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Preface

The aim of homogenization theory is to establish the macroscopic behaviour of a
system which is `microscopically' heterogeneous, in order to describe some char-
acteristics of the heterogeneous medium (for instance, its thermal or electrical
conductivity). This means that the heterogeneous material is replaced by a ho-
mogeneous fictitious one (the `homogenized' material), whose global (or overall)
characteristics are a good approximation of the initial ones. From the math-
ematical point of view, this signifies mainly that the solutions of a boundary
value problem, depending on a small parameter, converge to the solution of a
limit boundary value problem which is explicitly described.

During the last ten years, we have both had the opportunity to give courses
on homogenization theory for graduate and postgraduate students in several
universities and schools of engineers. We realized that, while at the research level
many excellent books have been written in the past, for the graduate level there
was a lack of elementary reference books which could be used as an introduction
to the field. Also, many classical and known results in linear homogenization,
though currently taught, are not really available in the literature, either in books
or in research articles. This lack naturally led to the idea to extend the material
of our courses into the book we present here.

When teaching, we had to take into account that often the audience was
not really familiar with the variational approach of partial differential equa-
tions (PDEs), which is the natural framework for homogenization theory. This
is why we started the book with this topic. It is the subject of the first four
chapters.

We have deliberately chosen not to present too many results, but to have
those included all well explained. We focus our attention on the periodic ho-
mogenization of linear partial differential equations. A periodic distribution of
the heterogeneities is a realistic assumption for a large class of applications. From
the mathematical point of view, it contains the main difficulties arising in the
study of composite materials.

Chapter 1 deals with two notions of convergence, the weak and the weak* one.
This allows us to describe, in Chapter 2, the asymptotic behaviour of rapidly
oscillating periodic functions.

In Chapter 3 we introduce the distributions and give the basic notions and
theorems of Sobolev spaces. We pay particular attention to Sobolev spaces of
periodic functions. The results of this chapter. as well as those of Chapter 1,
are classical and are the necessary prerequisites for the variational approach of
PDEs. We do not give their proofs but detailed references are quoted.
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In Chapter 4 the variational approach to classical second order linear elliptic
equations is introduced. Existence and uniqueness results for solutions of these
equations with various boundary conditions are proved. Again we treat in detail
the case of periodic boundary conditions.

From Chapter 5 to Chapter 12 we treat the periodic homogenization of several
kinds of second order boundary value problems with rapidly oscillating periodic
coefficients. We are concerned with elliptic equations. the linearized system of
elasticity, the heat and the wave equations.

The model case is the Dirichlet problem for elliptic equations. The results
concerning this case are the object of Chapters 5 and 6. In Chapter 5 we formu-
late the problem and list some physical examples. We also study two particular
cases: the one-dimensional case and the case of layered materials. In Chapter 6
we state the general homogenization result and prove some properties of the
homogenized coefficients.

The main homogenization methods for proving the general result are pre-
sented in Chapters 7-9. Thus, the multiple-scale method is described in Chap-
ter 7. Chapter 8 is devoted to the oscillating test functions method. Finally, in
Chapter 9 we introduce the two-scale convergence method.

In Chapter 8 we also prove some important related results. as for instance
the convergence of energies and the existence of correctors. The convergence of
eigenvalues and eigenvectors is also proved.

Chapters 10, 11 and 12 are devoted to the linearized system of elasticity,
the heat equation and the wave equations respectively. In each chapter, we
start by proving the existence and uniqueness of a solution. Then, we study the
homogenization of the problem.

We conclude this book with a short overview of some general approaches to
the study of the non-periodic case.

The idea of writing this book was to provide detailed proofs and tools adapted
to the level we have in mind. Our hope is to give a background of homogenization
theory not only to students, but also to researchers. -in mathematics as well as
in engineering, mechanics, or physics - who are interested in a mathematical
introduction to the field.

Special thanks go to three of our colleagues. We thank Petru Mironescu for
many helpful suggestions concerning the first four chapters. We also express our
gratitude to Olivier Alvarez for his accurate reading of the manuscript and for
his useful remarks and suggestions. Finally, we thank Thomas Lanchand-Robert
for his valuable and patient help while we were typing this book in '1X.

This book represents for us the ultimate 'joint venture', which would have
never been possible without a truly deep friendship and mutual understanding.

Paris D.C.
Rouen P.D.
March 1999
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Introduction

The aim of this book is to present the mathematical theory of the homogeniza-
tion. This theory has been introduced in order to describe the behaviour of
composite materials.

Composite materials are characterized by the fact that they contain two or
more finely mixed constituents. They are widely used nowadays in industry, due
to their properties. Indeed, they have in general a -better' behaviour than the
average behaviour of their individual constituents. Well-known examples are the
superconducting multifilamentary composites which are used in the composition
of optical fibres.

Generally speaking. in a composite the heterogeneities are small compared
to its global dimension. So. two scales characterize the material, the micro-
scopic one, describing the heterogeneities, and the macroscopic one, describing
the global behaviour of the composite. From the macroscopic point of view, the
composite looks like a `homogeneous' material. The aim of 'homogenization'
is precisely to give the macroscopic properties of the composite by taking into
account the properties of the microscopic structure.

As a model case, let us fix our attention on the problem of the steady heat
conduction in an isotropic composite.

Consider first a homogeneous body occupying 0 with thermal conductivity
y. For simplicity, we assume that the material is isotropic, which means that y
is a scalar. Suppose that f represents the heat source and g the temperature on
the surface O1 of the body. which we can assume to be equal to zero.

Then the temperature u = u(x) at the point x E ) satisfies the following
homogeneous Dirichlet problem:

div (ynu(x)) = f (x) in ft
(0.1)

where Vu denotes the gradient of u defined by

uVu=grades = all
1'.

8

Since y is constant. this can be rewritten in the form

-?Ou=f inQ
(0.2)

1 u=0 on Oft
where Au = div(grad u). The flux of the temperature is defined by

4 = 1 grad u. (0.3)
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This is a classical elliptic boundary value problem and it is well known that if
f is sufficiently smooth, it admits a unique solution u which is twice differentiable
and solves system (0.2) at any point x in 12.

If now we consider a heterogeneous material occupying Q. then the thermal
conductivity takes different values in each component of the composite. Hence,
ry is now a function, which is discontinuous in 12, since it jumps over surfaces
which separate the constituents. To simplify. suppose we are in presence of a
mixture of two materials, one occupying the subdomain 121 and the second one
the subdomain 112, with 11 n 122 = 0 and Il = 01 U Q2 U (601 fl 0112).

Suppose also that the thermal conductivity of the body occupying 01 is y1
and that of the body occupying 122 is 12, i.e.

71

12

ifxE121
ifXE122.

Then the temperature and flux of the temperature in a point x E fl of the
composite take respectively, the values

1u1(x) ifXE12i
U(X) =

1u2(x) if x E 122

and
q1 = 11 grad it, in 121

g
Sl 92=72 grad u2 in Q2-

The usual physical assumptions are the continuity of the temperature u and of
the flux q at the interface of the two lnateriaLs. i.e.

ui = u2 o11 ant n 0112

g1 ni = 42 t2 on 0f21
(04)

n 0122.

where n, is the outward normal unit vector to 012;, i = 1, 2 and ni = -n2 on
0121 n002. Therefore, the temperature u is solution of the stationary thermal
problem. Then the corresponding system (0.1) reads

-div (-y(x) grad u(x)) = f(x) in l1 U112

U=0 onaf2
u1 = u2 011 0111 n 8Q2

g1 ' ni = q2 n2 011 OQ1 n ail.

Formally, we can write this system in the form

div (- (r) grad u(x)) = f (x) in 12

u=0 o111912.

Observe that from (0.4). it follows that the gradient of u is discontinuous.
Moreover, in general. the flux q is not differentiable.
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Taking into account these discontinuities, the question is what is the appro-
priate mathematical formulation of this problem and in which functional space
can one have a solution (since one can not expect to have solutions of class C')?

An answer to these questions can be given by introducing a weak notion of
solution. It is built on the notion of weak derivative, the so-called derivative in
the sense of distributions. This is defined in Chapter 3, where we also introduce
the Sobolev spaces which constitute the natural functional framework for weak
solutions.

In the definition of a weak solution, problem (0.6) (or (0.5)) is replaced by a
variational formulation, namely

Find u E H such that
N ry(x)au t, dx fvdx. VVEH. (0.7)

ax; n

where H is an appropriate Sobolev space taking into account the boundary
conditions on u. In (0.7) the derivatives are taken in the sense of distributions.

Of course, if u were sufficiently smooth, (0.7) and (0.6) would be equivalent.
As seen above, this is not the case for a composite material, so the sense to be
given to (0.6) is only that u solves (0.7). Let us point out that the equation in
(0.7) is checked for any v belonging to the space H. This is why v is usually
called a test function.

Existence and uniqueness results of a weak solution of (0.7) are proved in
Chapter 4, where we also treat other kinds of boundary value problems.

Let us turn back to the question of the macroscopic behaviour of the compos-
ite material occupying Q. Suppose that the heterogeneities are very small with
respect to the size of fl and that they are evenly distributed. This is a realistic
assumption for a large class of applications.

From the mathematical point of view, one can modelize this distribution by
supposing that it is a periodic one (see Fig. 0.1).

This periodicity can be represented by a small parameter, °E'.
Then the coefficient -y in (0.7) depends on E and (0.7) reads

Find uE E H such that
N

f'7'(X)49Xj
8uE 8t.E Ox

0.: drfvdx. dvEH. (0.8)
st

A natural way to introduce the periodicity of yE in (0.8) is to suppose that it
has the form

_ - a.e. on RN. (0.9)
F(-i-)

where y is a given periodic function of period Y. This means that we are given
a reference period Y, in which the reference heterogeneities are given. By defi-
nition (0.9), the heterogeneities in 12 are periodic of period EY and their size is
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Fig. 0.1

of order of e. Problem (0.8) is then written as follows:

Find uE E H such that.

/' y(x 8u- 8r
dx _ J f vv dx. Vv E H. (0.10)E in F) Oxt 8x; n

and Fig. 0.2 shows the periodic structure of f1. Observe that two scales char-
acterize our model problem (0.10), the macroscopic scale x and the microscopic

one x, describing the micro-oscillations.
The discontinuities of this problem make the model very difficult to treat, in

particular from the numerical point of view. Also, the pointwise knowledge of the
characteristic of the material does not provide in a simple way any information
on its global behaviour.

Observe also that making the heterogeneities smaller and smaller means that
we `homogenize' the mixture and from the mathematical point of view this means
that a tends to zero. Taking e 0 is the mathematical `homogenization' of
problem (0.10).

Many natural questions arise:

(1) Does the temperature u£ converge to some limit function u°?

(2) If that is true. does u° solve some limit boundary value problem?

(3) Are then the coefficients of the limit problem constant?

(4) Finally, is u° a good approximation of tic?

Answering these questions is the aim of the mathematical theory of 'homog-
enization'.

These questions are very important in the applications since, if one can give
positive answers. then the limit coefficients, as it is well known from engineers
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and physicians, are good approximations of the global characteristics of the com-
posite material, when regarded as an homogeneous one. Moreover, replacing the
problem by the limit one allows us to make easy numerical computations.

The first remark is that the function y£ converges in a weak sense to the
mean value of y , i.e. one has

10
y£(x) zv(x) dr --, jMev) v(.r) dx. (0.11)

t

for any integrable function v. Here the mean value My (y) is defined by

My('Y) = I1'I j I(y) dy.

This result on the convergence of periodic functions is proved in Chapter 2. The
notion of weak convergence and related properties are presented in Chapter 1.

One can also (thanks to weak-compactness results stated in Chapter 1) show
that of converges to some function u0 and that Vu' weakly converges to Vu°.

The question is whether these convergences and convergence (0.11) are suffi-
cient to homogenize problem (0.10). To do that., one has to pass to the limit in
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the product ryEVu£. This is the main difficulty in homogenization theory. Ac-
tually, in general (see Chapters 1 and 2), the product of two weakly convergent
sequences does not converge to the product of the weak limits. In Section 5.1
we show that there is a vector function , weak limit of the product and
satisfying the equation

-div C = f. (0.12)

But
My(7)ou°,

so that from (0.12) one cannot easily deduce an equation satisfied by u°. This
already occurs in the one-dimensional case where fl is some interval }dl, d2 [. One
has (see Section 5.3)

1 duo

M}(I) dx

Moreover, u° is the unique solution of the homogenized problem

d 1 du°_ f
dxdx MY (0

u°(dx) = u°(d2) = 0.

Clearly, My (y)Vu°, since

1
4 M11(y)-

in ]d1,d2f

Even for the one-dimensional case this homogenization result is not trivial.
The situation is of course, more complicated in the general N-dimensional case.
The one-dimensional result could suggest that in the N-dimensional case the
limit problem can be described in terms of the mean value of -y-1. This is not
true, as can already be seen in the case of layered materials studied in Section 5.4,
where y depends only on one variable, say x1. In this case, the homogenized
problem of (0.10) is

div (A°Vu°) = f

{ u°=0 on (9Q,
in S2

where the homogenized matrix A° is constant. diagonal and given by

1 0 ... 0M'0-1)
A° = 0 Mt.(y) ... 0

0 0 MY (y)

(0.13)
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Let us point out that the homogenized material is no longer isotropic, since
A° is not of the form a 01.

Observe also that in these particular examples of the one-dimensional case
and of layered materials, the homogenized coefficients are. algebraic formulas
involving y.

For the general N-dimensional case, as seen in Chapter 6, the homogenized
problem is still of the form (0.13). The coefficients of A° are defined by means of
some periodic functions which are the solutions of some boundary value problems
of the same type as (0.10) posed in the reference cell Y. The coefficients a° of
the matrix A° are defined by

a° _
I1'I

fvy-y bij dy -
am

j dy, Vi.j=1,...,N, (0.14)

where 8=1 is the Kronecker symbol. The function x, for j = 1,... , N is the
solution of the problem

ay
-div (y(y)V ) = -ay, in Y

ki Y-periodic

My(x)0.
(0.15)

This result can be proved by different methods. We present in this book
three of them.

In Chapter 7 we use the multiple-scale method, which consists of searching
for uE in the form

ue(x)=up(x, +Fu1 x, ) +e2 2(x.-) (0.16)

where uj = uj (x, y) are Y-periodic in the second variable y.
The multiple-scale method is a classical one, widely used in mechanics and

physics for problems containing several small parameters describing different
scaling-s. It is well adapted to the periodic framework in which we work in
this book. Its interest is that in general, it permits us to obtain formally the
homogenized problem.

Chapter 8 is devoted to the oscillating test functions method introduced by
L. Tartar. As we have seen above, in problem (0.10) the function of is continuous
at the interface 60, n 19Q2 but its gradient is not, and behaves in such a way that
the flux yVu6 remains continuous. The idea of Tartar's method is to construct
test functions v = w? cp for (0.10) having the same kind of discontinuities as uE
and having a known limit. For our example. one has

w (x} - i? (.1,
+ a-j. j=1 ..... N. (0.17)(l\F)
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and cp is a smooth function vanishing on 00. Using these test functions in the
variational formulation (0.10). one is able to pass to the limit and identify in

terms of u°. Actually, one obtains in the form

= A°Vu°.

This together with (0.12) gives the homogenized problem.
In Chapter 8 we also prove a corrector result which for the model prob-

lem (0.10) is the following. Let us introduce the (corrector) matrix CE _
(C?) r <iJ<N defined by

,( )
=

aufl

\r/Ca
ay:E

where wj is given by (0.17). Then,

VuE-CEVu°--'0

in a usual (strong) convergence.
Moreover, let us observe that, when applying the multiple-scale method one

finds
N

au°
2 Xj(Y) ax -

j 1

Therefore

=

Vut(x) = Vu°(x)"-EVyXk r}5X-k(X)-EJ:Xk(E) k)k=1
k=r \ ///

l

(.r) + ... .= CE(x)Vu°(x) - e E kk .)
V (Ork,l

1k=

Hence CE (x)V u°(x) is the first terns in the asymptotic expansion (0.16) of Vuf .
In the same chapter we also give further properties of the homogenized prob-

lem.
In Chapter 9 we prove again the convergence result by the two-scale method

which takes into account the two scales of the problem and introduces the no-
tion of 'two-scale convergence'. This convergence is tested on functions of the
form O(x, x/e). One of the interests of the two-scale method is that it justifies
mathematically the formal asymptotic development (0.16).

In Chapters 10, 11, and 12 we treat respectively the linearized system of
elasticity, the heat equation and the wave equation. For each problem, we first
prove the existence and uniqueness of the solution, then we study their homog-
enization.

Finally, Chapter 13 contains a short overview of some methods used in the
general non-periodic case. In particular. we fix our attention on G-convergence
and H-convergence.
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Weak and weak* convergences in Banach
spaces

We recall in this chapter the main properties of weak and weak* convergence in
a Banach space. We also detail these notions for the particular case of LP-spaces.

Let us begin by recalling the notions of a Banach and a Hilbert space which
are the functional spaces in which Ave work in this book. The spaces we consider
in this book are all real.

Definition 1.1. A mapping

is called a norm on the vector space E if

IIxII=Ot=x=O
II. xII = IAIIIxII for any )AEIR. x E E

IIx + yll < IIxII + IIxII for any x, y E E.

Then E is called a norrned space and its norm is denoted by II ' IIE
Moreover. E is called a Banach space if it is complete with respect to the

following convergence (called strong convergence):

x. - xin E 4=

Definition 1.2. Let H be a real linear space. A snapping

(',')H:(x.y)EHxHH(x,y)HEIR
is called a (real) scalar product if

(x,x)H>0bx#0.
(x, y)H = (y. x)H, for any r. y E H
(Ox + icy. z)H = A(x, z)H + p(y. z)H, for any A. p E lR, x, y, z E H.

Moreover, if H is a Banach space with respect to the norm associated to this
scalar product. i.e. with

IIaIIH = (.r.x)N

then H is called a Hilbert space.
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Here we present in particular, the properties of Banach spaces needed in
the study of homogenization problems. We refer the reader for proofs and more
details concerning Banach spaces to Yosida (1964), Edwards (1965), Rudin (1966,
1973), Zeidler (1980), and Brezis (1987).

1.1 Linear forms on Banach spaces

In this section, we give some basic properties of mappings on Banach spaces and
in particular, we will introduce the notion of dual space. In the sequel, E and F
denote two Banach spaces.

Definition 1.3. Let A : E '--> F be a linear neap (i.e. such that for any x, y E E
and for a, ,0 E R, one has A(ax+,3y) = aA(x)+,3A(y)). Then, A is bounded if

IIA(x)IIF
sup

=EE\{o} IIXIIE
<

One denotes by C(E, F) the set of linear and bounded maps from E to F.

The main property of bounded linear maps is given by the following result:

Proposition 1.4. The quantity

11A11 = sun
IIA(x)IIF

C(E. F)
TEE\{0) IIXIIE

defines a norm on C(E, F), which is a Banach space for this norm.
Then one has

11A(x)lIF < IIAIIC(E, F)I1x1IE, Vie E, (1.1)

where IIAIIc(E, F) is the smallest number for which (1.1) holds.
Moreover, the linearity implies that

IIAIIc(E. F) = sup = sup NA(--)11F,,
rEE\{o) IIxIIE xEE
IIFIIE<1 II=IIE=1

for A E C(E, F).

The following result characterizes the space C(E. F):

Theorem 1.5. Let A a linear map from E to F. Then, the following three
assertions are equivalent:

i) A is bounded.
ii) A is continuous,

iii) A is continuous at a point 1'o E E.
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Proof. Let us prove first that (i) = (ii).
If A is bounded, from (1.1) and the linearity of A, one immediately has

IIAu - AvIIF < IIAIIC(E. F)IIu - t>IIE' du, v E E,

whence the continuity of A.
The implication (ii) (iii) is obvious.
Let now prove that (iii) = (i). If A is continuous in vo E E, for any e > 0,

there exists 5 > 0, such that

llv - VoIlE < 9 IIA(v-- Vo)IIF <e,

which, if w = v - vo, reads

IIwIIE < 5 IlAwlIF < E.

Consequently, setting z = 3w, we can write

sup IIAzll F =
2

sup IIAwll. <?E.
I ZlE=1 6

IIwIIE=6/2
8

and this implies (i), in view of Proposition 1.4.

Definition 1.6. If E is a Banach space, the set of the linear and continuous
maps from E into R is called the dual space of E and is denoted E'. If X' E E',
the image x'(x) of x E E is denoted by (x', x)E'.E. The bracket }E',E is
called the duality pairing between E' and E.

The dual space E" = (E')' of E' is called the bidual of E.

An immediate consequence of Proposition 1.4 and Theorem 1.5 is the result:

Corollary 1.7. The dual space E' is characterized as follows:

E' = £(E, R).

and it is a Banach space for the norm

Ilx'IIE' = sup I(t:',x)E'.EI, bx'EE'.
xEE\10} I1tlIF

Moreover, one has

I (X, x)E'. El < ll.r'IIE, IIJ'IIE dx E E.

From this corollary it is obvious that E" is a Banach space too. Generally,
E can be identified with a subspace of E" through a canonical isometry. Indeed,
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Proposition 1.8. Let X E E be fixed and introduce the map

f:, : E E' s---' (x'.x)E'.E E R.

Then f, E E" and the map

F:xEEi )fEE"
is an isometrv, i.e.

IIxllE = Il. (')IIE" = IlfxllE",

Thanks to this result, one identifies x with f,., and then E with its image
,F(E) c E".

Definition 1.9. Let F be the map defined by Proposition 1.8. The space E is
called reflexive if F(E) = E".

If E is reflexive, due to the above properties. we identify E and E".

1.2 Weak convergence

In all this section E is a (real) Banach space equipped with the norm ll E. In
Definition 1.1 we introduced the notion of strong convergence with respect to
this norm. Other notions of convergence can be defined on E. We are concerned
here with that of weak convergence.

Definition 1.10. A sequence in E is said to converge weakly to x if

Vx E E', (x'. x'n)E'. E ' (x'. x)E'. E

This weak convergence is denoted

x,, x weakly in E.

Remark 1.11. Let us mention that the uniqueness of the weak limit is a conse-
quence of the Hahn-Banach theorem (see for instance Yosida. 1964, Chapter 6).

0

Proposition 1.12. Strong convergence implies weak convergence.

Proof Let {x } be a sequence in E such that

a -+ x strongly in E.

Then, for any x' E E', thanks to Corollary 1.7 one has

?I-00
l(x'.xn)E'. E - (x',x)E'. El 'lull rIl E = 0.

0
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Proposition 1.13. If dim E = N < +oo. the strong and the weak convergences
are equivalent.

Proof. Let be a sequence in E such that

weakly in E.

Let (ei)N 1 be a basis of E with IIeiIIE = 1 for any i = 1, ... , N. Then, for any

y E E, there exist yl,... , yN uniquely determined in R such that y = EN1 yei
Hence, we can define the maps

fi : y '---) Y E R, i = I..... N,

which are N elements in E. From Definition 1.10 one has, in particular,

lien (fi. x - x0)E'. E = 0. i = 1.... , N. (1.2)

But

IIxn - x011 E = Ci (.fi, x, - a-0)E'.E
i=1 rE

N
/Nei (fi, xn - x0)E', ERE

i=1

N

E I (fi, xn - x0) El. E
i=1

which with (1.2). gives the strong convergence of xn to xo.
This, together with Proposition 1.12, ends the proof.

Proposition 1.13 is not true if dim E = +0o. The easiest way to see that
is to construct some counterexamples. For instance. Examples 2.4 and 2.5 from
Chapter 2 exhibit sequences which are weakly but not strongly convergent.

The following result is a particular case of the Banach-Steinhaus theorem.
We refer to Yosida (1964) for a proof.

Proposition 1.14. Let {xn } be a sequence weakly convergent to x in E. Then

i) { xn } is a bounded sequence in E, i.e. there exists a constant C independent
of n such that

Vn E N. <C.

ii) the noun on E is lower semi-continuous with respect to the weak conver-
gence, i. e.

II i'lIE < lim inf llxnllE.
1 -:X

To investigate further properties of the weak convergence. we need the fol-
lowing definition:
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Definition 1.15. We say that the Banach space E is uniformly convex if for
any E > 0, there exists b > 0 such that

(II'tI(x,y EE , IIxE-1, IIxIIEII-YIE>E<1-a}.

Remark 1.16. It can be proved (see for instance Rudin, 1966) that any uni-
formly convex Banach space is reflexive, the converse being not true. It is also
easy to check that any Hilbert space is uniformly convex (and therefore reflexive).

0

Proposition 1.17. Let {x,a } be a sequence in E. One has

i) a-, - x weakly in E
(a) (x x strongly in E) (b) jii) IIx,=IIE IIxIIE-

Moreover, if E is uniformly convex, then (a) (b).

Proof. (a) (b). Proposition 1.12 gives b(i). Convergence b(ii) follows from
the inequality

I IIxIIE - IIYIIEI <- IIx - YIIE

(b) ===> (a). Suppose now that E is uniformly convex. Clearly. if a = 0, from
b(ii) one has the convergence to zero of IIx,=IIE which is by definition the strong

convergence of {xn }.
Let now x # 0. We will argue by contradiction. Suppose that

Then, there exists a subsequence (for simplicity. still denoted by x,) such that

lim lIx - xIl = f>0.
nix E

(1.3)

We may assume that IIxf IIE # 0 and set z = IIE, z = x/IIxIIE. Observe

that. by definition. II z IIE = Ilz II
E

= 1. Moreover, since for any x' E E'.

(x', zn)E' F E-

one has from (b) that z - z. Consequently. (z + z)/2 - z weakly in E.
From Proposition 1.14(ii) it follows that

1=IIxIIE5lirninfllzn2 zIIF < [imopll2n2 zllE

< li?I-oc
I
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Hence,

Let now

lien II Zn + Z (1.4)
n-+oo J 2

E

Then, from (1.3) there exists no such that, for n > no, one has

Ilx11 - xIIE > e - (f - 2EIIxIIE) = 26IIxIIE.

Also, from hypothesis (b)(ii). there exists nl such that, for n > n1, one has

IIxIIEI
<-

EIIXIIE.

Then, for any n > max {no, nl }, we have successively

Ilxn - xIIE
2e <

IIxIIE < II IInIIE IIXIIE IIE+II IIxIIE - II nIIEi E

IIIxrIIIF - IIxIIEI
IIZn

- ZIIE+ II'II ,
`Ilzn-zIIE+E.

B

Hence, one has for any n > max {no. n, }

Ilzn-zII;>s.

Consequently, from Definition 1.15 we deduce the existence of some 5 > 0 such
that

nim _z"2
II <1-d<1.

which is in contradiction with (1.4). 0

The following theorem states one of the main properties of the weak conver-
gence in reflexive Banach spaces. For the proof. which is rather technical, we
refer again to Yosida (1964) or to Zeidler (1980).

Theorem 1.18 (Eberlein-Smuljan). Assume that E is reflexive and let {xn}
be a bounded sequence in E. Then

i) there exists a subsequence {x } and x E E such that, as k - oo,

xnk -a r weakly in E.
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ii) if each weakly convergent subsequence of {x, } has the same limit x, then
the whole sequence {xn } weakly converges to x, i.e.

xn - x weakly in E.

The last result of this section will be used frequently throughout this book. It
enables us to pass to the limit in products of 'weak-strong' convergent sequences.

Proposition 1.19. Let {xn } c E and {y,, } c E' such that

f xn x weakly in E

yn - y strongly in E'.

Then

n
yn, n)E'. E X)E'. E-

Proof. From Corollary 1.7 one has

'li I(yn. xn)E'. E - (y. J')E'. El
1 00

=
ri

bin Iff(n - y. 'nl)E'. E + (y, X. - X) El. EI
00

li mllyn -y'E' IIxnI'E+nlint I(y,xn-x)E',EI =0,
-OC

where, to pass to the limit, we have used Proposition 1.14(i).

1.3 Weak* convergence

As can be seen from Definition 1.10. to check the weak convergence fora sequence
of E, one needs to know what is the space E'. It may happen that E' is `too
big' a space. This renders the verification of the weak convergence condition too
difficult. Moreover, in this case, there are too 'few' weakly convergent sequences.
This situation leads to the more general following notion of weak* convergence:

Definition 1.20. Let F be a Banach space and set E = F. A sequence {xn}
in E is said to converge weakly* to .r if

(X., X') F'. F -+ (a'. x')F'. F- dx' E F.

This weak* convergence is denoted

xn - a' weakly* in E.

Remark 1.21. The uniqueness of the weak* limit is immediate. Indeed, if the
sequence {xn} has two weak* limits.r and y. then from Definition 1.20 one must
have (x, x')F'. F = (y, x')F', F. for all a' E F. which implies that x = y in F. 0

Proposition 1.22. Let F be a Banach space and E = P. Then any weakly
convergent sequence in E is also weaky* convergent.
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Proof Let {x7z} be a sequence of E = F' such that

x x weakly in E.

Then, by definition

(x',xn)F" F -+ V.F' E F".

This implies (1.5), since F C F". D

Remark 1.23. From Definition 1.20 and the proof of Proposition 1.22, it is clear
that the two notions of convergence are a priori not equivalent since in general,
the inclusion F C F" is strict (see for details Akilov and Kantorovich, 1981).
Obviously, if the space F is reflexive. weak convergence and weak* convergence
are equivalent. 0

The main properties of weak convergence are still valid for weak* convergence
with analogous proofs. In particular. the results from Section 1.1 read as follows:

Proposition 1.24. Let {x } be a sequence weakly* convergent to x in E = F'
where F is a Banach space. Then

i) {xn} is a bounded sequence in E. i.e. there exists a constant C independent
of n such that

VnEN. 11xIdE<C.

ii) the norm is lower semi-continuous with respect to the weak* convergence,
i.e.

ilx+I F- : ltnln innf "X" "E'

To give the equivalent of Theorem 1.18 for weak* convergence, we need to
introduce another definition.

Definition 1.25. We say that the Banach space F is separable if there exists a
set, at most countable, which is dense in F.

Then, the following result holds true:

Theorem 1.26. Let F be a separable Banach space and let E = F'. If {xn} is
a bounded sequence in E, then

i) there exists a subsequence of {x,t} and x E E such that, ask --> oo,

x,,, - .2 weakly* in E.

ii) if each weakly* convergent subsequence of {x } has the same limit x, then
the whole sequence {x } weakh* converges to x. i.e.

x - x weakly* in E.
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One also has a result concerning products of `weak*-strong' convergent se-
quences.

Proposition 1.27. Let {xn) be a sequence in E = F' where F is a Banach
space and {y,,} a sequence in E' such that

( yn -y strongly in F
St .rn a: weakly* in E.

Then

lira (xn, yn)F'. F - (a' Y) Fl. F-n-oo

1.4 Some properties of 17-spaces

In this section we give a short presentation of U-spaces. We suppose known the
basic properties of Lebesgue measure and integration theory (for details we refer
the reader to Rudin, 1966). In the sequel, RN is equipped with the Lebesgue
measure dx. We will denote by JwJ the Lebesgue measure of a measurable set w.
As usual, we will identify two integrable functions which are almost everywhere
equal.

From now on, O and 1 denote respectively. an open set and a bounded open
set in RN. Let us recall in this section the definition of the space D(O). For
more properties of this space. we refer the reader to Chapter 3.

Definition 1.28. For any function p : 0 H R. the support of gyp, denoted by
supp W, is defined as the following closed set of 0:

supp ={.rE0. o}n0.

We denote by D(O) the set of indefinitely differentiable functions whose sup-
port is a compact set of RN contained in O.

We denote also by C°(0) the set of continuous functions whose support is a
compact set of RN contained in O.

Remark 1.29. Let us observe that one can construct functions in D(O) having
an arbitrarily small support. For instance, for any a > 0, the function p defined
on Rn' by

2

cp(x) = e if 1xI < a

if 1xI > a,

is clearly in C° (RN) and its support is the closed ball centred at the origin and
of radius a.

Notice that in the literature D(0) is often denoted by C01(0). 0
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Definition 1.30. Let P E R with 1 < p < +oc. Define

}

LP(O) = { f I f : 0 - R. f measurable and such that fn If (x) Ip dx < +oe }

LO°(0) = { f I f : 0 -- R, f measurable and such that there exists C E R

with If I < C, a.e. on O } .

Define also

Li C(O) = if I f E Lr(w), for any open bounded set w with w C 0).

The next two propositions give the main properties of LP-spaces.

Proposition 1.31. Let P E R with 1 < p < +oo. The set LP(O) is a Banach
space for the norm

a

IIfIILP(O)
If (x)JP dx] if p < +00

inf { C, If I < C a.e. on O) ifp = +oo.

If p = 2, the space L2 (O) is a Hilbert space for the scalar product

(L942(0) = f f (x) g(x) dx.

Proposition 1.32. The space LP(O) is separable for 1 < p < +oo, and is
uniformly convex for 1 < p < +oo.

Remark 1.33. Taking into account Remark 1.16, it follows that LP (O) for 1 <
p < +oo, is reflexive. Note that the space L'(0) is not reflexive and also, that
L°°(O) is neither reflexive nor separable. Q

Proposition 1.34 (Holder inequality). Let I < p< +oo and p' be its con-
jugate, i.e.

7=1- if1<p<+oc
p'=1 ifp=+oo
P =+oc ifp=1.

Then,

f If(x) 9(x)I d.r < IIfIIIP(O)11911LP'(o).

for any f E LP(O) and g E LP'(O). For p = 2, this inequality is called the
Cauchy-Schwarz inequality.
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An easy consequence of this inequality are the following inclusions:

Corollary 1.35. Let 1 < p< q < +ae. Then,

LQ(1) C LP(ll)

with
IIffILP(c) C cIIfIILQ(0),

where the constant c depends on I12I. p and q.

Theorem 1.36 (Representation theorem). Let I < p < +oo and p' be its
conjugate. Let f E [LP(O))'. Then. there exists a unique g E LP '(0) such that

(f, o)(LP(O)1'.LP(O) = ft,fr)

p(x) dx. VW E LP(O).

Moreover

II9IILP'(Q) = II f ilILP(O))'-

Remark 1.37. Due to this theorem. the space [LP(O))' can be identified with
LP' (O) for 1 < p < +oo, so that in particular. [L' (O))' = L"(0). Let us point
out that, on the contrary IL°c (O))' L 1(O). One has in fact. L'(0) C IL°° (O))'
strictly. (We refer to Brezis. 1987. for the proof of this result). The space
[L°° (O))' has a complicate structure (see Akilov and Kantorovich, 1981, for a
characterization of this space). O

There are many sets of functions, useful in applications. which are dense in
LP-spaces. In particular, we will make use in the sequel of the following result:

Theorem 1.38. D(O) is dense in LP(O). for I < p < +oo.

Remark 1.39. This density result does not hold true for p = oo. Indeed, if (f"'}
is a sequence in D(O) that strongly converges to f in L°°(0), then necessarily,
f would be continuous, since the uniform convergence preserve the continuity at
the limit. But, obviously, a function in Lx(0) is not necessarily continuous. O

To state another very important density result. we need to introduce the
following two definitions:

Definition 1.40. Let A be a measurable set in I '''. The characteristic function
of A is the function XA defined by

1 ifxEA
0 ifxERN\A.
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Definition 1.41. A function f : RN R is called a step function if

In

f(x) = 1: akkj,
k=1

with m E N, ak E R and where Ik is an interval in IRN, for any k E {1, ... , m}.
If fI C RN is a bounded open set. we denote by 8(11) the set of step functions

of the form ak x l,.
, such that Ik C S2, for any k E { 1.... , m }.

k=1
Obviously. S(Q) C LP(Q) for any p such that 1 < p < +oo. Furthermore,

we have the following density result (see Rudin. 1966):

Theorem 1.42. If 1 < p < +oc, S(91) is dense in LP(1).

Remark 1.43. Observe that this theorem implies in particular that LP(1l) is
dense in L1(Sl). 0

We end this section by a result which will be widely used in the sequel.

Theorem 1.44. If f E Li C(O) is such that

f f (,r) p(x) d r= U. V p E D(O),

then f = 0, a.e. on O.

1.5 Weak convergence in LP for 1 < p < 00

Let {u,,} be a sequence in LP(Q) with 1 < p < oo. In this case, due to Defini-
tion 1.10 and Remark 1.37. the weak convergence

u - u weakly in Lp(1?)

signifies that

u cp dx --i J u o dx. V cp E Lp'(Q).

with 1/p + 1/p' = 1.

Remark 1.45. Since for 1 < p < cc. L+'(11) = (LP'(9))'. the weak convergence
is equivalent to the weak* convergence. This follows from Remarks 1.23 and
1.33. Moreover, again for 1 < p < oc. Theorem 1.18 shows that any bounded
set in LP(S2) is weakly compact. 0

The next result of this section gives a characterization of the weak conver-
gence in the space LP(Q). It will be often used in the study of periodic oscillating
functions, which are discussed in Chapter 2.
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Proposition 1.46. Let 1 < p < oo and {un} be a sequence in L1(I). Then,
the following equivalence holds true:

(a) (un -1 u weakly in LP(Q))
i) IIUnhILD(c) <- C (independently of n),

(b)
ii) Jun dx --> J u dx, for any interval I C Q.

r r

Proof. Suppose that (a) holds. Then. (i) follows from Proposition 1.14 and (ii)
is obtained by testing the weak convergence for the function O = XI. Hence
(a) (b).

Assume now that (b) holds. Let V E LP '(0), with 1/p + 1/p' = 1. From
Theorem 1.42, for any positive r), there exists a step function cp,, such that

III - 'PI1 Ii LP' (n) <-17,

with
in

0q = E akk
k=z l

where ni E N, ak E JR and Ik is an open interval in Il. for any k E {1, ... , m}.
Then,

J(un - u) dx = J (u - u),p, dx + J (u - u) (cp - dx. (1.6)
in s1

From (ii) we have, as n - oo,

in

n

(un-u)V,, dx=>akJ (un-u)dx--r0.
k=1 Ix

From (i), the definition of Vn and the Holder inequality, one easily has that

in (un -u)(,p-(p,,) dx <C1q.

where C1 is independent of n and zl. Then, (a) follows from (1.6) by making first
n -* ooandthent) -*0. 0

1.6 Weak convergence in L'

Due to Definition 1.10 and Remark 1.37, the weak convergence

u u weakly in L' (S1)

I

means that r

J un p dx --- J u cp dx. V ' E L-(S2).



Weak convergence in L' 23

x2

0

n

1/n xI

Fig. 1.1

Since L'(Sl) is not reflexive (see Remark 1.33), the weak compactness Theo-
rem 1.18 does not apply. This makes the study of bounded sequences in L'(0)
quite difficult. The following example exhibits a bounded sequence in L' (1k)
from which one can not extract any weakly convergent sequence in L' (a).

Example 1.47. Let u,z be the function defined by (see Fig. 1.1)

_ it 0<x<'
U,, (X)

0 otherwise.

Clearly, u is in L'(-1, 1) with

11U.11Ll(-1.i) = 1.

Let cp E C°(-1, 1) (see Definition 1.28). Then,
r pI

nJ cp(x) dx --- cp(0),
0

due to the mean value theorem. One can show (see Remark 1.49 below) that
there is no function uQ E L'(- 1, 1), such that

J uo(x) So(x) dx = cp(0), C°(-1,1).

This means that {un} does not converge weakly in L'(-1, 1).

Let us now consider the dual space of C©(S2) introduced in Definition 1.28.
It is known that [CI: (Q)1' = A1(1l), where AI(1) is the set of positive measures
(called Radon measures) on the bounded domain 1. We have the following result
which characterizes the limit points of a bounded sequence in L'(0):
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Proposition 1.48. Let {un } be a bounded sequence in L' (fl). Then, {un } is
weakly* compact in M(fl), i.e. there exists a subsequence {unk } and u E M(fl)
such that

lim un,E'P dx = (u, o)nr(n).co(n), 'dip E C°(cl).
koo n

Proof. The result is a consequence of the fact that L' (1) can be identified with
a subspace of M(1). Indeed, the map

T : f E L'(ll) Tf E Al (Q),

with T f defined by

ffcodx.(Tf, V)M(n).ro(n) = VV E QO(S2),

satisfies
NTfIJAI(n) = IIfIIL-(n).

This means that T is an isometry, so that T f is identified with f and we can write
L'(Q) c M(Sl). Consequently, we can apply Proposition 1.24 to {un} which is
also a bounded sequence in Ai(l1). 0
Remark 1.49. We can now make more precise the comment on the limit of the
sequence {un} introduced in Example 1.47. indeed, Proposition 1.48 shows that
{un} is weakly* convergent in M(-1. 1) to the measure 60, defined by

It can be shown that So, called the Dirac function at the origin, is not in
L'(-1,1). 0

Remark 1.50. Since L' cannot be characterized as the dual of some Banach
space, the notion of weak* convergence is not interesting in this space. 0

At this point, one can ask under which conditions a bounded sequence in
L'(0) is weakly compact. To answer this question. we need the following defi-
nition:

Definition 1.51. Let 11 be a bounded open set in RN and {u } a sequence in
L' (f2). The functions u7, are equi-integrable if. for any ri > 0, there exists 6 > 0
such that

Vn E N,
IE

for anyECSlwith (EI<5.

Then the answer to the above question is

Proposition 1.52 (Dunford-Pettis). Let {u,,} be a sequence in L' (Q). Then,

is weakly compact in L'(11)) is equivalent to:
i) {un } is bounded in L' (ll)

{ ii) the functions it,, are equi-integrable.

For the proof we refer to Dunford and Schwartz (1958) or Edwards (1965).
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1.7 Weak* convergence in L°°

From Definition 1.10, the weak convergence

u,a - u weakly in L°° (St)

means that

U)(L-(Q))'.Le(n) V (p E [L°O(S2)]'.

As mentioned in Remark 1.37, the space [L°O (St)]' has a complicated structure
so that it is very difficult to check this convergence. On the other hand, since
[L'(f2)]' = L°°(1l). weak* convergence is the convenient notion for this case.

From Definition 1.20, it follows that

un - u weakly* in L°°(Q)

is equivalent to

funadx.-+ftodx. V E Ll (S).
Z

Since L' (D) is not reflexive, weak convergence and weak* convergence in
L°O(Sl) are not equivalent.

Remark 1.53. From Corollary 1.35 and Theorem 1.18, it follows that the weak*
convergence of a sequence {u,,} in Lo- (11) to some element u E L°°(0), implies
the weak convergence of {u,,} to u in any L"(1) with 1 < p < +oo. 0

Remark 1.54. The space L'(S2) being separable (see Proposition 1.32), Theo-
rem 1.26 implies that from any bounded sequence in LO° (SZ) one can extract a
subsequence weaklyy* convergent in Lx (1). 0

A last result in this section is the equivalent of Proposition 1.46 for the case
p = oo. We have

Proposition 1.55. Let {un} be a sequence in L00(12). Then, one has the fol-
lowing equivalence:

(a) (un - u weakly* in L°°(Sl))
1i) IIUnIIL-(n) < Cr (independently of n)

(b) ii) J un dx --> J u dx for any interval I c 0.
r r

Proof. Suppose that (a) holds. Then. (i) follows from Proposition 1.24 and (ii)
is obtained by testing the weak convergence for the function cp = x,. Hence
(a) = (b). The implication (b) (a) follows by the same argument as that
used in the proof of Proposition 1.46.
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Rapidly oscillating periodic functions

In this chapter we study a relevant class of periodic oscillating functions, which
plays an essential role in homogenization theory. We turn our attention, in
particular, to functions of the form

ae(s) =a -
where a is a periodic function and where, from now on, e > 0 takes its values
in a sequence which tends to zero. Let us point out that if a is Y-periodic (see
Definition 2.1 below), then aE is eY-periodic. Moreover, as can be seen in the
examples below, the smaller E is, the more rapid are the oscillations. Therefore,
a natural question is to describe the behaviour of the sequence {a,} as a -* 0.
This is the aim of Section 2.3.

2.1 Periodic functions in L'

Throughout this book, Y will denote the interval in R' defined by

Y=]O,ei(x...xJO.
I.

where el, ... , eN are given positive numbers. We will refer to Y as the reference
period.

The following definition introduces the notion of periodicity for functions
which are defined almost everywhere.

Definition 2.1. Let Y be defined by (2.1) and f a function defined a.e. on RN.
The function f is called Y-periodic if

f (x + k e, e,) = f (x) a.e. on RN, V k E Z. Vi E { 1, ... , N},

where {el, ... , eN } is the canonical basis of RN.
In the case N = 1, we simply say that f is F'-periodic.

The mean value of a periodic function is essential when studying periodic
oscillating functions. Let us recall its definition.

Definition 2.2. Let 1 be a bounded open set of RN and f a function in L1(l).
The mean value of f over Sl is the real number .Mn (f) given by

Msz(f) =
l l J f(y)dd
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The following lemma shows that the mean value of a periodic function can
be computed on any translated set of the reference period:

Lemma 2.3. Let f be a Y-periodic function in L' (Y). Let yo be a fixed point
in RN and denote by Yo the translated set of Y, defined by

Yo=yo+Y.

Set

Then

Proof. If yo = (yo, ... , ya ). then one has
(see Fig. 2.1).

Let i E {1, ... , N} be fixed and set

a.e. on pNff(r')=f( )

f(y)dy=f f(y)dy,J Y

j f, (x) dx = j f, (x) dx = EN f f(y) dy
Y o Y Y

YO =I YO', yo + el (x ... xiyo , yo + fNj

{ya) = J
f dy1 ... dyi-ldyi+l ... dYN,

which is an fi-periodic function.
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Then, one has by periodicity

f dy

Observe now that

rYo+e,

I
-t(yl) dyi

yo

puo
4)(yi) iD(yi) dyi + / el $(yi) dyi

o e, Jo
e,

J 4'(yi) dyi = f J f dy.
0 o ;#,Jyu,yo+t3(

Jyg
dye .dy= f dye .dyI

i>2Jyo.yo+ej[

Making a similar computation in the direction y2i it is easily seen that

ez

fIf dye ... dyN = f f dye ... dyrv
0 ,> zJ+f, J

Hence,

I f dy = f I f dye ... dyrv
Yo 0 0

Then (i) follows repeating successively the same argument in the directions
y3, ... , yN . By a change of variables, assertion (ii) is straightforward. C]

2.2 Examples

The following classical examples are very significant:

Example 2.4. Let v(y) be the periodic function of period 1, defined on R by

v(y) = sin(21ry)

and set

of (x) = v { = sin 27r
)

, r E]a, b[,

where a, b E R. Observe that if for instance, a = 0. b = 2 ands takes its values
in the sequence {1/2'z} where it E N. for n = 0.1, 2. we have the pictures drawn
in Figs 2.2-2.4. From the figures it is clear that, ass - 0, sin(27rr/e) cannot
converge in almost any point. Applying Proposition 1.46, one shows in particular
that

v 0 weakly in L2(a. b). (2.3)
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Fig. 2.4 (n = 2)

115 210

Indeed, it is obvious that the sequence {vE} is bounded independently of a in
L2(a, b). On the other hand, for any interval I = ]al, bl [c ]a, b[, one has

fa

b i

, aii

---r 0.

Hence, (b) from Proposition 1.46 holds, and so (2.3) is proved.
Let us remark that this convergence is not strong in L2(a, b). Indeed,

IIV, -
0112

so that, ase--+0,

sin 2zr - dx 2 cos (2zr
l

J

b

sine
27r- dx _ r sine y dy

a E 27rJ--
f

1 - cos 2y _ b - a e 4irb 47ra 1

27r f2xn 2 dy 2
+

81r [- sin
F

+ sin J ,

Ih - 011 L2(a.b) b 2
a 54

0.

0

Example 2.5. Let v(y) be the periodic function of period 2, defined on ]0, 2[
by

_ a if yE (0.2)
v(y) _ 1

0 otherwise,
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a

2/3 2 Yi

Fig. 2.5 (n = 0)

Y:

0

a

2 Y

Fig. 2.6 (n = 1)

with a,,3 E IIt, a # ,3. As in the previous example, we set

vf(x) = v( -J, x E]a,bj.
e

where a, b E R. Let us draw again (Figs 2.5-2.7) its graph for n = 0, 1, 2, in the
case where a = 0. b = 2 and E takes its values in the sequence {1/2"}, n E N.
Here also, one can easily see that ifs -+ 0, vE cannot converge almost everywhere.

The sequence {VE} is obviously bounded independently of s in L2(a,b). We



32 Rapidly oscillating periodic functions

!4

fi

1/6 1/2 2/3 1 7/6 3/2 5/3 2 Y,

Fig. 2.7 (n = 2)

would like to apply Proposition 1.46 to this sequence. To do so, we need to verify
assertion (ii) from this proposition. Let I = ]al, bl [ be an arbitrary interval in
]a, b[ and let us compute

ZE =
1b,a

i

v,(x) dx.

For any positive e, there exist k and 0 such that

b1 =al+2kc+6E, kEN, 0<A<2.
Therefore,

rs 2 +2k !L +2k+9
ZE = e / v(y) dy = e J v(y) dy + e J 2k

v(y) dy. (2.4)

From Lemma 2.3 we have

°L +2k k s+2h
v(y) dy = e>1 v(y) dy

h=1 1+2(h-1)
r2 - - 2

= k e J tr(y) dy =
bl

2
al Be

fv(Y)dy.

On the other hand, again by Lemma 2.3.

21

t

+2k4 8

1
+2k+2

2
v(y)

dyl
< f Ivv(y)I dy = J Iv(y) I dy.

s+2k r+2k o
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Consequently, passing to the limit as a - 0 in (2.4). we get

r2
Z E ---

bl
2

al J v(y) dy = (bl - a , ) ' (3 a + 3
0

Then, Proposition 1.46 gives that

vE vo =
z

(3 a +
s

i) weakly in L2 (a. b). (2.5)

Here also, this convergence is not strong in L2(a, b). Indeed, if this convergence
were strong, Proposition 1.17 would imply that t

IIZ'6IIL2(a.b) ' JIT'OIJL2(a,b).

But a similar computation as that used to prove (2.5) gives

b

1 +
r

IIueIIL2(a.b) = J vf(x) dx -} (b - a)2 (3 Qt2 + 3 p2

which is different from
ll2

IItOIIL2(a.b) =
(b-a){2r

(3 a+ s /3)J

0

Let us observe that in the two examples above, the weak limit given by (2.3)
and (2.5) respectively, is equal to My(v). This fact is contained in a general
result concerning the weak limit of a sequence of rapidly oscillating functions.
The aim of the next section is to give this result.

2.3 Weak limits of rapidly oscillating periodic functions

In this section we prove the following result:

Theorem 2.6. Let 1 < p< +oo and f be a Y-periodic function in IY(Y). Set

fe(x) = f ( 1 a.e. on RN. (2.6)

Then, if p < +oo, as e - 0 ` ///

fE - MY(f) =
IYI

f(y)dy weakly in L''(w),

for any bounded open subset w of RN.
If p = +oo, one has

f - Y(f) = IYI f f(y) dy weakly* in L-(RN).

Proof. The proof is done in several steps.
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I
y2

4

y,

Fig. 2.8

2.3.1 A priori estimates

If p = +oo, taking into account definition (2.6) of f, one has

iIfeltL-(RN) = IIfIILx(Y)

Consequently, thanks to Theorem 1.26, one can extract a subsequence { fe } such
that

fey F weakly* in L°°(RN)_ (2.7)

Consider now the case p < +oo and let w be a bounded open subset of IRN.
To obtain a priori estimates in LP(w), it is enough to show that for any open
interval I of RN, there exists a constant C independent of e such that

II IEIILP(I) < C.

It is not restrictive to suppose that I contains at least a translated set of Y.
Observe that one can find N(e) pairwise disjoint translated sets of Y denoted

Yk, k = I,-, N(e) with e Yk C I, and N'(e) pairwise disjoint translated sets of
Y denoted Y,, j = 1, ..., N'(e) with eYj' n 010 0, such that (see Fig 2.8)

N(e) N'(e)

I C U eYk U U eYj . (2.8)
k=1 j=1
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Let L1, ... , LN be the lengths of the edges of 1. Let us prove first that

"
,im eNN(e) =i) 1

a
N

lim sN-1N,(e) L1ii) < N N.
E^-0

i=I Pj IYl

Clearly, for any E > 0, there exist ki , ... , kN E N such that, for any i = 1, ... , N,

Li =ski Pi + 7; with 0 <yi < eti,
and consequently,

ski --- ' when E -> 0. (2.10)

On the other hand, observe that the number of translated periods of eY strictly
included in I is

NE=k;x."xkN
so that (2.10) implies

N L1 X...XLN = IIIe NE - 1X...XPN FYI'

which is assertion (2.9)(i). To evaluate N,, let us observe that the sets Yk and
Yj can be chosen such that the interval I is covered by the union of KE disjoint
translated sets of EY with KE = (ki + 1) x x (kN + 1). Then

N<<K`-N`=AE+BE
where

From (2.10), we see that

AE= fl kl .

i=1 j#i

N
E N- 'Ac --i r

i=1 jai

Lj <N
N

I
L =NIII

Pj Ti [YI'
j=1

as for any j = 1.... , N, one has f < Lj. This implies (2.9)(ii) since, by
construction

eN-1 BE , 0.

Now, the periodicity of f . Lemma 2.3, and estimates (2.9) give
N(e) N'(e)

IIfEIILP(,) If V'dx+ If.J'dx
11Y1k=1 EYk j=1

_ [N(s) + N'(--)jf IfEJ dx
EY

f_ [N(e) + N'(E)JEN ( If (y) I P d1y < CII f II LP(Y),

(2.11)
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where C is a constant independent of e.
This means that the sequence If, } is bounded in LP (w), for any bounded open

subset w of RN. In particular, for 1 < p < oo, we can apply Proposition 1.18 to
get a subsequence { fEi } such that

ff' - G weakly in LP(w). (2.12)

2.3.2 Identification of the limit

(a) Case I < p < +oo
Let w be a bounded open subset of RN. From the first step and Proposi-
tion 1.46, to identify the limit in (2.12), it is sufficient to show that

ffe(X)d2 -* jMv(f) dx IIIMY(f),

for any interval I C w. By using (2.8), one has

N'(E)

f fe(x) dx = N(e) eN f 1(y) dy + E j f(x) dx.
I t jnl

From (2.9) it follows that

N(e) ENf f() d y -,AI f f(y) dy = iI jMY (f )
1Y -

and also
N'(e)

jffE(x)dx
Yl ni

< N'(e) fE(y) dy = eN N'(e) fYV AY) dy --40.

Consequently, in (2.12) one has G = My (f ) . Moreover, (ii) of Theo-
rem 1.18 implies that the whole sequence ( f } converges to .M y (f) .

(b) Case p = +oo

Let w be a bounded open subset of RN and x be its characteristic function
(see Definition 1.40). Then. in particular'for any cp E L2(w), one has
cpxw E L'(IIBN). Then, from (2.7) one gets

LIE' pdx -; J F dx.

Hence,
ffi - F weakly in L2(w).

From step (a) and the uniqueness of the limit (see Remark 1.11), we know
that

F =My(f),
a.e. on w and therefore a.e. on RN, since w is arbitrary. Again, Theo-
rem 1.18 shows that the whole sequence { f } converges to .MY (f ).



Weak limits of rapidly oscillating periodic functions 37

(c) Case p = 1.

Since a bounded set in the space L1 is not weakly compact (see Section 1.6),
to prove the result in this case we will apply a density argument. Re-
mark 1.43 implies that for any 1J > 0, there exists g E L2(Y) such that

If - gllL, (y) < 77. (2.13)

Let us extend g by periodicity a.e. on RN by setting

g(x + k fj es) = g(x) a.e. on Y, V k E Z, Vi E (1, ... , N},

where (e.1, ... , eN } is the canonical basis of RN. Define the function gE by

gE(X) = g [
x

)
a.e. on ]R".

Let -w be a bounded open subset of RN. Then, for any cp E L°°(w), one has

f (fE -My(f)) (pd.r = L (fE-gE) cpdx+J (gE--My(g)) codx
w w w

+I (M y (g) - MY (,f )) p dx. (2.14)
W

If I is an interval in RN such that w c I. from (2.11) and (2.13) it follows
that there exists a constant C1, independent of e and 77 such that

(fE - 9e) cp dx '-5- IIWIlLc(,,,,)IIfE - 9EIILI(I) < C171-

Obviously, from (2.13) one also has

J
(My(g) - My(f)) SP dx

w
< C2i .

where C2 is a constant independent of c and 7j. Finally. from step (a), as
e -. 0,

f
Consequently. from (2.14) we have

f(fE -My(f)) p dx, 0,

since 77 is arbitrary. This ends the proof of Theorem 2.6. O
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Remark 2.7. Let E be a Banach space. Theorem 2.6 shows in particular, that
if {u,} C E and {ve} C E' are two sequences such that, as E -- 0,

uE - u weakly in E.

v, v weakly in E',

then, in general

(Ve, UE)E'. E 7' (v, U) El, E

Indeed, let f,g be two Y-periodic functions in L2(Y), and set

uE (x) = f \X ] a.e. on RN.

/x f
ve (x) = g { - a.e. on RN.

Theorem 2.6 implies that, if w is a bounded open subset of RN, then

teve = (fg) MY (f.9) weakly in L1(w).

Hence using Remark 1.37 we have, in particular,

(ve, ue)L2(Y).L2(Y) = Jf ueve dx "' PIMY(fg)

while, by using again Theorem 2.6

(v, 'u)L2(Y).L2(Y) = jM(f)M() dx wIMY(f) MY(g)

In general, as it can be seen from Examples 2.4 and 2.5 above, one has

My (fg) 0 My(f) MY (g).

(2.15)

0

Remark 2.8. In Remark 2.7 we considered a particular case of two weakly
converging sequences whose product is weakly converging in L' (w). This is a
very special case, relying on the construction (2.15).

Let us consider now the general case of the product of two sequences {un} and
{v,,}, weakly converging in L2(w). Their product {un v, } is obviously bounded
in L'(w) due to the Holder inequality (Proposition 1.34). Hence, in view of
Proposition 1.48, {u v,, } is weakly* compact in hl (w). The question is: does
the whole sequence {u weakly* converge to some element of M(w)?

The following example shows that this is actually not true.
Let Y =]0.1[ and f be a 1-periodic function in L2(0.1) such that M(o,l)(f) _

0. Set
te = f (2"x), a.e. on R
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and
un if n is odd

{ -un if n is even.

Since .M (o,1) (f) = 0, both sequences {u} and Iv,,} weakly converge to 0 in
L2(w) for any interval w in R. On the other hand, by construction,

u, if n is oddun vn -
f_Un2 if n is even-

Hence, thanks to Theorem 2.6 written for e = 1/2n, from {9L, vn} one can extract
two weakly convergent sequences in L1(w), one converging to M (0, 1) (f2) and the
other one to -fit (o. F) (f 2 ). Since weak convergence in L' (w) obviously implies
weak* convergence in M(w) (see Section 1.6), this shows that the whole sequence
{un vn} does not weakly* converge in M(w). 0

Remark 2.9. The weak convergences given by Theorem 2.6 are not strong,
unless f is a constant and IY I = 1. Indeed, strong convergence would imply that
My (f P) = [My (f )] P. But it is easy to see that for any p > 1, one has

My (fP) Y' [M]' W1 P.

0

Remark 2.10. Let us notice one result, contained in the proof of Theorem 2.6,
which is interesting by its own right. As in Theorem 2.6, let 1 _< p:5 +oo and f
be a Y-periodic function in LP(Y). Set

f(x) = f (E) a.e. on RN.

Then, there exists a constant C depending on N only. such that for any open
interval I containing at least a translated set of Y, one has

IIf II Lr(r) < II!IILP(y), (2.16)

for e small enough.
This inequality is a consequence of (2.9) and (2.11). Indeed, from the proof

of (2.9), it is easily seen that

[N(s) + N'(`)JeN < Ciyl[ .

This, used into (2.11), gives (2.16) for a small enough. 0
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Some classes of Sobolev spaces

In this chapter we introduce the functional setting, essentially based on the
distribution theory and Sobolev spaces, which is the natural framework for the
homogenization results we present in this book. Distributions and Sobolev spaces
have been widely studied in the last fifty years. We refer the reader for instance
to Schwartz (1951), Nebas (1967), Lions and Magenes (1968a,b), Adams (1975),
and Mazya (1985). We will quote here just the main results which will be used
later. We also present, in the same context, some specific spaces of periodic
functions as well as their main properties.

Let us recall that, as in Chapter 2, 0 and 0 denote respectively, an open set
and a bounded open set in 1RN.

3.1 Distributions

Let D(O) be the space introduced by Definition 1.28. We now give a notion
of convergence for sequences in this space. To do so, we will make use of the
following notations. If a = (al.... , aN) E NN (usually called a multi-index), we
set

Jai = al .+...-+aN,

and

ax;1... axN

where for MaJ = 0, 81 is the identity.

Definition 3.1. Let {p,i } be a sequence in D(0)_ We say that V,, converges to
an element cp E D(O), if

i) there exists a compact set K C 0 such that, for any n E N, supp cp,, c K,

ii) for any a E NN. O°`cp converges uniformly to 6"v on K.

Remark 3.2. This definition does not provide a topology on D(O). Neverthe-
less, one can define a suitable topology T on it, for which the convergence of
sequences is exactly that given by Definition 3.1. This topology has a compli-
cated structure, as can be seen in Schwartz (1951). In particular, D(O) is not a
metric space. For our purpose. Definition 3.1 is enough so we do not give here
more details. 0
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Definition 3.3. A map T : D(O) -- R is called a distribution on 0, if

i) T is linear, i.e.

VA1. A2 E IR, W1, W2 E D(O), T(AitP1 + A2(P2) = A1T(tpi) + A2T(W2),

ii) T is continuous on sequences. i.e.

(tPn --+ t, in D(O)) (T(co) _

We denote by D'(O) the set of distributions on O.

Remark 3.4. The notation D'(O) is motivated by the fact that one can prove
that D'(O) is the dual of D(O) with respect to the topology T mentioned in
Remark 3.2. This is why the usual notation for a distribution T is

T(to) = (T, V E D(O).

0

Example 3.5 (Dirac mass). Let E RN and define

b.o = V(yo), for any tp E D(Riv).

It is straightforward that ox E D'(RN). This distribution is called the Dirac
function (or mass) in the point xo. 0

Example 3.6. Let f E (O) and set

Tf(tP) = f fp dx, btp E D(O). (3.1)

This is a distribution on O. Indeed, (i) from Definition 3.3 is obvious. Moreover,
if {tpn} is a sequence converging to in D(O), one has

f(p': -`P) dx-Tf(W)I =
110

<- IIf IILl(K) Max Ian - I - 0,

where K is a compact set such that supp can C K. Hence (ii) from Definition 3.3
is satisfied. 0

From Theorem 1.44, it follows that if T is defined by (3.1), then Tf = 0 if
f = 0. This observation leads to the following definition:

Definition 3.7. We say that a distribution T is in Li (O} (respectively in
LS(O)), if there exists f E L1,,(0) (respectively in L'(0)), such that T = Tf,
where Tf is given by (3.1).
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Remark 3.8. Suppose that T E D'(O) is like in Definition 3.7. Then the func-
tion f is uniquely determined in view of Theorem 1.44. It is why usually one
identifies T with f. 0

We now give a notion of convergence for sequences in Y(O) which we will
use in the next chapters. This is a weak* convergence but not in a Banach space
context.

Definition 3.9. A sequence {T,,,} in D'(O) is said to converge (in the sense of
distributions) to an element T E D'(O) if

(Tn, )D'(o).D(CJ) (T p)D'(O).D(O),

We denote this convergence by

T,a --- T in Y(O).

Vp E D(O).

Example 3.10. Let { fj be a sequence in L'(0) such that

f,-sf weakly inL'(O).

From Section 1.6 and Remark 3.8 it is obvious that

A ---> f in D'(0).

0

The following definition is essential in the theory of Sobolev spaces:

Definition 3.11 (derivative of a distribution). Let T E D'(0). For ally
i = 1, ... , N, the derivative OT/Oxi of T with respect to xi is defined by

OT
-W

Remark 3.12. It is easy to check that OT/8xi. i = 1.... , N, is a distribution.
Actually, it is linear and continuous on sequences, since c9cp/8xi is in D(O) and
T is a distribution.

Moreover, if T converges to T in the sense of distributions. then OT,a/09xi
converges to OT/Oxi in the sense of distributions for any i = 1, . . . , N. 0

Example 3.13. For the distribution axa introduced in Example 3.5, one easily
has that

abx° , P) = - (x0), E D(Ft"').axi v'(O).v(n) 8xi

0



The spaces W 1,P 43

Example 3.14. Let us consider the Heaviside function on R, defined by

H(x) = I
I
0

Observe that its (usual) derivative is defined and equal to 0 in any point x # 0,
so that this derivative is equal to 0 a.e. on It

On the other hand, since H E L (R), by Remark 3.8 one can identify H
with the distribution TH, given by (3.1). Therefore,

dTH
, P _ -

fR
H(x)

d
dx = -f d"P

dx = p(0), V E D(R).
d3: dx 0 dx

Hence, the derivative of H in the sense of distributions is the Dirac mass in 0
(see Example 3.5). This shows that the usual derivative and the derivative in
the sense of distributions are two different notions. 0

Remark 3.15. Let f E L1(O). Suppose that its derivative in the sense of
distributions of /ax= is in L1(O). From Remark 3.8 we have

f f acp dx = - J . p dx, VV E D(O). (3.2)
ax= n ax;

This together with Theorem 1.44, shows in particular. that if a function is of
class C1(O), its derivatives in the sense of distributions coincide with the usual
partial derivatives since (3.2) is nothing else than the Green formula. 0

3.2 The spaces W'''

In this section we define some classes of Sobolev spaces and recall their main
properties. We refer to Necas (1967), Lions and Magenes (1968a), and Adams
(1975) for proofs and more details.

Definition 3.16. Let 1 < p < oo. The Sobolev space W1-P(O) is defined by

W1'P(O) _ {u I U E LP(O),
au

C. LP(O), i = 1, ..., NJ,
8x;

where the derivatives are taken in the sense of distributions of Definition 3.11.

For p = 2, one denotes W1.2(O) = H'(O), i.e.

H1(O) _ {u I u E L2(O),
au E L2(O), i = I,-, NJ.

l axg
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Proposition 3.17.
i) The space W 1,P(0) is a Banach space for the norm

N au
IIuIIw' P(O) = IIuIILP(O) +

21 llaxi LP(t7)

For 1 < p < oo, this norm is equivalent to the following one:

IIkIIW'.P(O) = ( +IIVUIILP(O))P,

where we have used the notations

u On
Du= =

x
,...,BXN

and
N

u
IIVUIILP(O) = E 11

a
axi

ii) The space W140(0) is separable for I < p < +oo and reflexive for I < p <
+00.

iii) The space H1(0) is a Hilbert space for the scalar product

/

N

, aL2(0) dv,w E Hl(O) . (3.4)(u,w)H'(O) = (v, w1 1Ls(O)+ jz-

Proof. The equivalence between the two norms, for I < p < +oo, is a simple
consequence of the following inequality:

p in

c (
< Mp-, 57ap,

i=1 \i=1 / i=1

VmEN-{0}. aiER+, i=1,...,m-

It is also clear that (3.3) and (3.4) define. respectively, a norm and a scalar
product.

Let us prove that W1-P(0) is complete. Let {u } be a Cauchy sequence in
W1"P(O). Obviously, {u,,,} and for i = 1,.... N are Cauchy sequences
in LP(O) which is complete (see Proposition 1.31). Consequently, there exist
u E LP(O) and v= E LP(O) for i = 1, ... , N, such that

u u, " - strongly in L'(0), d i = 1, ... , N.
axi

Then, it is enough to prove that vi = au/8.r; for i = L..., N. By Definition 3.11
and Remark 3.15, one has

oull
xi

V dx = -f u,, a dx, E D(O).J n a
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We can now pass to the limit in this identity. Indeed, for the left-hand side
integral, one has, by using the Holder inequality (Proposition 1.34),

vi d+<f 2!!2 (p dx- Jo
ax

where p' is the conjugate of p.
Similarly,

Oun

ax;
- v, II°IILP'(o) __+ 0,

LP(O)

.f un ax dx - J u ax dxl <_ Ilun - UIILP(o)IIVWIILP'(O)

0
Hence,

Jo
v, 4o dx = - u dx VW E D(O),Jaxi

which, due to (3.2), proves that v; = Ou/ax; in the sense of distributions. This
ends the proof of (i).

To show the other assertions of the theorem, let us consider the map

T: u E W1"(O) 1) T(u) E [LP(O)]N+1

defined by

T(u) = U. ax , ... OXN ,

which is clearly an isometry since, by definition,

IIT(u)II(LP(o)]N+1 = IIUIIW1.P(o).

Consequently, can be identified with so it is a closed
subspace of [LP(O)]N+1. From Proposition 1.32 and Remark 1.16 we know that
the space [LP(O)]N+1 is separable for 1 < p < +oo and reflexive for 1 < p < +00.
This ends the proof of (ii) since any closed subspace of a separable and reflexive
Banach space is separable and reflexive too (see, for instance Brezis, 1987).

Assertion (iii) is an immediate consequence of Definition 1.2. The proof of
Theorem 3.17 is complete. 0

In this book we will study the homogenization of boundary value problems
posed in bounded open sets. It is why from now on, we consider Sobolev spaces
only on a bounded open set Q in RN. Many relevant properties of these spaces are
true if Off is sufficiently smooth. There are many kind of regularity assumptions
that can be made (see for instance. Necas, 1967, Lions and Magenes, 1968a,
Adams, 1975, and Mazya, 1985). The following one is due to J_ Necas (1967):

Definition 3.18. The boundary Oil is Lipschitz-continuous if there exist two
constants cl > 0 and c2 > 0 and a finite number M of local coordinate systems
(5 m , xN) and local maps 41,,, (m = 1.... , Al) defined on the set

p = fxn: E RN`1, x = (xm..... .N_1), Ixm'I S c1,Yi = 1....,N - 1},
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which are Lipschitz continuous on their domain of definition, such that:

Al

Oi = U rm,
m-1

where, for any m = 1, ...r, Al,

rm = { (x , xN)
++

},
I

xm 4,m (x ), x E R,.
and

1
QM - {(,x)J (Dm(xm) < xN < C2, Fn E R.m} C 1,

Cm = { (Y, xN) I Ibm (Y) - C2 < xN < lbm (xm), xm E R,,,) C RN
SZ.

Recall that 4D,n is Lipschitz continuous if there exists a positive constant Lm
such that

Om(xm) - tm(y )+ :5 Lm+xm - i nl, d x'n, r E Rm.

The set a l is of class Ck, where k is a strictly positive integer, if for any
m = 1, ... , M the map 4,n is in C" (R,,).

For N = 2, two possible configurations are drawn in Figs 3.1 and 3.2, where
the dashed zones represent 11m.

Remark 3.19. The boundaries of open balls in RN are of class CIO. Polygons in
R2, polyhedrons in R3 and intervals in RN have a Lipschitz continuous boundary.
On the other hand, domains with cusps do not have a Lipschitz continuous
boundary.

Let us recall that (see Necas, 1967) if 80 is Lipschitz continuous, then one
can define a surface measure on Oft. In particular, L2 (OSl) is well defined. 0

Definition 3.20. Let D(RN) be given by Definition 1.28. We denote by D(Si)
the set of restrictions to Sl of functions in D(RN).

Remark 3.21. Let us point out that D(P) is strictly contained in D(Sl), since
the functions of D(l) are not required to vanish on the boundary OSl. 0

The next three theorems are basic in the theory of Sobolev spaces. Their
proofs are rather technical. We refer the reader to Netas (1967), Adams (1975),
and Brezis (1987) for them.

Theorem 3.22 (Density). Let 1 < p < oo. ThenD(RN) isdenseinW""P(RN).
Moreover, if 011 is Lipschitz continuous, D(1) is dense in

Recall that if E and El are two Banach spaces, a map h : E H El is compact
if the image {h(un)} of a bounded sequence {u.n} of E is relatively compact in
El, i.e. if there exists a subsequence strongly convergent in El.

In the following, if E C El the map x E E H X E El is called an injection.
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Fig. 3.1

Fig. 3.2
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Theorem 3.23 (Sobolev embeddings). Suppose that 8S2 is Lipschitz contin-
uous. Then

i) if 1 < p < N, W l,P(Sl) C LQ(1) with

compact injection for q E [1, p*[. where
1

1 =
1

p
- 1N,

- continuous injection for q = p*,

ii) if p = N, C LQ()) with compact injection if q E 11, +oo[,

iii) if p > N, W 1 P(S2) C C°(S2) with compact injection.

Remark 3.24. One can prove that the inclusions given in this theorem are
optimal. 0

Theorem 3.23 is one of the main results in the theory of Sobolev spaces.
Compact injections are an essential tool when studying partial differential equa-
tions. One has in particular that Hl(1) C L2(f)) with compact injection, since
2 < 2* = 2N/(N - 2) if N > 2 and the result is obvious when N < 2. By
definition, this means that any bounded sequence in H1(S2) contains at least a
subsequence strongly convergent in L2(S2). This result will be widely used in the
next chapters.

We end this section by another result, very important in applications, which
allows us to extend functions in H'.

Theorem 3.25 (Extension operator). Suppose that Oil is Lipschitz contin-
uous. Then, there exists a linear continuous extension operator P from H1(S2)
into H1(RN) satisfying

i) Pu=u on f2
ii) IIPuIIL2(RN) < CIIuIILz(o)

iii) IIPUIIHI(RN) < CIIuIIHI(sI),

where C is a constant depending on 11.

3.3 The space Ho and the notion of trace

Theorem 3.23 shows that for N = 1, one has the inclusion Hl(Q) c C°(S2), so
one can speak about the values on 8i of a function u E H1(S2). This inclusion
is not true for higher dimensions. To give a sense to the restriction to 8S2 of
functions in H1(i), we introduce in Theorem 3.28 below the notion of trace.

We are mainly interested in functions which vanish (in some sense) on the
boundary. To do so, we introduce in this section a subspace of H1(i), denoted
Ha (S2). We will see below that if 011 is sufficiently smooth, a function in Ho (S2)
will vanish on the boundary in the sense of the trace. When we have no regularity
on Ofl, saying that a function u belongs to Ho (S2) will replace the fact that u
vanishes on the boundary.
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Definition 3.26. For any 1 < p < oc, the Sobolev space Wo''(il) is defined as
the closure of D(Q) with respect to the norm of W"(il). We set

Ho (1) = Wo ,v(1l).

It is clear that Ha (il) c H1(0) so that Ho (1) is a Hilbert space for the scalar
product (3.4). Moreover, it can be proved that Theorem 3.23 is still valid for
Wd "(il) without any regularity assumption on ail, namely

Theorem 3.27. One has the following inclusions:

i) if 1 < p < N, Wo'p(1) C L9(Q) with

- compact injection for q Eli. p* [, where 1 - 1 - 1 ,

p* p N
- continuous injection for q = p*,

ii) if p = N, W01'N(0) C LQ(1), with compact injection if q E [1, +oo[,

iii) if p > N, Wo''(l) c CO (U) with compact injection.

In the sequel, we restrict our attention to the case of the space Ho (il). How-
ever, all we will say about it can be extended to the general case of Wo'p(ft).

Theorem 3.28 (Trace theorem).

i) There exists a unique linear continuous map, called trace

y : H1(RA-1 x R*)'---+ L2(R -1),

such that for any u E H1(RN-1 x R+) fl C°(RN-1 x R+), one has-y(u)
ulfitN_1.

ii) Assume now that Sl is a bounded open set in RN such that O Q is Lipschitz
continuous. Then, there exists a unique linear continuous map

-y : H1(il) i--- L2(ail).

such that for any u E H1(Sl) n CO ('fl) one has y(u) = ula.. The function

7(u) is called the trace of u on 311.

Proof. We only prove here the first statement of the theorem. Assertion (ii)
follows from (i) by rather technical arguments, so we refer the reader to Necas
(1967) or Adams (1975) for details.

Let y° be the linear map defined by

y° : v E D(RN-1 x lR+)
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Let us first show that

II7°(v)IIL2(RN-1) < IIVIIH1(RN-1xR+)'
Yv E D(]RN-1 x Ilt+).

Since v E D(1RN-1 x 1R+) has a compact support, we have

Iv(x', 0)l2 =
ac

b1V
J 2v(x',XN)j (x,XN) dXN.
0

N

Therefore, by the Young inequality

r00
/

0o ay 2

Iv(x',0)I2 S J
Iv(x',xN1 )I2 dXN +f IaxN(x',XN)I dxN.

Integrating over RN-1 in x' and using Fubini's theorem, one obtains

JN-1
RIv(x', 0)12 dx <

fN-txIv(x)I2
dx + f

-1 xR+R+ N

2

dx,

(3.5)

which gives (3.5).

Suppose now that it E H 1(1RN -1 x R*). From Theorem 3.22, there exists
a sequence {un} E D(1RN-1 x 1R+) converging to it in H1(1RN-1 x 1R+). By
inequality (3.5) and the linearity of y°, we have

Ily°(un) - y°(um)IIL2(RN-t) < Ilun - umIIH1(RN-t xR+), Vm, n E N.

Consequently, {y°(un)} is a Cauchy sequence in the complete space L2(1RN-1),

so it has a limit no E L2(1RN-1). Define -y(u) = uo. Obviously,

y(v) = ry°(v), for v E D(RN-1 x 1R+),

so that -y is a linear extension of ')° to H1(]RN-1 x R+). By construction,
y is uniquely determined and linear and continuous from H1(RN-1 x 1R*) to
L2(R'-1).

To conclude the proof, suppose now that it is in H1(1RN-1 xR+)nC°(1RN-1 x
R+). One can check (see for instance Brezis, 1987) that the approximating
sequence {un} can be chosen such that the norm I(u» -uuICo(RN-1xR+) converges

to zero. Therefore, y°(un) = unIRN-1 converges to UIRN-1 in C°(1RN-1) and then
in L2(RN`1). This shows that y(u) = UIRN-: and ends the proof of (i).

One can prove that y is not onto L2(O1), i.e. that there exist functions in
L'(8 Q) which are not traces of any element of H'(Sl). This leads to the following
definition:

- J x
iia

(I v(x', xN)+2) dxN
0
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Definition 3.29. Suppose that Of] is Lipschitz continuous. Define the set
H"(00) as the range of the map -) given by Theorem 3.28, i.e. H4 (O 1)

y(H' (1k)).

The following theorem provides a structure of a Banach space for this set:

Theorem 3.30. Suppose that o is Lipschitz continuous. Then H '2L (OQ) is a

Banach space for the norm defined by

IIuII H I on) fn
lu(x)lZ ds,

+ Is fs I I(x >
yl"y' I2 dsx dsy.

The introduction of this norm is motivated by the fact that the continuity of
the trace map y is preserved when L2(8St) is equipped with this norm. Indeed,

Proposition 3.31. Suppose that 9f? is Lipschitz continuous. Then there exists
a constant Cy()) such that

Ily(u)IIH (M) < C'-r(cl)IIuIINa(p), Vu E H'(St).

Other properties of the space H 2 (OOc2) are given by the following result:

Proposition 3.32. Suppose that 80 is Lipschitz continuous. Then, the space
H 21 (8S2) has the following properties:

i) The set {ulasz' u E C°° (lR J) } is dense in H
z

(8S2).

ii) The injection H2(O1) C L2 (act) is compact.

iii) There exists a linear continuous snap

g E H2(80)'-`' u9 E H'(ct),

with y(uy) = g, and there exists a constant C1(I) depending only on ct,
such that

dg
E

I(8St)

Let us mention now that if 8c2 is Lipschitz continuous (see Necas, 1967), then
the unit outward normal vector to ct is well defined almost everywhere. Then
the following theorem extends to Sobolev spaces the well-known Green formula
for smooth functions:

Theorem 3.33 (Green formula). Suppose that 8S2 is Lipschitz continuous.
Let u, v E H' (R). Then,

r r
J

u
On dx = - J v au dr + J y(u) ry(v) ni ds,

0 axi sz axi an

for 1 < i < N and where n = (n, ..... njv) denotes the unit outward normal
vector to Q.



52 Some classes of Sobolev spaces

The next result gives the meaning of the trace for functions in H01(0).

Proposition 3.34. Suppose that all is Lipschitz continuous. Then

HH (ll) = {u I v E H1(1). y(u) = 0}.

Recall now that by definition. the space Ha (Q) is equipped with the H1-
norm. The following inequality allows us to introduce an equivalent norm on
Hp (5l) (see Remark 3.37 below):

Proposition 3.35 (Poincare inequality). There exists a constant CD such
that

IIfIIL2(n) < Cn IIVufILZ(n), Vn E Ho (f ),

where the constant Cn is a constant depending on the diameter of 0.

Proof. Let I be an interval of RN containing U. Let u e Ho (fl) and denote by
u the extension by zero of u to the whole of I. From Definition 3.26 of HQ (fl),
it follows that u E HH(I). Obviously.

IIuIIL2(n) = IIuIIL2(1), IIVUIIL2(c) = IlVaJJL2(1), bu E H01(Il)_

Hence, it is enough to prove the result for the case where I is an interval I of
the form H =]0, a[N. We have, for any u E D(Il)

U(X) = u(x', XN) =
19U

(x, t) dt.
0 aX N

Applying Cauchy-Schwarz inequality one has

Iu(x) I2 = f
XN au 2 JXN

I

au
(

OXN
(x, t) dt I I xN I OXN xr, t)

<
0

2

dt

By integrating this inequality over Q. we obtain

fn
u2dx <a2f/'I au

n (9FN

z

dx < a2 J IpuI2 dx.
sl

Therefore, we have

IIUIIr.2(S2) < uIJVUlli2(n),

for all u E D(I), and by density for all it E Ha (SZ).
Observe now that if 11 is an arbitrary bounded open set, one can always find

an interval I with sides depending on the diameter of fZ such that 0 c I. This
ends the proof. 0
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Fig. 3.3

A variant of the previous result is the following one:

Proposition 3.36. Let 12 be connected. Suppose that 012 is Lipschitz contin-
uous and such that 011 = F, U r2 where I71 and r2 are two disjoint closed sets
and r1 is of positive measure. Then, there exists a constant Co such that

IIu1IL2(n) <- Cst IIVuIIL2(r1), Vu E H1(12) such that y(u) = 0 on I'1,

where the constant Cn depends on the diameter of 12 and on F, .

Remark 3.37. Observe that by construction. r1 can be regarded as the bound-
ary (Lipschitz continuous) of some bounded open set in RN. Two possible con-
figurations are shown in Fig. 3.3. Hence, the trace y(u) on r', makes sense.

0

The Poincarr inequality implies that

IIuII - IIVtIIL2(S1)

is a norm on Ho (S2), equivalent to the norm of H1(12) defined in Proposition 3.17
(i). Of course, this equivalence does not hold in H'(1) since for constant func-
tions, the above quantity vanishes. As can be seen from the Proposition 3.38
below, such an equivalence holds for the subspace of functions with zero mean
value. Moreover, Proposition 3.40 shows that this equivalence also holds on the
quotient space H1(Sl)/R defined in Definition 3.39 below.

Proposition 3.38 (PoincarrL-Wirtinger inequality). Suppose that a is con-
nected. Then. there exists a constant C(12) such that

IIu - M0(u)IIL2(12) < C(11)II711IIL2(r). Vu E H'(S1),

where Mc,(u) denotes the mean value of it on 12 introduced in Definition 2.2.

Definition 3.39. Suppose that 0 is connected. The quotient space

117(1l) = H'(Q)/R
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is defined as the space of classes of equivalence with respect to the relation

u - v u - v is a constant. 'du. 21 E H1(SI).

We denote by is the class of equivalence represented by u.

Proposition 3.40. Suppose that 0 is connected. The following quantity:

lull W(1) = IlotIIL2(s1), Vu E zi, it E W(Q),

defines a norm on W (n) for which W(R) is a Banach space.
Moreover, W (Q) is a Hilbert space for the scalar product

N /Ov aw
(v, W)W(si) = > i -. ---

,
Vv, w E W(C).

axi ax= L2(n)

Proof. It is sufficient to observe that

lloul1L2(n) = 0.

implies that
u = constant, i.e. it ^_- 0.

which means that u E 0.
The completeness of W (Q) is straightforward from that of Hl(f)).

Another important space in the study of elliptic problems is the dual space of
Ho (SZ). By making use of Proposition 1.4, we can give the following definition:

Definition 3.41. We denote by H-1(Q) the Banach space defined by

H-' (fl) _ (Ho (1l))'

equipped with the norm

IIFIIH-1(n) = Sup
I(F.

H0(n)\{o) IIuIIH(i(n)

The next proposition provides an important characterization of H-1(SZ):

Proposition 3.42. Let F be in H-' (U). Then, there exists N + 1 functions
fo, fl, ... , fN in L2(U) such that

N

F=fo+cc OALa.. (3.6)

in the sense of distributions. Moreover

N

IIF'II,-L(n) = inf 11fiII2
L2(S)),

i=0
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N+iwhere the infimum is taken over all the vectors (fo, fl, ... , fN) in [L2(St)]

such that (16) holds.
Conversely, if (fo, fl, ... , fN) is a vector in [L2(Sl)]N+', then (3.6) defines an

element F of H-1(11) which satisfies

N

IIFIIH-1(s2) IIf=Ili2(sz).
:-o

Proposition 3.43. Suppose that do is Lipschitz continuous. One has L2 (St) C
H-1(f2) with compact injection.

Remark 3.44. Putting together Remark 1.37, Theorem 1.38, Definitions 3.26
and 3.39, and taking into account Proposition 3.43 and Sobolev embeddings
(Theorem 3.27), we have that the following inclusions are compact:

Ho (f2) C L2 (fl) C H-' (fl).

Notice also that, if u E Ho(fl) and v E L2(ft), then from Theorem 1.36 one has

(u,u)H-1(ST).H,(SZ) = J V dx.
sa

11 (r?f2) and v e L2(01fl), one also hasSimilarly, if u E H'

(v, u) (H4 (81))'.Hi (8St) = Jas,
u v ds.

0

Remark 3.45. Obviously, the restriction of any element of (H'(0))' to HJI(Q)
is in H-' (f2). Let us notice that (H' (fl))' is not contained in H-' (il) since
it can be proved that the space (H'(f2))' can be identified with the direct sum
H-' (f2) ® H- '21 (ai) where H- I (ail) is defined below. 0

Definition 3.46. Suppose that Oil is Lipschitz continuous. We denote by
H- 21 (3f)) the Banach space defined by

H-3' (aft) = (HI (ail))'

equipped with the norm

IIFIIH_
('9Q) = sup I F, U)H-1/2(8S.H1/2(6n) I

HI(8i AIG) UU11 0Q)

Proposition 3.47. The space H- 2 (aft) has the following properties:

i) Suppose that Oil is Lipschitz continuous. Then, one has L2(8f2) C
H - a (Oil) with compact injection.
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ii) Suppose that 80 is Lipschitz continuous and introduce the space

H(f 1, div) _ {v 111 E (L2(fZ))^', div v E L2(f1)}.

Then, v n E H-2(,90) and the map

v E H(n, div) ---- v. n E H-'(&S))

is linear and continuous.

Moreover, if V E H(fZ, div) and w E H' (f2), then

- J (div v) w dx v Ow dx + ('v n. w)N-1/2(an),N1/2(aQ).

Observe that the first assertion of this proposition is dual with respect to (ii)
of Proposition 3.32. The second assertion is an important result due to
Lions et Magenes (1968a). It plays an essential role in many questions arising in
the study of partial differential equations, as can be seen in Sections 4.5 and 6.4
(for further examples see also Duvaut and Lions, 1972). Let us point out that
a priori, as already observed, a function in L2(t) does not have a trace on the
boundary. The fact that its divergence is also in L2 (S1) allows us, nevertheless,
to give a sense to v n.

3.4 The space HIper

In this section, we introduce a notion of periodicity for functions in the Sobolev
space H1. Let us recall that in Chapter 2 this notion was treated for function
in V.

Let Y be the reference cell defined by (2.1). namely Y =j0, e1 [X X10, QN [,

where f l ,-- . , eN are given positive numbers.

Definition 3.48. Let CP r(Y) be the subset of C°°(RN) of Y-periodic functions.
We denote by HPer(Y) the closure of CP r(Y) for the H1-norm.

From this definition and the proof of Theorem 3.28, it is obvious that the
space HpeC(Y) has the following properties:

Proposition 3.49. Let u E Hpet(Y). Then. -it has the same trace on the oppo-
site faces of Y.

Let g be a function defined a.e. on Y and denote by g# its extension by
periodicity to the whole of 1(8N, defined by

g#(x+kei ej) = g(x) a.e. on Y, Vk E Z, Vi E (3.7)

where {e1.... , eN } is the canonical basis of III; N.
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Fig. 3.4

Proposition 3.50. Let u E HPer(Y) and u# be its extension defined by (3.7).
Then u# is in H1 (w) for any bounded open subset w of R".

Proof. It is obvious that u# E L2(w) and ((9u/Oxi)# E L2(w). Let us show that

=( axi)ai

which will prove the result.

Vi E {1,....N},

To show this identity, let p E D(w). Remark that supp cp can be covered by
a finite union of translated sets of Y, as follows (see Fig. 3.4):

C U Yk=Iw. (3.8)
kEK(w)

where K(w) is a finite subset. of Z'' and the intervals Yk are pairwise disjoint
and

Y k = Y + z(k), f o r some z(k) = (klfl, ... , kNtN) E RN, k E ZN.

Then, by Definition 3.11

OU#,
P u#

8y dx = - u# acp dr.
9xi /D'(w).D(w) _ ` w Oxi kEK(w) JYk ax,

Hence, by a change of variables and using (3.7),

Yk u#
aax dx u(y) aax (y - z(k)) dy,f

(3.9)

(3.10)
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where we can use the Green formula from Theorem 3.33 to obtain

fu(y)(-z(k))d

- fY a (y)(P(y - z(k)) dy + f u(y)p(y - z(k)) ni dsy (3.11)

fY a (y)V(y - z(k)) dy + JF+uF- u(y)p(y - z(k)) ni dsy,

where F are the faces of OY normal to the direction xi. But

u(y) ni P(y - z(k)) dsy
Ft uFt

[u(y),P(y - z(k))] dyl ... dyi-Idyl+1 ... dyN

[u(y)cp(y - z(k))] fy;=a
dyf ... dyi-idyl+i ... dyN.

I

Consider now the cell Yk,, adjacent to Yk in the xi-direction, i.e.

Yk, =Y+z(k'),

where z(k') = z(k) + t'iei = (k1e1,... , ki-iei-1 (ki + I)Ii, ki+iQi+i, .. , kNeN).
Performing the same computation. we have

u(y) ni So(y - z(k')) dsyf,+uF

[u(y)tp(y - z(k'))] dy1
.. dyi-idyi+l ... dyNJi,#;Io.P,

[u(y)v(y - z(k'))] ly._p dyi ... dyi-idyl+l ... dyN

Notice that

v(y - z(k'))Iy,=o
W(yi - k1e1ik i t , , . . . , , yi_ 1 - ki-lei-1, --(ki + 1)ei, yi+1
-ki+1et+1,...,YN -
w(y - z(k))I y;=t;

hence, since u is Y-periodic,

[u(y)(P(y - z(k'))] f dyf ... dyi-idyl+l . dyN

[u(y) (y - z(k))]I dyi ... dyi-di yi+1 .. . dyN
(3.12)
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Use now (3.10) and (3.11) in (3.9). When summing the boundary terms on
the different faces, most of them cancel two by two due to (3.12). The only
boundary terms for which we cannot use (3.12) are those corresponding to the
boundary of the set I,,, defined by (3.8). Since cp vanishes on BI,,, these terms
also vanish. Hence, using again (3.7), (3.9) becomes

a z(k)) dy
8u

= f axe dx,JOUv kEK(w)

which ends the proof. 0

In the sequel, we will make use of the space Hpei(Y)/1R defined in the spirit
of Definition 3.39 as follows:

Definition 3.51. The quotient space

Wper(Y) = Hper(Y)/R

is defined as the space of equivalence classes with respect to the relation

u v u - v is a constant, du, i= E Hir(Y).

We denote by it the equivalence class represented by u.

Thanks to Proposition 3.40 one has

Proposition 3.52. The following quantity:

IlullWp,r(Y) = IIoullL2(Y)+ Vu E it, it E Wper(Y),

defines a norm on Wper(Y).
Moreover, the dual space (WpeC(Y))' can be identified with the set

IF E (HpeC(Y))' I F(c) = 0, `dc E >R},

with

/
(F, u)(WOer(Y)),.Wper(Y) = (F, (Y) Vu E it, du. E Wper(Y).

3.5 Vector-valued spaces of the type LP(a, b; X)

The notion of distribution can be generalized to vector-valued functions as fol-
lows:

Definition 3.53. Let X be a Banach space and SI C RN. A map T : D(1l) ' X
is called a distribution on SZ with values in X, if
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i) T is linear, i.e.

V,\,,,\2 E R, 1Pi, cp2 E D(1l), T(A1cP1 + A2W2) = \1T(coi) + \2T(W2)-

ii) T is continuous on the sequences, i.e.

(SP,, -' V in D(1l)) (T(co) -' T(cp) in X).

We denote by IY(fl; X) the set of distributions on fi with values in X.
If 0 =]a, b[, D'(a, b; X) denotes the set of distributions on ]a, b[ with values

in X.

Similarly, one can also define the LP-spaces for vector-valued functions.

Definition 3.54. Let X be a Banach space, fl C RN and p such that 1 < p
oo. We denote by LP(fl; X), the set of measurable functions u : x E ft -- u(x) E
X such that IIu(x)IIx E LP(Il).

Let us mention that the measurability of real functions may be defined in
several equivalent ways (see for instance Dinculeanu, 1967). In the vector-valued
case, these definitions are no longer equivalent. Here, a measurable function is
an a.e. limit of step functions (see Definition 1.41).

Proposition 3.55. The following quantity

` P
IILIILP(O;x) = f IIu(x)IIX dx l ,

defines a norm on LP(1l; X), which is a Banach space.
If X is reflexive and 1 < p < oc, the space LP(Q; X) is reflexive too. More-

over, if X is separable and 1 < p < oc, then LP(f2; X) is separable.

To end this chapter, we investigate the properties of a class of vector-valued
functions which is well adapted to the study of problems where one of the vari-
ables plays a special role, namely the space LP (a, b: X) (corresponding in Def-
inition 3.54 to f2 =]a, b[). This occurs, for example, for the variable `time' in
time-dependent problems. Another situation is that of layered materials where
the periodicity concerns only one direction of the space, and this direction has
therefore to be distinguished. For various results on vector-valued functions
we refer to Schwartz (1951), Dinculeanu (1967), Lions and Magenes (1968a,b),
Lions (1969), and Diestel and Uhl (1977).

It is obvious from Definition 3.54 that if Bo and B are two Banach spaces such
that Bo C B with continuous injection, then one has LP(a, b; Bo) C LP(a, b; B)
with continuous injection also.

Suppose now that the injection Bp C B is compact. A natural question is
whether the injection LP(a, b; BO) C LP(a, b; B) is also compact. Actually, one



Vector-valued spaces of the type LP(a, b; X) 61

can prove that this is not true, a trivial example being the case Bo = B = R. As
Proposition 3.57 below shows, if one has some information about the derivative
(in the sense of distributions) of u with respect to t, then one can give a positive
answer to the above question. To do that, let us first make precise what we
mean by the derivative in the sense of distributions of a vector-valued function
on )a, b(.

Definition 3.56. Let u be in L'(a, b: X). The derivative au/8t is the distribu-
tion in D'(a, b; X) defined by

(gyp)

jb
u 5 dt, VV E D(a, b).

The following result is due to J. L. Lions (1988, Chapitre 1. Theorem 5.1).
We also refer to Aubin (1963) and Simon (1987) for some generalizations.

Proposition 3.57. Let Bo C B C B1, three Banach spaces such that Bo and
BI are reflexive. Suppose also that the injection Bo c B is compact. Define

W={vJvELp°(a,b; Ba),' EL''(a,b; Bl)

with 1 < po, p1 < +oo. Then

i) W is a Banach space with respect to the norm of the graph defined by

IIuIIW = IItIILpo(a,b; Bo) + iii L" (a,b; BI)

ii) the injection W C LPO (a, b; B) is compact.

The following theorem plays an important role in the study of partial differ-
ential equations:

Theorem 3.58. Let us define the Banach spaces

W = { v I v E L2(a,b; HO(II)), T E L2(a.b; H-1(SZ))

W1 = { v I V E L2(a, b; L2(S2)), at E L2(a. b; H(fl))

equipped with the norm of the graph. Then, the following properties hold true:

i) the injections

W c L2(a,b; L2 (Q)). W, C L2(a.b;

are compact,
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ii) one has the inclusions

W c C([a,b]; L2(1)),
Wi c C([a,b]: H-'(Q)),

where, for X = L2(1) or X = H-i(Q), one denotes by C([a,b]; X) the
space of measurable functions on Sl x [a, b] such that u(., t) E X for any
t E [a, b] and such that the map t E [a, b] i- t) E X is continuous,

iii) for any u, v E W one has

d f u(x, t) v(.r, t) dr = t), t))H-I(-z),Ho(o)

+ (v t), t))H-1(0),Ha(0)

Proof. Statement (i) is an easy consequence of Theorem 3.27 and Proposi-
tion 3.43. On the contrary, the proof of the second statement is rather compli-
cated, we skip it and refer the reader to Lions and Magenes (1968a, Chapter 1,
Theorem 3.1).

Let us prove the third statement. Recall that D(]a, b[xf) is dense in W (see,
for instance, Lions and Magenes, 1968a). Let {um} and {Vm} be two sequences in
V(]a, b[x0), strongly converging in W respectively, to u and v. Let cp E D(a, b).
Due to Definition 3.11 of the derivatives in the sense of distributions, we have

(jJu(x, t) v(x, t) dx,
i D'(a,b).D(a,b)

bf= - J u(x, t) v(x. t) cp'(t) dx dt.
a jbf

- lim u,,, (x, t) v,,, (x, t) wp (t) dx dtmoo

flim J [u'nt(x, t) Vm(X, t) + um(x, t) V' (X, t)] t0(t) dx dt
m-oc

b

t

fb
lim

M-00 0
a

+ (vm( t), um(', t))H-1(0).H1(Si) P(t) dt
b

f [(u`(,t), (v'(.I). u{ W(t) dt
a

+ 0"('-t), 1P)D'(a,b).D(a,b)

This implies the required equality in D'(a, b), and due to Remark 3.8, in L' (a, b).
0
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The following proposition characterizes the dual of LP(a, b; Ho'(fl)) (for more
details see Diestel and Uhl, 1977):

Proposition 3.59. Let H be a Hilbert space and I < p < oo. One has the
following identification:

[L"(a, b; H)]' = LP'(a. b; H'),

where p' is the conjugate of p.
In particular, [L2(a,b; Ho(S2)))' = L2(a,b: H-1(Sl)), and if f E

L2 (a, b; H-1(fl)), one has
b

(f,U)LZ(a,b; H-1(Sl)),L2(a.b: H'(11)1 = J
(f(t),u(t))N-1(Ct).Ho(S2} fit, (3.13)

a

for any u E L2(a,b; HH(Sl)).

We will now formulate a density result, which is also very important in the
study of time-dependent problems.

Proposition 3.60. Let U E L2(a, b. H.'(9)) n C([a, b]: L2(Sl)). Then, for any
6 > 0, there exists '1 E C°°([a, b]; D(1)), such that

Z

I1u - IIC((a.bJ: L2(Q)) < 6

ii) IIVn - D(1MIL2(ctxJa,b1) < 6,

where C°° ([a, b]; D(c)) is the space of measurable functions on Sl x [a, b] such that
t) E D(S1) for any t E [a, b], and such that the map t E [a, b] '- t) E D(fl)

is indefinitely differentiable.
If further u' E C([a, b]; L2(Q)), then for any 6 > 0, there exists 4b E

C°O([a,b]; D(Q)), such that

5
ii)

Ilu' - (D'IIC(ia.bJ:L2(n)) <- 6

Ilou - V IIL2(oxJa.b() :5 5.

We end this section by recalling some properties. useful in the sequel, con-
cerning the space L2(Sl; Cper(Y)) where CpeT(Y) denotes the subset of C(Y) of
Y-periodic functions.

Proposition 3.61. The following properties hold:

i) The space L2(SZ; Cper(Y)) is separable.

ii) The space L2(Sl; CpeT(Y)) is dense in L2(Sl; L2(Y)) = L2(1l X Y).

Proof. The first statement follows immediately from Proposition 3.55 since
Cper(Y) is separable (see for instance Rudin. 1966). As concerning the sec-
ond statement, observe that a consequence of 't'heorem 1.38 is the density of
the space L2(Sl; D(Y)) in L2(f); L2(Y)). Then, property (ii) follows from the
obvious inclusion L2((l; D(Y)) C L2(Sl; Cpef(Y)). 0
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Some variational elliptic problems

We study in this chapter some classical elliptic partial differential equations in the
framework of weak solutions. The problems we deal with are linear elliptic partial
differential equations with different boundary conditions: Dirichlet, Neumann,
Robin and periodic conditions. In all these cases, the existence and uniqueness of
the solution are obtained by applying the Lax-Milgram theorem. This important
theorem is proved in Section 4.2 below.

4.1 Bilinear forms on Banach spaces

Let us recall here some basic properties of bilinear maps on Banach spaces. In
all this section V denotes a real Banach space.

Definition 4.1. Let a be a map from V x V to R. It is called a bilinear form
on V if, for any fixed u E V, the following maps:

a(u, .) : v E V '--> a(u, v) E R,
Vd-->a(v,u)ER,

are linear.

Definition 4.2. A map a from V x V to R is bounded on V if there exists
C > 0 such that

la(2L,v)1 <- CIIull, 112'11V (4.1)

Proposition 4.3. Let a : V x V h--% ]R be a bilinear form. Then a is bounded
if and only if a is continuous on V x V.

Proof Suppose that (4.1) holds. Then, for (u, v), (uo. vo) E V x V, one has

Ia(u,v)-a(uo,vo)I < Ia(u.v-vo)I+la(u-uo,vo)I
< CIIullvlly-wily+Cllu-uoIlvIIvoIIv,

which gives the continuity of a on V x V.
Suppose now that a is continuous, so in particular, for any s > 0, there exists

45 > 0 such that

IIwiL, < S, IIzII,. < 6 Ia(w,z)I < e. (4.2)
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By linearity, for any u, v E V \ {0}, one has

Ia(u,z1)I

la\II Ilv, Ilvlly

Introduce w and z as follows:

_5 U b V
W

2
IIuI1V z

= 2 IIvII,

Obviously,

Ilwlly=2<d, Hill,,=2<5.

Let us write (4.2) for w and z defined in (4.4). One has

(a(Il
It t.' IIvIIt I

62la(w'z)+ a2E'ull

which, together with (4.3) gives

Ia(u,v)I :5-
4
T2-- IIlIIv IIvIIV.

This gives (4.1) with C = b2 e.

In the sequel we need the following definition (see Necas, 1967):

Definition 4.4. A bilinear form a on V is called symmetric if

a(u. v) = a(v, u), `d u, v c V.

It is called positive iff

0

a(u, u) > 0, V u E V.

The form a is called V-elliptic (or coercive on V) with constant ao, iff there
exists ao > 0 such that

a(u,u) > aollull', d u E V.

4.2 The Lax-Milgram theorem

Let a be a bilinear form on a Hilbert space H (see Definition 1.2) and F E H.
Let us consider the problem

{Find U E H such that
a(u, v) = (F. v)H'.H. Vv E H.

(4.5)
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This abstract equation is called a variational equation and v E H is usually
called a test function. Theorem 4.6 below gives, under suitable assumptions on
a, the existence and uniqueness of a solution of (4.5). This theorem is based on
the well-known Riesz representation theorem for the dual of a Hiibert space. Let
us recall it.

Theorem 4.5 (Riesz theorem). Let H be a Hiibert space and F E H'. Then
there exists a unique rF E H such that

(F, V)H',H = (TF, Off - VV E H.

Moreover, the one-to-one application

-r: FEH'a )rFEH
is an isometry (called the Riesz isometry), i.e. it satisfies

J1rFIIH = IIFUH,

We are now able to prove the following general result:

Theorem 4.6 (Lax-Milgram theorem). Let a be a continuous bilinear form
on a Hiibert space H and F E W. Assume that a is H-elliptic with constant
ao. Then the variational equation (4.5) has a unique solution u E H.

Moreover,

I(uI1H s ofIFI111,.

Proof. For u E H denote by Au the map

Au: uE HAoa(u,u) EBB.

From Proposition 4.3, we have

((Au, v)H',HI = Ia(u, v)15 CI(uIIHIIv(IH.

Hence Au E H' with

IIAu(IH, < CIfuIIH. (4.10)

Then, from Theorem 4.5, there exists iAu E H such that

(Au, v)H',H = (rAu, v)H. Vv E H. (4.11)

Similarly, since F E H', there exists rF E H such that (4.6) holds.
From (4.6), (4.9) and (4.11), it follows that problem (4.5) is equivalent to the

following one: find u E H such that

(rAu-rF,v)H =O, by E H,
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i.e. such that
TAu = TF. (4.12)

Let us observe now that in order to prove that (4.12) has a unique solution, it
is enough to show that there exists p > 0, such that the map

4i:vEH& )v-p(TAU-TF)EH,

is a contraction, that is to say

3c<1, 114 (wl) - 4 (w2)IIH < cllwl - w211H, dwi, w2 E H. (4.13)

Indeed, if 4) is a contraction, then by the Banach fixed point theorem (see, for
instance, Dunford and Schwartz, 1958) it has a unique fixed point u such that

4)(u) = u, i.e. u - p(TAu - TF) = u,

which is equivalent to (4.12) if p is strictly positive.
To prove (4.13), remark that

4)(wl) - 4)(u}2) = uti - w2 - prA(wi - w2).

Therefore, it is sufficient to show that there exists c < 1, such that

11v-PTAvIIH <CII1VIIH, Vv E H.

We have, by using (4.7), (4.9), (4.10), (4.11) and the H-ellipticity of the form a

IJv - prAv112 = (v - pTAv, v - prAv) = 11V)12 - 2p(TAv.v) + p2117-AvJ1H

IIvlIH - 2pa(v. v) + P2IIA21IIH, < (1- 2pao + P2C2)IIvIIH.

Choosing here p E]0, 2ao/C2[ one has (4.13). since then (1 - 2pao + p2C2) < 1.
It remains to prove estimate (4.8). This is an obvious consequence of the H-

ellipticity with constant ao of the bilinear form a and of inequality (1.1) applied
to F. Indeed, one has

aolIt)I2 <a(u, u) = J(F, u)H'.HI < JIFJJH,IIuJIH.

from which (4.8) is straightforward. The proof of Theorem 4.6 is complete. O

Remark 4.7. If the form a is symmetric, the proof of Theorem 4.6 is much
simpler, since in this case a(u, v) is a scalar product equivalent to Then
the result is an easy consequence of the Riesz theorem (Theorem 4.5). 0

As matter of fact, in the symmetric case the solution of (4.5) can be char-
acterized as the minimum point of a suitable functional. Indeed, the following
result holds true:
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Theorem 4.8. Let a be a continuous bilinear form on a Hilbert space H and
F E H'. Assume that a is positive and symmetric. Let J be the functional on
H defined by

J(v) = Ia(v, v) - (F,V)H'.H, Vv E H. (4.14)

Then u is solution of the variational equation (4.5) if and only if u is solution of
the following problem:

Find V E H such that
J(u) = Lillif J(1').

(4.15)

Proof. Suppose first that u is solution of (4.5). Then the hypotheses on the form
a and the linearity of F imply that

J(u + w) - J(u) = {a(u, w) - F(w)} + Za(w, w) = 2a(w, w), Vw E H.

Since a is positive, one has

J(u + w) - J(u) > 0, `dw E H.

Hence, u satisfies (4.15) since any element v E H can be written as v = u + w
for some to E H.

Suppose now that u is solution of (4.15) and let v E H and t E R. Then

a

0 < J(u + tv) - J(u) = f{a(u, v) - F(v)} + 2 a(v, v),

where we have used the assumptions on a and F. Since t is arbitrary in R, one
has that

a(u, i') - F(v) = 0,

hence u is solution of (4.5).

The following corollary is an easy consequence of this result and Theorem 4.6:

Corollary 4.9. Assume that the form a. satisfies the hypotheses of Theorem 4.6
and that it is symmetric. Let f E H' and J be defined by (4.14). Then prob-
lem (4.15) admits a unique solution u E H.

Remark 4.10. This result is a particular case of some general results concern-
ing the minimization of functionals on Banach spaces or on convex sets. There
is a wide theory that solves this kind of problems, namely in the framework of
calculus of variations and in optimization theory. We refer for instance to Kinder-
lehrer and Stampacchia (1980), Ciarlet (1982), Buttazzo (1989), and Dacorogna
(1989). 0



Setting of the variational formulation '69

4.3 Setting of the variational formulation

The aim of this section is to introduce the reader to some classical boun value
problems in elliptic partial differential equations. The problems we present ere
will be formulated in the weak sense. that is to say the derivatives are taken in the
sense of distributions and the solutions have to belong to some Sobolev space.
Moreover, the equations are formulated in the variational sense, in the same
spirit as the abstract formulation (4.5) above, in order to apply Lax-Milgram
theorem.

To do so, we will have to write down, for any given boundary problem, a
variational equation of the form

/a(u, v) = (F,V)H'.H

and introduce a suitable space H where this identity makes sense. In general, the
variational equation is obtained by multiplying the partial differential equation
by appropriate smooth test functions (i.e. taking into account the boundary
conditions) and integrating by parts. This computation suggests the space H
in which the problem has to be solved. This procedure is justified by the fact
that if the data are sufficiently regular, the weak solution is also regular and is
a solution in the classical sense (see, for instance Proposition 4.14 below).

As before, 0 and 1 denote respectively, an open set and a bounded open set
in RN.

Definition 4.11. Let a, 0 E R, such that 0 < a < 0. We denote by M(a, ,0, 0)
the set of the N x N matrices A = (aij)1<i.j<N E (L°° (Q))NxN such that

i) (A(x)A, A) >
oJAI2

(4.16)

for any A E RN and a.e. on

ii)

0.
1A(x)d+ < Af AJ,

In the following, we will treat several examples of partial differential equations
with an operator of the form

N

A = -div (A(x) V) = - E A (aii (x) , . (4.17)
i.j=1 Oxi j /

Recall that if the matrix A is the identity, the operator in (4.17) is the classical
Laplacian

N 92

8A.

Remark 4.12. Notice first that condition (4-16)(i) is equivalent to the classical
uniform ellipticity condition for the operator A:

N N
3cr > 0 such that a1(x)AA j>of A . a.e. on 0, VA== (A,,..., AN) E RN

i.j=1 i=1
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In particular, this inequality implies the invertibility of A(x) a.e. on (0 (see for
more details Lang, 1993, and Ciarlet. 1982). In general, if a matrix A satisfies
this inequality, one says that A is elliptic.

On the other hand, condition (4.16)(ii). implies that

JIA(x)IJ2 < 3, a.e. on 0.

where a.e. on 0 the following quantity

IIA(x)112 = u IA(x
,\I,

is the norm of A(x) as an element of C(RN, EN), RN being endowed with the
Euclidean norm.

We recall now the notion of well-posed problem introduced by Hadamard.
Let P be a boundary value problem and U,.F two Banach spaces.

Definition 4.13 (Well-posedness). We say that P is well posed (with respect
to U and F) if

(1) for any element f E F there exists a solution v c U of P,

(2) the solution is unique,

(3) the map f E F a- u E U is continuous.

Obviously, the well-posedness of a problem depends on the choice of spaces
U and F. As a matter of fact, the examples we treat in the sequel have all this
property. They are all related to an equation of the form

Au = -div (A Vu) = f,

where the operator A is given by (4.17) and the matrix A E M(a, 3, Sl). A
boundary value problem is formulated by supplementing this equation with some
boundary conditions.

Let us introduce the following notation:

N

a A = aij (x) ni ax (4.18)
i.j=1 J

where n = (n1, ... , nN) denotes the unit outward normal to Q.
We will treat the following boundary conditions:

u = 0 on On Dirichlet condition

u = g on Oil Nonhomogeneous Dirichlet condition
8u

49VA
=0 on 8Q Neumann condition
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au
= g on OIl Nonhomogeneous Neumann condition

aVA

19U + du = 0 on &Q Robin condition
5VA

au

aVA
+ du = g on asl Nonhomogeneous Robin condition

In the last section of this chapter we also study, when Il = Y, Y being given
by (2.1), a particular boundary condition which plays an essential role in the
homogenization of periodic media, namely

u Y-periodic Periodic condition

4.4 The Dirichlet problem

Let f E H-1(S2) and consider the problem

{
div (A Vu) = f in 12

u = 0 on OSt.

The corresponding variational formulation is

Find u E H01(A) such that

f'a(U,V)= (f,v)H-1(,),Ho(Q) `di' E HH(I),

where

(4.19)

(4.20)

N
r au air _ f

a(u,v) = J ai (x)- - dx - J AVu Vv dx, Vu, v E Hl(St). (4.21)
amt ax, s: °z,1=1

The following proposition justifies. as we already mentioned in Section 4.3,
the fact that a solution of system (4.20) is called a weak solution of system (4.19):

Proposition 4.14. Suppose that ail is of class C'. Let A E (C1(Il)) N I N, f E
C°(cl) and u E C2(11). Then u is solution of

div (A(x) Vn(x)) = f (x) for any x E Il
{ u(x) = 0 for any x E asl.

(4.22)

iff u is solution of (4.20).

Proof. Suppose that u is solution of (4.22). Notice that from Propositions 3.28
and 3.34, one has that u E Ho '(Q). Let as multiply the equation in (4.22) by an
arbitrary function v E D(Q). By integrating by parts. we get

a(u, v) =
J

f iv dx, by E D(S2).
in
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where a is defined by (4.21). Recalling Definition 3.26 of the space Ha (SZ), we

get by an obvious density argument. that

a(u, v) = J f v dx, Vv E Ho (1l).
st

which, together with Remark 3.44, shows that u is a solution of (4.20).
To prove the converse implication, notice that if u E C2(12) is a solution

of (4.20), then

IAVuVvdx=J VvED(1).
in

Integrating by parts, one has

[ - div (A Vu) - f] v dx = 0, Vv E D(Sl).

This, together with Theorem 1.44, implies that u is solution of (4.19), the fact
that u satisfies the Dirichlet boundary being a simple consequence of Theo-
rem 3.28 and Proposition 3.34. 0

Remark 4.15. For a complete exposition concerning the properties of classical
solutions, we refer the reader to Ladyzhenskaya and Uraltseva (1968), Gilbarg
and Trudinger (1977), Troianiello (1987). Let us just point out here that some
counterexamples (see Gilbarg and Trudinger, 1977) show that, the assumptions
on the data from Proposition 4.14 are not sufficient to insure the existence of
a classical solution, i.e. a function in C2(f2) satisfying (4.22). For the existence
of such a solution, more regularity on the data and on 11 are necessary. This
justifies the introduction of the notion of weak solution. Q

The first application of the Lax -Milgrarn theorem concerns the Dirichlet
boundary value problem (4.20).

Theorem 4.16 (Homogeneous Dirichlet problem). Suppose that the ma-
trix A belongs to M(a, j(i, n). Then, for any f E H`1(1l), there exists a unique
solution u E HO '(Q) of problem (4.20). Moreover.

IIf IIH--1(e). (4.23)

where IIuIIH,,(n) = IIouIIL2(c )
If f E L2(SZ), the solution satisfies the estimate

(S)) 11f11 l.2(si) (4.24)

where CO is the Poincare constant given by Theorem 3.35.
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Proof. The proof is straightforward by applying the Lax-Milgram theorem. In-
deed, from (4.21) and Remark 4.12, it follows that

a(v,v) > a
I Ia

I1L2(n) = (IIVVIIL2(s]), Vv E Ho(st). (4.25)

Due to the Poincare inequality, the space Ho '(Q) can be equipped by the equiv-
alent norm IIVVIIL2(n), so that

a(v, v) > all2'II2

which means that a is Ho (S1)-coercive. On the other hand, from the assumptions
on the matrix A and the Cauchy-Schwarz inequality (Proposition 1.34), we get

la(w,v)J <_ ,QllowIJL2(n)JIVv IL2(c) = p11wIIHa(n)IIvHHo(n), (4.27)

which gives the continuity of the form a on Ho (st) x Ha (St).
Consequently, we can apply the Lax--Milgram theorem for H = Ho (St), F = f

and a defined by (4.21) to obtain the existence and uniqueness of the solution
of (4.20) as well as estimate (4.23).

Suppose now that f E L2(0) and let u E Ho(Q) be the solution of (4.20).
One can choose u as test function to get

a(u,u) = (f. Ho(n).

From Remark 3.44 and Proposition 3.35, by using again the Cauchy-Schwarz
inequality, one has

1(f u}H--(n),Ho(n)I = I fn fu dx <

Then, (4.24) follows from (4.25). D

Remark 4.17. If the matrix A is symmetric then, by Corollary 4.9 it follows
that the solution u given by Theorem 4.16, is the unique minimum point of the
functional J defined by

J(v) = 2 J AOvOv dx - (f,v)H(n),H1(11), dv E HH(Sl).
n

Remark 4.18. Theorem 4.16 shows that the Dirichlet problem (4.20) is well-
posed (in the sense of Definition 4.13) for the choices

if = Ha (S2). JF7= H-'(Q)
U = Ho (S1), F = L2(Il).

0
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Assume now that &D is Lipschitz continuous. Suppose we are given f in
H-1(Sl) and g in H # (00). Consider the nonhomogeneous Dirichiet problem

1

div (A Vu) = f in St

u=g onOSl.

The trace notion (see Theorem 3.28 and Proposition 3.31) allows to give a weak
sense to this equation. We say that u is a weak solution of this problem if

-div (A Vu) = f in D'(1)
(4.28)

y(u) = g in Hz (00).

Then, the following result holds:

Theorem 4.19 (Nonhomogeneous Dirichiet problem). Suppose that 80
is Lipschitz continuous and that the matrix A belongs to M(a, (3, Cl). Let f
in H-'(Q) and g in H4 (oil). Then problem (4.28) has a unique solution u in
H' (Sl) . Moreover,

IIuIIH1(n) < CI IfIIH-I(n) +C2IIgHH4(on) (4.29)

where C1 and C2 are two positive constants depending on Sl, a and fl.

Proof. Since g E H4(30), from Proposition 3.32(iii) there exists G E H1(fl)
such that y(G) = g and

IIGIIHI(n) < Ci(n)II9IIHI(on),

Observe that by Proposition 3.42, f + div (A VG) E H-1(Il). Hence, by Theo-
rem 4.16 the following (homogeneous) Dirichiet problem with a defined by (4.21)

Find z E Ho (0) such that
la(z. v) = (f +div (AVC).l')H_1(n) Ho(n), VV E HH(Q), (4.30)

admits a unique solution z E Ha (Cl). Moreover.

IIZIIHI(n) < I Ilf +div (AVG)IIH-1(n) (4.31)

Set u = z + G. From Proposition 3.34 and the linearity of y, one has ^y(u) =
g in H2 (810). Further, choosing v E D(Q) as test function in (4.30), one obtains

(-div (AVu), v)H-1(n) Ho(se} = r AVu Vi' dx = a(u, v) = a(z, v) + a(G, v)
n

(f
+

div (A VG), z')H

J AVG Vv d.rL
\f. t')H-1(i).H0I(St). Vv E D(0),
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which means that -div (A Vu) = f in D'(Sl) and hence u satisfies (4.28).
We now make use of estimate (4.31) to derive (4.29). One has successively,

by using Proposition 3.32(iii) and Proposition 3.35,

IIUIIHI(n) IIu - GIIHI(c,) + IIGIIHI(n) <- IIZII0(SZ) + IIVZIIL2(n) + IIGIIHI(n)

(1 + Cn)IIzI(HII(c,) +C1(II)IIgIIHI(a0)

<
1 +oCn

UIfIIH, + IIdiv (A VG)II +Cl(1l)II9II- X-.(a)) H can)
(4.32)

On the other hand, by the Cauchy-Schwarz inequality (Proposition 1.34) and
again by Proposition 3.32(iii),

((div (A VG), v)H-1(a),Ho(n)I =II AVGVv dzl<13C1(f)NgIhHI(0)IlVv!IG2(sz),

for any v E Ha (f2). This gives (due to Definition 3.41)

Ildiv (A VG)(IH-1(f2) < 3C1(fl)IIgIIH4
(0Q).

This, together with (4.32), implies that

IIuIIHI(SZ) < 1 aCniIfIIH-I(sz) + 1 +Cnf3C1(sl)IIgfjH (a) +C1(st)IIg1IH4(as)).

Hence, estimate (4.29) holds with

1 + Cn 1 +C0C, = , C2= 2 j3C, (Q)

since [(1 + CS?)/a],6 > I.

4.5 The Neumann problem

Let f E (H1(fl))' and consider the homogeneous Neumann problem

1-div (A V,u) + u = f in c
au =0 on'Q.

49VA

where as is defined by (4.18).
A

The corresponding variational formulation is

Find it E H' (f)) such that

j a(u,v) = (f, dt' E H1(Sl),

O

(4.33)

(4.34)

where

J
r

a(u. v) = AVu Vv dx + J at' dx, Vu. v E H1(fl). (4.35)
n
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Theorem 4.20 (Homogeneous Neumann problem). Suppose that the ma-
trix A E M(a, Q, 0). Then, for any f E (HI (D)), there exists a unique solution
u E H1(SZ) of problem (4.34). Moreover,

IIUIIHI(0) ollfil(H1(n))' (4.36)

where or = min{1, a}. If f E L2(SZ), the solution satisfies the estimate

IIuIIHI(n) : o IIfIIL2(n). (4.37)

Proof. By the definition of a. one has
I Ia(v,v) oilovllL2(n) + IIvIIL2(n) > 001IVIIHI(n), Vv E HI(SZ),

where ao = min{1, a}. Hence, the form a is H1(1)-elliptic with constant ao.
Therefore, Theorem 4.6 applies and estimates (4.36) and (4.37) are straightfor-
ward. 0

Assume now that 812 is Lipschitz continuous. Let f E L2(S2), g E H-i (On)
and consider the following nonhomogeneous Neumann problem:

-div (AVu)+u= f in1
8u (4.38)

= g on 80.
OVA

The corresponding variational formulation is

Find u E H1(1) such that

a(u,v) = Jfvd.r + (9v)H (n)xl(an), (4.39)
t

Vi, E H1(S2).

where now a is defined by (4.35).
Let us observe that if u is a solution of problem (4.39), the equation in (4.38)

holds in 2Y(SZ). Then, due to Proposition 3.47(ii), A Vu belongs to H(S2, div)
and therefore 8u/&A is well-defined as an element of H- 4 (8SZ). This is the
sense to be given to the boundary condition in (4.38).

We have the following existence and uniqueness result:

Theorem 4.21 (Nonhomogeneous Neumann problem). Suppose that 812
is Lipschitz continuous and that the matrix A E M(a,0, S2). Then, for any
f E L2(0) and for any g E H (afl), there exists a unique solution u E H'(1)
of problem (4.39). Moreover,

(80)), (4.40)IIuIIx (n} < o (Ilf 11V(Q) + C7 (0)1I911H- i

where ao = min{1, a} and C.y(S2) is the trace constant defined by Proposi-
tion 3.31.
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Proof. Set for any v E H1(St),

F(v) = f f v dx + (g,v)H- (aSt).H (asz). (4.41)

One has,

IF(v)I <- IIf IJL-(O)IIVIIL2(1Z) + II91IH-4(asz)IIVIIH4(8 )

<_ IIf1IL2(11)IIvIIH'(n)II +C',(f))II9IIH-4(en)IIVIIHI(a),

where we made use of Proposition 3.31. Hence F E (H'(12))' with

IIFII(H'(n))' < IIfIIL2(U) +C,(l)II9IIH-4(8Q)- (4.42)

Again we apply the Lax-Milgrain theorem 4.6 with F defined by (4.41) to get a
unique solution u E Hl (S1). Estimate (4.40) is a direct consequence of (4.42). o

Suppose that Il is connected and consider now instead of (4.38), the following
nonhomogeneous Neumann problem:

-div (A Vu) = f in u

8u _ g on
(4.43)

8V4

under the same hypotheses on g and f as in Theorem 4.21. The corresponding
bilinear form is

a(u, v) = J AVu Du dx, Vu, v E H1(Il). (4.44)
in

One notices immediately that now, this form is no longer coercive on H1(n) but,
due to Proposition 3.40, it is coercive on the Hilbert space

W(Q) = H1(ft)/l[l:

given by Definition 3.39. Consequently, the natural variational formulation
of (4.43) is

Find it E W(Q) such that

a(ic, v) = fly dx + (gv)H(af)HI (aU)(4.45)

Vv E v, Vil E TI4'(ci),

where it is defined by

4(u, v) = J AVu Oz' da:, Vu E ic, v E it, du, b E W (Q). (4.46)
in

This problem makes sense if the right-hand side term is independent of v E it.
This is expressed by the compatibility condition (4.47) written below. Indeed,
we have the following result:
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Theorem 4.22. (Variant of the nonhomogeneous Neumann problem)
Assume that 1 is connected and all is Lipschitz continuous. Let A be a matrix
in M(a,13,l). Suppose that f E L2(il) and g E H-1(OSZ) satisfy the following

compatibility condition:

10 f dx + (g' 1)H-i(an).H1(a1
2)

= 0. (4.47)

Then, there exists a unique solution u E W(Q) of problem (4.45). Moreover,

IlUJIW(n) 5 a(II00(Q)+Cy(SZ)Ji9IIH_&(811))' (4.48)

where C- ,(Q) is the trace constant defined by Proposition 3.31.

Proof. We will again apply the Lax-Milgram theorem (Theorem 4.6) to prob-
lem (4.45) with a = it defined by (4.46), H = W(Sl) and F defined by

F(i,) = jfv dx + (9V) H(ast)H (a1)dv E i, Vb E W (fl).
t

We have only to check that F is well defined on W(Sl). i.e. that

F(ur) = F(t') iff w. V E i'.

This is a consequence of the compatibility condition (4.47). Indeed, if w v
then, there exists a real constant C such that w - v = C. By linearity, the
condition F(w) = F(v) reads F(w - v) = 0. that is to say

f C dx + (9. C)
H..1(a11).H I (asp)

=0.

which again by linearity is equivalent to (4.47). D

Remark 4.23. Observe that if, in particular. g E L2(O l), then the compatibil-
ity condition (4.46) becomes

f fdx+L gds=0. (4.49)
t

4.6 The Robin problem

In this section we consider two other examples of boundary conditions, namely
the nonhomogeneous Robin condition and the case where one has a Dirichlet
condition on a part of the boundary and a homogeneous Robin one on the rest
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of the boundary. Suppose that 85Z is Lipschitz continuous and let f E LI(Z),

g E H-4(8ft). Consider the problem

1-div (A Du) + u = f in d

I a AA + du = g on OR
(4.50)

where d E R is such that d > 0. The variational formulation of problem (4.50)
is then

Find U E H' (11) such that

a(u, v) = f f v dx + (.4fv

VV E H' (S2),

where

(4.51)

a(u, v) = jAVuVvdx+juv dx + dJ u v ds, Vu, u E H' (St). (4.52)
Z asl

Theorem 4.24 (Nonhomogeneous Robin problem). Suppose that 00 is
Lipschitz continuous and that the matrix A E A7(a,$, Q). Then, for any
f E L2(1l) and for any g E H-I(8SZ). there exists a unique solution u E H1 (Q)
of problem (4.50). Moreover,

IIUIIHI(s2) o (IIf11L2(sr) + C.(Q)IIgfIH_4(as2))' (4.53)

where ao = min{ 1, a} and CC1(SZ) is the trace constant defined by Proposi-
tion 3.31.

Proof. As in the proof of Theorem 4.21, let F E (H1(Il))' be defined by

F(v) = J f v Jr + (g, v)n-;(ai2).Hz(8st).
l

(4.54)

We will again apply the Lax I1lilgram theorem (Theorem 4.6) with H = H' (Q).
Observe that as a consequence of Proposition 3.31. the bilinear form a(u, v) given
by (4.52) is continuous on H '(Q) x H1(SZ) and coercive. since d is positive. Ob-
serve also that the functional F in (4.54) is the same as that in (4.41) introduced
for the nonhomogeneous Neumann problem. Therefore. estimate (4.53) follows
from estimate (4.42).

)H-i(as2).Iti(asz)'

Other boundary conditions can be studied, always as applications of the Lax-
Milgram theorem. Let us finish this section by the following example. Let Q be
connected. Suppose that OQ is Lipschitz continuous and such that 85Z = I'1 UT2,
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where ri and r2 are two disjoint closed sets and r1 is of positive measure.
Consider the problem

-div (AVu) = f in 11

u=0 onrl
au

OVA
+du=0 on r2,

(4.55)

where d > 0. Let us introduce the space

V = {v I v E H' (Q), y(v) = 0 on r1 },

which is well defined due to Remark 3.37. Observe that, thanks to Proposi-
tion 3.36, V can be equipped with the norm

IIVIIv = IIVvIIL2(ft). (4.56)

Let f E L2(f1). The variational formulation of problem (4.55) is

Find u E V such that

where

a(u, v) =
J

f v dx (4.57)

si

bvE V,

a(u, v) =
J

AVu Vv dx + d fan u v ds, `du, v E V. (4.58)
fn ast

Theorem 4.25 (Mixed Dirichlet-Robin condition). Let St be connected.
Suppose that asl is Lipschitz continuous and such that O1 = r1 U r2 where r1
and r2 are two disjoint closed sets and r1 is of positive measure. Let A be a
matrix in M(a,)3, Q), f E L2(1) and d > 0. Then, there exists a unique solution
u E V of problem (4.57). Moreover,

IIulI' < (4.59)

where Co is the Poincare constant given by Proposition 3.36.

Proof. We apply the Lax--Aiilgram theorem (Theorem 4.6) with H = V, a de-
fined by (4.58) and F given by

F(v) = ji f v dx. (4.60)

Due to (4.56) and since d is positive, the bilinear form a is coercive on V. The
continuity of a is again a consequence of Proposition 3.38. Obviously, (4.60)
defines a continuous form on V and due to Proposition 3.36, one has

IIFIIk"- < C'DIWIL2(n).

Then, estimate (4.59) is straightforward. 0
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4.7 Periodic boundary conditions

We consider now the case of periodic boundary, conditions.
Let Y be the interval of R" defined by (2.1), i.e. Y =]0, el [x ... x10, fN [,

where el, ... , eN are given positive numbers.
Suppose that the coefficients ail are Y-periodic (in the sense of Defini-

tion 2.1). Let f be Y-periodic and consider the problem

div (A Du) = f in Y
{ u Y-periodic.

(4.61)

A natural space for the solutions is Wper(Y), introduced by Definition 3.51.
Hence, for f given in (Wper(Y))', the variational formulation of problem (4.61)
is

where

Find u E Wper(Y) such that

(f u)(Wper(Y))'.Wper(Y)

dv E Wper(Y),

= f AVuVvdy, VuEu,VvEv.
Y

(4.62)

Theorem 4.26 (Periodic boundary condition). Let A be a matrix in
M(a,,(3, Y) with Y-periodic coefficients and f E (Wper(Y))'. Then problem (4.62)
has a unique solution. Moreover,

IIuII Wper(Y) <_ IIf II(Wpe7(Y))' (4.63)

Proof. The claimed result is a simple application of Lax-Milgram theorem (The-
orem 4.6) with H = Wpei(Y) and

a(u, v) = aY (u, v), V't , i' E Wper(Y),

since, due to Proposition 3.52. the bilinear form aY is coercive on WpeL(Y). 0

Let us recall that an element of WpeT(Y) is a class of Hper(Y)-functions,
equivalent in the sense of Definition 3.51. Hence Theorem 4.26 shows that prob-
lem (4.61) admits a solution in HPeC(Y), defined up to an additive constant.

We can choose a representative element of the class of equivalence of ft by
fixing this constant. In particular, we can ask for the solution of the initial
problem (4.61) to have a zero mean value, i.e. to solve the problem

1-div (A Vu) = f in Y

u Y-periodic

My(u)O,
(4.64)
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where f is still in (Wper(Y))'.
The corresponding variational formulation is

Find U E Wper(Y) such that

J AVu Vv dy - (f1 v)(Wpcr(Y))'.WPcr(Y)

Vv E Wper(Y),

where
Wper(Y) = { I' l v E Her(Y), My (i+) = 0}

(4.65)

(4.66)

and the bracket (f, v) (caper (Y) )'. caper (Y) is well-defined by Proposition 3.52.
Due to the Poincare--Wirtinger inequality (Proposition 3.38), Wper(Y) is a

Banach space for the norm

IlullWper(Y) = IIVuIIL2(Y), for any v E Wper(Y).

In this setting, Theorem 4.26 reads as follows:

Theorem 4.27 (Variant of periodic boundary condition). Let A be a ma-
trix in M(a, 0, Y) with Y-periodic coefficients and f E (Wper(Y))'. Then prob-
lem (4.65) has a unique solution. Moreover,

Ilull«-p r(Y)
<- IllII(Wp.r(}'))'. (4.67)

Let us recall that, from Proposition 3.50, the extension by periodicity given
by (3.7) for an element of H,er(Y) is in H1(w) for any bounded open set w
of RN. A natural question arises now: does the extension u# of the solution
u of problem (4.65) satisfy some equation (at least locally) in It"? If f =
-div h, with h E (LZ(Y))N and Y-periodic. we can give a positive answer to
this question. In this case, the variational formulation (4.65) becomes

Find u E WipeT(Y) such that

AVu Vi' dy = f It Vt' dx (4.68)
Y .1Y

VV E W1,,, (Y).

Observe that the following relation:

(-div h,v)(Wper(y))' = f It Vv d9, Vi' E Wper(Y),
Y

identifies -div h as an element in (lVper(Y))'. Moreover, it is obvious that
-div h E (Wper(Y))' in the sense of Proposition 3.52. Therefore, Theorem 4.27
applies and the following result holds:
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t

Fig. 4.1

Theorem 4.28. Let A be a matrix in M(a, /3. Y) with Y-periodic coefficients
and h in (L2(Y))N and Y-periodic. Let u E Wper(Y) be the solution of prob-
lem (4.68) and u# its extension bv periodicity given by (3.7). Then u# is the
unique solution of the problem

-div (A Vu#) = -div h in D'(RN)
u# Y-periodic

My(u#)=0.
(4.69)

Proof. It is easy to check by using Green's formula (Theorem 3.33) that u#ly
solves (4.68). Then, the uniqueness of the solution of (4.69) follows from that of
problem (4.68). To prove (4.69) we have to check that

RN
yo dx, VE D(RN). (4.70)A(Vu#) V p dx = fN h V

To begin with, observe that. if V, E CCr(Y) (see Definition 3.48), we can choose
v = V) - My (0) as test function in (4.68) to obtain

Iy AVup ,dyhVv?dy. (4.71)

Let now cp E D(RN) and K = supp W. Let (Y)z=1,...,m be a finite set of
translated cells of Y. recovering K (see Fig. 4.1), i.e.

m

K C U Yi.
i=1
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Let (80i=0,...,m be a partition of the unity associated to this covering, i.e. a
family of functions such that

in

6;ED(RN), 0<9i<1, ViE{0,...,m}, 9i=1in RN,
i=d

supp9iCYi, ViE{1,...,m}. supp9oCRN\K.

For the existence of this partition we refer for instance to Yosida (1964).
Since cp = 0 on the support of 90 one has

in in

W =

0
1: gi = J:(cp9i) in RNN. (4.72)
i=1 i=1

Denote by (c )# the extension by periodicity of 'Vi for any i = 1, ... , m. Since
9i = 0 in a neighbourhood of 8Y, the function (io6i)# is in Ci r(Y), hence also
in Hper(Y)

Using Lemma 2.3, the properties of 9i and taking into account (4.72), one
has

Vu#) Vp dxJRN A(

in

JRN
A(Vu#) V(co0j) dx

i_1
in

A(Vu#) V(cp0j) dx

in

j AVu V((cp9.)#) dx. (4.73)
i=1

Observe now that the properties of 9i and cp allow to choose (c,Oi)# as test
function in (4.71). Consequently,

J AVu V((,p9t)#) dx = h O((c,6,)#) dx. (4.74)
t=1 Y i=1 Y

Using again Lemma 2.3 and the properties of 9i, it follows that

in
fhV((p8)#)dx =

in

J
h V (c,Oi) dx

art

V (O) dx = r h V cp dx,JRN h

which, together with (4.73) and (4.74), gives (4.70) and ends the proof. 0
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Examples of periodic composite materials

In this chapter we introduce the periodic framework in which we will work
throughout this book. We give in Section 5.2 some examples of physical problems
for composite materials which are modelled by partial differential equations.

In Sections 5.3 and 5.4 we focus our attention on two particular situations,
the one-dirriensional case and the layered materials. The first example is due
to S. Spagnolo and can be found in Spagnolo (1967, 1968) in the context of the
G-convergence (cf. Chapter 13 below). The case of layered materials was studied
by L. Tartar and by F. Murat (see Murat, 1978a, Murat and Tartar 1997a, and
Tartar 1977a) in the context of the H-convergence (cf. again Chapter 13).

For general references in periodic homogenization, we refer the reader to
Spagnolo (1968), De Giorgi and Spagnolo (1973), Babu6ka (1976), Bensoussan,
Lions, and Papanicolaou (1978), Sanchez-Palencia (1980), Ene and Papa. (1987),
Bakhvalov and Panasenko (1989), Jikov, Kozlov, and Oleinik (1994) and refer-
ences herein. For further developments concerning perforated domains and peri-
odic structures we refer to Lions (1981), Cioranescu and Saint Jean Paulin (1999)
as well as to references therein.

5.1 Setting of the problem

In this chapter, Q denotes as previously, a bounded open set in RN and e > 0 is
a parameter taking its values in a sequence which tends to zero.

Let
Af (x) = (ail(.r))1<i.a<N a.e. on SZ,

be a sequence of non-constant matrices such that

Af E A1(a. ,0.11).

This means (see (4.16) in Definition 4.11) that Af satisfies the following inequal-
ities:

1 (A'- (x).\, A) ?
a(,\(2

.1JAr(r)AI <_ i(al,

for any A E RN and a.e. on 11.
Introduce the operator

N
Af = -div (AEV) = - E x;

8 (af 8
x

).i
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As we shall see in this book, the homogenization theory allows to describe the
asymptotic behaviour as r -> 0 of partial differential equations of many types.
To begin with, we study the equation

AEU = f (5.5)

with a Dirichlet boundary condition on &2.
This equation is a model case, particularly relevant both from the mathemat-

ical point of view and for applications. As a matter of fact, the main mathemat-
ical difficulties occurring in homogenization theory, are already present in this
model problem. On the other hand, as we will see in Section 5.2, the equations
of type (5.5) model thermal as well as electrical or linear elastic properties of
materials. When treating such problems for composite materials, the parameter
e describes the heterogeneities of the material.

A classical problem of type (5.5) is the Dirichlet problem

div (AEDuE) = f in 0
(5.6)

_U'=0 on 8f2,

where f is given in H-1(0). From Theorem 4.16 it follows that for any fixed e,
there exists a unique solution uE E Ho (Q) such that

, (0), VI) E Ho (1).Jf AEDuE Vv di = (f 1')H-=(n).Hj

Moreover, estimate (4.23) holds, i.e.

lIu`IIHiO) G ( IIfIIH-'(S2).

Consequently, from Theorem 1.18(i) and Proposition 3.17, it follows that there
exist a subsequence, denoted by {uf' }. and an element u° E Ho (S2) such that

U61
u0 weakly in Ha (1). (5.9)

Observe that a priori the limit u° depends on the subsequence for which (5.9)
holds.

At this point two natural questions arise:

does u° satisfy some boundary value problem in S2?

and if so, is u° uniquely determined?

In order to investigate these questions, let us introduce the vector

NOU6OUEN

r = AEDuE, (5.10)( aLjBr ....,E 4j8
j=i J j=1 j
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which (see (5.7)) satisfies

t' VV dx = (f,V)H-1(sz),Ho(c2), Vv E HH(Q). (5.11)

Obviously, from (5.2) and (5.8) it follows that

II 011AH-'(n). (5.12)

Then, again from Theorem 1.18(i) there exist a subsequence, still denoted by
{ F}, and an element to E L2(&1), such that

E,
to weakly in (L2(Sl,))N. (5.13)

Hence, we can pass to the limit in (5.11) written for the subsequence e', to get

e° Vv dx = 1f, Vv E H(1), (5.14)

-div to = f in u . (5.15)

Consequently, the first above question has a positive answer if one can describe
to in terms of u°.

Remark 5.1. If Ae is such that

K --p A strongly in [L°O(fl)1NxN

one can easily give the relation between u° and Co. Indeed, in view of (5.9) and
Proposition 1.19, one has

lim J Ae, Vue'cp dxel-0
in

lim (tA,, (p, Vue') [L2(o)]N.[L2 ((Z))N

= (Acp, Vu°)[L2(o)1N,[L2(o)]N = JAVJUOcOdX. bE (L2(H)]N,

where, for any matrix B, tB denotes its transposed. Therefore,

c° = AVu°.

Hence, from (5.9) and (5.15) one deduces that u° is the unique solution of

-div (AVu°) = f in f2

u° = 0 on 852.

From the Lax- Milgram theorem, this problem has a unique solution u° since
obviously, A E M(cx,,3, Il). Thus, in this case one have also that the whole
sequence ue converges. 0
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Let us point out that the case considered in Remark 5.1 is a very peculiar one
and not relevant for the study of composite materials. Indeed, as we will see in
Section 5.3, for composite materials a strong convergence of the matrix AE can
never occur. For a sequence of matrices satisfying (5.2) (periodic or not), one
can only deduce a weakly* compactness in L°°(5l) (see Remark 1.54) to some
matrix A*.

On the other hand, as we will see in Chapter 13, the fact that A' satisfies (5.2)
for any e, implies the existence of a matrix A° (depending on the subsequence
E'), such that 4° = A0Vu0 so that uo is the unique solution of

div (A0Vu°) = f in c
(5.16)

u°=0 on8Q.
with

A° E Al(a,)3'. 0), (5.17)

for some p' > Q.
In general, A0 is different from A*. Moreover, one cannot uniquely identify

the matrix A° so that one cannot say that the whole sequence uE converges to
U0.

In some situations, in particular in the periodic case, one can give explicit
formulas for the matrix A° which show that A° is independent of the subsequence
E'. This implies that the limit u° is also independent of the subsequence E'.

Consequently, from Theorem 1.18(ii) it follows that the whole sequence u£
converges to uo. In this case problem (5.16) is called the homogenized problem,
A° the homogenized (or effective) matrix and uo the homogenized solution.

Let us now introduce the general periodic framework in which we will work
from now on. As in Chapter 2, set

Y =10. (1 [x ... X10, QN [.

where 1, .... IN are given positive numbers. It is called the reference period or
reference cell.

Let a,,3 E R, such that 0 < a < 3 and A = (aij)1<i.j<N be a N x N matrix
such that

ai, is Y-periodic, b i. j = 1..... N
A E M(a, .3. Y),

18)(5 .

where the periodicity is taken in the sense of Definition 2.1 and the class
AI (a, P, Y) is given by Definition 4.11 for 0 = Y. i.e.

I (A(y)A, A) >_ nj,A12

1 IA(y)AI < 31A+.

for any A E RN and a.e. on Y.
Set

(5.19)

ajj \- a.e. on RN. bi. j = I..... N (5.20)
z
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and

AE(x) = A\\\`(_) = (a l(x))i<i.j<N a.e. on RN. (5.21)
/
satisfies (5.2) and (5.3) for any e. Then, all theIt is easy to check that AE

considerations above hold for problem (5.6) written for AE given by (5.21).
Observe that from Theorem 2.6 it follows that if E 0

AE - My (A). weakly* in L°°(Sl), (5.22)

where the matrix (My(A))i; is defined by

(My(A))i; _
1 I j a,.r(y)dy.

(5.23)

Moreover, from Remark 2.9 we know that in general. convergence (5.22) is not
strong. Hence, in view of convergences (5.9) and (5.22), AEVue is the product
of two weakly convergent sequences. Ftom Remark 2.7 we know that in general

C° # My(A) V u°.

with ° given by (5.13).
In Sections 5.3 and 5.4 we will see that for examples of the one-dimensional

case and of layered materials, the homogenized matrix A° is obtained by taking
weak limits of some algebraic formulas involving the coefficients of the matrix
A defined by (5.18). As seen in Chapter 6, for the general N-dimensional case,
the situation is completely different, since the coefficients of A° are no longer
obtained as algebraic formulas from A. Indeed, they are defined by means of
some periodic functions which are solutions in the reference cell Y of boundary
value problems of the same type as that studied in Section 4.7.

5.2 Some physical models

In this section we show how some classical physical problems can be modelled
by the Dirichlet problem (5.6), introduced in Section 5.1, as well as by other
boundary value problems that we will consider in this book.

A composite is a material containing two or more finely mixed components.
Composite materials are widely used nowadays in any kind of industries, since
they have very interesting properties. It is known in practice that they exhibit
in general `better' behaviour (according to the performance one looks for), than
the average behaviour of its components, classical examples being ceramics or
supraconducting multifilamentary materials.

In a good composite, the heterogeneities are very small compared with the
global dimension of the sample. The smaller are the heterogeneities, the better is
the mixture, which appears then, at a first glance, as a -homogeneous' material.
It is for this reason that one can assume that the heterogeneities are evenly
distributed.
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From the mathematical point of view, one can model this distribution by
supposing that it is a periodic one. This periodicity can be represented by a
small parameter, E.

In practice, one is interested to know the global behaviour of the composite
material when the heterogeneities are very very small. This means that e is very
small, which mathematically signifies making e tend to zero.

As showed in the examples below, in the mathematical model the main char-
acteristics constants of a material are the coefficients of a partial differential
equation. For a composite with a e-periodic distribution, these coefficients will
clearly depend on the parameter e, so they jump between the different values of
the characteristic of its components.

This makes the model very difficult to treat, in particular from the numerical
point of view. Also, the pointwise knowledge of the characteristic of the material
does not provide in a simple way any information on its global behaviour.

As we will see throughout all this book, when passing to the limit as a -> 0,
we obtain `homogenized' limit problems with constant coefficients. This is very
interesting in applications since, as is well known from engineers and physicians,
these coefficients are good approximations of the global characteristics of the
composite material, when regarded as an homogeneous one. Moreover, replacing
the problem by the limit one, allows to make easy numerical computations.

Let us introduce the geometrical model of a periodic mixture corresponding
to the problems we treat in this book. For the sake of simplicity, we describe
here the case of a mixture of two components.

Let 1 be the domain occupied by the material, Y the reference cell, Yi C Y
and Y2 C Y such that

Y=Y,uY2i Y1nY2=0.

Let e > 0 be a parameter which takes its values in a sequence which tends to
zero and set

sae _ f? 1gi = f = 1},

where Xs for i = 1, 2, is the characteristic function of the set YY (see Defini-
tion 1.40) extended by periodicity with period Y.

By this construction, the set SZ is covered by a pavement of cells of the form
eY = eY, UeY2 (see Fig. 5.1).

Remark, in particular, that if we have

Y1 =10. 2l [x...x)O,eN[, Y2=] ,e1[x...x)0,eN

we are in the case of a layered material (see Fig. 5.2).
When taking a --> 0, the cells eY covering SZ are smaller and smaller and

their number goes to oo. This signifies that, in this procedure, we are mixing
the two materials `better and better' in the sense that the heterogeneities are
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EY, 6 Y,

Y2

c C>' °
C=b

yJ

Fig. 5.1

Y2

Y,

Y,

yI

Fig. 5.2 (A layered material)
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finer and finer (see Figures 5.1 and 5.2). This is why this procedure is called
homogenization. Indeed, in this process of homogenization, the proportion of the
materials is kept constant. Actually, the proportion Of of the material occupying
the set O and given by

o`l ff IJ t( dx, (B'+e2~1),
is of the order of a constant C,. independent of E. Indeed, from Theorem 2.6 one
has, for - --> 0, that

X. My (x,) = 7 j xt(y) dy
1Y"

Therefore,

weakly* in L°°(52), i = 1, 2.

91 -- C1 = I} 92 - C2 = l Y21.

In the examples below, we will place ourselves in this geometrical framework.

Example 5.2 (Dirichlet problems). Consider first a homogeneous body oc-
cupying 52 with thermal conductivity -y. For simplicity, we assume that the
material is isotropic, which means that y is a scalar. If f represents the heat
source and g the temperature on the surface Oil of the body, then the tempera-
ture u = u(x) at the point x E S2 satisfies the following Dirichlet problem:

yAv=f in52
u=g Oil 00,

where Au = div(Vu). The flux of the temperature is defined by

q=yViz.

By linearity, we can always suppose that g = 0 on 89 and consider the following
Dirichlet homogeneous problem:

jAu= f in12

u=0 onOil.
If now the body is composed of two different materials of thermal conductivity yl
and y2i occupying respectively the subdomains Ql and 522, the temperature and
the flux of the temperature in a point x E SI of the composite take, respectively,
the values

u(x) _
u1(.r) if .r E I1

{ u2(a') if a E 522.

and
ql=y1Vu1 in 521

q=
q2 12 Vu2 in 522.
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The usual physical assumptions are the continuity of the temperature u and of
the flux q at the interface of the two materials. i.e.

u1 =u2 on8511f18512

on8511fl8522,

where na is the outward normal unit vector to 8511, i = 1.2. Obviously, n1 = -n2
on 8521 f18S12.

Taking into account these continuity conditions. if we set

7(x) =
`? 1

'2

ifvE521
ifxE512i

the temperature u is solution of the stationary thermal problem

div(' Vu) = f in 51

{ u - 0 on 8S2.

Finally, let us formulate the thermal problem in the above periodic setting.
To do so, set l

'Y1 .t 1
((xJ

+ 'Y2 X2
(.r
X

which represents the conductivity of the periodic composite material since, ob-
viously,

'yE(x) = I ?1

12

if S161

if J. E 12.

Then, for any e, the temperature uE satisfies the problem

(liv(,)EDue) = f in It
{ uE=0 oil 0,11.

This is a homogeneous Dirichlet problem with the rapidly oscillating coefficient
rye. Observe that this problem is a particular case of problem (5.6). We will
study it in details in Sections 5.3 and 5.4 and also in Chapters 5-9. Notice that
if we are in the case of layered material of Figure 5.2. obviously we have that ye
depends only on the variable x1, namely 'ye(x) = yE(xl), which is the example
studied in Section 5.4.

It is clear from the equation that the temperature uE depends on two scales
which are described by the two variables x and x/e. The first one. called 'macro-
scopic' is slow, and it gives the position of the point in 51. The second one, the
`microscopic' variable, oscillates rapidly with E and determines whether the point
is in Y1 or in Y2.

In the case of anisotropic materials. 7 is no longer a scalar but a matrix A
representing the thermal conductivity (in the axis directions) so that the problem
to treat can be written as

I
div (AEVuE) = f in 52

uE=0 on851.
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which is exactly problem (5.6).
Let us also mention that this Dirichlet problem models many other physical

phenomena. Of course, the coefficient 7£ will describe other characteristics of
the material. For instance, in the study of the torsion of a cylindrical composite
bar, one has y = 1/1L where p is the shear modulus of the material, f is the
angle of the twist and u represents the stress function.

Also, in electricity the electrostatic potential u satisfies the same equation,
where y is the electrical conductivity and f stands for the distribution of the
electric charges.

If the phenomenon depends on the time, we will have the following equation,
called the `heat equation' in thermicity:

U6 'Vu,)=f, in flx]O,T[
u£ = 0 on 852x]0, T[

lu,(x.0)=u0 in12,

where the operators div and V are taken with respect to the space variable x E 0,
the sign ' denotes the derivative with respect to the time variable t E]O, T[ with
T > 0, and the initial state u° is given. We will study it in Chapter 11. 0

Example 5.3 (The wave equation). One can also study the wave propaga-
tion in a composite material. Then under the same notations as in the previous
example one has the system

uE - div(AfVu.) = f£
Ue = 0 on OElx]O,T[

ue(x.0) = uE in S2

u' (x, 0) = of in Q.

in Slx]0,T[

where uE is the wave propagation. fE is a source term, and u°, of are the initial
data. We will study it in Chapter 12.

Example 5.4 (The linearized elasticity system). Suppose that we have
an elastic homogeneous body occupying the domain S2 C R3 whose boundary
OS2 is the union of two disjoint parts. r1 and r2. In linearized elasticity, the
displacement u = (u1, u2i u3) is a solution of the system

3

k J
l

8x (O jkh
OX h

fi in El
j,k,h=1 3 \\ h /

3
8iik

a 191 9zj = gi on rl
Xh

u=0 on 1-2-
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for i = 1, 2, 3, where the coefficients of elasticity aijkh satisfy the usual symme-
tries in elasticity, i.e.

aijkh = ajikh = akhij, d2, j, k, h E {1, 2, 3}

and where f = (fl, f2, f3) denotes the volume density of applied body forces and
9 = (91, 92, 93) the density of surface forces. The last boundary condition means
that the Sl is clamped on "2.

Consider now a composite of two materials with the above geometry, whose
coefficients of elasticity are a kh and a ?.h respectively, and set

at.kh(x) -aijkh (1 l + a,,kh x2 (X) .

Then the linearized elasticity system for the composite material is

oxj (a jkh 8ih = fi in g
j,k,h-1

3
E auk

E aijkh aL'
nj = g on I'1

j, k,h=1 n

uE = 0 on T2,

for any i = 1, 2.3. This system will be studied in Chapter 10.

5.3 The one-dimensional case

0

In this section we present a one-dimensional problem which was studied by
Spagnolo (1967).

Let f =]d1,d2[ be an interval in IR and consider the problem

E

- dx aE da J = f in ]d.1. d2[
// (5.24)

t u`°(d1) = u-(d2) = 0.

We assume here that a is a positive function in L'(0. f1) such that

a is e1-periodic.
(5.25)10<a<a(x)<3<+oc,

where a and 13 are constants. The aE from (5.24) is the function defined by

aE (.r) =a

We have the following result:
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Theorem 5.5. Let f E L2(dl, d2) and of be defined 4y (5.25) and (5.26). Let
uE E Hn (d,. d2) be the solution of problem (5.24). Then,

uE u° weakly in Ho (dl, d2).

where u° is the unique solution in Ho (dl, d2) of the problem

d 1 duo = f in )di,d2[
Ix

M
dx (5.27)

(O.P,) a

u°(dj) = u°(d2) = 0.

Proof. Observe first that estimate (4.24) holds true, that is

IIu6IIN01(d,,d2) < d2 -
dl

IIfIIL2(c).

Indeed, from the proof of Proposition 3.35, it is immediate that for f =jdl,d2(,
the Poincare constant Cn is equal to d2 - dl, Then, one still has conver-
gences (5.9) for a subsequence still denoted by e, which reads here

uE --, u0 weakly in L2 (dl , d2 )

duE duo (5.28)
-- weakly in L2(di. d2).

dx dx

Define

which satisfies

EduE= - a dx
drE

= f in M. d2(.
dx

Moreover, from the estimate on u` and (5.25) one has

t
d(d2 - dl)

IIEIIL2(d,.d2) a IIfIIL2(d,,d2)

(5.29)

Hence, from Theorem 1.18 one has the convergence (up to a subsequence)

E - 0 weakly in L2(dl.d2). (5.30)

Moreover, the limit ° satisfies (see (5.15))

= f in )d,,d21. (5.31)dr
Clearly, from the former estimate on EE and from equation (5.29). we have

II EIIL2(d,,d2) + II dx II

Xd2 -d,}
IIfiIL2(d,,d2) + IIfIIL2(d,,)-11

L2(dt,d2) Ck
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Hence, e is bounded in H'(dl, d2). then compact in L2(d1, d2) thanks to The-
orem 3.23. Consequently, there exists a subsequence. still denoted by e, such
that

SE _ Co strongly in L2(dl. d2). (5.32)

We now establish the relation between ° and u°.
By definition

due - 1

dx ae

Assumption (5.25) implies that a is bounded in Lx(dl,d2). since

0<A<? < <+oo.
a£ a

Therefore, Theorem 2.6 applies to 1/ac and gives

_ 10a M(o e1) a A a(x)
dx weakly* in L°°(dl, d2),

where, due to (5.34),

M(o.t,)
#

a

(5.33)

(5.34)

(5.35)

Hence, using (5.32) and in view of Proposition 1.19, we can pass to the limit in
the 'weak-strong' product in the right-hand term in (5.33), to obtain

due
dx M(°.f,) \Q) 4° weakly in L2(dl,d2).

Consequently, from (5.28) we have

du°
dx

1

a) CO-

Making now use of (5.31), it follows that u° is solution of the limit `homogenized'
equation (5.27). Due to (5.35). this problem has a unique solution. Hence, by
Theorem 1.18(ii), the whole sequence {ue} weakly converges in HH(dl, d2) to u°.
This ends the proof.

Remark 5.6. In this particular case of the dimension one, since M (1/a)
is a constant, one can compute explicitly the limit solution u°. For example, if
Id, . d2 [=]0,1 [, one has

1
x

&

-M(o.e,) (Q dy j f(t) dt + M(0.11) (a } dy I'f (t) dt x.

0
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Remark 5.7. Let us observe that the coefficient of the limit equation (5.27)
only depends on a. 0

Remark 5.8. Since in general, the harmonic mean value 1/1Mio e,}(1/a)] of a
is different from its arithmetic mean value .M (° rl) (a), clearly

1 duo du°

M(o.e,) (a)
dx (0.11)

so that
du' 1 ( du'

lim a£ - J # (lim aE) `tim -
E-.o dx C-0 E-.o dx

in the sense of the L2-weak convergence. 0

Remark 5.9. We considered here the periodic case. Suppose now that {ae} is
a sequence (not necessarily periodic) such that

0<a<aE(x)!50<+00.
Then, due to Theorem 1.26, there exists a subsequence ?' such that

dE, a° weakly* in L°O (dl . d2).

Let uE be the solution of (5.24). Same arguments as in the proof of Theorem 5.5,
show that

uu0 weakly in Ho (dl, d2 ),
where u° is solution of the equation

1d 1 du° ) = f in ]dl.d2[,-d (ao dx

u°(di) =

u°(d2)

= 0.
0

5.4 Layered materials

The result obtained for the one-dimensional case could suggest that in the N-
dimensional case the limit problem can be described in terms of the mean value
of the inverse matrix A-' of A. This is not true, as can already be seen in the
case of the layered materials we treat in this section, where the homogenized
coefficients are again the mean value of algebraic expressions of the components
of A (but not only those of A-').

In the case of layered materials the coefficients in system (5.6) depend on
one variable only. For the sake of simplicity, we restrict ourselves to the two-
dimensional periodic case. So, in this section, St denotes a bounded open set in
R2 and

Y =]0, fl [x ]0. e2 [.
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where fl, e2 are given positive numbers.
Assume then that A = (aij)l<i.j<2 is a 2 x 2 matrix such that

aij(y) = aij(yl,y2) = aij(yl), di,j E {1,2}, (5.36)

and satisfying (5.18), that is
aij is

L1-periodic, Vi, j E {1, 2},

{ A E A1(a,13, Y).

Set, as before,

f
(x) = a: (xl) = aij

6l
a.e. on 1182, Vi, j E {1, 2}

A' (x) = A"(xi) = A(
El

_ (a (x))1<i,j<2

Problem (5.6) reads

a.e. on R2.

(5.37)

2 E

f in 12- (aL(Xl)aXj
(5.38)

uE = 0 oil Oil.

Clearly, all the considerations in Section 5.1 concerning problem (5.6) still hold
for this particular case. The following result is due to Murat and Tartar (Murat,
1978a, Murat and Tartar 1997a and Tartar 1977a):

Theorem 5.10. Let f E L'(0) and azj satisfying (5.18), (5.36) and (5.37). Let
uE E Ho (Q) be the solution of problem (5.38). Then.

U'- u° weakly in Ho (32),

where u° is the unique solution in Ho (S2) of the homogenized problem
2 0a: (ai;- I = f in 1- ij =I ax 8x; (5.39)

uo = 0 on 852.

The matrix A = (6zj)l<i,j<2 is a constant positive definite matrix defined by

all

M

1

612

1

(aP,) all )
( a12

all -M(0 ti) all
a2,

421 ail M(o,11) all
a12

622 = a11M(a,tl) (all M(o.f,) (
a21all)

+M(o.t,) (a22
a12a21

all
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Proof. Observe first that estimate (4.24) holds true from problem (5.38), i.e.

1k IIH0(it)
Qn

1If 11Ls(St).

where Cc is the Poincare constant given by Proposition 3.35. Also,

R'110(n) 5
pay (5.40)

where (see (5.10)) E is defined by

2
8uE

+2 OuE

E _ (e 2) = E a ij ax L a
2j

ax
j=1 j=1 j

and satisfies

(5.41)

a1 a 2 = f in S2. (5.42)_
011

_
812

As was proved in Section 5.1 (see (5.9) and (5.13)) one has the following conver-
gences for a subsequence still denoted by E.

u£ u° weakly in Ho (S2)
tE o weakly in (L2(f2))2.

Moreover satisfies

- a1
-

d12 = f in 9. (5.43)
az1 i9X2

The question is how to relate ° to the limit function u°. Of course, we
cannot compute directly the limit of (5.41) since, as remarked before, in this
formula we have products of only weakly convergent sequences. Neither can we
make use of equation (5.42) to derive. as we did for the one-dimensional case,
further information about /8x1 or 0E2/8x2 separately. The idea is then to
make use of a compactness result in order to obtain a strong convergence in some
functional space. It is at this point that the fact that the coefficients depend
on only one variable is essential since, due to this property. we prove a strong
convergence for the sequence °. The tools to do so are Proposition 3.57 and
Theorem 3.58 dealing with vector-valued functions.

We will identify Co on any open interval I of 11 of the form

I =]a1.b1[x]a2.b2[C f.

Due to the particular form of I, the space L2(I) can be regarded as a vector-
valued space (see Section 3.5) since Fubini's theorem implies

L2(I) = L2(a1, bl; L2(a2, b2)). (5.44)
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Consequently, from (5.40) one has in particular

IICi IIL2(at.b,: C.

where C is a constant independent of E.
We now prove that

f7x111V(a1,btc H-I(az.b2))

From (5.42), one has that

a = a2
ax, f

+ ax2

and we will estimate the right-hand terms.

i = 1, 2, (5.45)

(5.46)

ill 0. (5.47)

On one hand, since f belongs to L2(St), from (5.44) it follows (see Section 3.5)
that f E L2(a1,b1; L2(a2,b2)) C L2(al,b1; H-1(a2,b2)) with

IIlIIL2(at.bt: H-t(a2.b2)) UfIIL2(at.b,: L2(a2,b2))I

which is a consequence of Proposition 3.42.

(5.48)

On the other hand, by Proposition 3.59, for any v E L2(a1, b1; Ha (a2i b2)),
one has

(v\)
0-T 2

L2(al.b,: H-102.b2)), L2(at.bl; Ho(az.b2))
b

1 (x1.f j 2 H a2.b2)

Furthermore, Remark 3.44, Green's formula (Theorem 3.33) and Proposition 3.34
lead to

b' 80 `

aI 2 / H-i(a2.b2), H8 1jbi(ex
) dx1. (5.49)

t 2 L2(a2.b2).L2(a2.b2)

Consequently, by using the Cattchy-Schwarz inequality and estimate (5.45), we
have successively

I.2?jL2(at.bi:
11 -102-62)). L2(a,.bi: H1(a1.b2))

IIzJIJ.2(a2.b2)IIT'IIHa(a2.b2) dx1
at

CIIT'IIL2( ,b,: H0' (a2.b2))'
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This, together with (5.47) and (5.48), gives (5.46). Estimates (5.45) and (5.46)
imply that ti is bounded in the space W1 defined by

W1 =IV I v E L2(al, bl; L2(a2, b2)), i E L2(ai, bl; H-1(a2i b2)) r.

By Theorem 3.58 we know that the following injection is compact:

W, C L2(a1.b,; H-1(a2,b2))

Therefore, the sequence Ell is compact in L2(a,, b,; H-1 (a2, b2)). This, together
with its weak convergence to Ee in L2(I), gives

t1 strongly in L2(ai, b1; H-1(a2, b2)). (5.50)

We now show that this convergence is sufficient to identify E° and E2 in terms
of u0.

To begin with, observe that from the definition of El (see (5.41)) and taking
into account the fact that a f, are dependent on x1 only, one has

fr

O,ue

W dx
axl

r E E

1l ail
i SPdx - J

all 19X2 (adx

I we ei dx - r 8 uE dx

r
all l/J 19x2 all

J 1 i dx + J aE2 uE a dx, (5.51)
l aii all axe

for any So E D(I). We will now pass to the limit in both sides of this identity. To
do so, remark first that, by the same arguments as those used for proving (5.49),
one has

fE E1 w dx

bl

((xi..), VExi' ) / dxl
1911 1 all(X1)/// 11-1

e E 9
E1' Eall )L2(aibi: H`1(o2.b2)). L2(a1.bi; Ho(az,bz)).

(5.52)

Moreover, cp/aii is bounded in L2(al. b1; Hfl (a2i b2)). To see that, observe first
that by choosing A = (0, 1) in the coerciveness condition from (5.3), one has

0 < a < ail a.e. on 10, e1(.

whence

0< £ <
[1ail
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Consequently,

,I dxl

1b21

2 k8x2

( W(XI'
dx2Ja

_ L
bl

1 dl,l b2 a(i, x2)
(all(X,))2 a.2 I 0x2 I

2fbi

< Q2

fb2l

.

dx2 dxl <
a2

IIWIIHI(1)
, 2

-M (a1) r aza°'P d , (5.57)
(o.F,) all JJ f1 axe

On the other hand, if {h£} is a sequence in L2(a,, b1) then

h£ h° weakly in L2(al, bl)) (h£io h°co weakly in L2(I) ),
(5.54)

for any cp E D(I). This follows by Flbini's theorem, since

jhe f
bl rb2

dx h£(xl)
J

w(x1. x2) '(xl, x2) dx2 dxl
, a 2

for any z/S E L2(I). Then, (5.54) applied to hE = 1/ail together with Theo-
rem 2.6, shows that

M (0-11)( l =c weakly in L2(I),
11 11

where we used the definition of all in the statement of Theorem 5.10. Then,

cp

all
1

all weakly in L2(al . bl; Ha (a2, b2)),

since, due to (5.53), it is bounded in this space.
Consequently, by using (5.50) and Proposition 1.19, we can pass to the limit

in (5.52) to get

E
dx = 1 J ° dx. (5.55)lino J E 6i-. all all

Recall now that from (5.9) and Theorem 3.23 one has in particular

zai --+ u° strongly in L2(I).

This, together with (5.54) and Proposition 1.19, shows that

llnl al
zt£

8y;
d2f-o 1 all 8x2

(5.53)

(5.56)

M (a12) f °
dx(o,£,) all 1

u
8x2

where we have made use of Definition 3.11.
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Hence, passing to the limit in (5.51), due to (5.55) and (5.57), one gets

f a °° dx = ail 1 10 yP dx - M(a12) .! a 2 dx, dcp E D(I)
11 1

Consequently, Theorem 1.44 implies that

8u° _ I .C1 a12 8u°
axl all Sl M(o.e1) (all 8x2'

a.e. on I and therefore on 1, since I is arbitrary.
This, together with the definition of a°2, identifies ° as

8u° au°(°)(ai\

allax2 -ailaxl +a12a-Z (5.58)

Let us now identify Ql. By again using Definition (5.41) and the fact that are
dependent on xl only, one has

F_ E OuE £ au£ a21 E E 0 12a21 (5.59)2 = a21 ax, + a22 axe =
ails 1 + axe

[(a2 - ail u
E

The same arguments as those used to prove (5.55) and (5.57). give respectively

f1_,o J all dx=M(o.e1)(a21) f Co(Pdx,
I 1l 11 1

and

E a6l2a21 £ 19V a12a21 8u°
limo a22 -

a£
u a1 dx = _M(o.f1) a22 - cp dx.

11 2 all / ! OX

Hence, from (5.59) one derives

2 = M(o.e1)
all } 1 + M(0.() (-22

asl ) u0,

which, together with (5.58) and the definition Of a22. leads to

1a alto a Vl )
2 = a11M{o.et) all [aiIM(o.11)

all
M(o.e1)

all }

r 2aa1 011° au° 8u°+M {o.e1) (a22 -
a1

all J ax2
= x210-rl + a22 ax2.

Replacing this equality and (5.58) into (5.43). one obtains equation (5.39).
To complete the proof, it remains to show that problem (5.39) has a unique

solution. This will imply that the whole sequence u£ converges to the limit u°.
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To do so, in view of Lax-Milgram theorem, it is sufficient to show that
the constant matrix A = (a j )1 <i. j <2 satisfies an ellipticity condition of the
form (4.16) (see also Remark 4.7). From (5.19) and the characterization of
a positive definite matrix (see for instance Ciarlet, 1982, Lang, 1993) it follows
that all and (a11a22 -a12a21) are positive almost everywhere in Y. This implies
that all and M(o.c,)(a22 - a12a21/a11) are positive constants too.

Then, an easy computation shows that the determinant of A is also positive.
This, together with the positivity of a11i implies

0. for any t; E 1R2, 0.

To finish the proof of ellipticity. let h be the following function:

2

h(S,c) _

This function is continuous on the unit sphere S1 which is a compact set of
R2. Hence, h achieves its minimum on S1 and, due to the previous result, this
minimum is positive. So, there exists oo > 0 such that

h((, () ? ao, V(E S1.

Consequently.

2 2

aijUj{2 aijI > (1q.
2,j=1 i.j-1

for any R2, i; 0,

since the vector belongs to S1. This ends the proof of Theo-
rem 5.10. 0

Remark 5.11. As for the one-dimensional case, the coefficients of the limit
problem only depend on the matrix A, and not on the other data f and Q. 0

It is only for simplicity that we treated the two-dimensional case of layered
materials. A similar result holds for the N-dimensional case. Actually, suppose
now that A = (ai j )1 <i. j <N is all N x N matrix satisfying

aij (y) = aij (y1..... fN=) = afj (yi ). i. j E 11..... N},

and (5.36). Then, the following result (see Murat and Tartar, 1997a) holds:

Theorem 5.12. Let fl be a bounded domain in R'. Under hypotheses of The-
orexn 5.10, if uE E Hp (Sl) is the solution of problem (5.39), then

itE it0 weakly in HQ(cl),
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where u0 is the unique solution in Ha (1) of the homogenized problem

N 0a au
axi '9x j

uo = 0 on MI.

=f in 11

The matrix A = ( ij)1<i,j<2 is a constant positive definite matrix and its coef-
ficients are given by

all

alj

ajl

aij

M

1

1

(011) all

all M(OA) all for 2 < j < N
11

ajl
all M(o,e1) \all

a1j ail
a11M(fl,e1) all M(o.e1) a21) +M (o e,)

(auj

for2<i,j <N.

, for2<j<N

The proof follows exactly that of Theorem 5.10 with obvious modifications.



6

Homogenization of elliptic equations: the
convergence result

We place ourselves in the framework introduced in Section 5.1. The aim of
this chapter is to describe the asymptotic behaviour as a - 0 of problem (5.6),
namely

div(A'Vu£) = f in 1
{6.1)_U6=0 on op,

where f is given in H 1(0) and the matrix Af is the Y-periodic matrix defined
by

(x) = a=i ( ) a.e. on IlBN, d i, j = 1, .... N (6.2)

and

Ae(x) = A( ) = (a j(x))t<;.j<rv a.e. on ][8N, (6.3)

where
( as3 is Y-periodic, d i, j = 1..... N

(6.4)A =

with a, 9 E R. such that 0 < a < d and M(a.13. Y) is given by Definition 4.11.
Here, as before, Y denotes the reference cell defined by

Y =J0, fl [x ... X10- fN [,

where fl, ... , fN are given positive numbers. The Y-periodicity is taken in the
sense of Definition 2.1.

In Chapter 5 we have studied the particular cases of the dimension one and of
layered materials. As we already mentioned. to study the general N-dimensional
case we need to introduce some auxiliary functions which are solutions of periodic
boundary value problems in the reference cell Y. This is done in Section 6.1
below. In Section 6.2 we state the main homogenization result for problem (6.1).
This result will be proved in the next chapters by several methods. In Sections
6.3 and 6.4 we give the main properties of the homogenized matrix.
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6.1 Auxiliary periodic problems

In this section, we introduce two families of auxiliary periodic boundary value
problems defined on the reference cell Y. The first one involves the matrix A
and consequently, the operator A = -div(AV). The second family involves the
transposed matrix 'A and so, the operator A* = -div(tAV).

The functions jx and iv-.x

Consider, for any A E RN the solution of the problem

-div(A(y)V I) _ -div(A(y)A) in Y

X,\ Y-periodic (6.5)

0.

This kind of problem has been studied in Section 4.4. The variational formulation
of (6.5) is (see (4.68))

Find ka E it pcr(Y) such that

ay( v) = J AAVv dy, (6.6)

VV E Wpei(Y),

where

ay(u, v) = jV AV u Vv dy, Vu, 21 E Wper(Y) (6.7)

and (see (4.66) )

Wper(Y) - P' G Hper(Y); My(?') = 0}.

with Hper(Y) given by Definition 3.48.
From Theorem 4.27 we know that (6.6) has a unique solution kA E Wpr(Y)

since div(AA) E (Wper(Y))'.
Let us now extend by periodicity (see (3.7)) XA to the whole of 1R' and still

denote by j,\ this extension. Then. Theorem 4.28 shows that Xa is the unique
solution of the following problem:

-div(A(y) VIA) = --div(A(y)A) in l'(RN)

Xa Y-periodic

my (kA) = 0.
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Set now, for any A E RN.

zna = -1YX + A y,

which from (6.5) and (6.6). satisfies

ay (it'a. I?) = 0, VY' E Wper(Y). (6.10)

and is the unique solution of

-div(A(y)Vwa) = 0 in Y

u=a - A - y Y-periodic (6.11)

A4y (u'a - A . y) = 0,

whose variational formulation is
Find w,\ such that ii-,a - A y E WpP1(Y) and
av(iva. v) = 0 (6.12)

Vv E Wper(Y)

Let us remark that from (6.8) and (6.9) one also has that wa satisfies

-div(A(y) Vu'a) = 0 in D`(]RN)

u',, - 11 y Y-periodic (6.13)

My(u'a--A y)=0.
In the sequel, we will often use the functions - and wa for the choice A = e=

for i = 1, .-. , N, where (e.; )N, is the canonical basis of RN. We set, for simplicity,

u'i=H'e ;
=yi-xi (6.14)

for any i = 1.... , N. They obviously satisfy, respectively, the following problems:

Find , E li peT(Y) such that

a1-(ti, v) = / AeiVt' dy (6.15)

b'z E llper(Y).

and
Find u', such that ti', - yi E Wp,r(Y) and
aY, (w,. zv) = 0

Vv E

It is easily seen that, by linearity.

(6.16)

N

da E IRN.
i=l i=1
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The functions X. and wa

Let now consider the transposed matrix to of A, defined by

'A(y) = (aii(y))i<:j<N a.e. on RN.

Obviously, to satisfies (6.4) with the same constants a et /3, i.e. to E M(a, /3, Y).
Consequently, if in problem (6.5) A is replaced by tA. we define another set of
functions, namely yX, solutions of

-div(tA(y)VXA) = -div(tA(y)A) in Y

XA Y-periodic (6.17)

and all the considerations above hold true.
So, for any A E RN, XA is the unique solution of the variational problem

Find YA E 1"per(Y) such that

a}.(Xa. 2,) =
J

tAAVv dy
Y

VII E Wper(Y),

where

aY(u, v) = J tAVu V e, dy. VU, z, E Wper(Y).

(6.18)

(6.19)

Moreover, its extension by periodicity to the whole RN, still denoted by XA,
is the unique solution of the following problem:

-div(tA(y)©)(a) = -div('A(ri)A) in D'(RN)

XA Y-periodic (6.20)

My(Xa) = 0.

Also, if for any A E RN, we set

WA=-XA+A.

then, from (6.17) and (6.18).,u-,\ satisfies

(6.21)

a},(u'a z') = 0. Vt+ E Wper(Y) (6.22)
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and is the unique solution of

-div(tA(y)VwA) = 0 in Y

wa - A Y Y-periodic

The corresponding variational formulation is

Find wa such that u'a - y E Wper(Y) and

a* (w,\, v) = 0
Y

W, E WpeC(Y).

From (6.15) and (6.16), wa satisfies

-div(tA Vu'a) = 0 in D'(li8P")

tu'a - A y Y-periodic

My(iI}a-A /)=0.
As before, we also introduce the functions and wi defined by

ki - 1e;
Wi = "'e; = yi - ki,

(6.23)

(6.24)

(6.25)

(6.26)

for any i = l.... , N. They satisfy, respectively.

Find ki E ll PeC(Y) such that
t

a* (Xi. v) = AeiV v dy (6.27)J
E Wper(Y),

and
Find wi such that wi - yi E Wper(Y) and
a}.(wi, v) = 0

VV E l Vper(Y)

By linearity one has

N N

AiXi u'A_ Aiwi, VAERN.
i=I

(6.28)

The functions ,A. ura, XA and u'a play an essential role in the homogenization

of problem (6.1). Indeed, the homogenized matrix AO from system (5.16) is
expressed in terms of these functions. In the following sections we give explicit
formulas for its coefficients a0ii.
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6.2 The main convergence result

We have the following result which is now classical and can be found in Sanchez-
Palencia (1970b, 1980), Bakhvalov (1974), Bensoussan, Lions and Papanico-

laou (1978):

Theorem 6.1. Let f E H-1(1) and uE be the solution of (6.1) with A' defined
by (6.2)-(6.4). Then,

z) ue 1t° weakly in Ho (S2).

ii) A£Ozt£ - AOVu° weakly in (L2(f1))N,

where u° is the unique solution in Ho (S2) of the homogenized problem

N / NO

_ a
[a?j } =faxe

7t° = 0 on an.

in f2
(6.29)

The matrix A° _ (a° )1<ij<N is constant, elliptic and given by

A°.1 = VA E RN (6.30)

or, equivalently by

to0A = M1-(tAVu}a). VA E RN, (6.31)

where wx and uWA are defined liv (6.12) and (6.23). respectively.

Remark 6.2. Let f E H-u(S2) and it' be the solution of (6.1) with Af defined
by As can be seen in the proof of Theorem 6.1 (see Section 8.1),
convergence (ii) is deduced from convergence (i). This fact is a particularity of
the periodic case due to the explicit computation of the homogenized coefficients.
Let us mention that in the general non-periodic case. convergence (ii) is not a
consequence of convergence (i) and has to be proved separately. We mentioned
this convergence in the statement of the theorem, since it is one of the important
homogenization results. Q

The well-known result stated in Theorem 6.1 can be proved by different
methods. We will present in this book two of them. the variational method of
oscillating test functions due to Tartar (1977b. 1978) and the two-scale method
of Nguetseng (1989) and Allaire (1992). We also present the formal method of
asymptotic expansions (known as the multiple :scale method).

Tartar's method is a general one. and is based on the construction of a suit-
able set of oscillating test functions which allows us to pass to the limit in prob-
lem (5.6). This is related to the notion of compensated compactness, which is
presented in Chapter 13. In particular. for the case of periodic coefficients (prob-
lem (6.1)- (6.4)), the test functions are periodic and are explicitly constructed in
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terms of w,\. By passing to the limit one obtains the homogenized matrix AO
given by expression (6.31). This method is described in Chapter 8, where we also
give further convergence properties as, for instance the convergence of energies
and a corrector result.

In Chapter 9 we prove again the convergence result by the two-scale method
statcd in the periodic framework. This method, taking into account the two
scales of the problem, introduces a new notion of convergence, the 'two-scale
convergence', tested on functions of the form /'(x, x1:). The convergence in this
sense implies the weak convergence.

Before presenting Tartar's method, we will turn our attention in Chapter 7,
to the multiple-scale method. This a classical one, widely used in Mechanics and
Physics for problems containing several small parameters describing different
scalings. It consists in searching the solution as a formal asymptotic expansion,
in terms of these parameters. It turns out that this method is particularly well-
adapted to the periodic framework, as witnessed by the results obtained in this
direction by Sanchez-Palencia (1970a, b), Lions (1978), Bensoussan, Lions, and
Papanicolaou (1978).

As already mentioned in Section 5.3, two scales characterize problem (6.1),
the macroscopic scale x and the microscopic one x/e, describing the micro-
oscillations. So, one is led to look for a development of u£ of the form

f l ( l + ... _ Et uti xf
l46£(x) = uo i x, ) + I X, X

J
+ e2u2 x, l c

E J e
i=O

where uj = uj(x, y) are Y-periodic in the second variable y. From (6.1), one first
obtains that uo depends on x only, and then one shows that this UO is actually
the solution of the homogenized problem (6.29) with AO defined by (6.30). The
interest in this is that in general it permits us to 'guess' formally the homogenized
problem.

Some natural questions arise at this point: how 'far' is ut from uo, i.e. what
is the error (in a suitable norm) when replacing u£ by uo? What is the estimate
when replacing 46f by a finite sum EM Ei u; (x, x/F)? We give here an error
estimate for the case M = 2 under some additional regularity assumptions on the
data and on the boundary of ft We refer the reader to Bensoussan, Lions, and
Papanicolaou (1978), Oleinik, Shamaev, and Yosifuan (1992) for other details.

The next result will be proved in Chapter 7:

Theorem 6.3. Let f E H-'(il) and u£ be the solution of (6.1) with AE defined
by (6.2)--(6.4). Then, uE admits the following asymptotic expansion:

uE = uo - N x 49110 2 N '7cf d 492 up6 E k() 7 +
k=1 kJ=1
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where uo is solution of (6.29), Xk E 11 per(Y) is defined by (6.15) and 9 ce by

-div (A(y)Dee) - - ake - d(aij8ki Xt) -
akj

Me - yt) in Y
ij- ayi f_n ayj

8 `e Y-periodic

MY (9"e) = 0.

Moreover, if f E Coo (0), Oil is of class C°° and, furthermore.

Xk, 8 ce E W "°°(Y), `dk. f = 1, ... , N,

then, there exists a constant C independent of E such that

N
f

N X_ and a e x a2"uorof - 2l° -EEXk4 E}
COXk

+6 E) 8xkaxe
HI (n)

< C Ea.

Remark 6.4. One of the main interests of Theorem 6.1 and 6.3 is related to nu-
merical computations. Indeed, these results suggest that one could approximate
by u° the `physical solution' uE satisfying a problem with oscillating coefficients.
To find u° one has first to solve N problems (6.15) written on Y in order to
determine the correctors Xi and the matrix A°, and then to solve (6.29) in order
to compute u°. The numerical interest, when replacing u£ by u°, comes from the
fact that (6.15) is independent of E and that (6.29) is a problem with constant
coefficients.

On the other hand, let us point out that in order to prove the above error
estimate, we are obliged to seek more regularity on the functions Xk and 01,
namely the fact that their first derivatives are bounded functions. The ques-
tion is then: under what hypotheses can we have this property? As matter of
fact, this property can be deduced from classical regularity results (see Agmon,
Douglis, and Nirenberg, 1959 or Ladyzhenskaya and Uraltseva, 1968, Gilbarg
and Tlrudinger, 1977 and Troianiello, 1987), under strong regularity assumptions
on the matrix A, namely at least its continuity. Unfortunately, this is not true
in general for composite materials (see Chapter 5 and also Example 2.5). 0

We end this section by showing that the two expressions in (6.30) and (6.31)
define the same matrix A°.

Proposition 6.5. Let B° be the matrix defined by

B°A = My('AVwa). VA E RN (6.32)

and A° defined by (6.30). Then A° = 'BO, i.e.

to°a = .My(tAVwa). (6.33)
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Proof. To prove (6.33) it is sufficient to show that

B°J1µ=A°pA, VA,pERN.

From the definition of B° and (6.21) one has

B°,\j`=
IYI lYl

jALAdY - FYIJrAtLVXAdY.

By choosing v = Xa in (6.6) one has

B°Ap
I' j ApA - I' J AOXu VXA dy

AlyAdy -
1- r

tAVX,\OXu dy.
IYI r IYI

Froth this relation, and using v = as test function in (6.18), we finally obtain

from (6.9) and (6.30)

B°Aµ = 1 jAp.Ady_jtAAVdy
`

= I1'1
f A tAdy - i J AV Ady

A(p-DX Ady= -- )Ady=A°µ A,
IY

1

I r µ lYI Y u

which ends the proof. 0

Front this proposition, it is easily seen that the following interesting result
holds:

Corollary 6.6. Let A be a matrix satisfying (6.4) and A° be the corresponding
homogenized matrix given by Theorem 6.1. Then, the homogenized matrix (tA)°
corresponding to tA, is given by

(tA)° = t(A°)

In Section 6.3 below we prove that the homogenized matrix is elliptic which
implies, via the Lax-Milgram theorem, the existence and uniqueness of the so-
lution u° of problem (6.29). Observe that the uniqueness of u° provides conver-
gence (5.9) for the whole sequence {nE} and not only for the subsequence {uE'}
introduced in (5.9).

6.3 The ellipticity of the homogenized matrix

In this Section we give some explicit formulas for the coefficients a° of the matrix
A° and we prove that it is elliptic.
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Observe that, from (6.30) and (6.14) one has immediately

A°ej =My(ADuj), bj =1....,N. (6.34)

Since
N

(AVii )i = ajkaw'
aykk=1

from (6.14) and (6.34) one has

' r di,j=1,...,N.ao. - y aykKJ =Apt,' a= -aJ m
k-1 ayk k=1 ayk

Therefore,

Xja ='y(aij) - My. (aik)a

k_1
ayk

N- 1:fY1 f azj dy -YI atkk=;
J nI(

ayk
`d i, j = 1.... , N.

(6.35)

Similarly, using (6.31) one has a second expression for a° , namely

au,
My ak

aX
V (E ) = (Ek=1 aykk=1 ayk

o
Jy akJ -'

dy, b i. j = 1, ... , N.
Jv a dy - fY

(6.36)

Remark 6.7. As noticed in Section 5.1, in general A° is different from the weak
limit My (A) (usually called 'mixture low') of N. The interest of formulas (6.35)
and (6.36) is that they show that A° is actually obtained by adding to this mean
value a corrector term, expressed by means of gradients of the functions Xj (or
X j ). This is why the functions j, as well as X., are called correctors.

Observe also that, as mentioned for the one-dimensional case in Remark 5.6
and in the case of layered materials in Remark 5.11. the homogenized coefficients
a° do not depend on the data f and f2 of the problem. p

Proposition 6.8. Let A° be defined by (6.30) and fit, by (6.16). f o r i = 1, ... , N.
Then

N
a° = 1 f

(6.37)
I V k : f , ayf ayk
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Proof. Recall that Xj is solution of the following problem (see (6.15)):

aI.(Xj , v) = J Ae,Ov dy, Vt' E
Y

Choosing v = Xi as test function one has

AW?W, dy = J AejVX; dy.
Y

N

akf
axe ax dy nk j ak dy - ivy akf azJt ayk

dy.
k,f=1 Y 0Yf al/k f_1 Y tl k.f=

Hence

(6.38)

1

N
a{yj - V OXi

akE dy = 0. (6.39)
f 1' 1 k 1

J } aye OYk

On the other hand, since
N

' ay' dy,

J akf aY&Ylk.f=1 v ayk

N

f ae axa.f dy
N aXj 09yi

akf dy,
kJ=1

formula (6.35) can be written as follows:

} l!f k

N
a° _ !Y' 11, akf X l)

aiOyi

dyk.f=1
Vr.j=1,....N. (6.40)

Subtracting (6.39) from (6.40) gives

N
au _ ill ( akfa(y ayt,)a(yaykki) dy, VLj =1,...,N, (6.41)ej~ f fk.f=1

which, together with (6.14). ends the proof of Proposition 6.8.

By the same arguments. starting with formula (6.35) instead of (6.36), the
result stated in the next proposition. is straightforward.

Proposition 6.9. Let A° be defined by (6.30) and by (6.28), for i = 1, . . . , N.
Then

a° = 1I akf 0Yk aJ( dy =
a' (u',. u1,) _ + a' (yi - Xi. y - X.i),

Y1 A.f_i I, ayk 0Y( } {Y

(6.42)
for all i., j = 1..... N. where a` is defined by (6.19).
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The following result is an immediate consequence of formula (6.42):

Corollary 6.10. Suppose that the matrix A is symmetric. Then A° is also
symmetric.

Remark 6.11. Consider the particular case of the layered materials treated in
Chapter 5. The explicit expressions of the coefficients u° given by Theorem 5.12
show that if A is diagonal, the matrix A° is diagonal too. It is easily seen that
in general case the matrix A° is not diagonal even if A is diagonal. Indeed, when
the coefficients depend on all the variables, if ai j = 0 for i # j, from (6.36) one
has

_ 1 8
dy 0, d i, j = L ... , N. i j,a°

- 1Y1 Y
a ayjX-' 96

since, by definition, Xi depends on all the variables yi. 0

We are now in position to prove the ellipticity of the homogenized matrix A°.

Proposition 6.12. Let A° be the matrix defined by (6.30). There exists a
positive number a° such that

N
Y a°biS1 > (kOIel2, for any C E RN. (6.43)

i,j=1

Proof Let t; E RN. Then, from (6.41) it follows that

N N N /

0 t 1 a(yi - Xi) 8(y3 - Z)E aijbiSj = FYI E E J ake Ci a cj
e

d1!
ij=1 0=1 k.e=1 yk

Setting S = EN1 ((yi - Xi) and using the ellipticity of A (assumption
we get

(6.4)),

N

faij it:j> IV(12dy>0, (6.44)
i,j=1

Let us show that this inequality implies that

N

0, for any E RN. e 0.
i.j=1

Indeed, if this were not true. from (6.44) one would have some t; # 0 such that

TO = o.

This means that
N

_ ECi(yi - Xi) = constant.
i=1
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N N
ttSi Yi = i Xi + constant,

i=I i=1

and this is impossible since the right-hand side function is periodic by definition
and s#0.

Arguing as at the end of the proof of Theorem 5.10, one deduces inequal-
ity (6.43). 0

Let us show another interesting characterization of the homogenized matrix.
From (6.35) and (6.36), one can write that

A° = M1,(A) - My(X°). (6.45)

where the N x N matrix X° _ (X° )1<f,j<N is defined by

X°
=

Eaikayk
=

uakjk (6.46)
k=1 k=1

Formula (6.45) gives A° as the difference of two constant matrices. Obviously,
the matrix My(A) is elliptic. Observe that the matrix My(X°) is positive.
Indeed, one has

Proposition 6.13. Let X1 be defined by (6.46). Then

N

E MY IX ° )E j > 0,
i.j=1

for any E 1RN. (6.47)

Proof. Notice that from (6.38), it follows that

My(X°) = J akEo ,i dyk.f=1

Hence, for any E RN one has

° 'C' aXa XjyI E 1: f akr a Cj aa dy.M} 1

I 1 i.j=1 k,e=1 yk ye

We argue as in the proof of Proposition 6.12. Setting ( = N 1 i Xi and using
the ellipticity of A (assumption (6.4)), we get

N

MY(Xj)uj Ct

IYI

which proves (6.47). p
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6.4 Other formulas for the homogenized matrix

Formulas (6.35) and (6.36) give the homogenized coefficients in terms of N-
dimensional integrals over the domain Y. One can get rid of one integration,
and hence express a° by integrals on a N - 1 dimensional domain, by using the
following result due to Sanchez-Palencia (1980, pp. 137-140):

Proposition 6.14. Let 9 = (01, ... , ON) E L2(Y) be a Y-periodic function
satisfying

Set

div 0 = 0 in Y. (6.48)

Yi =]0, e1 [ x ... X10, ti-1 [ x 10,4+1[X ... X [0. PN [.

Then 0i(y1, , yi-1, 0, yi+1.... , yN) belongs to H-1/2(Yi), for any i = 1, ... , N.
Moreover, one has

Imo,
1,...,yi-1,0,yi+1,...,1N),1)H-1/2(Y;).H1/2(Y.),my(91) =

1
(9i(y

a

where Y; =]0, e1 [ x ... x j0, 4-1 [ x 10, ei+1 Ix ... X [0. tN [.

Proof. Let r E]0, 2i [. Introduce the set

r={yeY10:5 y,<r}.

(6.49)

Observe that by definition, 9 E H(11, div). From equation (6.48) and Propo-
sition 3.47 it follows that

Y
f 0 Ocpdy + n,'p)H-1/2(aj,r).HlJ2(a};T) = 0. E H1(Y). (6.50)

'T

Choosing in particular w = 1 in this identity, one has

(0' n, 1) H- 112(0yyr).Hi/2(aYT) = 0.

Observe now that n = -ei on Yj n {y1 = 0} and n = ei on Yi n {yi = r}
where {e1, .... , eN } is the canonical basis of RN. Therefore,

(0i(yl, ... , y:--1, 0, yi+1, .... YN), 1)H-1/2(Y,n{y,=o}),H1/2(Y.n{y,=o})

(0i(y1, ... , Yi-i. r. yi+1... . YN), 1)H-1/2(Yin{y==T}).H=/2(Y,n{yf=z}),

for every r E]0,Qi[. Integrating (6.50) with respect to r over JO, f=[ and using a
density argument, one deduces (6.49).

Let us also give a direct proof in the case where 0 is a smooth function (for
instance in L2(Yi)) so that we can integrate (6.48) over Yir. We have, due to the
periodicity

0=J divody= 0 nds.
Y;T

J
1n{y,=o} Y;n{y;=0
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Hence, by using again the fact that it = -ei on Y; fl {yi = 0} and n = ei on
Y, n {yi = r}. one gets

0 = r 9. ds - f Ai ds
JY;n{y,=0} Y;n{y;=r}

which leads to

f 0.(y{,..., yi-1,0,Yi+1>...,YN) 41, *-dyj-jdyj+j ...dyN

= f 8i(yl,...,yi-1.'T,Yi+1.--

,YN)dyl...dyi-idyi+i...dyN.
Y;

Integrating with respect to r over (0, fi), one obtains

1i 8i(yl, yi-1.0.yi+1....,yN) dy1...dyi-1dyi+1...dyN = f Oi(y) dy
Yk

Multiply this identity by 1/IYI. Since QilYil = IYI, one finally has

MY(e)
I Yi f 9

(yt, .. . ya-1.0. yi+1, . . yN) dy1 ... dyi-1dys+1 ... dyN

This is exactly (6.49) when 0 is in L2 (Yi ). D

The following corollary is straightforward by using (6.14) and (6.35) (respec-
tively, (6.26) and (6.36)). Indeed, applying Proposition 6.14 to 9 = ADwj and
to 0 = LAVWj, one has

N

Corollary 6.15. Suppose that E a i h a E L2(Y ). Then, for any i, j
1,...,N, one has h=11 ,ai- dy ,

Y

where dy' = dy1... dyi-idyl+l ... dyN
If, similarly, Eh1 ahj E L2 (y ), then for all i, j = 1, ... , N, one has

0 1 f - [ a.'i
aij [auj ahj dyY ; h ^1 ayh y;=0

6.5 The one and two-dimensional cases

In this section we want to show how the homogenized problems (5.27) and (5.39),
obtained in Chapter 5 for the one-dimensional case and the case of layered ma-
terials, can be written as a particular case of Theorem 6.1.
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Obviously, this is not necessary from the mathematical point of view, since
(5.27) and (5.39) have been rigorously proved in Theorem 5.5 and 5.10 respec-
tively. As a matter of fact, the homogenized coefficients in these theorems are
explicit (algebraic) formulas in terms of the coefficients aij of A. It seems then
natural to see what are the correctors in these cases in order to derive (5.27)
and (5.39) from the general definition of A°.

Proposition 6.16. Under the assumptions of Theorem 5.5, one has

1

1 = A]o.r,1(a - a

dyM10.1,1(a)

where j is the solution of problem (6.15) written for N = 1, i.e.

a(y)) in ]0, e[- d
(ay)y

(

ti-periodic

M1° eil(x) = 0,

and is given by

Y

X(y) = - 1 a(t) dt + y + Co,

M10
I

where Co is the constant for which
M1° e,1(X) = 0.

Proof. From (6.52), one immediately has X verifies

a(y)

dy

= a(y) + C,

where C is a constant to be determined. Hence

/y
k(y) = C JO a(t) dt + y + Co.

(6.51)

(6.52)

(6.53)

where Co is also a constant to be determined. The periodicity condition j(0)
X(e1), i.e.

0 C - dt+Q1
1e1

gives the value of C, so that the solution j of (6.52) is given by (6.53) with Co
determined in such a way to have M101 11(X) = 0. Then, (6.51) is straightforward.

0
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Remark 6.17. Formula (6.51) allows to write the explicit coefficient in prob-
lem (5.27) under the general form (6.35). The interest of the approach of Chap-
ter 5 is that problem (5.27) has been obtained directly, without any auxiliary
periodic partial differential equation. 0

In the same spirit, we can show that the explicit limit coefficients for the case
of layered materials, given in Theorem 5.10, call be written under the general
form (6.35) too.

Proposition 6.18. Suppose that the hypotheses of Theorem 5.10 are fulfilled
and let A be the limit matrix given herein. Then

A=A°,
where A° is the homogenized matrix given (6.35). That is

2
Okjsi3 = My(aij) - my Eaik

k=s ayk

The functions Xl(y) = Xl(yl) and L2(y) = X2(yi) are the solutions of prob-
lem (6.15) written for N = 2 and are respectively given by

1

f
bl

dt+ yi +Cl(1 all(t)
Mlo.e,l all
Y, ali(t)

dt 1

(a11))0
2Yi 1 dt +X2(yi)

ali(t)
-

ali(t)
C23

jo.f fai/
(6.54)

where Cl and C2 are respectively, the constants for which M(L1) = 0 and
My(X2) = 0

Proof. Let us first compute X l which is solution of (6.15) for i = 1, i.e.
2

iL'1 ayi aij
(311)

Nj - - ay 11 in Y

Xl Y-periodic

my(Xl) = 0.
Here the coefficients and the right-hand side of the equation are independent of
the second variable. Then it is natural to look for Xl depending on yl only. The
same computation as that made in the proof of Proposition 6.16 leads to the
first formula in (6.54). This together with (6.35) gives

o 2x11 = 1all = My(all) - My
all 19y1

r 1 = al1-

lo.e,l all
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Again by using (6.35) and (6.54), one has

0^1 = a21 _
a21 = MY (a21) - MY (a2i

0y1 } ail 'Mlo.e, ( all 621

Let now compute X2 which is solution of (6.15) for i = 2, i.e.

2 a 0X2 _ 0a12aii(y1)- in y-1ji' aye ayl (6.55)
X2 Y-periodic

MY(X2) = 0.
Again, it is natural to look for X2 depending oil y1 only. Then, from (6.55), one
has that

)aX2 Oy1(y1)
all(y1 = a12(yl) + C.

with C a constant to be determined. Integrating once, one gets

X2(Yl) =
psv a12(t) dt+CJ y' dt + C2,

J0 all (t) o a11(t)
where C2 is also a constant to be determined. The periodicity condition which
reduces to X2(0) = X2(Pl) since j2 depends on yl only, implies that

0=1'' a12(t) dt+Cf 1
dt.

all (t) o a11(t)

This gives the value of C, so that the solution j2 of (6.55) is given by the second
formula of (6.54) with C2 determined in order to have .Mlo pl[(X2) = 0.

One easily verifies that

ail=MY(a12)-MYlallay1) =ailM10p,fCall\ `X12,

and also

o (a21
a-21

a22 = My(a22) M?'
(9y1 /

= (a12)Mj0'j'j a21 l a12a21
ai1M)O,tl [ all (a111 + (a22 all ) = a22.

The proof is complete. 0

Remark 6.19. Proposition 6.18 allows to rewrite (6.54) in the form

/ fy' 1X1(yl) _ -ail ] a11(t)
dt + y1 + C1

1
(6.56)

/ = f t a12 t) o

fo

?!i

X2(yl)
o all(t)

dt - a12 a!1(t) dt + C2.

0
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The multiple-scale method

In this chapter we apply the multiple-scale method to the study of problem (6.1).
The method is presented in Section 7.1 and a formal asymptotic expansion for
of is obtained. The goal of Section 7.2 is to prove the error estimate stated in
Theorem 6.3.

Recall that ue is the solution of

Aeu£f in 1l
uE = 0 on M.

(7.1)

where AE (see (5.4)) is defined by

'a a ),A£ = -div (A V) a - (7.2)E -ice1'iai( ?ax;

with

and
ail Y-periodic, V i, j = 1, .... N,

(7.4)
4 A = (ai,j)1<i.J<N E M(a,13,Y),

with a,,8 E R, such that 0 < a < 0 and M(a,,(3, Y) given by Definition 4.11.
Here, as before, Y denotes the reference cell defined by

Y =10,P1 [x ... X)o, QN [,

where .£I, ... , eN are given positive numbers.

7.1 The asymptotic expansion

As mentioned in Chapter 6, two scales describe the model: the variable x is the
`macroscopic' one, while x/e describes the `microscopic' one. Indeed, if x E 0,
by the definition of Y, there exists k E ZN such that x/e = (k1 + y) with y E Y
and where k1 = kNPN). Hence, x gives the position of a point in the
domain i2 while y gives its position in the reference cell Y.

This suggests looking for a formal asymptotic expansion of the form

a (x) = ail ( x) a.e. in RN, `d i, j = 1, ... , N (7.3)

tLf (x) = u0 l X. E
J

+ 8u1 x., + 62u2 (x,'t ) + ... (7.5)
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with u3 (x, y) for j = 1, 2, ..., such that

4 u3 (x, y) is defined for x E Il and y E Y

uj (-, y) is Y-periodic.

Let T = +1'(x, y) be a function depending on two variables ofRN and denote by
WE the following:

rr

(X) X.
x

which depends only on one variable. Notice that

OTC ( 1 a- -
J

a- (xxJ1x) = x, _ +-- , -
axi E a i e axi e

Consequently, from (7.2) one can write A£ iff as follows:

A,,Qe(x) = [(e_2Ao + e-1A1 + A2)W] Ix, x-,1 (7.6)

where
N

Ao - - 8yq(aej)(y)OY

N

Al - a.

(aii(Y)_)y
x

N

(a'3 (y) a )
.A2 z 5T

\
(a='(y)ax.) (7.7)

; a.

Using (7.5)-(7.7) into (7.1) and equating the power-like terms of e,
to solve the following infinite system of equations:

we have

{

Aouo = 0 in Y
(7.8)

uo Y-periodic in y,

Aoul = -Aluo in Y
(7.9)

1 u1 Y-periodic in y,

Aou2 = f - A1u1 - A2uo in Y
(7.10)

u2 Y-periodic in y,

and
It AOUs+
S

2 = -A1 us+1 - A2us in Y
(7.11)

( ub+2 Y-periodic in y,

fors>1.
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Remark 7.1. First of all, notice the special structure of this system. The un-
knowns uj can be determined successively. Indeed, the first equation (7.8) con-
tains only the unknown uo. If uo is known, the second equation (7.9) allows us
to determine ul in terms of uo. Similarly, the third equation (7.10) determines
u2 in terms of no and ul, and so on. 0

Remark 7.2. Note also that the operator AO which appears in each equation
has the same form as AE with x/e replaced by y. It is a second order operator
in y, and in each equation above, x plays the role of a parameter. 0

Remark 7.3. All the equations above are of the form (4.61). We saw in Sec-
tion 4.7 that problem (4.61) can be understood either in the sense of variational
formulation (4.62) (and in this case its solution, given by Theorem 4.26, is a
class of equivalence) or in the sense of variational formulation (4.65). In this last
case, its solution, given by Theorem 4.27, is a function with zero mean value. In
the sequel we will use both of these formulations. 0

Let us now solve successively systems (7.9)-(7.10), by applying the results
contained in Section 4.7.

We begin with system (7.8) whose variational formulation is (see (4.62))

Find uo E WpeT(Y) such that

ay-(uo,v) =0 (7.12)

t/v E Wper(Y)

where

4Y (it, u) = J AVu Vv dy, du E it, VV E i'. Viu, dil E Wper(Y), (7.13)
Y

and

WP-"(Y) = H'

Recall that Wpef(Y) is the space of classes of equivalence with respect to the
relation

u v u - v is a constant, du. z' E Hr;Pr (Y),

introduced in Definition 3.51 and that it denotes the class of equivalence of v.
We can apply Theorem 4.26 to problem (7.12) to obtain

uo=0. in Wper(Y)

as the unique solution. Recalling that. by definition uo = uo(x,y), this implies
that the solution of (7.12) is independent of y, so that

uo(x. y) = uo(x), for any uo E ito. (7.14)
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Remark 7.4. In asymptotic expansion (7.5), the first element uo is a priori
an oscillating function, since it depends on x/E. Relation (7.13) shows that
uo actually depends only on x, it does not depend on a and hence, does not
oscillate `rapidly' with x/E. This is why we now expect uo to be the `homogenized
solution'. It remains to find if there is an equation in 1 satisfied by u0i in which
case we would have found the `homogenized equation' too. Q

We now turn to equation (7.9). Using (7.7) and (7.14), this equation can be
rewritten as

8 8aij u0
in YAoui

1 0yi 8x,; (7.15)_i=

ul Y-periodic in y.
Its variational formulation is

Find i 1 1E Wper (Y) such that

ay(u1, v) /_ ( v)(W r(Y))'.Wpcr(Y) (7.16)

Vi' E Wper(Y),

where aY is given by (7.13) and F is defined by

N

(Ft )(waor(Y))'.Wyar(Y) = E TO J ati(v)'w dy
i.j=1 7 Y yi

Observe that if Wl, 02 E tp then

and so

N

a=1 1902

ayi = ayi

Vtb E 0, ' E Wpr(Y).

(7.17)

(F, i (F,'/'2)(Hper(y)).HVer(Y).

This, due to Proposition 3.52, defines F as an element of (Wper(Y))' and hence
(7.17) makes sense.

Theorem 4.26 gives then a unique solution icl E Wpei(Y) of (7.16). The
linearity of (7.15) where Ao involves the variable y only, together with the fact
that 8u0/8x3 is independent of y, suggests to look for this it under the following
particular form:

N

ul(x, y) _ - E X j (y) auo (x), in Wper(Y)
j=1

(7.18)axj

where satisfies
N

Ao , inY
ayi

Xj Y-periodic.

(7.19)
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for j = 1,. .. , N. It is easily seen that Theorem 4.26 together with Proposi-
tion 6.12 gives a unique solution k j E Wper(Y) of this problem. Moreover, as
observed in Remark 7.3, we can choose a representative element of Xj satisfying
the variational formulation (4.65). Hence, Theorem 4.27 gives the existence and
uniqueness of X _j E X j, the solution of

Find xj E jlpeT(Y) such that

aY(Xj'0) = fr aij(y)dy (7.20)
i=1 am

d E Wper(Y),

where (see Definition 3.48 and (4.66))

1'I'per(Y) = {21 E Hper(Y); .MY(Z') = 0} .

Observe that this problem is exactly (6.15).
On the other hand, from (7.18) we see that any solution ul(x, y) of (7.9) has

the form
N

alto
u1 (x, y) = - X1(y)ax + u1(x), with ul E ul, (7.21)

j-1 J

where u1 is independent of y, i.e.

u1(x) E 0 in WpeT(Y).

We now pass to equation (7.10). Taking into account (7.14) and (7.21), one
has

N a a261
N Ouo l 1f -Alul -A2uo = f+: (aij(y)(!0u-' +--- J J

i,j-1 ax, i.j=1 ax ayj axj
(7.22)

Consequently, the variational formulation of (7.10) is

Find U2 E Wper(Y) such that

4,(i12, v) = (F1, 'U)(Wprr(Y))'.W,er(Y) (7.23)

w C- WP" (Y).

where a}, is given by (7.13) and F1 is defined by

(F'1, W J f i'dy - Y
ai?(J)am!2U--' Pt dy

oyiE
N a au-' auo ll

+; exi axj
dy,

VII' E 11). i1 E Wper(Y) (7.24)
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This problem is well-posed if F1 is an element of (Wllper(Y))`, i.e. if

(F1, 1)(Hper(1 0,

which reads

r
a sul aU

} r
JY axi aij(y) a1/; +axi /

dy
= JY

f dy.

This relation is a necessary and sufficient condition to insure the existence
and uniqueness of i12, solution of (7.23) given by Theorem 4.26. Replacing herein
ul by its formula (7.18), and since f = f (x), we find that u° has to satisfy

N

f
(aii(ii)(-aXk

auo

+
auo

dy1: axi ayj axk a:Z'j
IYl If,

i,j,k=1

or equivalently, by taking into account (7.14),

_ f [ f ( aXk a2ao =y a:k _ a:a ayi dy
axi xk -

i,k=1

By using the expression of A° in (6.35), one has

E / (aik - aijaXk) dy = IYja k,
ayi

Consequently, (7.25) is nothing else than

N- a
°auo faxi axk

i 1k. =

Vi, k = 1,...,N.

(7.25)

in ft (7.26)

Notice that (7.26) is exactly the equation from the homogenized problem (6.29)
in Theorem 6.1. The existence and uniqueness of u° E Ho (f2) follows from
Proposition 6.12 via Lax-Milgram theorem so that,

u° = 1l°,

with u° given by Theorem 6.1.

Remark 7.5. Let us point out that equation (7.26) has been obtained by a
formal method arguing as if all the functions were smooth, namely the coefficients
aij which for composite materials are not even continuous (see Section 5.2).
Nevertheless, the mathematical study of auxiliary problems (7.12), (7.16), (7.20)
and (7.23) above, is rigorous. 0
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Remark 7.6. Observe also that by this method one obtains the homogenized
matrix A° under the form (6.30), or the equivalent one (6.35) which involves the
matrix A and problems (6.5) and (6.11). This is intrinsic to the method. Q

As observed in Remark 7.1, we can compute successively the functions uj
in asymptotic expansion (7.7). We describe here only u2. Replacing (7.21)
into (7.10), an easy computation leads to the equation

N akk a2uo
A°U2 = f - aij (y) ayj axiaxki, j,k=1

_ N
02u0 N 92 u0

i,jlk 1 ON axjOXk +
i 1

a=3 (y) 8xiaxj

u2 Y-periodic in y.

in Y

By using (7.26) and renaming the indices, this becomes

N
0 a22E°

N
/ aXt a2u0

AOU2 = - aktaxkaxe - L: aki(y)
1k,t=1 j.k,t=1 ay axeaxk

_ N a(dij(y)Xk) a2n0 N a2u0

Ni axjaxk
+ a;t(y) axjaxe

in Y
i,j.k=1 j,t=1

U2 Y-periodic in y,

which can be rewritten as

A0u2 = - aokt

92u°
- a(aij6kj it) 02u0

k.t=1 axkaxt
i.j,k,t=1 ayi axkaxt

E ak a(Xt - y,) a2u° in Y
J a'tf jj.k,t=1 axk axe

u2 Y-periodic in y.

Then, F1 in (7.24) can also be rewritten as follows:

(F1, V,)(Wper(Y))',Wper(Y)

(7.27)

N N
- [ I - cakt ' dy + a(aijdkj it) dy

k,f=1 L Y i j=1 Y ayi
N

ak Wt - yP}
dy

a2u0

Y ayj axkaxt
7

bti' E E Wper(Y)
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The same arguments as those used to write down (7.18), suggests to look for
u2 E 2i2, with ic2 under the form

1:N

u2(x,y) _ ekf (y) a
k.f=1

where the function 911 is solution of

k f

,,11 kf z 0 a(a=,sk, it)Ug - akt - aA,
j=1 ayi .1

Bkf Y-periodic.

a(zf - yf)
ay,

in Y

(7.28)

Again, Theorem 4.27 gives the existence and uniqueness of _k' E 6H, the solution
of the problem

Find B E Wper(Y) such that
N

f
r

dy- r XP} dy
r Y" ayi4,?=1

N
-ye) bdy_> /'atria{X

ay,=1

V Wper(Y)

(7.29)

From (7.28), one deduces that any solution u2 = u2(r, y) of (7.10) has the form

N 02uo
U2 (X, y) _f(y) as ax + u2(x). with u2 E ice, (7.30)

k,1=1

where u2 is independent of y.
Inserting the particular forms (7.21) and (7.30) of ul and u2 (written with

ul = 0 and u2 = 0 respectively), into expansion (7.5), we get

uE(x) = u°(x) - e °
2U1

(x)2 f( )a
(x) + ... (7.31)

a a
k.f=1

which is precisely the expansion from Theorem 6.3.

kJ xk xff

Remark 7.7. The functions Xk are called first-order correctors and 0e second-
order correctors.
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7.2 Proof of the error estimate

In this section we prove the following error estimate:
N

u uO-EEzk4 } axk
+E2 l

)OzkOxe '

61

k=1 \ k e=l \ (N (11)

under the regularity hypotheses on the data given in Theorem 6.3.
Let us introduce

Ze(x) = U'(x) - (210 + EUl + e2u2) (x,
E

),

where u1 and u2 are defined respectively, by (7.21) and (7.30) for ul = 2a2 = 0,
i.e.

N

ul (x, y) Xe{y) a
F=1

N (7.32)

u
U2 (X, Y) _ E (y)

Let us calculate AEZZ where AE is defined by (7.2). From (7.6) and (7.7), we
have

AEZE(x) = [(E-2Ao + e-'A1 + A2)Zf]
\X, E /

= [AEuE - e-2Aouo - e-1(Aoul + Al uo)

-(Aou2 +Alu1 +A2uo) - e(A1u2 +A2ui) - E2A2u2] (x, -).

Using (7.8), (7.9) and (7.10), we derive

AEZE(x) = [-e(A2u1 +Alu2) -e2A2u2] 12,

From definition (7.7) of Al and A2 and (7.32). we get

A2u1 =

Alu2 =

A2u2 =

N a3UO
aik(y)Xe(y)ax,axkaxe

i,k.e=1

x
E

N a7ce a3 u0

- L
l uij

(y) ayj (y) axiaxkaxe

N a "ce a3uoa ij(y)e
(r.j.k.f=1 l/i

N

- E Rzj(y)j"(y)
i.j.kJ= 1 axiaxjaxkaxe

.

(7.33)
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Remark that, due to the strong regularity assumptions made on f and O1,
uo is also smooth, being solution of an elliptic problem with constant coeffi-
cients (see, for instance Necas, 1967, Lions and Magenes, 1968a, and Gilbarg
and Trudinger, 1977). Therefore, in particular all the derivatives of uo above,
are in L00(S2).

Observe now that for the second terns in the right-hand side of (7.33), we
have

'" 3
0(

)N
00

i kf=lj,,.
N 3

ayi E } as axkaxPf=1

A simple computation shows that

N
uo(x)

i k e=i ayi

(X)
e axjaxkaxf

N a x f{x ___(x)E
i. ' k e=I axi Caij e / \ E 1 ax;axkaXf

83no(x)N
a [ajj(-X)6kt(-x)s

i I ax= E E ax j axkOXP J

-e
N

- aij ?
a4 u0 (x)

(X)jkt(,.)
E axialJaxkaxf

N

axi [Qi' 5 , e } ax;axkaxe J + eA2u2 (x, ).

i, j,k.e=1

Taking into account that ne and uo vanish on the boundary OSZ, these computa-
tions show from (7.33), that Ze satisfies

N

AEZe axe
(aj eF£ in f

ZE = ice on asZ.

(7.34)
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where

N [_aik()
)a3up (x)

FE (x) e f
(x)

+ Oij ayJ 6 axiaXkaxp

+E
N

(x) B"kP xa3ua(x)
axi

[aij
E E axjaxk&XI

i, j.k.e=1

GC(X) = r
x/

0(x) _ E
N

jkj X(2)k=1
kk e J axk

E a.Z'ka1'f

Observe that (7.34) is a nonhomogeneous Dirichlet problem to which we will
apply Theorem 4.19 and in particular, estimate (4.29). To do so, let us check
that the data Fe and GE satisfy the requisite assumptions of this theorem, i.e.
that FE E H-1(fl) and Ge E Hl(OS2).

Remark first that FE is of the form

N

Fe=FF+eE a
Fit.

i=1 axi

where

(7.35)

I'N x x x aeke x a3uo(x)

Fo(x)
,i. ke=1-(LikE

e 'C` "Ice x 93u0 (x)
Fi (x) = E aij E ax axkaxe' N.

j.k.f=1

From the regularity of uo and the fact that the matrix A E L°°(Y), and since
by definition (see (6.15) and (7.29)). \e, 01 E H'(Y). one immediately has that
Fo E L2(1). Moreover, from Theorem 2.6 it follows that

IIFr r r

N _ ale
4IL2(n) <

I1aUOr

IILoo(f) 1[ak()xe( j (.\i
1 I Jf \ J L,s(0)

< C,

where c is a constant independent of Similarly, one also has

IIFfIIL2(Q) < c, i = 1, .... N.

Consequently, from (7.35) and Proposition 3.42, we obtain that FE E H-1(0)
and moreover,

IIF`Ilff '(se) <e1, (7.36)

with ci independent of e.
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Let us now look at the function G5 . We prove the following estimate:

IIC'f IIHi (ail) S C2E (7.37)

It is at this point that we need the regularity assumptions on Xk and 0-11 made
in the statement of Theorem 6.3. We employ here an argument from Oleinik,
Shainaev, and Yosifian (1992). Let us introduce the function mE defined as
follows:

mE E D(f2)
m£ = 1 if dist(x, aft) < e
m, = 0 if dist(x, ail) > 2E

IIVmeIILx(11) < C.

For the existence of such functions we refer the reader to Hopf (1957) and Li-
ons (1969, Chapter 1, Lemma 7.2). Set

V,e=mEGE.

Due to the definition of r 5. the support of r1JE is a neighbourhood of aft of
thickness 2e that we denote by UE . Let us now show that 0E E H' (1)) and that

II0EIIH1(Uc) :54C&6 2, (7.38)

where c3 is a constant independent of E. Clearly, from the definition of mE and
the regularity properties of uo, one has that

III'E!I L2(Ue) :5 C4 (7.39)

independently of E. On the other hand, for i = 1, .... N, we have

80E 1 N aik x 8U0 (X)
N x a2uo(x)ax ; (x) M , (x) a ay; axk + zk { axsaxkk=1

1N O x 62110(x) N 'XP x a3u0(xI
R M=1E=1 ayi £) a:rk'9Xf E1 (E) a2za kaxP

P

am, N

(X)
auU(.r) N P x 02uo(x)

+ axi xk
E a.rk

_ E
k =1

e
e } axkaxe

It e a s y to check that a',/axe E L 2 (U5) fo r any i = 1, ... , N. In order to
obtain (7.38), we need to estimate the norm of aV°E/axe in L2(UE). From the
regularity assumptions on Xk and BHP. the definition of mE and the regularity of
uo, we derive that

1

C5IJ UOIIftJ(U£) +C6, (7.40)
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where the constants c5 and c6 are independent of E. Since lA is a neighbourhood
of ail of thickness 2e, we can make use of a result from Oleinik, Shamaev, and
Yosifian (1992, Chapter 1, Lemma 5.1) which states that there exists a constant
c7, independent of e, such that

IIuOIJHI(Ue) <_ e C711ouo1IH1(n). (7.41)

This, together with (7.39) and (7.40). proves (7.38).
Observe now that i£ = Gf on OSl. Then, from Proposition 3.31 one has

11G5110 (an) -110611H (ast} < C. C.Y(11) [1V1 IH1(u,). (7.42)

and this, together with (7.38), implies (7.37).
We can now write estimate (4.29) from Theorem 4.19. By using (7.36) and

(7.37) we obtain

IIZEIIHI(si) 5 EClIIF£IIH-.(n) +c'2EIIG'£I1H1(8 )

< eC1C1+e2G`2C2.

Recalling the definition of Z., this is the claimed error estimate. O

Remark 7.8. Let us make some comments about this proof. As we already
mentioned, the particular assumptions on k; and 0'P were used only to show
estimate (7.37) on GE but not estimate (7.36) on F£. This is related to the fact
that ZE is not an element of Ha (il), and so we had to estimate its trace GE on
the boundary Bit. Observe that if for 9,#),/8x= we argue as for FE, by using only
the regularity of u°, we would have instead of (7.40) an estimate of the form

IIVW'EIIL2(uE) < £ c,

which would only imply that

11Z6NH1(t?) < C

with a constant independent of E. This explains why it was necessary to introduce
the neighbourhood U. Indeed. estimating the term 11uoI1H1(u,} in (7.40) by (7.41)

leads to the gain of a term of order el. 0



8
Tartar's method of oscillating test
functions

We begin this chapter with the proof of Theorem 6.1. This is done by using
the method introduced by Tartar (1977a, 1978). In Section 8.2 we prove the
convergence of the energy associated to problem (6.1). This convergence allows
us to show in Section 8.3 a corrector result. Sections 8.4 and 8.5 contain some
further convergence properties of the solution uE of the model problem (6.1).
Finally, in Section 8.6 we formulate the eigenvalues problem associated to (6.1)
and give its asymptotic behaviour as E - 0.

Let us recall our model problem. namely

{

div (A£Du£) = f in fl

u=0 on 852,
(8.1)

where f is given in H-' (52) and the matrix AE is the Y-periodic matrix defined
by

a f (x) = aij (- a.e. on RN. V i. j = 1, ... , NM (8.2)
ee

and
AE(x) = A (x/ (a j(x))1<i,,j<N a.e. on RN (8.3)

where
f ai3 is Y-periodic, d i. j = 1 .... , N

(8.4)

A = (a;j)1<i..;<N E 111 Y).

with a,,0 E R, such that 0 < a < 8 and M(a, 83, Y) given by Definition 4.11.

8.1 Proof of the main convergence result

In this section we give a rigorous proof of Theorem 6.1, following a general
method due to Tartar (1977a, 1978). This method relies on the construction
of a class of oscillating test functions obtained by periodizing the solution of a
problem set in the reference cell, actually problem (6.17). As we will see during
the proof, the fact that (6.17) contains the adjoint operator -div(tA(y)V), is the
key point in this method. Indeed, when trying to identify the limit CO in (5.15),
this essential fact allows to eliminate all the terms containing a product of two
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weekly convergent sequences. By this method, we will naturally obtain the
homogenized matrix A° under the form (6.31), or the equivalent (6.36), which
involves the matrix to and problems (6.27) and (6.28). This is one of the main
features of Tartar's method.

Let us recall briefly the framework introduced in Section 5.1. Let uE be the
solution of (8.1). We know that there exists a subsequence (still denoted by e),
such that

i) uE - u° weakly in Ho (St)

ii) uE u° strongly in L2 (S2) (8.5)

iii) S[e ° weakly in (L2(SZ))N,

where [E is the vector-function

N e N Eigu

( Etzijx., EaNjax = AEVu6, (8.6)
j=1 J j=1

and satisfies

fVv dx = H-1(rt),Ho(0), dv E Ho(SZ). (8.7)

Recall also that CO satisfies

-div ° = f in S2,

fo
° Vv dx = (f, z')H-1(St).Ha(11), Vu E Ho (S2). (8.8)

Therefore, Theorem 6.1 is proved if we show that

6° = A°Vu°. (8.9)

Indeed, this, together with (8.8), implies that u° satisfies problem (6.29). On
the other hand, Proposition 6.12 and Theorem 4.16 provide the uniqueness of
such a solution. Consequently, the convergences in (8.5) take place for the whole
sequences. This is why we still denoted by e the converging subsequences.

Set now

wa(x) = ewa (x 1 =
A

x - e XA ( ), (8.10)

where wa and XA are defined
by`

(6.21) and (6.18). Recalling that XA is Y-

periodic, in view of Theorem 2.6, it is obvious that

wa A x weakly in L2(d).

Observe that from (6.21) one has

(V.wa)(x) = J
= A - Vyx .
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But V,w,, is Y-periodic, since XA is Y-periodic and A is constant. Then by using

again Theorem 2.6,

Vxwa My(A - VVxa) = A - My-(VbxA) weakly in L2(f ).

Observe now that from Theorem 3.33 written in Y for u = 1 and v = Xa one has

IVy)q(y)dy= Jay Ax - nds,, = 0,

where we have used Proposition 3.49. Hence

My,(VVXA) = 0.

Consequently, we have the following convergences:

x)

ii)

w A x weakly in H1(1l)

W), - A x strongly in L2(Sl),
(8.11)

where we have used Theorem 3.23. Introduce the vector function

N C-,we N t3wE ea?1 axe = to DwA.
j=l )

From (8.3) and (8.10), we see that

?I" (x) [tA()
6

(Vit))
6()}x ' AVywa)(6

(8.12)

Since to is Y-periodic, obviously tAVywx is Y-periodic too. Hence, applying
again Theorem 2.6 one derives the convergence

rla - My(AVwa) ='A0
A

with A° defined by (6.31).
We now prove that qa satisfies

weakly in (L2(St))N, (8.13)

in rla Vv dr = 0, by E Hp (1). (8.14)

To do so, let V E D(Q) and set

VE(y) = p(ey),

Obviously cpf belongs toD(RN). Hence, from (6.25) one has

.jat N

dy = 0.

Na.e. on R.
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By making the change of variable x = Fy it follows that

f(tAvn)() Vv(x) dy = 0, E 1)(0),

since supp cp C Q. Recalling Definition 3.26 of Ho (Il), one immediately has
(8.14).

Let p E D(fl) and choose as test function in (8.7) and puE as test
function in (8.14). We have respectively,

f e Vwa dx + Vp wdr = (f. dcE D(Sl),
2

J na . Vue dx + f IA - V,p it' da = 0. bcp E D(Sf).

Observe that from definitions (8.6) and (8.12), one has

CE Vwa = AEV uE . Vu,' = tA£ Vwa E Vu' Vu'.

Therefore by subtraction, the first integrals in the expressions above cancel and
we obtain

fo
£.Vc'w dx - 711J2

VSp uE dx _ u'a)H-1(st).Ha(a) flip E D(Q).

(8.15)
We now pass to the limit in this identity.

Let us point out here the main idea of Tartar's method, namely the use of
adjoint problem in the definition of iva. As a matter of fact, it is precisely this
fact which allows one to cancel the two terms where one cannot identify the limit
since they contain products of only weakly convergent sequences. Moreover, as
we show below, the other terms all pass to the limit and the limit expression will
easily imply the claimed equality (8.9).

Take e -> 0 in (8.15). Coi vergences (8.5)iii and (8.11)ii give

° - Vcp(A x) dx.£lim° J V Vcp wa dx = in
in n

Next, from convergences (8.13) and (8.5)ii

JA0A.

one has

lim Jst
Then, from (8.15) and (8.11)1, we finally get

ffI
dx- f tA0A-Vv u° dx = ya(m), bcp E D(D),

sz

which can be rewritten in the form

JtA0A
J ° V[(JI - x)dx - f ° p dx - Vu° dxs n

_ (f, X. x)p)H-I(9).H1(9). V'o E V(St).
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This gives, by using (8.8) written for the test function v = (A

In
t° . A(p dx = - in tA0X

- u° dx, E D(Q).
s1

Due to Definition 3.11 and taking into account the fact that to°a is constant,

we get
Jo.A(Pdx=jtA0A.Vu0wdx, bp E D(1l).

z

Hence, Theorem 1.44 implies that

0 a=tA°.1 Vu°=A°Vu° A.

which gives (8.9), since A is arbitrary ill N. This ends the proof of Theorem 6.1.
0

8.2 Convergence of the energy

One interesting consequence of Theorem 6.1 is the convergence of the energy
associated to problem (8.1), namely of the quantity

A£VuE Duf dx.E£(ue) = J i

Actually, we prove the following result. which was originally proved by De Giorgi
and Spagnolo (1973) in the context of the G-convergence (see Chapter 13):

Proposition 8.1. Let u` be the solution of (8.1). Then,

EE(uE) ) E°(u°) = J A°Vu° Vu° dx,

where 0 ° and A° are given by Theorem 6.1.

Proof. From the variational formulation of (8.1) written for u£ (see (5.7)), one
has

J AEVu` 'Vu' dx _ (f. of )H (S2).HQ(SE}

Convergence (8.5)i implies that

lim J AEVuE Vise dr = (f. u°)H-(st)e-0
SZ

On the other hand, choosing u° as test function in the variational formulation
of (6.29), we have

A°Vu° Vu° dx = (f, n° )H-I(s1).Ha(n)-

This gives the result.
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In fact, we also have a convergence in the sense of distributions. Indeed,

Proposition 8.2. Let uE be the solution of (8.1). Then, the following conver-
gence holds:

AEVuE VuE A°Vu° Vu° in D'(Il),

where u° and A° are given by Theorem 6.1.

Proof. From Definition 3.9, one has to prove that

in
AEVuE VuE p dx J A°V u° Vu° cp dx, for any V E D(f?). (8.16)

in

Using uE cp in the variational formulation of (8.1) (see (5.7) ), yields

EDue Vcp uE dxAEVuE Vu' dx A'Vu' V(u{ gyp) dx - In Ast

- (f, U ) H 1(S2}. Hi; (S2) - f AEVuE Vw V dx (8.17)

` (f, uE P)H-'(S2).NI (n) - VV HE dx.

Observe that from (8.5)i, we have that

uECp --.4 u°cp weakly in Ho (St), for any cp E P(9).

This convergence, together with (8.5). (8.9) and Proposition 1.19, allows us to
pass to the limit in (8.17) to obtain

J

lim AEVuE Vu' cp dx = (f, u 0 IP)H-'(n2),No(nt) - I ° Vcp u° dx

r
= (f u° w)H-I(a),No(a) - f e° ue°) dx + J t;° Vu° cp dx.

s2 s2

Taking now u° W as test function in (8.8), one has

fo V((p 0°) d.r = (f,u°tp)N-'(S2).Na(S2)

which, used in (8.18), leads to

lim J AEVuE VuE ;p dx = f ° V u° <p dx.
E-'Q nt s2

(8.18)

This is exactly (8.16) since ° = A°Vu° (see (8.9)). 11
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We showed in Proposition 6.12 that there exists some constant ao > 0 such
that the matrix A° satisfies the ellipticity condition with this constant (see Re-
mark 4.12). Since A° is constant, one then has

A° E M(ao, Qo, ci),

where /o = max a . Recall that we started with the matrix AE E Af(a, 3, S2).

A natural question is to precise the constants a° and [3o. The answer is given
by the following result, a consequence of Proposition 8.2:

Proposition 8.3. One has
2

AO EAl
//
(a, 52) (8.19)

Proof. Due to Definition 4.11 of the set AI (a. /32/a. 52), one has to prove that
A° satisfies the following inequalities:

(A°A, A) > aJA]2

IA°A) < a2 1A',

for any AEJ N.
Let us first prove (8.20)i.
To do so. let z° E Ha (S2) and z£ be the solution of

f
div (A£OzE) = -div (A°C7z°) in Cl

z`=0 on 011.
We can apply Theorem 6.1 to this problem to obtain

zf - Z° weakly in Ho (52),

where Z° is the solution of

f
div (A°OZ°) = -div (A°Vz°) in S2

Z°=0 on 852.

The uniqueness of the solution Z° of this problem implies

zo = z°.

From Proposition 8.2, we know that

AEVz6 Oz6 ----+ A°Oz° Vz° in D'(S2).

In particular, for any non-negative function cp in V(52), we have

(8.20)

(8.21)

(8.22)

A£OzE Vz6 V dx --, A°Vz° Oz° p dx. (8.23)in Jn
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Since AE E M(a, ,3, 0), one has

f A'Vz' Vz' dx > o f IVzEI2 V dx. (8.24)

From (8.22), we derive that

f Vze - f Vz° weakly in (L2(11))N.

The lower semi-continuity with respect to the weak convergence (see Proposi-
tion 1.14) implies

Iim inf f IVzEI2 cp dx >
J

IVz°12 (P dx.

This, together with (8.23), allows us to pass to the lim inf in (8.24) to obtain

f A°V z° V z° so dx _> a j I Vz° 12 dx.
t

Since z° is arbitrary and the support of cp is a compact contained in 1, we can
choose z° such that

z° = A x, on supp cp.

Then, as A° is constant, one has

(A°A, A) J (p dx > a 1 A12 j (p dx,
n fn

which implies (8.20)i, since cp is a non-negative function.
We now prove (8.20)ii. To do so. let us show first that

((AE)-lA,
A) >_

2
1A12, (8.25)

for any A E RN and a.e. on 0, where (AE(x))-1 is the inverse matrix of AE(x).
Recall that (AE)-1 is well defined since AE E AI(a, j3. 1) (see Remark 4.12).

For A fixed in RN, set i = (Ae)-l(x)A a.e. on Q. Then, using again the fact
that At E M(a, ,13, 0), one has

((A") -'(x),\, A) = (A'(x)µ,p) ? a IuI2 = a
{A£}-1(x)A12.

(8.26)

Recall (see Remark 4.12) that

IIAE(x)II2 = sup
f(x

p 1

11;40 1P I

Hence, for any p in RN, one has

IAE(x);e 1 <_ 1,I IIAE(x)I12.
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This, written for p = (A£)-1(x).1, becomes

a

+{AE)J1(x) IIA(x)II2

From Remark 4.12, one deduces that

(8.27)

I(AE)_1(x)AI > I\I

This inequality, together with (8.26), gives (8.25).
To prove (8.20)ii let, as before, zo E Ho (1), zE the solution of (8.21) and cp

a non-negative function in D(11).
Choosing A = AEVz$ in (8.25), one easily has

in
VzE AEVzC yo dx >

'I J
IAEVzEI2 cp dx.

;P f2

The same argument, used to pass to the limit in (8.24), gives

(A, A°A) J cp dx > z IA°AI2 J o dx.

Hence, since cp is a non-negative function,

D2
IA°AI2 < IAI IA°AI.

This implies (8.20) (ii) and the proof of Proposition 8.3 is complete. 0

8.3 Correctors

Let uE be the solution of problem (8.1) and uo the solution of the corresponding
homogenized problem. From Theorem 6.1 one has, in particular, the following
convergence:

VuE - Vu0 - 0 weakly in (L2(f2))N. (8.28)

Remark 8.4. In general, convergence (8.28) cannot be improved. This can be
seen from the examples treated in Chapter 5. For the one-dimensional case
for instance, this is implicit in Remark 5.8. Indeed, if convergence (8.28) were
strong, one would have (in the sense of the L2-weak convergence)

due

El
.o

(ae
du'd

x

) - (
elno aE )vodx)'

and in general this is not true. A fortiori, a similar argument works for layered
materials, in view of Theorem 5.10. 0
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This remark shows that convergence (8.28) is in general, not strong. However,
we will prove that by adjusting the term Duo. we get a strong convergence. To
do so, we introduce the corrector matrix C£ = (C )1 ci, j<N, defined by

(__. . _ (x\

Ci (y) = bij - ax; (y) _
1

(y) a.e. on Y,
(9yi ayi

where j .

7
and w; are given by (6.14), (6.15) and (6.16).

Some interesting properties of the corrector matrix Cf are given by the fol-
lowing proposition:

Proposition 8.5. Let CE be defined by (8.29). Then

fi) CE - I weakly in (L2(1Z))N"N
8 30( . )

lii) AEC' _ A° weakly in (L2(f ))N,

where I is the unit N x N matrix.

Proof. Introduce, for i = 1, ... , N, the functions

ii (x)=Ei x- =,-E
E

x

The same argument, used to prove (8.11), gives

x
(8.31)

i)

{
O if weakly in Hr (1k)

(8.32)
ii) iZ -' xi strongly in L2(1).

From (8.29), it is easily seen that

f,
(x) = a x aw; (x).

ayi E } = axi

Consequently, from (8.32) one immediately has (8.30)(i).
Let us introduce the vector function

N N 8wE _
ni = all axi ° ... , aN . ax: - Af Divz

it.

(j=1 J j=1 a

From (8.3) and (8.31), we have

(8.33)

ryla (x) _ [A(e ) (X)J
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The same argument as that used to prove (8.14), shows that z satisfies

fVv = 0. Vv E Ho '(Q). (8.34)

From (6.14) one also has that

Vii = +e;,

which is Y-periodic since X
.

is Y-periodic and e= is constant. Therefore, we can

apply Theorem 2.6 to obtain

z My(AVi ) = A°ei, weakly in (L2(Sl))N, (8.35)

where w e made use of (6.34). T o conclude, observe that f o r any i = 1, ... , N one
has

i = AEC6e,.

This equality, together with (8.35) implies convergence (8.30)(ii). 0

A consequence of Proposition 8.5 and of convergence (8.28), is that

VU, - C£Vu° - 0 weakly in (L1(Sl))N. (8.36)

Indeed, CEVu° E LI(ST) and for any (p E L' (Q), from (8.30)(i) one has that

10
Ce V u° dx fvuo dx.

The interest of the corrector matrix C= is that convergence (8.36) is actually
strong, as stated in Proposition 8.7 below. As a matter of fact, this result holds
in the general non-periodic case and was proved by Murat and Tartar (1977a)
(see also Cioranescu and Murat, 1982).

Theorem 8.6. Let of be the solution of problem (8.1) and u°, A° given by
Theorem 6.1. Then

VU, - C£Vu° ---+ 0 strongly in (L'(Sl))N. (8.37)

Moreover, if C E (Lr(Y))NxN for some r such that 2 < r _< oo, and Vu° E
(L8(Sl))N for some s such that 2 < s < oo, then

VuE - CCVUO 0 strongly in (Lt(Q))N,

where
'

t = 111in 2,
r

1

+

3

The proof of this result is based on the following proposition:
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Proposition 8.7. Let uE be the solution of problem (8.1) and u°, A° given by
Theorem 6.1. Then, there exists a positive constant c independent of e, such
that for any 4i E (D(1))N, one has

lim sup IIVue - CE4DIIL2(n) <_ cIIVU° ` 4)IIL2(sz)
6_0

Proof Let t = (4i1, . . . , 4'N) E (D(S2))N. From (8.3) and (8.4) one gets

L2(sz) < f A6(Vn - C ) dxa I VUE - CE4II2

L
- f AE(CE4;)VV dx + J AE(CE4;)(CE4?) dx.

(8.38)

We will pass to the limit in all the terms in the right-hand side of this inequality.
The first term in the right-hand side is nothing else than the energy, so we

can use Proposition 8.1 to obtain

J AE V uE Vu' dx --- j A°V u° V u° dx. (8.39)
sa

o treat the second term, observe that from definition (8.29) of CE, one can writeT

r N r

lim J A' Vu' (CE4) dx = line J A` Vu' (4ii dx
E-'0 SZ

E-0
i=1

N f r
= lim J A'Vu' V(4ii w;) dx - lim J AEVuC V4)i ii-if dx

E-0 E-+0
i=1

Choosing 4i wZ as test function in (8.1). one has

II
A'Vu' V((Di ill?) da' = i u7 )H(n),Ho(S2)

Then, using convergences (8.5) and (8.32), one derives

lim AEVut (CE4i) dx
E- 0

N r
= (umj, i liiii AEVUE V4i ' dx

i=1
E-O

SZ

N

_ (f, 'ti xi)H-1(st).Ho(st) - f A°Vu° Vibi.ri dx
i=1 0
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Using now xi as test function in (6.29), we (finally get

tim J AF Dug (C, £ 4) dx = J A°V u° 4 dx. (8.40)
E~Q in

To treat the third term of the right-hand side of (8.38), let us take 4ii ug as
test function in (8.34). We obtain, by taking into account convergences (8.5)ii
and (8.35),

lim r A'(CE(D) Vti dx = lim AEVul$ Vu/ 4ia dx
N

faE-0 n e-0
L=1

N r
= lim ili V(4Tiug) dx - J i i V4ii ug dx

i=1 E-'0

r
S2 f2

_
N

lim J iii VC ug dx - J A°e.= V4ii u° dr.
i=1 i=1

=fA0. Vu °dx. (8.41)

For the last term in (8.38), we now choose -ti4,juj,6 as test function in (8.34).
Making use of (8.32) and (8.35), we have

N r

C-0 in
Ag(Cgfi)(Cg4i) dx = E lim / AEVwi Vwj` 4ii 4ij dx

n i.j=1 C-O s2

E lim il,V(.tt4ij10,)dx- il
N

(fn fni.j=1 e 0

= J A°e; V (fit fig) x dx = I A° 4) 4i dx. (8.42)
S2 f r,

Inserting (8.39), (8.40), (8.41) and (8.42) into (8.38). from Proposition 8.3 it
follows that

11M SUP IIVug - Cg!IIL2(n) f A°(Vu° - 4?)(Vu° - 4?) dx
e-O t

< ITO -

i

which ends the proof of Proposition 8.7.

Proof of Theorem 8.6. Convergence (8.37) follows from Proposition 8.7 by a den-
sity argument. Let 6 > 0 and 4i6 E (D(1))N such that

IIVu° - 4D61IL1(S) < 8.
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The existence of such a 4)6 is insured by Theorem 1.38. Consequently, by the
triangular inequality, we have

limsup IIVu5 - CEVu°IIL-(n)
C-O

< urn suplllVu5 - CE(DaIILI(n) + IICEt6 - CfVn°IILI(O)i

limsupcl llVi/ - CE'N IIL2(n) + c2IIVu° -
6-0

< C C I I I V 1L° - I l L2 (Q) + C2 S < C3 8.

where we have made use of convergence (8.30)(i), Proposition 1.14 and Proposi-
tion 8.7. This ends the proof of (8.37) since S is an arbitrary constant.

To prove the second statement of Theorem 8.6, again let S > 0 and now
choose c6 E (D(0))N such that

11 otl° - l1L=(n) < S.

Then, taking into account the expression of t and using Proposition 8.7, we have

lilnsup IIVu5 - CEVu°IILt(n)
E-O

< limsup[IIVuE - CE4'6IILt(n) + IIC£-06 -- C Vu°IILt( )]
E-'O

< limsupcl [IIVu£ - C"4'642(n) + IICE4'6 - CEV-u°IIL. (n)1
E-+0

< CC1lIVu° - (DJIIL2((I) +lirn s pCi1IC£06 - CEVu0IILr++.(n)
6-0

< C211Vu° - 46IIL°(0) + lilnso pcl CEVu°IIL (n),

since t < 2 < s (see Corollary 1.35). Hence

Jim sup IIV?E - C6VU°IILt(n) < C26 + limsupcl IICE4)6 - CEVu°Il Le(n)
E-- O E-o

From the assumption on C, definition (8.29), Theorem 2.6 and Proposi-
tion 1.14, it follows that CE is bounded in (Lr(Y))N"N. Consequently, making
use of Holder inequality (Proposition 1.34) with

r+s , r+s
P= P

3 T

one gets

IICE.06 - CEVU°IIL'a, (c2) < IICEIILr(n) IIVO° - Co.

This, used in the above estimate, ends the proof since 6 is arbitrary. 0
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Remark 8.8. From regularity results due to Meyers (1963), there exists r > 2,
depending on a, 3, N and Y such that

C E (Lr(Y))NXN

Moreover, if afI is regular, classical results due to Agmon, Douglis, and Niren-
berg (1959) (see also Ladyzhenskaya and Uraltseva, 1968, and Troianiello, 1987),
imply in particular, that Vu° E (L9(f2))N for some s > 2. Hence, the last state-
ment of Theorem 8.6 holds true for these r and s. 0

Remark 8.9. For the one-dimensional case and the layered materials, studied
in Sections 5.3 and 5.4, one can give the corrector matrix explicitly in view of
the results of Section 6.5.

Indeed, for the one-dimensional case, Proposition 6.16 leads to

C(Y)
= 1 1 _ a°(y)

1 a(y) a(y)

Mlo.hl\a)

For the layered materials, from Proposition 6.18 (see also Remark 6.19), we have

ail a12(yl) 012

(aii(i) all(yl) + a11(yl)

0 1

0

Remark 8.10. From definition (8.29) and Theorem 6.3, one can see that Vua
can be written in the form

n
vut(x) = Vu°(x) - E oyxk () ask (x) xk ) ° axk

k=1 k=1

= CE(x)Duo(i)-f>Yky E) v(axk)(x)+...

k=1

so that CE(x)Vu°(x) is the first term in the asymptotic expansion of Due in the
sense of Theorem 6.3. 0

8.4 Some comparison results

The aim of this section is to show how some comparison properties of two 1na-
trices in M(a, E3. Y) are conserved by the homogenization process. The first
one (Theorem 8.12). due to Tartar (1977a. 1978) (see also Bensoussan, Lions,
and Papanicolaou. 1978, Chapter 1. Theorem 3.3). proves that under suitable
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assumptions, if two matrices are in a given order, this order is preserved by
passing to the limit. The second one (Theorem 8.15) is a stability result due
to Donato (1983a). For other comparison results we refer to Colombini and
Spagnolo (1977) and Boccardo and Murat (1982).

Let us mention that all the results we prove here hold for the general non
periodic case.

Definition 8.11. Let B and D be two N x N matrices. We say that B is less
than or equal to D in the matrix sense and we write B < D, if

(B.\. A) < (D). \),

for allyA ERN.

Theorem 8.12. Let B and D be two Y-periodic N x N matrices in M(a, X13, Y),
such that

B < D. (8.43)

Suppose, furthermore, that B is symmetric. Then

B°<D°.

where B° and D° are the corresponding homogenized matrices given by Theo-
rein 6.1 (all the inequalities are taken in the sense of Definition 8.11).

Proof. Let wX.B and wa,D be given by problem (6.25) written respectively for B
and D. By Theorem 6.1 and using the symmetry of B one has, for any A E R1,

WA =
M -(BVu'a.

(8.44)
B)

Set (see (8.10) and (8.12))

5 wa.D(x) = Eu'a,D (). u'a.B(r) = Eu1a B ()
(8.45)

rla.D =
tDfVV,e.D

ila.B = BfV wa.B.

where

D£(x) = D(-). B`(x) = B(' }, a.e. on IIBN.

From (8.44) and from Section 8.1, we have the following convergences (see (8.11)
and (8.13)):

a) wa D A x weakly in H' (f2)
ii) w1 a) - A . a strongly in L2(f2)

tii) 71a.D 'D°A weakly in (L2(f?))N.

(8.46)
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and

{
i) wA R -' A x weakly in Hl(SZ)

ii) wa B A - x strongly in L2 ()) (8.47)

iii) na.B B°A weakly in (L2(1))N.

From assumption (8.43), and recalling that B is in AI(a,i, Y) and is symmetric,
it follows that

Be0(wA,B - wa.D) V(u"\.B - wa.D)
BEVwA B Vwa.B - 2B=Vwa.B Vwa.D + BEVw D Vwa D

Since from (8.43) one has
Be < DE.

we get

0 < BEVwa,B Vwa.B - Vwa,D + DEVwa.D Vu''\.D

Consequently, for any cp E D(Sl), cp > 0 one has

0 < BEVwA.B Vwa.B dx - 2 J BEVwA B Vwa.D cp dx

+J DEVw D V11"A,D SO dx. (8.48)
sz

We can now pass to the limit for e -+ 0 in each term of this inequality. For the
first term in the right-hand side, from (8.14) and (8.45) we have

J BEVwa.B Vwa.B cP dx = f r1A.B V(wa.e cp) dx - J rla,B VIP WA R
t si SZ

VcP u'a.B dx.
SZ

Hence, from convergences (8.47)ii and iii and integrating by parts, we have

lim r BE Vwa.B Vwa,B cp dx = - IQ B°AVcp (A x) dx = f(B0A, A) cp dx,
s

since B° is a constant matrix.
Similarly, for the second terns we get

fn BEVwA.B VWA,D `p dx

(8.49)

1A.B V w) dx - 171,B VW wa,D dx
It fo

7

dx,Vcp t1 A,D x,f
n
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so that, from convergences (8.46)ii and (8.47)iii, we obtain

E m r BfVwa,B VW D w dx = - f2 B°AVcp (A . x) dx = J (B°A, A) V dx.

Finally, since

J D£OwA D DW"\.D p dx = i tDEVwa.D VW'A.D o dx,

from (8.14) and (8.45), we get by a similar computation

if2

DEC/wa,D V wa,D dr = - J rlA,D V u'A.D dx.in
Consequently, from (8.46)ii and iii,

Eio DeOwa,D VW'.D V dx = j(D0A, A) dx. (8.51)
n

Passing to the limit in (8.48) and using (8.49), (8.50) and (8.51), one obtains

0 < -(B°A, A) f p dx + (D°A, A) f p dx.
n n

This gives the result, since cp is a non-negative function in D(().

Corollary 8.13. Suppose that the matrix A is symmetric and let A° be given
by Theorem 6.1. Then

A° E AI (a, f3, Cl).

Proof. The result is an immediate consequence of Theorem 8.12 applied to B =
A and D = 33f where f is the identity N x N identity matrix. Since A E
M(a, f3, Y), (8.43) holds and since obviously, (,31)° = ,Of, one has

A° < 01.

This, together with Proposition 8.3, ends the proof.

Remark 8.14. Let us observe that the ellipticity condition (8.20)(i) proved in
Proposition 8.3 can also be obtained from Theorem 8.12 applied to B aI and
D=A. 0

Theorem 8.15. Let B and D be two Y-periodic N x N matrices in M(a, 0, Y)
and B° and D° the corresponding homogenized matrices given by Theorem 6.1.
Then, there exists a constant c and q E R+ depending on a, 3, N and Y, such
that

1/q

b° - d° I < c (J I(Zij - bit I dy)
Y
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Proof. Set, as in the Proof of Theorem 8.12.

BE(x) = B(? ), DE(x) = D \i J, a.e. on RN,
e e/

and let CB and C, D be the corrector matrices corresponding respectively to B
and tD. They are defined b y (8.29) and (8.45) written f o r A = ej, i = 1, ... , N.

Let I be an arbitrary interval in RN containing at least one translated set of
Y. We prove first that

J
tCtDB`CB B° in D'(I)

tCED DE CB -- D° in V'(I).
(8.52)

(For the convergence in D'(I), see Definition 3.9). From the definition of cor-
rector matrices, an easy matrix computation shows that, for any i, j = 1, ... , N,
the corresponding elements of matrices tCD BE CB and t£C' D DE CB are respec-
tively,

(
(G'ED

Be C$f)2) = V2llE + !7
BE VwE8 = Be Vw7.B WD

VwE}
t 7. D

(tC6tD DECB)i' = VW1 tD DEVu = tD£ Vwi tDVW B.

The same computation as that used to

j(B°ejei)

prove (8.50) gives

r
ii
m J BEVwB V u'atD dx. = P dx = J d° cp dx

b° dx,
I I

for any i, j = 1, ... , N and V E V(I). Hence, (8.52) is proved.
From Remark 8.8, we know that there exists r > 2 (depending on a, ,Q, N and

Y) such that CB and C+ D are in L'(Y) N I N . Consequently, from Theorem 2.6
and Remark 2.10, one deduces that there exists a constant c depending on a, Q,
N and Y, such that

IICBiILr(I) 5 CIII. CIII

Let 71 such that I < it < r. Applying Holder's inequality (Proposition 1.34),
we have

i ItCtD(B-DE)CBI'q dx < II(tCn)''IiL{I) II (CB)'tliLn{!)

= IItC.CDiILr(1) lI(BE-DE)''IIL,(I) iiC'BIiL.(I)

< CIII IIBe-DEIIL.10(I).
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with

S r
(8.53)

Again, by Remark 2.10, one has

IIB' - DE411.(1) <_ c III L IIB - DII L.,E(y).

Therefore, making also use of (8.53). it follows that

if ItC=D

(Be
- D£) CB I" dx < c III IIB - DII L,,.,(Y). (8.54)

This shows that ICED (Be - D£) C" is bounded in (L"(I))NxN so that, from
Remark 1.45 (up to a subsequence), there exists a matrix P such that

tCtD (B£ - D6) Cc - P weakly in (Lh(I))NxN

But (8.52) allows us to identify the limit P with B° - D°. Therefore, the whole
sequence converges. i.e.

&Ct (Be - Dt) CB - B° - D° weakly in (Ln(I))N"N.

Recalling that B° and D° are constant, the lower semi-continuity of the norm
in L" (see Proposition 1.14), gives

III IB° - D°I'' = IIB° - D°IIi=,(1) < liminf II ICED {BE -

This, together with (8.54), implies

IB° - D°I < (111B - DIILn..(Y) <- c2IIB - DII L (Y)'

where c2 depends on a, 3, N and Y. This is the claimed result with q = rls.

8.5 Case of weakly converging data

Let us recall that in problem (8.1) the right-hand side f is fixed in H-1(52). A
natural question is whether one can consider the case where f depends on e.
One can easily answer this question when the right-hand side converges either
strongly in H-1(52) or weakly in L2(52). The result is contained in Theorem 8.16
below.

The situation is much more complicated if one has only weak convergence in
H-1(52). Theorem 8.19 deals with this case.

Theorem 8.16. Let At be defined by (8.2)-(8.4) and uE the solution of the
problem

I
div (A`vut) fE in 52

(8.55)
_11'=0 on 852.
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Suppose that { f E } is a sequence verifying one of the two following assumptions:

f" - f strongly in H-' (Q), (8.56)

or

fE - f weakly in L2(f2). (8.57)

Then,
uE u° weakly in Ha (1).

{ AeVue A°Vu° weakly in (L2(f2))N,

where u° is the unique solution in HQ (f2) of the homogenized problem

N

a

(Al9uo
---

axi ax;

u° = 0 on off t.

=f in f2

and the matrix A° = (a° )I<i.3<N is given by (6.35).
Moreover, one has the convergence of energies, i.e.

EE(ue) = J AEVne' Vuc£ dx -> E°(u°) = J A°Vu° Vu° dx,
in n

and also the convergence

AEVuE Vu` A°Vu° Vu° in V'(1).

Finally, if CE is the corrector matrix given by (8.29), then.

Vue - CEVu° 0 strongly in (LI(f?))N

If C E (Lr(Y))NxN for some r such that 2 < r < oe, and Vu° E (L8(fh))N for
some s such that 2 < s < oc. then

Vue - CEVu° , 0 strongly in (Lt (f2))N,

where
'

t = IIl1Il4
rr

2,
11 1'

1

+
S

S

Proof. The proof follows exactly the same outline as that of Theorem 6.1, Propo-
sitions 8.1 and 8.2 as well as Theorem 8.6 given in the previous section of this
chapter. The only difference is that in all the terms containing f, we have to re-
place it by f'. Assumptions (8.56) or (8.57) allow us to pass to the limit without
any difficulty in all the terms we have to treat.
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As mentioned before, the result is completely different in the case where we
have only a weak convergence of fl in H-1(1). In this case two main features
appear: first. we do not have a convergence result for the whole sequence Jul).
Secondly, the right-hand side is not the weak limit of fl but a function defined
in a complicated way in terms of the corrector functions w;. This result is due
to L. Tartar. In order to state it, we have to introduce some auxiliary problems.

Assume that f' is such that

f f weakly in H(0).

Let pE E HO (0) be the solution of the problem

{gyp,= f' inIl_p£=0
onOSl.

(8.58)

(8.59)

Let us introduce for i = 1, ... , N the following functions:

g; = Vw' V p£. (8.60)

where ww is defined by (8.10).
Romp Proposition 1.14, convergences (8.32) and assumption (8.58). we know

that
IlfIH-1(c) < C

IIu'FIIH=(91) < C.
(8.61)

where c is a constant independent of 6. Then. Theorem 4.16 shows that

IIPeIIH'(s1) < c. (8.62)

Then, by using Holder inequality in definition (8.60). from (8.61)(ii) we have the
estimate

U9;IIr.'( ) <_c. i=1.....N.
From Proposition 1.48 there exists a subsequence e' such that

g, - g, weakly* in AI(1). (8.63)

The following result characterizes the divergence of g*:

Proposition 8.17. Let g* be defined by (8.63). Under assumption (8.58) one
has

"r

dx = lim (f" Iv,'o i-1 axr (8.64)

+ (f a' for any p E V(Q).
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Proof. Let 4' = (41....4,N) E (D(12))' . Then

I
N

Vw; Vp,-bi dx

f VpV(w4);) dx -
J

VpwV4); dx
i=1 i=1 n
N N

> (fE+ 4 4)iH-'(57).111(12) - J VpEW Vii dx.
i=1 1=1

We will now pass to the limit as F -+ 0. To begin with, from (8.63), one has
obviously

limf?.dx=Jg*.4)dx.

On the other hand, observe that due to (8.58) one can easily pass to the limit
in (8.59) to get that

p£ - p weakly in HQ (S2).

where p satisfies the limit problem

gyp= f in S2

1 -P=O 0110Q.

Recall that w; satisfies

i) w; ri weakly in H' (12)

1 ii) w, xi strongly in L2(f2).

Consequently,

N

lint J VP ' w,' O4)i dx
:=1

(8.65)

N
Vp Ti v4bi dx

N N r
Vp V(xi 4i) dx - J Vp Vxi 4i dx

i=1
f

t i-1 12

N
N

(f. 4'i)11 dx
i=1 i=1 IQ axi

(f..r
J

Vp 4) dx.
st

Putting together this information we have

J g'" 4) dx
iz

liln (f' u, i)H-i{sz),H, (cm)

i=1

- (f..I (n) - f Vp 4)dx,
12
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so that

(g* - Op) -0 dx

N

lim (fE to ' i)H-1(S2).N0 (S2} - H-1(Q),HO'(c)
C, 0

f-1

Choosing here 4 _ 7'p with p e D(S1) and using the equation satisfied by p, we
get the desired result.

Remark 8.18. An interesting (and quite surprising) consequence of formula
(8.64) is the fact that the function div g* is independent of pE, since it only
depends on f", wj" and f. This means, in particular. that in definition (8.59) of
pE we can choose any elliptic operator instead of -A. For instance, let us define
PE by

div (BV j5,,,) = f'

{ AE=0 on C99.
inc?

for an arbitrary B E M(a,13. S2). Set

gi = Dug' , BV E.

Then, as before, there exists a subsequence e" such that

9: 9i weakly* in AI(S2).

One can follow step by step the proof of Proposition 8.17 (replacing every-
where Vp6 by BVp6) to get again (8.64), written for div g and the subsequence
e", i.e.

f g* V ip dx =
N

lim rf w;
x

)2 a
i=1 ` aft H-1(0),HD1(O)

+(f, (cp - x for any cp E D(Sl).

O

We are now able to formulate the following result:

Theorem 8.19. Let AE be defined by (8.2)--(8.4) and uE be the solution of
problem (8.55), i.e.

div (AEDu6) = fE in fl
{ uE = 0 on Otl.

with { f E } a sequence satis1 ving (8.58).
Then, there exists a subsequence e' such that

uu* weakly in Ho (St),
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where u* is the unique solution in HH (St) of the homogenized problem

a -div g* in 12- dxi
(

ax*

u* = 0 on W.

where

defined by (8.63), belongs to the space (L2(f?))N and a° is given by (6.35).
Furthermore, if the sequence if') satisfies (8.56) or (8.57), then

-div g* = f . u* = u°.

where u° is given by Theorem 8.16.

Proof. Obviously, from (8.61) we have the a priori estimate

IIUEIIH'(n) < C.

where c is independent of e. Introduce the vector al by setting

aE = AEVuC - V p,.

From (8.55) and (8.59), we have

-div aE = 0 in 12.

Moreover, from (8.62) it follows that

IIaEII(L2(II))N 5

(8.66)

(8.67)

independently of E. Consequently, there exists a subsequence of e' still denoted
by e', such that

i)

ii)

uE' - u*
u"

-> u*

weakly in Ho(f2)

strongly in L2(1l) (8.68)

iii)
n.E.

a* weakly in (L2(Q))N,

with
-div a* = 0 in Q. (8.69)

We now will identify the limit a* by using the definition of as'. We will show
that a* = AOVu* - 9(8.70)
which will imply that actually 9* E (L2(Sl))N, whence -div g* E H-1(12). This,
together with (8.66), (8.69) and (8.70), proves that u* satisfies the homogenized
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problem from the statement of the theorem. The Lax-Milgram theorem ap-
plied to this problem guarantees the uniqueness of its solution. Consequently,
convergences (8.68) will hold for the whole sequence e'.

Let now prove (8.70). To do so, set

Tz ' = aE' V w; ' , i = 1..... N, (8.71)

where wi' are the functions defined by (8.10). Recall that, by construction, wq
satisfy, in particular,

-div
(tAE'Vw;')

= 0 in 11 (8.72)

and convergences (8.65). Then, due also to (8.67), we see from (8.71) that
E Ll(S2). Then, for 0 E D(1) we can consider the integral

IE' = f4'wdx.
?

One has, by definition
r

IE' = J Ae'Vu£' Vwi' cp dx - f Vpe' Vw: v dx oE'Ow;' o dx. (8.73)

On one hand, from (8.66), we have

IE' _ foE'V(we' cp) dx - fcre' wi V cp dx = - J o E w' i Vp dx.
s

We can pass to the limit in the last integral by using convergences (8.65)11
and (8.66)iii to get

lim le' f o* xs Vw dx = - J a* V (x= gyp) dx + J Q* e; cp dx = u* cp dx,E'-0 10
where we have also made use of equation (8.69).

On the other hand, (8.73) can be rewritten in an other form as follows:

IE, L tACVwi'Vu-*'V dx - I VpE'Vw;'Vdx.
Jn

f tAE
Vw2 V(uE (p) dx - J tAE'Vu;,' uE Vsp dx - J VpE'Vw;' dx

- A Vw; u Vp dx - J Vpe'Vw2 fp dx.
st sa

where we used (8.72) with u"cp as test function. In view of (8.13), (8.60), (8.63)
and (8.68)ii, we can pass to the limit in all the terms above to obtain

lim IE'
e'-.o I o°e; u* Vo dx - J 9L p dx

fn
J (A°u*); V<p dx - r g= ;p dx

S2 in
_ J0vx_ J gp d:r.n



164 Tartar's method of oscillating test functions

Hence, using the former limit of I. we have

jo
ai o dx (AOVu*)i cp dr - f gi P dx.

S2 SZ

Since this is true for any i = 1..... N and cp is arbitrary in D(fl), this im-
plies (8.70).

It remains to prove the last assertion of the theorem. To do so, observe now
that, if either (8.56) or (8.57) holds. then in view again of (8.65),

N

hnl f E,

i=

xi app
axi

i=1

app

axi H(0).H,(0)

which, used in (8.64), yields

(-div 9* 9* V o dx = (f. `o)H-'(rZ).Ho(52}
st

Since cp is arbitrary in D(1l). this implies

-div g* = f .

Hence u* solves the homogenized problem (6.29), so by uniqueness u* = u° and
the whole sequence {ue) converges to uo.

The proof of Theorem 8.19 is complete.

Remark 8.20. Observe that under assumption (8.58), the convergence of of
can only be formulated for the subsequence e'. This is due to the fact that
convergence (8.63) holds in general only for a subsequence. 0

Remark 8.21. Let us mention that the set of possible limits u* does not depend
on the choice of pf since the limit problem in Theorem 8.19 is written for the
data -div g*. Indeed, as shown in Remark 8.18. -div g* (and consequently u*)
depends only on f", w2 , and f. 0

8.6 Convergence of eigenvalues

This section is devoted to the study of the eigenvalue problem and its behaviour
as a --+ 0. The result we present in this section is contained in a general one,
given by Boccardo and Marcellini (1976) concerning sequences of matrices in
M(n, f13, Y) (with no periodicity assumption). We give for our periodic frame a
direct proof following that of Kesavan (1979).

In all this section, we suppose that the matrix A E 11.1(cx, c3.0) is symmetric,
i.e.

aij = aji, for i, j = 1, ... , N.

Let its recall the general definition of eigenvalues and eigenvectors.
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Definition 8.22. Assume that B is a N x N symmetric matrix in M(a, p, S2).

The constant A is an eigenvalue of the operator B = -div (BV) with Dirichlet
boundary condition, if there exists u 0 0, a solution of the problem

Bu=Au in S2
{u=0 onOI2.

(8.74)

The function a is called an eigenfunction of B, associated with the eigenvalue A.
The set of the eigenvalues is called the spectrum of B.

The vector space of solutions of (8.74) for any fixed A in the spectrum of B,
denoted by E(A), is called the eigenspace associated with A.

Moreover, an eigenvalue A is called simple if the corresponding eigenspace is
of dimension one.

It is easily seen that the symmetry assumption implies that the eigenvalues
A (if they exist) are all real. Consequently, the variational formulation of (8.74)
is

Find (u, A) E 1Hfl(f1){0}] x R such that

JBVuVvdx._-Ajuvdxi (8.75)

Yv E 1101 (S2).

The following result is classical (see for instance Courant and Hilbert, 1962):

Proposition 8.23. Assume that B is a symmetric matrix in M(a, 13, Q). One
has the following properties:

i) The spectrum of B is a countable subset of R} whose unique accumulation
point is +00.

ii) For any eigenvalue A, the corresponding eigenspace E(A) is of finite dimen-
510I1.

iii) The space L2(11) is a Hilbert sum of all the eigenspaces of B.

Remark 8.24. In view of Proposition 8.23. one describes the spectrum of B as
a increasing sequence {A } with

0<A,<A2<...+oc.
where each eigenvalue is repeated as many times as the dimension of its corre-
sponding eigenspace.

Consequently, from (iii) of Proposition 8.23 there exists a corresponding se-
quence of eigenfunctions {u } which forms an orthonormal basis in L2(St). This
means (see Rudin, 1966) that

ui11jdx=bij,
S2
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where oii is the Kronecker symbol, and

V = J 11 uk dx uk, Vv E L2(1l).
k=1

Observe also that two eigenfunctions corresponding to two different eigenvalues
are orthogonal. 0

One has the following characterization of the eigenvalues (see for instance
Courant and Hilbert. 1962):

Proposition 8.25. Assume that B is a symmetric matrix in M(a, /3,1) and
let be the spectrum of B and the basis of eigenfunctions introduced
in Remark 8.24. For any e > 1, let We be the space spanned by the first e
eigenfunctions u1,. .. , ut. Then, one has the following characterization:

fn BVw Vw da-
At = max

wEWt u,2dx
si

where

min
w1W, _,

f BVwVw dx
S2

w2 dx

JI BVw Vu; dx
nun inax

WED( wEW

1 w2 dx
(8.76)

Dt = {W C Ha (1l) I dim W = e}.

Let now A£ be defined by (8.3) and (8.4) and the corresponding homoge-
nized matrix A0 given by Theorem 6.1. Obviously. A` is symmetric and by
Corollary 6.10, A0 is symmetric too. Consequently, Propositions 8.23 and 8.25
hold for both B = Af and B = A0.

Denote by {A } the sequence of eigenvalues of the operator A£ = -div (A' V)
and let {ul } be the corresponding sequence of eigenfunctions provided by Re-
mark 8.24. They are solutions of the problem

-div (A`V u7) = A' m4 in Il

uF = 0 on 011. (8.77)

= 1.114110(Q)

Similarly, introduce the spectrum {A1} of the operator A° = -div (A°V) given
by Proposition 8.23.

The natural question is if (At) is the limit of JA II ass --> 0. The following
result (see Boccardo and Marcellini. 1976, and Kesavan. 1979). gives a complete
description of the asymptotic behaviour of the spectrum of AE:
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Theorem 8.26. With the above notations, one has the following properties:

i) For each Q fixed,
a' - At.

ii) There exists a subsequence e' such that

e4' of weakly in HO(St),

where ue is an eigenfunction corresponding to AI. The set (ue) is an or-
thonormal basis of L2(Sl).

iii) If the eigenvalue At is simple. then the whole sequence converges to

ue

Proof. The proof is done in several steps.
Step 1. We first show that the sequence JAI J is bounded independently of e.
To do so, we make use of the characterization (8.76) from Proposition 8.25.

Let (wk) be an orthonormal basis, corresponding to ti = A° as in Remark 1.18
and We = [wl,.... we] be the subspace generated by wl,... , we. Then, us-
ing (8.76) for 13 = AE, we have

r AEVV, Vw dx J AEVvVv dx
f b< maxA min max

WEDt wEW r u,2 dx 4EWI

Jo
J IV2,12 dx

r
J A°VvVv dx

:5,3 max fff _ < max o
vEWt f 2'2 dx a vEii i / 1,2 dx

1 o

(8.78)

where we used assumption (8.4) and Proposition 8.3. This, together with (8.76),
gives

AE < ' A,. (8.79)
a

i.e. the sequence {ae} is bounded independently of E. Hence, for a subsequence
e", one has the convergence Af

A. (8.80)

The fact that At = At (and that the whole sequence Me"' converges to A,) will
be shown in Step 3.
Step 2. In this step we prove the convergence from statement (ii). Recall-
ing (8.77) and (8.79), from Theorem 4.16 we have the estimate

J 112dx
12

C
li46,11(n) 5

Y
aF <- a2-- ae.
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Consequently, there exists a subsequence c' such that

ut'

u£

u.f

-, u j

weakly in H1(12)

strongly in L2(1) (8.81)

AF' A.

where we have also used (8.80).
Now, Theorem 8.16, written for f e = Af a f, implies in particular, that ue

satisfies
div (A°Vue) = Ae ue in S2

U j = 0 on c'2,
(8.82)

which proves that ue is an eigenvector of A° corresponding to the eigenvalue Ae.
On the other hand, by using (8.81), we can pass to the limit in the following

identity:

U6 11c dx = 6,j.

So, the set (ue) is orthonornial in L2(1), i.e.

J u ul dx = 6th. (8.83)

Obviously, this implies that these functions are linearly independent.
Step 3. We now prove that A° has no other eigenvalues except those defined
by (8.80), (8.82) and (8.83). This will complete the proof of (i) and (ii) since the
eigenvalues are ordered increasingly.

We argue by contradiction. Suppose that there exists an eigenfunction w
corresponding to some eigenvalue A. i.e. satisfying

A° it? = Au in 1
{w°=0 oil 190,

(8.84)

and which is not given by (8.80), (8.82) and (8.83). Then, w does not belong to
any subspace generated by a finite family of linearly independent eigenfunctions
ue obtained above. Indeed, suppose that u' = F', ci ui, where ci $ 0 are
constants. Then, from (8.82) and (8.84), one has

n n: m
A ci ui = Alt' = A'u' = A° C'i ui = ci Ai ut.

i=1 i=1

Hence,

E(A-Ai)ciui=0,
i=1

which can hold only if A = A, since u, are linearly independent. But this is not
possible due to the assumption on it,.
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Now, since w does not belong to any subspace generated by the family (ue),
due to Remark 8.24, w is orthogonal to this family. From the property (i) of
Proposition 8.23, there exists an to such that

At,+1 > A.

Let us introduce U', a solution of the following problem:

AEU' = -div (AEV U`) = Au, in Il

{U'=0 onOfl.

We can apply Theorem 6.1 to this problem. So,

U' - U° weakly in Ho (0).

and U° is the unique solution in Ho (1l) of the homogenized problem

A°U°=Aw in St
U°={) oil 00.

From (8.84), the uniqueness implies that

w = U°.

so that

(8.85)

(8.86)

U' tv weakly in Ho (52). (8.87)

Since (u4) is an orthonormal basis in L2(1l). one has (see Rudin, 1966)

Ue =

Set

U£uL dx uk.

to ao

(in
ve = UE f U`uk dx uk U'uk dxe ue.

k=1 k=fo+1

fo
z"ukd.r=0, k=1.....to,

hence vE I Weo , where W fo is the space spanned by it i .... , upo . From Proposi-
tion 8.25, it follows that

A'OvvVye dx.
S1 (8.88)Aeo+1 f

s11,,,12 dx
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From the definition of vE, we have

in
AEDve VvE dx =

fo
AEDUE VUE dx

r

to-2 I. UE uk dx. I AEVUE Duk dx
k=1 J

to r r r
+ J U. uk dx J U__ u? dx J AEVuk Vu3 dx.

k.J=1

By using the variational formulation of (8.77) and (8.86), this can be rewritten
as follows:

r rr f to

in
AEV ve Ove dx = A J w UE dx - 2 J UE uk dx A J w uk dx

in k=1 sl s2

to 2

UE uk dx+ L aE ()o
k=1

where we have used (8.83). We can pass to the limit in all the integrals in the
right-hand side for the subsequence c' from (8.81). Denote by Wto the space
spanned by u1,....uto. By using (8.81), (8.80), and (8.87) and recalling that in
particular, w I WI.. we obtain

lim J A' VvE' VvE' dx
E'-.0 S2

On the other hand,

Irl
vE dx =

f eo

A
:12

dx - 2' r w uk dx A w uk dx
s2 k=1 Jst S2

o 2
r

+ E Ak J w uk dx = A J w2 dx. (8.89)
k=1 82 o

f
fo 2

(Ue)2 dx - 2 E ()o UE uk dx
k=1

to

+ U` uk dx UE ua dxdx
k.j=1 52

Jj4u

j(Ui2dx_>(f(Th4dz).
l

where we pass to the limit for the subsequence e'. We obtain by the same
arguments as before. that

r
to 2

r
lim r vF, dx = J u?' dx - w uk dx = I w2 dx.

S2 SZ k=1 Sl S2
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Using into (8.88) this convergence as well as convergence (8.89), we obtain

At,,+i < A.

which contradicts (8.85). This proves that ,A° has no other eigenvalues except
those defined by (8.80), (8.82), and (8.83). Hence, AF = At for any f.

To complete the proof of (i) and (ii), it remains to show that the sequence
{ue} obtained in Step 2 is complete. This can be done by contradiction.

Indeed, if this is not true, due to Proposition 8.23(iii) there exists an eigen-
function wa corresponding to some A which does not belong to any subspace
generated by the family {ui}. Then w is orthogonal to this family. From the
property (i) of Proposition 8.23, there exists an e, such that

At,+i > A.

Arguing now exactly as before with Ail+x instead of Aea+i, we have

Af,+i < A.

which is the required contradiction.
Step 4. It remains to prove the last statement of the theorem. Let Ae be a
simple eigenvalue and ue be a corresponding eigenfunction such that

1 (ut)2 dx = 1. (8.90)

Obviously, if the eigenvalue ae is simple, as a consequence of (i) and (ii), the
same is true for A (for a sufl"iciently small).

Let ue be an eigenvector corresponding to A , satisfying (8.77) and (8.83).
We can suppose that for any E

I uF uedx>0. (8.91)

From Step 2 (see (8.81) ), for any subsequence e' we have

F
ui pie,

where up is an eigenvector associated with A,.
Observe now that ue and ut are two eigenvectors corresponding to the same

simple eigenvalue Ae, so that there exists a constant c such that

1tt = cut.

Now, from (8.83) one has, after passing to the limit, that

J (ut)2dx=1
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which, together with (8.90), implies that ICI = 1.
On the other hand, passing to the limit into (8.91) yields

fo
u f ue dx > 0,

so that c = 1, i.e.
U( = up.

Thus the whole sequence {uF} converges to U. The proof of Theorem 8.26 is
complete.
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The two-scale convergence method

In the first two sections of this chapter, we present the two-scale convergence
method and we use it in Section 9.3 to prove again Theorem 6.1. As the multiple-
scale method, it also takes into account the fact that we have a `macroscopic'
scale x and a 'microscopic' one x/e.

The notion of two-scale convergence has been introduced by Nguetseng (1989)
and developed by Allaire (1992, 1994). It deals with the convergence of integrals
of the form

p
J vE() W i' x,

x
dx,

n e

where the sequence f v£} is bounded in L2(f) and .' = t'(x, y) is a smooth
function periodic with respect to y.

Notice that we have already met this kind of integral when applying Tar-
tar's oscillating test functions method. Indeed, this method is based on the
construction of functions of the forma uflx/c) (Section 8.1) whose products by a
function 0 E D(1) were used as test functions in the variational formulation of
problem (6.1) .

Let us also mention that the two-scale convergence method justifies math-
ematically the (formal) asymptotic development obtained in Chapter 7 by the
multiple-scale method. Moreover, in Section 9.4 we show that when the correc-
tor functions are sufficiently smooth, the two-scale convergence method gives a
very simple proof for the corrector result stated in Section 8.3.

9.1 The general setting

As in the previous chapters. Q is a bounded open set in RN and

Y =14. fl (x ... x10. PN (.

with e1i -IN given positive numbers, is the reference cell.
In this chapter we will use the following spaces:

Cper(Y), the subspace of C(RN) of Y-periodic functions.

CQ r(Y), the subspace of CI (Y) of Y-periodic functions.

Lpei(Y), the subspace of LP(Y) of Y-periodic functions in the sense of
Definition 2.1.
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Iiper(Y). the space introduced in Definition 3.48.

Wper(Y), the space introduced in Definition 3.51.

L2(11; Cper(Y)) and L2(Sl; WpeC(Y)), the spaces given by Definition 3.54,

Lpe!(Y: C(O)), the space of measurable functions u : y E Y -- u(y) E
C(St) such that Ile(x) IIC(ii) E Lper(Y).

D(Sl; Cper(Y)). the space of measurable functions on c x RN such that
ECp°Oei(Y) for any x e 1 and the map x 11 '- u(x,.) E Cr(Y) is

indefinitely differentiable with a compact support included in Sl,

C(SZ; Lper(Y)) the space of measurable functions on Sl x RN such that
u(x, ) E LPe!(Y) for any x E Sl and the map x E Si F-+ u(x, ) E LP(Y) is
continuous.

Throughout this chapter. as mentioned above, we will have to work with
functions of the form O(x, x/s). The properties of this kind of function have
been investigated, in particular, by Bensoussan. Lions and Papanicolaou (1978),
Donato (1983a,b, 1985), Allaire (1992). Some of these properties will be useful
in the sequel, so, for the reader's convenience. we recall them here.

Lemma 9.1.

i) Let E LP(Sl; Cpe1(Y)) with 1 < p < cc,. Then E LP(II) with

t . - l II < ')IJLP(i Cper(Y))/ L'(f)

and

,p > e 11,1 } y) dy weakly in L'(Il). (9.1)

In particular. if ep E L2(12; Cper(Y)). then

I rL

`
12

rr a 1 f [.p(x, y)12 dy dx. (9.2)E °JI cp
s> IYI.n Y

ii) Suppose that cp(x, y) = v01(X),;2(y), cpl E L"(52). 'P2 E L r(Y) with 1 <
r, s < oc and such that

1
+

1
=

1---
r' s p

Then E LP(Q) and

(.)(.)-f ;02 (Y) dy weakly in LP(c).
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Fig. 9.1 Bk for k = I and k = 2.

Remark 9.2. Suppose that is not a product as in statement (ii). One can
ask if there are other functions than that contained in LP(1l; Cper(Y)) satis-
fying (9.1). As far as we know, there is no precise characterization of these
functions, but some counterexamples show that one can not weaken the hy-
pothesis from (i) too much. For instance, bounded functions do not possess
property (9.1). Indeed, the following example (see Donato 1983a. 1985) exhibit
a function in L°°(1Z x Y) and Y-periodic in the second variable, which do not
converge to its mean value.

Introduce, for k E N* = N \ {0}. the set (see Fig. 9.1)

Bk = { (x, y) I (x. y) E (0,112. y ' kx ± c (mod 1), 1c1 < nk }.

where 11k = 1/(4/ k 2k) and

Va.heJR. a-b(mod1 ) 4=* 3zEZsuch that a-b=z.

Obviously, one has that

BkI <- k211kf = 2k+i'
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Then, if we set B = Uk
1 Bk, we have JBJ < 2 Ekr 1/2k - i

Let now h be the function defined by

1 if (x. y) E B
h(x, y) 0 if (x, y) E [0.1]2 \ B.

Clearly, since B is measurable, h is a measurable function, hence h E L00([0,1]2).

Let us still denote by h its extension by periodicity (of period 1) with respect
to the second variable to the whole [0, 11 x R. If property (9.1) were true, in
particular one would have, for any sequence Ek --* 0.

1 1 r

fh(x-_)dx=ffh(x.9)d.rdYJdX<.lirn

Consider the sequence Ek = 1/k. By construction

h(x. x ) = h(x. kx) = 1. for.rE[0,1],
\\ Ek

so that converges to 1. Consequently,

1 f
lim

h(x,a) dx=1.
ej--O JJo \\ Ek

which is in contradiction with the former inequality.
Let us finally mention that h has even more regularity than simple bounded-

ness, namely h E C([0,11, LPer(Y)). as was proved by Allaire (1992). Therefore,
the counterexample shows that a Lx(]0,1[xfl) n C([0,1), Ll (Y))-regularity isper
not enough to insure (9.1). 0

9.2 Two-scale convergence

We recall now the definition of the two-scale convergence and several important
results concerning this notion (see Nguetseng. 1989. and Allaire, 1992, 1994).

Definition 9.3. Let {v') be a sequence of functions in L2(1). One says that
{v£} two-scale converges to 270 = vo(x. y) with 11o E L2(SI X Y) if for any function
r/i = 0(x, y) E D(12; Cper(Y)), one has

e o is z'£ (x) V, (X. Ed-1' = [Y In Jt
1)0 (.r, y) 0(x. y) dy dx. (9.3)

Remark 9.4. Due to density properties, it is easily seen that if {v£} two-scale
converges to vo. convergence (9.3) holds also for any i' E L22e,(Y; C(SI)) as
well as for any -0 of the form V, (a% y) _ V), (y) y) with V1 E LO°(Y) and
02 E Lper(Y: C(SI)).

For the same reasons. convergence (9.3) is still true for any function i' of
the form ti(x.y) = 01(x)cp2(y), where cpl and Cpl are as in statement (ii) of
Lemma 9.1. 0
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Remark 9.5. It is easy to see that the two-scale convergence implies the weak
convergence. Indeed, if in Definition 9.3 we take i/ independent of y, then (9.3)
reads exactly as the following weak convergence:

vE V° =
1Y1 fy

y) dy weakly in L2(Q).

Clearly, if the two-scale limit v° is independent of y. then V° = vo, so that
the weak and the two-scale limit coincide. Observe also that if a sequence {vE}
two-scale converges, then it is bounded in L2(1l). 0

Remark 9.6. Suppose that the sequence {1ve} admits an asymptotic develop-
ment of the form

1. X
V6 (x) = v0x -) + ev1 ( x, - + + .. .

where vo, vi.... are smooth Y-periodic functions. Then, applying Lemma 9.1 to
./e) with bb a smooth function, one has that {v6} two-scale converges

to vo = vo(x, y), which is the first term in the development. This can justify a
posteriori the multiple-scale method from Chapter 7. 0

One of the main results on the two-scale convergence is the following com-
pactness theorem:

Theorem 9.7. Let {ve} be a bounded sequence in L2(Sl). Then, there exists
a subsequence {v"} and a function t'o E L2(1 x Y) such that {vf'} two-scale
converges to vo.

Proof. Let 0 E L2(1; Cper(Y)). Then, from the Holder inequality and Lemma
9.1, we have

IJ vE(x)O(x,
X}

dx+ < C
l1

(9.4)

where C is independent of s. This means (see Definition 1.6), that vE can be
regarded as the element VE of the dual space of L2(1l; Cper(Y)), such that

/ r
(VE, 4))(L2(12; Cper(Y)) =f

vE(W) O x, dx, bcp E LpeC(Y; C( )).

Moreover, from (9.4), we have

II / /Y
(I C.

Consequently, recalling (see Proposition 3.61) that L2(1l; Cper(Y)) is separable,
we can use Theorem 1.26 to extract a subsequence e' such that

VET - Vo weakly* in [L2((I; Cper(Y))]',
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so that

(Vo, )1L2(cz; Cper(v)))'.L2(c Cper(} ))

=
E

lini 0)1L2(f2; Cp.,(I'))1'.L2(S2: Cper(Y)) (9.5)

= E 111 J VEI (x) O (x, E i dx.
SI l

On the other hand, from the boundedness of {vE'}, the Holder inequality and
convergence (9.2), one has

el O1J1 ve (x) x, . dxl <_ C
IIL2

S2
CII0IIL2(S2xY)

This, combined with (9.5), gives

I(Vo, C'[I1042(01Y), (9.6)

for any 0 E L2(S1; Cper(Y)). Since, by Proposition 3.61. the space L2(c2; Cper(Y))
is dense in L2(1l X Y), inequality (9.6) holds for any function - E L2(11 X Y).
Therefore, V0 can be extended continuously to L2(St x Y) and so, from the
representation theorem (Theorem 1.36) the function Vo can be identified with
an element v E L2(S1 x Y) such that

(Vo, O)lL2(n; Cper(Y))1'.L2(ft; cprr(Y)) = f v(x, y)(x y) dx dy.
IxY

This, together with (9.5) leads to

lim in
vEI

(x) c6 I x, x) dx = J v(x. y)4(x, y) dx dy,
f2 l X Y

which (see Definition 9.3) means that zoo = IYIv is the two-scale limit of the
sequence {VE}. D

Another important result concerns the product of two sequences which two-
scale converge.

Theorem 9.8. Let {vE} be a sequence of functions in L2((2) which two-scale
converges to vo E L2(1 x Y). Suppose furthermore, that

[VU(X.y)12dxdy. (9.7)lim f IVE(x)]2dx =IYI f f
Then, for any sequence {w'} that two-scale converges to a limit wo E L2(1 x Y),
we have

lie wE --> 1 vo('. y) y) dy in V'(1). (9.8)
IYI
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Proof. From the density property (ii) in Proposition 3.61. there exists a sequence
{cpn} C L2 (S2; CpeT(Y)), such that for n -, oc,

cpn -+ vo strongly in L2(11 X Y). (9.9)

Consider now the integral

(x.v'(x)-V,.
-x.

dxf
(x)J2 dx - 2 fo v (x) pfi (x) dx + f{n(x. )]2dx ,J [ve

n \ C c

where we let a --+ 0. For the convergence of the first term in the right-hand side,
we use hypothesis (9.7). The second one converges simply by hypothesis while
for the third term we make use of convergence (9.2) from Lemma 9.1. We have
at the limit

vvo(x, y){pn (x, y) dx dylim
In

1'[ Jtt
f [vo(x y)J2 d r dy - 2 1

f 11,6-0

+ FYI ff d.rdy = lye
J

fivo - co (x,y)J2dxdy.

Due to (9.9), the last integral converges to 0 as n -+ oo, so that

Jim
r 12

Jim lim In = lizn lim +I
I J J [v(.r) - cp (x, x) I dx = 0. (9.10)fd00 _n n-oo e-+o Y ` E J

On the other hand, for any 5 E D(f l) one has

f VE(x) wE(x) Vi(x) da = fn -'pn (x.
E )J

wF(x) O(x) dx

+ J pf, (x. £ ) uw5 (x) &(x) dx, (9.11)

where we make first a -+ 0 and then n -+ oc. To do so, observe that by the
Holder inequality, Remark 9.5 and Proposition 1.14, one derives

r
l'l

xlim lim J [vE(x) - ;0" (a', -)] we(x) ii (x) dxl(-*noo E- o g 1

rr 2 '2xC lint lim
J

I UE(d') - (pn (.r, - ) dx = 0,
6ff

due to (9.10). Moreover, from (9.9) and the assumption that wE two-scale con-
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verges to wo. we have
f

lim lim J p (x,x

wE(x) rl'(x) dx
e--.0 u E

v'o(x, y) o, (x. y)tI'(x) dx dy1 ni
-1,- in I

F
I

Js J' wo(x. y)
.'o (x. y)tP (x) dx dy.

Therefore, from (9.11) one has

limo in ve(x)
we(x)' ,(x)

dx
4'(x)1 rwwo(x, y)t,o(x, y) dydx,

n
which is precisely convergence (9.8).

The next property gives further information on the two-scale convergence of
bounded sequences in H'(fl).

Theorem 9.9. Let {ve} be a sequence of functions in H'(1l) such that

11E - vo weakly in H' (R). (9.12)

Then {VC} two-scale converges to t'o. and there exist a subsequence 8' and vl =
vl (x, y) in L2(C2; Wper(Y)) such that

VvE' two-scale converges to V co + V vl.

Proof. Due to Theorem 9.7. one has a subsequence {E'} such that

f of two-scale converges to v E L2(Q X Y)

Vv" two-scale converges to V E [L2(f2 X Y)JN.

Hence, for any E (D(S1; Cper(Y)})
N.

one has

lira VvE (x) x ; d V (x. Y) - O(x, y) dx dy. (9.13)
IY{

By the definition of a derivative in the sense of distributions (see Definition 3.11),
it follows that

j C } ax = - Js are
X.

x
+ ; x' / J

dx.

i-1

Then, multiplying by s', one has
N e8'Tv (x) x

x
dxf ay:i-

r
= eVvE(x)' r N a(x. ) dr+ I (x, xxE 8, 7
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Passing to the limit as 0, by (9.13) and the two-scale convergence of (v£'),

we get
N

awifj '(x' y) ay,
(x, y) dx dy = 0.

This, by Green's formula (Theorem 3.33). yields in particular for any zL E V(S2 x

Y),

j y) t/(x. y) dx dy = 0,
112

hence, by Theorem 1.44,

Vyzv = 0 a.c. on 11 x Y.

Then, from Proposition 3.38 written in terms of Y we have

v(x,y) = a.e. on Il x Y,

which means that v does not depend on y. Then, due to Remark 9.5 and con-
vergence (9.12), v = vo E .H1(S1).

Let now E
(1)(Q; C r(Y))N such that divy

EN1

aly'+/clyz = 0. From
(9.14) we get

N x
vE Cx, dxlily, DvE,(x) - 'k (X, r

X ) dx line Ell,
N

t(x.y)dxdy
z=1

FY-1 jt Jr V
7vo(x) 41(x, y) dr dy,

(9.15)

where we have used the two-scale convergence of {v£' }. This, together with (9.13)
written for i' = T, gives

in J (V
(x. y) - Vro(x)1. 4'(x, y) dx dy = 0.

Y

We now make use of a classical result for which we refer the reader to Girault
and Raviart (1981) and Temani (1979). It states that if (F, 4p)L2 = 0, for any V
such that div cp = 0. then F is a gradient. This result applied here for F(y) =
V (x, y) - Vvo(x) a.e. on Q. implies that there exists a unique function vi E
L2(Q; Wper(Y)) such that

V (X. Y) - Vi'0(x) = Vyi'1('r. Y).

This ends the proof of Theorem 9.9. 0
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Remark 9.10. From assumption (9.12), we know that the whole sequence {Vv£}

weakly converges to Vvo. A natural question is whether this whole sequence is
two-scale convergent. The answer is negative. since the function V and conse-
quently, Vv1, can not be uniquely identified. Actually, from assumption (9.12)
and Remark 9.5, all we can say is that

Vvo(x) V (x,
y) dy.

which is not enough to insure the uniqueness of V. 0

9.3 Proof of the main convergence result

We prove now Theorem 6.1 by the two-scale convergence method. Let A and f
be given as in Theorem 6.1 and let HE be the solution of (6.1), i.e.

div (AEVuE) = f in n
-U'=0 on OQ.

whose variational formulation is

Find uE E Ho (Il) such that

JKVuEVVdX (9.16)
= (f (n), Vv E HQ(1).

We proved in Section 5.1 that there exists a subsequence (still denoted by e),
such that

x) uE u0 weakly in HO(SZ)

{ ii) of --; uo strongly in L2(1l).
(9.17)

From Theorem 9.9, we have that 11E two-scale converges to u°. Moreover, there
exists ul = ul (x, y) in L2(Q; Wper(Y)) such that, tip to a subsequence, Vu5
two-scale converges to Vxu° + V01. We will now prove that uo satisfies prob-
lem (6.29). Let vo E V(Q) and v1 E D(Q; Cper(Y)). Clearly. Ev1 E

Ho (fl), so that it can be taken as test function function in (9.16). One has

AEVuE ! Vvo(x) + EV,.v1 r. rl
+ VYvi \(x,

a)1
dx

L \ E E/

f, Ei'1
t ))H_1(n).H(n)`

J Vu'(rAE) [Vvo(x) + Vv(.r. }J d.r + t J AEVuf V,xuui
111

J dx
a / n

(f.
(9.18)

v0()+E',1(.))
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where we want to pass to the limit as a --> 0.
For the first term, this is possible according to Remark 9.4. Indeed, tAe is

in LO°(Y), Vvo(x) + V.,vl (x, y) is in Lper(Y; C(1?)) so that tAE(y) [Vvo(x) +
Vyv1(x, y)] can be used as test function in the two-scale convergence of W.
Consequently,

v°(x)+V,ulx,E)1 dxEi mJ Vue(tAe)[IV
n

(Vu°(x) +VVu1(x,y))(tA(y))[Vvo(x) +Vvl(x,y)] dxdy.

For the second term in (9.18). by using Lemma 9.1 written for p(x, y) _
Vxv1(x, y), the Holder inequality and the fact that AEVue is bounded in L2(S2)
(see 5.12), one derives that

AEVu` V;rvl (x. f) dx = 0.lira e fo
e--.o e

To pass to the limit in the last term, notice that. by the definition of v° and
v1 one has that

VO(') +et'1 (' J -' t,° weakly in Ho (S2).

Hence, passing to the limit in (9.18) as e - 0, we finally get

FI j J (Vu°(x)+Vuu,(.r.y))(tA(y))[Vvo(x)+Vuv1(x,y)]dxdy

= 1f, 1'0)H(11),N1, (n)

which can be rewritten as

I I
in 1 A(y) (Vu°(x)+Vyul(x. y)) (Vvo(x)+Vvl(x.y)) dxdy (9.19)

(f, V'o)H-I (it).ffo(11)

Let us show that this equation is a variational equation in the space

7-l = HO(12) x L2(fl: Wper(Y))

and that the hypotheses of the Lax Alilgranl theorem are fulfilled. Indeed, en-
dowing the space 7.1 with the norni

+
11V1112

IIVIIx =
IIVO112

)). V V = (v°. 171) E K,

the bilinear form defined by

a(U, V)
FYI

f f A(y) (Vu°(x) + V u, (x. y)) (Vvo(x) + V,vl (x, y)) dx dy
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for any U = (u°, ul) E It and V = (vo, vi) E 11, is clearly continuous on N.
Observe now that one has

a(V,V) ? yI IIVvo(x) + Vyvl(x,y)IIL2(nxy), V V = (vo,vj) E 7l, (9.20)

since A E M(a, Q, Y). On the other hand,

{

2 2 2
IIVvo(x) + VYVI(s, Y)1IL2(nxy) = IIVOIIHp(n) + IIv3IIL2(f?. Wper(Y))

+2J f Vvo(x) V vl(x,y) dxdy = IIVIIx,
n

f (9.21)

since, by the Green formula (Theorem 3.33) and the periodicity of v1 (Proposi-
tion 3.42),

in
Vvo (x) V v1(x, y) dx dy = f Vy V (V vo (x) v1(x, y)) dyJ I dx

V uo(x) vi (x) n() dsI dx = 0.

1

f Ifn

The coerciveness of a on fl is then established due to (9.19) and (9.20).
Furthermore, the map

F : V = (vo,vi)'--'

is obviously linear and continuous on R.
Hence, we can apply the Lax-Alilgram theorem (Theorem 4.6) to obtain the

existence and uniqueness of (u°, ul) E Ho (f') x L2(1l; Wper(Y)), the solution
of (9.19), for any (vo, v1) E HH (9) x L2(1; Wper(Y)).

Choosing now first v° - 0 and after vi - 0, we see that (9.19) is equivalent
to the problem

-divy (A(y) Vyu1(x. y)) = divy (A(y)) V u°(x) in SZ x Y

-div,r VY A(y)(Vv°(x) + V9ul(x.y)) dy] = IYI .f in Q (9.22)

u°=0 on OP
ul(x, ) Y-periodic.

To end the proof of Theorem 6.1. we will argue exactly as in Section 7.1.
Observe that the first line in (9.22) is precisely problem (7.15) and we proved in
Chapter 7 that its solution is of the form (7.21). i.e.

N

u1(x.y) = +ui(x), (9.23)
t=1 J
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where Z 1 E 0 in Wr(Y). The functions Xj satisfy

-div, (A(y) Dyx "',) N 8ai j (y) in Y=-
i=1

MY(X3) = 0

Xj Y-periodic,

for j = 1,... , N. Replacing ul given (9.23) in the second line in (9.22), one
obtains that u° satisfies (7.25), namely

N N
&k 82u0

- ask - a 7 a
dy

BxiC9xk
= IY1f

i,k=1 j=1 ly YJ

Reasoning as in Section 7.1, this implies that u° is the unique solution
of (6.29). Consequently, the whole sequence in (9.17) converges to u°. The
proof of Theorem 6.1 is complete. 0

Remark 9.11. Let us point out the main difference between Tartar's oscillating
test functions and the two-scale convergence one. The first method is based on
the use of oscillating functions, constructed specially for the matrix A under
consideration. The two-scale convergence method uses general oscillating test
functions which are not related to A but it needs to introduce special functional
spaces as done in Sections 9.1 and 9.2. Q

9.4 A corrector result

In this section, we place ourselves in the particular case where the homogenized
solution or the correcting term u1 are more regular. In this case the following
corrector result can be proved by the two-scale convergence method:

Proposition 9.12. Let ul be given by (9.23) and suppose that Dyxi E (L''(Y))N,
i = 1, ... , N and Du° E (LB (S2))N with 1 < r, s < oo and such that

1 1 _ 1

r+s 2

Then

DuE - Du° - Dyu1 1. - ! - > 0 strongly in (L2(1Z))N.
e

Remark 9.13. Observe that Vu'-Vu°-Du1 is nothing else than Vu-
CEDu°, where CE is the corrector matrix introduced in Section 8.3. Observe also
that Theorem 8.6 in the particular case t = 2 is exactly Proposition 9.12. 0
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Proof of Proposition 9.12. Due to the regularity assumption and the ellipticity
of matrix A, we have

allVuc - Vu° - )IIL2(n)

A (e) (Vuf(x) - Vt1°(x) - Vyui (x. -

(Vut(x) - Vu°(x) - V71u1 (x)) dx

1 of ) H- I r1i0

J (A + tA) (X) V uE(.r) [Vu°(x) + viyul \x' X )J dx

+f A(x) [Vu°(x)+V,ul(x, E\1
dx.

Let us show that the right-hand side of this inequality goes to zero as e -+ 0.
First, from Theorem 6.1 we have that

(f,U')H-1(0).H0I(Q) - (9.24)

Secondly, observe that due to Remark 9.4 the function (A+IA)(y) [Vu°(x)+
Vyu1(x, y)] can be chosen as test function in the two-scale convergence of Vu`
to Vu° + Vyu1. Then, using the symmetry of A + tA, we obtain

urn (A + tA) Vtt(x)1Vu°(x) + Vyul [ x, 0] dx

= im° Vue(x) [(A + to I (
) (vuo(x) + V"ul (x, e)) J dx

_'Y' J.JY(A+tA)(y)[Vu°(x)+Vyu1(x,y)] [Vu°(x)+Vyul(x,y)] dxdy

1
f 2A(y)[Vu°(x) +Vyu1(x,y)] [Vu°(x) +Vyul(x,y)] dxdy.

Lastly, set

4(x, y) = A(y) [Vu°(x) + Vyu1(x. y)] [V u°(x) + V yul (x, y)]

(9.25)

N °
A(y)Vu°(x) Vu°(x) - (A + tA)(y)Vu°(x) EVyxj(y) (x}

j=1 9

j=1

+A(y) EVvXj(y)aaxx) koyxk(y)a °(x}
=1 k
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We can apply to this function the statement (ii) from Lemma 9.1 written for
p = 1, to obtain

£i n J
A

(E) [v0(x)
+ vyul X' J u°(x) + v&u1 \x' a J dx

=IYIJcfy
A(y) [Vu°(x) + Vyul (x, y)] [Vu°(x) + Vyul (x, y)] dx dy.

(9.26)
Taking into account convergences (9.24), (9.25) and (9.26), we finally get

1i m{ (fi u)H-l(c),Ha(n) - f (A + tA) \
I J VuE(x) I vu°(x) + Vyul (x' )] dx

+f A( ) [vu°(x) + Vol
\x, -6)]

[vo()+vul(
x' E)J }

(f. u°) H- I (a), Ho (0)

A(y) [V u°(x) + Vyul (x, y)] [V u°(x) + V yul (x, y)] dx dy = 0,

where we used equation (9.19). Consequently,

lim VuE-Vu0-vyu1
E

L2(n)

< 0.

and this ends the proof of Proposition 9.12.

Remark 9.14. Notice that the regularity assumptions on Xs and u° are essential
in the above proof. If neither X, nor u° satisfy them, we can still prove in this
framework a convergence result in L1(Sl). The statement of Proposition 8.7 can
also he proved by two-scale convergence arguments. Then, one has to argue as
in the proof of Theorem 8.6. 0
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Homogenization in linearized elasticity

In this chapter we are interested in the asymptotic behaviour as E - 0 of the solu-
tion of the linearized elasticity system introduced in Section 5.2. We refer to Du-
vaut (1978), Sanchez-Palencia (1980), I3akhvalov and Panasenko (1989), Oleinik,
Shamaev, and Yosifian (1992), Sanchez-Hubert and Sanchez-Palencia (1992) for
this subject and to references herein.

In this chapter, we suppose that 0 is a connected bounded open set in RN
such that Oil is Lipschitz continuous and 8Si = r1 U t2 where T1 and r2 are
two disjoint closed sets and l", is of positive measure. Obviously, in the physical
models N < 3.

Notation 10.1. Throughout this chapter we adopt the Einstein summation
convention, i.e. we sum over repeated indices.

Furthermore, if B = (bijkh)1<i,j,k,h<N is a fourth-order tensor, and m =
(mij)1<i,j<N, m1 = (ml?)1<ij<N are square matrices, we set

Bm = ((Bm)ij)1<i,j<N = ((bijkh'mkh)ij)1<i,j<N

B m ml = bijkh mij mkh

When studying elliptic problems we defined, for any open set 0 of RN, the
class of matrices M(a, /3, 0) (see Definition 4.11). We need to define here a class
of tensors which plays an equivalent role for the elasticity system.

Definition 10.2. Let E R, such that 0 < a < Q and let 0 be an open set
of RN. We denote by Me(a, 3, 0) the set of the tensors B = (bijkh)1<i,j,k,h<N
such that

i) bijkhEL°O(0), foranyi,j,k,h=1,...,N
ii) bijkh=bjjkh=bkhij, for any i,j,k,h= 1,,..,N
iii) aIm12 < B m m for any symmetric matrix m
iv) IB(x)mI < Q1mI for any matrix m,

(10.1)

a.e. on 0.
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As classical in elasticity, let us introduce the linearized strain tensor e defined

by

e(v) = (eaj)z<i,j<N, eij(W) = 2
(Oxj

+ axi ), `di,j = 1,...,N, (10.2)

for any W = (pa, ... , c'N). Clearly, e(cp) is a symmetric matrix.

Remark 10.3. From Definition 10.2 it follows that if B E Me(a, (3,O), then

i) ale(cp)12 < Be(W)e(cp)

ii) I B(x)e(cp)1< f f e(cp)l,

for any cp = (<p1, ... , spN).
Also notice that from (10.2) and the symmetry property (10.1)(ii), the com-

ponents of the matrix B e(V) read

B e = b kh ekh (`p) = bijkh
&k

0

Let us now describe the periodic framework in which we work in this chapter.
As previously, introduce the reference cell

Y =10, fl [X ... x]0, IN [,

where el, ... , IN are given positive numbers.
Let A = A(y) be a fourth-order tensor such that

f dijkh is Y-periodic, V i, j, k, h /= 1,..., N

A = (aijkh)1<i,j,k,h<N E

Set

and

(10.3)

a ,jkh(x) = aijkh
E

a.e. on RN, d i, j, k, h = 1, ... , N (10.4)
(27

AE(x)=A( !}
It is easily seen that

(Eaijkh(x) 1<i,j,k,h<N a.e. on RN. (10.5)

At E Me(a,Q, St). (10.6)

We will study the asymptotic behaviour of the linearized elasticity system
introduced in Example 5.4, namely

E

' ax- (a,7kh qXh
= fi in

uE = 0 on l'; (10.7)
`iE

"j
kh

k n j = gi on r2
axh
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fori=1,...,N.
In Section 10.1 below we show the existence and uniqueness of the solution

of (10.7). In Section 10.2 and 10.3 we give the main homogenization results for
problem (10.7).

10.1 Existence and uniqueness

Let B E Me(a, $, 0) and consider the linearized elasticity system

-19x? (bilkh hh} = fi in

u=0 onrl

bijkh
a uk

aT
7tj = 9i on 1`2,

h

(10.8)

fori=1,...,N.
Denote by o = (Qij)i<i,j<N = B e(u) the stress tensor, defined by

aij = bijkh ekh(u). (10.9)

Thanks to Remark 10.3, system (10.8) can be rewritten in the equivalent
form

intl
4f

u = o on ri (10.10)

Qijnj=9t on r2

fori=l,...,N.
This allows us to write down a. variational formulation of system (10.8) to

which we will be able to apply the Lax-Milgram theorem. To do so, let us
introduce an appropriate functional setting.

As in Section 4.6, define the space V by

V= {v IvEHl(S1),y(v)=Oon Fi},

and set
V = (V)N.

Due to Proposition 3.36, V can be equipped with the norm

N

11v11V = F IIVV ItL2(1z) , (10.11)
i=1

f o r v = (v1, ... , vN) E V and it is a Hilbert space for the scalar product

(u, v)V = t(Vui,Vvi)L2(1?),



Existence and uniqueness 191

for u, v E V. Observe that V = (W)N.
Let us make the following assumptions:

i) B = (bijkh)1<i,j,k,h<N E Me(a,,3,Q)
ii) f = (fi, ... , fN) E V

11 (r2))N.iii) 9 = (91, ... , 9N) E (H

Here, the Hilbert space (H- z (r2 ))N is equipped with the norm

B(x)e(u) e(v) dx = (f, v)v',v + (9, v)(H-I(r2))N,(Hd (r2))"'' (10.13)

N
2

-I(r2) , Vh = (h1,..., hN) E (H (r2))N.
IIhII(H(r2))N

IIh:I'H
i=1

Notice that by construction

N

(h,
v)(H-

(r2))N,(H J (r2))N
Vt)H- (r2), -11 (12) '

VV E (H'(172)-
i=1

Then, the variational formulation of problem (10.10) is the following:

Find u E V such that

which can be rewritten as

Find U E V such that

{ a(u, v) _ (F, v), dv E V,

where

and

(10.12)

(10.14)

a(u, v) = J B(x) e(u) e(v) dx, Vu, v E V, (10.15)

(F,v) = (f,v)v',v+(9,v)(H-i(r2))N.(91(r2))'-
' (10.16)

Observe first that due to (10.12)(i) and definition (10.2), the bilinear form
in (10.15) is continuous on V x V. In order to apply Lax-Milgram theorem
(Theorem 4.6) we need to show that this form satisfies a coerciveness condition
(Definition 4.4). Notice that, due to Remark 10.3, we have that

al Ie(v)12 dx < a(v,v), Vv E V. (10.17)

Then, the V-coerciveness will be proved if we show that

III V III = j Ie(v)I2 dx (10.18)
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defines a norm on V, equivalent to (10.11). This is easy to prove for v E (H a (f ))N
and is known as the first Korn inequality. For functions which do not vanish on
the whole boundary ffl, such as the elements in V, the result is not obvious and
is based on the so-called second Korn inequality. We just recall this inequality
and for its proof, we refer the reader to Kondratiev and Oleinik (1989a,b, 1990)
and Oleinik, Shamaev, and Yosifian (1992).

Theorem 10.4 (Second Korn inequality). There exists a constant cK =
cK (f2) such that

IIVII(H'(n))N < cK [ 11vII(r.2(nl)}N + U Ie(v)I2 dx)
/

for all v E (H1 (9))N.

(10.19)

Inequality (10.19) has the following consequence:

Proposition 10.5. The quantity IIIvII! in (10.18) defineson V a norm equivalent
to the norm IIvIIv given by (10.11).

Proof. We follow the proof from Oleinik. Shamaev. and Yosifian (1992, Theo-
rem 2.5) which is done in two steps.
Step I. We prove first that I I I v II I is a norm on V. To do this, it is enough to
show that

(v E V. and Ie(v)I = 0) , v = 0. (10.20)

Let Ie(v)I = 0. This means that

c7v,+8v;=0. di,j=1,....N.
ax j axp

(10.21)

It is well-known in classical mechanics (see, for instance Love, 1944, Truesdell
and Toupin, 1960), that if v is a smooth function, these relations imply that
there exists a matrix m with m% = -mgt, and a vector b such that

v(x) = m x + b (10.22)

(actually, this follows easily by differentiating the relations in (10.21)). The
boundary condition on r1 gives that m. = 0 and b = 0, hence (10.20) holds.

If v is in V (but not smoother than H1), one still has (10.22). Its proof needs
an approximation of v by smooth functions with null linearized stress tensor. For
this point we refer again to Oleinik, Shamaev, and Yosifian (1992, Chapter 1,
Section 2.2).
Step 2. It is obvious that

IIItIll <cIlvlly,
where the constant c depends on N. Let us show the reverse inequality,

IIvIIv < cl IIIvIII, (10.23)
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where cZ depends only on Q.
We follow the proof from Oleinik, Shamaev, and Yosifian (1992, Theorem 2.5)

which is done by contradiction. Suppose that (10.23) is not true. Then, one can
find a sequence of functions v E V such that

i) 1IvnIIvr= 1

ii) lim le(vn)12 dx = 0.
n- 00

(10.24)

In view of Theorem 3.23 on Sobolev embeddings, there exists a subsequence, still
denoted by n, such that

vn v strongly in L2(1l). (10.25)

Then, from (10.19) and (10.24)(ii), it follows by linearity that

Ilvn - V,II(H1(S ))N le(vrt - vm)I2 dx:5 CK Ilvn - VmII(L2(n))N + (.fn

: CK I I1Vn - v:ri 11(0(n))^'

(j(Ie(vfl)12
z

+c2 + le(vm)121) dx

Therefore, from (10.24)(ii) and (10.25), {vn} is a Cauchy sequence in H1(S2), so
that

vn -> v strongly in V,

with
z) IIVIIv = 1

ii) fIe(v)l2dx=0.

Statement (10.24)(ii), together with Step 1, implies that v -= 0, which con-
tradicts (10.26) (i). Hence, (10.23) holds and the proof of the corollary is now
complete. 0

The main result of this section is the following:

Theorem 10.6. Under assumptions (10.12), problem (10.13) has a unique so-
lution u E V. Moreover,

IIuJIv (Ilflly, +C7(0)ll9ll(H-'3(rz))N)' (10.27)

where C.,(f1) is the trace constant defined by Proposition 3.31.
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Proof. From (10.17) and Proposition 10.5, the bilinear form (10.15) is coercive
on V. We have already mentioned that it is also continuous on V x V. On the
other hand, arguing exactly as in the proof of Theorem 4.21, we have that (10.16)
defines F as an element in V with

IIFIIv' <- If IIv- + Cry(1l)IIgII(H-4 (ra))N

All the hypotheses of Theorem 4.6 (the Lax-Milgram theorem) are fulfilled,
whence the claimed result. 0

Remark 10.7. It is interesting to notice that, due to symmetry properties of
B, the form a given in (10.15) is symmetric. Then, from Theorem 4.8, it follows
that the solution u of (10.13) is the unique solution of the minimization problem

Find u E V such that
J(u) = vent/ .1(v),

where

J(v) =

2
J B(x) e(v) e(v) dx - (f, v)v,.v - (9 v)(,,-

(rz))N.{hr (rs))N

for all v E V. 0

10.2 Auxiliary periodic problems

As in the scalar case (Section 6.1), we introduce a family of auxiliary periodic
boundary value problems posed on the reference cell Y and related to the tensor
A defined by (10.3). They are the corresponding corrector functions for the
linearized elasticity system. In Section 6.1 we defined two different families of
auxiliary functions since we did not supposed any symmetry. In the present case,
due to symmetry properties (10.1)(ii), we need to introduce only one family of
functions.

T o begin with, f o r any f, m E {1, ... , N}, let us define the vector-valued
function Pa(y) = by

Fkm(y) _ Ymbke k = 1, ... , N, (10.28)

where Ski is the Kronecker symbol. Introduce, for any 1, m E {1, ... , N}, the
vector-valued function Xl'n = (Xkm)1<k<N, a solution of the system

e(Xk - Pkm)--- (ai3i=0 , = ,...,N
h

Xk Y-periodic
My(Xk ) = 0
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which can be rewritten

0
aijkh

OXkm aaijem
~axj OXh C7xj

Xk Y-periodic

MY(Xk ) = 0.

(10.29)

in Y, i=1,...,N,

Using definition (10.2), the variational formulation of this problem is

Find Xtm E (WPQ,(Y))N such that

aY(Xtm, v) = f Ae(Pera) e(v) dy (10.30)
Y

Vv E (Wper(Y))N,

where

ay, (u, v) = J A(y) e(u) e(v) dy, Vu, V E (Wpet(Y))N (10.31)

nd (see 4.66)),a

Wper(Y) _ {v E Hper(Y); My(v) = 0),

with HpeC(Y) given by Definition 3.48.
Recall that due to the Poincare-Wirtinger inequality (Theorem 3.28), the

space (Wj, C(Y))N can be equipped with the norm

N

IItII(Wper(Y))N = E IloviIlL2(Y)
i=1

for v = (v1,...,VN) E (WpeT(Y))N.
As for problem (10.13), the existence of a solution of problem (10.30) is

based on the Korn inequality below corresponding to the periodic case. We refer
the reader to Kondratiev and Oleinik (1989a,b) and to Oleinik, Shamaev, and
Yosifian (1992) for its proof.

Theorem 10.8 (Korn inequality for the periodic case). There exists a con-
stant CK = CK(Y) such that

z

IIVIi(H1(Y))N < cK (f Ie(v)12 d)
Y

for all v E (Wper(Y))N.

Then one has immediately the following result:
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Proposition 10.9. The quantity
3

I I Iv I I Iy = Yy le(v) I' dy)
z

defines on (Wper(Y))N a norm equivalent to the norm IIvII(Wper(y))x.

We can now prove the existence and uniqueness of the corrector functions
Xem

Proposition 10.10. Assume that A satisfies (10.3). Then, for any t, m E
{1, ... , N}, problem (10.30) has a unique solution Xem E (Wper(Y))N

Moreover, its extension by periodicity (see (3.7)) to the whole of ]RN, still
denoted by is the unique solution of the problem

(aijkh Xk a:j
ax; OXh

} - ax,m in V '(R ), i = 1, ... N,
Xkp11

V-periodic

My(Xk ) = 0.

(10 32).

Proof. The existence and uniqueness of system (10.31) are straightforward by
the Lax-Milgram theorem (Theorem 4.6). Due to Proposition 10.9, we can take,
in Theorem 4.6, H = (Wpef(Y))N equipped with the norm IIIvIIIy. The, coer-
civeness of the form ay defined by (10.31) follows then from assumption (10.3)

and reads
alllvIll, < ay(v, v), Vv E (Wpei(Y))N. (10.33)

The proof of the second statement follows the outlines of the proof of Theo-
rem 4.28. 0

Set now, f o r any f, m E {1, ... , N},

wIm = -Xem + Pfm

which, from (10.29) satisfies

emfix?
` ai,jkh ask 1 = 0 in Y, i = 1, ... , N,

h

Wk'- -- Pk",

My (wkm - rkht) = 0.

In view of (10.30), its corresponding variational formulation is

Find wc'r` with werr, - pirra E (W per(Y))N such that
ay(wtm, v) = 0

VI) E (Wper(Y))N,

(10.34)

(10.35)
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Let still denote by XPm its extension by periodicity to the whole of RN. Then
Wtm = -X8m + PP- satisfies

e"z

-axe (a jkh
8 k 0 in D'(IRN), i = 1, ... , N,

h

wkm -"'" Y-periodic
(10.36)

MY(wk"`Pk"')=0.

Let us mention that further properties of functions Xtm, such as their sym-
metries, have been investigated by Lenc (1984).

10.3 Homogenization results

Let now turn back to system (10.7) whose variational formulation is (see (10.3))

Find U' E V such that

in
A£(x) e(u') e(v) dx = (f, t')v'.v + (g. t')(N_

2
(rz))^'.(A(r2))^'

Vi' E V.

(10.37)

The solution u' exists and is unique due to Theorem 10.6 applied with A'
instead of B. which is allowed due to (10.6).

We are now interested in the behaviour of u' as E -4 0. The homogenized
problem is given by the following result:

Theorem 10.11. Let f E V, g E (H-2(F2))N and A' be given by (10.3)--
(10.5). Let u' E V be the solution of (10.37). Then.

f i) it' 0 ° weakly in V.

1 ii) A' e(n£) - A°e(u°) weakly in (L2(I1))NxN

where u0 _ (tl°.... , uN) is the unique solution in V of the homogenized system

(a°kh
09 hJ

= f= in n

21°=0 oil IF,

r91°
ailkh Ilj =9 OI1 '2.

(10.38)

for i = 1...., N. The homogenized tensor A° = (a 1kh)1<z.j,k,h<N is con-
stant, verifies the symmetries of elasticity (10.1)(ii) and a coerciveness condi-
tion (10.1)(iii) for solve n°. Its elements are given by

U / khQijkh = MI Rijfr,rrfrir(a )) (10.39)

where wkh are defined by (10.34) and (10.35).
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Before proving this theorem, we give some other expressions for the tensor
A° from which, in particular, we deduce its coerciveness.

From (10.28), one immediately has

eem (Pkh) = 2
aPt h +

'p- h ) =
a

(1510.h + bth5mk).
ym

Then, using (10.34) in (10.39) it follows that

a°kh = MY(aijkh) - MY(aijtmeem(Xkh))

since

_ _ aXkh (10.40)

Y
f aijkh(y) dy - I1'I r aijtm(y) aym dy,

eem(Pkh) = 2(dtkO»mh + othamk)-

Proposition 10.12. Let A° be given by (10.39). One has

aj kh = 1 A(y) i'(idj) ((tl,kh) dy = 1
ay (w'1,

wkh),

FYI f +I'1

where ay is defined by (10.31).

(10.41)

Proof. The proof is analogous to that of Proposition 6.8. It consists in choosing
v = Xkh as test function in (10.30). After some easy calculations, we derive
(see (6.39))

A(y)
e(PFm - )( tm)

e(kkh) dy = 0,r
Y

which, together with (10.40). implies (10.41).

Corollary 10.13. Let A° be given by (10.39). Then, there exist two positive
numbers a° and 131 such that

A° E Al,(a° t3°, 9).

Proof. We have to prove (10.1). Properties (10.1)(i) and (10.1)(iv) are trivial
since A° is constant. The symmetries (10.1)(ii) are straightforward from (10.41)
and the symmetries of A.

It remains only to prove that there exists a positive number a°, such that

a° ImI2 < A° m m for any symmetric matrix m = (m)1<,<N. (10.42)

We follow the lines of the proof of Proposition 6.12. Let m be a symmetric
matrix. Then,

A°mm=aokhmijmkh = il,l jYl ay(Z,Z), (10.43)
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where Z is the vector w'j m,3. The coerciveness of ay implies that

A°mm>0.

Let us show that this inequality holds strictly if m 0 0. To do so, suppose
that m is a symmetric matrix such that A° m m = 0. The coerciveness (10.33)
of ay implies that

aIIIZIIIy = 0.

Hence, from Theorem 10.8, we have

V (Wk mzj) = 0. Vi, j, k = 1, ... , N.

Recalling definition (10.34), this means that

mkh, v i, j, k, h - 1, , N.
8Yh OYh

Integrating over Y, since xk is Y-periodic, one has

O=IYImkh. Vk.h=1,....N,

which implies m - 0. To prove the existence of an a° satisfying (10.42), we
argue as at the end of the proof of Theorem 5.10. 0

Proof of Theorem 10.11. We prove the result by the oscillating test functions
method due to Tartar which we used for the elliptic case in Chapter 8.

Due to (10.6) and Theorem 10.6. we have the a priori estimate

IItEII (H,(rz))N < -Oil lly' +C.(f)11911(H- (rs) )N)-a

Consequently, from Proposition 10.5, it follows that

f Ie(ue)I dx < e,
Z

where c is independent of e. Introduce the stress tensor (see
((Ti6)1<:,j<N = Af e(uE) defined by

23 - a kh ekh(u£),

which satisfies

in aE(x) e(v) dx = (f, v)v'.v + (g, v)(H-i (r2))N.(HI (r.,))N,

(10.9)) a' =

dv E V. (10.44)

Moreover, thanks to (10.6), one also has

1117 EII(L2(sz))NXN < c.
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From these a priori estimates, we have the following convergences (up to a sub-
sequence) :

j) of - u° weakly in (HI (Sf))N

ii) u£ - u° strongly in (L2(1l))N (10.45)

iii) o -i Q° weakly in (L2(I1))NXN.

We can pass to the limit in (10.44) to obtain

1(2
o-°(x)e(v) dx = (f,v)v,.v + (g, ir)(H_I(r2))N,(HY'(r2))N' `dv E V. (10.46)

As in Chapter 8, we have now to identify o° in terms of u°. Indeed, Theo-
rem 10.11 is proved if we show that

a° = A° e(-u°). (10.47)

since (10.46) is nothing else than the variational formulation of (10.38). On the
other hand, by Corollary 10.13 and Theorem 10.6 one has the uniqueness of such
a solution. This implies that (10.47) will provide the convergence for the whole
sequences in (10.45).

In order to prove (10.47), let us set

x\1 xw£h(x) eu}kh

( /
Pkh(.t'} - x[h

e ,

where Pkh_ Xkh and wkh are defined respectively, by (10.28), (10.29), and (10.34).
Recalling that Xkh is Y-periodic we obtain, in view of Theorem 2.6 that

t) u,Eh _ Pkh weakly in (H1(SZ))N

{ ii) wEh -> Pkh strongly in (L2(St))N.

Introduce the matrix

(10.48)

r,Eh(r) = A°(x)e(w )(.t) = 1.

where the notation ey means that the derivatives are taken with respect to
the variable y. Observe that by construction (see also the proof of (8.14)),
from (10.35) one has

J JEh e(z') dx = 0. VI' E (Ho(I2))N. (10.49)
tz

By the same arguments as those used to prove (8.13). we have the convergence

TEh - My(Aey(wkh)) weakly in (L2(1)) '

Recalling definition (10.39). this signifies that

(VEh)ij - a:jkh weakly in L2(Q). (10.50)
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Let now V E D(Q) and choose cow, as test function in (10.44) and eput as
test function in (10.49). We have

at 2 jue. [(w)t-(fix + (wf h)m 8xe] dx = (f, <Pweh)V',V,

[ueaM+u;.a jdx=0.je(tt)sodx+f(ii)tm
Observe that from the symmetry of Ae,

o e(wk ) = I?Ckh e(u`).

Consequently, by subtraction we obtain

2 J afm [(w) aV + (wkh)dx
f

/
(10.51)

2 j(uie)ern [UI
ax +um 8x, dx = (f,1w£h)V',v.
m l

Let us now pass to the limit in this identity as e -> 0 in (8.15). By using
convergences (10.45) and (10.48) and definition (10.28) of Pkh, we have

(1 1 _0 L. Ia(P , _._ r app 1 'jM

- 2
jam kh [uadx = (f, PPkh)V,V.

This can be rewritten in the form

L v° e(Pkhto) dx f okh gP dx + / at. kh ezm (u'°) cp dx

(f, c,pkh)V',V

By using (10.46) written for the test function v = 1pPkh, this becomes

j CTkh
iP dx = j a°emkh elm(u°) tP dx, Vgo E D(1l).

Hence Theorem 1.44 implies that

0 0 0
Crkh = almkh et", ('u ),

which is exactly (10.47). This ends the proof. 0

We adapted to the linearized elasticity system the proof of the homogeniza-
tion result for the scalar case. In the same spirit, most of the results from Chap-
ter 8 can easily be generalized to the present problem. We merely state here the
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convergence of the energy and a corrector result, whose proofs can be done by
following step by step the proofs of the analogous results given in Sections 8.2
and 8.3.

Let us define the energies associated respectively to problem (10.37) and
(10.38),

and

Then we have

EE(uc) = J A£ e(ue) e(u/) dx.

jA0e(u0)e(u0)E°(u°) = dx.
1

Proposition 10.14. Let uE be the solution of problem (10.37) and u°, A° given
by Theorem 10.11. Then,

EE(ue) E°(u°).

Moreover,
A£ e(ue) e(u6) -+ A° e(u°) e(u°) in D'(1).

As in the elliptic case (see Proposition 8.3), this result allows us to make
precise the constants a° and 3° from Corollary 10.13. As matter of fact, the
following result holds:

Proposition 10.15. The matrix A° given by Theorem 10.11 is such that
z

A° E Ale (Ck, A St) .

Finally, introduce the corrector tensor CE = (C?kh)1<i,j,k,h<N defined by

f
E

Cijkh(x) = Cijkh (C a.e. on 0

Cijkh(J) = eij(wkh(y)) a.e. on Y,

where wkh is given by (10.29) and (10.34).

Theorem 10.16. Let uE be the solution of problem (10.37) and u°, A° given
by Theorem 10.11. Then

e(uE) -CEe(u°) -> 0 strongly in (L1(SZ))NxN

Moreover, if C E (L7 (Y)))N` for some r such that 2 < r < oo, and Vu° E
(L8(SZ))N,N for some s such that 2 < s < oo, then

e(ue) - CEe(u°) -- 0 strongly in (Lt(g)))NxN,

where
rst =min 2,
r+s
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Homogenization of the heat equation

In this chapter we are interested in the asymptotic behaviour as E -' 0 of the
solution ue = ue (x, t) of the problem

u' - div (AEVu,) = ff in flx]0, T[
ue = 0 on oclx]O,T[ (11.1)

ue(x, 0) = u°(x) in Q,

where the operators div and V are taken with respect to the space variable
x E Q and ' denotes the derivative with respect to the time variable t E]O, T[,
with T > 0. We suppose we are given the source term f, and the initial state
u°. Here, as in the previous chapters, the matrix AE is Y-periodic and defined
by

a, (x) = aaj
x

a.e. on RN, d i, j = 1, ... , N (11.2)
e

and

where

At(x) = A(!) = (a J(x))1<=,i<N a.e. on RN, (11.3)

f a=j is Y-periodic, 'd i, j = 1, ... , N
A = (a=,7)1<i,j<<N E M(a, f3,Y),

(11.4)

with a,# E R, such that 0 < a < /3 and M(a, X13, Y) given by Definition 4.11.
As mentioned in Section 5.2, problem (11.1) is known as the heat equation,

since it models the heat transfer in composite materials when the temperature
ue is time-dependent. If ue and the source fe are independent of the time, prob-
lem (11.1) reduces to the Dirichlet elliptic problem (5.6) modelling the stationary
heat diffusion (see Section 5.2). Problem (11.1) is a particular case of a large
class of partial differential equations called parabolic.

As for the elliptic case, there is a very large range of results concerning
parabolic problems. For general results concerning parabolic equations, we refer
the reader to Lions and Magenes (1968a) (see also Pazy, 1974, Wloka, 1987,
Cazenave and Haraux, 1998). For homogenization results concerning the heat
equation, we refer to Bensoussan, Lions, and Papanicolaou (1978), Sanchez-
Palencia (1980) for the periodic case and to Spagnolo (1967, 1968), Colombini
and Spagnolo (1977) for the general non-periodic one.
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In Section 11.1 below we will show the existence and uniqueness of the solu-
tion of (11.1) in a variational framework, when ff is in L2(11x]O,T[) and u° in
L2(fl). For the definition and properties of various time-dependent functional
spaces used in this chapter, we refer to Section 3.5. In Section 11.2 and 11.3 we
give the main homogenization results for problem (11.1).

11.1 Existence and uniqueness

Let Q be a bounded open set in R" and consider the following problem:

u' - div (BVu) = f in 52x]0, T[

u=O ono9 x]O,T[
u(x, 0) = u°(x) in fl,

under the following assumptions:

Ii) B E M(a, 0, Sl)
ii) f E L2(SlxIO, T[)

iii) u° E L2(S1).

As in Chapter 3 (see Theorem 3.58) define

W = {v I v E L2(0,T; HH(ft)), v' E L2(0,T; H-1(Sl))},

which is a Banach space with respect to the norm of the graph, i.e.

IIvIIW = IIVIIL2(o,T; 110(0)) + IIv IIL2(O,T; H-1(SZ))

Then, the variational formulation of problem (11.5) is

Find U E W such that

(u'(t),V)H-1(n),Ho(n) +j B(x)Vu(x, t) Vv(x) dx
n

r
= J f (x, t) v(x) dx in D'(0, T),

u(x, O) = u°(x) in Q.

(11.5)

(11.6)

11 7( . )

by E Ho (S1),

Remark 11.1. The initial condition has to be understood in L2(fl) since, due
to Theorem 3.58, u E C([0, T]; L2(1l)). This implies, in particular, that

IIu(x, t)IIL2(n) = 11u°IIL2(n).liM

0

We prove in this section the existence and uniqueness of the solution of prob-
lem (11.7). To do so, we will use the Faedo-Galerkin method (see Lions and Ma-
genes, 1968a). This method is based on the fact that the Hilbert space H(0Q)
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can be approximated by a sequence of finite dimensional subspaces { Vm } as
m ---' oo. The proof consists in several steps. In the first one, we construct these
subspaces Vm. In the second step, for any m E N, we formulate an approximate
problem of (11.7) and show that it has a unique solution u,,,.. In the third step,
we give a priori estimates of u,,,, independent of m. In the fourth one, we pass
to the limit as m - oo and prove that u,,, converges in an appropriate sense to
a solution u E W of (11.7). In the fifth step, we prove a priori estimate on u. In
the last step we prove the uniqueness of the solution.

Let us point out that the main interest of this method is the fact that it
provides a priori estimates on the solutions u. In our context, this is essential in
order to study the asymptotic behaviour as a -> 0 of problem (11.1).

Theorem 11.2. Under assumptions (11.6), problem (11.7) has a unique solu-
tion u E W. Moreover, there exists a constant c depending on a, $, 11, and T
such that

IIuIIW + IIUIIL-(O,T; L2(n)) C(IIf IIL2(c x10,T[) + II0IIL2(n))

Proof. As mentioned above, the proof consists in six steps.

(11.8)

Step 1. To construct the subspaces V,,, we will make use of Proposition 8.23.
Let (we) be the orthonormal basis in L2(S2) given by (iii) from Proposition 8.23
and Remark 8.24 for the choice B = I in problem (8.75). This means that the
operator B is -A. Moreover, by definition the set (we) is orthogonal in NIP).

Denote by Vm be the m dimensional subspace of HO '(0), spanned by w1,. .. ,
wm

Let us introduce also the projection operator Pm from L2(Q) on V,,, defined
by

Pmv = Dv wi)L2(c) wi, VV E L2(c2). (11.9)
i=1

From classical results concerning Hilbert spaces (see for instance Yosida, 1964
Chapter 3), one has that

Pmv - v strongly in L2(Sl), Vv E L2(Sl), (11.10)

and furthermore,
IIPmIIc(L2(Q); L2(n)) S 1.

Moreover, the restriction of Pm to HO (11), namely

m

Pmv = E(v, wi)L2(n) wi,
i=1

Vv E Ho (Sl),

is in G(HH (f ); Ho (Sl)) and satisfies

IIPTIIC(Ho(ft);H, (n)) 5 1. (11.12)
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Indeed,

e
m

E(v, wi)22(n)IlowillLz(fZ)
i=1

E(II 11

v,w4)22(111IlVW,1122""
11OuII 112"") = IIvIIHo(11)

i=1

Moreover, as before,

P. v -> v strongly in Ho (S2) Vv E Ha (Q). (11.13)

Observe now that Pm can be extended to H-' (1) by setting
in

Pmv = E(v, wi)H-(f).H(c) wi, Vv E H-1(I).
i=1

Let us show that one still has

IIPmll.c(H-1( 2);H-'(s1)) < 1.

Indeed, for any z E K01(0), due to Remark 3.44, one can write

m

l(Pmv, 2 H-1(Sl),Ho(S2) I - E(V, wi)H-1(n),Ho(n) J
wi z dx

1i=1
M

= v, E(z' wi)
1( j=1

I(v,Pmz)H-1(12),Ho(sl)I S IIvIIH-1olk-IIH, (sl)

where we have used (11.12) and Remark 3.44. Then (11.14) is straightforward.
Step 2. Since, by assumption (11.6), u° E L2(St), if we set um = PtT2u',
from (11.10) we have

u°, -+ u° strongly in L2(1 ). (11.15)

Let now introduce, for any m E N*, the finite dimensional approximate problem

I Find um = E g (t)wj E Vm such that

x 0 = u° x in S2.Urn(+ ) m()

j=1

fn
uM (x, t ) wk dx B Vum (x, t) Owk dx

ff(xt)wkdx, in D' (0, T) dk = 1, ... , m

(11.16)
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From (11.9) and the initial condition in this problem, one has

m

> g (0)wj = urn(0) = um = {u°, w.?)L,(n) wj
J=1 j=1

which implies g,7"(0) = (u°, wj)L2(n), since w1,.. . , are linearly independent.

Consequently, problem (11.16) is a system of m linear ordinary differential
equations of the first order with unknowns ., ... , gm, which reads

d9k
in 7n

dt+' gj- (t) J BVw., vwk dx = J f (x, t) wk dx
j=1 n n

9k (0) = (u0, wk),

for any k = 1, ... , m. Classical results (see, for instance Coddington and Levin-
son, 1955, Chapter 3) give the existence and uniqueness of a continuous solution
g2, ... , gm of this system on the interval [0,T]. Hence, um is determined and
belongs to C([O,T]; Vm).
Step 3. We will now prove that um satisfies some a priori estimates. To do
so, let us multiply the kth equation in (11.16) by gk and sum over k from 1 to
m. We obtain

fUn(Xt)Um(Xt) dx + j BVum(x, t) Vum(x, t) dx f (x, t) um(x, t) dx.
n n

Recalling the ellipticity assumption on the matrix B and applying successively
the Cauchy-Schwarz inequality (Proposition 1.34) and the Poincare inequality
(Proposition 3.35) in the right-hand side term, we derive

at 11U ..111-P) + allu1fll fo(n)
<

Ilf IIL2(n)IIUTIIL2(n) _< CnIIf IIL2(0)IIU.IIHo(0)

_ IIfIIL2(n) J «IlumllHo(n)} <_ 2a II.fIIL2(n) + 2IIumIIH, (n),

where CO is the Poincare constant which is obviously independent of m. Inte-
grating over 10, t[ with t E [0, T], it follows that

Jt fTflum(t)II2() + aIlum(T)IIHa(n) dT < a Il f(T)IIL2(n) dr.

This, together with (11.15), implies that um E L°°(0, T: L2(1))nL2(0, T; Ho (S2))
with

IIumIIL-(O,T;L2(n)) + IIurjJL2(O,T;Ho(n)) < co(IIumIIL2(n) + IIfIIL2(nx(O,T))) < C1,
(11.17)

where co and cl are constants independent of m.
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We will now give an a priori estimate for um. In order to do this, remark
first that the equation in (11.16) implies that

(um (t), v)L2(n) _ (- div (BV)um(t) + f, v)L2(n), VV E Vm.

This means that
uTi1(t) _ (P,(f(um) + f)](t), (11.18)

where the operator Pm is defined by (11.9) and F div (BO).
Since B verifies (11,6)(i), it is easily seen that F E L(Ho(12); H-'(12)).

Therefore, for any um +E Vm one has
/ +

5 $IIUm(t)IIHo(n)-

Hence, .F(um) E L2 (O, T; H-' (12)) and in view of (11.17),

IIf(tim)IIL2(O,T;H-'(r2)) : QIIum(t)IIL2(O,T;H, (1 ))

5 C2(IIUfIIL2(n) + IIfIIL2(1x(O,T))),

where c2 is a constant independent of m. Then, using (11.14), one deduces
from (11.18) the following a priori estimate:

IIurIIL2(O,T;H-1(n))
< C3(IIurIIL2(n) + IIfIIL2(Qx(o,T))) <- C4, (11.19)

where c3 and c4 are constants independent of m.
Step 4. By using the a priori estimates obtained in Step 3, we now pass to the
limit in (11.16) as m - + oc.

Thanks to estimates (11.17) and (11.19), we can extract a subsequence (still
denoted by m), such that

u weakly* in L°°(0,T; L2(0))
u7, - u weakly in L2 (0, T; HO '(Q)) (11.20)

u;n u' weakly in L2(0,T; H

Indeed, the first convergence follows from Theorem 1.26 since from Proposi-
tion 3.59, one has (L'(O,T; L2(Q))J' = L'=(0,T; L2(cI)) and from Proposition
3.55 one knows that the space L' (0, T; L2(ft)) is separable. The other conver-
gences follow from Theorem 1.18 and Proposition 3.55, recalling that Ha (12) and
H-1(12) are reflexive.

Now let 0 be given in D(0, T) and v E Ho (f2). Multiply the equation
in (11.16) by (v,wk)L2(n),O and sum over k from 1 to m. We get, after inte-

gration in t over (0, T)
fTf

u',n(x, t) fi(t) (Pmv) {x) dx dt

T f
+ f fn B(x)Vum(x, t) ip(t) V (Pmv)(x) dx dt (11.21)

T
=f f f(x, t) ti(t) (Pmv)(x) dx dt,

0 n
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where we have used definition (11.9). We now let m -- oo here. All the terms
pass to the limit, thanks to convergences (11.20) and strong convergence (11.13).
We finally get

T
(u'(t), i&(t) v)H-1(n),HHI (n) dt + f'r fB(x)Vu(x, t) tp(t) Vv(x) dx dt

IT
= f f (x, t) 0(t) v(x) dx dt,

ci
(11.22)

which is exactly the variational equation in (11.7) since -0 and v are arbitrary
respectively, in D(0, T) and Ho (0).

It remains to show that u satisfies the initial condition u(x, 0) = u°(x). To do
so, observe that since um E W, equation (11.21) is still valid if a' 1E C°°([O, T]).
Choose a such that 0(0) = I and O(T) = 0. Then, integrating by parts with
respect to t in (11.21), one has

T ('- f J U'- (X, t) t,b'(t) (Pmv)(x) dx dt
0 2

T
+f f B(x)Dum(x, t) ?P(t) D(Pmv)(x) dxdt

f . r
f (x, t) z/0 (t) (P,,.iv)(x) dx dt + J u,, (Pmv)(x) dx.

o
We can pass here to the limit by the same argument as above using the strong
convergence (11.15). We obtain

r
B(- J T J

Jxu(x,
t) 0'(t) v(x) dx dt + jT x)Vu(x, t) (t) Vv(x) dx dt

rJo r r=J J f(x,t)b(t)v(x)dxdt+J u°vdx.
o n

Note that for the first term in this identity, due to Theorem 3.58 (iii) we have

in u(x, t) O'(t) v(x) dx = (u(t), 0'(t)v)H-1(n),Ho(n)

= -(u'(t), '(t) V)H-1(n),H1(n) + t I u(x, t)t(t) v(x) dx,

which can be integrated with respect to t. Since U E C([O, TI; L2(f2)) (see
Remark 11.1), we have

f
rT rJ (u'(t),'t'(t) v)H_1(0),HQ (n)dt +

J u(x, 0) v(x) dx

rT
+ J f B(x)Vu(x, t) 0(t) Vv(x) dx dt.

Jr
r r

= J f (x, t) 0(t) v(x) dxdt + J u°(x) v(x) dx.
no
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Observing that (fu(xO)v11.22) is still valid for E C°O([0,T]), we deduce that

dx = fn u0(x) v(x) dx, Vv E Ho (S2),

which by Theorem 1.44 implies the required equality.
Step 5. We now prove estimate (11.8). We show it for the solution u obtained
in the previous steps. This is not restrictive, since in Step 6 we will prove the
uniqueness of the solution of problem (11.7).

Estimate (11.8) for the solution given by (11.20) is a simple consequence of
estimates (11.17) and (11.19). Using again convergences (11.15) and (11.20) and
the lower-semicontinuity of the norm from Propositions 1.14(ii) and 1.24(ii), we
get from (11.17)

IItIIL0e(o,T; L2(c1)) + IIUIIL2(O, T; Ho(st))

< lim inf IlumIIL-(O,T; L2(f2)) + llm lnf Ilum IIL2(O,T; Ho (f2))m-oo m-+oo

< liminf I1umHHL2(O,T;Ha(1 )))

: CO urn (IIumJIL2(0) + IIfJIL2(nx(o,T)))

Co(IIu0IIL2(c) + IIfiiL2(szx(o.T)))-

Similarly, from (11.19) we obtain

II0IL2(O,T;H-=(n)) :5 C3(IIu0IIL2(f2) + IIfHIL2(lx(O,T)))

These estimates imply the required one (11.8).
Step 6. Let ul and u2 be two solutions corresponding to the same data. Their
difference satisfies (11.7) with f = 0 and uo - 0, namely

((ul - u2)'(t), u)H-1()),Ho(0) + f B(x)V(ul - U2)(x, t)) Vv(x) dx
f2

= 0 in D'(0,T), Vv E Ho(1),
(ul - u2)(x, 0) = 0 in f2.

Take v = ul - u2 and use Theorem 3.58. From the ellipticity of the matrix
B and Cauchy-Schwarz inequality (Proposition 1.34), we obtain

2 dt Ilul - U2IIL2(c) + allul - u2IIHo(n) < 0.

Integrating over 10, t[ with t E [0, T], it follows that

Z
e

I Iu1 - u2(t)IIL2(SZ) + R Ilul - u2(T)IIHo(0) dT < 0.

This implies that ul - u2 = 0. 0
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Remark 11.3. Let us mention that one can also take f E L'(0, T; H- 1 (0)) in
problem (11.5). Theorem 11.2 can easily be adapted to this case. For the sake
of simplicity, we have restricted ourselves to the case f E L2(fl x]O, T[). 0

11.2 The homogenization result

Let us now turn back to problem (11.1) with ff E L2(flx]O,T[) and U0 E L2(fl).
The variational formulation is

Find u£ E W such that

(ue(t),v)H(n),Ho(Q) + f Ae(x)Due(x,t)Ov(x) dx

r
u (11.23)

f fE (x, t) v(x) dx in D'(0, T), Vv E H0 (f2),
n

ue(x, 0) = u°(x) in f2.

The existence and uniqueness of ue is given by Theorem 11.2. We will now study
what happens when a --+ 0. Notice that the oscillations in (11.23) are only due
to the variable x. As will see below, in the homogenization process, the variable
t plays the role of a parameter and consequently, the homogenized matrix is that
of the elliptic case treated in the previous chapters. As a matter of fact, we have
the following result:

Theorem 11.4. Let fe E L2 (fl x ]0, T [), u° E L2 (1) and let uE be the solution
of (11.1) with AE defined by (11.2)-(11.4). Suppose that

i) u° - u° weakly in L2(fl)
4 ii) fe f weakly in L2(SlxJO, T[),

(11.24)

Then ue satisfies

i) ue -s u weakly in W,
(11.25)

{ ii) AfVue - A°Du° weakly in (L2(Ilxj0, T())"',

where u is the solution of the following limit problem:

u' - div (A°Du) = f in f?xJO, T[

u = O on 8flxj0, T[ (11.26)

I u(x, 0) = u°(x) in fl.

Here, A° is the homogenized matrix given in Theorem 6.1 by (6.30).

Proof. For the proof, we make use of Tartar's method of oscillating test functions.
We follow along the lines of the proof given in Section 8.1 for the elliptic case.

Observe first that since Ae E M(a, 1, f1), using assumption (11.24) and
Proposition 1.14, estimate (11.8) now reads

IIUJW + IIueIIL0c(O,T;L2(f2)) :! C(IIfejL2(1 x]O.TI) + IIueIIL2(1)) :5 C1, (11.27)
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where c and cl are independent of e. Moreover, if we introduce the vectorE
defined by

(x, t), ... , N (x, t)) = AE (t)VuE (x, t}, {11.28}

from (11.27) and assumptions on AE, one has

IIWEII(L2(nxjO,TU)N G I3CI.

Consequently, there exists a subsequence, still denoted by c such that

i) u£ - u weakly* in L°°(0,T; L2(Sl))
ii) uE u weakly in L2(O,T; HO, (S1))

iii) uE -' u strongly in L2(Slx10,T[) (11.29)

iv) ue - u' weakly in L2(0, T; H-1(1))
v) SE ° weakly in (L2(Slx]O,T[))N,

where we have used the compact injection W C L2(O,T; L2(&1)) = L2(flx)O,T[)
(see Theorem 3.58). Then, convergence (11.25)(i) holds for this subsequence.

From its definition (11.28) and problem (11.23), it is easily seen that CI
satisfies

rT r jJ J (x, t) Vv(x) cv(t) dx dt J f(x, t) v(x)cp(t) dxdt

J fT(U,E
(t), V)H-1(f1),Hu(0) o(t) dt,

for any v E Ho (S1) and cp E D(0, T). According to Proposition 3.59, this is
equivalent to

fJ
r ZT

f (x, t) Vv (x) So(t) dx dt = f fE (x, t) v(x)So(t) dx dt

-(U,V(P)L2(a,b; H-1(n)),L2(a,b; Ho(2)),

(11.30)

where we can pass to the limit due to convergences (11.29). We obtain that °
satisfies

W(t), v)H-I(t2),Ho(f2) + ff O °(x, t) . Vv(x) dx
2

= J f (x, t) v(x) dx in D'(0, T), Vv E HO, (Sl). (11.31)

At this point, as in the elliptic case, we only have to prove that

° = A°Vu. (11.32)
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We will make use, as before, of the oscillating test functions wAc defined by
(8.10), i.e.

wa(x)=Ewa(- 1 =A.x-EXIx M

where wa is defined by (6.27).
Let us recall the following convergences (see (8.11)):

r= wa A .r weakly in H' (St)

ii) wa --+ A x strongly in L2(12).
(11.33)

Introduce also the vector function
e = tA6VwE

rla >

which satisfies the convergence (see (8.13))

77a - My(tAVwa) = tAOA weakly in (L2(c )) v, (11.34)

and the equation (see (8.14))

,Vv EH o(1).

Let E V(1) and cp E D(0, T). Choose here v =,O u, p and integrate over 10, T[.
Then

f
r

f pu(x, t) x)(t) dx dt +f J o(x, t)(t) dx dt 0.
t o s2

(11.35)
Choosing now v = t wl in (11.30) and subtracting from (11.35) we obtain

T 1T1
(x,

t) . V (x) w co(t) dx dt - V (x) ue(x, t)(t) dx dt

r
= f f f£ (x. t) ih(x) u,' (x)cp(t) dx dt

- H-1(52)).L'(a.b: Ho(S2)),

where we pass to the limit by using convergences (11.24), (11.29), (11.32) and
(11.33) and obtain

TI
f C°(x, t) V '(x) (A . x) yp(t) dx dt

o n

-J T

J to°A VV,(x) u(x, t) ,(t) dxdt
t

T r

J
f(x. t) v(x) (A' dxdt

o n

- (u'.,O(x) (A x)P)L2(a.b. H-I(f2)).L2(a.b: Ho(SZ))-
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From equation (11.31), by the same computation as in Section 8.1 we deduce
(11.32).

To end the proof, we have to show that u satisfies the initial condition
in (11.26). We make use of the same argument as in Step 4 of the proof of The-
orem 11.2. To do so, choose cp E Cx ([0, T]) such that p(O) = I and cp(T) = 0
and u E D(f) in (11.30). Then, from Theorem 3.58(iii), one has

T T

f j(,e(x, t) Vv(x) p(t) dxdt = J J f£t) v(x) cp(t) dx dt
o o n

T

+f (uc(t), v)H-1(n),HI (n)1p'(t) dt +
J

u° v dx.

Thanks to convergences (11.24), (11.29) we can pass to the limit in this
identity to get

pT
°(x. t) Vv (x) v(t) dx dt =

IT
r f(x, t) v(x)w(t) dx dt

IT '
+ (ti(t)s v)H (92).yo(S2) v(t) dt + J u° v dx.

0

From this equality, multiplying (11.31) by cp and integrating with respect to t,
we obtain

1
T

(u'(t), '(t) 2')H-1(n).H1(s2) dt

T

(u(t), v)H--1(0).Ho(9) o (t) dt + f u°(x)v dx.- IT
This, together with Theorem 3.58(iii). implies that

u(x,0) = U°(x)-

To conclude the proof. observe that since A° is elliptic (see Proposition 6.12),
Theorem 11.2 provides the uniqueness of the solution of problem (11.26). Con-
sequently, the whole sequences in (11.29) converge. o

11.3 Convergence of the energy

Let uE be the solution of (11.1) whose variational formulation is (11.23), namely

Find u,, E W such that
f

(ue(t), V)H-I(0),H1(n) + J A6(x)Vv (x, t) Vv(x) dx

f
n

= J J fE (x, t) i'(x) dx in D'(0, T), Vv E Ho (St),

uE(x, 0) = u°(x) in f2.
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Let a be the solution of the homogenized problem (11.26) whose variational
formulation is

Find u E W such that

(u'(t),v)H-'(0).Hp(St) +f A°(.r)Vit (x.t)Vv(x) dx
(11.36)

J f (x. t) v(x) d.r in V'(0. T). b'v E Ho (1),
sz

u(x, 0) = -u°(x) in Q.

We introduce now the energies associated with these problems:

e 1 u 2 + j fA(x)Vue(xr) Vu£(,T) dxdTi) E {ue}(t} = II (t)IIz()
1

ii z(S2)
t A°(x)Vn .T.T) Vu(x.T) dxdT.E(u)(t) = tIt2 iu(t)1 1

12,

{
0 S2

Choosing v = uE in (11.23) and v = it in (11.36). it easily seen that

f i) Ee(ue)(t) = 2II1L°IIL2(st) + / fE(x.T)uE(x. r) dxdT

f (.1, .,r) it(x.T) drdr.2i) E(u.)(t) = 21Iu°Iit2(s1) + JO f
(11.37)

since from Theorem 3.58(iii)

d J
1u2(.r.t) dx = 2(u£(t). u(t))H-1(Q).Hi(n)

dt n
E

d
u2(x.t) d.r = 2(u'(t). it (t))H-'(st).H(s1)

dt st

The following convergence of energies holds true:

Proposition 11.5. Let fe E L2(S2x]O. T[), u° E L2(S2) and let uE be the solu-
tion of (I1.1) with A£ defined by (11.2) -(11.4). Suppose that

Ita)
uo o

tt) fe - f
strongly in L2(S2)

weakly in L2 (1) x 10, TI).
(11.38)

Then
Ee(v,) --> E(u) in C([O.T]).

Proof. Let us prove first that E5(u,) belongs to a compact set in Q[O. TI). Due
to the Ascoli Arzela theorem (see for instance Yosida. 1964). it is sufficient to
prove the following two properties:

i) IEe(u.e)(t)I < e. Vt E 10. T]

ii) IEe(UE)(t + h) - EE(ue)(t)I < 0(h), (11.39)

uniformly with respect to E. V t c [0, T - h]. V h > 0.
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where 0 tends to zero as h goes to zero.
Applying the Holder inequality in (11.37)(i) and using estimate (11.27), as-

sumptions (11.4) and (11.38), one has immediately statement W.
For the second statement, observe that (11.37)(i) yields

IEE(ue)(t + h) - Ee(uE)(t)I = fe (x. T)ue dx drr

h4IIUFII1.-(0.T:L2(Sl))JI1eIIL2(S)xJ0,T() :5 c1h4,

where we have again used the Holder inequality, estimate (11.27), and assump-
tion (11.38)(ii).

Hence, there exists a subsequence (still denoted by F) and some C E Q[0, T))
such that

EE(ue) -+ S in C([0, T]). (11.40)

We now show that S = E(u). Due to assumptions (11.38) and convergences
(11.29)(iii), one can pass to the limit in (11.37)(i) to get

lim EE(ue)(t) = E(u)(t)1 tlt E [0, T].

This identifies C in (11.40) and ends the proof. 0

Remark 11.6. From the above proof. it is clear that the strong convergence
of the initial data u° is necessary in order to insure that S = E(u). The weak
convergence would only give a compactness of E£ (u£) in Q0, TI). 0

11.4 A corrector result

We prove here a corrector result, in the spirit of Section 8.3. The proof makes use
of arguments from Brahinl-Ots111ane.ancfort, and Murat (1992). As for the
elliptic case. the convergence of the energy plays an essential role. The corrector
matrix is the same as that of the elliptic case, namely C6 = (G)1<3<N is
defined by

Cj (x) = Cij a.e. on St
(11 41).

b, a.e. on Y.
0Yj am

where 7r . and Oj are defined by (6.15) and (6.16). One has the following result:

Theorem 11.7. Let uE be the solution of problem (11.1). Let u and A° be
given by Theorem 11.4. Under 1 vpotheses (11.38) one has

i) uE -+ u strongly iii C([0. T]: L2(cl))

1 ii) Vu, -CEVu --> 0 strongly in (L2(0.T: L1(SZ)))N.
(11.42)
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Moreover, if C E (L'(Y))N"N for some r such that 2 < r < oo, and Vu E
(Ls(S2))N for some s such that 2 < s < oo, then

Vu, - CEVu 0 strongly in (L2(0, T: Lt p))) N,

where rs
t = iiiin

t
2,

.r + s

The proof of this result is based on the following proposition, which is anal-
ogous to the time-dependent case of Proposition 8.7.

Proposition 11.8. Suppose that the assumptions of Theorem 11.6 are fulfilled.
Set for any 4' E C°°([O,T]; P(Q))

PE(t) = III ue(t) - (t)IILZ(Q)

f+ J AE(x)(Vu- CD)(x. r) (V£ - CEV )(x, r) dx dr.
sa

Then

where

PE - p strongly in C([O, T]).

Ao(x)(Du-V4)(.r.r) (Vu-V)(x,r) dxdr.p(t) = 2IIu(t)-(D(t)I[22(cl)+J f
o

Proof. Remark that pE can be written as follows:

PC = PC + pl + p3.

where

2 L j AfVu£Dufd.rdret) lIIue(t)IIe2(S2) +P'(

10,

U fZ

PE(t) = f
i

A£ (CieD4i) {CEV
s

r ft
pi(t) = J uE 4idr + J f A' (C£V$) Vu, dxd

s o st

f+ fgu (C`V) d i dr

)dxdr

r

.

(11. 43)

We now prove the convergence in C([0, T]) of each term of this decomposition.
First term. Notice that pf is nothing else that the energy EE(uE). Hence, by
Proposition 11.5,

pF E(u) = 2II'u(t)II 2(sZ) + j f A°(.r)Vu(.r. r) Vu(x.r) dxdr in C([O,T]).
u

(11.44)
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Second term. We obtain first a pointwise convergence of the second term P;.
To do lo. thanks to convergences (8.32) and (8.35). we make exactly the same
computation as in (8.42) (with 4 replaced by 040). the variable t playing the
role of a parameter. So,

t

PF -' ffA0(r)V(x,r) V (xr) dxdr for any t [0,T].

(11.45)
It remains to show that pE is a compact of C([0. T]). Due to the compact injection
W1,OO(0,T) C C([O.T]) (see Theorem 3.27(iii)). it is sufficient to prove that pf
is bounded in W (0, T), i.e. that there exists a constant c independent of e
such that

II PEIII.- (O.T) + II (PE)'IIL-(0.T) < C.

Clearly, we only have to check this estimate for the second term in defini-
tion (11.43) of p£. since 4 is regular and independent of e. This estimate is
a consequence of (8.30)(i) and the assumptions on A. so that.

IIPf11L-(0.T) + II(P?)'IIL-(o.T) <_ el(T + 1) dIICElli=(n)IIV$II2i x(s2x1o.r[) <

This, together with (11.45). gives

PE _ 2II4?(t)'Ii2(Q) + Jot f (.r. r) r) dcdr, in C([0, T]).

(11.46)
Third term. We proceed as for the previous term. Remark first that the
pointwise convergence

judx rr
f f+J J AOV(4Vudxdr+AoVuuVdxdr

2 0 S2

r

2

for any t E [0, T],

is straightforward by using the same computations as in (8.40) and (8.41) and
convergence (11.25). We now prove that p3 is bounded in H 1(0, T) , showing
that.

IIP31ILx(O.T) + 1I'PE)'IIL2(O.T) 5 C.

A priori estimates (11.27) for it,, convergence (8.30)(i) and the assumptions on
A give immediately the boundedness of IIP£ 11L - (o.T) One the other hand, from
Theorem 3.58 (iii). one has

(pE)'(t) (u' (, t). b( t)),i (f2).tr,,(S2) + f tt£(x. t) 40'(x. t) dr.
52

+ f AE (C V4') Vu. dx + j AEDu_ (C`V(D) dx.
t

From this expression, the boundedness of 11(Pe )' II L2 (O.T) is obvious by the Same
arguments as above. Then. from the compactness of the injection H1(0,T) C
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C([O,T}) (see Theorem 3.27(iii)), one has the convergence

r rt ft r
p£ -->J it fidx+J f A°04iVudxdr+J J A°VuV4dxdr inC([O,TI).

sz o sZ rti sl
(11.47)

Recalling that pe = pE+p£+p3, from definition (11.43) and convergences (11.44),
(11.46), and (11.47), an easy computation gives the claimed result.

Proof of Theorem 11.7. We will prove here only convergences (11.42). since the
last statement of Theorem 11.8 follows by the same arguments as the last state-
ment in Theorem 8.6.

Let 6> 0 be given. From Proposition 3.60. there exists 4D6 E C°°([O. T}; D(c )),
such that i) In - L2 (0)) <- d

ii) II 7u - oqD6IIL2(szx]o.T[)
< 6.

Then, if one writes

one has

Ite - It = (ue - 4'6) + (4)6 - a).

(11.48)

Ilue - U112 2
L2 (n)) < 2(IIv -- 1,2(r)) + II4's - UIIC.([o.TJ: L2(r1)))

< 2IIIt, - 4,6IIC([o.Tj: L2(0)) + 26. (11.49)

We will now estimate the term IIu6 - LZ(SZ)). To do so, set

pelt} = 2IIue(t) - 06(t)IIL2(Sl)
rt

JAE(x)(Vu+J- C=
o

Va)(x.r) (Vuf -C6V4)(x,r) dxdr.

(11.50)
Using the ellipticity condition of A% one has

t

2allue(t) - q)611L2(st) +tr I Ilvue - CEV061IL2(r1) <P(t).
0

Then, from Proposition 11.8. we have

Jim sup 1l+ue(t) - -t61t)IIf2(r) < JiIIIslip 1IPE!I('([o.Tj) = IIP611C([°.Tj),-.0 2 E-o

where

P6(t) = 211u(t) - '6(t)II12'2(r1)

t

(x)(Vu - V4?6)(.r. r) (Vu - V4>6)(x, r)f fn A°
o

(11.52)

(11.53)
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Using now Proposition 8.3 and (11.48) we obtain

z

IIP6IIr([o.Tt) < (1 + a

Then, from (11.49) and (11.52), we have

limsup IItc - UII ([o.T]; 12(n)) <

which implies (11.42)(i), since d is arbitrary.
To show (11.42)(ii), let us write Vu, - CEVu in the form

Vue - CEVu = (VuE - CEV4)6) + CE(V4'6 - Vu).

From the Holder inequality. (8.30)(i) and (11.48)(ii). we have

T
limsup f VU, (t) - CEVu(t)Ili,l(n) dt

£_.o 0

*2limsup
fT

T
+ 2lim supf IICEV4 s(t) - CEVu(t)II L (n) dt

e-.o 0
T

< limsupcl VII,(t) -CEV4p6(t)II22(n) dt
E-Q fo

T

+2limsupf IICEIIL2(n)IIV'D6(t) - Vu(t)IIi2(n)dt
Q

T
< lim sup c1 f II VU. (t) - CE V4?6 (t) II i2(st) dt + c2 J.

e-.0 Q

(11.55)

Let us estimate the integral term in the right-hand side. Using (11.51) written
with t = T, definitions (11.50). (11.53). and Proposition 11.8. it follows that

T
lim upf IIVuE -

CEVt6II%2(n)
< - hi opi(T) = !P6(T).

which, together with (11.54), gives

T 2

limso sup f IIVuE - (2 + a) 5.

This, used in (11.55), ends the proof of (11.42) (ii). The proof of Theorem 11.7
is complete.
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Homogenization of the wave equation

In this chapter we are concerned with the asymptotic behaviour as s -> 0 of the
solution uE = u£(x, t) of the wave equation introduced in Section 5.2 (Exam-
ple 5.3), namely,

uE - div (AEVuE) = fE

uE = O on c flx]0, T[

uC(x,0) = u° (x) in SZ

u'(x, 0) = ue (x') in Q.

in Sl x ]O, T[

(12.1)

where as in the previous chapter, the operators div and V are taken with respect
to the space variable x E SZ and ' denotes the derivative with respect to the time
variable t E]O, T[ with T > 0. We suppose we are given the source term fE and
the initial states u° and u£. The matrix AE is Y-periodic and defined by

a fi(x) = a,j ( a.e. on RN. `d i. j = 1,... , N (12.2)

and

where

(12.3)AE(x) = At ± ) _ (al {x)) I<<j<N a.e. on RN.

aij =aj,, di.j = 1,...,N
aij is Y -periodic, V i. j = 1.... , N (12.4)

A = (a,j)I<i,j<N E M(a.13, Y),

with a, $ E 1R, such that 0 < a < A and M(a.13, Y) given by Definition 4.11.
Let us point out that in this chapter. contrary to the elliptic and parabolic

cases, we assume that the matrix A is symmetric. This assumption is essential
in the existence result.

Problem (12.1) is a particular case of a large class of partial differential equa-
tions called hyperbolic equations. For general results concerning this kind of
equations, we refer the reader to Lions and Magenes (1968a, Chapter 3, 1968b)
(see also Wloka, 1987; Lions, 1988). For homogenization results concerning the
wave equation we refer to Bensoussan. Lions. and Papanicolaou (1978) for the
periodic case, and to Brahiiu-Otsnlane, Francfort, and Murat (1992) for the
general non-periodic one.
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In Section 12.1 we will show the existence and uniqueness of the solution
of (12.1) in a variational framework when fe is in L2(Q x ]O. T [), u° in Ho (S1)
and uE in P(Q). For the definition and properties of time-dependent functional
spaces used in this chapter. we refer again to Section 3.5.

In Section 12.2 and 12.3 we give the main homogenization results for prob-
lem (12.1).

12.1 Existence and uniqueness

Let Sl be a bounded open set in R "V and consider the following problem:

u" - div(BVzi) = f in 52x]0. T[

v=0 onOflx]O.T[
(12.5)

u(x. 0) = u° (.r)

u'(r. 0) = u 1(.r)

under the following assumptions:

in )
in Q.

i)

ii)
B is symmetric and in AI (a. 0, 11)
f E L2(Slx]O,T[)

(12.6)
iii)
it')

UO E Hj (S2)

u1 E L2(fl).

Let us introduce the space

W2 = {vv I t, E L2(0.T: HQ (Q)). I,' E L2(Slx]O.T[)}.

which is clearly a Banach space with respect to the graph norm defined by

110(W2 = II1'IIL1(O.T: Ha (S?)) "} IIU'IIL2(S2x)O.T[)

Then, the variational formulation of problem (12.5) is the following one:

Find it `F W2 such that

(U" (0, V)H-I(f).H' (I) + if t) VI,(x) dx

= f f (.r. t) d.r in 1?'(0. T). Vv E HO '(Q) (12.7)

u(r.0) = u°(x) in S2

u'(x, 0) = ul (x) in Q.

Remark 12.1. Suppose that u is a solution of (12.7). under assumptions (12.6).
Then one has the equality

u" = div (BVu) + f in D'(1 x]0. T().
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therefore
u" E L2(O.T; H-'(51)).

Consequently, Theorem 3.58(ii) applied to u E W and U' E W1 implies

u E C([O,T]: L2(f1)), U' E C([O,T]: H-1(Q)), 12.8)

so that the initial conditions make sense in L2(S2) and H-'(51). respectively. Q

We have the following result:

Theorem 12.2. Suppose that assumptions (12.6) are fulfilled. Then problem
(12.7) has a unique solution u E W2. Moreover.

it E L°O (0, T; Ho (51)). u' E L' (0, T: L2(51)), U" E L2(0, T; H-' (52))

and there exists a constant c depending on a. 13, 52, and T such that

+

II-IIL-(O.T; H'(Q)) +IIU'IIL'(O.T: L2(%I)) + IIu"IIL2(O.T;H-1(n))

(129).

S c(11f11L2cszxlo,rI) + IIu°11L2(n) + IIu'IIH

Before proving this theorem, let us mention that the solution it is even more
regular. We recall the following result due to Lions and Magenes (1968a, Chap-
ter 3, Theorem 8.2):

Proposition 12.3. The solution u given by Theorem 12.2, is such that

u E C([O,T]: Ho (S1)). u' E C([O,TI: L2(Q)).

Moreover, if the data are more regular, namely

1i) f E C((O.T]: HO'(51))

ii) 0 l° E Ho (S1) and Vu° E H'(52).

iii) u' E Ho (S2)

then
u' E C([O. T): Ho (S1)), u" E C([O. T]: L2(cl)).

In the proof of Theorem 12.2. we will make use of the following simplified
version of the classical Gronwall's lemma:

Lemma 12.4. Let v a function in C([0. TI) and suppose that there exists a
positive number ry such that

t
v(t} < + f r(r) dr, V t E [D. T]. (12.10)

0

Then

i'(t) <.)eT. t1't E [O.T].
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Proof. Inequality (12.10) can be written as follows:

d e
Lt i,(T)dr

which by integration leads to

I
t

7v(T) dT < -y(et - 1).

This, replaced into (12.10) gives the result. 0

Proof of Theorem 12.2. As for the heat equation (see section 11.2), we will use
the Faedo-Galerkin method.

Step 1. Let (we) be the orthonormal basis in L2(St) given by (iii) from Propo-
sition 8.23 and Remark 8.24 for the choice B = I in problem (8.75).

Denote by V,,, be the m dimensional subspace of Ho (11), spanned by w1,...,
w,,,. Introduce also the projection (see (11.9))

M

P,nv = E(2}, u'i)I jini w;. V V E L 2(I ).
i=1

We refer to Step 1 of the proof of Theorem 11.2 for the properties of Pm, namely
(11.10).-(11.14).

Step 2. Introduce, for any in E N*. the finite dimensional approximate problem

m

Find u,, = Egg (t)wj E V,,, such that
j=1

um (x. t) Wk dx + f B(X)V Um (x, t) V wk dx
S2 S2

_ f (x, t) Wk d -t. in D'(0. T) yk
sz

Um(x, 0) = um(x) in S1

U (x, 0) = um (x) in Il,

= 1, ... , m

where, according to assumptions (12.6)(iii) and (12.6)(iv), we set

0 0 1 - 1urn = P,,, u iL,r, Pin 7t .

From the properties of Pm (see (11.10) and (11.13)), we have

2)

1 ii)

710 -> u0 strongly in Ho (Q)
211 -+it1 strongly in L2(fl).III

(12.12)
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Problem (12.8) is equivalent to the following system of m linear ordinary
differential equations of the second order with unknowns g'. ... , gm :

gz + gi (t) J B V tvj V wk dx = J f (X, t) wk dx
j=1 i2 S2

gk9(0)
(u°. u'k)

W)'(0) = (u1. wk),

for any k = 1, ... , m. Classical results (see, for instance Coddington and Levin-
son, 1955) give the existence and uniqueness in C' ([0. TJ) of a solution {gf" , ... ,
9.1} of this system on the interval [0. T]. Hence, u,,, is determined and um and
u;M are in C([O,TJ; Vm).

Step 3. We will now prove that it... satisfies some a priori estimates. To do so,
let us multiply the kth equation in (12.11) by (gk )' and sum over k from 1 to
in. We obtain

in u',;,(x,t)u'.(x,t)dx+ B(x)Vum(x,t)Du;,,(x,t)dx=J f(x,t)u;M(x,t)dx.
n st

(12.13)

Due to the symmetry of B one has

B(x)V u,n (x, t) Vu;,, (:r, t) dx =
2 dt

f B(x)V um (x, t) Vum (x, t) dx.

Hence, (12.13) can be rewritten as

at (ii'iiL2(sz) + f B(.r) Vu,,, (x, t) Vftm(r,t) dr) < 2IIfIIL2()IIu;n1IL2(fl)

< II
112 2

+ IIU.nIIL2(n)

Integrating on (0, t) with t < T and using the ellipticity of B. we get

1171M1(t)

+a11um(x.t)IIHo(Q)

I
T rt

I[umIIL'2(it) + J BVu, Vu.n da- + IIf IIL2(i2) dt + Ilum(T)IIL2(i2) dr

II1'4 lI 2() +lua IHt(n) +fIIL2(nx(o.T))

Using properties (11.11) and (11.12) of the projection P,,,, we finally have

lium(t)IIL2(il) +
t) 11 '(S,)

S IIu' 11L2(il) + d1lu°IIHo(1) + Ilf 11L2(nx(o.T))

+ [II nn(T)IIL2(sz) dT.
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Applying now Gronwall's lemma (Lennna 12.4), with
2

7 = IIu'IIL2(S2) + 43IIa011H(s2) + IIf11L2(S2x(0.T)),

we deduce the a priori estimate

Ilut'iIIL - (O,T: Hf (S2)) + IItlmIIL - (0.T;L2(SI))

< Cl (Ilf IIL2(slx)O.T() + Ilu°IIL2cs:) + IIu' IIHo(S2)),

where Cl depends only on a. 0. S2 and T. It remains to obtain an a priori
estimate for Observe that the equation in (12.11) implies that

(urn(t),v)L2(S2) = (-div (BV)um(t) + f, V42(0), Vv E Vin.

This signifies that
u;;,(t) = -[P,n{. (urn)+f))(t),

where Pm is defined by (11.9) and F _ -div (By). Arguing exactly as in Step 3
of the proof of Theorem 11.2 when showing (11.19). we obtain

I1ut1I1L2(O.T;H-'(1)) <_ C2(IIf1It.2(S)xJO.T() + 1111°IIL2(Q) + Ilu'IIHo(f3)) <_ C3,

where c2 and c3 are constants independent of in. Consequently,

II'amllL-(0,T; H0 -(0)) + IIUInIILx(0.T:L2(0)) + IIu'mllL2(O.T:H-'(S2))

< e(IlfhIL2(Stx10.T[) + IIu°IIL2(S2) + IIu'IIH-(S2)), (12.14)

where c depends only on a, 3, 0 and T.

Step 4. In this step we pass to the limit in the approximate problem. Esti-
mate (12.14) implies, up to a subsequence. the convergences

UM - it weakly* in L' (O, T; HH (fl))

um - u' weakly* in LI(O.T; L2(1l)) (12.15)

u;' - u" weakly in L2(O.T; H-'(Sl)),

where we made use of Theorem 1.26 and Propositions 3.55 and 3.59 (see for
details Step 4 of the proof of Theorem 11.2).

Let us now pass to the limit in (12.11) for m -, oo. We again proceed
as in the proof of Theorem 11.2. To do so. let -0 E D(0. T) and zv E Ho (Sl).
Multiplying the equation in (12.11) by (V, 'u'A)L2(s2)v'. summing over k from 1 to

m and integrating in t over (0. T). we get

U», (x. t) /'(t) (P,,,v)(r) d.r dt

T

.x)Vurn(.r.t) l'(t) V(P.. v)(r) dxdt (12.16)+J fa B(
o

T

= Jo f f (x, t) v(t) (P..v)(x) dx dt.
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where we used definition (11.9). By integration by parts with respect to t, one
has

- J T f UM (X. t) ,'(t) (Pmv)(.r) dardt
o n ff+

J
B(.r)V urt, (x, t)'i'(t) V (Prnv)(x) dx dt

/
r r

f (a% t) iz`'(t) (P,,, t')(x) dx dt.

Here, all the terms pass to the limit thanks to convergences (12.15) and the
strong convergence (11.13). We obtain

1T1
'(xt) t''(t) v(x) dx dt + Jf B(x)Du(x, t) '(t) Vv(x) dx dt

i

T

J
=

f
(X. t) O(t) v(z) dx dt.

(12.17)
Due to Theorem 3.58 (iii). . we have

J0

rT

fn
u'(x. t) V)'(t) v(x) dx

dt
+1Td

x t) (t) 2 ' (x) dx dt
IT(U"(t),

dt
Ju'{'

df._
0

since -#)(O) = V'(T) = 0. This. together with (12.17). shows that -u satisfies

T T
J (u"(f). f J 2 B(x)V tt(x, Vv(x) dxdt

01

0

=ff f(x.t) 4'=(t)v(x) dxdt.

(12.18)
It remains to check that the initial conditions u(r. 0) = uo(x) and n'(x, 0) =

u' (x) are satisfied. We follow the arguments from Step 4 from the proof of
Theorem 11.2. Choose in (12.16) (which is still valid if t;' E Cx ([0. T))) a function

C' QO.T)) such that ''(O) = I and z!''(T) = 0. Then. from (12.16), we get
T

o
f t) (t) (PT, da'dt

rTJ
B(x)Vu,,,(x.t) t, - (t)V(P,,,t')(x) drdt+ f

o nff ('
.f (x, t) '(t) (Pi, e)(x) d.r dt + J Itrlr, (x) (P, v)(x)

ft
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where we pass to the limit to obtain

1T1

2

- u'(x. t)'(t) v(a') dx dt + Jf B(.r)Vu(x, t) '(t) Vv(x) dx dt

r T rJ J f (x. t) o(t)1,(x) dxdt + / u'(x) ta(x) dx.

Again by Theorem 3.58 (iii). as u E C([0, TJ: L2(St)) (see Remark 12.1), we have

T

(U" M, 0 (t)t')x-'
Js-i

U '(x. 0) t} (x) dx

T
+
j j

B(x) V t) t/'(t) Vv(x) dx dt

=
JTJ

f (x, '(t) ta(x) dx dt + / u' (x) v(x) dx.

Since (12.18) is still valid for i' E C"` ([0, T)). we deduce that

In u'(x. 0) v(x) dx =
J

su' (x) z(x) dx, Vv E HQ (Z),

which by Theorem 1.44 implies that u'(x, 0) = u' (x).
To obtain the other initial condition, let us choose in (12.16) a function

V' E C°°([0,T]) such that 7(0) = 0. C(O) = 1 and u'(T) = ''(T) = 0. We get,
by integrating twice by parts with respect to t.

T
j

Jo JSZ
4771(a-. t) tl."(t) (PA. r') (a') dx dt

fT
+J J B(x)V (a'. t) 'r/'(t) V (P,, r')(z) dx dt

Jf f (x. t) z'(t) (P,,,z')(.r) drdt - it, u° (x)v(x) dx,

where we pass to the limit and obtain

J T
ja

u(a. t) Y"(t) v(x) dx (it + J T Jt t) O(t) V i'(x) dx dt

r7'

f (x. t) t;, (t) v(x) dx dt - j uo(x)v(x) dx.
o s? St

We integrate by parts with respect to t in the first term, which is allowed by
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Remark 12.1. Then, we apply once more Theorem 3.58(iii) and get

jfT a"t ) tv dt - u/x0 v(x dxj ('), II () )H 1(12).Ho(12) 2 l ) l )

+
IT

B(x)Vu(x. t) tJ (t) V,(x) dx dt = jf f (x. t) i(t) v(x) dxdt

- f u°(x)v(x) dx.

his, by the same arguments as before, implies u(x. 0) = u°(x).T

Step 5. We now prove estimate (11.9). As in the case of the heat equation, we
show it for the solution u obtained above by the Faedo-Galerkin method. This
is not restrictive, since in Step 6 we will prove the uniqueness of the solution of
problem (12.7).

Estimate (12.9) for the solution ii defined by (12.15) follows from a priori
estimate (12.13). We skip the proof. since it makes use of exactly the same
semi-continuity arguments as those from Step 5 in the proof of Theorem 11.2.

Step 6. Let ul and u2 be two solutions corresponding to the same data. Their
difference w = ul -U2 satisfies (12.5) with f = 0, -u,° - 0 and ul =_ 0 , namely

J B(.r)Vu'(x. t) Vv(x) dx
2

= 0 in D'(0, T). dr E Ho (f2)

0) = 0 in f l

w' (x, 0) = 0 i11 Q.

If one could use w' as test function in this problem, then one could easily obtain
an estimation giving the uniqueness. But this is not allowed, since we only
know (Theorem 12.2) that u'' is in L'°(0, T; L2(1?)). so the first term would
not make sense. To avoid this difficulty we use an argument from Lions and
Magenes (1968a. Chapter 3).

Let s E]O, T( be fixed and set

s

- / u'(r, r) dr for t < s

0 forts.
Observe that one can take t' = t in the variational formulation for w. After

integration with respect to t over ]0. T[, we obtain

T T

J
(,up

(t)
"

')H-1(o).H1(1)) +
./(1

B(x)Vw(x. t) dx = 0.
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Note also that the function ;"'(t) E L2(12). since

u'(x, t) for t < s
0 fort>s.

Then, by using Theorem 3.58, Remark 3.44 and taking into account the initial
condition satisfied by w' and the definition of u>. we have

T

f
TI

(w"(t)+)H-1(n).H) + ("(t).l!')H-1(2),H2)
T IT!+"(.r.t)

w'(x.t)dxdt
2

f
d

w'(.r, t) t) d:r dt
dt f1

_ w'(x. T) i'(x. T) dx -
s2

f u+'(.r, 0) y'(x. 0) dx = 0.

Consequently. due to the definition of #,', we have

- fo f w(x. t) u,'(x, t) dx dt + J 7 o B(x)V ,'(.r. t) Vi'(x. t) dx = 0,

or equivalently, due to the of B.

.r)D'(.r. t) V (x. t) dx dt 0.- d J j w2 (x, t) dx dt + d Jf B(

V ;"(x. S) = 0 a.e. on Q.

taking into account the initial condition on w. one gets

!lu'(s)1I 112(tl) + 0) V /'(.r. 0) dx = O.
s2

The ellipticity of B implies

IIuJ(8)1112(S2)
+(,0)112L 2(s2) <

Hence,
rr(s) = 0.

Buts is arbitrary in ]0. T(, so that u = 0. O

Remark 12.5. One can take f E L2(0.T: H-'(12)) in problem (12.5). The-
orem 12.2 can be easily adapted to this case. For simplicity. we took here
f E L2(12x]O.T[). 0
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12.2 The homogenization result

Let us now consider problem (12.1) and suppose we are given fE E L2 (fl x ]0, T[),
u° E HH(f1) and u° E L2(fl). The variational formulation of problem (12.1) is

Find uE E W2 such that

(ue(t), v)H-'(I),HO, (0) + f t) Vv(x) dx

ff,

n

= f, (x. t) v(x) dx in D'(0, T), Vv E Ho (Q)

uE(x,0) = u° (x) in fl
u'(x,0) = uf(x) in D.

(12.19)

Theorem 11.2 provides the existence and uniqueness of a solution uE such
that

uE E LO0(0,T; Ho (f1)). U' E L-(0,T; L2(1)).

We now study the asymptotic behaviour of problem (12.19) as a -i 0. As for
the heat equation, studied in Chapter 11, the oscillations in (12.19) are only due
to the variable x, so that in the homogenization process, the variable t will play
the role of a parameter. In fact, we have the following result:

Theorem 12.6. Suppose that fE E L2(fl x]0, T[), and u° E Ha (fl), uE E L2 (fl).
Let uE be the solution of (12.19) with A£ defined by (12.2)-(12.4). Assume that

i) u° - u° weakly in Ho (fl)
ii) uE -- u2 weakly in L2(Sl) (12.20)

iii) fE - f weakly in L2(flx]O, T[).

Then, one has the convergences

i) uE u weakly* in L- (0. T; Ho (1))
ii) uE - u' weakly* in L°°(0,T; L2(1l))
iii) AEVuE A°Vu° weakly in (L2(flx]0,T[))',

where u is the solution of the homogenized problem:

u" - div (A°Vu) = f iii flx]0, T[
u=0 onaflx]0,T[
u(x, 0) = u°(x) in !1

u'(x, 0) = u' (x) in Q.

(12.21)

and A° is the homogenized matrix given in Theorem 6.1 by (6.30).
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Proof. As for the heat equation, we apply Tartar's method of oscillating test
functions, following along the lines of the proof given in Section 8.1 for the
elliptic case.

Since AE E H(a.3, ft), from assumption (12.20) and estimate (12.9) we have

{
(IuEIIL"(O.T: Hi',(c2)) + IIZtEIIL"(O.T:L2(f2)) + IIUE'IIL2(O.T.H-1(0))

< O(IIfEIIL2(CIXJo,T() + I[U°IIL2(n) + Ilu£I[Ho(n)) :5 cl,

where the constant cl is independent of e.
Then, if E is defined by

(12.22)

E(r, t) = { (x, t)..... N (x. t)) = AE (t)DuE(x, t), (12.23)

from the assumptions on A£, one has in particular

IIEII(L2(nx]o.T[))N < Qc1.

These estimations, together with Theorem 3.58, provide the existence of a sub-
sequence, still denoted by e. such that

i) uE - u weakly* in L°° (0. T: Ho (Q))
ii) uE --r u strongly in L2(f2x]O.T[)
iii) u4 u' weakly* in L°°(0.T; L2(1))
iv) CE ° weakly in (L2(Stx]0. T[))^'.

(12.24)

From definition (12.23) and problem (12.19), by using Theorem 3.58 (iii) one
has that E satisfies

f J (x. t) Vv(x) p(t) d.r (it = / I fE(x. t) dx. dt
o n o stIT

+ t1, (.1. t) t dx dt
. n

(12.25)

for any v E Ho (12) and E D(0. T). where we can pass to the limit due to
convergences (12.20) and (12.24). Using once more Theorem 3.58. we obtain
that t;° satisfies

(x, t) Vt'(x) d.r
J

(it"(t),
v)H-1 II a

f (.r% t) z (.r) d.r in D'(0. T),
Al

VII E H (S2).

Let us prove that

(12.26)

° = A°Vu°. (12.27)
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We will make use again of the oscillating test functions w' (see (8.10)). defined
by

1. )

x(X)I
where wa is defined by (6.27).

We recall the following convergences:

i) u,l -1 A r weakly in H1(Q)

1 ii) wI --> A x strongly in L2(Q),
(12.28)

and set na = t AEVwI. which satisfies the convergence (see (8.13) )

i?a - My(tAVwa) = tA0,\ weakly in (L2(Sl))N, (12.29)

and the equation (see (8.14))

in
'vEHH(P).

Let rli E D(1). Choose here r = u' ue1p and integrate on ]0. TI. Then

Vug(x. t) V,(x),p(t) d:r dt + J J 71a V U,(x) u£(x. dx dt = 0.J T f rta T
0 .lit 0 S2

(12.30)
Taking v _ ,'wa in (12.25) and subtracting from (12.30). we obtain

fTj
(x.

t) V P(x) u'(t) d.r dt -
fTf

V '(x) u£(x, t)(t) dx dt
in

= TJ f,(x.t) y,(x) u'a(x),p(t) dxdt
0 Jnn

T
+ J j u(.r. t)ri'(x) t(' x ,' t dr dt.

0 1

where we pass to the limit by using convergences (12.20), (12.24), (12.28) and
(12.29). We obtain

J 7J 1;°(r;, t.} VV,(x) (A ;r),p(t) d.rdt - J TJ tA0A V ,(x) u (x. t)cp(t) dx dt
u n o s1

pT.
= J f f (a% t) .'(.r) (A .r)V(t) dx dt

f
+

fTJ
u'(x. (A dxdt.

o ci

From equation (12.26). by the same computation as in Section 8.1. we de-
duce (12.27).
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To show that u satisfies the initial conditions in (12.21), one makes use of
the same argument as in Step 4 of the proof of Theorem 12.2.

To do that, one chooses first in (12.30) cp E CO0([0,T]) such that w'(0) = 1
and cp'(T) = 0 to obtain, when passing to the limit. u'(x,0) = ul(x), in view
of convergences (12.20) and (12.24). Then. choosing in (12.25) a function cp E
C°°([0, T]) such that p(0) = 0, cp'(0) = 1, cp(T) = cp'(T) = 0 and passing again
to the limit, one obtains u(x, 0) = u°(x).

Finally, observe that since A° is elliptic (see Proposition 6.12), Theorem 12.2
provides the uniqueness of the solution of problem (12.21). Consequently, the
whole sequences in (12.24) converge. This concludes the proof. 0

12.3 Convergence of the energy

In this section we prove. under suitable assumptions, the convergence of the
energy associated to problem (12.1) to the energy of the homogenized problem.
As already seen in the elliptic and parabolic cases, this property is essential in
the proof of the corrector result which will be given in Section 12.4.

Let us define the energies associated to problems (12.1) and (12.21) respec-
tively, by

EE(u,)(t) = 2IIu'' (t)IIi2(n) +1 f2 A"(.r)Vu£(x, t) t) dx dt

E(u)(t) = 211u'(t)IIL2(n) +
2

f A°(x)Vu(x, t) Vu(x. t) dx dt.
(12.31)

We will need the following result, which, when f = 0, is known as `the
conservation of the energy':

Proposition 12.7. Suppose that assumptions (12.6) are fulfilled. Then the
solution u of problem (12.7) satisfies the following identity:

2IIu'(t)IIi,2(sr) + 211 B(x)V u(.r, t) Va(x, t) dx dt

T

= 1 IIu1 IIL2(S2) + 2 f BVZL° Vu° dx + f f f (x, r)
n o n

u'(x, rr) dx dz.

(12.32)

Proof If one could use u' as test function in (12.7) then (12.32) would be im-
mediate, but this is not allowed, since we only know (Theorem 12.2) that u' is
in L°°(0, T; L2(Q)). To avoid this difficulty, we use a density argument (see
for instance, Lions, 1988, Chapter 1. Lemma 3.5). Let {uh}hEN. {uh)}hEN and
{fh}hEN be three sequences in V(Q) such that

i) uh , u° strongly in Ho (SZ)

ii) uh ul strongly in L2(1x]0, T[) (12.33)

iii) fh f strongly in L2(1 x]0,T[).
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as h - oo. Consider for any h, the solution up, of the problem

uh' - div (BOuh) = fh in S1x]O, T[

uh = 0 on 8S1 x]O, T[

uh(x,0) = u1°,(.r) in St

Uh (x, 0) = uh (x) in Q.

(12.34)

Due to the regularity of data in (12.34), from the regularity result in Propo-
sition 12.3, one can choose Uh as test function in the variational formulation of
this problem (see (12.7). Due to the symmetry of B, one has. after integration
over ]O, t[,

II1uhiIL2{S2} +fj B(x)Duh(T,T) V2Lh(x.T) dx dT1
{jt

r /

J
fh(x,T) u' (x, drdT,

o

Ts2

,

which implies that

11uh(t)IIL2(n)
+ 2 B(x) V uuh(x, t) Duh(x, t) dx dt

T

= 2IIuhNL2(iz) + 2
I BDuh Vu.h dx+ f

J fh(x,T) uh(x,T) dx dr.

(12.35)
Observe now that from estimate (12.9) applied to problems (12.7) and (12.34)
one has, by linearity,

1[u - Uh11L°C(O.T: H.1 (0)) + 11 U' - uh 11L x(O.T; L2(a))

c-(11f - fhJIL2(cz),JO.Ti*) + 11u° - Z1°IIL2(() + 11111

where c depends only on a, 3. Q. and T. Consequently,

5 1)
1 ii)

uh11H1(f)),

Uh - It strongly in L'°(0, T: HH (f2))
Uh -up strongly in L°°(O.T: L2(f2)),

as h --> oo. This, together with (12.33). allows us to pass to the limit in (12.35)
to get the claimed result. 0

From this proposition and definition (12.31) one has immediately the follow-
ing result:



236 Homogenization of the wave equation

Corollary 12.8. Let EE(ue) and E(u) be given by (12.31). Then

i)

ii)

n st

(12.36)

In Chapter 11. we proved the convergence of the energy associated with the
heat equation to that of the corresponding homogenized problem. To do so, we
needed to suppose a strong convergence of the initial condition.

For the case of the wave equation. the situation is more complicated. One
has to suppose the strong convergence of fE and u£ and, moreover, to make a
special assumption on u°. The peculiarity of this assumption is that it does not
concern u° but div(AeVu°). namely one suppose that there exists an element
U° E H-1(1) such that

-div (AEDu°) U° strongly in H-'(1). (12.37)

Observe that any element U° E H-1(S2) can be written in the form U° _
-div(A°Vu°) for some u0 E HH (0). For that. one has just to solve the problem

div (A°Cu°) = U0 in S2
(12.38)

u° = 0 on 8.

which has a unique solution u0 E Ho'(1), due to the ellipticity of the matrix
A° (Proposition 6.12) and Theorem 4.16. Consequently, convergence (12.37) is
equivalent to

div(AEVu°) -i div(A°Vu°) strongly in H-1(12).

This implies in particular the following convergences:

z)

ii)
u° u° weakly in Ho (1l)

AEVu° - A°Vu° weakly in (L2(1?))N.
(12.39)

which are an immediate consequence of Theorem 8.16 applied to the problem

div (A=V u°) = F£ in 9
(12.40)

U? = 0 Oil M.

where F' _ -div(AEVu°). Observe that (12.37) is a stronger assumption
than (12.39). Indeed. convergence (12.39)(ii) only implies the weak convergence
of div(AEVu°) to div(A°Vn°) in H-1(12).

Let us prove the following convergence result:

2 f AeVu° Vu° dxEE(ue)(t) =
2

Tf
+ J

fe(x+T)u u' (x, dx dr

f
0 O

E(u)(t) = IIU1II1,2(Sl) + 2
A°Du° Vu° dx

rT r
+J

J
f(x,T) u'(x,T) d .dT.
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Proposition 12.9. Let fE E L2((Ix]0, T[), u° E H0(Sl). ul E L2(Sl) and let u£
be the solution of (12.1) with A= defined by (12.2)--(12.4). Suppose that

J There exists u° E Ho '(9) such that
-div (AEVu°) -+ -div(A°Vu°) strongly in H-1(1)

and

Thezi

i) uj -. uI strongly in L2(1l)

ii) fE -+ f strongly in L2(f?x]O. T[).

E'(u,) E(u) in C([0,T]).

where It. is the solution of the homogenized problem

u" - div (A°Vu) = f in C x]0, T[

u = 0 on df)x]0, T(

u(x.0) = u°(a') in Sl
u'(X.0) = ill (a') in Q.

(12.41)

(12.42)

(12.43)

and A° is the homogenized matrix given in Theorem 6.1 by (6.30).

Proof. Since hypothesis (12.41) implies (12.20)(i) (see (12.39)), all the assump-
tions of Theorem 12.6 are satisfied, hence u£ converges to u. Recall that in
particular, one has the estimate

IIuch-(o.T: x,')(I?)) + II1EII L-(o.T: L2(l)) < CI (12.44)

where the constant cI is independent of E.
The proof of (12.43) follows the same outlines as that of Proposition 11.5.

We prove first that

i) I EE(uE)(t)J < C. Vt E [0. T]

ii) IEE(uE)(t + h) - EE(uE)(t)I < 0(h),
uniformly with respect to F. V t E [0. T - h], `d h > 0.

(12.45)

where 9 tends to zero as h 0.
Statement (i) is straightforward by assumptions (12.4). (12.42) and the for-

mer estimate (12.44).
On the other hand, from Corollary 12.8. assumption (12.42) and estimate

(12.44). one has

E``(u')(t)I =
j1'+h

Jfo
f- (.r. T)itE(a'. T) d:rdr

h2IIuEIILc(0.T: L2(o))IIf IIL2(12x]o.T() < c2h 2.
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where c2 is independent of e.
Properties (12.45) mean that EE(uE) belongs to a compact set in C([0,T]),

according to the Ascoli-Arzela theorem. Hence. there exists a subsequence (still
denoted by e) and (E C([O. T]) such that

EE(uE) --' ( in Q0, T]).

Turning back to problem (12.40). in view of (12.41) and (12.39) one can
apply Theorem 8.16 written for f E _ -div (AE VuO) to have the convergence of
energy,

f A`Vu° Vu° dr J A°Vu° Vu° dz.
Q n

Then, due to the convergences from Theorem 12.6 and assumptions (12.41), we
can pass to the pointwise limit in (12.36)(i), to get

lymEE(uE)(t) = E(u)(t), bt. E [0, T].

Hence, (= E(u) and this ends the proof. 0

12.4 A corrector result

We end this chapter by a corrector result. We will use. for its proof, arguments
from Brahim-Otsmane, Francfort. and Murat (1992). As already mentioned,
this result is based on the convergence of the energy. The proof is done in the
same spirit as that for the heat equation (see Section 11.4). The corrector matrix
CE = (CGj)I<;.J<N is still that introduced for the elliptic case. and is defined by

rC (x) = C,, = a.e. on Sl
(12.46)

Ci,i (y) = cltj - X (y) = dyiL (y) a.e. on Y.
Oyj

where X1, and i13, are defined by (6.14). (6.15) and (6.16).

Theorem 12.10. Let uE be the solution of (12.1) with AE defined by (12.2)-
(12.4). Suppose that the data satisfi- (12.40) and (12.41). Then

a) u' -+ u' strongly in C([0. T]: LZ(S2))

1 ii) Vu, - CEVU --+ 0 strongly in (C([0, T]: LI(fl)))'v
(12.47)

Moreover, if C E (L"(Y))"' X N for some r such that 2 < r < ao, and Vu E
(L9(1))I' for some s such that 2 < s < oo. then

Vu, - CEVU - 0 strongly in (C([0. T]: Lt(I )))N

where
rs

t = 111in 2, '+S
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The proof of this result is based on the following proposition, which is anal-
ogous to Proposition 11.8.

Proposition 12.11. Suppose that the assumptions of Theorem 12.10 are ful-
filled. Set for any 4i E C-([0, T]; D(fl))

PE(t) = 2IIu£{t} - 4i1 (t)IIL2(n)

T
+ J JA(X)(VUe - C£0)(x.r) (Vur - C5V4i)(x,T)

o

p£ - p strongly in C([O,TJ).

where TP(t)
= 2[[u'(t)-4?'(t)I[L2(9)+ff0-V )(x.r) (Vu-0)(x.r) dxdr.

Proof. We follow the lines of the proof of Proposition 11.8. Write first p£ in the
form

pe = pE + p£ + pE, (12.48)

where

tieVtt£d,rdr
/Tfn

= 2IIuF(t)IIL2(Si)+ J AFO
U

T

= f f
A£ (C-W) (C"V4;) dxdT

p
T

=
?

fu1dr+ffAe(c5V)Vl(edxdr
r

+
frJ

A`VuE (C5V ) dxdr.
U o

(12.49)

We will see that all these terms converge in C([0, TJ).
First term. Notice that pE is the energy EE(u<) and hence by Proposition 12.9
it follows that

7.

rJ Ao(.i')Pu(x.r) Vu(x,T) dxdr,in C([0,T1).Pe E(u) = 2IIu'(t)NL2(O) + fo
O

(12.50)
Second term. For the second term A-1. we argue exactly as we did when prov-
ing (11.46). Thus Ave obtain

T
p'2 ffA0(.r)V(r.r) 0(,r.r) dr dr, in C'({0.T)).

t
(12.51)
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Third term. The pointwise convergence

pE -> J u'$'dx+ jf A °V Vudxdr+ fJ A°VuVdxdr
n i 1

forany t E [0, T],

follows by using convergences (12.24) and the same computations as in (8.40)
and (8.41). It is easy to prove that pE is bounded in H'(O.T). A priori es-
timates (12.22) for u£, convergence (8.30)(i) and the assumptions on A imply
immediately the boundedness of Ilp' lI L= (o.T) On the other hand, from Theo-
rem 3.58 (iii), one has

(p )'(t) (ue(.,I). 4?'{ +J uf(T,t) '(x,t) dx
n

+ J X (Cevc) Vu, dx' + J A' Vu, (CEV4) dx.
SE S2

from this expression. the houndedne.ss of II(pp)'IIL2(o.T) is obvious by the same
arguments as above. Hence. one has the convergence

T T
dx. + J

j
A°V 4iV a d.r dr + A°V i!V dx dr in C([0, T] ),upE

ja ° av si
(12.52)

due to the compact injection of H1(0. T) in C(10, Tj) (see Theorem 3.27(iii)).
Recalling (12.48). from definition (12.49) and convergences (12.50), (12.51) and
(12.52), the claimed result follows easily.

Proof of Theorem 12.10. The proof is analogous to that of Theorem 11.7.
Let its just point out the main difference. One has to study the convergence

of the term Iluf -
u'II('([o,T).L2(Q))

instead of Ilu. - U11('([O.Tj;
L' (D))

To do so. for 8 > 0, by using Proposition 3.60, one introduces 4i6 E
C°C([a, b]; V(1i)), such that

i} llu _.1,61

L2(51)) <

8.ii} IIVu - v4i,s11i2(s:X[0.T[) <

Then, to prove the result, we write

uE - 11 _ (11- -

and argue exactly as in the proof of Theorem 11.7. 0
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General approaches to the non-periodic
case

In this chapter we present some results concerning the convergence of the solu-
tions of partial differential equations with non-periodic coefficients. For simplic-
ity, we will only present results concerning the elliptic problems. All the results
can be extended to the heat and wave equations, as well as to the linearized
elasticity system.

As in the previous chapters, S1 denotes a bounded open set in RN and e > 0
is a parameter taking its values in a sequence which tends to zero.

Let a,,3 E R, be such that 0 < a < fl. Recall (see Definition 4.11) that
M(a, i, S1) denotes the set of N x N matrices A = (aij)1<:.j<N E (L°° (S1))NXN
such that

I
i) (A(x)-y, 7) ? aI712

ii) IA(x)7I < dl'yI ,

for any y E RN and a.e. on Q.
In this chapter we consider the general elliptic problem

div (A5Vu£) = f
{ u` = 0 on OQ.

in S1

(13.1)

(13.2)

where f is given in H-1(fl) and {A` } is a sequence of matrices in M(a, 13,R).
In Section 13.1 we recall the notions of G-convergence and H-convergence in-

troduced respectively by Spagnolo (1967) and Tartar (1977a). These definitions
deal with the convergence of the solutions of problem (13.2). In Section 13.2
we present the compensated compactness due to Murat and Tartar (see Mu-
rat, 1978b and Tartar, 1979) and a corrector result.

Finally, in Section 13.3 we give some optimal bounds for the eigenvalues of
a homogenized matrix in the general case. We refer for that to Tartar (1985),
Lurie and Cherkaev (1984, 1986).

Throughout this book, we have restricted ourselves to the linear case. For the
study of the asymptotic behaviour of a large class of nonlinear problems one has
a general mathematical theory introduced by E. De Giorgi (see De Giorgi, 1975,
De Giorgi and Spagnolo, 1973, De Giorgi and Franzoni, 1975) and called r-
convergence. It deals with the convergence of the minima of functionals. There is
now a wide range of results in this field. We refer in particular to Dal Maso (1993)
for a general exposition. We refer also the reader to references in their work.
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13.1 G-convergence and H-convergence

In Section 5.1 we have shown some properties of problem (13.2). First, it has a
unique solution satisfying the estimate

aIIfIIH-1(fl).

Furthermore, the vector A'Vut satisfies the estimate

IIAeVue!IL2(n) OfIIH-,(n).

so that there exists a subsequence such that

fi) U6" - u0 weakly in Ha (11)

ii) AE'Vu/' t;° weakly in (L2(1))"'.

Moreover, one has

(13.3)

-div ° = f in Q.

The question is still whether one can find a relation between u° and CO and
a limit equation satisfied by u°.

From the end of the sixties these questions have been widely investigated.
The first significant work on this subject is due to S. Spagnolo who, in a

paper of 1967 (see Spagnolo, 1967). introduced the notion of G-convergence,
which deals with the convergence of the solutions of elliptic problems of the
type (13.2) as well as of the corresponding heat equation. In this framework, the
matrices AE are supposed to be symmetric.

Definition 13.1. Let {AE} be a sequence of symmetric matrices in A?(a, 0, 0).
We say that it G-converges to the symmetric matrix A° E M(a, 13, S1) if for
every function f of H-1(S1), the solution it of

f div (A`Vut) = f in f-u£=O
onOSI.

is such that
it u° weakly in Ho,

where u° is the unique solution of the problem

div (A°Vu°) = f in 1)

l u°_() on an.

The G-convergence has the following main properties:

Theorem 13.2. One has
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i) (uniqueness). The G-limit of a G-converging sequence {AE) E M(a, $, SZ)

is unique.

ii) (locality)- Let JA-'j and { BE } be two sequences of symmetric matrices in
M(a, /3, S2) which G-converge respectively to A° and B°. If for some w c H
one has

AE = BE in w. for every c,

then

A°=B° in w.

iii) (compactness). Let {AE} be a sequence of symmetric matrices in
M(a,0, Q). Then there exists a subsequence {AEI} and a matrix A° C-
M (a, j3, S2) such that { A6'1 G-converges to A'.

iv) A sequence {AE} of symmetric matrices in M(a, /3, 0) G-converges if all
its G-converging subsequences have the same limit.

This kind of convergence has been extended to sequences of matrices in
M(a, /3, ct) which are not necessarily symmetric. This leads to the notion of
H-convergence, introduced by Tartar (1977a) and developed by F. Murat and
L. Tartar (see Murat, 1978a. Murat and Tartar, 1997a).

Definition 13.3. A sequence {A£} in M(a, Q, S2) H-converges to A° E
M(a', /3', Il) if for every function f of H-; (cl). the solution uE of

I
div (AEDuE) = f in S2_

uE = 0 on W.
(13.4)

is such that

f i) u£ - 0 ° weakly in Ho(c)

ii) AEDuE A°Vu° weakly in (L2(Q))N

where u° is the unique solution of the problem

f div (A(jVu°) = f in S)

4u°=0 onOfl.
(13.5)

Let us point out the main difference between these two notions of convergence.
G-convergence deals with symmetric matrices and supposes the convergence of
the solutions uE only. H-convergence is defined for general sequences (not neces-
sarily symmetric) and suppose not only the convergence of the solutions uE but
also that of AEVuE. The main feature of H-convergence is that the additional
condition on the convergence of AEV uE is essential in order to keep the main
properties stated in Theorem 13.2. Indeed one has

Theorem 13.4. One has the following properties:



244 General approaches to the non-periodic case

i) (uniqueness). The H-limit of a H-converging sequence {A61 E M(a, /3, St)

is unique.

ii) (locality). Let {AE} and {BE} be two sequences in M(a. 13, 1) which H-
converge respectively to A° and B°. If for some w C St one has

AE = BE in w, for every e,

then
A°=B° in w.

iii) (compactness). Let {AE} be a sequence in M(a. 0, Q). Then there exists
a subsequence {AEI} and a matrix A° E M(a.32/a, 1) such that {AEI }
H-converges to A°.

iv) A sequence {AE} of symmetric matrices in A1(a.0,S1) H-converges iff all
its H -converging subsequences have the same limit.

Remark 13.5. Observe that the H-limit A° provided by compactness in Theo-
rem 13.4 is in a larger class then AI (cr. 43, St), namely in M(a.,32/a, fl). 0

A natural question is what is the relation between the two convergences for
a sequence of symmetric mat rices? The answer is given by

Proposition 13.6. For a a sequence JA' j of symmetric matrices in M(a, 0, 1)
G-convergence is equivalent to H cony ergence.

The proof of this result makes use of the following comparison theorem, which
generalizes Theorem 8.12 to the non-periodic case. We refer for it to De Giorgi
and Spagnolo (1973) and to Tartar (1977a).

Theorem 13.7. Let {AE} and {BE} be two sequences in AI(a,i3,fl) which H-
converge respectively to A° and B°. Suppose that for any e. the matrix BE is
symmetric and that

BE < AE.

in the sense of Definition 8.11. Then

B° < A°.

Proof of Proposition 13.6. Observe first that for any sequence {AE} in
M(a, /3, f'). if I denotes the N x N identity matrix, one has

AE < 131, `de.

in the sense of Definition 8.11. Then. if {AE} is a sequence of symmetric matrices
which H-converges to some A° E Af (et, J2/a. S2), from Theorem 13.7 one has

A° <i31.
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This implies that A° is in Af(a, 3.12) and then that the sequence {AE} G-
converges to A° .

Conversely, suppose that {AE} is a sequence of symmetric matrices in
M(a, /3, 0) which G-converges to some A°. From Theorem 13.4 there exists
a subsequence {A£' } and a matrix B° E M(& , 02/a. 12) such that {AEI } H-
converges to B°. Due to the implication already proved, one has that {AEI } G-
converges to B°. But since obviously. the subsequence {AEI } also G-converges to
A°, the uniqueness of the G-limit provided by Theorem 13.2 shows that A° = B°.
Then, all the H-convergent subsequences of {AE} converge to A°. This, thanks
to Theorem 13.4, proves that the whole sequence {AE} H-converges to A°.

Let us now give one important consequence of Proposition 13.6.

Corollary 13.8. Let {AE} be a sequence of symmetric matrices in M(a, /3,0)
which 0-converges to A°. Then

AE'VuE - A°Vu° weakly in (L2(1t))N.

Remark 13.9. Let {AE} be the sequence of periodic matrices defined by (6.2)-
(6.4). Then. Theorem 6.1, together with Proposition 6.12, states precisely the
H-convergence of this sequence to the constant matrix A° defined by (6.30). 0

The proof of the main theorems 13.2 and 13.4 are quite difficult and delicate.
They can be found in Spagnolo (1967), Murat and Tartar (1997a) and also in
Oleinik, Shaniaev, and Yosifian (1992) and in Jikov. Kozlov, and Oleinik (1994).

13.2 Compensated compactness and correctors

One of the main tools for proving Theorem 13.4 above is the compensated com-
pactness due to F. Murat and L. Tartar (see for instance. Murat, 1978a and
Tartar, 1979). We recall this result as well as some related properties in this
section.

As we have seen throughout this book, the product of two weakly convergent
sequences does not converge. in general, to the product of the limits, and this is
the principal difficulty when trying to characterize °. given in (13.3) in terms of
u°. The compensated compactness shows that under some additional assump-
tions, the product of two weak convergent sequences in L2 (1) converges in the
sense of distributions to the product of the limits.

This result is interesting in itself and is widely used in many applications.

Theorem 13.10. Let {U`) and {V`} two sequences in (L2(12))N such that

f Uc U° weakly in (L 2(11))N

1. V- V° weakly in (L2(11))N.
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Suppose that {div UE} is compact in H`1(1l) and (curl VE} is bounded in
(L2(S2))N"N, where the matrix curl VI = ((curl VE)ij)1<i.j<N is defined by

(curl Vf) j - 8ViE aVE
-a 8xj 8.ri

Then

for i, j = 1, ... , N.

UEV` U°V° in v(c ).

In the framework of H-convergence, the interest of Theorem 13.10 is that it
can be applied to the case

UE=AEVV.
Y£=Vve.

where uE solves a problem of the form (13.1). Indeed.

Corollary 13.11. Suppose that {AE} H -converges to A° and let ut be the so-
lution of problem (13.4). Suppose further that {ue} is a sequence in H1(Sl) such
that

vE -1 v° weakly in H' (1).

Then one has

J AEVuE Vv' Sp da - in A°Vu° Vv° dx, Vco E V(SI),

where u° is the solution of (13.5).

Proof By assumption, one has

AEVuE - A°Vu° weakly in (L2(H))N
VvE - Vv° weakly in (L2(St))N.

Consequently, Theorem 13.10 applies, since div AEVuE _ - f is fixed in
H-1(0) and obviously, curl V6 = 0. 0

This implies in particular that if A' :I H-converges to A°. then one has con-
vergence of the energy.

Proposition 13.12. Suppose that { A° } H -converges to A° and let uE be the
solution of problem (13.4). Then,

AEVuC Vue - A°Vu° Vu° in V'(Sl),

where u° is the solution of (13.5).

Proof. The proof is straightforward from Corollary 13.11 by choosing .vC = of 0
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At this point, let us also mention that most of the results proved in Chapter
8 for the periodic case can be extended to the case of an H-convergent sequence.
In particular one can construct a sequence of local corrector matrices, in order to
improve locally the weak convergence of Du£ to Vu° supposed in Definition 13.3.

To do so, we introduce first, for any open subset w of ft such that w c ft, a
family of auxiliary functions w' as follows.

Let wl be an open subset of 1? such that w C wl c w2 C fZ and W E D(w1)
such that cp = 1 on w. Further, let { Af } be a sequence H-converging to A°.

Consider, for any A E RN, the solution u?a of the problem

div(AEVw') _ -div(A°oj(A x)cp(x)]) in wl

1 wa=0 on awl. (13.6)

The existence and uniqueness of the solution wa E Ho (wl) is given by Theo-
rem 4.16.

Observe that, due to the particular form of v, one has

-div(A£Vw') = -div(A°A) in w. (13.7)

Notice also, that according to Definition 13.4, wa converges weakly in Ho (wl )
to the solution w° of

-div(A°Vwo) = -div[A°O((A x)p(x))] in wl

wa = 0 on Owl.

Then, by uniqueness, one must have

(A in w1.

so that, since cp = 1 on w. one has the convergence

u'a - A .r weakly in H1(w). (13.8)

In the sequel we set
tr; =we, . (13.9)

where (e), is the canonical basis of RN.

Remark 13.13. It is interesting to remark that for A = e, the relations (13.7)
and (13.8) are the essential properties of the functions u), introduced in Sec-
tion 6.1 in the periodic case (see (8.32) and (8.34)). 0

We are now in position to define the corrector matrix in the context of H-
convergence.

Definition 13.14. Suppose that {A' } H-converges to A° and let a be the solu-
tion of problem (13.4). The corrector matrix C"= (Cl)1<,,j<N E (L2(w))NxN
is defined by
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It is easily seen from (13.8) and (13.9) that

CE - I weakly in (L2(w))N'N (13.10)

where I is the unit N x N matrix. Then, II-convergences implies in particular
that

Vue - CEDu° 0 weakly in (L'(w))N. (13.11)

Remark 13.15. Observe that the corrector matrix CE depends on the choice
of wl and W. But, since (13.7) and (13.8) are independent on w, and W, for any
choice of w2 and co one has convergences (13.10) and (13.11). Q

Remark 13.16. Observe that Definition 13.14 generalizes the definition of the
correctors given for the periodic case in Section 8.2. Convergences (13.10) and
(13.11) correspond to (8.30)(i) and (8.36). Q

The main corrector result is

Theorem 13.17. Suppose that (A`) H-converges to A° and let uE be the so-
Iution of problem (13.4). Let (CE) he any sequence of corrector matrices given
by Definition 13.14. Then,

Due - CEDu° 0 strongly in (L' (w))N. (13.12)

Moreover, if CE is bounded in (L'" (w)) N"N for some r such that 2 < r < oo, and
Vu° E (Ls(w))N for some s such that 2 < s < oo. then

021E - CEDn° --> 0 strongly in (L'(w))N, (13.13)

where

t = nlin 2,
is

r+s

13.3 Optimal bounds

The compactness result in Theorem 13.4 states that any sequence AE in
AI (a, l1, 11) has a subsequence that H-converges to some matrix A° in A1(a', ff, fI).
Suppose now that we are in the isotropic case. that. is AE is of the form AE = NI,
where I is the identity matrix and

a < 1.(x) < .1. a.e. on Q. V e.

Then, problem (13.4) reads

div(j V uE) = f in 11

l uE = 0 on OS2.
(13.14)

In this case. since AE is symmetric. A° is also the G-limit of AE, so that.
A° is symmetric too and belongs to M11(a. 0. SI). Consequently. A°(:r) admits N
eigenvalues AI (.r)..... AN(.r) defined a.e. on 11. which are strictly positive.
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In Section 5.1 we presented the model of a periodic physical case, where the
conductivity of the periodic composite material was given by

-re (X)= )+'1'2X2
J

This case corresponds then to a periodic mixture of two (homogeneous) ma-
terials. In particular, Theorem 6.1 applies to this situation and provides explicit
formulas for the homogenized matrix A°. It will turn out that in general, A° is
not isotropic.

In the non-periodic case. one cannot explicitly describe A°.
A natural question is if one can at least characterize the H-limit A° when N

is of the form AE = ye' and

_ 1ifxEf 1
12 if x E 522,

II isal (J') + tie Xu2' W. (13.15)

with
Si U ue = a fil n f2 = @.

This corresponds to a (non-periodic) Mixture of two materials. Here X,,, for

i = 1, 2, is the characteristic function of the set Qf. Obviously
Xnl

= 1 -
Suppose that the proportion of the two materials is kept constant, i.e.

15211 = 9 E]O. 1[. S221 _ 1 9 (13.16)
101 ICI

and that the homogenized material is isotropic, i.e. A° is of the form AI. In
this case there are some well-known bounds on the eigenvalues of the matrix A°.
These bounds are known in physics. mechanics or chemistry under various names,
such as Hashin-Shtrikman (see Hasbro and Shtrikman. 1962), Clausius-Mossoti,
Lorentz .-Lorenz or Maxwell Garnett bounds.

Suppose now that there exists a function 9(x) such that

X921 0 weakly* in L°°(Sl). (13.17)

Then from (13.15) one has obviously

?c - e-Y1 + (1- e)-,2 weakly* in Lx (S2). (13.18)

In this case and with A° not necessarily isotropic. one still has bounds on
the eigenvalues of the matrix A'. This is a general mathematical result due to
Tartar (1985) for the N-dimensional case (see also Murat and Tartar, 1997b).
They were also obtained for the two-dimensional case independently by Lurie
and Cherkaev (1984). We refer also to Lurie and Cherkaev (1986, 1997).
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Theorem 13.18. Let AE E Al (a, 43, f) such that At = y£I where 7, is given
by (13.15) with 71 < y2. Suppose that Af' E Af (a, ,(3. St) is a subsequence which
H-converges to A°. Then the eigenvalues A, (x)..... AN (X) of A° satisfy a.e. on
S1, the following inequalities:

7g (x) < Ae(x) <'?a(x)

where

1N1 1 -+
fi(x) - 71 7s(x) - 71 7a(x) - 72

2 a72 7g 1 7_1 72

1 1

/
N-1

(X)

+
- (x),-f( ' '

(13.19)

7a(x) = 0(x) 71 + (1 - 9(x))72
ygP) = (0(x) + 1 -8(x) y' (13.20)

11 12 l
Conversely, if the eigenvalues of a symmetric matrix A° satisfy (13.19) for

some function 0 such that 0 < 9(x) < I a.e. on St, then there exists a sequence
of matrices AE of the form yj satisfying (13.15) and (13.1 7), which H-converges
to A°.

In the two-dimensional case and under assumption (13.16), we can give a
geometric interpretation of the bounds in (13.19) by using Fig. 13.1.

The point C1 = C1(9) for a fixed 9 E (0,11 is defined by

C1(0) = (7g, ?`a) =
7172

, 72 - (72 - 71)9) .
(12 - 71)0 + 11

and a simple computation made by using (13.20) shows that, when 9 varies
between 0 and 1, Ci describes the hyperbola

(hi) /1 = 7172

7i+'12-Y2

Observe that
C1(0)_(72,72)

The point C2 = C2(0) is the reflection of C, with respect to the
that is to say C2(9) = (ya. yg). It describes the hyperbola

(h2)
7112

: y2 = 71+12-Yi

The points B, = B, (9) and B2 = B2(0) are given by

B1(9) _ (7a, )a). B2(8) = (7g 7g)

line yi = y2,
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'Y;

-It

0 I
7I "Y2

Fig. 13.1

1'i

The first line in (13.19) means that the eigenvalues are contained in the square
B, C2 B2 C1.

The other two inequalities in (13.19) say that actually the eigenvalues are
contained in the dashed area between the two hyperbola h3 and h4 whose equa-
tions are

(h3) :

1 + 1 _ 1 + 1

Yi -71 Y2 -')I 7g - 7'i 'Ya -')I

h.4
1 + 1 1 + 1

7'2-Y1 12-Y2 72-7'g 72-IYa

Remark 13.19. Let N = 2 and suppose that the matrix A° is isotropic. Then,
one shows that inequalities (13.19) reduces to

A- <A<A+,

where

y2

$71+(1-9)72+12
(1-9)71+9-Y2+71
971 + (1 - 9)72 + 71

+ = (1 - O)71 + 97'2 + 12 72

These are actually the well-known Hashin-Sht.rikman (or Clausius--Mossoti or
Lorentz-Lorenz or Maxwell-Garnett) inequalities mentioned above. 0
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