressure. It is mentioned that at the vacuum, 1p  and 

1  will be set zero, with which 2z  becomes a negative reading to the da-
tum line, metering 2z  as g2ap . For the standard atmospheric pressure, 

2z  is measured via a 760 mm liquid column of mercury; this implies that 
mmbar]1013 [ap 5100131. [ 2mN ]. For measuring gas pressure, 

1  is much smaller than 2 , and Eq. (3.1.7) is simply written where 

apzp 221 g  (3.1.8) 

If the gauge pressure ( 22 zg ) is too small to be read on the scale of 2z , 
the liquid column can be inclined, as shown in Fig. 3.2 by the hatched lines. 
This arrangement of a manometer is referred to as the inclined tube ma-
nometer, with which the reading of scale l  on the tube is taken to give 

sin1 lz . The inclined tube enables the reading of the scale l  to be re-
corded with greater sensitivity. 

In engineering design of vessels, dams, water-gate and etc., there are 
necessities for calculations of the overall magnitudes and representative 
location of forces that act on a submerged plane or curved surface. In the 
application of the hydrostatic equation in such engineering problem, we 
shall consider forces on submerged surfaces. As shown in Fig. 3.3, force 
F  acting on a surface, submerged in a liquid may be obtained by integrat-
ing the pressure p  (the negative sign of p  indicates the direction toward 
the surface element, while the surface force acts toward the direction to a 
unit normal vector n̂  is positive) over the surface as follows 

S
pdSF  (3.1.9) 

and 

S
dSpnF ˆ  (3.1.10)
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Next let us write the unit normal vector in terms of direction cosines as 

iil eeeen ˆˆcosˆcosˆcosˆ 321  (3.1.11)

After considering Eq. (3.1.11), thus Eq. (3.1.10) becomes 
 

 
Fig. 3.3 Forces on submerged surface 

332211

332211
321

eee

eeeeF

ˆˆˆ

ˆˆˆˆ

FFF

pdSpdSpdSdSpl
SSS

i
S

i  
 

(3.1.12) 

and 

2
3

2
2

2
1 FFFF  (3.1.13)

where 1dS , 2dS  and 3dS  are the projections of the elementary area Sd  on 2–3 
( y – z ), 1–3 ( x – z ) and 1–2 ( x – y ) plane, respectively. Equations. (3.1.12) 
and (3.1.13) indicate that the overall magnitude of a force on a curved sur-
face is the vector sum of forces projected on each projection plane. 

Consider a simple case, where a flat plate is submerged in a liquid to 
the depth of 1h  and 2h  from the liquid level. Since the object is flat, we 
can take the projection plane for the same direction of n̂ , and we can think 
of that the plane as being placed with a constant angle  to the level of the 
liquid, as depicted in Fig. 3.4. Hence, for convenience, a local coordinate y 
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along the plate surface is taken from a datum coordinate x at the liquid 
level. The hydrostatic pressure p  on the plate surface at the depth h  
from the liquid level will be easily calculated by Eq. (3.1.4) as 

 
Fig. 3.4 Submerged plate 

)( hp g  (3.1.14) 

Here, only the gauge pressure is considered. Thus, the overall force acting 
to the plate is 

n

n

nF

ˆ

ˆ

ˆ

A

A

A

hdA

dAh

dAh

g

g

g

 

 

 

 

(3.1.15) 

The integral dAh
A

 can be calculated with the local coordinates x – y , re-

ferring to Fig. 3.4 as follows 

AyydAdAyhdA GA
sinsinsin

2

1

2

1
 (3.1.16) 

Here, Gy  is referred to as the centroid, 
2

1

x

x
dydA  is the surface element 

across the plate, and A  is the total surface area of the plate. Note that Gx  
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( x  directional centroid) is rather irrelevant since p  varies with respect to 
h  (and consequently to y ). Therefore, Eq. (3.1.15) becomes either 

nF ˆAyGsing  (3.1.17) 

or 

nF ˆAhGg  (3.1.18) 

From Eq. (3.1.18), it may be stated that the overall force exerted by a liq-
uid on a static equilibrium is the product of the surface area and the pres-
sure Gp  at the centroid, GG hp g . 

The representative point on the plate, where the overall force F  acts 
on the surface, is not at the centroid point, but is referred to as the center of 
pressure CC x as shown in Fig. 3.4. The local coordinates Cx ( Cx , Cy ) 
of the center of pressure C are obtained by the concept that the moment 
balance in the static equilibrium also been halted, as follows 

AC dAp )ˆ( nxFx  (3.1.19) 

F  is given by Eq. (3.1.10). With reference to Fig. 3.4, Cx  with the local 
coordinates ( Cx , Cy ) can be obtained from Cx  of Eq. (3.1.19) where 

AC xdFFx  and 
AC ydFFy  (3.1.20)

Here, F  is F  and dAyhdAdF singg . Thus, with Eq. (3.1.17), 

Cx  and Cy  can be calculated to give 

AG
C xydA

Ay
x 1  and 

AG
C dAy

Ay
y 21  (3.1.21) 

The integrations in Eq. (3.1.21), xyA
IxydA  and xA

IdAy2 , are 

called the product of the surface area A  and the second moment of the 
surface area A  (or, alternatively, the product of inertia and the moment of 
inertia of the surface area A ) about x  axis respectively. In addition, with 
some algebra for the surface A , xyI  and xI  are expressed with respect to 
the centroid axis parallel to the x  and y  axes in Fig. 3.4 as follows 

GGxyxy yAxII  and 2
Gxx AyII  (3.1.22) 
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where xyI  and xI  are those at the centroid axis. Thus, using the relation-
ship, Eq. (3.1.21) can be further written for Cx  and Cy  where 

G

xy
GC Ay

I
xx  and 

G

x
GC Ay

Iyy  (3.1.23) 

In case, for a more simple geometric plate, such as when the plate area is 
symmetric about any one of the centroid axis, xyI  becomes zero, so that 
the center of pressure is expressed as 

G

x
GGC

Ay
Iyx ,x  (3.1.24) 

This indicates that the overall force acting on the submerged plate is at a 
deeper point Cy  than the position of the centroid Gy  of the plate. In appli-
cation of further geometric cases of plate, Table 3.1 lists some of represen-
tative xI . 

 
Fig. 3.5 Buoyant force on submerged body 

With the same manner, in case of a curved surface, the overall force on 
a surface can be obtained as the vector sum of each projected plate, as veri-
fied in Eq. (3.1.12), see Exercise 3.4. 

With the extension of forces on submerged surface, we will now con-
sider the force acting on the surface of a solid body immersed in a fluid, as 
shown schematically in Fig. 3.5. With the same manner as considered in 
Eq. (3.1.9), we take a surface integral over the body where 
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Sectional Section area Second moment of 
surface area 
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Table 3.1 List of  some representative xI  
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V

S

S

pdV

dSp

pd

closed

closed

n

SF

ˆ  

(3.1.25)

(3.1.26)

(3.1.27)
where Eq. (3.1.27) is obtained from Eq. (3.1.26) by applying the Gauss’ 
divergence theorem. Noting in the hydrodynamic equation given in Eq. 
(3.1.2), an inertial reference frame without a rigid body rotation, one can 
write p  as 

gp  (3.1.28) 

so that Eq. (3.1.27) becomes 

V
dVgF  (3.1.29) 

The gravity acceleration g  is supposed to be negative for z  direction, i.e. 

zêgg  

Thus, Eq. (3.1.29) can be straightforwardly written in the simple form 

z

V z

V

dV

e

eF

ˆ

ˆ

g

g
 

 

(3.1.30) 

Equation (3.1.30) is well-known principle of Archimedes, saying that due 
to the vertical force F , the weight of an immersed body in a liquid will be 
reduced by an amount equal to the weigh of the displaced liquid Vg ,  and 
the force is called the buoyant force. 

Opposite to the situation of the buoyant force, there is a case when a 
pressurized fluid (usually a gas) is contained in a vessel, called a pressure 
vessel, where the force on the inner wall of the vessel is exerted by the in-
ner pressure, as depicted in Fig. 3.6. Certainly without a body force g, 
the overall force acting on the inner wall of enclosure is zero from an anal-
ogy of Eq. (3.1.27), where p  is zero everywhere in the enclosure. How-
ever, let us examine a partial force on a surface of the enclosure 1S , which 
is cut by an arbitrary plane A , where the plane A  has an unit normal vec-
tor An̂ , and, for brevity’s sake, let us take the local Cartesian coordinates 
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system x , y , z , i.e. ZA en ˆˆ  as shown in Fig. 3.6. The partial force 1SF  on 
the surface 1S  is calculated with the following formula 

 

 
Fig. 3.6 Inner pressure on enclosed surface 

1
1 S

S dSpnF ˆ  (3.1.31) 

Denoting zyx eeen ˆˆˆˆ coscoscos , where cos , cos  and 
cos  are directional cosines in the local coordinates system, which yields 

1

111
1
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coscoscos

S
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S
z

S
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S
xS

dSp

dSdSdSp

e

eeeF

ˆ

ˆˆˆ
 

(3.1.32)

since the integrals of  and  involve 0  and 0  re-
spectively, while  is 20  for 1S  surface, i.e. 

0coscos
1 1 0S S

dSddS  (3.1.33a)
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0coscos
1 1 0S S

dSddS  (3.1.33b)

0coscos
1 1

2

0S S
dSddS  (3.1.33c)

where ,,rfdS , ,,rfdS , and ,,rfdS , thus only 

zê  term survives. In Eq. (3.1.33c), dscos  is a surface element on the 
plane A , which gives 

zzS pApA neF ˆˆ
1

 (3.1.34)

Equation (3.1.34) indicates that the partial force on an arbitrary inner sur-
face 1S , which is cut by an arbitrary plane A , is equivalent to the force 
pA  acting on the plane A  toward the direction of normal to the plane A . 

Similarly for 2S  surface, zS pAeF ˆ
2

 would be expected, which bal-
anced as 

21 SS FF , since the overall force on the inner surface is zero. 
Usually for a pressure vessel, 

1SF  force is sustained by a wall thickness of 
the perimeter of the plane A . 

A fluid is still in static equilibrium when the fluid is rotated and accel-
erated in an inertial frame, where each fluid particle in a fluid rotates and 
accelerated as if the fluid is a rigid body. From Eq. (3.1.2) the generalized 
hydrostatic equation can be expressed in the accelerating reference frame 
as 

(a)                                               (b)  

Fig. 3.7 Liquid in accelerating reference frame 
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grp a  (3.1.35) 

where 222r  and ra  are the relative acceleration of a fluid to the in-
ertial reference frame. This is D’Alembert’s principle, where the reversed 
accelerating force in the inertial reference frame can be included as a body 
force in dealing with a problem of hydrostatics in an accelerating reference 
frame. 

In order to illustrate the physical meaning of Eq. (3.1.35), let us con-
sider a situation of a liquid contained in a rotating container, such as shown 
in Fig. 3.7(a), assuming that the liquid reaches static equilibrium with re-
spect to the container and the rotating reference frame zr . As seen in Fig. 
3.7(a), the free surface of the liquid will be curved since the centrifugal 
force is acting on a fluid particle, pushing the liquid toward the wall of the 
container. The configuration of the static state is called the forced vortex. 
In the rotating reference frame zr  , the pressure distribution in the liquid 
is a function of r  and z  so that the differential equation to give the pres-
sure distribution is of the total differentiation of p  as follows 

dz
z
pdr

r
pdp  (3.1.36) 

The partial differentiations of Eq. (3.1.36) are given in Eq. (3.1.35), re-
garding the fact that there is no relative acceleration, i.e. setting 0ra  

2r
r
p  (3.1.37)

and  

g
z
p  (3.1.38)

Thus, Eq. (3.1.36) becomes 

dzdrrdp g2  (3.1.39)

We can now integrate Eq. (3.1.39) between any two points 00 z,r  and 
zr,  to obtain 
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0
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0
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zzr

zzrrpp

g

g
 

(3.1.40)

where we have set 00r  at the center of rotation. In Eq. (3.1.40), we can 
see that pressure varies with the square of the radius and a large pressure 
difference 0pp  that is created inside the forced vortex. This is the work-
ing principle of a centrifugal pump, where a low pressure liquid is fed into 
the center of the rotation, and expelled toward the radius with a higher 
pressure. The surface of the forced vortex can be calculated by set-
ting 0pp , where at the liquid surface pressure is the same as the sur-
rounding pressure (atmospheric pressure ap  for example if the surface 
tension is neglected). Thus, from Eq. (3.1.40), we can obtain the surface 
profile 

g2

22
0

rzz  (3.1.41)

revolution. 
In the same manner, let us consider another situation, as shown in Fig. 

3.7(b), where a fluid in a tank is in static equilibrium relative to the refer-
ence frame, which linearly accelerates toward x  direction with an accel-
eration component xa . Similar to Eq. (3.1.36), we have 

dx
y
pdx

x
pdp  (3.1.42)

in which xp and yp are given in Eq. (3.1.35) as follows 

xa
x
p  (3.1.43)

and 

g
y
p  (3.1.44)

Thus, Eq. (3.1.42) becomes, to obtain p  in a deferential form 

It is easily seen from Eq. (3.1.41), that the free surface is a paraboloid of 
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dydxadp x g  (3.1.45)

We can integrate Eq. (3.1.45) between any two points 00 yx ,  and 
yx,  to give 

0

000

yyxa
yyxxapp

x

x

g

g
 

(3.1.46)
where we set 00x  at the lower left corner of the tank, as shown in Fig. 
3.7(b). With the same thought as considered in Eq. (3.1.41), we can obtain 
the shape of the free surface of the liquid as follows 

0yxay x

g
  (3.1.47)

Thus, as verified by Eq. (3.1.47) and sketched in Fig. 3.7(b), the free sur-
face declines linearly toward the direction of the acceleration. 

3.2 Fluid-fluid Interfaces 

In treating mechanics on the interface of two immiscible fluids, A and B, 
the boundary condition is such that 

nunu ˆˆ BA  (3.2.1) 

As such, the interface moves with the same velocities Au  and Bu  at the in-
terface of fluid A and fluid B respectively. n̂  denotes the unit normal to the 
interface directed from A to B, as shown in Fig. 3.8. A balance of forces, 
including inertial and body forces, may be expressed as follows 

011
nBA RR

nna ˆTTˆg  (3.2.2) 

 is the interface density,  is the surface tension, n  is the gradient of 
 normal to the interface, a  is the acceleration, and g  is the gravity accel-

eration (the body force) for the mass of . AT  and BT  are respectively the 
total stress tensor expressed in Eq. (1.6.11), and R  and R  are the principal 
radii of curvature of the interface between fluid A and B. It is mentioned here 
that the third term in Eq. (3.2.2) is called the Young-Laplace relationship. Note 
that R  and R  are positive when the corresponding center of curvature is in 
fluid A, and vice versa. 
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Fig. 3.8 Interface of two immiscible fluid 

Equation (3.2.2) is rather general, such that the  n  term may be-
come important with regard to a film with surfactants, temperature gradi-
ents and when the total stress tensor may include effects from an electro-
magnetic field, and likewise for Eq. (1.6.14). However, without loosing 
generality, we can just assume that those effects and terms included in Eq. 
(3.2.2) can be neglected, further denoting that the surface density  is 
negligible. So under that assumption, Eq. (3.2.2) can be simply written as 

011 nnn A ˆIˆIˆ
RR

pp BBA  (3.2.3) 

Equation (3.2.3) gives important stress conditions at the interface, by decom-
posing Eq. (3.2.3) to n̂  – direction and t̂  – direction, where t̂  is the unit tan-
gent to the interface. For n̂  – the direction of the interface, we can write 

011 nnnn ˆIˆIˆˆ
RR

pp BBAA   

So that  

011
RR

pp nnBnnAAB  (3.2.4) 

Equation (3.2.4) is referred to as the normal stress interface condition. A 
pressure discontinuity occurs if the normal components of A  and B  to 
the interfacial surface (denoting nn-suffix) and surface tension are present.  
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For t̂  – direction of the interface, we can write 

011 nnnt ˆIˆIˆˆ
RR

pp BBAA  
 

So that we have 

0ntBntA  (3.2.5) 

Equation (3.2.5) implies that the tangential shear stresses of fluid A and 
fluid B, denoting the nt -suffix, are the same at the interface. 

In an application of Eq. (3.2.3), let us consider a specific example of a 
bubble in a liquid, as depicted in Fig. 3.9. Denoting that the bubble is in 
static equilibrium, where the pressure Ap  of the bubble and Bp  of the sur-
rounding liquid are acting on the spherical surface, and the force due to the 
pressure difference is balanced with the surface tension of the two fluids. 
We examine the force SF  as illustrated in Fig. 3.9, due to the inner pres-
sure, acting on the enclosed surface. From Eq. (3.1.34), SF  is straightfor-
wardly calculated for a sphere as follows 

 
Fig. 3.9 Bubble in static equilibrium 

2RppF BAS  (3.2.6) 

Considering that BA pp . This force SF  is aligned normal to the plane A , 
i.e. the force SF  is supported at the perimeter of the circle area A  due to 
the force by the surface tension, which keeps both halves of the sphere to-
gether. Thus, SF  is equal to the force by the surface tension 
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RFS 2  (3.2.7) 

Equating Eqs. (3.2.7) and (3.2.6), we can obtain a relationship, that is 

R
pp BA

2  (3.2.8) 

Now let us examine the resultant equation of Eq. (3.2.8) from the point 
of view of the interfacial force balance at equilibrium. According to the 
equation of stress at the interface, Eq. (3.2.3) can be rewritten, assuming 
that the bubble is in static equilibrium and implying that there is no motion 
in either fluid A  or B , i.e. 0BA , with the condition of 

RRR  for spherical configuration, by 

 

so that it can be reduced to 

(3.2.9) 

This  gives us the same result as Eq. (3.2.8). 

Exercise 

Exercise 3.1 Micromanometer 

Two identical reservoirs, whose cross-sectional area is A , are connected 
with a U-tube of cross-sectional area a , as shown in Fig. 3.10. In the U-
tube a heavy liquid of the density 3  is used as a base liquid, with which 
the measurement reading of the liquid level takes place. In the reservoir 
tanks, there is a lighter immiscible liquid with density 2 , which occupies 
the remaining portion of the U-tube. Using this arrangement we can meas-
ure the pressure p  in a vessel, whose density is 1 . Assuming one end of 
the reservoir tank is opened to the surrounding, such as the atmosphere ap  
with the density of 0 , show the measurement method of this manometer.  

Rpp BA
2nn ˆˆ  

Rpp BA
2  
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Ans. 

There is a relationship of volume equality between the reading z  of 
liquid 3  and the level difference h  of liquid 2   

hAaz  (1) 

Fig. 3.10 Micromanometer 

Taking the datum line at the lowest level of the manometric liquid 3  and 
the mean level difference as h , we have the pressure balance equation as 
follows 

zzhhpzhhhp a gggg 3221 2222
 (2) 

Using the relationship given by Eq. (1), Eq. (2) can be reduced to 

z
A
app a g2312  (3)

Thus, by reading a scale of z , measurement of the pressure p  can be 
achieved. Particularly with this manometer, small pressure differences 

app  are accurately measurable by choosing the density difference 

12  and 23  smaller, as well as keeping Aa  small. A ma-
nometer with this arrangement is called micromanometer. 
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Exercise 3.2 Hydrostatic Paradox 

Obtain overall force F  exerted by a liquid column in the static equilibrium 
for cases (a), (b), (c), and (d) in Fig. 3.11. 

Ans. 

For all cases, we try to obtain the pressure on the bottom surface A . 
From the hydrostatic equation Eq. (3.1.2) without ra  and , in which no 
linear acceleration and no rotation of fluid are conditioned, we have 

gp  (1) 

Since the body force term g  can be written by a potential function 
zg  under the earth’s gravity field, Eq. (1) becomes 

0  (2) 

Bearing in mind p . Consider the integral of  from point 0 to 1 
as 

1

0

1

0
0rdd  (3)

This also yields 

011

1

0

1

0
011

1
0

a

a

pp

ppppdd  
(4)

Thus, from Eqs. (3) and (4), we know 

011 app  (5)

1p  in Eq. (5) is independent from the path line of the integral, and only de-
termined by the deference between the relative points 0 and 1. Resulting 
from Eq. (5): 
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(6)

Thus, the overall force F  is 

za

A

Ahp

dSp

e

nF

ˆ

ˆ

g
 

(7)
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By the same token, for the gauge pressure force GF  we can write 

zG hA eF ˆg  (8)

The overall force F  acting on the surface A  is the same for (a – d). This 
is called the hydrostatic paradox. Equation (8) is equivalent to Eq. (3.1.18), 
in which Gh  is set as hhG  since the area A  is horizontal. Equation (6) 
can also be proven by the Bernoulli equation, setting the velocity head at zero. 

(a)                  (b)                       (c)              (d)  

Fig. 3.11 Hydrostatic paradox 

Exercise 3.3 Pressure at High Altitude 

Estimate the pressure at m10000 above the sea level, assuming;  
(i) linearly varying temperatures 

0TazT  (1) 

and 
(ii) polytropic changes 

const.1
n

p  (2) 

We may use the ideal gas law for the equation of the state of air 

RTp 1  (3) 

Considering the specific gas constant KJ/kg287R . For Eqs. (1) and 
(2) the constants are the lapse rate K/m106500 2.a , the standard tem-
perature at sea level which is  K2880T , the polytropic constant for air is 

2351.n  and the standard atmospheric pressure is 25 N/m100131.ap . 
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Ans. 

For case (i) and (ii), the hydrostatic equation Eq. (3.1.3) can be applied, 
referring to Fig. 3.1 for z  increasing as follows 

g
dz
dp  (4) 

 
(i) From the equation of state given by Eq. (3), the density is expressed as 

RT
p  (5) 

Since the temperature T  in Eq. (5) varies linearly for increasing altitude z  
as shown in Eq. (1), the density is represented as 

0TazR
p  (6)

The density variation of Eq. (6) is then substituted into the hydrodynamic 
equation of Eq. (4), which gives 

dz
TazRp

dp

0

1g  (7)

This can be integrated to give a solution for 1p  as follows 

dz
TazRp

dp
0

1g  (8)

Thus we can calculate 

25

287106500
819

2
5

0

0
1

N/m102640
288

10000106500288100131
2

.

..
.

.

aR

a T
azTpp

g

(9) 

 
 (ii) Applying the polytropic atmospheric change given by Eq. (2), the rela-
tion between pressure and density at any altitude can be written as 
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n

ap
p

1

0  (10) 

The density variation of Eq. (10) is then substituted into the hydrostatic 
equation of Eq. (4), which gives 

dz
pp

dp n

an

g0

1

1
1  (11) 

This can be integrated to give a solution for 1p  as follows 

dz
p

p

dp n

an

g0

1

1
1  (12) 

Hence, we can calculate 

25

12351
2351

5

1

0

1

0

0
1

N/m102640
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288287
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z
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z
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npp

g

g

 (13)

It is further thought that, from 1p  expressed in Eq. (13), the density at z  is 
easily obtained by Eq. (10) as 

1
1

0
0

11
n

RT
z

n
n g  (14) 

With the equation of state given by Eq. (3), the temperature variation can 
be calculated as follows 
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0

0
0

1

11

Tz
Rn

n

z
RTn

nTT

g

g

  

 

 

(15) 

Equation (15) indicates that the temperature variation for an elevation z  is 
linear and the lapse rate can be calculated by those values given for n , R , 

0T , yielding 

K/m1065001 2.
Rn

na g  (16)

In the troposphere (the nearest earth atmosphere to sea level), the pres-
sure variation is linear at an average rate of 650. C  per 100 m to a dis-
tance of 1000 m in the polar region to 14000 m in the equatorial region. 
According to the calculation shown above, an airplane flying with an alti-
tude of 10000 m may experience 0.26 degrees of atmospheric pressure 
with a temperature of –50 C. 

Exercise 3.4 Forces on Tank Wall  

Find the forces on the tank walls, as shown in Fig. 3.12, for a portion of a 
vessel filled with a liquid. Also determine the center of pressure in each 
case. Consider first the general wall shape with unit depth as depicted in 
Fig. 3.12(a), then calculate the specific configuration as shown in Fig. 
3.12(b). In the case of Fig. 3.12(b), the shape of the tank walls is expressed 
by following relation, provide the answer. 

12
2
1 00 dzandaxx

a
dz ;  

Ans. 

Let us consider a general approach in the x – z  plane for an arbitrary 
curved surface, as schematically shown in Fig. 3.12(a). The force acting on 
the wall element dS  is found to be 
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(a)  

( b) 

 

Fig. 3.12 Pressure on curved walls 
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(1)

cos  and cos  are the direction cosines for n̂ . Thus, the force acting on 
the surface area S  is calculated by integrating Eq. (1) as 
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zzxx

zzxx

FF

dFdF

ee

eeF

ˆˆ
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(2)

The force F  has two components pdzFx  and pdxFz  in the 

direction of  x  and z  respectively. The magnitude of F  and the action 
angle  (the inclination of this force to the horizontal plane) are 

                22
zx FFF  and

x

z

F
F1tan  (3)

Setting zp g , the gauge pressure of xF  and zF  can be calculated as 
follows: 

zyGx SzzdzF gg  (4)

VzdxFz gg  (5)

Gz  is the centroid of the projected area zyS , and V  is the volume of liquid 
contained vertically on the surfaces. 

The center of pressure Cx  can be directly obtained by the moment bal-
ance equation given by Eq. (3.1.19) as repeatedly written by 

dSp
S

C nxFx ˆ  (6)

zCxCC zx eex ˆˆ . Substituting Eqs. (1) and (2) into Eq. (6), we can obtain 
the coordinates of the center of Cx  as  

z

S
C F

pdxx
x  (7)

x

S
C F

pdzz
z  (8)

Again considering zp g  together with Eqs. (4) and (5), we can get 

Cx  as 
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V
I

V
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x xz

C g

g
 (9) 
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g

g
 (10) 

Now we can consider the problems for Fig. 3.12(b), knowing the gen-
eral relations of Eqs. (1 – 10). Denote p  as the gauge pressure, based on 
the level of liquid, i.e. gzp . Note that the surrounding pressure ap  is 
atmospheric and the force acting on the inner surface of the tank wall is 
subject to liquid pressure. Also, denoting that the surface zydS  is negative 
and xydS  is positive, the force on the wall is thus calculated as follows, ac-
cording to Eqs. (4) and (5) 
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(11)
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(12)

22 zx FFF  and 
x

z

F
Ftan  (13)

For the center of pressure Cx , we can calculate Cx and Cz  from Eqs. (9) 
and (10) as follows 

–1
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and 
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dzz
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Consequently, the horizontal forces of xF  are all the same in any wall 
shape, so that the overall force F, the action angle  and the center of 
pressure Cx  are determined by zF , which is similarly the volume of liquid 
contained vertically on the surface of the walls. 

In obtaining forces and the center of pressure for a required geometry, 
one must not be too anxious about the centroid and the moment of inertia 
or the product of inertia, but simply carry on the integration for Eqs. (4), 
(5), (7) and (8) to get the results for the required geometry. 

Exercise 3.5 Stability of Floating Objects 

Discuss the criteria of stable floatation for a cylindrical object with a slid-
ing weight inside, if the body is tilted slightly in the horizontal direction as 
shown in Fig. 3.13 (a).  Consider the following: (i) when the weight is at 
the bottom; and (ii) when the weight is slid forward to the top of the cylin-
der. Let W  be the representative weight of the floating object, and let D  
be the diameter of the cylinder. Use 1  as the tilt angle and  as 
the density of the liquid. 

Ans. 

We first consider that the floating object is in equilibrium vertically be-
fore tilting, so that the floating object is vertically stable and FW , 
where F  is the buoyant force acting at C  and W  is the total weight rep-
resented by the weight at the center of gravity G . Let l  be the length of 
the cylinder of the submerged portion, and let a  be the distance of G  
from the liquid level as shown in Fig. 3.13(a). 

With a small tilt angle , the equilibrium may be stable or unstable, 
depending upon the resultant body couple due to tilting. If the body couple 
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at the axis of rotation 0 acts in a direction such as to restore the object to 
its original position, the object is considered to be stable. Contrarily, if the 
couple is in the opposite direction and acts to increase the tilt angle, the ob-
ject in this case is unstable. It is quite reasonable to assume for the small 
tilt angle that the position of the center of gravity G remains unchanged 
with respect to the object, i.e. along the center line of the cylinder, while 
the center of buoyancy C takes a new position, as shown in Fig. 3.13(b). 
Draw a vertical line from the new center of buoyancy C  so that it inter-
sects the center line of the cylinder at a point M, called the ‘‘metacenter.’’  
The stability of the object thus wholly depends upon the direction of the 
couple force due to F and W at new position after tilting. In effect, restor-
ing the couple in the tilt position will stabilize the equilibrium if M  lies 
above G, i.e. the positive couple. On the other hand the equilibrium will be 
unstable if M lies below G, i.e. the negative couple. 

Now let us calculate MG , called the metacentric height, and examine 
the conditions to determine whether MG  may be negative or positive. 
Suppose, with reference to Fig. 3.13(b), that the center of buoyancy is 
shifted from the position C  to C  after tilting. The resultant torque (due to 
the buoyant force F  after tilting) should be the sum of the original torque 
(due to the buoyant force F  before tilting) and the contribution of the 
buoyancy torque from the elementary prismatic volume around the axis of 
rotation 0  as shown in Fig. 3.13(b) due to tilting as follows 

012 MFbFb  (1)

2Fb  is the resultant torque about the axis of rotation 0 , 1Fb  is the origi-
nal torque and 0M  is the torque due to an additional buoyant force caused 
by the volume of the displaced fluid. The sign of the torque is negative to 
increase the tilting and positive to restore the floating object to its original 
position, as shown in Fig. 3.13. 1b  and 2b  are the normal distances to the 
buoyant force vector F  before and after tilting respectively. From Eq. (1) 
we have 

210 bbFM  (2) 

21 bb  can be further written as 

GCMGMCMCbb sin21  (3)

so that we have 

GCMGFM 0  (4)
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(a)                                           (b)  

 
Fig. 3.13 Stability of a tilted object 

0M  in Eq. (4) is the net torque due to the buoyant force in the elementary 
prismatic volume, the specific value of which can be obtained by carrying 
out following integral 

dV
V

grM 20  (5)

Note that dV  is the volume element at the position of r  from 0 . Since 
the tilting angle  is small, gr  can be true, thus Eq. (5) becomes 

drdrrM
r

2
0 2

,
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324DI  is the second moment of surface area at the cross section of 
the cylinder. F is balanced with W at equilibrium before tilting, and F can 
be estimated by 

eVF g  (8) 

eV  is the displaced volume at equilibrium before tilting. Now it is desir-
able to derive an expression for MG , using Eqs. (4), (7) and (8).  Thus we 
have 

GC
F
MMG 0  

GC
V

I
eg

g  

GC
V
I
e

  (9)

The couple force c  about 0  is written as 

MGWMGWc sin  (10)

And it follows that 

MGF

MGWc  (11)

Therefore, for the stability of the floating object we have the general crite-
ria: 

if 0MG  , 0c  thus stable, 
if 0MG  , 0c  thus unstable 

if 0MG  , 0c  this is meta stable. 

For the stability of the floating object in Fig. 3.13(a), we have the fol-
lowing parameters 

lDVe

2

2
 (12) 

We can also get 

2
laGC  (13) 
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Therefore, from Eq. (9), MG  will be calculated by the following formula 

28

2 la
l

DMG  (14) 

It is mentioned that l in Eq. (14) can be eliminated from the equilibrium 
condition before tilting using following relation  

glDW
2

2
 (15) 

And that is 

2
4

D
Wl
g

 (16) 

From Eqs. (14–16), the stability is given by examining the sign of MG  
as the weight is slid upward 

28

2 l
l

Da ;     stable 

        
28

2 l
l

Da ;     meta stable 

   
28

2 l
l

Da ;     unstable 

Exercise 3.6 Measurement of Surface Tension 

A plate with the dimension of Height Width Depth (a b c) and den-
sity P is submerged in a liquid B  at the interface between the air and the 
liquid, as shown in Fig. 3.14. The density of the liquid B  is B  and that of 
air is A . The height of the submerged part of the plate is Bh  from which 
the plate is pulled up from the liquid B . Determine the surface tension  
without knowing A  and B  in advance; however, the contact angle  is 
known. 

Ans. 

Set the datum force 0F  before submerging the plate to the liquid B . 

0F  is the force to hold the plate in the air; i.e. 
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BAAP

AP

hhbc
bcabcaF

g

gg0  
(1)

The second term on the right hand side of Eq. (1) is the net force exerted 
by the air, otherwise known as the buoyant force. The force balance when 
the plate is submerged in liquid B  is given by 

0WFFFF BA  (2)

F  is the lift force, AF  is the net force exerted by the air, BF  is the buoyant 
force of liquid B , F  is the net force due to surface tension and W  is the 
weight of the plate. Accordingly, these forces are: 

bchF AAA g  (3)

bchF BBB g  (4)

cos2 cbF  (5)

bchh
abcW

BAP

P

g

g
 (6)

Thus, from Eqs. (3–6), Eq. (2) gives F as 

cos2bchhbcF BPBAPAg  (7) 

Using 0F  in Eqs. (1–7), we have following relationship 

        BABbchFF
cb

g0
cos2

1  (8)

Thus, when the plate is pulled up to position, and when the bottom of 
the plate is just lined up with the level of the liquid Bh , i.e. 0Bh , we can 
obtain the surface tension , measuring F  at 0Bh  

0
cos2

1 FF
cb

 (9)

The contact angle  must be measured while the plate is submerged. The 
technique to measure the surface tension is called the Wilhelmy plate 
method. 



106      3 Fluid Static and Interfaces 

 
 

Fig. 3.14 The Wilhelmy plate 

Exercise 3.7 Pressure vessels 

Obtain wall stress of (a) a Spherical tank and (b) a Cylindrical tank, as 
shown in Fig. 3.15. 

 

(a) Spherical tank                    (b) Cylindrical tank 

 
Fig. 3.15 Pressure vessels 
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Ans. 

 (i) The configuration of the spherical tank is spherically symmetric, so 
that force SF , which keeps both halves of the sphere apart, is supported by 
the cross-sectional area of wall A . From Eq. (3.1.34), SF  is obtained by 

2
00 RppAppFS  (1)

Thus the stress of the wall W  is 

2

20

2 RR

S
W

R
Rpp

A
F  (2)

If RR , the stress W  can be calculated by 

R
W

Rpp
2

0  (3)

(ii) In the case of the cylindrical tank, there are two principle forces acting 
on the wall. One is the radial force 1SF , and another is the axial force 2SF , 
both of which keep the halves of the tank apart in each direction. Again 
from Eq. (3.1.34), the radial force 1SF  is 

RLppAppFS 20101  (4)

Thus, the stress of the wall 1W  due to 1SF  force can be obtained from 

             
LR

RLppF
RRRA

S
W

2222
20

2

1
1  (5)

If RR , the stress 1W  will become approximately 

R
W

LR
RLpp

2
0

1  (6)

Similarly, the stress of the wall 2W  due to the 2SF  force will be 

2

20

2

2
2

2 RRA

S
W

R
RppF  (7)

If RR , the 2W  becomes approximately 
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R
W

Rpp
2

0
2  (8) 

Eventually it will be the same as the spherical tank case in axial direction. 

Exercise 3.8 Oil Feeding Reservoir 

The cylindrical container shown in Fig. 3.16 is rotated with the shaft about 
its centerline. Lubrication oil, whose density is  with height h , is en-
closed in the container before rotation. What is the rotational speed neces-
sary for the oil to reach the diameter D  at the upper wall of the container? 
Also, obtain the pressure Ap  at the lower corner of the container at point A, 
when it is rotated at that speed. Note that the container is opened for at-
mospheric pressure ap . 

Ans. 

From Eq. (3.1.41), the profile of the free surface is given by 

g2

22
0

rzz  (1) 

(a)                                               (b)  

 

Fig. 3.16 Oil feeding reservoir 

0z  is the datum level,  is the angular velocity of the rotation and r  is 
the radius. Setting 00z , a portion of the free surface is a paraboloid of 
revolution. Denote 1z  and 2z  as points on the lower wall and the upper 
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wall of the container respectively from the level 00z . From Eq. (1), 1z  
and 2z  are thus given by the following formula 

  
22

2
22
Dz

g
 (2)

bzz 21  (3)

From Eqs. (2) and (3), the radius of the free surface 1R  at the level of 1z  is 
easily obtained from 

bDR
2

2
2

1
2

2
g  (4)

Knowing radii 2D  and 1R , we can obtain the volume of oil V contained 
after rotation from 

bDDbRDV
22

12
1

2

2222
 (5)

This is further written in terms of the known parameters as 

bDDbV
22

12

2 222
2g  (6)

The oil volume contained at the original state before the rotation, is given 
by 

hDDV
2

2
2

1

22
 (7)

From equating Eqs. (6) and (7), we can obtain the required  as 

bDDhDD

b
22

1
2

2
2

1

2

2222

g  
(8)

To find the pressure at point A as indicated in Fig. 3.16, we use Eq. 
(3.1.40) 
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aA pzRDp 1
2

1

2
12

22
1

g  (9)

Also, by Eqs. (1), (2), (3) and (4), we can calculate Ap  as 

a

A

pb

bDDhDD

b

DDp

g
g 2

2222

2
2

22
1

22
1

2
2

2
1

2

22
1

 (10) 

This is an example of an oil feeding reservoir for lubricating and cool-
ing a vertical shaft bearing. Installing an oil feed tube at point A, oil is fed 
to the bearing part with pressure Ap  when the shaft is rotated with angular 
velocity . 
 

Problems 

3-1. Obtain the pressure if a U -tube manometer, which is installed at the 
pipe centerline, of a horizontal oil transportation pipe and reads 
200 mmHg. The oil in the manometer is depressed 150 mm below the 
pipe centerline. The density 0  of the oil is 33 mkg10800. and the 
density m of the mercury is 33 mkg10613. . 

Ans. gaugemN1025.5 23  
 
3-2. Calculate the atmospheric pressure, temperature, and density at an al-

titude of 15 km, in such a case as the troposphere being 11 km high. 
The pressure and temperature at sea level are 101.3 kN/m2 and 

C15 respectively. The polytrophic index 1.235n  is equal in the 
troposphere and it is assumed that the stratosphere is isothermal. Note 
that the stratosphere is the second layer of atmosphere after the tropo-
sphere, and is extended over 11km above. 
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Ans. 
3

25

kg/m19330

K5216
N/m101200

.

.
.

 

 
3-3. A circular observation window of 0.5 m in diameter is installed in an 

inclined tank wall at 60  to the horizontal level. The water is 5 m 
deep above the center of the window. Determine the resultant hydro-
static pressure force on the window and the center of pressure. 

Ans. 
window.theofcenterthebelowm10712

N10639
3

3

.

.  

 
3-4. A barge is loaded with coal such that the center of gravity of the barge 

with the loaded coal is at the waterline, as shown in Fig. 3.17. Discuss 
the stability of the barge. 

 
Fig. 3.17 Loaded barge 

3-5. There is an air bubble 1.0×10–3 m in diameter in the water. Knowing 
the surface tension 310872. N/m (water-air interface), estimate 
the pressure inside of the bubble. The depth of the water where the 
bubble is found is 10m below the water level. Also, calculate the di-
ameter where the bubble is raised to a depth of 5m below the water 
level. 

Ans. 
m100991

abs.N/m109971
3

25

.

.  

 
3-6. Utilizing a U-tube, an accelerometer is made to measure the accelera-

tion of a train, as shown in Fig. 3.18. The meter is mounted in the ve-
hicle so that the legs are vertical, and the tube is filled with a liquid of 

. Measuring the level difference h  between the legs, determine 
the acceleration xa  of the vehicle. The distance between the legs is L . 
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Fig. 3.18 U-tube accelerometer 

 Ans. g
L
h  

 

Nomenclature  

aA,  : area 
a  : acceleration vector 

ra  : relative acceleration 
ldba ,,,  : length (scale) 

C  : center of pressure 
dD,  : diameter 

F  : force vector 
G  : center of gravity 
g  : body force 
g  : gravity acceleration 
h  : height or length 
I  : xI  second moment of surface area xyI  product of surface 

area 
n̂  : unit normal vector 
p  : thermodynamic pressure 

0p  : reference pressure 

ap  : atmospheric pressure 
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rR,  : specific gas constant ( R ) or radius 
S  : area 
T  : temperature 
T  : total stress tensor 
t  : time 
t̂  : unit tangential vector 
u  : velocity vector 
V  : finite volume 

Cx  : center of pressure ( x  direction) 

Gx  : x  directional centroid 

Cy  : center of pressure ( y  direction) 

Gy  : y  directional centroid 
zyx ,,  : Cartesian coordinates system 

,,r  : spherical coordinates system 
,,  

and ,,  
 
: angle 

 : density 
 : surface tension 

c  : couple force 

 : scalar potential 
: angular velocity 
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4. Perfect Flow 

In this chapter, we will look at the simplest form of constitutive equations 
for fluids having no viscous stress. To expand our range of applications 
further, we will then extend the concept of inviscid flow to include poten-
tial flow and unidirectional incompressible flow.  

Within a frame work of inviscid flow many useful formulae for turbo-
machineries will be examined in this chapter. Other examples which are 
widely observed in fluid engineering are to be treated with the concept of 
inviscid flow, and correspond with viscous flow at large Reynolds numbers. 
A fluid with no viscous stress is often referred to as a perfect fluid, and the 
constitutive equation takes the simplest form as follows 

ijij pT  (4.1) 

A detailed discussion regarding the constitutive equation of Eq. (4.1) 
will be given in the following section. Presently, however, please note that 
when we substitute Eq. (4.1) into Eq. (2.2.7) we can obtain  

gp
t

uuu  (4.2) 

Here, the body force g  is treated as the gravitational force (per unit vol-
ume). This equation is called the Euler equation, and is valid for inviscid 
flows in general. In many engineering problems, the Euler equation is 
solved or reduced into a more convenient form with the continuity equa-
tion of Eq. (2.1.5).  

4.1 Potential and Inviscid Flows 

When flows are far from solid surface, which is often observed outside the 
boundary layer, the effects of viscosity are usually very small and it is as-
sumed that flows are frictionless and irrotational. These flows are known 
as potential flows. If the flow is irrotational, the velocity field can be writ-
ten as follows, with reference to Eq. (1.1.26) 

115
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0u  (4.1.1) 

Additionally, with a vector identify, it immediately follows that there ex-
ists a velocity potential , such that the velocity u  can be defined as 

u  (4.1.2) 

Furthermore, if we impose the condition of a steady incompressible 
flow to the potential flow, from the continuity equation Eq. (2.1.6) the ve-
locity potential  satisfies Laplace’s equation as follows 

0  (4.1.3) 

and 

02  (4.1.4) 

As such  serves a harmonic function. If we further confine our consid-
eration here to two dimensional steady incompressible flows, we can in-
troduce another important scalar function, the stream function .  is 
defined in such a way that the velocity components ( vuuu ,, 21 ) of u  in 
Cartesian coordinates ( yxxx ,, 21 )are given by the following relations 
to satisfy the continuity equation of Eq. (2.1.6) 

y
u     and    

x
v  (4.1.5) 

Besides which, we have the condition of irrotational flow, given by Eq. 
(4.1.1) in two dimensional space written as 

0
y
u

x
v

 (4.1.6) 

Substituting u  and v of Eq. (4.1.5) into Eq. (4.1.6) again satisfies 
Laplace’s equation, yielding the condition that  is also harmonic as fol-
lows 

02  (4.1.7) 

Note that the stream function  can be defined for any two dimen-
sional flow, or flow in two dimensional symmetric plane, regardless of 
whether the flow is irrotational or not.  This holds true as long as the flow 
is steady incompressible. 
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Fig. 4.1 Stream function 

Two important concepts arise from the stream function. First, the lines 
of constant stream function  are the streamlines. Second, the difference 
between the numerical values of two stream functions, such as 0e  in 
Fig. 4.1, is equal to the flow rate 0eQ  intersecting the two lines. This is 
derived from following the formula 

00000 e
eee

e ddy
y

dx
x

udyvdxQ  (4.1.8)

The integral Eq. (4.1.8) is independent of the path, as shown in Fig. 
4.1 for path 1 and path 2. Furthermore, Eq. (4.1.8) yields the result for a 
closed path c  that 

0
c
d  (4.1.9) 

Equations (4.1.4) and (4.1.7) are valid in any coordinates system, and 
it has to be notified that Eqs. (4.1.2) and (4.1.5) yield the following rela-
tionships  

yx
u  , 

xy
v  (4.1.10)

Similarly, for instance with the polar coordinates r  and , and the corre-
sponding velocity components ru  and u  respectively, we can write the 
fundamental relationships as follows 

  
rr

ur
1

rr
u 1  (4.1.11)
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the Cauchy-Riemann conditions. An important result from the fact that 
and  are harmonic, which satisfy the Cauchy-Riemann conditions, is that 
lines of  and  are mutually orthogonal, as indicated in Fig. 4.2. 

Fig. 4.2 Stream function  and velocity potential  

Considering the fact that  and satisfy the Cauchy-Riemann condi-
tions, a complex function zW , called the complex potential, is defined in 
such a way that 

izW  (4.1.12)

Here, 1i  and iyxz . We consider  and  to be functions of z , 
the complex variable, instead of x  and y . The physical flow can be pre-
sented with a complex number z  in a space, called z-plane. zW  is an 
analytic function, where  and  are conjugate functions, which satisfies 

022 . 
Differentiating zW  with respect to z  gives the following relationship 

      wivu
dz
dW  (4.1.13) 

where w  is the complex velocity. The conjugate functions  and  sat-
isfy Laplace’ s equation, which is linear. We may be, therefore, able to su-
perimpose solutions  and  for different flows to obtain the new values 
of  and . In other words, we can superimpose the flows to determine a 
new zW  . This is often put into practice with such that a source, sink, or 
potential vortex, or doublet is superimposed onto a uniform flow. 

There are typical complex potentials zWi  of some basic flows listed 
below: 

The relationships, such as given by Eqs. (4.1.10) or (4.1.11) are called 
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zUzW0  

U ; real constant. The flow is uniform flow field; (Fig. 4.3(a)) 

(4.1.14)

zqzW ln
21  

q ; real constant. The flow is source 0q  and  sink 0q ; 
(Fig. 4.3(b)) 

(4.1.15)

zizW ln
22  

; circulation, real constant. The flow is potential vortex; 
(Fig. 4.3(c)) 

(4.1.16) 

z
mzW3 , 

m ; doublet strength, real constant. The flow is doublet; 
(Fig. 4.3(d)) 

(4.1.17) 

z
azU

z
mzUzWzWzW

2

304  

U , m  and a ; real constants. The flow is flow past a circular 
cylinder; (Fig. 4.3(e)) 

(4.1.18) 

There are more complex flow fields to be generated by combination of 
those complex potential zWi . Some schematics are displayed in Fig. 
4.3(a–e), which are respectively corresponded to Eqs. (4.1.14–4.1.18). 

With a mathematical technique, called a conformal mapping, a simple 
flow pattern can be transformed into a more complex one, such as flow 
past around a rotating cylinder to airfoils and etc. One of the most known 
mapping function is 

2az  (4.1.19) 
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Fig. 4.3 Flow patterns with zWi  

 
Note that yxiyx ,,  and a  is positive real constant. The map-
ping function given by Eq. (4.1.19) is the Joukowski transformation, which 
transforms zW4  of Eq. (4.1.18) into a flow on airfoil, for example. In 
general, a mapping function zf  transforms a basic flow in z-plane to 

–  plane, where the orthogonality of  and  is preserved. 
When we consider an inviscid flow, lifting the irrotational condition, 

the Navier-Stokes equation reduces to the Euler equation given by Eq. 
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(4.2). The Euler equation is often used to investigate compressible flow at 
high speed, where viscous and turbulent effects are important only in a 
limited region near solid surfaces. With modern computers, flows over an 
aircraft may be simulated using Euler equations with which flows do not 
stick to walls and slip is allowed at the solid boundaries. Such flow simula-
tions with the aid of computational fluid dynamics (CFD) are being done 
on a research basis, and we shall not go too deeply into this field of study, 
though these compressible flows will be treated in later chapters in this 
text. 

Considering the Euler equation, we now look into the most important 
theorem in engineering fluid mechanics, Bernoulli’s theorem. The Euler 
equation of Eq. (4.2) can be written in general vector form, using vector 
identity in the convective term as follows 

gp
t

uuuu 2

2
1  (4.1.20) 

and 

p
t

1
2
1 2 uuu  (4.1.21) 

The gravitational force g  is assumed here as a conservation force and is 
written by a scalar potential  as 

g (4.1.22)

The first integral of the equation can be obtained by integrating Eq. 
(4.1.21) between two arbitrary points along a path l , letting ld  be a line 
element of length along the path l . We then have 

2

1

2

1

2

1

2

1

22

1

1
2
1 lul

l
llulu dddpdd

t (4.1.23) 

The third term on the left side of Eq. (4.1.23) contains thermodynamics 
properties,  and p , and if we assume that the flow along l  is isentropic, 
then the relationship between  and p  is 

fp  (4.1.24)

From Eq. (4.1.24), the integral can be replaced by the function 

ll
l

dpdP 1  (4.1.25) 
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The function P  is called the pressure function. On the right side of Eq. 
(4.1.23), the integral of u  along l  will become null, if we take the path 
l  either along a stream line or a vortex line. This occurs because u  and  
are mutually perpendicular and there are no components of either vector 
along the path l . Therefore, if the flow is steady, i.e. 0tu , the inte-
gral Eq. (4.1.23) yields the following formula, where the integral is carried 
out either along a stream line or a vortex line to give 

22
2

211
2

1 2
1

2
1 PuPu  (4.1.26) 

This is the basic form of the Bernoulli equation. The first term (in both 
sides of Eq. (4.1.26) shows the kinetic energy per unit mass, the second 
term is the pressure potential per unit mass, and the third term represents 
the external force (body force) due to potential energy per unit mass. 
Namely, the Bernoulli equation contains three kinds of energy, and total of 
which are conserved. The Bernoulli equation is valid for either along a 
stream line or a vortex line with inviscid, isentropic and steady flows. 
When we take a surface with constant value of either a stream line or a 
vortex line, Eq. (4.1.26) can be reduced to the form 

const
2
1 2 Pu . (4.1.27) 

This surface is often called the Bernoulli’s surface, if we choose the Ber-
noulli’s surface as a stream tube, as depicted in Fig. 4.4. We can include 
the mass continuity with the Bernoulli equation. Often such one dimen-
sional flow equations are used in many engineering problems. From the 
continuity equation of Eq. (2.1.5), assuming a steady flow, a volume inte-
gral to an element of the stream tube, 1 – 2  in Fig. 4.4, gives 

     0dV
V

u  (4.1.28) 

Moreover, by the Gauss’s divergence theorem, it becomes 

0Su d
A

 (4.1.29) 

Additionally, over the entire surface of the stream tube we have 

0321
321

SuSuSu ddd
AAA

 (4.1.30) 

Since there is no flow across the surface of the stream tube of the Ber-
noulli’s surface, the third term of Eq. (4.1.30) is zero. 
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Fig. 4.4 Bernoulli’s theorem 

21
21

SuSu dd
AA

 (4.1.31) 

If we take an outward surface positive and at 1  and 2  namely at the inlet 
and outlet respectively, 11 Sn d  and 22 Sn d  are assumed, we resul-
tantly derive the mass continuity as follows 

222111 Au=Au  (4.1.32)

and 

    const.uAm  (4.1.33) 

m is the mass flow rate, which is conserved at any position along the 
stream tube, see also Exercise 2.1. The set of equations, Eqs. (4.1.27) and 
(4.1.33), are often used to solve engineering problems, that is, the Ber-
noulli equation together with the mass continuity may be used or reduced 
to appropriate forms under various flow situations.  

If a flow is irrotational, the velocity field has a scalar potential, similar 
to Eq. (4.1.2) as 

u  (4.1.34)

Furthermore, if we assume a time dependent inviscid flow, we can obtain a 
more general form of the Bernoulli equation from Eq. (4.1.23) in the same 
manner 

tfP
t

2

2
1 u  (4.1.35) 
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Equation (4.1.35) is often called the pressure equation and has more broad 
application in time dependent inviscid flows (for perfect flow). 

In many engineering applications of hydraulics, flows are to be steady 
incompressible and the body force (external force) is gravitational, so that 
P  and  can be written as 

pP  and zg  (4.1.36) 

g  is the gravitational acceleration, and z  is the coordinate from a datum 
level in the gravity field. So Eq. (4.1.35) can be written together with the 
continuity equation as follows 

const.uAQ  (4.1.37)

and 

const.
2
1 2 zpu g  (4.1.38) 

Q  is the volume flow rate. In hydraulics, Eq. (4.1.38) is often called the 
Bernoulli equation (energy per unit volume). We may also express Eq. 
(4.1.38) in another form 

Hzpu const.
2

2

gg
 (4.1.39) 

The Bernoulli equation of (4.1.39) is a form with a unit called head [m], 
and it states that the sum total of velocity head, pressure head and potential 
head remains constant along a stream tube (Fig. 4.4) for steady, incom-
pressible and inviscid flow. The sum total of these three types of head is 
also called the total head H  [m]. 

The Bernoulli equation can be further extended in the rotating refer-
ence frame, such as often encountered in turbo machineries. The accelera-
tion of a fluid particle, which implies the stream tube between 1  and 2 , 
relative to the inertial reference frame, is derived in Eq. (1.2.12). Using the 
first integral of the Euler equation in the rotating reference frame, the for-
mula may be written 
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2
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1
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(4.1.40)
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In hydraulic turbo machineries, the gravitational body force (the poten-
tial head) and the Coriolis force can be ignored compared to other domi-
nant forces, so that the integral Eq. (4.1.40) along a stream line yields the 
following form, assuming the flow is steady and incompressible 

const.
22

22

ggg
uwp  (4.1.41) 

w  is the relative velocity in a rotating reference frame and u  is the rotat-
ing speed of the stream tube to the inertial reference frame, i.e.  

ru z  (4.1.42)

Through Eqs. (4.1.40–4.1.42) r  is the radius of the stream tube from the 
axis of rotation. A detailed schematic is displayed in Fig. 4.5. It is men-
tioned here that it is sometimes convenient (or rather conventional) to draw 
a diagram to obtain the absolute velocity c  at both end 1  or 2 in design-
ing turbo machineries. The vector sum of these velocity diagrams, as 
shown in Fig. 4.5, is called the velocity diagram, which is explained in 
more detail in later chapters.  

 
Fig. 4.5 Kinematic configuration of rotating stream tube 

In engineering applications of fluid mechanics, one is often interested 
in estimating the overall force acting on a device in a region of space, 
where fluid enters and leaves. By extending a volume element, with which 
basic governing equations of fluid motion were derived in the previous 
chapter, we can identify the region of interest in fluid flow as a control 
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volume. A control volume may be fixed in space, or be moved with defor-
mation in a turbo machinery, and it is recognized that the basic laws of dy-
namics can be applied directly to the control volume. The same holds true 
for the fluid particle concept. The conservation of linear momentum of the 
fluid particle given by Eq. (2.2.1), thus, directly applies to a control vol-
ume as follows 

V
i

idV
Dt
D fu  (4.1.43) 

if  represents the various forces acting on the control volume. Equation 
(4.1.43) is a form of Newton’s second law of motion. In classical dynamics, 
Newton’s second law is always the starting point. The inertia term of Eq. 
(4.1.43) can be written in an integral form over the control volume, which 
is fixed in space, according to Eq. (2.2.4) 

V
i

i
S

dSdV
t

fnuuu ˆ  (4.1.44) 

The second term on the left side of Eq. (4.1.42) is the net momentum flux 
across the control surface, and dSnu ˆ  is simply the volume flux for each 
surface element dSn̂ .  

Equation (4.1.44) can be applied to a control volume, of a portion of 
stream tube or equivalently a device which has an entrance and an exit 
across which the flow may be uniform, as depicted in Fig. 4.6. Note that 
Fig. 4.6(a) is a stream tube when the forces 

i
if  are applied, and Fig 

4.6(b) is a more specific example of a configuration of single-suction 
pump treated as one control volume. The flow is rotated in the pump by 
axial shaft rotation of  and the flow velocity at the outlet 2u  is 90º di-
verted from inlet 1u  to discharge at higher pressure. Assuming the flow is 
steady, Eq. (4.1.44) can be considerably simplified as 

iiAA
dSdS fnuunuu 2 ˆˆ 22111

21

 (4.1.45) 

and  

ii
AuAu fuu 22221111  (4.1.46)

At the entrance, 11 unu ˆ , since the surface element dSn̂  faces inward 
and at the exit, 22 unu ˆ . Thus, with the mass continuity by Eqs. (4.1.33), 
(4.1.46) can be written 
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  (a) Stream tube                        (b) Single-suction pump 

 
Fig. 4.6 FForces on  control volume 

 
 

(a) Rotating stream tube                       (b) Generalized turbomachine 

 
Fig. 4.7 Moment of momentum on control volume 
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i
i

m fuu 12  (4.1.47) 

Note that Eq. (4.1.47) is a vector equation, with which Bernoulli equation 
of Eq. (4.1.26) and the mass continuity equation of Eq. (4.1.32) are valid. 
Forces if , acting upon a control volume, can be a gravitational force 
(body force), a pressure (surface force), etc, and the sum of which is the 
net force that alters the flow directions 1u  and 2u  resultantly. 

Knowing the linear momentum equation given by Eq. (4.1.47) of a 
control volume, we may be able to derive a moment-of-momentum equa-
tion for a control volume directly from the conservation of angular mo-
mentum for a non-polar fluid, i.e. the pseudovector A  is identically zero. 
Similar to Eq. (4.1.43), the linear momentum equation, we can write a 
moment-of-momentum equation (to be more exact, the angular momentum 
of linear momentum equation), according to Eq. (2.3.1) 

i
iV

dV
Dt
D nux  (4.1.48)

in  represents the torques (due to various forces) acting on a control vol-
ume. We can apply the Reynolds’ transport theorem of Eq. (1.5.10–4.1.48) 
so that we can write 

i
iSV

dSdV
t

nnuuxux ˆ  (4.1.49) 

In the same manner that we derived the linear momentum equation of Eq. 
(4.1.47), assuming the flow is steady, Eq. (4.1.49) is written in a consid-
erably simple form for a portion of stream tube, as shown Fig. 4.7(a) rotat-
ing around an axis of z  with an angular velocity z , as follows 

        
i

im ncrcr 1122  (4.1.50) 

1r  and 2r  are position vectors of inlet and exit of the rotating stream tube 
respectively, and 1c  and 2c  are corresponding absolute velocities at inlet 
and exit respectively. Equation (4.1.50) is the moment-of-momentum 
equation for a control volume. It can be applied to the control volume en-
closing the rotor of a generalized turbomachine, with reference to Fig. 
4.7(b), as follows 

zuu ncrcrm 1122  (4.1.51)
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uc1  and uc2  are the circumferential absolute velocities of entering and 
leaving flow from the rotating control volume (turbomachine) respectively 
and zn  is the net torque, acting on the control volume. Note that 1u  and 2u  
are the circumferential velocity of rotating control volume in Fig. 4.7(b), 
where in the diagram the direction of 2u  is rather toward the paper surface, 
but is deliberately oriented in a different direction for the sake of clarity. 
Equation (4.1.49) is directly obtained from Eq. (4.1.48), because we know 
that 11 cr  and 22 cr  are the inlet and outlet conditions. In Fig. 4.7(b), 
it is further noted that 1w  and 2w  are relative velocities, 1u  and 2u  are 
circumferential velocities (often referred to as the blade speed) respec-
tively at inlet and exit of the rotating control volume (turbomachine). The 
rate of energy wP , at which the control volume (turbomachine) does work 
on the fluid, is expressed by 

zzw nP  (4.1.52)

and 

uuw cucumP 1122  (4.1.53)

The Eq. (4.1.53) is sometimes referred to as Euler’s pump or turbine equa-
tion as well, depending on 0wP  or 0wP  respectively. See also Exer-
cise 2.3. 

Exercise 

Exercise 4.1.1 Measurement of Flow Velocity by a Pitot Tube with 
Mach Correction 

A velocity-measuring instrument called a Pitot tube, as show in Fig. 4.8, 
named after its inventor, Henri de Pitot (1695–1771), consists of the stag-
nation hole at the front of the tube measuring 0p  while the static holes on 
the side sense p . The velocity can be measured, knowing the pressure 
difference ( pp0 ), by a differential such as U-tube manometer, as de-
picted in Fig. 4.8. Explain the measurement principle, and discuss if the 
flow is not incompressible. 
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Fig. 4.8 Pitot tube 

Ans. 

Consider the Bernoulli equation of Eq. (4.1.38), which holds true at 
any point along the stream line of the flow. At the front of the tube (in fact 
any body immersed in a free stream), there is a stagnation point, at which 
the flow is diverted down stream and the velocity is zero. On the other 
hand in the upstream and downstream of the free stream, particularly close 
to a static hole (more strictly at a point along the stream line diverted from 
the stagnation point), the static pressure is p  with the velocity of u . 
Thus, the Bernoulli equation will be 

pup 2
0 2

1  (1)

The gravitational potential (pressure head) is ignored due to small potential 
difference between the stagnation hole and the static hole. It is noted that 

0p  is sometimes called the stagnation pressure and 22u  is called the 
dynamic pressure. From Eq. (1), u  can be obtained by 

ppu 02  (2)

A differential manometer placed across the output of these values reg-
isters the pressure difference ppp 0 , which is measured such that 



Exercise      131 

gwwhp  (3) 

w  is the density of the liquid column and wh  is the reading for the col-
umn difference. Therefore, knowing , the density of the fluid in priori, 
we can obtain the fluid velocity u  by Eq. (2), measuring p  by a differ-
ential manometer. In order to obtain accurate measurement, the position of 
the static holes is recommended as d6  apart from the stagnation hole, 
where d  is the diameter of the tube and 2d  is the diameter of the stagna-
tion hole. 

A substantial error may occur if the tube is yawed with an angle facing 
the flow direction. Care must be taken in determining whether the direc-
tion of u  is parallel to the axis of the tube, checking that p  reading al-
ways remains at maximum with respect to the flow direction. Also when 
the velocity of a compressible flow becomes higher, a correction of com-
pressibility becomes necessary. Although further details of the compressi-
ble flow analysis are given in the later chapter, we will consider here the 
correction of compressibility, commonly called the Mach correction of the 
Pitot tube. 

This is done by considering the energy equation of the compressible 
flow with reference to Eq. (5.2.9), so we have 

p
k

kup
k

k
12

1
1

2

0

0  (4)

Equation (4) is the one dimensional steady compressible energy equation 
(ignoring gravitational potential), which is equivalent to Eq. (1), and where 
k  is the specific heat ratio of the flow defined by vp cck / . From Eq. (4) 
with the definition of the Mach number M , i.e. auM / , where a is the 
sound speed, Eq. (4) can be rewritten as follows, with reference to Eq. 
(5.2.15) 

120

2
11

k
k

Mk
p
p  (5)

The right hand side of Eq. (5) can be expanded with binomial expansion 

4220

24
2

4
11

2
1 MkMMk

p
p  (6)
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Thus, we have 

 42
2

2

0 24
2

4
11

2
MkMp

a
ukpp  (7)

Since the required sound speed is defined as /kpa , we can write 
Eq. (7) as 

42
2

0 24
2

4
11

2
MkMupp  (8)

Therefore, the required speed u  is written as 

)(2 0 ppu M  (9)

M  is the correction coefficient ( 42 242411 MkMc is 
called the compressibility factor, see more detail in Exercise 5.1) defined 
by 

2
12

1

42

24
2

4
111 cM MkM  (10)

Based on Eq. (9), if the Mach number is M=0.2, for taking an ideal gas 
with k =1.4, M  will be M =0.995 and only a 0.5% error in the measure-
ment may occur due to the compressibility. Consequently when the flow 
velocity does not exceed M=0.2 (or if one allows some margin of error to 

M =0.97(3%) when the Mach number is approximately M=0.3), the flow 
can be treated as incompressible and the velocity of which can be meas-
ured with Eq. (2) directly derived from the Bernoulli equation. 

In supersonic flows, static holes will give a fair approximation of the 
static pressure upstream of the shock, provided that those static holes are 
placed at least d10  (diameter of the Pitot tube) downstream of the stagna-
tion hole. For reference, see Shapiro (1953) and Bean (1971). 
 

Exercise 4.1.2 Measurement of Volumetric Flow Rate by an Orifice 
Meter 

Consider a steady state flow through a restrictive orifice plate with area 0A  
mounted in a circular tube with area 1A , as shown in Fig. 4.9. Downstream 
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of the orifice hole, the stream lines tend to converge to form a minimal 
flow area cA , termed as the vena contracta. Static pressure taps are located 
before and after the orifice plate. One upstream tap is located in the undis-
turbed flow region, recommended at distance d  before the plate, and an-
other one is located in the vicinity of the vena contracta, recommended at 
distance 2d  after the plate, where d  can be chosen as  the diameter of 
the tube i.e. 1dd . Assuming the flow is inviscid and incompressible, 
show the method of finding the flow rate Q  in the tube by measuring the 
pressure difference. Also give some other examples to measure the flow 
rate other than the orifice meter. 

 
Fig. 4.9 Orifice meter 

Ans. 

The continuity equation Eq. (4.1.33) and the Bernoulli equation Eq. 
(4.1.38) are used to estimate the flow rate. 

cc AuAuQm 11  (1)

And 

cc pupu 2
1

2
1 2

1
2
1  (2)

 is the density (constant) of the fluid, 1u  is the velocity at the position of 
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the upstream static tap which measures 1p , and cu  is the velocity at the 
position of the vena contracta where the static pressure to be measured by 
the downstream tap is assumed to be cp . The gravitational potential (pres-
sure head) is ignored due to the fact that the distance between the static 
pressure taps is small enough and the tube is usually placed in a horizontal 
position. Combining Eqs. (1) and (2), and solving for cu  yields 

2
1

1

1
2

AA
ppu

c

c
c  (3)

The ideal flow rate iQ  is 

cci AuQ  (4) 

In realistic measurements, however, the exact measurements of cp  and 

cA  are difficult. Furthermore, they are also changed with viscous effects, 
or more specifically, with a changing Reynolds number. So it is convenient, 
in consideration of realistic flow measurement that cA  be replaced by in-
troducing a correction factor cC  as follows 

0ACA cc  (5) 

cC  is termed the contraction coefficient. In a similar way, cu  may also be 
corrected by introducing a velocity coefficient vC , since cu  in Eq. (3) in-
cludes cA  

2
10

1

1
2

AAC
ppCu

c

c
vc  (6)

Combining Eqs. (5) and (6), the actual flow rate Q  is given by the re-
lation 

c

c

cv pp

AAC

ACCQ 1
2

10

0 2

1
 (7)

Conventionally the recommended correlation for flow rate Q  through an 
orifice meter is 

cf ppAKQ 10
2  (8)
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fK  is the flow coefficient defined as 

421 c

d
f

C

CK  (9)

In Eq. (9), cvd CCC  is termed the discharge coefficient and 

010 ddAA  is the diameter ratio. The experimental values of fK  
and dC  are primarily affected by the Reynolds number Re,  , other 
geometric effects such as the shape of the restrictive orifice, and the loca-
tion of the static pressure taps. Namely for fK , we can write 

effects geometric  , ,RefK f  (10)

There are also compressibility effects to be considered, particularly in 
compressible fluids, when the throat Mach number is greater than about 

2.0M , as previously practiced in Exercise 4.1.1. 
In regard to flow rate measurement instruments, as demonstrated here, 

an element of constriction is inserted into the fluid stream, where the pres-
sure difference across the constriction is measured so as to give an estimate 
of the volumetric flow rate. These flow meters are known as Bernoulli ob-
struction flow meters, and other examples beside the orifice meter are the 
Venturi tube and the choked nozzle, as illustrated in Fig. 4.10 (a) and (b). 
The Venturi tube is designed to give the discharge coefficient nearly unity, 
while with the orifice meter a large flow distortion would occur and resul-
tantly has a fairly low discharge coefficient, sometimes in the area of 0.6. 
One advantage of the orifice meter is that it is quite inexpensive to make 
and install while the Venturi tube is the opposite. The flow nozzle has a 
character in between the two. Note that the downstream static pressure tap 
is positioned at the throat of the Venturi tube measuring the pressure 

2ppc . At the same time, with the choked nozzle positioned downstream, 
the static pressure tap is placed near the nozzle exits to read 2ppc . 

Apart from measuring flow rate the Venturi tube is often used as an as-
pirator, or suction pump. For such a use a small tube is attached to the side 
near the throat, where the reduced pressure draws fluid at usually slow rate. 
These devices are frequently seen in fluid engineering as well as chemical 
plants. 
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Fig. 4.10 Venturi tube and flow nozzle 

Exercise 4.1.3 Tab-orifice and Measurement of Volumetric Flow by a 
Weir  

(i) A small orifice (tank-orifice) is installed at the side of a large tank, and 
through the orifice a liquid is discharged, as show in Fig. 4.11(a). The ori-
fice is located at a position 2z  from a datum level, while H  is the distance 
of the orifice from the liquid level, and the position of the liquid level is 1z  
from a datum level. 

Assuming that the liquid level of the tank is constant and the opening 
area of the orifice is so small that the vena contracta is negligible, deter-
mine the velocity of the free jet from the orifice where the surrounding 
pressure is atmospheric. 
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(a) Tank-orifice                     (b) Open tank 

 
Fig. 4.11 Tank-orifice and Sharp-crested weir 

 
(ii) A rectangular opening (large orifice) is found at the side of a large tank, 
as shown in Fig. 4.11(b). The dimensions of the open tank are 

12 HHB , for which the upper edge of the orifice is located at 1H  
from the liquid level and the lower edge is at 2H  from the liquid level. Es-
timate the overall discharge of a liquid from the open tank where the sur-
rounding pressure is atmospheric, assuming that the liquid level of the tank 
is kept constant. 
 
(iii) In a measurement of high volumetric flow rate of a liquid, a weir is of-
ten utilized. Also, a weir is the most common means of measuring overall 
discharge in an open channel. There are basically two types of weir (for 
metering discharge), both of which have an obstruction placed in an open 
channel that leads the flow through an opening or aperture designed to 
measure the discharge. A sharp-crested weir is a type of weir which has a 
vertical plate placed normal to the flow, consisting of a sharp-edge crest.  
This is typical in rectangular sharp-crested weir or V-notch weir, so that the 
nappe behaves like a free jet, as shown in Fig. 4.11(c). A broad-crested 
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weir is another type of weir, which has some elevation above the channel 
bottom to reduce the flow level. The elevation is long enough so that the 
level on the elevation becomes parallel to the upstream level of the channel. 
Knowing a mean velocity on the elevation, the volumetric flow rate of the 
discharged liquid through the weir may be obtained, measuring the actual 
height of the liquid on the elevation, see Problem 4.1-3. 

For a typical volumetric flow rate measurement, in this exercise show a 
method to measure the discharge of a liquid in the case of a V-notch weir 
as shown in Fig. 4.11(c). 

Ans. 

 
The gravitational potential head (pressure) causes flow through the 

tank-orifice, open tank and weir. In order to tackle the problems, applica-
tion of the mass continuity and Bernoulli equations are essential. 
(i) Applying the Bernoulli equation of Eq. (4.1.38) between point 1  and 
2 , denoting that the velocity 1u  on the surface is zero and pressures at 

points 1  and 2  are both atmospheric ap , it follows that 

2
2
21

2
1 2

1
2
1 zpuzpu aa gg  (1)

Setting 01u  and denoting  the density of fluid being constant, we 
have 

Hzzu gg 22 212  (2)

The velocity of efflux is equal to velocity of free fall from the surface of 
the tank. This relation is called Torricelli’s theorem. 
 
(ii) This is an example of a large orifice discharge. We can assume that the 
discharge flow at the orifice is ideal so that the vena contracta can be ne-
glected, and that the discharge velocity at the orifice is horizontal. Uniform 
flow exists across the width at the position h  from the liquid level. We 
first apply the Bernoulli equation along the representative stream line at 1  
the liquid level, where the descendent velocity of the liquid surface is as-
sumed to be zero, and to a point at 2  hz  in the orifice plane. It follows 
that the velocity u  at hz  is 

hu g2  (3) 
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This is the Torricelli’s theorem in the previous problem (i). Let us take an 
infinite area dA  on the orifice plane, as shown in Fig. 4.11(b), where 

dhBdA . The ideal discharge is given as 
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In actual experimental situations, there would be contraction at the orifice 
so that for real flow a discharge coefficient dC  must be considered, and Eq. 
(4) can be expressed as follows 

2
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1
2

3

22
3
2 HHBCQ d g  (5)

(iii) The use of a V-notch weir is an accurate way of measuring large 
volumetric flow rate in many engineering applications. However, in actual 
flows there exists a nappe at the weir, as indicated in Fig. 4.11(c), although 
large lateral contractions are not usually present because of the presence of 
the side walls. In the same manner as considered in (ii) for tank orifice, we 
can define an idealized flow situation, first of all, assuming that the nappe 
does not exist and the level of liquid surface at the weir is the same as that 
upstream. Again the flow velocity in the V-notch plane at hz  from the 
liquid level is thought to be one obtained by the Torricelli’s theorem 

hu g2  (6)

Denoting the infinite area dA  at hz  in the V-notch plane as dhbdA , 
where HhHBb , the ideal discharge is given by 

HH
dh

H
hHBhdAuQ

00
2g  (7)

The integration of Eq. (7) will give the following formula 

2
3

2
15
4 BHQ g  (8)

Since HB 22tan , we can write Eq. (8) as 

2
5

2
tan2

15
8 HQ g  (9)

In actual experimental situations, there would be nappe at the V-notch 
plane so that, similar to the large orifice, we will introduce the discharge 
coefficient dC , and it follows that 
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2
5

2
tan2

15
8 HCQ d g  (10) 

In engineering applications, the  range would be 12022  where 
60.dC .  For accurate measurement of discharge, meticulous calibration 

is required for dC . 

Exercise 4.1.4 Sudden Expansions, Contractions, Bend and Flow 

In pipelines there are regions, where the pipe cross-sectional area changes 
abruptly, as often seen at pipe joints. In long pipelines, total pressure loss 
(head loss) is mostly caused by viscous loss along the pipelines, where 
losses due to hydrodynamic effects, such as flow separations and secon-
dary circulations (vortices) in these abruptly changed cross-sectional area, 
bends or other pluming (piping) parts, are normally small. Those losses 
due to hydrodynamic effects are known as minor losses. However, in a 
short pipe system, minor losses, are not to be neglected. 

 
(i) Find an expression for the pressure loss (head loss) in a sudden expan-
sion in a pipeline, as shown in Fig. 4.12(a). Denoting that a pipe of cross-
sectional area 1A  of 1  is connected to the sudden expansion part of cross-
sectional area 2A  of 2 . The pressure at joint 1  is 1p  and one at a down-
stream region of fully developed flow is 2p . Assume uniform flow enters 
the sudden expansion part 1  with a velocity 1u , and leaves the region at 
2  with 2u . The fluid density is . 

 
(ii) Similar to (i), find an expression for the pressure loss (head loss) in a 
sudden contraction in a pipeline, as shown in Fig. 4.12(b). Consider that in 
the sudden contraction part the vena contract occurs so that the exit’s con-
dition is taken at region 2  when the flow reaches fully developed uniform 
velocity, where the pressure and velocity is 2p  and 2u  respectively. 
 
(iii) There are many elements, which cause pressure loss (head loss) beside 
frictional pressure loss (viscous loss) in pipelines. These are minor losses. 
Explain a method to measure the minor loss in an experiment or to deter-
mine one from a numerical simulation result, taking an example of a 90  
bend in a flow channel as shown in Fig. 4.12(c). 

Through Rotating Blades 
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Fig. 4.12   Sudden expansion, contraction, bend and flow through rotat- 

ing blade 
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(iv) The thrust force exerted by a rotating blade is a major concern for 
driving marine vessels (screw), pumping air (fan), flying planes (propeller), 
wind-driven power generators (wind turbine) and so on. The theory of the 
thrust force by a rotating blade is originally due to W.J.R. Rankine, and 
developed by R. E. Froude, and it is known as the actuator-disk theory. The 
theory applies to a rotating blade to produce the thrust force by a given 
power, bearing in mind that it can be replaced by a stationary disk which 
provides a pressure rise across, as depicted in Fig. 4.12(d)(1) and (2). Tak-
ing appropriate control volume for the system, find an expression for the 
thrust force F  and associated power to a propeller and estimate the effi-
ciency. Assume that the propeller is a thin actuator-disk so that both side of 
the propeller 2A  and 3A  are the same in area. Assume further that the in-
coming and exiting flows are uniform with velocities 1u  and 4u  respec-
tively, as depicted in Fig. 4.12(d)(2). The control volume is assumed to be 
formed between side boundaries, called the slipstream, as shown in Fig. 
4.12(d)(1) and (2). The fluid density is . 

Ans. 

(i) The pressure loss can be determined with the mass continuity, the inte-
grated momentum and Bernoulli equation for the control volume in Fig. 
4.12(a). The set of equations are respectively: 

2211 AuAu  (1) 

22112 AppuuQ  (2) 

lhzpuzpu gg 2
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1  (3) 

2211 AuAuQ  the volume flow rate and z  are levels of the reference 
point 1  and 2 , which are the same. From Eqs. (1)–(3), solving for the 
head loss lh , we have 
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1
2

1 1
2 A

Auhl g
 (4) 

Further, by definition of the correction factor , Eq. (4) can be written by  

g
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2

2

1
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1 1
2 A

Auhl g
 (5)

Alternately, to the head loss lh  by defining the pressure loss coefficient  

gg 22

2
1

2
21 uuuhl  (6)

In Eqs. (5) and (6) we used a relationship between the area ratio 21 AA  
and  as 

2

2

11
A
A  (7) 

Note that  is defined as the correction factor which is normally near unity. 

 
Fig. 4.13 Conical diffuser 

(ii) In contracting flow, a flow separation at the entrance of the outlet pipe 
occurs, where the flow is accelerated to the point of vena contracta (0), and 
decelerated from (0) to 2  in which the flow is fully developed. In the 
same manner as question (i), we can arrive at the head loss 1 – 2  as fol-
lows 
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In general, major head loss occurs in decelerating flow, while in accelerat-
ing flow the head loss is rather small. Thus, taking the control volume be-
tween (0)– 2 , we may be able to write the head loss sh as follows 

    
gg 2
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20 u

C
uuh

c
s  (9)

cC  is the contraction coefficient defined by 20 AACc . 
Equation (8) covers overall head loss between 1 and 2 , in which Eq. 

(9) dominates the head loss, thus consequently taking the following rela-
tion 

sl hh    and   
2

11

cC
 (10) 

So that we have for 1 – 2  
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In calculating Eq. (11), we have the following well-known expression of 
cC  (ref. D.N. Roy, 1988) 
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12170701
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 (12) 

cC  is the same as the contraction coefficient of the orifice plate. For flows 
from a large reservoir through a pipe (i.e. 012 AA ),  may be 50. . 
The loss can be minimized by rounding the corner of the entrance pipe, 
shaping the Bell-mouth, which yields 050.  in practical engineering 
problems. 

With the similar treatment as above, we can extend our problem to the 
cases of effuser or diffuser. The head loss in a diffuser is greater than an ef-
fuser in the same contraction ratio 21 AA . In a conical diffuser for a diver-
gence angle  as indicated in Fig. 4.13, the correction factor  given by 
Eq. (12) in question (i) takes the values 1.1 to 1.2 for  being between 
60  and 70 , and drops until it reaches approximately 1.0–1.05 at 

180 . In the diffuser, the diffuser efficiency d  of the pressure recov-
ery is defined as 
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Additionally, using defined by Eq. (14) in question (i), we have 

21

21

1
11

AA
AA

d  (14)

(iii) Imagine that the pressure (the static wall pressure) distribution along 
the wall is known, either by experimental measurement or numerical result. 
We can then plot the pressure data for locations of pressure taps as shown 
1 – 12  in Fig. 4.12(c)(1) (or for wall points in numerical results). In the 

case of a long channel, there would be a strong pressure gradient in up-
stream and downstream regions due to viscous (frictional) losses as indi-
cated in Fig. 4.12(c)(2). As seen in Fig. 4.12(c)(2), at locations 1 – 4  and 
locations 8 – 12 , the pressure gradients in the fully developed regions are 
almost the same, which is unaffected by the minor loss due to the bend in 
locations 4 – 8 . The minor loss is the pressure drop caused by the flow 
configuration in the bend, usually by flow separation and local circulation 
at local points 4 – 8 . The minor loss lossp  is the difference between the 
two parallel lines of fully developed flow regions, i.e. between lines of lo-
cations 1 – 4  and locations 8 – 12 .  

On the other hand, in the case of relatively short channel, the viscous 
losses at upstream and downstream regions, before and after the bend, are 
small, yielding the trend that the pressure gradients of the regions are al-
most null. Namely, the lines of pressure distribution at locations 1 – 4 and 
locations 7 – 12  are almost horizontal, keeping their values almost constant 
in the two regions. The pressure loss lossp  due to the bend in a short 
channel (as typically seen in such channels as shown in Fig. 4.12 (c)(3)) is 
representatively displayed in Fig. 4.12(c)(4). As demonstrated, the pressure 
loss lossp  can be simply determined as a pressure difference between any 
two arbitrary points between the upstream and downstream (fully devel-
oped) flow regions. Figure 4.12(c)(3) is a typical flow configuration in a 
90  bend in a short channel. 

The pressure loss coefficient  at this bend is often defined as 
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2

2
1 u

ploss  
(15) 

where u  is the average flow velocity.  is usually a function of the Rey-
nolds number and geometric parameters. 
 
 (iv)  The thrust force F  given by the pressure is the net force acting on 
the control volume in Fig. 4.12(d)(1). Thus, the integrated momentum 
equation applied to the large control volume gives 

14 uuQF  (16)

Q  is the volumetric flow rate propelled by the propeller when a control 
volume as indicated in Fig. 4.12(d)(2) is drown in the vicinity of the pro-
peller such that 32 uu . Thus, the momentum equation would give F  by 
the following form 

23 ppAF  (17) 

When we assume no energy loss or gain due to viscous effects between 
points 1  and 4 , and there is no area change between 2  and 3 , we can 
write the conditions as follows 

32 AAA  (18) 

32 uuu  (19) 

The Bernoulli equations of the points between 1  and 2  and 3 – 4  are 
written 

2
22

2
11 2

1
2
1 upup  (20)

2
44

2
33 2

1
2
1 upup  (21)

The potential head is the same at all points. Using the fact that the pressure 
is the same all around the control volume, we can recognize that 

atm41 ppp  (22) 

atmp  is the surrounding pressure. From Eqs. (20), (21) and (22), we have 
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With Eqs. (16), (17) and (23), we have the relation 

41
2

4
2

12
1 uuAvuuA  (24)

Thus, consequently we can obtain v  as 

412
1 uuv  (25) 

v  is the flow velocity through the propeller. Equation (25) shows that the 
flow velocity through the propeller is the average of the upstream and 
downstream velocity. 

The power fluidW  required to propel the fluid between points 1  and 4 , 
i.e. to produce the fluid motion, not considering losses, will be 

2
1

2
42

1 uuQW fluid  (26) 

A moving propeller attached to a vessel (ship or aircraft moving with ve-
locity v ) requires the power propW  given by 

1FuWprop  

            141 uuQu  (27)

The theoretical propeller efficiency p  is then given by the following ex-
pression, from Eqs. (26) and (27) 

v
u

uu
u

W
W

fluid

prop
p

1

14

12

 

(28)

The maximum efficiency of a propeller can be obtained by designating the 
condition that propW  becomes maximum. So that, eliminating 4u  using Eq. 
(25) from Eq. (27) and differentiating Eq. (27) with respect to v , while 
keeping 1u  constant, we have 
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12
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Therefore, the maximum efficiency of a propeller is ideally obtained by 
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Fig. 4.14 Wind turbine 

Similarly the maximum efficiency, that a wind turbine as depicted in 
Fig. 4.14 can attain, can be found, using the same control volume as 
treated in Fig. 4.12(d), while reversing the wind direction from 4  to 1 . In 
the same manner as the propeller, fluidW  is calculated by differentiating 
with respect to v , while keeping 4u  constant, so that we have 

43
4 uv  (31) 
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The maximum efficiency of a wind turbine is ideally estimated by 

%359
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fluid
T  (32)

In actual cases for both propeller and wind turbine, the efficiency is 
less than the ideal situation as obtained in Eqs. (30) and (32), due to vis-
cous loss and the complex flow configuration through the rotor. There 
would be a strong swirl component of velocity. However, the expressions 
of Eqs. (30) and (32) would give the maximum attainable efficiency, which 
may provide a target design. 

Exercise 4.1.5 The Rayleigh-Plesset Equation 

There is a spherical bubble in a perfect, incompressible liquid of infinite 
extent. The bubble growth is due to a pressure variation at a distance from 
the bubble. Referring to Fig. 4.15, the radius of the bubble at any time t  > 
0 is tRR , and r  is the radius to any point in the liquid, where the ori-
gin o  of coordinates is at the bubble center, which is at rest in the inertial 
reference frame. Derive an equation of motion for a spherical bubble in a 
liquid for given external pressure tp , which varies with time, with a con-
dition that the pressure at the bubble surface is Rp . 

 
Fig. 4.15 Growing bubble 
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Ans. 

Let us assume that the flow is irrotational, so that the velocity field is 
written in terms of the velocity potential  given by Eq. (4.1.2). With 
spherical symmetry the surface velocity of the growing bubble is the radial 
velocity u  of the fluid flow, and it is a function of r , so that the velocity 
potential )(r satisfies the Laplace equation 

02 r  (1) 

For the spherical coordinates system with spherical symmetry, we have 

01 2
2 dr

dr
dr
d

r
 (2)

The integration of Eq. (2) will give the general solution as 

c
r
mr  (3) 

where m  and c  are constants. With Eq. (3), the radical velocity u  is thus 
given as follows 

2r
m

dr
du

r
 (4)

With the boundary condition at the bubble surface, we may write 

R
dt
dRu    at  Rr  (5) 

Thus, that we can write Eq. (4) as 

2R
mR    and  RRm 2  (6) 

Using m  of Eq. (6) into Eq. (3) and setting c  in Eq. (3) to zero, we can 
obtain an expression of  as 

r
RRr

2
 (7) 

Equation (7) satisfies the problem condition that is  

0u   for  r  (8) 

and 



Exercise      151 

u   for  0r  (9) 

Knowing the velocity field as the velocity potential, we can apply the 
pressure equation if Eq. (4.1.35), ignoring the gravitational potential, to 
write 

tprp
dt
d 2

2
1  (10)

rp  is the static pressure at r . With Eqs. (4) and (6) we can write the 
time variation of  as 

4

242

r
RR  (11) 

and 

RRRR
rt

2221  (12) 

Eqs. (11) and (12) are to be applied to the bubble surface, i.e. Rr  , and 
with that the following expressions are obtained by 

22 R  (13) 

further 

RRR
dt
d 22  (14) 

Substituting Eqs. (13) and (14) into Eq. (10), at the bubble surface, i.e. 
Rr , we can finally obtain the equation of motion for the bubble radius 

to write 

RRRtpRp 2

2
3  (15) 

which can alternatively be expressed 

         23
22

1 RR
dt
d

RR
tpRp  (16)

Equations (15) and (16) are referred to as the Rayleigh-Plesset equation, 
which can be used to estimate the growth and collapse of a vapor bubble 
for known pressure change tp . In the Rayleigh-Plesset equation, Rp  is 
often assumed from the surface tension effect on the bubble surface as  
follows 
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R
pRp v

2  (17) 

Note that vp  is the vapor pressure of the bubble at a given temperature and 
 is the surface tension of a vapor-liquid interface. 

Exercise 4.1.6 Kelvin’s Circulation Theorem and Lift on Airfoil 

For a steady barotropic flow of a perfect fluid, show that the circulation 
around any closed material curve is invariant. Explain how the lift of an 
airfoil is generated when the potential flow starts up around the airfoil. 

Note that the motion of the fluid is called barotropic if the density and 
pressure are directly related. The simple relation between p  and  is such 
that 

dpP  

where P  is the pressure function. The fluid itself is called piezotropic 
when the pressure and density are directly related. Thus all piezotropic 
fluid flows are baratropical. 

Ans. 

The Euler Eq. (4.2) can be written in terms of the pressure function 
(4.1.25) and a body force potential (gravitational potential function) 
(4.1.22) as follows 

gp
Dt
D 1u  

          P  (1)

where 

g (2) 

and 

dpP  (3) 

The left hand side of Eq. (1) is the material derivative and the acceleration 
of the flow is expressed by 
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Fig. 4.16  CCirculation around c  

 

Dt
Dua  (4) 

Let us consider the circulation around any material closed curve c  and ex-
amine the time derivative of the circulation as follows 

  
ccc Dt

Ddd
Dt
Dd

Dt
D lululu  (5)

Denote the coordinate of a point on c  be x  and the line element xl dd , 
which moves with flow, so that Eq. (5) becomes 

cc

ccc

dd

Dt
Dddd

Dt
D

uuxa

xuxalu
 

(6)

Thus 

ccc
ddd

Dt
D 2

2
1 uxalu  (7)

The second integral of Eq. (7) vanishes identically due to the cyclic inte-
gral of the total differentiation being zero. For the barotropic flow, the first 
integral also vanishes. This is because from Eqs. (1) and (4), that is 
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Therefore 

0
Dt
Dd

Dt
D

c
lu  (9)

It follows that the circulation  is kept constant, i.e. 

const.  (10) 

This is Kelvin’s circulation theorem, Kelvin (1869). It states that, for 
steady barotropic flow, in a continuous motion of the perfect fluid under 
the conservation force, the circulation around any material closed curve, 
that is moving with the flow, is kept constant. It is mentioned that there are 
conditions, in which the motion of a viscous fluid at a very large Reynolds 
number may be approximated to that of a perfect fluid. It is useful to con-
sider the inviscid limit in many engineering problems such an airfoil, as 
mentioned in the proceeding problems. 

 
Fig. 4.17 Airfoil nomenclature 

Figure 4.17 shows a schematic of an airfoil (aerofoil) and its nomen-
clatures in common use. Note that the schematic of the airfoil in Fig. 4.17 
is drawn thick and exaggerated for the sake of clarity. The camber line is 
the mean profile. The shape of an airfoil is designed in many ways to meet 
engineering demands, but they are usually well rounded at the leading 
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edge and sharp at the trailing edge. When the ratio of the maximum thick-
ness to the chord length cm lt  and the ratio of the maximum camber to 
the chord length are small, we consider the airfoil is thin. 

The lift force and drag force are exerted by an airfoil, and they are 
normal to each other in the direction of flow as shown in Fig. 4.17. The 
angle  between the approaching free stream and the chord line is called 
the attack angle. The attack angle is usually supposed to be small. 

Now for the question of the lift as the flow starts up, we consider the 
potential flow of a perfect fluid with no circulation immediately after the 
startup. The stagnation point pS  is observed on the airfoil in the vicinity of 
the trailing edge as shown in Fig. 4.18(a). This phenomenon will be treated 
in the next problem in detail; at this moment the velocity and the pressure 
are infinite at the trailing edge, where the sharp bend flow persists around 
the trailing edge. In real situations, soon after the start-up, the stagnation 
point pS  moves to the trailing edge, and at the same time a small vortex, 
due to the flow separation, is formed and after a few moments it is shed 
and lost downstream. The vortex generated after the startup is called the 
starting vortex as depicted in Fig. 4.18(b) and (c). 

In order to discuss the lift on an airfoil, we must look at the circulation 
around the airfoil.  The airfoil circulation has recently been studied in more 
detail and is considered to be an important factor. However before pro-
ceeding further, it is interesting to develop a deeper insight into how the 
circulation is generated phenomenologically. Figure 4.18(d) is a schematic 
expressing how circulation around an airfoil is generated when the flow is 
starting up. By Kelvin’s circulation theorem the total circulation  in a 
flow domain bounded by a closed curve c  must be constant and kept at 
zero, since the flow is in a quiescent state at the beginning. After the start-
ing vortex is created, the circulation in a closed curve

2
c  has a value, 

say 02 , since inside the curve there is a starting vortex. The total 
circulation in the fluid must be constant in time 0 , and hence 1 , 
which is the circulation in a closed curve 1c  and must exist to cancel 2 , 
is equal but of opposite sign to the starting vortex 2  as shown in Fig. 
4.18(d). Thus, we have a relationship 

021

21  
 

(11) 
What is happening about the airfoil is that a group of so-called bounding 
vortex is being formed around the region of the airfoil hypothetically to 
produce 1  in the closed curve 1c . It should be mentioned, not to con-
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tradict the irrotational flow assumption, that owing to the Stokes integral 
theorem 

Sc
dd Sulu

1
1  (12) 

Thus, the distribution of vorticity u  on the airfoil surface must be 
considered. The starting vortex falls far behind after some time, and the 
airfoil gets lift L  due to 1 . The derivation of the lift on an airfoil will be 
described in the proceeding paragraph. A large closed curve c , including 
the airfoil and the starting vortex, always gives zero circulation 0  al-
together, even as time elapses. With the same analogy, a vortex appears 
when the flow is stopped, which is called a stopping vortex. The stopping 
vortex is generated about the airfoil to encounter 1  and is released from 
the airfoil, keeping the total circulation zero, i.e. 021 . Those 
two vortices, namely the starting vortex and stopping vortex, are shed as a 
pair after the flow is stopped. Isn’t it interesting? There would be vortices 
all over the place in this world, if only the perfect fluid existed. 

The circulation around an airfoil 1  is therefore determined by shift-
ing the stagnation point pS  to the trailing edge. The flow leaves the airfoil 
with a finite velocity at the trailing edge without bending around the edge, 
where the pressure difference at the edge between upper and lower surface 
of the airfoil becomes zero. The condition to determine 1  around the air-
foil is justified by shifting pS  to the trailing edge. This is called the Kutta 
condition, and the sequence of this phenomenon is also called the Kutta-
Joukowski hypothesis. The Kutta-Joukowski hypothesis simply states that 
infinite velocities are not admissible in real flow situations. 

The origin of the lift of a body placed in a potential flow can be de-
rived from a thought that the force yx FF ,F  acting on the body is the 
net force due to pressure on the body, which is given by 

0c
PdSF  (13) 

0c  is the closed curve of the body surface and Sd  is the surface element 
on the body, i.e. dSd nS ˆ ; n̂  is the unit normal vector facing outward on 
the body surface. The components xF  and yF  are written by 

0 0 0c c c
xx PdydS

dS
dyPdSPnF  (14)

and 
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Fig. 4.18 Starting up flow around an airfoil 
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0 00c cc
yy PdxdS

dS
dxPdSPnF  (15)

Thus, F  is expressed by the complex expression 

0

0

c

cyx

dzPi

idydxPiiFF )(F
 

(16)

idydxdz  is the conjugate of idydxdz . From Eq. (1) for the steady 
barotropic flow, we have (with reference to Eq. (4.1.21)) 

Puu 2

2
1  (17) 

Considering the potential flow, i.e. 0u  irrotational, the pressure 
P  of Eq. (17) is substituted into Eq. (16), which gives 

0

2

2
1

cyx dz
dz

dWiiFFF  (18)

u  in Eq. (17) was expressed by the complex potential )(zW  

dz
dWivuu  (19) 

Hence 
2

2

dz
dWu  (20) 

Assuming that there would not be external body force, i.e. 0 , Eq. (18) 
becomes 

0

2

2 cyx dz
dz

dWiiFF  (21) 

In the potential flow, the body surface itself is the stream line, i.e. the 
closed curve 0c  is the line of Const. , so that 
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Further, since zW  is the analytic function, the integration 
0c
dz~ can be 

performed with an arbitrary closed curve, say 1c , around the body, which 
is expressed as 

1

2

2 cyx dz
dz
dWiiFF  (23) 

Equation (23) is known as Blasius’ first theorem, Blasius (1910). In a simi-
lar manner, the moment 0M about the origin of the normal stress exerted 
on the body is 
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(24)

Re  indicates the real part of the complex number. Equation (24) is also 
known as Blasius’ second theorem, Blasius (1910). 

The Blasius theorem can be applied to any steady irrotational flow in 
surrounding the body. The complex function dzdW may be expanded for  
z  with a sufficiently large order as 

2z
B

z
AeU

dz
dW i  (25) 

U  is the approaching free stream and  is the attack angle. dzdW  
gives the complex velocity in the z -plane with the velocity potential zW  
being 

z
BzAzeUzW i ln0  (26)

The second term in Eq. (26) is the complex potential due to circulation 
 so that we have 
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From Blasius’ first theorem we can obtain the force F  acting on the body: 
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(28)

Equation (28) is the Kutta-Joukowski theorem, stating that the net force on 
the body is directed perpendicular to U  and 

1ULFy  (29) 

Thus, the lift L  is generated due to 1 , which may be dependent upon the 
velocity field around the airfoil. It should be mentioned that there would be 
no force acting on the body (airfoil), where there would not be source 

0q  (Eq. (4.1.15)) on the solid wall, for the direction parallel to U , i.e.  

0DFx  (30)

This is the D’Alembert paradox, stating that there would be no drag force 
acting upon a body placed in a potential flow. Drag force is produced by 
surface friction in the boundary layer, which will be discussed in the pro-
ceeding chapters. 

In the same manner, Blasius’ second theorem gives the moment 0M  by 
substituting Eq. (27) into Eq. (24). See Problem 4.1-9. 

Exercise 4.1.7 Joukowski Airfoil 

Two dimensional airfoils are necessary for the preliminary design of air-
plane wings, propeller blades, wind turbines and so forth. In those engi-
neering airfoil applications the lift force is the prime aim for an airplane to 
support its own weight against gravity or for the one blade of a rotating 
propeller or wind turbine to exert the torque. A body placed in the potential 
flow may not experience the drag force, but has indeed the lift force, which 
is the major concern in this exercise. The simplest airfoil among many is 
the Joukowski airfoil, which can be obtained from the flow around a circu-
lar cylinder by a conformal transformation known as the Joukowski trans-
formation as introduced in Eq. (4.1.19). 

Examine shapes of the Joukowski airfoil and give the lift and moment. 

Ans. 

From Riemann’s conformal mapping theorem, there exists an analyti-
cal function that an outside domain of an arbitrary body expressed by a 
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closed surface in the -plane can be conformally transformed to the z -
plane as the outside domain of a circle. The transformation from  to z  is 

n
nCCCCz 2

21
0  (1)

 
Fig. 4.19 Joukowski transformation 
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Equation (1) is the Laurent polynomial expansion, where complex con-
stants nCCCC 210 ,,  are chosen to give an appropriate airfoil shape. 
The Joukowski transformation is such that 

2az  (2)

yxiyx ,, , iyxz  and a  is a positive real constant. Equation 
(2) gives the Joukowski airfoil shape, depending upon the choice of the cir-
cle in the -plane. Figure 4.19(a)–(e) are various cases of airfoil shapes. 
Let us denote a circle in the -plane as aeR . The singularity of the 
transformation is a point, which is obtained from the relationship 

01 2

2

z
a

dz
d  (3) 

This gives us az . In an airfoil, az  is chosen at the trailing edge. 
Now let us set a circle in the -plane by writing  as 

iae  (4) 

 and  are real constants. The transformation of Eq. (2) thus provides us 
with 

)( ii eeaz  (5)

And in the z -plane after eliminating , Eq. (5) affords us 

1
sinh2cosh2 2

2

2

2

)()( a
y

a
x  (6)

For constant ,  Eq. (6) supplies an equation of an ellipse with semi-major 
axis ,cosh2a  semi-minor axis sinh2a and foci ,2ax ,0y  as 

shown in Fig. 4.19(a). Therefore, R= Constantae ;  a circle with the 
center at the origin of the -plane, will be transformed as an ellipse in the 
z -plane. Setting 0 , the ellipse is degenerated into a segment of line on 
x  axis, whose length is a4 , as shown in Fig. 4.19(b). Shifting the center 
of circle in the -plane to a point oC  will give 

i
o aeC  (7) 
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Particularly in order to set the singularity at the trailing edge, we may be 
able to choose oC  as 

ii
o bebeC )(  (8)

Further, we can set for a  as 

2
1

22 cos2 )( lbbla  (9)

When Eq. (7) is transformed to the z -plane by the Joukowski transforma-
tion of Eq. (2), the shape that appears in the z -plane is called the Jou-
kowski airfoil, as shown in Fig. 4.19(c). Particularly if oC  is placed on the 
real axis, such that bCo  in the -plane, it becomes a symmetric Jou-
kowski airfoil. Furthermore, when oC  is placed on the imaginary axis, 
such that biCo  in the -plane, the airfoil shape may become a circular 
arc airfoil. The Joukowski airfoils in (c)–(e) are to be obtained by implicit 
function as follows: 
(c) 

z
az

2

 (10)

(d) 
n

az
az

na
na  (11)

(e) 
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21
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z
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z
CzC  (12) 

The most typically used airfoil type in engineering application is found 
in (c), which also gives the general flow configuration of a uniform stream 
over a cylinder. As seen in Fig. 4.19(c), the Joukowski airfoil has a cusp at 
the trailing edge so that there would be strength problems in actual usage. 
Since the Joukowski transformation, Eq. (2) can be equivalently rewritten 
by the following expression: 

2

2
2

a
a

az
az  (13)

The power of 2 in Eq. (13) can be replaced by the integer n, expanding the 
general form, which gives the following expression: 
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Equation (14) is called the Kàrmàn-Trefftz transformation and the airfoil 
generated by the transformation from the cylinder (a circle in the -plane) 
is referred to as the Kàrmàn-Trefftz airfoils, see Fig.4.20(a). More general 
transformation can be derived directly from Eq. (1), taking the terms up to 
n, i.e. 

n
nCCCCz

2
21

0  (15)

The airfoil design based on Eq. (15) is referred to as the Mises airfoil, 
see Fig.4.20(b). These airfoils, based on the transformation by Eqs. (14) 
and (15), are flexible in design because of choices of the singularity points 
that are located in the appropriate positions, so that optimum design of an 
airfoil will be possible and be able to meet various engineering demands. 

Fig. 4.20 Other airfoil shapes 
 

Referring to Fig. 4.19(c), the cylinder (a circle in -plane) is mapped 
into the z -plane by the Joukowski airfoil; at the same time, a flow around 
the cylinder in -plane can also be mapped into the flow in the z -plane 
by the Joukowski transformation. This expresses flow around the Jou-
kowski airfoil. In order to verify the flow field through rigorous efforts, we 
can write the complex potential W  in the following manner. 

The flow field described by W  about the cylinder, whose center is 
placed at oC , with the approaching free stream velocity U  at an attack 
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angle , as shown in Fig. 4.21(a). This is identically taken from Fig. 
4.19(c), and can be expressed by the expression: 

i

i
ii

be
eaebeUW

2

)(  (16)

Fig. 4.21 Lift and moment on Joukowski airfoil 

The point where l  transforms into lz 2  is at the trailing edge of 
the airfoil. However, W  in Eq. (16) has infinite velocity at the trailing 
edge; as a result, the singularity at the trailing edge must be removed from 
the Kutta-Joukowski hypothesis (Kutta condition) by adding a circulation. 
This is done by introducing the potential vortex given by Eq. (4.1.16) into 
Eq. (16), so that the singularity is removed at the trailing edge and the ve-
locity at the trailing edge can become finite. The new complex potential 
W  will be 

a
bei
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eabeeUW
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i
ii ln

2

2

 (17) 

With W  in Eq. (17), the velocity at the trailing edge of the airfoil is 
given by 

dz
d

d
dW

dz
dW  for l  and l2  (18) 

and  
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01 2

2l
d
dz  (19) 

Therefore, for dzdW  to be finite at the trailing edge, ddW  must be 
zero, and this condition (Kutta Condition) determines the value of . 
From Eq. (17), we have 

01
22

2

ii

i
i

be
i

be
eaeU

d
dW  (20)

From the geometry of Fig. 4.21, we have 
ii aelbe  (21) 

and for l ,  is obtained from Eq. (20) as follows 

sin4 aU  (22) 

The lift of an airfoil can be given by the Kutta-Joukowski theorem with the 
Blasius’ first theorem, see Eq. (29) in Exercise 4.1.6 

UL  (23)

where the lift L  is perpendicular to the approaching free stream. Therefore, 
the lift is 

sin4 2UaL  (24) 

In order to examine the performance characteristics of an airfoil, the 
lift coefficient LC  is often used, where LC  is defined as a unit of length of 
the airfoil. This in turn refers to the chord length cl  or width of the airfoil, 
such that 

221 U
lLC c

L  (25)

It is now desired to estimate LC  of Joukowski airfoil where, taking alc 4 , 
we have 

sin2LC  (26) 

Small ;  is often referred to as the absolute attack angle, 
which is greater than the apparent attack angle , where we have 
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2LC  (27) 

In Fig. 4.22, some comparisons with the measurement of LC  and DC  are 
displayed, where DC  is similarly defined by 

     221 U
lDC c

D  (28) 

As observed in Fig. 4.22 (note that in an analytical symmetric case, 
 is also displayed with dotted line (b)), LC  increases with  and 

then drops all of sudden, where the stall of airfoil occurs at s . At the stall 
a flow separation (the viscous boundary layer separation) from the surface 
of an airfoil occurs and the circulation is lost, causing sharp drop of the lift. 
However, as seen in Fig. 4.22, the analytical estimate by Eq. (27) will give 
reasonable account for the (real) experimental measurement before reach-
ing the stall angle s . The drag of the potential flow is identically zero, as 
seen in Exercise 4.1.6, except in the experiment where the viscous friction 
causes the drag (due to the boundary layer), and the drag sharply increases 
after the stall angle s  caused by the flow separation. 

The moment 0M  comes to the center of the origin in z -plane, whose 
value is to be obtained from Blasius’ second theorem, as in Eq. (24) in Ex-
ercise 4.1.6 
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(29)

and with Eqs. (20) and (21), 0M  is expressed by 

cos2sin2 22
0 bUlUM  (30)

where  and  are defined as 

ibeZC 0o ,  (31) 

and 

iela 222  (32) 

Thus, the moment M  at the point 0Z  in the airfoil, which implies the 
shifted center of the cylinder oC  in -plane, is  
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2sin2
cos
22

0

lU
LlMM

 (33) 

 
Fig. 4.22   Some comparison of LC  and DC  with experiment (Experimen-

tal data replotted after Nishiyama, 1989) 

The moment coefficient MC  is similarly defined as following 

2sin4

2
1 2

2

U

lMC c
M  (34)

where llc  was taken tacitly. 

Exercise 4.1.8 Forces on Deflectors 

A liquid of an absolute velocity is deflected by a deflector to an angle of  
forward and downward, as illustrated in Fig. 4.23. The surrounding pres-
sure is kept constant by the atmospheric everywhere, and the pressure in 
liquid entering the deflector is the same as that in the liquid deflecting at 
the deflection point. The jet is free-jet, the column of which is kept con-
stant without laterally spreading. The body force due to the gravity is small 
and can be neglected. The viscous force is also small and neglected every-
where. The deflection of the jet is confined in the two dimensional plane, 
as seen in Fig. 4.23. 
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Fig. 4.23 Liquid jet at deflector 

 
Fig. 4.24 Case study of liquid jet at deflector 
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The area of the entering liquid jet is A , and 31  of the flow rate of the 
entering liquid jet is deflected downward (to the direction 2 ). Examine 
the following cases:  
(i) Determine the force acting on the deflector and the direction of the 
force when the deflector is stationary in the inertial reference frame.  
(ii) Determine the force acting on the deflector, and the direction of the 
force and the power of the deflector, when the deflector is moved to the di-
rection of the liquid jet with an absolute velocity u  in the inertial reference 
frame. 
(iii) Determine the physical parameters, if a series of deflectors (a cascade) 
are in action. Also describe a certain type of turbomachinery if the theory 
is applied in engineering practice, and estimate the kinetic energy given to 
run the machinery. 

Note that the density of the liquid is , which it is kept constant 
throughout the process. 

Ans. 

The exercise is the application of the integral form of the momentum 
equation over the control volume, which appears to preclude an integral 
part of analysis for turbomachines, such as turbines, pumps, compressors, 
and so forth. 
(i) Let us consider the control volume on the deflector as illustrated in Fig. 
4.24(a), defining the exiting velocities 1v  and 2v  from upward 1 and 
downward 2  flow respectively. Denote that the forces acting on the con-
trol volume are xf  and yf  in x  direction and y  direction respectively, 
where the entering direction of the liquid jet is in x  direction. From Eq. 
(4.1.47), the forces are 

 xfvvmvvm coscos 2211  (1)

yfvmvm 0sin0sin 2211  (2)

where for the mass flow rate 1m  and 2m , we have given conditions 

vAQm
3
2

3
2

1  (3)

vAQm
3
1

3
1

2  (4)
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Bernoulli equation gives us a clue that the magnitude of 1v , 2v  and v  are 
all equal, because from 0 to 1  and 0 to 2  in the control volume, we can 
write Bernoulli equations as 

0
2

10
2

2
1

2
1 zpvzpv atmatm gg  (5)

0
2

20
2

2
1

2
1 zpvzpv atmatm gg  (6)

where atmp  is the surrounding pressure and the gravitational effect 0zg  
is to be neglected. Thus, from Eqs. (1) to (4), we have 

1cos
3
12 Avfx  (7)

sin
3
1 2 Avf y  (8)

where xf  and yf  are the forces acting on the control volume (to liquid 
flow). Therefore, the forces acting upon the deflection are to be considered 
as the reaction forces  

)( cos
3
112 AvfF xx  (9) 

sin
3
1 2 AvfF yy  (10) 

The direction of the resultant forces is thus 

cos311
sin31tantan 11

x

y

F
F

 (11)

and its magnitude is 

cos610
3
1 222 AvFFF yx  (12)

(ii) The deflector is moved with the liquid jet with the relative velocity rv  
as 
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uvvr  (13) 

so that the mass flow rate relative to the deflector must be changed accord-
ingly by 

AvQm rrr 3
2

3
2

1  (14) 

AvQm rrr 3
1

3
1

2  (15) 

The Eqs. (1), (2), (5) and (6) will be solved for xf  and yf , with Eqs. (14) 
and (15), using the relative (moving) frame locked onto the deflector by  
replacing v  by rv . We can thus obtain, by a heuristic argument, which the 
forces are written by 

cos
3
112 AuvFx  (16) 

sin
3
1 2 AuvFy  (17) 

cos311
sin31tantan 11

x

y

F
F

 (18) 

and 

cos610
3
1 222 AuvFFF yx  (19)

The kinetic energy sW  given to the deflector is thus expressed as follows 

cos
3
112 uAuvuFW xs  (20)

(iii) For a series of deflectors, the actual force on a deflector is zero before 
and after the liquid jet strikes the deflector. The situations considered are 
analogous to an impulse turbine, such as a Pelton wheel (refer for further 
exercises in Section 4.2). In order to examine the problem, we will idealize 
the situations that the jet (the discharge from a nozzle) is deflected with an 
angle of  on average, where the jet strikes the deflector and is deflected 
with the relative velocity rv  to the deflector, as discussed in the previous 



Problems      173 

problem (ii), i.e. uvvr according to Eq. (13). That said, the mass flow 
rate continuously striking the deflector, one after another, is defined in Eqs. 
(3) and (4) on average. Therefore, we solve for xf  and yf  with Eqs. (1), 
(2), (5) and (6) by replacing v  with rv , but we can consider the discharge 
Q with Eqs. (3) and (4). Resultantly, then, we have a force acting upon a 
deflector on average 

)()( cos
3
11AuvvFx  (21) 

sin
3
1 AuvvFy )(  (22) 

cos31
sin31tantan 1

x

y

F
F

 (23) 

and 

            cos610
3
122 vAuvFFF yx  (24)

The kinetic energy dW  given to run the deflectors with the absolute speed 
u  in the direction of the discharge (the direction of liquid jet) is thus given 
by 

cos
3
11uAuvvuFW xd  (25)

where ru  and r  is the radius to which each deflector rotates with the 
angular velocity , which is analogous to the Pelton wheel. 

Problems 

4.1-1 In the potential flow, examine the flow field when one source of 
strength q  and one sink of strength q  are spaced equidistant a  
from the origin in the x -axis in an uniform flow U  (as shown in 
Fig. 4.25). The complex potential )(zW  will be given by following 
formula 

–1

–1
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Fig. 4.25 One potential flow with source and sink  

Ans. (oval) ovoid Rankine The  

 
4.1-2 Siphons are used to discharge liquid from a reservoir as a simple and 

inexpensive way of pumping, as illustrated in Fig. 4.26. Find the 
elevation 3z  and the static pressure at the highest point 2 , and dis-
cuss the function of the siphon, denoting that the discharge flow rate 
is Q  and the level of point 2  is known as 2z  (given) and the pipe 
has an uniform cross sectional area A . Neglect the effect of friction 
and assume that the area of the reservoir tank is large enough, com-
pared to the siphon cross-sectional area, to disregard the kinetic en-
ergy at suction 1  compared to the other  kinetic energies. The sur-
rounding pressure is the atmospheric ap  and the density of the 
liquid is . 
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Fig. 4.26 Siphon 

Ans. 
pressureVapor

2

2
322

2
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AQz

g

g

 

 
4.1-3  In open channels, such as broad shallow rivers and irrigation canals, 

the flow rate can be measured by a simple mean, the so-called broad-
crested weir as illustrated in Fig. 4.27. The weir is usually raised 
from the channel bed by a concrete crest with a height of 0z , letting 
the width of the crest to be b. The upstream crest should be well 
rounded to minimize a loss due to flow separation. When 0z  is suffi-
cient to choke the flow and the crest is long enough so that the over 
flow streams are in parallel to the crest surface. 
For the choked flow, a critical flow condition exists, and condition 
y  may be cyy 23 , in which the flow is tranquil. Assuming that 

the kinetic energy at point 1  is neglected, i.e. 01v , and Bernoulli 
equation from 1  to 2  can be applied, determine the velocity 2v  at 
point 2 , and then estimate the flow rate Q  by considering y  as the 
measuring parameter. 
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Fig. 4.27 Broad-crested wire 

Ans. 2
3

2 3
2

3
22 byQyyv c gg ,  

 
4.1-4 A nozzle is discharging a liquid of density  into the atmospheric 

pressure ap , as illustrated in Fig. 4.28. Find the pressure at point 1  
and calculate the force 1xF  of the fluid acting on the nozzle in parts 
1 – 2 . The liquid can be treated as a high velocity jet to give dis-

charge to a Pelton wheel or in fire fighting. The force, in this prob-
lem, is that fire fighters must hold the nozzle. 

 

 
Fig. 4.28 Nozzle 

Ans. 
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4.1-5 The liquid jet is discharged from a nozzle of the cross sectional area 

2A  with the discharge mass flow rate of .m  Calculate the force F  
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of the liquid jet acting on the deflector as a function of the inclined 
angle , as illustrated in Fig. 4.29, and compare the divided mass 
from rate of 1m  and 2m . Discuss the difference between the force 

1xF  (the force acting on the nozzle, Problem 4.1-4), and the force xF  
(the x  component of force acting on the deflector). Assume the liq-
uid is a perfect fluid and the column of the jet is kept constant with-
out the vena contracta. 

 
Fig. 4.29 Deflector 

 

Ans. cos1
2

cos1
2

sin 212
2

2 mmmm
A

mFx ,,  

 
4.1-6 In treating a drag force acting on a flat plate, there would not be any 

drag force on the plate if the fluid flowing on the plate is a perfect 
fluid. This is due to the reason that there is no viscosity, so that the 
flow over the plate is kept constant at the approaching velocityU ; 
namely, the flow slips (the slip condition) on the plate and there 
would not be any momentum change of the fluid, thus the drag force 

xF  is null, as depicted in Fig. 4.30(a). However, in a more realistic 
situation, fluid has a viscosity and the velocity at the surface of the 
plate is kept at zero; a no-slip condition. Consequently, the velocity 
on the plate has a distribution to the perpendicular direction ( y -
direction) against the flow direction ( x -direction), which is called 
the boundary layer. Due to the boundary layer, there would be a 
momentum change in the control volume (1-2-3-4), including the 
boundary layer, as illustrated in Fig. 4.30(b). Determine the overall 
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drag force, and the drag coefficient of the plate, assuming that the 
velocity profile at the trailing edge is linear within the boundary 
layer, whose thickness is h . Consider the flow is steady with the 
density  and tackle the problem by applying Eq. (4.1.44) for the 
control volume, as indicated in Fig. 4.30(b). 

Fig. 4.30 Drag force on a plate 

Ans. hChUFD Dx 3
1

6

2
,  

*Problem 4.1-8 is helpful to think of this problem 
*More details in the boundary layer theory            

 
4.1-7 Draw a Kàrmàn-Trefftz airfoil (wing) and a Mises airfoil (wing), as 

respectively given by Eqs. (14) and (15) in Exercise 4.1.7, with ap-
propriate constants. Illustrating with a computer will be helpful. 

 
 
4.1-8 Give an idea to measure a drag force on an airfoil, the velocity pro-

file in downstream is measured as yuu , as illustrated in Fig. 
4.31. 
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Fig. 4.31 Drag on an airfoil 

Ans. dSuUuFD x
4321

 

 
 
4.1-9 With the same manner as the Blasius’ first theorem, obtain the mo-

ment 0M  from the Blasius’ second theorem by substituting Eq. (27) 
into Eq. (24) in Exercise 4.1.6. 

Ans. BeUM i2Im0  

 
 
4.1-10 A sprinkler, as illustrated in Fig. 4.32, discharges water (the density 

is ) at the volumetric flow rate of Q  from each nozzle, whose 
opening area is A . Determine the rotational velocity (the angular 
velocity) of the sprinkler and the torque to hold the sprinkler sta-
tionary. Ignore mechanical loss and air resistance. 
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Fig. 4.32 Sprinkler 

Ans. 
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4.2 General Theories of Turbomachinery 

Turbomachines are the devices in which mechanical energy is transferred 
either to, or from, a continuously flowing fluid by means of the dynamic 
action of rotating propellers or vanes. Generally speaking, two main cate-
gories of turbomachine are identified. A turbopump (including fans and 
compressors) adds energy to a system to increase the fluid pressure (or 
head) with the result of an enthalpy increase in the fluid. A turbine (includ-
ing wind, hydraulic, steam and gas turbines) extracts energy from a system 
to produce power by expanding fluid to a lower pressure (or head) with the 
result of an enthalpy decrease in the fluid. More often, the energy trans-
ferred to those of turbomachines is mechanical work that is converted to or 
form electric power. In Fig. 4.33(a) a single-suction pump; (b) a single-
stage reaction turbine, are schematically displayed.  
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Fig. 4.33 Radial-flow turbopump and turbine nomenclature 

The chief objective of this section is to study the general theories of 
turbomachinery based on the fluid mechanics and thermodynamics. The 
majority of content in this section is devoted to pumps that are typical ex-
ample of turbomachineries. A fundamental treatment of compressible 
flows is also studied in applications of fans and gas turbines. Dimensional 
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analysis and performance laws, probably the widest comprehension of the 
general behavior of all turbomachines, are presented prior to the discus-
sions on more general treatment of the similitude and dimensional analysis 
in later chapter. Methods of analyzing the detailed flow process and the 
performance characteristics differ largely, depending upon the geometrical 
configuration of the turbomachines, and in this text no detailed behavior of 
individual types in actual operation is considered, but more general theo-
ries are investigated. 

 
Fig. 4.34 Various types of rotors (impeller vane) iin turbomachine 

In order to achieve the energy conversion between vanes and fluid, it is 
very necessary for both vanes and fluid to gain force in a rotational direc-
tion. For fluid passing through vanes, the change of velocity component in 
rotational direction occurs by force, so that the torque or the magnitude of 
energy conversion can be readily estimated by Euler’s pump (or turbine) 
law verified in Eqs. (4.1.51) and (4.1.53). We need to know, however, the 
flow fields at inlet and outlet to the vanes to obtain the energy conversion a 
priori. For a turbomachine with a greater number of vanes and with larger 
contact between the vane surface and the fluid flow, the moment of mo-
mentum theory (the Euler’s pump or turbine law) would be more appropri-
ate to apply. On the other hand, when the number of vanes are less and 
have smaller contact surface area with fluid flow, the airfoil theory may be 
more appropriate to apply. Both approaches are useful for designing 
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4.2.1 Moment of Momentum Theory 

Figure 4.35 shows schematics for an idealized radial flow pump impeller, 
in which (a) is a control volume from the frontal view together with its me-
ridian cross section. In an idealized impeller, the thickness of each vane is 
to be neglected so that, as seen in Fig. 4.35(a), the flow enters to the con-
trol volume radially, along vanes with a relative velocity 1w , and thus 
leaves with a relative velocity 2w , while in the meridian plane the axial 
flow is diverted into a radial direction as the impeller rotates with an angu-
lar velocity . 

The representative geometry of the impeller is that 1r  is the inlet radius, 

2r the outlet radius, 1b  and 2b  the width of the impeller at inlet and outlet 
respectively. The velocity diagram at the inlet with suffix 1 and the outlet 
with suffix 2 is illustrated in Fig. 4.35(b). u is the circumferential velocity, 
i.e. ru , and c  is the absolute velocity to the inertial reference frame. It 
is worth mentioning that the image of the flow configuration in Fig. 
4.35(b) is derived from the general concept of turbomachine, as displayed 
in Figs. 4.5, 4.6 and 4.7. The angle  is vane angle, through which the 
flow enters and leaves the impeller in the control volume with relative ve-
locity 1w  and 2w  respectively. The radial and circumferential component 
of c  are respectively denoted by mc  and uc  at locations of 1 and 2.  is 
the angle between the absolute velocity vector c  and the circumferential 
velocity vector u  at locations 1 and 2. 

According to the theory of the moment of momentum and the Euler’s 
pump (or turbine) equation, the shaft torque rT  and power wP  transmitted 
to a fluid from an impeller can be conventionally written as 

111222

1122

coscos crcrQ
crcrmT uur  (4.2.1) 

and 

uu

rw

cucuQ
TP

1122
 (4.2.2) 

 

nd mixed flow turbomachines with 

the airfoil theory. Figure 4.34 shows the typical geometric configurations 
of turbomachines based on the flow direction through the machines. 

turbomachines, particularly for radial a
the moment of the momentum theory, and for axial flow turbomachine with 
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where zn  and z  are conventionally replaced by notions of rT  and  
that are the torque and angular velocity respectively in Eqs. (4.1.51) and 
(4.1.53). It is noted again that in the case of rT and 0wP , for the pump, 
and  in the case of rT and 0wP , for the turbine. 

 
Fig. 4.35 Idealized radial flow pump 

Noting that the fluid is a perfect fluid, which is satisfactorily justified 
for actual turbomachines through which flows have large Reynolds num-
ber and can be regarded as the inviscid flow. The theoretical power trans-
mission of thL  per unit mass, neglecting energy loss, is expressed as 
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uu
w

th cucu
Q

PL 1122  (4.2.3) 

thL  is often called the theoretical specific energy, and furthermore the 
theoretical pressure head (Euler head) that rises across pump thH  is writ-
ten as 

uu
th

th cucuLH 1122
1
gg

 (4.2.4) 

With the aid of the velocity diagram at points 1 and 2 in Fig. 4.35(b), we 
have 

uuccu

uccuw
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 (4.2.5) 

Combining Eqs. (4.2.5) and (4.2.4),  we can reduce thH  to write 
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(4.2.6) 

When we consider the equation given in Eq. (4.1.41) where the rotating 
reference frame at points 1 and 2, we can write Eq. (4.2.6) as follows 

gg
12

2
1

2
2

2
ppccH th  (4.2.7) 

Equation (4.2.7) indicates that for a pump, i.e. 0thH , the energy given 
by rotating the impeller to a fluid results in the rise of kinetic energy (the 
first term of Eq. (4.2.7)) and the pressure rises (the second term of Eq. 
(4.2.7)). Similarly for turbines, it becomes the opposite, i.e. 0thH . The 
actual delivered head H , measured as the head difference between the 
inlet and outlet flanges of the pumps, as sometime called the manometric 
head, is less than the theoretical head thH , due to a loss in head lh , as this 
can be written as 

lth hHH  (4.2.8) 

For hydraulic turbines, the impeller can be regarded as a runner and 
water flows in opposite direction to the pump. For example, in the Francis 
turbines, the fluid power input to the turbine would be given as  
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thtw QHP )(g  (4.2.9) 

in which thtH )(  is the theoretical head drop across the turbine. The actual 
head drop tH  may be 

lthtt hHH )(  (4.2.10)

where the loss of head lh  will be added to the theoretical head thtH )( . 
Returning to the pump as our representative objective, the maximum 

theoretical head thH  in Eq. (4.2.4) can be achieved if uc1  becomes zero. 
This is the case when the inlet flows to an impeller and meets a condition, 

21 / , i.e. 01  in Fig. 4.35(b), and namely this is the case when the 
flow has no swirling motion at the inlet and enters to an impeller along 
vanes normal to rotational direction. So that ideally we have 

uth cuH 22
1
g

 (4.2.11)

and from the velocity diagram at 2 in Fig. 4.35(b), we have  

21

2

2
2

2
2

222
2

2

2
cot

cot11

Q

Q
b

r

cuuH mth

gg

gg

 

(4.2.12)

where 1  and 2  are kept constant when geometric parameters and the ro-
tational speed are fixed.  It should be noted that in deriving Eq. (4.2.12) the 
following relations are used 

   222222 cotcos mu cucc  (4.2.13a)

22
2 2 br

Qc m                                  (4.2.13b)

22 ru  (4.2.14)

Equation (4.2.13b) is obtained by applying the mass continuity equation to 
the outlet (point 2) of the impeller. In an actual design of a radial flow tur-
bomachine, there are vanes of finite thickness (conventionally 6~8 vanes 
in a pump impeller and 15~17 vanes in a turbine runner), and particularly 
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in a pump where there is a slip of flow at the outlet of an impeller, as illus-
trated in Fig. 4.36(a). As shown in Fig. 4.36(a), the relative velocity 2w  
with the vane angle 2  would be shifted to 2w  and 2  respectively. This 
is largely caused by the fact that the flow is affected through the impeller 
of a pump, as illustrated in Fig. 4.36(b), due to the circulatory flow which 
is induced to have a rotation opposite to that of the impeller and thus modi-
fies the outlet velocity diagram from an ideal pump. Therefore, there be-
comes a decelerating flow where the flow is quite uneven between the 
vanes. As a result, we have the difference from thH  to be written as 

uuthth ccuHH 222 '1'
g

 (4.2.15)

and  

thcthth HPHH  (4.2.16)

           

Fig. 4.36 Slip flow at outlet of impeller 

Equation (4.2.16) compares the relative head difference between the 
ideal head thH  and the actual (after considering slip) head thH , giving 
the ratio between the tangential components of absolute velocity corre-
sponding to the angles 2 and 2  respectively. This is indicated in Fig. 
4.36(a). Equation (4.2.16) can be further reduced to a formula 
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1
1

2

2

cu

u
s Pc

c  (4.2.17)

where s  is called a slip factor, and cP  is a correlation constant obtained 
by experience in an actual pump design. cP  may be written, as a result of  
many attempts in predicting the amount of slip from impellers, Pflei-
dener(1961) 

sc
cc Is

rqP
2

2  (4.2.18)

Note that in Eq. (4.2.18), cq is an experimental constant and usually given 
by the following correlational formula for a radial flow impeller (10–30% 
lower value for pumps with outlet guide vanes) 

2sin6.068.055.0cq  (4.2.19)

and for impeller vanes with a three dimensional curved surface 

2

1
2sin12101

r
rqc ..  (4.2.19)

In Eq. (4.2.18), sI is the first moment of an area for the axis of rotation 
along the center line of the meridian cross-section, as shown in Fig. 4.35(a) 
and defined for the radial flow pump as 

2

1

2
1

2
22

1r

rs rrrdrI  (4.2.20)

cs  is the number of vanes in an impeller, where for pump 

86 ~cs  (4.2.21)

The information given from the slip factor given in Eq. (4.2.17) is of vi-
tal importance, particularly to the compressor designer, where accurate 
knowledge of it appears to preclude the possibility of achieving a higher 
energy conversion rate between the impeller and fluid.  

4.2.2 Airfoil Theory 

As mentioned in the previous section, the airfoil theory is more appropriate 
to apply for designing turbomachines, whose numbers of vanes are smaller 
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and with a less contact surface area than with fluid flow. This is often en-
counters in axial flow turbomachines, where the flow to and from a turbo-
machine is in the axial direction of the rotation (shaft rotation), as illus-
trated in Fig. 4.37(a) and (b). In order to figure out the axial flow 
turbomachine, (a) schematics of an axial flow pump and (b) an axial flow 
turbine (Kaplan turbine) are displayed in Fig. 4.37. Usually in the actual 
axial flow turbomachines, there are inlet guide vanes (which are not re-
garded as part of a control volume in the case of a pump. It usually func-
tions in directing flow away from the axial direction), rotor vanes (impeller 
vane in pump and runner in turbine) and stationary guide vanes in pumps. 
In axial flow turbomachines, a number of identical vanes, which are 
equally spaced and paralleled to one another, are arranged so that they 
form a cascade geometry. For the axial flow turbomachines of a high hub-
tip ratio, radial velocities are negligible and, to a close approximation, the 
flow may be regarded as two dimensional. To obtain a truly two dimen-
sional flow, however, there would require a cascade of infinite extent so 
that there would not be any flow interaction between each neighboring 
vane. In Fig. 4.38(a), the control volume of an impeller vane is illustrated, 
and with it the energy input through the shaft rotation is converted into 
flow energy. 

The flow approaches the cascade, as illustrates in Fig. 4.38(b), with an 
absolute velocity 1c  at an angle 1  and leaves downstream of the cascade 
with the absolute velocity 2c  at an angle 2 . It is denoted that in the fol-
lowing analysis the flow is assumed to be incompressible 30.M  and 
steady in the control volume with the rotational speed u . The assumption 
of the steady flow is valid for an isolated cascade, where for the control 
volume the number of vanes is low.  The velocity diagrams at the inlet and 
the outlet can be composed as shown in Fig. 4.38(b). The absolute veloci-
ties 1c  and 2c  are obtained by the vector sum of the rotational speed u  
and the relative velocity w  at the inlet and outlet respectively. In the airfoil 
theory, approaching the axial flow turbomachines, the averaged velocities 
to a representative airfoil are composed by taking the averaged velocity 
diagram with reference to Fig. 4.38(c), where w  and c  are the average 
relative velocity and absolute velocity respectively with the average angle 
is  and . In Fig. 4.38(c), c  is composed with u  and the arithmetic 
mean of 1w  and 2w , whose circumferential component is 221 uu www . 

 
 
 
 



190      4 Perfect Flow 

 
Fig. 4.37 Axial flow turbomachines and their nomenclature 
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Fig. 4.38 Idealized axial flow pump 

 

locity and force  
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The theoretical pressure head rise thH  in the case of a pump (or pres-
sure head drop in case of turbine) across the cascade low can then be cal-
culated based on the forces acting upon a representative airfoil in the iso-
lated cascade as illustrated in a lower diagram in Fig. 4.38(c). Setting 

LFA (lift force) and DFw (drag force) on the airfoil for the average at-
tack angle  with reference to Fig. 4.38(c), we can write, following the 
definitions of Eqs. (25) and (28) in Exercise 4.1.7  

cLA lwCF 2

2
1  (4.2.22)

cDw lwCF 2

2
1  (4.2.23)

where LC  and DC  are the lift and drag coefficient per unit length of the 
airfoil respectively and cl  is the cord length of the airfoil. Denoting F  as 
the resultant force by wF  and AF , and F  is decomposed in the peripheri-
cal direction and the axial direction written as uF  and wF  respectively, as 
indicated in Fig. 4.38(c) with a representative angle . So that, we have 

sin
2

cos

F

FFu  
(4.2.24)

and furthermore  

  
cossin

cossin

A

wAu

F

FFF
 

(4.2.25)

where  is a turbine,  is a pump (or fan) and together are given as 

tan
L

D

A

w

C
C

F
F  (4.2.26)

It is now desired to derive an expression for the theoretical pressure 
head thH  to characterize the turbomachine. This can be achieved directly 
by considering the work transfer in energy balance. Taking an annulus 
element (vane element) between r  and drr , as indicated in Fig. 4.39, 
the work transfer pWd  between the fluid and the annulus element can be 
written, from Eq. (4.2.25), as 
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Fig. 4.39 Vane element 

  

druFs
udrFsWds
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ucpc

cossin
 (4.2.27)

where cs  is the number of vanes. The flow rate through the element dQ  is 
written as 

mcc drctsdQ  (4.2.28)

where ct  is the pitch of the vanes in the cascade. For pc Wds  in Eq. 
(4.2.27), we have the following relationship 

thpc HdQWds g  (4.2.29)

so that Eq. (4.2.27) is rewritten as 

druFsdrctHs Acmcthc cossing  (4.2.30)

For a two dimensional assumption, Eq. (4.2.30) is integrated with respect 
to r for a hub-tip length, where we have 

mc

A

mc
th

ct
uF

ct
H

g

g

cossin
 (4.2.31)

Equation (4.2.31) can be further expanded to give a design parameter for 
the two dimensional cascade, by applying Eq. (4.2.22) with the expression 
of cosAFF  as follows 

Fusin
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and 
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With reference to the velocity diagram in Fig. 4.38(c), w  and  will be 
given in the following expression 

2
212

2
uu

m
ccucw  (4.2.34)

and 
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m

ccu
c  (4.2.35)

It is noted here that with the lower hub-tip radius ratios, the vanes of a 
turbomachine will have an appreciable amount of twist along their length 
so that, in many cases, a three dimensional approach in axial turbomachi-

degree of accuracy, a two dimensional approach will give a close approxi-
mation for axial flow machines with a high hub-tip ratio, such as given in 
Eqs. (4.2.32) and (4.2.33). 

4.2.3 Efficiency and Similarity Rules of Turbomachinery 

Definitions of efficiency are always confusing and they, in fact, differ, case 
by case. Nevertheless, in this section the most commonly used and ac-
cepted definitions in the literature of turbomachines are introduced. The to-
tal (or overall) efficiency  is defined in such a way that 

fluidofenergymaximumpossible
shaftoutputofcouplingatavailableenergymechanical  (4.2.36)

The total efficiency  is further decomposed by three independent effi-
ciencies, such as the hydraulic efficiency h (or adiabatic efficiency t  for 

nes, the so-called vortex design, is required. However, with a reasonable 
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gas turbine), the volumetric efficiency v  and the mechanical efficiency 

m , which are respectively defined as follows 

fluidofenergymaximumpossible
rotorthetosuppliedenergymechanical

h  (4.2.37)

H
H

H
hH thl

h     (hydraulic turbine) (4.2.38)

or 

thth

lth
h H

H
H

hH    (pump or fan) (4.2.39)

In both cases 

       lth hHH    (  turbinehydraulic ; + pump or fan) (4.2.40)

where H  is the actual head, lh  the loss head between the inlet and outlet 
of turbomachines, and thH  is the theoretical pressure head. 

Q
QQ l

v  (hydraulic turbine) (4.2.41)

or 

l
v QQ

Q  (pump or fan) (4.2.42)

where Q  is the volumetric flow rate and lQ  is the volumetric rate of leak-
age from turbomachines. 

powerrotor
powershaft

m  (4.2.43)

Altogether, with the definitions of Eqs. (4.2.37–4.2.43), we have the total 
efficiency  to write 

mvh  (4.2.44)

In the design and development of turbomachinery, the widest compre-
hension of the general behavior is obtained from similitude and dimen-
sional analysis. In engineering practice, for design purposes, we have to 
depend on test results obtained from experiment with “models”, which are 
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often smaller in size than the “prototype”. The “prototype” is the full-size 
device at a preliminary stage of a commercial product. Dimensional analy-
sis based on this similitude can then be applied to predict a prototype’s per-
formance from tests conducted on a scale model, and also to determine the 
most suitable type of machine for its maximum efficiency, for a specific 
range of head, speed and flow rate. In a similar manner the dimensional 
analysis enables data taken from a test machine to reduce into a smaller 
number of dimensionless groups and given experimental relations between 
variables to be found with the greatest economy of effect. 

We will apply the idea of similitude and dimensional analysis devel-
oped in Chapter 6 and in Appendix C to turbomachines in this section. 
First, we will define our system of a turbomachine, introducing a control 
volume as shown in Fig. 4.40. The significant parameters for a turbo-
machine are; discharge Q , power (work transfer) W , revolutional (rota-
tional) speed n , representative diameter of rotor D , head Hg ( g  is con-
ventionally inclusive or pressure difference P ), efficiency , density of 
fluid , viscosity 0  and some geometric representative scales 1l  and 2l . 
The system then can be described, in an arbitrary function, as 

0, 21
0 WH

D
l

D
lDnQf ,,,,,,,, g  (4.2.45)

With an application of dimensional analysis, say Buckingham -
theorem 

 
Fig. 4.40 Control volume of turbomachine 

with reference to Appendix C-1, we are able to reduce a group of non-
dimensional parameters by a functional relationship, using three of the in-
dependent variables DN  , ,  as common factors (control variables) when 
considering the three primary (basic) dimensions, i.e. mass, length and 
time, as follows 
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In Eqs. (4.2.46–4.2.48), we have the nondimensional parameters 
 

2nD
Hg (or alternatively, 22D

P  with angular velocity ) 

 Head coefficient (or pressure coefficient) (4.2.49)

53Dn
WCW  (or alternatively, 53D

WCW  ) 

 Power coefficient (4.2.50)

3nD
QCQ  (or alternatively, 3D

QCQ ) 

 Volumetric flow rate coefficient (4.2.51)

0

2nDRe  (or alternatively, 
0

2DRe ) 

 Reynolds number (4.2.52)
 
The performance parameters in Eqs. (4.2.46–4.2.48) are thus correlated 

with a group of nondimensional parameters defined in Eqs. (4.2.49–4.2.52). 
The volumetric flow rate coefficient QC  in Eq. (4.2.51) is alternatively de-
fined by using the peripherical speed u  and the representative fluid speed 

xc  at a datum point (such as the mean axial speed in a rotor) 

nDu  (4.2.53)

2DcQ x  
(4.2.54)



198      4 Perfect Flow 

Fig. 4.41 Dimensionless radial flow pump performance curve (Courtesy
of Teral Kyokuto Inc.) 

so that 

u
c

nD
QC x

Q 3  (4.2.55)

For engineering purposes, the kinematic viscosity /0v  is very 
small if compared to the inertia 2Dn  that results in a Reynolds number 
high. Correspondingly, the flow regime in a turbo machine is usually very 
turbulent ( 410Re ), and experiments confirm that the performance 
characteristics of a turbomachine is almost independent from the effects of 
a Reynolds number and can be ignored in a first approximation. It is also a 
usual practice not to make a correlation between the roughness of the flow 
channel and the pump losses, assuming that the hydraulic efficiency h  (or 
adiabatic efficiency t ) is constant. With geometric similarity, the model 
and the prototype are identical in shape, but differ in size. The model ratios 

Dl /1  and Dl /2  are kept constant and may be eliminated forthwith. Thus, 
considering the facts above mentioned, the functional relationship for 
geometrically similar hydraulic turbomachines are then expressed as 

QCf1  
(4.2.56)

QCf2  
(4.2.57)
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Fig. 4.42 Dimensionless axial flow fan performance curve (Courtesy of               

Teral Kyokuto Inc.) 

QW CfC 3  (4.2.58)

It is noted that the actual form of the functions 31 ff ~  in Eqs. (4.2.56–
4.2.58) must be determined from results of experimental measurements (or 
computer simulations). In Figs. 4.41 and 4.42, typical curves of 31 ff ~  
are displayed for a radial flow pump and an axial flow fan respectively. It 
should be mentioned that curves for 31 ff ~  may vary for types of turbo-
machines (Refs. Schetz and Fuhs, 1996 and Potter and Wiggent, 1997).  

Designers, who wish to obtain a best match with changing flow condi-
tions, can consider off-design operation by considering an additional vari-
able  into Eqs. (4.2.56–4.2.58). For example, in an axial flow pump (or 
turbine), considering  as the average vane angle  in Fig. 4.38, which 
can be set at various values, and we can write as 

,QCf1  (4.2.59)

,QCf2  (4.2.60)

Alternatively, we can write 

),(, QQ CfCf 54  (4.2.61)
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Therefore, from Eq. (4.2.61), the performance parameter, say , can be 
written as 

,QCf6  (4.2.62)

where  is a function of both QC  and , as illustrated in Fig. 4.43 (de-
rived from Fig. 4.42 for varying ). 

 
Fig. 4.43 Off-design operation (variable ) 

From the relationship in Eqs. (4.2.53–4.2.55), similar relationships be-
tween any two machines from the same geometric family can be straight-
forwardly derived. Any two machines, identifying M  and P  as suffix, are 

PM Dn
H

Dn
H

2222
const.; gg  (4.2.63) 

PM
Q nD

Q
nD
QC 33;const.  (4.2.64) 

PM
W

Dn
W

Dn
WC

5353
;const.  (4.2.65a) 
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Furthermore, for any two identical machines with a different operating 
condition, for example with a variety of revolutional speeds, can set 

PM DD  to Eqs. (4.2.63–4.2.65), identifying the operating conditions by, 
where we have 
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Eliminating H  and n  from above relationship, we can write 
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,  (4.2.67)

There is often the case that the turbomachinery designer faces the basic 
problem of deciding what type of turbomachine will be the best choice. 
The problem can be solved by correlating a turbomachine of a given fam-
ily to a nondimensional number that characterizes its operation of optimum 
conditions. The nondimensional number is termed the specific speed sn , 
which is calculated by a preliminary design data and is usually provided to 
the designer at initial stage of development, with such as H , Q  and n  for 
a pump, or W , H  and n  for a turbine. For any hydraulic turbomachine 
with fixed geometry, i.e. keeping D  as constant, there is a unique relation-
ship between the efficiency and the volumetric flow rate, represented by 
dimensionless number  and QC , as seen in Fig. 4.41 and in Fig. 4.42. If 
the optimum efficiency max  (with reference to Fig. 4.43) is given by a 
unique value of 0QC  and 0WC , we can write the similarity relationships 
in Eqs. (4.2.63–4.2.65) for max , 0QC  and 0WC . Thus, eliminating D  
from the relationships, combining Eqs. (4.2.63) and (4.2.64) for pump, and 
Eqs. (4.2.63) and (4.2.65) for turbine, we have 
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where sn  is called the specific speed (pump) and tn  is the power specific 
speed (turbine). It is noted that in Eqs. (4.2.68) and (4.2.69), g  and  are 
often eliminated from both M  and P  in common industrial practices, 
through which they become dimensional parameter. They are called the 
homologous specific speed, and in the case of using the homologous spe-
cific speed one should be aware of a unit to be used. From industrial ex-
perience, in selecting the type of pump based on an impeller (as typically 
displayed in Fig. 4.34(a)), the specific speed sn  is correlated as follows 

1sn ;  radial flow pump 
41 sn ;  mixed flow pump 

4sn ;  axial flow pump (4.2.70)

For further reference, in selecting the type of hydraulic turbine (as typi-
cally displayed in Fig. 4.34(b)), the specific speed tn  can be correlated an 
follows 

10 tn ;  impulse turbine (e.g. Pelton type) 
5.31 tn ;  radial turbine (e.g. Francis type) 

0.75.3 tn ;  mixed flow turbine 

0.140.7 tn ;  axial flow turbine (4.2.71)

where for Eqs. (4.2.70) and (4.2.71) the units are in n [rad/s= 30rpm / ], 
Q [m3/s], W [W], [kg/m3] and g [m/s2]. It is noticeable that in general a 
higher specific speed implies a larger machine, because of a higher volu-
metric flow rate with a low head (pump) and a higher output power and 
low head drop (turbine). For economic reasons in developing a turbo-
machine, it is recommended to select the highest possible specific speed 
consistent with high efficiency for a given duty. It is also worth noting that 
larger turbomachines are more efficient than smaller ones of the same 
geometric family, known as the scale effect.  Among many proposed corre-
lations, the following formula is often used in practice, relating efficiencies 
to size, and according to L. F. Moody (ref. Kittredge, 1968) 
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4
1

11
D

DM
M  (4.2.72)

where  can be used for both pumps and turbines. 

4.2.4 Cavitation 

Cavitation is the local formation of vapor bubbles in a liquid due to a pres-
sure reduction below the vapor pressure caused by a dynamic action of the 
liquid, rather than an increase of temperature. The cavitation is largely due 
to a local boiling in a hydraulic turbomachine (and more generally in an 
element of a flow channel), through which causes the deterioration of a 
machine’s performance, giving an actual limitation of machine design. Par-
ticularly, in selecting a type of turbomachine for a given head H  and flow 
rate Q , it is desirable to choose the highest possible specific speed because 
of the resulting reduction in size, weight and cost of production. However, 
this would require the increase in fluid velocities, resulting in a local pres-
sure reduction, and thus causing the cavitation. The lower limit of size in 
designing a turbomachine is therefore dictated by the cavitation. Figure 
4.44 shows a typical performance characteristic, where the Q – H  relation-
ship represented in the QC –  plot of a radial flow pump, showing the dete-
rioration in performance due to a fully developed cavitation. In the fully 
developed cavitation state, pockets of vapor are formed, as illustrated in 
Fig. 4.45 referring to the pressure state diagram Fig. 4.36(b), affecting the 
whole flow field in vanes. 

The cavitation also leads to consequences of structural damage of near 
solid surfaces, known as cavitation erosion. The cavitation erosion is 
caused by the following process. When the local pressure in a turbo-
machine is approached toward a critical pressure, depending upon flow 
conditions, cavitation occurs. This is called cavitation inception. Bubbles 
collapse, when they are swept into higher pressure regions, and a pressure 
wave is produced by a sudden bubble collapse that propagates and hits a 
solid surface. The repeated action of the bubbles collapsing near the solid 
surface causes the cavitation erosion over a long time period, and results in 
a functional failure of turbomachines. In designing turbomachines, the 
avoidance of cavitation inception is one of the major tasks of design engi-
neers. The cavitation may also cause vibration and noise in turbomachines. 
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Fig. 4.44 Performance characteristic of a radial flow pump and cavita-

tion 

 

 

Fig. 4.45 Cavitation region 

 
A criterion for the formation of vapor bubbles is obtained in considera-

tion of the pressure difference between the absolute pressure and the vapor 
pressure being equal to that of the dynamic pressure of the liquid. In Fig. 
4.46, a suction pipe connected to the inlet of a pump (or draft tube con-
nected to discharge of a hydraulic turbine) is illustrated, where svH  is the 
height (head) of the pump inlet s  (the turbine discharge).Also, sp  is the 
absolute pressure, sc  is the absolute velocity and sw  is the relative velocity
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 at s . ep  is the absolute pressure at point e  in the vane rotor, whereas 

lh  is the loss head in the pipe and ap  is the atmospheric pressure at the 
liquid level. The energy balance between 0  and s  can be written in terms 
of head as 

ggg 2

2
ss

lsv
a cphHp  (4.2.73)

 
Fig. 4.46 Suction (or draft) configuration 

Noting that g22
sw  is the dynamic head loss between s  and e , and by 

defining  as the loss coefficient, we have 

ggg 2

2
ses wpp  (4.2.74)

where the constant  is determined by a channel configuration. Combin-
ing Eq. (4.2.73) with Eq. (4.2.74), we have 
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(4.2.75)
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sure vp  where cavitations tend to occur. The condition without cavitations 
thus can be written as follows 

ggggggg 222

222 ssvssv
lsv

a wcpcpphHp              (4.2.76)

where we set the total dynamic head as 

gg 22

22

max
ss

sv
wcH  (4.2.77)

It will prove useful in practical engineering to define the cavitation limit, at 
which the cavitation occurs, as 

svsv HH limit  (4.2.78)

It is mentioned that svH  depends upon the operating condition of a pump 
(in the case of pump operation), but limitsvH  is to be determined uniquely 
for each individual pump and gives a criterion of cavitation. limitsvH is 
called the net positive suction head (NPSH), through which the critical 
cavitation number is defined by the following formula 

Hpcp
H

H
vsssv

c

limit

2
limit

2 ggg
 (4.2.79)

where H  is the actual head for a given flow rate Q  at a speed of revolu-
tion n . In the case of a hydraulic turbine, the critical cavitation number is 
defined as 

HpHp
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ssv
c
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gg
 (4.2.80)

where lsvs hHH . Therefore, the condition to avoid the cavitation is 
given by the pump 

Hpcp
c

vss

ggg 2

2

 (4.2.81)

and for the turbine 
 

Now cases are examined when ep  reaches the saturation vapor pres-
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In operating turbomachines, the performance laws must include the 
additional variable svH , taking into account the effects of cavitation. Con-
sidering the similitude at an inlet of the pump (or discharge of hydraulic 
turbine), we can derive the suction specific speeds, along with Eq. (4.2.68), 
by replacing H  to svH  as follows 
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 (4.2.83)

and for the critical cavitation number given in Eq. (4.2.79) as 

HH csv limit  (4.2.84)

More conveniently, in practice it is useful to relate sn  and cn , where we 
find a relation by substituting limitsvH  to svH  as in Eq. (4.2.83) with the 
aid of the definition in Eq. (4.2.68) as follows 

4
3

csc /nn  (4.2.85)

From past experiences based on experimental results, the cavitation incep-
tion occurs almost at the same conditions, satisfying the following rela-
tionship. 

3
4

sc n  (4.2.86)

Equations (4.2.85) and (4.2.86) give the result that values of cn  for all 
pumps (also for all hydraulic turbines) are kept constant as to designate a 
resistance to cavitation. They are approximately 

Pumps ;    952.nc  (4.2.87)

 Turbines ;  963.nc  (4.2.88)

where n  is in 30rpm  , Q  is in sm3  and svHg  is in 22 sm . 
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Exercise 

Exercise 4.2.1 The Pelton Wheel 

Turbines (hydraulic steam or gas), with stationary guide vanes and runner 
(as studied in Section 4.2.2) have a continuous pressure drop when a fluid 
flows through the passages, where a part of the available head is converted 
into kinetic energy of flow. These turbines are categorized as the reaction 
turbine. Reaction turbines usually have sophisticated functions and can run 
with lower head installations. However, when a very high head is available, 
it is often more suitable to adopt the impulse type of turbine (particularly 
in the case of hydraulic power generation). The Pelton wheel is one which 
is extensively used for high head installations, with its simple construction 
and thus is economically competitive against reaction turbines. 

Considering the theory developed in Exercise 4.1.8, explain the func-
tion of a Pelton wheel and discuss the energy conversion characteristics. 

Ans. 

A Pelton wheel primarily consists of a stationary inlet nozzle, a runner 
and a casing. The runner has multiple buckets mounted on the periphery of 
its rotating wheel, as shown in Fig. 4.47(a). The runner is driven by water 
jets discharged by a nozzle with discharge rate Q . As the jet impacts the 
rotating buckets with an absolute velocity 1v , the kinetic energy of the jet 
is converted into a power to drive the runner. Each bucket has a splitter 
that divides the jet into two equal streams and each stream leaves the 
bucket with its relative velocity vector in the horizontal plane. It is noted 
that in practice, the ideal angle of 180  is limited to a value between 160  
and 168  so that the water leaving a bucket may stay free of the trailing 
buckets. 

In order to estimate the net power output, we consider a case where the 
peripheral speed of a bucket, i.e. the circumferential speed, is assumed to 
be u , and the angle of the leaving jet streams is 2 , as indicated in Fig. 
4.47(b). According to the relationship obtain in Exercise 4.1.8, the torque 
given to the runner by the water jet is 

21 cos1uvQrTr  (1)

where r  is the runner radius as shown in Fig. 4.47 (a). If the runner rotates 
with an angular velocity , the ideal power output wi PW  can be writ-
ten as 
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21 cos1uvQrWi  

21 cos1uvuQ  (2)

 
Fig. 4.47 Impulse turbine; the Pelton wheel 

Introducing the volumetric efficiency v and the mechanical efficiency 

m , with reference to Eqs. (4.2.42) and (4.2.43), the net power output W  
is obtained from the relation 
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mviWW  (3)

On the other hand, the net power output W  is also estimated by the 
head drop H  as follows  

 mvhHQW g  (4)

and 

HQW g  (5)

where h  is the hydraulic efficiency defined in Eq. (4.2.41) and  is the 
total efficiency defined in Eq. (4.2.44). 

From Eqs. (3) and (4), the hydrodynamic coefficient h  is written 
where 

21 cos11 uvu
HHQ

Wi
h

gg
 (6)

The water jet velocity 1v  can be given where the head drop is 

HCv v g21  (7) 

vC  is the velocity coefficient. Therefore, with Eqs. (6) and (7), we can ob-
tain an expression for h  where 

212
1

2

cos12 uvu
v
Cv

h  (8)

and 

2

2
1

cos12

cos1
222

2

pvp

h

C

H
u

H
v

H
u

ggg  

(9)

Hup g2  is called the speed factor. According to Eq. (8), h  reaches 
the maximum when 21vu , so that it follows that 

2
2

max cos1
2
1

vh C,  (10)
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For plotting h  vs. p  in Eq. (9), we have a diagram in Fig. 4.48. If we 
take representative values (typically) 940.vC  and 1682 , we have 
the maximum hydraulic efficiency 8310max,h . However, in actual op-
eration, max,h  will be reduced due to the reduction of relative velocity 
over the bucket via friction and non-uniform velocity splitting, which re-
sultantly alters the Eq. (10) to 

2
2

max cos1
2
1

vh C,  (11)

 is the friction factor and typically 90.  in an actual operation. 

 
Fig. 4.48  Ph v

Exercise 4.2.2 Radial Flow Impeller for Turbo-Pump 

A centrifugal pump with idealized radial flow impeller rotates with 
1500n  rpm, as shown in Fig. 4.49. Water enters the impeller axially 

through the eye, flows radially along the absolute pass line in the blades, 
and is discharged radially. Denoting the inlet location 1 and the outlet loca-
tion 2, the idealized velocity diagrams are drawn in Fig. 4.49, using the 
sign notation of Fig. 4.35(b), where 11 2rD  and 22 2rD  in Fig. 4.49 
and their basic dimensions of the impeller are mm2001D , mm4002D , 

mm1001b , and mm502b . If the volumetric flow rate is /sm250 3Q , 
obtain the theoretical torque thT  and Head thH . Also calculate thT  and thH  
when the discharge rate Q  is doubled. The meridional component of ve-
locity mc  is assumed to be maintained constant as fluid flows through the 

.s
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impeller, in which the fluid enters the impeller with a negligible tangential 
velocity component. It is also assumed that the outlet vane angle 2  is 
such that 222 . Show the specific speed sn  for both operation of Q  
and Q2  as well. 

 
Fig. 4.49 Radial flow impeller of turbo-pump 

Ans. 

With reference to Fig. 4.49, since the tangential component 
111 coscc u  is assumed to be zero, thT can be estimated from Eq. (4.2.1) 

as 

222 /DQcT uth  (1)

and from the velocity diagram at the outlet 2 , uc2  will be derived as 

2222 cotmu cuc  (2)

where 222 bDQc m /  and 6022 /nDu . For the given values of these 
parameters, we can obtain 

m/s98.3050402502 ../.mc  

m/s4.31601500402 /.u  
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m/s52122cot98.34.312 .c u  

Therefore, from Eq. (1), we have 

mN1075521240250100022 ...uth cQrT  

and also from Eq. (4.2.4), thH  is 

m86881952143122 ....guth cuH   

When the discharge flow rate Q  is doubled 

sm502502 3..Q  

so that 

m/s96705040502 .../.mc   

Thus 

m/s71122cot967431cot 2222 ...mu cuc  

Therefore, in similar manner we have 

mN1170711240501000 ./..thT  
m437819711431 ../..thH     

 

The specific speeds for Q  and Q2  are respectively calculated in Eq. 
(4.2.68) 

5900
868819

250
30

1500 43

21

43

21
.

..
.

/

/

/

/

H
Qnns
g

 

321
437819

50
30

1500 43

21

.
..

.
/

/

sn  

 

The results show that for Q2 , 1sn , indicating a mixed flow pump may 
be more appropriate. 

Exercise 4.2.3 Power Output from Axial Flow Hydraulic Turbine 

For a low head and high specific speed, axial flow hydraulic turbines are 
often appropriate because of a higher meridional velocity, running faster 
with higher efficiencies. The propeller turbine with adjustable blades is 
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known as the Kaplan turbine, which can run with a wide output range by 
setting the runner blades and guide vanes simultaneously. Referring to Fig. 
4.50 (a) representative dimensions, (b) velocity diagrams, (c) draft tube 
configuration, consider the following problems: 

The mean radius R  to the runner is m5.0R , and the width B  of it is 
m10.B . The stream of water enters to the runner with an angle of 

351 , and is discharged at atmospheric pressure with an angle of 
252  from the outlet of the runner. The head difference 1H  between 

the upper level of the water surface and the outlet of runner is m121H . 
Before entering the runner, the stream turns to a right angle of the runner, 
so that the absolute velocity 2c  at the outlet of the runner is perpendicular 
to the circumferential speed u , i.e. 902 . It is assumed that there is no 
radial velocity when water passes through the vanes, and that the axial ve-
locity at the inlet to the runner and the outlet is kept constant. 

 
(i)  Estimate the power transmitted to the runner and the revolutional speed 

of the runner, ignoring hydraulic losses. 
(ii) As illustrated in Fig. 4.50(c), if a draft tube of a diffuser type is at-

tached between the outlet of runner to the lower discharged water sur-
face, discuss the change of the power transmitted and revolutional 
speed compared to problem (i). Set m4sH  for problem (ii). 

 
Fig. 4.50 Axial flow propeller turbine; Kaplan turbine 
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Ans. 

(i) Denote the actual head H  to the runner is given where 

g22
21 cHH  (1)

With the given condition uc2  assumed to be zero, so that from Eq. (4.2.4), 
the theoretical head is to be written as 

guucH 1  (2)

By the velocity diagram, uc1  can be obtained by knowing that 21 cc m  

121 cotcc u   (3)

The discharge flow rate Q  is also estimated as 

mRBcQ 12                            

22 RBc  (4)

Knowing the condition at the outlet with reference to Fig. 4.50 (b), the ab-
solute velocity 2c  is written as 

2
2 cot

uc  (5)

The key parameters of Q , H , 2c , uc1 , and u  in Eqs. (1–5) are thus calcu-
lated by the known quantities, R , B , 1 , 2 , and 1H  as follows 

12
2

21222 cotcot1cotcot1 cccH
gg

 (6)

and with Eqs. (1), (2) and (6), we can obtain the relationship 

12
2

2

2
2

1 cotcot1
2

ccH
gg

 (7)

so that 2c  will become 

1cotcot2
2

12

1
2

Hc g  (8)

Once 2c  is obtained, therefore, the rest of unknown are readily calculated, 
using each given value as follows 



216      4 Perfect Flow 

sm755
14311422

128192
2 .

..
.c  

m3110
8192

75512
2

.
.

.H  

sm81175510501432 3.....Q  

As a result, the power (work) W  transmitted to the runner is obtained to 
give 

                kW18331108191000811 ...HQW g  

Also with the relation Ru , we are able to estimate the revolutional 
speed of the runner from the angular velocity  

srad724
50

142755cot 22 .
.

..
R

c
R
u  

 

so that we can obtain the revolutional speed with 

rpm235
2

60724
2

60 .n  
 

 
 (ii) The installation of the draft tube adds the extra head to 1H , as illus-
trated in Fig. 4.50(c), i.e. 

sHHH 1  (9)

With the same manner as verified in problem (i), we should be able to cal-
culate Q  and H  after obtaining 2c  likewise know that 

12
2

21 cotcot1 cHH s g
 (10)

so that 

sm16.7
43.114.2

41281.9

cotcot 12

1
2

sHHc g
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rpm293
2

60503515
sm3515142167

kW353412252819
sm25216710502 3

..
...

..
....

n

u
W
Q

 

There is certainly an improve of the output characteristic of the tur-
bines by adding the draft tube. 

Exercise 4.2.4 Maximum Suction Head for Cavitation Limit 

A single-suction radial flow pump is to operate for the actual head 
m50H , the volumetric flow rate /sm0250 3.Q and the revolutional 

speed rpm2900n . Determine the maximum suction head maxsvH , below 
which the pump can be operated without the cavitation. It is assumed that 
water temperature in the suction pipe is 60  and the atmospheric pres-
sure of the water surface at suction is kPa3101.ap . It is further assumed 
that the loss head in the section pipe is m51.lh . The constant for the 
critical cavitation number c  in Eq. (4.2.86) would be obtained from 

2360.sk , where sk  is defined as 34
ssc nk . 

Ans. 

The specific speed sn  of the pump is 
 

4590
50819

02502
60

2900

4
3

2
1

.
.

.

H

Qnns

g
 (1)

From Eq. (4.2.86), knowing that the constant is sk , the critical cavitation 
number c  is thus given where 

084045902360 ...c  (2)

NPSH is then 

m18.450084.0limit/ HH csv  (3)

2
1

4
3

3
4

Thus, 
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The water density is 3kg/m2983.  and the saturation vapor pressure is 
kPa919.vp  at the temperature 60 , which are obtained from a steam 

table. Therefore, maxsvH  will be calculated via Eq. (4.2.82), yielding 

m772

18451
892983

19900
892983

101300

limitmax

.

..
....

/svl
va

sv HhppH
gg

 

 

Thus, the suction pipe must be installed as m772.  high above the water’s 
surface, so that there would not be cavitation. 

Problems 

4.2-1 A centrifugal water pump runs at rpm1450n . The impeller has the 
following dimensions: mm3002D , mm202b  and 452 . If 
the power consumption of the pump is kW40W , calculate the 
theoretical discharge thQ  and obtain the theoretical head thH . There 
would be no-slip flow in vanes due to internal circulation flow, so 
that only a (Euler) theoretical head thH  is to be considered. Assume 
that the hydraulic efficiency is 850.h , and the overall efficiency 
is 750. . The fluid enters the impeller with a negligible tangential 
velocity component. Also calculate the actual head. 

Ans. 

m36.04
m442

m08480

cot

W

3

2
22

22

H

sQ

bD
Quu

Q

th

hth

.
.

th

th

th

H

gH

Hg

 

 
4.2-2 A model of a centrifugal pump with the impeller diameter of 

mm220MD  is tested at the revolutional speed of rpm1500Mn . 
Results of the test run were such that: the actual head was 

m81.MH , the actual discharge was minm751 3.MQ  and the 
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mechanical efficiency was 8.0m . Estimate the head PH , the 
discharge PQ  and the shaft input power PW , when the prototype of 
a geometrically similar pump is in operation at the revolutional 
speed of rpm800Pn . The diameter of the prototype is 

mm1000PD . 

Ans. 
kW189

minm787
m610

3

P

P

P

W
Q
H

.
.

 

 
4.2-3 A centrifugal pump is to be operated with an actual head of 

5.0 m1H . The critical cavitations number is 080.c  at the 
operating condition. The atmospheric pressure on the suction water 
surface is kPa3101.ap . The saturation vapor pressure at the op-
eration condition is kPa03.vp  and the head loss along the suc-
tion pipe is m61.lh . Referring Fig. 4.46, obtain the maximum 
allowable height between the suction water surface to the pump 
inlet. 

Ans. m27max .svH  
 

4.2-4 A Pelton wheel with a runner diameter of mm200D  is generating 
a power output for a head drop of m100H . In order to verify the 
net power output a braking test was carried out for an ideal nozzle 
being fully opened. The torque required to hold the wheel was 

mN1500rT . Denoting the angle of leaving the jet stream flow 
from a bucket is 122  and the overall efficiency of the wheel is 

850. , obtain the revolutional speed of the runner and estimate 
the net power output. 

Ans. 
kW142W

rpm713n  

 
4.2-5 An axial flow hydraulic turbine is required to produce the power of 

kW8800W  with a given head of m20H . The overall effi-
ciency is 880. , and the hydraulic efficiency is 930.h  for the 
runner of a vane tip diameter of m40D  and a hob diameter of 

m751.nD . Calculate the inlet vane angle 1  and the outlet vane 
angle 2  of the runner. Assume there is no draft tube and the flow is 
discharged to the atmosphere. 
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Ans. 
o

2

o
1

22
1111

5311

918

tan
tan

.

.
mm

um
uc

uuc

 

Nomenclature 

A  area 
a  sound speed 
c  absolute velocity 

cC  contraction coefficient 
dC  discharge coefficient 

DC  drag coefficient 

LC  lift coefficient 
MC  moment coefficient 
QC  volumetric flow rate coefficient 
vC  velocity coefficient 
WC  power coefficient 

nCCCC ...,,,, 210  complex constants 
D  drag 

iFF ,  force, i  designated forces 
H  total head 

thH  theoretical head (Euler head) 
k  specific heat ratio 

sk  constant 

fK  flow coefficient 
L  lift 
cl  chord length 

M  Mach number 
m  mass flow rate 

cn  critical cavitation number 
in  toque  component ( i =1,2,3) 
sn  specific speed (pump) 
tn  power specific speed (turbine) 

n̂  normal unit vector 
P  pressure function 

cP  correlation constant 
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wP  power transmitted to (or from) fluid 

atmp  ( ap ) surrounding pressure 
Q  flow rate 

cq  experimental constant 
Re  Reynolds number 
r  position vector 
r  radius 

cs  number of vanes 
rT  torque 
ct  pitch of vanes 

uU ,  real constants, average upstream velocity 
vu,  velocity vector 

rv  relative velocity vector 
W  work transfer, complex potential 
W ( z ) velocity potential 
w  complex velocity, relative velocity 
z  complex number iyxz  

,  angle 
 angle, diameter ratio 
 circulation (potential vortex) 

M  (Mach number) correction coefficient 
 pressure (head) loss coefficient 
 efficiency, total (overall) efficiency 

d  diffuser efficiency 
0  viscosity 
p  propeller efficiency 

p  speed factor 
c  critical cavitation number 

s  slip factor 

ij  stress tensor 
 kinematic viscosity 
 correction factor 

scalar potential 
 potential function, velocity potential 
 head coefficient 
 stream function 
 angular velocity 
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5. Compressible Flow 

There are many physical processes, when dealing with both gases and liq-
uids, where the density variations are of major importance in determining 
the character of the flow. In both cases, with regard to high-speed flow, the 
effects on compressibility cannot be ignored; as a result, a new class of 
flow effects appears. Such high-speed flows are termed compressible flows. 
In practice, indeed appreciable density variations are mostly seen in high-
speed gas flows. In this chapter we will consider the one dimensional 
flows of ideal gases, which are important when tackling most physics 
problems, since they are often involved in compressible flows and are 
found to be a good approximation of many actual flows. 

In applying the one dimensional assumption, we shall restrict the 
physical situation exclusively to internal flows, where the quantities (such 
as density, pressure, temperature, velocity and etc.) are uniform over any 
cross section, and vary only along the channel.  Looking at compressible 
flows, we will consider three conservation laws for mass, momentum, and 
energy, which are supplemented by thermodynamics state equations to-
gether with the definition of sonic speed (related to Mach number). In this 
chapter, we shall begin to look at the speed of sound which will lead to a 
better understanding of the role it plays and its effects on more general 
compressible flows. 

5.1 Speed of Sound and Mach Number 

If an infinitesimal disturbance occurs in a fluid, the disturbance will 
propagate through the fluid at a well-defined velocity called the sonic ve-
locity or speed of sound (sometimes called the acoustic velocity). The 
speed of sound depends upon the properties of the fluid, and may be de-
termined by considering the equation of continuity from Eq. (2.1.5) and 
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the Euler equation from Eq. (4.2). In the case of one dimensional assump-
tion, the equations are written by ignoring the effect of the gravity (body 
force term) 
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0
x
u

t
 (5.1.1)

x
p

x
uu

t
u  (5.1.2) 

Here, u  is the velocity component in the direction of x  (one dimensional). 
Infinitesimal disturbances are thought to occur in a flow at rest (or the un-
disturbed fluid is moving relative to the propagations of disturbances as 

uuu 0 ), assuming 00u  so that 

uu  (5.1.3) 

and 

ppp
0

 (5.1.4) 

0  (5.1.5) 

Thus, 0u , 0p  and 0  are the properties of undisturbed fluid and 
u , p and  are the infinitesimal disturbances of velocity, pressure and 
density respectively. Equations (5.1.3), (5.1.4) and (5.1.5) are substituted 
into Eqs. (5.1.1) and (5.1.2). Simplifying and neglecting higher order terms 
with the conditions of t0  and xp0  being zero, we have a set of 
equations for the disturbances 

    00
x
u

t
 (5.1.6) 

and 

x
p

t
u

0

1  (5.1.7) 

Eliminating u  from Eqs. (5.1.6) and (5.1.7), we have an equation relating 
 and p  as follows 

2

2

2

2

x
p

t
 (5.1.8) 

In order to make up a closed mathematical model, which deals with the 
propagation of disturbance, we need to relate and p . In engineering 
fluid mechanics it is reasonable to assume that the thermodynamic process 
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is in the state of equilibrium and the ideal gas law approximation is valid 
for low and moderate density gases with a lower temperature gradient 
process. In view of this consideration, we have the equation of state 

RTp 1  (5.1.9) 

or 

RTpv  (5.1.10) 

v  is the specific volume, R  is the ideal (specific) gas constant and T  is 
the absolute temperature. Equation (5.1.9) can be further written in differ-
ential form 

dTRpddp 2  (5.1.11) 

Next we must introduce the disturbance in addition to Eqs. (5.1.4) and 
(5.1.5), and that of temperature 

TTT 0  (5.1.12) 

These disturbances are then added to Eq. (5.1.11), simplifying and neglect-
ing high order terms with the conditions of 

pddp  and dd  (5.1.13)

We can reduce this to the following relation 

d
dpp  (5.1.14)

Assuming that ddp  is kept constant, we can eliminate p  by substitut-
ing Eq. (5.1.14) into Eq. (5.1.8), so that we have 

2xd
dp

t

2

2

2
 (5.1.15)

The hyperbolic partial differential equation, Eq. (5.1.15), is a wave equa-
tion for . It is generally known from the wave equation that mathemati-
cally  has a solution, which is expressed as 

atxgatxf  (5.1.16)

f  and g  are the wave functions, for example atxsin . In Eq. 
(5.1.16),  propagates with the speed of sound a , that is expressed by 
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d
dpa2  (5.1.17)

It must be emphasized that the disturbance  is infinitesimal, and the 
process is regard as reversible, adiabatic and hence isentropic. 

Equation (5.1.17), the definition of the speed of sound, can be further 
rewritten by other fluid properties. When the bulk modulus K  of the fluid 
is considered, from the definition of K , we can write 

v
dvKdp  

dK  (5.1.18)

and 

K
d
dp  (5.1.19)

So, Eq. (5.1.17) may be written as 

Ka2  (5.1.20)

Furthermore, since the process is adiabatic, we have the relationship 

const.kpv  (5.1.21)

or 

const.1
k

p  (5.1.22)

Here, k  is the specific heat ratio defined as vp cck . Equation (5.1.22) 
may be demonstrated as a differential form like so 

kp
d
dp  (5.1.23)

Subsequently, Eq. (5.1.17) can be written 
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kpa2  (5.1.24)

Additionally, using the equation of state of ideal gases with reference to Eq. 
(5.1.9), we can also write Eq. (5.1.24) with the following formula 

  kRTa2  (5.1.25)

As it is generally directed, the speed of sound is the rate at which a 
very small disturbance travels through a fluid. In other words, from the 
under laying physical phenomena, we are to understand that small (infini-
tesimally small) disturbances in pressure (or density) propagate, as sound 
waves, with the speed of sound in a fluid. We should next consider how the 
sound wave (the wave of pressure disturbance) may be propagated when a 
sound source is at rest in a stationary fluid, or traveling in a straight line 
with a velocity u  in a stationary fluid. 

As shown in Fig. 5.1(a), the sound wave propagates radially in all di-
rections with the spherical wave fronts for different transmission times, 
forming concentric spheres. When the sound source moves with a speed of 

au , the waves are no longer concentric, as shown in Fig. 5.1(b), and the 
spherical wave fronts for different transmission times nest with no inter-
section. An observer in front of the moving source may experience a Dop-
pler effect after the initial wave front reaches the observer. This situation is 
called subsonic (in the case of flows, it is called the subsonic flow). 

 

Fig. 5.1 Sound wave propagation 
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When au , i.e. the speed of the sound source is equal to the speed of 
sound, the wave fronts all touch at the position of the sound source as illus-
trated in Fig. 5.1(c). In this situation, an observer may hear a sudden abrupt 
sound when the source arrives at the observer, and then after that the ob-
server may experience the Doppler effect. This behavior is called sonic (in 
the case of flows, it is the sonic flow). 

Finally when the speed of sound source exceeds the speed of sound, a 
conical surface, called the Mach corn, is formed with continuous wave 
fronts, in which the intersecting spherical waves are contained. The flow is 
undisturbed outside of the Mach corn and no sound reaches the observer 
until the Mach corn passes. The half angle of the Mach corn is 

u
a

ut
at 11 sinsin  (5.1.26) 

This is called the Mach angle, and this situation is called supersonic (in the 
case of flows, it is called the supersonic flow). 

The ratio of the local flow speed (or in the case of a moving sound 
source the traveling speed in a stationary fluid) u  to the local speed of 
sound a  is the Mach number as defined by 

a
uM  (5.1.27) 

The Mach number is a dimensionless flow property, which characterizes 
compressible flows. 

5.2 Isentropic Flow 

Many engineering applications associated with compressible flow can be 
treated with assumptions of steady and isentropic flow of one dimensional 
motion. The applications may include gases undergoing appreciable 
change of density with variations in pressure and temperature through pas-
sages of varying cross-section areas. Such problems would be seen with 
exhaust gases passing through gas turbines, nozzles on rocket engines and 
gas flow measuring instruments, diffusers of jet engines, etc. These are in-
ternal flows where the area change is the predominant case for change of 
flow conditions. 

Consider the steady flow through a channel of changing area A  as 
shown in Fig. 5.2. The flow is isentropic and one dimensional in x  direc-
tion and has properties of the density , the temperature T  and the local 

230



5.2 Isentropic Flow 

speed of sound a.  The continuity equation is, with reference to Eq. 
(4.1.33), written as 

const.Au  (5.2.1) 

Its differential form is also written as 

0
u
du

A
dAd  (5.2.2) 

Fig. 5.2 One dimensional isentropic compressible flow 

While from the steady one dimensional Euler equation, i.e. Eq. (5.1.2) with 
0t , we have 

x
p

x
uu 1  (5.2.3) 

Since the flow is one dimensional, Eq. (5.2.3) can be expressed by the total 
differential form 

dpudu 1  (5.2.4) 

and from Eqs. (5.1.17), (5.2.4) may be written in terms of the speed of 
sound as 

daudu
2

 (5.2.5) 

Finally Eqs. (5.2.5) and (5.2.2) are combined to give, after introducing the 
Mach number 

   12M
u
du

A
dA  (5.2.6) 

Equation (5.2.6) has a very important relationship for an isentropic uni-
form flow in a changing area. Equation (5.2.6) is indicating that the  
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Fig. 5.3 Laval tube; supersonic nozzle 

In order to examine the quantitative changes of flow parameters along 
the flow channel in Fig. 5.3, the isentropic flow is considered in more de-
tail by denoting that the nozzle (Laval tube) is connected with a reservoir, 
where stagnation quantities, temperature 0T , pressure 0p  and speed of 
sound 0a  are defined for 00u , and with a receiver where the (exit) flow 
conditions are controlled typically by pressure. A  direct integration of Eq. 
(5.2.4) along the channel for x  yields an energy equation, with reference 
to  Eq. (4.1.27) without the scalar potential , as follows 

const.
2
1 2 dpu (5.2.7) 

relation between AdA  and udu  changes, depending on the Mach num-
ber, i.e. 1M (subsonic), 1M  (sonic) or 1M (supersonic). One of the 
important observations obtained from Eq. (5.2.6) is that for 1M , the 
area A  takes the minimum by denoting A . If A  is decreased while keep-
ing 1M , then there becomes 0du , resulting in the appearance of an ac-
celerating flow till *AA , where ** auu . Further decreasing in area 
from *A  may result in no flow existing in the channel. However, if the 
area is increased from *AA , du  would be positive 0du  (accelerating 
again) for 1M . If this flow process is realized, a supersonic flow 
( 1M ) would be achieved in the channel. This type of channel is called a 
Laval tube or supersonic nozzle, which consists of converging and diverg-
ing parts with throat in between, as illustrated in Fig. 5.3. 
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batic, the pressure function (the second term of Eq. (5.2.7)) can be ex-
pressed in terms of the specific heat ratio k  in the following manner, us-
ing Eq. (5.1.22) 

         p
k

kdkcdp k

1
20  (5.2.8) 

Therefore, more importantly, we discover that Eq. (5.2.7) is expressed by 

 .const
12

1 2 p
k

ku  (5.2.9) 

Equation (5.2.7) is also written in various forms, using the speed of sound 
with Eq. (5.1.24) and the ideal gas relationship with Eq. (5.1.25) respec-
tively as follows 

.const
12

1 2
2

k
au  (5.2.10) 

     .const
12

1 2 RT
k

ku  (5.2.11) 

and with the Mach number 

const.1
2

1 2Mk  (5.2.12) 

It may prove useful to extend Eq. (5.2.12) further by recognizing that 
the specific heat 1kkRcp  and the enthalpy Tch p  given in Eq. 
(2.5.17), so as to write the energy equation with an equivalent form as 

.const
2
1 2 hu  (5.2.13) 

When we apply Eqs. (5.2.10–5.2.12) between the reservoir 00u  
and at an appoint x  along the channel, subjecting to the adiabatic change 
for an ideal gas, we have 

20

2
11 Mk

T
T  (5.2.14) 

 
120

2
11

k
k

Mk
p
p  (5.2.15) 

The flow is isentropic, when the thermodynamic process is kept adia-
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1
1

20

2
11

k
Mk  (5.2.16) 

where we have used the following thermodynamic relations 

100 k
k

T
T

p
p  and 

k

p
p 00  (5.2.17) 

The mass flow rate m  through the channel is expressed in the continuity 
equation of Eq. (5.2.1) as 

Aum  (5.2.18) 

and 

 *** uAAu  (5.2.19) 

Note that * , *A and *u  are the properties where the flow reaches to the 
speed of sound, i.e. where the critical values at 1M  ** aunamely . As 
a result of Eq. (5.2.19), we have 

   
u
u

A
A **

*  (5.2.20) 

Equation (5.2.20) is another form of the continuity equation, which has to 
be satisfied along the channel. This can be done with following procedure. 

For *  in Eq. (5.2.20), we can expand Eq. (5.2.16), by setting 
1M  to give 

1
1

0 1
2 k

k

*  (5.2.21) 

so that 

1
1

2
1

1

0

0 2
11

1
2 kk

Mk
k

**
 (5.2.22) 

Similarly for uu*  in Eq. (5.2.20), the critical state can be related by 
the energy equation of Eq. (5.2.10), by setting ** au  to write 
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2*
2

2

12
1

12
1 u

k
k

k
au  (5.2.23) 

By dividing the both sides of this equation by u , we have 
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*
 (5.2.24) 

and thus 

     
2
1

2 2
11

1
1

1
12

Mkk
k

u
u  (5.2.25) 

Substitution of Eqs. (5.2.22) and (5.2.25) into Eq. (5.2.20) yields the fol-
lowing relationship 

         
12

1

2

2
11

1
21 k

k

Mk
kMA

A  (5.2.26) 

Equation (5.2.26) shows that AA  becomes minimum 1AA  for 1M , 
while 1AA  for 1M  and 1M . This leads the fact that for 1AA  
there are two possible states:  one is 1M  (subsonic) and the another is 

1M (supersonic). Plots of 0pp , AA  versus M  are displayed for 
41.k  in Fig. 5.4. 

The Mach number M  is also eliminated by combining Eqs. (5.2.15) 
and (5.2.26), yielding 
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(5.2.27) 

In order to make supersonic flow possible, the Laval tube is considered 
as previously mentioned, taking into account the pressure variation in Eq. 
(5.2.27) along the tube, where the stagnation pressure 0p  and all relevant 
quantities are supposed to be given. With Eq. (5.2.27), the pressure varia-
tion p  for the tube area A  will be obtained as A being a variable parame-
ter. The states of pressure variations are displayed in Fig. 5.5(a) and (b), 
where the area of the throat is denoted as tA . 
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Fig. 5.4 Plots of representative quantities, 4.1k  

With reference to Fig. 5.5(a), the flow regimes of those appeared 
through the tube are dependent upon the pressure ep  and the condition of 
A , where ep  is the receiver pressure that is kept constant during the de-
velopment of flow through the tube. ep  can be altered to produce various 
states of flow as schematically displayed in Fig 5.5(b). Line (1) is one that 
implies tAA*  , in which the flow appeared throughout the tube is kept 
with a subsonic flow. The tube functions as a nozzle and a diffuser. When 

ep  is further decreased with the condition of tAA* , line (2) to line (4) 
appear, depending on the receiver pressure: 2ep  to 5ep . If the receiver 
pressure is reduced to 2ep , the pressure at the throat reaches a minimum, 
the critical state in which the flow reaches the speed of sound. However, 
the flow in the diverging section is still subsonic. 

When the receiver pressure is further reduced to 3ep , the flow after the 
throat in some distance becomes supersonic. Then a non-isentropic flow 
appears followed by a discontinuity in pressure, the normal shock, which 
renders the isentropic assumption invalid. The flow will be subsonic for 
the remaining distance to the exit, as indicated by line (3) in Fig. 5.5(a), and 
schematically in Fig. 5.5(b). The pressure 4ep  is the condition of the shock 
that exists at the exit of the Laval tube. There is a receiver pressure 5ep  
with which the flow is isentropic and supersonic in the diverging section. 
The Mach number associated with 5ep  is called the design Mach number. 
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5.2 Isentropic Flow 

 
Fig. 5.5 Flow regimes of Laval tube 

The pressure variation along the tube follows the isentropic path as in-
dicated in Fig. 5.5(a). Oblique shock patterns occur outside the tube (in the 
receiver) due to the pressure between 4ep ~ 5ep , where the Laval tube is in 
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its so-called, over-expanded condition. As pressure ep  approaches to 5ep , 
the oblique shock patters tend to fade away. For the pressure below 5ep , 
Fig. 5.5(b) represents a very complicated flow that exists outside the tube 
(at the abrupt part of receiver), where expansion waves are formed. 

The mass flow rate m  through the channel in Fig. 5.5(a) increases 
from line (1) up to line (2). However, at the receiver pressure of 2ep  and 
that below line (2), no increase in mass flow is observed to occur, and this 
situation of flow is said to be choked flow, where the Mach number at the 
throat is in unity.  

In order to verify the chocked flow, let us consider a simple converging 
gas nozzle (as often seen on gas turbines), as shown in Fig. 5.6. The mass 
flow rate m  at the exit of the nozzle can be obtained by the mass continuity

eee Aum  (5.2.28)

The key to establishing a kinematic relationship between the reservoir 
and receiver is achieved by setting the energy equation between the reser-
voir and the nozzle exit in Eq. (5.2.9), where we have  

2
1

0

0

1
2

e

e
e

pp
k

ku  (5.2.29)

 

Fig. 5.6 Converging nozzle 
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so that Eq. (5.2.28) becomes 
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00
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1
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RTk
kAm eee

ee  (5.2.30) 

Since we assume the isentropic process in the nozzle, denoting that 

00 ppe
k

e  in Eq. (5.2.17), we can write Eq. (5.2.30) in the follow-
ing form 
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eke
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p
p

RTk
kpAm  (5.2.31) 

Equation (5.2.31) indicates that, if we take the receiver conditions as fixed, 
the mass flow rate m  only function as  ep  for a given eA . The plotted line 
in Fig. 5.7 is a curve of Eq. (5.2.31). In actual flow, there is some discrep-
ancy between Eq. (5.2.31) and reality, as indicated in Fig. 5.7 by a solid 
line. By differentiating Eq. (5.2.31) in terms of 0ppe  and setting the re-
sult equal to zero, we found the maximum of maxm  and its corresponding 
pressure 0ppc ; 

k
k

c k
p
p 1

0 2
1  (5.2.32) 

where cp  is called the critical pressure. It is mentioned that experiments 
show that the nozzle exist (the throat) pressure ep  is never less than the 
value for the actual maximum pressure. As this is indicated in Fig. 5.7 by 
the solid line, if the receiver pressure rp  is reduced below cp , the mass 
flow rate m  will not increase, where the condition of choked flow occurs. 
Upon the condition of choked flow, the mass flow remains at the maxi-
mum value and on the exist of the converging nozzle (Fig. 5.6) the fluid 
undergoes an unrestrained and irreversible expansion to ep . In practice the 
flow becomes no longer amendable to simple one dimensional treatment 
after the onset of the choking condition. 

In order to derive an equation of mass flow rate m  in terms of Mach 
number, the terms containing 0ppe  in Eq. (5.2.31) are eliminated with 
the aid of Eq. (5.2.15), thereby giving 
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Fig. 5.7 Mass flow rate for variation of ep  
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If we choose the critical area *A  for 1*M , we have 

k
k

k
RT
kpAm

12
1

0
0max 2

1*  (5.2.34) 

or 

k
k

kkpAm
12

1

00max 2
1*  (5.2.35) 

Thus, the mass flow rate is only dependent upon the reservoir condition 
and the throat area A . For air, the critical pressure ratio corresponding to 
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4.1k  can be calculated from Eq. (5.2.32) to give 528.00ppc , and 
the maximum flow rate at the chocking condition will be given as 

00max 6850 pAm *.  (5.2.36) 

Therefore, further reduction of rp  in a receiver below cp  results in no ef-
fect on the upstream, since any disturbances caused in the receiver do not 
travel upstream in the nozzle throat where the Mach number is kept 1. In 
order to increase the Mach number above its unity through the channel, a 
diverging section is needed to the converging nozzle section, forming the 
Laval tube previously discussed. 

5.3 Fanno and Rayleigh Lines 

There are some flows through a pipe that have friction, whereas the ther-
modynamic state is kept as isothermal. The situation is often encountered 
in a gas form, for example natural gas, in a long pipeline. We will treat this 
problem for an ideal gas in constant cross section channels, where the flow 
is assumed to be one dimensional and steady. The thermodynamic behav-
ior of such a flow can be obtained by considering a diagram of enthalpy h  
(or temperature T ) versus entropy s . In analyzing a chocked flow and 
shock wave characteristics, the Fanno and Rayleigh lines (curves) plotted 
on the enthalpy h  – entropy s  diagram are useful in consideration of a 
graphical interpretation of the process.  

The equations of the Fanno line are derived from the mass continuity, 
the energy equation and the thermodynamic relations between the stagna-
tion condition and a point in the channel, as long as the channel section is 
kept adiabatic regardless of the friction.  

In Eq. (5.2.18) where .constA , the continuity equation is written as 

const.uG  (5.3.1) 

where G  is the mass flux. The energy equation of Eq. (5.2.13) is written 
for an ideal gas, i.e. Tch p , as 

0
2

2
1 hhu  (5.3.2) 

The thermodynamic relations, Eq. (2.5.6) and Eqs. (2.5.15–2.5.17), 
with the adiabatic process, i.e. .const1 kp , are given in terms of the 
entropy change as follows 
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and 
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1

1
1 ln

k

v P
p

h
hcss  (5.3.4) 

where (1)suffix  is the reference state point with known values of enthalpy  

1h , entropy 1s , density 1  and temperature 1T  on the sh  diagram. 
In Eqs. (5.3.1–5.3.4), the stagnation condition is defined for the enthalpy 

0h , while at an arbitrary point in the channel the quantities are defined 
without suffix. Combining Eqs. (5.3.1) and (5.3.2), we can write Eq. 
(5.3.4) as the relation between the enthalpy and the entropy as 
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Further simplified, we can say 
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hhhcss  (5.3.6) 

Some simplifications are expressed in Eq. (5.3.6), and it maybe written for 
h  as follows 

s
c
k

k
k

peGChhh 112
1

0  (5.3.7) 

where 1C  is a constant defined as state point (1) in the sh  diagram and 
is calculated with 1G , 1h  and 1s . 

The line of either Eqs. (5.3.6) or (5.3.7) drawn in the sh  diagram is 
labeled as the Fanno line (or Fanno curve). The Fanno lines given by the 
function of Eqs. (5.3.6) or (5.3.7) are plotted exaggeratingly in Fig. 5.8(a) 
and (b) respectively. We can find that s  reaches a maximum when s  in Eq. 
(5.3.6) is differentiated with respect to h  and setting dhds  to zero, i.e. 

242



5.3 Fanno and Rayleigh Lines 
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This gives the entropy s  maximum for 12 0 khh . Furthermore, this 
12 0 khh  is substituted into Eq. (5.3.2) to give 

kRT

kTc
khu

p 1
12

  

(5.3.9) 
Equation (5.3.9) shows that at the maximum entropy, the flow is at the 

sonic, i.e. 12222 aukRTuM . Similarly, we can write the gradient 
of the line from Eq. (5.3.8) in terms of the Mach number 
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k

dh
ds  (5.3.10) 

and as a result Eq. (5.3.10) yields the following relations for 1k  

0
dh
ds

,  1M  (supersonic) 

0
dh
ds  ,  1M  (sonic) 

0
dh
ds  ,  1M  (subsonic) 

as indicated in Fig. 5.8(a) and (b). The relations characterize the Fanno line. 
The equations of the Rayleigh line are also derived, on the other hand, 

from the mass continuity and the momentum equation for frictionless flow, 
lifting the adiabatic condition. The flow under consideration is similarly 
one dimensional with steady internal flow. Instead of the energy equation, 
we use the momentum equation per unit area (the momentum flux) from 
Eq. (4.1.47), i.e. 

Appuum 2112  

2112 ppuuu  
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and by the mass continuity of Eq. (5.3.1); 12 uu , we have the expres-
sion 

.constfpuu  (5.3.11) 

where f  is called the impulse or thrust function as it is kept constant for 
frictionless flow through the channel. Using the continuity of Eq. (5.3.1) 
again, we may be able to modify Eq. (5.3.11) to write p  explicitly with 
the formula that follows 

2Gfp  (5.3.12) 

For an ideal gas, the enthalpy is written by the following formula 

Fig. 5.8 Fanno and Rayleigh lines 

1k
kp

R
pcTch pp  (5.3.13)

so that 

k
hkp 1  (5.3.14)

Combining Eq. (5.3.12) with Eq. (5.3.14) and eliminating , we can ob-
tain an expression for enthalpy as 

2

2

1 Gk
pfpkh  (5.3.15) 

Nevertheless to convey the essence of the subject, it is required to write 
p  in Eq. (5.3.15) in terms of the entropy in a thermodynamic system. For 
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an ideal gas, the pressure p  is a function of any two thermodynamics pa-
rameters, i.e. shpp , . Considering Eqs. (2.5.6) with (2.5.17) by inte-
grating between the state points, we have 

k

v p
pcss 2
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2 ln  (5.3.16)

and it follows that 
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where we have used, 22 TThh . Equation (5.3.17) can be further sim-
plified into 
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where 2C  is a constant defined at one state point. The equation of the 
Rayleigh line is now to be derived by substituting Eq. (5.3.18) into Eq. 
(5.3.15) to give 
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In Fig. 5.8(a) and (b), Rayleigh lines are displayed, having common states 
with the Fanno lines. As in the case of Fanno lines, we are similarly able to 
obtain the condition at s  to be a maximum by differentiating s  in Eq. 
(5.3.19) with respect to h  as 

TkM
M

dh
ds 11

2

2
 (5.3.20)

where we used the relation in Eq. (5.3.9) similar to the case of the Fanno 
line. It is denoted that Eq. (5.3.20) is readily obtained by Eqs. (5.3.14) 
and (10) in Exercises 5.3 together with the thermodynamics relation 
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Tdsdhdp  derived from Eq. (2.5.15). As shown in Fig. 5.8(a) and (b), 
at 1M  the entropy s  reaches the maximum, yielding the flow character-
istics for 12kM  as follows 

0
dh
ds ,  1M  (supersonic) 

0
dh
ds ,  1M  (sonic) 

         0
dh
ds ,  11 Mk  (subsonic) 

It is readily confirmed that at kM 1 , the enthalpy becomes maximum 

and for 11 Mk , dsdh  is negative, while everything other than this 
region dsdh  is positive. In Rayleigh flows, as indicated by the Rayleigh 
line, the increase of entropy is due to heat given from outside the system, 
since no friction is assumed. Therefore, in comparison with the Fanno flow, 
which is represented by the Fanno line, self-heating of a compressible flow 
has an effect to encourage the flow to reach 1M , and this implicitly 
suggests the friction effect of the Fanno flow. 

As we will see later in this chapter, a normal shock is characterized 
with the mass continuity equation, the momentum equation and the energy 
equation. Thus, the thermodynamic states represented at points (1) and (2) 
in Fig. 5.8(a) and (b), where the Fanno and Rayleigh lines across for a 
given mass flux G , satisfy the three equations for a normal shock. This 
fact represents that through the occurrence of the normal shock the entropy 
increases from points (1) to (2) of the thermodynamic states behind and 
ahead of the normal shock respectively. 

5.4 Normal Shock Waves 

In a Laval tube, as studied in the previous section, when the exit pressure 
is well below the reservoir pressure, there is a discontinuity in pressure as 
observed in Fig. 5.5(a) and (b). The discontinuity of pressure,  density and 
temperature that occurs in the direction of compressible flow is a promi-
nent feature of normal shock. Also for the points where Fanno and 
Rayleigh lines cross, there is an entropy increase as verified in Fig. 5.8(a) 
and (b). The points (1) and (2) in Fig. 5.8(a) and (b) meet the following 
conditions 
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(2) constant cross sectional area through the shock 
(3) ideal gas 
(4) steady state flow 
(5) adiabatic and frictionless 

It may be further stated that for the points of cross-lines, the mass con-
tinuity, the momentum and the energy equations are simultaneously satis-
fied. The normal shock, the simplest case of a shock wave, is regarded and 
is observed in experiments as a surface perpendicular to the direction of 
flow. Through the shock there is sudden occurrence of discontinuous 
change of flow properties and the flow is irreversible, so that, although the 
adiabatic condition is held, the isentropic equations cannot be used. A state 
of flow for a normal shock is depicted in Fig. 5.9.  

 
Fig. 5.9 Normal shock 

The equations of mass continuity, momentum and energy are repeat-
edly written for a normal shock as 

2211 uu  (5.4.1) 
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From Eqs. (5.4.1–5.4.3), we have a relationship among the flow properties 
between states (1) and (2), respectively in front of and behind the normal 
shock as follows 

(1) one dimensional 
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With a definition of the speed of sound as Eq. (5.1.25), we can write Eq. 
(5.4.4) in terms of a Mach number and its relevant forms such that 
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The formula of Eq. (5.4.4) that relates to pressure and density across a 
normal shock is known as the Rankine-Hugoniot relationship. This rela-
tionship stands for a normal shock wave of any strength without taking in 
account of any internal structure of the wave. 

The equation of a state combined with the thermodynamic expression 
for entropy change is given as Eq. (5.3.16) and causes the entropy increase 
as 
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2
12 lnln k

p
pcss v  (5.4.8) 

Substituting Eq. (5.4.4) into Eq. (5.4.8), and denoting 12 ppp  and 

12 sss , we can expand Eq. (5.4.8) to give 
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Since in the normal shock wave, the entropy increases 0s , it gives a 
condition that from Eq. (5.4.9), 0p . This for 0p  implies that, from 
Eqs. (5.4.4) to (5.4.7), the following relations must be met 
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It is noted that 1pp  in Eq. (5.4.9) is sometimes called the shock 
strength and for 0p , the thermodynamic process is called the compres-
sion. That is to say, the normal shock wave is the compression wave and 
the following conditions are to be thought: 
(i) If the shock strength is small, i.e. 11pp , from Eq. (5.4.8) the flow 
through the shock is isentropic, i.e. 0s . 
(ii) Equation (5.4.4) may be written in the following form, by setting 

12 ppp  and 12  

21

21 ppkp  (5.4.11) 

and from the momentum equation of Eq. (5.4.2), we have 
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Consequently according to Eq. (5.4.11), we can identify two conditions 
for a normal shock wave:  for a weak shock, i.e. 21  and 21 pp , Eq. 
(5.4.12), which becomes 

const.
2

2

1

1
1

kpkpu  (5.4.13) 

which is the speed of sound, meaning that the shock propagates with the 
speed of sound; for a very strong shock, i.e. 21 pp  and 21 , Eq. 
(5.4.12) is certainly greater than the speed of sound,  indicating that a very 
strong shock may propagate faster than a weak shock. 

When we consider the critical velocity *u , i.e. the velocity for the flow 
reaching the speed of sound a , it will prove useful to write the energy 
equation Eq. (5.4.3) as 

2

2
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12
1 12

1
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1
*a

k
kp

k
kup

k
ku  (5.4.14) 
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where *a  is invariant between behind and ahead of a normal shock. It is 
now desired to derive a useful expression for a normal shock. Eliminating 
p  and  from Eqs. (5.4.1), (5.4.2) and (5.4.14), we can obtain a simple 

expression as 
2

21 *auu  (5.4.15) 

This is called as Prandtl relation. As an alternative, Eq. (5.4.15) can also be 
written by 

121 **MM  (5.4.16) 

Thus, from relationships in Eqs. (5.4.10) and (5.4.16), we have 11M  and 

2M , since 1M  and 1*M  is respectively true. This indicates that a 
normal wave can occur only if the upstream flow is supersonic.  

It also appears, according to Eq. (5.4.16), that 1M  leads to 

2112 uu  to reach an asymptote of 11 kk . If the value of 
4.1k  represents air, the maximum (the asymptote) is 6, meaning that air 

cannot be compressed more than 6 times its original density by normal 
shock, while 12 pp  and 12 TT  increase infinitely. 

Mach number relations across a normal shock wave may be found in 
the following relation 
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so that with the aid of Eqs. (5.4.5) and (5.4.7) we have  
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Equation (5.4.18) also indicates that for 11M  and 1k  the flow is sub-
sonic behind a normal shock wave. As for air, for example, with 4.1k , 
Eq. (5.4.18) can be reduced to 
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MM  (5.4.19) 
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5.5 Oblique Shock Wave 

plane of the shock wave is inclined by an angle of  with respect to the 
incoming flow direction. This plane shock wave, termed an oblique shock 
wave, is attached to the nose of the wedge, and acts to turn the flow 
through a semi-vertex angle (wedge angle) of  so that the flow becomes 
parallel to the wedge downstream from the shock. An oblique shock wave 
is often observed at the nose of a supersonic aircraft. 

 
Fig. 5.10 Supersonic flow past a wedge 

Figure 5.11 shows a schematic diagram of an oblique shock wave that 
has been assigned kinematic properties. In dealing with an oblique shock 
wave, mass continuity, momentum, and energy equations are to be solved 
in the same manner as a normal shock wave. However, it should be kept in 
mind that by conservation of momentum, since there is no pressure change 
along the shock wave and there is no force acting on the fluid along the 
shock wave plane, the tangential component of velocity tu  is continuous 
across the shock wave 

222111 tntn uuuu  (5.5.1) 

Thus, with the aid of the relation 2211 nn uu  (Eq. 5.4.1), we have 

ttt uuu 21  (5.5.2) 

When a supersonic incompressible flow passes over a slender wedge, as 
shown in Fig. 5.10, for example a plane shock wave is formed, when the 
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Fig. 5.11 The oblique shock 

The normal components of velocity 1nu  and 2nu  are related to the normal 
shock relations of the previous section. Therefore, the mass continuity, 
momentum and energy equations in the normal direction to the shock are 
written identically for an oblique shock when the flow properties, such as 
pressure, density, temperature and etc, are related in the same way as with 
the normal shock. Thus, it would be useful to write the energy equation as 
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Furthermore, with the condition of Eq. (5.5.2) we have 
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Equation (5.5.4) is exactly the same as Eq. (5.4.14) by replacing 2
*a  from 

Eq. (5.4.14) with 11 22 kuka t* , so that the Rankine-Hugoniot rela-
tionship of a normal shock wave can still be valid for the oblique shock. 
The Prandtl relation for the oblique shock is also written as follows 

22
21 1

1
tnn u

k
kauu *  (5.5.5) 

With the aid of the velocity diagram in Fig. 5.11, the velocity ratios for 

nu  and tu  are expressed in terms of the shock inclination angle  and the 
velocity deflection angle  as 
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By defining 111 auM / , we can write sin111 Maun /  since typically 
sin11 uun . Thus, the normal shock relationship from Eq. (5.5.5) can be 

written for the oblique shock relationship by replacing 1M  in Eq. (5.4.5) 
with sin1M , which gives 
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Perhaps it is worth taking a moment to consider the relationship be-
tween the shock inclination angle  and the wedge angle . Substituting 
the relations from Eq. (5.5.6) into Eq. (5.5.7), we can derive the following 
relationship between  and  
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By solving Eq. (5.5.8) for , we can write the angle  as 

cot
22cos

1sin2tan 2
1

22
1

kM
M  (5.5.9) 

Depending on 1M , Eq. (5.5.9) shows that   will be zero for , equal to 
either 2  or 1

1 1sin M/ , or somewhere within this range, noting that  
there is a maximum of . Figure 5.12 is a plot of  versus  for a given 

1M , where the dashed line is a curve for max . Figure 5.12 indicates that 
there are two possible solutions of  for 4 . In practice it is ob-
served that the solution (to a weak shock) occurs and has a weaker discon-
tinuity, with a remainder of 12M  (except for in a region between the 
lines 12M  and max ). That is, two solutions are derived from the jump 
conditions, which are in effect characterized by different shock inclinations 
angles and shock intensities. The solutions are known as the weak and 
strong solutions. Phenomenologically the strong solution indicates a flow 
which is subsonic downstream from the shock with 2max , 
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whereas the weak solution describes a flow which is supersonic down-
stream from the shock in  less than the line of 12M . With a symmet-
rical slender wedge, 1u  is parallel to the surface of the wedge with an an-
gle of , so that when 1M  is specified, the shock inclination angle  will 
be calculated from Eq. (5.5.9). 
 

 
Fig. 5.12  pplot for an oblique shock 

Fig. 5.13 Detached shock wave 

It is interesting to see the flow phenomena if  is greater than 4 . It 
appears that neither an oblique shock nor a normal shock is possible and it 
is observed from experiment that the shock becomes detached. That is to 
say, the shock curves around the wedge are not touching the wedge, as 
schematically displayed in Fig. 5.13. The phenomenon also occurs with a 
blunt body. There are some regions after the curved shock wave, called the 
bow shock, as shown in Fig. 5.13. The dotted line, which corresponds to 
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1M , is called the sonic line and divides the two regions of supersonic 
and subsonic flow. It is found that the drag on a blunt body (or higher de-
flection angled wedge) is higher than that of a slender body when the body 
is traveling with supersonic speed. This is due to the shock wave being de-
tached, and to reduce the drag it is advantageous to adopt a small nose an-
gle (wedge angle) for supersonic crafts so that the oblique shock may be 
formed on the body. 

Exercise 

Exercise 5.1 The Compressibility Factor 

In an isentropic flow through a channel from a reservoir, the pressure in 
the reservoir is such that the velocity of flow is identically zero In con-
trast to the reservoir, when an isotropic flow is brought to rest at any point 
of a flow field, the pressure with zero velocity can be obtained with the 
same treatment as the case of a reservoir. The stagnation pressure is such 
that a flow is brought to rest. We will now consider the stagnation pressure 

0p  for an isentropic flow in terms of the Mach number. 

 
Fig. 5.14 The stagnation pressure; Pitot tube configuration 
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The typical application of such a flow is found by measuring its velocity 
via the Pitot tube, as depicted in Fig. 5.14(a) and (b). Show the effect of 
Mach number in measuring the stagnation pressure, and thus the velocity 
of flow for an ideal gas. 

Ans. 

Let consider the energy equation of Eq. (5.2.13) between the upstream 
and the stagnation, as indicated in Fig. 5.14(a) 

hhuu 0
2

0
2

2
1  (1)

For an ideal gas we may write the enthalpy with the aid of the relations  
Tch p  and 00 Tch p . Also using auM  and 1kkRc p , we can 

reduce Eq. (1) to the following form, by setting 00u  

20

2
11 Mk

T
T  (2)

For the isentropic flow, we have a thermodynamic relation 

100 k
k

T
T

p
p  (3)

In combination with Eqs. (2) and (3), the stagnation pressure 0p  is thus 
expressed by 
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k
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If this equation is expressed with a binomial expansion for the Mach num-
ber, we have 
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and 
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It will prove useful to write the leading term of the right hand of Eq. (6) as 
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Thus, Eq. (6) becomes 
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The right hand side of Eq. (7) can be represented by c , which is called 
the compressibility factor. For example, in the case of air 4.1k , it is cal-
culated that 2761.c  at 1M  and in a lower Mach number case, we 
can say that 0221.c  at 3.0M . Thus, for measuring the velocity by a 
Pitot tube, we can write the Eq. (7) as 

2
102

c
ppu  (8)

The actual velocity measured by a Pitot tube for a flow of 30.M  is ap-
proximately %1.1  less than that of incompressible flow measurement. 

In supersonic flow, however, a detached shock wave may be formed 
ahead of a Pitot tube as shown in Fig. 5.14(b). Along the center line, the re-
lationship across a normal shock can be applied that are found in Eqs. 
(5.4.18) and (5.4.6), written as 
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The isentropic relation of Eq. (4) can be used between the point of after 
shock to the stagnation point as indicated in Fig. 5.14(b), which is given as 
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With Eqs. (9) and (10), eliminating 2M  and 2p , we can derive the follow-
ing relationship between the upstream and the stagnation point 
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Equation (11) relates the stagnation pressure for a supersonic flow and the 
formula is called the Rayleigh’s  Pitot-tube relation. 

Exercise 5.2 Fanno-line Flow Relations and Chocking 

Consider a flow of ideal gas in a horizontal tube of constant cross-section. 
The flow in the tube is assumed adiabatic, but with friction, i.e. the exis-
tence of wall shear stress. Derive Fanno-line flow relations and discuss the 
possibility of chocking condition. 

Ans. 

Let denote A  as the cross-section area and dx  as a small increment of 
x  as indicated in Fig. 5.15, where the control volume is defined by dotted 
line together with flow and thermodynamic parameters. For the control 
volume, we will apply (i) the mass continuity, (ii) the momentum and (iii) 
the energy equations as described below. 

Fig. 5.15 Fanno-line flow, w  tthe wall shear stress 
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.constuA  (1)

For A  constant, we can write Eq. (1) in a differential form as 

0
u
dud  (2)

 (ii) Momentum equation 
The momentum balance of the control volume is 

sw AAdpppAuduuuA  (3)

where w  is the wall shear stress and sA  is the wall surface area of the 
control volume. w  can be defined, using the friction factor fc , as 

2

2
1 uc fw  (4)

We can assume that fc  is kept constant along the channel. It is reassuring 
to know that the constant of fc is justified since it is kept around 

00300040 .~.fc  for the Reynolds number 69 1010 ~ , although fc  is a 
function of the Reynolds number, the Mach number and surface roughness 

 (RMS) of tube wall, DRecc ff ,,M . In a case of circular tube of 
diameter D , i.e. DdxAs , Eq. (1) can be rearranged as follows 
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dx
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c
p

dp
kMu

du f  (5)

where for 2222 kpMaMRTpu  is used and, a  is the speed of 
sound. 
 
(iii) Energy equation 

The energy equation of an ideal gas with the enthalpy defined as 
Tch p  is written from Eq. (5.2.13) as 

0dTcudu p  (6)

By dividing the both sides by Tcp  and recognizing 1kkRc p , we 
can obtain 

(i) Mass continuity equation 
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01 2

u
duMk

T
dT  (7)

It should be kept in mind that, as in Eqs. (1) to (7), there is no particular 
thermodynamic process mentioned for the control volume, but with the   
adiabatic condition to the control volume being assumed, we can assume  
there is no heat transfer to or from the control volume. 
 
(iv) Entropy change and Mach number 

The equation of state for an ideal gas is written as RTp , and it’s 
differential form is 

T
dTd

p
dp  (8)

The entropy change of the control volume is, from the second law of ther-
modynamics 

dR
T
dTcds v  

dR
T
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k
R
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It is noted again that the adiabatic condition to the control volume does not 
directly mean it is isentropic, since we are considering the friction of flow. 
From the definition of the Mach number kRTuM , a differential form 
is 

T
dT

u
du

M
dM

2
1  (10)

Now we are able to reduce the Fanno-line of flow relations in terms of 
the Mach number, using Eqs. (1) to (10). To begin with, eliminating TdT  
as in Eqs. (7) and (10) and by combining them with Eq. (2), we can obtain 

ddM
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k
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du 2
22 21

11
2
1  (11) 

Equation (11) is substituted into Eq. (7) and we have the relationship that 
follows 
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In the same manner, Eqs. (11) and (12) are substituted into Eq. (8) to give 
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Thus, from the relationships derived from above, the entropy change is 
given by substituting Eqs. (11) and (12) into Eq. (9) 
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Similarly, the actual change of the Mach number itself will be given by 
substituting Eqs. (11) and (13) to Eq. (5) to give 
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 (15) 

Table 5.1 Change of properties in the Fanno-line flow 

Property Subsonic flow
1M  

Supersonic flow
1M  

s   
M    
u    

   
T    
p    

 
Equations (11) to (15) give the change of properties, u , , T , p , s and 

M . It will be convenient to verify the changes of a state by the Mach 
number whether the flow is subsonic or supersonic. Table 5.1 shows the 
summarized results. As seen in Table 5.1, for subsonic flow ( 1M ), when 
the Mach number increases, the change of the Mach number along the tube 
will be 0dxdM  from Eq. (15), implying the fact that the effective cross 
section area decreases. This effect concerns the effective increase of the 
thickness of the boundary layer, since the flow includes the effect of vis-
cosity.  

From Table 5.1, we also see that the frictional effects cause the fluid to 
tend toward 1M  for both initially subsonic and supersonic conditions. 
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This fact indicates, if a tube length is sufficiently long enough, that the 
flow is choked off due to the friction. We may be able to integrate Eqs. 
(11)~(15) between a reference point of flow to a point where the flow 
reaches the Mach number, as schematically depicted in Fig. 5.16. For ex-
ample, if we integrate Eq. (15), we obtain 
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and 
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where we set xxLmax . 

 
Fig. 5.16 Approach to critical condition 

It appears that the flow reaches the choking condition at *xx from an ar-
bitrary point x  in a tube. maxL  is the maximum length, which is called the 
limiting length.  

Now cases are examined in order to gain the trend in the properties 
change along the distance, particularly in the Mach number. From Eq. (17), 
Fig. 5.17 is a plot of a Mach number 2M  at a distance 2x  from a refer-
ence point x , where a reference Mach number is denoted by 2M . For ex-
ample, a flow with a Mach number 7.0M  at a point of x  reaches 

12M at approximately 20max2 .L  where the flow is choked. In the case 
where the length of tube is longer than max2L , the flow cannot reach 1M  
along the tube, but only at the exit, where the flow is chocked. The mass 
flow rate decreases in the case of a tube longer than max2L . When a flow is 

262



Exercise 

supersonic upstream, for example 0.2M , the chocking occurs at ap-
proximately 3.0max2L . Further extending the tube length causes a forma-
tion of a normal shock wave upstream and at the exit of the tube, where the 
flow reaches 12M . The mass flow rate does not change for a tube 
greater than max2L . The position of the shock is that subsonic flow behind 
the shock accelerates to sonic condition 12M  at the exit. 

 
Fig. 5.17  Variation of Mach number 

Similarly the integration of Eqs. (11) to (15) yields the following rela-
tionships 
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and writing Eq. (21) by TT  using Eq. (19), we have 
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As an alternative of Eq. (22), */TT  can be replaced by the enthalpy, using 
the relationship *** /// TTTcTchh pp .  This resultant expression gives 
the equivalent form of Eq. (5.3.6)  

Exercise 5.3 Rayleigh-line Flow Relations and Chocking 

Consider a flow of an ideal gas in a horizontal tube in a constant cross sec-
tion. The flow in the tube is assumed to be frictionless, but there is heat 
transfer between the tube wall and the fluid. Such a flow is called the 
Rayleigh-line flow. Derive the Rayleigh-line flow relationships and discuss 
the possibility of chocking condition. 

Ans. 

As schematically indicated in Fig. 5.18, we will apply the mass conti-
nuity, the momentum and the energy equations, denoting that q  is the 
heat transfer to the control volume.  

 
Fig. 5.18 Rayleigh-line flow, q  the heat transfer 
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(i) Mass continuity equation 

0
u
dud  (1)

where the cross-section area A  is constant. 
 
(ii) Momentum equation 

01
2 p

dp
kMu

du  (2)

Denote that w  in Eq. (3) in Exercise 5.2 is set at zero, and letting 
kpa 2 . 

 
(iii) Energy equation  

For an open system at a steady state, the energy balance equation of the 
control volume can be written as 

tdLduupvddeq  (3) 

where de  is the increase of internal energy, /pdpvd  is the in-
crease of flow work, udu  is the increment of kinetic energy, and tdL  is the 
work transfer (including work done due to a frictional effect). Defining en-
thalpy pveh  and recognizing Tch p  for an ideal gas, we can reduce 
Eq. (3) for a frictionless flow under a condition of no work transfer, i.e. 

0tdL , as follows 

ududhq  

ududTcp  (4)

Both side of Eq. (4) is divided by Tcp , and by defining the stagnation 
enthalpy 00 Tch p , we have (similar to Eq. (7) in Exercise 5.2) 

         
h

dh
T

dT
u
duMk

T
dT

h
q 0021  (5)

 
(iv) The entropy change and Mach number. 

  From the definition of entropy for a reversible process, it follows that 

RT
q

R
ds  (6)
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The increase of a Mach number is written, according to Eq. (10) in Ex-
ercise 5.2, as 

T
dT

u
du

M
dM

2
1  (7)

Along the similar manner to derive the Fanno-line flow relationships, 
we can now derive the Rayleigh-line flow relationships in terms of the 
Mach number as written below  
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The entropy change is also derived from Eq. (6), to give 
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and, the change of the total temperature 0dT  in Eq. (5) is derived from 
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Equations (8) to (12) give the change of properties, sTu ,,,  M  and 0T  
for a state of a Mach number, to which in Table 5.2 the summarized results 
are listed in a case of heating, .0q  It should be kept in mind that in the 
case of cooling, ,0q  the trends in Table 5.2 are opposite. From Table 
5.2, we see that the heating of an ideal gas flow causes the fluid to tend 
toward 1M  for both initially subsonic and supersonic conditions. There-
fore, if a tube is heated to transfer heat to an ideal gas, the flow is choked; 
likewise in the Fanno-line flow (in the case of frictional effect). This phe-
nomenon is sometimes called thermal choking.  

,
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Exercise 

Table 5.2 Change of property in Rayleigh-line flow 0q  

Property Subsonic flow
1M  

Supersonic flow
1M  

s    
M    
u    

   

T  
kM 1  
kM 1  

 

p    
0T    

 
 

In order to verify thermal choking, we will consider the total tempera-
ture ratio *

00 /TT . It is readily confirmed that *
00 /TT  can be directly ob-

tained by integrating Eq. (12) from an arbitrary point to 1M , yielding  
22

21
1

a
a

kM
Mk

T
T

*
 (13) 

and using Eq. (5.4.7) together with following two relations for 1M  

20

2
11 Mk

T
T  (14)

1
2

*
0

*

kT
T  (15)

By eliminating T  and *T  from Eqs. (13), (14) and (15), we have 

      22

22

0

0

1

121

kM

MkkM
T
T  (16)

Now consider a case with reference to Fig. 5.19, where a section of a 
tube is heated by q  (heat transfer to the flow), as is written below 

0102 TTcq p  (17)

where 01T  and 02T  are the temperatures at the points where 1 and 2 are 
along the tube  respectively. It will be convenient to write Eq. (17) as 
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0101

02 1
Tc
q

T
T

p
 (18)

Thus, as a result, the temperature rises due to heating, as written as Eq. 
(18) and now it is desired as an expression in terms of the Mach numbers 
at point (1) and point (2), which is given as 

2
1

2
2

2
2

2
1

2

1

2

01

0

0

02

01

02

12
12

1
1

Mk
Mk

kM
kM

M
M

T
T

T
T

T
T  (19) 

 
Fig. 5.19 Chocking by heating in Rayleigh-line flow 

 
In order to characterize the system, Fig. 5.20 is a plot for 0102 /TT  of Eq. 

(19) versus 2M , while keeping 1M  constant. As seen in the diagram, when 
a flow at point (1) is subsonic 1M  and the total temperature of 01T , the 
total temperature 02T  at point (2) rises due to heating (according to Eq. 
(18)), for example (1) (2) in 5.01M  as indicated in Fig. 5.20, follow-
ing the simultaneous rise of the Mach number of 2M . Then, at 12M , 

0102 /TT  reaches its maximum for a given 1M  and 01T , where the 
Rayleigh-line flow becomes sonic, and the flow is said to be thermally 
chocked.  

If the cooling is started from the point (2) to down stream, the total 
temperature drops and the supersonic flow becomes possible. Further cool-
ing the tube to absolute zero, the Mach number of the flow asymptotically 
approaches infinity. In contrast, if the section of the tube is further heated, 

02T  rises, for example with reference to Fig. 5.20 )(2(2) , where we 
keep the state chocked at 12M , since the only maximum Mach number 
possible at 2M  is 12M . With reference to the state at )(2 , the Mach 

268



Exercise 

number at point (1) should be lower, for example, with reference to Fig. 
5.20 )(1(1) , when followed by the Rayleigh-line flow, while 01T  is 
kept constant. In this situation, the mass flow rate drops, compared to that 
of the original state. 

 
Fig. 5.20 0201 TT , Mach number relation (for 4.1k ) in subsonic flow 

case  

In this case, if the Mach number at point (1) is supersonic 11M  and a 
section of the tube is heated, the Mach number at the exist of a tube, where 

002 TT , becomes the sonic 12M , leading the flow thermally chocked. 
Figure 5.21 is a plot of Eq. (16) for air 4.1k . As the section is heated 

from a total temperature of 01T  with supersonic flow 1M  at the point (1), 
the Mach number M  along the tube decreases to point (2). If there is a 
normal shock wave that exists in a section of the tube, the Mach number 
jumps to a state of )(2 , where the Mach number behind the shock wave is 
subsonic. From )(2 , the Mach number again increases toward the exit, 
where the Mach number is in unity. When the heating is high enough, the 
shock wave is formed further upstream, i.e. shifting (2) to further high 
Mach numbers and resulting in )(2  to a further lower Mach number to-
ward the point (1), where the heating is originally started in the section of 
the tube. 

In engineering practice of observing shock wave formation, a higher 
heating of the section of the tube may shift the shock wave to the throat of 
a Laval nozzle, in which the shock disappears. As it has been verified, it is 
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interesting to note that the heating (and cooling) can control the shock 
wave positions in a tube. 

Fig. 5.21 002 TT , Mach number relation (for air 4.1k ) in supersonic 
flow case  

Similar to the Fanno-line flow, the integration of Eqs. (8) to (11) yields 
the following relations 

2

2

1
1

kM
Mk

u
u  

(20)

21
1

kM
k

p
p  

(21)

k
k

kM
kM

k
k

R
ss

1

2
2

1
1ln

1
 (22)

                 
k

k

k

k
TTkkk

T
T

k
k

1
2

1

2
411

ln
1

*/
 (23)

It is noted that as an alterative of Eq. (23), */TT  can be also replaced by 
the enthalpy, using the relation TTTcTchh pp /// , and the resultant 
expression gives the equivalent form of Eq. (5.3.19). 
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Problems 

Problems 

5-1. A model wing is placed in a uniform air flow of pres-
sure 25

1 N/m10450.p  and the temperature is K2531T . When a 
measurement of pressure and the Mach number on a wing was carried 
out, they were, respectively, 25

2 N/m10350.p and 7502 .M . 
Obtain the speed and the Mach number of the uniform air flow, as-
suming that the flow is isentropic. 

Ans. 420 and  m/s134 11 .Mu   
 

5-2. A supersonic plane traveling at a speed with a Mach number of 252.  
passes m12000  above an observer. Determine how far does the plane 
travel from the point beyond the observer, when the acoustic distur-
bance of the plane was first heard. Assume the speed of sound to be 

m/s330 , and that it is independent of the altitude. 
Ans. 32.5 safter  m24174 t  

 
5-3. A compressed gas of a specific heat ratio k  is discharged in the at-

mospheric pressure app2  through the Borda’s mouth piece of a 
cross-section area 1A  from a large reservoir tank, where the pressure 
is kept 0p , as schematically displayed in Fig. 5.22. If the area of the 
vena contracta is 2A  and the Mach number is 2M  at the vena con-
tracta, prove that the contraction coefficient 12 AACc , is given by 
the following formula 

2
2

2

0 1 kM
p
pCc  (1)

and for isentropic flow also prove this is written as 

1
2

111 1
1

2
22

2

k
c Mk

kM
C  (2)
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Fig. 5.22 Flow through BBorda’s mouth piece 

sudden expansion as shown in Fig. 5.23. The flow is subsonic and the 
conditions at (1) and (2) are respectively 
(1) 11111 ,,,, MupA  
(2) 22222 ,,,, MupA  
show that 

212212 uuupp  

2
21

2
1

1

2

1
1

kM
AAkM

p
p  

where the flow is assumed to be adiabatic. 

 
Fig. 5.23 Gas flow through sudden expansion 

5-4. An incompressible gas of the specific heat ratio k  is passing through a 
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Problems 
 
5-5. Air at a pressure of 251 N/m10152.p , a temperature of K3031T  

and a Mach number of 2501 .M  is discharged to the atmosphere 
25 N/m100131.ap  through a convergent nozzle whose throat area 

is 23 m1005.eA . Calculate the exit pressure ep  and the mass 
flow rate m , describing the exit condition. 

Ans. 
kg/s592mN510191

andexist at  chocking
2 .,. mmep

 

 
5-6. A normal traveling shock wave passes through stagnant air with a 

speed of m/s680 . In the stagnant air, the static temperature is C15o  
and static pressure is 25 N/m10750. . Obtain pressure 2p  and tem-
perature 2T  down stream of the shock wave.  

Ans. C21322mN5103732021 TpM ,.,.  
 

5-7. A stream of air 4.1k  is flowing through a converging-diverging 
nozzle as shown in Fig. 5.24. At a position (1), the cross-section area 
is 22

1 m1001.A , the static pressure is 25
1 N/m10750.p and 

the Mach number is 4501 .M . The cross-section area at position (2) 
is 22

2 m1051.A .  The flow is assumed to be isentropic between 
position (1) to (2). Answer the following questions: 
(i) Calculate the Mach number 2M  and the static pressure 2p  at the 
position (2). 
(ii)At a position x , where the cross-section area xA  is given to 

be 22 m10151.xA , a normal shock wave was found. Determine 

22 , pM , at position (2). 
 

Ans.
25

22

25
22

25
22

N/m10560400(ii)

N/m100700292or 

N/m108160280(i)

.,.

.,.

.,.

pM

pM

pM

 

 

o
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 5 Compressible Flow 

 
Fig. 5.24 A flow through a converging diverging nozzle 

5-8. An oblique shock wave was observed at a slender wedge, referring to 
Fig. 5.10 of semi-vertex angle 10 . The shock was reflected at an 
angle of 30 in the original flow direction. Estimate the Mach 
number of the air flow. 

Ans. 6821 .M  
 

5-9. Air flows in a m020.  diameter pipe with a pressure of 
251 N/m1052.p , a temperature of K3101T  and a Mach number 

of 2401 .M  at position (1) of 1xx , and leaves from exit position 
(2) of 2xx . As shown in Fig. 5.25, the length l  between position (1) 
and position (2) is m310.l . The flow is assumed to be adiabatic and 
the friction coefficient fc  is 0036.0  along the pipe.  
 

 
Fig. 5.25 Flow with friction in a pipe, Fanno-line flow 
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Problems 

(i) Determine the mass flow rate m , the pressure 2p , the tempera-
ture 2T , the velocity 2u  at the exit of position (2). Also obtain the to-
tal temperature 0T  and the total pressure loss 0201 pp  between po-
sition (1) and position (2). 
(ii) Calculate the mass flow rate m  at the chocking condition, when 
the mass flow is increased, keeping the total temperature 0T  and the 
exit pressure 2p  constant. 

Ans. 

skg1920
 condition, chokingFor  (ii)

K314mN10151

sm147 andK303
mN10411kg/s07480(i)

0125
0201

22

25
2

.

,.

,.,.

m

Tpp

uT
pm

 

 
5-10. Consider the airflow without friction ( 4.1k  and KkgJ1.267R ) 

in a pipe 23 m1057.A  heated through the pipe wall between 
position (1) and position (2) as shown in Fig. 5.26. The heat transfer 
q  to the unit mass of flow in the section of the pipe is 

kgkJ2037q . The total temperature of air is K5000T  and the 
velocity sm7.891u  at position (1) is discharged into the atmos-
pheric pressure 25

2 mN101app  at the exit position (2). Cal-
culate the pressure 1p  and the total pressure 0p  at position (1) and 
the velocity 2u  and the temperature 2T  at the exit of position (2). 
Also determine the mass flow rate m  discharged to the atmosphere 
and the total pressure loss 0201 pp . 

 
Fig. 5.26 FFlow with heat transfer in a pipe, Rayleigh-line flow 
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Ans. 
250201

22

2501251

mN102280and

skg720K2324sm641
mN10571mN10531

.

.,,
,.,.

pp

mTu
pp

  

Nomenclature  

A  cross-section area of channel 
tA  area of throat 

a  speed of sound 
cC  contraction coefficient 

fc  friction factor (coefficient) 

pc  specific heat at constant pressure 

vc  specific heat at constant volume 
cd  compressibility tensor 

e  internal energy 
f  impulse (or thrust) function 
G  mass flux 
h  enthalpy 
K  bulk modulus 
k  specific heat ratio vp cc  
L ,  length of channel (section) 

tL  work transfer 
M  Mach number 
m  mass flow rate 
p  pressure 

ap  atmospheric pressure  
q  heat transfer rate 
R  ideal (specific) gas constant 
s  entropy 
T  absolute temperature 
t  time 
u  velocity 

zyx ,, Cartesian coordinates system 
 Mach angle 

c  compressibility factor 
 shock inclination angle 
 surface roughness (RMS) 
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 semi-vertex angle (wedge angle) 
w  wall shear stress 
 kinematic viscosity 1  
 density 

Superscripts 
* critical properties 
Subscripts 
0 stagnation properties 
i  i designated number or symbols, points along flow channel 
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6. Newtonian Flow  

The system of conservation equations in continuum mechanics, as dis-
cussed in Chapter 2, is valid for any fluid motion. In dealing with flow 
problems in engineering the type of fluid used, as encountered in various 
problems, determines flows characteristics and their associated phenomena. 
The first step to tackle these problems is to know the type of fluid in the 
system and then to set up governing equations of flows to be solved or to 
applied. Fluids of the most commonly encountered in fluid engineering are 
water and air, and also, include structurally simple fluids with low molecu-
lar weight, are found to obey “Newton’s law of viscosity”. Such fluids are 
referred to as Newtonian fluids. The Newton’s law of viscosity states that 
the shearing force (per unit area) yx  is proportional to the shear rates (the 

rate of shear strain) yu , and that they may be expressed as follows 

y
u

yx 0  (6.1)

or alternatively in our tensor index notation in Cartesian coordinates 

2

1
021 x

u  (6.2)

The proportionality in Eq. (6.1) or Eq. (6.2) is regarded as a property of the 
fluid, and is defined as the viscosity. It is often convenient to use the kine-
matic viscosity , which is given as 

0  (6.3) 

instead of 0 . Fortunately, the Newtonian model can be applied to many 
actual fluids in engineering problems. The surface forces due to pressure 
and stresses are derived from the microscopic momentum flux across a 
surface from the molecular point of view. The shear stress yx  is a part of 
the momentum flux tensor, or simply the stress tensor, which is the mo-
lecular rate of transport of momentum. An equation that assigns a value to 
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the stress tensor is called a “constitutive equation”. Equation (6.1) or Eq. 
(6.2) are the constitutive equations of a Newtonian fluid in its most simple 
presentation. The constitutive equation of the Newtonian fluid is associated 
with the viscosity of the fluid and the rate of shear strain.  More specifi-
cally, the Newtonian fluid that is at the shear stress is lineally proportional 
to the rate of shear strain with a proportionally called the viscosity. 

The most appropriate generalization of the constitutive equation of the 
Newtonian fluid is derived from a linear Stokesian fluid, and that is pre-
sented by 

eIT 00 2up  (6.4) 

where 0  is the constant, called the second viscosity coefficient, and e  is 
the rate of strain tensor with reference to Eq. (1.1.16). Note that for a linear 
Stokesian fluid 0  is associated only with a volume expansion and it is 
customarily called the bulk viscosity coefficient. The stress tensor of a 
Newtonian fluid is symmetric and obtained under an assumption of the 
general isotropic tensor for the stress components being dependent upon 
the rates of a strain tensor, as given in Eq. (6.4). The constants 0  and 0  
can be related, considering an incompressible limit, where the pressure is 
the mean of the principal stress with reference to Eq. (1.6.15), where 

i

i
ii x

up 00 3
2T

3
1  (6.5) 

It is reassuring that in the incompressible limit, i.e. 0u , p  is the 
thermodynamic pressure at the equilibrium. If we take p  as the mean of 
the principal stress (the physical or mechanical pressure), we can write 

u00 3
2pp  (6.6) 

and 

Dt
Dpp 1

3
2

00  (6.7) 

Furthermore, we may be able to choose a constant of the proportionality of 
Eq. (6.7) as  

00 3
2

d  (6.8) 
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6.1 Navier-Stokes Equation 

so that 00 32d , where d  is referred to as the dilatational vis-
cosity, through which there is an additional transport property in generaliz-
ing Newton’s law of viscosity. d  is identically zero for ideal, monatomic 

Eq. (6.4). For incompressible liquids, i.e. 0u , the term containing d  
in Eq. (6.4) vanishes and consequently for motions of fluid it becomes un-
important. 

As an alternative, the constitutive equation for the Newtonian fluid can 
be written, using the dilatational viscosity d , as 

eIT 00 2
3
2 udp  (6.9)

and equivalently with the tensor index notation in Cartesian coordinates, 
we can write 

ijij
k

k
dij e

x
upT 00 2

3
2  (6.10) 

As another part of correspondence, it is important to know that an ar-
gument on d  is a controversial subject. Namely, if we follow Stokes’ hy-
pothesis, we may simply set 00 32  equal to zero, assuming that the 
pressure p  can be identified with a mean stress iiT31 , i.e. the proce-
dure is the equivalent of 0d , so that we can write Eq. (6.10) to give 

ijij
k

k
ij e

x
upT 00 2

3
2  (6.11) 

Determination of 0  is, however, still controversial. The second type 
of treatment for 0  is simply to ignore the u0  term identically, since 
the u0  term is found in many, very small situations. However, in deal-
ing with a shock wave or sound absorption, the argument for 0  must be 
included. Nevertheless, in the limit of an incompressible fluid, the consti-
tutive equation is given, knowing that  

gases, while it is not true for polyatomic gases or liquids. The dilatational 
viscosity is the fluid property, which relates to the degree of departure of 
the physical pressure from its thermodynamic pressure. However, unless 
there are extreme cases of the rate of expansion, we may be able to disre-
gard the inclusion of dilatational viscosity d   in the constitutive relation of 
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0u , by ijijij epT 02  (6.12) 

The viscosity of Newtonian fluids is a function of temperature, and is 
generally of a concentration and a pressure. However, with moderate oper-
ating conditions, i.e. room temperature range, the viscosity of Newtonian 
fluids is only a function of temperature. The typical physical properties, 
including the viscosity, are tabulated in Appendix A. Unless otherwise 
mentioned, the viscosity in the text will be treated as constant, i.e. conven-
tionally notating 0  in Newtonian fluids. 
It will be useful to know that the viscosity of low density nonpolar gases 
may be given by Maxwell’s molecular dynamics treatment as 

320 3
2 Tmk
d

B  (6.13) 

where m  is a mass of the molecular, d  the diameter of the molecular, T  
the temperature and Bk  the Boltzmann constant. 

6.1 Navier-Stokes Equation  

Cauchy’s equation of motion given in Eq. (2.2.6) holds for any continuum, 
whatever the stress T, and has constitutive relationships. When we con-
sider Newtonian fluids and adapt the Stokes hypothesis, the constitutive 
equation Eq. (6.4) that can be substituted into Eq. (2.2.4), i.e. where the 
conservation form of the linear momentum, so that we have 

iij
j

ij
k

k
ij

jj

iji e
xx

up
xx

uu
t
u

g00 2  (6.1.1)

where ije  is a tensor index notation of the rate of a strain tensor, which is  
repeatedly written as 

i

j

j

i
ij

x
u

x
ue

2
1  (6.1.2)

The equation (6.1.1) with Eq. (6.1.2) yields 

i
j

i

k

k

iij

iji

x
u

x
u

xx
p

x
uu

t
u

g
2

2
000  (6.1.3)
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6.1 Navier-Stokes Equation 

and as an alternative with a vector notation, we have 

g2

2

000 x
u

x
u

xxx
uuu p

t
 (6.1.4) 

Equivalently using grad uudiv  and the Laplace of u  as u2 , 
we can write Eq. (6.1.4) as follows 

guuuuu 2000p
t

 (6.1.5)

It is mentioned here that the gravity acceleration g  is introduced here for 
the body force g . Equations (6.1.3) or (6.1.4) and (6.1.5) are called the 
Navier-Stokes equation in honor of C.L.M.H. Navier, and G.G. Stokes, 
who separately formulated them in 1822 and 1845, respectively. The non-
conservation form of this equation can be written, according to Eq. (2.2.7) 
as 

guuuuu 2000p
t

 (6.1.6)

For incompressible flow, i.e., 0u , the Eq. (6.1.6) can  reduce the 
form as 

guuuu 20p
t

 (6.1.7) 

It is reassuring that, if a perfect fluid is considered, Eq. (4.1) is substituted 
into Eq. (2.2.7) with the same manner, or alternatively by setting 00  
in Eq. (6.1.7), we can obtain the following equation 

gp
t

uuu  (6.1.8) 

This equation (6.1.8) is previously derived and referred to as the Euler 
equation, which was historically derived prior to Navier-Stokes equation. 
The Euler equation is valid for inviscid flow in general. 

In many flow problems, the Navier-Stokes equation is solved with the 
equation of continuity Eq. (2.1.5) and the equation of energy conservation 
Eq. (2.5.23), both of which give appropriate conditions to reduce the gov-
erning equations into the most suitable forms. In the following sections, we 
will find some typical problems in fluid engineering, and in the problems 
the most appropriate forms of the governing equations are introduced. 
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The components of the Navier-Stokes equation are found in the Ap-
pendix B, together with the equation of continuity and the equation of en-
ergy conservation.  

As another point of correspondence, it will be shown that alternative 
forms of the Navier-Stokes equation of incompressible flow can be consid-
ered, taking into account the secondary flow field variables, such as the 
vorticity vector, for certain problems when pressure and the gravity condi-
tions are not defined explicitly in the boundary conditions. In such a flow 
system, conservation equation of the vorticity can be obtained by taking 
the rotation of the linear momentum equation and substituting the devia-
toric stress of Newtonian fluids into the vorticity transport equation (2.2.9) 
with the following procedure 

e02  (6.1.9)

uu
t

 (6.1.10)

and resultantly we have 

uu 2
0t

 (6.1.11)

The first term appeared in the right hand side of Eq. (6.1.11) can be further 
reduced to 

TT uuuuu
2
1  

e  

e  

e  

 

 

 

(6.1.12) 

Therefore, using the relation of Eq. (6.1.12) into Eq. (6.1.11), we obtain 
the vorticity transport equation of Newtonian fluid for an incompressible 
flow as  

u 2
0e

t
 (6.1.13)

The left hand side terms imply the time change and convection of vorticity 
respectively. The right hand side terms represent vorticity amplification 
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Problems 

due to the local rate of strain e  and diffusion of vorticity with the viscosity 
as a diffusivity coefficient respectively. It is interesting to see that the first 
term in the right hand side of Eq. (6.1.13) leads to the concept of strain in a 
vortex line. The vortex line, as mentioned in Section 4.1, is a line that is 
instantaneously formed, joining every point aligned with ; the stream 
line is similarly aligned with u . The vortex lines are either extended or 
contracted, depending on e . With mass conservation, it is seen that ex-
tended vortex lines move closer together, while contracted lines move fur-
ther apart. A detailed presentation of vorticity dynamics is given in Wu  
et al. (2006). 

Problems  

6.1-1 Write the mass continuity, Navier-Stokes, and energy equations of 
incompressible flow in x – y  plane in Cartesian coordinates system. 

Ans. 0 and 0 with 9B and 8,B 6,BAppndix 
z

uz  

 
6.1-2 Write the mass continuity, Navier-Stokes, and energy equations of 

incompressible flow in r – z  plane in cylindrical coordinates sys-
tems, assuming that the flow is uni-directional and axisymmetric. 

Ans. 0 and 0 with 9B and 8,B 6,BAppndix u  

 
6.1-3 Write the mass continuity, Navier-Stokes, and energy equation of in-

compressible flow in r –  plane in a spherical coordinates system, 
assuming the flow is axisymmetric to an axis of rotation through the 
center. 

Ans. 0 with  9B and 8,B 6,BAppndix  

 
6.1-4 Write the vorticity transport equation of Eq. (6.1.13) in x – y  plane 

in Cartesian coordinates system, assuming that the velocity field is 
expressed by the stream function and that the only non-zero vorticity 
component is z  

Ans.  

x
u

y
u

yxy
u

x
u

t

yx

zzz
y

z
x

z

,

2

2

2

2

 

– – –

– – –

– – –
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6.2  Similitude and Nondimensionalization 

In the design of fluid machineries and systems, before constructing the 
full-size device or system, called a prototype, we exploit experimental 
modeling as a fundamental method. With the same idea in the solution of 
many fundamental fluid mechanics problems, theoretical analysis with a 
fluid flow approach is valid only for a limited number of simple problems, 
so that in these circumstances we have to depend on test results obtained 
from experimental modeling as well. Models, which are usually smaller in 
size than the prototype, are tested. If necessary, with a different kind of 
fluid, model experiments are utilized for the prototype from the law of 
similarity. Similitude is the study of predicting prototype conditions from 
model experiments. 

 
Fig. 6.1 Similitude 
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6.2  Similitude and Nondimensionalization 

Experimental modeling in the design of fluid machineries and systems 
may be found in developing aircrafts in wind tunnels, fluid machineries 
and ships in towing tanks, tidal waves in rivers, and so forth. In the simili-
tude there are the similarity conditions to be met in applying test results 
obtained from models to the prototype. They are (i) the geometric similar-
ity, (ii) the kinematics similarity, (iii) the dynamic similarity and (iv) the 
thermal similarity in some case. The law of similarity for (i) to (iii) are 
schematically displayed in Fig. 6.1. 
 
(i) Geometric similarity 

The length ratio must be constant between all corresponding points in 
the flow fields, when the model and the prototype are identical in shape 
but differ in size. Thus, geometrical similarity requires that a scale model 
has to have the precise shape of the prototype with the model ratios; 
Model ratio        
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where subscript m  and p  denote the model and prototype respectively as 
shown in Fig. 6.1(a). The geometric similarity also requires roughness of 
objective surface between the model and the prototype. Difference in 
roughness may differ with the onset of turbulence, resulting in failure of 
similitude. In some problems, however, roughing the surface of the model 
may result in holding the geometric similarity. For example, scaling model 
of large buildings in a city may face the similar problem, depending on the 
magnitude of scaling, i.e. the model ratio scale effect. 
 
(ii) Kinematic similarity 

The velocity ratio must be a constant between all corresponding points 
in the flow fields for the model and the prototype, where their streamlines 
are geometrically similar. In satisfying kinematic similarity, velocities and 
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accelerations are in the same ratio for corresponding control volumes in 
the flow fields as shown in Fig. 6.1(b); 
Velocity ratio 

r

r

pp

mm

p

m
r

t
l

tl
tl

u
uu  (6.2.4) 

Acceleration ratio 
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where rt  is the time scale ratio. As seen from Eqs. (6.2.4) to (6.2.6), when 
the model ratio and the time scale ratio are fixed, the flow will be kine-
maticaly similar. The time scale ratio becomes particularly important for 
unsteady flow, indicating that geometrical similarity is not necessarily ki-
nematicaly similar to flows. With satisfying both geometric similarity and 
kinematic similarity, we can write the inertial force ratio as 

rr
pp

mm

pi

mi ma
ma
ma

F
F  (6.2.7) 

where rm  is the mass ratio. Equation (6.2.7) shows that the inertial force 
ratio becomes constant when the acceleration ratio between corresponding 
points on the model and prototype is assured to be constant, if the mass ra-
tio of corresponding control volume is kept constant. 
 
(iii) Dynamic similarity 

The forces acting on corresponding control volume in the model flow 
and the prototype flow are in the same ratio in the flow fields. Characteris-
tics of the flow fields are governed by the force acting on fluid elements, 
so that as seen from Eq. (6.2.7), the kinematic similarity is satisfied when 
geometric and dynamic similarities exist between model and prototype 
flows. 

Suppose that inertial forces iF , pressure forces pF , viscous forces vF , 
gravity force gF , surface tension forces sF  and compression forces cF  
are present in the flow fields of the model and prototype. From Newton’s 
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second law of dynamics, we can equate the inertial force with its summa-
tion if the other forces are 

csvpi FFFFFF g  (6.2.8) 

When all forces are present, dynamic similarity requires that, at corre-
sponding points in the flow fields, the following quotient relation of the 
model and prototype should hold 
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These can be rearranged with respect to the inertial force iF  to read 
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where Eu , Re , Fr , We  and M  are the nondimensional numbers which 
appear in characterizing flow fields. According to dynamic similarity ex-
pressed in Eqs. (6.2.10) to (6.2.14), Newton’s second law given in Eq. 
(6.2.8) is expressed in terms of these nondimensional numbers as 
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where iê  ~ eê  are unit vectors associated with the forces, as some of them 
are representatively shown in Fig. 6.1(c), and 1c  ~ 5c  are dimensionless 
constants. 
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Consequently, to ensure complete dynamic similarity, Eq. (6.2.16) has 
simultaneously to be applied to both the model and the prototype system, 
where the nondimensional numbers and their associated constants are kept 
identical for both systems. For those nondimensional numbers appeared in 
Eq. (6.2.16), each nondimensional number is defined by taking l  as the 
characteristic length of the system as follows 
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The idea of deriving Eq. (6.2.16) (the dynamic similarity) comes from 
the similitude between the model and prototype systems that are com-
pletely ensured if the nondimensional numbers and their associated con-
stants in the governing equations are identical with the same boundary 
conditions (satisfying the geometric and the kinematic similarity). We will 
see that the nondimensional numbers naturally appear in the governing 
equations of flow when the equations are nondimensionalized. 

It is mentioned here that nondimensionalization of the flow equations 
should also, besides giving the reason of the similitude of dynamic systems, 
give two other reasons. The first is that the number of physical parameters 
desired to solve the flow problem can be reduced drastically. Thus, there 
will be less work involved in solving the equations for given parameter 
ranges. This is particularly advantageous in CFD. The second reason is to 
give a clue to make rational simplification to the flow equations. This is 
particularly advantageous to gain approximation solutions based on order-
of-magnitude arguments in some flow problems. 

With the same process the dynamic similarity applied to the momen-
tum equation of Eq. (6.2.8), we are able to obtain the nondimensional 
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cussed in the previous section in dealing the second coefficient of viscosity 
0 , we will ignore the u0  term identically, thereafter. The mass conti-

nuity equation and the Navier-Stokes equations are written respectively as 

0u
t

 (6.2.22)

guuuu 2
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t
 (6.2.23a)

or 
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Dt
D  (6.2.23b)

Nondimensionalization of Eqs. (6.2.22) and (6.2.23) is accomplished by 
dividing both side of the equations by an appropriate combination of char-
acteristic dimensions. Particularly, for the momentum equation, i.e. the 
Navier-Stokes equation (force per volume) of Eq. (6.2.23), the division is 
done by the inertial force dimension, thereby making each term dimen-
sionless. By common variables of characteristic dimension, we choose l  
as a characteristic length, U  as characteristic velocity, 0  as characteristic 
density, 0p  as characteristic pressure and 0t  as characteristic time. We 
firstly write nondimensional parameters (denoted by asterisk) by scaling 
quantities with the characteristic dimensions as 
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Thus, by using those nondimensional parameters, Eqs. (6.2.22) and 
(6.2.23) can be reduced to 
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*
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t
0  (6.2.25) 

governing equations for Newtonian fluids. For the sake of simplicity, as dis-
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(6.2.26) 

Using notation by Eqs. (6.2.17) to (6.2.21), we can write Eqs. (6.2.25) and 
(6.2.26), by dropping an asterisk * for brevity’s sake, as 

0u
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 (6.2.27) 
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where UlUtlSt  is identified as the Strouhal number (=centrifugal 
force/inertial force). Note that for a periodic flow motion (  as angular 
velocity), such as vortex shedding (for example, flow past cylinder, flow 
through turbomachinery, etc.), it is necessary to model the effect of perio-
dicity, which is in effect included with the Strouhal number. With a similar 
process, the Navier-Stokes equation in non-conservation form may be 
simply written as, instead of Eq. (6.2.28) 
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D  
(6.2.29) 

Equation (6.2.29) is the same formulation defined in Eq. (6.2.16). 
There are some variations on the nondimensionalizing Navier-Stokes 

equation, however, depending upon the systems and how those character-
istic parameters are to be chosen. 

For example, in natural convection, there is no characteristic velocity 
defined in fluid flow systems, where flow is driven by a buoyant force due 
to a small change in density. In such a system, the density can be linearly 
approximated with respect to the temperature change as 

00 1 TTT  (6.2.30) 

where T  is the coefficient of thermal expansion defined by Eq. (2.5.25). 
The characteristic velocity U  can be replaced by l0 . A new non-
dimensional number may appear for a natural convection, when the Na-
vier-Stokes equation is appropriately simplified, where the non-
dimensional number is given in 
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2
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33
lglg TTGr T  Grashof number (6.2.31) 

The derivation of nondimensionalized Navier-Stokes equation, with a 
Boussinesq approximation, is given in Exercise 6.2.1. 

Up to this point we have dealt with flow problems in which the tem-
perature was assumed constant. However, when the heat and work transfer 
to the fluid system are to be considered, the energy equation has to be 
coupled with the momentum and the mass continuity equation. Thermal 
similarity between the model and the prototype system, or more specifi-
cally for a scaled experiment, is treated with the same manner. This is 
done straightforwardly, by nondimensionalizing the energy equation of Eq. 
(2.5.24) to give 

Dt
DpTTk

Dt
DTc Tcp  (6.2.32)

where u:  is the dissipation function and the heat transfer 
Tkcq  (Fourier’s law) is assumed by a conduction, knowing that the 

internal heat generation term b  in Eq. (2.5.24) is ignored. Note that ck  
is the reference thermal conductivity. Nondimensional parameters (de-
noted by an asterisk) are defined by scaling quantities with characteristic 
dimensions as 
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where wT  is the boundary temperature and 0T  the reference temperature. 
Using quantities in Eqs. (6.2.33) and (6.2.24) that are substituted into Eq. 
(6.2.32), the final result of the energy equation takes the following form, 
after dropping the asterisk 
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DpEcT
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DT 21 (6.2.34)

Nondimensional numbers appeared in Eq. (6.2.34) other than in Eq. 
(6.2.29), such as 

0

2
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UEc

p
 Eckert number (6.2.35)

or alternatively, for an ideal gas (denoting k  as the specific heat ratio. i.e. 
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p0  Prandtl number (6.2.36)

PrRePe  Peclet number (6.2.37)

PrEcBr  Brinkman number (6.2.38)

Thus, taking into account new nondimensional numbers in Eq. 
(6.2.34), the similitude of the two systems, i.e. the model and prototype, 
can be held when the temperature field is considered. 

Solving Eqs. (6.2.27); u =0 for incompressible flow, Eqs. (6.2.28 or 
6.2.29) and (6.2.34) with given boundary conditions, would give similarity 
solutions that represent flow fields of any similar systems simultaneously. 
It is seen from the nondimensionalized governing equations that choosing 
the nondimensional numbers controls the flow fields of the systems. Thus, 
the similarity solutions are the function of the nondimensional numbers, 
represented as 

0,,,, PrEcFrEuRef  (6.2.39)

where Re , Eu , Fr , Ec  and Pr  are the nondimensional numbers that 
appeared in the governing equations discussed above. 

In the study of engineering fluid mechanics, there are very few prob-
lems that are actually solved using the differential equations discussed 
above and have the similarity solutions as represented by a form of Eq. 
(6.2.39). Instead of actually solving the system of differential equations, 
we may be able to adopt dimensional analysis to predict prototype condi-
tions from model observations that are based on the notion of dimensional 
homogeneity. With dimensional analysis we can find essential non-
dimensional numbers, which contributes to similitude with the two sys-
tems. The Buckingham -theorem is a very powerful tool to derive the 
essential nondimensional numbers. Particularly in experimental studies in 
fluid mechanics involving the use of scaled models, the -theorem is ef-
fective for correlating experimental results. In Appendix C, the Bucking-
ham -theorem is demonstrated. The reader may refer to the point that 
the nondimensional numbers obtained in Eq. (6.2.16) are also straightfor-
wardly derived by the -theorem.  
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Exercise 

Exercise 6.2.1 The Boussinesq Approximation 

There are situations of practical occurrence, where the validity of physical 
properties in a fluid is due to small variations in temperature. In natural 
convection applications of fluid under gravity and buoyancy for variations 
in temperature of only moderate levels, the Navier-Stokes equation may 
be simplified so as to put buoyancy into evidence. In such a case, we may 
treat the density as a constant 0  in all terms in the Navier-Stokes equa-
tion of incompressible media, except for the one in the buoyancy term due 
to gravity. This is called the Boussinesq approximation. In the energy 
equation, the viscous dissipation term  can be ignored owing to the fact 
that the prevailing velocity field is weak. The basic equations in the Bous-
sinesq approximation are written as 

0u  (1)

g0200 uu p
Dt
D  (2)

Tk
Dt
DTc cp 20  (3)

00 1 TTT  (4)

and 

0pp  (5)

where 0  is the gravitational potential, such as defined by zg
00  in 

Cartesian coordinates system. 
Nondimensionalize the equations (1) to (3), using the following non-

dimensional parameters 
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where U  and 0t  are replaced by lU 00  and 0200 lt  re-
spectively. Also, consider a heat transfer through a boundary with an ap-
propriate nondimensional number. 
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Ans. 
The basic equations are nondimensionalized as 
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so that, for nondimensional equations after dropping the asterisk 
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At a boundary in natural convection, the heat transferred wq  (heat 
flux) to the fluid is customarily defined such that wq  is proportional to 

wTTT  as 

Thq ww  (12) 

where wh  is called the heat transfer coefficient. wh  may be non-
dimensionalized either by 

Uc
h

TTUc
qSn

p

w

wp

w

000

 (13)

where Sn  is called Stanton number, or 

c

w

k
lh

Nu  (14) 

where Nu  is called a Nusselt number. Sn  and Nu  are related by 
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SnRePrNu  (15) 

where Re  is defined by the characteristic length l . Thus, from the argu-
ment given above for the natural convection, if Nu  is chosen as a thermal 
characteristic parameter, a characteristic in a thermally similar system may 
be determined where 

PrGrfNu ,  (16)

For a very simple basic system in natural convection, for example, 
called the Benard’s convection, Nu  around the onset of a natural convec-
tion from the heat conduction mode is almost a function of PrGr , as 
show in Fig. 6.2. The data referred in Fig. 6.2 is a case for the Benard’s 
convection, where the lower plate is heated while the upper plate is cooled 
for fluids contained in an infinite slab. As the experimental results indicate 
that Nu  becomes a function of PrGr , which is defined as a Rayleigh 
number, i.e. PrGrRa , after the onset of a natural convection that is 
observed after Nu  deviates from value of 1 around 1708Ra , as seen in 
Fig. 6.2.  The natural convection occurs from a state of equilibrium in heat 
conduction mode at the critical Rayleigh number cRa , where the value of 

cRa  in Fig. 6.2 is approximately 1708cRa , which is also verified by an 
instability analysis. For a limited range of ,Ra  it is possible to express the 
Nusselt number Nu  by the relationship  

RafNu  (17) 

 
Fig. 6.2 Benard’s convection at onset of natural convection 

(Replotted after Silveston, 1958) 
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Problems 

6.2-1 Give the definition for each nondimensional number in Eqs. (6.2.10) 
to (6.2.14); WeFrReEu ,,,  and M  in view of the dynamic similarity. 

 
6.2-2 For steady state flows in a horizontal pipe of diameter d  and length 

l  with the roughness  (RMS), the dominant forces will be the driv-
ing force (pressure), resisting force (wall shear), and the inertial 
force. Find the governing nondimensional numbers. 

Ans. ,,
d
lRefcp   

 
6.2-3 A prototype propeller of a wind power generator of diameter 50 m is 

to be tested in a wind tunnel using a 501  scaled model. If the proto-
type propeller is to run at 60 rpm, what should be the speed (revolu-
tion per minutes) of the model? What is the ratio of prototype torque 
and model torque? The fluid properties for the prototype and model 
are the same. 

Ans. rpm4245060
22

m
m

mm
d
dnndndnFr ,

gg
 

 
6.2-4 Assume that the critical Rayleigh number of the natural convection is 

1708cRa  for an infinite slab. For water as a working fluid, esti-
mate the temperature difference T  between the lower hot surface 
and upper cold surface, when the thickness of the slab is 20 mm. 
Take a reference temperature at 20 C . 

Ans. 
K116
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6.3 Basic Flows Derived from Navier-Stokes Equation 

There are certain cases for viscous flows where the Navier-Stokes equation 
is rationally simplified so that analytical solutions can be obtained. In the 
most of the cases that the analytical solutions are available, the nonlinear 
term (the convective term) in the Navier-Stokes equation is either omitted 
or linearlized in consideration of the types of flow with appropriate as-
sumptions to avoid further intricate problems. 
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6.3 Basic Flows Derived from Navier-Stokes Equation 

We will see a number of basic flows in which such results are valid 
within a certain range of Reynolds numbers. In order to gain further engi-
neering significance, some cases are extended to include higher Reynolds 
numbers, illuminating pure viscous flow phenomena. 

6.3.1 Unidirectional Flow in a Gap Space 

M. Couette (1880) conducted experiments on the flow between stationary 
and moving concentric cylinders. Flows in a narrow gap, including parallel 
plates and concentric cylinders, are treated here. 

 
(i) Flow in parallel plates is considered firstly as one of the simplest geo-
metrical configuration of flow, referred to Fig. 6.3(a). As schematically 
displayed in the diagram, the flow configuration is such that the length of 
the gap is h  and the upper plate moves with velocities Uu , while the 
lower plate is kept stationary. Assume that flow is unidirectional to x direc-
tion, incompressible and steady, neglecting the body force or may be in-
cluded in p  as the gravitational potential as previously described.  For ex-
ample, the conditions are 

0,0,,, uuuu zyxu  (6.3.1) 

  0,0,,,
x
p

z
p

y
p

x
pp  (6.3.2) 

and 

yuu  (6.3.3) 

const.
x
p  (6.3.4) 

0u , 0
t

, 0g  (6.3.5) 

The governing equations of flow in Cartesian coordinates systems are writ-
ten as 

Continuity: 0
x
u  (6.3.6) 
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N-S equation: 
2

2

00
y
u

x
p  (6.3.7) 

The boundary conditions are such that with reference to Fig. 6.3(a) 

0u   for 0y  (6.3.8) 

Uu  for hy  (6.3.9) 

 

 

Fig. 6.3 Flows in narrow gap 

The solution in Eq. (6.3.6) is Constantu  for x direction, indicating 
that the flow is fully developed toward its motion. 
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6.3 Basic Flows Derived from Navier-Stokes Equation 

Equation (6.3.7) is solved for )(yu  with the boundary conditions in 
Eqs. (6.3.8) and (6.3.9), giving solutions as 

h
Uyyyh

l
pu
02

 (6.3.10)

where the pressure difference p  between the points in x -direction 1x  
and 2x  are defined by, as in Eq. (6.3.4) 

c
dx
dp  (constant) (6.3.11)

so that 
1212 xxcpp  

                        clp  , 021 ppp  

and 

l
pc  (6.3.12)

The solutions (6.3.10) indicate that the velocity profiles appearing in the 
flow field is parabolic in nature, and this flow is called the plane Poiseuille 
flow, particularly in the case when 0U . On the contrary, when 1h , 
the second term in Eq. (6.3.10) dominates the flow field, yielding 

y
h
Uu  (6.3.13)

The flow of Eq. (6.3.13) has a linear velocity profile, and is called the 
plane Couette flow, which is independent from the viscous effect. 

The volume flow rate Q  through the gap is then calculated from Eq. 
(6.3.10) such that 

212 0

3

0

Uh
l

phdyuQ
h

 

(6.3.14) 

and the average velocity u  is also defined by 

212 0

U
l

ph
h
Qu  (6.3.15)

Using the average velocity u  for the plane Poiseuille flow ( 0U ), the 
flow through the channel (the gap) length l  may be characterized by the 

2
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friction coefficient , or referred as Darcy friction factor, defined along 
with the Darcy-Weisbach equation 

2
1

l
hp  (6.3.16)

in which 

Re
24  (6.3.17)

where the Reynolds number Re  is defined as 

0

hRe  (6.3.18)

It is also desired to derive an expression for the wall shear stress w  to give 

hyxyw
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0

6
 (6.3.19)

which, furthermore, is nondimensionalized as 

Re
c w

f
12

2
1 2

 
(6.3.20)

In a similar way, the plane Couette flow is also characterized as follows 

Re
4  and 

Re
c f

2  (6.3.21)

The flow expressed with Eq. (6.3.10) is laminar and is maintained up to 
the incipience of the turbulent flow mode, in the order of 1000Re  for 
the plane Poiseuille flow and 1900Re  for plane Couette flow. 
 (ii) The flow between two concentric rotating cylinders as shown in Fig. 
6.3(b) is another flow field that is obtained by solving Navier-Stokes equa-
tion with rational simplification. The geometric configuration of flow is 
particularly important for lubrication of a rotating shaft, a cylindrical vis-
cometer and other similar designs. The analytical solution of laminar flow 
will be found for fairly slow relative rotational speeds between the inner 
cylinder with an angular velocity of 1  and an outer cylinder with that of 

2 . Assume that the flow is unidirectional for direction, incompressible 

2u

u

u

u

302



6.3 Basic Flows Derived from Navier-Stokes Equation 

and steady, neglecting the body force or inclusive in p , i.e. the conditions 
are 

0,,0,, uuuu zru  (6.3.22)

0,0,,1,
r
p

z
pp

rr
pp  (6.3.23)

and 

ruu  (6.3.24)

0u , 0
z
u  (6.3.25)

0u , 0
t

, 0g  (6.3.26)

The governing equations of flow in cylindrical coordinates systems are 
written as 

Continuity : 01 u
r

 (6.3.27)

N-S equation : 
22

2

0
10

r
u

r
u

rr
u  (6.3.28)

The boundary conditions are such that, with reference to Fig. 6.3(b) 

11ru  for 1rr  (6.3.29)

22ru  for 2rr  (6.3.30)

where it is noted that 1  and 2  include the direction  for the laboratory 
(fixed) frame of reference. 

The solution of Eq. (6.3.27) is Constantu  for direction, indicating 
that the flow is fully developed toward its motion. 

In order to solve Eq. (6.3.28), it will prove useful to write the equation 
with 

02

2

r
u

dr
d

dr
ud  (6.3.31)
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and then it is solved with the boundary conditions in Eqs. (6.3.29) and 
(6.3.30), giving the solution: 

rrr
rr

r
rr
rr

u 1
2

1
2
2

21
2
2

2
1

2
1

2
2

1
2

12
2

2  (6.3.32)

Among a number of situations in combination of 1  and 2 , we shall ex-
amine a case where 02 , i.e. the outer cylinder being kept stationary, as 
is often the case in engineering applications. We have a solution from Eq. 
(6.3.32) that says 

r
r

r
rr

r
u

2
2

2
1

2
2

1
2

1  (6.3.33)

The shear stress 1w  acting on the wall of the inner cylinder is r  and it 
is calculated by 

1

01
rr

rw r
u

r
r   

12
1

2
2

2
202
rr
r  (6.3.34) 

The net torque rT  exerted on the inner cylinder, whose length is l , is ob-
tained as 

12
1

2
2

2
2

2
10

11l

4

2

l
rr

rr

rlrT wr

 
(6.3.35)

It is useful to mention that Eq. (6.3.35) gives a principle of Couette 
rheometer and, with that, the viscosity 0  is obtained by measuring the 
torque rT  for the various shear rate  with the known geometry 1r , 2r  
and l  as follows 

1
4

4
1

2
2

1
2

21
2

2

2
21

0

lr
T

rrr
rrT

r

r

)(
)(

 
(6.3.36)
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where rk  is the radius ratio 21 rr  and  is the shear rate defined as 

rr

r

kk
k

11
1

2
1

2
 (for small gap as 1rk ) (6.3.37)

In the case of the lubrication of a rotating shaft, the power P  to over-
come the resistance of viscosity of a lubricant is obtained by multiplying 
the torque rT  by the rotational speed 1 , where 

2
12

1
2

2

2
2

2
10

1

4 l
rr
rr

Tr

 
(6.3.38)

The power  is normally dissipated into heat and thus results in a tem-
perature increase. The removal of heat from the lubricant often requires 
heat exchangers. For a rheometer, the temperature of a test liquid must also 
be controlled since 0  is a function of temperature. 

The laminar flow solution in Eq. (6.3.33) for the inner cylinder rotation 
with a fixed outer cylinder is valid up to a rotational Reynolds number rRe , 
approximately 7000  (or Taylor number Ta , 1700cTa ). Above the criti-
cal value of approximately 7000rcRe , the flow mode changes from a 
simple unidirectional flow to a flow with a secondary flow in the merid-
ional plane, where the velocity distribution in the gap changes with the ap-
pearance of strong ru  and zu  components. The flow phenomena was first 

tern in the meridional plane, called the Taylor vortex, which is schemati-
cally depicted in Fig. 6.3(b). The occurrence of the flow phenomena is due 
to the flow instability. Numerous flow modes appear after the incipience of 
the Taylor vortex, when the rotational speed is increased further from rcRe , 
and eventually the flow becomes turbulent. These flow transitions are also 
observed by plotting the torque coefficient tc  for the rotational Reynolds 
number rRe  (or Ta ), as indicated in the graph in Fig. 6.3(b). 

2
1

5
1r
Tc r

t  (6.3.39)

/0

1211
r

rrrRe  (6.3.40a)

or 

studied by G.I. Taylor (1923), and found that there appears a cellular pat-
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2
0

3
121

3
1

/

rrr
Ta  (6.3.40b)

It must be noted that for measuring the viscosity 0  in Eq. (6.3.36) one 
should be aware of the limitation of the validity ( rRe < 7000). It is also 
mentioned that the case is different, in view of the flow instability, when 
the outer cylinder is rotated while the inner cylinder is kept stationary. The 
unidirectionality of u  is kept for further higher Reynolds numbers, since 
the flow in the gap is stable in the laminar flow regime. 

6.3.2 Lubrication Theory 

Flow in a varying gap of space is generally regarded as a superposition of 
the plane of Couette flow and the plane of Poiseuille flow. Lubrication 
flows are generally accomplished by a thin film of viscous fluid in such a 
moving wall channel. The theory of lubrication is generally applicable to 
the processing of materials in liquid form, film coatings, mechanical lubri-
cation on the slipper-pad bearings and others. The theory was first devel-
oped by Reynolds (1886). The general Reynolds equation in a general lu-
brication problem can be derived for a flow between the upper and lower 
walls under the assumption that 1h , which may be moving tangentially 
or normally as schematically displayed in Fig. 6.4, by means of the control 
volume principle on the mass continuity equation. 

 

 
 

Fig. 6.4 Lubrication flow in a gap 
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Based on Eqs. (2.1.3) and (2.1.5), the integration form of the mass con-
tinuity is written as 

0
VV

dVdV
t

u  (6.3.41)

The integration can be performed for the control volume, i.e. 
h

dydxdz
0

, 

and we can reduce Eq. (6.3.41) to the following form 

0
00

dxdzdydxdzdy
t

hh
u  

where we have 

0Vt
h q  (6.3.42)

where we assumed that the change of  in h  height is small due to a thin 
film of fluid and Vq  is the volume flux through the gap, which is defined 
as 

h

V dy
0
uq  (6.3.43)

The flow velocity tzx ,,u  may be written with reference to the solu-
tion given by Eq. (6.3.10) 

1
12

02
1 UUUu y

h
yhyp  (6.3.44)

Substitution of Eq. (6.3.44) into Eq. (6.3.43), and rearranging Eq. (6.3.42), 
we get the resultant equation where 

     
t
hhph

12
0

3

2
1

12
UU  (6.3.45)

Equation (6.3.45) is called the Reynolds equation for lubrication. It is men-
tioned here that  may be dropped from the equation for incompressible 
fluid although in the case when the variation of density is accounted for, in 
such as gas bearings,  has to be included. 

In an application of the Reynolds equation, i.e. Eq. (6.3.45), consider a 
slipper-pad bearing as sketched in Fig. 6.5(a). Let us assume the lower 
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wall is flat and moves with a constant velocity of 1U . The upper wall, 
called the slipper block, is inclined where xh  is given by the function 

l
xhhhxh l 00  (6.3.46)

 
Fig. 6.5 (a)Slipper-pad bearing  ((b)Squeezed film 

As a bearing, the lubricant fluid provides a high lift force to the slipper 
block that supports a large load without the block touching the lower wall 
and thus prevents wear. To prove the function, we obtain the pressure force 
acting on the block. If we consider the unidirectional ( x direction), incom-
pressible and steady state flow, Eq. (6.3.45), it can be written as 

x
hU

x
ph

x
10

3 6  (6.3.47a)

and the boundary condition is such that 

0p at 0x and 0p  at lx  (6.3.47b)

Equation (6.3.47) is then solved with Eq. (6.3.46) and the boundary condi-
tion which yields the solution to give 
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l

l

hhh
xhhU

p
0

2
106

 (6.3.48)

The distribution of p  as the function of x  is shown in a graph found in 
Fig. 6.5(a), where the velocity profiles yuu , which are obtained in Eq. 
(6.3.44), are known by given conditions. The total load-bearing capacity 
F  (per unit depth) is 

     
l

l

ll

l

hh
hh

h
h

hh
lUpdxF

0

00
2

0

210
0

2ln6  (6.3.49)

The maximum value of F  is found by differentiating Eq. (6.3.49) with re-
spect to lhh0  and equating it to zero, and which gives 

2

2
10160

l
max h

lU
F .  (6.3.50)

where 2.20 lhh . The total drag force DF  (per unit depth) for the width 
l  can be calculated as 

l

wD dxF
0

 (6.3.51)

where 00 yw yu , the wall of shear stress. DF  is obtained by the 
known velocity profile, and it is 

l

l

ll
D

hh
hh

h
h

hh
lUF

0

00

0

10 6ln4  (6.3.52)

The drag-lift ratio maxFFD  for the maximum load-bearing capacity will 
be calculated to give 

l
hFFD

0
max 142.  (6.3.53)

for 2.20 lhh  as a representative value (for maximum load-bearing ca-
pacity). 

The slipper-pad bearing is often used as a thrust bearing for heavy tur-
bomachineries, such as for a hydraulic turbine. It is mentioned that revers-
ing the wall direction 01U  may cause cavitation and form a vapor region 
in the gap and may not necessarily exert the required load-bearing capacity. 
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The flow configuration of the slipper-pad bearing can be applied to a jour-
nal bearing, where the eccentric annular gap between two rotating cylinder 
shafts is filled with lubricant. In the case of a rotating journal bearing, 
where the gap contracts and then expands in a rotating direction so that a 
partial cavitation often occurs. 

The next illustrative example of the Reynolds equation is the squeezed 
film problem, which is seen in a squeezed film damper or a modeling of a 
knee joint, etc. The basic configuration is displayed in Fig. 6.5(b), where 
the upper wall moves toward the lower wall, keeping h  being parallel to 
the both walls. Let us consider the following condition for the problem 

t
hv , 021 UU  and 0h  (6.3.54)

where the gap width h is a function of time, i.e. thh  and the fluid is as-
sumed incompressible. Thus, Eq. (6.3.45) is reduced to 

vph
0

23 12  (6.3.55)

and for the unidirectional flow of the pressure p , we have 

v
hx

p
3

0
2

2 12  (6.3.56)

Equation (6.3.56) is directly solved for p with the boundary condition of 

0x , 0
x
p ; symmetry 

lx , 0p ; boundary 
so that the solution p  is given as 

22
3
06 xl

h
vtxp ,  (6.3.57)

The pressure distribution txp ,  is sketched in the graph in Fig. 6.5(b), 
which shows the parabolic distribution. The velocity profile in the gap is 
essentially the plane Poiseuille flow as also indicated in the figure, which 
is easily verified from Eq. (6.3.44). The total load capacity F  (per unit 
depth) exerted on the upper wall (or the lower wall) is 

3
3
0

0

82 l
h

vpdxF
l

 (6.3.58)
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that can be produced by the squeezing of the film flow on the gap walls. 
To convey the essence of the subject, although it is hard to survey all 

the interesting possibilities, we are able to introduce an interesting applica-
tion of the Reynolds equation, the so-called Hele-Shaw flow. The flow has 
a nature of a viscid potential flow, which observes streamline patterns of a 
potential flow in laboratory demonstrations. The flow is provided in a 
Hele-Shaw cell, that is made of two stationary parallel transparent plates 
with a precise small gap distance h , as shown in Fig. 6.6. When an object, 
whose characteristic length l  is much larger than h  to ensure a no-slip 
condition on the object surface, is placed in the cell, a two dimensional po-
tential flow around the object appears for an incompressible fluid, entering 
the cell from one end at a uniform rate. This phenomena is found in the 
fact that the pressure p  in the cell is considered to be followed from Eq. 
(6.3.45) where 

02 p  (6.3.59)

where  and h  are assumed constant with 021 UU . Thus, the corre-
sponding velocity field is, from Eq. (6.3.44), obtained to write 

pyhy
02

1u  (6.3.60)

Equation (6.3.60) indicates that in plan view, i.e. the x z plane, the stream-
ient, through which the rotation 

Fig. 6.6 Hele-Shaw flow  cell 

–
lines are in parallel with the pressure grad
of Eq. (6.3.60) yields 

Since 1h  and if h  is the decreasing function of t , the total load capac-
ity increases drastically as F , indicating a large suspending force 
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0
2
1

0
pyhyu  (6.3.61)

Therefore, the two dimensional flow field is irrotational and u  can be de-
scribed by a scalar potential (velocity potential)  in x z plane, such that 
u , where p  itself acts as the velocity potential, satisfying the 
Laplace’s equation in Eq. (6.3.59). 

6.3.3 Flow Around a Sphere 

Consider a small sphere descending in a viscous fluid. The falling sphere 
attains a so-called terminal velocity, when the acceleration becomes zero 
after sometime from the incipient motion. In the situation where the buoy-
ant force plus the drag force on the sphere consequently become equal to 
its gravity force. 

Defining the Reynolds number 0UdRe , where d  is the di-
ameter of the sphere, U  the terminal velocity, 0  the viscosity of fluid 
and  the density of fluid, we will obtain the drag force and show it to 
measure the viscosity of fluid, noting s  being the density of the material 
of the sphere. The discussion is supposed to be valid for approximately 

1.0Re . 
Let us begin to consider an axisymmetric flow around a sphere, as de-

picted in Fig. 6.7. Due to the axisymmetric flow field where 0u  is in 
the spherical coordinates system, the flow field can be described by the 
stream function ,r  (the Stokes stream function), which identically 
satisfied the continuity equation of incompressible fluid. The velocity 
components of ru  and u  are thus written by  as 

rr
u

r
ur

sin
1

sin
1

2
,  (6.3.62)

The Navier-Stokes equation in r  and  coordinates, without inertia terms, 
i.e. the creep flow limit and neglecting the gravity acceleration, are written 
as 

r
r

u
r

ur
rrr

p sin
sin
110

2
2

2

2

20  (6.3.63)

and 
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ru
r

u
rr

r
ur

rr
p

r

22

2
20

2sin
sin
11

110
 (6.3.64)

Substituting ru  and u  in Eq. (6.3.62) into Eqs. (6.3.63) and (6.3.64) and 
eliminating the pressure terms, we can obtain 

 
Fig. 6.7 Creeping flow past a sphere 

0
sin

1sin
sin

1sin
22

2

22

2

rrrr
 (6.3.65)

and using the differential operator 2E , we can alternatively write 

022  (6.3.66)

or 

04  (6.3.67)

The solutions in Eq. (6.3.66) or Eq. (6.3.67) are harmonic functions in 
polar coordinates systems, ,r , with the following boundary con-
ditions on the sphere 
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0uur   for  Rdr
2

 (6.3.68)

which implies 

0
r

  and  0  (6.3.69)

At infinity, r  

eeee ˆˆˆˆ sincos rrr UUUu  (6.3.70)

which implies that 

2sinUr
r

  and  cossin2Ur  (6.3.71)

Equation (6.3.71) gives  at r  by the integration of 

         22sin
2
1 Urddr

r
d  (6.3.72)

Equation (6.3.72) might assume the form of the solution in Eq. (6.3.67) as 

grf  (6.3.73)

In order to seek a solution in Eq. (6.3.67), it may be appropriate to set 
2sing  and substitute Eq. (6.3.73) for Eq. (6.3.64), where 

0sin2 2
2

22

2

rf
rdr

d  (6.3.74)

In order to satisfy Eq. (6.3.74) for r  and  simultaneously, we must sat-
isfy  

02
2

22

2

rf
rdr

d  (6.3.75)

The solutions of f  in Eq. (6.3.75) must satisfy the following differential 
equation (equidimentional equation) 

0884 24 ffrfrfr  (6.3.76) 

Equation (6.3.76) is the so-called Euler’s differential equation, to which the 
general solution to this equation is given as 
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44232
1 rcrcrc
r
crf  (6.3.77) 

where constants 1c , 2c , 3c  and 4c  are determined from the boundary con-
ditions in Eqs. (6.3.68) and (6.3.69). The final solution in Eq. (6.3.73) is 
given with the aid of the functional form of Eq. (6.3.73) where 

2
3

3
2 sin

2
1

2
31

2
1

r
R

r
RrU  (6.3.78)

Equation (6.3.78) also gives the velocity components as 
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2
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2
31
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RUur  (6.3.79)
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31

3

3

r
R

r
RUu  (6.3.80)

Knowing the velocity field given in Eqs. (6.3.79) and (6.3.80), we can 
obtain the pressure field by substituting Eqs. (6.3.79) and (6.3.80) into Eqs. 
(6.3.63) and (6.3.64), and carrying out the integration to yield ,rp  as 

20
cos

2
3

r
RUpdpdr

r
pdprp ,  (6.3.81)

where p  is the pressure at infinity, i.e. r . 
As another point of correspondence, it will now be shown that the drag 

force DF , which is the net force acting on the sphere in the flow direction 
i  in Fig. 6.7, may be calculated by obtaining the stress component xt  on 
the sphere in direction i . This will be done by knowing the stress vector t  
on the sphere as follows 

jiji
eeeet
cossinsincos rrr

rrrrrr

p
pp ˆˆIˆTˆ

 
(6.3.82)

The stress component xt  is thus 

sincos rrrx pt ti  (6.3.83)

where rr  and r  are components of the viscous stress tensor of a New-
tonian fluid, and which are given by the following constitutive equations 
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r
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rr 02  , r
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rr

u
r

r 1
0  (6.3.84)

The velocity components ru and u  of Eqs. (6.3.79) and (6.3.80) are then 
substituted into the relationship in Eq. (6.3.84), and consequently xt  will 
be obtained as 

U
R

ptx 0

2
3cos  (6.3.85)

Thus, as a result, the drag force DF  is calculated to integrate xt  over the 
spherical surface S  

dU
RU

ddRtdStF x
S

xD

0

0

2

0 0
2

3
6

sin

 

(6.3.86)

It is noted that cosp  does not contribute the drag DF  due to its 
symmetry, as previously described, indicating that the potential flow, 
which has only a contribution of cosp , does not influence the drag, 
but only that the viscous contribution found in Eq. (6.3.85) does in the case 
of viscous flow. If the drag coefficient Dc  is defined such that 

s

D
D AU

Fc
221

 (6.3.87)

where sA  is the frontal area of the sphere. Then we can reduce Eq. (6.3.86) 
to give the drag coefficient in terms of the Reynolds number  

RedU
Fc D

D

24
421 22

 (6.3.88)

If 10.Re , which implies a small sphere in a high viscous fluid, the 
Stokes’ law is valid and for a sphere at the terminal velocity U , the buoy-
ant force bF  plus the drag force DF  become equal to the gravity force gF , 
that is 

Equation (6.3.86) states that at the creep flow limit the drag force is line-
arly proportional to the speed of flow passing a small sphere (or a descend-
ing sphere with a constant speed). This is called Stokes’ law. 
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gg sdUdd 3
0

3

6
3

6
 (6.3.89)

An important application of Eq. (6.3.89) is to measure the viscosity 0  by 
measuring the terminal velocity U  for a falling sphere in a transparent cyl-
inder, containing the viscous fluid to be tested. According to Eq. (6.3.89) 

0  can be obtained where 

U
ds

18

2

0
g  (6.3.90)

Fig. 6.8 DDrag coefficient of a sphere and an infinite cylinder               
sources, and data for 410Re is replotted after Achenback, 1971
and 1972) 

The drag coefficient Dc  given by Stoke’s law, i.e. Eq. (6.3.88), is fur-
ther extended to validate in higher Reynolds numbers by Oseen (1910) 

n

D Re
Re

c
16
3124  (6.3.91)

where 1Re  for sm1u . If n  is chosen at 0.5, Eq. (6.3.91) is extended 
to 100Re . Typical changes of Dc  versus Re  are displayed in Fig. 6.8 for 
a sphere and an infinite cylinder for the sake of comparison. It is seen in 
both cases at approximately 55 105103 ~Re , there is a sudden drop 

(From various
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in the value of Dc . This is due to phenomena caused by a transition of 
laminar flow to turbulence. The boundary layer, which is described in 
more detail in later sections, is the cause of this phenomenon. 

Problems 

6.3-1 Describe how the resultant flow between the concentric rotating cyl-
inders can be used as a means of measuring the viscosities of fluids. 
Give comments on the feasibility of the method of measuring vis-
cosity. 

 
6.3-2 A slipper-pad bearing is running with a speed of sm21U . The rep-

resentative dimensions are such that, m1080 4
0 .h , 

m1040 4.lh  and m30.l . The viscosity of the lubricant oil is 

sPa102 5
0

 at a constant operating temperature. Find the total 
load-bearing capacity to maintain the gap. Also calculate the drag-
lift ratio. 

Ans.
5max 106550

N354

.

.

FF

F

D
 

6.3-3 Design an appropriate experimental apparatus for examining a poten-
tial flow around an infinite cylinder. 

 
6.3-4 A small sphere of diameter d  and density s  is dropped from a rest 

position in a viscous fluid with density . Write the equation of mo-
tion of this sphere and find the terminal velocity. The viscosity of the 
fluid is 

0
. Assume that the Stokes’ law is in effect to the motion of 

the sphere. 

Ans. 

0for    
18

6
3

66

0

3
0

33

d t
dUU

dUdd
dt

dUd

s

ss

2gd

g-g  

6.3-5 Find the time elapsed to the fall distance m010.l  for a sphere of 
m101 5d  and 33 mkg105s  released from a position of 

rest in a viscous fluid of viscosity sPa101 1
0  and the density 

33 mkg102 . 
Ans. s. 9001 Appox.  
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6.4  Flow Through Pipe 

The circular pipe flow is probably the most celebrated viscous flow in the 
development of fluid dynamics, in view of the fundamental importance of, 
as well as, basic fluid engineering applications. We shall start to consider a 
straight circulation pipe connected to a reservoir tank, as illustrated in Fig. 
6.9. In many practical engineering applications, a pipe is usually connected 
to a reservoir tank or a source, and the flow in the pipe starts to move for-
ward, downstream. Note that the entrance is supposed to be a bell mouth 
shape to avoid boundary layer separation. There will be an “entrance ef-
fect”, where a shear layer (boundary layer; details of which will be studied 
in later section) on the pipe wall and an inviscid core (uniform constant ve-
locity region along axis of the pipe) that develops toward the downstream 
of flow near the entering region of the pipe. 
 

Fig. 6.9 Circular pipe flow though entrance 
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As indicated in Fig. 6.9, the shear layer grows and meets at the axis as the 
inviscid core disappears within the length iL  termed as the inviscid core 
length, at which the viscous stress dominates the entire cross section. The 
profile then continues to change due to the viscous effect until a developed 
flow is achieved, where the length is often termed as the profile develop-
ment region cL . The total length ci LL  is called the entrance length eL , 
and after which the flow is fully developed, where the velocity profile 
across the cross section does not change toward the downstream. 

6.4.1  Entrance Flow 

 
The entrance length for a laminar flow can be correlated in the forms 

      Re
d
Le 0650.   (Boussinesq, 1891 and Nikuradse, 1933) (6.4.1) 

h
h

e Re
d
L 05050 ..   (Shah and London, 1978) (6.4.2) 

where Reynolds number Re  is based on the average velocity U  through a 
cross section area and the diameter d ,  i.e. dURe . Note that the 
Shah-London correlation is valid for an arbitrary pipe shape in a cross sec-
tion, where hd  is the hydraulic diameter (four times hydraulic radius hr ), 
which is defined by 

h
p

h r
l
Ad 44  (6.4.3) 

where A  is the cross-section area and pl  is the wetted perimeter, that pe-
rimeter where the fluid is in contact with the solid boundary. The limit of 
the Reynolds number is approximately 2300 for engineering applications, 
whereas with carefully controlled conditions the Reynolds number may go 
up to higher values in excess of 40,000. 

For a turbulent flow, the situation is somewhat different from the lami-
nar case. In order to observe the entrance length eL  of the fully developed 
turbulent flow, an extra length may be needed for the detailed structure of 
the turbulent flow to develop in addition to the profile development region. 
For the high turbulent strength flow at the inlet of the pipe, the entrance 
length eL  is given by the following correlation at the Reynolds numbers 
normally encountered 
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                                        4025 ~       (Nikuradse, 1933) 

 

(6.4.4) 

The pressure variation along the pipe length from the inlet is sketched 
in Fig. 6.9, where the inlet pressure is ep . The pressure loss at the entrance 
length occurs due to an acceleration of flow, i.e. the kinetic energy loss, 
and the viscous friction loss. The pressure loss ep  solely due to the ki-
netic energy loss can be estimated in consideration of the energy flux at a 
representative cross sectional area as follows 

Ur
EE

p ef
e 2

0

 (6.4.5) 

where fE  and eE  are the kinetic energy through a cross section of pipe at 
the entrance length eL  and the inlet respectively. They are, therefore, 
given by the following formula 

0

0

2 2
2
1r

eandf rdruuE  (6.4.6)

For the laminar flow, the velocity profile in the fully developed flow is 
given by well known Hagen-Poiseuille flow, which will be explained in 
the subsequent section (with reference to Eq. (6.4.33)), as follows 

2

0
12

r
rUru  (6.4.7)

where, at the inlet of the pipe, the velocity profile can be assumed to be 
constant where 

Uru  (6.4.8) 

Substituting Eqs. (6.4.7) and (6.4.8) into Eq. (6.4.6) and calculating ep  
from Eq. (6.4.5), we can obtain 

2

2
Upe (6.4.9)

If the pressure loss coefficient  based on a loss of head is defined by 
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gg 2

2Upe  (6.4.10)

 is obtained for the laminar flow as 

1  (6.4.11)

In the case of the turbulent flow,  is given by 71  power law (Eq. 
6.4.53) 

090.  (6.4.12)

The actual pressure loss (defining 0  as the total pressure loss co-
efficient) at the entrance length is usually higher than that of the kinetic 
energy loss due to the viscous friction loss, and they are found by using the 
Hagen’s experiments 

710 .  for laminar flow (6.4.13)

400 .  without bell mouth entrance for turbulent flow (6.4.14)

In the flow beyond the entrance length the pressure variation tends to 
decrease linearly along the axial distance z  and the pressure gradient 

L
p

L
pp

z
p 21  (6.4.15) 

is kept constant for both the laminar and turbulent flows. 

For eLz , the velocity becomes a solely axial and only with the lateral 
coordinates in the fully developed flow in a circular pipe, as sketched in 
Fig. 6.9, where the flow is non-accelerating and is driven by the pressure 
gradient (when the gravitational body force is ignored for a horizontal 
straight pipe or, if at all, it can be incorporated in the pressure term as the 
potential energy function). In general terms, such a (nearly) non-
accelerating flow of an incompressible Newtonian fluid in a steady state of 
motion is treated as the so-called Stokes’ equation, which is written with 
the continuity equation as follows 

0u  (6.4.16)

6.4.2  Fully Developed Flow in Pipe 
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02
0 up  (6.4.17)

It should be noted that the Stokes’ equation (6.4.17) is reduced from the 
Navier-Stokes equation Eq. (6.1.7), by setting the inertia term zero, and is 
valid for not so large Reynolds number where the flow tends to become 
turbulent. The flow field derived from Eq. (6.4.17) is independent of the 
density, and the flows followed in Eq. (6.4.17) are so-called creeping flows, 
even though the Reynolds number need not be small (and in fact the Rey-
nolds number is not even a required parameter). 

It is now desired to consider the fully developed, pressure-driven lami-
nar flow in a circular pipe where the flow is assumed to be steady, axi-
symmetric and rectilinear. This flow is termed as the Hagen-Poiseuille 
flow, which implies that in the flow field there is only an axial velocity 
component zu , while the radial ru  and circumferential u  velocity com-
ponents are, respectively, 0ru  and 0u . In the cylindrical coordi-
nates system zu  may be the function of zr ,, , i.e. zruu zz ,, . How-
ever with the condition of axisymmetry, i.e. 

0zu  (6.4.18)

and from the mass continuity 

0
z
uz  (6.4.19)

zu  is only the function of r , i.e. ruu zz . In the fully developed recti-
linear flows, the pressure gradient in the axial direction is kept constant as 
is referred to in Eq. (6.4.15), i.e. 

c
z
p const.  (6.4.20)

It will prove useful to consider the nondimensionalization of the 
Stokes’ equation in Eq. (6.4.17), which can be carried out by taking the 
pipe radius 0r  as follows 

0r
rr*  , 

zpr
uu z

2
0

0*  (6.4.21)

Resultantly we have 
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1
2 ** u  (6.4.22) 

It should be kept in mind that the negative pressure gradient is adopted to 
make *u  a positive quantity. Eq. (6.4.22) can now be solved for 

11
*

*
*

** dr
dur

dr
d

r
 (6.4.23)

with the boundary conditions, 

             0*u  (no-slip at wall) for 1*r   (6.4.24)

and 

finite*u  (along the axis of symmetry) for 0r  (6.4.25)

The solution of Eq. (6.4.23) is expressed by 

21
2

ln
4
1 CrCru ***  (6.4.26)

and with the boundary conditions 01C  and 412C , we can write a rig-
orous solution for zu  as follows 

22
0

04
1 rr

z
puz  (6.4.27)

The velocity profile in Eq. (6.4.27) is a paraboloid, termed as the 
Poiseuille paraboloid of a revolution about the axis of pipe, as shown in 
Fig. 6.10. Note that Eq. (6.4.27) carries a dimension. The flow expressed 
in Eq. (6.4.27) is called the Hagen-Poiseuille flow.  

 
Fig. 6.10 Poiseuille paraboloid 

Now, the flow properties associated with the Hagen-Poiseuille flow are 
examined, knowing that the flow is fully developed that at any cross sec-
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tion of the pipe, the flow profile is kept identical. 

r
dz
dp

r
uz

rz
02

1  (6.4.28)

and the wall shear stress w  is calculated by setting 0rr  

0
02

1
0

r
z
p

rrrzw  (6.4.29)

The volume flow rate Q  through the cross sectional area is given 
where 

 4
0

0
0

0

8
2 r

z
prdruQ

r
z  (6.4.30)

This is called the Hagen-Poiseuille equation, and the average velocity U  
is thus given as 

2
0

0
2

0 8
1 r

z
p

r
QU  (6.4.31)

The maximum velocity max,zu  occurs at 0r , i.e. at the axis of the pipe, 
to write 

2
0

0
max

4
1 r

z
puz ,  (6.4.32)

The velocity profile given in Eq. (6.4.27) can be alternatively written by 
U  or max,zu  as follows 

2

0
12

r
rUuz  (6.4.33)

or 
2

0
max 1

r
ruu zz ,  (6.4.34)

The pressure drop in an arbitrary section L  with reference to Fig. 6.9 
is given in Eq. (6.4.20), and the integration gives 
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cL

dzcpp
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1
12  

so that 

L
p

L
pp

z
pc 21  (6.4.35)

Note that Eq. (6.4.35) is equivalent to Eq. (6.4.15). With the aid of Eq. 
(6.4.31), the pressure drop p  can be expressed in the following form 

2

00

0

2
1

22
64 U

r
L

Ur
p    

2

2
164 U

d
L

Re
 (6.4.36)

From the Darcy-Weisbach equation below 

2

2
1 U

d
Lp  (6.4.37)

the (Darcy) friction factor  is thus given in Eq. (6.4.36) as 

Re
64

 (6.4.38)

When the wall of shear stress w  given in Eq. (6.4.29) is non-
dimensionalized as is commonly used in the literature, the skin-friction co-
efficient fc  (or Fanning friction factor) is defined in such a way that 

4
1

2
1 2U

c w
f  

(6.4.39)

The friction factor  derived from the Poiseuille parabolic, namely the 
solution of the fully developed laminar pipe flow, is in a generally good 
agreement with the experiment as compared with the data (Nikuradse 
1933) in Fig. 6.11 with the relationship between  and Re . When the 
Reynolds number exceeds approximately 2300, in most of engineering ap-
plications, the flow undergoes a transition to turbulence, and above ap-
proximately 3000 the pipe flow becomes fully turbulent. There is no rigor-
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ous solution for turbulent flow in a pipe, where  in Eq. (6.4.37) is cus-
tomarily extended in the turbulent flow regime, as shown in Fig. 6.11. It 
should be mentioned that Fig. 6.11 is based on experimental data obtained 
from various degrees of roughness of a pipe wall (after Nikuradse experi-
ments with pipes of sand roughness), where  is the roughness (R.M.S) 
and d  is the diameter of pipe. As effects of the roughness are exemplified 
in the diagram, when d  increases,  raises, indicating a higher pressure 
drop (higher wall shear) in the turbulent regime, whereas in the laminar re-
gime, as  is expressed by Re64 , there would not be the effect of the 
roughness on the pressure drop. 

 
Fig. 6.11 vs Re in straight pipe (replotted after Nikuradse, 1933) 

With hydrodynamically smooth pipes that are independent of the sur-
face roughness, a curve fitted correlation to a turbulent flow date is given 
as 

534
1

10103for    31640 ReRe.  (6.4.40)

The empirical equation (6.4.40) is called the Blasius formula (1913) that 
only depends on the Reynolds number, and is often used for practical pur-
poses in engineering. There are several empirical relations for  in hydro-
dynamically smooth pipes. Among those, Prandtl’s universal law of fric-
tion for smooth pipes is valid for a wide range of Reynolds numbers in 
turbulent flows, which is given as 
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80log21
.Re  (6.4.41)

Red
359log21411 .

.  (6.4.42)

It is of interest to know the velocity profile for fully developed turbu-
lent flows in a circular pipe from experimental verifications. This can be 
reduced from the Blasius formula (6.4.40) with the definition of the skin-
friction coefficient in Eq. (6.4.39) as follows 

2

8
Uw  (6.4.43)

4
1

31640

dU

.  (6.4.44)

Substituting Eq. (6.4.44) into Eq. (6.4.43) yields w  as 

4
3

4
7

4
1

04
1

0033260 Urw .  (6.4.45)

If we, as Blasius suggested, assume the power law velocity profile for 
axisymmetric fully developed a turbulent flow, as schematically shown in 
Fig. 6.12, we can write 

n

r
y

u
u

0max
 (6.4.46)

where maxu  is the maximum velocity at the axis of the pipe, rry 0  is 
the wall distance and n  is the power index to be determined. It is noted 
that u  is the time average velocity here in Eq. (6.4.46). The volume flow 
rate Q  is then calculated as 

0

0

2
0 2

r
rdruUrQ )(  

                   dyyr
r
yu

n

0
0

max 2  
(6.4.47)

C.F. Colebrook (1939) extended the relationship to include the roughness 
effect for commercial pipes, which is written as 
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Thus 

21
2

max nnu
U  (6.4.48)

and in Eq. (6.4.46), U  can be written as 
n

y
r

u
nn

U 0

21
2  (6.4.49)

Substituting Eq. (6.4.49) into Eq. (6.4.45), we have 
 

 
Fig. 6.12 Power law for turbulent velocity profile 

4
7

4
3

4
7

4
7

4
1

0
4
1

0

4
7

21
203326.0

nn

w yur
nn

 (6.4.50)

It should be reasonable to think that w  depends only on fluid properties 
and the velocity profile u  so that w  would not include the effect on the 
radius 0r  in its formulation. This thought would lead to the fact that the 
power of 0r  in Eq. (6.4.50) is null, i.e. 

0
4

7
4
1 n  (6.4.51)

And thus, we can obtain n  for 
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7
1n  (6.4.52)

Consequently, the velocity profile u  is written as 
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(6.4.53)

The formula given in Eq. (6.4.53) is termed as the 71  power law of a tur-
bulent velocity profile. By using Eq. (6.4.48), it can be shown that the av-
erage velocity maxu  are related as 

max60
49 uU  (6.4.54 )

The turbulent velocity profile near the solid wall will be further ex-
tended in consideration with the boundary layer theory, which is studied in 
later sections. 

The time development of flow at the rest to the Poiseuille flow can be ob-
tained as an exact solution of a reduced Navier-Stokes equation. Consider 
a Newtonian flow likewise, as in the previous sections, which are initially 
at rest in an infinitely long horizontal pipe with a radius 0r . We will exam-
ine the transient behavior where a constant pressure gradient dzdp  is ap-
plied at 0t . 

The governing equation of this system is such that, i.e. in the cylindri-
cal axisymmetric rectilinear system, without the body force  

r
u

rr
u

z
p

t
u zzz 1

2

2

0  (6.4.55)

where zu  is a function of both r  and t , i.e. truu zz , . Similar to Eqs. 
(6.4.23), (6.4.55) can be nondimensionalized through the following re-
lations 

6.4.3 Transient Hagen-Poiseuille Flow in Pipe 
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The resultant nondimensional equation can be written in the following 
form 
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 (6.4.57)

For the transient Poiseuille flow from at rest, the initial and boundary con-
ditions to be imposed in Eq. (6.4.57) are 

0, *** tru       for  0*t  , 10 *r  
****
max, utru  for  0*t  , 0*r  

0, *** tru       for  0*t  , 1*r  (6.4.58)

In order to obtain the analytical solution of Eq. (6.4.57), we decompose 
zu  with the steady state Poiseuille flow (for t ) and the transient term 

zu  as follows 

trurr
z
ptru zz ,, 22

0
04

1  (6.4.59)

which is rewritten in a nondimensional form 
*** puru 21  (6.4.60)
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u ppp 1

2

2
 (6.4.61)

         21, rtru p         for 0t  , 10 r  

max1, utru p     for 0t  , 0r  

0,tru p                for 0t  , 1r  (6.4.62)

Equation (6.4.61) can be solved by using a separation of the variable 
in the following manner 

6.4  Flow Through Pipe

Equation (6.4.57) is then written in terms of *pu  after the substitution of Eq. 
(6.4.60) as follows 

It is noted that for a sake of simplicity  will be dropped from the 
equation in (6.4.61). The new boundary conditions of Eq. (6.4.61) are  
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tTrRtru p ,  (6.4.63) 

so that we have two ordinary differential equations: 

0T
t

dT  (6.4.64)

01
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2

R
dr
dR

rdr
Rd  (6.4.65)

The solution in Eq. (6.4.64) is rather straightforward to give 
teTT 0  (6.4.66)

whereas Eq. (6.4.65) is a Bessel’s differential equation of a general form 

011
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r
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r
R  (6.4.67)

rYcrJcR nn 21  (6.4.68)

The solution rJ n , which has a finite limit as 0r , is called a Bessel 
function of the first kind. The solution rYn , which has no finite limit as 

0r , is called a Bessel function of the second kind. The solutions for 
rR  and tT  are thus obtained with the boundary conditions (6.4.62), 

where we have 
trurtru p ,1, 2  

1
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1
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32 2

81
n

t
nnn

nerJJr  (6.4.69)

as 0J  and 1J  are the zero-th and first order of Bessel’s function, which are 
generated by the following recurrence formula 

rJrJrJ
r
n

nnn 11
2  (6.4.70)

and for the n  positive integer we have 

d

where 0n . It is known that the general solution of the Bessel’s equation 
is given in the following form 
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In Fig. 6.13, some rJ n  are displayed for a reference. n  that appeared in 
(6.4.69) is the nth  root of 00J , which are given as 

642 15
15116

3
6221

4 mmm
mn  (6.4.72)

 
Fig. 6.13 Bessel’s function of first kind 

 
Fig. 6.14 Transient Poiseuille flow 
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where 14nm . The detailed derivation of the solution (6.4.69) is found 
in Szymaniski (1932) and Papanastasiou et al. (2000). 

As a result of the solution expressed in Eq. (6.4.69), the transient behav-
ior of the flow is shown in Fig. 6.14, where it is seen that two (both ana-
lytical and numerical) flow velocities evolve from a rest position as time 
elapses to reach the maximum center speed 10,u . 

It is mentioned that Eq. (6.4.57) is a partial differential equation of a 
parabolic type that is solved numerically fairly easily, such as the finite dif-
ference method. In Fig. 6.14, as an example, a numerical solution by the 
finite difference method is displayed in comparison with the analytic solu-
tion of Eq. (6.4.69). 

Exercise 

Exercise 6.4.1 Inclined Plane Poiseuille Flow 

Let’s us consider the incompressible steady laminar flow between two in-
clined plates as shown in Fig. 6.15. Obtain the velocity profile of u  as a 
function of y  for the one dimensional rectilinear flow in x – y  plane, as-
suming the pressure gradient xp  is constant. 

 

Fig. 6.15 Inclined plane Poiseuille flow 
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Exercise 

Ans. 

The Navier-Stokes equation can be reduced to the following form in the 
x – y  plane 

sin0 2

2

0 g
y
u

x
p  (1)

With the boundary conditions such that 

0
dy
du  for 0y  (2) 

and 

0u    for hy  (3) 

Equation (1) can be solved for u , which yields the solution as 

22

0
sin

2
1 yh

x
pyu g  (4)

The body force (the gravity) is added to the pressure gradient to in-
crease, depending on the sign of sin . 

Exercise 6.4.2 Laminar Flow in a Square Duct 

Suppose that an incompressible Newtonian fluid is flowing through an in-
finitely long square duct. The flow is assumed laminar with the constant 
pressure gradient along the flow direction z . Determine the velocity pro-
file in the square cross section of the x – y  plane, as depicted in Fig. 6.16. 

Ans. 

The situation is that the non-accelerating and unidirectional flow of the 
velocity component zu  is persisting in the duct with a constant pressure 
gradient. We apply the Stokes’ equation given in Eq. (6.4.17) in z -
direction, so that we can write the governing equation of flow as 

z
p

y
u

x
u zz

0
2

2

2

2 1  (1)

Equation (1) can be nondimensionalized by the relationships 
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a
xx* , 

a
yy*  and 

zpa
uu z

2
0

2*  (2)

through which the resultant nondimensionalized equation for Eq. (1) will 
be written as 
 

 
Fig. 6.16 Flow in a square duct 

22

2

2

2

y
u

x
u  (3)

It is noted that * is dropped in Eq. (3) for a sake of clarity. The boundary 
conditions in the first quadrant plane (due to symmetry) are written below. 
Note that at the center of the duct the symmetric conditions in both x  and 
y  axis are given respectively together with the no-slip conditions at the 

wall. 

 
Fig. 6.17 Velocity contour in a duct flow 
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Exercise 

0
y
u    for   0x  

0
x
u    for   0y  

0u     for   1x  

    0u     for   1y  (4) 

Similar to Eq. (6.4.59), by decomposing zu  with the plane Poiseuille 
flow, we have 

yxuya
z
pyxu zz ,

2
1, 22

0
 (5)

and with a nondimensional form, we can write 

puyu 21  (6) 

Equation (3) of the Poisson equation can now be reduced into the 
Laplace’s equation by substituting Eq. (6) into Eq. (3) to write 

02

2

2

2

y
u

x
u pp  (7)

The boundary conditions for pu  are newly written as 

0
y

up               for  0x  

0
x

up               for  0y  

21 yu p    for  1x  

                              0pu                for  1y  (8)

In Eq. (7) the boundary conditions (8) are the same as the heat conduc-
tion problem in a square plate, to which the analytical solution is possible 
by solving the equation through the method of the separation of variables. 
The solution for pu  consists of particular product solutions in the form 

yYxXyxu p ,  (9)

Substituting Eq. (9) into Eq. (7) yields 
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02

2

2

2

dy
YdXY

dx
Xd  (10) 

and after separating the variables, we may be able to set the equation to the 
flow 

2
2

2

2

2 11 c
dy

Yd
Ydx

Xd
X

 (11) 

where 2c  is the arbitrary constant. As a result, there follows a set of ordi-
nary differential equations 
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2

Xc
dx

Xd  (12) 

02
2

2

Yc
dy

Yd  (13) 

Equations (12) and (13) constitute a Sturm-Liouville problem through 
which the characteristic values are given where 

2
12ncc n   for  ,3,2,1n  (14) 

It follows that the solution is written for a series of the form where 

1

coshcos
n

nnnp xcycau  (15)

and na  satisfies Eq. (7) with the boundary conditions in (8). The final form 
of pu is given as 

1
3

coshcos
cosh

14
n

nn
nn

n

p xcyc
cc

u  (16)

It should be kept in mind that the actual solution of u  is expressed with 
Eq. (6) by substituting pu  in Eq. (16). In Fig. 6.17, the velocity profile is 
schematically drawn by velocity contour, which is the same as the tem-
perature contour in the case of a heat conduction problem. 

Note that Eq. (7) is a partial differential equation of the elliptic type. 
The equation can be fairly easily solved by a numerical method, such as 
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Problems 

the finite difference method. The reader may be worth trying to write a 
program code to solve the problem. This is left to reader’s own discretion, 
similar to the Problem in 6.4-5 (which is a type of parabolic partial differ-
ential equation). 

Problems 

6.4-1. Can the Poiseuille flow be used as a means of measuring the viscosi-
ties of liquids? Describe how and give a limitation for the method. 

Ans. flowlaminar  e within thYes,  
 
6.4-2. In a horizontal circular pipe with a diameter of m1010 3 , a fluid 

with a viscosity of sPa101 2  and density 33 mkg1021.  is 
flowing. The discharge is s37 m1004. . Find the pressure drop in 
a m10  section, and a maximum velocity in the pipe cross section. 

Ans. 
su

p
m021

mN10631

max

26

.
.  

 
6.4-3. Find the laminar flow velocity profile in a circular annulus for 

bra . Assume that the pressure drop in a length l  is p . The 
fluid properties are such that the density is  and the viscosity is 0 , 
which are kept constant. Also show that the maximum velocity oc-

curs at 2
1

22 ln50 ababr . . 

Ans. 2222

0 ln
ln

4
rb

ba
rbab

l
pu  

 
6.4-4. Prove Eq. (6.4.50). 
 
6.4-5. Write a finite difference code for solving Eq (6.4.57). 

Ans. 2337SectionRefer ...  
 

6.4-6. Show that the velocity profile of the laminar flow in a square duct is 
equivalent to the temperature distribution of the heat conduction of 
an identical square plate (without internal heat generation). 

 
6.4-7. Verify that the volumetric flow rate Q  through a square duct is 

given where 
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1
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n n

n

c
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z
pQ  

 

for a steady laminar flow of Newtonian fluid. 

6.5 Laminar Boundary Layer Theory 

The conceptual thought on the boundary layer is already given in the pre-
vious sections, for example, in the Problems 4.1-6, 4.1-8, and Section 6.3.3.  
From a phenomenological point of view, the boundary layer is important to 
flow, as in confined narrow regions near solid walls, where the effect of 
viscosity comes into play. In addition, all the previous examples of the vis-
cous flow, in one way or another, have hinted strongly at boundary layer 
behavior. 

The idea about a boundary layer was first put forth by Prandtl (1904), 
in his celebrated boundary layer equations, and a great deal of quantitative 
information was also obtained in the exact solutions given by his student, 
Blasius (1908). Von Kàrmàn (1921), suggested an integral method over the 
thickness of the boundary layer, using a guessed velocity profile rather 
than obtaining the exact solution of the equations. The excellent idea of 
Kàrmàn’s leads to estimate the drag and wall shear of a viscous flow past a 
flat plate at a high Reynolds number, and that is valid, in effect, for either 
laminar or turbulent flow. The theory of the boundary layer carries particu-
lar importance in designing aircrafts, turbo blades in various turbo machin-
eries, and those are categorized as external flows. In this section, the thin 
boundary layer approximations will be discussed. The boundary layer is 
laminar at first and, as the Reynolds number increases, it undergoes a tran-
sition to turbulence. In order to convey the essence of the theory, the flows 
that we discuss in this chapter are laminar, for which the Reynolds num-
bers are not too high. We will begin to study a two dimensional laminar 
boundary layer flow in order to gain a fundamental insight within the 
framework of the traditional approach. 

6.5.1 Flow over a Flat Plate 

Consider the laminar flow over a flat plate when the Reynolds number, 
which we have yet to define, is high enough, before it undergoes a transi-
tion to turbulence. Here, we expect that the flow of an incompressible 
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stream velocity component, as indicated in Fig. 6.18. The flow in the con-
fined narrow region of high shear stress beginning from the leading edge 
close to the plate, whose thickness is x , is two dimensional with veloc-
ity components, 0,,0,, vuuu yxu . The boundary layer thickness 

x  is defined in such way that the height about the plate is Uu 990. , 
meaning that the streamwise velocity component u  is within 1%  of the 
free stream velocity U , although u  to U  is asymptotic in direction. The 
velocity boundary conditions of the boundary layer require no-slip and no 
penetration at the wall of the flat plate, i.e. 00,xu and 00,xv  for 

0x . Also, above the plate, outside the boundary layer the flow is treated 
as the inviscid, i.e. Uyxu ,  and 0, yxv  for 0x  and xy . 

 

In the boundary layer, more importantly inertial effects and viscous ef-
fects are both significant, so that it appears that we need to solve the Na-
vier-Stokes equation, whereas outside the boundary layer the Euler equa-
tion may be used. By focusing our attention within the boundary layer, we 
may write the continuity equation and the Navier-Stokes equation, as the 
starting point for a discussion on flat plate boundary layer flow. The non-
dimensionalized governing equations are given by taking the representa-
tive length scale as x , velocity as U , time scale as Ux  and pressure scale 
as 2U , as follows 

Fig. 6.18 Boundary layer over a flat plate 
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In applying Eqs. (6.5.1), (6.5.2) and (6.5.3) to the boundary layer, sub-
stantial simplification of these equations can be made by recalling that; 
(i) the flow is predominantly parallel to the plate, i.e. vu  
(ii) the boundary layer thickness x  is very thin, i.e. xx  
implying that axial derivatives of velocity components are much smaller 
than the transverse derivatives of those same components, and that the 
transverse pressure gradient is much smaller than the axial pressure gradi-
ent. 

Using the conditions from (i) and (ii), we can perform an order-of-
magnitude analyses. In order to make the point clear in Eqs. (6.5.1), (6.5.2) 
and (6.5.3), the order of each term is shown in the equations below, where 

1o  is determined such a way that, for example, 1Uuu*  and 1*x  
so that 1o** xu , whereas ** Uvv and ** xy  so that 

1o** yv , and so on. Let xRe  denote the Reynolds number, defined 
by 

UxUxRex
0

 (6.5.4) 

The important issue that arises for the viscous terms of 22 ** yu  and 
22 ** yv  , for which as xRe  and 0* , the condition of Eqs. 

(6.5.2) and (6.5.3) not being reached to the inviscid limit is that 
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and Eq. (6.5.5) indicates that xRe  has to have the order 

2
1
*xRe  (6.5.6) 

as already displayed below, each term in Eqs. (6.5.2) and (6.5.3). Eq. 
(6.5.6) consequently shows the important fact that the boundary layer 
thickness x  becomes thicker toward downstream, along the axial direc-
tion followed by the relation 

xRe
x  (6.5.7) 

The pressure is such that 1o*p , and since in y  direction the varia-
tion of *p  is very small, i.e. *** oyp , *p  is in effect given by the 
inviscid flow outside the boundary layer. 

It is now desired to derive an expression for the boundary layer flow by 
using the order-of-magnitude analysis, and as a result we obtain the set of 
simplified equations in a dimensional form as follows 

0
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u  (6.5.8)
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y
p0  (6.5.10)

and for the inviscid core flow 

x
p

x
UU

t
U 1

 

(6.5.11) 

These are the so-called Prandtl’s boundary layer equation. The boundary 
layer equations however, are still kept in nonlinear terms (as seen in Eq. 
(6.5.9) in convective terms. Nevertheless, one of the important aspects of 
the equations is that the pressure gradient in Eq. (6.5.9) may be determined 
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by knowing the pressure distribution in the inviscid core flow given in Eq. 
(6.5.11) over the same surface shape. 

It should be mentioned that the boundary layer equations are valid for 
moderately curved surfaces, and for that 

2u
y
p

x  (6.5.12)

where x  is a representative curvature of the curved surface. 

Fig. 6.19 Nondimensional velocity profile by  

Blasius gave analytical solutions to the boundary layer equations, as-
suming that the flow is steady and the pressure distribution in an inviscid 
flow over a flat plate is uniform, i.e. 0xp , so that we have 

0
y
v

x
u  (6.5.13)

  
2

2

0 y
u

y
uv

x
uu  (6.5.14)

Blasius showed that a similarity solution (the velocity profile) of these 
equations can be obtained by introducing a new parameter 

2
1

xRe
x
y

Ux
yy  (6.5.15) 
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where  is adopted from Eq. (6.5.7).  Note that  is a conventionally de-
fined parameter (it should not be confused with the viscosity), which 
scales the directional distance from the wall at position x , as shown in Fig. 
6.19. It is reasonable to state that the nondimensional velocity distribution 
function nf  would be expressed in terms of  to write 

nf
U
u  (6.5.16)

Since the velocity profile would be written in terms of , we may be able 

to introduce a stream function  by letting fdfn , as follows 

fUxyx,  
(6.5.17) 

Using Eq. (6.5.17), we are able to write the velocity component u  and v  
where 

fU
y

u  (6.5.18)

ff
x
U

x
v

2
1    (6.5.19)

and a substitution of Eqs. (6.5.18) and (6.5.19) to Eq. (6.5.14) yields 

02 fff  (6.5.20)

0
d
dff  for 0  (6.5.21)

and 

1
d
df  as  (6.5.22)

It is mentioned that the function f  that satisfies Eq. (6.5.20) and the 
boundary condition is the Blasius solution. 

The exact analytic solution has not yet been obtained. Otherwise, 
matching inner and outer series solutions is found to be one of techniques 
for solving the equation such as shown by Meksyn (1961) and Rosenhead 

Equation (6.5.20) is the Blasius equation, which is a nonlinear, third-order, 
ordinary differential equation that is solved for the boundary conditions 
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(1963) that gives: 
 

(i) Near wall; 

0
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Cf  (6.5.23)

where 10C , 11C , 112C , 3753C , 278974C  and 38171375C . 
 
(ii) Infinite distance from wall; 

dedf
2

4
1

  (6.5.24)

 
(iii) Matching ,  and ; 
Matching Eqs. (6.5.23) and (6.5.24) is given by taking the constants 

3320. , 731.  and 2310.   

where f , f  and f  are joined in the region of the solution. 
  The numerical solution for the Blasius equation is readily available. Note 
that at the edge of the boundary layer, which is defined as the location 
where 99.0Uuu /* , occurs for 0.5914. , the result of a numeri-
cal solution for the Blasius equation. Therefore, we have a value of 99% 
boundary layer thickness given as 

2
1

0.5 xxRe  (6.5.25)

It is confirmed that the Blasius solution does agree with experiments, such 
as Liepmann’s (1943), showing that the similarity of the velocity profile in 
the flat plate is held. 

Note that from experimental verification, the turbulent boundary layer 
starts to persist for a flat plate with a zero attack angle for 5105xRe . 

6.5.2 Integral Analysis of Boundary Layer Equation 

The direct analytical approach to solve the boundary layer equation in-
volves much difficulties, as seen from the solution of the Blasius equation. 
However, if the velocity profile within the boundary layer can be assumed 
to be known, we may be able to gain a great deal of quantitative informa-

346



6.5 Laminar Boundary Layer Theory 

tion by simply integrating Prandtl’s boundary layer equation. Particularly, 
in most of engineering problems, estimation of a frictional drag force over 
an objective solid wall is of primary importance. 

In this section, we will derive the momentum integral equation, follow-
ing an idea first put forth by von Kàrmàn (1921), and calculate the fric-
tional drag on a flat plate at high Reynolds numbers. The control volume 
chosen for the analysis is sketched in Fig. 6.20, where the velocity is de-
fined at a downstream position x  from the leading edge of a flat plate. 

 

Fig. 6.20 Control volume for a boundary layer 

Consider the boundary layer equation, the momentum equation in x di-
rection given in Eq. (6.5.9), and integrate the equation from the wall to the 
height beyond the thickness of the boundary layer, i.e. hy0 , as fol-
lows 

h
hhhh

y
udy

x
pdy

y
uvdy

x
uudy

t
u

0
0000

1  (6.5.26)

The last term on the right hand side of Eq. (6.5.26) can be written as 
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(6.5.27) 

when w  is the wall of shear stress. The last term of Eq. (6.5.26) can be 
written as 
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It should be kept in mind that Eq. (6.5.27) or (6.5.28) can be valid for any 
flow mode (laminar or turbulence). Similarly, the continuity equation in Eq. 
(6.5.8) is integrated to give  

h
dy

x
uv

0
 (6.5.29)

Using Eq. (6.5.29), the last term on the left hand side of Eq. (6.5.26) can 
be reduced to the following form, after eliminating v  and carrying out the 
integration by parts  
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The momentum equation is thus written altogether as 
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The pressure term in Eq. (6.5.31) is eliminated by the inviscid flow equa-
tion in Eq. (6.5.11), and after some arrangements, we can write the equa-
tion to give 
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(6.5.32)

The resultant integral equation of momentum change seems formidable 
at first glance, but leads to no novel algebraic difficulties by reducing the 
common terms together as follows   

w
hhh

dyuU
x
UdyuUu

x
dyuU

t 000
 (6.5.33)

Some simplifications are expressed in Eq. (6.5.33) by virtue of defin-
ing the properties of and  by taking h , where for the fixed con-
trol volume the integral equation of Eq. (6.5.33) is rewritten with the fol-
lowing compact form 
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(6.5.34) 

where we define  and  respectively  

0
1 dy

U
u  (6.5.35)

0
1 dy

U
u

U
u  (6.5.36)

Equation (6.5.34) was first derived by von Kàrmàn (1921) and is often re-
ferred to as the Kàrmàn integral equation. The equation is valid for both 
laminar and turbulence flows, as long as the velocity profile tyxu ,,  is 
known a priori. The boundary conditions for the integration in Eq. (6.5.34) 
are  

0u                       for 0y  

Uu  and 0
y
u  for y  (6.5.37)

 

Fig. 6.21 Displacement thickness 
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As seen in Eq. (6.5.34), there are two new additional lengths in boundary 
layer theory, as defined in Eqs. (6.5.35) and (6.5.36). There are the dis-
placement thickness  and the momentum thickness . The displacement 
thickness is the equivalent thickness of the deficit of volume flow rate in 
the boundary layer compared to the inviscid flow limit by the continuity 
consideration, as schematically shown in Fig. 6.21. The momentum thick-
ness is the equivalent thickness of the momentums loss due to the deficit of 
mass (volume flow rate) in the boundary layer. 

For a steady flow over a flat plate with a zero pressure gradient, that is 
0xp /  and const.UxU , i.e. 0xU / , the momentum loss is 

solely due to wall friction, and this is simply expressed in Eq. (6.5.34) as 

x
Uw

2  (6.5.38)

The momentum thickness  is often used to represent a characteristic 
length in turbulent boundary layer studies.  

6.5.3 Boundary Layer Separation  

The boundary layer theory based on thin layer approximations discussed in 
this chapter does not apply in so-called separated regions, such as observed 
along curved surfaces. Nevertheless, the boundary layer theory can give an 
estimate to the point of occurrence of the separation, and is able to give an 
explanation of the phenomena. Here we will consider the phenomenon of 
boundary layer separation and vortex formation behind bluff bodies.  

The velocity profile in the boundary layer depends upon the potential 
flow outside the boundary layer. The core flow, which may be accelerated 
or decelerated, is determined by the flow situation and geometry of the 
wall. The phenomenon of boundary layer separation occurs for flow, which 
has an adverse pressure gradient, 0dxdp / , as illustrated in Fig. 6.22(a). 
Particularly with a flow over a curved surface, such as flow over an airfoil, 
as representatively displayed in Fig. 6.22(a), the inviscid flow is deceler-
ated, the separation of boundary layer from the wall starts at s and in the 
downstream b  and c , the reverse flow persists with 0yu / , whereas 
in the upstream a  the flow is forward at x  direction with 0yu / . The 
separation streamline, which is of a zero velocity contour coincides with 
the wall, leaves the surface at the separation point s and extends toward the 
downstream. When the Reynolds number of flow is sufficiently high, at 
the downstream of the separation point below the separation streamline, 
the wake takes place which is typically characterized by irregular eddies. 
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In the wake, large energy loss due to high mixing may occur, resulting in a 
large pressure loss, and causes a higher pressure difference between the 
leading edge and the trailing edge, increasing in the pressure drag. The 
boundary layer separation may be seen in a diffuser or in a highly diver-
gent channel in which there exists a strong adverse pressure gradient. 
However, there would not be boundary layer separation for a flow over a 
flat plate at a zero attack angle since the pressure gradient is always kept 
negative, and the laminar boundary layer formed close to the leading edge 
grows and changes to a turbulent passing through a transition region, when 
the plate is sufficiently long.  

 

 

Fig. 6.22 Boundary layer separation and vortex formation 
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The very important phenomenon of boundary layer separation can be 
more clearly explained by considering the flow around a circular cylinder, 
as illustrated in Fig. 6.22(b). In consideration of an inviscid fluid, the flow 
is accelerated on the upstream cylindrical surface, a to b, and decelerated 
on the downstream surface, b to c. The adverse pressure gradient occurs in 
the region of b to c and the boundary layer below the inviscid flow would 
separate at point s on the cylindrical surface. As illustrated in Fig. 6.22(b), 
after the point s, backward flow in vicinity of the wall, due to higher pres-
sure in flow direction and toward flow in the upper layer of separation a 
streamline causes the vortex formation. The separation point is predicted at 
the angle of 90  with the boundary layer theory based on inviscid 
outer flow. However, for viscous flow, the situation is somewhat different 
from the inviscid flow case. For example, at a Reynolds number 
of 9500Re  (based on radius 0r ), the angle of separation point s is ap-
proximately 580.  (Hiemez, experiment 1911), which is quite different 
from the inviscid flow. The boundary layer approximation gives a first or-
der estimate, but is inadequate in the separated flow since a large scale 
separation may alter the flow field greatly. 

The vortex generated in the vicinity of the separation point s is in-
creased in size and becomes separated shortly afterwards and sheds from 
the wall, regularly and alternately from opposite sides. The resulting flow 
downstream, in the wake, is often referred to as a Kàrmàn vortex street. 

dURe ), 
1000040 Re , and is accompanied by turbulence. In order to quantify 

the vortex shedding, dimensional analysis may be applied by defining the 
Strouhal number where 

U
fdSt  (6.5.39)

where f  is the frequency of shedding the vortices. The dimensional 
analysis yields, so that St  is a function of the Reynolds number and can be 
expressed by an empirical relation 

17.191198.0 ReSt  (6.5.40) 

for the range of 5102250 Re . As found in Eq. (6.5.40), St  ap-
proaches to the value of 0.198 as the Reynolds number becomes high. 
Therefore, the frequency f  is directly proportional to the velocity U  and 
inverse of the diameter d  for a large Reynolds number, i.e. 

dUf 1980. . 

It occurs in the Reynolds number (based on diameter, 
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Vortex shedding from an object (such as a cylindrical object) in a flow 
may cause periodic lateral forces, when the frequency of a vortex shedding 
is equal to the natural frequency of the object. The phenomenon of reso-
nance may occur in the object, appearing as the aerodynamic vibration. 
The engineer must be very careful to be aware that such an aerodynamic 
vibration can cause a failure of structures, such as towers, chimneys, sus-
pension wire-bridge, and so forth. Furthermore, a long continuous aerody-
namic vibration may cause metal fatigue, leading structures to malfunction. 

6.5.4. Integral Relation for Thermal Energy 

In the case of heating on a flat plate, the energy equation is used to esti-
mate local values of heat transfer and the associated thickness of a thermal 
boundary layer. The basic concept of the development of a thermal bound-
ary layer is sketched in Fig. 6.23, where the flow is heated at a constant 
temperature with wT  beginning at the point of 0tx .  

 
Fig. 6.23 Thermal boundary layer 

In order to derive an expression for the thermal boundary layer, we must 
first look into the energy equation where there is a heat transfer from the 
plate to the flow in the vicinity of the wall. The nondimensionalized en-
ergy equation in Eq. (6.2.34), will be written in two dimensional x – y  co-
ordinates system, assuming the flow is incompressible and the thermal 
conductivity ck of fluid is kept constant, as follows 
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(6.5.41) 

Then we carry out the order-of-magnitude analysis, similar to the 
Prandtl boundary layer equations, discarding the terms 2xu  and 

,22 ** xT  where we have the energy equation for the thermal boundary 
in resultant dimensional form 

2

02

2

y
u

y
Tk

y
Tv

x
Tu

t
Tc cp  (6.5.42)

The boundary conditions are, with the aid of Fig. 6.23, given as 

txTtxT
txTtxT w

,,,
,,0,

 (6.5.43)

For the initial and inlet conditions, respectively 

given,,
given0,,

0 tyxT
yxT

 
(6.5.44) 

Equation (6.5.42) is also written in terms of thermodynamic properties and 
the shear stress in the conservation form as 

xyuq
yy

vh
x
uh

t
h 000  (6.5.45)

where 22
0

uTch p  is the total enthalpy of the flow. Neglecting the ki-

netic energy of 22u , since 22uTc p , the integral form of Eq. (6.5.45) 
is thus, for the wall heat transfer wq , written as 

000 000 xyppw uTvcdyhhu
x

Tdyc
t

q  
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0 000
dyhhu

x
Tdyc

t p  (6.5.46) 

Furthermore, for the steady flow, i.e. 0t , we can write the heat trans-
fer quantity 

w
q as 

0
22

2
1

2
1 dyUhuhu

dx
dqw  (6.5.47) 

where at the flat plate wall, 
0ycw yTkq . It should be kept in mind 

that Eq. (6.5.47) is usually valid for a low speed laminar flow or a turbu-
lent boundary layer, customarily neglecting kinetic energy of 22u  and 

22U (as Ec <<1). Thus the energy integral relation in the thermal bound-
ary layer, we can write 

0
dyTTuc

dx
dq pw

 
(6.5.48) 

From Eq. (6.5.48) it is useful to derive an expression for the wall heat 
transfer by defining the enthalpy thickness h  defined as 

0
dy

U
u

TT
TT

w
h  (6.5.49)

so that we have 

y
c

h
wpw y

Tk
dx

dTTUcq  (6.5.50)

where the thermophysical properties, , pc , 0  and ck are assumed to be 
kept constant throughout the flow and thermal boundary layer. 

Exercise 

Exercise 6.5.1  Estimation of Drag Coefficient on Flat Plate 

Consider a flat plate with a zero attack angle and obtain the drag force on 
one side of the surface with a width of b  and a length of l , assuming that 
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the flow is isothermal, incompressible and in a steady laminar flow. The 
fundamental geometrical configuration is shown in Fig. 6.24. 

Ans. 

For a flat plate with a zero attack angle, the condition for an inviscid 
core flow parallel to the plate is given as 0dxdU , so that from the 
Kàrmàn integral equation, the local wall sheer stress w  is expressed in Eq. 
(6.5.38) to be written as 

dx
dUxw

2  (1) 

where  is the momentum thickness and is a function of x .  can be de-
termined if the velocity profile in the boundary layer is known. We will 
exploit a similarity solution of the velocity profile 

ff
U
u

n  (2)

where  is the y-directional distance from the wall defined by xy , 
and x  is the boundary layer thickness.  and w,  thus, will be ex-
pressed in terms of  as follows 

 
Fig. 6.24 Flow over a flat plate 
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Uc
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(4)

where 
1

01 1 dffc  and 02 fc . Substituting Eqs. (3) and (4) into 

Eq. (1), we have a new equation 

Uc
c

dx
d

1

2  (5)

and is solved for  where 

U
x

c
c

1

22  (6)

Therefore, if the displacement thickness  is defined, such that  

3c  (7)

where 
1

03 1 dfc , we have 

U
x

c
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1

2
3 2  (8)

and for , similarly 

U
x

c
cc

1

2
1 2  (9)

The required drag force DF  on one side of the flat plate is thus calcu-
lated as 
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0
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322
212 lUbcc  (10)

and the drag coefficient fc  is expressed by definition to be written as 

2
1

21
21

2

2222

2
1 l

D
f Recc

Ul
cc

Ubl

Fc  
(11)

It is therefore mentioned that DF  and fc  are obtained by simply calculat-
ing 1c  and 2c  by giving the velocity distribution function f . 

In order to calculate Eqs. (10) and (11), we will take an approach of 
guessing f  in the first place. Let us assume that f  is the polynomial 
function of the 4th order, where 

4
4

3
3

2
210f  (12)

where constants 40 ~  are determined from the following physical con-
ditions of the boundary layer. 
(i) 0u  so that 00f         for 0y  

(ii) 
dx
dUU

dx
dp

y
u 1
2

2
     so that 00f  for 0y  

(iii) Uu  so that 11f       for y  

(iv) 0
y
u  so that 01f    for y  

(v) 02

2

y
u  so that 01f  for y  

It is noted that for 0y , there is no-slip condition on the wall, i.e. 0  
and 0u , so that  does not appear in the conditions (i) ~ (v). By apply-
ing the conditions (i) ~ (v) to Eq. (12), we can obtain the constants 

1and2020 43210 ,,,   

that give the velocity distribution function f  as 

4322f  (13) 

Thus, the drag force DF  and the drag coefficient fc  are given, according 
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to Eqs. (10) and (11) and calculating 1c  and 2c  from Eqs. (3) and (4), by 

           32268540 lUbFD .  (14) 

and 

2
1

3711 lf Rec .  (15) 

Note that from the Blasius’ analytical solution, fc  is given where 

2
1

3281 lf Rec .   (16) 

The difference between Eqs. (15) and (16) is small, showing that the ap-
proach taken for the von Kàrmàn integral equation by adopting a guess-
velocity profile is correct. fc  in Eq. (15) or (16) is valid for 

53 10510 lRe , as long as the boundary layer is thin enough ( << x ). 
The method of the guess-velocity for the Kàrmàn integral equation is also 
used for turbulent flows, by giving an appropriate turbulent velocity profile 
in the boundary layer.  

Exercise 6.5.2 Heat Transfer from a Flat Plate 

Assume the profile of thermal boundary layer with reference to Fig. 6.23 is 
given by a following second order polynomial function, similar to a second 
order polynomial function guessed by velocity profile (see Problem 6.5-1), 
such that 

2

21
TT

w
yyTTTT  (1)

Estimate the heat transfer from the flat plate to the fluid. Note that the 
heating region begins at the leading edge, 00x , with reference to Fig. 
6.23, and that u  is given where 

2

2 yyUu  (2)

Ans. 

The heat transfer rate wq  from the plate wall to the fluid is given in Eq. 
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(6.5.48), and with the given temperature profile in Eq. (1) and the velocity 
profile in Eq. (2), we have 

y
c

TT
wpw

y
Tk

dyyyyy
dx
dTTUcq

22

221
0

(3)

Taking into account that for the integration over the thermal boundary 
layer thickness T  

Tyy 00
 (4)

so that Eq. (3) can be written as 

TTk
dx
dTTUc wc

wp
2

306

32
 (5)

where T  is the boundary thickness ratio. Eq. (5) is further reduced 
to the form after differentiation to write 

p

c

c
k

Udx
d 2

56
1 4

3  (6)

For the velocity profile in Eq. (2), we have (see Problem 6.5.1) 

U
x02 30  or 2

1
5.5 xRe

x
 (7) 

and 

Udx
d 015  (8) 

Substituting Eq. (8) for Eq. (6), and after rearranging, we have a non-
dimensional equation 

1
4

3 80
5
4

5
Prk .  (9)

where k  is the thermal diffusivity pc ckk  and Pr  is the Prandtl 
number. The solution in Eq. (9) for  with Pr  being not too far from 
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Exercise  

unity is obtained to be 

3
1

Pr  (10) 

Thus the local heat transfer wq  is written with the aid of Eqs. (7) and (10) 
as 

x
PrReTTkq x

wcw 5.5
2

3
1

2
1

 (11) 

Furthermore, the local Nusselt number can be obtained as 

       3
1

2
1

3640 PrRe
TTk

xqNu x
wc

wx .   (12)

For comparison reasons it is quoted that the analytical solution is available 
in Schlichting (1955), for xNu  to give 

3
1

2
1

3390 PrReNu xx .  (13) 

The difference is not as large as obtained in Eq. (12) from the guessed pro-
file method. 

In two dimensional boundary layer flow, if Pr  is not far from unity, 
there exists a relationship between the heat flux wq  and the wall shear 
stress w  as follows 

w

c

w

w
c

w

w

du
dTk

y
u
y
Tk

q

0
0

 

 

(14) 

 

where it is assumed that the behavior of u  and T  in the boundary layer is 
similar. The relation (14) is known as the Reynolds’ analogy. Considering 
Eq. (11) in Exercise 6.5.1 and Eq. (12) in Exercise 6.5.2 to Eq. (14), we 
can relate xNu  (representing wq ) and fc  (representing w ) as follows 

3
1

2
1 PrRecNu xfx  (15) 

For 1Pr , we have the relationship 
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xfx RecNu
2
1  (16)

Equation (16) is the simplest form of the Reynolds’ analogy. It is of inter-
est to consider that the expression Eq. (15) is expanded in more general 
form of the Reynolds’ analogy, which is valid for all laminar boundary 
layer flow, and is written as 

),( Pr
l
xfRecNu xfx 2

1  (17) 

where )( Prlxf ,  is a function determined by experiments or analysis. It is 
noted that frequently in practice, the Stanton number Sn (the local Stanton 
number xSn ) is used instead of the Nusselt number, which is defined as 

PrRe
NuSn

x

x
x  (18)

Using xSn , Eq. (15) it is written as 

3
2

2
1 PrcSn fx  (19) 

Problems 

6.5-1. The guessed laminar and turbulent velocity profiles in the boundary 
layer on a flat plate with a zero attack angle is given by the parabolic 
and the 1/7-power law respectively as follows 

       22 )()( yy
U
u ; laminar (1)

and 

7
1

)( y
U
u ; turbulence (2) 

Show that 
(i) for a  laminar flow; 5105exR  
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Problems 

2
1

5.5 xxRe  (3)

  2
1

73.0 xf Rec  (4)

(ii) for a turbulent flow; 75 101105 xRe  

5
1

38.0 xxRe  (5)

   5
1

059.0 xf Rec  (6)

 
6.5-2. Define the boundary layer thickness ,  the displacement thickness 

 and the momentum thickness , and give the physical interpreta-
tion by discussing the importance of the three thicknesses. 

 
6.5-3. Give the limitation of applying the boundary layer theory to an ac-

tual viscous flow over a bluff body. 
 
6.5-4. For a flat plate with a zero attack angle, calculate the boundary layer 

thickness at a point of m5.0x  from the leading edge, if the free 
stream velocity of air is sm05.0U , where the density is 

3mkg161.  and the kinematic viscosity is s25 m10601. . 
Also, predict the net drag force for one side of the plate if the surface 
is 2 m wide and 4 m long. Is the flow laminar or turbulence? If the 
free stream velocity of the inviscid core flow is increased to 

sm5U , predict the net drag force, taking into account of the 
laminar portion, where 5105xRe . Use relations in Problem 6.5-
1 (to be more precise relations Exercise 6.6.1 may be used and also 
see Problem 6.6-4). 

Ans. 
N5530m05For  

N142
m0701560050For

.,.
.

.,,.

D

D

x

FsU
F

laminarResmU
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Ans.

306

306
2242

212

212

32

32

52

4

3

3

2

2

32

3

2

2

00

2

2

2

2

2

2

2

2

0

0

0

TTUc
dx
dq

dyyyyyyy

dyyyyyTTUc
dx
d

dyyyyyTTUc
dx
dq

wpw

T

TT
wp

TT
wpw

 

 

6.6 Turbulent Flow 

Osborne Reynolds (1895) tried to give theoretical explanation for the em-
pirical criterion 2300Ud  that rules out turbulent flow, observed in his 
celebrated experimental apparatus, the Reynolds tank. He manipulated the 
continuity and Navier-Stokes equations into a form that can predict the 
time-averaged behavior of turbulence. When entering into the subject of 
turbulent flow, it is essential to understand that, in most engineering appli-
cations, the kind of flows is shear flow. They can be bound by a solid wall 
or they may be free, such as with boundary layers and pipe flows, or free 
jets and wakes. In this section, greater emphasis is placed on the flow 
characteristics of a mean flow from the act of turbulence, rather than on 
turbulent motions and their associated structure. Moreover, we will com-
bine the subject into incompressible Newtonian flows for the sake of clear 
understanding. 

The nature of turbulent flow is three dimensional, at which velocity 
and pressure at a certain point do not remain constant with time but per-
form highly irregular fluctuations, and mixing of fluid in a turbulent flow, 
is much higher than in laminar flow, resulting in a more uniform mean of 
velocity distribution in comparison to a laminar flow, owing to a mixed 
dispersion of momentum. Also the intermittency is of notable phenomenon, 
as observed in measuring a turbulent flow field, such as the velocity record 
in relation to time variations. This phenomenon can occur when noticing 
the Reynolds number is close to the transition between the laminar and the 
turbulent flow in pipes and boundary layers. 

Turbulent motions of fluid particles are so complex that they cannot be 
treated individually, although they are deterministic and predictable in 

6.5-5. Prove Eq. (5) in Exercise 6.5.2. 
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6.6 Turbulent Flow 

principle from the mass and momentum equations, once an appropriate 
boundary and initial conditions are given. In practice, because of the ap-
parent randomness of turbulent flows, we will take an averaging approach 
to obtain the means of motion to enable us to discover a statistical flow de-
scription that includes turbulent properties. The average value of a flow 
quantity f  (such as u  or p ) of a Eulerian flow description in turbulent 
flows is obtained via an ensemble average that is defined by 

N

i
iN

tf
N

tf
1

,1lim xx,  (6.6.1) 

where all samples are drawn at the same time with the same position rela-
tive to the flow field boundaries. The ensemble average expressed in Eq. 
(6.6.1) allows for the possibility of an unsteady mean flow. However, from 
a practical point of view, data drawn from an ensemble average of nomi-
nally identical experiments is never available. Indeed, in turbulent flows, 
most available quantitative information will be gained for flows that are 
statistically stationary flows, the average of f  given by the time average 
that is defined as 

Tt

t
dttf

T
tf 0

0

,1, 00 xx  (6.6.2) 

where 0x is a point 0xx , T  the averaging time and 0t  the starting time. 
Note that 0t  is not important.  Nevertheless, T  must be large enough so 
that any further time elapsed has no significant effect on the measured 
value of f . For f in the statistically stationary flows, the ergodic hy-
pothesis is held such that the ensemble average of each flow variable is the 
same as its time average in certain fairly general conditions. 

According to Reynolds, we decompose each flow variable f as a sum 

of the mean value f  and the fluctuation f  from the mean. Thus, 

tftftf ,,, xxx  (6.6.3) 

and simply, as illustrated in Fig. 6.25, we can write 

fff  (6.6.4) 

It is clearly shown that 

0f  and ff   (6.6.5) 
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and that for the differential operation we have 

ff  and 
t
f

t
f   (6.6.6) 

It will prove useful to mention that the root mean square of f , i.e. 

2
1

2f  is not zero, and in consideration of f  as the instantaneous veloc-

ity u  in the turbulent flow field (i.e. uf ), we can define the relative 
turbulent intensity I  as 

u

u 2
1

2

I     (6.6.7) 

The turbulent intensity is often used for determining the level of turbulent 
intensity. In a typical turbulent flow in an engineering application, the tur-
bulent intensity is approximately 10.I . Note that the critical Reynolds 
number at the transition depends upon I  in the upstream.  

 

Fig. 6.25 Superimposition of turbulent fluctuation f and the mean
 value f  

Now we shall consider the mass and momentum conservation equa-
tions for an incompressible, isothermal, Newtonian fluid of density and 
viscosity 0 , respectively: 
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6.6 Turbulent Flow  

0u  (6.6.8) 

and 

uuuu 2
0p

t
 (6.6.9) 

where the gravitational (body force) term is ignored. Decomposing u  and 
p  respectively where 

uuu  (6.6.10)

ppp  (6.6.11)

and substituting into Eqs. (6.6.8) and (6.6.9) yields 

0uu  (6.6.12)

and 

uuuuuuuuuu
t

    

uu2
0pp  (6.6.13)

Taking the average of each term in Eqs. (6.6.12) and (6.6.13) as a result, 
we can obtain 

0u  (6.6.14)

and 

uuuuuu 2
0p

t
 (6.6.15)

Equation (6.6.15) differs from the Navier-Stokes equation for the average 
flow because of the extra term on the last term in the right hand side of the 
equation. This quantity 

uuR  (6.6.16)

is called the Reynolds stress, and Eq. (6.6.15) is called the Reynolds equa-
tion. The Reynolds stress R  acts on a control surface that moves with the 

local averaging velocity u , just as though a stress equals to uun̂ . 
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There is a closure problem in the Reynolds equation for the Reynolds 
stress in Eq. (6.6.16), which has to be attained with an appropriate equa-
tion. In order to eliminate the closure problem and to obtain an appropriate 
equation, we may be able to set a transport equation for ''uu , by setting 

u1366Eq. .. dyadic product of u  to Eq. (6.6.13) then averaging 

(6.6.17)
Equation (6.6.17), after some manipulation, however, generates a higher 
order of terms, such a uuu , and consequently it requires another ef-
fort to give an equation for uuu , and so forth. This would require end-
less labor without knowing substantial information. In order to make the 
problem easier, we need an independent equation for the Reynolds stress. 
The independent equation for the nature of a constitutive equation or a so-
called turbulent model may be necessary. 

It is appropriate to give a turbulent model analogous to a Newtonian 
constitutive equation, by referring to Eq. (6.11), to the Reynolds stress 
where 

Ik
T

t 3
2uuuu  (6.6.18)

or in tensor notation 

   ij
i

j

j

i
tji k

x
u

x
uuu

3
2  (6.6.19)

where t  is defined as the eddy viscosity and k  is the average kinetic en-
ergy of the turbulence per unit mass, which is defined as 

22

2
1

2
1
2
1

jjii uu

k uu
 

(6.6.20)

It should be mentioned that the addition of the second term in Eq. 
(6.6.18) or Eq. (6.6.19) is due to the result of defining k as expressed in Eq. 
(6.6.20). From the definition of k  in Eq. (6.6.20), k  is used as a charac-
teristic scale of velocity if no other velocity characterizes the turbulent 
flow. Thus, it is appropriate to define the Reynolds number for the turbu-
lence as 
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6.6 Turbulent Flow 

cc
t

lklkRe
0

 (6.6.21)

where cl  is the characteristic length, which can also be chosen as the 
length scale of the largest fluctuations, such as a diameter in a pipe flow. 

It is necessary to estimate the scales of time and the length in a turbu-
lent flow for a consideration of the turbulence structure and a statistical de-
scription of the fluctuations. The important scales of length and time are 
the Kolmogorov scales. The argument used to estimate those scales is 
based on the idea that the kinetic energy is transferred down the energy 
cascade to smaller and smaller length scales with an increased rate of de-
formation induced by the smallest eddies. There would be an end of energy 
cascade where the length is sufficiently small enough for the energy to be 
dissipated by a viscous action. The mean rate of dissipation energy per unit 
of mass  is brought in the equilibrium region by larger eddies, where the 
turbulence is assured to be locally isotropic. At the equilibrium region the 
kinematic viscosity 0  is also an important parameter to control the 
dynamics. Thus, at the equilibrium region, the length scale k  and time 
scale k  for the smallest eddies, or the smallest fluctuations can be ob-

tained by combination of the dimensions 32 TL  and TL2  for  and  
respectively, as 

4
1

3
k  and 2

1

k  (6.6.22)

where k  and k  are called the Kolmogorov (or dissipation) scales of 
length and time respectively. It may be speculated from energy accounting 

that  is proportional to clk
3

, so that in Eq. (6.6.22) we can write for 
k  as 

4
3

t

c
k

Re

l  (6.6.23)

It should be further considered that multiplication of k  and k  can 
give an estimate of the average length scale of the fluctuations T , which 
is called the Taylor microscale, which is given by 
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2
1

t

c
T

Re

l  (6.6.24)

Thus, from Eqs. (6.6.23) and (6.6.24) we have reached an important rela-
tionship where 

4
1

t
k

T Re  (6.6.25)

Namely, Eq. (6.6.25) shows that the average length scale of the fluctuation 

of order is 4
1

tRe  times the Kolmogorov scale (the smallest scale). 

6.6.1 Turbulence Models 

There are numerous turbulence models, ranging from the simplest alge-
braic correlations to second-closure models by Wilcox (1998), which are 
further extended to be based on CFD with large eddy simulations (LES) 
and direct numerical simulations (DNS). In the proceeding sections, in 
view of engineering applications, we shall look into the most basic models 
of zero-equation models: one-equation models and two-equation models, 
all of which deal with the eddy viscosity t  and the average kinetic energy 
of turbulence k . 
(i) Zero-equation model 

In a two dimensional turbulent boundary layer flow of an incompressi-
ble fluid, denoting 0,,vuu  and 0,,vuu , we have the following set 
of equations from Eqs. (6.6.14) and (6.6.15), such as 

0
y
v

x
u  (6.6.26)

vu
yy

u
x
pvu

y
u

xt
u

2

2

0
2

 (6.6.27)

     02v
yy

p  (6.6.28)

For the inviscid flow from Euler equation, Eq. (6.5.11), we have 
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x
p

x
UU

t
U 1  (6.6.29)

In the momentum equation in Eq. (6.6.27), the third term in the right hand 
side of the equation includes the turbulent shear stress t  

vut  (6.6.30)

The simplest way to give a constitutive relation to t  is to introduce the 
eddy viscosity t  as analogous to the molecular shear viscosity with refer-
ence to either Eq. (6.6.18) or (6.6.19) 

y
u

tt  (6.6.31)

It is noted that t  is not a fluid property, but depending upon flow condi-
tions and thus varying with position, t  is a positive value, and the gradi-

ent yu  is positive under typical boundary layer flows. For a positive 

t  in Eq. (6.6.31), the shear correlation vu  must thus be negative, which 
is supported by experimental observation. 

One successful approach to estimate t  is the mixing length concept of 
Prandtl (1925). The basic idea is to assume that u  and v  are each propor-
tional to yu , i.e. 

         
y
ul

y
ulvu 21  (6.6.32)

where 1l  and 2l  are mixing lengths. 1l  and 2l  represent a degree of aver-
age eddy size, and may be conveniently replaced by a representative length 
l . Thus using l , Eq. (6.6.32) may be written as 

y
u

y
ulvu 2  (6.6.33)

Comparing Eq. (6.6.33) with Eq. (6.6.31), we can write t  where 

y
ult

2  (6.6.34)
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Thus the difficulty arises again to determine l , which is just replaced 
in ignorance of vu . However, if we can relate the mixing length l  to the 
flow condition, the model will be completely determined as a closed sys-
tem that deals with l . We will look into the turbulent boundary layer in 
more detail by decomposing the turbulent flow over a flat plate for the 
sake of clearness, as schematically shown in Fig. 6.26. As indicated in Fig. 
6.26, the turbulent boundary layer is composed chiefly by two layers: one 
is a thin inner layer close to the wall, where the viscous effects are signifi-
cant; another is a thicker outer layer where the viscous effect is insignifi-
cant. There is a region called an overlap layer in-between the inner and 
outer layers, where the inertial and viscous effects are both insignificant. In 
the free stream, viscous and Reynolds stresses do not play important roles. 
As it is shown further in Fig. 6.26, from inside of the inner layer, there are 
two distinct layers, and they are identified as buffer layers and linear sub-
layers. Those two layers are altogether called viscous sublayers, where vis-
cous effects are significant. In the linear sublayer, the Reynolds stress ef-
fects are insignificant, while in the buffer layer viscous and Reynolds 
stress effects are comparable. 

As to the mixing length l , the primary effect is the distance from the 
wall. The following correlations were suggested by Prandtl and Kàrmàn 

In the viscous sublayer: 2yl  (6.6.35)

In the overlap layer:  ayl  (6.6.36)

In the outer layer:  constantl  (6.6.37)

It will prove useful to nondimensionalize the quantity vu  by knowing the 
parameters , , y  and w  in the boundary layer as follows 

yug
u

vu
2  and yuf

u
u  (6.6.38)

where we define the velocity u , the so-called friction velocity which is 
given as 

wu  (6.6.39)
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Fig. 6.26 Structure of turbulent boundary layer over a flat plate 

Using conventional notations for these nondimensional parameters 

u
uu  and yuy  (6.6.40)

we can write Eq. (6.6.38) simply by 

yg
u

vu
2  and yfu  (6.6.41)

The correlational expression of Eq. (6.6.41) is called the law of the 
wall. From the argument of the law of the wall, we can readily calculate 
the velocity profile in the overlapping layer for hydrodynamically smooth 
flat plates with a zero attack angle and a zero pressure gradient (the total 
shear stress is constant near the wall), assuming that the turbulent (shear) 
stress t  is written as the eddy viscosity t (with reference to Eq. (6.6.34)) 
and the mixing length l  (with reference to Eq. (6.6.36)) as follows 

y
u

y
uya

y
u

y
ul

y
u

tt
222

0  (6.6.42)

Via the assumption of 0t  in the overlap layer, we can relate the ve-
locity profile u  with a shear stress, using Eq. (6.6.39), in the following 
manner  
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2
2

22 u
y
uya  (6.6.43)

Solving Eq. (6.6.43) for u  and using the notation from Eq. (6.6.41), we 
can obtain a correlation of yf  as  

by
a

u ln1  (6.6.44)

The expression is called the logarithmic velocity distribution, where a  and 
b  are suggested, for example, by Coles and Hirst (1968) as 

   41.0a  and 0.5b  
With these constants, Eq. (6.6.44) gives good estimate for 

35035 y with ordinary flow conditions. Analogous to Eq. (6.6.44), 
the correlation may be extended to the outer layer via the relationship 
where 

cy
a

uU ln1  (6.6.45)

where uUU  and c  are constant depending upon the pressure gradi-
ent, and often upon flow parameters. In order to cover the correlation be-
tween the viscous sublayers, the following expression by van Driest (1956), 
is helpful 

D
A
y

ayeayl 1  (6.6.46)

where D  is the damping factor and A is the configuration parameter. 
Adopting Eq. (6.6.46), the velocity profile may be given in the following 
form, similar to Eq. (6.6.44), as follows 

y

Dya

dyu
0

2
1

222411

2  (6.6.47)

It is noted that 26A  is given to a case of flow over a flat plate.  
In the most adjacent layer to the wall, where the viscous effect domi-

nates the flow, i.e. t0 , we may write the turbulent shear stress as 
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2
00 u

y
u

y
u

tt  (6.6.48)

which gives a simple differential equation for u  

e
y
u  (6.6.49)

and thus with a boundary condition, i.e. 0u  for 0y , we have 

  ycu 0  (6.6.50)

where 0c  is a constant. Equation (6.6.50) gives a linear velocity profile in 
the linear sublayer. The range of Eq. (6.6.50) is valid within approximately 

5030 ~y (the buffer layer) 
 
(ii) One-equation model 

This is a model to unite an equation for k  given in Eq. (6.6.20), and 
the momentum equation in Eq. (6.6.15) which is solved in coupled with 
the continuity equation of Eq. (6.6.14). 

We shall now write a transport equation for k , by starting to obtain a 
mechanical energy equation, multiplying (dyadic product of) u (or iu ) to 
the Navier-Stokes equation where 
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uu  (6.6.51)

which directly gives 

j

i

i

j

j

i

i

j

j

i
i

j

jj
i

i

ii

x
u

x
u

x
u

x
u

x
uu

x

uupu
x

uu
t 22

 
(6.6.52)

Now we will write Eq. (6.6.52) in terms of average and fluctuating quanti-
ties, substituting the following relationship in Eq. (6.6.52) 

iii uuu  (6.6.53)
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ppp  (6.6.54)

iiiiiiii uuuuuuuu 2  (6.6.55)

and taking the time average of both sides. Then we subtract with the Rey-
nolds equation in Eq. (6.6.15) after multiplying iu  to it, and resultantly we 
obtain 
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(6.6.56)

where 2jjuuk . Each term of Eq. (6.6.56) contains identifiable energy 
as counting from the 1st term on the left hand side of the equation to right 
and over to the right hand side of the equation: 

1. time rate of change of k  
2. convection of k  by means of the mean flow 
3. convection of total energy by means of turbulence 
4. production of turbulence taken from the mean flow 
5. work done by viscous effect due to turbulence motion 
6. dissipation of turbulence by turbulence motion 

Equation (6.6.56) seems formidable, but the introduction of the pa-
rameter leads to a lose of novel algebraic difficulties and as a result it will 
be written in the boundary layer form, with a non-conservation form, as 
follows 
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xx
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t
k  (6.6.57) 

In one equation model, the three terms appearing on the right hand side 
of Eq. (6.6.57) are replaced by each appropriate term. Typically, in the first 
term, the convection of total energy can be replaced by a gradient diffusion, 
such that 
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ii
i

i x
k

x
kpu

x 1  (6.6.58) 

where, by analogy with turbulent shear stress, 1  is a constant. The second 
term, the production of turbulence, has already been modeled by the eddy 
viscosity t  in Eq. (6.6.30), so that 
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The third term, the dissipation of turbulence, is a difficult term to tackle as 
its stands. The term, setting , carries units of power per mass or 

3velocity  per length, so that dimensionally it is convenient to relate  by 
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where k  is the average kinetic energy of turbulence and l  is a length scale 
of an eddy moving with the velocity scale 21k . Therefore, using Eq. 
(6.6.60),  may be written as 

l
k 2

3

2  (6.6.61)

where 2  is a constant. Using Eqs. (6.6.58), (6.6.59) and (6.6.61) we can 
write the energy equation, the so-called k -equation, as follows 
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1  (6.6.62) 

However, it should be kept in mind that Eq. (6.6.62) is not yet in closed 
form since l  has not been correlated for with flow properties. For given 

1  and 2 , “ l ” may be correlated by experimental verification by Kline 
et al. (1968). One needs so much effort to solve Eq. (6.6.62), together with 
finding a correlation for l , and so far, one-equation model represented by 
Eq. (6.6.62) is not popular, except for one particular problem. 
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As we see in one equation model, the difficulty is to determine the 
characteristic length l , or alternatively, to determine  in the equation-k  
given in Eq. (6.6.62). The two-equation model is generally based on an 
idea that the characteristic length can be obtained by writing an additional 
equation for the k -equation. Among the most popular of the two-equation 
model is the k –  model. With the k –  model, the eddy viscosity t  is 
further written with k  and  as  

2kc
t  (or 

2kc
t ) (6.6.63)

where c  is a constant to be determined by experimental observation. 
Similar to the one-equation model in Eq. (6.6.62), a set of k –  equa-

tions is written by Tennekes and Lumley (1972) as follows: 
 k -equation: 
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-equation: 
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There are five empirical constants appearing in k –  equations. The k –  
model is widely used for analysis of two dimensional turbulent shear flows 
at high Reynolds numbers. The five empirical constants were obtained via 
experiments and are recommended for calculations: 

4411 .c , 9212 .c , 090.c , 01.k  and 31.  (6.6.66)

Note that they are not universal constants, but can be modified for specific 
problems. The constants given in (6.6.66) give good estimate for turbulent 
flow characteristic for a flat plate with high Reynolds numbers. It is further 
mentioned that ktk  and t are effective Prandtl numbers 
defined by the eddy diffusivity. 

In practical engineering applications the k –  equations, Eqs. (6.6.64) 
and (6.6.65), are solved with the continuity and momentum equations 
where, respectively, Eqs. (6.6.14) and (6.6.15) are attained by numerical 
methods. However, the models (the k –  model) are designated to the 
fully turbulent region away from solid walls. In the near region of solid 
walls, due to strong viscous effects, the velocity gradient is very high, so 

(iii) Two-equation model 
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that in practical computations, there are needs for a large number of mesh 
points to give sufficient resolutions. Even with modern super computers, 
the number of mesh to gain sufficient resolution for turbulence motion is 
not enough. There could be some methods to overcome the problem. One 
of the most fundamental methods is to use a wall-function to give an esti-
mate of turbulent properties at the first node point in a computational mesh 
in the overlapping layers; with that, the calculation in the lower layer close 
to the wall will not be necessary. In the region of the overlapping layer, 

35035 y , the turbulence energy production and dissipation is bal-
anced so that other terms beside the production and dissipation are unim-
portant. In this region, some significant use is expressed by virtue of the 
logarithmic velocity distribution in Eq. (6.6.44), which gives a first esti-
mate for the k –  parameters for the closest node py  to the wall, as 
schematically displayed in Fig. 6.27. Then the k –  equations are solved 
to give converged solutions by a numerical procedure. According to the 
idea close to the wall, puu  will be then given via py  using the wall-
function as 

By
au

u
pln1  ,and yuy p  (6.6.67)

Fig. 6.27 Node point py  with wall-function 

where 410.a  and 77.7B . In order to examine k  close to the wall, the 
k -equation in the two dimensional turbulent boundary layer in the over-
lapping layer is considered to be 
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   0
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y
u

t  (6.6.68)

It is further known that the shear stress yut  is nearly equal to the wall 

of shear stress 2uw ,  so that we can write 

2u
y
u

wt  (6.6.69)

Using the expression in Eq. (6.6.63) for t , we can calculate k  where 

2
1

2

lc

uk  (6.6.70)

Thus, k  is determined by u  with Eq. (6.6.70). Similarly, for  in Eq. 
(6.6.68), we can obtain 

          
2

y
ut  (6.6.71)

Using Eqs. (6.6.67) and (6.6.69),  is further written where 

ky
u3

 (6.6.72)

Therefore, when u  is given a priori as a guessed value, k  and  at py  

will be estimated. It is mentioned that u  is a quantity entirely determined 
by a whole turbulent flow field calculation, provided that only u  is finally 
determined at the end of recurrence procedure in a numerical calculation. 
It is also useful to give u  and u  a relationship, which is given in Eq. 
(6.6.67) as 
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u
u l

pl  
(6.6.73)

for py  at py ,we set  2141 kcyy lpp . 
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6.6.2 Turbulent Heat Transfer  

In a non-isotropic temperature field, it becomes necessary to take into ac-
count the energy equation in addition to the continuity and momentum
equations in turbulent flows. Particularly, in a compressible flow there ap-
pears a strong interaction between the velocity and temperature field. The 
general treatment for a turbulent heat transfer is far from complete, and 
rather it is at the developing stage in the research of turbulent flows. In this 
section of the chapter, we shall look into the characterization of turbulent 

equation in turbulent boundary layers, using the Reynolds’ analogy as ex-
amined earlier (in Exercise 6.5.2). 

The energy equation given with Eq. (2.5.29) can be written for an in-

force term, as follows 

ee02TkTc
t

Tc
cp

p u  (6.6.74)

where e  is the rate of strain tensor given in either Eq. (1.1.19) or (6.1.2). 
For a turbulent flow, likewise, what we had done to the velocity, tempera-
ture T  is also decomposed into its average part T  and its fluctuating part 
T , where 

TTT   (6.6.75) 

Substituting Eq. (6.6.75), together with the velocity of Eq. (6.6.10) to Eq. 
(6.6.74), and taking the average from the equation, we have 

With a non-conservation form with tensor notation, we can write 
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(6.6.77)

In order not to lose the generality and to convey the essence of the sub-
ject, it appears that Eq. (6.6.76) can be written in a two dimensional 
boundary layer over a flat plate: 

heat transfer in two dimensional consideration of the averaged energy 

compressible Newtonian fluid in the conservation form, ignoring the body 

2
02 eeTkTcTc

t
Tc

cpp
p uu  (6.6.76) 
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 (6.6.78) 

where yq  is defined as the turbulent heat flux against the molecular heat 

flux (laminar heat flux) given by the term yTky c  where 

Tvcq py  (6.6.79)

It has been mentioned that yut  in Eq. (6.6.78) is introduced analo-
gous to the turbulent shear stress expressed in Eq. (6.6.31). It is further 
postulated that in order to render Eq. (6.6.78) to make an amenable practi-
cal calculation that yq  may be set, in analogous to the Fourier’s law in 
laminar flow case, where 

y
TAcq tpy  (6.6.80)

where tA  is the turbulent heat flux coefficient. Consequently, Eq. (6.6.78) 
can be written as 
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Tc ttpcp  (6.6.81) 

The complete derivation of the energy equation of a turbulent heat transfer 
is given first by Schlichting (1955). 

The turbulent energy equation expressed in Eq. (6.6.81) is solved by 
combining the continuity equation in Eq. (6.6.26) with the appropriate 
momentum equations, for example, k –  equations for Eqs. (6.6.64) and 
(6.6.65). 

However, the problem arose where there exists another unknown quan-
tity tA  in Eq. (6.6.81) that must be determined by the flow and thermal 
variables. Considering the temperature field in heat transfer situation, there 
exists an intimate connection between heat and momentum transfer in gen-
eral. Owing to this fact, we can extent the Reynolds’ analogy to the turbu-
lent heat transfer. In order to formulate the idea we can relate the eddy vis-
cosity t (the momentum exchange coefficient) and the turbulent heat flux 
coefficient tA (the heat exchange coefficient), with the reason that both of 
which have the common dimension of the molecular viscosity. A new non-
dimensional number, so-called the turbulent Prandtl number tPr  is analo-
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gous to the molecular Prandtl number cp kcPr /0 , is a convenient pa-
rameter to relate the quantities 

t

t
t A

Pr  (6.6.82)

While we have the relationship of 
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We are be able to collect the molecular heat conduction cq  and the turbu-
lent heat transfer tq  terms in a kind of total rate of heat transfer q  where 

y
T

PrPr
cqqq

t

t
ptc

0  (6.6.84)

yT /  is taken as the positive gradient. 
The analogy between the heat and momentum transfer in a flow over a 

flat plate with a zero attack angle is discussed here in succession for the 
laminar boundary layer case. With reference to Fig. 6.28, consider the lin-
ear sublayer in the turbulent boundary layer with Reynolds’ analogy, in 
particular, where the momentum and heat transfer exchange (with coeffi-
cients respectively with t  and tA ) are thought to be insignificant. There-
fore, it may not be far from reality to write the relationship between (Exer-
cise 6.5.2, Eq. (14)) , assuming that 1tPr ,where 

  
w

c

w

w

du
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  (6.6.85)

On the other hand, with the turbulent outer layer as indicated in Fig. 
6.28, the molecular coefficients of 0  and ck  can be neglected, where it is 
assumed that 1tPr , so that Eq. (6.6.83) will become 

ud
Tdc

q
p

t

y   (6.6.86)
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Fig. 6.28 Boundary values in turbulent boundary layer 

Equations (6.6.85) and (6.6.86) now can be integrated over each layer 
separately, referring each boundary value as indicated in Fig. 6.28, to give 
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 (6.6.87)

and 

Uu
TTcq

l

l
p   (6.6.88) 

It is reasonable, therefore, to assume that the ratio wwq /  and /q  
(similarly wwq /  and tyq /  for each layer in the integration) remains 
constant across the whole width  of the boundary layer. Furthermore, 
since 1Pr , we can set the similarity of the velocity and temperature pro-
file as 

wTT
TT

U
u   (6.6.89)

Equating Eqs. (6.6.87) and (6.6.89), we can now obtain a relationship be-
tween the velocity and temperature where 

)( 11 Pr
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TT
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lwl

w  (6.6.90)

In many situations in engineering, it proves useful to consider the local 
heat transfer coefficient xh  that can be defined as 
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TT
qh

w

wx  (6.6.91)

This can be further reduced to a more convenient form with Eqs. (6.6.91) 
and (6.6.87) where 
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As an alternative expression to the local heat coefficient xh , the non-
dimensional parameter, the local Nusselt number xNu  (as defined in Ex-
ercise 6.5.2) can be written by other flow field parameters 
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x  (6.6.93)

Further, the Stanton number is similarly given where 
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x   (6.6.94)

The expression in Eq. (6.6.93) is derived from Prandtl and G.I. Taylor 
independently as the extension of the Reynolds’ analogy to the turbulent 
heat transfer. The case, when 1tPr , was studied more by Ambrok (1957). 
Numerical treatment of the turbulent flow problem in the k -  equation is 
found in Jones and Lunder (1972). 

Exercise 

Exercise 6.6.1 Estimation of Drag Coefficient on Flat Plate for 
Turbulent Flow 

Based on the momentum integral analysis, estimate the drag coefficient 
for turbulent flow over a flat plate with a zero attack angle. Let us assume 
here, for simplicity, that the turbulent boundary layer grows from the lead-
ing edge of the flat plate. The flow is a steady flow over a flat plate with a 
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zero pressure gradient so that the stream velocity U  is kept constant. Con-
sider a case of the mean velocity distribution for the turbulent boundary 
layer to be the power law 

7
11

yy
U
u n

 (1)

Ans. 

By the Kàrmàn integral equation, the local friction coefficient 
xfc  can 

be written by 

dx
d

U
c w

f x
2

2
1 2

 
(2)

 is the momentum thickness, which is given where 

0
1 dy

U
u

U
u  (3)

Setting y , the velocity distribution is expressed by the power law, 
as assumed where 

7
1

U
u  (4) 

The wall of shear stress w  of pipe given by Blasius’ formula in Eq. 
(6.4.40) is transformed to the flat plate coordinates by setting 

20 /dr , and 4960max UU with reference to Eq. (6.4.54), so that 
for the boundary layer over a flat plate, we have 

4
1

202330 UUw .  (5)

The integral equation for Eq. (2) can be rewritten by using Eqs. (3) and (4), 
which is further equated with Eq. (5) as follows 

4
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2
1

0

7
1

7
1

2 022301 UUd
dx
d

dx
dU .  (6) 

Equation (6) is an ordinary differential equation with respect to x , and 
is solved by assuming 0 for 0x to give  
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dxUd 4
1

4
1

240 /.  (7)

Resultantly, it follows 

     5
1

5
1 38203820

xxRe
xU

x .
/

.   (8)

It is noted here that the boundary layer thickness x  of the turbulent 
flow 54xx  is far thicker than that of a laminar boundary layer 

21xx , as is evident by comparison between Eq. (8) and Eq. (6.5.25). 
Now the local value of the shear stress w  of Eq. (5) can be evaluated by 
using x  in Eq. (8), so that 

5
1

202960 xUUw .  

5
1

202960 xReU.  (9)

which gives 

5
1

05920 xf Rec x .        for 710xRe  (10) 

Thus, the required drag force DF  on one side of the flat plate is calculated, 
according to Eq. (10) in Exercise 6.5.1, as 

blU
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l

wD

5
4

5
1

5
9

0

0370.

 
(11)

The drag coefficient is 

2
2
1 ubl

Fc Df  

5
1

0740 lRe.  for 75 10105 lRe  (12)

xfc  and fc  given in Eqs. (10) and (12) respectively give good estimate 
values for the Reynolds number range indicated in the equations. 

For reference, Schlichting (1955) proposed xfc  and fc , using the log-

arithmic law of the wall, and those are in good agreement with experi-
mental data in the Reynolds number range, 97 10Re10 l , which is 
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32650log2 ..xf Rec x  (13) 

and 

582log
4550

.
.

l
f Re

c  (14)

Note that fc  shown in Eqs. (12) and (14) is subjected to the turbulent 
boundary layer developed from the leading edge. However, in practice, the 
laminar boundary is usually developed immediately after the leading edge 
toward the position of the transition region that usually lies in the range, 

65 103103 xRe , so that, when the transition is assumed to occur at 
5105xRe , it is convenient to write fc  for a fully developed turbulent 

boundary flow as xffp Recc 1700 . 

975 1010105 orRex  (15) 

where fc  is given either by Eq. (12) or (14), depending upon the upper 
range of xRe . 

Exercise 6.6.2 The Temperature Law of the Wall 

The total rate of heat transfer wq  from a flat plate is written by using the 
turbulent Prandtl number with reference to Eq. (6.6.84) where 

dy
Td

PrPr
cq

t

t
pw

0  (1)

dyTd  is taken for the negative gradient from the wall. If 0t  is given 

via a linear function of y  where 

kyt

0
 (2) 

Show that T  is a logarithmic function of y . Note that y  is defined by 
the friction velocity u , such that 

0

wyyuy  (3)
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Ans. 

Equation (1) can be integrated to give 

y

t
tt

w

PrPr

dy

T
TTT

0

0

11
 (4)

where tT  is defined analogous to the friction velocity, such that 

uc
qT

p

w
t  (5)

T  given in Eq. (4) is the so-called temperature law of the wall, analogous 

ing expression: 

PrBy
a

PrT t ln  (6)

where a  is an experimental constant (such as in Eq. (6.6.67)) and B  is an 
integration constant given at a boundary of y . The expression is the loga-
rithmic expression for the distribution of temperature in the turbulent 
boundary layer. The similarity of velocity distribution in the temperature is 
evident. Note that very near to the wall, where 0t ,  the thermal 
sublayer has the following linear temperature distribution, that is repre-
sented by 

yPrT  (7)

There are some expressions for PrB  that are obtained from experi-
mental verification. For example, by referring Kader (1981) where 

PrPrPrB ln12.23185.3
2

3
1

.  (8)

Equation (8) is valid for air, water and etc. for 1707.0 Pr . 

to the law of the wall variable y  as defined in Equation (3). Equation (4) 
together with the relation of ( 0t ), as given in Eq. (2), yields the follow-
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Problems 

6.6-1. Derive the relationship to describe a turbulent velocity profile in a 
pipe with radius 0r from the definition of the eddy viscosity t  and 
of the eddy diffusivity /tt  in the turbulent boundary layer of 
a flat plate. 

Ans.  
dy
du

r
y t11
0

 

 
6.6-2.  The velocity profile in the turbulence core for a smooth pipe can be 

expressed in the logarithmic form 

5.5ln5.2 yu  

Find /t  with the functional form, using the result from previous 
question. 

Ans. 11
52 0r

yy
.

 

 
6.6-3. Air is flowing on a flat plate with a zero attack angle. Sketch how 

the boundary layer is developed on the plate, assuming that, at the 
same distance, x  from the leading edge, where the flow is reached 
to be a turbulent flow from a laminar flow at xURecritical , the 
turbulent boundary layer has started to be developed onward. 

Ans. example for 18Ref. Fig. 6.  
 
6.6-4. In problem 6.5-4, denote that the free stream velocity is sm5  and 

the kinematic viscosity of air is sm1061 25. . The length and 
width of the plate is m4  and m2  respectively. Estimate the bound-
ary layer thickness at the end of the plate surface, and calculate the 
total drag force acting on one side of the plate. Assume that the criti-
cal Reynolds number from laminar to turbulent is approximately 

5105criticalRe . 
Ans. 0.098 Nm110 Dend F,.  

 
6.6-5 Compare the velocity profile and temperature profile over the turbu-

lent boundary layer with a heat transfer from a flat plate with a zero 
attack angle. Assume 01.Pr  and 01.tPr , and use Kader’s ex-
pression with reference to Exercise 6.6.2, Eq. (8). 
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Nomenclature  

A configuration parameter 
cba ,,  constant in a turbulent flow 

0a  speed of sound 
b  internal heat generation 
Br  Brinkman number 

fD cc ,  drag coefficients and friction coefficient 

vp cc ,  specific heat 

ncccc ...,, 210  constants 
d  diameter 02rd  

hd  hydraulic diameter 
e  rate of strain tensor 

iê  unit vectors 
Ec  Eckert number 
Eu  Euler number 
F , F  force, vector 

DF  drag force 
Fr  Froude number 
f  frequency 
g  body force 
g  gravitational acceleration 
h  height or thickness or enthalpy per unit mass or heat trans-

fer coefficient 
wh  wall heat transfer coefficient 

kji, ,  unit vectors in Cartesian coordinates system 
I  unit tensor 
K  constant in a turbulent 

0K  bulk modulus 
k  average kinetic energy of turbulence or specific heat ratio  

ck  thermal conductivity 

Bk  Boltzmann constant 
rk  radius ratio 

k  thermal diffusivity 
lL,  length or l ;length scale of an eddy or ;mixing length 

cL  characteristic length 
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pl  wetted perimeter 

ml  mean free path 
m  mass 
n̂  unit normal 
P  power 
p  pressure 
Pe  Peclet number 
Pr  Prandtl number 

tPr  turbulent Prandtl number 
q , q  heat flux, vector 

wq  wall heat flux, wall heat transfer rate 
Q  volumetric flow rate 
R  (specific) gas constant 
Ra  Rayleigh number 
Re  Reynolds number 
0r  radius 

hr  hydraulic radius 
S  area 
Sn  Stanton number 
St  Strouhal number 
s  specific entropy 
t , 0t  time, reference time or starting time 
t  stress vector 
T  total stress tensor 
T  temperature or averaging time 

rT  torque 
u  velocity vector 
u  friction velocity 
U  speed or potential core speed 
U  average velocity 

wvu ,,  velocity components in Cartesian coordinates system 
V  volume 
We  Weber number 

zyx ,,  Cartesian coordinates system 
zr ,,  cylindrical coordinates system 

,,r  spherical coordinates system 
,,  matching constants 

D  damping factor 
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Nomenclature 

410 ,...,,  constants 
T  coefficient of thermal expansion  
 share rate 
 boundary layer thickness or shear layer thickness 
 displacement thickness 

h  enthalpy thickness 

T  thermal boundary layer thickness 
 roughness or dissipation energy of turbulence 
 pressure loss coefficient 
 boundary thickness ratio 
 similarity variable 

0  Newtonian viscosity 

t  eddy viscosity 
 momentum thickness 
d  dilatational viscosity 
 friction factor 

k  Kolmogorov scale of length 

T  Taylor microscale 

0  second viscosity coefficient 
 density 
 surface tension 
 stress tensor 

w  wall stress 

t  turbulent (shear) stress 

k  Kolmogorov scale of time 

R  Reynolds stress tensor 
 kinematic viscosity 

1  kinematic eddy viscosity 

0  gravitational potential 
 dissipation function 
 stream function 
 angular frequency 
 spin tensor 
 vorticity (vector) 

Superscripts 
 dimensionless variable 
 values based on law of wall 
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,  fluctuating component 
 time average 

Subscripts 
e  entrance value 
m  model 
p  prototype 
x  value based on axial position 
w  wall value 
0  initial value or base value 

 value at infinity 
21,  inner and outer respectively 
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7. Non-Newtonian Fluid and Flow 

In a general sense, fluids that exhibit characters not predicted by the New-
tonian constitutive equation given in Eq. (6.4) are non-Newtonian. The ex-
ceptions to the Newtonian fluids are not of rare occurrence, and in fact 
many common fluids are non-Newtonian. Some examples are: paints, solu-
tions of various polymers and molten plastics; food products such as apple 
sauce, ketchup and other mammalian whole foods; synovial fluid found in 
joints, blood and other organic fluids; many solid-liquid and liquid-liquid 
suspensions such as fibers in a liquid paper pulp, coal slurries, emulsions 
of water in oil or oil in water, and so on. The so-called non-Newtonian flu-
ids, as mentioned above, are often found in many fields of engineering 
fluid mechanics as well as in bio-medical fields, and exhibit interesting, 
useful and even exciting characteristics differed from those found in New-
tonian fluids. 

Many difficulties are encountered to predict non-Newtonian flow due 
to the reason that the theoretical predictions are usually based upon the use 
of idealizing rheological fluid properties with associated constitutive equa-
tions that are often difficult to verify under conditions of complex flows. 
However, in recent years extensive efforts have been carried out to con-
struct more general constitutive equations and to calculate the flows of 
practical configurations by using high-speed computers. Knowledge 
gained from CFD efforts presents the greatest amount of insight into many 
unexpected flow phenomena and explain the causes. The discovery, for ex-
ample, so-called Toms effect (1948), that high molecular weight additives 
could lower the friction factor for flow of a polymer solution below that of 
the Newtonian solvent, is recognized nowadays that the drag reduction is a 
much wider spread phenomenon than originally thought. These problems 
are studied extensively, although not being quoted in the text, in conjunc-
tion with turbulence structure and flow instability with an aid of CFD. 

In this chapter we will begin to describe characteristics and a rheologi-
cal classification of non-Newtonian fluids. Then we will proceed to de-
scribe the standard flows, which are commonly used to characterize the 
rheology of non-Newtonian fluids. Subjecting a fluid to a standard flow we 
will then be able to define material functions, which are to be derived from 
a constitutive equation. After this initial background, we will study some 
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of the non-Newtonian constitutive equations with applications to basic en-
gineering flows. 

7.1 Non-Newtonian Fluids and Generalized Newtonian 
Fluid Flow 

There exists a variety of substances for which the mechanical properties 
differ from Newton’s viscous laws to a greater or lesser extent. In the pre-
sent section, we shall discuss the rheological characteristics of non-
Newtonian fluids that are chiefly based on a shear stress and their associ-
ated viscosity. Viscoelasticity is also introduced later in this section for fur-
ther interpretations into non-Newtonian fluids. 

Some typical flows are studied in view of engineering applications in 
connection with a discussion of rheological characteristics, considering an 
interpretation of generalized Newtonian viscous laws. 

7.1.1 Rheological Classifications 

We shall deal with incompressible medium of non-Newtonian fluids as 
commonly found in practice of engineering. The rheological characteriza-
tion is done by experimental measurements. To convey the measurements 
of the subject, one approach specifies a deformation imposed on by a fluid 
and then measures the stresses generated by the flowing fluid through a 
specified channel geometry. 

 
(i) Pure viscous non-Newtonian fluids 

The most of the non-Newtonian fluids that we encounter practically 
usually fall into this category. These fluids are also termed as time-
independent fluids (fully reversible without time-lag), and are subdivided 
into several groups, as graphically shown by Fig. 7.1. A Newtonian fluid is 
defined by Newton’s law of viscosity, with reference to Eq. (6.1) as fol-
lows 

y
u

yx  (7.1.1) 

where  is the viscosity and  the shear rate. It is noted that Fig. 7.1(a) is 
called the flow curve, which is the plot of yx  and , the shear stress ver-
sus the shear rate. Similarly, Fig. 7.1(b) is a plot of  and , the shear 
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viscosity versus the shear rate.  is a function of  and is sometimes 
called the apparent viscosity a , which is defined, from Eq. (7.1.1), as 

yxa  (7.1.2) 

In case of a Newtonian fluid, = a = 0 =constant, as is indicated in Fig. 
7.1(b). 

Fig. 7.1 Pure viscous Non-Newtonian fluids 

A.  Pseudoplastic fluids (shear thinning fluids) 
Pseudoplastic fluids, as the ones indicated on curve A in Fig. 7.1(a) and 

(b), are characterized by a decreasing slop of a flow curve; equivalently, 
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the apparent viscosity decreases with increasing shear rate. The pseudo-
plastic fluid often has a rheological behavior that at very low and very high 
shear rates the apparent viscosity becomes constant; respectively, we have 

0 (called zero-shear rate viscosity) and , regions which are respectively 
called the first Newtonian region and the second Newtonian region, where 
the flow curves are linear. Pseudoplastic fluids are found in many real flu-
ids, such as polymer melts and solutions, starch paste, and glass melt. 

There are a number of empirical relationships, among which the sim-
plest is the power law suggested by Ostwald (1925). It may be written as 

1n
xy m  (7.1.3) 

where m and n are constant for a particular fluid. The fluids described in 
Eq. (7.1.3) are generally called power law fluids. In particular, when n <1, 
the fluid shows the shear thinning behavior and is characterized as a 
pseudoplastic fluid. It appears that for a Newtonian fluid n =1 and 0m . 
Equation (7.1.3) is the most widely used in a less rigorous manner in many 
practical applications. There are some difficulties that should be kept in 
mind in applications of Eq. (7.1.3); one such instant occurs where the di-
mensions of m  depend upon n ; therefore, m  is not a material property. 
Another difficulty is that for real fluids, as mentioned above, n  may not be 
constant over the entire range of , with which the apparent viscosity a  
is written as 

1n
a m  (7.1.4) 

However, n  is effective in a limited range of  for m  to be constant. 
Many other empirical formulae have been proposed to overcome some 

of the objections of the power law. One example is given where 

Ree-Eyring;  i

m

i
ixy C

1

1sinh  (7.1.5) 

iC  and i  are constants to be determined as specific molecular parameters. 
Some rheological formulae for the apparent viscosity are  

Carreau-Yasuda;  a
n

a
1

0
1  (7.1.6) 

where 0  is the zero-shear rate viscosity, a0  as 0 , a  is a con-
stant and  is the time constant. 
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Oldroyd;  2
2

2
1

0 1
1

C
C  (7.1.7) 

Here, 1C  and 2C  are constants. 
 
B. and C.  Bingham-plastic and viscoplastic fluids  

often characterized by the generalized Bingham model, which is written as 

      1-n
yxy m  (7.1.8) 

where y  is termed as the yield stress. It should be kept in mind that the 
yield stress is a finite stress required to initiate flow and represents the 
value of xy  as 0 . The Bingham plastics (fluids) behave like a straight 
line in a flow curve after the yield stress, as indicated in curve B in Fig. 7.1, 
with the setting 1n  and pm  in Eq. (7.1.8). The formula of a Bing-
ham plastic (fluid) is thus expressed where 

pyxy  (7.1.9) 

p  is called the plastic viscosity. Some real fluids behave like the Bing-
ham plastics, such as slurries, plastics, emulsions such as paint, and sus-
pensions of finely divided solids in a liquid. Some electro-rheological flu-
ids (ER fluid) have been found to be closely approximated to the behavior 
of a Bingham fluid, in which the yield stress is a function of the strength of 
electric field. 
 
D.  Dilatant fluids (shear thickening fluids) 

Dilatant fluids, as indicated in curve D in Fig. 7.1(a) and (b), are simi-
lar to pseudoplastic fluids, but differ in that the slop of the flow curve de-
ceases with an increasing of the shear rate, and equivalently, the apparent 
viscosity increases with increasing of the shear rate. These fluids are less 
common than with pseudoplastic fluids. As with pseudoplastic fluids, they 
are represented by the power law found in Eq. (7.1.3), where 1n . The di-
latant fluids have been found to closely approximate the behavior of some 
real fluids, such as starch in water and an appropriate mixture of sand and 
water. The term dilatant is also used to describe volumetric dilatancy, 
which is the tendency of suspensions to expand in a volume during flow-
ing situations. It must be noted that dilatant fluids in this text are rheologi-
cal dilatancy. 

Viscoplastic fluids, as indicated on curve C in Fig. 7.1(a) and (b), are 
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(ii) Thixotropic and rheopectic fluids 
There are some fluids, which are more complex in structure than those 

found in time independent (pure viscous) fluids, and to which the apparent 
viscosity depends not only on the shear rate, but also on the time when the 
shear has been applied or ceased. For example, in a certain colloidal sys-
tem, more particularly in a suspension, the apparent viscosity decreases 
during the mixing process, but on cessation of the shearing the viscosity 
recovers to its original value. 

 
Fig. 7.2 Time dependent fluids 

There are two general classes of such fluids: A. thixotropic fluids, in 
which the shear stress decreases with time as the fluids are sheared; and B. 
rheopectic fluids, in which the shear stress increases with time as the fluids 
are sheared. Figure 7.2 shows a schematic of the thixotropic and rheopectic 
fluid behavior in a symmetrical manner. Figure 7.2 is the simplest case of a 
symmetrical thixotropy or rheopexy in which the structure of the fluid is 
broken down (thixotropic fluid) or built up (rheopectic fluid) under in-
creasing duration of applying a constant shear rate. In case of the symmet-
rical thixotropy, on cessation of shearing the structure can build up at the 
same rate as the break-down process. Therefore, it is symmetrical in this 
sense; the opposite type is the symmetrical rheopexy. There are many cases 
in which the structure does not recover completely upon the cessation of 
shearing, often indicating hysteresis, and as a result, some factors other 
than time, such as total strain, may be influential. Certain type of ink 
shows thixotropy. Other examples include the beating and thickening of 
egg whites, which shows rheopexy. It appears that many substances, 
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however, loses their time-independent rheological characteristics at extremely 
high shearing and can behave in a totally different manner as expected. 
 
(iii) Viscoelastic fluids 

Consider a dynamic system, where one may take the stress  as a dy-
namic property and the strain  as a geometric property. For the sake of 
simplicity, the system can be regarded as temperature independent and that 
the response time is so short that the inertia effect would be negligible. 
When a material exhibits such a way that there is a unique relationship be-
tween  and , the material is called an elastic body (or elastic material). 
If there is a linear relationship between  and , we have 

G  (7.1.10)

The material is said to be a linear elastic body (or linear elastic mate-
rial), where Eq. (7.1.10) is called Hooke’s law, where G  is the Young’s 
modulus. In similar manner, as described in Eq. (7.1.1), when there is a 
unique relationship between  and , the material is called a viscous fluid. 
If  is taken for the shear stress xy  and dtd  for the shear rate, we 
can write the linear relationship of  and  for a Newtonian fluid where 

 (7.1.11)

 is the viscosity (or coefficient of viscosity). 
A viscoelastic material exhibits both elastic and viscous properties. The 

constitutive equation is written for a viscoelastic material where 

,f  (7.1.12) 

However, for many realistic viscoelastic materials, including high molecu-
lar weight polymer materials, there is a complicated constitutive relation-
ship, which is generally written in the following functional form 

0
2

2

2

2

dt
d

dt
d

dt
d

dt
d ,,,,,  (7.1.13) 

It must be kept in mind that  and  are to be treated vis a vis a tensor 
quantity in general. Some details of viscoelastic fluids and flows are 
treated in Section 7.3. Viscoelastic fluids under applied stress deform, but 
when stress is removed, the stress inside the viscoelastic fluid does not 
instantly vanish due to sustained stress by the internal molecular struc-
ture. This unique behavior is termed as the memory effect, which often 
characterizes flows of the viscoelastic fluid. In order to gain a qualitative 
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understanding of the fluid memory, more in-depth treatment will be pro-
vided in Section 7.3. 

7.1.2 Generalized Newtonian Fluid Flows 

In many engineering flows of non-Newtonian fluids, the most important 
rheological parameter is the non-Newtonian viscosity, which often has a 
substantial dependence on the shear rate, resulting in enormous change in 
pressure loss, volumetric flow rates and their associated flow characteris-
tics. In this section we shall extend the Newton’s viscous law to allow for a 
change of viscosity via the shear rate. 

The deviatoric stress tensor of an incompressible Newtonian fluid is 
written with reference to Eq. (6.4) as follows 

ij or
2 e

 
(7.1.14) 

 is the rate of strain tensor, i.e. Tuu . In order to extend the idea of a 
varying viscosity with the shear rate  to an arbitrary flow, we are able to 
write the viscosity with the function of the scalar invariants of . Here for 
the sake of clarity, the invariants of  are denoted as eI  (The first invari-
ant of the rate of strain tensor), eII  (The second invariant of the rate of 
strain tensor) and eIII  (The third invariant of the rate of strain tensor), 
which are defined by 

ii
treI  (7.1.15) 

jiijtr 2
eII  (7.1.16) 

   kjiijk 321e detIII  (7.1.17) 

so that  would be written as 

eee IIIIII ,,  (7.1.18)

Considering incompressible flow, i.e. 0u , eI becomes zero. In ad-
dition, if the flow field is assumed to be shear dominant, eIII would be re-
garded as zero, noting that for the simple shear flow eIII  becomes identi-
cally zero. By virtue of the conditions above, it would be appropriate to 
regard that  would be the only function of eII . Furthermore, it is more 
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useful to use the shear rate  than eII  if one thinks of empiricism, as dis-
cussed in the previous section, and with the fact  is calculated as the 
magnitude of the rate of the strain tensor  as follows 

eII
2
1

2
1

jiij  (7.1.19) 

Therefore, the constitutive equation of the generalized Newtonian fluid is 
written as 

)(  (7.1.20) 

 is given in Eq. (7.1.19). For example, in a simple shear, it is readily cal-
culated that eII  is 22 . 

If we assume that the fluid is inelastic and obeys the power law expres-
sion in Eq. (7.1.3), we can write general form of the power law fluid as 

1

2
1

eII
2
1

n

m  (7.1.21) 

where the apparent viscosity is defined by 

2
1

eII
2
1

n

a m  (7.1.22) 

It is mentioned that the expression of the shear dependent viscosity 
)(  in Eq. (7.1.20) can be applied for other empirical formulae, as men-

tioned in the previous section by calculating the flow characteristics of a 
steady state shear flow of non-Newtonian fluids, using  given in Eq. 
(7.1.19). 

It may be useful to use nondimensionalized governing equations in 
flow calculations. Let us demonstrate how to nondimensionalize governing 
equations by using the generalized power law. It is assumed that the flow 
is incompressible and isothermal without body force. Denote that scaling 
parameters with the characteristic dimensions are such that 

2
0 U

pp
Ut

tt
l

**** ,,, uuxx  and 2U
*  (7.1.23) 

Using the notations in Eq. (7.1.23), the continuity and Cauchy’s equa-
tion of motion (the linear momentum equation) can now be respectively 
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written as 

0*u  (7.1.24) 

and 

***
*

*

 
 p
t

St *uuu  (7.1.25) 

where the constitutive equation for the generalized power law model is 

***
2

1

eII
2
11

n

Re*
 (7.1.26) 

The nondimensional parameters that appear in the equations are the Strou-
hal number St and the generalized Reynolds number *Re , which are respec-
tively written where 

0Ut
lSt  and 

m
lURe

nn2
*  (7.1.27) 

Therefore, in order to keep the similarity of the flow of power law fluids 
for a constant St , the generalized Reynolds number *Re , which includes 
power law constants m  and n , must be kept constant. 

Exercise 

Exercise 7.1.1 The Second Invariant of the Rate of Strain Tensor 

Write the second invariant of the rate of strain tensor eII  and obtain the 
shear rate  for a given (unidirectional) velocity component in the case of 
a simple shear flow in a Cartesian coordinates system, the cylindrical co-
ordinates system and the spherical coordinates system. 

Ans. 

Set the velocity components such that 

iuu  (1) 

and the rate of the strain tensor equates to 

408



Exercise 

ij  (2) 

i  and j  is zyx ,,  in a Cartesian coordinates system and zr ,,  in a cylin-
drical coordinates system and ,,r  in the spherical coordinates system. 
The second invariant of the rate of strain tensor eII  is thus, written in Eq. 
(7.1.16), where 

)( 2
12

2
31

2
2333

2
22

2
11e 2II  (3)

the rate of the strain tensor is assumed to be symmetric, i.e. 3223 , 

1331  and 2112 . For a simple shear flow, the shear rate  will be 
given in Eq. (7.1.19) for the given coordinates systems as follows 

12
2
122

2
1 )(  (4)

so that 
(i) Cartesian coordinates system, ),,( 00xuu  

x
ux

xy  (5)

(ii) Cylindrical coordinates system, ),,( 00 uu , 0  

 
r

u
r

rr  (6)

 
(iii) Spherical coordinates system, ),,( u00u , 0  

 
r

u
r

rr  
 (7)

Exercise 7.1.2 Power Law Fluid in a Pipe 

Consider the steady state laminar and isothermal flow in a horizontal pipe. 
The fluid in the pipe is incompressible and can be treated by the power law 
fluid. Find the fully developed flow velocity profile at an arbitrary cross 
section of the pipe, and calculate the relevant flow properties, such as the 
flow rate, the average velocity and the pressure drop along the pipe. 

2
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Ans. 

Assume that the flow is axisymmetric so that the velocity components 
in the cylindrical coordinates ),,( zr  are 

),,( zu00u  (1)

where zu  is the axial velocity component and is an only function of r  as 
depicted in Fig. 7.3. Ignoring the inertial and body force term, the 

rzr
rrz

p 10  (2)

The component of the shear stress  is given by the power law 
1n

rz m  (3)

where  is the shear rate rz , and which is given as 

 
Fig. 7.3 Pipe flow of power law fluid 

r
uz  (4) 

Equation (2) can be integrated to obtain rz  by the separation of vari-
ables so that we have 

r
Cr

z
p

rz
1

2
1  (5)

where 1C  is a constant. Since rz  has a finite value at the center line, i.e. 
0r , 1C  must be zero. 

From Eqs. (3), (4) and (5), we can write an equation for zu  where 

Cauchy's equation of motion in the unidirectional flow ( z  directional) is 
written to show 
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r
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r
u

r
um

n
z

2
11

 (6)

Note that in the pipe flow we take the sign convention for a negative, 
since the velocity gradient ruz and the pressure gradient zp  are 
both negative. Equation (6) is now integrated for zu  by a separation of 
variables as follows 

nz r
z
p

mr
u

1

2
1  (7)

and 

2
1

1

2
1

1
Cr

z
p

mn
nu n

nn

z  (8)

where 2C  is a constant that is obtained by the boundary condition, i.e. 
0Ruz . Resultantly, the velocity profile zu  will be given where 

n
n

z R
rR

z
p

mn
nu n

n
n

1

1
2
1

1
1

1

 (9) 

The speed at the axis is to be the maximum speed maxU  and is given by the 
setting 0r  to yield 

n
n

n

R
z
p

mn
nUmax

1

1

2
1

1
 (10)

As a result, the velocity profile zu  will now be alternatively expressed 
with maxU  as follows 

n
n

maxz
rUu

1

R
1  (11)

The flow rate Q  is thus calculated by integrating zu across the radius to 
give 
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max
R

z UR
n
nrdruQ 2

0 13
12  (12)

The average velocity u  is also obtained from Eq. (12) where 

max2 13
1 U

n
n

R
Qu  (13)

The pressure gradient zp is constant along the z  axis, which is given 
by 

L
p

L
pp

z
p L0  (14)

where p  is the pressure drop, leaving 0p . Using Eq. (14), the 
(Darcy) friction factor , p  is obtained by  

2

2

2
11328         

2
1

u
d
L

Re
nn

u
d
Lp

n

*

/
 

(15)

*Re  is the generalized Reynolds number defined in Eq. (7.1.27)  
Note that the velocity distribution given in Eq. (11) shows flatter near 

the axis due to shear thinning, i.e. 10 n . As 1n , when the Poiseuille 
paraboloid tends to persist, and when 1n the friction factor becomes 

Re/64 . 

Exercise 7.1.3  Spherical Gap Flow with Power Law Fluid 

Examine the flow of power law fluid contained in a gap between two con-
centric spheres, where the inner sphere rotates at a given constant angular 
velocity , while the outer sphere is kept stationary. Assume that the gap 
is sufficiently narrow so that the simple shear flow persists, referring to 
section 6.3.1. Find the unidirectional velocity profile ru  and the torque 
to rotate the inner sphere against the frictional force. The geometric con-
figuration is shown in Fig. 7.4. 

Let u  be the circumferential velocity (velocity component of  direc-
tion) and be the only function for r , i.e. u,,00u  and ruu , as in-
dicated in Fig. 7.4. By ignoring the inertial term and the body force term, 
the pressure gradient in the circumferential direction (  direction) is null 
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Exercise 

due to the symmetry, provided that only the Cauchy’s equation of motion 
in the circumferential direction is written where 

rr
rr

3
3

10  (1)

The shear stress r  is given where the power law gives 

1n
r m  (2)

 is the shear rate r , which is written as 

r
u

r
r  (3)

Equation (1), together with Eqs. (2) and (3), is then solved with the bound-
ary conditions: 

  11 for rrru  (4)

and  

2for0 rru  (5)

These give the solution for u , as follows 

11
11

3

1
3

n

n rr
ru

/

/ /
 (6)

Note that in Eq. (6),  is the gap ratio defined as 

1

12

r
rr  (7)

The net toque rT  needed to rotate the inner sphere is governed by the shear 
stress r  acting on the inner sphere; this is calculated by integrating r  
over the inner sphere with 

drT rr
2

0
3

1 sin2  (8)

Note that Eq. (8) is valid for an axisymmetric flow, i.e. 0 , in gen-
eral without  contribution. 
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7 Non-Newtonian Fluid and Flow 

 
Fig. 7.4 Flow of a power law fluid between concentric rotating spheres 

 
Fig. 7.5 Torque characteristic in a spherical gap flow 

It is often convenient to nondimensionalize the torque rT  in such a way 
that 

2
1

5
1r
TC r

m  (9) 

where  is the liquid density and mC  is called the torque coefficient. Sub-
stituting Eq. (6) for Eq. (3), as well as for Eq. (2), we can obtain the torque 
coefficient mC  through Eqs. (8) and (9), as follows 
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Problems 

0
2

3
3 sin

11

3112 dn
Re

C n

n

n

m
/

*
 (10)

*Re  is the generalized (rotational) Reynolds number given where 

m
rrrRe

nn
12

2
11*  (11)

For reference, the results of Eq. (10) are representatively presented in Fig. 
7.5 for a relatively low concentration of a polyacrylamide-water solution 
of 2000 ppm with various .  As observed in Fig. 7.5, the departure of ex-
perimental data plots from Eq. (10) are speculated to be caused by the ap-
pearance of flow instability, Yamaguchi, et al. (1997). 

Problems 

7.1-1 For a flow between two concentric rotating cylinders, with reference 
to Fig. 6.3(b) in Section 6.3.1, when the outer cylinder is kept sta-
tionary, find the expression for the shear rate r , A power law 
fluid is assumed in the simple shear flow. Denote m  and n  are 
power law constants and rk  is the radius ratio defined by 21 rrkr . 

Ans. 

rk
rk

rkn

n
r
r

n

1
11gapsmallerforand

11

12
2

2
2

 

 
7.1-2 For a helical flow in a cylindrical annular, where the inner cylinder 

rotates with the stationary outer cylinder, find the second invariant of 
the rate of the deformation tensor, and the shear viscosity  from 
the power law. Note that the helical flow is such as that there is a 
flow along the rotational axis with the velocity component of zu  
with the circumferential velocity component u , whereas the radial 
velocity component ru  is kept zero in the cylindrical annular, as in-
dicated in Fig. 7.6. 
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Ans. 
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Fig. 7.6 Helical flow in a cylindrical annular 

 
7.1-3 If the temperature distribution T  of a steady state laminar flow in a 

horizontal pipe is given in the following energy equation 
2

r
u

r
Tr

rr
k zc  

Show that T  in a power law fluid is calculated by 

n
n

w

w

R
r

TT
TT

13

0
1  

where 0T  and wT  are the temperatures at the axis ( 0r ) and at the 
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7.2 Standard Flow and Material Functions 

wall ( Rr ) respectively while ck  is the thermal conductivity of the 
fluid. Compare the temperature profile with the velocity profile [Eq. 
(11) in Exercise 7.1.2] and provide comments. 

 
7.1-4 Show the difference between the power law model in Eq. (7.1.4) and 

the Carreau-Yasuda model in Eq. (7.1.6) when a set of viscosity-
shear rate data is given as displaced in Fig. 7.7. Determine the con-
stants in both models, when the data in Fig. 7.7 is fitted by both 
models. 

 
Fig. 7.7 Sample data of a shear thinning fluid 

7.2 Standard Flow and Material Functions 

In the previous section, we discovered that the dynamic property of a New-
tonian fluid in an isothermal condition is characterized by a single material 
constant, namely the viscosity. However, in non-Newtonian fluids it is 
suggested that the material constant depends upon any deformation, time 
and/or other conditions yet to be examined. The dynamic properties of the 
materials (the interest in this text lies only in substances classifiable as flu-
ids) that are used to determine the material constants in specific non-
Newtonian constitutive equations or simply used to present mechanical 
property in engineering problem, are called material functions. The method 
of determining the material functions of fluids via experimental means is 
called rheometry, in which in classic approach basic rheometric or vis-
cometric flows are introduced to give stress behavior under any given uni-
form deformation. The most common types of flow, used as standard flow 
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patterns in rheometric work, are the simple shear flow and simple shear-
free flow. 

In this section, we shall also look into the most commonly used 
rheometries based on the standard flow patterns and find approaches to ob-
tain their material functions. 

7.2.1 Simple Shear Flow 

A simple shear flow is most typically understood as the plane Couette flow 
given in Eq. (6.3.13) as follows 

yy
h
Uyu yxx , 0yu  and 0zu  (7.2.1) 

The absolute value of yx , i.e. the shear component of the rate of deforma-
tion tensor, is written as the shear rate  in a rheometric flow. In the 
rheometry in a steady state measurement, as sketched in Fig. 7.8(a), it is 
assumed that  is kept constant for such a long time that all associated 
stresses generated in a test fluid are time independent in isothermal condi-
tion. 

The stress tensor associated with a simple shear flow is given in the 
following equation, referring to Eq. (1.6.13) 

ji

zz

yyxy

yxxx

p
p

p
p ee ˆˆIT

00
0
0

 (7.2.2) 

 
Fig. 7.8 Rheometric (viscometric) flows 
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7.2 Standard Flow and Material Functions 

For rheometric flows, the fluid is assumed to be isotropic so that it has no 
preferred direction other than the unidirectional flow field. In Eq. (7.2.2), 

 is sometimes called the deviatoric stress tensor in order to distinguish it 
from the total stress tensor T . 

Due to the symmetric nature of T , recognizing the fluid as a non-polar 
fluid, the shear stresses xy  and yx  are the same in their value and yx  
will be written by using the non-Newtonian viscosity  as previously 
defined in Eq. (7.1.1) 

yx  (7.2.3) 

 
In incompressible fluids, which are subject to study in most non-

Newtonian fluids practice, the pressure p  in Eq. (7.2.2) cannot be sepa-
rated from normal stress measurements on a solid interface, so that in order 
to isolate p  from the measurements two normal stress differences are only 
meaningful when determining the material functions, such that 

2
11N yyxx  (7.2.4) 

and 
2

22N zzyy  (7.2.5) 

where the functions 1  and 2  are called the first and the second normal 
stress coefficients respectively. It is noted that 2  is used instead of  for 
the reason that the sign of the two normal stress differences are not to be 
changed for the choice of the sign for . 

, 1  and 2  are the material functions, which are often referred to 
as the viscometric functions. They are directly connected with a design of 
unit operations for processing viscoelastic materials and the mechanical 
performance of lubricants. The first normal difference 1  has significant 
effects on unique viscoelastic flow phenomena, such as die swell, Weis-
senberg effect and etc. Both xy  and 1  can be routinely measured by 
commercially available instruments. The second normal stress differ-
ence 2 , however, receives less attention due to difficulties in its meas-
urements, and for the smallness of its value. For many materials, 2  
would be usually an order of magnitude smaller than, and have the op-

viscometric functions are displayed. The graphs are typical of many 
posite sign to, that of 1 . In Fig. 7.9, the representative data trends of 
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polymeric liquids (Huilgol and Phan-Thien, 1997). Viscometric functions 
are important parameters in order to describe flow characteristics of non-
Newtonian fluids, the determining suitability of the constitutive equation. 
It is reassuring that in Newtonian fluids, the total stress tensor for the sim-
ple shear flow is expressed by a tensor form 

jixy

yx

p
p

p
p ee ˆˆIT

00
0
0

 (7.2.6) 

 
Fig. 7.9 Typically observed viscometric functions (replotted after Huilgol                                

and Phan-thien, 1997); Polyiso-butylenes in cetane    
 

As it is readily verified in Eq. (7.2.6), the normal stress components in 
a deviatoric stress tensor are all zero, i.e. 0zzyyxx . Therefore, 
with Newtonian fluids,  is constant for  and both 1  and 2  are null. 
There are many complex and unique flow phenomena that appear in non-
Newtonian fluids due to the fact that there exist normal stresses beside the 
non-linearity of the non-Newtonian viscosity. 

The appearance of a normal stress in cases of viscoelastic fluids, such 
as often seen in polymeric fluids, is particularly important to understand 
flow behavior. In such a case, the generations of normal stresses are 
closely connected with the elasticity of viscoelastic fluids. A measure of 
the elasticity is often quoted by the so-called stress ratio defined as 

yx

yyxx
s  (7.2.7) 
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7.2 Standard Flow and Material Functions 

In many polymeric fluids, s  is a monotonic increasing function for an in-
creasing , as representatively shown in Fig. 7.9, while in Newtonian flu-
ids s  is always kept at zero. 

7.2.2 Shearfree Flow 

Shearfree flows are flows in which there is no shear velocity gradient 
)( jiij 0  in the rate of the deformation tensor, but only a shearfree 

(normal) velocity gradient ii . There are some variations to achieve an 
ideal shearfree flow; they are defined by introducing the elongation rate  
along one arbitrary axis, such as 

xx
x

x
u

 (7.2.8) 

In dealing with incompressible non-Newtonian fluids, the continuity 
equation can be written as 

0
z
u

y
u

x
u zyx  (7.2.9) 

To satisfy Eq. (7.2.9), the other normal velocity gradients have to be writ-
ten in the following forms, taking into account Eq. (7.2.8) so that 

k
y

u y 1
2

 (7.2.10) 

and 

k
z

uz 1
2

  (7.2.11) 

The choice of the axis is arbitrary due to the assumption of isotropic and 
frame invariance. The flow fields of shearfree flows defined in Eqs. (7.2.8), 
(7.2.10) and (7.2.11) are given by 

xux  (7.2.12) 

 

yku y 1
2
1  (7.2.13) 

and 
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zkuz 1
2
1  (7.2.14)

k  is constant and has the range in 10 k . In particular, for rheometric 
flows, there are some shearfree flows by choice of  and k  as follows 
(i) 0k , 0  

xu x , yu y 2
1 , zuz 2

1  (7.2.15) 

The flow is called an elongational (or extensional) flow, as representa-
tively shown in Fig. 7.8(b). The flow uniaxially stretches in x-direction, 
while contracting toward the center from the y  and z  axis points. 
 
(ii) 0k , 0 

xux , yuy 2
1 , zuz 2

1      (7.2.16) 

The flow is called a biaxial stretching flow. This is opposite to (i), 
where in y  and z , a directional stretching flow persists, while along the x 
direction the flow is contracting. 
 
(iii) 1k  

xux , yu y ,  0zu      (7.2.17) 

The flow is called a planar elongational flow. The flow appears along 
both the x and y plane, where in x  direction flow stretches and in y  direc-
tion flow contracts, and vice versa, depending upon the choice of the sign 
of . 

Similar to a steady shear flow,  is kept constant for such a long time 
that all associated stresses generated in test fluids are time independent at 
isothermal conditions. The stress tensor associated with shearfree flows are 
given via the following equation 
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00

 (7.2.18) 

Along with the thought of a simple shear flow, two normal stress dif-
ferences are only meaningful when determining the material functions for 
a shearfree flow, i.e. 
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,kyyxx 1  (7.2.19)

and 

,kzzyy 2  (7.2.20)

where 1  and 2  are the viscometric functions for shearfree flows of iso-
tropic fluids. Particularly in view of rheometry, the case of 0k  is impor-
tant, so that Eqs. (7.2.19) and (7.2.20) become 

yyxx
e01 ,  (7.2.21)

and 

002 ,  (7.2.22)

e is called the elongational viscosity (or extensional viscosity) and also 
called the Trouton viscosity. It is readily obtain through the elongational 
viscosity e  of the fluid, i.e. 03e , a result found via Trouton (1906). 
The rheometric measurement of an elongational viscosity is not easy, as is 
the shear viscosity in general, due to the difficulties of the isolation of 
shear influences. A typical measurement for data is displayed in Fig. 7.10, 
for a polystyrene melt (replotted after Munstedt 1993). In many polymeric 
fluids, the elongational viscosity is typically much larger (at least three 
times larger than a zero-shear viscosity) than its viscometric counterpart. It 
is noted that in Fig. 7.10, 0  as 0 , 0  is the zero-shear vis-
cosity. 

As observed in Fig. 7.10, the elongational viscosity e  approaches to 
the value of 03  as 0 , where (at very low shear rate region) the shear 
stress is almost proportional to , showing Newtonian fluid characteristics 
and the region called the first Newtonian region (also see Fig.7.1(b)). 
Some rheometric measurements on elongational viscosity are found in ref-
erence to Tirtaatmadja et al. (1993). 

There are some elongational flow fields typically encountered in engi-
neering practice. They are, for example, converging and diverging chan-
nels, squeezing film, spinning synthetic fibers from molten liquid and so 
forth. The tubeless-siphon, in which a siphon continues to ascend even 
though the upstream end has been withdrawn from the fluid surface, is also 
prominently dominated by the elongational flow field. And, moreover flow 
behavior in viscoelastic fluids is widely discussed from the view point of 
elongational viscosity in recent years. 
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Fig. 7.10 Elongational viscosity (replotted after Munstedt 1993) 

7.2.3 Oscillatory Rheometric Flow 

Viscometric functions , 1 , 2  and e , derived from standard flow pat-
terns, which, in view of  rheometric work, are commonly the simple shear 
and shearfree flows, are defined as time independent variable functions. 
However, in dealing with viscoelastic fluids, the dynamic properties and 
time dependent material functions, are of considerable practical impor-
tance, as flow behavior can often be directly related to the viscous, as well 
as elastic parameters, where the fluids undergo the transient process. In 
view of processing such material, the dynamic properties can also yield 
strong insight into the microstructure of the material. Among other time 
dependent material functions, the most widely used rheometric flow to de-
termine the linear viscoelastic properties of polymeric fluids is a small am-
plitude oscillatory shear flow. The idealistic flow configuration is that the 
upper plate of Fig. 7.8(a), i.e. the simple shear flow, is oscillated with a 
small amplitude to give the shear strain  as a function of time in such a 
way that 

tt sin0  (7.2.23) 

where 0  is the shear strain amplitude and  is the frequency. The shear 
strain rate  is then obtained by differentiating Eq. (7.2.23) to give  

tt coscos 00  (7.2.24) 

where 0  is the shear rate amplitude. 
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7.2 Standard Flow and Material Functions 

By subjecting to the limit of linear viscoelasticity (such that the viscoe-
lastic material under this study may follow both Hooke’s law and New-
ton’s law simultaneously) stress is linearly dependent upon the shear strain 
and the shear strain rate at any time. This is the basic idea of the Boltz-
mann’s superposition principle, and that is directly applied to developing 
the mathematical modeling of liner viscoelastic materials. From the 
rheometric point of view, the basic theory of linear viscoelasticity consti-
tutes a convenient and a rather accurate analytical tool to analyze rheomet-
ric experimental data. In following the principle of superposition, we can 
write the shear stress yx  as linear in the strain or strain rate with corre-
sponding forms of Eqs. (7.2.23) and (7.2.24), assuming that the relevant 
strain or strain rates are small enough 

tG*
yx sin0  (7.2.25) 

t*
yx cos0  (7.2.26) 

where  and  are phase-shifts that are sometimes called mechanical loss 
angles. Note that 0*G  and 0*  give the stress amplitudes. Instead of 
relating  and  with material functions, it is customary to write 
these relationships in the following forms, using trigonometric identity 

 tGtGyx cossin0  (7.2.27) 

ttyx sincos0  (7.2.28) 

There are two sets of linear viscoelastic material functions, namely G , 
G  and , , appearing in Eqs. (7.2.27) and (7.2.28), where G  is called 
the storage modulus, and G  is called the loss modulus and  is called 
the dynamic viscosity. 

It is sometimes convenient to consider G  and G  as real and 
imaginary components of a complex number respectively, defined as fol-
lows 

GiGG*  (7.2.29) 

where *G  is called the complex modulus. Thus, from Eq. (7.2.29), the 
magnitude of *G  is given: 

22 GGG*  (7.2.30) 
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Furthermore, in Eq. (7.2.27), G  and G  are expressed in terms of a 
phase-shift where 

GG * cos  and GG * sin  (7.2.31) 

Alternatively, we may be able to define the complex viscosity *  
by writing 

i*  (7.2.32) 

where 

22*   

As a result, we have the following relationship 

Gsin*  and Gcos*  (7.2.33) 

The typical trends of experimental observation on G , G  and ,  
are sketched for linear polymeric fluids in Fig. 7.11. 

 

 
Fig. 7.11 TTime dependent material functions; (a) G and G  for typically 

polyethylene melt; (b)  and  for a typically narrow distribu-
tion linear polymer 

 
It will now prove useful to speculate on the limiting behavior of the 

storage and the loss moduli at low frequencies as 0 ; and at high fre-
quencies as  for linear viscoelastic fluids. At low frequencies, as 
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expected from a linear viscoelastic fluid, we may find that viscous effects 
dominate the behavior so that 

000
limlim G  (7.2.34) 

0limlim
00

G  (7.2.35) 

0lim
0
G  (7.2.36) 

where 0  is the zero-shear viscosity. Furthermore, it is known that 2G  
approaches a non-zero limiting value, for low frequencies 

           GAG
0

2

0
limlim  (7.2.37) 

where GA  is a limiting value for 0 . 
At high frequencies, the elasticity effects come to dominate the behav-

ior in such a way that  

gGGlim  (7.2.38) 

0limlimlim G  (7.2.39) 

where gG  is referred to as the glassy modulus; moreover,  becomes 
proportional to .2  At very high frequencies, the fluid becomes like an 
elastic solid, where no viscous effects tend to appear. 

There are some useful relationships involving viscometric functions to 
relate time-independent and time-dependent material functions. One of the 
most quoted relationships among many others is the Cox-Merz (Cox and 
Mertz, 1958) rule, which is expressed as 

*   by setting  (7.2.40) 

This rule has been found to be relatively reliable for fluids with flexible 
molecules, and other relationships as the ones proposed by Laun (1986) for 
the first normal stress coefficient 1  where 

702
21 12

.
GGG  (7.2.41) 

This relationship is tested for melts of some low- and high-density poly-
mers, Laun (1986). 
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7.2.4  Viscometric Flow in Rheometry 

Through the determination of material functions, we have discussed vis-
cometric (or rheometric) flows that are equivalent to steady (or unsteady) 
simple shear flows, such as Couette flows, and shearfree flows, such as 
elongational flows. In this section, we shall pay more attention to practical 
measurements that determine those material functions, specifically the vis-
cosity, the two normal stress differences, and the elongational viscosity. 

The time-dependent material functions of kinematically variable vis-
cometric flows and shearfree flows may be readily established from the 
time independent rheometric flows although, in practice, in precision 
measurements they are not at all easy a matter to achieve. As we have re-
stricted material functions in non-Newtonian fluids, the fluids are assumed 
to be incompressible and isothermal. There are only two cases of typically 
studied flow configurations (in a sense that they are most widely utilized 
as practical rheometric measurements) that are considered in this section. 
(i) The cone and plate rheometer 

That is probably the most popular geometry for rheological measure-
ments of viscoelastic fluids.  It is usually used for measuring the shear vis-
cosity and the first normal stress difference simultaneously.  Additionally, 
the second normal stress difference can be determined from the relation-
ship 21 2NN , a value of which is measurable by means of measuring the 
pressure distribution across a plate. An ideal cone and plate arrangement is 
illustrated in Fig. 7.12(a). A more practical arrangement in an actual 
rheometer is also displayed for a reference. In order to recognize the use-
fulness of a practical arrangement in Fig. 7.12(b), it is worth noting that 
the reason for utilizing a truncated cone is to avoid frictional torque at the 
contact with the plate, and with which it becomes easier to set the correct 
gap as required by the geometry of Fig. 7.12(a). The sample fluid is then 
placed in the space between the truncated cone and cup. 
     In order to verify the measuring principle, we shall look the basic ar-
rangement of the cone and plate. As shown in Fig. 7.12(a), a spherical co-
ordinates system , ,r  is used to analyze the flow field, assuming that 
the cone is rotated at the angular velocity  (either the cone or the plate 
can be rotated) at a symmetric axis. Due to the rotational symmetry,  
components become identically zero and as the corn angle 0  is taken to 
be very small, i.e. approximately in a range where 0 3   0 , the flow 
can be regarded as a narrow gap flow, namely with the condition of the ve-
locity u  of the fluid that can be treated as u,0,0u . The velocity 
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profile u  is also regarded as linear to the position ( r , ) in the gap and is 
approximated as 

Fig. 7.12 Viscometric (or rheometric) flow 

02
ru  (7.2.42) 

The shear rate  in a spherical coordinates system is the -component 
 with the rate of strain tensor , which is written as 

            
sin

sin u
r

 (7.2.43) 

The substitution of Eq. (7.2.42) for Eq. (7.2.43) yields 

0
 (7.2.44) 

since here we assume 1sin  and 0cos . The importance of Eq. 
(7.2.44) is that  is independent from the position ( r , ) (free from coor-
dinates) and that  is only determined by the fixed angle 0  and the rota-
tional speed (angular speed) . It is repeatedly stated that Eq. (7.2.44) is 
only true for 0  if it is very small. 
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The viscosity  can be obtained from the actual measurement of 
torque rT , which is exerted on the shaft of a cone to rotate at a given rota-
tional speed . The net torque on the surface of cone is given where 
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(7.2.45) 

since 1sin  and  is independent from coordinates system ,,r  
for 10 . Note that sign to  reflects the shear stress on the solid 
surface of a cone. The viscometric function , the viscosity, will be ob-
tained by substituting Eqs. (7.2.44) and (7.2.45) to Eq. (7.1.1), yielding 

3
0

2
3

R
Tr  (7.2.46) 

Therefore, from Eq. (7.2.46), the viscosity is readily determined by meas-
uring rT  for a given  with fixed geometric constants 0  and R . The 
simplicity of the result given in Eq. (7.2.46) explains why the cone and 
plate rheometer is so widely used. In the most of commercially available 
rheometers, the range of s1  is approximately 41 1010  for pre-
cise measurements, although it is dependent upon a sample fluid. 

More importantly, normal stress differences 1N  and 2N  can be deter-
mined by a cone and a plate rheometer. Particularly, it is ideal for a cone 
and plate geometry to measure the first normal stress difference 1N . The 
two normal stress differences for 1N  and 2N  in a spherical coordinates 
system are defined as 

1N  (7.2.47) 

and 

rrN2  (7.2.48) 
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Cauchy’s equation of motion given in Eq. (2.2.6), ignoring the inertial term 
DtDu  and the body force term g , can be written as 

T0  (7.2.49) 

where T  is the total stress tensor defined in Eq. (1.6.13). The r - and the 
r - components of the stress are to be zero. There is no shear force acting 
in r - direction, and the flow is assumed to be symmetrical with respect to 

. We can simply write the total stress tensor as follows 

rrrr pT , pT  and pT  (7.2.50) 

The Cauchy’s equation, thus, in a spherical coordinates system will be 
written in the component form where 
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Equation (7.2.51) is further rearranged to give 
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(7.2.52) 

Using the relationship of Eq. (7.2.50) with Eqs. (7.2.47) and (7.2.48), we 
can rewrite Eq. (7.2.52) as follows 

21 2
ln

NN
r

p rr . (7.2.53) 

Equation (7.2.53) will become a more convenient form for actual meas-
urement when rrrr pT  is eliminated. Rewriting of Eq. (7.2.53) can 
be done for 2N , being as a unique function of  and independent from 
r  so that 

r
p

r
T

r
Trr

lnlnln
 (7.2.54) 

The value of Eq. (7.2.54) is kept constant since 21 2NN  is also a 
unique function of , showing that plotting T  against ,ln Rr  on a 
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semi-logarithmic scale should yield a straight line, the slope of which is 
21 2NN , i.e. 

R
rNNRTrT ln2 21  (7.2.55) 

where Eq. (7.2.55) is obtained by integrating Eq. (7.2.53) from rr  to 
Rr . However, the measurement for the (total) pressure pT  is 

a very difficult task, even when using very small and sensitive flush-
mounted pressure transducers along the plate wall. 

On the other hand, the primary normal stress difference 1N  can be 
readily determined by measuring the axial net force (net thrust force) F  
exerted on a cone (or plate). This is a widely used technique for rheometry. 
F  is generally related to the normal stress  and the atmospheric pres-
sure ap  on a cone through the following algebraic manipulation 

a
R

a
R

r

a
R

r

a
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pRdrdrT

pRdrdrTT

pRdSTT
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0

2
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2

0

2
0

2

0

2

sinsincos

sincos
 

(7.2.56) 

since 2  , 0cos  and 1sin . Substituting Eq. (7.2.55) for Eq. 
(7.2.56) and integrating the equation, we have 

a

a
RR

pRRTRNNR

pRdrrRTdrr
R
rNNF

22212

2
00

21

2
2
1

2ln22
 
(7.2.57)

We assure that the free surface at Rr  is at the atmospheric pressure ap , 
i.e. arr pRT , so that we can write 2N  as 

a

arr

pRT
pRTRTRTN2  

(7.2.58) 

Combining Eq. (7.2.57) with Eq. (7.2.58) yields the final form 
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21
2

R
FN  (7.2.59) 

Equation (7.2.59) indicates that 1N  will be readily determined by 
measuring the net axial force (net thrust force) F  for a given geometry R , 
subject to the assumption that a small cone angle, a negligible fluid inertial 
and edge effect (including surface tension) are involved. For precise meas-
urements, corrections for these possible errors are recommended in Car-
reau, et al. (1997). 

Other commonly used rotational rheometers are the parallel plate (or 
tensional) rheometer, and the concentric cylinder rheometer (referring to 
Section 6.3.1). The common features of these rheometers are based on the 
narrow gap flow where the shear rate is to be regarded as being independ-
ent from the spatial coordinates  
(ii) The elongational rheometer 

There is an increasing amount of effort for polymer solutions for appli-
cations such as lubrication, turbulent drag reduction, coatings and atomiza-
tion, in which the elongational (or extensional) flow field pre-dominates 
the mode of deformation. Continuing interest in polymer melts stems from 
the fact that polymer processing operations such as flat film extrusion, film 
blowing, fiber spinning and flow molding involve such elongational de-
formation that have been in fact subject of research for many decades. To 
characterize the flow of non-Newtonian fluids in the elongational deforma-
tion and to verify their constitutive relations, particularly for those derived 
from molecular dynamics, it is necessary to measure the material functions 
for shearfree flows. In view of investigating the elongational properties of 
polymer solutions, and a higher elongational rate for polymer melts, the 
two elongational flow fields, which have been used to try to generate a 
uniaxial stretching, are introduced in this section. In order to realize the 
flow field, some basic configurations for the types are exemplified via fi-
ber spinning (or extrudate drawing), and pressure driven flows in a con-

are numerous modifications from the basic configurations, and therefore 
there is room for further precision measurements, for example, Collyer, 
et al. (1988) and Dealy, et al. (1999). 

An apparent elongational viscosity e  defined in Eq. (7.2.21) for uni-
axial stretching is measured by using the relationship 

E

E
e 1  (7.2.60) 

verging channel, as illustrated in Fig. 7.13(a) and (b) respectively. There 
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where E  is the net tensile stress, which can be approximated for 
xxyyE , and E  is the tensile strain rate. The basic configuration for 

measuring e  comes from a fiber-spinning apparatus, as illustrated in Fig. 
7.13(a), where the test fluid, usually in the state of melt, is forced through 
a spinneret by means of a pressurized reservoir. Using a technique with an 

Fig. 7.13 Elongational rheometer 

The vertical tensile forced F  in the filament is then measured on the 
rotating dram as indicated in Fig. 7.13(a). There are obviously sources for 
error associated with the measurement. They are, for example, the stress 
history through the spinneret and the exist point of the capillary channel 
(where the die swell occurs), surface tensile, inertia and air friction.  

Neglecting these uncertainties and assuming that the force in the filament 
is kept constant along its length, the tensile stress would be given where 

2

4 L

E
D

F  
(7.2.61) 

With the continuity of the volume flow rate Q i.e. 42
LLuDQ  

40
2
0 uD , where 0u  and Lu  are the speed of flow at the position 0x  

and Lx . Equation (7.2.61) is written as 

extrudate drawing, the filament (fiber) is cooled by exposure to ambient air, 
and is drawn down by means of a take-up dram. 
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2
0

0
4

D

F
u
uL

E (or F
Q
uL ) 

(7.2.62) 

If the cross section area of the filament varies with the axial distance x , 
for example, according to 

xeAxA 0   (7.2.63) 

0A  and xA  are the cross section area at 0x  and x  respectively. It 
proves useful to justify the derivation of Eq. (7.2.63). That is originated 
from the thought that a measure for the amount of elongation E  is often 
described by the so-called Hencky strain, defined as 

0

0 lnln
x
x

A
A

x
E  (7.2.64) 

The strain rate E  is thus expressed as 

dt
dx

xdt
d E

E
1  (7.2.65) 

So that, for a constant E , the length x  increases with time t  exponen-
tially with the expression 

tEexx 0  (7.2.66) 

and for the cross section area where 
tEeAA 0  (7.2.67) 

Equation (7.2.63) is thus recovered by assuming that E  is kept constant 
along its length to give x  with, likewise, only a function of time where 

tx E  (7.2.68) 

For Lx , knowing Lu , Eq. (7.2.63) may be approximated through the 
following form 

L
E u

L

L eDD 2
0

2

44
 (7.2.69) 

Equation (7.2.66) can then be written for E  as 
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0
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(7.2.70) 

c  is an experimental constant. Thus, from Eq. (7.2.62) and Eq. (7.2.70), 
the apparent viscosity defined in Eq. (7.2.60) is readily calculated where 

0

2
0

0 ln

4

u
ucD

F
u

L

L
e  

(7.2.71) 

In order to minimize the error and to achieve a more idealistic state to 
validate Eq. (7.2.71), the filament can be extruded in isothermal cambers, 
for example, Sampers and Leblans (1988). 

Test fluids with higher fluidity and at higher elongational rate may be 
tested for measuring the apparent elongational viscosity by using a pres-
sure-driven converging channel as illustrated in Fig. 7.13(b). The average 
velocity increases monotonically as fluid particles move toward the apex. 
There appears an elongational flow field, though we must aware of the fact 
that there exists a boundary (shear) layer along the channel wall. To have a 
well-defined elongational flow field in the channel, the upstream section of 
the channel needs to be a tube with a large diameter 0D  relative to the 
throat diameter LD .  The entering flow also has to be moderate. The rela-
tive amount of a shear layer and an elongational core will depend on the 
geometry of the channel, the volumetric flow rate and the fluid’s properties. 
To minimize the presence of the shear layer, it has been proposed that the 
channel walls may have to be lubricated with a relatively low viscosity 
fluid (Hsu et al. 1980), although it is difficult to form a uniform layer of 
lubricant along the channel wall. 

Considering the elongational rheometer, an injection molding machine 
is often used as a rheometer head. Cogswell (1978) derived an expression 
for calculating an apparent elongational viscosity by using a die entry flow 
field. See reference to Fig. 7.13(b) for a nomenclature in cylindrical coor-
dinates. The entry pressure drop entp  is assumed to have two contributing 
parts where 

esent ppp  (7.2.72) 
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Exercise 

sp  is the shear flow contribution and ep  is the elongational flow contri-
bution. The velocity through the channel is calculated by the power law 
model with a power law index n , and for the power law fluid, the average 
shear viscosity (shear thinning viscosity 1n ) a  is obtained via the ap-
parent shear rate a  in the capillary viscometer whose radius is LR , such 
that 

3
4

L
a R

Q  (7.2.73) 

This is also the so-called Newtonian wall shear rate (see Exercise 7.2.4). 
The derived expression for the apparent elongational viscosity e  is given 
in Gogswell (1978) as 

entE pn 1
8
3  (7.2.74) 

ent

aa
E pn 13

4  (7.2.75) 

so that 

2

22

32
19

aa

ent
e

pn  (7.2.76) 

The measuring technique with a pressure-driven converging channel 
has an advantage in the case of a rheometric measurement. However, an 
unknown flow field in the channel would lead to future questions of 
equivalency to simple uniaxial stretching that is based on a shearfree flow, 
no matter how drastic assumptions have to be made. This is, in fact, the 
difficulty of measuring the elongational viscosity in general. 

Exercise 

Exercise 7.2.1 1N  Measurement by a Cylindrical Couette Flow 

By utilizing a simple shear flow in concentric rotating cylinders (refer-
ring to in Fig. 6.3(b)) the normal stress difference, especially the 1st 
normal stress difference rrN1  in cylindrical coordinates system, can 
be measured. Discuss the principle of the measurement, assuming that in 
the gap there are non-zero stress components of r , rr ,  and zz. 
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Consider a case when the inner cylinder is rotated with an angular velocity 
 for a small gap ratio 121 rrkr . 

Ans. 

With a simple shear flow, 0,,0 uu , and Cauchy’s equation of mo-
tion in r  direction, ignoring the body force term, we have 

r
r

rrr
p

r
u

rr
12

  (1)

Equation (1) can be rearranged, using rr -component of the total stress ten-
sor rrT  as follows 

rr
u

r
p

r
T rrrrrr

2
 (2) 

Since rrT  is an only function of r , i.e. infinite length cylinder approxima-
tion, Eq. (2) can be integrated with respect to r  to obtain rrT  

dr
rr

urTrT
r

r

rr
rrrr

2

1

2

21  (3)

resulting in 

2

1

1
2

22
r

r
rrrrr dr

r
N

r
urTrkT  (4)

In the case of a small gap, the cylindrical Couette flow, the shear rate 
r  can be reduced to (Eq. 6.3.37) 

r
r k1

 (5)

which is assumed to be kept constant in the gap, so that u  becomes the 
linear velocity profile as follows  

2
2 1

1 r
rrk

k
u r

r
 (6)

Substituting Eq. (6) for Eq. (4), and noting rNN 11 , Eq. (4) can now be 
integrated to obtain 
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r

r
rrr

r
rrrrr

k
N

k
kkrk

k
rTrkT

1ln

1ln121
2
1

1

1

22
2

2

22

(7) 

and to set 

rk
Np 1ln1  (8)

p  is the measured pressure difference between the outer and inner cylin-
drical walls. p  is the actual value of the pressure difference, which in-
cludes the normal stress components and is measurable by such flash 
mount pressure transducers.  is a known function, which is written as 

r
rrr

r k
kkrk

k
1ln121

2
1

1
22

2

2

 (9) 

Therefore, 1N  can be obtained in principle from Eqs. (7) and (9) where 

rk

pN
1ln

1  
(10) 

Exercise 7.2.2 Energy Dissipation 

Give an expression for the energy dissipation cW  per cycle per unit of 
volume in an oscillatory shear. 

Ans. 

The energy dissipation cW  is equal to the work done per unit volume 
of a fluid undergoing one cycle in an oscillatory shear yx , so that cW  can 
be written as 

c
yxc dttW  (1) 

The share rate t  and yx  in Eq. (1) are given in Eqs. (7.2.24) and in 
(7.2.25) as follows 
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tt cos0  (2)

        tyxyx sin0  (3)

0  is the share rate amplitude, 0yx  is the stress amplitude and  is the 
mechanical loss angle for the angular velocity . It is noted that 0yx  
given in Eq. (7.2.25) is as follows 

00
*Gyx  (4) 

where *G  is the magnitude of the complex modulus and 0  is the shear 

strain amplitude. 
     Substituting Eqs. (2) and (3) for (1) and integrating gives  

00

0

0

2

0
00

sin
sin
sin

sincos

*G

dtttW

yxo

yxo

yxc

 

(5)

From the relationship in Eq. (7.2.31), we find that 

00GWc  (6) 

Therefore, the energy dissipation is directly proportional to the loss mod-
ulus. 

Exercise 7.2.3 Dynamic Properties of G and G   

Examine the storage of G and loss of G  moduli for a Newtonian fluid 
and a Hookean solid where subjected to an oscillatory shear. 

Ans. 

For a Newtonian fluid, we have a linear pure viscous constitutive rela-
tionship where 

yx  (1) 

For  the oscillatory shear, we have this from Eq. (7.2.24): 
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tyx cos0  (2) 

In comparison with Eq. (7.2.28), we can derive the relationship 
 

G    and 0G  due to 0  (3) 

This shows that the mechanical loss angle (phase-shift) is 2  since 
)()( tt cos2sin . 

For a Hookean solid, we have a linear pure elastic constitutive relation 
where 

Gyx  (4)

G  is a shear modulus while the oscillatory shear from Eq. (7.2.23) leads to 

tGyx sin0  (5) 

Similarly, in comparison with Eq. (7.2.27), we can obtain results that give 
us 

       GG     and  0G  

These show that the mechanical loss angle (phase-shift) is zero. 

Exercise 7.2.4 Rabinowitsch Procedure 

Knowing a constitutive relationship for a non-Newtonian fluid (typically 
for power law fluids) or a Newtonian fluid, an apparent viscosity given in 
Eq. (7.1.2) is measured by a capillary rheometer. Show the principle of the 
measurement and apply it to a power law fluid, for example. 

Ans. 

     Consider a flow in a capillary tube with reference to Exercise 7.1.2. The 
shear stress  rz  is given in Eq. (5) in Exercise 7.1.2 as follows: 

z
pr

rz 2
 (1) 

At the tube wall, i.e. Rr , the wall shear stress w  is written as 
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z
pR

w 2
 (2) 

From Eqs. (1) and (2), we can write rz  as 

r
R
w

rz  (3)

Note that Eq. (3) is valid for any fluid in a fully developed pipe flow. 
     For a steady state of fully developed unidirectional flow, the velocity 
profile zu  at a given cross section is only a function of r , so that the shear 
rate  0zuzrz  may be written by a function g  as follows 

rz
z g

r
u  (4) 

Here, g  is a positive function of rz  and rz  is a function of r . Integrating 
Eq. (4) for given boundary conditions, i.e. 0zu  for Rr , we have 

   
R

r rzz drgu  (5) 

Equation (5) can be transformed into an integration with respect to  as 

       w dgRu
w

z  (6)

where  we can write rz  for brevity’s sake. 
It is now desired to derive an expression for the flow rate Q , which is 

calculated by 

     
R

R

z

dr
r
ur

drruQ

0

2

0
2

)(
 

 

(7) 

     
R

drgr
0

2  (8) 

The integration parameter r  in Eq. (8) can be transformed into  with the 
aid of Eq. (3) to give 
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w dgRQ
w

0

2
3

3

 (9)

Setting the shear rate rz  in Eqs. (4), (5) is now rewritten as 

w d
R
Qw

0

2
3

3

 (10)

Equation (10) is also written as a differential equation of Q  by differentiat-
ing w  to give 

      223
3

31
www

w
w Q

d
dQ

R
 (11)

and 

w

w

w
w d

Qd
R

3

23
11  (12)

where w  is the wall shear rate at Rr . Equation (11) is often called the 
Rabinowitsch equation, noting that Eq. (11) can be written in term of the 
pressures difference Lppp 0  for a given section L , as exemplified in 
Fig. 7.3, with the following formula 

pd
dQpQ

Rw 31
3  (13)

where a relationship LpRw 2  is used for Eq. (12). 
Equation (12) can be further reduced to a preferable expression to fit a 

monotonous, simple polynomial form as follows: 
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(14)

In order to simplify Eq. (14), we may introduce parameter 'n  by defining 
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wd
R
Qd

n ln

4ln
1 3

 (15)

so that Eq. (14) can be newly expressed as 

a

w

n
n

R
Q

n
n

4
13

4
4

13
3

 
(16)

where a  is the apparent Newtonian wall shear rate. Here, the term 
'/)'( nn 413  is usually called the Rabinowitsch correction. The non-

Newtonian viscosity   is thus determined with a shear rate w  where 

w

w
w  (17) 

Let us examine a case of a power law fluid along with the abovemen-
tioned procedure 

n
ww m  (18)

The logarithm form of Eq. (18) is 

ww nm lnlnln  (19)

By combining Eq. (19) with Eq. (16) and setting aw , we have 

3

4ln
4

13lnlnln
R
Qn

n
nnmw  (20)

The differentiation of Eq. (20) with respect to 34ln RQ  gives 

nn

R
Qd

d w

3

4ln

ln  
(21) 

Therefore, a flow curve of w  vs w  is plotted in log–log scale as shown 
schematically in Fig. 7.14, where the slop is equal to the power law index 
n . The intercept p  of wln  and )4ln( 3RQ  at a given  wpw  and 

wpw  will give m  as 
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Fig. 7.14 Flow curve of power law fluid 

wpwp n
nnm )(
4

13lnlnln  (22)

so that 
n

wp
wp n

nm
13

4  (23)

Thus, knowing m  and n  in Eq. (18), the non-Newtonian viscosity  will 
be obtained readily by the relationship given in Eq. (17). 

Problems 

7.2-1 In Exercise 7.2.1, show that 1N  can be further simplified to the form  

1
1

rk
pN  

when the inertial term is ignored. Note that rr kk 11ln )(  and 
 rrrr kkkk 12111 2  for 1rk . 

 
7.2-2 A power law fluid is flowing in a pipe with a 0.05 m diameter at a 

volume flow rate of sm /. 341010 . If the power law index n  is 0.7, 

 445 



7 Non-Newtonian Fluid and Flow 

estimate the apparent shear rate and show the difference if the flow 
is assumed to be Newtonian.  

Ans. 

sw

sw

18150
3

2
050

410104
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fluidNewtonian

19020
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fluidlawPower
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.

 

 
7.2-3 When a rod is rotated at an interface of a viscoelastic fluid, the fluid 

climbs the rod (see Fig. 7.15). The phenomenon is called the Weis-
senberg effect. Explain this phenomenon, considering the pressure 
difference p  given in Eq. (8) in Exercise 7.2.1 (cylindrical Couette 
flow). Thoughts on viscoelastic phenomena would be great help, 
where details will be studied in Section 7.3. 

 

 
Fig. 7.15 WWeissenberg effect 
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7.2-4 Discuss and specify difficulties for measuring the elongational vis-
cosity by utilizing the converging channel (refer Fig. 7.13 (b)). 

7.3 Viscoelastic Fluid and Flow 

There are flow phenomena that cannot be explained by the Newtonian vis-
cous law. Of which, the best know is the Weissenberg effect, in Problem 
7.2.3, where some non-Newtonian fluids climb up a rod when it is inserted 
perpendicular to the fluid interface and rotated along its axis. The phenom-
ena can be seen easily by stirring paint or cream in daily life. Another phe-
nomenon associated with behavior of non-Newtonian fluids is the extru-
date (die) swell in which the fluid emerges from a capillary tube and the 
diameter increases in vicinity of the exit (for example see Fig. 7.13(a)). 
This phenomenon is often experienced in the extrusion of meltplastic. 
These phenomena of non-Newtonian fluids are responsible for normal 
stress effects, contrary to what the Newtonian viscous effect (shear stress) 
does. The normal stress effects are an expression of a fluid elasticity, 
which is added to the viscous effects when the fluid is in motion. The vis-
coelastic fluids possess both viscous and elastic characters, with a nature 
unto themselves. 

There are so many attempts to include the elastic effect in a macro-
scopic constitutive equation, with which unique phenomena of viscoelastic 
fluids would be explained. Although it is almost impossible to categorize 
the viscoelastic constitutive equation, historically, there might be three ap-
proaches to construct the equations: the first approach is one that is devel-
oped from a simple one dimensional rheological equation using a spring 
and a dashpot together with the concept of continuum mechanics, based on 
experimental facts and, moreover, experiences; the second approach is one 
that is derived from the general concept of genuine continuum mechanics; 
and the third approach is one that is developed from molecular dynamics 
in combination with the continuum concept, considering the molecular 
structures of the fluids, chiefly for polymeric fluids. In this text we shall 
follow the first approach in great detail. 

The application of a constitutive equation for viscoelastic fluids to flow 
phenomena is another problem. Particularly, flows in actual engineering 
are very complicated where, in analysis, the nonlinear constitutive equa-
tion is highly coupled with its continuity, the linear momentum and energy 
equations. In such situations, the only possible way to tackle these prob-
lems is to rely on numerical analysis. Nevertheless, there are some analyti-
cal solutions possible for a simple geometry of flow. In this text we will 

 447 



 7 Non-Newtonian Fluid and Flow 

see some of these simple flows of viscoelastic fluids, which are described 
with linear viscoelastic models.  

7.3.1 Linear Viscoelastic Rheological Equations  

For a linear viscoelastic rheological equation, the constitutive equation is 
generally expressed by Eq. (7.1.13) with a linear relationship between , 

 and their time derivatives. 
The most fundamental theory in the case of an elastic liquid is derived 

from the so-called Maxwell element, as schematically shown in Fig. 7.16. 
The model consists of a series arrangement of a purely viscous element as-
signed as dashpot, where  is the viscosity and a perfectly elastic body is 
assigned as a spring where G  is the modulus. The Maxwell model of vis-
coelasticity is obtained by thought of the Maxwell element, which is sub-
jected to a sudden elongation and the force is then calculated as a function 
of time. As seen from the mechanical assembly in Fig. 7.16, the Maxwell 
element has no unique reference length and it will deform indefinitely 
when a force (per unit area)  is applied. This behavior is analogous to the 
liquid-like behavior of a melt of an uncross-linked polymeric material over 
its glass transition.  

Assume that the stress 1 , (the force per unit area) in the spring is 1G  
and the stress 2  in the dashpot is 22 )( t , Here, we have a rela-
tionship between 1  and 2  where 

21  (7.3.1)

since these are connected in series. In the system where the total strain of 
the system is written as 
 

 
Fig. 7.16 Maxwell element 
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  Fig. 7.17 Voigt element (or Kelvin element)  

 
Fig. 7.18 Jeffreys element 

21  (7.3.2)

By differentiating Eq. (7.3.2) with respect to time t, we have 

ttt
21  (7.3.3) 

so that with Eq. (7.3.1), we are able to write an equation relating the stress 
and strain rate 

    

G
t

G
t

t
2

1

 

 

 

 

(7.3.4) 
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Equation (7.3.4) can be further reduced as an expression for  where 

tt
  (7.3.5) 

G  is called the relaxation time. Equation (7.3.5) is the Maxwell 
model of a viscoelastic fluid. Equation (7.3.5) is a first order ordinary dif-
ferential equation of . Since  is only a function of time, Eq. (7.3.5) can 
be solved for  to give 

ctde
t

e
tt

 

and using  

''
'

dtte
t tt

 (7.3.6) 

where the stress  at t  is determined to have a finite value  
for the finite value of the strain rate tt   at t , i.e. to 
satisfy the following condition 

t

t

tt
e

et
t

1
limlim  

 

(7.3.7) 

It should be mentioned that Eq. (7.3.5) is the differential equation for the 
Maxwell model and Eq. (7.3.6) is the integral equation for the Maxwell 
model, both of which are equivalent. Equation (7.3.6) can be further re-
duced to the following expression with the integration by parts where 

t tt
tdttet

- 2
),(

)(
 (7.3.8) 

In Eq. (7.3.8), we used the strain at a past time t  relative to the reference 

a unique configuration for the fluid at time past, but with only a reference 
state at the present time. Thus, the relationship between the strain and 
strain rate will be given where 

state at the present time t . This is due to the reason that there would not be 
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t

t
duutt,  

Equivalently, 
t

t
duu

t
tt

t
t ,  (7.3.9) 

The mechanical assembly that consists of a spring in parallel with a 
dashpot is called a Voigt (or Kelvin) element, or body, as schematically 
displayed in Fig. 7.17. The schematic of the assembly is where the body 
returns to a unique length, to the rest of the length of the spring, when the 
force (per unit area) is absent. The Voigt element is not intended to be a 
model for an elastic rubber; however, qualitative characteristics are quite 
similar to those exhibited by rubbers for its response to changes in applied 
force, showing that the Voigt element is analogous to the behavior of a vis-
coelastic solid. 

With Voigt element, the strain  is the same at both of the spring and 
dashpot, besides for the overall force (per unit area)  of the parameter as-
sembly, we can write 

21  (7.3.10) 

so that the following relationship exists 

t
G  (7.3.11) 

Equation (7.3.11) is the Voigt model of a viscoelastic solid and can be solved 
for t  with an initial condition of 0  and 0  at time 0t , to yield 

tG

e
G

10  (7.3.12) 

The important point of the model is that the viscous resistance to elonga-
tion brings a time dependency into the response of the body. Equation 
(7.3.12) may be alternatively written in the following form, by setting 

G  and G0  

t

e1  (7.3.13)
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This indicates that for a sudden change in force (per unit area) 0 , the 
strain  approaches its plateau  asymptotically as time elapses. This 
indicates that a viscoelastic solid has a time constant  and cannot re-
spond instantaneously to changes in stress. This is called the retarded elas-
ticity, and the time to reach e1  of  is called the retardation time. The 
strain change t  in time t  for a given stress 0  is called the creep. 

While dealing with more realistic viscoelastic materials, the basic 
models (i.e. the Maxwell element and Voigt element) are not necessarily 
adequate to apply with their own form. There are typically some combina-
tions of these mechanical assemblies, and along which are the three ele-
mental models of viscoelastic liquids called the Jeffreys elements, as indi-
cated in Fig. 7.18. For the three elements models, we have the following 
stress-strain relations 

t
1

1  (7.3.14) 

t
G 2

222  (7.3.15) 

From Eqs. (7.3.14) and (7.3.15), we can write an expression after differen-
tiating both sides 

2

2

2121212 tt
G

t
G  (7.3.16) 

By knowing that  and  are functions of time only, we can write Eq. 
(7.3.16) with the simple form 

tt
b

t
b

t
a 211  (7.3.17) 

where 1a , 1b  and 2b  are the new constants defined where 

2

21
1 G

a , 11b  and 
2

21
2 G

b  (7.3.18) 

The three new constants have relationships: 

2

1

1

2
1

Gb
ba  (7.3.19)
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and 

1

2
1 b

ba  (7.3.20)

Herewith, both 1a  and 12 bb  have a unit of time where we can replace 
them with new notations 

11a  and 2
1

2

b
b  (7.3.21) 

Using 1  and 2 , Eq. (7.3.17) can be rewritten where 

tt 201  (7.3.22) 

with 10 b  and 21 . Equation (7.3.22) is a constitutive equation of the 
Jeffreys model that contains two time constants 1  and 2 ; these are re-
laxation time constant and retardation time constant, respectively.  

Since  is a function of only time, Eq. (7.3.22) is a first order ordinary 
differential equation and there is a solution via an integral form as follows 

tdtttet
t

tt

1

20

1

2

1

0 21 1  
 

(7.3.23) 

where t  is the Dirac delta function. Equation (7.3.23) can be further re-
duced to the following form with an integration by parts 

tdttttet
t tt

1

20

1

2
2

1

0 21 1

 

(7.3.24) 

where we used following relationship of the delta function 

02
0

fdtxxfdxxxf
aa

a
 (7.3.25) 

and 

0fdxxxf
a

a
)()(  (7.3.26) 

Experiments thought of vis a vis the Maxwell element, Voigt body and 
Jeffreys model are subjected to a sudden unidirectional elongation in 
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which the forces (per unit area) are calculated as a function of time. The 
analogous rheological experiment is one in which a sample of viscoelastic 
material is suddenly deformed: 0  at time 0t , and then the resulting 
stress t  is measured as a function of time, that is 

00,tGt  (7.3.27) 

0,tG  is called the relaxation modulus. This is called a stress relaxation 
experiment. As the most fundamental point of correspondence, we will 
now show that for a very small strain 10 , G  is independent of 0  in 
general, so that a linear relationship may stand, such that 

0tGt  (7.3.28) 

This very small-strain behavior is called a linear viscoelasticity. 
A general equation that describes all types of linear viscoelastic behav-

ior may be derived from the idea of a superposition principle, called the 
Boltzmann’s superposition principle as shown in Fig. 7.19. Consider a se-
quence of a very small strain occurring at time 1t , 2t , 3t , so that we have 
the relationship, according to the principle 

tttG

tttttG

tttGtttGt

t

t
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i
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1

2211

 
 

 

(7.3.29) 

For an interval of a step strain t , we may write tdt , so 
that Eq. (7.3.29) can be rewritten where 

ttGt
t

 (7.3.30) 

It is noted that  is defined by a mathematical convenience, with 
reference to Eq. (7.3.7), so that the stress  has a finite value at t . 
Equation (7.3.30) can be further reduced to another expression in terms of 
the strain  (instead of the strain rate ) vis a vis the integration by parts, 
using the relationship of Eq. (7.3.9), as follows 

td
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Fig. 7.19 Step strain in superposition principle 

t

t

tdttttM
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(7.3.31) 

'ttM  is called the memory function. Both integral expressions in Eqs. 
(7.3.30) and (7.3.31) show that the stress at the present time t  depends on 
the history of the state of the strain for all times past .tt  

In summarizing this section, let us look at the linear viscoelastic fluids 
relaxation modulus where the Maxwell model and the Jeffreys model are 
respectively given as 

'tt

ettG  (7.3.32) 

and 

ttettG
tt

1

20

1

2

1

0 21 1  (7.3.33) 

Similarly, the memory functions are respectively given where 
tt

ettM
2

 (7.3.34) 

and 
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ttettM
tt

1

20

1

2
2

1

0 21 1  (7.3.35) 

It is mentioned that the exponential factors in G  and M  describe the 
fading memory, which is the decay of a weighting factor (both the relaxa-
tion modulus and the memory function) as time elapses from its original 
state. 

7.3.2 Linear and Nonlinear Viscoelastic Models 

Linear viscoelastic rheological equations can now be generalized to ar-
bitrary small displacement flows, recognizing, first of all, that the relaxa-
tion process is independent, not only of the magnitude of the strain , but 
also of kinematics of the deformation. This can be done by replacing the 
strain  by the strain tensor  and the strain rate  by the rate of the 
strain tensor  for infinitesimal deformations.  In addition, the stress  to 
achieve via the stress tensor  is used to obtain the following alternative 
forms of the Boltzmann’s superposition principle: 

t
tdttttGt ,  (7.3.36) 

and 
t

tdttttMt ,  (7.3.37) 

Then the Maxwell model is written via integral equation 

  tdttet
t tt

,
2
0  (7.3.38) 

Equivalently, with use of a differential equation, we have 

0t
 (7.3.39) 

Similarly, the Jeffreys model is also written as an integral equation, 
giving us 
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tdttttet
tt

t
,

1
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1
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2

1

0 21 1  (7.3.40) 

Again, an equivalent form via a differential equation: 

tt 201  (7.3.41) 

In Eqs. (7.3.38) to (7.3.41), we used 0  as the zero shear rate viscosity. 
These linear viscoelastic constitutive equations derived from general-

ized Maxwell and Jeffreys models are based on the idea that flows undergo 
infinitesimal displacement gradients. However, flows with large displace-
ment gradients are found to be more realistic in practice, and constitutive 
equations are obtained on the basis of large displacement gradients that are 
found to be more appropriate in comparison with experiments. Also, some 
molecular theories, such as Bird et al., (1987 vol. 2), suggest very strongly 
that it is more appropriate to adopt the concept of large displacement gra-
dients. Owing to these reasons, it is thought to take a fairly large displace-
ment gradient into consideration in order to construct a viscoelastic consti-
tutive equation. 

An admissible viscoelastic constitutive equation would be obtained 
from a thought of relative strain tensor IC, 1ttR  given in Eq. (1.4.6), 
where 1C  is the Finger tensor. R , a symmetric tensor, contains informa-
tion about the orientations of the three principle axes of stretch ratios and 
the magnitudes of the three principle stretch ratios. It should be kept in 
mind, as verified in Section 1.4, that 1C  itself does not contain informa-
tion about the rotation of material lines that occurs during the deformation. 

With the argument introducing the relative strain tensor R  in a viscoe-
lastic constitutive equation, we shall replace tt,  in Eq. (7.3.37) with 

ttR , , to give 

t
R

t

tdttttM

tdttMt

),(

IC 1

 
(7.3.42)

The model of Eq. (7.3.42) is referred to as a Lodge network (rubberlike) 
liquid and has a linear dependence on the history of a relative strain tensor, 
although a relative strain tensor is itself nonlinear in the displacement gradi-
ents. In this sense, the model may be regarded as quasi-linear. By adopting 
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the memory function ttM  from the Maxwell model given in Eq. 
(7.3.34), we have a constitutive equation when writing 

tdttet R

t tt

,
'

2
 

 

(7.3.43) 

A simple integral constitutive equation of a nonlinear version, such as 
Equation (7.3.43), can be converted to an equivalent differential form by 
differentiating the equation via the present time t . The time dependent 
term appears in the integral in three places; they are: in the memory func-
tion, in the Finger tensor, and in the upper limit of integration. Now we can 
see the conversion of the integral constitutive equation of Eq. (7.3.43) into 
the differential form 
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(7.3.44) 

 
In using the following identity for the time derivative of a Finger tensor 

T
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(7.3.45) 

we have a differential form of the constitutive equation where 

Equation (7.3.43) is known as the Lodge equation, which is really a 
nonlinear equation similar to the Maxwell model in terms of the displace-
ment gradients. In similar fashion, the specific choices for memory func-
tion, for example, the Jeffreys model given by Eq. (7.3.35), will lead to 
another type of nonlinear version of the model. 
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(7.3.46) 

Each bracket…(1), (2) and (3)…implies that of Eq. (7.3.44). Rearrange-
ment of the terms in Eq. (7.3.46) yields 

e02  (7.3.47) 

where  denotes the upper convective time derivative defined in Eq. 
(1.3.13), i.e. 

Tuu  (7.3.48) 

e  is the rate of the strain tensor defined in Eq. (1.1.16), i.e. 
Tuue2  (7.3.49) 

Equation (7.3.47) is called the upper convective Maxwell (UCM) equation. 
As discussed in Section 1.3, the UCM equation does obey the material ob-
jectivity, equivalent for the principle of the frame invariance. Furthermore, 
in view of satisfying the material objectivity, the UCM equation is ex-
tended to be written as 

e02  (7.3.50) 

as well as 

e02  (7.3.51) 

where  and  denote the lower convective time derivative and the coro-
tational or Jaumann time derivative respectively, referring to Eqs. (1.3.14) 
and (1.3.15). These equations are called, respectively, the lower convective 
Maxwell (LCM) equation and the corotational Maxwell (CRM) equation. 
It appears that UCM equation is more commonly used in practice than the 
other two Maxwell models. This is chiefly because of the reason that the 
other Maxwell model (LCM in particular) does not give a qualitative 
agreement in comparison with rheological experimental data, and have no 
molecular basis, while the UCM equation does gain its background from 
the molecular based dynamic theories from Bird et al. (1977). The integral 
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form of the CRM equation is often called the Goddard–Miller equation 
(1966), which contains a spectrum of relaxation times. 

In carrying out a numerical simulation to a flow of viscoelastic fluid, 
the differential type of constitutive equation is often more preferable than 
the integral type in discretizing procedure. 

In similar fashion, the integral constitutive equation of the Jeffreys 
model given in Eq. (7.3.40), can be converted into differential equations. 
Resultantly, they are, as proposed by Oldroyd 

ee 201 2  (7.3.52) 

and 

ee 201 2  (7.3.53) 

These two equations are also frame invariants, meeting the requirements 
from the material objectivity. Equation (7.3.52) is called the Oldroyd-B 
equation, and Eq. (7.3.53) the Oldroyd-A equation. As mentioned earlier, 
Oldroyd-A equation is not used due to the reasons inherited from the prob-
lems of LCM. In addition to the Oldroyd-A and B equations, there is an 
equation, called the corotational Jeffreys equation, which has the expres-
sion 

ee 201 2  (7.3.54) 

Oldroyd’s equations have an additional term, )ee,e 222 (or   to Max-
well’s equations, which are inherited from the retardation term of the Jef-
freys model given in Eq. (7.3.22). This term can be regarded as arising 
from stresses in a solvent of polymeric solutions (denote the solvent stress 

s  and the polymer stress p ). In the case of Oldroyd-B equation, the (to-
tal) stress  can be regarded as a simple summation of p  and s  as 

sp  (7.3.55) 

where for, with p  and s , the following constitutive equations can be 
applied: 

epp p21  (7.3.56) 

and 
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es s2  (7.3.57) 

Equations (7.3.56) and (7.3.57) are respectively the UCM equation and the 
Newtonian viscous equation. Any constant appearing in Eqs. (7.3.56) and 
(7.3.57) can be related by 

sp

s
sp

1
20  and  (7.3.58) 

where p  and s  are respectively the viscosity of a polymer contribution 
and a solvent viscosity. It is further noted that the Oldroyd-B model has a 
molecular basis from the elastic dumbbell in a solvent. Oldroyd (1958) 
proposed an extension of the B-equation, introducing 8 constants in the 
equation, which are also subject to the constraints of frame invariance. The 
Oldroyd 8-constant equation yields a reasonable account for estimating 
non-Newtonian viscosity and normal stress differences for incompressible 
viscoelastic fluids. In opposition to what has just been stated, there is a 
disadvantage for a model that, at a higher shear rate, the model tends to 
loose its quantitative agreement with actual experimental data. 

We now look into a strongly nonlinear case, while as we have seen thus 
far, the Maxwell equations and Oldroyd’s equations are, in a sense, quasi-
linear, where the stress and strain relationship is indeed linear. Giesekus 
(1982) proposed a model like the UCM equation, in which a nonlinear 
term, derived from the viewpoint of a molecular basis, is appended. 
Namely, the constitutive equation is given where 

epppp p
p

21
1  (7.3.59) 

with auxiliary equations written as 

ps  (7.3.60) 

and 

es s2   (7.3.61) 

Note that p and s  are, respectively, solvent and polymer contributions 
to the stress tensor . The Giesekus model contains four constants, in 
which 1  is a relaxation time, s  and p  are respectively the solvent and 
polymer contributions to the zero-shear rate viscosity 0  and  is a non-
dimensional parameter called the mobility factor. The term involving  is 
originally derived from a molecular theory associated with anisotropic 
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hydrodynamic drag on the constituent polymer molecules, Giesekus 
(1966). The model is originally designated as an application for polymer 
solutions. The range of the mobility factor  lies between 0  and 1, where 

0  corresponds to the minimum anisotropies (isotropic drag) where the 
UCM equation is recovered, while 1 corresponds to the strongest ani-
sotropic drag. It is worthily mentioned that, when 1 , a steady state 
shear and an elongational stress are identical to those obtained from CRM 
equations. It appears that Eq. (7.3.59), the polymer contribution constitu-
tive equation, is found to give a good rheological characterization to poly-
mer melts. 

Equations (7.3.59), (7.3.60) and (7.3.61) can be converted to a single 
constitutive equation with the following relationship 

ep s2  (7.3.62) 

which is substituted in Eq. (7.3.59) to give 
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(7.3.63) 

where constants have a mutual relationship to satisfy  

120
120 1

and  ,
/

s
ps  (7.3.64) 

It will prove useful to note that with the constitutive equation of Eq. 
(7.3.63), the shear viscosity has a finite value as the shear rate  ap-
proaches infinity, satisfying the rheological characters of polymeric solu-
tions. The Giesekus model can be reduced to a number of constitutive 
equations referred to in the literature. For example, by setting 02  and 

21/ , the Leonov-like model (1976) of a steady shear and a shearfree 
flows are reduced. 

There are some useful nonlinear constitutive equations, which are 
listed below. 
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ep 2
G

 (7.3.65) 

   where G  is a constant modulus and  is defined as 
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e:  (7.3.66) 

 (ii) The Phan-Thien and Tanner model (1977) 

e*
02rtY  (7.3.67) 

*  is an interpolated derivative defined by the following formula using 
Eq. (7.3.63) 

*

2
1c

dt
d T  (7.3.68) 

and 

r
t

r atetY
r

10  (7.3.69) 

where a , c  and  are constants. Y , as a function of rt  given in Eq. 
(7.3.69), is used for curve fitting for certain rheological data with a  being 
a constant of small argument approximations and for 00 G . 
 
Integral form: 
 
(i) The convected generalized Maxwell model (Lodge network model, 

1964 and 1983) 

tdtte R

t n

i

tt

i

i i ,
1

2  (7.3.70) 

where the bracket is the memory function. The model is derived from a 
molecular theory of polymer melts, and also gives a constitutive equation 
for dilute polymer solutions, by giving explicit expressions for i  and i . 

 
Differential form: 
 
(i) The White–Metzner model (1963) 
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tdttWttWttM R
R

t
,, ,I

I
I,   (7.3.71) 

In Eq. (7.3.71), W  is a scalar (potential) function that gives strain energy 
and ttU  II,I,  is the free energy of elastic deformation as follows 

I, ,I, WttMttU  (7.3.72) 

where I  and II  are scalars defined from the Finger tensor 1C  as follows 
1I Crt  (7.3.73) 

and 

221

2
1 CC rr tt  (7.3.74) 

Some simplifications are expressed with an incompressible flow limit, i.e. 

1det 1C  (7.3.75) 

and with the Cayley-Hamilton theorem 

CICC 12  (7.3.76) 

Taking the determinant to both sides, we have 

Crt  (7.3.77) 

where C  is known as the Cauchy strain tensor, defined where 

ICC 1  (7.3.78) 

Also, the term R  that appears in the second term of Eq. (7.3.71) is the 
(another form of) relative strain tensor, namely 

CIR  (7.3.79) 

As an alternative, Eq. (7.3.71) is also written in its original form as fol-
lows: 

tdttUttUt
R

R
 ,I,

I
 ,I,  (7.3.80) 

Equation (7.3.80) is proposed independently by Kaye (1962) and Bernstein, 
et al. (1963), and is widely known as the K-BKZ equation, which is devel-
oped around ideas of rubber elastic theories. 

 
(ii) The Factorized K-BKZ equation: 
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Equation (7.3.71) can be reduced to a number of constitutive equations, 
as is often referred in the literature. For example, by setting 

odd

ttettM
22

2
096  (7.3.81) 

and 

nnn ˆˆˆC dW :ln
4
5, 1  (7.3.82) 

we can obtain the Curtiss–Bird (1981) constitutive equation. 
 

7.3.3 Viscoelastic Models to Standard Flow and Application to 
Some Engineering Flow Problems 

In the preceding section we shall see the rheological predictions of some 
simple viscoelastic constitutive equations. However, it should be kept in 
mind that these viscoelastic constitutive equations would be used to por-
tray the rheological properties that are observed in typical polymeric fluids. 
There are, in fact, a wide variety of material functions, as overviewed in 
Section 7.2. The cases examined here are chiefly based on the properties, 
in view of applying the equations to engineering problems, that are de-
pendent upon the shear viscosity  and the first normal stress coeffi-
cient 1  in steady, simple shear flows, and also the elongational viscos-
ity e  at finite level of the elongational rate  in particular. 

Some of typical flow problems are exemplified in the later section to 
illustrate the methods of applying the equations. 

7.3.3.1 UCM, CRM and Giesekus Equations 

In order to examine rheological characteristics of the constitutive equations 
at a steady state, an assumption is made to state that a time period after 
imposing a steady shear or elongation is much longer than the relaxation 
time constant, which is a property of fluid at rest. 

We shall begin to examine the UCM equation given in Eq. (7.3.47), for 
simple shear and shearfree flows. Firstly, in the simple shear flow, UCM 
equation is written (with reference to Exercise 7.3.1) where 
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Thus, from Eq. (7.3.83) we are able to obtain the material functions as 

0xy , 2
01 2yyxxN  and 02 zzyyN  (7.3.84) 

which gives us 
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Secondly, in shearfree flows, the UCM equation is similarly written as its 
component form 
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(7.3.86) 

 

Thus, from Eq. (7.3.86) in the case of uniaxial stretching, i.e 0k , in an 
elongational flow, the elongational viscosity e  is obtained where  

121
3 0yyxx

e  (7.3.87) 

In a similar manner, the CRM equation given in Eq. (7.3.51), in a sim-
ple shear flow, can be written as its component form 
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Thus, from Eq. (7.3.88), the material functions are  
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which gives us 
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If we proceed along the same line of reasoning, for the shearfree flow, the 
CRM equation is written as 
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00  (7.3.91) 

which readily gives the elongational viscosity in its simplest form for 
0k  as follows 

03e  (7.3.92)

Figure 7.20 shows a qualitative comparison of rheological predictions 
of UCM and CRM equations for: (a) normalized viscosities 0 , (b) nor-
malized first normal stress coefficients 01 2 , (c) normalized second 
normal stress coefficients 02 , and (d) normalized elongational vis-
cosities 03 . The CRM equation gives fairly good qualitative predic-
tions on shear thinning characters. However, with the CRM equation, the 
elongational viscosity becomes constant for all , giving a Trouton value 
of 03 , which is not realistic with general polymeric fluids, which of-
ten show the strain hardening.  

It is useful to mention that the shear viscosity given in Eq. (7.3.90) can 
be modified to write: 

2
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2

0
1
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 (7.3.93) 
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Fig. 7.20 Rheological predictions via UCM and CRM equations 

 
Namely, Eq. (7.3.93) is the equivalent form with the Carreau-Yasuda for-
mula presented in Eq. (7.1.6) where 2a  and 0 . Usually, the shear 
dependent material functions given in Eq. (7.3.93) give too large predic-
tion to agree with most data on polymeric fluids, for which the range of n  
is 0150 .. n  

The Giesekus equation given in Eq. (7.3.59) is a nonlinear constitutive 
equation, which contains the quadratic term of  with a given constant of 
the mobility factor . Choosing  gives more realistic predictions in both 
melts and solutions of polymeric fluids. Now, cases are examined for the 
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equation in steady simple shear flow: 
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(7.3.94) 

where G  is defined by 1PG . Equation (7.3.94) has, thus, algebraic 
relationships for four stress components as follows 

02 22
1 xyxxxyxx G

 (7.3.95) 

022
yyxyyy G

 (7.3.96) 

01 Pyyxyxyxxyyxy G
 (7.3.97) 

02
zzzz G

 (7.3.98) 

Solving Eqs. (7.3.95) to (7.3.98) for each stress component xx , yy , xy  
and zz , we can obtain a steady state of normalized material functions for 
the simple shear flow, where xy  and 
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 is a parameter defined by 

211
1  (7.3.102) 

and for  

2
1

2
1

2
12

18
11161  (7.3.103) 

The elongational viscosity predicted from the Giesekus equation may 
be obtained for the steady shearfree flow of uniaxial stretching, i.e. 0k , 
as follows 
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(7.3.104)

Equation (7.3.104) contains three stress components, for which the alge-
braic equations can be written where 

022 2
1 Pxxxxxx G

 (7.3.105)

02
1 Pyyyyyy G

 (7.3.106)

02
1 Pzzzzzz G

 (7.3.107)

Solving Eqs. (7.3.105) to (7.3.107) yields the normalized elongational 
viscosity to write 
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(7.3.108) 

In the application of polymeric solutions, the Giesekus equation can be 
written in the form given in Eq. (7.3.63), where the parametric relationship 
is given in Eq. (7.3.64). Using the notation found in Eq. (7.3.64), the 
steady state normalized material functions are calculated to give, for the 
simple shear flow by letting xyps0  

211
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 (7.3.109)
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 (7.3.110)
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and for the shearfree flow of uniaxial stretching: 
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(7.3.112)

In Fig. 7.21, similar to the cases of the UCM and CRM equations in 
Fig. 7.20, the rheological predictions via the Giesekus equation for solu-
tions are also plotted qualitatively from Eqs. (7.3.109) to (7.3.112) for 

001012 .  (i.e. for a relatively small retardation time). The choice of 
the mobility factor  would soften the material functions with an idea that 

0  gives the limit of the UCM equation. The Giesekus model often 
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gives a good rheological estimate for melts and solutions in practical use, 
which also reflects the popular quotation found in the CFD. 

Fig. 7.21 Rheological predictions via the Giesekus equation for exam-
ple; 001012 .  

7.3.3.2 Unidirectional Basic Flow Problems 

There are many interesting and rather unexplained flow phenomena that 
occur in a flow of viscoelastic fluids. In engineering flow situations they 
are extremely complicated due to viscous and elastic effects interacting in 
the flow field where, in most cases, the only way to examine the flows is to 
obtain the numerical solutions. One particular problem arises, however, 
when a realistic constitutive equation is used to simulate viscoelastic flows, 
while the convergence of numerical solutions is often difficult due to the 
nonlinearity of the constitutive equation and the boundary conditions, 
whether if they are no-slip or slip conditions at a given wall. 
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In this section of the chapter, we will try to interpret some of viscoelas-
tic flows using simple linearlized theories. This certainly limits the type of 
results we can obtain, bearing in mind. 

As a representative case, the transient Poiseuille flow of a viscoelastic 
fluid may be treated numerically using a simple finite difference technique. 
Note that the configuration has already been treated in Section 6.4.3 in the 
Newtonian case. 

Denote the unidirectional flow field in a cylindrical coordinates system 
when truuz , , and the shear stress trrz , . The equation of motion, 
the Cauchy’s equation of motion, for the cylindrical flow problem, is writ-
ten as 

r
r

r
tP

t
u 1  (7.3.113)

where zptP .We assume a linear viscoelastic fluid represented by 
the Maxwell model from Eq. (7.3.39), setting xy  as follows 

r
u

t 0  (7.3.114)

Following the nondimensional parameters defined in Eq. (6.4.56) repeat-
edly, they are 

0r
rr* , t

rr
tt

2
0

2
0

0*  and 
Pr
uu

2
0

04*  (7.3.115)

also, defining a nondimensional stress and relaxation time as 

Pr0

4*  and 
2

0r
 (7.3.116)

Therefore, for a set of flow field and constitutive equations, Eqs. 
(7.3.113) and (7.3.114) are written respectively by 

*

*

*

*

*

*

rrt
u 4  (7.3.117)

and 

*

*

*

*
*

r
u

t
 (7.3.118)

These equations are to be solved with the boundary and initial conditions 
of the problem. They are respectively 
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00
*

** ),(
r

tu  and 01 ),( ** tu  (7.3.119)

and 

00),( ** ru  and 00),( ** r  (7.3.120)

Equation (7.3.120) represents the start-up flow from a rest with no-slip at 
wall and Eq. (7.3.119) represents the symmetric condition at the center of 
pipe. We will impose one more condition on the pressure that follows step 
change in pressure gradient imposed upon the fluid at rest, i.e. 

0)( *tP                 for 0*t  (7.3.121)

and 

Constant)( *tP     for *t0  (7.3.122)

From a view of CFD, we shall here take an approach to obtain numeri-
cal solutions, by using a finite difference technique. The most direct means 
of discretisation is provided by replacing the derivatives of Eqs. (7.3.117) 
and (7.3.118) by equivalent finite difference expressions. The algebraic 
equations produced by the discretisation with 2nd order central difference 
in space and 1st order forward difference in time (the so-called Euler 
method) would be 

i

kikikikiki
rrt

uu ,,,,,
2

4 111  (7.3.123)

and 

r
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t
kikikiki

ki 2
1111

1
,,,,

,  (7.3.124)

which gives explicit finite difference formulation 

i

kikiki
kiki rr

tuu ,,,
,, 2

4 11
1  (7.3.125)

and 

kikikiki
uu

tr
t

t ,,,, 1111 2
 (7.3.126)

where riri for i =0, 1, 2  m  and tktk for k =0, 1, 2, 3 .  . . . . . .
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Note that for simplicity asterisk * in Eqs. (7.3.117) and (7.3.118) is 
dropped in the resultant finite difference equations of Eqs. (7.3.125) and 
(7.3.126). 

For given initial and boundary conditions, i.e. Eqs. (7.3.119) to 
(7.3.122), repeated use of Eqs. (7.3.125) and (7.3.126) generates the nu-
merical solution at all interior grid points ir  at time level 1k . That is, 
incrementing k  for time and substituting the known values of 1kiu ,  and 

1ki,  into the right hand side of Eqs. (7.3.125) and (7.3.126) allows the 
discrete solution to be marched toward in time. A typical numerical solu-
tion of ku ,1 , the time development of the axial velocity at the center of 
pipe, is displayed in Fig. 7.22. As seen in the figure, an overshooting and 
damping oscillation of the velocity are displayed for a step change of the 
pressure gradient. It should be mentioned here that there might be some 
difficulties for obtaining convergence of numerical solutions, depending 
upon  and other geometric parameters. 

art-up condition. Etter and Schowalter 
(1965) calculated the transient behavior of viscoelastic flow of the same 
problem, using Oldroyd-B model and showed similar overshooting charac-
ter of the flow parameter. 

Fig. 7.22 Overshooting of flow parameter at start-up flow 

The next important problem in viscoelastic fluid flow is the boundary 
layer problem. In many engineering flow problems with viscoelastic fluids, 
the pressure loss along the channel is a major concern, which is also di-
rectly connected with the formation of a boundary layer on the solid wall 
of the channel. Let us examine the two dimensional boundary layer on a 
flat plate (see Section 6.5.1 and refer Fig. 6.18). The effect of fluid elasticity 

in viscoelastic fluid flow at sudden st
The overshooting of flow parameters is typically observed phenomena 
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represented in the UCM equation of Eq. (7.3.47) can be included in the in-
tegral analysis of a boundary layer equation given in Eq. (6.5.33) by denot-
ing that the extra stress in an axial flow direction will introduce additional 
terms inherited from the UCM equation. Denoting b  as the width of the 
flat plate, the integral momentum equation at a steady state is written as 

dyuUubxdxb
hx

w
00

 (7.3.127)

w  is the wall shear stress, u  is the axial velocity in the boundary layer, U  
is the velocity in the potential core and h  is the boundary thickness h . 
In the region hy0 , a Maxwellian fluid is assumed to add the axial ex-
tra stress to the Newtonian wall shear stress w , so that Eq. ( 7.3.127) will 
be newly written as 

hh
xx

x
w dyuUubdyybxdxb

000
 (7.3.128)

With regard to the axial extra stress contribution in Eq. (7.3.128), xx  of 
the UCM equation in simple shear flow is readily obtained from Eq. 
(7.3.84) and it is 

2

02
y
u

xx  (7.3.129)

Substituting Eq. (7.3.129) for Eq. (7.3.128) and differentiating the equation 
with respect to x  yields 

h

w

dy
y
uuUu

dx
d

y
u

0

2

2  (7.3.130)

where 0  is the kinematic viscosity. Therefore, as seen in Eq. 
(7.3.130), the wall shear stress ww yu0  is increased by the pres-
ence of elasticity. As in the Newtonian case, it is assumed that the similar-
ity of the velocity profiles is held at various sections along the boundary 
layer development direction x . We can transform Eq. (7.3.130) into the 
differential form for the boundary layer thickness  as follows  

021
1

2
2

1

4
Uc

c
dx
d

c
c  (7.3.131)

where 
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1
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4 dfc (7.3.132)

It is noted that f  and  are defined in Section 6.5, see Exercise 6.5.1, and 
that ffn . With the boundary condition 0  at 0x , Eq. 
(7.3.132) is integrated to give 

0ln21
2 0

4

2

0

2
012 ccx

U
c  (7.3.133)

The root ( 0 ) in Eq. (7.3.133) would give us an insight on the phe-
nomenological explanation of the boundary layer development along a flat 
plate, knowing that 0  is a function of x , when implicitly calculated for 
the variation of x . Figure 7.23 schematically shows the profiles of the vis-
coelastic and the Newtonian boundary layer. The boundary layer profile 
for the viscoelastic flow tends, asymptotically, to Newtonian case at down-
stream, which is given as 

U
x

c
cx

1

22  (7.3.134)

Fig. 7.23 Viscoelastic boundary layer 

This is the same value as given in Eq. (6) in Exercise 6.5.1. As observed in 
Fig. 7.23, the viscoelastic effect presented by adding the normal stress to 
the Newtonian shear stress leads to the thickening of the boundary layer, 
though giving a finite boundary layer thickness at the leading edge, i.e. 0  
at 0x . 
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The physical interpretation of the thickening of the boundary layer may 
be regarded as due to tensile stresses in the layer causing a thickening layer 
while stretching the layer in an axial direction. At the leading edge, due to 
a sudden thickening of the boundary layer formation, a finite value of 0  
appears, which is, in effect, a purely hypothetical boundary condition in 
terms of treating the problem via the constitutive equation. 

Exercise 

Display convective derivatives of the rate of a strain tensor for the simple 
shear and shearfree flows at a steady state. Also show the relative strain 
tensor for the simple shear and shearfree flows at a steady state. In like 
manner obtain the convective derivatives of the stress tensors as well. 
Consider the problems in Cartesian coordinates system. 

Ans. 

For the simple shear flow, we have relationships such that 
ytyu yxx , 0yu  and ,0zu  considering that the steady state shear 

rate  be constant. Similarly, for the shearfree flow, we can write relation-
ships such that 

xtxu xxx ,  21 yktu y  
and        21 zktuz  
where k  is a constant 01 k , considering that the steady state elonga-
tional rate  be constant. 

The rate of strain tensor for the simple shear flow is given via its com-
ponents 

000
001
010

000
001
000

000
000
010

Tuu

 
(1)

The upper convective derivative of the rate of stream tensor is written by 

Exercise 7.3.1 Strains in Standard Flow 
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(2) 

 
Note that higher order upper convective derivative 2n  is expressed by 

)( n and 0  is designated zero tensor (null tensor). Similarly, the corota-
tional convective derivative of the rate of strain tensor is expressed by 

2

22
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The rate of strain tensor for the shearfree flow is similarly obtained 

where 

k
k
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(4)

and  
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(5) 

 

0
00  

 

(6) 

The relative strain tensor will be calculated by defining the displace-
ment functions tztytxt ,,r  and tztytxt ,,r , when 
we assume the simple shear flow equates to 

yt
t
xu yxx , 0

t
yuy  and 0

t
zuz  (7)

The displacement function tt,r  is written via the component form 

yy

yxyttxtydtxx yx
t

t
yx ,

 
(8)

and 

zz  (9) 

The relative strain tensor R  is written by definition, and which can be re-
duced to its component form likewise 
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r
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 (10) 

In a similar fashion its inverse is given, where 
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0
00

100
01
01

100
010
001

22
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 (11)

Next, let us follow the same procedure where the relative strain tensors 
are obtained for the shearfree flow by writing the velocity components as 

xux , ykuy 1
2

 and zkuz 1
2

 (12) 

The displacement function tt,r  is written via its component form 

xtt xxex  

y
ktt yyey 1

2
1

 

and 

z
ktt zzez 1

2
1

 (13) 

where  is the elongational strain defined as 
t

t
tdttt,  (14)

This is called the Hencky strain. Thus, the relative strain tensors are ex-
pressed via the following forms 
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and 
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Similarly the deviatoric stress tensors  for the simple shear and uni-
axial stretching (shearfree) flows are written respectively 
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The upper convective and corotational derivatives are thus obtained for 
dyduxxy  as follows 
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(19)

and 
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(20)
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Similarly setting the elongational rate at xuxxx  for a shear-
free flow, where  is kept constant, the upper convective derivative and 
the corotational derivative of  are obtained respectively where 
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and 

000  (22) 
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Exercise 7.3.2  Integral UCM Equation in Standard Flow 

Consider the integral UCM equation of Eq. (7.3.43), for the simple shear 
flow and the shearfree flow at steady state. Give the rheological predic-
tions on the shear viscosity, the first normal stress difference, the second 
normal stress difference and the elongational viscosity. 

Ans. 

The integral UCM equation is given via the following form, using the 
relative strain tensor 

tdtte

tdtte

t tt

t

R

tt
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2
0

 

2
0

I,C

,

 

(1)

where 1C  is the Finger tensor. To obtain the shear viscosity 

xyj , 11
12 xyCC  component of the Finger tensor must be ob-

tained for the simple shear flow, namely, as it is exemplified in Exercise 
7.3.1 

tt

CxyRxy 01

 
(2)

Therefore,  is computed where 

0

2
01 tdtte

tt
txy

 
(3)

Thus, according to Eq. (3),  is kept constant for the variation of . The 
first normal stress difference yyxxN1  is obtained similarly when, in-

serting tdttCC yyxx
2211 , we have 

2
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11
2
0

1

2

tdCCeN yyxx

ttt
yyxx  

(4)
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The first normal stress coefficient 1  is as well computed when 

02
1

1
2N  (5)

Thus, 1  is also kept constant for the variation of . The second normal 
stress difference 2N  is, however, zero since 011

zzyy CC  for the simple 
shear flow. Thus, for all , we have 

02N  (6)

and 

02  (7)

For the uniaxial stretching, i.e. 0k  in Eq. (7.2.15), with the constant 
elongational rate , the elongational viscosity e  is obtained with refer-
ence to Exercise 7.3.1, with the following formulation 
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(8)

It is mentioned that in Eq. (8) e  as 21 . Consequently, the re-
sults from (3) to (7) agree with those obtained from the differential UCM 
equation, as examined in Eqs. (7.3.85) and (7.3.87). 

Exercise 7.3.3 Oldroyd-B Equation 

Examine the Oldroyd-B equation for the simple shear flow and shearfree 
flow at a steady state. 

Ans. 

The Oldroyd-B equation given in Eq. (7.3.52) contains two time 
constants, namely 1  and 2 , which are, respectively, the relaxation 
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time constant and the retardation time constant, with 0  being the zero shear 
rate viscosity. The rheological predictions of this quasi-linear equation are 
useful to expand more admissible constitutive equations. Now let us start 
again to consider the steady simple shear flow by writing the equation 

2201
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000
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xx

yyxy

zz

yyxy

xyxx

 (1)

which gives the following relationships: 

0xy , 2
2101 2yyxxN  (2)

and 

02 zzyyN  (3) 

Resultantly, we can obtain the material functions where 

0 , 2101 2  and 02  (4) 

As it is obviously seen in comparison with Eq. (3) to (7) in the previ-
ous Exercise of 7.3.2, we have the same material functions as those of the 
UCM equation with respect to the steady shear flow. 

In the case of a shearfree flow, however, the Oldroyd-B equation can 
be written in components form: 
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(5) 

From such a deduction, each stress component is given where 
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Thus, in the case of uniaxial stretching, i.e. 0k , we can obtain the elon-
gational viscosity from the Oldroyd-B equation, which is 
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2133  (6)

It is noted that the steady material function in a shearfree flow becomes 
infinite at the critical strain rates, i.e. )2(11 .  

Exercise 7.3.4 Nondimensional Parameters in a Viscoelastic Model 
Equation 

Consider the White-Metzner constitutive equation given in Eq. (7.3.65). 
Assuming isothermal flow, nondimensionalize the equation with the fol-
lowing nondimensional parameters 

l
xx* , 

U
uu* , 

0t
tt *  and nlU0

*      (1) 
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where l  is the characteristic length, U  is the characteristic velocity, 0t  is 
the reference time, and 0  is the zero shear rate viscosity. Set n  and s  to 
be power index (constants) for the power law given below 

2
1

0 2
1

n

e  (2)

and 

2
1

0 2
1

ns

eG
 (3)

Ans. 

The constitutive equation is, according to Eq. (7.3.65), written as 
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(4)

Using the relationship in Eq. (1), the constitutive equation is non-
dimensionalized as follows 
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We have two nondimensionalized parameters that appear at the second 
and the third term of the left hand side of the equation. They are 

systemflowofscaletime
timerelaxationfluidofscaletime1
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Problems 

and 

timesticcharacterisecond
timerelaxation

0

ns

l
UWe  (7)

where  is the characteristic strain rate. eD  and We  are respectively 
called the Deborah number and  the Weissenberg number. eD  is inter-
preted as dynamic of a polymeric fluid, as the ratio of the magnitude of the 
elastic forces to that of the viscous forces, and, in-between eD  and We , 
there is the relationship 

StWeeD  (8) 

where St  is the Strouhal number defined in Eq. (6.2.28) as 0UtlSt . In 
application of the similarity law to dynamic problems of viscoelastic fluid 
flow, either eD  or We  can be used to characterize the flow phenomena. In 
general, We  is often used for steady state flow dynamics together with the 
Reynolds number Re . It should be mentioned that the symbol of We  is 
conventionally used for the Weber number defined in Eq. (6.2.13); thus, 
care must be taken to avoid misuse of the symbolism for the Weissenberg 
number. 

Problems 

7.3-1 Sketch the behavior of G , G ,  and  for the Oldroyd-B equa-
tion, when 12 10.  is assumed. What are the physical implications 
for the assumption of 12 ? 

Ans. 

stress.
shear  theofbehavior 

 transientheconsider t
flow,shear  simpleFor 

 

 
7.3-2 Explain the physical implications of the Carreau-Yasuda formula, 

given in Eq. (7.1.6) from the viewpoint of the CRM equation. 
Ans. 

n ofindex power  
 withningShear thin  

 
7.3-3 In treating the same problem found in Eqs. (7.3.113) and (7.3.114), 

a method of Laplace transform may be adopted to obtain an ana-
lytical solution. Here the constitutive equation is given by an integral 
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equation. Derive an ordinary differential equation given by the fol-
lowing form after Laplace transform. 

04
1

1 ,rus
dr
dr

dr
d

s
 

where s is taken as complex number with mathematical convention, 
defining iyrs , and xr for insuring the convergence of inverse 
transformation, otherwise r being arbitrary, and  is such that 

druesr ,,  

Ans.

 transformLaplaceby 
 B.C.ith equation w this

 transform4

1

0
0

,

*

t
u

dt
r
uer

rr

t
tt

 

 
7.3-4 Plot velocity profile of the transient Poiseuille flow of a viscoelastic 

fluid (as studied in Section 7.3.3.2 and Problem 7.3-3) and compare 
the Newtonian case as indicated in Fig. 7.24. Finite difference cord 
developed in Section 7.3, Eqs. (7.3.125) and (7.3.126) are helpful. 

 

Fig. 7.24 Viscoelastic fluid in start-up transient Poiseuille flow 
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Nomenclature 

Nomenclature  

21 aaa ,,  : constants 

21 bbb ,,  : constants 
Cc,  : constants 

...,,, 321 ccc  : parameters 

mC  : torque coefficient 
C : Cauchy tensor 

1C  : Finger tensor 
dD,  : diameter of take rR 22 ,  

De  : Deborah number 
e  : rate of strain tensor 

F,F  : force vector, thrust force 
G  : modulus, relaxation modulus 
G  : storage modulus 
G  : loss modulus 
G  : complex modulus 

gG  : Glassy modulus 
k  : constant, 10 k  

ck  : thermal conductivity 
lL,  : length scale 

h  : gap distance 
n  : power law index 
n̂  : normal unit vector 
m  : material constant for power law 

21 NN ,  : respectively the first and second normal stress differences 
p  : pressure 

rR,  : radius 
Q  : flow rate 
Re  : Reynolds number 

*Re  : generalized Reynolds number 
St  : Strouhal number 
s  : power law index, parameter in Laplace transform 
t  : time 
T  : temperature 

rT  : torque 
 : total stress tensor  

U  : bulk (characteristic) velocity, free energy 
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 7 Non-Newtonian Fluid and Flow 

u  : local velocity 
u  : mean (average) flow velocity 
W  : scalar (potential) function 

cW  : energy dissipation 
We  : Weissenberg number 

zyx ,,  : Cartesian coordinates system 
zr ,,  : cylindrical coordinates system 

,,r  : spherical coordinates system 
 : mobility factor 
 : gap ratio 
 : strain 
 : shear rate (rate of strain) 

a  : apparent Newtonian wall shear rate 

w  : wall shear rate 
 : strain tensor  

R,R  : relative strain tensor 
 : elongational strain  

s  : stress ratio 
 : elongational (strain) rate 

E  : tensile (elongational) strain rate 
,  : parameters 
 : viscosity 
 : dynamic viscosity 

*  : complex viscosity 

a  : apparent viscosity  

e  : elongational viscosity 

0  : Newtonian viscosity, zero shear (rate) viscosity 

s  : solvent contribution viscosity 

p  : polymer contribution viscosity, plastic viscosity 

0,  : angle 

1,  : relaxation time constant,  

i  : multiple relaxation time conditions 

2  : retardation time constant 
 : mechanical loss angle (phase-shift) 
 : (deviatoric) stress tensor 

ij  : components of (deviatoric) stress tensor 
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E  : net tensile stress 
p  : polymer stress tensor 
s  : solvent stress tensor 

w  : wall shear stress 
 : mechanical loss angle (phase-shift), scalar function 

21 ,  : respectively the first and 
  second normal stress difference coefficients 

 : frequency 
: rotational speed 
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Magnetic fluid, or alternatively called ferrofluid, is a colloidal suspension 
system of nano-sized ferro- or ferri-magnetic particles stably dispersed in a 
carrier (or base) liquid. Magnetic fluid is an artificial material rather than 
formed naturally. It has prominent character of the fluidity and also pos-
sesses magnetic properties. Magnetic fluid can be manipulated to position 
or forced to flow by means of a magnetic force.  

Magnetic fluid and its concept of usage appeared in a 1965 research 
product for space technology in NASA. Since the time of the first appear-
ance of magnetic fluid, much progress has been made in producing various 
types of high quality magnetic fluids associated with applications in many 
fields of technology, medicine and science. Many efforts have been also 
made to establish thermo-mechanical equations of magnetic fluids in order 
to deal with colloidal magnetic particles in a carrier liquid in an applied 
magnetic field, where the local moment of momentum exchange between 
particles and a fluid must be taken into account. The intrinsic angular mo-
mentum of particles under the influence of magnetic field introduces a 
volumetric force that couples into the governing equations of fluid motion. 
A quasi-stationary approximation is, however, possible in many practical 

many processes, so that magnetic fluids can be only assumed as single-
phase, homogeneous isotropic continuous media with magnetic forces, 
which is in many respects similar to the effects of the gravitational body 
force.  

There are many striking phenomena in the physical behavior of mag-
netic fluids that are activated by imposing magnetic fields. Those re-
sponses include the normal field instability represented by the appearance 
of spikes on a fluid surface; the labyrinthine instability formed in a thin 
layer; the self-levitation of an immersed magnet; magnetocaloric effects, 
and so on. These phenomena are now well understood by the fluid dynam-
ics and the thermodynamics of magnetic fluids based on the continuum 
mechanical approach via microscopic description. The complexity of the 
system with its chemical composition requires distinct knowledge in a 
physico-chemistry in order to synthesize the fluids.  In addition, the utiliza-
tion of the system requires a firm knowledge of continuum mechanics and 

8. Magnetic Fluid and Flow 

situations, where the magnetization can be treated as an equilibrium in 

 497 



thermodynamics with an understanding of magnetic field theory. The field 
of study in magnetic fluids is recognized as “Ferrohydrodynamics,” as at-
tributed to R. Rosensweig, (1985). The overall field of study in magnetic 
fluid has a highly interdisciplinary character, including physics, chemistry, 
engineering, mathematics and even medicine in practical applications. 

In this chapter, in view of engineering fluid mechanics, fundamental 
aspects of continuum mechanics and some basic properties of magnetic 
fluids are introduced. Also, some typical technological applications are de-
scribed in consideration with magnetoviscous effects. 

The magnetic fluids available today are liquids containing small magnetic 
particles, in a so-called suspension (a colloidal system). In manufacturing 
magnetic fluids, mainly three components are required: namely such as a 
base liquid (or a carrier liquid), magnetic particles of a colloidal size and 
stabilizer (or repelling electric charge) to disperse the magnetic particles 
from aggregation. The size of magnetic particles must be sufficiently small 
enough since the stability of a magnetic fluid, such as a colloidal system, is 
ensured by thermal motion of the particles, preventing agglomeration and 
precipitation. The particle material must have a high level of magnetizabil-
ity. Most common magnetic fluids are usually composed of 3 to 15 nm 
sized particles of solid, magnetic, single-domain particles coated with a 
molecular layer of dispersant (surfactant, such as oleic acid), where the 
particles are suspended in a liquid carrier. The basic mechanism of the sus-
pension is such that thermal agitation of Brownian motion keeps the parti-
cles suspended and the coatings of the particles from sticking to each other. 
It should be kept in mind that the particles must not to be too small, since 
at sizes less than 1 to 2 nm their magnetic properties tend to disappear. 
Figure 8.1 shows a schematic diagram of magnetic fluids: (a) with a sur-
factant coating (separating of particles by the effect of steric repulsion); (b) 
with ionic surface charge (separating of particles by the effect of electric 
repulsion); and (c) also shows an electron micrograph of a magnetic fluid. 
A typical thermophysical property of magnetic fluid, a commercially avail-
able magnetic fluid, is tabulated in Table 8.1. 

In typical thermomagnetic properties of magnetic fluids, Fig. 8.2 
shows: (a) equilibrium magnetization (M ) vs. magnetic field strength (H ), 
and (b) equilibrium saturation magnetization (Ms) vs. temperature (T ). The 
particles in a magnetic fluid (each with the magnetic moment m) are 
analogous to the molecules of a paramagnetic gas. The magnetization law 
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8.1 Thermophysical properties

for the paramagnetic gas is described by the Langevin function L  with 
the following formula 

 

 

Fig. 8.1 Magnetic Fluid 

 
 

Table 8.1 Magnetic fluids ((MK-340; Courtesy of Ferro Tech. Corp.) 

Appearance Black-brown or red-brown viscous fluid 
Carrier liquid Synthetic hydrocarbon 
Saturation magnetization( SM ) 11.0 mT  
Viscosity (at 27 C ) 100 smPa  
Density 0.94 3mkg  
Pour point 56 C  
Flash point >200 C  
Thermal conductivity (at 38 C ) 150 KmmW  
Surface tension (at 25 C ) 32 mN/m  
Coefficient of thermal expansion /K107.5 4  
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Fig. 8.2 Magnetization characteristic 

LMNmM S
1coth  (8.1.1) 

where N  is the number of particles per unit volume, TkmH B  
(Langevin argument), Bk  is the Boltzmann constant and m  is the  
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8.1 Thermophysical properties 

magnetic moment. It should be mentioned that the saturation magnetiza-
tion SM  can be written in terms of the colloid density , which 
is N , where  is the mass of a particle with attached carrier liquid 
molecules, in such a manner as to propose 

mM S  (8.1.2) 

The character of this magnetization by Eq. (8.1.1) is called superparamag-
netism as displayed in Fig. 8.2(a). 

In narrow ranges of magnetic fluid strength and temperature, the equa-
tion for the magnetic state of an incompressible magnetic fluid with the 
equilibrium magnetization of a magnetic fluid TH,M  is approximated 
with an accuracy to the first order term as follows 

HHMMH,M
TH H

MTT
T

T  (8.1.3) 

H  and T  are some mean values which satisfy T,HM=M . The quan-
tity THM  is called the differential magnetic susceptibility of a 
magnetic fluid (for a ferromagnetic solid HM  is the magnetic sus-
ceptibility). The other quantity appears in Eq. (8.1.3) is HTMK , 
which is called the pyromagnetic coefficient. Using the linear relationship 
in Eq. (8.1.3), the curve 1  of magnetization of a magnetic fluid is 
well approximated as representatively displayed in Fig. 8.2(b). 

The field dependence of the equilibrium magnetization is the key pa-
rameter in discussing the dynamics of the magnetic fluid, and which also 
provides valuable information about the constituent elements of the fluid. 
The physical prerequisite for the existence of equilibrium magnetization is 
the assumption that the equilibrium is achieved by the relocation of the 
orientation of elementary magnetic moments along the applied magnetic 
field. There are two different relaxation processes after the applied field 
has been changed. 

In the first mechanism we can assume that the magnetic moment of the 
particle is fixed with respect to its crystal structure and the relocation takes 
place by a rotation of the whole particle. This process is characterized by a 
respective time, called a Brown rotational diffusion time B , Brown 
(1963), which is given where 
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Tk
V

B
B

03~
 (8.1.4) 

V~  is the hydrodynamic volume of the particle, including the surfactant 
layer, 0  is the viscosity of the carrier liquid. 

In the second mechanism, the magnetic moment may rotate inside the 
particle relative to the crystal structure. This process, called Néel relaxa-
tion, Néel (1949), is characterized by a respective relaxation time N , 
which is given where  

    Tk
KV

N
Be

f0

1  (8.1.5) 

K is the anisotropy constant of the particles, 0f is the Larmor frequency of 
the magnetization having the approximate value of 109 Hz and V is the 
volume of the magnetic core of the particle . The Néel relaxation takes 
place if the thermal energy TkB  is high enough to overcome the energy 
barrier KV , which is given by the crystallographic anisotropy of the mag-
netic particle. The relaxation of magnetization in a nano-dispersed suspen-
sion will follow the process with a shorter relaxation time, 

NB or NB . When NB , the magnetic material is said to 
have the extrinsic superparamagnetism; oppositely where NB , it is 
said to have the intrinsic superparamagnetism. In either case, the magnetic 
fluid has an apparent superparamagnetism described in Eq. (8.1.1) and 
shown in Fig. 8.2(a). In comparison with Eqs. (8.1.4) and (8.1.5), for big-
ger particle sizes, B  becomes smaller than N and the Brownian relaxa-
tion will take place due to a rotation of the whole particle. Note that in a 
real magnetic fluid the relaxation process may be very complicated due to 
the particle distribution, where a part of the particles relaxes by the Néel 
process, while another part of the particles relaxes by the Brownian proc-
ess, depending on the size of each constituent particle. For example, the 
critical diameter dcrit, where the condition BN  is met, is nm18 for 
Fe3O4 particle (with 3mJ14K and smkg10 2

0 ), Odenbach 
(2002). The important aspect in the equilibrium magnetization is that the 
mean value of magnetization is achieved almost instantaneously within a 
time much shorter than the characteristic time scale of a macroscopic proc-
ess, such as the fluid dynamical motion, where the magnetization vector 
M becomes paralleled to the vector of a magnetic field of intensity H at a 
given instant, i.e. M//H . 
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Another important property of magnetic fluids, particularly with regard 
to the magnetoviscous effect, is the apparent viscosity a  in the absence of 
the magnetic field. a  may vary from that of the carrier liquid due to the 
presence of the suspended particles. In the first approach, we may be able 
to use a well-known theoretical prediction by Einstein (1906) for diluted 
suspensions 

va 2
510  (8.1.6) 

where v  is the volume fraction of all suspended particles, including the 
surfactant layer, given as 

32
d

sd
mv  (8.1.7) 

In Eq. (8.1.7), m  is the volume fraction of the magnetic material, d  is the 
average diameter of particle and s  is the thickness of the surfactant layer. 
For example, for typical values of nm10d  and nm2s  of a magnetic 
fluid 10.m , v  would be calculated as 270.v . It should be aware 
that Einstein’s formula, i.e. Eq. (8.1.6) is, however, no longer valid for 
higher concentration suspensions, such as 10.m  and this fact must be 
kept in mind in dealing with actual magnetic fluids. 

A realistic correlation is proposed by Rosensweig, (1985) written 
where 

1
2

0 2
51 vva b  (8.1.8) 

b  is given by a function such that 

2

1
2
5

c

c

b  (8.1.9) 

c  in Eq. (8.1.9) is a critical volume fraction of suspended material, which 
is obtained under the assumption that the suspension’s apparent viscosity 
diverges at a given value of c . For example, 740.c  would give a good 
estimate for 0a  for a kerosene-based magnetic fluid, Odenbach (2002). 
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Exercise 

Exercise 8.1.1 Langevin Argument 

The equilibrium magnetization of magnetic fluids is described by the 
Langevin formula in Eq. (8.1.1), when the saturation dipole moment dm  of 
the bulk of a magnetic solid is related to the saturation magnetization SM  
through the volume fraction m  of a magnetic material 

dmS mM  (1)

Write the Langevin argument  in terms of the particle diameter d . 

Ans. 

The saturation magnetization SM  of the magnetic fluid is given in 
terms of the particle dipole moment m  as defined in Eq. (8.1.2) by 

NmM S  (2)

while the Langevin argument  is given where 

Tk
mH

B
 (3)

Using Eqs. (1) and (2), Eq. (3) becomes 
              

m
d

B N
m

Tk
H  (4) 

Since VNm , where V  is the volume of the magnetic core of a particle, 
Eq. (4) can be reduced to the following expression: 

                   Vm
Tk

H
d

B Tk
Hmd

B

d3

6
 (5)

Note that V  is given by 63dV  in Eq. (5) 

Exercise 8.1.2 Relaxation of Magnetization 

Consider two relaxation mechanisms by which the magnetization of mag-
netic fluid suspensions relax after the applied magnetic field has been 
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Exercise 

altered. Draw curves of N and B  for the diameter of a colloidal particle 
of a magnetic fluid. Also compare the results if the effective relaxation 
time f  is given via the following expression, Martsenyuk et al. (1974) 

NB

NB
f  (1) 

Use the following representative values of the properties of a magnetic 
fluid, if necessary 

Fefor;K                 510470.K   3m
J  

;0f         9
0 101f    

s
1  

;Bk         2310381.Bk  
K
J  

Kerosenefor0;  3
0 1020.   

sm
kg  

Ans. 

Let the temperature be 25 , i.e. K29827325T .V~ appearing in 
Eq. (8.1.3) includes the thickness of the surfactant layer, which gives V~ to 
write 

32
6

sdV~  (2) 

where ms 9102  is assumed. Thus, the relaxation time due to the Néel 
relaxation N  given in Eq. (8.1.5) and the relaxation time due to the 
Brownian relaxation B  given in Eq. (8.1.4) are respectively written as 

29810381
6

10470exp10 23359 .. dN  (3) 

2981038110201022
6

3 23339 ..dB  (4) 

The effective relaxation time f  can be calculated in Eq. (1), knowing 
N  and B  from Eqs. (3) and (4). The curves of Eqs. (1), (3) and (4) are 

C
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displayed in Fig. 8.3. In a real magnetic fluid, due to a broad size distribu-
tion, the exact evaluation of the relaxation time is difficult. A precise deter-
mination of the relaxation times requires direct experimental observation.

 
Fig. 8.3 RRelaxation of magnetization 

Problems 

8.1-1 Plot the equilibrium magnetization curve using the Langevin func-
tion given in Eq. (8.1.1). Use values of the parameters, if necessary, 
for the particle size d =10nm at the temperature T =298K with 

m =0.041 and sM =0.04Tesla. 
 
8.1-2 In taking into account the parallelism of M  and H , i.e. HM // , the 

induction of B  can be expressed by the magnetic permeability s  
of a magnetic fluid. Show that s  contains the magnetic susceptibil-
ity  and the permeability of free space 0 . 

Ans. 

H
H
H

MB
MB

s

0

0

0

0

    
    
     

 
8.1-3 Draw a curve for the viscosity ratio 0a  of a magnetic fluid as a 

function v  under no magnetic field, referring to Eq. (8.1.8). Use a 
value of c 0.74 for the result. 
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8.2 Ferrohydrodynamic Equations

8.2 Ferrohydrodynamic Equations  

In the theory of magnetic fluid, ferrohydrodynamic equations are derived 
from a continuum mechanics on a microscopic treatment used to predict its 
dynamic behavior, establishing the state of equilibrium, motion and heat 
transfer. The concept to establish a dynamic theory of magnetic fluid is 
based on the idea that in a magnetic field, nano-scaled magnetic particles 
suspended in a non-magnetic fluid media, produces effects that are led by 
forces that draw from a dynamic system into a translational and rotational 
motion. When a magnetic fluid is in motion, under the applied magnetic 
field, the ferromagnetic phase interacts with a carrier liquid through a vis-
cous friction. The establishment of basic equations for magnetic fluid came 
from an approach of a quasi-stationery one-phase fluid whose magnetiza-
tion is in equilibrium in any dynamical process, Neuringer and Rosensweig 
(1964). 

The outline for the governing equations of flow is described below 
from the basic concepts of continuum mechanics of polar material. Ferro-
hydrodynamic equations are thereafter derived by the determination of 
constitutive equations. 

The continuity equation, which is derived from the mass conservation 
discussed in Section 2.1, is of the same form for an ordinary fluid 

0u
t

 (8.2.1) 

The equation of motion derived from the principle of the conservation 
of linear momentum is written by an unconstituted form of Cauchy’s equa-
tion of motion, as it appears in Section 2.2, as follows 

gu T
Dt
D  (8.2.2) 

where g  is the body force and T  is the total stress tensor. 
The equation of the internal angular momentum for a polar fluid that is 

derived from the conservation law of angular momentum of a polar mate-
rial in Section 2.3 is written below: 

   Afs c
Dt
D  (8.2.3) 

s  is the intrinsic (internal) angular momentum per unit mass, c  is the 
couple stress tensor, A  is the vector of the tensor T  given in Eq. (2.3.9) 
and f  is the body couple per unit mass.  

 507 



The energy equation for internal energy mu  is derived by the first law 
of the thermodynamics for non-(electrically) conductive mediums fol-
lowed by Rosensweig (2002): 

bH
Dt

D
Dt

Du
ppTTm

uMHuHB

uq

2

2
0:IHB

:T:c:T
 

(8.2.4)

p  is the average spin angular velocity of particles about their own center 
given by the expression: 

pI
s  (8.2.5) 

Here, I  is the moment of inertia per unit of mass for a monodispersion of 
spherical particles. Note that B  in Eq. (8.2.4) is the magnetic induction 
and b  is the amount of heat generated per unit mass. It should be kept in 

associated with the space the medium occupies, and of which it is given, 
where 

2

2
0Huum  (8.2.6) 

u  is the internal energy of the system defined in Eq. (2.4.1) and 0  is the 
permeability of free space, i.e.  mH104 70 . In a magnetic me-
dium, B , H  and M  are related by the magnetic polarization relation 
given where 

MHB 0  (8.2.7) 

It is noted that in SI units, the magnetic field H  has units of 1mA , and 
the magnetization M  and the magnetic induction B  both have units of 

Tesla.Askg 12  
Equations (8.2.2), (8.2.3), and (8.2.4) are unconstituted equations to 

which constitutive equations of T , c , f , A , M  and q  are to be deter-
mined in order to derive ferrohydrodynamic equations. Each constitutive 
equation can be determined such that thermophysical characteristics of 
magnetic fluids are satisfied. 

–1
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mind that mu  in Eq. (8.2.4) is the internal energy exclusive of field energy 
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8.2 Ferrohydrodynamic Equations 

In general, magnetic fluids are treated as incompressible and non-
(electrically) conductive mediums. These conditions immediately give the 
continuity equation of Eq. (8.2.1) to express 

0u  (8.2.8) 

The total stress tensor T  in Eq. (8.2.2) may be decomposed by follow-
ing stress tensors: 

em
vp TTIT 0  (8.2.9) 

0p  is the hydrostatic pressure, vT  is the viscous stress tensor and is fur-
ther expanded to show, referring to Eq. (2.3.8) 

as
v TTT  (8.2.10) 

where sT  is the symmetric part and aT  is the skew-symmetric part of the 
tensor vT . sT  and aT  have their own constitutive equations, which are, 
respectively, written with the following formulae: 

eT as 2  (8.2.11)

and 

         pa AT 2
2
1  (8.2.12)

Note that sT  is the Newtonian contribution to the symmetric part of the vis-
cous stress tensor. In Eq. (8.2.11), e  is the rate of strain tensor, defined in Eq. 
(1.1.16), and a  is the apparent viscosity of a suspension in the absence of a 
magnetic field, as, for example, it is given in Eq. (8.1.6) or Eq. (8.1.8). 

Also it should be noted that p4  in Eq. (8.2.12) is the 
pseudovector, which is a vector of a tensor, defined in Eqs. (2.3.9) and 
(2.3.10) in Section 2, where A  is given from a consideration of the angu-
lar momentum equation and  is known as the vortex viscosity. It is fur-
ther noted that in Eq. (8.2.12),  is the angular velocity of a fluid particle 
with a rigid rotation defined by u21  and p  is the average angular 
velocity of a constituent particle. Giving the definition of A , A  will be 
further discussed in the angular momentum equation. 

The Maxwell stress tensor in the electromagnetic field, assuming that 
the magnetic fluid is nonconductive, is proposed by Landau and Lifshitz 
(1960) 

HBIT emem P  (8.2.13) 
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where emP  is the electromagnetic energy per unit volume in a vacuum 
space, which is understood as 

2

2

0
0

0
HdHMMP

H

HT
em

,

 (8.2.14) 

For magnetic fluids with a Langevin magnetization as in Eq. (8.1.1), M  is 
proportional to  and resultantly M  would be equal to HTM ,  so 
that the first term of Eq. (8.2.14), may vanish. 

The substitution of Eq. (8.2.8) together with constitutive equations to 
the Cauchy’s equation of motion given in Eq. (8.2.2), regarding magnetic 
fluids as nonconductive, i.e. 0H , and with the continuation of mag-
netic induction B , i.e. 0B , we can derive the linear momentum 
equation as follows 

HMuu
p

s
a

Ip
Dt
D

2
2*  (8.2.15) 

where *p  is the total pressure, 22
00 Hpp*  and s  is the rotational 

relaxation time of particles due to the vortex viscosity. It will prove useful 
to consider here, as another point of correspondence that will be discussed 
to a larger extent in the angular momentum treatment, to write Eq. (8.2.15) 
with the field parameters of M  and H , eliminating the parameter p  of a 
microscopic concept. 

From the angular momentum equation of magnetic fluids, if one as-
sumes that s  is sufficiently small and the spin diffusion is ignored, it is 
reasonable to minute its relationship from Eq. (8.2.25), where 

HMp
s

I  (8.2.16) 

It is noted that A  given where A p4  is replaced by the rela-
tionship sI 22 . Thus, the substitution of Eq. (8.2.16)–(8.2.15) yields 
the linear momentum equation of magnetic fluids, that is written as 

gHMHMuu
2
12

ap
Dt
D *  (8.2.17) 

Equation (8.2.17) includes the term HM , which is the so-called the 
Kelvin force density, derived from the stress of an electromagnetic field, 
and the term HM21 , which is derived from the consideration of 
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8.2 Ferrohydrodynamic Equations 

an internal angular momentum to give the skew-symmetric part of the 
viscous stress tensor. 

 
Fig. 8.4 Intrinsic rotation of magnetic particle against rotation of fluid 

particle 

In order to derive the angular momentum equation of a magnetic fluid, 
it is useful to give a visual image of the intrinsic rotation of a magnetic 
particle as schematically represented in Fig. 8.4. We will consider that the 
magnetic moment of the particle is fixed within the particle, assuming that 
the magnetization relaxation occurs by means of the Brownian relaxation, 
as discussed earlier. The situation sketched in Fig. 8.4 is that a magnetic 
field H  is applied to the suspension under a shear flow, where the rotation 
of fluid particles is given in . The applied magnetic field will then try to 
align the magnetic moment m  (where VMm 0 ; V  for the volume 
element of a magnetic body) with the same direction of H , while the vis-
cous torque exerted by the flow tries to rotate the fluid particle with . 
Thus the direction of m  (or M ) will be misaligned with the direction of 
H , since the moment is fixed in the particle. This misalignment with M  
and H  gives rise to a magnetic torque that tries to realign the magnetic 
moment, which counteracts the viscous torque. The particle will then rotate 
to a frame of reference with the angular velocity of p , which is different 
from the rotation  of the fluid particle, as indicated in Fig. 8.4. Thus, the 
particle rotates internally in the fluid particle with the torque counteracting 
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the free rotation of the particle, and resultantly this torque gives rise to an 
increase of the fluid’s viscosity. 

In this case, however, when the magnetic field H  is applied as colin-
ear with the rotation  of the fluid particle, the magnetic moment m  (or 
M ) will be aligned with the same direction of H  ( M // H ), and with that 
there is not any field influence, rotating the particle with the same angular 
velocity  ( p = ). Obviously, when there is no magnetic field 0H , 
the particle has no preferable direction to be oriented, and rotates freely 
with the same angular velocity of the fluid particle. The theoretical expla-
nation of magnetoviscous effect in diluted magnetic fluids was given by 
Shliomis (1972); this also gives the basis for the development of ferrohy-
drodynamic equations. 

By considering the establishment of the angular momentum equation 
of magnetic fluid, we can write Eq. (8.2.3), using the stress tensor given in 
Eq. (8.2.9), as follows 

c
Dt

DI p : em
v TT  (8.2.18) 

Here, it is mentioned that s  is replaced by the intrinsic angular momentum 
of the particles with the particles rotation p , as pIs . Denote that the 
explicit expression of f  in Eq. (8.2.3) is disregarded here at this point. 

The constitutive equation for the couple stress tensor or the surface 
couple stress tensor c  is difficult to obtain, but it is simply assumed that c  
is symmetric and diffusive by the intrinsic rotation p  (the angular spin 
rate) analogous to the Newtonian viscous fluid, which is dependent upon 
the rate of strain, Rosensweig (1985), as follows 

T
ppp 'Ic '  (8.2.19) 

where, by analogy, '  and '  are respectively called the shear and bulk 
coefficients of the spin viscosity. 

The terms, : vT  and : emT , that appear in Eq. (8.2.18) are treated 
with the following considerations. Firstly, we can consider the origin of  

: vT  that is derived from an extraneous magnetic torque to maintain p  
against  under magnetic field, Rosensweig (1988) 

  I : 
s

p
vT  (8.2.20) 

        p4  (8.2.21) 
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8.2 Ferrohydrodynamic Equations 

sI  is replaced by the vortex viscosity  with the relationship 4sI . 
It is noted that Eq. (8.2.21) gives the definition to the pseudovector A  as it 
appears in Eq. (8.2.12), so that, as a result 

A p4  (8.2.22) 

As for the second variant : emT , we can calculate the tensor product 
by substituting the Maxwell stress tensor given in Eq. (8.2.13) together 
with the polarization relationship given in Eq. (8.2.7) to yield 

: HMemT  (8.2.23) 

Therefore, after giving the constitutive relationships discussed above, 
substituting the expressions from Eqs. (8.2.19), (8.2.21) and (8.2.23), into 
Eq. (8.2.18), we can obtain the angular momentum equation of a magnetic 
fluid by writing: 

HMp p
s

p
p I

Dt
DI 2  (8.2.24) 

It has been mentioned that HM  that appears in Eq. (8.2.24) is equiva-
lent to the body couple f  in Eq. (8.2.3), which is the torque density 
(torque per unit volume). 

In a case when s  is sufficiently small and the diffusion and convection 
of the particle rotation p  are regarded as minimal, we can write Eq. 
(8.2.24) in a further simplified form where 

HMp
s

I  (8.2.25) 

Note that 11
0

2
0 101606 dI svs  for 10d nm, 3

0 10  
smkg  and 33 mkg106s , where s  is a particle material density. 

The energy equation given in Eq. (8.2.4) is constituted by giving q  and 
c , where q  may be straightforwardly constituted by the Fourier’s law of 
Eq. (2.5.28) and c  is given in Eq. (8.2.19). However, at this stage it is ap-
propriate to reduce the equation to the most widely used (or rather practi-
cal) expression under assumptions that: the magnetic fluid is (electrically) 
nonconductive disregarding intrinsic rotation; the magnetization is linear 
in terms of H  and T ; it is incompressible with constant coefficients; and 
neglects all heat sources due to magnetoviscous and viscous effects and in-
ternal heat generation. The resultant equation is written in the following 
expression where 
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Tk
Dt

DH
T
MT

Dt
DT

T
MHc c

HH
p 2  (8.2.26) 

In Eq. (8.2.26) the second term at the left hand side represents the magne-
tocaloric effect, where the magnetocaloric effect is associated with the 
change of magnetic field intensity with time at tH  and the fluid travel-
ing through the magnetic field Hu . However, for a small dependence 
of magnetization M  on temperature change, i.e. 0HTM  (except 
for a temperature sensitive magnetic fluid, which has a large temperature 
dependence on magnetization), Eq. (8.2.26) can be reduced to the conven-
tional temperature field equation as follows 

Tk
Dt
DTc cp 2  (8.2.27) 

Probably the most characteristic treatment in deriving ferrohydrody-
namic equations is that the instantaneous magnetization M  of the suspen-
sion is different from the equilibrium magnetization 0M , which is given 
for a diluted suspension from the Langevin magnetization formula of Eq. 
(8.1.1). In addition, as described in association with Fig. 8.4, the relaxation 
of M  is coupled with a dynamic change of the flow field. Shliomis (1972, 
also reviewed article 2002), obtains a phenomenological expression of the 
magnetization of magnetic fluids, transferring the Debye relaxation equa-
tion (1929) of a rotating (local) frame of reference, which rotates with a 
magnetic particle p , to the fixed (laboratory) system in the following 
manner. 

The Debye-like magnetization equation in the rotating frame of refer-
ence is given as 

0
1 MMM
Bdt

d  (8.2.28) 

The rates of change of any vector, say in our case ,M  in the rotating frame 
of reference to the fixed system can be expressed by the relationship 

dt
d

dt
d

p
MMM  (8.2.29) 

Combing Eq. (8.2.28) and (8.2.29), we have 

              0
1 MMMM

B
pdt

d  (8.2.30) 
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8.2 Ferrohydrodynamic Equations 

where B  is the Brownian relaxation of time at a constant. With the aid of 
the torque balance equation obtained in Eq. (8.2.25), Eq. (8.2.30) can be 
rearranged to yield 

HMMMMMM

vBdt
d

0
0 6

11  (8.2.31) 

The equation derived in Eq. (8.2.31) is the Shliomis magnetic relaxation 
equation. 

It proves useful to derive an expression of a linear form of Eq. (8.2.31) 
and this is done by letting the last quadratic term of the equation to become 

H
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vv

HMHHMM
00 66

1  

                                       
2

06 H
HNmL

v

HMH  

 

 

(8.2.32) 

by letting 0MM  be respectively split into parallel and perpendicular 
parts to the applied field H , as 

2
0

2
0

0
HH

HMMHHMMHMM  (8.2.33) 

Combining Eqs. (8.3.32) and (8.3.33) with Eq. (8.3.30), we have a lin-
earlized magnetization equation to obtain 
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22
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(8.2.34) 

where two characteristic relaxation times  and  for respectively paral-
leled and perpendicular contributions are defined where 

B  (8.2.35) 

and 
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so that  is written as 

L
B

2
2  (8.2.36) 

Consequently, for a stationary limit, Eq. (8.3.34) gives a solution in the 
linear order 

      00 MMM  (8.2.37) 

Finally, in electromagnetic fields, magnetic fluids are treated as non-
conductive mediums in continuum, and to which Maxwell equations are 
written as 

0H  (8.2.38)

and for the magnetic induction 

0B  (8.2.39) 

Equations (8.2.38) and (8.2.39) were already used to reduce ferrohydrody-
namic equations. Note that the induction B  in a continuum has a differ-
ence from the magnetic field (intensity) H  by the magnetization .M  This 
relation is given in Eq. (8.2.7). 

Based on the thought of the intrinsic rotation of magnetic particles, a 
phenomenological explanation for the increase of apparent viscosity under 

plications for controlling the viscosity of a continuum by external means 
are enormous, such as in damping and activating systems in engineering. 

Exercise 

Exercise 8.2.1 Rosensweig Equation 

By considering the linear momentum equation given in Eq. (8.2.17) of 
magnetic fluids, show a new set of ferrohydrodynamic equations, assum-
ing that the fluids are incompressible and at a quasi-stationary when the re-
laxation rate is so fast that M and H  are sensibly collinear, i.e. H // M . 
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applying magnetic field is possible, which is found in Exercise 8.2.2. Ap-

516



Exercise 

Also assume that all heat sources and the magnetocaloric effect are identi-
cally neglected in the energy equation. 

Ans. 

The continuity equation of an incompressible medium is written as 

0u  (1) 

under the assumption of H // M , that is  

guu HMp
Dt
D

a
2*  (2)

The equation (2) is a so-called Rosensweig equation, first proposed by 
Ronald Rosensweig (1964). The research of magnetic fluids has continued 
from the original work of Rosensweig (1964). 

The energy equation is reduced to the temperature field equation, and 
is written repeatedly as 

Tk
Dt

DH
T
MT

Dt
DT

T
MHc c

HH
p 2  (3)

The magnetization is expressed by the magnetic state equation 
THMM , , so that it is written by the Langevin formula as 

NmLM  for TkmH B          (4) 

where 1-cothL . 
Treating the magnetic fluids to be nonconductive, the electromagnetic 

field equations are then written where 

0H  and 0B     (5)

For magnetic polarization of magnetic fluids, we have 

MHB 0  (6)

This set of equations, which are yielded in a closed system, can be solved 
with appropriate boundary conditions. 

Exercise 8.2.2 Rotational Viscosity 

Probably one of the most noticeable features of magnetic fluids is an in-
crease of apparent viscosity under a magnetic field. Based on the idea that 
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the intrinsic rotation p  of a particle deviates from the angular velocity 
 of the fluid particle, it will be reasonable to think that the difference 

leads to an additional dissipation, which may be understood to contribute 
an increase of apparent viscosity. An example of the simple flow field is 
displayed in Fig. 8.5. 

Verify the increase of the apparent viscosity under the condition where 
the applied magnetic field H  is perpendicular to . 

Ans. 

In considering Eq. (8.2.33), the perpendicular part of 0MM  to the 
applied field H  is written as 

00
1 HMMHMM

HH
 (1)

The steady state solution of Eq. (8.2.34) is given where, i.e. from the resul-
tant Eq. (8.2.37), 

00 MMM  (2)

 
Fig. 8.5 One example of H  in a Couette flow 

Using these conditions, i.e. H // 0M  and H , a combination of Eqs. (1) 
and (2) yields 

HMHM 0  (3)

By noting that 2u  and substituting Eq. (3) to the linear momen-
tum equation given in Eq. (8.2.17), we have 
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Problems 

gHMHMuu
2
12

ap
Dt
D *  

        gHMu20
4
1 HMp a

*          

 

(4) 

As the results obtained from the form of Eq. (4), the second term of the 
right hand side of the equation indicates that there appears an additional 
viscous term r  where 

HMr 04
1  (5) 

The increase of the apparent viscosity in r  is regarded as the rotational 
viscosity, Shliomis (1972). Eq. (5) can be expressed in combination with 
the Langevin formula given in Eq. (8.1.1) and the definition  given in 
Eq. (8.2.36) as follows 

tanh
tanh

2
3

22
3

00 vvr L
L  (6)

In the absence of a magnetic field, i.e. 0 , Eq. (6) leads 00r , 
in which an individual particle rotates with the same angular velocity as a 
fluid particle, followed by p . On the other hand, in the limiting case 
for , we have 

vr 02
3  (7) 

Problems 

8.2-1 Prove that  is expressed in the formula given in Eq. (8.2.36). 
Ans. useful. are 8.1.1 Exercise  

 
8.2-2 Sketch the curve given in Eq. (6) in Exercise 8.2.2, and discuss the 

increase of the apparent viscosity where r .  Keep other parame-
ters constants. 
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8.2-3 Assuming 0p , Eq. (8.2.25) gives HM v06 . Substitu-
tion of this HM  to Eq. (8.2.17), gathering the viscous terms, 
yields u2

023 va . Derive this expression and discuss the 
consequence of Exercise 8.2.2, i.e. vr 023 . 

Ans. 

particles of slipping the
implies   while

 particles, of rolling
    theimplies0

 

8.3 Basic Flows and Applications 

Among many interesting phenomena that often characterize magnetic flu-
ids, some typical cases are explained in this text. In order to avoid confu-
sion and complexity, phenomenological explanations are chiefly given 
here, trying not to go into too much detailed mathematical treatments. One 
very characteristic response is the normal field instability. The spontane-
ous generation of an ordered pattern of peaks (spikes) on the interface (the 
surface exposed to atmosphere for example) occurs when a uniform mag-
netic field (exceeding a critical intensity) is applied perpendicular to the 
interface of a magnetic fluid. Figure 8.6 displays the surface spikes gener-
ated due to a normal instability. Among other interesting phenomena con-
nected with the instability problem in a magnetic fluid is that an instability 
produces a labyrinthine or maze pattern that occurs in a thin layer of a 
magnetic fluid, when the layer is contained between a closely spaced flat 
surfaces, where furthermore possible patterns can appear in different con-

mathematically as a bifurcation and are treated as a critical phenomenon, 
resulting in many patterns appearing at supercritical stages of new equilib-
rium flow fields. The thermomagnetic convection followed by the appear-
ance of cell patterns is also generated due to the flow instability under 
various conditions of magnetic fields. This is known as thermoconvective 
instability. 

In this section we shall start our discussion to derive the ferrohydrody-
namic Bernoulli equation. Many flow problems in magnetic fluid’s tech-
nology can be explained similar to, yet in a more augmented way, the 
Bernoulli equation. Some problems of the thermoconvective instability are 
treated, taking account of the temperature dependence of magnetization. 
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figurations of imposing magnetic fields. These phenomena are known 

520



8.3 Basic Flows and Applications 

 
Fig. 8.6 Surface spikes due to tthe normal instability 

8.3.1 Generalized Bernoulli Equation 

Denoting that magnetic fluids are incompressible and at quasi-stationary 
where HM //  is satisfied, the ferrohydrodynamic equation represented by 
a Rosensweig equation is written as 

gHMp
Dt
D

a 2uu *  (8.3.1)

A peculiar feature of the equation describing magnetic fluids is associ-
ated with an additional volume force HM , the Kelvin force density and 
the composite pressure *p  appearing in place of a hydrostatic pressure p . 
In this sense, Eq. (8.3.1) is an extended Navier-Stokes equation. Denote 
that g  is the gravitational body force in Eq. (8.3.1). 

Along with assumptions adapted for derivation of a Bernoulli equation 
in Chapter 4, we assume that the fluid is inviscid 0a , irrotational 

0u  and isothermal ConstantT . With the condition of a steady 
state 0tu , Eq. (8.3.1) can be reduced to the following form 

0
2
1

0

2 H
HdHMup*  (8.3.2) 

where zg  is the gravitational potential. The last term can be alterna-
tively written by using the field-averaged magnetization, which is defined 
as 
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0

1  (8.3.3) 

so that 

HMHdHM
H

0
 (8.3.4)

The integration (along the stream line or vortex line) of Eq. (8.3.2) 
yields a more convenient form where 

const.
2
1 2 HMzpu g*  (8.3.5) 

In comparing Eq. (8.3.5) with Eq. (4.1.38), Eq. (8.3.5) is called a ferrohy-
drodynamic Bernoulli equation, where a new term HM  appears in the 
Bernoulli equation. The importance of Eq. (8.3.5) in view of engineering 
flow problems will be illustrated in proceeding sections. 

8.3.2 Hydrostatics 

With a limit of flow speed 0u , the state of fluids is at a hydrodynami-
cally static state, where the pressure distribution in a stationary magnetic 
fluid is described as a static equilibrium equation, derived from Eq. (8.3.5), 
as follows 

H

H
HdHMzzpp

0
00 g**  (8.3.6) 

where *
0p  is the composite pressure at the point where 0000 zyx ,,x  in 

which 0HH  and the axis z  is directed vertically upward. 
Now let us consider a situation when a nonmagnetic body immersed in 

a magnetic fluid, similar to that what considered in Fig.3.3. The force act-
ing on a body is determined by a stress nnT  on the surface element Sd , as 
similarly treated in Eq. (3.1.9) 

dSHp

dT

S
nn

S nn

n

SF

ˆHBII 20
0 2

 
 

(8.3.7) 
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8.3 Basic Flows and Applications 

nnT  is derived from Eq. (8.2.9), together with the Maxwell stress tensor in 
Eq. (8.2.13) for the condition of hydrodynamically static state. At the 
boundary (at the surface) of the body, the induction B  has to satisfy the 
condition 

0
S

dSB  (8.3.8) 

Leading to Eq. (8.3.7) to write 

              dSp
S

n nMF ˆ2
0 2

1  (8.3.9) 

Equation (8.3.9) indicates that at the surface of body, the pressure bound-
ary condition becomes 

ConstMp n
2

0 2
1

(8.3.10) 

The second term of Eq. (8.3.10) is called the magnetic normal traction, in-
dicating that there would be a magnetic pressure jump at the interface of a 
body and a magnetic fluid. Extensive discussion on the magnetic normal 
traction is found in Berkovsky et al. (1993). 

In general, the calculation of the surface integral for Eq. (8.3.9) yields 
the net force F . However, in reality obtaining HMM nn  is difficult 
since a non-magnetic body immersed in a magnetic fluid disturbs an exter-
nal field and resultantly alters xHH  at the surface of the body. Within 
the tolerance it is reasonable to assume that HMn , which enables us 
to neglect the magnetic normal traction. The force F  is thus, by using Eq. 
(8.3.6), written as 

dSHdHMzdSp
S

H

HS
nnF ˆˆ*

0

g  (8.3.11) 

where the magnetic field xHH  is assumed the same as those prior to 
immersing the body . 

Equation (8.3.11) can also be rewritten by the Gauss’ divergence theo-
rem as follows 

V

s V

dVHM

dVpdsp

g

**n̂F
 

 

(8.3.12) 

. 
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If we further assume that within the volume of a non-magnetic body,  
HM  is kept constant as g  does, we can write Eq. (8.3.12) to give  

VHMV )(gF  (8.3.13) 

The first term in Eq. (8.3.13) is the buoyant force known as the princi-
ple of Archimedes with reference to Eq. (3.1.30); the second term of the 
equation is the magnetic buoyant force, whose direction is determined by 

H  of a magnetic field (where we assume HM // ). 
When the choice of the direction of H  is controlled to be the same as 

the gravity acceleration g , which effectively increases the flotation effect 
for a non-magnetic body. This effect leads to wide applications in practical 
engineering. One of which is ore separation with respect to specific gravi-
ties, as schematically displayed in Fig. 8.7(a). The buoyant force of the 
preset magnitude is applied to floating valuable substances, separated from 
other grains of ore. On the contrary, in a case where the flotation condi-
tions of non-magnetic bodies change in the presence of an external non-
uniform field, magnetic bodies are self-levitating. For example, if a per-
manent magnet is placed in a non-magnetic vessel filled with a magnetic 
fluid, the magnet floats stably alone at the bottom of the vessel, being re-
pelled from the side walls and resultantly occupying a position in the ves-
sel, as sketched in Fig. 8.7(b). The self-levitating effect is the basis for the 
development of accelerometers, level meter or inertia dampers in engineer-
ing applications. 

 
Fig. 8.7 Magnetostatic buoyancy effects 

The magnetic hydrostatic equation given in Eq. (8.3.6), suggests that the 
body force due to the field gradient yields a pressure gradient, as is 
straightforwardly stated from the Rosensweig equation given in Eq. (8.3.1) 
for the static condition of 0u . The presence of a pressure gradient under 
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a magnetic body force seems to be one of the most attractive effects in 
magnetic fluid statistics. Since the appearance of magnetic fluids, the prin-
cipal application of magnetic fluids is largely found in rotary shaft seals, as 
displayed schematically in Fig. 8.8. As seen in Fig. 8.8(a), a small volume 
of a magnetic fluid is sustained in the annular region between a rotating 
shaft and a surrounding cylindrical magnetic pole, where the magnetic 
fluid maintains direct contact with both shaft and pole piece, providing a 
virtually leak-proof liquid seal. The pressure difference between the inner 
and outer housing, say 3p (high pressure side ) and 4p  (low pressure side ) 
with reference to Fig. 8.8(b), can be maintained under a rotating shaft con-
dition. The pressure difference 43 ppp , i.e. the seal pressure, can be 
estimated by the static equilibrium equation in Eq. (8.3.6), assuming that 
the gravitational force is ignored and the magnetic fluid in the gap is in a 
static state with a condition of the magnetic field to be tangential at the in-
terface, i.e. 0nM . With the magnetic condition at the interface, there 
would not be a magnetic pressure jump, so that 31 pp* and 42 pp* . 
Thus, at first approximation, the pressure difference p  can be estimated 
by 

2

12143

H

H
dHHMppppp ')'(**  (8.3.14)

The integral in Eq. (8.3.14) depends on the magnetization law. In a weak 
magnetic field, i.e. HM , so that the integral is given where 
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In a case of strong magnetic fields, SMHM )( , and the integral is of the 
form 

2

1
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H

H
S HHMdHHM ''  (8.3.16) 

where SM  is the equilibrium saturation magnetization given in Eq. (8.1.2). 
     In a general case, the Langevin formula given in Eq. (8.1.1) can be 
used to calculate the integral, which is found to give 
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The magnetic fluid seals are in commercial use as pressure-, vacuum- 
and dust-seals employed in both rotary and reciprocating shafts. As veri-
fied in the text above, the main characteristic ensuring the seal perform-
ance is the magnetic field strength in a gap space. In more technical views, 

 525 



care must be taken to choose the most appropriate type of magnetic fluid 
to prevent deterioration or evaporation of carrier liquids, depending upon 
the combination of the contact fluids. 

 

 

Fig. 8.8 Rotating shaft magnetic fluid seal 
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8.3.3 Thermoconvective Phenomena 

The Kelvin force density HM  that appeared in the Rosensweig equation 
is an additional body force term for the gravitational body force (if the 
fluid motion under the gravity field is considered). The term HM , as 
seen in the previous section, plays an important part in determining the 
flow behavior of magnetic fluids. Let us now consider, if a temperature 
field xT  is introduced into the flow field of internal flows, a situation of 
a thermomagnetic natural convection that is analogous to a thermal gravi-
tational natural convection. 

The problems found in determining the thermomagnetic natural con-
vection are similar to what was considered in the thermal gravitational 
natural convection in the way that the onset of a natural convection is 
caused by a hydrodynamic instability that breaks the mechanical equilib-
rium of fluid at a hydrodynamically static state, Landau and Lifshitz 
(1959) and Gershuni and Zhukhvitskii (1976). In this section, for the sake 
of clarity the simplest case of the natural convection, the so-called Benard 
convection, is considered as schematically represented in Fig. 8.9. As 
shown in Fig. 8.9(a) and (b), the thermal configuration is such that two 
dimensional infinite solid horizontal layers are arranged in parallel, in 
which the temperature of the interface of the bottom layer is set higher 
than that of the upper layer. Between the two layers a magnetic fluid is 
charged, where the density  and magnetization  of the magnetic fluid 
posses a spatial non-uniformity due to a temperature distribution. It is as-
sumed that the two solid layers have an infinite magnetic permeability and 
a thermal conductivity. 

At the beginning, the state of the fluid is at a quiescent state of me-
chanical equilibrium 0u , where an externally applied magnetic fluid H  
and temperature difference 12 TTT  are very small, and the heat is 
transferred from the bottom wall to the upper wall by the thermal conduc-
tion through the magnetic fluid layer, as indicated in Fig. 8.9(a). This is the 
conduction state, where isothermal temperature distribution persists. As 
thermal and/or magnetic conditions are changed, as we will discuss here, 
there should be a threshold condition, upon which a natural convection 
mode appears, followed with the appearance of cellar structure of flow, 
known as the Benard cell as schematically shown in Fig. 8.9(b). With this 
mode of flow, i.e. at the state of a natural convection, the heat transfer rate 
increases drastically compared to the thermal conduction state due to a 
convective motion of flow. 
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Fig. 8.9 Problem of Benard convection in thermomagnetic natural con-
vection 

 
In order to develop knowledge in critical phenomena at the occurrence 

of a thermomagnetic natural convection, we will examine the mechanism 
by firstly writing conditions for a mechanical equilibrium. The requisite 
mechanical equilibrium is given by taking the rotation of the Rosensweig 
equation at the hydrodynamically static state 0u , as follows  

0HMg  (8.3.18) 

In examining appropriateness of Eq. (8.3.18), we shall assume here 
that the temperature dependence for the properties of T  and 
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HTMM , , where T  varies in position z  likewise zTT , so that we 
have 

T
T

 and H
H
MT

T
MM

TH

 (8.3.19) 

It is further mentioned that the magnetic fluid is assumed to be homo-
geneous in terms of the concentration of a magnetic phase in a fluid. The 
substitution of Eq. (8.3.18) to Eq. (8.3.19) yields the necessary condition 
of a mechanical equilibrium, that is 

0TH
T
M

T
g  (8.3.20) 

The existence of the critical phenomena, namely the transition to a 
flow of natural convection from the state of thermal conduction requires 
the parallelity of T  to g  and H . At a condition when this parallelity 
is broken, the equilibrium (the static) state would not be possible, at which 
moment the onset of a convection motion, 0u , appears. 

Thermal characteristics found in problems of the Benard convection 
are solely determined by the Rayleigh number Ra  as discussed in Exer-
cise 6.2.1, which is defined as 

c

pT

k
lcT

PrGrRa
4

0g  (8.3.21) 

The temperature gradient T  is defined by lT , pc  is the specific heat, 

ck  is the thermal conductivity,  is the kinematic viscosity. Note that T  
is the coefficient of thermal expansion that is defined as 

00 1 TTT  (8.3.22) 

It is further mentioned that 0  and 0T  are a reference density and tempera-
ture respectively. All thermophysical values are bulk values of a magnetic 
fluid. 

Some simplifications are expressed by assuming a linear magnetization 
relationship, a so-called soft magnet approximation to the magnetic fluid. 
By the use of that from Eq. (8.1.3), the magnetization can be written 
analogously to Eq. (8.3.22), 

 

00 1 TTMM m  (8.3.23) 
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where m  is defined as the relative pyromagnetic coefficient. 
Satisfying the condition of parallelity given in Eq. (8.3.20), i.e. 

H//g , with the critical phenomena of the natural convection of a mag-
netic fluid, the Rayleigh number defined in Eq. (8.3.21) can be modified to 
write 

cpmTa klc
dz
dT

dz
dHMR 4

00 ))((* g  (8.3.24) 

The important consequence of deriving the expression found in Eq. 
(8.3.24) is that the flow instability at the onset of a natural convection is 
adequately described by the known solutions of ordinary thermoconvective 
stability problems, by adding an extra term of thermomagnetic force action 
to the buoyant force effect. 

Taking into account of the magnetic polarization relation expressed in 
Eq. (8.2.7), the magnetic field gradient dzdH  can be rewritten by the fol-
lowing sequence 

H
0

1  (8.3.25) 

Equation (8.3.19) has a scalar component for H where 
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so that 
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where the field gradient is given as 

dz
dTM

dz
dH m

0

0

1
 

(8.3.27) 

Therefore, *
aR  in Eq. (8.3.24) can be decomposed into two basic terms as 

we substitute Eq. (8.3.27) for Eq. (8.3.24), yielding 
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ma

c

pm

c

p
Ta

RR
k

lc
dz
dTM

k
lc

dz
dTR

42

0

22
00

4

0g
*

 
 

(8.3.28) 

The first term aR  is an ordinary (thermogravitational Rayleigh number) 
and the second term mR  is defined as the magnetic Rayleigh number. An 
important result obtained from Eq. (8.3.28) is that the mR in all directions 
of dzdTT  is positive, indicating that in the irrespective of the direc-
tion of the magnetic field gradient dzdHH  the temperature perturba-
tion of the magnetizing field always leads to the thermoconvective fluid 
destabilization. 

In determining the critical Rayleigh number caR  at the first transition 
of the Benard convection, the Rayleigh number at the onset of first appear-
ance of the Benard convection cells, Gotoh and Yamada (1982), show that 
(detailed by numerical study) the parameter 000 HBK , the 
characteristic parameter of the nonlinearity of the fluid magnetization 
curve, plays an important role, and further show that in cases where 
K (sufficiently large K ), the stability problem will become a con-
ventional stability problem of a Benard convection, as derived in Eq. 
(8.3.28). Consequently the critical Rayleigh number 1708c

*
aR  is found 

to be applied for ordinary thermogravitational and thermomagnetic terms, 
which are written as 

1708ccc maa RRR *  (8.3.29) 

The results obtained from a series of numerical work are also formulated 
by a linear relation 

0

1
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a

R
R

R
R cc

*  (8.3.30)

where 0mR  is the critical magnetic Rayleigh number in the absence of the 
gravitational effect, as K , Blums et al. (1997). 

The experimental evidence, Schwab et al. (1983), also supports the re-
lationships found in Eqs. (8.3.24) and (8.3.28), as schematically shown in 
Fig. 8.10, where Nu  is the Nusselt number (with reference to Fig. 6.2 for 
an ordinary natural convection). As seen in Fig. 8.10, the increase of the 
magnetic field H  results in a lowering of the critical Rayleigh number, 
destabilizing the fluid state, and resultantly enhancing the heat transfer rate 
as thermal mixing increases by the convecting motion of the fluid. 
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The compatibility between g  and HM  is interesting, particularly 
in application to space engineering, where in the non-gravity condition a 
body force may be altered or controlled by means of HM . Widespread 
engineering applications or pure fluid science problems are found in space 
environments in conjunction with thermoconvective phenomena. 

 

 
Fig. 8.10 Heat transfer characteristics in thermomagnetic cconvection  

(replotted after Schwab et al., 1983) 

Exercise 

Exercise 8.3.1 Magnetic Field Boundary Conditions 

Give boundary conditions for a magnetic field when two magnetically 
permeable media are in contact, one of which is a magnetic fluid. Consider, 
taking account of the magnetic field boundary conditions, the pressure 
jump at the interface of a stationary media. 

Ans. 

The two magnetic field conditions given in Eqs. (8.2.38) and (8.2.39) 
can be applied to the boundary of magnetic fluids and magnetically perme-
able media. For the induction of B , firstly according to the Gauss’s diver-
gence theorem, we can write the following relationship as 
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and Pressure Jump 
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0)( 2n ln dSBB
SV

SBB  (1)

Equation (1) yields the result that 

0)( or  212n1 nBB ˆBB n  (2)

It is mentioned that n̂  is the normal vector directed to medium 2 (suppos-
ing magnetically permeable medium) from medium 1 (supposing the mag-
netic fluid), as indicated in Fig. 8.11. 

Equation (2) shows the continuity of the normal induction nB , when B  
passes through the interface of the media with different magnetization 

2nn MM  and 1 . Equation (2) also gives a jump to the normal magnetic field 
intensity nH , which is equal to the difference of a normal fluid magnetiza-
tion nM , so that 

nnnn MMHH 12210  (3)

For the magnetic field H , according to the Ampere’s circulation law, 
we can write the relationship at the interface 

   0dlHHdd tt
lS

)(  )  ( 21lHSH  (4)

Equation (4) yields the result that 

0)( or 2121 nHH ˆtt HH  (5)

 
Fig. 8.11 Refraction at an interface 
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  The conditions given in Eq. (5) involve the continuity of the tangential 
magnetic field intensity tH  at the interface. Altogether, Eqs. (2) and (5), 
give the conjugation of a magnetic field at an interface for an induction 
and magnetic field intensity. This conjugation gives an insight into the so-
lution for a magnetic field at a boundary, such as a consideration of the re-
fraction of magnetic flux lines of 1B and 2B  at the interface of two media, 
as shown in Fig. 8.11. Denote that  is the angle between the magnetic 
flux line and the tangent to the interface, so that tntan BB , consider-
ing HB 0  for each medium at the interface, we may obtain the follow-
ing relationship 

1

2

1

2

22

11

2

1

tan
tan

t

t

tn

tn

B
B

BB
BB  (6)

where 21  and  are the magnetic permeability of medium 1 and medium 
2 respectively. For example, as shown Fig. 8.11, in the case of 12 , the 
magnetic flux line of medium 2 has a high refraction angle at the interface. 

Now consider dynamic boundary conditions at the interface, simply as-
suming that the two media are thermally at equilibrium, i.e. isothermal and 
stationary, i.e. 0u  at the interface. The stress tensor for a magnetic fluid 
can be written as, according to Eqs. (8.2.9) and (8.2.13) 

HBIT )
2
1( 200 Hp  (7)

With the allowance of the conjugation of a magnetic field at an inter-
face, the normal stress difference at the interface is balanced at the station-
ary condition so that 
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(8)

where the third term in the right hand side of equation is due to the surface 
tension where  is the coefficient of the surface tension and 1R  and 2R  
are the main surface curvature radii. With 012 nn ˆTˆT , we can obtain 
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2
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111 nMnM ˆˆ
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p  (9)

Thus, at the interface, a pressure jump may occur due to the effect of 
the surface tension and the difference of a squared magnetization (normal 
magnetization component) of the media. 

Equation (9) gives the idea that for the magnetic fluid in contact with 
the atmosphere with the plane interface the pressure inside of the magnetic 
fluid is less than that of atmospheric pressure by 22

0 nM . Furthermore, 
in the case of only a tangential magnetic flux at the interface, there would 
not be a pressure jump due to the magnetization difference. 

Exercise 8.3.2 Effect of Mass Concentration on Thermomagnetic 
Convection 

In thermomagnetic convection, if the concentration of magnetic phase in a 
magnetic fluid has any space dependency, include the terms due to the 
non-uniformity of fluid components to the Rayleigh number *Ra  defined 
in Eq. (8.3.24). 

Ans. 

Let the density of the bulk magnetic fluid  be spatially non-uniform 
and define m  as the density of the magnetic phase in a magnetic fluid. 
The concentration of the magnetic phase is thus written as 

mmn  (1)

mn  is a function of spacial coordinates.  and M  then have a functional 
relationship for independent parameters; T , H  and mn  are as follows 

mnT ,  (2) 

 mnHTMM ,,  (3) 

so that, in differential forms 
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The substitution of Eqs. (4) and (5) for Eq. (8.3.18) yields 
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For the existence of the critical phenomena, likewise discussed in Eq. 
(8.3.20), the following conditions are to be met 

H
T
M

T
g  and H

n
M

n mm
g  (7)

Therefore, when T  or mn  are parallel to g  and H , the convection 
may set up under definite conditions. By definition of the Rayleigh number, 

*Ra given in Eq. (8.3.21), we can define the generalized Rayleigh number 
for magnetodiffusion convection, considering mn  and writing the neces-
sary condition on mechanical equilibrium similar to Eq. (8.3.20) as 

m
mm

nH
n
M

n
g =0  (8)

Analogous to deriving Eq. (8.3.24), we can derive an expression for the 
generalized Rayleigh number *Ra  by writing 

D
l
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where n  and p  are defined in such a way that 
m

n n0

1  and 

m
p n

M
M 0

1 , Blums et al. (1997). Note that D  is the diffusion coeffi-

cient of magnetic particles in a carrier liquid. 
It is mentioned that under the non-isothermal conditions that the flow 

instability is largely dependent upon by a thermoconvective mechanism, 
rather than a mass transfer of colloidal particles. This is due to the reason 
that the thermal relaxation time is considerably shorter than the time re-
quired for colloidal particles to establish an equilibrium concentration field 
of m . This can be characterized by the Lewis number Le , which is de-
fined as 
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k
DkcDLe cp0   (10)

where k  is the thermal diffusivity. The magnitude of D  can be estimated 
by Einstein’s formula for the diffusion coefficient 

rTkD B 06  (11)

where nm102r  is the diameter of a magnetic particle. For a water base 
magnetic fluid, Le  may be calculated to give 

4
7

11

1030
1051
10440 .

.
.Le  (12)

Small Le  shows that the mass diffusion is smaller than the thermal diffu-
sion, indicating that the relaxation is considerably shorter that the mass dif-
fusion time scale. 

Problems 

8.3-1 Consider a non-magnetic body of density s  with a representative 
radius of R . If the density  of a magnetic fluid is 31031. kg/m3, 
and 21052.M Tesla and 5108H A/m2 are kept constant, 
what is the floating criterion of the nonmagnetic body when 

0010.R m is considered? 

Ans. 
3

3

kg/m33
5
40

)Eq. (8.3.13 From

.s

s RHMg  

 
8.3-2 Consider a single stage rotating shaft with a magnetic fluid seal, as in 

Fig. 8.8, when a strong magnetic field of 32 10191.H kA/m and 
01H  is imposed at both sides of the seal.  Estimate the seal pres-

sure p  if the mean corresponding magnetization SM  is 
210024.SM  Tesla. 

Ans. Pa10784 4.  
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8.3-3 Considering the constitutive equation given in Eq. (8.2.9), derive Eq. 
(8.3.1) by describing the conditions to derive Eq. (8.3.1). 

 
8.3-4 Give reasons why the curve for 0H  in Fig. 8.10 shifts to left. 

Nomenclature  

A  : Pseudovector, vector of tensor 
B  : magnetic induction vector 
b  : heat generation per unit mass 
c  : couple stress tensor 
D  : diffusion coefficient 
d  : diameter 
f  : body couple per unit mass 
0f  : Larmor frequency 

g  : body force 
g  : gravity acceleration 
Gr  : Grashof number 
H  : magnetic field vector 
I  : unit tensor 
I  : moment of inertia 
K  : Pyromagnetic coefficient, characteristic parameter of 

nonlinearity or anisotropy constant 
ck  : thermal conductivity 
Bk  : Boltzmann constant 

k  : thermal diffusivity 
l  : characteristic length 
Le  : Lewis number 
M  : magnetization vector 

SM  : saturation magnetization 
m  : magnetic moment 
N  : number of particle per unit volume 
Nu  : Nusselt number 
n̂  : normal unit vector 
p  : pressure 
p  : total pressure 

emP  : electromagnetic energy per unit volume 

0p  : hydrostatic pressure 
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Nomenclature 

Pr  : Prandtl number 
q  : heat transfer rate 
q  : heat flux vector 

21 RRR ,,  : representative radius 
Ra  : Rayleigh number 

*Ra  : generalized Rayleigh number 
mR  : magnetic Rayleigh number 

s  : intrinsic angular momentum vector 
s  : specific entropy, surfactant thickness 
T  : total stress tensor 
T  : temperature 

0T  : reference temperature 
u  : velocity vector 
u  : internal energy of system 

mu  : Internal energy of magnetic fluid  
V  : volume 

zyx ,,  : Cartesian coordinates system 
zr ,,  : cylindrical coordinates system 

,,r  : spherical coordinates system 
 : diffraction angle 

m  : relative pyromagnetic coefficient 

T  : coefficient of thermal expansion 
 : polyadic alternator 
 : Langevin argument, vortex viscosity 
 : viscosity of bulk magnetic fluid 

0  : base (carrier) liquid viscosity 

a  : apparent viscosity 

r  : rotational (additional) viscosity 
 : shear coefficient of spin viscosity 
 : density of bulk magnetic fluid 

s  : particle material density 

0  : permeability of free space 

21,,, s  : magnetic permeability 
 : bulk coefficient of spin viscosity 

 : void fraction 

c  : critical volume fraction 

m  : void fraction of magnetic material 
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v  : void fraction of magnetic material with surfactant layer  
 : (coefficient of) surface tension 
 : stress tensor 

B  : Brownian diffusion time constant 
N  : Néel relaxation time 
s  : rotational relaxation time 

,//  : characteristic relaxation time 
 : kinematic viscosity  
 : magnetic susceptibility 
 : mass of a particle 
 : vorticity vector 
p  : spin angular velocity 

: fluid particle rotation rate vector, angular velocity 
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Appendix 

Appendix A 

Table A.1 Physical properties of water 

CT  3mkg  sPa0 sm2  kPavaporp mN GPaK  

0  1000  310751. 610751. 6110.  07560.  022.  
10  1000  310301. 610301. 231.  07420.  102.  
20  998  310021. 610021. 342.  07280.  182.  
30  996  410008. 610038. 244.  07120.  252.  
40  992  410516. 710566. 387.  06960.  282.  
50  988  410415. 710485. 312.  06790.  292.  
60  984  410604. 710674. 919.  06620.  282.  
70  978  410024. 710114. 231.  06440.  252.  
80  971 410503. 710603. 447.  06260.  202.  
90  965  410113. 710223. 170.  06080.  142.  

100  958  410822. 710942. 3101.  05890.  072.  
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 Appendix 

Table A.2 Typical physical Properties of some common liquids at atm1 and  
C20o  

Liquid 3mkg sPa0  kPavaporp mN  

Ammonia 829 410202. 910  02130.  
Benzene 879 410516.  110.  02890.  
Ethanol 7887  310201.  755.  02280.  
Glycerine 1258  491.  51041.  06330.  
Kerosene 819 310921.  113.  02770.  
Methanol 788 410985.  413.  02260.  

Appendix B 

Appendix B-1 Vector Tensor Operations 

Write a vector u  as a sum ii iuê and a tensor T  as a sum iji ji Tee ˆˆ , 

where jiee ˆˆ  is the unit dyad. Note that the unit vectors iê are defined to give 
vectors and there are the scalar products ji ee ˆˆ  and vector products 

ji ee ˆˆ . A third kind of product can be formed with the unit vector, 
namely the dyadic product jiee ˆˆ , where the products jiee ˆˆ  are the second 
order tensor. iê  and jê  are of unit magnitude, so that the products jiee ˆˆ  are 
treated as unit dyads. 

Based upon the dot and cross products of unit vector, which are per-
formed by the geometrical definitions, the analogous operations for the 
unit dyads are defined by relating them to the operations for unit vectors 

   iljklikjlkji eeeeeeee ˆˆˆˆˆˆ:ˆˆ  (B.1-1)

kjikjikji eeeeeee ˆˆˆˆˆˆˆ  (B.1-2)

kjikjikji eeeeeee ˆˆˆˆˆˆˆ  (B.1-3) 
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  lijklkjilkji eeeeeeeeee ˆˆˆˆˆˆˆˆˆˆ  (B.1-4) 

lijklkjikji eeeeeeee ˆˆˆˆˆˆˆˆ  (B.1-5) 

  klijlkjikji eeeeeeee ˆˆˆˆˆˆˆˆ  (B.1-6) 

Appendix B-2 Representative Operations 

uuu II  (B.2-1) 

wvuwuv  (B.2-2) 

vuwuvw  (B.2-3) 

      zuvwvzuwwzuv ::  (B.2-4) 

vuuv T:T  (B.2-5) 

TT: vuuv  (B.2-6) 

Appendix B-3 Differential Operators 

Cartesian Coordinates 

zyx zyx eee ˆˆˆ  (B.3-1)

Cylindrical Coordinates 

zrr zr eee ˆˆˆ 1  (B.3-2)

Spherical Coordinates 

sin
11

rrrr eee ˆˆˆ  (B.3-3) 

Appendix B-4 Operations 

(i) Representative operations in Cartesian Coordinates zyx ,,  
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(ii) Representative operations in Cylindrical Coordinates zr ,,  
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(iii) Representative operations in Spherical Coordinates ,r,   

u
r

u
r
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rr r sin

1sin
sin
11 2

2u                   (B.4-7) 
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Appendix B-5  Representative Differential Relations 

0s  (B.5-1) 

0u  (B.5-2) 

rssrrs  (B.5-3) 

uuu sss  (B.5-4) 

uuu sss  (B.5-5) 

uwwu
uwwuwu

 
(B.5-6) 

wuuwwu  (B.5-7) 

wuuw
uwwuwu

 (B.5-8) 

uuu 2  (B.5-9) 

uuu  (B.5-10) 
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0rs  (B.5-11) 

uuuuuu
2
1  (B.5-12) 

uwwuuw  (B.5-13) 

uue ss :ˆ  (B.5-14) 

ssê  (B.5-15) 

TTT sss  (B.5-16) 
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(B.5-17) 

Appendix B-6 Equation of Continuity 

0u
t

 

Cartesian Coordinates zyx ,,  

     0zyx u
z

u
y

u
xt

 (B.6-1) 

Cylindrical Coordinates zr ,,  

            011
zr u

z
u

r
ru

rrt
 (B.6-2)

Spherical Coordinates ,,r  

0
sin
1sin

sin
11 2

2 u
r

u
r

ur
rrt r  (B.6-3) 

When the fluid is assumed to have constant mass density , the equa-
tion simplifies to 0u  
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Appendix B-7 Equation of Motion in Terms of Stress Tensor  

gp
Dt
Du  

(i) Cartesian Coordinates zyx ,,  
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(ii) Cylindrical Coordinates zr ,,  
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(iii) Spherical Coordinates ,,r  
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Appendix B-8 Equation of Motion for a Newtonian Fluid with Constant 
 and 0  
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(i) Cartesian Coordinates zyx ,,  
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(ii) Cylindrical Coordinates zr ,,  
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(iii) Spherical Coordinates ,,r  
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Appendix B-9 Equation of Energy in Terms of q (b=0) 
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(ii) Cylindrical Coordinates zr ,,  
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(iii) Spherical Coordinates ,,r  
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Appendix C 

Appendix C-1 Buckingham -Theorem 

The Buckingham -theorem is used in the study of dimensional analysis 
and similitude, which is based on the notion of dimensional homogeneity. 
The theorem is examined in a given fluid system where variables of 1q , 2q , 
…, nq  are chosen so that they are pertinent to a physical phenomena. 
Then, we will express the phenomena by a functional form as 

0321 nqqqqf ,...,,,  (C.1-1)

where n  represents the total number of variables. If there are m  basic di-
mensions involved in the variables of 1q  ~ nq , the Buckingham -
theorem states that the same physical phenomena can be correlated by 

mn  nondimensional numbers (independent from nondimensional 
groups), called -parameters, which are given as a functional form 

0321 mn,...,,,g  (C.1-2) 

When a given fluid system contains a dependent variable, say 1q , the 
physical phenomenon can be expressed similarly in the form  

nqqqhq ,...,, 321  (C.1-3)

and 

mns ,...,, 321  (C.1-4)

where 1  includes the dependent variable and the remaining -
parameters include the rest of independent variables. The procedure 
adopted for determining the nondimensional -parameters are as follows; 
Step (1) In having written the functional form of either Eq. (C.1-1) or Eq. 

(C.1-3), select m  repeating the variables from n -independent 
variables in Eq. (C.1-1) or 1n -independent variables in Eq. 
(C.1-3). The repeating variables must include all of the basic di-
mensions, but they must not form -parameters by themselves. 
In order to obtain the most significant -parameters, it is desir-
able to choose one variable with geometric characteristics,  sec-
ond variable with flow characteristics and another variable with 
fluid properties, such as l ,U  and  respectively, with reference 
to Table C.1. For example, writing Eq. (C.1-1) 
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         0321 nqqqqf ,...,,,  (C.1-5) 

we may choose m  repeating variables, say if 3m , select three 
variables to meet the criteria, say 2q , 4q  and 5q among n  vari-
ables. 

Step (2) Write -parameters of mn,...,, 21  in the power form for the 
repeating variables, for example with 2q , 4q  and 5q  in Step (1) 
with each of the remaining variables as 

15421 qqqq cba  

35422 qqqq cba  

65423 qqqq cba  
           : 
           : 

n
cba

mn qqqq 542  
Step (3) Apply the dimensional analysis to obtain the power constants for 

each -parameter subjecting that the -parameters are all di-
mensionless. 

Step (4) Write the functional form using -parameters to describe the 
physical phenomenon of the fluid system. 

Step (5) In correlating experimental results, one dependent -parameter 
(say 1 ) can be expressed by a function likewise 

mn
mnmncccs , 32

33221  (C.1-6)

where mnccc , 32  and mn,, 32  are constants determined 
from the results of experiments. Note that if some dimensionless 
variable, such as the length ratio 21 ll , the roughness etc, are 
contained in the primary variables nqqq ,, 21 , they are them-
selves treated as -parameters and to be excluded from the pro-
cedure by simply adding as -parameters in the resultant func-
tional form, for example 

 02121 llqqqf n ,,,,  (C.1-7) 

0211 lls mn ,,  (C.1-8) 

,...

,... ...
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Table C.1 Dimensions of quantities frequently used in fluid flow problems 

Quantity Symbol Dimensions 
Length l  L  
Time t  T  
Mass m  M  
Area A  2L  
Volume V  3L  
Force F  2TML  
Velocity U  TL  
Acceleration a  2TL  
Angular frequency  T1  
Gravity g  2TL  
Flow rate Q  TL3  
Mass flux m  TM  
Pressure p  2LTM  
Stress T  2LTM  
Work W  22 TML  
Power, heat flux qP ,  32 TML  
Density  3LM  
Specific weight  22TLM  
Viscosity 0  LTM  
Kinematic viscosity  TL2  
Surface tension  2TM  
Bulk modulus K  2LTM  

(*)Basic Dimensions; L (length), M (Mass), and T (Time), i.e. 3m  

Appendix C-2 Example of -Analysis 

In order to illustrate -theorem, suppose that force F  acting in a fluid 
system is supposed to be dependent on the velocityU , density , grav-
ity g , viscosity 0 , surface tension , angular frequency (velocity) , bulk 
modulus , surface roughness , characteristic length l  and another repre-
sentative linear dimension 1l . For this fluid system a physical phenomena 
would be described with nondimensional numbers by applying -theorem 
as demonstrated below. 
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(i) Functional form 

                   0,,,,,,,,,, 1
0 l

l
UlFf g  (C.2-1) 

We have eleven variables, i.e. 11n , which contain three basic dimen-
sions L, M and T, i.e. 3m . According to - theorem, we can find eight 

8311mn  -parameters, so that we have  

0,,,,,, 87654321g  (C.2-2)

 
(ii) Choice of repeating variables 

Choose three repeating variables such as l ,U  and , and set ll17  
and 8 , since they are two already dimensionless parameters. Thus we 
will find 1  to 6 , i.e. six - parameters. 
 
(iii) Conduct dimensional analysis 

FUl cba
1  (C.2-3) 
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Similarly for 3 ~ 6 , we can obtain  

23 U
lg ,

glU 24 , 25 U
K  and 

U
l

6  (C.2-8) 
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(iv) Set functional form 
Each of the - parameters for 2  ~ 6  in this expression is a  com-

mon nondimensional number, which is derived from similitude (Section 
6.2), so that we have 

0,,,1,1,1, 1
2222 l

ltS
MFrRelU

Ff  (C.2-9) 

and for the dependent variable F , the functional form is given where 

      ,,,,,
21

1
22 l

lStMFrRef
lU

Fc f  (C.2-10) 

Appendix D 

Appendix D-1 Invariant of Second Order Tensor 

The invariants of a tensor are scalar quantities, which remain unchanged 
for the coordinate transformation of rotation. There are three principal in-
variants for second order tensors. 

Consider a second order tensor T , whose components are ija  for unit 

When  is a scalar and is an eigenvalue of T , we have the following rela-
tionship 

AijijijijB ba  (D.1-1)

where A  and B  are the characteristic equations of ija  and ijb . Eq. (D.1-
1) shows that the characteristic equations are equal to both frames 
( jiee ˆˆ and jiee ˆˆ ), so that they are unaffected by the coordinate transforma-
tion. They are also given when 

32
2

13 IIIBA  (D.1-2)

where 1I , 2I and 3I are principal invariants, which are also unaffected by 
the coordinate transformation. They are respectively defined as 

3322111 aaaI  (D.1-3) 

dyads ji ee ˆˆ , and ijb  for unit dyads jiee ˆˆ  after the coordinate transformation. 
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2221
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3133

3332

2322
2 aa
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aa

I  (D.1-4) 

333231

232221

131211

3

aaa
aaa
aaa

I  (D.1-5) 

and alternating, 1I , 2I  and 3I  are written where 

AtI r1 , 22
2 2

1 AtAtI rr and AI det3  (D.1-6)

where 22 AtAt rr and AAtAt rr
2 . Another set of invariants is defined 

by the so-called moment, as follows 
k

rk AtI  (D.1-7) 

With the moment, given by Eq. (D.1-7), the invariants are representa-
tively given for k =1,2 and 3 as 

11 IAtI r  (D.1-8)

2
2
1

2
2 2IIAtI r  (D.1-9)

          21
3
13

3
3 626

2
1 IIIIAtI r  (D.1-10)

It is useful to note that there are relationships between two principal in-
variants kI and the moments kI  as follows 

11 II  (D.1-11)

2
2

2
12

2
1 III  (D.1-12)

321
3
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1
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6
1 IIIII  (D.1-13)
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For a symmetric tensor T , eigenvalues of T are real and T is diago-
nalizable. For example, if eigenvalues 21, and 3 are of a symmetric ten-
sor T , T  can be transformed to a diagonal matrix 

3

2

1

00
00
00

T  (D.1-14)

Then we have invariants 

3211I  (D.1-15)

           1332212I  (D.1-16) 

and  

3213I  (D.1-17) 
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A 
 
Acceleration 
 convective, 8 
 Corioli’s, 18 
 local, 11, 12 
 reference frame, 84–87 
Accelerometer, 111, 112, 524 
Acoustic velocity, 225 
Action angle, 98, 100 
Actuator-disk theory, 142 
Adiabatic process, 228, 233, 241,  

258–264 
Adverse pressure gradient, 350–352 
Airfoils, aerofoils, 154, 188–194 
Alternating unit tensor (polymeric 

alternator), 14, 49 
Ampere’s (circulation) law, 533 
Analytic function, 118, 159 
Angular 
 momentum, 47–52, 127, 128, 183–188, 

507, 509–513 
 momentum conservation, 47–52, 128, 

507, 512, 513 
 velocity, 16, 18, 74 
Anisotropy of particles, 502 
Anti-symmetric, see Skew-symmetric 

tensor (anti-symmetric tensor) 
Apparent 
 viscosity, 400, 502, 516–519 
 wall shear rate, 443 
Archimedes’ principle, 82, 524 
Atmospheric pressure, 76, 93–96, 110 
Attack angle, 155 
Axial flow pumps, 183, 189–194, 199 
Axisymmetric flows, 312, 323, 328, 330, 

410–413 
 

B 
 
Barotropic, 152–154, 158 
Base liquid 
 See also Carrier liquid 
Bearing 
 journal, 310 
 slipper-pad, 306–310 
 thrust, 309 
 with magnetostatic lubricant, 524 
Bell-mouth, 144 
Benard 
 cell, 527, 531 
 convection, 297, 527–532 
Bend, 140–149 
Bernoulli equation, 122–125, 521, 522 
 ferrohydrodynamic, 521 
 generalized, 521, 522 
 surface, 122, 123 
Bessel’s 
 differential equation, 332 
 functions, 332, 333 
Biaxial stretching flow, 422 
Bingham plastic (fluid), 403 
Blasius 
 equation, 345, 346 
 first theorem, 159 
 second theorem, 159, 179 
 solution, 345 
Blunt body, 254, 255 
Body 
 couple, 49, 51, 52 
 force, 26, 45, 74, 525 
Boltzmann 
 constant, 282, 500 
 superposition principle, 425 
Borda’s mouth piece, 271, 272 
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Boundary conditions 
 dynamic, 534 
 free surface, 85–87 
 inviscid flow, 115–129 
 for a magnetic field, 532–535 
 no-slip, 177, 336, 341, 472, 474 
 for temperature, 292, 353–355 
 for velocity, 301, 302, 324, 331, 335, 

337, 375, 411 
Boundary layer equations, 343, 344 
Boundary layer flow, 177, 178, 340–364 
Boundary layer separation, 350–353 
Boundary layers on a flat plate, 177, 178, 

340–350, 475–477 
Boundary layer thickness, 341, 346,  

360, 476 
Bounding vortex, 155 
Boussinesq approximation, 295–297 
Brinkman number, 294 
Broad-crested weir, 137–140, 175, 176 
Brownian 
 motion, 498, 511 
 relaxation time, 502, 504–506, 515 
 rotational diffusion, 501 
Buckingham theorem, 196 
Buffer layer, 372 
Bulk modulus, 228 
Bulk viscosity coefficient, 280 
Buoyant force, 80, 82, 100–105,  

312, 524 
 

C 
 
Camber line, 154 
Capillary viscometer, 437 
Carrier liquid, 498, 502 
Cartesian coordinates, 11, 23, 82 
Cauchy 
 equation of motion, 46, 50, 52, 73, 407, 

410, 413, 431, 438, 473, 507 
 strain tensor, 23, 464 
 theorem (stress), 26–30, 37, 38 
Cauchy-Riemann conditions, 118 
Cavitation 
 critical, 206, 207, 217, 219 
 number, 206 
 in turbo-machines, 203–207 
Cayley-Hamilton theorem, 464 

Center 
 of buoyancy, 101 
 of pressure, 79, 96–100 
Centrifugal force, 85 
Centrifugal pump, 86, 211–213, 218, 219 
Centripetal acceleration, 18, 74 
Centroid, 78–80, 98 
Characteristic equation, 37 
Characteristic length, 290, 291, 350,  

369, 488 
Characteristic scale of velocity, 368, 488 
Choked flow, 238–241, 262, 266 
Chord 
 length, 155 
 line, 155 
Circulation, 119, 155 
Circumferential velocity, 129 
Coefficients 
 contraction, 134 
 correction, 132 
 pyromagnetic, 501 
 of surface tension, 87, 534–537 
 of thermal expansion, 60, 292, 529 
Colloidal suspension, 497 
Complex 
 modulus, 424–427, 440 
 potential, 118 
 velocity, 118 
 viscosity, 426 
Compressibility, 131, 135, 225 
Compressibility factor, 132, 255 
Compressible flow, 131, 225 
Compression, 249 
Concentric cylinders (spheres), 299–306, 

412, 414 
Conduction (Heat), 61, 527 
Cone and plate rheometer, 428–430 
Configuration parameter (of turbulent 

flow), 374  
Conformal mapping, 119, 160 
Conservation 
 of (linear) momentum, 44–47,  

63, 64, 507 
 of angular momentum, 47–52, 507, 

510–513 
 of energy, 52–56, 508 
 of mass, 43, 44, 62, 63, 507 
Constant of anisotropy, 502 
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Constitutive equations, 23, 280, 405, 408, 
508, 509 

Contact angle, 104 
Continuity equation, 44, 62, 64, 122, 133, 

234, 421, 507 
Continuum mechanics, 5, 6, 43, 507 
Contraction coefficient, 134, 144 
Contravariant, 21 
Control volume, 26, 35, 36, 126, 129, 183, 

189, 196 
Convected generalized Maxwell  

model, 463 
Convective 
 acceleration (term), 8 
 derivative, 19–22, 478 
Converging 
 channel, 436, 437 
 nozzle, 238, 241 
Converging-diverging nozzle,   

273–274 
Corioli’s acceleration (force), 18, 125 
Corotational 
 derivative, 21, 482 
 Jeffrey’s equation, 460 
Correction factor (constant), 134,  

143, 144 
Correlation length, 6 
Correlations relating efficiency to size, 

202, 203 
Couette flow, 301, 302, 428,  

437–439 
Couple stress tensor, 51, 507, 512 
Covariant, 21 
Cox-Merz rule, 427 
Creep, 452 
Creeping flow, 323 
Critical 
 area, 240 
 cavitation number, 206 
 pressure, 239–241 
 Rayleigh number, 297, 298, 531 
 Reynolds number, 366, 390 
 state, 234, 236 
 strain rate, 487 
 velocity, 249 
 volume fraction, 503 
Curtiss-Bird constitutive equation, 465 
Curvature, 87, 344 

Curve 
 flow, 399, 400 
 of magnetization approximation,  

501, 502 
 surface, 344, 350 
Cylindrical gap flow, 302, 303, 415, 416, 

437–439 
 

D 
 
D’Alembert 
 paradox, 160 
 principle, 85 
Dampers, 310, 524 
Damping factor (of turbulent flow), 374 
Darcy friction factor, 302, 326, 412 
Darcy-Weisbach equation, 302, 326 
Deborah number, 489 
Debye relaxation equation, 514 
Deflection angle, 168, 171,  

252, 253 
Deflectors 
 moving, 171, 172 
 stationary, 170 
Delta function (Dirac), 453 
Density, 5, 6 
Derivative 
 substantial, 7, 8 
 time (material derivative), 25 
Developed flow, 320–322 
Deviatoric stress (tensor), 30, 47, 419 
Diffuser efficiency, 144, 145 
Diffusive transport, 51 
Diffusivity (diffusion) coefficient, 285, 

537, 538 
Dilatant fluid, 403 
Dilatation, 25 
Dilatational viscosity, 281 
Dimensional analysis 
 homogeneity, 294 
 turbomachinery, 195–203 
Dipole moment, 504 
Discharge, 137, 196, 215 
Discharge coefficient, 135, 139, 140 
Displacement 
 function, 480, 481 
 gradient tensor, 10, 22–23 
 thickness, 348–350 
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Dissipation 
 energy, 369, 439, 440 
 function, 293 
 scale, 369 
Divergence theorem, see Gauss’s 

divergence (integral) theorem 
Diverging nozzle, 273, 274 
Doublet, 119 
Draft tube, 204, 214 
Drag 
 on an airfoil, 155, 178 
 on a cylinder, 317 
 on a sphere, 312–318 
Drag-lift ratio, 309 
Dyad, Dyadic, 11, 28 
Dynamic 
 head loss, 205 
 pressure, 130 
 similarity, 288–290 
 viscosity, 425 
 

E 
 
Eckert number, 293 
Eddington symbol (notation), 15 
Eddy 
 diffusivity, 378, 390 
 viscosity, 366, 369, 378, 382 
Effective Prandtl number, 378 
Effects 
 magnetocaloric, 497, 514 
 magnetoviscous, 498, 503 
Efficiency 
 hydraulic, 194, 195, 210, 219 
 mechanical, 195, 209, 219 
 optimum, 201 
 overall (total), 194, 219 
 pump, 194–203 
 volumetric, 195, 209 
Einstein’s formula, 503, 537 
Elongational 
 flow, 11, 421–424, 428 
 rheometer, 433–437 
Energy 
 cascade, 369 
 conservation, 52–56 
 equation, 56, 264 

 free, 464 
 internal, 57 
Ensemble average, 365 
Enthalpy, 59, 60, 233, 241–246, 256, 354 
Enthalpy thickness, 355 
Entrance flow 
 laminar flow, 320–322 
 length, 320–322 
 turbulent flow, 320–322 
Entropy, 58, 241–246, 265, 266 
Equations 
 of angular momentum, 47–52 
 Bernoulli, 124, 138, 142, 146 
 of continuity, 44 
 of energy, 52–56 
 heat transfer, 61 
 of linear momentum, 44–47 
 of motion, 45 
 Rayleigh-Plesset, 149–152 
 Rosensweig, 516–517 
 of state, 56, 57, 227, 260 
Equilibrium, 57, 73, 84–87, 227, 297, 369, 

497, 498, 504, 525 
Equivalent thickness, 350 
Ergodic hypothesis, 365 
Euler 
 differential equation, 314 
 equation, 115, 124, 283 
 head, 185 
 number, 289, 290 
 relation, 13, 31, 32 
 turbine and pump, 129, 183 
Eulerian (time) derivative, 8 
Eulerian description (specification), 7, 26 
Expansion waves, 237, 238 
Extensional 
 flow, 11, 12, 422, 423, 433 
 strain, 11 
 viscosity, 423 
 See also elongational 
External flow, 340 
 

F 
 
Fanning friction factor, 326 
Fanno line (curve), 241–243, 258–264 
Ferrohydrodynamic equations, 507–516 
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Fiber-spinning, 434 
Finger tensor, 40, 457, 458, 484 
First law of thermodynamics, 52, 53, 57 
First normal 
 stress coefficient, 419, 427, 465–472 
 stress difference, 419, 428–430, 484 
Flow 
 coefficient, 135 
 curve, 400–403, 444, 445 
 instability, 305 
 measurement, 129–140 
 meters, 135 
 separation, 155 
 work, 265 
Flows 
 of films, 310, 311 
 of jet, 168, 176, 177, 208 
Fluid-fluid interface, 87–90 
Fluid particle, 7, 23, 26 
Fluid static, 73–77 
Flux, 36, 44, 46, 52, 55 
Forced vortex, 85 
Fourier’s law, 61 
Francis turbine, 181, 185, 186 
Free surface, 85–87 
Friction 
 factor (coefficient), 211, 259, 302,  

326–328, 399, 412 
 velocity, 372, 389 
Froude number, 289, 290 
Fully developed flow, 321–330 
 

G 
 
Gas constant, 93, 227 
Gauge pressure, 76, 99 
Gauss’s divergence (integral) theorem, 13, 

26, 45, 49, 55, 68, 122, 523, 532 
Generalized Bernoulli equation,  

521, 522 
Generalized Newtonian fluid, 400,  

406–408 
Generalized Reynolds number, 408 
Geometric similarity, 287, 288 
Giesekus model (equation), 461, 462,  

471, 472 
Glassy modulus, 427 
Goddard-Miller equation, 460 

Grashof number (gravitational), 293 
Gravitational 
 acceleration, 47, 283 
 potential, 68, 92, 121, 295, 521 
Guide vanes, 189–191 
 

H 
 
Hagen-Poiseuille flow, 321, 323, 324, 

330–334 
Harmonic function, 116, 118 
Head 
 coefficient, 197 
 loss, 186, 205 
 manometric, 185 
 piezometric, 75 
 potential, 124 
 pressure, 124 
 pump, 185–187 
 theoretical, 185, 186, 218 
 total, 124 
 turbine, 189–195 
 velocity, 124 
Heat 
 conduction, 61, 297, 337–339 
 flux vector, 55 
 generated, 55 
 input, 53 
 transfer, 55, 61, 264–267, 295, 296, 

353, 355, 359–361,  
381–385, 388 

 transfer coefficient, 296, 384 
Hele-Shaw flow, 311, 312 
Hencky strain, 435, 481 
Hook’s law, 405 
Hydraulic 
 efficiency, 194, 195 
 radius, 320 
Hydrostatic 
 paradox, 92, 93 
 pressure, 73 
 stress, 29, 73 
Hydrostatics, see Fluid static 
 

I 
 
Ideal gas law, 225, 227 
Immiscible fluid, 87, 90 
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Impeller 
 radial flow, 181, 182 
 of turbo-pump, 181, 182 
Impulse 
 function, 244 
 turbine, 172, 209 
Inclined tube manometer, 75, 76 
Incompressible (fluid) flow, 30, 44,  

280–283 
Inertia damper, 524 
Inertial reference frame, 16–19, 73,  

74, 85 
Initial conditions, 331, 354, 451,  

473–475 
Instability 
 dynamics of development, 303 
 of thermal equilibrium, 297 
 thermomagnetic, 527–532, 535 
Interface, 73, 87–90 
Internal 
 angular momentum, 51 
 energy, 53, 57, 265, 508 
 flow, 225, 230, 243, 527 
Intrinsic 
 angular momentum, 497, 510 
 rotation, 510 
Invariant of tensors, 37, 38, 406 
Inviscid 
 core length, 319, 320 
 flow, 115–122, 343, 344 
Irrotational flows, 116 
Isentropic 
 flow, 228, 255 
 process, 237 
Isotropic fluid (flow), 37, 44 
 

J 
 
Jacobian, 24, 25, 31, 32 
Jaumann (time) derivative, 21, 459 
Jeffreys 
 element, 449, 452, 453 
Joukowski 
 airfoil, 160–168 
 transformation, 120, 161 
Journal bearing, 310 
 

K 
 
Kaplan turbine, 214 
Kàrmàn integral equation, 349 
Kàrmàn-Trefftz airfoil, 164, 178 
K-BKZ model (equation), 464, 465 
Kelvin 
 circulation theorem, 152–160 
 element, 449–451 
 force density, 510, 521 
 k-  model, 378–380 
Kinematic 
 similarity, 286–288 
 viscosity, 198, 277, 369, 476 
Kinetic energy of turbulence, 370 
Knudsen number, 6 
Kolmogorov (micro) scales, 369, 370 
Kronecker delta, 15 
Kutta condition (hypothesis), 156 
Kutta-Joukowski 
 hypothesis, 156 
 theorem, 160 
 

L 
 
Lagrangian 
 derivative, 8 
 specification, 7, 26 
Laminar entrance flow, 320–322 
Laminar flow 
 between concentric pipes, 339 
 between parallel plates, 299 
 between rotating cylinders,  

302–306, 318 
 in a pipe, 319–334 
Langevin 
 argument, 500, 501, 504 
 function, 499 
Laplace’s equation, 116, 150, 312, 337 
Lapse rate, 93, 96 
Larmor frequency, 502 
Laval tube (nozzle), 232 
Law of wall, 372, 388, 389 
Leading edge, 154, 155 
Level meter, 524 
Levitation of magnets, 497, 524 
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Lewis number, 536 
Lift 
 on an airfoil, 156, 160, 166, 192 
 coefficient, 166, 192 
Limiting length, 262 
Linear 
 elastic material (body), 405 
 momentum conservation, 44–47 
 momentum flux, 46 
 sublayer, 372–375 
 viscoelasticity, 425, 454 
Linearly accelerating containers, 86, 87, 

108, 109 
Load-bearing capacity, 309 
Local 
 heat transfer coefficient, 361, 384 
 Nusselt number, 361, 385 
Lodge network (rubberlike) liquid 

(model), 457, 463 
Logarithmic velocity distribution, 374 
Loss coefficient, 143–145, 205 
Loss modulus, 425, 426, 440, 441 
Lower convective 
 derivative, 21, 459 
 Maxwell model, 459 
Lubrication 
 equation, 306, 307 
 rotating shaft, 305 
 

M 
 
Mach 
 angle, 230 
 corn, 230 
 correction, 131 
 number, 131, 230, 289, 290 
Magnetic 
 boundary condition, 532–534 
 dimension, 527 
 force (Kelven force density), 497,  

521, 530 
 materials, 502, 503 
 normal traction, 523 
 particles, 498, 502 
 permeability, 506, 508 
 polarization, 508, 517 
 pressure jump, 523, 525, 532–535 

 Rayleigh number, 531 
 susceptibility, 501, 506 
Magnetic fluids, 2, 497 
 dynamics, 507–514 
 properties, 497–498 
 shaft seals, 525 
Magnetite, 497 
Magnetization 
 of saturation, 498, 499 
Magnetocaloric effect, 497, 514, 517 
Magnetostatic buoyant force, 524 
Magnetoviscous effect, 498, 503, 512 
Manometers, 90, 91, 130, 131 
Manometric head, 185 
Mapping function, 119, 120 
Mass 
 conservation, 43, 44 
 diffusion, 536 
 flow rate, 123 
 flux, 44, 241 
 transfer, 532 
Material 
 derivative, 7, 20, 152 
 functions, 417, 422, 423, 425 
 line (element), 9, 21, 23, 24 
 objectivity, 19–22, 33–35, 459, 460 
Maxwell 
 element, 448–453 
 equation, 58, 516 
 model of viscoelastic fluid, 447, 448 
 model of viscosity, 280 
 stress tensor, 507–509, 511 
Maxwell model (CRM), 455, 463–473 
Mean free path, 5 
Mechanical 
 efficiency, 195 
 loss angle, 425, 441 
Memory function, 455, 458, 463 
Metacenter, 101 
Metacentric height, 101 
Metric tensor, 23 
Micromanometer, 90, 91 
Minor losses, 140–145 
Mises airfoil, 164 
Mixed flow pumps, 202 
Mixing length, 371 
Mobility factor, 461 
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Modulus, 405, 425–427, 440, 441,  
448–454, 463 

Molecular Prandtl number, 383 
Moment, 160 
Moment of inertia (of surface), 79 
Moment of momentum, 128, 183–188 
Momentum 
 flux, 126, 243 
 thickness, 350–356, 386 
 

N 
 
Nappe, 137 
Natural convection, 295, 297 
Navier-Stokes equations, 282–285 
Néel relaxation, 502, 505 
Net positive suction head (NSPH), 206 
 coefficient, 205 
Neumann energy equation, 56 
Newton’s law of viscosity, 279 
Newton’s second law, 43, 64, 126, 289 
Newtonian fluid, 279, 280, 440 
Non-Newtonian fluid, 399, 400 
Normal 
 instability, 520 
 shock (wave), 236, 237, 246, 248 
 stress, 29, 88 
No-slip condition, 311, 336, 337, 341, 

358, 472 
Nozzle, 176, 177 
Numbers (nondimensional) 
 of Brinkman, 294 
 of Deborah, 489 
 of Eckert, 293 
 of Euler, 289 
 of Froude, 289 
 of Grashof, 293 
 of Lewis, 536 
 of Mach, 289 
 of Nusselt, 296 
 of Peclet, 294 
 of Prandtl, 294, 360, 378, 383 
 of Rayleigh, 297 
 of Reynolds, 289, 290, 302, 312, 408, 

412, 415 
 of Stanton, 296, 362 
 of Strouhal, 292, 352, 408, 489 
 of Taylor, 305, 306 

 of Weber, 289 
 of Weissenberg, 489 
Numerical solutions, 334, 474, 475 

O 
 
Oblique shock, 237, 251–255, 274 
Oil feeding reservoir, 108–110 
Oldroyd’s equations, 460, 461, 485–487 
One equation models, 370–377 
Open channel flow, 137 
 broad-crested wire choked flow, 176 
Orifice meter, 132–135 
Oscillatory rheometric flow, 424–427 
Outer layer, 372–374 
Over-expanded condition, 237, 238 
Overlap layer, 372 
Overshooting, 475 
 

P 
 
Paraboloid of revolution, 108 
Parallel plates, 299 
Peclet number, 294 
Pelton wheel, 172, 173, 208–211, 219 
Perfect fluid, 30, 115, 154 
Performance curves, 198, 199 
Phan-Thien and Tanner model, 463 
 parameter, 196, 291 
Phase-shift, 425, 441 
Piezometric head, 75 
Piezotropic (fluid), 152 
Pitot probe (tube), 129–132, 255–258 
Planar elongational flow, 422 
Plane flow, 301, 334 
Poiseuille 
 flow, 301, 321–325, 328–332 
 paraboloid, 324, 412 
Polar (material) fluid, 48, 51, 52, 507 
Polarization of magnetic fluid, 517 
Polyadic (alternator), 15, 49 
Polymeric fluid (solution), 2, 424,  

460, 489 
Polytropic change, 93–96 
Potential 
 flow, 115–121 
 function, 92, 116 
 vortex, 119 
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Power 
 coefficient, 197 
 law fluid, 401–403, 412–414, 444, 445 
 law profile, 329, 330, 387, 409 
Prandtl 
 boundary layer equation, 343 
 number, 294, 360, 378, 382, 388 
 relation, 250 
 universal law of friction, 327 
Pressure, 29 
 (loss) coefficient, 142–146, 197, 321 
 drop (loss), 145, 325, 409, 436 
 dynamic, 130 
 at elbow channel, 140, 141, 145 
 equation, 124 
 function, 122, 152, 233 
 head, 124, 185, 192 
 jump, 523, 525, 532–535 
 recovery (factor), 144 
 stagnation, 130 
 total, 124, 322 
 vessel, 106 
Principal axes (of stress), 37, 38 
Principal stress, 280 
Principle of Archimedes, 82 
Principle of frame invariance, 19, 20 
Product of surface area (inertia), 79 
Profile development region, 320, 321 
Propeller, 142, 146 
 efficiency, 147–149 
Pseudoplastic fluids, 401 
Pseudovector, 14, 16, 33, 49, 128,  

509, 513 
Pump 
 efficiency, 194, 195 
 head, 185 
Pumps 
 axial flow, 182, 183 
 mixed flow, 182, 183, 213 
 performance curve, 198, 199 
 radial flow, 181 
Pyromagnetic coefficient, 501, 530 
 

Q 
 
Quasi-linear, 457 
Quasi-stationary, 497, 507, 516, 521 
 

R 
 
Rabinowitsch 
 correction, 444 
 equation, 443 
 procedure, 441–445 
Radial flow pumps, 183, 188 
Rankine-Hugoniot relationship, 248, 252 
Rankine ovoid (oval), 173, 174 
Rate of 
 deformation tensor, 10, 34 
 heat transfer, 264, 265, 267 
 strain tensor, 11, 280, 381, 406, 456, 

478–483 
Rayleigh line (curve), 241–246, 264–270 
Rayleigh number, 297, 298, 527–532 
Rayleigh-Plesset equation, 149–152 
Reaction turbine, 208 
Rectilinear acceleration, 18 
Relative 
 acceleration, 74, 85 
 strain tensors, 23, 453, 478–483 
 velocity, 74 
Relaxation 
 model, 505 
 modulus, 454 
 time, 448–457, 502, 505, 506 
Retardation time, 452, 453 
Retarded elasticity, 452 
Reversible, 228 
Reynolds 
 decomposition, 365 
 equation for lubrication, 307 
 equation for turbulent flow, 368 
 number, 289, 302, 312, 408, 412, 415 
 stress, 367, 368, 372 
Reynolds’ analogy, 361, 362, 381–385 
Reynolds’ transport theorem, 23–26, 35, 

36, 45, 48, 65, 68, 128 
Rheometric flow, 418, 419, 424–427 
Rheopectic fluid, Rheopexy, 404 
Rigid body rotation, 16, 82 
Rosensweig equation, 516–519 
Rotating 
 blade, 140–142 
 containers, 85, 108 
 cylinders, 119, 299–306, 415 
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 reference frame, 16–19, 73, 85, 124, 125 
 spheres, 412–415 
Rotational 
 Reynolds number, 305 
 viscosity, 517–519 
Rotation tensor, 16–35 
Roughness, 287, 298 
Runner, 185 
 

S 
 
Saturation magnetization, 501 
Scale effect, 202, 203 
Shafts seals, 525 
Second 
 coefficient of viscosity, 291 
 moment of surface area (inertia), 79, 

81, 103 
 normal stress coefficient, 419, 467 
 normal stress difference, 419,  

484, 485 
Self-levitating effect, 524 
Semi-vertex angle, 251, 274 
Separated 
 point, 350 
 region, 350–353 
Shaft power, 195 
Sharp-crested weir, 137–140 
Shear 
 stress, 29, 418–421, 476 
 thickening fluid, 403 
 thinning fluid, 401 
 velocity, 421 
 work, 439, 440 
Shearfree flow, 421–424 
Shliomis magnetic relaxation  

equation, 515 
Shock 
 strength, 249 
 wave, 241, 246–255, 281 
Shroud, 181 
Similarity rules, 194–203,  
Similarity solution, 344–346 
Similitude, 195, 196, 286–294 
Simple 
 (shearfree) extensional flow, 11, 12, 

421–424, 478–483 
 shear flow, 11, 12, 415, 472–478 

Sink, 118, 119 
Siphon, 174, 423 
Skew-symmetric tensor (anti-symmetric 

tensor), 14, 15, 18, 49, 50, 52, 55, 
509–511 

Skin friction coefficient, 326 
Slip factor, 188 
Slipper-pad bearing, 306–312, 318 
Slipstream, 142 
Soft magnet approximation, 529 
Solenoidal velocity field, 44 
Sonic 
 line, 255 
 velocity, 225 
Sound 
 velocity (speed), 131, 132,  

225–230 
 wave, 229 
Source, 118, 119 
Specific 
 energy, 59, 185 
 gravity, 524 
 heat, 59 
 heat ratio, 131, 228 
 speed, 201, 202, 207 
 volume, 57, 227 
Speed 
 factor, 210 
 of sound, 225, 229 
Spherical gap flow, 412–415 
Spin 
 energy, 56 
 flux, 52 
 tensor, 10, 21, 55 
 viscosity, 512 
Sprinkler, 179, 180 
Squeeze film, 308, 423 
Stability of floating object, 100–104 
Stagnation 
 hole, 130, 131 
 point, 130, 155, 156 
 pressure, 130, 255 
 quantities, 232 
Stall, 167 
Standard 
 atmosphere, 76, 93–96 
 flow, 417, 418, 478–483 
 temperature, 93–96 
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Stanton number, 296, 362, 385 
Starting vortex, 155, 156 
Static hole, 130, 131 
Static pressure, 130, 151 
Steric repulsion, 498 
Stokes 
 equation, 322, 323, 335 
 flow, 310–316 
 law, 316 
Stokes’ hypothesis, 281, 282 
Stopping vortex, 156 
Storage module, 425, 426, 440, 441 
Stratosphere, 110 
Stream function, 116, 117, 312, 345 
Stream lines, 122, 125, 130, 138 
Stream tube, 122, 123, 125, 127, 128 
Stress 
 of force, 27, 28 
 ratio, 420, 421 
 tensor, 26, 30, 279, 418 
 vector, 27 
Strong shock, 249 
Strouhal number, 292, 352, 408, 489 
Sturm-Liouville problem, 338 
Submerged surface, body, 80–82,  

100–104 
Subsonic flow, 229, 236, 255, 269 
Substantial derivative, 7, 47 
Sudden 
 contraction, 140, 141 
 expansion, 140, 141, 272 
Supercritical, 520 
Superparamagnetism, 501, 502 
Supersonic 
 flow, 230, 257 
 nozzle, 232 
Surface 
 couple, 49, 51, 512 
 force, 26, 45 
 shape, 344 
 tension, 87, 104, 105, 151, 152, 499 
Surfactant, 88, 498 
System International, 2, 3 
 

T 
 
Tab-orifice, 136–140 
Tank-orifice, 136, 138 

Taylor 
 microscale, 369, 370 
 number, 305, 306 
 vortex, 305 
Theoretical specific energy, 185 
Thermal 
 boundary layer, 351–353 
 chocking, 268 
 conductivity, 61, 62, 293 
 diffusivity, 62, 360, 513, 537 
 expansion, coefficient, 60, 61, 292, 529 
 similarity, 293, 294 
Thermodynamic relations, 56–62 
 first law, 52, 53 
 Maxwell equation, 58 
 pressure, 29, 57, 59, 73 
 second law, 57, 58 
Thermomagnetic natural convection 

(Thermoconvective), 520, 527–532 
Thixotropic fluid, thixotropy, 404 
Thrust 
 bearing, 309 
 function, 244 
Time average, 364 
Torque, 65, 66, 128, 304, 305 
 coefficient, 305, 414 
Torricelli’s theorem, 138, 139 
Total 
 drag force, 309 
 efficiency, 194 
 energy, 122 
 enthalpy, 354 
 head, 124 
 pressure, 432, 510 
 stress tensor, 37, 74, 87, 279, 280,  

418–420, 431, 438, 456,  
507, 509 

Trailing 
 edge, 155, 156, 162 
 vortex (stopping vortex), 156 
Transducer, 439 
Transport equation, 375 
Troposphere, 96, 110 
Trouton viscosity, 423 
Turbine 
 axial flow, 183 
 Francis, 185 
 impulse, 172, 208 
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 Kaplan, 189, 213–217 
 mixed flow, 182, 183 
 Pelton wheel, 208–211, 219 
 radial flow, 181 
 reaction, 208 
Turbomachines, 180–183 
 of efficiencies, 194, 195 
Turbulent 
 boundary layer, 346, 370–385 
 diffusion, 287 
 entrance flow, 320–322 
 flow, 364–389 
 heat flux coefficient, 382 
 intensity (relative), 366 
 models, 368, 370–380 
 pipe flow, 327–328 
 Prandtl number, 382, 383, 388 
 transport, 281 
 velocity profile, 328, 329, 373–375 
Two equation models, 378–380 
 

U 
 
Uniaxially stretching, 422, 433, 466 
Unidirectional flow, 299–306 
Unitary matrix, 16 
Units, 2, 3 
Unit tensor, 14, 15 
Upper convective 
 derivative, 21, 33–35, 459, 478 
 Maxwell model (UCM), 33, 457,  

465–478, 484–487 
U-tube manometer, 75, 129 
 

V 
 
Vane, 189, 193 
Velocimetry, 129–132, 255–258 
Velocity 
 coefficient, 134, 210 
 defect (volume flow rate), 124 
 diagram, 125, 183–188 
 gradient tensor, 10, 13 
 head, 124 
 measurement, 257 
 potential, 116, 118, 312 
Vena contracta, 133, 271, 272 
Venturi meter (tube), 135, 136 

Viscoelastic 
 boundary layer, 475–478 
 fluid, 23, 405–406 
 linear, 454 
Viscometer, see Rheometric flow 
Viscometric 
 flow, 417, 418, 428–437 
 function, 419, 420 
 See also Rheometric flow 
Viscoplastic fluid, 403 
Viscosity 
 definition, 279, 280 
 of magnetic fluid, 499, 512–514 
 rotational, 517–519 
 second coefficient, 291 
Viscous 
 sublayer, 372–375 
V-notch weir, 137–140 
Voigt 
 element, 449, 451 
 model of viscoelasticity, 451 
Volume 
 flow, 132–140, 195, 197, 328, 339, 

406, 408, 434, 436, 437,  
445, 446 

 flux, 126, 307 
Volumetric efficiency, 195 
Volute, 181 
Von Kàrmàn 
 integral equation, 359 
 street, 352 
Vortex 
 design, 194 
 lines, 285 
 shedding, 352, 353 
 viscosity, 509, 510 
Vorticity 
 tensor, 16 
 transport equation, 47, 284 
 vector, 16, 47, 284 
 

W 
 
Wake, 351 
Wall-function, 379 
Wall region (law of wall), 372,  

388, 389 
Wall shear rate, 437 
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Wave 
 equation, 227 
 function, 227 
Weak shock, 253 
Weber number, 289 
Wedge angle (semi-vertex angle),  

253, 277 
Weir 
 broad-crested, 175 
 sharp-crested, 137–140 
 v-notch, 137–140 
Weissenberg 
 effect, 419, 446 
 number, 489 
Wetted perimeter, 320 
White-Metzner model, 463, 487–489 
Wilhelmy plate method, 105, 106 

Wind turbine, 142–149 
 efficiency, 148, 149 
Work 
 input, 56 
 output, 53 
 transfer, 196, 293 
 

Y 
 
Yield stress, 403 
Young-Laplace relationship, 87 
 

Z 
 
Zero equation models, 370–375 
Zero-shear (rate) viscosity, 402, 423, 427, 

457, 461, 488 
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