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novelty of its treatment of an application or of mathematics being applied or
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mathematics or science and engineering, and will feature a lively tutorial style, a
focus on topics of current interest, and present clear exposition of broad appeal. A
compliment to the Applied Mathematical Sciences series is the Texts in Applied
Mathematics series, which publishes textbooks suitable for advanced undergraduate
and beginning graduate courses.
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Foreword

Fluid-structure interaction problems occur in many fields of engineering: mechanics
of immersed structures, aeroelasticity, biomechanics, lubrication effects in pipe
flows, particle transport, sediment transport, and erosion of shorelines.

From a mathematical and numerical point of view, these problems represent a
real challenge insofar as fluids and solids are naturally described by models of
a different nature: Eulerian models for fluids and Lagrangian models for solids.
These models require adapted discretization methods. The traditional approach to
deal with these problems, known as ALE (for Arbitrary Lagrangian Eulerian), is
based on these various modelizations. It uses a Eulerian discretization of fluids and
a Lagrangian discretization of solids, with adapted meshes and suitable coupling
conditions to translate the continuity of velocity and forces at the interfaces.

In the last 15 years, alternatives to these methods have appeared, based on
Eulerian models of the two types of media. Fluids and solids are considered as a
single system with constitutive laws that vary in space and time. The interest of
these methods is the possibility that they offer to use a single numerical model and
a single mesh for the whole system, with the drawback of giving a less detailed
description of the interface and the conditions that we impose on it.

The immersed boundary methods (IBM in short) proposed by Peskin in 1972 can
be seen as a class of intermediate methods between the two approaches mentioned
above. The solids are immersed in the fluid without the need to fit a fluid mesh on
them, but are tracked in a Lagrangian fashion using markers advected by the fluid.

For a fairly complete review of these different methods, we refer to the recent
book by T. Richter [119] for the ALE and Eulerian methods, and to the review
article [92] for the immersed boundary methods.

The purpose of this book is to describe Eulerian models of the fluid-structure
interaction based on Level Set functions. Level Set methods are well known since
the works of Sethian [125] and Osher [112] in image processing and the computation
of multi-phase flows. More recently, they have also been used with success in the
context of shape optimization [4]. These methods allow implicit monitoring of
Lagrangian interfaces (with physical advection fields for multiphase flows or virtual
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vi Foreword

flows in image processing or shape optimization) by solving partial differential
transport equations.

For 10 years or so, a certain number of works, in particular by the authors of
this book, have made it possible to use them to model the forces resulting from
deformations of elastic solids or to treat contacts between objects and leading to
numerical tools in fluid-structure interaction in a Eulerian framework. This book
reviews these different works. Its objective is to describe the models. It does not
focus on the numerical discretization methods, except for what concerns the explicit
or implicit time discretizations which impact the stability of the models. In fact, one
of the advantages of Eulerian methods is that they allow the use of conventional
methods in fluid dynamics (finite differences, finite volumes, etc.) without involving
questions specific to the coupling with solid structures. In this book, the spatial
discretization techniques used are only briefly mentioned to describe numerical
illustrations.

The plan of the book is as follows. In Chap. 1, we review the techniques for
interface capturing or interface tracking. We show in particular how to use Level Set
functions to translate surface forces into bulk forces, which is obviously a central
point in these methods, and we specify how these methods allow in dimension two
and three to account for curvatures. We develop the examples of Level Set methods
mentioned previously in image processing and for multiphase flows, and we address
the questions of stability in Level Set methods in the example of the treatment of
surface tension terms, questions which will be taken up in the Chap. 3. Chapter 2
complements the reminders of Chap. 1 by notions of differential calculus on the
trajectories in the Lagrangian and Eulerian descriptions. The conservation laws in
these descriptions are also recalled.

Chapter 3 deals with the first example of fluid-structure interaction, that of an
elastic membrane interacting with a fluid, first in the case of a membrane reacting to
the variation of area then in the general case of a membrane also reacting to shear.
It also evokes the case of elastic curves immersed in a space of dimension three.
Finally, this chapter contains an example of code written in FreeFEM++ to allow
the reader to experience these methods for himself.

Chapter 4 generalizes the Level Set approach to arbitrary elastic bodies, with a
distinction between the cases of completely compressible or incompressible fluid-
structure media.

Chapter 5 deals with the case of rigid solids, or solids deformable under the
action of prescribed external forces. In these cases, the fluid-structure interaction is
treated by the penalization method. Chapter 6 is concerned with the treatment by
Level Set methods of contacts between objects, whether these objects are elastic or
rigid. In particular, we describe a fast algorithm for processing multiple contacts.
Finally, an appendix details certain technical elements of differential calculus and
gives the demonstration of certain results used in the book. It also gives some basic
tools concerning classical finite-difference for the resolution of transport equations.

Chapters 3–6 are largely independent of each other. Chapters 2 and 4 contain
the elements of continuum mechanics (covering solids and fluids) necessary for
the understanding of the book so as to make it accessible to students of Master of
Numerical Analysis.
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Chapter 1
Level Set Methods and Lagrangian
Interfaces

Throughout this chapter we are interested in following, in a given fluid, interfaces
consisting of curves in R

2 or surfaces in R
3. We assume that u is aC1 vector field. To

simplify the discussion, we will assume in this chapter, unless otherwise specified,
that this field is defined in a bounded smooth domainΩ and vanishes on its boundary
∂Ω , so that Ω is invariant under the action of the vector field. More precisely, we
will make the following hypothesis

(H) u ∈ C1(Ω × [0, T ]) and u = 0 on ∂Ω × [0, T ]

where [0, T ] is a fixed time interval.
Throughout the rest of this book we will denote the partial derivatives of the

functions of several variables by an index of the corresponding variable, as in ∂t .
For ξ ∈ Ω and s ∈]0, T ], we denote by τ → X(τ ; ξ, s) the solution of the

differential system ∂τX = ∂X/∂τ = u(X, τ) provided with the initial condition
X(s) = ξ . When there is no ambiguity on the initial time, we will use the notation
X(τ, ξ). For an in-depth review of this notion of trajectory, we refer to the next
chapter.

1.1 Interface Tracking or Interface Capturing

A natural way to monitor an interface is to write a parameterization that follows the
speed of the interface. A Lagrangian interface, defined at time t , Γt , can be described
by a parametrization

θ → γ (t, θ)

© Springer Nature Switzerland AG 2022
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2 1 Level Set Methods and Lagrangian Interfaces

with

∂tγ = u(γ, t)

In two dimensions, θ is a real number and in three dimensions, θ = (θ1, θ2) is a
vector in R

2. Notable geometrical quantities related to the interface are, in 2D, its
normal n and its tangent t:

t = ∂θγ

|∂θγ | n = t⊥, (1.1)

and, in 3D, the normal vector

n = ∂θ1γ × ∂θ2γ

|∂θ1γ × ∂θ2γ |
and the tangent plane defined by its orthogonal direction. These directions corre-
spond to an orientation of the interface along increasing values of θ in 2D, or θ1 and
θ2 in 3D.

This parameterization also gives access to the stretching of the interface during
its movement. In 2D the stretching relative to the initial position of the curve at a
point of the curve with parameter θ is given by

S(t, θ) = |∂θγ (t, θ)|
|∂θγ (0, θ)| .

In 3D the stretching on the surface relative to the variation of area is given by

S(t, θ) = |∂θ1γ (t, θ)× ∂θ2γ (t, θ)|
|∂θ1γ (0, θ)× ∂θ2γ (0, θ)|

.

These quantities are involved in the curvilinear or surface integrals using the
parametrization γ (t, θ).

From a numerical point of view, following these interfaces makes use of a
finite number of markers of material points ξ = γ (0, θ) which correspond to
discrete values of θ . These markers move by the velocity field at the instant t into
X(t, ξ) = γ (t, θ). The reconstruction of regular interfaces from these markers can
be done by various types of interpolation. The geometric properties of the interfaces
can be calculated either by discretization on the markers of the above formulas, as
illustrated in Fig. 1.1, or by using these interpolations.
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Fig. 1.1 Transport and
stretching of a Lagrangian
interface

γ(0,θ)

γ(0,θ + dθ)

u
γ(t,θ)

u

γ(t,θ + dθ)

|∂θγ(0,θ)| |∂θγ(t,θ)|

Γ0
Γt

An alternative to the Lagrangian tracking of interfaces consists in considering
these interfaces as level sets of a function, which by abuse of language we will
call Level Set function. The justification of this implicit description of Lagrangian
interfaces is given by the following result

Proposition 1.1 Let ϕ0 be a continuous function defined on Ω and Γ0 =
{x ∈ Ω,ϕ0(x) = 0}. If ϕ is solution to the transport equation

{
∂tϕ + u · ∇ϕ = 0 onΩ×]0, T ],
ϕ = ϕ0 onΩ × {0} (1.2)

we have

∂t (ϕ(X (t; ξ, s), t) = 0 for all ξ ∈ Ω and s ∈ [0, T ]. (1.3)

Γt = X(t;Γ0, 0) = {x ∈ Ω , ϕ(x, t) = 0} for all t ∈ [0, T ]. (1.4)

Proof Equation (1.3) follows directly, by derivation of the composition of functions,
from (1.2) and the definition of characteristics. Equation (1.4) results from taking
s = 0 and ξ ∈ Γ0. ��
Methods based on a description of Lagrangian interfaces by Level Set functions are
called interface capturing methods, as opposed to the interface tracking methods
described earlier.
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1.2 Level Set Methods and Geometry of Surfaces

In this section, we develop how the notions of geometry of curves and surfaces
can be expressed from implicit functions. We show in particular, starting from their
parametric definition, how mean and Gaussian curvature can be expressed using
Level Set functions.

Let us start by specifying the classical notions and regularity results of implicit
surfaces.

Definition 1.2 A hypersurface S ⊂ R
d is said of class Ck if any point of S has a

neighborhoodU such as the set S∩U can be represented by an equation of the form
xi = f (x1, . . . , xi−1, xi+1, . . . , xd), where f is of class Ck.

The following proposition gives the regularity of the zero-level set of a function:

Proposition 1.3 Given an open set Ω in R
d , let ϕ : Ω → R, continuous on

Ω , and of class Ck on an open set U ⊂ Ω . We assume that |∇ϕ|(x) > 0 for
all x ∈ U , and that S = {x ∈ Ω,ϕ(x) = 0} is a non-empty set included in U .
Then S is of class Ck.

For the proof of this result we refer the reader to the one given in [74], page 355.

Proposition 1.4 Let S ⊂ R
d a closed hypersurface of class Ck, k ≥ 2, and

d the signed distance (negative inside, for example) to S. Then there exists a
neighborhood U of S such that d is in Ck(U), satisfies |∇d| = 1 in U , and
the projection PS(x) of x ∈ U on S is given by PS(x) = x − d(x)∇d(x). We
therefore have for all x ∈ U, d(x − d(x)∇d(x)) = 0.

For this type of result one can consult the publications of Delfour and Zolésio
(see [47] and references therein) on the intrinsic geometry of surfaces. Intuitively,
the distance function to a hypersurface, in a neighborhood thereof, has its gradient
at a point directed towards its projection PS(x) on S. By moving in the direction
opposite to this gradient, by definition of the distance, this distance decreases in
equal amount of the displacement, which precisely means that its slope is 1. The
distance ends up being canceled out when reaching the projection, which therefore
must be equal to PS(x) = x − d(x)∇d(x), hence the last formula.

In the rest of this book, we will assume that a Level Set function is regular and
has a non vanishing gradient everywhere in a neighborhood of its level set 0.

Let us now look at the particular case of a regular surface S ⊂ R
3. Let (θ1, θ2) �→

γ (θ1, θ2) ∈ R
3 a smooth parametrization of S. The vectors ∂θ1γ and ∂θ2γ define a

basis of the tangent plane to the surface. We introduce the first fundamental form,
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of general term

gij = ∂θi γ · ∂θj γ . (1.5)

This form, also called the metric of the surface, allows to calculate lengths, angles
and areas on the surface. We also introduce the second fundamental form, of general
term

hij = ∂2
θiθj

γ · n (1.6)

where

n = ∂θ1γ × ∂θ2γ

|∂θ1γ × ∂θ2γ |
is the normal to the surface (orthogonal to the tangent plane). These two fundamen-
tal forms are 2 × 2 symmetric matrices. The curvature of a surface is intuitively
related to the variation of the normal in the tangent plane and we can show that the
matrix of the associated linear mapping, denoted dn, can be expressed using the two
fundamental forms as

dn = [hij ][gij ]−1. (1.7)

The eigenvalues of this matrix are called the principal curvatures of the surface and
we have the following definition:

Definition 1.5 The mean curvatureH and the Gaussian curvatureG are defined by
the formulas

H = Tr(dn) , G = det(dn).

We leave to the reader the proof that this definition does not depend on the chosen
parameterization of the surface.

Let us now consider an implicit representation of this same surface S ⊂ R
3. For

a given smooth function ϕ : R3 → R, we consider S = {x ∈ R
3 , ϕ(x) = 0}.

In the parametric approach, we have access to the way in which the points of the
surface are connected to each other through the parametrization, which yields a
notion of metric. There is no similar notion in the implicit function approach because
two points belonging to the surface are characterized by the fact that the function
vanishes but there is no information about their proximity. However we will see
that when we follow a surface over time it is possible to calculate its deformations
with implicit functions. This property is the key point of the Eulerian formulation
of elasticity and will be developed extensively in Chap. 3. Let us now look at some
geometric quantities that can be calculated using an implicit representation of the
surface. Note that the vector ∇ϕ is orthogonal to the level sets of ϕ and therefore



6 1 Level Set Methods and Lagrangian Interfaces

we define the normal to the surface by

n(x) = ∇ϕ
|∇ϕ| .

Since the curvature is defined by the variation of the normal along the surface, it
seems natural that we can calculate this quantity using the second derivatives of the
Level Set function. This statement is clarified and demonstrated in the following
proposition:

Proposition 1.6 Let S be a surface of R3 represented by the zero level of a
Level Set function ϕ. The mean and Gaussian curvatures of S are given by the
formulas

H = Tr(∇Γ n), G = Tr(Cof(∇Γ n)),

where ∇Γ n = [∇n][I − n⊗ n] with n = ∇ϕ
|∇ϕ| .

Proof First note that ∇Γ n(x) is a 3 × 3 matrix, defined for x ∈ R
3, with a

zero eigenvalue associated with the eigen-vector n, and dn is a 2 × 2 matrix. By
differentiating with respect to θi the equality ϕ(γ (θ1, θ2)) = 0 one gets

∇ϕ
|∇ϕ|(γ (θ)) · ∂2

θj θi
γ +

(
∇
( ∇ϕ

|∇ϕ|
)
(γ (θ)) ∂θj γ

)
· ∂θi γ = 0.

Upon dividing by |∇ϕ| (recall that this quantity is assumed to never vanish) then
differentiating this equality one obtains

∇ϕ
|∇ϕ|(γ (θ)) · ∂2

θj θi
γ +

(
∇
( ∇ϕ

|∇ϕ|
)
(γ (θ)) ∂θj γ

)
· ∂θi γ = 0.

We therefore have, according to definition (1.6), hij = − ([∇n](γ (θ)) ∂θj γ ) · ∂θi γ .
Let us now calculate the inverse of the first fundamental form (1.5)

[gij ]−1 = 1

|∂θ1γ × ∂θ2γ |2
( |∂θ2γ |2 −∂θ1γ · ∂θ2γ

−∂θ1γ · ∂θ2γ |∂θ1γ |2
)
.

If we denote by τi = ∂θi γ|∂θi γ | the unit tangent vectors associated with the parameteri-

zation of the surface, taking the trace of (1.7) yields

Tr(dn) = ([∇n]τ1) · τ1 + ([∇n]τ2) · τ2 − (τ1 · τ2)(([∇n]τ1) · τ2 + ([∇n]τ2) · τ1)

|τ1 × τ2|2 .
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If we now consider the vector τ̃2 = τ2−(τ1·τ2)τ1|τ1×τ2| which satisfies τ1 · τ̃2 = 0 and
|τ̃2| = 1, one obtains

Tr(dn) = [∇n](γ (θ)) : (τ1 ⊗ τ1 + τ̃2 ⊗ τ̃2) = Tr(∇Γ n),

since (τ1, τ̃2, n) is an orthonormal basis of R3, and, as a result, τ1 ⊗ τ1 + τ̃2 ⊗ τ̃2 =
I − n⊗ n.

Let us now turn to the case of the Gauss curvature. On the one hand, the
determinant of (1.7) reads

det(dn) = ([∇n]τ1) · τ1([∇n]τ2) · τ2 − ([∇n]τ1) · τ2([∇n]τ2) · τ1

|τ1 × τ2|2 .

On the other hand,

2 Tr(Cof(∇Γ n)) = Tr(∇n(τ1 ⊗ τ1 + τ̃2 ⊗ τ̃2))
2

− Tr(∇n(τ1 ⊗ τ1 + τ̃2 ⊗ τ̃2)∇n(τ1 ⊗ τ1 + τ̃2 ⊗ τ̃2)). (1.8)

It suffices now to use the property Tr(A(b ⊗ b)A(c ⊗ c)) = (Ab) · c (Ac) · b to
obtain, after some straightforward calculations, the desired result. ��

The following proposition allows to simplify the preceding formulas.

Proposition 1.7 Let S be a surface represented by the zero level set of a
function ϕ. We have

H = Tr(∇n) = div

( ∇ϕ
|∇ϕ|

)
, (1.9)

G = Tr(Cof(∇n)) = 1

2
(Tr(∇n)2 − Tr([∇n]2)). (1.10)

Proof By differentiating the relation n · n = 1 we obtain the identity [∇n]T n = 0
which in turn implies that ([∇n]n) · n = 0. This property reveals that the invariants
of ∇Γ n are the same as those of ∇n and allows to conclude. ��
In Sect. 7.1 of the appendix some explicit calculations of the curvature are given
in the case of an ellipsoid and a torus. In the 2D case, the result remains valid and

the curvature of a curve is given by div
( ∇ϕ

|∇ϕ|
)

. To check this assertion it suffices to

adapt the above demonstration: in this case the fundamental forms are scalars and
using (1.1) we find the classical formula of the 2D curvature

dn = ∂2
θθγ · n (|∂θγ |2)−1 = ∂2

θθ γ · (∂θ γ )⊥
|∂θγ |3 .
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1.3 Level Set Methods and Geometry of Curves in R
3

Let us consider a curve Γ ⊂ R
3. Let θ �→ γ (θ) ∈ R

3 be a smooth parameterization
of Γ . The tangent vector to the curve is defined by

τ (θ) = γ ′(θ)
|γ ′(θ)| . (1.11)

The variation of the tangent vector is along the normal n and proportional to the
curvature H of the curve. We therefore introduce

n(θ) = τ ′(θ)
|τ ′(θ)| , τ ′(θ) = H(θ)|γ ′(θ)|n(θ). (1.12)

Note that with this definition the curvature is always non negative. By differen-
tiating the relation τ (θ).τ (θ) = 1 with respect to θ , we obtain that τ (θ) and
n(θ) are orthogonal. Computing τ ′ using the parametrization leads to τ ′(θ) =

1
|γ ′(θ)|

(
γ ′′(θ)− (γ ′(θ) · τ (θ))τ (θ)). As a result, using (1.12) we get the following

equivalent of (1.7) for the curves

H(θ) = γ ′′(θ) · n(θ)
|γ ′(θ)|2 . (1.13)

We next introduce the binormal vector b

b(θ) = τ (θ)× n(θ). (1.14)

This vector is orthogonal to τ and b, and (τ, n, b) forms an orthonormal basis
adapted to the parameterization, called the Frenet coordinate system. By differen-
tiating the relations b · b = 1 and b · τ = 0 it is straightforward to show that the
components of b′ along b and τ vanish. The variation of the binormal vector is
therefore along the normal n and proportional to the torsion tors of the curve. We
therefore introduce

b′(θ) = −tors(θ)|γ ′(θ)|n(θ). (1.15)

By differentiating n ·n = 1, we obtain that n′ has a zero component along n. Finally,
differentiating the identity n · τ = n · b = 0 then using (1.12) and (1.15) we finally
obtain ⎧⎪⎪⎨

⎪⎪⎩
τ ′(θ) = |γ ′(θ)|H(θ)n(θ),

n′(θ) = |γ ′(θ)|(−H(θ)τ(θ)+ tors(θ)b(θ)),

b′(θ) = −|γ ′(θ)|tors(θ)n(θ).
(1.16)
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Remark 1.8 One can show that if the curvature is zero then the curve locally
resembles a straight line and if the torsion is zero the curve remains locally in a
plane. When considering plane curves, that is when γ (θ) ∈ R

2, then n = τ⊥, which
simplifies the computation of the curvature (1.13). Furthermore, there is no binormal
vector or torsion.

Let us now consider an implicit representation of this same curve Γ ⊂ R
3 using

two surfaces. These surface are represented as the zero level of two functions ϕi :
R

3 −→ R, i = 1, 2.

S1 = {x ∈ R
3/ϕ1(x) = 0}, S2 = {x ∈ R

3/ϕ2(x) = 0}.,

and Γ = S1 ∩ S2.
Note that, unlike an expression based on a parameterization, this construction

assumes that we only consider closed curves. The vector ∇ϕi gives the direction of
the normal to Si and one thus defines the tangent vector to Γ by

τ (x) = ∇ϕ1 × ∇ϕ2

|∇ϕ1 × ∇ϕ2| . (1.17)

Let x �→ v(x) be a vector field in R
3. Using (1.11) we obtain the identity

(v(γ (θ)))′ = [∇v](γ (θ)) γ ′(θ) = [∇v](γ (θ)) τ (γ (θ)) |γ ′(θ)|. (1.18)

Thanks to the identity (1.18) with v = τ and (1.12), this leads to the following
formulas for the normal and the curvature

H(x) = |[∇τ ]τ |, n(x) = [∇τ ]τ
|[∇τ ]τ | . (1.19)

We introduce the binormal vector given by the formula

b(x) = τ (x)× n(x). (1.20)

By differentiating |v|2 = 1 we get [∇v]T v = 0 and by differentiating v · w = 0
we get [∇v]T w = −[∇w]T v. Combining these relations for the vectors of the
orthonormal basis (τ, n, b), the identity (1.18) with v = b and v = n, and the
definitions (1.16), we finally obtain

⎧⎪⎪⎨
⎪⎪⎩

[∇τ ]τ = Hn,

[∇n]τ = −Hτ + torsb,

[∇b]τ = −torsn.
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These constitue the Eulerian equivalent of formulas (1.16). In particular the
curvature and the torsion can be calculated using Level Set functions by

H = ([∇τ ]τ ) · n = −([∇n]τ ) · τ , tors = −([∇b]τ ) · n = ([∇n]τ ) · b. (1.21)

Remark 1.9 When considering plane curves, it suffices to choose ϕ2 = z and ϕ1

only depending on x, y to obtain ∇ϕ1 × ∇ϕ2 = (∂yϕ
1,−∂xϕ1, 0) and, since n =

τ⊥, we get n = − ∇ϕ1

|∇ϕ1 | . The curvature defined in the preceding formula can be
rewritten as

H = −([∇n]τ ) · τ = −[∇n] : [I− n⊗ n] = − div(n) = div

( ∇ϕ1

|∇ϕ1|
)
. (1.22)

We thus find that the curvature in 2D is calculated like the divergence of the normal,
as in (1.9) for the case of surfaces in 3D.

1.4 Expression of Surface Forces Using the Level Set
Function

The question of the evaluation of energies or surface forces by means of the Level
Set function is central in all these methods. In image processing, these forces are
built to enforce the level sets to “stick” to the significant objects of an image, in
order to segment this image, as illustrated in Fig. 1.3 on page 17. In fluid mechanics
involving two-phase flows, these forces can result from the surface tension between
phases. And, as we will see in more detail later in this book, in fluid structure
interaction calculations, they can also represent elastic forces or contact forces
between different objects.

Consider a curve in R
2 or a surface in R

3 notedΣ . We define the surface measure
on Σ , noted δΣ by

〈δΣ , ψ〉 =
∫
Σ

ψds, (1.23)

for any function ψ defined and continuous in Ω . We then have the following
fundamental result.
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Proposition 1.10 Let r → ζ(r) be a continuous function with support in
[−1, 1], such that ∫ ζ(r) dr = 1, and ϕ a function of class C2 from Ω into R
such that |∇ϕ(x)| > 0 for all x in a neighborhood of {ϕ = 0}. Then

1

ε
ζ
(ϕ
ε

)
|∇ϕ| ⇀

ε→0
δ{ϕ=0} (1.24)

in the space of measures. In other words we have

∫
Ω

1

ε
ζ
(ϕ
ε

)
|∇ϕ|ψ dx −→

ε→0

∫
{ϕ=0}

ψds (1.25)

for any continuous test function ψ defined onΩ .

Proof Let us start by verifying that under the hypotheses of the proposition we have,
in one dimension,

1

ε
ζ
(x
ε

)
⇀
ε→0

δ0, (1.26)

where δ0 is the 1D Dirac mass centered at 0. Indeed, for any test functionψ ∈ C0(R)

one can write, by Lebesgue theorem

∫
1

ε
ζ
(x
ε

)
ψ(x) dx =

∫
ζ(y)ψ(εy) dy −→

ε→0

∫
ζ(y)ψ(0) dy = ψ(0) = 〈δ0 , ψ〉.

For the rest of the proof, we propose three approaches: a first proof assuming that
the level sets of ϕ are parallel to an axis, a proof using a coordinate system adapted
to the surface and finally an intrinsic proof. Although this last demonstration is the
most general and the most concise, the first two demonstrations seem to us to be a
natural way of understanding the result.

(a) Case when ϕ(x1, x2, x3) = rx3, r > 0. The level set ϕ = 0 corresponds to a
plane of R3. Since r > 0, the orientation of Σ defined by ∇ϕ corresponds to
the orientation in the direction of increasing values of x3 of this axis. Let ψ be
a test function defined on Ω . We have∫

1

ε
ζ
(ϕ
ε

)
|∇ϕ|ψ dx =

∫
dx1dx2

∫
r

ε
ζ
( rx3

ε

)
ψ(x1, x2, x3) dx3.

We deduce from (1.26) and Lebesgue theorem that

∫
1

ε
ζ
(ϕ
ε

)
|∇ϕ|ψ dx −→

ε→0

∫
ψ(x1, x2, 0) dx1dx2 =

∫
{ϕ=0}

ψ(x) ds.
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Fig. 1.2 Mapping of level
sets and orthogonal sets to a
coordinate system

(b) Proof using a parameterization adapted to the level sets of ϕ around {ϕ =
0} [30]. The idea here is to come back to the above case by constructing a
coordinate system adapted to the surface. This is achieved by defining directions
orthogonal to the level sets of ϕ (see Fig. 1.2), that is to say by finding a function
ψ such that ∇ψ does not take the value zero and

∇ϕ · ∇ψ = 0. (1.27)

To simplify the exposition, we limit ourselves here to the two-dimensional
case. Let us admit for now that such a function ψ exists (the proof will be given
below). The desired change of coordinates (x, y) → (x ′, y ′) will be written

x ′ = ψ(x, y) , y ′ = ϕ(x, y).

This change of coordinates is well defined if its Jacobian is non-zero. The value
of this Jacobian is given by

J (x, y) = ∂xϕ∂yψ − ∂yϕ∂xψ

which, since the gradients of ϕ and ψ are orthogonal, is equal, up to its sign, to
the product of the norms of these two vectors. J is therefore always non-zero.

Consider now a test function w. Using the change of variables that has just
been defined we can write∫

1

ε
ζ

(
ϕ(x, y)

ε

)
|∇ϕ(x, y)|w(x, y) dxdy

=
∫

1

ε
ζ

(
y ′

ε

)
|∇ϕ(x, y)|w̃(x ′, y ′) 1

|∇ϕ||∇ψ| dx
′dy ′,

where w̃ is defined by w(x, y) = w̃(ψ(x, y), ϕ(x, y)). According to (1.26) we
thus have∫

1

ε
ζ

(
ϕ(x, y)

ε

)
|∇ϕ(x, y)|w(x, y) dxdy →

∫
w(x ′, 0)

|∇ψ(x, y)| dx
′.
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The integral in the right hand side can be related to a curvilinear integral along
Σ by writing

x ′ = ψ(x(s), y(s))

where s is a curvilinear coordinate on Σ . This gives

dx ′ = |∇ψ · τ |ds,

where τ denotes a unit vector tangent to Σ . Since ∇ψ and τ are collinear, we
have |∇ψ · τ |ds = |∇ψ|ds and we finally get

∫
1

ε
ζ

(
ϕ(x, y)

ε

)
|∇ϕ(x, y)|w(x, y) dxdy →

∫
Σ

w ds.

It remains now to prove the existence of a change of variables (x, y) → (x ′, y ′).
We first observe that since 1

ε
ζ
(ϕ
ε

)
has a support of width 2ε it suffices to

construct this change of variables in a neighborhood of the curve ϕ = 0. The
idea consists of starting from a parameterization s → (x(s), y(s)) of Σ and
to extend this parameterization in the neighborhood of Σ by some functions
x̃(s, r), ỹ(s, r) for r ∈ [−ε,+ε]. For this we wish to solve the differential
equations

x̃(s, 0) = x(s) , ∂r x̃(s, r) = ∂xϕ(x̃, ỹ)

ỹ(s, 0) = y(s) , ∂r ỹ(s, r) = ∂yϕ(x̃, ỹ).

Since ϕ has been assumed to be of class C2 on Ω , this system is uniformly
Lispchitzian and therefore has a unique global C2 solution for r ∈ [−ε, ε]. It
defines a valid change of variables, as the Jacobian of the transform (x, y) →
(x̃, ỹ) satisfies

∣∣∣∣∂(x̃, ỹ)∂(x, y)

∣∣∣∣ = ∂sx∂yϕ(x(s), y(s))− ∂sy∂xϕ(x(s), y(s))+O(r)

= |∇ϕ(x(s), y(s))| +O(r).

The last equality results from the fact that the tangent (xs, ys) toΣ is orthogonal
to ∇ϕ. Since, by asumption, ∇ϕ never vanishes on Σ , we deduce that by
continuity the Jacobian is non-zero in the neighborhood of Σ .

We conclude the proof by constructing ψ as follows. We first consider on R

a smooth, strictly increasing, function ψ0 and we solve

ψ(x̃(s, r), ỹ(s, r)) = ψ0(s). (1.28)



14 1 Level Set Methods and Lagrangian Interfaces

Due to the change of variable seen above, this defines a unique function ψ in
the neighborhood of Σ . By differentiating (1.28) with respect to r we obtain

∂xψ∂r x̃ + ∂yψ∂r ỹ = 0.

In other words we did check that

∇ϕ · ∇ψ = 0.

Moreover by differentiating (1.28) with respect to s we obtain

∇ψ · (x̃s, ỹs ) = ψ ′
0

which shows that ∇ψ never vanishes.
(c) Intrinsic proof in the general case. Given a test function ψ let us set

g(r) =
∫

{ϕ=r}
ψds.

From (1.26) we have

lim
ε→0

∫
R

1

ε
ζ
( r
ε

) ∫
{ϕ=r}

ψ dsdr =
∫

{ϕ=0}
ψ ds,

that is,

lim
ε→0

∫
R

∫
{ϕ=r}

1

ε
ζ
(ϕ
ε

)
ψ dsdr =

∫
{ϕ=0}

ψ ds.

Since ϕ has its support in [−1,+1] we can write

∫
R

∫
{ϕ=r}

1

ε
ζ
(ϕ
ε

)
ψ dsdr =

∫ ε

−ε

∫
{ϕ=r}

1

ε
ζ
(ϕ
ε

)
ψ dsdr.

We can decompose, in the neighborhood of x, the volume dx as dx = ds× dh,
where dh is evaluated along the normal ∇ϕ

|∇ϕ| . One next notices that

r ± dr := ϕ

(
x ± dh

∇ϕ
|∇ϕ|

)
= ϕ(x)± dh|∇ϕ| +O(dh2),
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hence dsdr = |∇ϕ|dx (see also Lemma 3.1 on page 57). As a result

∫
R

∫
{ϕ=r}

1

ε
ζ
(ϕ
ε

)
ψ dsdr =

∫
|ϕ(x)|<ε

1

ε
ζ
(ϕ
ε

)
ψ|∇ϕ| dx

=
∫
Rd

1

ε
ζ
(ϕ
ε

)
ψ|∇ϕ| dx

which completes the proof.

��
Before giving examples which illustrate this result, one can notice that if in
addition one assumes the function ζ even, which is always the case in practice,
the convergence property (1.26) is stronger. If we assume ψ of class C2 we can
indeed easily see that

∣∣∣∣
∫

1

ε
ζ
(x
ε

)
ψ(x) dx − ψ(0)

∣∣∣∣ ≤ |ψ|2,∞
∫ |x|2

ε
ζ
(x
ε

)
dx ≤ Cε2,

which shows that the computation of the forces using Level Set functions is second
order with respect to the parameter ε.

1.4.1 Example 1: Image Processing

In image processing, the so-called active contour methods consist in isolating the
characteristic objects of the image using curves. These curves (we limit ourselves
in this discussion to the 2D case) must therefore stick as closely as possible to the
significant contours of the image and “forget” the non-coherent part of the image
(the noise). These methods are the subject of a vast literature that we cannot discuss
here, and we particularly refer the reader to [112] and to the references given there.
Level Set methods allow to implement this idea in a relatively simple way.

Given a Level Set function ϕ, we start by defining energies which reflect each
of the above criteria. Suppose the image consists of two gray levels c1 and c2,
respectively for the interior and exterior of the objects to be segmented. If we want
to find the contour which best delimits these two gray levels, it is natural to minimize
the following functional

E1(ϕ) =
∫
Ω

|u0 − c1|2H(ϕ) dx +
∫
Ω

|u0 − c2|2 (1 − H(ϕ)) dx,

where u0 denotes the gray level of the image to be processed and H denotes the
Heaviside function. In the following, we will consider a regularized version of E1,
keeping the same notation, obtained by replacing H by Hε = H � 1

ε
ζ( ·

ε
).
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We assume here that the desired Level Set function satisfies ϕ <0 inside the
objects. To prevent the contour from stopping on objects of too small a scale (which
mostly correspond to noise), a natural approach is also to minimize the length of the
level set ϕ = 0. This length can be expressed as

l(Σ) =
∫
Σ

ds.

Thanks to Proposition 1.10 we can approach this length by the quantity

E2(ϕ) =
∫

1

ε
ζ
(ϕ
ε

)
|∇ϕ| dx.

The goal is therefore to minimize with respect to ϕ a functional of the form αE1(ϕ)+
βE2(ϕ) where α and β are two positive parameters to be adjusted to measure the
respective importance of the two criteria just defined. An elementary calculation
allows to calculate the differentials ∂E1 and ∂E2 of E1 and E2 as follows:

< ∂E2, ψ > =
∫

1

ε2 ζ
′ (ϕ
ε

)
|∇ϕ|ψ dx +

∫
1

ε
ζ
(ϕ
ε

) ∇ϕ · ∇ψ
|∇ϕ| dx

=
∫

1

ε2 ζ
′ (ϕ
ε

)
|∇ϕ|ψ dx − div

[
1

ε
ζ
(ϕ
ε

) ∇ϕ
|∇ϕ|

]
ψ dx

= −
∫

1

ε
ζ
(ϕ
ε

)
div

∇ϕ
|∇ϕ|ψ dx.

We deduce that

∂E2 = −1

ε
ζ
(ϕ
ε

)
div

∇ϕ
|∇ϕ| .

To differentiate E1 we start by noticing that H′
ε(ϕ) = 1

ε
ζ
(ϕ
ε

)
from which it results

that

< ∂E1, ψ >=
∫

1

ε
ζ
(ϕ
ε

)
(|u0 − c1|2 − |u0 − c2|2)ψ dx,

hence

∂E1 = (|u0 − c1|2 − |u0 − c2|2)1

ε
ζ
(ϕ
ε

)
.

A classical gradient algorithm to minimize αE1(ϕ) + βE2(ϕ) can therefore be
interpreted as the time discretization of the equation

∂tϕ = α
1

ε
ζ
(ϕ
ε

)
div

∇ϕ
|∇ϕ| + β(|u0 − c1|2 − |u0 − c2|2)1

ε
ζ
(ϕ
ε

)
. (1.29)
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Fig. 1.3 Application of
active contour techniques to
segment objects in a noisy
image. Left column: initial
image and successive stages
of the contours. Right
column: corresponding stages
of the segmented image.
From [112]

where the levels c1 et c2 are readily obtained by differentiating the energy:

c1 =
∫
Ω u0Hεdx∫
Ω
Hεdx

, c2 =
∫
Ω u0(1 − Hε)dx∫
Ω

1 − Hεdx
.

Figure 1.3 shows the contours obtained after several iterations of this algorithm
on a noisy image. In particular, it highlights an important property of the Level Set
methods, namely that the method is not topologically constrained: the initial contour
is a circle and the final contour consists of several closed curves isolating the desired
objects.

1.4.2 Exemple 2: Surface Tension

We consider here the case of two incompressible fluids separated by an interface
subject to surface tension [30]. This reference contains one of the very first
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applications of Level Set methods in fluid mechanics. On either side of the interface
Σ , which we will note the domains Ω1 and Ω2 with Ω = Ω1 ∪ Ω2 ∪ Σ , the fluid
is governed by the incompressible Navier–Stokes equations:

ρ(∂tu+ u · ∇u)+ ∇p− div(2μD(u)) = f , divu = 0, dans Ω1 ∪Ω2. (1.30)

In this equation μ denotes the viscosity (possibly different in each phase), and D(u)
the strain rate tensor

D(u) = 1

2
(∇u+ ∇uT ).

Fluid velocities are continuous along the interface and normal stresses are balanced
by surface tension forces. If one notes σ the tensor of the fluid stresses, then

σ = −p I + 2μD(u)

or equivalently:

σij = −pδi,j + μ(∂ui/∂xj + ∂uj/∂xi).

If λ denotes the coefficient of surface tension, this equilibrium results in the relations

[σij nj ]Σ = λHni

or, in a more compact form

[σ · n]Σ = λHn. (1.31)

In the above expressions n denotes as usual the normal to the interface, H its
mean curvature and [·]Σ is the jump of a quantity across the interface. When the
fluids are non-viscous (μ = 0) this equilibrium means that the surface tension
balances the pressure forces on either side of the interface:

[p]Σ = λH.

Starting from these jump relations, we can extend to the whole domain Ω the
Navier–Stokes equations satisfied in each phase. For u defined on Ω satisfying
(1.31) the following equality holds

div(2μD(u)) = U + λHδΣn.
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where we denote by U the function which is equal to div(2μD(u)) in Ω1 and in
Ω2. We can therefore extend the Navier–Stokes equations to Ω into the following
system

ρ(∂tu+ u · ∇u)+ ∇p − div(2μD(u)) = ρ λH δΣ n,

divu = 0.

In view of Proposition 1.10, the Level Set formulation of this problem consists in
solving in Ω the system

ρ(∂tu+ u · ∇u)+ ∇p − div(2μD(u)) = ρ(ϕ) λH(∇ϕ) 1

ε
ζ
(ϕ
ε

)
∇ϕ, (1.32)

divu = 0, (1.33)

∂tϕ + u · ∇ϕ = 0, (1.34)

where we recall that H is a function of ∇ϕ given by

H = divn, with n = ∇ϕ/|∇ϕ|.

This system must be completed by boundary conditions, i.e., within the
framework that we have set, u = 0 on ∂Ω , and initial conditions u(x, 0) =
u0(x), ϕ(x, 0) = ϕ0(x). Note that with this boundary condition on the velocity, it is
not necessary to write a spatial boundary condition for ϕ in the transport equation.

Figure 1.4 shows the transport under the effect of gravity of 2 bubbles of different
densities and their fusion, illustrating the regularizing effect of surface tension on the
shape of the interface. This figure again illustrates the fact that Level Set methods,
unlike interface tracking methods, are not constrained by topology and allow the
merging of objects. In this experiment, from [30], the coefficient of gravity is taken
equal to 1, the density contrast between the 2 bubbles, initially circular, is equal to
10 (the lightest bubble is the lowest). The diameters of the bubbles are 0.2 and 0.3.
The surface tension coefficient for the experiment on the right is equal to 0.02. As
in [30], the Navier–Stokes equations are solved in the Boussinesq approximation. A
semi-lagrangian particle method is used with a grid-size h = 1/256.

1.5 Numerical Aspects I: Consistency and Accuracy

As we have seen above, Level Set methods are based in the first place on the
convergence of the approximation of a one-dimensional Dirac mass by a cut-
off function, a convergence which itself results from the property (1.26) in one
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Fig. 1.4 Merging of two bubbles with different densities, at two successive times (t = 0.2 for the
top pictures and t = 0.4 for the bottom pictures). With (right pictures) or without (left pictures)
surface tension. The color contour lines represent vorticity levels. See the text for the parameters
of this experience

dimension. If we go back to the proof of this property and assume that ϕ(x) = rx

for a given constant r , we find

∣∣∣∣
∫

1

ε
ζ
( rx
ε

)
ψ(x) dx − ψ(0)

∣∣∣∣ ≤
∫

1

ε

∣∣∣ζ ( rx
ε

)∣∣∣ |ψ(x)− ψ(0)| dx

≤
∫ |x|

ε

∣∣∣ζ ( rx
ε

)∣∣∣ dx |ψ|1,∞ ≤ m1
ε

r
|ψ|1,∞,

where m1 = ∫ |xζ(x)| dx. Given that in this example r = ϕ′(0) we can deduce that
the approximation of the forces using a Level Set function will have a precision of
order

O

(
ε

inf{ϕ=0} |∇ϕ|
)
.

What we have just said assumes an exact calculation of the integrals. In practice
these integrals must be evaluated by quadrature methods. Assuming these quadra-
tures carried out for example by the mid-point method, on a grid of nodes xj , with
j ∈ [0, N]d where d is the dimension of the space, of uniform grid-size Δx, the
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error produced on the evaluation of a force of form (1.32) can be written with a first
order estimate∣∣∣∣∣∣

∫
1

ε
ζ
(ϕ
ε

)
ψ dx −

∑
j

1

ε
ζ

(
ϕ(xj )

ε

)
ψ(xj )

∣∣∣∣∣∣ ≤ CΔx

∣∣∣∣1ε ζ
(ϕ
ε

)∣∣∣∣
1,1

|ϕ|1,∞

≤ C
Δx

ε
|ϕ|1,∞.

In view of the above, convergence will hold if, on the one hand, the convergence
condition

ε � inf
ϕ=0

|∇ϕ|

is satisfied and, on the other hand,

Δx � ε/|ϕ|1,∞.

A second-order estimate of the quadrature error leads to similar conclusions. We
deduce that a natural requirement to avoid taking too small values of the parameters
ε and Δx is that the ratio

infϕ=0 |∇ϕ|
|ϕ|1,∞

be as close to 1 as possible. The ideal case is when, at least in a neighborhood of
size ε of Σ = {ϕ = 0}, |∇ϕ| = 1(or another constant), which is the case if ϕ is the
signed distance to Σ (see proposition 1.4).

While it is in general possible to initialize the value of ϕ to such a value, it is
obviously not possible to guarantee the property |∇ϕ| � 1 for t > 0. To remedy
this, two approaches are possible: either reset at any time ϕ to a function which has
this property, without altering the iso-surface {ϕ = 0}, or to renormalize ϕ in the
evaluation of the forces.

1.5.1 Redistancing of ϕ

The first method consists in rectifying a given Level Set function ϕ0 into a signed
distance function at each time step. This idea appeared very quickly in Level Set
methods [135, 136] and has undergone many developments (one can for example
consult [31, 108, 121]). We will limit ourselves here to the outline of the method.
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The redistancing of the Level Set function can typically be done by solving the
following Hamilton–Jacobi equation:

∂τϕ + sgn(ϕ0)(|∇ϕ| − 1) = 0. (1.35)

with ϕ0 as initial condition, and looking for a stationary state. In practice, due to
the hyperbolicity of this equation, the rectificagtion of ϕ is propagated starting from
{ϕ = 0} so that a few iterations are enough to reach |∇ϕ| ≈ 1 in the neighborhood
of {ϕ = 0}. Indeed, the above equation can be written as a transport equation with
right hand side

∂τϕ + sgn(ϕ0)
∇
ϕ

|∇ϕ| · ∇ϕ = −sgn(ϕ0). (1.36)

The characteristics associated to this transport equation thus originate on {ϕ0 = 0}
and are orthogonal to this interface. We can actually show that this equation does
not modify the zero level set of the initial function, in other words {ϕ(·, t) = 0} =
{ϕ0 = 0} for all t > 0.

The drawback of this approach is, on the one hand, in the cost of solving
this additional equation and, on the other hand, in the fact that its numerical
discretization in practice leads to a displacement of the interface. This is a drawback
that several contributions have attempted to overcome, to the detriment of the
simplicity of the method [31, 56, 108, 121, 135]. One difficulty in particular lies
in the numerical approximation of the sign function.

Other methods involve solving the Eikonal equation directly. Given an interface
{ϕ0 = 0}, where ϕ0 is not a distance function, we look for ϕ satisfying

{
|∇ϕ| = 1 in Ω

ϕ = 0 on {ϕ0 = 0} (1.37)

Among these methods, which historically began with the Fast Marching method
[93, 123, 124], we find the Fast Sweeping method [117, 148] and, more recently, the
method in [41].

Another approach is to transport ϕ away from the interface in such a way that it
always satisfies |∇ϕ| = 1. A method, initially introduced by Osher and collaborators
[150] following an idea by Evans and Spruck [59], then taken up in [77] and, within
the framework of shape optimization, in [47], consists in determining ϕ as the
solution to

∂tϕ(x, t)+ (u · ∇ϕ)(x − ϕ∇ϕ(x), t)) = 0.

This amounts, on the interface, to a transport equation, the solution of which is
always a distance function if the initial function is. Unfortunately this equation is
not local and difficult to use numerically.
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In all these techniques, a drawback is that they deprive us of information on the
gradients of the Level Set function advected by the flow, information which, as we
will see later, is crucial for the treatment of the fluid-structure interaction by Level
Set methods.

1.5.2 Renormalization of ϕ

The idea starts from the following observation: if d(x, t) denotes the signed distance
to the surface, the quantity φ

|∇φ| approaches d in the neighborhood of the interface.
Indeed as we mentioned in Proposition 1.4, for d(x) small enough, the point

x − d(x)∇d(x) is on this surface, so that ϕ(x − d(x)∇d) = 0. By carrying out an
expansion in the neighborhood of d(x) = 0 we have

ϕ(x)− d(x)∇ϕ · ∇d(x)+O(d(x)2) = 0.

Furthermore, we have

∇d(x) = (∇d)(x − d(x)∇d)+ d(x)[∇2d]∇d + O(d(x)2),

and

(∇d)(x − d(x)∇d) = ∇φ
|∇φ| (x − d(x)∇d)

= ∇ϕ
|∇ϕ|(x)− d(x)

[
∇
( ∇φ

|∇φ|
)]

∇d +O(d(x)2), (1.38)

and thus

∇d(x) = ∇ϕ
|∇ϕ|(x)+ d(x)

(
[∇2d] −

[
∇
(

φ

|∇φ|
)])

∇d +O(d(x)2).

Finally

ϕ(x)− d(x)|∇ϕ|(x)+O(d(x)2) = 0,

that is

d(x) ≈ φ

|∇φ|(x).

We thus have a simple way to estimate the distance from a point x sufficiently close
to {ϕ = 0} to this curve, by dividing the value of ϕ by the norm of its gradient. The
function ψ(x) = φ

|∇φ| (x) has, to first order in ϕ, a gradient of norm 1. On the other
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hand, its zero level line coincides with that of ϕ. According to Proposition 1.10, we
therefore have

1

ε
ζ

(
ψ

ε

)
|∇ψ| ⇀ δ{ψ=0} = δ{ϕ=0} in M(Rd).

which justifies the approximation of δ{ϕ=0} by

1

ε
ζ

(
ϕ

ε|∇ϕ|
)
.

To the first order in ϕ, this expression represents an approximation of the Dirac
mass whose support remains of width 2ε. Compared to the original method, the
resulting method ultimately consists in replacing at each point x the parameter ε by
local values ε|∇ϕ|(x).

The interest of this method is that it can be interpreted as a post-processing of
ϕ which does not affect the location of the interface. Its downside is that it adds
the singularity of ∇ϕ in the cut-off and that points where |∇ϕ| is small can cause
numerical concerns in the evaluation of forces.

A detailed study of this type of approximation was carried out by Tornberg,
Enquist and Tsai [55], which allows to determine an optimal choice of the parameter
ε. This consists of using the 1-norm of the vector and replacing ε at each point by

ε(x) = |∇ϕ(x)|1ε0,

where ε0 is fixed and |∇ϕ(x)|1 = |∂x1ϕ(x)| + |∂x2ϕ(x)| + |∂x3ϕ(x)|. Let us also
indicate that the authors recommend the use of the hat function as an approximation
of the Dirac measure, because it satisfies a second order discrete moment condition.

1.5.3 Comparison of the Two Approaches

The advantages and drawbacks of redistancing approaches have been mentioned
above. An additional interest of these methods, which appears as a side effect, is that
because the gradients of ϕ are brought close to 1 around the interface, the variations
of ϕ are somehow limited, which can have the effect of reducing the numerical
errors in the treatment of the transport equation of ϕ (and this independently of the
numerical discretization method used to solve this equation).

Figure 1.5 illustrates both this effect and the drawback, already mentioned, that
the discretization of Eq. (1.36) can lead to a shift of the interface.
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Fig. 1.5 Interface computed with or without redistancing for the stretched blob, at T = 5, over a
rectangular grid N ×N . Top pictures: N = 256. Bottom pictures: N = 512. From [36]

In this example, which is classically used to test Level Set methods and the
numerical treatment of the transport equation (1.2) (see for example [56]), the
velocity field is given by

u(x1, x2) = (− sin2(πx1) sin(2πx2), sin(2πx1) sin2(πx2)

and the initial interface is a circle centered at the point (0.5, 0.75) and with radius
0.15. Although smooth, the velocity field produces as time goes on a significant
stretching and a filamentation of the interface which makes it difficult to capture it
for a time T > 2. In this figure, the reference solution is obtained at T = 5 with a
purely Lagrangian method, very simple to implement in this particular case, using
1000 markers located on the interface.
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Fig. 1.6 Comparison of the redistancing and renormalization methods in calculating the length of
the filament for the experiment in Fig. 1.5. The results concern a resolution with 64 (green curves),
128 (red curves) and 256 (blue curves) discretization points in each direction. The black curve
is the reference curve. Results obtained by redistancing (solid lines) and renormalization (dotted
lines). From [36]

In the Level Set framework, the transport equations are solved by a WENO5
scheme on a structured mesh of size 256 × 256 or 512 × 512. We can see that in the
thin parts of the filament, the interface is better captured by the redistancing method,
which can be attributed to the fact that the discretization errors in the solution of the
transport equation are large when ϕ is stiff. On the other hand, in better resolved
areas, we also see that the redistancing equation causes an artificial displacement of
the interface.

To test the ability of the different methods above to allow a correct calculation of
the forces, we take the same velocity field and calculate the length of the filament
over time. This calculation here represents a surface force prototype that needs to
be properly calculated. In Fig. 1.6, the upper curve, which shows an almost linear
increase in length, is the reference curve obtained as before by following a large
number of markers. The dotted curves are obtained by a renormalization method
and the solid curves by the redistancing method.

The tests are conducted with 64, 128 and 256 grid points in each direction. We
observe that at low resolution the redistancing method ends up making the filament
completely disappear. At higher resolution, the redistancing and renormalization
methods give comparable results. The renormalization method therefore appears as
a method allowing a correct calculation of the forces, even in the event of strong
stretching, without affecting the transport equation on the Level Set function.
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Table 1.1 Comparison of numerical errors produced in Smereka’s methods [130] and in the
renormalization method

Grid Smereka 1 Renormalization Smereka 2

size Rel. error Order Rel. Error Order Rel. error. Order

0.2 9.38 × 10−3 1.5 × 10−1 2.68 × 10−3

0.1 2.23 × 10−3 2.07 5 × 10−3 5.49 × 10−4 2.29

0.05 8.12 × 10−4 1.46 1.3 × 10−3 1.9 1.32 × 10−4 2.05

0.025 2.71 × 10−4 1.58 3 × 10−4 2.1 2.90 × 10−5 2.18

0.0125 7.58 × 10−5 1.83 8 × 10−5 1.9 7.79 × 10−6 1.90

0.00625 3.04 × 10−5 1.32 2 × 10−5 2 1.84 × 10−6 2.08

A complementary example illustrating the behavior of the renormalization
method relies on the test proposed by [130] to introduce a new way of approaching
the Dirac measure. In this article, the author constructs two discrete Dirac functions
approximating the measure to first and second order, then calculates the length of
an ellipse whose orientation is randomly chosen to avoid grid effects. The average
error made is then recorded. Table 1.1 demonstrates that the renormalization method
behaves, from the point of view of accuracy, like the first approximation proposed by
the author, and therefore constitutes, in view of its simplicity, an effective solution
to approach an area measurement in the Level Set method. A complete study of the
approximation of Dirac functions was carried out in [55].

1.5.4 Towers Method to Approximate Surface Integrals

Another method has been introduced by Towers in a series of papers [139–142] to
approximate surface integrals in a Level Set framework, which improved the order
of accuracy. The idea is to introduce

I (ϕ) =
∫ ϕ

0
H(r)dr = max(ϕ, 0)

and to derive approximations of δ{ϕ=0} and H(ϕ) from it, using the formulas:

∇I (ϕ) = H(ϕ)∇ϕ, ΔI (ϕ) = |∇ϕ|2δ{ϕ=0} + H(ϕ)Δϕ,

which lead to

H(ϕ) = ∇I (ϕ) · ∇ϕ
|∇ϕ|2 , δ{ϕ=0} = ΔI(ϕ)− H(ϕ)Δϕ

|∇ϕ|2 = ΔI(ϕ)

|∇ϕ|2 − (∇I (ϕ) · ∇ϕ)Δϕ
|∇ϕ|4
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Both expressions above are approximated by second order central differences, and
convergence at order two is indeed reported by Towers for the computation of
surface integrals with the rectangle method as quadrature. While ϕ does not need
to be a distance function, better behavior is reported in that case. One fundamental
feature of these approximations is that they do not rely on a discretization parameter
such as ε appearing in the smoothed approach. While this approach is very efficient
in computing integrals, its ability to be fully used in the pointwise computation of
forces would have to be further investigated.

1.6 Numerical Aspects II: Stability

In the ALE methods which are currently used for fluid-structure interaction
problems, the questions of stability arise in particular through phenomena known
under the terms of added mass, when the densities of fluids and solids are close.
In Level Set methods, the situation is very different. Added mass is not an issue but
stability issues are instead related to the types of temporal discretizations, explicit or
implicit, used to couple the transport and Navier–Stokes equations, and occur when
the stiffness coefficients are large. To study these questions it seems difficult to have
a completely general framework and it is necessary to specify the coupling under
consideration. We will consider the case of the surface tension already mentioned
above in a flow with uniform density and viscosity and which, as we will see, is also
relevant to more general fluid-structure problems.

Stability issues in Level Set methods in this framework have been studied in
particular in [21, 50, 71, 116]. We generalize here to the three-dimensional case the
analysis made in [19, 37]. We will see later how the conclusions of this analysis are
generalized to the case of elastic membranes.

The system (1.32)–(1.34) reduces in the case of constant density and viscosity to
the following system:

∂tu+ u · ∇u+ ∇p − μΔu = λH(∇φ) 1

ε
ζ
(ϕ
ε

)
∇ϕ, (1.39)

divu = 0, (1.40)

∂tϕ + (u · ∇)ϕ = 0. (1.41)

In the sequel we will study the linear stability of certain temporal discretizations
of this system, around a steady-state consisting of a fluid at rest with a plane
interface (it should be noted that these are not the only equilibrium states because
the condition of incompressibility allows equilibrium states which are not of zero
curvature, like the spheres in 3D). Without restricting the generality one can suppose
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that the interface coincides with an axial plane, which gives for example

ϕ̄(x) = x1. (1.42)

This function obviously statisfies

|∇ϕ̄| ≡ 1 , H(∇φ̄) ≡ 0.

The linearization of the right-hand side of (1.39) therefore only involves the term
which comes from the linearization of H . In the following one will note ϕ the
variation of the level set around the equilibrium profile ϕ̄. An elementary differential
calculus gives us

H(∇φ̄ + ∇φ) =
∑
i

∑
j

∂jϕ

(
δij

|∇ϕ̄| − ∂iϕ̄∂j ϕ̄

|∇ϕ̄|3
)

which, due to the particular form of ϕ̄, yields

H(∇φ̄ + ∇φ) =
∑

∂iiϕ −
∑
i,j

[∂iϕ̄∂j ϕ̄]∂ij ϕ = Δϕ − ∂11ϕ.

where we noted ∂i = ∂/∂xi for i ∈ [1, 3] and ∂ij = ∂2/∂xixj . As for the
linearization of the transport equation of ϕ, it is given by

∂tϕ + (u · ∇)ϕ̄ = 0.

If we therefore seek a solution of the form (u = (u1, u2, u3), p, ϕ̄ + ϕ) the
linearization of the system (1.39)–(1.41) leads to the system

∂tu1 − ∂1p − μΔu1 = λ(Δϕ − ∂11ϕ)
1

ε
ζ
(ϕ
ε

)
(x1), (1.43)

∂tu2 − ∂2p − μΔu2 = 0, (1.44)

∂tu3 − ∂3p − μΔu3 = 0, (1.45)

∂1u1 + ∂2u2 + ∂3u3 = 0, (1.46)

∂tϕ + u1 = 0. (1.47)

As the fluid-interface interaction is limited to the support of 1
ε
ζ
(ϕ
ε

)
and to simplify

the Fourier analysis, we will consider the system (1.43)–(1.47) in a band Ω =
[−ε,+ε] × [−π,+π]2, supplemented by periodic boundary conditions on the
boundaries of Ω . We will further assume that ζ ≡ 1/2 in its support. We then
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readily see that the solution of this system satisfies

u2 = u3 = p = 0 , u1 = u1(x2, x3) , ϕ = ϕ(x2, x3),

as long as the initial conditions are of this form, with

∂tu1 − μΔ′u1 = λ

2ε
Δ′ϕ, (1.48)

∂tϕ + u1 = 0, (1.49)

where we noted Δ′ = ∂22 + ∂33. This system is posed in the domain Ω ′ =
[−π,+π]2.

The following stability analysis will focus on the solutions of this system. We
can already notice that by replacing u1 by −∂tϕ in the first equation we get

∂2
t tϕ − μΔ′∂tϕ = λ

2ε
Δ′ϕ. (1.50)

In particular, if μ = 0, this is a wave equation for ϕ in the directions that are
transverse to the surface. Despite the assumptions and simplifications made to obtain
these particular forms of solutions, we will see that they make it possible to highlight
stability criteria which confirm numerical studies and other empirical analysis of the
literature.

The discretization in time of (1.32)–(1.34) naturally leads to explicit and implicit
schemes. Rather than linearizing the discrete equations obtained from (1.32)–(1.34),
one can in an equivalent fashion discretize the linearized equations obtained above.
This is the approach we are going to take.

In the following, we are given a time step Δt , a grid size Δx and a uniform grid
of the plane (x2, x3) of Ω with nodes xi = (−π + i1Δx,−π+ i2Δx), i = (i1, i2) ∈
[1, N]2 with NΔx = 2π .We will denote by (u, ϕ) the solution of (1.48)–(1.49),
uni , ϕ

n
i the discrete solution provided by the schemes at time tn = nΔt and at the

grid point iΔx. Finally, we will consider the discrete Fourier transform of a periodic
sequence (ui, ϕi) of period N defined by

unj =
∑

k∈[1,N]2

ûk exp [ i (< j · k > Δx)] , (1.51)

ϕnj =
∑

k∈[1,N]2

ϕ̂k exp [ i (< j · k > Δx)] (1.52)
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1.6.1 Explicit Scheme

A natural explicit scheme for the system (1.48)–(1.49) reads

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1
j − unj

Δt
− μΔdu

n+1
j = −λ

ε
Δdϕ

n
j

ϕn+1
j − ϕnj

Δt
+ un+1

j = 0

u0
j = fj, ϕ0

j = gj,

(1.53)

where Δd denotes the classical centered Laplacian:

Δduj = uj1+1,j2 − 2uj1,j2 + uj1−1,j2

(Δx)2
+ uj1,j2+1 − 2uj1,j2 + uj1j2−1

(Δx)2

for j = (j1, j2). Let us note that the above scheme is explicit as regards the
coupling between u et ϕ, it suffices to solve the first equation before the second,
but, classically, implicit in dealing with the diffusion equation for u.

The stability of this scheme is described by the following result.

Proposition 1.11 A necessary condition for the stability of the scheme (1.53)
is

Δt ≤
με +

√
μ2ε2 + λ

2 εΔx
2

λ
(1.54)

Proof In the Fourier decomposition (1.51)–(1.52), the system (1.53) can be trans-
lated, for each wave number k = (k1, k2), into the linear system

⎧⎨
⎩
(

1 + 4μΔt

Δx2 αk

)
ûn+1
k = ûnk + 4λΔt

εΔx2 αk ϕ̂
n
k

ϕ̂n+1
k +Δt ûn+1

k = ϕ̂nk ,

(1.55)

with

αk = sin2
(
k1Δx

2

)
+ sin2

(
k2Δx

2

)
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or, in matrix form,

(
ûn+1
k

ϕ̂n+1
k

)
=
⎛
⎝ 1

δk

βk

δk
−Δt

δk
1 −Δt

βk
δk

⎞
⎠( ûnk

ϕ̂nk

)
= Ak

(
ûnk
ϕ̂nk

)

with βk = 4λΔt
εΔx2αk and δk = 1 + 4μΔt

Δx2 αk = 1 + με
λ
βk .

The eigenvalues of the matrix Ak are the roots of the ploynomial

(
1 + με

λ
βk

)
r2 −

(
2 +

(με
λ

−Δt
)
βk

)
r + 1. (1.56)

Let us assume that

Δt >
με +

√
μ2ε2 + λ

2 εΔx
2

λ
, (1.57)

and show that one of the eigenvalues has a modulus greater than 1, which contradicts
stability. The discriminant of the polynomial (1.56) is given by

Δk = 4Δt βk

((με
λ

−Δt
)2 λ

εΔx2αk − 1

)
.

From (1.57) we also have

Δt >
με

λ
+ Δx

√
ε

2λ

and thus

(με
λ

− Δt
)2 λ

εΔx2 >
1

2
.

As a result, there are values of k such that the discriminant of (1.56) is positive. For
these modes the eigenvalues are therefore real. Denote by r− the smallest eigenvalue
and show by the absurd that r− < −1. We can write

r− ≥ −1

⇔ 2 +
(με
λ

− Δt
)
βk −√βk

√(με
λ

− Δt
)2
βk − 4Δt

≥ −2 − 2
με

λ
βk

⇔ 4 +
(

3με

λ
−Δt

)
βk ≥ √βk

√(με
λ

−Δt
)2
βk − 4Δt ≥ 0
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By taking the square of this inequality we obtain

r− ≥ −1 ⇒ με

λ

(
2με

λ
−Δt

)
β2
k +

(
6με

λ
−Δt

)
βk + 4 ≥ 0. (1.58)

Consider now the polynomial in βk above. Since, according to (1.57),Δt > 2με/λ,

its roots are real, of opposite signs and given by β− = − λ

με
, β+ = 4

Δt − 2με
λ

.

From (1.57) one gets Δt > 2με
λ

and β+ > 0 and we deduce from (1.58) that we
must have βk ≤ β+. But if βk ≤ β+ for all k this implies

2λΔt

εΔx2 ≤ 1

Δt − 2με
λ

,

or

λΔt2 − 2μεΔt − ε

2
Δx2 ≤ 0.

We can easily see by considering the polynomial in Δt above and its two real roots
that this inequality in turn leads to the inequality

Δt ≤
με +

√
μ2ε2 + λ

2 εΔx
2

λ

which contradicts (1.57). We have therefore proved that r− < −1, which shows that
the scheme is not stable and completes this proof. ��

Remark 1.12 Let us make a few remarks about this stability result.

– In practice, one generally chooses ε of the order of Δx, so that the dependence
of the time step with respect to the grid size is in Δx3/2.

– In the case of a vanishing viscosity, the stability condition (1.54) becomes

Δt ≤
√

ε

2λ
Δx,

as one would expect from the wave equation (1.50) satisfied by ϕ in this case.
This condition agrees with the condition found in [21] for high Reynolds number
flows.

– For large values of the viscosity (and/or small values of the surface tension), we
obtain the condition

Δt ≤ 2μ

λ
ε,

a condition similar to the condition found in [71].
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Finally, note that for the explicit scheme which would use un instead of un+1 in the
equation for ϕ the condition of stability would be more demanding. In the case of
zero viscosity, for example, the resulting scheme would be unconditionally unstable
(see [19] for more details).

1.6.2 Implicit Scheme

A natural implicit scheme for the system (1.48)–(1.49) is to take ϕn+1 instead of ϕn

in the right hand side for the equation on u. We obtain the following scheme

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

un+1
j − unj

Δt
− μΔdu

n+1
j = −λ

ε
Δdϕ

n+1
j

ϕn+1
j − ϕnj

Δt
+ un+1

j = 0

u0
j = fj , ϕ0

j = gj .

(1.59)

This scheme requires the inversion of a linear system. In the case of the original
system (1.32)–(1.34) it requires the calculation of a fixed point, which makes it
expensive. The counterpart is in the following result.

Proposition 1.13 The scheme (1.59) is unconditionally stable.

Proof In the Fourier decomposition (1.51)–(1.52), and with the notations of the
previous proof, the scheme (1.59) reads for each mode k:

δk û
n+1
k − βk ϕ̂

n+1
k = unk

Δt ûn+1
k + ϕ̂n+1

k = ϕ̂nk ,

or (
ûn+1
k

ϕ̂n+1
k

)
= 1

δk + βkΔt

(
1 βk

−Δt δk
)(

ûnk
ϕ̂nk

)
= A′

k

(
ûnk
ϕ̂nk

)
.

The eigenvalues of A′
k are the roots of the polynomial

(
1

δk + βkΔt
−r)(

δk

δk + βkΔt
−r)+ βkΔt

δk + βkΔt
= r2 −r(

1 + δk

δk + βkΔt
)+ 1

δk + βkδk
.
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If its discriminant is negative, its roots have modulus (δk + βkΔt)
−1 < 1 and the

system is stable. If its discriminant is positive, its two roots are positive, because
they have positive product and sum, and the larger root is given by

r+ = 1 + δk +√(1 − δk)2 − 4βkΔt

2(δk + βkΔt)
.

For k = 0 we easily check that ûn0 = û0
0 and ϕ̂n0 = ϕ̂0

0 − nΔtû0
0. If k �= 0 then

βk > 0 and

r+ <
1 + δk + δk − 1

2δk
= 1.

The scheme is therefore unconditionally stable. ��

1.6.3 Semi-Implicit Scheme

We therefore have, on the one hand an explicit scheme, simple to implement and
inexpensive, but which requires time steps with a dependence in Δx3/2 which can
turn out to be very drastic in the cases with low viscosity and/or large surface
tension, and, on the other hand, an implicit scheme, unconditionally stable but
expensive to implement. In this section we derive a semi-explicit scheme, of cost
comparable to that of the explicit scheme but with better stability properties.

To write this scheme, we start from the implicit scheme (1.59) to write from the
first equation

un+1
j = unj + μΔtΔdu

n+1
j − λ

ε
ΔtΔdϕ

n+1
j .

This allows to obtain from the second equation

ϕn+1
j = ϕnj −Δtunj + μΔt2Δdu

n+1
j + λ

ε
Δt2Δdϕ

n+1
j .

The idea is then to calculate a predictor of ϕn+1 by forgetting the term in Δdu
n+1

in the above equation. In other words, we start by solving

ψn+1
j − ϕnj

Δt
− λ

ε
Δt2Δdψ

n+1
j = −unj (1.60)
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then the equation on u

un+1
j − unj

Δt
− μΔdu

n+1
j = −λ

ε
Δdψ

n+1
j (1.61)

and, finally, the transport equation on the Level Set ϕ

ϕn+1
j − ϕnj

Δt
+ un+1

j = 0. (1.62)

We can notice that (1.60) consists of a time step of an implicit scheme for a diffusion
equation, with initial condition ϕn and diffusion coefficient Δt λ/ε. Compared to
the explicit method seen previously, ψn+1 can be seen like a perturbation of ϕn

only used for the computation of the force of surface tension in the fluid.
It is important to note that the transport of the interface remains ensured by the

original transport equation (1.62) and that ψn+1 intervenes only in an auxiliary way
for the computation of the right side of the equation for u (or for the Navier–Stokes
equation when the scheme is used on the complete model).

The justification for this method is given by the

Proposition 1.14 The semi-implicit scheme (1.60), (1.61) and (1.62) is
unconditionnally stable.

Proof We recall the notations already introduced for the previous methods. The
scheme (1.60), (1.61), (1.62) is translated in the Fourier decomposition by the
system

αk = sin2
(
k1Δx

2

)
+ sin2

(
k2Δx

2

)
,

βk = 4λΔt

εΔx2αk, δk = 1 + 4μΔt

Δx2 αk = 1 + με

λ
βk.

or, in matrix form after substitution of the first equation in the second,

Ak

(
ûn+1
k

ϕ̂n+1
k

)
= Bk

(
ûnk
ϕ̂nk

)

with

Ak =
(
δk 0
Δt 1

)
Bk =

(
1

1+Δtβk
βk

1+Δtβk
0 1

)
.
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Let us start with the case k = 0. In that case δ0 = 1 and β0 = 0, and we immediately
see that

[
A−1

0 B0

]n =
(

1 0
−nΔt 1

)

and the scheme is stable for this mode.
Let us now look at the general case k �= 0. The eigenvalues of A−1

k Bk are the
solutions of det(A−1

k Bk − rI) = 0, or det(Bk − rAk) = 0. This leads to the equation

β ′
kδ

′
kr

2 − r[1 + β ′
kδ

′
k −Δtβk] + 1 = 0

where we have set β ′
k = 1 + Δtβk. The product of the roots r1r2 is equal to

1/(β ′
kδ

′
k) < 1 for k �= 0. If the roots are not real, they are therefore of modulus

strictly less than 1. If they are real they have the same sign, positive because their
sum is equal to 1 + β ′

kδk − Δtβk = 2 + δk + Δtβkδk > 0. We can moreover write,
for Δt > 0,

ri ≤
1 + β ′

kδk − Δtβk +
√
(1 + β ′

kδk − Δtβk)2 − 4β ′
kδk

2β ′
kδk

<
1 + β ′

kδk +
√
(1 + β ′

kδk)
2 − 4β ′

kδk

2β ′
kδk

<
1 + β ′

kδk +
√
(1 − β ′

kδk)
2

2β ′
kδk

= 1.

The spectral radius of A−1
k Bk is therefore strictly less than 1 and the system is

stable. ��
We will provide in the next chapter numerical illustrations of the results given in
this section and simultaneously extend the definitions of the methods to the case of
the interaction of a fluid with an elastic membrane.



Chapter 2
Mathematical Tools for Continuum
Mechanics

In this chapter we list a few of definitions and mathematical results relating to the
notions of trajectories in a smooth velocity field. We also recall certain principles of
conservation in continuous media.

We place ourselves under the assumption of a regular velocity field:

(H) u ∈ C1(Ω × [0, T ]) and u = 0 on ∂Ω × [0, T ]

where [0, T ] is a fixed time interval.

2.1 Characteristics and Flows Associated with a Velocity
Field

Let us start by giving some notations and recalling elementary results of differential
calculus related to the trajectories associated with a velocity field. Given a function
f defined from R

d into R, we note Df its differential and ∇f its gradient. We
therefore have for all h ∈ R

d , Df (x)(h) = ∇f (x) · h. For a vector field v : Rd →
R
d , [Dv] is the differential of v, that is the linear matrix ∇v = [∂xj vi ]ij . With these

notations, for ϕ : Rd → R, v : Rd → R
d and X : Rd×]0, T [→ R

d we have the
following chain rule formulas:

∂t (ϕ(X)) = ∇ϕ(X) · ∂tX,

∇(ϕ(X)) = [∇X]T (∇ϕ)(X),

∇(v(X)) = [∇v](X)[∇X],
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where the composition of the applications was noted by a multiplication. For ξ ∈ Ω

and s ∈]0, T ], we denote by τ → X(τ ; ξ, s) the solution of the differential system

∂τX = u(X, τ)

supplemented with the initial condition

X(s) = ξ.

The solution of this system exists and is unique in the classical framework, for
example under the assumption that the velocity field is lipschitzian at x, uniformly
with respect to t . The no-slip condition at the boundary imposed on the velocity
field implies that these trajectories do not reach the boundary of the domain. More
general solutions, defined almost everywhere, have been introduced by Lions and
DiPerna [51]. We have placed ourselves within the framework of a smooth velocity
field (assumption (H), which is stronger than u uniformly Lipschitzian because Ω
is bounded), so that we restrict ourselves here to classical solutions.

The physical interpretation of X(τ ; ξ, s) is the position at time τ of a particle in
the continuous medium located at time s at position ξ . Let us start with the following
result:

Lemma 2.1 Under the assumption (H) we get

∀(t1, t2) ∈ [0, T ]2, ∀x ∈ Ω, X(t1;X(t2; x, t1), t2) = x.

Proof Let ξ = X(t2; x, t1). Then X(τ ; ξ, t2) is solution to the differential system
∂τX = u(X, τ) under the condition X(t2) = ξ . But X(τ ; x, t1) is the solution of
the same system and satisfies X(t2; x, t1) = ξ . According to (H) the solution of
this system is unique, and thus X(τ ; x, t1) = X(τ ; ξ, t2). In particular we have the
desired identity for τ = t1, since X(t1; x, t1) = x. ��

The above property tells us that the mapping x → X(t1; x, t2) is invertible, with
inverse X(t2; ·, t1). As a matter of fact, we have more:

Proposition 2.2 The mapping x → X(t1; x, t2) is a C1-diffeomorphism in
Ω . Its Jacobian J (t1; x, t2), is continuous and strictly positive in x, and such
that t → J (t; x, t2) is of class C1 and satisfies

∂tJ (t1; x, t2) = (divu)(X(t1; x, t2), t1)J (t1; x, t2).
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Proof The invertibility of x → X(t1; x, t2) directly comes from the above lemma.
The C1 regularity of X is classical under the assumptions made on u; this indeed
corresponds to a regularity result of the solution of a differential system with respect
to the parameters. To see this, let us set Z(τ ; x, t) = X(τ + t; x, t) − x. The
differential system inX is equivalent to the differential system ∂τZ = u(Z+x, τ+t)
with initial condition Z(0) = 0. Since u has been assumed of class C1 in (x, t) we
deduce that X is of class C1 with respect to (τ, x, t), for instance as a consequence
of [48], p. 286, or theorem 3.6.1 in [28]. The reader is also referred to [49], pp. 182
to 192. By differentiating the relation of Lemma 2.1 with respect to x, we obtain

[DX](t1;X(t2; ξ, t1), t2)[DX](t2; x, t1) = Id ,

where Id represents the identity matrix of Md(R). By taking the determinant, we
obtain

J (t2; x, t1)J (t1;X(t2; ξ, t1), t2) = 1,

which proves that J never vanishes. For fixed (x, t), since M : τ →
∇xX(τ ; x, t) satisfies ∂τM = ∇xu(X(τ ; x, t), τ )M with M(t) = Id , and
τ → ∇xu(X(τ ; x, t), τ ) is continuous, τ → ∇xX(τ ; x, t) and therefore
τ → J (τ ; x, t) are of class C1. As J (t; x, t) = 1, and J does not vanish, it is
always strictly positive. To obtain the announced differentiation formula, we use the
following elementary lemma

Lemma 2.3 Let A : (0, T ) → Md(R) be a field of matrices of class C1 in
(0, T ). We have

d

dt
detA(t) = tr(Cof (A)T A′(t)),

where Cof (A) is the matrix of cofactors of A. If A has values in the set of
invertible matrices, the above expression becomes

d

dt
detA(t) = detA(t) tr(A−1(t)A′(t)).

This lemma can be proved simply by expanding the determinant to obtain the
relation det(A+ tEij ) = det(A)+ t[Cof(A)]ij where Eij denotes the vectors of the
canonical basis of the matrices. This leads to det′(A)(H) = ∑i,j [Cof(A)]ijHij =
Tr(Cof(A)T H) = det(A)Tr(A−1H).
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Applying this lemma to A(t) = ∇ξX(t; x, t2) yields

∂t (det(∇ξX(t; ξ, t2))) = det(∇ξX)Tr([∇ξX]−1∇ξ (u(X(t, ξ), t)))

= det(∇ξX) div(u)(X(t, ξ), t).

��

Remark 2.4 It will be interesting in the following to consider the function t →
X(τ ; x, t), for fixed values of τ and x. If we differentiate with respect to t the
identity X(τ ;X(t; x, τ ), t) = x shown in Lemma 2.1, we get

∂tX(τ ;X(t; x, τ ), t)+ [DX](τ ;X(t; x, τ ), t)∂τX(t; x, τ ) = 0.

Furthermore ∂τX(τ ; x, t) = u(X(τ ; x, t), τ ) and we notice that [DX]u can be
rewritten in the form u · ∇X. By renaming X(τ ; x, t) as x, we thus obtain

∂tX(τ ; x, t)+ u(x, t) · ∇X(τ ; x, t) = 0. (2.1)

The function (x, t) → X(τ ; x, t) therfore satisfies the transport equation ∂tX + u ·
∇X = 0 with the initial condition at t = τ : X(τ ; x, τ ) = x.

With these notations, we call Lagrangian variables the couple (t, ξ), and Eulerian
variables the couple (x, t) where x = X(t; ξ, 0). In order to simplify we will
use in the sequel the notation X(t, ξ) for this quantity. Note that symmetrically,
we have from the above lemma ξ = X(0; x, t). This last quantity will be noted
to simplify Y (x, t). The order of the temporal and spatial variables in these two
versions of characteristics is on purpose, to reflect the dynamic system underlying
the Lagrangian coordinates (Fig. 2.1).

Y (x,t) = ξ

x = X(t,ξ)

Ω0 Ωt

Fig. 2.1 Initial and deformed configurations
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In this framework, the regularity of the change of Eulerian-Lagrangian variables
therefore makes it possible to switch from one representation to another in a
seamless fashion. To summarize the properties of these functions that will be used
constantly in the following, we have

X(t, Y (x, t)) = x, Y (X(t, ξ), t) = ξ, (2.2)

and

∂tX = u(X, t), X(0, ξ) = ξ, (2.3)

∂tY + (u · ∇)Y = 0, Y (x, 0) = x. (2.4)

By differentiating (2.2) with respect to x or ξ we obtain

[∇ξX(t, ξ)] = [∇xY (x, t)]−1. (2.5)

This relationship is the key point of the Eulerian formulation of elasticity because
the Lagrangian strain is calculated using the backward characteristics, which
themselves are Level Set functions for the underlying flow.

The determinants of these Jacobian matrices satisfy dual equations. It is con-
venient to introduce additional notations for the Jacobians. From Proposition 2.2
we define the determinant J�(t, ξ) = J (t; ξ, 0) = det(∇ξX(t, ξ)) and its Eulerian
counterpart Je(x, t) = J�(t, ξ) = det(∇xY (x, t))

−1 where x = X(t, ξ).
The Jacobian J� satisfies a flow equation

∂tJ�(t, ξ) = J�(t, ξ)(divu)(X(t, ξ), t) (2.6)

while its Eulerian analogue Je(x, t), satisfies the equation

∂tJe(x, t)+ u(x, t) · ∇Je(x, t) = Je(x, t)(divu)(x, t). (2.7)

2.2 Change of Variables

Under the assumption (H), according to Proposition 2.2, the maps X(t, ·) preserve
the orientation, that is

J�(t, ξ) = det(∇ξX(t, ξ)) > 0.

This relation will make it possible to remove the modulus of the Jacobian in the
change of variables to evaluate volume integrals.
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Proposition 2.5 Let f : R3 → R be a smooth function over a domain ωt in
R

3 which is itself the image by a smooth application X(t, ·) of a domain ω0
of R3. Then we have the change of variables formula

∫
ωt=X(t,ω0)

f (x, t)dx =
∫
ω0

f (X(t, ξ), t) det(∇ξX(t, ξ)) dξ. (2.8)

Proof Consider a basis (e1, e2, e3) in R
3. The volume element dξ of the associated

parallelepiped is given by the mixed product or the determinant of the three vectors
in the initial configuration: dξ = (e1 × e2) · e3 = det(e1, e2, e3). These vectors are
transformed in the deformed configuration into the vectors ai = [∇ξX]ei because

X(ξ + h) = X(ξ)+ [∇ξX]h+ o(h) (2.9)

The volume element dx can be written in the deformed configuration as

dx = det(a1, a2, a3) = det([∇ξX]e1, [∇ξX]e2, [∇ξX]e3)

= det([∇ξX])det(e1, e2, e3) = det([∇ξX]) dξ.

��
For surfaces, the general formula for change variables is given by the following
proposition:

Proposition 2.6 Under the assumptions of Proposition 2.5, if St (resp S0) is
the boundary of ωt (resp ω0) we have∫

St=X(t,S0)

f (x, t) ds =
∫
S0

f (X(t, ξ), t)| Cof(∇ξX(t, ξ))n0(ξ)| ds0

(2.10)

where n0 is a unit vector field normal to S0.

Proof We use a parameterization of the surface to rewrite the surface integral as an
integral on an open set of R2. Let us consider the vectors e1 and e2 associated with
the parameterization in the initial configuration. These vectors form a basis of the
tangent plane and are calculated by taking the derivatives of the parameterization.
We then have n0(ξ) = e1 × e2/|e1 × e2| and the surface element in the initial
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configuration is written ds0 = |e1 × e2|. These vectors are transformed in the
deformed configuration into the vectors ai = [∇ξX]ei , and for any vector v

([∇ξX]e1 × [∇ξX]e2) · [∇ξX]v = det([∇ξX]e1, [∇ξX]e2, [∇ξX]v)
= det([∇ξX])(e1 × e2) · v.

As a result

([∇ξX]e1 × [∇ξX]e2) · [∇ξX]v = det([∇ξX]e1, [∇ξX]e2, [∇ξX]v)
= det([∇ξX])(e1 × e2) · v.

We thus have

n(X(t, ξ), t) = a1 × a2

|a1 × a2| = Cof(∇ξX(t, ξ))n0(ξ)

| Cof(∇ξX(t, ξ))n0(ξ)| (2.11)

and the surface element ds in the deformed configuration reads

ds = |a1 × a2| = |Cof([∇ξX])n0||e1 × e2| = |Cof([∇ξX])n0| ds0.

We can easily deduce, for a matrix field σ ,

∫
St=X(S0,t )

σ (x, t)n(x, t) ds =
∫
S0

σ(X(t, ξ), t)Cof(∇ξX(t, ξ))n0(ξ)ds0, (2.12)

where n(x, t) is the normal at x ∈ St and n0(ξ) is the normal at ξ ∈ S0. ��
For curves, the general formula for change of variables is given by the following
proposition:

Proposition 2.7 Let f : R3 → R be a smooth function on a smooth curve
Γt in R3, image by a smooth mappingX of a smooth curve Γ0 in R3. We then
have the change of variables formula

∫
X(t,Γ0)=Γt

f (x, t) dl =
∫
Γ0

f (X(t, ξ), t)|∇ξX(t, ξ)τ0(ξ)| dl0, (2.13)

where τ0 is a field of unit tangent vectors to Γ0.
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Proof This formula is obtained by mapping the curve to an open set of R by
an appropriate parametrization. We consider e1 a tangent vector in the initial
configuration, obtained by differentiating the parametrization. A unit tangent vector
is given by τ0(ξ) = e1/|e1| and the length element in the initial configuration is
dl0 = |e1|. The vector e1 is mapped in the deformed configuration into a vector
a1 = [∇ξX]e1. We get the following relation

τ (X(t, ξ), t) = a1

|a1| = [∇ξX]τ0(ξ)

|[∇ξX]τ0(ξ)| (2.14)

and the length element dl in the deformed configuration is

dl = |a1| = |[∇ξX]e1| = |[∇ξX]τ0| dl0
��

Remark 2.8 In the two-dimensional case we have a similarity between (2.13)
and (2.10) as

| Cof([∇ξX])n0| = |[∇ξX]τ 0|.

Indeed, by taking the square of this identity we obtain, using the notation C =
[∇ξX]T [∇ξX],

det(C)(C−1n0) · n0 = (Cτ0) · τ0.

We conclude using the relation τ0 ⊗ τ0 = I − n0 ⊗ n0 and the Cayley–Hamilton
identity A− Tr(A)I + det(A)A−1 = 0 valid for 2 × 2 matrices.

In what follows, we consider a volume domain ωt which moves over time with
a velocity field (x, t) → u(x, t) satisfying the assumption (H). In other words we
have ωt = X(t, ω0). To obtain the equations of the continuous medium, we will
apply the principles of mechanics to this volume ωt . The variations of quantities
such as mass, momentum or energy in the domain ωt will therefore be carried out
using time derivatives.

2.3 Reynolds Formulas

The Reynolds formulas that we recall and demonstrate below are the basis for the
transcription as partial differential equations of the principles of conservation in
continuum mechanics which will be stated in the following sections.
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Proposition 2.9 Let an open set ω0 ⊂ Ω , and let ωt = X(t, ω0). Letf ∈
C1(Ω × [0, T ]). Then

d

dt

∫
ωt

f (x, t) dx =
∫
ωt

∂tf + div(f u) dx. (2.15)

Proof Indeed, according to (2.8),

d

dt

∫
ωt

f (x, t) dx = d

dt

∫
ω0

f (X(t, ξ), t)J�(t, ξ) dξ

=
∫
ω0

(∂tX(t, ξ) · ∇f (X(t, ξ), t) + ∂tf (X(t, ξ), t))J�(t, ξ)

+ f (X(t, ξ), t)∂t J�(t, ξ) dξ.

From Proposition 2.2 we therefore have

d

dt

∫
ωt

f (x, t) dx =
∫
ω0

(u(X(t, ξ), t) ·∇f (X(t, ξ), t)+∂t f (X(t, ξ), t))J�(t, ξ)

+ f (X(t, ξ), t)(div u)(X(t, ξ), t)J�(t, ξ) dξ

=
∫
ω0

(∂tf + div(f u))(X(t, ξ), t)J�(t, ξ) dξ =
∫
ωt

∂tf + div(f u) dx.

��
We have a similar result for a surface moving within a continuous medium:

Proposition 2.10 Let S0 be a smooth surface included in Ω and St =
X(t, S0). Let f ∈ C1(Ω × [0, T ]). Then

d

dt

∫
St

f (x, t) ds =
∫
St

∂t f + div(f u)− f (∇u n) · n ds, (2.16)

where n is a unit vector field normal to St .
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Proof Indeed by using the change of variable formula (2.12),

d

dt

(∫
St

f (x, t) ds

)

=
∫
S0

∂t (f (X(t, ξ), t) det([∇ξX(t, ξ)]))|[∇ξX(t, ξ)]−T n0(ξ)| ds0

+
∫
S0

f (X(t, ξ), t) det([∇ξX(t, ξ)])∂t (|[∇ξX(t, ξ)]−T n0(ξ)|) ds0.

For the first term we use the previous calculations

∂t (f (X(t, ξ), t) det([∇ξX(t, ξ)]))
= (∂tf + u · ∇f + f div(u))(X(t, ξ), t) det([∇ξX(t, ξ)]).

We have, with (A−1)′(t) = −A−1(t)A′(t)A−1(t) and ∂t [∇ξX] = [∇xu][∇ξX],

∂t ([∇ξX(t, ξ)]−T ) = −[∇ξX(t, ξ)]−T ∂t ([∇ξX(t, ξ)]T )[∇ξX(t, ξ)]−T (2.17)

= [∇xu]T (X(t, ξ), t)[∇ξX(t, ξ)]−T . (2.18)

For the second term, using (2.18) we get

∂t (|[∇ξX(t, ξ)]−T n0(ξ)|) =

(∂t ([∇ξX(t, ξ)]−T )n0(ξ)) · [∇ξX(t, ξ)]−T n0(ξ)

|[∇ξX(t, ξ)]−T n0(ξ)|

= −
(

[∇xu]T (X(t, ξ), t) [∇ξX(t, ξ)]−T n0(ξ)

|[∇ξX(t, ξ)]−T n0(ξ)|
)

· [∇ξX(t, ξ)]−T n0(ξ).

In view of (2.11), we get

∂t (|[∇ξX(t, ξ)]−T n0(ξ)|) = −(([∇xu]n) · n)(X(t, ξ), t)|[∇ξX(t, ξ)]−T n0(ξ)|.

By putting together the above calculations we obtain

d

dt

(∫
St

f (x, t)ds

)
=
∫
S0

(∂tf +u · ∇f +f div(u)−f ([∇xu]n) ·n)(X(t, ξ), t)

| Cof([∇ξX(t, ξ)) n0(ξ)| ds0.

The change of variable (2.12) finally gives surface Reynolds formula (2.16). ��
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We have a similar result for a moving curve:

Proposition 2.11 Let Γ0 be a regular curve in Ω ⊂ R
3 and Γt = X(t, Γ0).

Let f ∈ C1(Ω × [0, T ]). Then
d

dt

∫
Γt

f (x, t) dl =
∫
Γt

∂t f + u · ∇f + (∇u τ) · τ dl, (2.19)

where τ is a field of unit vectors tangent to Γt .

Proof Using the change of variable formula (2.13)

d

dt

(∫
Γt

f (x, t) dl

)
=
∫
Γ0

∂t (f (X(t, ξ), t))|[∇ξX(t, ξ)]τ0(ξ)|

+ f (X(t, ξ), t)∂t (|[∇ξX(t, ξ)]τ0(ξ)|) dl0.

For the first term we use the previous calculations, which gives

∂t (f (X(t, ξ), t)) = (∂tf + u · ∇f )(X(t, ξ), t).

For the second term, ∂t [∇ξX] = [∇xu][∇ξX], we get

∂t (|[∇ξX(t, ξ)]τ0(ξ)|) = (∂t ([∇ξX(t, ξ)])τ0(ξ)) · [∇ξX(t, ξ)]τ0(ξ)

|[∇ξX(t, ξ)]τ0(ξ)|

=
(

[∇xu](X(t, ξ), t) [∇ξX(t, ξ)]τ0(ξ)

|[∇ξX(t, ξ)]τ0(ξ)|
)

· [∇ξX(t, ξ)]τ0(ξ).

We then deduce from (2.14)

∂t (|[∇ξX(t, ξ)]τ0(ξ)|) = ([∇xu]τ · τ )(X(t, ξ), t)|[∇ξX(t, ξ)]τ0(ξ)|.

Putting together the previous results, we obtain

d

dt

(∫
Γt

f (x, t) dl

)

=
∫
Γ0

(∂tf + u · ∇f + f ([∇u]τ ) · τ )(X(t, ξ), t)|[∇ξX(t, ξ)]τ0(ξ)| dl0.

It finally remains to use the change of variables formula (2.13) to obtain the
Reynolds formula for curves (2.19). ��
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Remark 2.12 In the two-dimensional case we have τ ⊗ τ = I − n ⊗ n. There is
therefore a correspondence between (2.19) and (2.16).

2.4 Conservation of Mass

To end this chapter we recall in this section and the following some principles
of conservation in continuum mechanics as well as their Eulerian and Lagrangian
formulation.

2.4.1 Mass Conservation in Eulerian Formulation

The principle of conservation of mass states that the variation in mass in a moving
volume ωt is independent of time:

d

dt

(∫
ωt

ρ(x, t)dx

)
= 0,

where ρ is the density.
Using Reynolds formula (2.15) withf = ρ we get the mass conservation in the

deformed configuration

∂tρ + div(ρu) = 0. (2.20)

2.4.2 Mass Conservation in Lagrangian Formulation

It suffices to come back to the reference configuration with (2.8):

d

dt

(∫
ω0

ρ(X(t, ξ), t) det(∇ξX(t, ξ))dξ

)
= 0, (2.21)

that we can write, since X(0, ξ) = ξ ,

ρ(X(t, ξ), t) det(∇ξX(t, ξ)) = ρ0(ξ). (2.22)
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2.5 Conservation of Momentum

According to the fundamental principle of dynamics, the change in the momentum
of a system is equal to the sum of the external forces acting on that system.

2.5.1 Momentum Conservation in Eulerian Formulation

This principle is applied to a volume ωt . The volume external forces, enforced
on ωt , are noted f (x, t). The surface external forces, enforced on ∂ωt are noted
σ(x, t)n(x, t). The equilibrium of moments shows that σ is a symmetric tensor.
The conservation of momentum reads

d

dt

(∫
ωt

ρ(x, t)u(x, t)dx

)
=
∫
∂ωt

σ (x, t)n(x, t) ds +
∫
ωt

f (x, t)dx (2.23)

Reynolds formula (2.15) with f = ρu gives

d

dt

(∫
ωt

ρudx

)
=
∫
ωt

∂t (ρu)+ div(ρu⊗ u)dx (2.24)

Using Stokes theorem for the surface integral we obtain the Eulerian equations in
the deformed configuration ωt

∂t (ρu)+ div(ρu⊗ u) = divσ + f. (2.25)

By expanding this relation and using the mass conservation (2.20)

(ρu)t + div(ρu⊗u) = ρ(∂tu+ (u · ∇)u)+ u(∂tρ+ div(ρu)) = ρ(∂tu+ (u · ∇)u).

The conservation equations for momentum can finally be rewritten

ρ(∂tu+ (u · ∇)u) = divσ + f. (2.26)

2.5.2 Momentum Conservation in Lagrangian Formulation

To switch to a Lagrangian representation, it suffices to rewrite the preceding
equations on the reference configuration. For the density, we use (2.8)

∫
ωt

f (x, t)dx =
∫
ω0

f (X(t, ξ), t) det(∇ξX(t, ξ))dξ.
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For the surface force we use the change of variable on surfaces (2.12)

∫
∂ωt

σ (x, t)n(x, t) ds =
∫
∂ω0

σ(X(t, ξ), t)Cof(∇ξX(t, ξ))n0(ξ) ds0.

Let us introduce the first Piola Kirchoff tensor T defined by

T (t, ξ) = σ(X(t, ξ), t)Cof(∇ξX(t, ξ)). (2.27)

Note that, unlike σ , this tensor is not symmetric. Using Stokes theorem we get∫
ωt

divx(σ (x, t))dx =
∫
∂ωt

σ (x, t)n(x, t) ds

=
∫
∂ω0

T (t, ξ)n0(ξ) ds0 =
∫
ω0

divξ (T (t, ξ))dξ. (2.28)

For the momentum term we use (2.8) and (2.22) to obtain∫
ωt

ρ(x, t)u(x, t)dx =
∫
ω0

ρ(X(t, ξ), t)u(X(t, ξ), t) det(∇ξX(t, ξ))dξ

=
∫
ω0

ρ0(ξ)u(X(t, ξ), t)dξ.

With (1.3), we get

d

dt

(∫
ωt

ρ(x, t)u(x, t)dx

)
=
∫
ω0

ρ0(ξ)∂
2
t X(t, ξ)dξ.

We finally obtain the Lagrangian equations in the reference configuration ω0

ρ0(ξ)∂
2
t X(t, ξ) = divξ (T (t, ξ))+ f (X(t, ξ), t) det(∇ξX(t, ξ)) (2.29)

Unlike the Eulerian formulation, the conservation of mass does not require an
additional equation, it is directly taken into account with the initial density. This
is due to the fact that the equations are posed on the reference configuration.

In both the Eulerian and Lagrangian formulation, to close the systems of
equations, we need to provide constitutive laws which allow to relate σ to the other
unknowns of the problem.



Chapter 3
Interaction of an Incompressible Fluid
with an Elastic Membrane

In this chapter we consider the case of a thin elastic body, which we model as a
surface in dimension 3 or a curve in dimension 2, immersed in an incompressible
fluid and in interaction with it. The elastic body delimits an internal fluid and an
external fluid which may have different properties (typically density and viscosity).
In a first section we recall the immersed boundary model of Peskin which can be
seen as a hybrid Lagrangian–Eulerian formulation of fluid-structure interaction. We
then present in the second section a purely Eulerian formulation, first in the case
when a membrane has a constitutive law that takes into account only the change of
its local area. In this first case, the elastic forces are directly encoded in the Level
Set function which captures the curve or the surface supporting the membrane. The
extension to compressible flows is also presented in this section.

In general, an elastic membrane also responds to stresses acting in the tangent
plane, which, in addition to the change in area, include shear stresses. The
consideration of membrane with shear is the subject of the third section of this
chapter.

This modeling part proceeds with a section devoted to the case of curves
immersed in a three-dimensional space. We develop also for this case an Eulerian
theory of elasticity and a Level Set formulation.

The chapter ends with an application to these fluid-membrane models of the
schemes presented in Chap. 1. We also provide some numerical illustrations.
Implementations of these algorithms in high level language such as FreeFEM++,
Matlab, Octave are outlined. These can thus serve as hands on tutorials to support a
teaching sequence for fluid-structure interaction problems.
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3.1 From the Immersed Boundary Method to Level Set
Methods

The immersed boundary method (IBM) introduced by Pekin and collaborators
[113, 114] allows to reduce the fluid-structure coupling of an incompressible fluid
with elastic fibers to a pure fluid problem with a second member located on the
structure and acting as a force term in the fluid. The method uses both Eulerian and
Lagrangian variables. The Eulerian variables describe the velocity and the pressure
of the fluid and the Lagrangian variables make it possible to track the curve(s) or
immersed surfaces and to measure their stretching. The interaction between Eulerian
and Lagrangian quantities is performed using a discrete Dirac measure located on
the structure.

We use again here the notions and notations for the parameterizations of
Lagrangian surfaces recalled in Sect. 1.1. We consider a smooth elastic surface Γ
in R

3 in a configuration at rest, that is free of any mechanical stress. This surface
is represented by a smooth parameterization defined on U =]0,M[2, with M > 0,
denoted by γ : θ ∈ U → γ (θ) ∈ R

3. The surface density of the membrane in this
configuration is noted m̄(θ)

This surface moves with the velocity of the surrounding fluid between times t =
0 and t = T , and we denote by Γt its position at time t . In particular Γ0 is its initial
position. Note that Γ0 differs from Γ if the surface is not initially at rest.

Denote by θ → γ0(θ) and θ → λ0(θ) a smooth parameterization and a surface
mass for Γ0 such that m0|∂θ1γ0 × ∂θ2γ0| = m̄|∂θ1γ × ∂θ2γ |.

Let γ : θ → γ (t, θ) the advected smooth parameterization of Γt . This means
that γ (t, θ) = X(t, γ0(θ)) or, equivalently, is given by the following differential
system

{
∂tγ (t, θ) = u(γ (t, θ), t), θ ∈ U, t ∈]0, T ]
γ (0, θ) = γ0(θ), θ ∈ U.

(3.1)

The surface Γt is immersed in an incompressible and homogeneous Newtonian fluid
of density ρf and viscosity ν. With the notations of [114] adapted to the case of
an elastic membrane, the immersed boundary method can be summarized by the
following box:

Immersed BoundaryMethod Eulerian (resp. Lagrangian) description of the
velocity of the surrounding fluid (resp. of the immersed elastic structure made
of one-dimensional fibers), interpolated in the Eulerian domain.

� An Eulerian velocity field (x, t) ∈ Ω × [0, T ] → u(x, t).

(continued)
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� (t, θ) ∈ U × [0, T ] → γ (t, θ) the location of the points on the elastic
structure Γt .

� The force density in the deformed configuration with respect to the
surface measure in the reference configuration is a known function F(t, θ)
which can usually be written as a function of the partial derivatives of γ
and γ by an expression of the form F [γ (t, θ)].

� The surface mass in the reference configuration is a known function
m(t, θ).

� The equations of motion

(ρf +M)(∂tu+ u · ∇u)− νΔu+ ∇p = f (3.2)

divu = 0 (3.3)

f (x, t) =
∫
U

|∂θ1γ × ∂θ2γ |F(t, θ)δ(x − γ (t, θ))dθ (3.4)

M(x, t) =
∫
U

|∂θ1γ × ∂θ2γ |m(t, θ)δ(x − γ (t, θ))dθ (3.5)

∂t γ = u(γ (t, θ), t) =
∫
Ω

u(x, t)δ(x − γ (t, θ))dx (3.6)

Equation (3.4) expresses the Lagrangian force in the Eulerian domain; Eq. (3.6)
converts the Eulerian velocity field into a velocity field at the Lagrangian points
of the structure. The precise meaning of (3.4) can be written by considering a test
function ψ : Ω → R and by integrating on Ω :

∫
Ω

f (x, t)ψ(x, t)dx =
∫
U

|∂θ1γ × ∂θ2γ |F(t, θ)
∫
Ω

δ(x − γ (t, θ))ψ(x, t)dxdθ

=
∫
U

|∂θ1γ×∂θ2γ |F(t, θ)ψ(γ (t, θ), t)dθ =
∫
Γt

F (t, θ)
|∂θ1γ × ∂θ2γ |
|∂θ1γ × ∂θ2γ |ψ(x, t)ds.

Therefore, formally

f (x, t) = |∂θ1γ × ∂θ2γ |
|∂θ1γ × ∂θ2γ |F(t, θ)δΓt = F(t, θ)δΓt

for x = γ (t, θ) and if F represents a surface density of force in the deformed
configuration.

Similarly, from (3.5), M is a measure defined by

M(x, t) = |∂θ1γ × ∂θ2γ |
|∂θ1γ × ∂θ2γ |m(t, θ)δΓt = m(t, θ)δΓt , with x = γ (t, θ).
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For an elastic membrane reacting only to the local change of area, we can for
example consider the following expression of the energy

E[γ ] =
∫
U

E

( |∂θ1γ × ∂θ2γ |
|∂θ1γ × ∂θ2γ |

)
dθ, (3.7)

where r → E(r) is a given constitutive law representing the elastic properties of the
membrane. Then, by differentiating the energy and applying the principle of virtual
work, we can show that

F(t, θ) = ∇Γt T (θ)− T (θ)κn(θ), (3.8)

where

T (θ) = E′
( |∂θ1γ × ∂θ2γ |

|∂θ1γ × ∂θ2γ |
)

1

|∂θ1γ × ∂θ2γ | .

The energy E is typically of the form E(r) = k max(r − 1, 0)2, for a stiffness
coefficient k > 0. The immersed boundary method in this original formulation
can be implemented to guarantee second order spatial accuracy in the case of thick
interfaces, but is only first order in the case of sharp interfaces without thickness
[82]. Stability analysis have been proposed in several works [14, 15, 132, 133].

The immersed boundary method just described is very simple and intuitive. How-
ever, the repeated passage between the Eulerian and Lagrangian coordinates may
result in volume conservation problems. This is in part because the interpolation of
the velocity field does not preserve its zero divergence. The advection of the markers
on the interface can thus produce changes in volume. This is a known weakness
of the method and which has been studied in [95, 96, 115]. These works propose
modifications of the method which partly sacrifice its appealing simplicity.

The primary goal of the totally Eulerian formulation introduced in [35, 36] was
precisely to retain the simplicity of the method by proposing an Eulerian localization
of the membrane which avoids the back and forth convertions between the two
coordinate systems.

Note also that an Eulerian formulation makes it possible to overcome the
difficulties of parameterizing closed objects and to easily take into account variable
viscosity values, unlike IBM methods. This is an important point for example in the
case of biological cell models which are often considered with a contrast in viscosity
between the inside and the outside of the cell, the greater viscosity inside being a
simplified way of taking into account the presence of biological material in the cell.

In what follows we describe the Level Set models first in the simplest case of
elastic surfaces which only respond to a variation of the local area. We consider in
a second step the case of interfaces sensitive also to the effects of shear on their
surface. We then evoke the questions of stability related to the discretization in time
of the terms of coupling. The chapter concludes with numerical illustrations and
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code examples produced using the FreeFEM++ software, allowing the reader to
simply experiment with the methods.

3.2 Immersed Membrane: Case Without Shear

3.2.1 Level Set Formulation of the Elastic Deformation of a
Hypersurface Immersed in a Incompressible Fluid

We will show that during the transport of a Level Set function by an incompressible
velocity field, the norm of the gradient of the solution of the transport equation
contains the information on the variation of the local areas (or lengths) of the level
sets of the function. A proof of this result using a parametric representation of
surfaces is given in [35]. We give here an intrinsic proof taken from [36].

To start with, let us recall the coarea formula:

Lemma 3.1 Let ϕ : R
d → R Lipschitzian on R

d and g : R
d → R

integrable. We assume that there exists η0 > 0 such that inf ess|ϕ|<η0 |∇ϕ| >
0. Then for η ∈]0, η0[,∫

{|ϕ(x)|<η}
g(x) dx =

∫ η

−η

∫
{ϕ(x)=ν}

g(x)|∇ϕ|−1 dsdν.

This formula is quite natural because the volume |ϕ| < η is calculated by
integrating the area of the surface ϕ = ν multiplied by a factor |∇ϕ|−1 which
corresponds to the local distance between the level surfaces/lines of ϕ.

Proof In [58], Proposition 3, page 118, it is shown under the assumptions of the
lemma that

d

dν

(∫
{ϕ>ν}

g(x) dx

)
= −

∫
{ϕ=ν}

g|∇ϕ|−1 ds for almost every ν.

The announced formula easily follows:

∫
{|ϕ(x)|<η}

g(x) dx =
∫

{ϕ(x)>−η}
g(x) dx −

∫
{ϕ(x)>η}

g(x) dx

=
∫ −η

η

d

dν

(∫
{ϕ>ν}

g(x) dx

)
=
∫ η

−η

∫
{ϕ=ν}

g|∇ϕ|−1 ds.

��
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By making the following regularity assumption on the level sets of ϕ,

(Hϕ) ∀t ∈ [0, T ],∀f ∈ Cc(Rn),

ν →
∫

{|ϕ(x,t)|<ν}
f (x) dx is C1 in a neighborhood of ν = 0,

we have the following result:

Proposition 3.2 Let u : Rd × [0, T ] → R
d of class C1 with divu = 0 and ϕ

a C1 solution of ∂tϕ + u · ∇ϕ = 0, ϕ = ϕ0 with |∇ϕ| ≥ α > 0 and satisfying
(Hϕ). Then for any continuous function f with compact support,

∫
{ϕ0(ξ)=0}

f (ξ)|∇ϕ0|−1(ξ) ds0(ξ) =
∫

{ϕ(x,t)=0}
f (Y (x, t))|∇ϕ|−1(x, t) ds(x).

(3.9)

In other words |∇ϕ|/|∇ϕ0| represents the variation of the surface measure of
Γt = {x, ϕ(x, t) = 0} relatively to Γ0. This property is illustrated on Fig. 3.1.
Proof The assumption (Hϕ) implies from the previous lemma that the application

s →
∫

{ϕ0=s}
f (ξ)|∇ϕ0|−1(ξ) ds0(ξ)

Fig. 3.1 When an incompressible velocity field has the effect of stretching the level curves (or
surfaces), then they necessarily tighten by conservation of volume. This stretching is precisely
measured by the norm of the gradient of the Level Set function
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is continuous. Thus, from Lemma 3.1,∫
{ϕ0(ξ)=0}

f (ξ)|∇ϕ0|−1(ξ) ds0(ξ)

= lim
η→0

1

η

∫ η
2

− η
2

∫
{ϕ0=ν}

f (ξ)|∇ϕ0|−1(ξ) ds0(ξ) dν = lim
η→0

1

η

∫
{|ϕ0|<η

2 }
f (ξ) dξ.

We perform the change of variables ξ = Y (x, t), with Jacobian Je(x, t) equal to
1, due to the fact that divu = 0.

Since ϕ is solution to the transport equation, we have ϕ0(Y (x, t)) = ϕ(x, t) and
thus ∫

{ϕ0(ξ)=0}
f (ξ) ds0(ξ) = lim

η→0

1

η

∫
{|ϕ(x,t)|<η

2 }
f (Y (x, t)) dx,

which gives the announced result thanks to Lemma 3.1. ��

Remark 3.3 Another proof of the previous proposition is possible by using the
definition of the backward characteristics Y (see remark 2.4) and the Reynolds
differentiation formula for surfaces (2.16). Indeed this formula reads, for a function
g of class C1, and u satisfying divu = 0,

d

dt

∫
{ϕ(x,t)=0}

g(x, t) ds =
∫

{ϕ(x,t)=0}
∂tg + u · ∇g − g[∇u]n · n ds;

and, taking the gradient of the transport equation for ϕ,

− 1

| ∇ϕ| (∂t |∇ϕ| + u · ∇|∇ϕ|) = [∇u]
∇ϕ
|∇ϕ| · ∇ϕ

|∇ϕ| = [∇u]n · n. (3.10)

By grouping the terms together we have

d

dt

∫
{ϕ(x,t)=0}

g(x, t) ds =
∫

{ϕ(x,t)=0}
(∂t (g|∇ϕ|)+ u · ∇(g|∇ϕ|)) 1

|∇ϕ| ds.

We then apply this formula to g(x, t) = f (Y (x, t))|∇ϕ|−1(x, t), after observing
that, according to (2.4)

∂t (f (Y ))+ u · ∇(f (Y )) = ∇f · ∂tY +u · ([∇Y ]T∇f ) = ∇f · (∂tY + u · ∇Y ) = 0.
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We therefore obtain

d

dt

∫
{ϕ(x,t)=0}

f (Y (x, t))|∇ϕ|−1(x, t) ds = 0,

which, upon integrating from time 0 to t , is nothing but formula (3.9).

The above results can be interpreted on parametric representations of curves
or surfaces. In two dimensions, recall that we are given a parameterization θ ∈
[0,M] → γ (0, θ) ∈ R

2 of Γ0:

∫ M

0
f (γ (0, θ))|∇ϕ0|−1(γ (0, θ))|∂θγ |(0, θ)dθ

=
∫ M

0
f (γ (0, θ))|∇ϕ|−1(γ (t, θ), t)|∂θγ |(t, θ) dθ,

for any continuous function f with compact support. Hence

|∇ϕ|(γ (t, θ), t)
|∇ϕ0|(γ (0, θ)) = |∂θγ (t, θ)|

|∂θγ (0, θ)| .

In three dimensions, if θ = (θ1, θ2) ∈ U → γ (t, θ1, θ2) ∈ R
3 is (or is part of) a

parametrization of Γt , then, since Y (γ (t, θ), t) = γ (0, θ), we have

∫
ω

f (γ (0, θ))|∇ϕ0|−1(γ (0, θ))|∂θ1γ × ∂θ2γ |(0, θ)dθ

=
∫
ω

f (γ (0, θ))|∇ϕ|−1(γ (t, θ), t)|∂θ1γ × ∂θ2γ |(t, θ)dθ,

and thus

|∇ϕ|(γ (t, θ), t)
|∇ϕ0|(γ (0, θ)) = |∂θ1γ × ∂θ2γ |(t, θ)

|∂θ1γ × ∂θ2γ |(0, θ) .

In practice, ϕ0 is constructed such that, on the one hand its zero level set
represents Γ0, and, on the other hand,

|∇ϕ0|(γ (0, θ)) = |∂θ1γ × ∂θ2γ |(0, θ)
|∂θ1γ × ∂θ2γ |(θ) .

This last equality means that ϕ0 contains the amount of stretching of the initial
membrane. We then have

|∇ϕ|(γ (t, θ), t) = |∂θ1γ × ∂θ2γ |(t, θ)
|∂θ1γ × ∂θ2γ |(θ) . (3.11)
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If, for instance, the initial stretching does not depend on θ , it suffices to initialize
ϕ0 as the signed distance to the interface multiplied by the stretching coefficient.

3.2.2 Level Set Formulation of Elastic Energy and
Fluid-Structure Coupling in the Incompressible Case

From the expression of the stretching given by Proposition 3.2 and according to
Proposition 1.10, it is natural to introduce the regularized elastic energy as

E(ϕ) =
∫
Ω

E(|∇ϕ|)1

ε
ζ
(ϕ
ε

)
dx, (3.12)

where E is a constitutive law. The function r → E′(r) describes the strain-stress
relationship, possibly nonlinear, within the elastic structure. For example, in the case
of a single drop of a given fluid immersed in another fluid, this energy is given by
E(r) = λr where λ is the surface tension coefficient, and E′(r) = λ is a constant.
For a membrane subject to an elastic response to the change of local area, we use a
quadratic law

E(r) = λ

2
(r − 1)2 (3.13)

which corresponds to E′(r) = λ(r − 1).

Theorem 3.4 The temporal variation of E given by the principle of virtual
work satisfies

∂tE = −
∫
Ω

F · udx (3.14)

and corresponds to the following force:

F = ∇
(
E(|∇ϕ|)1

ε
ζ
(ϕ
ε

))
− div

(
E′(|∇ϕ|)|∇ϕ|n⊗ n

1

ε
ζ
(ϕ
ε

))
.

(3.15)

where we recall that the normal is defined by n = ∇ϕ
|∇ϕ| .
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Proof By differentiating (3.12) with respect to t and combining the transport
equation on ϕ and (3.10), we obtain the following relation:

∂tE =
∫
Ω

E′(|∇ϕ|)(−u · ∇|∇ϕ| − [∇u] : |∇ϕ|n⊗ n)
1

ε
ζ
(ϕ
ε

)
dx

+
∫
Ω

E(|∇ϕ|) 1

ε2 ζ
′ (ϕ
ε

)
(−u · ∇ϕ) dx.

The integral over ∂Ω vanishes because ζ(ϕ
ε
) = 0 sur ∂Ω . Integrating by parts

the second term yields

∂tE = −
∫
Ω

u · ∇(E(|∇ϕ|))1

ε
ζ
(ϕ
ε

)
− div

(
E′(|∇ϕ|)|∇ϕ|n⊗ n

1

ε
ζ
(ϕ
ε

))
· u

+ E(|∇ϕ|)u · ∇
(

1

ε
ζ
(ϕ
ε

))
dx.

By grouping the first and last terms and using (3.14) we get the expression (3.15).
��

The gradient terms in (3.15) can be absorbed into the pressure term of the
incompressible Navier–Stokes equations. We can therefore rewrite the force under
the form

F = div

(
E′(|∇ϕ|)|∇ϕ|(I− n⊗ n)

1

ε
ζ
(ϕ
ε

))
. (3.16)

It may also be interesting to express this force along the normal and tangential
directions to the surface.

By developing the divergence and using the fact that (I − n⊗ n)∇ϕ = 0 we get
F = A 1

ε
ζ
(
ϕ
ε

)
with A = div

(
E′(|∇ϕ|)|∇ϕ|(I − n⊗ n)

)
. We obtain by expanding

this relation

A = −E′(|∇ϕ|)|∇ϕ| div(n⊗ n)+ ∇Γ

(
E′(|∇ϕ|)|∇ϕ|) (3.17)

where we recall the definition ∇Γ f = ∇f − (∇f · n)n which allows to calculate
the variations of a function only in the tangent plane. It is important to note that this
operator is defined on R

3 and not just on the zero level set of ϕ. If x ∈ R
3 lies on

another level set of ϕ then the surface gradient at this point is the projection of the
classical gradient on the tangent plane defined on this level set.

Using the relationships

div(n⊗ n) = Hn+ [∇n]n , [∇n]n = ∇Γ |∇ϕ|
|∇ϕ| ,
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and absorbing the gradient term in the pressure, one finally obtains

F = (∇Γ (E
′(|∇ϕ|))− E′(|∇ϕ|)H(ϕ)n

) |∇ϕ|1

ε
ζ
(ϕ
ε

)
, (3.18)

where n = ∇ϕ
|∇ϕ| and H(ϕ) = div

( ∇ϕ
|∇ϕ|

)
denotes the mean curvature.

Note that, as in Peskin’s Lagrangian formulation, the curvature occurs in the
normal component while stretching alone plays a role in the tangential direction.
In the particular case where the dynamics is only driven by surface tension, which
corresponds to E′(r) = λ, the tangential term vanishes and we find the Laplace
force

−λH(ϕ) n |∇ϕ|1

ε
ζ
(ϕ
ε

)
≈ −λH(ϕ) n δ{ϕ=0}.

We can now write a complete Level Set model for the fluid-structure coupling
in the case considered in this chapter. In the following we will assume the surface
mass, denoted by m, initially constant along the membrane.

We start by considering a regularized Heaviside function making it possible to
locate the regions defined by the Level Set function and to assign them different
density values ρ1 and ρ2. To fix ideas, we choose a regularization function ζ with
support in [−1,+1] and set

H(r) =
∫ r

−∞
ζ(α)dα,

so that H(r) = 0 for r < −1, and H(r) = 1 for r > 1. We next write

ρ(ϕ) = ρ1 + H
(ϕ
ε

)
(ρ2 − ρ1)+ 1

ε
ζ
(ϕ
ε

)
m (3.19)

and

μ(ϕ) = μ1 + H
(ϕ
ε

)
(μ2 − μ1).

We then obtain the following model (written here with zero external force f ):
Find (u, ϕ) solution in Ω×]0, T [ of

ρ(ϕ)(∂tu+ u · ∇u)− div(2μ(ϕ)D(u))+ ∇p = F(x, t), (3.20)

divu = 0, (3.21)

∂tϕ + u · ∇ϕ = 0, (3.22)
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where the elastic force F is given either by (3.16), which is natural in a variational
formulation, useful as we will see when dealing with finite element discretizations,
or (3.18).

It should be noted that ρ(ϕ) given by expression (3.19) also satisfies a transport
equation and therefore satisfies mass conservation since divu = 0. Formula (3.19)
also translates that, as expected, the surface mass of the membrane evolves in a
manner inversely proportional to its stretching.

We have therefore modeled the interaction of a fluid with an elastic membrane
as the flow of a complex fluid whose stress tensor is modified near the surface. This
model can be compared to that of Korteweg’s fluids [137]. This is indeed from this
remark that one can tackle the question of the existence of a solution to this problem.
An important result is the following energy equality, which follows on the one hand
from the conservation of mass that we have just mentioned, and on the other hand
from the fact that the elastic force is derived from a potential:

Proposition 3.5 If ϕ is such that |ϕ| > ε on ∂Ω , we have

1

2

∫
Ω

ρ(ϕ(x, T ))u2(x, T ) dx +
∫
Ω

E(|∇ϕ|)1

ε
ζ
(ϕ
ε

)
dx

+
∫ T

0

∫
Ω

2μ(ϕ)D(u)2 dxdt

= 1

2

∫
Ω

ρ(ϕ0(x))u
2
0(x) dx +

∫
Ω

E(|∇ϕ0|)1

ε
ζ
(ϕ0

ε

)
dx. (3.23)

This property of energy conservation shows that the regularization of the force
in the Level Set formulation does not induce energy dissipation over time. This will
be illustrated numerically in Sect. 3.6.

An existence result for solutions of the system (3.20–3.22) is outlined in
Sect. 3.2.5. The complete proof of this result can be found in [38].

3.2.3 Generalization to Compressible Flows

In the above, the representation of the stretching of a surface from the gradient of
a Level Set function used to capture it makes a crucial use of the incompressibility
of the flow. A generalization of the method to compressible flows has however been
proposed in [8, 23].
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To take into account the volume variations, let us start again from the Reynolds
differentiation formula for surfaces (2.16). For a function g of class C1,

d

dt

∫
{ϕ(x,t)=0}

g(x, t) ds =
∫

{ϕ(x,t)=0}
∂tg + div(gu)− g[∇u]n · n ds.

According to (2.7) the Eulerian Jacobian Je(x, t) verifies ∂t (Je)+u·∇Je = Je divu.
We therefore obtain by using (3.10)

div(u)− [∇u]n · n = 1

Je|∇ϕ| (∂t (Je|∇ϕ|)+ u · ∇(Je|∇ϕ|)) .

It follows that

d

dt

∫
{ϕ(x,t)=0}

g(x, t) ds

=
∫

{ϕ(x,t)=0}
(∂t (gJe|∇ϕ|)+ u · ∇(gJe|∇ϕ|)) 1

Je|∇ϕ| ds.

We then apply this formula with g(x, t) = f (Y (x, t))(Je(x, t)|∇ϕ|)−1(x, t), where
Y denote the backward characteristics. We observe that

∂t (gJe|∇ϕ|)+ u · ∇(gJe|∇ϕ|) = ∂t (f (Y ))+ u · ∇(f (Y )) = 0

because Y being the solution of the transport equation (2.4), so is f (Y ). We thus
have

d

dt

∫
{ϕ(x,t)=0}

f (Y (x, t))(Je(x, t)|∇ϕ|)−1(x, t) ds = 0,

which, after integration between 0 and t , allows to generalize formula (3.9). In the
compressible case we recover the results of [8, 23] which express the stretching as
Je|∇ϕ|. We finally deduce from what precedes the following Level Set formulation
for the elastic energy:

E(ϕ) =
∫
Ω

E(Je|∇ϕ|)1

ε
ζ
(ϕ
ε

)
dx.

It remains now to differentiate this energy along the lines of the incompressible case
to deduce a Level Set model for the fluid-structure interaction.
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3.2.4 Taking into Account Curvature Forces

In many cases, such as in biophysics for the study of behavior of phospholipid
vesicles, either in equilibrium or in a shear flow, the immersed membrane is in
fact inextensible, and the prevailing energy is a bending energy. Phase field type
methods have been extensively developed in the numerical physics community to
deal with this problem [11–13, 99]. These methods consist in defining a phase
function which takes the value 1 inside the volume surrounded by the immersed
interface, and 0 outside, with a transition zone the thickness of which has to be
controlled. Different approaches corresponding to different energies and strategies
have been developed to control this thickness, the impact of which on the simulated
dynamics is sometimes difficult to quantify.

The Level Set approach makes it possible to propose an interesting alternative
to the phase field methods: the interface is the hypersurface {ϕ = 0}, which is the
solution of a simple transport equation, and the regularization is not introduced into
the model as a right hand side in the fluid equations.

From Proposition 1.10 a natural and general form for the bending energies is
given by the formula

Ec(ϕ) =
∫
Ω

A(H(ϕ))|∇ϕ|1

ε
ζ
(ϕ
ε

)
dx

where we recall that the mean curvatureH and the Gaussian curvature G are defined
by (1.9) and (1.10)

H = Tr(∇n) = div(n) G = Tr(Cof(∇n)).

The most common case corresponds to A(r) = r2.
Let us also recall the definition of surface operators which allows to take into

account the variations of a scalar or a vector field only in the tangent plane

∇Γ f = ∇f − (∇f · n)n divΓ (u) = div(u)− ([∇u]n) · n

and we define ΔΓ f = divΓ (∇Γ f ).
By differentiating the energy Ec with respect to time we obtain

∂tEc(ϕ) =
∫
Ω

A′(H(ϕ)) div

(∇Γ (∂tϕ)

|∇ϕ|
)

|∇ϕ|1

ε
ζ
(ϕ
ε

)
dx

+
∫
Ω

A(H(ϕ))
1

ε
ζ
(ϕ
ε

) ∇ϕ
|∇ϕ| · ∇(∂tϕ)+ A(H(ϕ))|∇ϕ| 1

ε2 ζ
′ (ϕ
ε

)
∂tϕ dx.
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The terms of the second line can be grouped, since, by integrating the first term
by parts, the second term appears with an opposite sign. Using div(A(H)n) =
A(H)H + ∇(A(H)) · n, the remaining terms combine to give

∂tEc(ϕ) =
∫
Ω

div

(∇Γ (∂tϕ)

|∇ϕ|
)
A′(H(ϕ))|∇ϕ|1

ε
ζ
(ϕ
ε

)

− div

(
A(H(ϕ))

∇ϕ
|∇ϕ|

)
1

ε
ζ
(ϕ
ε

)
∂tϕ dx.

In view of ∇Γ (∂tϕ) · ∇ϕ = 0 the first term can be integrated by parts to give

−
∫
Ω

∇ (A′(H(ϕ))|∇ϕ|) · ∇Γ (∂tϕ)

|∇ϕ|
1

ε
ζ
(ϕ
ε

)

= −
∫
Ω

∇Γ

(
A′(H(ϕ))|∇ϕ|) · ∇(∂tϕ)

|∇ϕ|
1

ε
ζ
(ϕ
ε

)
dx,

where we have used the symmetry of the operator ∇Γ . By integrating again by
parts we finally find, using as before that the derivative of the energy is equal to the
opposite of the work of the forces ∂tEc(ϕ) = − ∫

Ω
Fc(x, t) · u dx,

Fc(x, t) = div

[
−A(H(ϕ))

∇ϕ
|∇ϕ| + 1

|∇ϕ|∇Γ (A
′(H(ϕ))|∇ϕ|)

]
1

ε
ζ
(ϕ
ε

)
∇ϕ.

We will now rewrite this force in another form, based only on surface operators. We
have for the first term

div(A(H)n) = A(H)H + A′(H)∇H · n.

Using the relations ∇Γ (|∇ϕ|)
|∇ϕ| = [∇n]n, div([∇n]n) = ∇H · n + H 2 − 2G and

∇f · ([∇n]n) = −(∇(∇Γ f )n) · n we obtain

B = div

(
1

|∇ϕ|∇Γ (A
′(H(ϕ))|∇ϕ|)

)
= div(A′(H)[∇n]n)+ div(∇Γ (A

′(H)))

= A′(H)(∇H · n+H 2 − 2G)+ ∇(A′(H)) · ([∇n]n)+ div(∇Γ (A
′(H)))

= A′(H)(∇H · n+H 2 − 2G)+ΔΓ (A
′(H)).

We finally get

Fc(x, t) =
(
ΔΓ (A

′(H))+ A′(H)(H 2 − 2G)− A(H)H
) 1

ε
ζ
(ϕ
ε

)
∇ϕ.

If A(r) = r2 one obtains a curvature force equal to 2ΔΓH +H(H 2 − 4G) aligned
along the normal direction. We find the classical result concerning the derivative of
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the Willmore energy
∫
H 2ds. However we used here a volume approach which will

allow us to implement this force, just like the elastic forces, as a source term in the
fluid equations. As will be see in Sect. 3.6, this will be convenient to compute the
equilibrium forms of vesicles.

Recently, diffusion-redistancing type schemes have been implemented to numer-
ically approach this curvature force which requires, as seen above, a 4th order
derivative of the Level Set function. The PhD thesis of Arnaud Sengers [122]
extends the diffusion-thresholding methods initiated by Bence, Merriman and Osher
[103] and the diffusion-redistancing methods [57] to the case where the area and the
surrounded volume must be preserved during the dynamics.

For more details on the calculations of shape derivatives for functionals defined
on surfaces and depending on the normal and the mean and Gaussian curvatures, we
refer the reader to the PhD thesis of Thomas Milcent [105].

3.2.5 Korteweg Models and Existence of Solutions

To use finite element-type numerical methods in order to discretize the membrane-
fluid coupling problem, it is convenient to have a variational form of the elastic
and curvature forces. Moreover, these forms are better suited to the mathematical
analysis aiming at proving the existence of solutions. We recall that the elastic force
in the form of divergence is given by (3.16). In this way we can formulate the fluid-
structure coupling problem in the form of a complex fluid flow whose stress tensor
has a fluid part and an elastic part located near the membrane:

σ = −pI + μ([∇u] + [∇u]T )+ E′(|∇ϕ|)∇ϕ ⊗ ∇ϕ
|∇ϕ|

1

ε
ζ
(ϕ
ε

)
.

This formulation is used in [38] to prove the existence of a solution to this
regularized coupling problem. To outline the principle of this proof, we consider
the case ε = 1, ρ1 = ρ2, μ1 = μ2 and the multiphysics model introduced above:

ρ(ϕ) (∂tu+ (u · ∇)u)− μΔu+ ∇π = − div (Σ(ϕ,∇ϕ)) , (3.24)

∂tϕ + u · ∇ϕ = 0, (3.25)

div(u) = 0. (3.26)

The stress tensor Σ is written as a result of the constitutive law E of the
membrane as

Σ(ϕ,∇ϕ) = E
′
(|∇ϕ|)
|∇ϕ| ζ(ϕ)∇ϕ ⊗ ∇ϕ. (3.27)
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We are given initial conditions on u and ϕ

u(x, 0) = u0(x) , ϕ(x, 0) = ϕ0(x) (3.28)

and homogeneous Dirichlet boundary conditions for u: u = 0 on ∂Ω . So there is
no boundary condition for ϕ in the transport equation (note that the analysis readily
extends to the case of periodic boundary conditions). We will assume that

r → E′(r) ∈ C1([0,+∞)). (3.29)

For example, the case of a linear response (the material remains geometric-
nonlinear) is given by E′(r) = λ(r−1). Note that the formulation contains fluids of
the Korteweg type [137] as a particular case, with E′(r) = r , the level set function
then playing the role of density. Indeed if we introduce in this case a primitive Z of√
ζ and set ψ = Z(ϕ) we have

Σ(ϕ,∇ϕ) = ζ(ϕ)∇ϕ ⊗ ∇ϕ = ∇ψ ⊗ ∇ψ.

The function ψ is always a solution of the transport equation and, as div(∇ψ ⊗
∇ψ) = Δψ∇ψ + [D2ψ]∇ψ = Δψ∇ψ + 1

2∇|∇ψ|2, we get the usual source term
in Korteweg models [137]1 (up to a gradient term that can absorbed in the pressure
term).

The following existence result is proved in the reference [38] and the PhD thesis
of T. Milcent [105]:

Theorem 3.6 Let Ω be a smooth, open, bounded and connected set in R
3.

Let p > 3, ϕ0 ∈ W 2,p(Ω), such that |∇ϕ0| ≥ α > 0 in a neighborhood
of {ϕ0 = 0}, and u0 ∈ W

1,p
0 (Ω) ∩ W 2,p(Ω), with divu0 = 0. Then there

exists T ∗ > 0, only depending on the initial conditions, such that a solution
to (3.24), (3.25), (3.26) exists in [0, T ∗] with

ϕ ∈ L∞(0, T ∗;W 2,p(Ω)), ∇π ∈ Lp(0, T ∗;Lp(Ω)),

u ∈ L∞(0, T ∗;W 1,p
0 (Ω)) ∩ Lp(0, T ∗;W 2,p(Ω)).

The proof is based on a compactness argument. One first builds a sequence of
solutions on a simpler problem on which we know how to show the existence of
solutions. One introduces for that a temporal delay regularization of the velocity

1 Korteweg models are often used to describe fluid media subjected to internal capillary forces
[94].
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(method also used in [25]) and a spatial regularization of the level set function. The
delicate point consists in passing to the limit in the nonlinear term from the elastic
force div(F (|∇ϕ|)∇ϕ⊗∇ϕ). To simplify the presentation of the ideas, let us choose
a Korteweg fluid for which F = 1. This assumption is not restrictive because the key
point in the estimations lies in the fact that the term in the divergence is nonlinear in
∇ϕ. Let us first look at the energy equality classically obtained by multiplying the
momentum equation by u and integrating

1

2

d

dt
(|u|2

L2 + |∇ϕ|2
L2)+ μ|∇u|2

L2 = 0. (3.30)

This equality makes it possible to have H 1 estimates on ϕ which will in turn
allow to extract sub-sequences which converge weakly in H 1. This will however
not allow to pass to the limit in the nonlinear elastic terms. To do this we need
more regularity and obtain sequences such as ∇ϕn strongly converges in L∞. It
is therefore necessary to obtain higher order estimates on ϕ. The space H 1 is not
compact in L∞ and we need a stronger estimate.The Hilbert framework would
require to differentiate several times the equations on the velocity and Level Set
function, a strategy which would be cumbersome. The idea is instead to consider a
non-Hilbertian framework and compact imbeddings W 1,p ⊂ L∞ for p > 3. One
can obtain the desired estimates by differentiating only twice the transport equation
and using Solonnikov’s estimates [131] on the Stokes problem in Lp.

3.3 Immersed Membrane: The Case with Surface Shear

Until now, the immersed surfaces reacted only to a deformation causing a change
of area. This is the case, for example, with phospholipid vesicles. However, in
many applications, such as red blood cells, the immersed membrane also exhibits
resistance to shear at each point in the tangent plane.

This is a difficulty for Level Set methods, because the dynamics of a function
capturing the interface (3.31), by construction, completely ignores the tangential
component of the velocity field, since ∇ϕ is normal to the interface. To hope to
capture tangential deformations, it is necessary to be able to record the displacement
of points on the interface using additional Level Set functions. This is what we
describe below. To begin with we need to review the geometric description of a
surface in terms of Level Set functions and to recast in an Eulerian framework the
fundamentals of surface deformation and elasticity.

3.3.1 Level Set Approach for Surfaces

Let us start by giving some additional geometry elements related to the Level Set
methods. As usual we consider a surface Γ0 which evolves in an Eulerian velocity
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Y (x,t) = ξ

x = X(t,ξ)

n0(ξ)
n(x,t)

Initial configuration Ω0 Deformed configuration Ωt

Γ0 Γt

Fig. 3.2 Initial and deformed configurations

field u(x, t) and denote by Γt the surface at time t . This surface is represented by a
level set function ϕ : R3 × R

+ −→ R

Γt = {x ∈ R
3 , ϕ(x, t) = 0}.

We set ϕ(·, 0) = ϕ0. As the surface evolves with the velocity field u one has already
seen that its dynamic is written

∂tϕ + u · ∇ϕ = 0. (3.31)

Recalling the notation Y for the backward characteristics, we obtain that the solution
of (3.31) is

ϕ(x, t) = ϕ0(Y (x, t)). (3.32)

Let us note n0(ξ) the normal at the point ξ ∈ Γ0 in the reference configuration and
n(x, t) the normal at the point x ∈ Γt in the deformed configuration (see Fig. 3.2
which extends Fig. 2.1 by adding the normals to it). Recall that these normals are
given by

n(x, t) = ∇ϕ(x, t)
|∇ϕ(x, t)| , n0(ξ) = ∇ξ ϕ0(ξ)

|∇ξ ϕ0(ξ)| . (3.33)

The identity (3.32) gives ∇ϕ(x, t) = [∇Y (x, t)]T∇ϕ0(Y (x, t)). With (3.33) we can
therefore write

n0(Y (x, t)) = [∇Y (x, t)]−T n(x, t)
|[∇Y (x, t)]−T n(x, t)| . (3.34)
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Thanks to (2.5) we obtain the Lagrangian equivalent of (3.34):

n(X(t, ξ), t) = [∇ξX(t, ξ)]−T n0(ξ)

|[∇ξX(t, ξ)]−T n0(ξ)| . (3.35)

Observe in passing that we recover the formula (2.11).

3.3.2 An Eulerian Tensor to Measure Surface Deformation

One thus wishes to measure the strain on the surface Γt . Relying on the Lagrangian
formulation, more natural in this context, one starts by introducing the projection of
the strain tensor on the tangent plane:

M(X(t, ξ), t) := [∇ξX(t, ξ)][I − n0(ξ)⊗ n0(ξ)]. (3.36)

M acts as follows: if v(ξ) is a vector defined at the point ξ ∈ Γ0, this vector is
first projected through the operator [I − n0(ξ) ⊗ n0(ξ)] into a vector vτ (ξ) which
belongs to TξΓ0, the tangent plane to Γ0 in ξ . Then the vector vτ (ξ) is deformed
through the action of X into the vector [∇ξX(t, ξ)]vτ (ξ) at X(t, ξ). Notice that Mv

is already in TX(t,ξ)Γt , the tangent plane to Γt in X(t, ξ). Indeed, using (3.35) and
vτ (ξ) · n0(ξ) = 0, we have

(M(X(t, ξ), t)v(ξ)) · n(X(t, ξ), t) = ([∇ξX]T n(X(t, ξ), t)) · vτ (ξ)) = 0.

The tensor (3.36) is written in its Eulerian form with (2.5)

M(x, t) := [∇Y (x, t)]−1[I − n0(Y (x, t))⊗ n0(Y (x, t))].

Using the fact that I − n0 ⊗ n0 is a projector, therefore idempotent, the associated
Cauchy–Green tensor is defined by

A := MMT = [∇Y ]−1(I − n0(Y )⊗ n0(Y ))[∇Y ]−T .

The right Cauchy–Green tensor will play an important role in the sequel. It is defined
by

B = [∇ξX][∇ξX]T = [∇Y ]−1[∇Y ]−T , (3.37)

Using (3.34), the relationsA(v⊗v)AT = (Av)⊗(Av) and |[∇Y ]−T n|2 = (Bn) ·n,
we finally obtain the expression of the surface strain tensor in Eulerian coordinates:

A = B − (Bn)⊗ (Bn)

(Bn) · n . (3.38)
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3.3.3 Invariants and Associated Elastic Force

We start by postulating that the invariants of the tensor A are the quantities carrying
the relevant information to define the surface forces. Using (3.38) we have

An = 0. (3.39)

As a result, 0 is an eigenvalue and det(A) = 0. The other invariants are Tr(A) and
Tr(Cof(A)) = 1

2 (Tr(A)2 −Tr(A2)). Since A is a real symmetric matrix, there exists
an orthonormal basis of eigenvectors. In addition A is positive because Ax · x =
|MT x|2 ≥ 0. We denote by 0, λ2

1 and λ2
2 the associated eigenvalues. We therefore

have

Tr(A) = λ2
1 + λ2

2

and

Tr(Cof(A)) = (λ1λ2)
2.

In the following, we will show that the following expressions allow us to capture
the complete deformation of a membrane:

Z1 = √Tr(Cof(A)) = |λ1λ2|, (3.40)

Z2 = Tr(A)
2
√

Tr(Cof(A))
= 1

2

(∣∣∣∣λ1

λ2

∣∣∣∣+
∣∣∣∣λ2

λ1

∣∣∣∣
)
. (3.41)

In the reference configuration (often taken at time t = 0), we have A(0) = I−n0 ⊗
n0, thus Tr(A(0)) = 2 and Tr(Cof(A(0))) = 1. We have Z1 = Z2 = 1 at t = 0 and
the inequalities Z1 ≥ 0, Z2 ≥ 1. Proposition 7.3, proved in the appendix, shows
that Z1 measures, in compressible as well as incompressible cases, the variation in
the surface area. We also have from Proposition 7.4, also proved in the appendix,
the relation

Z1 = Je
|∇ϕ|

|∇ϕ0(Y )| . (3.42)

We therefore recover the result of Proposition 3.2 already obtained with the
membranes reacting only to the variation of area: |∇ϕ| measures the local variation
in area for an incompressible flow. TheZ2 invariant is more difficult to justify in the
general framework. To highlight its behavior, we propose in Sect. 7.2.2 a detailed
study of its behavior during a prescribed deformation of a surface.

In the discussion and figures below, we illustrate in a simple way the behavior
of these invariants for deformations of a planar surface in its plane. The proposed
deformations are uniform in space in the sense that the invariants do not depend
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Fig. 3.3 Velocity field
(x,−y, 0) for the
deformation α = −1 (TC1).
From [106]
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Fig. 3.4 Velocity field
(x, y, 0) for the deformation
α = 1 (TC1). From [106]
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on the spatial variables. The velocity field associated with each deformation is
represented in the figures below with the corresponding values of Z1 and Z2 as
a function of time t . We refer to the appendix for the references to the analytical
formulas corresponding to the different test cases (numbered TC1 and TC2).

The deformation corresponding to β = −1 is a rotation and there is no variation
in area and shear (see Fig. 3.7). The deformation α = 1 is a pure expansion and
only results in a variation of the area (see Fig. 3.4). The deformations β = 0, β = 1,
α = −1 correspond to different shear and no area variation (see Figs. 3.3, 3.6, and
3.8). The deformation α = 0 is axial and induces both surface shear and area change
(see Fig. 3.5). This may seem surprising at first glance, but when a surface is strained
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Fig. 3.5 Velocity field
(x, 0, 0) for the deformation
α = 0 (TC1). From [106]
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Fig. 3.6 Velocity field
(y, x, 0) for the deformation
β = 1 (TC2). From [106]
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in two directions with different amplitude, so that α �= 1, it undergoes shear. The
six illustrations in Figs. 3.3 to 3.8 are taken from [106].

Remark 3.7 In the reference [106], the parametrization (θ1, θ2) �→ γ (t, θ1, θ2) of
the surface St is introduced with γ : R+ ×U −→ R

3 where U is an open set in R
2.

One then defines the invariants

Z1(t) = √det(M(t)) Z2(t) = Tr(M(t))

2
√

det(M(t))
(3.43)
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Fig. 3.7 Velocity field
(−y, x, 0) for the
deformation β = −1 (TC2).
From [106]
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Fig. 3.8 Velocity field
(0, x, 0) for the deformation
β = 0 (TC2). From [106]
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where [M(t)]ij = ∂θi γ · ∂θj γ is a 2 × 2 matrix called a metric. Z1(t)
Z1(0)

can be shown
to correspond to the area variation and does not depend on the parametrization.
As for the quantity Z2(t)

Z2(0)
, it seems to measure the local shear but it depends on the

chosen parameterization. This is due to a wrong choice of the invariants. The correct
quantity to introduce in the Lagrangian framework is Ã(t) = M(t)M(0)−1. One
has

Z̃1(t) = det(Ã(t)) = Z1(t)

Z1(0)
, Z̃2(t) = Tr(Ã(t))

2
√

det(Ã(t))
�= Z2(t)

Z2(0)
. (3.44)
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One can then show that this new invariant captures well the shear and does
not depend on the chosen parameterization. It is thus possible to record shear
deformations in a Lagrangian framework. However, as specified in [106], the
Eulerian formulation allows the surface to be immersed in R

3 and thus to overcome
the problems related to surface singularities at the poles. Moreover the Eulerian
approach allows more easily to deal with large deformations.

3.3.4 Energy and Coupling Model

Following the Level Set approach described in Sect. 1.4, we introduce the regular-
ized energy

Ei =
∫
Ω

Ei(Zi)
1

ε
ζ
(ϕ
ε

)
dx. (3.45)

where Ei is the constitutive law associated with the invariant Zi .

Theorem 3.8 Using the principle of virtual work, the time variation of Ei is
given by

∂tEi = −
∫
Ω

Fi · u dx (3.46)

and corresponds to the following force:

Fi = ∇
(
Ei(Zi)

1

ε
ζ
(ϕ
ε

))
+ div

(
E′
i (Zi)ZiCi

1

ε
ζ
(ϕ
ε

))
. (3.47)

Proof By differentiation with respect to t we obtain

∂tEi =
∫
Ω

E′
i (Zi)∂t (Zi)

1

ε
ζ
(ϕ
ε

)
dx +

∫
Ω

Ei(Zi)
1

ε2 ζ
′ (ϕ
ε

)
∂tϕ dx.

Using the transport equation on ϕ and the equation ∂tZi + u · ∇Zi = [∇u] : ZiCi
which follows from Proposition 7.2 proved in the appendix, we get

∂tEi =
∫
Ω

E′
i (Zi)(−u · ∇Zi + [∇u] : ZiCi )1

ε
ζ
(ϕ
ε

)
dx

+
∫
Ω

Ei(Zi)
1

ε2 ζ
′ (ϕ
ε

)
(−u · ∇ϕ) dx.
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The integral over ∂Ω vanishes because ζ(ϕ
ε
) = 0 sur ∂Ω and integrating the second

term by parts yields

∂tEi = −
∫
Ω

u · ∇(Ei(Zi))
1

ε
ζ
(ϕ
ε

)
+ div

(
E′
i (Zi)ZiCi

1

ε
ζ
(ϕ
ε

))
· u

+ Ei(Zi)u · ∇
(

1

ε
ζ
(ϕ
ε

))
dx.

By grouping the first and last terms together and using (3.46) we get the expression
(3.47). ��

Note that, omitting the pressure term, the force relative to the area variation can
be decomposed in the normal and tangential directions by

F1 =
(

∇Γ

(
E′

1(Z1)Je

|∇ϕ0(Y )|
)

− E′
1(Z1)Je

|∇ϕ0(Y )|Hn

)
|∇ϕ|1

ε
ζ
(ϕ
ε

)
. (3.48)

This formula is clearly a generalisation of (3.18) when the flow is compressible
(Je �= 1) and the initial Level set is not a distance function (|∇ϕ0(Y )| �= 1). The
proof of this formula follows the lines of the one given for (3.18) and the relation
(3.42).

The complete fluid-structure model can thus be formulated as follows in the case
with constant density and uniform fluid viscosity:

⎧⎪⎪⎨
⎪⎪⎩
∂tu+ u · ∇u− μΔu+ ∇p = F1(ϕ, Y )+ F2(ϕ, Y ) in Ω×]0, T ],
divu = 0 in Ω×]0, T ],
∂tY + u · ∇Y = 0 in Ω×]0, T ].

(3.49)

This complex fluid type of model, which takes into account the complete elasticity
of the membrane (area variation and shear), can therefore be seen as an extension of
the Navier–Stokes equations with an elastic source term which is calculated using
Level Set functions (the components of the vector Y ) advected by the flow.

In typical implementations, the numerical discretization schemes to compute
the solution of Eqs. (3.49) are based on a finite difference discretization on a
staggered Cartesian grid of MAC type. A projection method is used to solve the
incompressible Navier–Stokes equations and WENO schemes for the transport part
of the backward characteristics. The terms appearing in the Navier–Stokes equations
are discretized in space with standard finite difference schemes. The elastic force is
localized on the membrane with a discretized Dirac mass.
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3.4 Curves Immersed in R
3

In this section, we propose an Eulerian approach for the elasticity of one-
dimensional curves in R

3. The use of Level Set functions to represent curves in
space has been considered for example in [24] with potential applications to image
processing. Level Set functions can also be used in fracture mechanics to represent
a crack front [80]. We are interested here in the application of this formalism in the
context of fluid-structure interaction.

We first introduce an invariant which measures the variation in length of a curve
during a deformation, then we introduce an elastic energy and finally deduce the
associated elastic force. We do not present in this book numerical simulations
associated with this model but it could be implemented in a rather simple way,
like the other Eulerian elastic models proposed in this book, as a source term in the
Navier Stokes equations.

The aim of this example is to show how the tools and the formalism of the
Level Set functions introduced in this book allow to define more general energies in
Eulerian formulation and how to calculate the associated forces.

To go further, we could also consider energies which depend on geometric
quantities such as curvature and torsion and which can be expressed using Level
Set functions following (1.21). A potential application that one can have in mind
is the simulation of the influence of aquatic vegetation on coastal flows with the
ambition of controlling the silting up of the coastal line.

3.4.1 An Eulerian Tensor to Measure Strains Along Curves

We are interested in a parameterized curveΓ0 which is deformed into Γt = X(t, Γ0)

through the mapping X. We note τ 0(ξ) the tangent vector to the curve at a point
ξ ∈ Γ0 and τ (X(t, ξ), t) the tangent vector to Γt at the point X(t, ξ). According to
(2.14), these vectors are related through the relation

τ (X(ξ, t), t) = [∇ξX(t, ξ)]τ 0(ξ)

|[∇ξX(t, ξ)]τ 0(ξ)| (3.50)

or, written in Eulerian form using (2.5),

τ = [∇Y ]−1τ 0(Y )

|[∇Y ]−1τ 0(Y )| τ 0(Y ) = [∇Y ]τ
|[∇Y ]τ | . (3.51)

One wishes to measure the strain on the curve Γt . Relying on the Lagrangian
formulation, more natural in this context, one starts by introducing the projection of
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the strain tensor along the tangent vector τ0:

M̃(X(t, ξ), t) := [∇ξX(t, ξ)][τ 0(ξ)⊗ τ 0(ξ)]. (3.52)

M̃ acts as follows: let v(ξ) defined at a point ξ ∈ Γ0. This vector is first projected
along the tangent τ 0 with the operator [τ 0(ξ) ⊗ τ 0(ξ)] into a vector vτ (ξ). Then
the vector vτ (ξ) is deformed throughX into the vector [∇ξX(t, ξ)]vτ (ξ) at X(t, ξ).
This vector is therefore parallel to τ by virtue of (3.50).

With (2.5) we can write the tensor (3.52) in the Eulerian form

M̃(x, t) := [∇Y (x, t)]−1[τ 0(Y (x, t))⊗ τ 0(Y (x, t))].

The associated Cauchy–Green tensor is defined by

L := M̃M̃T = [∇Y ]−1(τ 0(Y )⊗ τ 0(Y ))[∇Y ]−T .

The second equality above results from the fact that τ 0 ⊗ τ 0 is a projection.
Considering the tensor B = [∇ξX][∇ξX]T = [∇Y ]−1[∇Y ]−T and using (3.51),

we obtain the following relation

|[∇Y ]−1τ 0(Y )|−2 = |[∇Y ]τ |2 = (B−1τ ) · τ . (3.53)

The identity A(v ⊗ v)AT = (Av) ⊗ (Av), combined with (3.53), leads to
the following expression for the tensor of one-dimensional strains in Eulerian
coordinates:

L = τ ⊗ τ

(B−1τ ) · τ (3.54)

3.4.2 Invariants and Associated Elastic Force

If x is a vector orthogonal to τ , then Lx = 0. The plane orthogonal to τ is therefore
an eigenspace of dimension 2 associated with the eigenvalue 0 of the operator L.
As L is non-negative, because Lx · x = |M̃T x|2 ≥ 0, we denote by λ2

1 = Tr(L) its
non-zero eigenvalue. We introduce the invariant

Z3 = √Tr(L) =
√

1

(B−1τ ) · τ
. (3.55)

In the reference configuration (often taken at time t = 0), we have L(0) = τ0 ⊗ τ0
hence Tr(L(0)) = 1. We have Z3 = 1 at t = 0 and the inequality Z3 ≥ 0 for
all times. Proposition 7.6, shown in the appendix, proves that Z3 measures, in both
compressible and incompressible regimes, the variation in length of the curve. We
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also have from Proposition 7.7, also shown in the appendix, the relation

Z3 = Je
|∇ϕ1 × ∇ϕ2|

|∇ϕ1
0(Y )× ∇ϕ2

0(Y )|
(3.56)

where ϕ1, ϕ2 are two Level Set functions such that the intersection of the associated
zero level sets represents the curve. One can thus calculate the local variation of
length using only the gradient of these two functions. This result can be seen as the
equivalent of (3.42) for the curves.

We introduce the regularized energy

E3 =
∫
Ω

E3(Z3)
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
dx, (3.57)

where E3 is the constitutive law associated with the invariant Z3. Thanks to the
volume approximation formula (7.44) we deduce that this energy converges towards
the perimeter of the parametrized curve for the constitutive law E3(r) = r . This
corresponds to the equivalent for the curves of the surface tension energy for
surfaces.

According to Proposition 7.13, proved in the appendix, the associated force is
given by

F3 = ∇
(
E3(Z3)

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))

+ div

(
E′

3(Z3)Z3τ ⊗ τ
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))
.

We also show in the appendix Proposition 7.14 which allows to break down this
force as follows

F3 =
((

∇
(
Ẽ′

3

)
· τ
)

τ + Ẽ′
3Hn

)
|∇ϕ1 × ∇ϕ2| 1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
, (3.58)

where Ẽ′
3 = E′

3(Z3)Je

|∇ϕ1
0 (Y )×∇ϕ2

0 (Y )|
.

It is interesting to note that the force is written in the basis (τ , n) and that there is
therefore no component along the binormal vector b. We recall that the definitions
of these geometric notions for parameterized curves in R

3 using Level Set functions
are given in Sect. 1.3.
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3.5 Explicit and Semi-implicit Time Discretizations

We have seen in Sect. 1.6 that the time discretization technique chosen to simulta-
neously advect the Level Set function and take into account the capillary forces in
the Navier–Stokes equations impacted the stability of the methods, and that a semi-
implicit scheme could prove profitable from this point of view. This is again the
case in the fluid-structure interaction models discussed in this chapter. This is not
surprising because the elastic forces supported by the membranes can be seen as
generalizations of the capillary forces.

We describe in the following the transcription in the case of shear-free mem-
branes covered in Sect. 3.2 the explicit and semi-implicit schemes seen in Sect. 1.6
and we provide numerical illustrations of their behavior. Note that, and this is
an important remark, it is not necessary to give linear stability analysis of these
schemes. Indeed the linearizations and approximations of the coupling terms
performed in Sect. 1.6 lead to the same models as in the case of multi-phase fluids
and therefore would lead to the same conclusions on the conditions of linear stability
of the schemes.

3.5.1 Explicit Schemes

We recall the expression (3.18) of the elastic force as it appears in the right side of
the Navier–Stokes equation, expressed in tangential and normal components:

F [ϕ] =
(

∇Γ (E
′(|∇ϕ|))− E(|∇ϕ|)H(ϕ)

∇ϕ
|∇ϕ|

)
|∇ϕ|1

ε
ζ
(ϕ
ε

)
.

The explicit scheme consists in alternating the resolutions of the Navier–Stokes
equations where the elastic forces are evaluated from the values of ϕ at the preceding
time-step, followed by a transport equation where the velocity field results from the
former stage :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1 − un

Δt
= F [ϕn] + R(un, un+1),

divun+1 = 0,
ϕn+1 − ϕn

Δt
+ un+1 · ∇ϕn+1 = 0.

(3.59)
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3.5.2 Semi-implicit Scheme

We now extend the semi-implicit scheme (1.60)–(1.62) to the general case of an
elastic interface immersed in an incompressible fluid. We proceed as in the case with
surface tension, and start by writing an implicit time step in diffusion and explicit in
convection for the Navier–Stokes equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un+1 − un

Δt
= F [ϕn+1] + μΔun+1 − un · ∇un − ∇pn+1,

divun+1 = 0,
ϕn+1 − ϕn

Δt
+ un+1 · ∇ϕn+1 = 0,

(3.60)

from which we build the following predictor of un+1:

ũn+1 = un +ΔtF [ϕn+1].

By inserting this expression in the advection equation for ϕ we see that the tangential
component of the force gives no contribution. Keeping only higher-order terms, we
are left with

ϕ̃n+1 − ϕn

Δt
− E′(|∇ϕn|)Δt

ε
Δϕ̃n+1 = −un · ∇ϕn. (3.61)

The semi-implicit method is thus summarized in the following substeps:

Sub-step 1: implicit diffusion on ϕ

ϕ̃n+1 − ϕn

Δt
− E′(|∇ϕn|)Δt

ε
Δϕ̃n+1 = −un · ∇ϕn. (3.62)

Sub-step 2: discretization of the Navier–Stokes equations

un+1 − un

Δt
−μΔun+1+un·∇un+∇pn+1 = F [ϕ̃n+1] ; divun+1 = 0. (3.63)

Sub-step 3: explicit advection of ϕ

ϕn+1 − ϕn

Δt
+ un+1 · ∇ϕn = 0. (3.64)
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3.5.3 Numerical Validation

Let us first consider the case of a viscous droplet subjected to surface tension. As
already seen, this case can be seen as a particular case of an elastic membrane
with a linear elastic potential. In this case, the semi-implicit scheme reduces in its
predictive part to a simple diffusion equation.

Let us look more precisely at the case of an initial interface of elliptical shape,
with an axis of sizes 0.5 and 0.75 respectively. Under the effect of surface tension,
the elliptical drop relaxes to a circular shape with the same surface area. This test
case, although simple, is a useful benchmark to check the conservation properties
of the method.

Throughout this section, Δt is the time step used to solve the Navier–Stokes
equation with the elastic force. As already mentioned, depending on its value, sub-
iterations can be used in the advection equation in order to satisfy the appropriate
CFL condition in a grid-based method.

The surface tension coefficient (or stiffness coefficient for an elastic membrane
with linear potential) is taken equal to 1. All the tests are carried out with a constant
time step Δt = 0.0025. The width of the interface is ε = 6Δx. Figure 3.9 compares
for N = 256 the evolution of the two axes of the ellipse obtained by the Level Set
method in the case of a semi-implicit and explicit scheme. For these parameters, the
semi-implicit scheme, unlike the explicit scheme, is found to be stable.

Figure 3.10 illustrates the numerical convergence of the semi-implicit scheme
when the grid is refined. In this figure, the evolution of the small and large axes is
shown for N = 256 and N = 512.

The Eulerian model has good volume conservation properties because it is based
on a projection scheme on a staggered grid, which ensures to machine precision a
zero divergence of the velocity field. To illustrate this property, we show in Fig. 3.10
the loss of volume in the drop for resolutions ranging from N = 64 to N = 512.
We can see that the loss of volume during the oscillations is kept below 1.5%
for the coarsest resolution and below 0.1% for the highest resolution. This can

Fig. 3.9 Oscillating drop for N = 256 and Δt = 0.0025. Time evolution variation of the axes
lengths with the semi-implicit stable scheme (left picture) and explicit (right picture). From [37]
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Fig. 3.10 Oscillating drop with the semi-implicit scheme. Left: time evolution of the horizontal
(blue) and vertical (red) axes lengths, for N = 256 (crosses) and N = 512 (continuous lines).
Right: time eveolution of the volume inside the membrane (in percentage) for N = 64 (red),
N = 128 (blue), N = 256 (magenta) and N = 512 (cyan). From [37]

be considered as satisfactory, given that volume conservation is a known issue in
Immersed Boundary Methods (see for instance [95]).

Consider now an elastic membrane whose behavior is described by the quadratic
elastic potential of (3.13). The value of the stiffness coefficient λ is taken equal
to 10. We consider the same test case as previously, borrowed from [36, 95]. The
elliptical membrane, whose major and minor axes are again equal to 0.75 and 0.5,
respectively, is stretched from a state of circular equilibrium. This corresponds to a
uniform stretching rate of around 1.262.

We first study the stability properties of the semi-implicit scheme. To this end,
we present two sets of refinement studies. In the first series of tests, we kept for
the semi-implicit scheme the same time step for the Level Set equation for all the
resolutions, with a value Δt = 0.01. In the second series of tests, the time step
chosen for the semi-implicit scheme was specified using a CFL condition with a
CFL number equal to 0.25, while, for the explicit scheme, it had to be defined on
the basis of the stability condition (1.54). Table 3.1 shows the values of the resulting
time steps for the explicit and semi-implicit schemes.

Figure 3.11 shows the relaxation of the membrane, for resolutions corresponding
to a number of grid points in each direction ranging between N = 64 and N =
256, when the semi-implicit scheme is used with the time-step equal to 0.01. These
experiments confirm the stability of the semi-implicit approach, but also show that,

Table 3.1 Time step values
used in the 2D experiment for
the explicit and semi-implicit
schemes

N Explicit Semi-implicit

64 3.5 10−3 10−2

128 1.5 10−3 8. 10−3

256 6.5 10−4 4. 10−3

512 2. 10−4 2. 10−3
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Fig. 3.11 Relaxation of an elliptical elastic membrane. Time evolution of large and small axes
using the semi-implicit scheme for Δt = 10−2 and, from left to right, for N = 64, 128, 256. From
[37]
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Fig. 3.12 Relaxation of a 2D elliptical membrane. Temporal variation of the axes lengths. Semi-
implicit (continuous line) vs explicit (× and +) schemes for N = 128 (left picture) and 256 (right
picture). From [37]

for relatively small grid size and large time steps the membrane starts by undergoing
non physical oscillations, before relaxing to its equilibrium position.

The reason is that, for large values of Δt , the elastic force, obtained from the
filtered value of ϕ, is enforced at a location which significantly differs from its
actual position. It can be noted, however, that if one is mainly interested in the state
of equilibrium, rather than the dynamics of the oscillations, large values of the time
step remain admissible.

The second series of refinement tests compare, as illustrated in Fig. 3.12, for
the time steps given in Table 3.1, the results obtained with the explicit and semi-
implicit schemes, for N = 128 and N = 256. On the left, for N = 128, we
used Δt = 1.5 × 10−3 for the explicit scheme and Δt = 8 × 10−3 for the semi-
implicit scheme. On the right, we have chosen Δt = 6.5 × 10−4 for the explicit
scheme and Δt = 4 × 10−3 for the semi-implicit scheme. For N = 256 the time
step for the semi-implicit scheme is eight times larger than for the explicit scheme,
with very close results concerning the amplitudes. These experiments confirms the
gain offered by the semi-implicit method. The slight time shift visible over long
simulation times can be related the shift, already observed in Fig. 3.11, between the
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physical position of the interface and the location of the force, when the time step is
large.

3.6 Numerical Illustrations and Sample Code

In this section we successively review the different cases studied above: membrane
without shear, membrane with bending energy and membrane with shear.

3.6.1 Shear-Free Membrane

3.6.1.1 2D Oscillating Elastic Membrane: FreeFEM++ and Matlab
Codes

Let us come back to this case already evoked to study the stability of the
discretization methods in time. We give below a code based on the FreeFEM++[84]
finite element library which demonstrates the simplicity of implementing Level Set
methods in this context. The goal here is educational, and the codes are given in their
simplest version: the discretization in time is made by an explicit Euler method, the
time step is constant and the transport equation for the Level Set function is solved
by the characteristic method. The targeted test case is the one already used in [95]
for the study of the immersed boundary methods.

As already observed, the form (3.16) of the elastic force

F = div

(
E′(|∇ϕ|)|∇ϕ|

(
I − ∇ϕ ⊗ ∇ϕ

|∇ϕ|2
)

1

ε
ζ
(ϕ
ε

))

is natural for a variational formulation of the model.
The program below proposes an implementation in less than one hundred lines

of this simple fluid-structure problem, using the finite element method and the
FreeFEM++ software. The fluid mechanics equations are solved by a so-called P2-
P1 discretization and the Level Set function is discretized into P2 elements (lines
20–22 of the code).

The test case consists of a stretched ellipse which relaxes towards a circle.
We start by calculating a signed distance function to this ellipse from an implicit
equation, by solving a Hamilton–Jacobi equation (lines 43–50). Note that this step
can alternatively be carried out directly under FreeFEM++, which makes it possible
to calculate the distance to any hypersurface described by a level set.

The variational formulation of the fluid problem is described in lines 61–
71, in monolithic version. The software convect function, which implements the
characteristic method, is used to solve both the transport equations of the level-set
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function and the convective part of the fluid equations. Note that this part of the code
does not require a CFL condition.

1 load "iovtk"
2

3 // settings
4 real xm=2; // Size of the box in x-direction
5 real ym=2; // Size of the box in y-direction
6 int n=30, m=30; // Number of points in each direction
7 real A=0.75, B=0.5; // Ellipse axis lengths
8 real LARGINT=1.5; // Interface width relative to grid-size
9 real lambda=1; // Stiffness coefficient

10 real Re=100; // Reynolds number=1 / viscosity
11 real ETIRINI=1.26253110; // Initial stretching
12 real tmax=10; // Simulation time
13 real dtaff=0.2; // Time between successive visualizations
14 real CFL=0.2; // CFL number for the Hamilton Jacobi equation
15 real dt=5.e-3; // Time step for level set and Navier-Stokes

equations
16 real eps1=0.001; // Small parameter used to compute the normal
17

18 // Mesh
19 mesh Th=square (n,m, [xm*x, ym*y],flags=1);
20 fespace Velocity(Th,P2);
21 fespace Pressure(Th,P1);
22 fespace LevelSet(Th,P2);
23

24 Velocity u1,u2,v1,v2,u1n,u2n;
25 Pressure p, q, pp;
26 LevelSet phi,M,M2,S,phiinit,nabla,N1,N2,zet,aux;
27

28 // Definition of the initial ellipse
29 func phi0=sqrt ((x-xm / 2)^2 /(A^2)+(y-ym/2)^2/(B^2))-1;
30 phi=phi0;
31 u1n=0; u2n=0;
32

33 // Calculation of the distance function to this ellipse
34 // NB: recent versions of FreeFEM$++$ implement a
35 // calculation of the distance to an interface described by a
36 // level line which can replace these few lines.
37

38 Pressure h1=hTriangle;
39 real h=h1[].max; // Maximum size of a triangle in the mesh
40 real epsil=LARGINT*xm/n;
41 int iterinit;
42 real TT=CFL*h; // time step for re-initialization
43 for (iterinit=1;iterinit< 50*LARGINT;iterinit=iterinit+1)
44 {
45 nabla=(dx(phi))^2+(dy(phi))^2;
46 S=phi/(sqrt(phi^2+h*h*nabla)); //approximation of sign(

phi)
47 M1=dx(phi)/(sqrt(nabla+eps1^2)); //approximation of the

normal
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48 M2=dy(phi)/(sqrt(nabla+eps1^2));
49 phi=convect([-S*M1,-S*M2],TT,phi)+TT*S;
50 };
51

52 // zeta function
53 func real zeta(real r) {
54 return (((r>-1)&&(r<1))?0.5*(1+cos(pi*r)):0);
55 }
56 // r -> E’(r) deformation / constraint law
57 func real Ep(real r) {
58 return(lambda*(r-1));
59 }
60

61 // Variational problem
62 problem IBM([u1,u2,p],[v1,v2,q])=
63 // Navier-Stokes
64 int2d(Th)(u1*v1/dt+u2*v2/dt
65 +1/Re*(dx(u1)*dx(v1)+dy(u1)*dy(v1) + dx(u2)*dx(v2)+

dy(u2)*dy(v2)))
66 + int2d(Th)(dx(p)*v1 + dy(p)*v2 + q*(dx(u1)+dy(u2)) -

1e-10*p*q)
67 -int2d(Th)(convect([u1n,u2n],-dt,u1n)/dt*v1+convect([

u1n,u2n],-dt,u2n)/dt*v2)
68 // Elastic tensor
69 + int2d(Th)(Ep(nabla)*(dy(phi)*dy(phi)*dx(v1)-dx(phi)

*dy(phi)*(dx(v2)+dy(v1))+dx(phi)*dx(phi)*dy(v2))/
nabla*zet)

70 // Boundary conditions
71 + on(1,2,3,4,u1=0,u2=0);
72

73 // Main loop
74 real t=0, taff=0;
75 for (t=0; t <tmax; t +=dt) {
76 cout << "t=" << t << " Volume variation (%)= " << (vol-vol0)/

vol0*100 << endl;
77 // Navier-Stokes equations
78 IBM;
79 u1n=u1; u2n=u2;
80 // Transport of phi
81 aux=convect([u1,u2],-dt,phi);
82 phi=aux; vol=int2d(Th)(phi<0);
83 nabla=sqrt((dx(phi))^2+(dy(phi))^2+eps1^2);
84 zet=1./(nabla*epsil)*zeta(phi/(nabla*epsil));
85

86 if (t>taff) {
87 pp=p-p[].min;
88 string vtkout="results/memb_t="+t+".vtk";
89 savevtk(vtkout,Th,pp,phi,[u1,u2,0],dataname="Pressure

LevelSet Velocity");
90 taff=taff+dtaff;
91 Th=adaptmesh(Th,p);
92 }
93 }
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Fig. 3.13 Pressure field calculated by FreeFEM++ (left figure) and Matlab (right figure) at t =
0.4
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Fig. 3.14 Pressure profile obtained by FreeFEM++ (left picture) and Matlab (right picture) at
t = 0.4

The figures below correspond to the execution of this FreeFEM++ program up
to t = 0.4. They show the mesh and the contours of the pressure field (left picture
in Fig. 3.13) and the pressure profile along the axis y = 1 passing though the center
of the ellipse (left picture in Fig. 3.14).

A finite difference code has also been implemented in Matlab, and is available
on line.2 It implements a Chorin-type projection method. The Level-Set package
from Baris Sumengen is also used, where we have updated a WENO scheme to
its WENO-Z version [3, 29] for the advection part (this scheme is described in the
appendix).

2 http://level-set.imag.fr.
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The code is thus based on quite different methods from those involved the
finite element code. We nevertheless obtain (see right pictures of Figs. 3.13 and
3.14) remarkably close numerical results, taking into account the fact that the
linear interpolation of the convect function in the FreeFEM++ method induces
as expected a greater numerical spreading of the interface, visible on the pressure
profile. One can see that for the finite-difference method the pressure gradient is
essentially captured on one grid point. This confirms what was already mentioned
concerning energy conservation, namely that the spreading of the force, which is
part of the Level Set formulation, does not induce a build up in time of numerical
dissipation.

3.6.1.2 Membrane with Bending Energy

One of the applications of Level Set methods, and more generally of fluid-structure
coupling methods, concerns the study of the dynamics of red blood cells in shear
flows. To reproduce the behavior of these objects in the blood flow, we can consider
in a first approach that the associated energy is purely a bending energy (which
is the case for phospholipid membranes), with a constraint of constant length of
the membrane. One way to approach this problem is to operate by penalization,
considering a very steep area change energy.

A classical setting is to place a vesicle in a symmetrical shear flow (by this we
mean the shear of the flow and not that of the surface as studied in the next section)
and to study its behavior as a function of the viscosity ratio of the fluids inside and
outside the membrane. Below a certain threshold, it is known that the stationary
behavior is a “tank-treading” regime with an angle relative to the flow direction
which depends on the viscosity ratio. Beyond this threshold, the motion is an almost
rigid rotation of the membrane and of the fluid within the membrane, relatively to
the flow outside the membrane (the so-called “tumbling” regime).

Another application consists in calculating the 3D equilibrium shapes of vesicles
according to their volume ratio, that is to say their volume compared to the volume
of a sphere having the same area. In this application, the time step in the transport
and Navier–Stokes equations acts as an iteration increment for an optimization
algorithm.

Figures 3.15, 3.16 and 3.17 illustrate the results obtained by Level Set methods
in these different situations. We refer to [98, 99] for a more detailed discussion of
these results.

Much work has been carried out on this topic, using either phase field methods
or the Level Set methods, and relying on the finite element library FEEL ++ [104]
(available at https://docs.feelpp.org). We refer to the PhD thesis of Vincent Doyeux
[53] and the references therein.

More recently diffusion-redistanciation methods for interface motion using
geometry based energies have been implemented in the PhD thesis of Arnaud
Sengers [122] in the framework of FEEL++.
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Fig. 3.15 Tank-treading (top pictures) and tumbling (two bottom lines) motion of a vesicle with
a filling rate of 0.7 in a shear flow, depending on the ratio between inside and outside viscosity
values (respectively 1 and 8). The vesicle is represented by a red line on top of pressure contour
lines. From [99]

Fig. 3.16 Three-dimensional equilibrium shape depending on the volume ratio. Left picture: 0.77;
right picture: 0.6. From [98]

3.6.2 Membrane with Shear

To illustrate this case, the following linear elastic laws are used in the simulations
of this section

E′
1(r) = λ1(r − 1) E′

2(r) = λ2(r − 1) (3.65)
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Fig. 3.17 Three-dimensional vesicle in a shear flow. From [105]

where λ1 and λ2 are the elastic area and shear modulus as defined in Sect. 3.3.3. Note
that, although the elastic energies are linear, the model is still strongly nonlinear
because of the geometric nonlinearities and the coupling with the Navier–Stokes
equations.

In this section, we are interested in the test case of a sheared elastic sphere. The
domain Q = [−1, 1]3 is discretized on a Cartesian mesh using 128 points in each
direction. We choose in this simulation a viscosity μ = 0.01, an area modulus
of elasticity λ1 = 1 and a shear modulus λ2 = 1. The parameter ε is equal to
3.5Δx in simulations where Δx is the grid size. The time step is Δt = 1, 3 10−3s.
A vanishing velocity is taken for the initial and boundary conditions. The initial
immersed surface is a sphere, so that

ϕ0(x, y, z) =
√
x2 + y2 + z2 − 0.5. (3.66)

However this sphere is preloaded with the backward characteristic field

Y (x, y, z, 0) = (x cos(t0z)+ y sin(t0z),−x sin(t0z)+ y cos(t0z), z) (3.67)

This corresponds to a deformation of the sphere when a three-dimensional circular
shear (see the expression of Y for TC4 in Table 7.1 and Fig. 7.2) is applied up to t =
t0. Here we take t0 = π . Although this initial deformation was imposed (artificially)
with no area variation (the sheared surface is still geometrically a sphere), the area
will change locally when the sphere begins to relax, so the force F1 is also involved.
The motion is however initially controlled by the shear force F2.

Numerical results at different times are shown in Fig. 3.18. In order to visualize
the local displacement of the points, we represented on the deformed surface a grid
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Fig. 3.18 Relaxation of a sphere subject to shear, from time t = 0 to t = 9 with increments
of 0.5 (from left to right, top to bottom). Lagrangian markers are used to show the return to the
unconstrained state of equilibrium. From [106]
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Fig. 3.19 Velocity magnitude at t = 0.5 for the sphere under shear. From [106]

Fig. 3.20 Spherical membrane under shear. Pressure along the x axis at time t = 0.1 (left picture)
and t = 1.2 (right picture) for N = 64, 128, 256. From [106]

which was followed with markers. In Fig. 3.19, we draw on the surface the norm
of the velocity at t = 0.5. Due to the high shear imposed, the surface undergoes a
complex deformation involving some folding. This type of ripple was also observed
in [146] in the simulation of a capsule subjected to simple shear. An interesting
feature of this method is its ability to converge to a stable solution even in absence
of any curvature energy. Note that the sphere does not seem to return to its initial
state since it is not initially pressurized. If an initial pressure jump is prescribed
across the membrane, by setting the initial area variation above one, it will drive the
equilibrium state back to the sphere. Similarly to the 2D experiment in Fig. 3.12, we
then observe that the membrane does relax to its initial shape (see the corresponding
movie in http://level-set.imag.fr).

To analyze in a more precise way the numerical convergence of the method,
Figs. 3.20 and 3.21 show pressure profiles along the x and z axes during this
relaxation at times t = 0.1 and t = 1.2. Similarly, Fig. 3.22 represents the variation
of the vertical radius over time. The calculations were carried out with N points in
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Fig. 3.21 Spherical membrane under shear. Pressure along the z axis at time t = 0.1 (left picture)
and t = 1.2 (right picture) for N = 64, 128, 256. From [106]

Fig. 3.22 Spherical membrane under shear. Left picture: vertical radius up to t = 30. Right
picture: zoom on values of t ∈ [0, 5] for N = 64, 128, 256. From [106]

each direction with N = 64, 128 and 256. In all these, in order to keep a constant
physical thickness and observe numerical convergence as the grid is refined, the
width of the numerical interface was kept constant. As a consequence, its value ε
is equal to 1.75Δx, 3.5Δx, 7Δx, depending on the value of N , where Δx is the
corresponding grid size.

Since the flow is incompressible, the function Y (·, t) : Ω → Ω conserves the
volume, that is, det(∇Y ) = 1 at the continuous level. However, after discretization
in time and space, and due to numerical errors introduced when solving the transport
equations on Y , this constraint cannot be exactly imposed. In Figs. 3.23 and 3.24,
we represent the L2 norm of det(∇Y ) − 1 as a function of time, over the whole
domain and at the interface. More precisely the plotted quantities are respectively:

RMSΩ(t) =
(

1

|Ω |
∫
Ω

| det ∇Y (x, t)− 1|2 dx

) 1
2

,

and RMSΓt (t) =
(

1

|Γt |
∫
Γt

| det ∇Y (x, t)− 1|2 ds

) 1
2

. (3.68)
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Fig. 3.23 Spherical membrane under shear. Time evolution for N = 64, 128, 256 of t →
RMSΩ(t) defined in (3.68). From [106]

Fig. 3.24 Spherical membrane under shear.Time evolution for N = 64, 128, 256 of t →
RMSΓt (t) defined in (3.68). From [106]

Although the N = 64 case is clearly under-resolved these figures show that
numerical conservation dramatically improves as the grid is refined.



Chapter 4
Immersed Bodies in a Fluid: The Case
of Elastic Bodies

In this chapter we are interested in the modeling and the simulation of fluid-structure
interactions in the case where the elastic solid has a finite thickness as opposed to
the case of the surface membranes studied in the previous chapter.

Several strategies have been developed in the literature to resolve this type of
interaction. In the ALE methods [52], which are the most commonly used, see for
instance [18, 64–68, 70, 79], the physical domain is discretized on a moving mesh
which follows the motion of the interface. The formulation and implementation of
numerical methods in this context is tricky, especially in three dimensions. The
generation and partitioning of meshes can also be problematic when solids are
subjected to large deformations. The immersed boundary methods mentioned in the
previous chapter can be extended to the case of volume elasticity [16], in general
by considering volumes made up of mono-dimensional fibers. We refer to [81] for a
recent review of these methods.

As in the case of membranes, it is possible to rely on an Eulerian formulation
of elasticity that will couple in a simple way the elastic solids with fluids, which
are already naturally described in an Eulerian formulation. The interest of Eulerian
models lies in the possibility of discretizing them on a fixed grid, typically Cartesian,
which allows a simple implementation and parallelization as well as taking into
account large deformations in the solid. In addition, the fluids and solids considered
in these interactions can be incompressible (and possibly viscous) or compressible.
We refer to [119] for a recent review of these methods.

In the more specific point of view which concerns us in this book, a Level Set
function will be used in order to follow in an Eulerian way the interface between
the fluid and the solid, completed by additional Level Set functions to account for
the deformations and elastic forces. It is these methods that we will describe in this
chapter.

For compressible and incompressible media, the models are of a different nature:
hyperbolic for the compressible case and parabolic for the incompressible case.
Their natural numerical treatment is therefore based on very different numerical
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schemes: discretization by finite volume method using Riemann solvers for the
compressible case; finite difference or finite-element and projection methods for the
incompressible case. This is why models and discretizations are natural for inter-
actions where the fluid and the solid are both compressible or both incompressible.
The case of a compressible solid coupled to an incompressible viscous fluid could
also be taken into account by the type of methods relevant to this book, but to the
detriment of their simplicity because it would be necessary to impose the constraint
of zero divergence of the velocity field on only a part of the domain. We will mostly
ignore this case here. However an example falling into this category for rigid solids
will be discussed in Sect. 5.5.

After a general presentation of the equations of hyperelastic solids in Lagrangian
and Eulerian formulation, we will focus on the fluid-structure interactions, first
in the compressible then in the incompressible case. We will end this chapter by
presenting two illustrations of fluid-structure interactions, one in the incompressible
case, the other in the compressible case.

4.1 Hyperelastic Materials in Lagrangian Formulation

We are now interested in the modeling of elastic materials. The Lagrangian
formulation is a priori the most suitable framework for several reasons:

• the free surface limiting the unknown elastic solid Ωt is taken into account by
bringing it back to the reference configuration Ω0,

• the forward characteristics X(t, ξ) make it possible to follow the position of the
points of the solid from their initial position ξ and the tensor ∇ξX allow to locally
calculate the deformations of the medium,

• the first Piola-Kirchhoff stress tensor T , defined by (2.27) is expressed as a
function of the strain tensor ∇ξX, which provides a closure to the elasticity
system.

For a more detailed description of the concepts mentioned in this section, the reader
can consult [85].

Let W : M3(R) → R be a function defined over the set of 3 × 3 square matrices.
The Taylor expansion of W reads

W(F +H) = W(F)+ ∂W

∂F
(F) : H + o(|H |) (4.1)

and by definition

[
∂W

∂F

]
ij

= ∂W

∂Fij
where A : B = Tr(AT B) denotes the usual

scalar product of matrices. A material is said to be hyper-elastic if the first Piola
Kirchoff tensor is given by the derivative with respect to ∇ξX of a volume energy
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per unit of volume W

T (t, ξ) = ∂W

∂F
(∇ξX). (4.2)

The energies that are considered in practice are not arbitrary but must obey certain
physical principles.

4.1.1 Principle of Material Indifference

We note F = ∇ξX and Q any rotation belonging to SO(3). The energy must verify
the principle of material indifference which can be written

∀Q ∈ SO(3) W(QF) = W(F). (4.3)

The geometric interpretation of this definition is as follows: the energy is
invariant if we apply a rotation after the deformation (see Fig. 4.1). We can show
that the energy associated with a material which satisfies the principle of material
indifference is written

W = W̃(C(t, ξ)), (4.4)

where C indicates the right Cauchy–Green tensor

C(ξ, t) = [∇ξX]T [∇ξX]. (4.5)

Fig. 4.1 Illustration of material indifference and isotropy
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This energy only depends on C = FT F , so we have to find a way to calculate T .
To do this we introduce W(F) = W̃ (FT F ). We have the following expansion

W(F +H) = W̃(FT F + FT H + (F T H)T +HTH)

= W̃(FT F )+ ∂W̃

∂C
(C) : (F T H + (F T H)T )+ o(|H |).

Since C is symmetric, ∂W̃
∂C

is a symmetric matrix and the linear term in H reads

2[F ∂W̃
∂C

(C)][H ]. Upon comparing with (4.1) we thus obtain

T = [∇ξX]Σ, (4.6)

where Σ indicates the second Piola Kirchhoff tensor defined by

Σ = 2
∂W̃

∂C
(C). (4.7)

This relation is one of the reasons for introducing this tensor.

4.1.2 Isotropic Materials

Materials often verify symmetry properties. They are said to be isotropic if they
behave in the same way in all directions. To simplify the exposition, we will
place ourselves in this section mainly in this case. However, we will also give
below (Sect. 4.3.2) a numerical illustration for a case of anisotropic elasticity. In
the isotropic case, the associated energy satisfies

∀Q ∈ SO(3) W(FQ) = W(F). (4.8)

The geometric interpretation of this definition is as follows: the energy is invariant if
we apply a rotation and then a deformation (see Fig. 4.1). When this relationship is
only verified for certain rotations, the material is said to be anisotropic. We can show
that the energy of a material which is isotropic and which satisfies the principle of
material indifference is written

W = W(ιC(t,ξ)) (4.9)

where ιC = (Tr(C),Tr(Cof(C)), det(C)) are the three invariants of C. It is easy to
show that an energy of the type (4.9) satisfies (4.3) and (4.8). The converse is more
delicate and the proof is purely algebraic. In the case of an anisotropic material, the
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energy depends on C but also on tensors constructed with C and some privileged
directions of anisotropy.

4.1.3 Computation of the Stress Tensor in a Lagrangian
Framework

Let us now compute the stress tensor associated to the energy (4.9). Using (4.7) we
get

Σ

2
= ∂W(ιC)

∂C
= ∂W

∂a

∂ Tr(C)

∂C
+ ∂W

∂b

∂ Tr(Cof(C))

∂C
+ ∂W

∂c

∂ det(C)

∂C
.

We have the following expansions (recall that C is symmetric)

Tr(C +H) = Tr(C)+ Tr(H),

Tr(Cof(C +H)) = Tr(Cof(C))+ Tr((Tr(C)I − C)H)+ o(|H |),
det(C +H) = det(C)+ det(C)Tr(C−1H)+ o(|H |).

We therefore obtain

Σ

2
=
(
∂W

∂a
+ Tr(C)

∂W

∂b

)
I − ∂W

∂b
C + ∂W

∂c
det(C)C−1. (4.10)

The Cayley–Hamitlon theorem reads

C3 − Tr(C)C2 + Tr(Cof(C))C − det(C)I = 0. (4.11)

We thus have det(C)C−1 = C2 −Tr(C)C+Tr(Cof(C))I , which allows to write the
stress tensor as function of (I, C,C2) if needed. The elasticity equations are finally
given by

ρ0∂
2
t tX = div([∇X]Σ), (4.12)

where Σ depends in a nonlinear way on X(t, ξ) through (4.10).
These equations are posed in the reference domain Ω0 and are supplemented by

initial conditions and appropriate boundary conditions. Note here that if we consider
an incompressible elastic medium, we must impose the condition

J�(t, ξ) = det(∇ξX(t, ξ)) = 1, (4.13)

which is not trivial because this constraint is a nonlinear equation. To do this, we
must write the first tensor of Piola Kirchhoff under the form T = −p[∇X]−T +
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T̃ where p denotes the scalar Lagrange multiplier needed to impose the con-
straint (4.13). We will see later that this incompressibility condition becomes linear
in an Eulerian framework and is simpler to impose numerically through a zero
divergence condition on the velocity field.

4.2 Hyperelastic Materials in Eulerian Formulation

4.2.1 Computation of the Stress Tensor in an Eulerian
Framework

The tensor T (or equivalently the tensor Σ) allows to calculate the stresses in the
reference configuration. However, the stress tensor in the deformed configuration
is easier to interpret on physical grounds. In this case, the tensor σ must be
calculated using the forward characteristics X(t, ξ). To do this we use the relation
σ Cof([∇X]) = T , (2.27) combined with (4.7) to get

σ(X(t, ξ), t) = J�(t, ξ)
−1[∇ξX(t, ξ))]Σ(t, ξ)[∇ξX(t, ξ))]T . (4.14)

After having introduced the left Cauchy–Green tensor

B̃(t, ξ) = [∇ξX(t, ξ))][∇ξX(t, ξ))]T (4.15)

we have the following relationships

[∇ξX]I [∇ξX]T = B̃, [∇ξX]C−1[∇ξX]T = I, [∇ξX]C[∇ξX]T = B̃2. (4.16)

Using (4.10) et (4.16), the expression (4.14) becomes (we also use the fact that B
and C have the same invariants)

σ(X(t, ξ), t) = 2J−1
�

(
∂W

∂c
det(B̃)I +

(
∂W

∂a
+ Tr(B̃)

∂W

∂b

)
B̃ − ∂W

∂b
B̃2
)
.

(4.17)

Observe that this Cauchy tensor is written on the deformed configuration but that
it is calculated in a Lagrangian way as it depends on the forward characteristics
X(t, ξ). In order to write this tensor in Eulerian formulation we are going to
use the backward characteristics Y (x, t). Recall that these characteristics satisfy
Y (X(t, ξ), t) = ξ and that the differentiation of this equation with respect to t and
ξ gives

∂tY + (u · ∇)Y = 0, [∇ξX(t, ξ)] = [∇xY (x, t)]−1.
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In the Eulerian formulation we have an additional equation related to the conserva-
tion of mass (2.20). Starting from (2.22) and using Y , we obtain

ρ(x, t) = det(∇xY (x, t))ρ0(Y (x, t)). (4.18)

It is therefore possible to recover the density using backward characteristics.
Using the relation (4.2.1), the left Cauchy Green tensor (4.15) is rewritten at
ξ = Y (x, t)

B̃(t, Y (x, t)) = [∇xY (x, t)]−1[∇xY (x, t)]−T = B(x, t). (4.19)

We also remind that Je(x, t) = J�(t, Y (x, t)). The Eulerian expression of the
Cauchy tensor is therefore given by

σ(x, t) = 2J−1
e

(
∂W

∂c
det(B)I +

(
∂W

∂a
+ Tr(B)

∂W

∂b

)
B − ∂W

∂b
B2
)
. (4.20)

This Cauchy tensor is written on the deformed configuration. It is here calculated in
an Eulerian way because it relies on the backward characteristics Y (x, t).

It is interesting in practice to decompose the energy into a part which depends
only on volume variations and an isochoric part which only depends on the shear.
This formulation is very useful in the compressible case because it allows to
model gases (perfect, of Van der Waals type etc), non-viscous fluids (with so-called
stiffened gas laws) as well as elastic solids (Neo-Hookean for example). Let us break
down the energy as follows:

W = Wvol(Je)+ Wiso(Tr(B),Tr(Cof(B))), (4.21)

where B(x, t) = B(x,t)

det(B(x,t))
1
3

and Je(x, t) = det(B(x, t))
1
2 . Notice that det(B) = 1

and this is why we use the term isochoric for this part of the energy. To write the
stresses it suffices to rely on the formula (4.20) with

W(a, b, c) = Wvol(c
1
2 ) and W(a, b, c) = Wiso(c

− 1
3 a, c− 2

3 b).

We obtain with the formula (4.20)

σ(x, t) = W ′
vol(Je)I + 2J−1

e

(
σ iso − Tr(σ iso)

3
I

)
, (4.22)

with

σ iso = ∂Wiso

∂a
B − ∂Wiso

∂b
B

−1
.
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4.2.2 Elastic Constitutive Laws for Elastic Media

The constitutive laws of elasticity are phenomenological, in the sense that, unlike
in gases, they do not arise from microscopic statistical physics. The constitutive
laws obey physical principles (material indifference, isotropy, etc.) and their choice
depends on the behavior of the material in small/large deformations, compression,
shearing, etc. We can mention the law of Mooney–Rivlin

Wiso = χ1(Tr(B)− 3)+ χ2(Tr(B
−1
)− 3),

with, as a particular case, the Neo-Hookean law which corresponds to the value
χ2 = 0. Let us also mention the Saint-Venant Kirchoff law

Wiso = χ1

2
Tr(E)2 + χ2 Tr(E2) with E = 1

2
(C − I).

In these energies, the parameters χi are the elastic coefficients measured in Pascal
unit.

There are also anisotropic laws that model materials which do not behave in the
same way in all directions. For example, a material with a privileged direction τ

whose elastic response is invariant under rotation around this direction and also
when replacing τ by −τ (a case often encountered for biological tissues as we
will see below) is said to be transverse isotropic. In this case the energy depends
on (Tr(B),Tr(B−1)) as well as on τT B−2τ and τT B−1τ , and the stress tensor
σ depends on the quantities (∇Y−1τ ) ⊗ (∇Y−1τ ) and (∇Y−1τ ) ⊗ (B∇Y−1τ ) +
(B∇Y−1τ )⊗ (∇Y−1τ ) [111]. An example of such a law is given in the case of the
contraction of a heart cell which will be considered in (4.33).

There is a considerable literature on elastic constitutive laws and we refer again
to the work [85] and the references therein for more details.

4.2.3 Eulerian Elasticity in the Incompressible Case

A medium is said to be incompressible if it satisfies the condition J� = det(∇X) =
1 everywhere. Using a Reynolds formula ((2.15) with f = 1), one can then show
that the Eulerian equivalent corresponds to the constraint div(u) = 0. It is interesting
to note that this constraint is linear, unlike the constraint J� = 1 in the Lagrangian
framework which is non linear.

In order to impose this constraint, it is natural to introduce a pressure p as a
Lagrange multiplier associated with the constraint div(u) = 0. One can then show
that the stress tensor (4.22) is written

σ(x, t) = −pI + σiso(∇Y ). (4.23)
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Since the zero divergence constraint is linear, it is relatively easy to find p with a
projection method, for example. In the case of small deformations, one can use the
models of linear elasticity which depend on two elastic parameters λ and μ, the so-
called Lamé coefficients, or, equivalently, on E and ν, the Young’s modulus and the
Poisson ratio. One can show that if ν is close to 1/2 then, for an infinitesimal strain,
the volume is almost locally conserved. However we must always have ν < 1/2
because the formulas are singular for the value 1/2. Let us insist on the fact that these
two notions of incompressibility are different. The one involving zero divergence of
the velocity allows to impose exactly J = 1 while remaining valid even if the solid
undergoes large deformations. Note also that in an incompressible regime the energy
equation is not coupled to the momentum equation.

We finally obtain the following equations for an incompressible elastic medium
(we use here the non-conservative forms of the equations)

⎧⎪⎪⎨
⎪⎪⎩
ρ(∂tu+ (u · ∇)u)+ ∇p = div(σiso(∇Y )),

div(u) = 0,

∂tY + (u · ∇)Y = 0.

(4.24)

This complex fluid-type model can be seen an extension of the Navier–Stokes
equations with an elastic source term which is calculated using three Level Set
functions (the three components of the Y vector) advected by the flow.

4.2.4 Eulerian Elasticity in the Compressible Case

Compressible elasticity equations are used when materials are subject to local
changes in volume. They are most often used for the study of transient phenomena.
When looking at compressible media, the energy equation is no longer decoupled
from the equations translating the conservation of mass and momentum. It is
also important to consider the conservative forms of the equations because the
solutions of these equations can develop finite-time discontinuities (shock waves
or contact discontinuities), in which case the non conservative forms are generally
ill-posed. In this compressible context we introduce, by analogy with gas modeling,
a formulation with an energy per unit of mass ε = ρW rather than per unit of
volume. Moreover, thermodynamics are used only in the solid part by introducing
the entropy s

ε = εvol(ρ, s)+ εiso(Tr(B),Tr(Cof(B))). (4.25)

We then obtain using (4.22) and, due to (2.22), Je(x, t) = ρ0(Y (x,t))
ρ(x,t)

σ = −p(ρ, s)I + σiso(∇Y ), (4.26)
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where the pressure is defined by p(ρ, s) = ρ2 ∂ε
∂ρ

and where the derivative is
calculated for a given value of the entropy. The two previous equations allow to
close the following system of conservation laws for the compressible elasticity in
Eulerian formulation ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu)+ div(ρu⊗ u− σ) = 0,

∂t (∇Y )+ ∇(u · ∇Y ) = 0,

∂t (ρe)+ div(ρeu− σT u) = 0.

(4.27)

Indeed, Eq. (4.25) allows to evaluate s as a function of ε, ρ and ∇Y . By
substituting this expression for s in (4.26) and in view of the definition e = ε− 1

2 |u|2
of the total energy we obtain σ as a function of ρ, u,∇Y and e. As σ directly
depends on ∇Y we took the gradient of the transport equation on the backward
characteristics in order to write the set of Eqs. (4.27) as a system of conservation
laws of the form ∂tΨ + div(F (Ψ )) = 0. This form will make it possible to study
the properties of hyperbolicity (speed of waves, shocks, expansion waves, etc.) and
to derive adapted numerical schemes.

4.3 Fluid-Structure Coupling Model in the Incompressible
Case

We are now interested in the coupling between an elastic structure and an incom-
pressible viscous fluid. The completely Eulerian formulation of elasticity will make
it possible to model the fluid-structure interaction as a complex fluid. The elastic
forces are added into the fluid equations as a source term and discretized on the
same grid as the fluid. Let us insist here on the fact that the solid is also supposed to
be incompressible and that the constraint of free divergence is thus applied on the
whole domain.

This formulation of Eulerian elasticity has been developed by several teams
[38, 118, 134, 144]. The approach is based on the three components of the backward
characteristics Y (also called reference map in [144]) which is simply advected by
the velocity of the fluid and its spatial derivatives make it possible to calculate the
elastic stress. In [134] the authors used, instead of the backward characteristics,
an Eulerian equation on the six components of the elastic symmetric tensor
B = [∇Y ]−1[∇Y ]−T . This advection equation also contains two additional terms
involving the velocity gradients.

In this Eulerian context, the backward characteristics, and therefore the elastic
tensor, are calculated over the whole domain, which includes the fluid region. The
fluid near the interface can be subjected to large shear, which can in turn cause
exponential growth of some components of the backward characteristics. These
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distortions in the fluid, if they are used in the numerical scheme in the vicinity of
the fluid-solid interface, can cause numerical instabilities because the stress tensor
is generally diffused on a few points of the mesh inside the fluid.

To address this difficulty, different discretization strategies have been developed
in the literature. In [118], the fluid-structure equations are discretized on an
unstructured finite element mesh and the Eulerian deformations are extrapolated
linearly in the fluid. In [134], the model is discretized with a finite difference scheme
on a Cartesian mesh and the elastic tensor is smoothed in the fluid. In [134], the
fluid-structure equations are discretized with finite differences on a Cartesian mesh
and the characteristics are extrapolated in the fluid.

In the example described below, a linear extrapolation of the backward charac-
teristics is chosen in the fluid with the method of Aslam [6]. The details of this
method as well as numerous validations and numerical simulations of these models
are developed in the thesis of Julien Deborde [45] and in the article [46].

4.3.1 Model and Constitutive Law in the Incompressible Case

A level set function ϕ is used to capture the interface separating the fluid and the
solid and verifies the transport equation

∂tϕ + u · ∇ϕ = 0. (4.28)

The complete model is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ (∂tu+ (u · ∇)u)+ ∇p = div(σ ),

div(u) = 0,

∂tY + (u · ∇)Y = 0,

∂tϕ + u · ∇ϕ = 0.

(4.29)

Note that the equation on ϕ is redundant because knowing Y gives the solution to
solve any transport equation (because ϕ(x, t) = ϕ0(Y (x, t))). However, we can
choose to monitor both quantities for numerical reasons: one may wish to use the
redistancing algorithm on ϕ and extrapolations of Y in the fluid. This choice will
be made in the example described below. The fluids and solids considered here are
viscous and thus

σ = μ([∇u] + [∇u]T )+ H
(ϕ
ε

)
σS (4.30)
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where H is a regularized Heaviside function, typically given by

H(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 si r ≤ −1,
1

2

(
1 − r − sin(πr)

π

)
if − 1 ≤ r ≤ 1,

0 if r ≥ 1.

(4.31)

and 2ε is the width of the interface between the solid and the fluid. As a result, ϕ > ε

corresponds to the fluid domain and ϕ < −ε corresponds to the solid domain. In
our simulations, ε has a fixed value equal to 2Δx, which is a standard value used in
the literature to diffuse the interface.

4.3.2 Numerical Illustrations

In the following examples, with the exception of that of the heart cell, the numerical
schemes for the resolution of Eqs. (4.29) are based on a discretization by finite
differences or finite volumes on a staggered Cartesian grid of MAC type. A
projection method is used to solve the incompressible Navier–Stokes equations and
WENO schemes take care of the transport of the backward characteristics. These
two parts of the system are decoupled in time in an explicit way. The terms of
transport and diffusion are discretized in space in a classic way with upwind or
centered schemes. The elastic force is discretized with a centered scheme. Let us
insist on the fact that one uses exactly the same methods as for the elastic membranes
with explicit discretization in time of the coupling, with the difference that the elastic
force is localized on the whole the elastic domain through a Heavyside function,
instead of being localized on a surface using a regularized Dirac mass.

4.3.2.1 Elastic Ball in a Driven Cavity

In this paragraph, we present a 2D simulation of the deformation of an elastic ball
in a driven cavity taken from [46]. This benchmark case was originally proposed in
[149] et [134]. The initial configuration and physical parameters are given in Fig. 4.2
and Table 4.1. The initial velocity is zero inside the domain while a horizontal
velocity of 1 m.s−1 is imposed at the top and a no-slip condition is imposed on the
other boundaries. The computation is carried out on a regular Cartesian mesh using
10242 discretization points. The time step of this simulation is fixed at Δt = 10−4s.
In these simulations the elasticity is driven by the Neo-Hookean constitutive law
given in 2D by (4.22) with Je = 1 and W = χ(Tr(B)− 2). In other words

σS = 2χ

(
B − Tr(B)

2
I

)
, (4.32)
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Fig. 4.2 Initial configuration
in 2D of the elastic ball in a
driven cavity. The
computational domain is
[0, 1] × [0, 1]

1

1

0.4

0.5

∅ 0.4Fluid

Solid

Table 4.1 Physical
parameters

Medium ρ (kg.m−3) μ (Pa.s) χ (Pa)

Fluid 1 10−2 −
Solid 1 10−2 0.05

where χ denotes the elastic modulus. Note that the term proportional to identity will
be absorbed in the pressure for this incompressible version of the model.

On Fig. 4.3, the zero level set is presented at various times and compared to the
results of [134] using the same mesh but different numerical schemes (transport of
the tensor B in [134] and transport of the backward characteristics Y in our Level
Set method).

4.3.2.2 Flapping of an Elastic Rod

We present in this section a simulation of the flapping of an elastic rod taken from
[46]. In this test case, initially presented in [143], a fine elastic bar is fixed to a
circular rigid solid and immersed in a fluid. The initial configuration and physical
parameters are described in Fig. 4.4 and Table 4.2. A horizontal Poiseuille profile
uL(y) = 1.5y(0.41−y)(

0.41
2

)2 is imposed on the left side. No-slip conditions are imposed at

the top and bottom and a Neumann condition on the right ensures a free outlet of
the flow. A horizontal initial velocity U = 1.4 (resp. U = 1.6) is imposed in the
upper part y > 0.2 (resp in the lower part y < 0.2). The Reynolds number based on
the diameter of the cylinder is taken equal to 100. The wake generated behind the
elastic structure is therefore laminar.

The computation is carried out on a non-uniform Cartesian mesh with 1100×400
grid points with a mesh refinement in the region where the bar will move (30 grid
points are used across the elastic structure). The penalization method described in
Sect. 5.1 is used to impose a zero velocity inside the cylinder. The time step used
in this simulation is taken equal to 10−5. The very small value of this time step is
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Fig. 4.3 Comparison between the Level Set method (black line) and the method in [134] (red
squares) for the location of the interface at times t = 2.34, 4.69, 5.86, 8.20 (from left to right, top
to bottom). From [46]

imposed by the high value of stiffness of the elastic bar, reflected by a high value of
the parameter χ (of the order of 106). This makes this case very expansive in terms
of computational time.

We present in Fig. 4.5 the zero isovalue of the Level Set function, giving the
position of the elastic bar, as well as the vorticity at different times.

The horizontal and vertical displacements of the bar end over the time interval
[4.4, 5.8] are shown in Fig. 4.6. From this graph, we can estimate the vertical
and horizontal displacements and frequencies and compare them with the existing
literature in Table 4.3. The method used in [143] is an ALE method and the one used
in [10] couples a finite element method in the elastic bar in Lagrangian formulation
to an immersed boundary method for the fluid part.

Some caution must be exercised when comparing the different results. Indeed,
[143] and [10] use a compressible model of elasticity (with Saint Venant-Kirchhoff
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Fig. 4.4 Initial configuration for the test of the flapping rod. The computational domain is
[0, 2.5] × [0, 0.4]
Table 4.2 Physical
parameters for the test case of
the flapping rod

Medium ρ (kg.m−3) μ (Pa.s) χ (Pa)

Fluid 103 1 −
Solid 104 1 0.375 106

laws) whereas the Eulerian Level Set model is completely incompressible for both
the solid and the fluid. The parameter χ has been set empirically to reproduce
a comparable physical behavior between the different models. Despite variations
between the different computations on the values of the amplitude, all computations
agree to give a ratio close to 2 between the horizontal and vertical frequencies.

4.3.2.3 Wave Damping by Elastic Structures

In this section we present the simulations reported in [45] et [46] of wave damping
through elastic devices. This kind of simulation can be useful for the design and
calibration of coastal protection systems.

The initial configuration and physical parameters are given in Figs. 4.7, 4.8, and
Table 4.4. The velocity, pressure and free surface profile are initially calculated
with a theoretical third order solitary wave solution [97]. The initial water depth
is d = 0.5 and we have H/d = 0.06644, where H is the amplitude of the wave.
The speed of the initial wave is c = 2.29 and its peak is located at x = 2. A
Neumann condition is imposed on the right edge and a no-slip condition is imposed
on the other edges. The computation is carried out on a regular Cartesian mesh using
7000 × 230 discretization points. In this simulation the Neo-Hookean constitutive
law given in 2D by (4.32) is chosen.
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Fig. 4.5 Deformations of the elastic bar at times t = 13.96, 14.06 et 18.06. From [45]

We present in Fig. 4.9 the zero contour of the Level Set function as well as the
vorticity at different times. The energy of the wave deforms the structures and the
stored elastic energy is then released in the form of vortices which are confined by
the presence of the free surface. This induces turbulence in the upper part of the
water column (with vortices and high velocity gradients), while the structures result
in a blocking effect of the flow in the lower part.

Figure 4.10 next allows to compare the decay of the kinetic energy with rigid
or elastic structures. In the case of solid structures, as in the previous example, a
method of penalization is used to impose the no-slip condition at the walls of the
fluid. One can observe an increase in the damping effect with elastic strucutres of
about 50%.

4.3.2.4 Fluid-Structure Interaction in the Contraction of a Cardiac
Muscle Cell

The 3-dimensional example we are giving now is in the field of biophysics and
concerns the contraction of a heart muscle cell under the influence of local variations
in calcium concentration. The previous cases illustrated the capacity of the Level
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Fig. 4.6 Time evolution of horizontal and vertical displacements of the tip of the bar. From [45]

Table 4.3 Comparison of the motion of the tip of the bar between the Level Set method and the
literature for the flapping rod test case. Vertical (first column) and horizontal (second column)
amplitudes. Horizontal (third column) and vertical (fourth column) frequencies. From [45]

V ampl [m] H ampl [m] H freq [s−1] V freq [s−1]
Level Set method 0.073 0.016 4.30 2.11

[143] 0.083 0.012 3.87 1.9

[10] 0.092 0.018 3.88 1.9

Set methods to deal with large deformations. Here, the interest of an Eulerian model
of elasticity stems in particular from the fact that the equations which govern the
concentration of calcium are of the reaction-diffusion type and therefore naturally
posed in an Eulerian framework.

An additional interesting feature of this example is the anisotropy of the medium,
as the heart cells are aligned along the fibers of the heart muscle. To take this
anisotropy into account, the stress tensor is generalized in the form:

σ0 = −pI + 2α B + 2β (tr(B)B − B2)+ 2γ ∇Y−1τ ⊗ ∇Y−1τ, (4.33)

where α, β and γ are coefficients. The presence of calcium in the cell results in
active stresses which appear in the coefficient γ and can be modeled as follows

γ = γ0 + γ ′(Z(x, t))
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Fig. 4.7 Initial configuration for the wave-damping test case. The domain is [0, 32] × [0, 0.8]
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Fig. 4.8 Dimensions of the T-shaped elastic structure

Table 4.4 Physical
parameters for the
wave-structure interaction

Medium ρ (kg.m−3) μ (Pa.s) χ (Pa)

Air 1.177 1.85 10−5 –

Water 103 10−3 –

Structure 103 10−3 300

where Z denotes the intracellular concentration of Ca2+ ions, which is given by a
reaction-diffusion equation, and γ ′ is a sigmoid function. For the justification and
the details of the model as well as the numerical values of the parameters we refer to
[98]. Figure 4.11 shows the cell shape and calcium levels at three successive times.
This example and this model have also been used in a finite element implementation
in two dimensions in [120].

4.4 Fluid-Structure Coupling in the Compressible Case

We are interested in the numerical simulation of transient phenomena such as the
propagation of shock waves at gas-water interfaces, the propagation of nonlinear
elastic waves from a hyperelastic solid to a fluid and vice versa. These phenomena
can be modeled by an entirely Eulerian system of conservation laws which applies to
all materials which are all supposed to be compressible; only the constitutive law can
change, reproducing the mechanical characteristics of the medium considered. For
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Fig. 4.9 Propagation of a solitary wave in an arrangement of 11 elastic T-shaped structures. From
[46]
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Fig. 4.10 Comparison of kinetic energy damping with rigid or elastic structures. From [46]

example, an elastic material or a gas will be modeled by the same set of quasi-linear
hyperbolic partial differential equations, except for the constitutive law connecting
the strain of the material and the stress tensor.
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Fig. 4.11 Heart cell at 3 successive instants. The colors represent the concentration of calcium
inside the cell. From [98]

The systematic derivation of such models from the principles of continuum
mechanics, their thermodynamic coherence and the corresponding wave propaga-
tion models were initially studied in [76]. Their numerical simulation is delicate
because the classical Godunov schemes already lead in the case of multi-fluids to
pressure oscillations at the level of the contact discontinuity. In [1], the pressure
perturbation mechanism at the origin of this phenomenon was explained and a
first solution has been proposed. In [56] an efficient solution is presented to solve
this difficulty with the ghost fluid method which involves sharp interface between
materials. For multi-fluids, improvements to this approach requiring less storage
have been proposed in [2], with a diffuse interface, and [60], with a sharp interface.

The common idea of these methods is to define a ghost fluid that has continuous
mechanical characteristics on the interface, but the same thermodynamic state or
the same equation of state as the real fluid. This assumption leads to locally
non-conservative, stable schemes, without spurious oscillations at the interface
of materials. A different method was proposed in [107], where a conservative
cut cell type technique was developed for hyperelastic and multi-material plastic
simulations. This scheme is the basis for many subsequent works in the literature.
Another approach is introduced in [62] for the interactions between hyperelastic
solids and fluids. The authors design a conservative model of out-of-equilibrium
mixing that adapts to desired multi-material conservation laws. In this approach,
the stiffness of the material interface is compromised to avoid oscillations and to
apply an HLLC solver previously developed for a single material in [72]. Other
developments of this method include plasticity modeling [63] and an approach
dividing the system into hyperbolic subsystems [61], where each subsystem has
only three waves instead of seven.

The approach described below uses a discretization of Eulerian conservation
laws of hyperelastic compressible materials which simplify the computations of
numerical fluxes at the material interface. No ghost material is defined and no
mixing model is necessary to obtain a non-oscillatory scheme. Details of this
method as well as simulations on bubble shock and projectile impacts (modeled
with plasticity) are presented in [43, 44, 78] and in the PhD thesis of Alexia de
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Brauer [42]. We present in the following the discretization of the equations as well
as an example of 3D numerical simulation of the impact of a copper projectile in the
air.

4.4.1 Model and Constitutive Law in the Compressible Case

A Level Set function is used to follow the interface between two materials.

∂tϕ + u · ∇ϕ = 0. (4.34)

Conservation of mass, momentum and energy are given by (4.27):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu)+ div(ρu⊗ u− σ) = 0,

∂t (∇Y )+ ∇(u · ∇Y ) = 0,

∂t (ρe)+ div(ρeu− σT u) = 0.

(4.35)

Using Eqs. (2.22) and (2.5) we get the relation ρ = ρ0(Y ) det(∇Y ). If ρ0 is
constant, the conservation of mass is redundant with the equation on ∇Y . Moreover,
applying the gradient of the equation on Y makes it possible to put the equations in
the form of a hyperbolic system but imposes the new constraint ∇ × ∇Y = 0.
This constraint is sometimes called involutive constraint and characterizes the fact
that the quantity ∇Y must remain a gradient for all time. Some authors impose this
constraint by penalizing the equations [107] which complicates the models and their
numerical implementtion. One may prefer to choose to ignore this constraint. It is
indeed shown in [107] (Table 3 p. 137) that the numerical schemes make it possible
to satisfy it within the precision of the schemes.

In what follows [107] we choose a general constitutive law which will allow to
model gases, fluids and elastic solids with internal energy per unit of mass ε =
e − 1

2 |u|2 given by

ε(ρ, s,∇Y ) =

Neo-Hookean elastic solid︷ ︸︸ ︷
e

s
cv

γ − 1

(
1

ρ
− b

)1−γ
− aρ︸ ︷︷ ︸

van der Waals gas

+p∞
ρ

︸ ︷︷ ︸
stiff gas

+ χ

ρ0
(Tr(B)− 3) . (4.36)
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We then obtain with (4.26)

σ(ρ, s,∇Y ) = −p(ρ, s)I + 2χJ−1
e

(
B − Tr(B)

3
I

)
, (4.37)

where

p(ρ, s) = −p∞ − aρ2 + κ(s)

(
1

ρ
− b

)−γ
. (4.38)

Here cv , γ , p∞, a, b and χ are positive constants which characterize a given
material. The parameters a and b correspond to the van der Waals parameters. The
constantp∞ makes it possible to model fluid or solid materials where intermolecular
forces are present. The last term of the energy expression represents a Neo-Hookean
elastic solid where the constant χ is the shear elasticity modulus.

4.4.2 Numerical Scheme

Let x = (x1, x2, x3) be the coordinates in the canonical basis of R3. The system of
Eqs. (4.27) can be rewritten in a compact way

∂tΦ + ∂x1(G
1(Φ))+ ∂x2(G

2(Φ))+ ∂x3(G
3(Φ)) = 0. (4.39)

We discretize (4.39) with a finite volume method on a Cartesian mesh. Let Δxibe
the grid size in the xi direction and Ωi,j,k the control volume centered at the node
(iΔx1, jΔx2, kΔx3). The semi-discretization in space of (4.39) on Ωi,j,k is given
by

∂tΦi,j,k + G1
i+1/2,j,k −G1

i−1/2,j,k

Δx1
+ G2

i,j+1/2,k − G2
i,j−1/2,k

Δx2

+ G3
i,j,k+1/2 −G3

i,j,k−1/2

Δx3
= 0. (4.40)

The fluxes in (4.40) are computed by approximate one-dimensional Riemann solvers
in the direction orthogonal to the faces of the cells of the Cartesian mesh. We thus
have

G1
i−1/2,j,k ≈ F(Φi−1,j,k;Φi,j,k) G1

i+1/2,j,k ≈ F(Φi,j,k;Φi+1,j,k) (4.41)

G2
i,j−1/2,k ≈ F(Φi,j−1,k;Φi,j,k) G2

i,j+1/2,k ≈ F(Φi,j,k;Φi,j+1,k) (4.42)

G3
i,j,k−1/2 ≈ F(Φi,j,k−1;Φi,j,k) G3

i,j,k+1/2 ≈ F(Φi,j,k;Φi,j,k+1) (4.43)
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where F(· ; ·) is the numerical flux. The fluxes are the same in the three spatial
directions, so it is enough to consider the one-dimensional problem in the x1
direction

∂tΨ + ∂x1(F (Ψ )) = 0. (4.44)

One can then show that the wave speeds (the eigenvalues of F ′(Ψ )) are of the form

ΛE =
{
u1, u1, u1 ±

√
α1

ρ
, u1 ±

√
α2

ρ
, u1 ±

√
α3

ρ

}
, (4.45)

where α1, α2 et α3 depend on the conservative variables. We will refer to [43] for
an exact expression of these wave speeds.

Consider Eq. (4.44) with the initial condition

Ψ (x, t = 0) =
{
Ψl if x ≤ 0,
Ψr if x > 0.

(4.46)

The numerical flux F(Ψl;Ψr) is determined at interface x = 0 using an approximate
Riemann HLLC solver [138]. Although the exact model involves seven distinct
waves (see (4.45)), the solver approximates the solution using only three waves,
namely the contact discontinuity u�1 and the fastest waves sl and sr . This only
involves two intermediate states Ψ− et Ψ+, as shown on Fig. 4.12.

x

t

sru�
1sl

Ψr

Ψ+Ψ−

Ψl

Fig. 4.12 Representation of the waves in the HLLC solver
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The HLLC scheme is based on the assumption that each wave is a shock and the
Rankine-Hugoniot relations give

⎧⎪⎪⎨
⎪⎪⎩
F(Ψr)− F+ = sr (Ψr − Ψ+),

F+ − F− = u∗
1(Ψ

+ − Ψ−),

F− − F(Ψl) = sl(Ψ
− − Ψl).

(4.47)

These relations allow to completely determine the states Ψ± and their associated
fluxes F±. The numerical flux at x = 0 is then given by

F(Ψl;Ψr) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F(Ψl) if 0 ≤ sl,

F− if sl ≤ 0 ≤ u�1,

F+ if u�1 ≤ 0 ≤ sr ,

F (Ψr) if sr ≤ 0.

(4.48)

At the interface between the two materials, one uses the fluxes F± which leads, as
for the ghost fluid schemes, to a locally non-conservative scheme because F− �=
F+. It is however consistent as F± are fairly regular states to the left and right of
the interface and F+ = F− when these states are identical. In [78] it was indeed
shown that the conservation error is negligible because the number of cells for which
a non-conservative numerical flux is used is always negligible compared to the total
number of cells. The scheme is extended to second order in space using a MUSCL
piecewise linear reconstruction with a minmod limiter. A second order Runge-Kutta
time stepping is used and the time-step is limited for numerical stability on the basis
of the speeds of the fastest waves. Finally, the level set equation solved to capture
the interface between the different media is discretized with a fifth order WENO
scheme using also a second order Runge-Kutta scheme.

4.4.3 Numerical Illustration

We present a simulation of the impact of a projectile at a speed of 800 m.s−1 on a
plate in the air taken from [43]. The initial configuration and physical parameters
are described in Fig. 4.13 and Table 4.5.

In this simulation, the projectile and the plate are initially adjacent. The projectile
and the plate form a single material and are described by the same level set
function. Neumann boundary conditions were imposed on the edges of the box.
The computation was carried out on 216 processors and took 60 wall-clock hours
with a mesh using 6003 grid points.

Results are displayed on Fig. 4.14. The elastic material is subject to deformation
and oscillations while moving to the right.
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Fig. 4.13 Initial configuration for the impact test case

Table 4.5 Physical parameters for the impact test case

ρ u1 p a b p∞ χ

Media [kg.m−3] [m.s−1] [Pa] γ [Pa.kg−2m6] [kg−1m3] [Pa] [Pa]

Copper
(plate)

8900 0 105 4.22 0 0 3.42 · 1010 5 · 1010

Copper
(projectile)

8900 800 105

Air 1 0 105 1.4 0 0 0 0
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Fig. 4.14 Impact of a projectile on a cylindrical plate. Schieren images (showing density
gradients) of cuts through x = 0.03 m, y = 0 m et z = 0 m and zero contour of the Level Set
function at times t = 24µs, t = 43µs, t = 88µs, t = 178µs, t = 355µs and t = 710µs, from
left to right, top to bottom. From [43]



Chapter 5
Immersed Bodies in Incompressible
Fluids: The Case of Rigid Bodies

The traditional way to deal with the interaction of a fluid with a rigid solid is to
solve the Navier–Stokes equations in the fluid, using a mesh fitting with the solid
boundary, to calculate from the solution of these equations the forces being exerted
on the solid, and to make the solid evolve by using these forces.

If one seeks to avoid using an adapted mesh, a fictitious domain approach [74, 75]
instead consists in using the Navier–Stokes equations in a computational domain
including solids and in treating the constraints of no-deformation of rigid solids
using Lagrange multipliers in a variational framework.

Another approach, which would be an extension of the methods developed in
this book in an Eulerian framework, can also be to consider this problem of fluid-
structure interaction as a limiting case of the elasticity cases seen previously, for
example by considering the surface of the solid as an elastic membrane, with a
stiffness tending towards infinity. However, this approach can be ineffective for two
reasons. On the one hand, it artificially brings into play drastic stability conditions,
and, on the other hand, it risks leaving small deformations persist in the rigid solid.

A third approach, suggested by Patankar [126], consists in treating the fluid/solid
system like a flow with variable density, and in projecting at each time step
the velocity field in the solid phase on the fields corresponding to the rigid
displacements. In the following, we will focus on this type of method. More
precisely we describe a generalization of the Patankar method in a continuous time
formalism based on a penalization method.

Although this part of the book does not heavily rely on the use of Level Set
methods, we opted to include it in order to to give a comprehensive study of fluid-
structure interaction involving all kind of solid bodies. Moreover, our choice to focus
on penalization methods to deal with the fluid-structure interaction in this case is due
to the fact that these methods are based on clear-cut mathematical definitions and
are simple to implement.

In the sequel, we first recall the definition of the penalization method for
a flow around an obstacle having a determined velocity, before turning to the
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extension of the method to model the two-way fluid-structure coupling. We then
describe extensions of the method to applications where bodies are rigid up to
some prescribed deformation. Remarks on the implementation of the method and
numerical illustrations complete the chapter.

5.1 The Penalization Method for Flow Around Bodies
with Given Velocity

This method, originally proposed by Caltagirone [26] and analyzed by Angot,
Bruneau and Fabrie [5] consists in solving the following system, in a domain Ω

containing fluid and solid:

∂tuη + uη · ∇uη + ∇p − μΔuη = η−1χS(u
S − uη), (5.1)

divuη = 0. (5.2)

In these equations, we have assumed the density of the fluid equal to 1, S denotes
the solid, χS its characteristic function, and uS its velocity. The parameter η << 1
is the penalization coefficient.

The interpretation of this system is simple: apart from the solid (when χS is
zero) it reduces to the fluid equation, and in the solid, the preponderant terms of the
equation ensure that the speed coincides with that of the solid. The analysis given
in [5] confirms that when η tends towards zero, the solution of (5.1) tends towards
that of the Navier–Stokes equations in the fluid domain, with no-slip boundary on
the walls of the solid.

Without going into the details of this result and its proof, we can notice that if we
suppose for simplicity that uS is independent of t and uη = 0 on ∂Ω (we recall that
Ω is the computational domain including the fluid and the solid ), by multiplying
Eq. (5.1) by uη − uS we easily find

1

2

d

dt
‖uη − uS‖2

2 + μ‖∇(uη − uS)‖2
2 + η−1

∫
S

|uη − uS |2dx = 0,

uη − uS → 0 dans L2([0, T ] × S), when η → 0.

In what follows, to simplify the writing, we will forget the index η in the notation
of the approximations of the unknowns.
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5.2 The Case of the Two-Ways Fluid-Solid Interaction

If the velocity of the solids is not given, but results from the hydrodynamic forces
exerted on them, it suffices to use the penalization equation (5.1) and couple it with,
on the one hand, an equation expressing the transport of the solid with the fluid
velocity, and, on the other hand an equation giving the velocity of the solid as a
projection on the rigid displacements of the velocities inside the body. We obtain
the following system, considering the case, to simplify the writing, of a single rigid
object:

∂t (ρu)+ div(ρu⊗ u)− μΔu+ ∇p + 1

η
χS(u− uS) = ρg (5.3)

divu = 0, (5.4)

uS = 1

MS

∫
Ω

ρuχS dx +
(
J−1
S

∫
Ω

ρ(r × u)χS dx

)
× r, (5.5)

∂tρ + u · ∇ρ = 0, (5.6)

∂tχ
S + u · ∇χS = 0. (5.7)

In Eq. (5.5) MS = ∫
ρχS denotes the mass of the solid and we have included the

effect of gravity with the term ρg in the right hand side of (5.3). As we will see
below, the velocity uS is the velocity of the solid obtained by projection of the fluid
velocity inside the body on the rigid motions. The notation JS above designates the
inertia tensor of the solid, defined by

JS =
∫
Ω

ρχS(r2
I − r ⊗ r) dx

where r = x −M−1
S

∫
Ω ρχSx dx.

In the above system, unlike in the previous case, it is important to distinguish
the densities of the fluid and the solid, which leads to add the conservation of mass
equation (5.6) for the density ρ. If the fluid has a uniform density ρf and the solid
has a density ρS we can obviously do without Eq. (5.6) and directly write

ρ = ρf + (ρS − ρf )χ
S.

Equation (5.7) can be replaced by a transport equation on a level set function whose
zero level set corresponds to the surface of the object and is positive inside the
object:

∂tϕ
S + u · ∇ϕS = 0. (5.8)
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The indicator function of the solid is then given by

χS = H(ϕS)

where H denotes the Heaviside function, possibly regularized as we did in the
previous chapters.

The proof of the convergence of the solutions of this system, when η tends
towards 0, towards the solution of the coupled rigid fluid-solid system, is rather
technical and we refer the reader to [20]. However, to check the consistency of the
method, it is useful and simple to check that the velocity field defined by (5.5) is
indeed the projection of u on the rigid displacements.

Let be a velocity field u and a density ρ defined in L2(Ω), χS the characteristic
function of an open set S, and V (u), ω(u) the average translational velocity and
rotation in S defined by (5.5):

V (u) = 1

MS

∫
Ω

ρuχS dx , ω(u) = J−1
S

∫
Ω

ρ(r(x)× u)χS dx,

where r = x − M−1
S

∫
Ω
ρχSx dx, and MS and JS denote the mass and the inertia

tensor defined above.

Proposition 5.1 Let d be a rigid displacement, i.e. such that d(x) = Vd +
ωd × r(x) where Vd and ωd are given vectors of R3. Then

∫
Ω

χS(x) (V (u)+ ω(u)× r − u(x)) · d(x) dx = 0. (5.9)

Proof We can write

∫
Ω

ρχS [u− (V (u)+ ω(u)× r)] · [Vd + ωd × r] dx

= Vd ·
∫
Ω

ρχSu dx + ωd ·
∫
Ω

ρχS(r × u) dx − V (u) · Vd
∫
Ω

ρχS dx

− V (u) ·
(

ωd ×
∫
Ω

ρχSr(x) dx

)
− Vd ·

(
ω(u)×

∫
Ω

ρχSr(x) dx

)

−
∫
Ω

ρχS(ω(u))× r) · (ωd × r(x)) dx

= Vd · (MSV (u))+ ωd · (JS ω(u))− V (u) · (MSVd)
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− V (u) ·
(

ωd ×
∫
Ω

ρχSr(x) dx

)
− Vd ·

(
ω(u)×

∫
Ω

ρχSr(x) dx

)

−
∫

ω

ρχS(ω(u)× r) · (ωd × r) dx.

As (ω(u)× r) · (ωd × r) = (ωd · ω(u)r2 − (r · ωd )(r · ω(u)), we have∫
Ω

ρχS(ω(u)× r) · (ωd × r) dx = ωd · (JS ω(u)).

Finally, by definition of r ,
∫
Ω

ρχSr dx = 0, so that we get

∫
Ω

ρχS(u− V (u)− ω(u)× r) · d dx = ωd · (JS ω(u))− ωd · (JS ω(u)) = 0.

��
It should be noted that it is also natural to treat the problems of the interaction of
fluid with rigid bodies with another method of penalization, namely by penalizing
the deformations of the rigid object. In [87] for instance, the variational formulation
of the Navier–Stokes equations is classically treated as a minimization problem and
a term of penalization of the deformations in the solid is added to the functional to
be minimized to ensure a rigid displacement in this one. The disadvantage of this
method is that it is likely to leave small deformations in the solid, which can be a
difficulty in simulations over long times or in very irregular flows.

To end this section, let us note that, if a main interest of the methods of
penalization is to allow to avoid the computations of the forces to determine the
dynamics of the fluid-solid system, the method still makes it possible to calculate
a posteriori and in very simple way these forces. Indeed, according to [5], we can
write the following relation for the forces exerted on the solid S

∫
∂S

σ (u, p) · n ds = lim
η→0

1

η

∫
Ω

χS(uS − u) dx, (5.10)

where σij (u, p) = μ(∂xj ui +∂xiuj )−pδij designates the stress tensor. In the above
formula, we recall that, by abuse of notation, u denotes the solution of the system
(5.3)–(5.7), and depends therefore obviously on η.
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5.3 Remarks on the Numerical Implementation

The method described above can be implemented with any discretization method for
the incompressible Navier–Stokes equations. Typically, a natural splitting method
consists at each time step to:

(i) solve the Navier–Stokes equation:

∂t (ρu)+ div(ρu⊗ u)− μΔu = ρg, (5.11)

(ii) compute uS on the basis of Eq. (5.5) using the result of (5.11),
(iii) take into account the penalization term by solving the equation

∂t (ρu) = 1

η
χS(u− uS) (5.12)

(iv) add a pressure gradient so as to make the final velocity field divergence free,
by solving the equation

Δp = divu∗, (5.13)

associated with the appropriate conditions at the boundary of the computational
domain Ω , where u∗ denotes the result of the previous steps,

(v) finally solve the advection equation of the Level Set function giving the fluid-
solid interface and the characteristic function of the solid.

Equations (5.11) and (5.13) are solved by taking into account the boundary
conditions at the limits of the computational domain (we recall that this domain
is independent of the fluid-solid interface).

The time discretization of Eq. (5.12) calls for some remarks. Assuming, for a
sake of simplicity of the notations, a uniform density in the fluid-solid system, an
explicit discretization of this equation gives the formula

u′ = u+ Δt

η
χS(uS − u)

where Δt is the time step, uS denotes the velocity of the solid defined by (5.5) and
u is the velocity resulting from the preceding stages of the algorithm. Equivalently
we obtain

u′ = u

(
1 − Δt

η
χS
)

+ Δt

η
χSuS.

We see that in the particular case where Δt = η one obtains for u′ the projection
of u on the velocities corresponding to the rigid displacements. In that case the
penalization method coincides with the projection method of projection of [126].
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In addition, the condition Δt ≤ η appears as a necessary condition to ensure the
stability of this step. However, as we will see later, it is important in practice to take
very small values for the penalization coefficient η, to ensure good continuity of the
velocity at the solid-liquid interface. With this implementation of the method, this
would require a time step which can prove to be prohibitive.

Alternatively, an implicit time discretization for the penalization step is very
simple to write and does not entail any additional cost compared to the explicit
scheme. It is written, as for the original method with prescribed body velocity [5]

u′
(

1 + Δt

η
χS
)

= u+ Δt

η
χSuS,

or equivalently

u′ = u+ΔtχSuS/η

1 +ΔtχS/η
. (5.14)

This scheme is obviously monotonous, in the sense that if uS and u are positive, so is
u′, for any value of the time step. It therefore makes it possible to use small values of
η, and therefore to ensure a good matching of velocities at the walls, without having
to use prohibitively small time steps. Below we will show numerical illustrations of
these properties.

A final remark concerning the implementation of these methods concerns the
monitoring of the solid(s). The transport equation (5.7), even if it is solved with a
precise method, can lead to a distortion of the solids, especially as the continuity
of velocities at the walls of the solid is not ensured exactly. We can economize on
solving this equation and avoid this source of error by using the fact that moving
rigid solids is a purely algebraic operation that can be done exactly.

We start by replacing Eq. (5.7) with an advection equation based on the velocity
of the solid:

∂tϕ
S + uS · ∇ϕS = 0.

Consider the characteristics X associated with the velocity field uS and set Xn =
X(tn, x) for a point x in the solid. By choosing a constant velocity field between 2
time steps tn and tn+1, we can deduce Xn+1 from Xn by rotation and translation.
More precisely if we define

θn = |ωn|Δt , ωn

|ωn| = (α, β, γ ),
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where ωn denotes the rotational velocity of the solid uS at time tn, consider the
rotation around the center of gravity cn of S at that time with matrix

Rn =
⎡
⎣ 1 − 2b2 − 2c2 2ab − 2cd 2ac + 2bd

2ab + 2cd 1 − 2a2 − 2c2 2bc − 2ad
2ac − 2bd 2bc + 2ad 1 − 2a2 − 2b2

⎤
⎦

where

a = α sin
θn

2
, b = β sin

θn

2
, c = γ sin

θn

2
, d = cos

θn

2
.

With these notations, the rigid displacement of S can be written exactly

Xn+1 = cn + uSΔt + Rn(Xn − cn).

We can incrementally calculate the matrices Mn and the vectors V n, such as

Xn+1 = Mn+1X0 + V n+1.

The above calculations thus make it possible to derive X0 = x from Xn+1. To
calculate the Level Set function ϕ at time tn+1 it is therefore sufficient to do this
calculation at each grid point, then to interpolate the initial level set function (built
from the solid at initial time) to the corresponding X0 points.

5.4 Extensions of the Penalization Method

One advantage of the penalization method described above is the possibility of
adding in a seamless fashion to the dynamics of solids external forces other than
those coming from hydrodynamics.

A first example is given in [73]. In this case, the point is to add to the velocities
obtained by averaging over the solid phase, and therefore resulting from the
hydrodynamic forces, a velocity field associated with deformations prescribed a
priori in the solid. The targeted application is the swimming of eel fish and the
deformations are calculated from models based on a distribution of thicknesses
of the solid around an edge, itself defined by a distribution of curvature, variable
over time and defining the undulatory movements of the swimmer. By time-
differenciation, these deformations allow to define a velocity field in the solid udef .
This velocity field is added to the velocity field defined by (5.5) and inserted into
the penalization term in the right hand side of (5.3). Because udef is generally not
divergence-free, the computation of the pressure term in the Navier–Stokes equation
must take this divergence into account.

Another extension given in [9, 33] consists in adding an elastic force in the
calculation of the velocity of the solid. We can for example consider the case of
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an object attached to a spring, held in the direction orthogonal to the spring and free
to move in the direction of the spring. In this case, from the position of the center
of gravity of the solid the return force of the gives an acceleration of the object in
the direction of the spring and the velocity calculated by (5.5) can be updated at
each step time by incrementing it by this acceleration. The penalization term of in
the right-hand side of (5.3) is calculated from the solid velocity resulting from this
operation.

These various extensions will be detailed and illustrated in the following
paragraph.

5.5 Numerical Illustrations

To introduce this section, let us start with the simple case of the free fall of an object
under the effect of gravity in a fluid. Figure 5.1 taken from [20] deals with the
case of a two-dimensional cylinder. The velocities are plotted in a horizontal section
passing through the center of the cylinder for different values of the parameter η.

In this example, the system (5.3)–(5.7) is discretized by the penalization method
just described, using a staggered grid. Pressure and characteristic function of the
solid are calculated at the same point, the velocity components being classically
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Fig. 5.1 Velocity profiles for the sedimentation of a cylinder with different values of the
penalization coefficient. From [20]
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shifted by half a cell to the left or up, which ensures that the zero divergence
condition is exactly satisfied. The transport of the characteristic function is solved
by a fifth order WENO method. The calculation box is [0, 2] × [0, 6], the cylinder
has a diameter of 0.250 and a density 1.5 in a fluid of density 1. The acceleration of
gravity g is taken equal to 980. The grid size is Δx = 1/256 and the time step is
Δt = 10−4 which corresponds to a CFL around 0.3 at time t = 0.1. We can see that
the velocity profile converges well when η reaches small values (below η = 10−6),
and also that the explicit scheme with η = Δt , which corresponds to the method of
[126], under-evaluates the speed of the cylinder by about 10%. This justifies the use
of small values of η and therefore the use of an implicit method for the penalization
equation.

5.5.1 Kissing and Tumbling of Two Spheres

The second example is borrowed from [34] and corroborates this finding. This is the
three-dimensional case known as the “kissing and tumbling” of two spheres. Two
spheres initially located one above the other fall by gravity. At first they fall with
the same acceleration. In a second stage, the wake produced by the first allows the
second to catch up with it. A third phase keeps the two spheres in contact. Finally his
system is quickly destabilized and the two spheres separate again. In this experiment
the contact between the spheres is taken into account by repulsive forces described
in Sect. 6.1.2.

Figure 5.2 represents the vertical speed of the two spheres obtained with the
penalization method, the projection method of [126], and the variational method

Fig. 5.2 Evolution of the vertical speeds of two spheres in a “kissing-tumbling” simulation.
Results obtained with the projection method [126] (solid line), the fictitious domain method [74]
(dotted line) and the penalization method (dashed red line). From [34]
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of [74]. We see in this figure that the method of penalization and the variational
method of [74] are in good qualitative agreement, in particular for the contact time
and the separation dynamics. Only the duration of the contact differs. This is not
surprising since the equilibrium of the contact spheres in the vertical position is
unstable as soon as the velocity of the of the spheres is large enough. The duration
of the kissing phase therefore strongly depends on the response fo the algorithm to
this instability. On the other hand the results differ quickly from those obtained with
the projection method of [126], although it is conceptually close to the method of
penalization. The reason for this difference is probably due to a better accounting
of the continuity of the velocity linked to the large values allowed by the implicit
method (5.14) in the penalization method, thus confirming the results of Fig. 5.1.

5.5.2 Flows Around Oscillating Obstacles

The two examples which follow illustrate extensions of the penalization method
mentioned in the preceding paragraph. In these examples the numerical method used
for the numerical discretization of the Navier–Stokes equations is a semi-Lagrangian
method based on a velocity-vorticity formulation of the equations.

Consider first the case of a two-dimensional cylinder mounted on a spring
(Fig. 5.3) and subject to a uniform flow transverse to the spring. The motion of
the cylinder is constrained along the axis of the spring. If xG denotes the center of
the cylinder and x0 its position at rest, the cylinder therefore undergoes a transverse
force equal to

Fe = − k

m
(xG − x0)

Fig. 5.3 Sketch
corresponding to the
oscillation of a cylinder
driven by a return force in a
transverse flow

ym

D

k b

U8
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where k is the stiffness of the spring and m its mass, with m = ∫
Ω
ρ χS dx. In [9]

the implemented method can be summarized in the following steps, for each time
iteration:

• use the penalization method (5.1) to solve the Navier–Stokes equations with the
prescribed obstacle velocity

• use (5.10) to deduce the hydrodynamic forces exerted on the solid
• add the resistance forces of the spring and (possibly) the forces of gravity
• finally use the resulting force to update the position and velocity of the solid.

The approach followed in [33] is to solve the Navier–Stokes equations with
variable density (5.3)–(5.7) for the complete interaction problem, and to increment
to the velocity obtained by (5.5) the acceleration resulting from the resistance of
the spring. To deal with this external force, it suffices to add on the right hand side
of Eq. (5.5) the term −k(xG − x0) with xG = m−1

∫
ρx χS dx. It is this method

that we illustrate below. It is more direct than the method of [9] but requires in the
general case to solve the Navier–Stokes equations with variable density.

In the results which follow, the cylinder and the fluid have uniform masses ρS et
ρf respectively, and we use the normalizations of [128] namely

m� = π

2

ρS

ρf
, k� = 2k

ρf

If f � is the natural frequency of the system, corresponding to the Strouhal number
of the wake of the cylinder, resonance with this frequency is reached for

k�eff = k� − 4π2f �m� = 0.

The parameters used in these simulations are as follows:

• case 1 (zero stiffness): k� = 0, m� = 4,
• case 2 (strong stiffness): k� = 20, m� = 1,
• case 3 (close to resonance): k� = 2, m� = 1.

Figure 5.4 shows the spring amplitudes for these different cases. After a transient
phase during which the wake remains symmetrical and the cylinder remains
motionless, very different dynamics are observed depending on the case. Low
amplitudes can be observed in the case with zero stiffness (in which case the
cylinder can move freely in the direction transverse to the flow under the sole effect
of hydrodynamic forces—case 1) or, on the contrary, in the case of very strong
stiffness (case 2). In contrast, when mass and stiffness are close to resonance with
the Strouhal number of the wake (case 3), stronger oscillations are observed. These
differences in spring dynamics are accompanied by changes in the wake (Fig. 5.5).
Case 3, close to resonance, exhibits a “narrowed” wake in the direction of flow,
corresponding to a higher Strouhal number. In these simulations the computation
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Fig. 5.4 Oscillations of a cylinder attached to a string for various stiffness and mass values. Case
1 (zero stiffness): blue curve; case 2 (high stiffness): green curve; case 3 (close to resonance):
magenta curve

domain is the box [0, 3]2. The cylinder has a diameter equal to 0.2 and is centered
at (0.75, 1.5).

The case we have just seen can be extended to a three-dimensional configuration,
with a vibrating cylinder free to move in the direction transverse to its axis and to
the flow, and subject to an elastic return force. More precisely, if z is the coordinate
along the cylinder axis, yG(z, t) the center of gravity of the section of the cylinder
with z coordinate at time t , at each time step and on each cross section of the
cylinder one adds to the speed obtained by penalization, the acceleration in the
transverse direction given by the term −k(yG(z, t) − yG(z, 0)) where k is the
stiffness coefficient.

Figure 5.6 show sections of vorticity and the shape of the cylinder in the reference
case without spring (k = 0) and in the case k = 50. They illustrate again that the
deformations of the obstacle have an important effect in its wake. The Reynolds
number based on cylinder diameter and upstream velocity is set at the value Re =
300. The first case shows the classical three-dimensional structure of the wake, with
the presence of longitudinal vortices in the direction of flow that add to the two-
dimensional von Karman alley. The case k = 50 shows a much more chaotic flow,
although the displacements of the cylinder are very small (on the order of 5% of the
radius of the cylinder).
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Fig. 5.5 Wake behind the cylinder in case 1 (zero stiffness, top picture) and case 3 (close to
resonance, bottom picture)

5.5.3 Anguilliform Swimmers

The following case is that of anguilliform swimmers studied in [73]. In this
application, the velocities resulting from hydrodynamic forces is added to a velocity
field resulting from prescribed deformations of the swimmer’s geometry.
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Fig. 5.6 Vorticity strength in the wake of a vibrating cylinder, in the case with zero stiffness (top
picture), and for k = 50 (bottom picture). On the left, cross-section in a plane perpendicular to the
cylinder axis. On the right, isosurface of the vorticity

These deformations are parameterized as follows. The geometry of the swimmer
is defined by half thicknesses w around a central bone, and, for 3D cases, by a
height function h. For an anguilliform swimmer, the thicknesses are defined through
a function of the curvilinear abscissa along the bone by the following formulas,
where L is the length of the bone:

w(s) =

⎧⎪⎪⎨
⎪⎪⎩

√
2whs − s2 0 ≤ s < sb

wh − (wh −wt)
(
s−st
st−sb

)2
sb ≤ s < st

wt
L−s
L−st st ≤ s ≤ L

h(s) = b

√
1 −

(
s − a

a

)2
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Fig. 5.7 Local coordinate system used to define the dynamics of a swimmer (left picture) and
velocity field around the bone (right picture). From [73]

(a) (b)

U
||

U
| |

Fig. 5.8 Longitudinal (left figure) and transverse (right figure) velocities for an anguilliform
swimmer obtained by the penalization method [73] (black curve) and he finite volume method
[91] (red curve). From [73]

with the following parameters: wh = sb = 0.04L, st = 0.95L, wt = 0.01L,
a = 0.5L and b = 0.08L. The motions of the swimmer are defined by a curvature
H oscillating with time according to the formula

H(s, t) = α(s) sin

(
2π

(
t

T
− θ(s)

))

where α(s) defines a reference curvature and θ(s) a phase shift along the bone,
defined linearly. The use of a coordinate system attached to the swimmer’s head
(see Fig. 5.7) then makes it possible by differentiation with respect to time of the
Frenet equations

dt
ds

= Hn ,
dn

ds
= −H t,

where t, n are respectively the tangents and normals, then by integration along the
bone, to define the velocities along the bone, then by propagation along the normal,
in the whole swimmer. This provides the velocity field uDEF which must be added
to uS in the right hand side of (5.12).

Figure 5.8 shows the velocities obtained by this method in comparison with a
ALE-type finite volume method [91] where the fluid is meshed at each time-step
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Fig. 5.9 Vorticity field in the wake of a couple of three-dimensional anguilliform swimmers. From
[73]

to fit the swimmer boundary and where the forces are calculated explicitly on its
surface.

Figure 5.9 is an example of a wake behind a couple of three-dimensional swim-
mers. This last example illustrates the fact that the method very simply takes into
account the presence of several bodies, unlike methods based on body-fitted meshes.
The advantage of this method is that it allows relatively low cost simulations even in
complex 3D configurations where several bodies interact through their wakes. This
has enabled its use in [73], in combination with stochastic optimization algorithms,
to determine optimal swimming modes for individual or group swimmers.



Chapter 6
Computing Interactions Between Solids
by Level Set Methods

Multi-body systems, such as granular materials, are often dealt with in a discrete
way. Contacts and interactions are written as inequalities and systems are described
through non-smooth dynamics. An important literature, starting with the work of
Moreau [109, 110], has been devoted to this topic and we refer for instance to [54]
and the references therein.

In the context of Computational Fluid Dynamics, the question of the interaction
between several solids immersed in a fluid can be stated in several ways.

In a first type of application, this question corresponds to the need, purely from
the numerical point of view, to avoid the collision, or even the penetration, of objects
in a simulation where the objects are led to be confined or to approach solid walls or
when the flow is irregular and likely to cause, by accumulation of numerical errors,
the solids to come into contact in a non-physical way.

A natural approach proposed in particular in [40, 86, 102] consists in refining the
mesh in inter-particle space in order to accurately resolve the flow fields. However,
these strategies can turn out to be costly.

It is also possible to model the effect of fluid flow in the interparticle space, when
it becomes very small, by lubricating forces [39, 101]. Due to the singular behavior
of the forces and the discretization errors in time, this approach seems insufficient
and can lead to contacts and overlaps at low spatial resolution.

Other numerical strategies, less respectful of the underlying physics, consist
in imposing a constraint on the movement of the objects by means of artificial
repulsive forces at short range [34, 75] or by directly applying a minimum distance
between the particles [101]. Unlike the refinement strategy, these collision methods
allow, in addition to managing overlaps and contacts between particles, to use a
coarser discretization, significantly reducing the computational cost compared to
the method proposed in [86].

Finally, in other types of applications where we seek to follow more closely the
physics of interactions between objects and with flow, we may wish to take into
account, for example, electrostatic effects or cohesion forces between particles.
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In these different examples, the interactions between objects are reflected by
forces exerted on the surfaces of the objects. In an Eulerian method where these
surfaces are not followed explicitly, a natural approach is therefore to rely on the
formalism described in Sect. 1.4 allowing to translate surface forces into volume
forces using Level Set functions, which moreover give the distances between the
different objects. This approach is described in Sect. 6.1. If the flow includes a large
number of objects, the question arises of the efficient calculation of these interac-
tions, that is to say of avoiding calculation all the two-by-two interactions between
objects. Section 6.2 shows how, drawing inspiration from methods developed in
image processing, one can limit these calculations to the closest interactions.

6.1 Level Set Method to Model Interaction Forces

Level Set methods can be used to detect collision or penetration between objects.
If the Level Set function is a signed distance, it evaluates the size of the overlap
between the objects. Repulsive forces, depending on this volume, can then be
implemented to remove this overlap. This is the method for example used in [27].

The method we describe below is more straightforward, in the sense that the
Level Set functions describing the boundaries of the objects are used to calculate
repulsive forces that are directly built into the fluid solver.

6.1.1 Point Repulsion Model

To start with, let us consider a point-to-point repulsive force model. To fix the ideas,
consider the following model, used in [34]:

ẍ(t) = κ

x(t)
exp (−x(t)/ε). (6.1)

In this model the point with coordinate x(t) > 0 interacts with the point (obstacle)
located at x = 0, κ is a positive coefficient which gives the stiffness of the collision
and ε is the range of the force. This is a Hamiltonian system with energy given by

E(x) =
∫ 1

x

κ

s
exp(−s/ε) ds =

∫ 1/ε

x/ε

κ

y
exp(−y) dy.

This energy makes it possible to assess the thickness of the skin of the obstacle
on which the bouncing of objects is made. Let us indeed assume an object at an
initial distance x(0) = x0 from the obstacle and with velocity ẋ(0) = v0 < 0
directed towards the obstacle. The rebound will take place at a distance x(t) such
that ẋ(t) = 0. If we denote by x� this position, we will therefore have, due to the
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conservation of energy

E(x0)+ v2
0

2
= E(x�),

that is to say

∫ x0/ε

x�/ε

1

y
exp(−y) dy = 1

2

v2
0

κ
.

If we note

Fε(x) =
∫ x0/ε

x

1

y
exp(−y) dy , F (x) =

∫ +∞

x

1

y
exp(−y) dy.

and Gε = F−1
ε , G = F−1, we can therefore write

x� = ε Gε(v
2
0/2κ) � ε G(v2

0/2κ) for ε � 1. (6.2)

This relation confirms that the thickness over which the rebound takes place is of the
order of ε. It also shows that in principle the coefficient κ can be chosen proportional
to the square of the relative velocity of the objects “before contact”.

6.1.2 Surface Repulsion Model by Level Set Method

Let us now consider the case of a family of objects Ωi , with boundaries Γi . To
extend the point model described above, we can proceed as follows to describe the
forces exerted by the object Γj on the object Γi for two distinct indices i and j :

• extend the dynamical system (6.1) to all the boundary points of Γi by transcribing
its right-hand side into a surface force on Γi and by using a Level Set function
associated with Γj to determine the direction of this force and the distance to the
object Ωj .

• translate this surface force into volume force using a Level Set function associ-
ated with Γi , using the Level Set formalism seen in Chap. 1.

By summing over all the interactions between objects, in the case where the Level
Set functions are signed distances to the objects, we obtain the following force
model:

fcontact(x) = −ρ
∑
i,j

κij

ε
ζ

(
ϕi(x)

ε

) ∇ϕj (x)
ϕj (x)

exp (−ϕj (x)/ε).
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If the Level Set functions are not signed distances (for example when we consider
deformable objects and we want use the Level Set functions of the interfaces to
define elastic forces as well), we obtain a model by locally approaching the distance
to the object Ωj par

ϕj
|∇ϕj | , as we saw in Sect. 1.5.2. By further renormalizing the

Level Set functions in the regularization ζ , we end up with the formula

fcontact(x) = −ρ
∑
i,j

κij

ε
ζ

(
ϕi(x)

ε|∇ϕi(x)|
) ∇ϕj (x)

ϕj (x)
exp

(
− ϕj (x)

ε|∇ϕj(x)|
)
. (6.3)

In this equation ρ denotes the density of the fluid-object system, which must be
evaluated as a function of the densities ρi of the objects by the formula

ρ(x) =
∑
i

ρiχi(x)

where χi is the indicator function of Ωi (Ω0 denoting the fluid domain). It is this
contact force that is used in the experiment of Fig. 5.2. It should be noted that in this
formula the small parameters giving, on the one hand, the thickness of the rebound
and, on the other hand, the smoothing of the forces on the surfaces have been taken
equal but this is obviously not necessary.

6.1.3 Taking into Account Cohesion and Damping Forces

In some applications it is desirable to take into account the actual physics of
interactions between objects. This is the case, for example, in granular media made
up of cohesive sediments found in river beds, coastal systems or mudslides. The
grains forming these sediments interact via repulsive forces similar to those seen
previously as well as Van der Walls type cohesion forces at very short range. These
latter forces are able to ensure the cohesion after contact of agglomerated grains.
The specific forms, and in particular their range, of these repulsive and cohesive
forces are obviously dependent on the rheology of the grains and the properties of
the liquids in which they are immersed.

In the absence of fully satisfactory macroscopic models to describe such flows,
direct simulation methods solving the grain-scale flow are becoming increasingly
popular [7]. In [145] for example, the grains are spheres of different sizes and the
interaction forces are central forces, integrated into an immersed boundary method
to process thousands of particles.

One advantage of Level Set methods is that they allow non-spherical particles to
be taken into account. A contact model with repulsive and cohesive forces and linear
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Fig. 6.1 Profile of a function
g taking into account short
contact and cohesive forces.
The obstacle is at x = 0
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damping, similar to that used in [145], for particles of any shape can be written as

fcontact(x) = −ρ(x)
∑
i,j

κij

ε
ζ

(
ϕi(x)

ε|∇ϕi(x)|
) ∇ϕj (x)

|∇ϕj (x)|
[
g

(
ϕj (x)

|∇ϕj (x)| , ε
)

− αu(x)

]
exp

( −ϕj (x)
ε|∇ϕj (x)|

)
. (6.4)

In this formula, a damping term controlled by the parameter α has been added to
the contact forces. As mentioned earlier, the specific form of the function g must be
chosen as a function of the rheology of the media. A typical example of a function
g showing the superposition of repulsive and cohesive forces at short range is given
in Fig. 6.1.

This type of force and its effect on the dynamics will be illustrated in the
following paragraph.

6.1.4 Numerical Illustrations

The reference [34] contains a number of validations of the computation of repulsive
forces mentioned in the previous paragraph. Figure 6.2 shows a comparison, for the
fall of a disc on a horizontal wall, with a method using a central force acting on
the center of the disc [74]. In the case of the Level Set method, the discretization
method in [34] is a semi-lagrangian method based on a vorticity formulation and a
Boussinesq approximation of the Navier–Stokes equations. In the case of [74] it is
a fictitious domain approach with a discretization by finite element methods.
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Fig. 6.2 Sedimentation of a two-dimensional cylinder under the effect of gravity. Comparison of
the Level Set approach (left pictures) and the approach in [74] (right pictures) using a central force.
Top pictures: height of the cylinder ; bottom pictures: vertical velocity. The grid size isΔx = 1/256
for the continuous lines and Δx = 1/384 for the dotted line. From [34]

In these simulations, the physical parameters are as follows

• fluid density 1
• disc density 1.5, disc diameter 0.025
• fluid viscosity 0.01
• gravity 980.

The disc is initially placed at a distance of 4 from the obstacle, in a box of
dimensions [0.2]×[0.6]. In this experiment, the parameter ε is taken equal to the size
of the grid cells. From the above analysis the parameter κ should be taken from the
order of the square of the pre-contact velocity. In the previous experiment the value
κ = 30 was chosen. It should be noted that even in an explicit time discretization,
the collision term does not cause stability problems.
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Fig. 6.3 Elliptic body falling on a plane under gravity. In the top picture, contact by repulsion
similar to that in Figs. 5.2 and 6.2, and damping. In the bottom pictures, force with cohesion term
and damping given by (6.4) and (6.5). Times Ti refer to successive times of the contact in increasing
order

The following example illustrates the handling of cohesive and damping forces
in contact between objects. We can see in Fig. 6.3 that the cohesive forces allow the
object to stay in contact with the wall after the second bounce. This example also
highlights that, unlike central force models, contact models by Level Set methods
clearly allow objects to rotate.

In this illustration the function g appearing in formula (6.3) has the following
expression:

g(x, ε) = 1

ε

(
3.8 − x

ε

)
(6.5)

In both cases of Fig. 6.3 the damping coefficient is α = 25.

6.2 An Efficient Method for Dealing with Contacts Between
Multiple Objects

6.2.1 Motivation

When we have to deal with the dynamics and the interaction between multiple
objects, the use of a single level function to follow the interface of these objects
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is possible but problematic: if the mesh is too coarse, interfaces inside a single
cell numerically coalesce. A simple alternative is obviously to use a Level Set
function for each body. This is what is done in [34], with the difficulty of a high
computational cost if the objects are numerous and interacting with each other.

In [147], a formulation using log2N level functions to represent N different
regions is presented. This model, based on the four-color theorem, considerably
reduces the number of Level Set functions and can handle complex topologies.
However, reconstructing the distances between two bodies is not simple in the
general case, and this model is therefore unable to deal in an efficient way with
bodies interacting pairwise and immersed in fluid.

In this section, we describe an approach, based on the deformable multi-
geometric, interface capturing model (MGDM) introduced by J. Bogovic et al
[17] for image segmentation. This model results in the efficient implementation of
formulas of the type of (6.3) for a large number of objects. This approach is detailed
in [89].

6.2.2 The Algorithm

The principle of this algorithm is that it requires, regardless of the number of
interacting objects, only five fields to

(1) locate and follow each immersed structure,
(2) specify a velocity or force independently on each structure,
(3) handle numerical and/or physical contacts between objects.

This greatly reduces the computational cost, as will be illustrated below. More
precisely, a zero level set representing the union of interfaces is transported with
the velocity of the fluid. Level Set functions then allow, on the one hand, to label
the solids and for each point of the domain to know the index of the closest and
the second closest solid to that point. A multi-fast-marching type algorithm is then
implemented in a thin band around the interfaces making it possible to update these
functions.

This method combines the advantage of the MGDM method, which efficiently
captures a large number of bodies and their relative neighbors, and the efficiency of
the Level Set contact models seen previously.

In order to validate the capacity of this method to avoid numerical contacts and
its efficiency in treating a large number of structures, two applications are explored:
settling of rigid bodies and suspensions of biological vesicles. Let us know describe
more precisely the method.
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6.2.2.1 Label Functions

Let N objects occupying domains Ωi(t) ⊂ Ω , i ∈ [1, N], and immersed in a fluid
occupying the domain ΩN+1(t). The set of these N + 1 domains forms a partition
of Ω , with Ωi ∩Ωj = ∅ for i �= j in {1, · · · , N}.

At each point x ∈ Ω , we define the label functions E0, E1, E2 as follows:

∀x ∈ Ω,∀i ∈ {1, . . . , N + 1}, E0(x) = i if x ∈ Ωi,

E1(x) = arg min
j �=E0(x)

d(x, Γj ), E2(x) = arg min
j /∈{E0(x),E1(x)}

d(x, Γj ).

with ΓN+1 = ⋃N
i=1 Γi corresponding to the fluid-structure interface. The function

E0 thus labels the partition of Ω as N + 1 different objects, while E1 (resp. E2)
identifies the label of an object in this partition closest (resp. of a second closest
set) to each point. In the event that several objects are equidistant from a point, the
number is that of one of them. In practice, this indeterminacy does not induce any
difficulty in the algorithm. We thus have:

⎧⎪⎪⎨
⎪⎪⎩
E0(x) = i if x ∈ Ωi,

E1(x) = j if a closest body to x is Ωj,

E2(x) = k if a second closest body to x is Ωk.

In particular E1(x) = N + 1 in each immersed object. E2(x) is, inside a body, the
index of a closest solid, and, in the fluid, a second closest body: if i ∈ [1, N]

∀x ∈ Ωi,

⎧⎪⎪⎨
⎪⎪⎩
E0(x) = i,

E1(x) = N + 1,

E2(x) = k, where Ωk is the immersed body closest to x.

Figure 6.4 is an illustration of the three label cards for five structures immersed in
a fluid. The values of E1 show that the object closest to the 5 structures is the fluid.
The values of E2 show that for the four peripheral bodies (green, yellow, purple,
and light blue objects), the closest object (which is the second closest structure) is
the blue body. In addition, the E2 label divides the central blue structure into four
regions, each giving the color of the closest structure. We can therefore see that the
three label maps provide an interesting local description of the notion of proximity
for the whole fluid-structure domain.

Taking advantage of this local description of nearby objects, we can define two
associated distance functions.
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Fig. 6.4 llustration of the three label functions for a configuration of five bodies, from left to right:
E0, E1 and E2. Each object has a specific color given by the values of E0 and red corresponds to
the fluid. The white outline represents the boundary of the solids. Within each body, the closest
object is the fluid (E1 is red is in these bodies). From [89]

6.2.2.2 Distance Functions

∀x ∈ Ω,

{
ψ1(x) = d(x, ΓE1(x)),

ψ2(x) = d(x, ΓE2(x)).
(6.6)

The distance function ψ1(x) is the distance from x to the boundary of the first
nearest object, noted ΓE1(x), and ψ2(x) is the distance from x to the boundary of the
second closest object ΓE2(x). At any point of the domain Ω , ψ1 captures the union
of all interfaces of the bodies and ψ2 monitors the distance to the closest body. As a
result, at each point, we obtain for each solid body the distance to the closest other
solid. This allows to define a collision model, as avoiding contacts between solids
is equivalent to imposing:

∀x ∈ Ω, ψ2(x) > 0.

In the following, we will apply this algorithm to the repulsive forces defined by (6.3).
However, it is obvious that it can just as well take into account more general contact
forces, such as cohesive forces seen previously or lubricating forces.

6.2.2.3 Dealing with Contact Forces

We start from the collision force model given by (6.3). In this model each solid
interface is captured by its own Level Set function. We considerN bodies immersed
in a fluid and we denote by Fj,i the force applied by the body Ωj on the body Ωi

and by ϕi the Level Set function capturing the boundary Γi of the body Ωi . The
distance from a point x of Ωi to the solid Ωj is given by ϕj (x) and the direction
of the force Fj,i , is obtained directly from ∇ϕj . Moreover, to locate the interface
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Γi , we use a cutoff function ζ regularized over a thickness ε on each side of the
interface.

Following (6.3), the short-range repulsive force is expressed as follows (to
simplify the writing we assume that the functions ϕi are signed distances)

∀x ∈ Ω, Fglobal(x) = ρ(x)

N∑
i,j=1
i �=j

k

ε
ζ

(
ϕi(x)

ε

) ∇ϕj (x)
ϕj (x)

exp

(
−ϕj (x)

ε

)
, (6.7)

where ρ denotes the density and k is a repulsive constant which, as explained in the
previous section, can be taken proportional to the square of the relative velocities of
the corresponding bodies just before the collision.

Interaction forces rapidly decrease exponentially for distant structures, reducing
the number of interacting neighbors. Nevertheless, this collision model takes a
priori into account all the possible interactions between N bodies, which leads to
a computational effort in O(N2) which quickly becomes prohibitive for large N .

To reduce the complexity of (6.7), we modify Fglobal so as to take into account
only the nearest neighbors and express it by means of the two functions ψ1 and ψ2.
We set:

∀x ∈ Ω, Flabel(x) = k

ε
ρ(x)ζ

(
ψ1(x)

ε

) ∇ψ2(x)

ψ2(x)
exp

(
−ψ2(x)

ε

)
(6.8)

The term ζ
(
ψ1(x)
ε

)
localizes this force on the union of the interfaces, which is

expected. More precisely, the force has its support included in {x ∈ Ω, ψ1(x) ≤ ε}.
This collision model takes into account the interaction between the closest bodies

at all points. Indeed, as ψ2 is the distance to the second closest object at all points of
the fluid/structures domain, if a body is surrounded by other solids, the interaction
with the other structures is taken into account on different parts of its interface.

Compared to (6.7), the complexity of the computation is obviously significantly
reduced. We refer to [89] and the thesis [88] for a consistency and error analysis
between this truncated repulsive force and the original form of the force. In these
references, it is shown that the difference between the original force and the
truncated force can be controlled when the ratio between the size of the interacting
objects (or their minimum curvature radius) and ε tends towards +∞. This makes
it possible to estimate, at least in a simplified coupling model (Stokes-type fluid
equations), the error introduced in the final calculation of the velocity by the
truncation of the collision forces.

At the algorithmic level, the labels Ei are updated at each displacement of the
interfaces by a multiple fast-marching method [17]. The label fields are calculated
only in the vicinity of the solid interfaces for E1, and in the vicinity of two close
solid interfaces forE2, which significantly reduces the number of calculation points,
as shown in Fig. 6.5.
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Fig. 6.5 Illustration of the multiple fast-marching algorithm for 20 objects. Right: E1. Left:
E2. The black color corresponds to the uncalculated values of E1 and E2. The white contours
correspond to the zero level set of the function ψ1. From [89]

6.2.2.4 Penalization and Complete Model

In addition to reducing the complexity of calculating interaction forces, labels can
be used to optimize the penalization step. For that, let us define a new label E0,1
which gives at every point of the domain the closest fluid or solid object, that is

∀x ∈ Ω, E0,1(x) =
{
E0(x) if (E0(x) �= N + 1)

E1(x) otherwise.
(6.9)

In the examples which follow, this label allows to define a regularized characteristic
function associated to the N solids though the following formula:

∀x ∈ Ω,∀y ∈ Ω, χE0,1(x)(y) = 1 − H
(
ϕE0,1(x)(y)

ε

)
.

Denoting ρE0,1(x) the density of the solid ΩE0,1(x) we obtain the overall density
function:

ρx(y) = ρf (1 − χE0,1(x)(y))+ χE0,1(x)(y)ρE0,1(x)(y).

To calculate the penalization term, the value of the rigid velocities is only useful
in the objects and their neighborhood of size ε. We thus define a global velocity
coinciding with the N rigid velocities Ui, i ∈ {1, . . . , N} on the solid objects.
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More precisely, for all x ∈ Ω , y → UE0,1(x)(y) is the rigid velocity of the solid
ΩE0,1(x) obtained by averaging translation and angular velocities (Eq. (5.5)). Setting

∀x ∈ Ω, | ΩE0,1(x) |=
∫
ΩE0,1(x)

ρ(z) dz =
∫
Ω

ρ(z)χE0,1(x)(z) dz (6.10)

we get the following formulation: ∀x ∈ Ω, ∀y ∈ Ω,

UE0,1(x)(y) = 1

| ΩE0,1 |
∫
Ω

ρE0,1(x)(z) χE0,1(x)(z) U(z) dz

+
(
J−1
E0,1(x)

∫
Ω

ρE0,1(x)(z) χE0,1(x)(z) U(z)× (z− x
g

E0,1(z)
) dz

)

× (y − x
g

E0,1(y)
). (6.11)

where JE0,1(x) and xgE0,1(x)
are the inertia matrix and the gravity center of the solid

ΩE0,1(x).
In Ωi , that is to say when E0,1 = i, this global velocity coincides with Ui . The

complete model that we consider in the illustrations below therefore corresponds, in
the case of immersed rigid solids, to transcribing the model (5.3–5.7) of Chap. 5. It
is possible to write it under the more condensed form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(∂tu+ (u · ∇)u)− μΔu+ ∇p
= ρg + 1

η
(χ(UE0,1 − u))+ Flabel in Ω,

divu = 0 in Ω,

∂tϕ + u · ∇ϕ = 0 in Ω.

(6.12)

where χ is a regularized indicator function of the domain occupied by the set of
immersed solids, andUE0,1 is a rigid velocity on each solid, built thanks to the labels
independently on each solid, as in (5.5), then reassembled on the whole domain Ω
(see [88, 89] for more details).

6.2.3 Computational Efficiency of the Method

To check the efficiency of the method, we compare in this section the time necessary
to calculate the interaction of N immersed disks, on the one hand by considering a
collision model withN Level Set functions and on the other hand by the fast method
just presented.

In the case of rigid disks, instead of transporting a distance function to the union
of the disks and then applying the multiple fast-marching method to it, we transport
the centers of gravity and reconstruct the N distance functions. This part of the
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Table 6.1 Average CPU time using N level set functions

Number of Contact model (6.7) Penalization with (6.7) Total

disks CPU time CPU time CPU time

2 0.02 0.06 0.2

5 0.17 0.16 0.48

10 0.72 0.35 1.24

25 4.87 0.88 6

50 19.25 1.75 21.5

100 80.8 3.9 85.3

400 1583.4 19.75 1605.3

Table 6.2 Average CPU time with the algorithm using labels

Number of Contact model (6.8) Penalization (6.12) Labels Total

disks CPU time CPU time CPU time CPU time

2 0.015 0.05 0.008 0.2

5 0.015 0.06 0.014 0.23

10 0.015 0.09 0.02 0.25

25 0.016 0.18 0.08 0.4

50 0.016 0.3 0.16 0.6

100 0.016 0.56 0.23 0.9

400 0.016 2.52 2.06 4.7

algorithm, although dependent on the number of objects, is very fast. We can thus
focus on the savings in computational time resulting from the reconstruction of
the label functions, then on their use for the computation of the interaction force
by (6.8), compared to the computation of the global interaction force by (6.7).

The results presented below correspond to the average of the calculation time of
the first ten iterations for either method. This average time is presented in Table 6.1
for the standard method, and in Table 6.2 for the fast algorithm. The model (6.7)
is more expensive on the one hand because all the interactions are calculated, but
also because the term of penalization in right hand side of the fluid equations also
depends explicitly on the number of objects.

6.2.4 Numerical Illustrations

The first illustration relates to the sedimentation of 400 rigid discs of radius R =
0.01 in the two-dimensional case. The simulations are performed on a grid of size
512 × 512 and the half-thickness of the interface is ε = 1.5Δx. The white line
indicates the actual numerical size of the particles corresponding to the contour
ψ1 = ε. The coefficient of gravity g is fixed at −980, the coefficients κ in the
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(a) (b) (c)

(d) (e) (f)

Fig. 6.6 Simulation of 400 rigid disks under gravity. The white line corresponds to ϕ = ε. The
background color represents the distance to the union of the fluid/solid interfaces. From [89]. (a)
t = 0.0. (b) t = 0.75. (c) t = 1.5. (d) t = 2.25. (e) t = 3.0. (f) t = 6.9

repulsive force is chosen equal to −g/10. The 400 bodies fall and settle, as shown
in Fig. 6.6.

The second illustration is an extension to the 3D case. Figure 6.7 shows the
settling of 500 rigid spheres of radius R = 0.01 falling under gravity using a grid of
size 1283. The half-thickness of the interface is in this case ε = Δx. At the initial
stage, there are five layers of 100 bodies at a relative distance d = 0.1 (distance
between the centers of the two closest bodies). Interactions between bodies occur
from t = 1.5.

As already indicated, an advantage of the Level Set methods for processing
contacts is to be able to take into account non-spherical objects for which central
force type models do not work. Figure 6.8 shows the sedimentation of 30 rigid
squares of different sizes.

Finally, to illustrate that the method also makes it possible to treat deformable
objects, we present a test case of 105 biological vesicles evolving in a Poiseuille
flow. The computational domain Ω = [0, 4] × [0, 2]. The size of the vesicles being
small, the simulations are carried out with a fine resolution, on a grid of size 2048×
1024.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6.7 Simulation of 500 rigid spheres in a 1283 grid). Colors represent the labels, from dark
blue to red for the solids. From [89]. (a) t = 0.0. (b) t = 0.5. (c) t = 1.0. (d) t = 1.5. (e) t = 1.8.
(f) t = 2.0. (g) t = 2.5. (h) t = 3.0

The results are represented in Fig. 6.9, the colors indicate the value of the label
E0, the white lines correspond to the isolines ψ1 = 0. During the initialization,
the region occupied by the vesicles is the left half of the domain, and consists of 7
layers of 15 vesicles. Each vesicle interface corresponds to a Cassini oval with the
parameters a = 0.076 et b = 0.08. The vesicles adopt different shapes, due to the
combined effects of the Poiseuille flow induced by the pressure, the elasticity and
bending forces and the interactions between the vesicles. For models taking into
account bending and elasticity of the vesicles we refer to Sect. 3.6.1.2 and to [89]
for the choice of parameters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.8 Sedimentation of de 30 rigid squares of various sizes. From [89]. (a) t = 0. (b) t = 0.09.
(c) t = 0.11. (d) t = 0.17. (e) t = 0.23. (f) t = 0.25. (g) t = 0.35. (h) t = 0.5. (i) t = 3.18
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.9 Simulation of 105 vesicles in a Poiseuille flow, color coded by the values of the label E0.
From [89]. (a) t = 0.0. (b) t = 0.08. (c) t = 0.14. (d) t = 0.18. (e) t = 0.24. (f) t = 0.28. (g)
t = 0.32. (h) t = 0.33. (i) t = 0.42



Chapter 7
Annex

7.1 Examples of Curvature Calculations Using a Level Set
Function

In this section, we present an explicit calculation of the mean and Gaussian
curvatures of an ellipsoid and a torus defined using Level Set functions. These
formulas can be used to validate the calculation of the curvature in a numerical
code.

7.1.1 The Case of the Ellipsoid

Consider the ellipsoid represented by the following Level Set function

R
3 −→ R

ϕ : (x, y, z) �→
(x
a

)2 +
(y
b

)2 +
(z
c

)2 − 1.

The normal is given by

n = 1√
x2

a4 + y2

b4 + z2

c4

( x
a2 ,

y

b2 ,
z

c2

)
.
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Using (1.9), we obtain the mean curvature

H =
x2

a2 (b
2 + c2)+ y2

b2 (a
2 + c2)+ z2

c2 (a
2 + b2)

a2b2c2
(
x2

a4 + y2

b4 + z2

c4

) 3
2

and, using now (1.10), the Gaussian curvature

G =
x2

a2 + y2

b2 + z2

c2

a2b2c2
(
x2

a4 + y2

b4 + z2

c4

)2 .

7.1.2 The Case of the Torus

Consider a torus, with small and large radius r and R satisfying R > r , represented
by the following Level Set function

R
3 −→ R

ϕ : (x, y, z) �→
√
z2 + (R −

√
x2 + y2)2 − r.

This Level Set function is a signed distance because |∇ϕ| = 1. The normal is
given by

n = 1√
z2 + (R −√x2 + y2)2

(
x

(
1 − R√

x2 + y2

)
, y

(
1 − R√

x2 + y2

)
, z

)
.

Using (1.9) we get the mean curvature

H =
(

2 − R√
x2 + y2

)
1√

z2 + (R −√x2 + y2)2
.

and, due to (1.10), the Gaussian curvature

G =
(

1 − R√
x2 + y2

)
1

z2 + (R −√x2 + y2)2
.

In the case of the torus these formulas are simplified because z2 + (R −√
x2 + y2)2 = r2.
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7.2 Justification of the Results Used for Membranes
with Shear

In this section, we are interested in detailing the results concerning the membranes
with shear used in Sect. 3.3 of Chap. 3. We will first show what are the equations
verified by the invariants then we will show that the first invariantZ1 corresponds to
the local variation of area and can be calculated using the gradient of a single Level
function Set. We will then present some analytical illustrations in order to justify
why the second invariant Z2 measures the shear variations.

7.2.1 Proof of the Results Concerning the Z1 Invariant

Let us begin this section with a lemma which can be seen as an extension of the
classical Cayley–Hamilton theorem when the matrix has a zero eigenvalue.

Lemma 7.1 Let A be a symmetric 3 × 3 matrix with 0 as eigenvalue of
multiplicity one. Let us denote by n an associated eigenvector. We have the
identity:

A2 − Tr(A)A + Tr(Cof(A))[I − n⊗ n] = 0. (7.1)

Proof It is equivalent to show the lemma in any basis of R3. Let us consider the
orthonormal basis B′ = (e′

1, e
′
2, e

′
3) = (τ1, τ2, n) where (τ1, τ2) is an orthonormal

basis of the plane orthogonal to n. Let A′ be the matrix A written in the basis B′
and denote by A′

ij its coefficients.
We have An = 0 and thus A′

i3 = 0. Since A is a symmetric matrix and B′ is an
orthonormal basis, the matrix A′ is also symmetric and its structure is given by:

A′ =
⎛
⎝A′

11 A′
12 0

A′
12 A′

22 0
0 0 0

⎞
⎠ .

As a result

(A′)2 =
⎛
⎝ (A′

11)
2 + (A′

12)
2 A′

11A′
12 + A′

12A′
22 0

A′
11A′

12 + A′
12A′

22 (A′
12)

2 + (A′
22)

2 0
0 0 0

⎞
⎠ .
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In the basis B′ we have

I − n⊗ n =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ .

A′ and A have the same invariants, therefore

Tr(A) = Tr(A′) = A′
11 + A′

22,

Tr(Cof(A)) = Tr(Cof(A′)) = A′
11A′

22 − (A′
12)

2.

It is simple to show that A′ Tr(A′) − (A′)2 = Tr(Cof(A′))[I − n ⊗ n] and the
announced result follows. ��

Let us now recall the definitions given in Sect. 3.3. We follow the deformations
in an Eulerian way using the backward characteristics which satisfy the following
transport equation

∂tY + u · ∇Y = 0. (7.2)

The tensor of the surface deformations is defined by A = MMT with

M = [∇Y ]−1[I − n0(Y )⊗ n0(Y )],

where n0 denotes the normal to the surface in the initial configuration. The tensor
A can then be rewritten with the right Cauchy-Green tensor B = [∇Y ]−1[∇Y ]−T
in the form

A = B − (Bn)⊗ (Bn)

(Bn) · n . (7.3)

where n indicates the normal to the surface in the deformed configuration. We have
An = 0 thus det(A) = 0. The invariants Z1 and Z2 are defined by

Z1 = √Tr(Cof(A)) and Z2 = Tr(A)
2
√

Tr(Cof(A))
. (7.4)
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The equations verified by these invariants are given by the following proposition

Proposition 7.2 Assuming that the vector field u is smooth enough, the
invariants verify:

∂tZ1 + u · ∇Z1 = Z1 [∇u] : C1, C1 = I − n⊗ n, (7.5)

∂tZ2 + u · ∇Z2 = Z2 [∇u] : C2, C2 = 2A
Tr(A) − (I − n⊗ n). (7.6)

Proof Using (7.2) we get

∂t ([∇Y ]−1)+ u · ∇([∇Y ]−1) = [∇u][∇Y ]−1, (7.7)

∂t ([∇Y ]−T )+ u · ∇([∇Y ]−T ) = [∇Y ]−T [∇u]T , (7.8)

then, since B = [∇Y ]−1[∇Y ]−T ,

∂tB + u · ∇B = [∇u]B + B[∇u]T . (7.9)

We also have (7.2)

∂t (I − n0(Y )⊗ n0(Y ))+ u · ∇(I − n0(Y )⊗ n0(Y )) = 0.

Combined with (7.7) this relation yields

∂tM + u · ∇M = [∇u]M, ∂tM
T + u · ∇(MT ) = MT [∇u]T . (7.10)

Using (7.10) we get (recall that A = MMT )

∂tA + u · ∇A = [∇u]A + A[∇u]T (7.11)

where the initial condition is given by A(0) = I − n0 ⊗ n0. We can observe that,
according to (7.9), B satisfies the same equation with a different initial condition
B(0) = I. By taking the trace of (7.11), it results

∂t Tr(A)+ u · ∇ Tr(A) = 2[∇u] : A (7.12)

then

∂t Tr(Cof(A))+ u · ∇ Tr(Cof(A)) = 2[ATr(A)− A2] : [∇u].
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Using the previous equation and the identity (7.1) of Lemma 7.1 we get (7.5)

∂tZ1 + u · ∇Z1 = Z1
[ATr(A)− A2]

Tr(Cof(A)) : [∇u] = Z1[I − n⊗ n] : [∇u].

Using (7.12) and the previous equation on Z1 we obtain (7.6). We have Cin = 0
because An = 0. ��

Let us now show that Z1 measures the local variation of area.

Proposition 7.3 Let u be a smooth velocity field and S0 a smooth surface,
deformed into St = X(t, S0). Let (θ1, θ2) �→ γ (t, θ1, θ2) be a parametrization
of the surface St with γ : R+ ×U −→ R

3 where U is an open set in R2. The
local variation in area satisfies

|∂θ1γ (t, θ)× ∂θ2γ (t, θ)|
|∂θ1γ (0, θ)× ∂θ2γ (0, θ)|

= Z1(γ (t, θ), t)

Z1(γ (0, θ), 0)
= Z1(x, t)

Z1(Y (x, t), 0)
(7.13)

with the notation θ = (θ1, θ2) and x = γ (t, θ).

Proof Let f : R3 × R
+ −→ R be a smooth function. The Reynolds formula for

surfaces (2.16) reads

d

dt

(∫
St

f ds

)
=
∫
St

∂t f + u · ∇f + f [∇u] : [I − n⊗ n]ds.

Let g : R3 −→ R a smooth function and f (x, t) = g(Y (x,t))
Z1(x,t)

. The expression
under the integral becomes

1

Z1
(∂t (g(Y ))+ u · ∇(g(Y )))− g(Y )

(Z1)2
(∂tZ1 + u · ∇Z1 − Z1[∇u] : [I − n⊗ n]).

In view of (7.2) and Eq. (7.5) in Theorem 7.2, the first and second terms cancel
each other. As a result

d

dt

(∫
St

g(Y (x, t))

Z1(x, t)
ds

)
= 0. (7.14)
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Since γ (0, θ) = Y (γ (t, θ), t), Eq. (7.14) becomes∫
U

g(γ (0, θ))

Z1(γ (t, θ), t)
|∂θ1γ (t, θ)× ∂θ2γ (t, θ)| dθ

=
∫
U

g(γ (0, θ))

Z1(γ (0, θ), 0)
|∂θ1γ (0, θ)× ∂θ2γ (0, θ)| dθ.

This result holds for all g. We therefore obtain (7.13) and Z1 measures the local
variation of area (in both the compressible and incompressible cases). ��
We now show that the invariantZ1 can be expressed with a single Level Set function
and the Jacobian of the change of variable associated with the deformation noted Je.

Consider ϕ : R3 → R a Level Set function verifying the transport equation

∂tϕ + u · ∇ϕ = 0. (7.15)

We recall that we then have ϕ(x, t) = ϕ0(Y (x, t)) and that the gradient of this
relation gives

∇ϕ = [∇Y ]T∇ϕ0(Y ) (7.16)

Furthermore, we recall that the normal to the surface {ϕ = 0} is given by n = ∇ϕ
|∇ϕ| .

Proposition 7.4 Let Je = det(∇Y )−1. We have

Z1 = Je
|∇ϕ|

|∇ϕ0(Y )| . (7.17)

Proof The invariant Z1 = √
Tr(Cof(A)) is defined by (7.4). By taking the trace

of (7.3), we have

Tr(A)2 =
(

Tr(B)− (B2n) · n
(Bn) · n

)2

and

Tr(A2) = Tr(B2)− 2
(B3n) · n
(Bn) · n +

(
(B2n) · n
(Bn) · n

)2

.

By the Cayley–Hamilton theorem we have

B3 − Tr(B)B2 + Tr(Cof(B))B − det(B)I = 0,
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from which we deduce

Tr(Cof(A)) = 1

(Bn) · n
(
(B3n) · n− Tr(B)(B2n) · n+ Tr(Cof(B))(Bn) · n

)

= det(B)

(Bn) · n.

Using (7.16) we get

(Bn) · n =
∣∣∣∣[∇Y ]−T ∇ϕ

|∇ϕ|
∣∣∣∣
2

= |∇ϕ0(Y )|2
|∇ϕ|2 .

Using the relation Je = det(B)
1
2 the expression of Z1 reduces to (7.17). We recover

the result of Proposition 3.2: in the incompressible case the local variation of area is
captured by |∇ϕ| since in this case Je = 1. ��

7.2.2 Analytical Illustrations for Z2

We now present some analytical illustrations to show that Z2 defined by (7.4)
and (7.3) intuitively gives a “good” measure of the local variation of the shear of
a surface. In all the test cases test, we define an initial surface Γ0 = {ϕ0 = 0}
and a velocity field u which will move the material points of this surface. We then
compute the backward characteristics Y and Z1 and Z2 invariants to see how these
Eulerian quantities record the information on deformation.

The test cases and the results are described in Table 7.1. In this first series of
test cases (TC1 to TC4), although the material points could move, the initial and
deformed surfaces are globally identical (Γ0 = Γt ). Moreover, the deformations are
uniform in space in the sense that the invariants Zi on the surface do not depend
on the space variables (except for TC4). In the two-dimensional strains, denoted
α et β (cases TC1 and TC2) the initial surface is the plane z = 0. We refer to
Sect. 3.3.3 for the corresponding figures with these first two test cases. The velocity
field associated with each deformation is represented in the figures below with the
corresponding values of Z1 and Z2. The deformation corresponding to β = −1 is
a rotation and as expected it does not induce shear or area variation (see Fig. 3.7).
The deformation corresponding to α = 1 is a pure expansion and as expected it only
yields area variation (see Fig. 3.4).

The deformations corresponding to β = 0, β = 1, α = −1 only result in a
variation in shear (see Figs. 3.8, 3.6, and 3.3). Note that for the deformation β = 0,
we take the limit β −→ 0 to define Y and Zi .

The deformation corresponding to α = 0 results in variations both in area and
shear (see Fig. 3.5). This may seem surprising at first glance, but when a surface
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Fig. 7.1 Case TC3: Imposed
velocity field (−yz, xz, 0) for
the 3D circular shear and
initial shape of the cylinder

Fig. 7.2 Case TC4: Imposed
velocity field (−yz, xz, 0) for
the 3D circular shear and
initial shape of the shpere

is stretched in two directions with different magnitude (α �= 1), it undergoes some
shear and therefore, as expected, Z2 = ch(t (1 − α)) �= 1.

In the three-dimensional circular shear test cases, the initial surfaces are a
cylinder (TC3 see Fig. 7.1) or a sphere (TC4 see Fig. 7.2). In each plane {z = α}
the velocity is a rotation of magnitude α. In these test cases, there is a variation in

shear but no variation in area. For TC3, Z2 = 1 + t2

2 is constant on the surface
(x2 + y2 = 1 on the cylinder). This test case is clearly a 3D generalization on a
cylinder of the 2D deformation corresponding to β = 0 and that is why we find the

same invariants. For TC4, Z2 = 1 + t2

2 (1 − z2)2 on the surface and only depends on
the height z which is intuitive (x2 + y2 + z2 = 1 on the sphere).

We now present three test cases (TC5 to TC7) where the deformed surface Γt
is different from the initial surface Γ0. For the case TC5 corresponding to a three-
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Fig. 7.3 Case TC5: imposed
velocity field (x, y, z) for the
3D expansion and initial
shape of the sphere

Fig. 7.4 Cases TC6 and
TC7: imposed velocity field
(0, x, 0) for the shear
deformation

dimensional 3D expansion (see Fig. 7.3), the initial surface is a sphere. In this test
case, we only have an area variation.

In the last test cases, the same shear velocity field (see Fig. 7.4) is applied to a
cube and a sphere. For the test case TC6, the deformation of the cube (see Fig. 7.5)
is given by the zero level set of

ϕ(x, y, z, t) = max(|x|, |y − tx|, |z|)− 1.
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x

y

z

Initial shape

Deformed shape

Fig. 7.5 Case TC6 : initial and deformed cube

Let us calculate the invariants Z1 and Z2 on each plane of the cube. We have the
following results

On the edges {x = ±1} Z1 = 1, Z2 = 1. (7.18)

On the edges {y − tx = ±1} Z1 =
√

1 + t2 Z2 = 2 + t2

2
√

1 + t2
. (7.19)

On the edges {z = ±1} Z1 = 1, Z2 = 1 + t2

2
. (7.20)

On the edges corresponding to {x = ±1} there is no variation in area and shear
(the edges are just translated). The edges {y − tx = ±1} are stretched in only one
direction and there is a variation in area and shear as in the 2D deformation with
α = 0. For the edges {z = ±1} there is variation in shear like in the 2D deformation
where β = 0. For the case test TC7 the deformation of the sphere Γt is given by
thezero level set of

ϕ(x, y, z, t) = x2 + (y − tx)2 + z2 − 1.
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Fig. 7.6 Case TC7: Level sets of the invariants Z1 and Z2 on the deformed surface at t = 0.5

We have

Z1 =
√

1 + t2 + t2(x2 − z2)− 2txy

x2 + (y − tx)2 + z2 , (7.21)

Z2 =
(

1 + t2

2
+ t2x2 − 2txy

2(x2 + (y − tx)2 + z2)

)
1

Z1
. (7.22)

In Fig. 7.6, the iso-level of Z1 and Z2 are plotted on the deformed surface Γt .
The results are intuitive: the variation in area reaches its maximum on points along
the orthogonal to the y = tx plane, whereas the variation in shear is greater along
the z axis.

7.3 Justification of the Results Used for the Curves
Parameterized in R

3

In this section we are interested to give more precisions on the results used in
Sect. 3.4 concerning the parameterized curves. We will first derive an advection
equation verified by the invariant Z3 introduced in this section. We will then show
that it corresponds to the local variation in length and can be calculated using the
gradient of two Level Set functions representing the curve. We will finally see how
to approach a line integral by a volume integral and we will calculate the force
associated with an elastic curve which responds to a variation in length.
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7.3.1 Proof of the Results Concerning the Invariant Z3

To begin with, let us recall the definitions given in Sect. 3.4.1. We follow the
deformations in an Eulerian way using the backward characteristics which satisfy
the following transport equation:

∂tY + u · ∇Y = 0. (7.23)

Given an advected curve with tangent vector τ0 in the initial configuration, the strain
tensor along that curve is defined by L = M̃M̃T with

M̃ = [∇Y ]−1[τ0(Y )⊗ τ0(Y )].

The tensor L can then be rewritten with the right Cauchy-Green tensor B =
[∇Y ]−1[∇Y ]−T under the form

L = τ ⊗ τ

(B−1τ ) · τ , (7.24)

where τ denotes the tangent vector to the curve in the deformed configuration. The
plane orthogonal to τ is therefore an eigen-space of dimension 2 associated with the
eigenvalue 0 of the operator L. The invariant Z3 is now defined by

Z3 = √Tr(L) =
√

1

(B−1τ ) · τ . (7.25)

Proposition 7.5 Assuming that the vector field u is smooth enough, the
invariant Z3 satisfies:

∂tZ3 + u · ∇Z3 = Z3 [∇u] : C3, C3 = τ ⊗ τ. (7.26)

Proof Using (7.23) we get

∂t ([∇Y ]−1)+ u · ∇([∇Y ]−1) = [∇u][∇Y ]−1. (7.27)

We also have with (7.23)

∂t (τ0(Y )⊗ τ0(Y ))+ u · ∇(τ0(Y )⊗ τ0(Y )) = 0.

This relation combined with (7.27) gives

∂tM̃ + u · ∇M̃ = [∇u]M̃, ∂tM̃
T + u · ∇(M̃T ) = M̃T [∇u]T . (7.28)
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Using (7.28) and L = M̃M̃T we get

∂tL + u · ∇L = [∇u]L + L[∇u]T , (7.29)

where the initial condition is given by L(0) = τ 0 ⊗ τ 0. One can observe that B
satisfies the same equation with a different initial condition B(0) = I. Taking the
trace of (7.29), we can write

∂t Tr(L)+ u · ∇ Tr(L) = 2[∇u] : L. (7.30)

We finally obtain from the above equation and (7.25) the desired equation on Z3

∂tZ3 + u · ∇Z3 = Z3 [∇u] : C3, C3 = τ ⊗ τ. (7.31)

��
Let us now show that Z3 measures the local variation in length.

Proposition 7.6 Let u be a smooth velocity field and Γ0 a smooth curve,
deformed into Γt = X(t, Γ0). Let θ �→ γ (t, θ) be a parameterization of
the curve Γt with γ : R+ × I −→ R

3 where I is an open set of R. The local
variation in length satisfies

|∂θγ (t, θ)|
|∂θγ (0, θ)| = Z3(γ (t, θ), t)

Z3(γ (0, θ), 0)
= Z3(x, t)

Z3(Y (x, t), 0)
(7.32)

for x = γ (t, θ).

Proof Let f : R3 × R
+ −→ R be a smooth function. The Reynolds formula for

the curves (2.19) reads

d

dt

(∫
Γt

f dl

)
=
∫
Γt

∂tf + u · ∇f + f [∇u] : [τ ⊗ τ ] dl.

Let g : R3 −→ R a smooth function and f (x, t) = g(Y (x,t))
Z3(x,t)

. The expression under
the integral becomes

1

Z3
(∂t (g(Y ))+ u · ∇(g(Y )))− g(Y )

(Z3)2
(∂tZ3 + u · ∇Z3 − Z3[∇u] : [τ ⊗ τ ]).
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Due to (7.23) the first term vanishes. The second also according to Eq. (7.26) in
Proposition 7.5. Therefore

d

dt

(∫
Γt

g(Y (x, t))

Z3(x, t)
dl

)
= 0. (7.33)

As γ (0, θ) = Y (γ (t, θ), t), Eq. (7.33) becomes

∫
I

g(γ (0, θ))

Z3(γ (t, θ), t)
|∂θγ (t, θ)| dθ =

∫
I

g(γ (0, θ))

Z3(γ (0, θ), 0)
|∂θγ (0, θ)| dθ.

This result holds for all g. We thus obtain (7.32) and Z3 indeed measures the local
variation in length (in both the compressible and incompressible cases). ��
We now show that the invariant Z3 can be expressed using two Level Set functions
and the Jacobian of the change of variable associated with the deformation, still
noted Je. Consider two Level Set functions ϕi : R3 → R satisfying the equation of
transport

∂tϕ
i + u · ∇ϕi = 0. (7.34)

We then have ϕi(x, t) = ϕi0(Y (x, t)) and the gradient of this relation gives

∇ϕi = [∇Y ]T∇ϕi0(Y ). (7.35)

In addition, the tangent to the curve is given by

τ = ∇ϕ1 × ∇ϕ2

|∇ϕ1 × ∇ϕ2| . (7.36)

Proposition 7.7 Let Je = det(∇Y )−1. Then

Z3 = Je
|∇ϕ1 × ∇ϕ2|

|∇ϕ1
0(Y )× ∇ϕ2

0(Y )|
. (7.37)

Proof Combining (7.25), the definition of B and (7.36) we get

(Z3)
−1 =

√
(B−1τ ) · τ = |[∇Y ]τ | =

∣∣∣∣[∇Y ] ∇ϕ1 × ∇ϕ2

|∇ϕ1 × ∇ϕ2|
∣∣∣∣ .

We obtain the announced result using (7.35) and the relation A(AT a1 × AT a2) =
det(AT )(a1 × a2) (which is nothing but a rewriting of the classical identity (Aa1)×
(Aa2) = Cof(A)(a1 × a2)). ��
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7.3.2 Area and Co-area Formulas

These formulas generalize the classical formulas for the change of variables which
transform integrals between domains of the same dimension.

The so-called area formula concerns the changes of variables for functions of
R
n −→ R

3 with n = 1, 2 or 3. It corresponds to the calculation of volume, surface
and line integrals using a parametrization. The co-area formula deals with changes
of variables for functions of R3 −→ R

p with p = 1, 2 or 3 and corresponds to the
calculation of volume integrals using integrals on level sets. These formulas allow
to obtain approximation formulas for surface and line integrals. Results and proofs
on the area and co-area formulas can be found in reference works on the subject, for
example [58].

In the following propositions, we consider a function f : R3 �→ R.

Proposition 7.8 Let θ �→ γ (θ) be a smooth parametrization of the geometric
object under consideration (curve, surface or volume) with γ : U −→ R

3

where U is an open set of Rn (n = 1, 2 or 3). The area formula is:

∫
γ (U)

f =
∫
U

f (γ (θ))

√
det([∇θγ ]T [∇θγ ])dθ. (7.38)

The matrix [∇θγ ] has size 3 × n and therefore g(θ) = [∇θγ ]T [∇θγ ] is an n ×
n matrix of general term gij = ∂θi γ · ∂θj γ . We thus obtain for a curve Γ (n =
1, g is a scalar) the element of length

√
det(g) = √

∂θγ · ∂θγ = |∂θγ |. For a
surface S (n = 2, g is a 2 × 2 matrix) we obtain the surface element

√
det(g) =√|∂θ1γ |2|∂θ2γ |2 − (∂θ1γ · ∂θ2γ )

2 = |∂θ1γ×∂θ2γ |. Finally for a volumeΩ (n = 3, g
is a 3×3 matrix) we obtain the volume element

√
det(g) = √det([∇θγ ]T [∇θγ ]) =

| det(∇θγ )|.
We now wish to compute the integral of a function on a volume using integrals

on the level sets of a vector function ϕ.

Proposition 7.9 Let us consider a function ϕ : R3 −→ R
p (p =1,2 or 3).

The co-area formula is:

∫
R3
f (x)

√
det([∇xϕ][∇xϕ]T ) dx =

∫
Rp

(∫
{ϕ=r}

f

)
dr. (7.39)

The matrix [∇xϕ] is of size p × 3 and g̃(x) = [∇xϕ][∇xϕ]T is a matrix p × p

of general term g̃ij = ∇xϕ
i · ∇xϕ

j where we denote by ϕi the i-th component of ϕ.
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In the case p = 1, g̃ is a scalar,
√

det(g̃) = √∇xϕ · ∇xϕ = |∇xϕ| and the level
sets of ϕ are surfaces.

Proposition 7.10 The co-area formula for objects of co-dimension 1 reads

∫
R3
f (x) dx =

∫
R

(∫
{ϕ=r}

f (x)|∇xϕ(x)|−1 ds

)
dr. (7.40)

We recover here the result of Lemma 3.1.
In the case p = 2, g̃ is a 2 × 2 matrix and

√
det(g̃) =

√
|∇xϕ1|2|∇xϕ2|2 − (∇xϕ1 · ∇xϕ2)2 = |∇xϕ

1 × ∇xϕ
2|,

and the level sets of ϕ are curves.

Proposition 7.11 The co-area formula for objects of co-dimension 2 reads

∫
R3
f (x) dx =

∫
R2

(∫
{ϕ1=r1}∩{ϕ2=r2}

f (x)|∇xϕ
1(x) × ∇xϕ

2(x)|−1 dl

)
dr1 dr2

(7.41)

In the case p = 3, g̃ is a 3 × 3 matrix,

√
det(g̃) =

√
det([∇xϕ][∇xϕ]T ) = | det(∇xϕ)|,

and the level sets of ϕ are points. We thus find the classical formula for the change
of variables in volume integrals.

7.3.3 Volume Approximation of Line Integrals and Calculation
of the Elastic Force

We can now deduce a volume approximation formula for a line integral, analogous
to formula (1.24) for surface integrals.
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Proposition 7.12 Let r → ζ(r) be a continuous function with support in
[−1, 1], such that

∫
ζ(r) dr = 1 and ϕ1, ϕ2 two functions of class C2 from

R
3 to R such that |∇ϕ1 × ∇ϕ2(x)| > 0 for all x in a neighborhood of {ϕ1 =

0} ∩ {ϕ2 = 0}. We then have

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
|∇ϕ1 × ∇ϕ2| ⇀

ε→0
δ{ϕ1=0}∩{ϕ2=0} (7.42)

in the space of measures.

Proof Under the assumptions made on ζ , we have for any continuous function
g : R2 −→ R, using a simple change of variable and the dominated convergence
theorem ∫

R2

1

ε2 ζ
( r1

ε

)
ζ
( r2

ε

)
g(r1, r2) dr1 dr2 −→

ε−→0
g(0, 0). (7.43)

This property states the weak convergence towards the two-dimensional Dirac mass
at the point (0, 0). Applying the previous formula to

g(r1, r2) =
∫

{ϕ1=r1}∩{ϕ2=r2}
f (x) dl

and using the co-area formula (7.41) in Proposition 7.11 we get

∫
R2

∫
{ϕ1=r1}∩{ϕ2=r2}

f (x)
1

ε2 ζ

(
ϕ1(x)

ε

)
ζ

(
ϕ2(x)

ε

)
dl dr1 dr2

=
∫
R3
f (x)|∇ϕ1(x)× ∇ϕ2(x)| 1

ε2 ζ

(
ϕ1(x)

ε

)
ζ

(
ϕ2(x)

ε

)
dx

−→
ε−→0

∫
{ϕ1=0}∩{ϕ2=0}

f (x) dl. (7.44)

which ends the proof. ��
Recall that the evolution of the elastic curve is captured by two Level Set

functions ϕ1, ϕ2 which are transported by the velocity field u. Moreover, according
to Proposition 7.6 the invariant Z3 measures the local variation of the length of
the curve and, following Proposition 7.7, can be written using the gradient of these
Level Set functions. We now introduce the regularized energy:

E3 =
∫
Ω

E3(Z3)
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
dx. (7.45)
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where E3 is the constitutive law associated with the invariant Z3. The force
associated with this energy is given by the following proposition:

Proposition 7.13 The principle of virtual work makes it possible to write the
temporal variation of E3 as

∂tE3 = −
∫
Ω

F3 · u dx. (7.46)

This leads to the following expression of the force

F3 = ∇
(
E3(Z3)

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))

+ div

(
E′

3(Z3)Z3 C3
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))
, (7.47)

with C3 = τ ⊗ τ .

Proof After differentiating with respect to t we get

∂tE3 =
∫
Ω

E′
3(Z3)∂t (Z3)

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
dx

+
∫
Ω

E3(Z3)
1

ε2 ζ
′
(
ϕ1

ε

)
∂tϕ

1 1

ε
ζ

(
ϕ2

ε

)
dx

+
∫
Ω

E3(Z3)
1

ε
ζ

(
ϕ1

ε

)
1

ε2 ζ
′
(
ϕ2

ε

)
∂tϕ

2 dx.

Using the transport equations on ϕ1 and ϕ2 as well as the relation (7.26) from
Proposition 7.5 we get

∂tE3 =
∫
Ω

E′
3(Z3)(−u · ∇Z3 + [∇u] : Z3C3)

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
dx

+
∫
Ω

E3(Z3)
1

ε2 ζ
′
(
ϕ1

ε

)
(−u · ∇ϕ1)

1

ε
ζ

(
ϕ2

ε

)
dx

+
∫
Ω

E3(Z3)
1

ε
ζ

(
ϕ1

ε

)
1

ε2 ζ
′
(
ϕ2

ε

)
(−u · ∇ϕ2) dx.
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By integrating the second term by parts (the integral over ∂Ω vanishes because

ζ(
ϕi

ε
) = 0 on ∂Ω)

∂tE3 = −
∫
Ω

u · ∇(E3(Z3))
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)

+ div

(
E′

3(Z3)Z3C3
1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))
· u

+ E3(Z3)u · ∇
(

1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

))
dx.

Combining the first and last terms and using (7.46) we get the desired result. ��
The following proposition allows to decompose the force F3 according to its

normal and tangential components.

Proposition 7.14 The force F3 defined by (7.47) can be recast, up to a
gradient term, under the form

F3 =
((

∇
(
Ẽ′

3

)
· τ
)
τ + Ẽ′

3Hn
)

|∇ϕ1 × ∇ϕ2| 1

ε2 ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)
.

(7.48)

where Ẽ′
3 = E′

3(Z3)Je

|∇ϕ1
0 (Y )×∇ϕ2

0 (Y )|

Proof By developing the divergence term in the expression (7.47) and by using the
fact that, by (7.36), (τ ⊗ τ )∇ϕi = 0, we obtain that the force can be written

F3 = A
1

ε2
ζ

(
ϕ1

ε

)
ζ

(
ϕ2

ε

)

with A = div(E′
3(Z3)Z3τ ⊗ τ ). Upon expanding A and using (1.19), we get

A = E′
3(Z3)Z3Hn+ (E′

3(Z3)Z3 div(τ )+ ∇(E′
3(Z3) Z3) · τ )τ. (7.49)

Next, we develop the term div(τ ) with (7.36) :

div(τ ) = div

( ∇ϕ1 × ∇ϕ2

|∇ϕ1 × ∇ϕ2|
)

= div
(∇ϕ1 × ∇ϕ2

)
|∇ϕ1 × ∇ϕ2| − ∇(|∇ϕ1 × ∇ϕ2|)

|∇ϕ1 × ∇ϕ2| · τ.
(7.50)
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The first term is zero because we have

div(∇ϕ1 × ∇ϕ2) = −∇ϕ1 · ∇ × (∇ϕ2)+ ∇ϕ2 · ∇ × (∇ϕ1) = 0. (7.51)

Using the relation on Z3 (7.37), we develop the expression ∇(E′
3(Z3) Z3) to get

∇(E′
3(Z3) Z3) · τ = ∇

(
E′

3(Z3)Je

|∇ϕ1
0(Y )× ∇ϕ2

0(Y )|

)
· τ |∇ϕ1 × ∇ϕ2|

+ E′
3(Z3)Je

|∇ϕ1
0(Y )× ∇ϕ2

0(Y )|
∇(|∇ϕ1 × ∇ϕ2|) · τ

Using (7.50) for the second term and the expression of Z3 (7.37) we get

∇(E′
3(Z3) Z3) · τ = ∇

(
E′

3(Z3)Je

|∇ϕ1
0(Y )× ∇ϕ2

0(Y )|

)
· τ |∇ϕ1 × ∇ϕ2|

− E′
3(Z3)Z3 div(τ )

Injecting this formula in the expression of A (7.49) gives the final result.
It is interesting to note that the force decomposes only in the basis (τ, n) and

has no component following the binormal vector b. Moreover, this decomposition
is similar to the expression (3.18) obtained for surfaces. ��

7.4 WENO Schemes for the Transport Equation

At the heart of the methods presented in this book lies a transport equation of a
(possibly multi-dimensional) Level Set function which records the deformations of
the medium during its motion along a velocity field calculated by other means. It
is therefore important to solve this equation as accurately as possible on Cartesian
grids (or on grids that can be reduced to Cartesian grids by changes of variables)
encompassing the fluid-solid systems under consideration.

We focus here on finite difference methods as they are routinely used. Many
numerical schemes exist for the transport equation: the upwind scheme is the most
natural one, but often proves to be too diffusive. The Lax–Wendroff scheme is,
on the one hand, more complicated to write in more than one dimension and, on
the other hand, generates oscillations around sharp variations of the solution. The
method of characteristics suffers from the same defect because of the interpolation
involved in its implementation.

In the mid-1980s nonlinear schemes generalizing the upwind scheme were intro-
duced by Harten et al. [83]. These schemes take into account the local smoothity
of the numerical solution to determine at which points the finite differences must
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be calculated. This idea led to the so-called ENO (for Essentially Non Oscilla-
tory) schemes. Subsequently, the WENO (Weighted Essentially Non Oscillatory)
schemes, which consist of taking an optimal combination of discretization stencils,
were introduced [90, 129] and then developed in numerous variations [3, 29, 127].

To understand how WENO schemes work, let us consider the one dimensional
case, and start from the semi-discrete transport equation

ϕn+1 − ϕn

Δt
+ un∂xϕ

n = 0. (7.52)

At node i of a discretization of the domain, the equation is therefore

ϕn+1
i − ϕni

Δt
+ uni (∂xϕ)

n
i = 0. (7.53)

The upwind scheme simply consists in approximating the x-derivative of ϕ at
node i taking into account the sign of ui . We set (∂xϕ−)i = ϕi−ϕi−1

Δx
and (∂xϕ+)i =

ϕi+1−ϕi
Δx

and we write (omitting the superscript n)

(ϕx)i ≈
{
(∂xϕ

−)i if ui > 0,

(∂xϕ
+)i if ui < 0.

(7.54)

given that the value chosen when ui = 0 does not matter in (7.53). This scheme is
stable under the Courant–Friedrichs–Lewy (CFL) condition.

Δt <
Δx

max |u| . (7.55)

The WENO scheme we consider in the sequel is of fifth order and uses the values

{ϕi−3, ϕi−2, ϕi−1, ϕi , ϕi+1, ϕi+2}

to determine an approximation of (∂xϕ−)i and

{ϕi−2, ϕi−1, ϕi , ϕi+1, ϕi+2, ϕi+3}

for (∂xϕ+)i . Following [129], we set

v1 = ϕi−2 − ϕi−3

Δx
, v2 = ϕi−1 − ϕi−2

Δx
, v3 = ϕi − ϕi−1

Δx
,

v4 = ϕi+1 − ϕi

Δx
, v5 = ϕi+2 − ϕi+1

Δx
.



184 7 Annex

Then

∂xϕ
1 = v1

3
− 7v2

6
+ 11v3

6
, ∂xϕ

2 = −v2

6
+ 5v3

6
+ v4

3
, ∂xϕ

3 = v3

3
+ 5v4

6
− v5

6
,

are third-order approximations of ∂xϕ−. A third-order ENO scheme would choose
the best of these approximations by means of a criterion minimizing the third-order
divided differences of ϕ. Doing so, we get a third order scheme. It was however
noticed that by taking an optimal convex combination of the three quantities above
to approximate ∂xϕ−, one could reach fifth order in regions where ϕ is smooth.

We therefore take an approximation of the form

(∂xϕ
−)i ≈ ω1∂xϕ

1 + ω2∂xϕ
2 + ω3∂xϕ

3,

where 0 ≤ ωk ≤ 1 are some weights satisfying ω1 + ω2 + ω3 = 1. In regions
where ϕ is smooth, it can be easily checked that the optimal choice is ω1 = 0.1,
ω2 = 0.6 et ω3 = 0.3. However this choice can turn out to be catastrophic when
ϕ is not smooth enough. In this case the original ENO scheme, corresponding to
one coefficient equal to 1, and the others equal to zero, would perform better. This
remark led to the determination of the weights ωk on the basis of some smoothness
indicators of the numerical solution.

More precisely, [129] first writes

S1 = 13

12
(v1 − 2v2 + v3)

2 + 1

4
(v1 − 4v2 + 3v3)

2, (7.56)

S2 = 13

12
(v2 − 2v3 + v4)

2 + 1

4
(v2 − v4)

2, (7.57)

S3 = 13

12
(v3 − 2v4 + v5)

2 + 1

4
(3v3 − 4v4 + v5)

2, (7.58)

and then defines

α1 = 0.1

(S1 + ε)2
, α2 = 0.6

(S2 + ε)2
, α3 = 0.3

(S3 + ε)2
,

where ε > 0 is a (very) small parameter (for example ε = 10−6 max{v2
k } + 10−99),

and finally consider the weights

ωk = αk

α1 + α2 + α3
, k = 1, 2, 3.

These choices give the quasi-optimal weights in the regions where ϕ is smooth,
and reproduce an ENO scheme behavior elsewhere. As an example, Fig. 7.7 shows
the results obtained by several schemes for the simulation of the one-dimensional
transport equation of a prototype function of a distance function. We took in these
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Fig. 7.7 Illustration of several advection schemes for the transport of a distance function. From
left to right, top to bottom, comparison of the exact solution (continuous line) to the upwind, Lax–
Wendroff, centered-RK3, Beam-Warming, Fromm, ENO2, ENO3, WENO5 schemes (circles)
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examples 200 discretization points on the interval [0, 10], a CFL number equal to
0.2 and a final time t = 5 which corresponds to the transport of the solution over
half of the domain. The choice of this small CFL number is explained by the fact that
in practice the time step is not often imposed by the transport equation, but rather
by the diffusion, for an explicit time-stepping, or by the fluid-structure coupling in
case of a stiff interface. It is therefore important that the interface transport scheme
is not too diffusive at low CFL.

The time-stepping scheme used in this example is an Euler scheme for all the
spatial discretizations, with the exception of the centered discretization which is
stabilized by an RK3 time-stepping. The WENO scheme performs clearly better
than all other schemes, including the sophisticated Fromm and Beam-Warming
schemes. We also note that the (W)ENO schemes, like the upstream scheme on
which they are based, are the only ones to avoid any post or pre-oscillations.

7.5 Some Ideas to Go Further

We list in this section a number of problems that we found interesting for future
research. The semi-implicit schemes that we have presented to stabilize the coupling
between an elastic membrane and a fluid are currently limited to the case of co-
dimension 1 and for energies that depend only on the change of area. Their extension
to membranes with shear and to more general elastic solids would make it possible
to stabilize the coupling schemes in all cases of fluid-structure interaction. Cases
where one has to deal with structures with large stiffness, such as that of the flapping
of the elastic rod shown in Sect. 4.3.2, would clearly benefit from such an extension.

The effects of added mass in the problems of fluid-structure coupling under
ALE (Arbitrary Langrangian Eulerian) formulation, that is to say where the fluid
is treated in Eulerian coordinates and the solid in Lagrangian coordinates, are
known in their formulation with explicit time-discretization of the coupling to be
very sensitive to added mass effects [32]. This is particularly striking when the
density of the immersed structure is close to that of the fluid, which is often the
case in biomechanical applications, for example. Essentially it comes from the
decoupling of the inertia of the structure and the fluid in the explanation of the
numerical scheme. At the cost of many efforts [64, 67, 69] this problem could be
circumvented while avoiding a completely implicit resolution. Note that in the case
of the completely Eulerian coupling, the inertia part is solved simultaneously for the
solid and the fluid, even in the case of a completely explicit scheme. The effects of
added mass should therefore be less significant. However, we do not know of any
proof of this intuition.

Another case concerns the problems of interface displacements on manifolds,
and the associated coupling problems. In [100] the displacement of a curve on a
fixed surface is considered, in order to minimize its length. Rather than opting for a
general Eulerian representation of curves in space introduced in Sect. 3.4, because
the load-bearing surface is fixed a parametric representation of it is used. The curve
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is then captured in the parameter space, and the energy is expressed thanks to this
representation. The dimension of the resulting problem corresponds to that of the
manifold on which the curve moves, and not of the ambient space. Beyond this
isoperimetric problem on a manifold, to our knowledge the study of more general
energies for problems of flows on surfaces or fluid-structure couplings in this context
has not been carried out.

Beyond the fluid-structure interactions, one can make a link between problems
of the optimal transport type and the Eulerian mechanics presented in these pages.
Indeed, from a measure theory point of view, formula (3.9) simply translates the
fact that the measure |∇ϕ0|−1(x)δ{ϕ0=0} is the push-forward (denoted by #) of
the measure |∇ϕ|−1(x, t)δ{ϕ=0} by x → Y (x, t). One thus could reformulate the
problem of finding the equilibrium form of an immersed membrane, represented by
the Level Set ϕ, as minimizing the elastic energy (3.12) among all the functions ϕ
verifying Y#|∇ϕ|−1δ{ϕ=0} = |∇ϕ0|−1δ{ϕ0=0}for a certain field Y .

Following [22], this can be formulated as the steady state solution of the problem

∂tY + (u · ∇)Y = 0, ϕ = ϕ0(Y ),

−Δu+ ∇p = div

(
E′(|∇ϕ|)|∇ϕ|∇ϕ ⊗ ∇ϕ

|∇ϕ|2
1

ε
ζ
(ϕ
ε

))
, divu = 0,

with the initial condition Y (0, x) = x and an homogeneous Dirichlet boundary
condition on u.

Finally, a more general and far reaching class of questions that deserves to
be studied concerns the comparison in terms of cost/performance of the methods
seen in this book with ALE-type methods. As we have already said, the interest
of Level Set methods, and more generally of immersed boundary methods, is a
simple consideration of continuity conditions and the possibility of using fast solvers
on regular grids. The price to pay is a less precise tracking of the interfaces and
the forces they support compared to methods whose meshes are based on these
interfaces. To truly and fairly compare the methods, it is necessary to be able to
evaluate, with equal or comparable results, the cost of the calculations relating to
them, possibly taking into account the efficiency of the parallel implementation of
the different algorithms. A first step must consist in choosing test cases which are
relevant for the two classes of methods, and in defining a measure of the quality of
the results obtained.
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