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Preface

The aim of homogenization theory is to establish the macroscopic behaviour of a
system which is ‘microscopically’ heterogeneous, in order to describe some char-
acteristics of the heterogeneous medium (for instance. its thermal or electrical
conductivity). This means that the heterogeneous material is replaced by a ho-
mogeneous fictitious one (the ‘homogenized’ material), whose global (or overall)
characteristics are a good approximation of the initial ones. From the math-
ematical point of view, this signifies mainly that the solutions of a boundary
valine problem, depending on a small parameter, converge to the solution of a
limit boundary value problem which is explicitly described.

During the last ten years, we have both had the opportunity to give courses
on homogenization theory for graduate and postgraduate students in several
universities and schools of engineers. We realized that, while at the research level
many excellent books have been written in the past, for the graduate level there
was a lack of clementary reference books which could be used as an introduction
to the field. Also, many classical and known results in linear homogenization,
though currently taught, arc not rcally available in the literature, either in books
or in research articles. This lack naturally led to the idea to extend the material
of our courses into the book we present here.

When teaching, we had to take into account that often the audience was
not really familiar with the variational approach of partial differential equa-
tions (PDEs), which is the natural framework for homogenization theory. This
is why we started the book with this topic. It is the subject of the first four
chapters.

We have deliberately chosen not to present too many results, but to have
those included all well explained. We focus our attention on the periodic ho-
mogenization of linear partial differential equations. A periodic distribution of
the heterogeneities is a realistic assuinption for a large class of applications. From
the mathematical point of view, it contains the main difficulties arising in the
study of composite materials.

Chapter 1 deals with two notions of convergence, the weak and the weak* one.
This allows us to describe, in Chapter 2, the asymptotic behaviour of rapidly
oscillating periodic functions.

In Chapter 3 we introduce the distributions and give the basic notions and
theorems of Sobolev spaces. We pay particular attention to Sobolev spaces of
periodic functions. The results of this chapter. as well as those of Chapter 1,
are classical and are the necessary prerequisites for the variational approach of
PDEs. We do not give their proofs but detailed references are quoted.
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In Chapter 4 the variational approach to classical second order linear elliptic
equations is introduced. Existence and uniqueness results for solutions of these
equations with various boundary conditions are proved. Again we treat in detail
the case of periodic boundary conditions.

From Chapter 5 to Chapter 12 we treat the periodic homogenization of several
kinds of second order boundary value problems with rapidly oscillating periodic
coefficients. We are concerned with elliptic equations, the linearized system of
elasticity, the heat and the wave equations.

The model case is the Dirichlet problem for elliptic equations. The results
concerning this case are the object of Chapters 5 and 6. In Chapter 5 we formu-
late the problem and list some physical examples. We also study two particular
cases: the one-dimensional case and the case of layered materials. In Chapter 6
we state the general homogenization result and prove some properties of the
homogenized coefficients.

The main homogenization methods for proving the general result are pre-
sented in Chapters 7-9. Thus, the multiple-scale method is described in Chap-
ter 7. Chapter 8 is devoted to the oscillating test functions method. Finally, in
Chapter 9 we introduce the two-scale convergence method.

In Chapter 8 we also prove some important related results. as for instance
the convergence of energies and the existence of correctors. The convergence of
eigenvalues and eigenvectors is also proved.

Chapters 10, 11 and 12 are devoted to the linearized system of elasticity,
the heat equation and the wave equations respectively. In each chapter, we
start by proving the existence and uniqueness of a solution. Then, we study the
homogenization of the problem.

We conclude this book with a short overview of some general approaches to
the study of the non-periodic case.

The idea of writing this book was to provide detailed proofs and tools adapted
to the level we have in mind. Our hope is to give a background of homogenization
theory not only to students, but also to researchers- —in mathematics as well as
in engineering, mechanics, or physics- who are interested in a mathematical
introduction to the field.

Special thanks go to three of our colleagues. We thank Petru Mironescu for
many helpful suggestions concerning the first four chapters. We also express our
gratitude to Olivier Alvarez for his accurate reading of the manuscript and for
his useful remarks and suggestions. Finally. we thank Thomas Lanchand-Robert
for his valuable and patient help while we were typing this book in TgX.

This book represents for us the ultimate ‘joint venture’, which would have
never been possible without a truly deep friendship and mutual understanding.

Paris D.C.
Rouen P.D.
March 1999
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Introduction

The aim of this book is to present the mathematical theory of the homogeniza-
tion. This theory has been introduced in order to describe the behaviour of
composite materials.

Composite materials are characterized by the fact that they contain two or
more finely mixed constituents. They are widely used nowadays in industry, due
to their properties. Indeed, they have in general a -better’ behaviour than the
average behaviour of their individual constituents. Well-known examples are the
superconducting multifilamentary composites which are used in the composition
of optical fibres.

Generally speaking. in a composite the heterogeneities are small compared
to its global dimension. So. two scales characterize the material, the micro-
scopic one, describing the heterogeneities, and the macroscopic one, describing
the global behaviour of the composite. From the macroscopic point of view, the
coniposite looks like a ‘homogeneous’ material. The aim of ‘homogenization’
is precisely to give the macroscopic properties of the composite by taking into
account the properties of the microscopic structure.

As a model case, let us fix our attention on the problem of the steady heat
conduction in an isotropic composite.

Consider first a homogeneous body occupying §2 with thermal conductivity
~. For simplicity, we assume that the material is isotropic, which means that -y
is a scalar. Suppose that f represents the heat source and g the temperature on
the surface 9 of the body. which we can assume to be equal to zero.

Then the temperature u = u(x) at the point r € Q satisfies the following
homogeneous Dirichlet problem:

—div (4Vu(r)) = f(x) inQ

{ u=0 ondQ, (0.1)
where Vu denotes the gradient of u defined by
Ju du
Vu= glﬂd U= (E ..... 5;;)
Since v is constant. this can be rewritten in the form
—Au=f inQ

{ u=0 on Q. (02)

where Au = div(grad u). The flux of the temperature is defined by

g=1 grad u. (0.3)
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This is a classical elliptic boundary value problem and it is well known that if
f is sufficiently smooth, it admits a unique solution u which is twice differentiable

and solves system (0.2) at any point r in .
If now we consider a heterogeneous aterial occupying €. then the thermal

conductivity takes different values in each component of the composite. Hence,
v is now a function, which is discontinuous in €2, since it jumps over surfaces
which separate the constituents. To simplify. suppose we are in presence of a
mixture of two materials, one occupying the subdomain 2, and the second one
the subdomain Q, with @, N2, =0 and Q = Q, U, U (802 N 8N,).

Suppose also that the thermal conductivity of the body occupying Q, is v,
and that of the body occupying €, is 7, i.e.

T ifref)

‘)(.l') - {’)2 if r € Q,.

Then the temperature and flux of the temperature in a point z € Q of the
composite take respectively. the values

u(z) ifreq

u(z) = { us(xr) ifrefy

and
_ {QI =7 grad ¥; in
g2 =17 grad uz in 5.

The usual physical assumptions are the continuity of the temperature u and of
the flux ¢ at the interface of the two materials. i.e.

{ul = uy on 9§ N 6K, (0.4)
q -1 =q2-n2 on 0N, NDy. '
where n, is the outward normal unit vector to 8;. i = 1,2 and n; = —n, on

O N ONy. Therefore, the temperature u is solution of the stationary thermal
problem. Then the corresponding system (0.1) reads
—div (7(r) grad u(x)) = f(x) inQ U,
u=0 ondN

u; =uz on 8 NN, (05)
q1°ny =q2-nz on 9 NPN,.
Formally, we can write this system in the form
{ —div (1(z) grad u(x)) = f(x) in 0.6
u=0 ondN. (0.6)

Observe that from (0.4). it follows that the gradient of u is discontinuous.
Moreover, in general. the flux g is not differentiable.
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Taking into account these discontinuities, the question is what is the appro-
priate mathematical formulation of this problem and in which functional space
can one have a solution (since one can not expect to have solutions of class cy?

An answer to these questions can be given by introducing a weak notion of
solution. It is built on the notion of weak derivative, the so-called derivative in
the sense of distributions. This is defined in Chapter 3, where we also introduce
the Sobolev spaces which constitute the natural functional framework for weak
solutions.

In the definition of a weak solution, problem (0.6) (or (0.5)) is replaced by a
variational formulation, namely

Find u € H such that
N

ou v /

—_— —dx = vdr. VYve H, 0.7
; _/g; 7(x)6w; o T Ja f (0.7)

where H is an appropriate Sobolev space taking into account the boundary
conditions on u. In (0.7) the derivatives are taken in the sense of distributions.

Of course, if u were sufficiently smooth, (0.7) and (0.6) would be equivalent.
As seen above, this is not the case for a composite material, so the sense to be
given to (0.6) is only that u solves (0.7). Let us point out that the equation in
(0.7) is checked for any v belonging to the space H. This is why v is usually
called a test function.

Existence and uniqueness results of a weak solution of (0.7) are proved in
Chapter 4, where we also treat other kinds of boundary value problems.

Let us turn back to the question of the macroscopic behaviour of the compos-
ite material occupying Q. Suppose that the heterogeneities are very small with
respect to the size of Q and that they are evenly distributed. This is a realistic
assumption for a large class of applications.

From the mathematical point of view, one can modelize this distribution by
supposing that it is a periodic one (see Fig. 0.1).

This periodicity can be represented by a small parameter, ‘c’.

Then the coefficient « in (0.7) depends on ¢ and (0.7) reads

Find u® € H such that

N € .
3 f ()2 9 g = / fvdz. WweH. (0.8)
Q Q

A natural way to introduce the periodicity of ¥¢ in (0.8) is to suppose that it
has the form

¥E(r) =~ (Er) a.e. on RV, (0.9)

where 7 is a given periodic function of period Y. This means that we are given
a reference period Y, in which the reference heterogeneities are given. By defi-
nition (0.9), the heterogeneities in {2 are periodic of period €Y and their size is
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Fig. 0.1

of order of €. Problem (0.8) is then written as follows:

Find u¢ € H such that

ous o
Z/ d &j-é;;dl—/f"dw Vv e H. (0.10)

and Fig. 0.2 shows the periodic structure of 2. Observe that two scales char-
acterize our model problem (0.10), the macroscopic scale z and the microscopic
one f, describing the micro-oscillations.

The discontinuities of this problem make the mode! very difficult to treat, in
particular from the numerical point of view. Also, the pointwise knowledge of the
characteristic of the material does not provide in a simple way any information
on its global behaviour.

Observe also that making the heterogeneities smaller and smaller means that
we ‘homogenize’ the mixture and from the mathematical point of view this means
that ¢ tends to zero. Taking ¢ — 0 is the mathematical ‘homogenization’ of
problem (0.10).

Many natural questions arise:

(1) Does the temperature u¢ converge to some limit function u®?

(2) If that is true. does u° solve some limit boundary value problem?
(3) Are then the coefficients of the limit problem constant?

(4) Finally, is 4° a good approximation of u<?

Answering these questions is the aim of the mathematical theory of ‘*homog-
enization’.

These questions are very important in the applications since, if one can give
positive answers. then the limit coefficients, as it is well known from engineers
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and physicians, are good approximations of the global characteristics of the com-
posite material, when regarded as an homogeneous one. Moreover, replacing the
problem by the limit one allows us to make easy numerical computations.

The first remark is that the function 7¢ converges in a weak sense to the
mean value of v , i.e. one has

/'y"'(:r) v(r)dr — / My () v(r) dx. (0.11)
Q Q
for any integrable function v. Here the mean value My () is defined by

My (y) = ﬁ /y 1(y) dy.

This result on the convergence of periodic functions is proved in Chapter 2. The
notion of weak convergence and related properties are presented in Chapter 1.
One can also (thanks to weak-compactness results stated in Chapter 1) show
that u¢ converges to some function u® and that Vu® weakly converges to Vu°.
The question is whether these convergences and convergence (0.11) are suffi-
cient to homogenize problem (0.10). To do that, one has to pass to the limit in
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the product 4¢Vu¢. This is the main difficulty in homogenization theory. Ac-
tually, in general (see Chapters 1 and 2), the product of two weakly convergent
sequences does not converge to the product of the weak limits. In Section 5.1
we show that there is a vector function £, weak limit of the product 7*Vu* and
satisfying the equation

~divé = f. (0.12)

But
€ # MY (7)vuos

so that from (0.12) one cannot easily deduce an equation satisfied by «°. This
already occurs in the one-dimensional case where {2 is some interval }d;, d2[. One

has (see Section 5.3)
1 du®

¥

Moreover, «° is the unique solution of the homogenized problem

d 1 duO) .
2 —<"L)=f inld,do
dr (My(l) dz

5

u¥(d,) = u%(d2) = 0.
Clearly, £ # My (7)V4?, since

— L #M ().
M, (1)
Y \»

Even for the one-dimensional case this homogenization result is not trivial.
The situation is of course, more complicated in the general N-dimensional case.
The one-dimensional result could suggest that in the N-dimensional case the
limit problem can be described in terms of the mean value of 4~!. This is not
true, as can already be seen in the case of layered materials studied in Section 5.4,
where v depends only on one variable, say r,. In this case, the homogenized
problem of (0.10) is

—div (A°Vu®) = f in§
0.13
{ w=0 ondf, (0.13)
where the homogenized matrix A® is constant. diagonal and given by
1
(——— 0 . 0 }
M, (1)
A® = 0 M‘,(7) 0
\ 0 0 e ML) }
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Let us point out that the homogenized material is no longer isotropic, since
AP is not of the form a°1.

Observe also that in these particular examples of the one-dimensional case
and of layered materials, the honiogenized coefficients are algebraic formulas
involving 4.

For the general N-dimensional case, as seen in Chapter 6, the homogenized
problem is still of the form (0.13). The coefficients of A° are defined by means of
some periodic functions which are the solutions of some boundary value problems
of the same type as (0.10) posed in the reference cell Y. The coefficients a,) of

the matrix A° are defined by

q’_}_/ 5 d __1_/ OXi g Wij=1,...N 0.14
G LTI ey W VRIS 0

where §;; is the Kronecker symbol. The function x; for j = 1,...,N is the
solution of the problem

. oy
—div (1y)Vx;) = -5~ in¥
% (0.15)
xj Y-periodic '

My(Xj)=0.

This result can be proved by different methods. We present in this book
three of them.

In Chapter 7 we use the multiple-scale method, which consists of searching
for «¢ in the formn

uf(z) = uo(.r, %) + cuy (.l', g) +e2u.2(.r. g) 4+ (0.16)

where u; = u;(z,y) are Y-periodic in the second variable y.

The multiple-scale method is a classical one, widely used in mechanics and
physics for problems containing several small parameters describing different
scalings. It is well adapted to the periodic framework in which we work in
this book. Its interest is that in general, it permits us to obtain formally the
homogenized problem.

Chapter 8 is devoted to the oscillating test functions method introduced by
L. Tartar. As we have seen above, in problem (0.10) the function u* is continuous
at the interface 90, N9, but its gradient is not. and behaves in such a way that
the flux yVu® remains contimious. The idea of Tartar’s method is to construct
test functions v = wjy for (0.10) having the same kind of discontinuities as u*
and having a known limit. For our example, one has

wj(x)——\]( )+1, Jj=1.... N. (0.17)
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and ¢ is a smooth function vanishing on 9Q2. Using these test functions in the
variational formulation (0.10). one is able to pass to the limit and identify £ in
terms of u?. Actually. one obtains £ in the form

£ = A'ViC.

This together with (0.12) gives the homogenized problem.
In Chapter 8 we also prove a corrector result which for the model prob-
lem (0.10) is the following. Let us introduce the (corrector) matrix C¢ =

(C5)1<ij<n defined by
Ow; {r
ey W1
Cij(a)b Oy (5)’

where w; is given by (0.17). Then,
Vut - CVul — 0

in a usual (strong) convergence.
Moreover, let us observe that, when applying the muitiple-scale method one

finds N
()= =Y g
j=1 Zj

Therefore
N N
Y\ u® x u®
flg) = Vul(z)- )Y V .1)-—— —c A.(—)V(——) +oee
Vus(z) u'(z) ; y)(x(&_ aa,k(x) gn - 9zx (z)
. o Y xr ou®
= C(x)Vu'(z)— €Y _x{ =)V ap )+

k=1

Hence C¢(z)Vu®(x) is the first term in the asymptotic expansion (0.16) of Vu*.

In the same chapter we also give further properties of the homogenized prob-
lem.

In Chapter 9 we prove again the convergence result by the two-scale method
which takes into account the two scales of the problem and introduces the no-
tion of ‘two-scale convergence'. This convergence is tested on functions of the
form ¥(z,z/e). One of the interests of the two-scale method is that it justifies
mathematically the formal asymptotic development (0.16).

In Chapters 10, 11, and 12 we treat respectively the linearized system of
elasticity, the heat equation and the wave equation. For each problem, we first
prove the existence and uniqueness of the solution, then we study their homog-
enization.

Finally, Chapter 13 contaius a short overview of some ethods used in the
general non-periodic case. In particular. we fix our attention on G-convergence
and H-convergence.



1
Weak and weak™ convergences in Banach
spaces

We recall in this chapter the main properties of weak and weak* convergence in
a Banach space. We also detail these notions for the particular case of LP-spaces.

Let us begin by recalling the notions of a Banach and a Hilbert space which
are the functional spaces in which we work in this book. The spaces we consider

in this book are all real.
Definition 1.1. A mapping

[ -1]:x€Ew—|lr] € Ry
is called a norin on the vector space E iff

|z]| =0+ 2 =0
IAz]| = |All|lxll. forany A€ R. r € E
iz +ylf < llell + llyll. ~ for any x, y € E.

Then E is called a normed space and its norm is denoted by || - || g-
Moreover. E is called a Banach space iff it is complete with respect to the

following convergence (called strong convergence):

Tp o rin F < |r, - rHE - 0.

Definition 1.2. Let H be a real linear space. A mapping
()u:(ry) €HxHr— (z,y)n €R
is called a (real) scalar product iff
(z,2)n >0 2 #0.

(z,y)u = (y.2)y, forany .. ye H
Az + py.z2)n = Mz.2)u + u(y. 2)u. forany \. p€R, x, y, z € H.

Moreover, if H is a Banach space with respect to the norm associated to this
scalar product. i.e. with

1
r = (. 5.
lelles = (o)

then H is called a Hilbert space.
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Here we present in particular, the properties of Banach spaces needed in
the study of homogenization problems. We refer the reader for proofs and more
details concerning Banach spaces to Yosida (1964), Edwards (1965), Rudin (1966,
1973), Zeidler (1980), and Brezis (1987).

1.1 Linear forms on Banach spaces

In this section, we give some basic properties of mappings on Banach spaces and
in particular, we will introduce the notion of dual space. In the sequel, E and F
denote two Banach spaces.

Definition 1.3. Let A : E — F be alinear map (i.e. such that forany z, y € E
and for a, B € R, one has A(az + By) = aA(z) + SA(y)). Then, A is bounded iff

IA@II,.
sup

——— < +400.
zee\} Mzl

One denotes by L(E, F) the set of linear and bounded maps from E to F.
The main property of bounded linear maps is given by the following result:

Proposition 1.4. The quantity

AN &
IAlce.ry = sup ———.
ceerioy Nzl

defines a norm on L(E, F). which is a Banach space for this norm.
Then one has

WA <Al mliell,. VreE, (1.1)

where ||A||c &, F) is the smallest number for which (1.1) holds.
Moreover, the linearity implies that

A,
IAlce. /= sup  ——— = sup [JA(2)],.
zer(oy )5 z€E
el g <1 Izl p=1

for A € L(E. F).

The following result characterizes the space £(E. F):

Theorem 1.5. Let A a linear map from E to F. Then, the following three
assertions are equivalent:
i) A is bounded.
ii) A is continuous,
iii) A is continuous at a point vq € E.
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Proof. Let us prove first that () = (ii).
If A is bounded, from (1.1) and the linearity of A, one immediately has

fAu — Av|l . < |Allee. pyllu—vll g Vu, v € E,

whence the continuity of A.

The implication (¢2) = (ii%) is obvious.

Let now prove that (i¢7) = (¢). If A is continuous in v € E, for any € > 0,
there exists 6 > 0, such that

lv—woll, <8 = |A(v ~ o)l <,

which, if w = v — v, reads

"w"E <éd= ||Aw||p <E.

. 2 .
Consequently, setting z = Ew, we can write

2 2
sup flAzll, =< sup [Aw], < ze.
"2"E=l "w"5=6/2
and this implies (), in view of Proposition 1.4. o

Definition 1.6. If F is a Banach space, the set of the linear and continuous
maps from E into R is called the dual space of E and is denoted E’'. If 2’ € E’,
the image 2'(z) of z € E is denoted by (x’, 2)gs. g. The bracket (-, -}g' g is
called the duality pairing between £’ and E.

The dual space E” = (E’)' of E’ is called the bidual of E.

An immediate consequence of Proposition 1.4 and Theorem 1.5 is the result:

Corollary 1.7. The dual space E' is characterized as follows:
E' = L(E, R).
and it is a Banach space for the norm

o TR 5
|l'ller = sup M-I Vr' e E.
rEE\{0) ”«'1‘",.:

Moreover, one has
[(2', 2)er. g| < 4|l llelle. Ve € E.

From this corollary it is obvious that E” is a Banach space too. Generally,
E can be identified with a subspace of E” through a canonical isometry. Indeed,
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Proposition 1.8. Let z € E be fixed and introduce the map
fr:2' € E — (2 2)p g €ER.
Then f, € E" and the map
F:reE— f,€eE"

is an isometry, i.e.

lalle = IF@)ler = 1 fell e

Thanks to this result, one identifies r with f,. and then F with its image
F(E)C E".

Definition 1.9. Let F be the map defined by Proposition 1.8. The space F is

called reflexive iff F(E) = E".
If E is reflexive, due to the above properties. we identify F and E”.

1.2 Weak convergence

In all this section F is a (real) Banach Spa(‘; equipped with the norm || - ||g. In
Definition 1.1 we introduced the notion of strong convergence with respect to
this norm. Other notions of convergence can be defined on E. We are concerned
here with that of weak convergence.

Definition 1.10. A sequence {2, } in E is said to converge weakly to z iff
v' e E', (2'.an)e g — (@.0)p. E.
This weak convergence is denoted
r, =2 weakly in E.

Remark 1.11. Let us mention that the uniqueness of the weak limit is a conse-
quence of the Hahn-Banach theorem (see for instance Yosida. 1964, Chapter 6).
0

Proposition 1.12. Strong convergence implies weak convergence.
Proof. Let {z,} be a sequence in E such that

r, — r strongly in E.
Then, for any 2’ € E’, thanks to Corollary 1.7 one has

,}Llrolc I(a"~xn)E’.E - (1',‘1')11", el < "l_i_l};c "1""1.:,”-7'11 - I"E =0.
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Proposition 1.138. Ifdim E = N < +oo. the strong and the weak convergences
are equivalent.

Proof. Let {z,} be a sequence in E snch that
In = 2o weakly in E.
Let (e;)/., be a basis of E with |le;(| , = 1 forany i =1,..., N. Then, for any

y € E, there exist y'....,y" uniquely determined in R such that y = Zfil yle;.
Hence, we can define the maps

fi:y — Yy eR, i=1..... N,

which are N elements in £’. From Definition 1.10 one has, in particular,

nliugo(f,v. Ty —2g)g. E =0, i=1,...,N. (1.2)
But
n N
lzn — ol = [|D_ ei {fis 2n —x0)pr.B| < > lles (i n = zo)er, ll
i=1 E i=1

N
< S i xn — zo)e. s
i=1

which with (1.2). gives the strong convergence of x, to ro.
This, together with Proposition 1.12, ends the proof. O

Proposition 1.13 is not true if dim E = +20. The easiest way to see that
is to construct some counterexamples. For instance. Examples 2.4 and 2.5 from
Chapter 2 exhibit sequences which are weakly but not strongly convergent.

The following result is a particular case of the Banach-Steinhaus theorem.
We refer to Yosida (1964) for a proof.

Proposition 1.14. Let {x,} be a sequence weakly convergent to x in E. Then

i) { zn} is a bounded sequence in E, i.e. there exists a constant C independent

of n such that
VYn € N. ”x,,llE <.

ii) the norm on E is lower semi-continuous with respect to the weak conver-
gence, i.e.
Ll < Hminf ||z, ]| .
el < timinf [zl

To investigate further properties of the weak convergence. we need the fol-
lowing definition:
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Definition 1.15. We say that the Banach space E is uniformly convex if for
any € > 0, there exists § > 0 such that

T+Yy
(ey€ B, el <Ll <1 le—sl,>e) = (|52, <1-9)-

Remark 1.16. It can be proved (see for instance Rudin, 1966) that any uni-
formly convex Banach space is reflexive, the converse being not true. It is also
easy to check that any Hilbert space is uniformly convex (and therefore reflexive).

0

Proposition 1.17. Let {r,} be a sequence in E. One has

. i) ap—z weaklyin £
(a) (zn » @ strongly in E) = ()} i) |z, ) — |l

Moreover, if E is uniformly convex, then (a) <= (b).

Proof. (a) = (b). Proposition 1.12 gives b(i). Convergence b(ii) follows from
the inequality
lell, - gl ;] < e - ol

(b) == (a). Suppose now that E is uniformly convex. Clearly. if r = 0, from
b(ii) one has the convergence to zero of ||z.|, which is by definition the strong

convergence of {z,}.
Let now z # 0. We will argue by contradiction. Suppose that

limsup [|x, — 2| . > 0.

n—00

Then, there exists a subsequence (for simplicity. still denoted by x,) such that

nlil:lgo lzn =2l , =£>0. (1.3)
We may assume that (jzn[l . # 0 and set zp = xyn/l|lzall . 2 = /||| g Observe
that. by definition. ||z,|| . = [lz]| . = 1. Moreover. since for any ' € E’,
(X' 2a)E E = —I——(J" En)E' E
v . £ "J'"”E njeE. M

one has from (b) that 2, — z. Consequently. (2, + 2)/2 — 2z weakly in E.
From Proposition 1.14(ii) it follows that

. 2n+ 2 2n+ 2
= fellp < iminf | 252 < timsup |2
(] g ",{‘L‘;;f > |l < [l;ll sotip 5 |l
< limsu "i'-" Ili” =1.
n—n‘x:p 2 E+ 21lg
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Hence,

lim
n—oc

=2, - e

Let now ¢
e < m
Then, from (1.3) there exists ng such that, for n > no, one has
len — all, > € - (€~ 2ellzl ;) = 2]l .
Also, from hypothesis {b)(ii). there exists n; such that, for n > n;, onc has
lleall . — 21| < el

Then, for any n > max {ng, 71 }. we have successively

"mn - x"E

e,

l.n _ 2 zn _ xn
leall, ~ Tel e I Tl ~ Tall,

Mol llzll|

[l

+
E

2e <

E

S ”zﬂ - z“E +E.

il

lzn — 2l +

le
Hence, one has for any n > max {ng. n1}

|z = 2|l . > e.

I,

Consequently, from Definition 1.15 we deduce the existence of some § > 0 such
that

lim ”

n—oc

z"“” <1-6<1.
2 E

which is in contradiction with (1.4). a

The following theorem states one of the main properties of the weak conver-
gence in reflexive Banach spaces. For the proof. which is rather technical, we
refer again to Yosida (1964) or to Zeidler {(1980).

Theorem 1.18 (Eberlein-Smuljan). Assume that E is reflexive and let {x,,}
be a bounded sequence in E. Then

i) there exists a subsequence {x,, } of {r,} and r € E such that, as k — oo,

Zy, — r weakly in E.
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i} if each weakly convergent subsequence of {z,} has the same limit x, then
the whole sequence {x,} weakly converges to z, i.e.

rp —=x weaklyin E.

The last result of this section will be used frequently throughout this book. It
enables us to pass to the limit in products of ‘weak-strong’ convergent sequences.
Proposition 1.19. Let {x,} C F and {y,} C E’ such that

r, —=r weaklyin F
Yn — y strongly in E’.
Then
lim (yn, Tn)er B = (U, T)E . E-
n—ocC

Proof. From Corollary 1.7 oue has

im |(yn. To)E' £ — (Y. T)E". E|
n—o0

= lim |(yn - Y. In)EE+ (ys Tn — x)E’.El
n—oo

< lim ly, =yl Nleall + lim (4,20 — 2)er, 6] =0,
where, to pass to the limit, we have used Proposition 1.14(i). a

1.3 Weak* convergence

As can be seen from Definition 1.10. to check the weak convergence for a sequence
of E, one needs to know what is the space E’. It may happen that E’ is ‘too
big’ a space. This renders the verification of the weak convergence condition too
difficult. Moreover. in this case, there are too ‘few’ weakly convergent sequences.
This situation leads to the more general following notion of weak* convergence:

Definition 1.20. Let F' be a Banach space and set E = F'. A sequence {z,}
in E is said to converge weaklv* to .v iff

(:L'n,.’l")pv‘ F = (.l'..l',);:v,p. vr' e F. (1.5)
This weak* convergence is denoted
Tp =2 weakly* in E.

Remark 1.21. The uniqueness of the weak* limit is immediate. Indeed, if the
sequence {z,} has two weak* limits . and y. then from Definition 1.20 one must
have (z,2') ' F = (y.2')p F. for all 2’ € F. which implies that z = yin F'. ¢

Proposition 1.22. Let F be a Banach space and E = F'. Then any weakly
convergent sequence in E is also weaklyv* convergent.
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Proof. Let {z,} be a sequence of E' = F' such that
Ty — 1 weakly in E.
Then, by definition
(', xp)pr pr — (& x)pr . VX' € F.
This implies (1.5), since ¥ C F”. D

Remark 1.23. From Definition 1.20 and the proof of Proposition 1.22, it is clear
that the two notions of convergence are a priori not equivalent since in general,
the inclusion F C F” is strict (see for details Akilov and Kantorovich, 1981).
Obviously, if the space F' is reflexive. weak convergence and weak* convergence
are equivalent. )

The main properties of weak convergence are still valid for weak* convergence
with analogous proofs. In particular. the results from Section 1.1 read as follows:

Proposition 1.24. Let {x,} be a sequence weakly* convergent to x in E = F'
where F is a Banach space. Then

i) {zn} is a bounded sequence in E. i.e. there exists a constant C independent

of nn such that
v¥n € N, flzall, < C.

ii) the norm is lower semi-continuous with respect to the weak* convergence,
ie.
z|| . < liminf .
| < liminf |loq ||

To give the equivalent of Theorem 1.18 for weak* convergence, we need to
introduce another definition.

Definition 1.25. We say that the Banach space F is separable if there exists a
set, at most countable, which is dense in F.
Then, the following result holds true:

Theorem 1.26. Let F be a separable Banach space and let E = F'. If {z,} is
a bounded sequence in E, then

i) there exists a subsequence {x,, } of {x,} and x € E such that, as k — oo,

ayn, —r weakly* in E.

ii) if each weakly* convergent subsequence of {z,} has the same limit z, then
the whole sequence {x,} weakly* converges to r. i.e.

rp, —=r weakly* in E.
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One also has a result concerning products of ‘weak*-strong’ convergent se-
quences.

Proposition 1.27. Let {x,} be a sequence in E = F' where F is a Banach
space and {y,} a sequence in E' such that

yn — y strongly in F
In, — x weakly* in E.

Then
int (zn, yn)F.F = (@ Y)F. F.
n—oc

1.4 Some properties of LP-spaces

In this section we give a short presentation of LP-spaces. We suppose known the
basic properties of Lebesgue measure and integration theory (for details we refer
the reader to Rudin, 1966). In the sequel, RY is equipped with the Lebesgue
measure dz. We will denote by |w| the Lebesgue measure of a measurable set w.
As usual, we will identify two integrable functions which are almost everywhere
equal.

From now on, @ and 2 denote respectively. an open set and a bounded open
set in RV. Let us recall in this section the definition of the space D((). For
more properties of this space. we refer the reader to Chapter 3.

Definition 1.28. For any function ¢ : O — R, the support of ¢, denoted by
supp y, is defined as the following closed set of O:

supp 9 = {r€ 0. 9 #0}NO.

We denote by D(O) the set of indefinitely differentiable functions whose sup-
port is a compact set of R™ contained in O.

We denote also by C2(O) the set of continuous functions whose support is a
compact set of RV contained in O.

Remark 1.29. Let us observe that one can construct functions in D(Q) having
an arbitrarily small support. For instance, for any a > 0, the function ¢ defined
on R¥ by

al
EE T
‘p(m)={e | lf|17|<a
0 if |z| > a,
is clearly in C*°(R™) and its support is the closed ball centred at the origin and

of radius a.
Notice that in the literature D(Q) is often denoted by C§°(0). 0
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Definition 1.30. Let p € R with 1 < p < +00. Define
LP(0) = {f | f:O+— R. f measurable and such that /o |f(z)|P dx < +oo}
L*(0) = { f| f:0O+ R, f measurable and such that there exists C' € R
with |f| < C, ae. on o}.

Define also
LY (0)={f1| f € LP(w), for any open bounded set w with & C O}.
The next two propositions give the main properties of LP-spaces.

Proposition 1.31. Let p € R with 1 < p < +o0o. The set LP(O) is a Banach
space for the norm

1
T if

I fllr o) = [/olf(l)l d:l,] if p < +00

inf{C, |f| < Cae. on O} ifp=+oc.

If p = 2, the space L%(0) is a Hilbert space for the scalar product

(f.9) 20y = /of(-l‘) g(x) dx.

Proposition 1.32. The space LP(O) is separable for 1 < p < +o00, and is
uniformly convex for 1 < p < +00.

Remark 1.33. Taking into account Remark 1.16, it follows that L?(O) for 1 <
p < +00, is reflexive. Note that the space L'(0) is not reflexive and also, that
L*°(Q) is neither reflexive nor separable. ")

Proposition 1.34 (Holder inequality). Let 1 < p < +o00 and p’ be its con-
jugate, i.e.

Then,
/0 1£(@) 9@ dr < ||y lgll i o).

for any f € LP(O) and g € L”'(O). For p = 2, this inequality is called the
Cauchy -Schwarz inequality.
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An easy consequence of this inequality are the following inclusions:
Corollary 1.35. Let 1 <p < g < +oc. Then,
LI(Q) Cc LP(Q)

with
IfflLe) < cliflizaqey,

where the constant ¢ depends on |S}|. p and q.

Theorem 1.36 (Representation theorem). Let 1 < p < +00 and P’ be its
conjugate. Let f € [LP(O)]'. Then. there exists a unique g € L? (O) such that

(fr o) ron Lr) = /OQ(T) (x) dz. Yy € LP(O).

Moreover
llgll o oy = IflliLecoyy-

Remark 1.37. Due to this theorem. the space [LP(Q)]’ can be identified with
L* (0O) for 1 < p < +00, so that in particular. [L}(0)]) = L>®(0). Let us point
out that, on the contrary [L=(O))’ # L'(O). One has in fact. L}(0) C [L*®(O))
strictly. (We refer to Brezis. 1987. for the proof of this result). The space
[L>®(O)) has a complicate structure (see Akilov and Kantorovich, 1981, for a
characterization of this space). 0

There arc many sets of functions. useful in applications. which are dense in
L?-spaces. In particular, we will make use in the sequel of the following result:

Theorem 1.38. D(O) is dense in L?(O). for 1 < p < +00.

Remark 1.39. This density result does not hold true for p = co. Indeed, if { f»}
is a sequence in D(O) that strongly converges to f in L>((), then necessarily,
f would be continuous, since the uniform convergence preserve the continuity at
the limit. But, obviously, a function in L>(Q) is not necessarily continuous. ¢

To state another very important density result. we need to introduce the
following two definitions:

Deflnition 1.40. Let A be a measurable set in R”Y. The characteristic function
of A is the function x M defined by

(r)—{l if reAd
A= 0 ifreRV\ A



Weak convergence in L? for1 <p <oo 21

Definition 1.41. A function f : RN — R is called a step function if

m
k=1
with m € N, ai € R and where I is an interval in RN, for any k € {1,...,m}.
If © c RY is a bounded open set. we denote by S(2) the set of step functions
m
of the form Z"k’(m such that I ¢ , for any k € {1....,m}.

k=1
Obviously. () C LP(R) for any p such that 1 < p < +0o. Furthermore,
we have the following density result (see Rudin. 1966):

Theorem 1.42. If 1 < p < +oc, S(0N) is dense in LP(2).

Remark 1.43. Observe that this theorem implies in particular that LP(R) is
dense in L!(Q2). 0

We end this section by a result which will be widely used in the sequel.

Theorem 1.44. If f € L} (O) is such that
/ f(x) p(x)dr =0, Vpe D),
o
then f =0, a.e. on O.

1.5 Weak convergence in L? for 1 < p < o0

Let {u,} be a sequence in LP(§?) with 1 < p < oo. In this case, due to Defini-
tion 1.10 and Remark 1.37. the weak convergence

u, = u weakly in LP(Q2)

signifies that
/ Up o dr — / updr. ¥ o € LP().
Q 0

with 1/p+1/p' = 1.

Remark 1.45. Since for 1 < p < <. LP(?) = (L”'(Q))'. the weak convergence
is equivalent to the weak* convergence. This follows from Remarks 1.23 and
1.33. Moreover, again for 1 < p < oc. Theorem 1.18 shows that any bounded
set in LP(Q) is weakly compact. 0

The next result of this section gives a characterization of the weak conver-
gence in the space LP(£2). It will be often used in the study of periodic oscillating
functions, which are discussed in Chapter 2.
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Proposition 1.46. Let 1 < p < oo and {un} be a sequence in LP(R). Then,
the following equivalence holds true:

(@) (zn — u weakly in LP(Q)) <
i) llunlley < C (independently of n),
(b

it) / u, dz — / u dz, for any interval I C .
I 1

Proof. Suppose that (a) holds. Then. (i) follows from Proposition 1.14 and (ii)
is obtained by testing the weak convergence for the function ¢ = x r Hence

(@) = (b). ,
Assume now that (b) holds. Let ¢ € LP (), with 1/p + 1/p' = 1. From
Theorem 1.42, for any positive 7, there exists a step function ¢, such that
“‘P - ‘Pn“ LY (Q) <

with

m

o= kX,
k=1

where m € N, ax € R and I is an open interval in Q. for any k € {1,...,m}.
Then,

/Q(un -u)pdz =/Q(un —u) ¢y dl’+fn(un = u) (p — py) dz. (1.6)

From (iz) we have, as n — oo,

f(u,.—u)ga,,da::Zak/ (up —u)dr — 0.
Q k=1 I

From (z), the definition of ¢, and the Holder inequality, one easily has that

[Q(un —u)(p~ ‘Pn) dr < Cn.

where C) is independent of n and 7. Then, (a) follows from (1.6) by making first
n — oo and then 7 — 0. ]

1.6 Weak convergence in L!
Due to Definition 1.10 and Remark 1.37, the weak convergence
u, —u  weakly in L(Q)

means that
/{;ungod:r——> u  dr. YV p € L®(Q).
Q
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X2

O n Xy

Fig. 1.1

Since L'(R) is not reflexive (see Remark 1.33), the weak compactness Theo-
rem 1.18 does not apply. This makes the study of bounded sequences in L!(£2)
quite difficult. The following example exhibits a bounded sequence in E!(Q)
from which one can not extract any weakly convergent sequence in L(f2).

Example 1.47. Let u, be the function defined by (see Fig. 1.1)
<zl
un(:r):{n 0<z<,

0 otherwise.
Clearly, uy, is in L'(—1,1) with

luallLr(-1.1y = 1.

Let ¢ € C%(~1,1) (see Definition 1.28). Then,
1
(Uns @) L1(<1,1).L%(-1.1) = n/O p(x) dz — ¢(0),

due to the mean value theorem. Omne can show (see Remark 1.49 below) that
there is no function ug € L!(~1, 1), such that

f_ 0(2) ¢l(x) do = p(0), Vo€ CA(-1,1),

This means that {u,} does not converge weakly in L!(-1,1). 0

Let us now consider the dual space of C2(f2) introduced in Definition 1.28.
It is known that [C2(R))' = M(R2), where Af(Q) is the set of positive measures
(called Radon measures) on the bounded domain Q. We have the following result
which characterizes the limit points of a bounded sequence in L!(9):
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Proposition 1.48. Let {u,} be a bounded sequence in L'(R). Then, {un} is
weakly* compact in M(R), i.e. there exists a subsequence {uq, } and u € M(?)
such that

lim Uy, p dx = (u.(p)M(g)'(rg(g), Vo € CS(Q)
k—oo Jo

Proof. The result is a consequence of the fact that L'(Q2) can be identified with
a subspace of M(R2). Indeed, the map
T: feL}Q) +— Tf e M(R),

with T f defined by
(Tf, o)m@).com) = /ﬂﬁp dz, V€ CARQ),

satisfies
ITfllare) = Wflir @y

This means that T is an isometry, so that T'f is identified with f and we can write
LY(Q) ¢ M(Q). Consequently, we can apply Proposition 1.24 to {u,} which is
also a bounded sequence in Af(Q). m]
Remark 1.49. We can now make more precise the comment on the limit of the
sequence {u,} introduced in Example 1.47. indeed, Proposition 1.48 shows that
{un} is weakly* convergent in Af(—1.1) to the measure do, defined by

(50~ ‘P)M(-l.l).(cg(—l.l)]' = ¢(0).
It can be shown that §g, called the Dirac function at the origin, is not in

L'(-1,1). 0
Remark 1.50. Since L! cannot be characterized as the dual of some Banach
space, the notion of weak* convergence is not interesting in this space. O

At this point, one can ask under which conditions a bounded sequence in
LY(9) is weakly compact. To answer this question. we need the following defi-
nition:

Definition 1.51. Let Q be a bounded open set in R¥ and {u,} a sequence in
L'(Q). The functions u,, are equi-integrable if. for any 1 > 0, there exists § > 0
such that

Vn €N, / un(z)| dr <, for any E C Q with [E| < 6.
E

Then the answer to the above question is
Proposition 1.52 (Dunford-Pettis). Let {u,} be a sequence in L'(2). Then,
({un} is weakly compact in L'(Q)) is equivalent to:
i) {un} is bounded in L'(§2)
{ it) the functions u, are equi-integrable.
For the proof we refer to Dunford and Schwartz (1958) or Edwards (1965).



Weak* convergence in L™ 25

1.7 Weak* convergence in L™
From Definition 1.10, the weak convergence
u, — u weakly in L>(Q)
means that
(@, un) L= (@), Lo@) — (@ WLy .Lo@. Y ¢ € [L=(Q)].

As mentioned in Remark 1.37, the space [L°°(£2)]’ has a complicated structure
so that it is very difficult to check this convergence. On the other hand, since
[LY(Q)) = L°°(2). weak* convergence is the convenient notion for this case.

From Definition 1.20, it follows that

up, — u weakly* in L*°(Q)

is equivalent to
/ungpdx—)/ucpdrr, Y e LY(N).
Q Q

Since L'(R?) is not reflexive, weak convergence and weak* convergence in
L*°(Q2) are not equivalent.

Remark 1.53. From Corollary 1.35 and Theorem 1.18, it follows that the weak*

convergence of a sequence {u,} in L>(2) to some element u € L>*(R), implies
the weak convergence of {u, } to v in any LP(Q) with 1 < p < +oo0. ¢

Remark 1.54. The space L!(Q2) being separable (see Proposition 1.32), Theo-
rem 1.26 implies that from any bounded sequence in L>®(2) one can extract a
subsequence weakly* convergent in L>(Q). ¢

A last result in this section is the equivalent of Proposition 1.46 for the case
p = 0o. We have
Proposition 1.55. Let {u,} be a sequence in L°(2). Then, one has the fol-
lowing equivalence:
(@) (un — u weakly* in L®(Q)) <
i) [unllL>@ <C (independently of n)
(b)

it) / u, dr — / udx for any interval I C Q.
I !

Proof. Suppose that (a) holds. Then. (i) follows from Proposition 1.24 and (ii)
is obtained by testing the weak convergence for the function ¢ = X, Hence
(a) = (b). The implication (b)) => (a) follows by the same argument as that
used in the proof of Proposition 1.46. m]
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Rapidly oscillating periodic functions

In this chapter we study a relevant class of periodic oscillating functions, which
plays an essential role in homogenization theory. We turn our attention, in
particular, to functions of the form

ae(z) =a(§—)

where ¢ is a periodic function and where, from now on, ¢ > 0 takes its values
in a sequence which tends to zero. Let us point out that if a is Y-periodic (see
Definition 2.1 below), then a. is €Y -periodic. Moreover, as can be seen in the
examples below, the smaller ¢ is, the more rapid are the oscillations. Therefore,
a natural question is to describe the behaviour of the sequence {a.} as ¢ — 0.
This is the aim of Section 2.3.

2.1 Periodic functions in L1

Throughout this book, Y will denote the interval in R" defined by
Y =]0,¢, (x--- x]0, €N . (2.1)

where ¢;,...,{N are given positive nuinbers. We will refer to Y as the reference

period.
The following definition introduces the notion of periodicity for functions

which are defined almost everywhere.

Definition 2.1. Let Y be defined by (2.1) and f a function defined a.e. on R¥,
The function f is called Y-periodic iff

flx+kbe)=f(x) ae. onRY, VkeZ. Vie{l,...,N},

where {e,,...,en} is the canonical basis of R
In the case N = 1, we simply say that f is #;-periodic.

The mean value of a periodic function is essential when studying periodic
oscillating functions. Let us recall its definition.

Definition 2.2. Let Q2 be a bounded open set of R and f a function in LY(9).
The mean value of f over § is the real number Mgq(f) given by

Ma(f) = ,T‘)-, /9 f(y) dy.
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The following lemma shows that the mean value of a periodic function can
be computed on any translated set of the reference period:

Lemma 2.3. Let f be a Y-periodic function in L}(Y). Let yo be a fixed point
in RN and denote by Y, the translated set of Y, defined by

YYo=y +Y.
Set

T

fe(2) = f(—) ae. on R".

€

Then
i) /Y fly)dy = /Y f(w)dy,

i) / | Jelwyds = / h@)do = /Y 1) dy.

Proof. f yo = (33, .., u}). then one has Yo <Jud,ud + &a[x -~ x[ul¥, 4! + En|
(see Fig. 2.1).
Let i € {1,..., N} be fixed and set

(2.2)

o(y;) = / ) fdyy---dyiady,4, - - - dyn,
M Jud i +6,

which is an ¢;-periodic function.
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Then, one has by periodicity

yo+41
fdy = [ S(y) dyy
Y

Yo 0

v Yo +61 &y
—/ ®(y1) dy +/€ ®(1) dy +_/(; ®(1) dy
0 1

£y 6,
/ @(y1) dyr = / / . f dy.
0 0 Mz )ud 13 +651]

va+ts

Observe now that

fdyz---dyzv=/ Fdys--dyy.

/11j¢1]y$.y3+€,[ v3 v/!;j>2]y3-%+'j[

Making a similar computation in the direction y3, it is easily seen that

&,
/ A fdyz~--dy~=/ / fdys--dyn.
M jyg i +6,{ 0 JHjso)ud.v+6,(

Hence,

£ 12
fdy=/ / / ~ fdyz---dyn.
Yo 0 Jo JNsqludwi+o]

Then (i) follows repeating successively the same argument in the directions
y3,...,yN. By a change of variables, assertion (ii) is straightforward. ]

2.2 Examples
The following classical examples are very significant:

Example 2.4. Let v(y) be the periodic function of period 1, defined on R by

v(y} = sin(2mry)

ve(T) = v(%) = sin (27r§), r €la, b,

where a,b € R. Observe that if for instance, a = 0, = 2 and ¢ takes its values
in the sequence {1/2"} where n € N. for n = 0.1, 2. we have the pictures drawn
in Figs 2.2-2.4. From the figures it is clear that, as ¢ — 0, sin(27r/e) cannot
converge in almost any point. Applying Proposition 1.46, one shows in particular
that

and set

ve = 0 weakly in L%(a,b). (2.3)



Examples 29

-10L

Fig. 2.2 (n =0)

05 1o 15 2{0

-1.0L

Fig. 2.3 (n=1)



30 Rapidly oscillating periodic functions
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Indeed, it is obvious that the sequence {v.} is bounded independently of ¢ in
L?(a,b). On the other hand, for any interval 7 = ]a;,b(C ]a,d], one has

bl " bl
/ sin (2%2) dr = - cos (211'2)
a1 € 27 €/ a,

— 0.
Hence, (b) from Proposition 1.46 holds, and so (2.3) is proved.
Let us remark that this convergence is not strong in L?(a,b). Indeed,

b x e (¥
lve —Olli2apy = [; sin? (2%?) de = o see sin® y dy
= i/q_b —————I—COS2y dy = b-a -!-—i[—sin‘l—"b-!-sin-4—72
27 Jane 2 2 8w £ e |
so that, as ¢ — 0,
e — Ol 720y — b ; = # 0.

\

Example 2.5. Let v(y) be the periodic function of period 2, defined on ]0,2[

by
_fa ifye(0,2)
vly) = { 3 otherwise,
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with o, 8 € R, a # (. As in the previous example, we set

ve(x) = v(g), r €]a, b.

where a,b € R. Let us draw again (Figs 2.5-2.7) its graph for n =0, 1,2, in the
case where a = 0, b = 2 and ¢ takes its values in the sequence {1/2"}, n € N.
Here also, one can easily see that if ¢ — 0, v cannot converge almost everywhere.

The sequence {v.} is obviously bounded independently of € in L?(a,b). We
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Fig. 2.7 (n=2)

would like to apply Proposition 1.46 to this sequence. To do so, we need to verify
assertion (ii) from this proposition. Let I =]a,,b;[ be an arbitrary interval in

]a, b and let us compute

b,
Z. =/ ve(x) dx.

a

For any positive €, there exist £ and 8 such that

bi=ae;+2kc+0e, keN, 0<0<2

Therefore,
a 21 42k 2L 42k 46
L=cf vwa=c [ wwdr+e [ v(y) dy.
2 a L +2k

From Lemma 2.3 we have

42k ko p3+2n
€ / vy)dy = ey v(y) dy
2 e LR TTNE

2 2
by —ay —fe¢
= ke / v(y) dy = ———— 02’ / v(y) dy.
0 0

On the other hand, again by Lemma 2.3,

5L 42k+6 2142k 42 2
wwﬂs/ vl dy= [ ) dy
P42k 0

L +2k

(2.4)
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Consequently, passing to the limit as € — 0 in (2.4). we get
b —a [?
7. — 252 o) dy= -} (3a+48).
0
Then, Proposition 1.46 gives that
ve— =4 (3a+38) weaklyin L*(a.b). (2.5)

Here also, this convergence is not strong in L?(a,b). Indeed, if this convergence
were strong, Proposition 1.17 would imply that

2
Hl’e"%na.b) - Hvoum(a‘br

But a similar computation as that used to prove (2.5) gives
b
ol = [ 42@) dz — (-} (30 +4 57).
a

which is different from

||”0||i2(a.b) = (b- a)[%(% a+3 ﬂ)]z'

0

Let us observe that in the two examples above, the weak limit given by (2.3)
and (2.5) respectively, is equal to My-(v). This fact is contained in a general
result concerning the weak limit of a sequence of rapidly oscillating functions.
The aim of the next section is to give this result.

2.3 Weak limits of rapidly oscillating periodic functions

In this section we prove the following result:
Theorem 2.6. Let 1 < p < +o0o and f be a Y -periodic function in LP(Y). Set

x

fe(z) = f(;) a.e. on RV. (2.6)
Then, if p < 400, ase - 0
1
fe=My(N) = 1 [ F)dy weakly in 7(w),

for any bounded open subset w of RV.
If p = 400, one has

fo=Mr() = [ fdy weakdy* in L)

Proof. The proof is done in several steps.
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2.3.1 A priori estimates

If p = 400, taking into account definition (2.6) of f.. one has

| fellzoemry = ISl vy

Consequently, thanks to Theorem 1.26, one can extract a subsequence {f.- } such
that

fer = F  weakly* in L®(R"). (2.7)

Consider now the case p < +00 and let w be a bounded open subset of RY.
To obtain a priori estimates in LP(w), it is enough to show that for any open
interval I of RV, there exists a constant C independent of ¢ such that

| fellee(ry < C.

It is not restrictive to suppose that I contains at least a translated set of Y.

Observe that one can find N (&) pairwise disjoint translated sets of Y denoted
Y, k=1,...,N(e) with € Yx C I, and N'(¢) pairwise disjoint translated sets of
Y denoted Y}, j =1,...,N'(g) with €Y/ N8I # @, such that (see Fig 2.8)

N(e) _ N'(g) .,
IC(U sYk)U(U eyj). (2.8)

k=1 i=1
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Let L;,...,Ly be the lengths of the edges of I. Let us prove first that
It

gk
i) lim eN"IN'(e) < E(ﬁh L’) < N%.

Clearly, for any € > 0, there exist k{,..., ky € Nsuch that, foranyi=1,...,N,
L; =Ekffi +'y,- with 0 57;’ < el;,

i) lim eNN(e) =
(2.9)

and consequently,

ek{ — % when € — 0. (2.10)
]

On the other hand, observe that the number of translated periods of €Y strictly
included in [ is

Ne=kix---xkiy
so that (2.10) implies
Lyx---xL N _ _l]_l
O x---xly Y]
which is assertion (2.9)(i). To evaluate N/, let us observe that the sets Y and
Y; can be chosen such that the interval 7 is covered by the union of K¢ disjoint
translated sets of eY with K€ = (k§ +1) x --- x (k% + 1). Then

NS’SKS—NE:Ae"'BE

=f(H kf)-

i=1 \j#i

eNN, —

where

From (2.10), we see that

ia— (T ) < w11 2=

=1 \j#i
as for any j = 1,...,N, one has ¢; < L;. This implies (2.9)(ii) since, by

construction
eN-'B, — 0.

Now, the periodicity of f, Lemia 2.3, and estimates (2.9) give

f N(e) N'(e)
ey < 3 / pare 3 / \folP dz
‘ = [N(e) + N'(e) / P da (2.11)
| = INE+ NG [ 7P dy < CUIEy,
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where C is a constant independent of €.
This means that the sequence { f. } is bounded in L?(w), for any bounded open
subset w of RN. In particular, for 1 < p < 0o, we can apply Proposition 1.18 to

get a subsequence {f.-} such that
fe —= G weakly in LP(w). (2.12)
2.3.2 Identification of the limit

{a) Case 1 < p< 400

Let w be a bounded open subset of RV. From the first step and Proposi-
tion 1.46, to identify the limit in (2.12), it is sufficient to show that

[ fu(z) dz — / My (f) dz = [T\ My (),
I I

for any interval I C w. By using (2.8), one has
N'(e)

[r@a=Ne [ fwa+ > / T

From (2.9) it follows that

N(e)e /} f(y)dy — Il—)l,lI/} f() dy = [ IIMy(f)
and also
N'(e)
. ., ! _ N ’ .
> /EY;mfs(x)d.z <v@) [ ) =¥ v [ sy o

Consequently, in (2.12) one has G = My(f). Moreover, (ii) of Theo-
rem 1.18 implies that the whole sequence { f.} converges to My (f).

(b) Case p =+
Let w be a bounded open subset of RN and x be its characteristic function

(see Definition 1.40). Then. in particular Yor any ¢ € L*(w), one has
ex,, € LY(R¥™). Then, from (2.7) one gets

/fer ¢d.l)—->/Fcpd.r.
w W

fo = F weakly in L?(w).

From step (a) and the uniqueness of the limit (see Remark 1.11), we know
that

Hence,

F = My (),

a.e. on w and therefore a.e. on R, since w is arbitrary. Again, Theo-
rem 1.18 shows that the whole sequence {f.} converges to My (f).
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(c) Casep=1.
Since a bounded set in the space L! is not weakly compact (see Section 1.6),
to prove the result in this case we will apply a density argument. Re-
mark 1.43 implies that for any 5 > 0, there exists g € L?(Y') such that
If =gl )y <n (2.13)
Let us extend g by periodicity a.e. on R¥ by setting
gx+kle;)=g(x) ae.onY, VkeZ, Vie{l,...,N},

where {€),...,en} is the canonical basis of RN . Define the function g, by
ge(x) = g(g) a.e. on RV,
Let-w be a bounded open subset of RY. Then. for any ¢ € L*(w), one has

[ (e - My(N) pdz = / (fe - 9¢) 0 dz + / (g ~ My (9)) ¢ dz
+ f (My(g) - My(f)) pde.  (2.14)

If I is an interval in R¥ such that w C 1, from (2.11) and (2.13) it follows
that there exists a constant '}, independent of £ and 7 such that

< lell<wyltfe = gellry < Chn.

[ -5 v

Obviously, from (2.13) one also has

< Con.

[ My(e) - M) p e

where C is a constant independent of ¢ and 7. Finally. from step (a), as
e—0,

/ (9: — My(9)) v dz — 0.

Consequently. from (2.14) we have

/ (. = My () ¢ dz — 0,

since 7 is arbitrary. This ends the proof of Theorem 2.6. o
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Remark 2.7. Let E be a Banach space. Theorem 2.6 shows in particular, that
if {#.} C E and {v.} C E’ are two sequences such that, as ¢ — 0,
ue — u weakly in E,
ve = v weakly in E’,
then, in general
('ve9 ue)E'.E 7(" (‘U, u)E',E-
Indeed, let f, g be two Y-periodic functions in L*(Y), and set

ue(x) = f(g—) a.e. on RV,

' (2.15)
ve(r) = g(%) a.e. on RV,

Theorem 2.6 implies that, if w is a bounded open subset of RY, then

UVe = (fg)(é) — My(fg) weakly in L!(w).

Hence using Remark 1.37 we have, in particular,
(Ve, Ue)L2(y). L2(Y) = Luevs dr — {w|My(fg)
while, by using again Theorem 2.6
o, Wi zon = [ My (1) My(a) de = wiMy (f) My (o).

In general, as it can be seen from Examples 2.4 and 2.5 above, one has

My (fg) # My (f) My (9).
0

Remark 2.8. In Remark 2.7 we considered a particular case of two weakly
converging sequences whose product is weakly converging in L'(w). This is a
very special case, relying on the construction (2.15).

Let us consider now the general case of the product of two sequences {u, } and
{vn}, weakly converging in L?(w). Their product {un v,} is obviously bounded
in L!(w) due to the Hélder inequality (Proposition 1.34). Hence, in view of
Proposition 1.48, {u, vn} is weakly* compact in M(w). The question is: does
the whole sequence {u, v,} weakiy* converge to some element of M (w)?

The following example shows that this is actually not true.

Let Y =]0.1{ and f be a 1-periodic function in L?(0. 1) such that M 1)(f) =
0. Set

u, = f(2"r), ae onR
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d
an { u, ifnisodd
vﬂ =

—up if nis even.

Since Mg,1)(f) = 0, both scquences {u,} and {v,} weakly converge to 0 in
L?*(w) for any interval w in R. On the other hand, by construction,

u? if nis odd
Un Up = 2 . .
—u;, if nis even.
Hence, thanks to Theorem 2.6 written for € = 1/2", from {u, v, } one can extract
two weakly convergent sequences in L'(w), one converging to Mg 1)(f?) and the
other one to —M g 1)(f?). Since weak convergence in L!(w) obviously implies

weak* convergence in M(w) (see Section 1.6), this shows that the whole sequence
{un va} does not weakly* converge in M (w). 0

Remark 2.9. The weak convergences given by Theorem 2.6 are not strong,
unless f is a constant and |Y| = 1. Indeed, strong convergence would imply that
My (f?) = [My (f)]°. But it is easy to see that for any p > 1, one has
My (f7) # [My ()"
0

Remark 2.10. Let us notice one result, contained in the proof of Theorem 2.6,
which is interesting by its own right. As in Theorem 2.6, let 1 < p < 400 and f
be a Y-periodic function in LP(Y’). Set

fe(x) = f(%) a.e. on RV.

Then, there exists a constant C depending on N only. such that for any open
interval I containing at least a translated set of Y, one has

ey < OOl ey (2.16)

for £ small enough.
This inequality is a consequence of (2.9) and (2.11). Indeed, from the proof
of (2.9), it is easily seen that
]
Y|

This, used into (2.11), gives (2.16) for £ small enough. 0

V() + N'(e)]eN < O
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Some classes of Sobolev spaces

In this chapter we introduce the functional setting, essentially based on the
distribution theory and Sobolev spaces, which is the natural framework for the
homogenization resuits we present in this book. Distributions and Sobolev spaces
have been widely studied in the last fifty years. We refer the reader for instance
to Schwartz (1951), Necas (1967), Lions and Magenes (1968a,b), Adams (1975),
and Mazya (1985). We will quote here just the main results which will be used
later. We also present, in the same context, some specific spaces of periodic
functions as well as their main properties.

Let us recall that, as in Chapter 2, O and 2 denote respectively, an open set
and a bounded open set in RV.

3.1 Distributions

Let D(©®) be the space introduced by Definition 1.28. We now give a notion
of convergence for sequences in this space. To do so, we will make use of the
following notations. If @ = ()....,ay) € NV (usually called a multi-index), we
set

jal=a1+--- + an,

and
glol

= ar,, 9p@EN°
or} Ty

F*

where for |a| = 0. 8 is the identity.

Definition 3.1. Let {¢,} be a sequence in D(O). We say that ¢, converges to
an element ¢ € D(O), iff

i} there exists a compact set K C O such that, for any n € N, supp ¢, C K,

ii) for any a € NV, 8%y, converges uniformly to 8%y on K.

Remark 3.2. This definition does not provide a topology on D(Q). Neverthe-
less, one can define a suitable topology T on it, for which the convergence of
sequences is exactly that given by Definition 3.1. This topology has a compli-
cated structure, as can be seen in Schwartz (1951). In particular, D(O) is not a
metric space. For our purpose. Definition 3.1 is enough so we do not give here
more details. o
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Definition 3.3. A map T : D(O) — R is called a distribution on O, iff
i) T is linear, i.e.

VA1 A2 €R, 1,02 € D(0), T(Apr + A2w2) = MT (1) + A2T(p2),

ii) T is continuous on sequences. i.e.

(¢n— ¢ in D(O)) = (T(pa) = T(¥)-

We denote by D’(O) the set of distributions on O.

Remark 3.4. The notation D’'(O) is motivated by the fact that one can prove
that D’(Q) is the dual of D(Q) with respect to the topology 7 mentioned in
Remark 3.2. This is why the usual notation for a distribution T is

T(p) = (T, 9)p(0).D0). VYo € D(O).

Example 3.5 (Dirac mass). Let rg € R and define
0z = ¢(z0), for any ¢ € D(RV).

It is straightforward that &, € D’(R"). This distribution is called the Dirac
function (or mass) in the point xg. 0

Example 3.6. Let f € L} (O) and set
Ty (o) = /o fodz, Y eDO). @3.1)

This is a distribution on O. Indeed. (i) from Definition 3.3 is obvious. Moreover,
if {yn} is a sequence converging to ¢ in D(O). one has

|Ty(pn) — Ty(p)| = < Ifllerexy max lon — @l =0,

[ fton-v)ae

where K is a compact set such that supp ¢, C K. Hence (ii) from Definition 3.3
is satisfied. 0

From Theorem 1.44, it follows that if T is defined by (3.1), then Ty = 0 iff
f = 0. This observation leads to the following definition:

Definition 3.7. We say that a distribution T is in Lj,.(O) (respectively in
LY(0)), if there exists f € L} (O) (respectively in L'(0)), such that T = Ty,
where T is given by (3.1).
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Remark 3.8. Suppose that T € D'(O) is like in Definition 3.7. Then the func-
tion f is uniquely determined in view of Theorem 1.44. It is why usually one
identifies T with f. 0

We now give a notion of convergence for sequences in D'(O) which we will
use in the next chapters. This is a weak* convergence but not in a Banach space

context.

Definition 3.9. A sequence {T,} in D'(0O) is said to converge (in the sense of
distributions) to an element 7' € D'(O) iff

(Tn, @)p/(0).D0) — (T.9)p'(0)D(0) Vo € D(O).
We denote this convergence by
T, —»T inD(0).
Example 3.10. Let {f,} be a sequence in L!(0O) such that
fn = f wesakly in L'(0).
From Section 1.6 and Remark 3.8 it is obvious that

fn— f inD(0).

The following definition is essential in the theory of Sobolev spaces:

Definition 3.11 (derivative of a distribution). Let T € D'(®). For any
t=1,..., N, the derivative 9T/0z; of T with respect to z; is defined by

orT
<_,(,,> _ _< .Q‘.’i> . VYo €D(O).
Oz; D(0),D(O) dz; D(0).D(0)

Remark 3.12. It is easy to check that 87/8x;. i = 1...., N, is a distribution.
Actually, it is linear and continuous on sequences, since dyp/dz; is in D(®) and
T is a distribution.

Moreover, if T,, converges to T in the sense of distributions. then aT,, /0x;
converges to 9T/dz; in the sense of distributions for any i = 1...., N. 0

Example 3.13. For the distribution 4, introduced in Example 3.5, one easily
has that

9z, > [ N
P Xo), Vi€ DRY).
Bz; DOV D(O) 6.r,~ ( 0) £4 ( )
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Example 3.14. Let us consider the Heaviside function on R, defined by

1 r>0
H(m)={0 r<0.

Observe that its (usual) derivative is defined and equal to 0 in any point z # 0,
so that this derivative is equal to 0 a.e. on R.

On the other hand, since H € L} (R), by Remark 3.8 one can identify H
with the distribution Ty, given by (3 1) Therefore,

=) L E:
— =- H(f'?) dx =— [ =-dz=9(0), VpeDR)
< dz D(0).D(O) o dr

Hence, the derivative of H in the sense of distributions is the Dirac mass in 0
(see Example 3.5). This shows that the usual derivative and the derivative in
the sense of distributions are two different notions. )

Remark 3.15. Let f € L(0). Suppose that its derivative in the sense of
distributions 8f/0z; is in L}(0). From Remark 3.8 we have

Oy
/of o dr = —/ -pdx, Vpe€ D(O). (3.2)

This together with Theorem 1.44, shows in particular. that if a function is of
class C1(0), its derivatives in the sense of distributions coincide with the usual
partial derivatives since (3.2) is nothing else than the Green formula. 0

3.2 The spaces WP

In this section we define some classes of Sobolev spaces and recall their main
properties. We refer to Necas (1967), Lions and Magenes (1968a), and Adams
(1975) for proofs and more details.

Definition 3.16. Let 1 < p < co. The Sobolev space W1?(0) is defined by
whP(0) = { | w e LP(O), i?—u? € LP(0), i= l,...,N},

where the derivatives are taken in the sense of distributions of Definition 3.11.

For p = 2, one denotes W12(0) = H}(0), i.e.

HY0) = {u| u € L*(0), % € L}(0), i= 1,...,N}.
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Proposition 3.17.
i) The space W'?(Q) is a Banach space for the norm

lullw»0) = llull=(0) + Z ar,

LP(O)

For 1 < p < o0, this norm is equivalent to the following one:

1

lwrrioy = (el oy + IVUIE w0 (33)

where we have used the notations
Oou Su
Vu= ( ey ——)

3:!21 3-'17N
and .
N 1
du||? i
"V“”LP(O)=( P ) .
; 9zi || oo

ii) The space W'-P(0) is separable for 1 < p < +o00 and reflexive for 1 < p <
+09.
iii) The space H'(O) is a Hilbert space for the scalar product

o Sw
(v, w) (o) = (v, W)L2(0)+Z( o 6&‘)“(0), Vo, w € H'(0O). (34)

Proof. The equivalence between the two norms, for 1 < p < 400, is a simple
consequence of the following inequality:

m m p m
Za}’ < (Eai) Sm”"zaf. VmeN-{0}. a; €Ry, i=1,...,m.
=1

=1 i=1

It is also clear that (3.3) and (3.4) define, respectively, a norm and a scalar

product.
Let us prove that W!P(Q) is comnplete. Let {u,} be a Cauchy sequence in
WP(0). Obviously, {u,} and {du,,/8z;} fori=1..... N are Cauchy sequences

in LP(Q) which is complete (see Proposition 1.31). Consequently, there exist
u € LP(0) and v; € LP(OQ) for i = 1,..., N, such that

du
Up — U, 5:63 —v; strongly in LP(0). Vi=1,...,N.
i

Then, it is enough to prove that v; = Ju/3x; fori = 1...., N. By Definition 3.11
and Remark 3.15, one has

Oun pdr= —/ Un o9 dr, Yy € D(0O).
] o Oz;
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We can now pass to the limit in this identity. Indeed, for the left-hand side
integral, one has, by using the Holder inequality (Proposition 1.34),

pdr — /‘U,l.pd.’l‘ ”-——v,

"‘p” ! -0,
6:& LP(O) Lo

where p’ is the conjugate of p.
Similarly,

Oy o9
'/unaxldaz /; 3 dr

Hence,

< un — ullLr )1Vl Lo 0y — O

/v,-tpda'=—/u~q£dm. Vo € D(0),
o o Ox;

which, due to (3.2), proves that v; = du/dr; in the sense of distributions. This

ends the proof of (i).
To show the other assertions of the theorem, let us consider the map

T:ue W'(0) — T(u) € [LP(O)|VH!

defined by b ou
T(u) = (u. 51;,. Ces m)

which is clearly an isometry since, by definition,
I7(u)lljLeoy~+r = lultwre(o)-

Consequently, T(W!?(0)) can be identified with W!-P(0), so it is a closed
subspace of [LP(O)]¥+!. From Proposition 1.32 and Remark 1.16 we know that
the space [LP(0))N*! is separable for 1 < p < +00 and reflexive for 1 < p < +00.
This ends the proof of (ii) since any closed subspace of a separable and reflexive
Banach space is separable and reflexive too (see, for instance Brezis, 1987).
Assertion (iii) is an immediate consequence of Definition 1.2. The proof of
Theorem 3.17 is complete. D

In this book we will study the homogenization of boundary value problems
posed in bounded open sets. It is why from now on, we consider Sobolev spaces
only on a bounded open set 2in RY. Many relevant properties of these spaces are
true if 3Q is sufficiently smooth. There are many kind of regularity assumptions
that can be made (see for instance. Necas, 1967, Lions and Magenes, 1968a,
Adams, 1975, and Mazya, 1985). The following one is due to J. Necas (1967):

Definition 3.18. The boundary 99 is Lipschitz-continuous iff there exist two
constants ¢; > 0 and ¢ > 0 and a finite number M of local coordinate systems
(z™, %) and local maps ®,, (m = 1...., M) defined on the set

Ry ={3" eR""!, 3 =(aP,....2%_ ). 2P| <a,Vi=1,...,N -1},
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which are Lipschitz continuous on their domain of definition, such that:

A

8= | I,

m=1
where, for any m =1,..., M,
Ty = {(E’“z’,{,‘)l N =®p(z™), T € R,,.},

and
U = {(@27)] ®n(E™) <2} < Bn(@) + s, T"€Rm}C O,
Cm = {(@™2R)] Pm(@™) —c2 <2} <®m(Z™). ™ € Rm} CRV\TQ.

Recall that ®,, is Lipschitz continuous iff there exists a positive constant L,,
such that

[@m(Z™) — m(¥™)| < Lm[E™ —F™, VI™, Y™ € R

The set dQ is of class C*, where k is a strictly positive integer, if for any
m=1,...,M the map ®,, is in C*(R,,).

For N = 2, two possible configurations are drawn in Figs 3.1 and 3.2, where
the dashed zones represent ;.

Remark 3.19. The boundaries of open balls in R” are of class C*. Polygons in
R2, polyhedrons in R? and intervals in R" have a Lipschitz continuous boundary.
On the other hand, domains with cusps do not have a Lipschitz continuous
boundary.

Let us recall that (see Necas, 1967) if 9Q is Lipschitz continuous, then one
can define a surface measure on 9Q. In particular, L2(89) is well defined. ¢

Definition 3.20. Let D(_RN ) be given by Definition 1.28. We denote by D{(f?)
the set of restrictions to Q of functions in D(RY).

Remark 3.21. Let us point out that D((2) is strictly contained in D(R), since
the functions of D(2) are not required to vanish on the boundary 5. o

The next three theorems are basic in the theory of Sobolev spaces. Their
proofs are rather technical. We refer the reader to Ne¢as (1967), Adams (1975),
and Brezis (1987) for them.

Theorem 38.22 (Density). Let1 < p < oc. Then D(R} is dense in W' »(RYN).
Moreover, if 8 is Lipschitz continuous, D(R?) is dense in W'P(Q).

Recall that if £ and E; are two Banach spaces, a map h : E — E), is compact
iff the image {h(un)} of a bounded sequence {u,} of E is relatively compact in
E), i.e. iff there exists a subsequence {/(un')} strongly convergent in E;.

In the following, if E C E, the map x € E — z € F) is called an injection.
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Theorem 3.23 (Sobolev embeddings). Suppose that 9Q is Lipschitz contin-
uous. Then

i) if 1<p< N, W¥?(Q) C LYQ) with
1 1 1
— compact injection for ¢ € [1, p*[. where — = - — —,
pact inj q€ 1, p* =7 N
— continuous injection for ¢ = p*,

ii) if p=N, WIN(Q) c LI(N) with compact injection if g € [1, +oo],
i) if p> N, W'?(Q) c C%Q?) with compact injection.

Remark 3.24. One can prove that the inclusions given in this theorem are
optimal. 0

Theorem 3.23 is one of the main results in the theory of Sobolev spaces.
Compact injections are an essential tool when studying partial differential equa-
tions. One has in particular that H'(Q2) C L?(2) with compact injection, since
2 <2 =2N/(N —2) if N > 2 and the result is obvious when N < 2. By
definition, this means that any bounded sequence in H'(f2) contains at least a
subsequence strongly convergent in L?(2). This result will be widely used in the
next chapters.

We end this section by another result, very important in applications, which
allows us to extend functions in H'.

Theorem 3.25 (Extension operator). Suppose that 8Q is Lipschitz contin-
uous. Then, there exists a linear continuous extension operator P from H(Q)

into H'(RN) satisfying
i) Pu=u onf
i) | Pull2mry < Cllullz2e)
i)  ||Pullgr vy < Cllullar e,

where C is a constant depending on (.

3.3 The space H} and the notion of trace

Theorem 3.23 shows that for N = 1, one has the inclusion H}() c C%(Q), so
one can speak about the values on 99 of a function u € H(Q2). This inclusion
is not true for higher dimensions. To give a sense to the restriction to 8 of
functions in H!(Q2), we introduce in Theorem 3.28 below the notion of trace.

We are mainly interested in functions which vanish (in some sense) on the
boundary. To do so, we introduce in this section a subspace of H!(2), denoted
H} (). We will see below that if 89 is sufficiently smooth, a function in H} ()
will vanish on the boundary in the sense of the trace. When we have no regularity
on JfQ, saying that a function u belongs to H}(f2) will replace the fact that u
vanishes on the boundary.
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Definition 3.26. For any 1 < p < 00, the Sobolev space W, () is defined as
the closure of D() with respect to the norm of W1P(). We set

H)(Q) = WeP(9).

It is clear that H}(Q?) C H'(Q) so that H}(Q) is a Hilbert space for the scalar
product (3.4). Moreover, it can be proved that Theorem 3.23 is still valid for

Wol”’ () without any regularity assumption on 92, namely
Theorem 3.27. One has the following inclusions:

i) if 1<p< N, WpP() c LI(Q) with

1 1 1
— compact injection for ¢ € |1, p*[. where — = - — —,
pact inj g€ 1. p( > p N

— continuous injection for ¢ = p*,

i) if p=N, Wl (Q) c LY(Q), with compact injection if g € (1, +0o],
iii) if p> N, Wy?(Q) C C°(Q) with compact injection.

In the sequel, we restrict our attention to the case of the space Hj(S2). How-
ever, all we will say about it can be extended to the general case of W™*(Q).

Theorem 3.28 {Trace theorem).
i) There exists a unique linear continuous map, called trace
v HYRN! x RY) — LYRNY),

such that for any u € H*(RV~! x R, ) N CORN-! x R, ), one has y(u) =
uIRN -1
ii) Assume now that Q is a bounded open set in R™ such that % is Lipschitz
continuous. Then, there exists a unique linear continuous map
v HY{Q) — L}(3NQ).

such that for any u € H'(2) N C°(Q) one has y(u) = u|,,. The function
v(u) is called the trace of u on ON2.
Proof. We only prove here the first statement of the theorem. Assertion (ii)
follows from (i) by rather technical arguments, so we refer the reader to Necas

(1967) or Adams (1975) for details.
Let 7° be the linear map defined by

Y :ve DRV x Ry) — vlgn-1.
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Let us first show that

I (@)lLa@n-1) < Mvllasrn-1xry): YV € D(RV™! x Ry). (3.5)
Since v € D(RV-! x R;) has a compact support, we have
o OF = - [ g lola’n)) de
) o a(EN )
o ov
= —/ Zzi(m',zN)—-—(;r',:cN) dzn.
0 Oz N

Therefore, by the Young inequality

2
d:BN.
]

’ 2 ’ 2 /o,
@00 < [ loteam)l?don + [ | e (ahan)

Integrating over RN~ in 2’ and using Fubini’s theorem, one obtains

/ o 0P’ [ @l de+ /
RN-1 RN -UxRS RN-1 xR}

which gives (3.5).

Suppose now that u € H'(RV~! x R%). From Theorem 3.22, there exists
a sequence {u,} € D(RVN-! x R,;) converging to u in H'(RN-! x R}). By
inequality (3.5) and the linearity of 4, we have

2

v de,

m(m)

17°(un) = Y2 (wm)ll 2@V -1y < lltn — U |1 (RN-1xRy ), VM, n €N

Consequently, {7°(un)} is a Cauchy sequence in the complete space L2(RN~1),
so it has a limit up € L2(RV~!). Define y(u) = ug. Obviously,

Y(v) =1°(w), forve DRN! xRy),

so that v is a linear extension of 1° to H!(RV~! x R*%). By construction,
4 is uniquely determined and linear and continuous from H'(RV=! x R%) to
L2(RN —l)‘

To conclude the proof, suppose now that w is in H*(RV=! xR} )NCO(RN 1 x
R;). One can check (see for instance Brezis, 1987) that the approximating
sequence {uy } can be chosen such that the norm |lu, — ulco(r~-1 xR, ) COnverges
to zero. Therefore, Y°(up) = up|r~-1 converges to u|gv-1 in CO(RN 1) and then
in L2(RV-1). This shows that y(u) = u|g~-+ and ends the proof of (i). 0

One can prove that + is not onto L2(852), i.e. that there exist functions in
L%(8€2) which are not traces of any element of H'(€2). T'his leads to the following
definition:
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Definition 3.29. Suppose that 9 is Lipschitz continuous. Define the set
H ‘:‘(39) as the range of the map 4 given by Theorem 3.28, ie. H %(80) =

v(H(Q)).
The following theorem provides a structure of a Banach space for this set:

Theorem 3.30. Suppose that 3Q is Lipschitz continuous. Then H 3(80N) is a
Banach space for the norm defined by

2 — 2 u(z) — u(y))?
Il 4y = [ 100 dsct [ [ Rl e,

The introduction of this norm is motivated by the fact that the continuity of
the trace map 7 is preserved when L2(85Q) is equipped with this norm. Indeed,

Proposition 3.31. Suppose that 9 is Lipschitz continuous. Then there exists
a constant C,(S2) such that

I 3 90y < Cr{Dullnr ey, Yue HY(@).

Other properties of the space H#(92) are given by the following result:

Proposition 3.32. Suppose that 89 is Lipschitz continuous. Then, the space
H?(8Q) has the following properties:

i) The set {ul,,. u € C=(RN)} is dense in H?(9).

ii) The injection H $(6Q) c L2(8Q) is compact.
iii) There exists a linear continuous map
g€ HY(89Q) — ug € H'(Q),

with y(u,) = g, and there exists a constant C)(£2) depending only on ,
such that

luglaray < CrD Nl 14 50y VO € HE(ON).

Let us mention now that if 39 is Lipschitz continuous (see Necas, 1967), then
the unit outward normal vector to 2 is well defined almost everywhere. Then
the following theorem extends to Sobolev spaces the well-known Green formula
for smooth functions:

Theorem 3.33 (Green formula). Suppose that 00 is Lipschitz continuous.
Let u,v € H'(Q2). Then,

o Oou
u—-—d(lf=-—/1'——d;l’+/ u) y(v) n; ds,
% 5m, A aﬂ'r( ) v(v)
for 1 < i < N and where n = (n)....,ny) denotes the unit outward normal

vector to §.
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The next result gives the meaning of the trace for functions in H} ().
Proposition 3.34. Suppose that 0 is Lipschitz continuous. Then
H{(Q) = {u|u e H'(R).7(u) = 0}.

Recall now that by definition. the space H}(f2) is equipped with the H!-
norm. The following inequality allows us to introduce an equivalent norm on
H} () (see Remark 3.37 below):

Proposition 3.35 (Poincaré inequality). There exists a constant Cq such

that
lzllzz) < Ca |VullLz@). VYu € Hy(5),

where the constant Cq is a constant depending on the diameter of Q.

Proof. Let I be an interval of RV containing Q. Let » € H}(f2) and denote by
u the extension by zero of u to the whole of I. From Definition 3.26 of H}(2),
it follows that % € H}(Z). Obviously.

lullz) = WallLacry,  WVullzzoy = V|12, Yo € HY(Q).

Hence, it is enough to prove the result for the case where Q is an interval I of
the form Q =]0,a[Y. We have, for any u € D(Q)

; N du
= , = — (2", t) dt.
u(z) = u(z’,xn) /0 Bzn (@'.t)

Applying Cauchy-Schwarz inequality one has

TN du 2 TN Bu 2
2= —(a', ¢ < / 2
[w(x)] /0 drN (e t)dt| < ey | | 5en (@, t)| dt
a Su 2
< ~—(z',t)| dt.
< a./o Bzn (=',¢t)

By integrating this inequality over ). we obtain

ou
2d_< 2/
/s;u r<a 13

I IV

2
dr < a2/ [Vu|? dz.
Q

Therefore, we have
lull Lz < ol|Vull 2.
for all u € D(Q2). and by density for all u € HE(1Q).
Observe now that if Q is an arbitrary bounded open set, one can always find

an interval I with sides depending on the diameter of Q such that Q c I. This
ends the proof. 0
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2 I

Fig. 3.3

A variant of the previous result is the following one:

Proposition 3.36. Let Q be connected. Suppose that 9Q is Lipschitz contin-
uous and such that 8 = I'; UT, where I'y and T'; are two disjoint closed sets
and Ty is of positive measure. Then, there exists a constant Cq such that

ez € Ca IVull2@), Vu € H'(Q) such that y(u) =0on Iy,
where the constant Cq depends on the diameter of ? and on T';.

Remark 3.37. Observe that by construction. I’y can be regarded as the bound-
ary (Lipschitz continuous) of some bounded open set in RN. Two possible con-
figurations are shown in Fig. 3.3. Hence, the trace y(u) on I'y makes sense.

Q
The Poincaré inequality implies that
lull = IVull L2

is a norm on H} (), equivalent to the norm of H'(Q) defined in Proposition 3.17
(i). Of course, this equivalence does not hold in H!(Q) since for constant func-
tions, the above quantity vanishes. As can be seen from the Proposition 3.38
below, such an equivalence holds for the subspace of functions with zero mean
value. Moreover, Proposition 3.40 shows that this equivalence also holds on the
quotient space H'(2)/R defined in Definition 3.39 below.

Proposition 3.38 (Poincaré-Wirtinger inequality). Suppose that 2 is con-
nected. Then. there exists a constant C () such that

lu = Ma(w)liL2@y < CONVullz2). Vue H'(Q),
where Mq(u) denotes the mean value of u on () introduced in Definition 2.2.
Definition 3.39. Suppose that Q is connected. The quotient space

W(Q) = H(Q)/R
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is defined as the space of classes of equivalence with respect to the relation
u~v<>u-—v isacoustant. Vu.ve H'(Q).
We denote by u the class of equivalence represented by u.
Proposition 3.40. Suppose that Q is connected. The following quantity:
lellwe = IVullLz@), Yued, @ e W(Q),

defines a norm on W (2) for which W () is a Banach space.
Moreover, W () is a Hilbert space for the scalar product

N
v Ow
(v, w)w(g) = 21(6_1; BIB—i)Lz(Q), Yo.w € W(Q)

Proof. It is sufficient to observe that
Vull2@) = 0.

implies that
u = constant, i.e. u# >~ 0.

which means that u € 0.
The completeness of W () is straightforward from that of H'(0). D

Another important space in the study of elliptic problems is the dual space of
H} (). By making use of Proposition 1.4, we can give the following definition:

Definition 3.41. We denote by H~!(2) the Banach space defined by
H™'(Q) = (H3 (@)’
equipped with the norin

[(F. u)p-1(0),Hi(@
IFlla-1) = sup (€2 Ha( ),
H}(@)\{0} llull g

The next proposition provides an important characterization of &~ ():

Proposition 3.42. Let F be in H='(§2). Then, there exists N + 1 functions
Jo, f1,..., fn in L3(Q) such that

0
F=fo+ Z . (3.6)
in the sense of distributions. Moreover

N
"F”?q—n(g) = infz ”fi”%z(sz)v

i=0
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where the infimum is taken over all the vectors (fo, fi,.--, fn) in [L3(Q)|N+!

such that (3.6) holds.
Conversely, if (fo, f1, .-, fn) is a vector in [L2(2)]¥ 1!, then (3.6) defines an

element F of H'() which satisfies
N
IEIG -1y < D Ifillage)-
i=0

Proposition 3.43. Suppose that 99 is Lipschitz continuous. One has L*(?) C
H~1(Q) with compact injection.

Remark 3.44. Putting together Remark 1.37, Theorem 1.38, Definitions 3.26
and 3.39, and taking into account Proposition 3.43 and Sobolev embeddings
(Theorem 3.27), we have that the following inclusions are compact:

HM(Q) c L3(Q) c H™Y(Q).

Notice also that, if u € H}(S2) and v € L2(2), then from Theorem 1.36 one has
(v,u)H_l(Q)‘H[;(Q) =/nuv dx.

Similarly, if u € H%(8) and v € L2(8), one also has

(v’u)(ﬂé(aa))'.ﬂi(am = /aguv ds.
0

Remark 3.45. Obviously, the restriction of any element of (H(f2))’ to H}(Q)
is in H™!(). Let us notice that (H!())’ is not contained in H~1(f) since
it can be proved that the space (H'(02))’ can be identified with the direct sum
H-Y(Q) @ H™%(3%) where H~%(0) is defined below. 0

Deflinition 3.46. Suppose that 99 is Lipschitz continuous. We denote by
H~3(99) the Banach space defined by

H™%(3Q) = (H%(30))
equipped with the norm

|(F, @) y-172(80).11/2 (00|

0Pl g 0 =  SUP
Q2
OByt eanio) el 513 o0

Proposition 3.47. The space H™%(60) has the following properties:

i) Suppose that 9 is Lipschitz continuous. Then, one has L%*(0Q) C
H-3 (6) with compact injection.
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ii) Suppose that OQ is Lipschitz continuous and introduce the space

H(Q,div) = {v|v € (L¥(Q)", divv e L*()}.

Then,v-ne H ‘%(39) and the map
v € H(Q,div) — v-n e H 1(00)

is linear and continuous.
Moreover, if v € H(,div) and w € H'(Q), then

- /Q(div v) wdz = /Q v Vwdz + (v-n. w)yg-1/2(30),H1/2(00)"

Observe that the first assertion of this proposition is dual with respect to (ii)
of Proposition 3.32. The second assertion is an important result due to
Lions et Magenes (1968a). It plays an essential role in many questions arising in
the study of partial differential equations, as can be seen in Sections 4.5 and 6.4
(for further examples see also Duvaut and Lions, 1972). Let us point out that
a priori, as already observed, a function in L?(2) does not have a trace on the
boundary. The fact that its divergence is also in L?(2) allows us, nevertheless,
to give a sense to v - n.

3.4 The space H!

per

In this section, we introduce a notion of periodicity for functions in the Sobolev
space H!. Let us recall that in Chapter 2 this notion was treated for function
in L.

Let Y be the reference cell defined by (2.1). namely Y =]0.¢, [x - -+ x]0, €y {,
where ¢, ..., ¢y are given positive numbers.

Definition 3.48. Let C3¢, (Y') be the subset of C>™(RV) of Y-periodic functions.
We denote by H},.(Y) the closure of C32,(Y) for the H!-norm.

From this definition and the proof of Theorem 3.28, it is obvious that the
space H,l,e,.(Y) has the following propcrties:

Proposition 3.49. Let u € H, (Y). Then. u has the same trace on the oppo-
site faces of Y.

Let g be a function defined a.e. on Y and denote by g# its extension by
periodicity to the whole of R, defined by

g*(x+ktie)=g(zr) ae onY, VkeZ Vie{l...,N}, (3.7)

where {e;....,eny} is the canonical basis of RV,
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Proposition 3.50. Let v € H). (Y) and u# be its extension defined by (3.7).
Then u# is in H(w) for any bounded open subset w of RV.

Proof. It is obvious that u#* € L?(w) and (Qu/0z;)* € L*(w). Let us show that
ou# Ou .
a:r. (8.1:,) . Vie{l,....N},

which will prove the result.
To show this identity, let y € D(w). Remark that supp ¢ can be covered by
a finite union of translated sets of Y, as follows (see Fig. 3.4):

supp ¢ C U Yi = L. (3.8)
keEK(w)

where K(w) is a finite subset of ZV and the intervals Y) are pairwise disjoint
and

Yi =Y +2(k), for some z(k) = (k16y,...,knéy) RN, ke ZV.
Then, by Definition 3.11
#
<%“—,<p> /u# Ldr=~ % / ut “’dz (3.9)
' owow o O kR I O

Hence, by a change of variables and using (3.7).

/ o, - do= / u(y )——(y"z(k)) dy, (3.10)
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where we can use the Green formula from Theorem 3.33 to obtain
o
[ [ w2 - =) dy
Y Ty
Ou
§ = mwelu= =) v+ [ uwoty - =(0)n da,

L FYuF~

where F;¥ are the faces of 8Y normal to the direction z;. But

/ u(y) n; p(y — 2(k)) ds,
Frurs

= / , [u()e(y - z(k))]|y.=t,- dyy - - - dyirdyigr -
3#3[UE,

- [u(y)tp(y - 3("’))” =0 dy, - - - dy;-1dyis1 -
J#t]o 8‘{ yi

Consider now the cell Yy, adjacent to Y; in the z;-direction, i.e.

Yo =Y +2(K),

where Z(k’) = z(k) + le; = (klt’], v ki1, (k, + l)e,', kiv1lit1,-..

Performing the same computation. we have

[, w@mpw-x)ds,
F{fUF,

= / (@)l — 2())]|, _y, do - dgp-rdyirs -
,#i)0 tJ[

[ et = 2]l o diadin
l'l_,¢,] [ Y

Notice that

p(y — 2(kK))ly.=o
= @y —kiby, ... yio1 — ki by, — (ki + 1), yi
—kit1liyr, ..., yn — kntn)
= oy — 2(k))|yi=¢.-

hence, since u is Y-periodic,
[ ety — D)), o dpirdirs - dyn
5#i]0.4

- _/n #i10.6,[ [u(y) Y - 2(h) )]I <-l d@Yi_adyiyy - dyN.

(3.11)

] ey~ ) dy+ [ uly) oy - 2(B)n dsy,

-dyn

- dyn.

,kN[N)'

-dyn

< dyp.

(3.12)
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Use now (3.10) and (3.11) in (3.9). When summing the boundary terms on
the different faces, most of them cancel two by two due to (3.12). The only
boundary terms for which we cannot use (3.12) are those corresponding to the
boundary of the set I, defined by (3.8). Since ¢ vanishes on 01, these terms
also vanish. Hence, using again (3.7), (3.9) becomes

o Lo [G)
ou” - Ou k) dy= [ () o de,
< o, ¢>D‘(w)'w) Y. | g wetv-=kNdy= | (5-) ¢

k€K (w)
which ends the proof. ]

In the sequel, we will make use of the space H},(Y)/R defined in the spirit
of Definition 3.39 as follows:

Definition 3.51. The quotient space
Woer(Y) = Hier(Y)/R
is defined as the space of equivalence classes with respect to the relation
4~y <> u—uvisaconstant, Vu,v€ Hy(Y)
We denote by @ the equivalence class represented by u.
Thanks to Proposition 3.40 one has
Proposition 3.52. The following quantity:
lillwpe(vy = IVullLaqy). Vu € i, & € Whe(Y),

defines a norm on Wye(Y).
Moreover, the dual space (Wper(Y))' can be identified with the set

{F € (H;er(y))' | F(c) = 0, Ve € R},
with

(F, ‘l't)(wp"(y)y‘wp"(y) = (F, 'U,)(H‘l,"(y))l.”;"(y) Yueu, Vue Wper(Y).

3.5 Vector-valued spaces of the type L”(a,b; X)

The notion of distribution can be generalized to vector-valued functions as fol-
lows:

Definition 3.53. Let X be a Banach space and 2 C RN. Amap T : D(2) — X
is called a distribution on 2 with values in X, iff
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i) T is linear, i.e.

VA1, A2 €R, ¢1,92 € D(Q), T (M1 + A2p2) = M T (1) + AT (2)-

ii) T is continuous on the sequences, i.e.

(¢n —= ¢ in D(Q)) => (T(pn) — T(9) in X).

We denote by D’(€2; X) the set of distributions on  with values in X.
If Q =|a, b, D'(a,b; X) denotes the set of distributions on ]a, bf with values

in X.
Similarly, one can also define the LP-spaces for vector-valued functions.

Definition 3.54. Let X be a Banach space, @ C R" and p such that 1 < p <
0o. We denote by LP(€2; X), the set of measurable functions u : z € 2 — u(z) €
X such that ||u(z)||x € LP(Q).

Let us mention that the measurability of real functions may be defined in
several equivalent ways (see for instance Dinculeanu, 1967). In the vector-valued
case, these definitions are no longer equivalent. Here, a measurable function is
an a.e. limit of step functions (see Definition 1.41).

Proposition 3.55. The following quantity

1
s = ( [ o)l dz)",

defines a norm on LP(Q2; X). which is a Banach space.
If X is reflexive and 1 < p < oo, the space LP(Q; X) is reflexive too. More-
over, if X is separable and 1 < p < oc, then LP(§2; X) is separable.

To end this chapter, we investigate the properties of a class of vector-valued
functions which is well adapted to the study of problems where one of the vari-
ables plays a special role, namely the space L?(a,b: X) (corresponding in Def-
inition 3.54 to €2 =|a,b]). This occurs, for example, for the variable ‘time’ in
time-dependent problems. Another situation is that of layered materials where
the periodicity concerns only one direction of the space, and this direction has
therefore to be distinguished. For various results on vector-valued functions
we refer to Schwartz (1951), Dinculeanu (1967), Lions and Magenes (1968a,b),
Lions (1969), and Diestel and Uhl (1977).

It is obvious from Definition 3.54 that if By and B are two Banach spaces such
that By C B with continuous injection, then one has L?(a,b; By) C LP(a,bd; B)
with continuous injection also.

Suppose now that the injection By C B is compact. A natural question is
whether the injection LP(a,b; Bp) C LP(a,b; B) is also compact. Actually, one
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can prove that this is not true, a trivial example being the case Bo = B = R. As
Proposition 3.57 below shows, if one has some information about the derivative
(in the sense of distributions) of « with respect to ¢, then one can give a positive
answer to the above question. To do that, let us first make precise what we
mean by the derivative in the sense of distributions of a vector-valued function

on Ja, b.

Definition 3.56. Let u be in L?(a,b: X). The derivative Ou/dt is the distribu-
tion in D'(a, b; X) defined by

Ou ;7
— = - — dt, ,b).
a5 #) /a"m . Vi € D(a,b)

The following result is due to J. L. Lions (1988, Chapitre 1. Theorem 5.1).
We also refer to Aubin (1963) and Simon (1987) for some generalizations.
Proposition 3.57. Let By C B C B;, three Banach spaces such that B, and
B, are reflexive. Suppose also that the injection By C B is compact. Define

v
W =<v|ve LP(a,b; By), Fn € LP(a,b; By) ¢,

with 1 < pg, ;) < +0o. Then
i) W is a Banach space with respect to the norm of the graph defined by
ou

ot

lullw = llullz20(a.b; Bo) + .
L*1(a\b; By)

ii) the injection W C LP° (a,b; B) is compact.

The following theorem plays an important role in the study of partial differ-
ential equations:

Theorem 3.58. Let us define the Banach spaces

w

7,
{v | v € L%(a,b; H3 (D)), 6—;’ € L*(a,b; H“(Q))},
w = {v[v € L%(a.b; L%(Q)), %Et)- € L*(a.b; H"(Q))}.
equipped with the norm of the graph. Then, the following properties hold true:
i) the injections
W C L%(a,b; L2(Q)). W, C L¥(a.b; H™1(Q))

are compact,
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ii} one has the inclusions

W c C(lab]; L*(9)),
Wi c Clabl: H(Q),
where, for X = L?(Q) or X = H~'(f), one denotes by C([e,b]; X) the

space of measurable functions on Q x [a.b] such that u(-,t) € X for any
t € [a,b] and such that the map t € |a,b] — u(-,t) € X is continuous,

iii) for any u,v € W one has

d
o Qu(ﬂf,t)v(«l'af)dl‘ = (W), v(. ) H-1@).HL (@

+{V' (1), u(, ) -1 (). HL ()

Proof. Statement (i) is an easy consequence of Theorem 3.27 and Proposi-
tion 3.43. On the contrary, the proof of the second statement is rather compli-
cated, we skip it and refer the reader to Lions and Magenes (1968a, Chapter 1,
Theorem 3.1).

Let us prove the third statement. Recall that D(]e, b[x2) is dense in W (see,
for instance, Lions and Magenes, 1968a). Let {u,,} and {vy,} be two sequences in
D(Ja, b[x ), strongly converging in W respectively, to u and v. Let ¢ € D(a, b).
Due to Definition 3.11 of the derivatives in the sense of distributions, we have

<£/u(m,t)v(x,t) dz, <P>
dt Jo D'(a.b).D(a.b)

= - /b/Qu(:z:, t)v(z.t) o' (t) drdt

m—20

b
= — lim / /um(m,t)vm(a‘.t) @' (t) dr dt
a JQ

= lim /:/n[u:,,(a;,t)vm(:c,t)+um(r,t)vfn(;x‘t)] o(t) dzdt

m—oC
b
= Ji_{nm/a[(u;n(',t),t’m(’~f))u-l(sz).ﬁg(m
+ (V5 (- )y tm (- 1)) - 12 13 )] 9 (8)
b
= / [(' (1), v( ) -1y mpce) + (1), u( 1) -1(0).H3 ()] P(2) dt
a

= ([ 1), v(-. ) -1 ).y
+ V() u( ) -1 (.u3 )]s P)D/(a.b).Diab)-

This imiplies the required equality in D’(a, b). and due to Remark 3.8, in L!(a, b).
a
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The following proposition characterizes the dual of L?{a, b; H(9)) (for more
details see Diestel and Uhl, 1977):

Proposition 3.59. Let H be a Hilbert space and 1 < p < co. One has the
following identification:

[LP(a,b; H)]' = L¥ (a.b; H').
where p’ is the conjugate of p.

In particular, [L?(a,b; H3}(Q))) = L%*a,b: H"}R)), and if f €
L%(a,b; H'(R2)), one has

b
(s 8) L2(a.b: H-1(0)),L2(a.b: HA () =/ (&), u(®)) n-1().H3@ @ (3.13)
a .

for any u € L%(a,b; H3()).

We will now formulate a density result, which is also very important in the
study of time-dependent problems.

Proposition 3.60. Let u € L*(a,b: H}(2)) N C(la.b): L2(R)). Then, for any
8 > 0, there exists ® € C*™([a.b]; D(R)), such that

{ i) lu — @llc(fa.b): L2(2)) < 6
i)  |{|Vu~Ve|Lzaxpapy <6

where C*([a, b]; D(2)) is the space of measurable functions on Qx [a, b] such that
u(-.t) € D(Q) for any t € [a, b], and such that the map t € [a.b] — u(-,t) € D(Q)
is indefinitely differentiable.

If further w' € C([a,b); L3(R)). then for any 6§ > 0. there exists ® €

C*([a, b]; D(R)), such that
{i) ' — @' llc(a.b): L2y < 0
i)  ||[Vu~V®|L2axjesp <9
We end this section by recalling some properties. useful in the sequel, con-

cerning the space L2(£2; Cper(Y)) where Cper(Y) denotes the subset of C(Y) of
Y -periodic functions.

Proposition 3.61. The following properties hold:

i) The space L2(%; Cper(Y')) is separable.

ii) The space L%(Q; Cpe:(Y)) is dense in L2(§); L2(Y)) = L2(2 x Y).
Proof. The first statement follows immediately from Proposition 3.55 since
Cper(Y') is separable (see for instance Rudin. 1966). As concerning the sec-
ond statement, observe that a consequence of Theorem 1.38 is the density of

the space L%(€2; D(Y)) in L2(Q; L%(Y)). Then. property (ii) follows from the
obvious inclusion L2(Q; D(Y)) € L%(%: Cper(Y))- w]



4
Some variational elliptic problems

We study in this chapter some classical elliptic partial differential equations in the
framework of weak solutions. The problems we deal with are linear elliptic partial
differential equations with different boundary conditions: Dirichlet, Neumann,
Robin and periodic conditions. In all these cases, the existence and uniqueness of
the solution are obtained by applying the Lax-Milgram theorem. This important
theorem is proved in Section 4.2 below.

4.1 Bilinear forms on Banach spaces

Let us recall here some basic properties of bilinear maps on Banach spaces. In
all this section V' denotes a real Banach space.

Definition 4.1. Let a be a map from V x V to R. It is called a bilinear form
on V iff, for any fixed u € V, the following maps:

a{u, ) :v € V— a(u,v) € R,
a(,u) :v € V— a(v,u) € R,

are linear.

Definition 4.2. A map a from V x V to R is bounded on V iff there exists
C > 0 such that
la(u, v)| < Cfull,, lloll,,- (4.1)

Proposition 4.3. Let a: V x V +— R be a bilinear form. Then a is bounded
if and only if a is continuouson V x V.

Proof. Suppose that (4.1) holds. Then, for (u,v), (up.v) € V x V, one has

la(u, v) - a(uo, %) < |a(u.v - vo)] + la(u - uo, vo)|
< Cllul, o= voll, +Clfu - uol, llwoll,

which gives the continuity of e on V x V.
Suppose now that a is continuous, so in particular, for any ¢ > 0, there exists
é > 0 such that
||w|lv <4, ||z||‘, <= |a(w,2)| <. (4.2)
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By linearity, for any u, v € V'\ {0}, one has

la(u, v)| ( u v )
“—— = =la| ——. 77— }I| (4.3)
lful,, lifl, ffully, " fill,
Introduce w and 2z as follows:
§ u 6 v
w= - ——. 2=z . (4.4)
2Tull, 21T,
Obviously, 5 5
Let us write (4.2) for w and z defined in (4.4). One has
u v 4 4
a|l ——,—— || = s la(w, 2)| £ ¢,
(uun‘, uvn‘.)| gl s g
which, together with (4.3) gives
4
S . 4
This gives (4.1) with C = ¢. (]

52
In the sequel we need the following definition (see Necas, 1967):
Definition 4.4. A bilinear form a on V is called symmetric iff

a(u.v) =a(v,u), Vu,veV

It is called positive iff
a(u,u) >0, VYueV

The form a is called V-elliptic (or coercive on V) with constant ag, iff there
exists ag > O such that

a(u,u) > 010||U||3,» Yu eV

4.2 The Lax—Milgram theorem

Let a be a bilinear form on a Hilbert space H (see Definition 1.2) and F € H'.
Let us consider the problem

{ Find u € H such that

a(u’ 'U) = (F-"’)HI'H. Yv € H. (45)
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This abstract equation is called a variational equation and v € H is usually
called a test function. Theorem 4.6 below gives, under suitable assumptions on
a, the existence and uniqueness of a solution of (4.5). This theorem is based on
the well-known Riesz representation theorem for the dual of a Hilbert space. Let

us recall it.

Theorem 4.5 (Riesz theorem). Let H be a Hilbert space and F € H'. Then
there exists a unique TF € H such that

(F,odg n = (TF,v)y. YveH. (4.6)
Moreover, the one-to-one application
r:FeH +—TtFecH
is an isometry (called the Riesz isometry), i.e. it satisfies

IrFY,, = IFll,,. (4.7)

We are now able to prove the following general result:

Theorem 4.6 (Lax-Milgram theorem). Let a be a continuous bilinear form

on a Hilbert space H and F € H'. Assume that a is H-elliptic with constant

ap. Then the variational equation (4.5) has a unique solution u € H.
Moreover,

[l < T, (48)
Proof. For v € H denote by Au the map
Av:ve Hvr—a(u,v) €R. (4.9)
From Proposition 4.3, we have

[(Au, V)] = la(u, v)] < Cliull, [,

Hence Au € H' with
lAufly,, < Cllull,. (4.10)

Then, from Theorem 4.5, there exists 74w € H such that
(Au, V) g = (TAu,v)y. Vo e H. (4.11)

Similarly, since F € H', there exists 7F ¢ H such that (4.6) holds.
From (4.6), (4.9) and (4.11), it follows that problem (4.5) is equivalent to the
following one: find v € H such that

(TAu—tF,v)y =0, YveH,
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i.e. such that
rAu=T1F. (4.12)

Let us observe now that in order to prove that (4.12) has a unique solution, it
is enough to show that there exists p > 0, such that the map

d:veH— v—p(tAu—7F)€ H,
is a contraction, that is to say

e <1, |J®(wr) - 2wl < cllwy —wall,. VY, wr € H. (4.13)

Indeed, if ® is a contraction, then by the Banach fixed point theorem (see, for
instance, Dunford and Schwartz, 1958) it has a unique fixed point u such that

®(u)=u, ie u-—p(tAu—71F)=u,

which is equivalent to (4.12) if p is strictly positive.
To prove (4.13), remark that

O(w1) — B(ws) = wn — w2 — pTA(w1 — w2).
Therefore, it is sufficient to show that there exists ¢ < 1, such that

ffv - pTAvIIH < c||v|[H, Vv € H.

We have, by using (4.7), (4.9), (4.10), (4.11) and the H-ellipticity of the form a
v - pTAv": = (v—pTAv, v —pTAV) = ”0"2 - 2p(TAv.v) + p’l]-rAvl}i’
= I, — 20a(v.v) + PPl Al?, < (1~ 2p00 + PCO)WI,-

Choosing here p €]0, 2a9/C?| one has (4.13). since then (1 — 2pag + p>C?) < 1.

It remains to prove estimate (4.8). This is an obvious consequence of the H-

ellipticity with constant ag of the bilinear form a and of inequality (1.1) applied
to F. Indeed, one has

aollull?, < a(u, u) = |(F, war.n| < IF|, el

from which (4.8) is straightforward. The proof of Theorem 4.6 is complete. O

Remark 4.7. If the form a is symmetric, the proof of Theorem 4.6 is much
simpler, since in this case a(u,v) is a scalar product equivalent to (-, -)y. Then
the result is an easy consequence of the Riesz theorem (Theorem 4.5). 0

As matter of fact, in the symnietric case the solution of (4.5) can be char-
acterized as the minimum point of a suitable functional. Indeed, the following
result holds true:
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Theorem 4.8. Let a be a continuous bilinear form on a Hilbert space H and
F € H'. Assume that a is positive and symmetric. Let J be the functional on

H defined by
J(v) = ta(v,v) — (F,v)n'.u, Vve€H. (4.14)

Then u is solution of the variational equation (4.5) if and only if u is solution of
the following problem:

Find u € H such that
(4.15)

J(u) = JIGIL J(v).

Proof. Suppose first that u is solution of (4.5). Then the hypotheses on the form
a and the linearity of F imply that

J(u+w) ~ J(u) = {a(y,w) — F(w)} + da(w,w) = da(w,w), Vwe€ H.
Since a is positive, one has
Ju+w)—J(u) >0, VYweH.

Hence, u satisfies (4.15) since any element v € H can be written as v = u + w

for some w € H.
Suppose now that u is solution of (4.15) and let v € H and ¢t € R. Then

0 < J(u+tv) — J(u) = t{a(u,v) — F(v)} + -t;a(v,v),

where we have used the assumptions on a and F. Since ¢ is arbitrary in R, one
has that
a(u,v) — F(v) =0,

hence u is solution of (4.5). m]
The following corollary is an easy consequence of this result and Theorem 4.6:

Corollary 4.9. Assume that the form a satisfies the hypotheses of Theorem 4.6
and that it is symmetric. Let f € H' and J be defined by (4.14). Then prob-
lem (4.15) admits a unique solution v € H.

Remark 4.10. This result is a particular case of some general results concern-
ing the minimization of functionals on Banach spaces or on convex sets. There
is & wide theory that solves this kind of problems, namely in the framework of
calculus of variations and in optimization theory. We refer for instance to Kinder-
lehrer and Stampacchia (1980), Ciarlet (1982), Buttazzo (1989), and Dacorogna
(1989). 0
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4.3 Setting of the variational formulation

The aim of this section is to introduce the reader to some classical bou,mm%lﬁa:
problems in elliptic partial differential equations. The problems we present here
will be formulated in the weak sense. that is to say the derivatives are taken in the
sense of distributions and the solutions have to belong to some Sobolev space.
Moreover, the equations are formulated in the variational sense, in the same
spirit as the abstract formulation (4.5) above, in order to apply Lax-Milgram
theorem.

To do so, we will have to write down, for any given boundary problem, a
variational equation of the form

a(u,v) = (F,v)n'.H

and introduce a suitable space H where this identity makes sense. In general, the
variational equation is obtained by multiplying the partial differential equation
by appropriate smooth test functions (i.e. taking into account the boundary
conditions) and integrating by parts. This computation suggests the space H
in which the problem has to be solved. This procedure is justified by the fact
that if the data are sufficiently regular, the weak solution is also regular and is
a solution in the classical sense (see, for instance Proposition 4.14 below).

As before, O and 2 denote respectively, an open set and a bounded open set
in RN,
Definition 4.11. Let a, 3 € R, such that 0 < a < 3. We denote by M(a, 8,0)
the set of the N x N matrices A = (a;j)1<ij<n € (L™ (©)V*¥ such that

{i) (A(z)A, ) 2 alA]?
i) |A(e)A < BIAL,

for any A € RN and a.e. on O.

(4.16)

In the following, we will treat several examples of partial differential equations
with an operator of the form

Y o
A=—div(A@) V) ==Y — 7 (a,_,(:v) 5 ) (4.17)

ij=1
Recall that if the matrix A is the identity, the operator in (4.17) is the classical

Laplacian
—A= z 6:!'2

i=1

Remark 4.12. Notice first that condition (4.16)(i) is equivalent to the classical
uniform ellipticity condition for the operator .A:

da > 0 such that Z a;;(X) AN, > C‘Z /\2 a.e. on 0, YA=(A,,...,An) € RV,

i,7=1
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In particular, this inequality implies the invertibility of A(z) a.e. on O (see for
more details Lang, 1993, and Ciarlet. 1982). In general, if a matrix A satisfies
this inequality, one says that A is elliptic.

On the other hand, condition (4.16)(ii). implies that

|A{z)]|]2 < B, a.e. onO.

where a.e. on O the following quantity

|A(x)A|
Al

|A(z)|l2 = sup
A%0

is the norm of A(x) as an clement of L{RY, RY), RY being endowed with the
Euclidean norm.

We recall now the notion of well-posed problem introduced by Hadamard.
Let P be a boundary value problem and U, F two Banach spaces.

Definition 4.13 (Well-posedness). We say that P is well-posed (with respect
to U and F) if

(1) for any element f € F there exists a solution u € U of P,
(2) the solution is unique,
(3) the map f € F +— u € U is continuous.

Obviously, the well-posedness of a problem depends on the choice of spaces
U and F. As a matter of fact, the examples we treat in the sequel have all this
property. They are all related to an equation of the form

Au = —div (AVu) = §,

where the operator A is given by (4.17) and the matrix A € M (0, 3,9). A
boundary value problem is formulated by supplementing this equation with some
boundary conditions.

Let us introduce the following notation:

0 & 3
-5;: = Z (l,'j(l‘) n; 67:," (418)
i.j=1
where n = (n;,...,ny) denotes the unit outward normal to 2.

We will treat the following boundary conditions:

u=0 ondQN Dirichlet condition
u=g9 ondQ Nonhomogeneous Dirichlet condition
Ou

=0 ondQ Neumann condition

61/ ‘A
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. =9 on o0 Nonhomogeneous Neumann condition

7

29— +du=0 ondQd Robin condition

31/4

;—u +du=g ondQ Nonhomogeneous Robin condition
Va

In the last section of this chapter we also study, when 2 = Y, Y being given
by (2.1), a particular boundary condition which plays an essential role in the
homogenization of periodic media, namely

u Y-periodic Periodic condition

4.4 The Dirichlet problem

Let f € H~'() and consider the problem

—div (AVu)=f inQ2
4.19
{ u=0 ondN. (4.19)
The corresponding variational formulation is

Find u € H}(Q) such that 1 (4.20)

a(u,v) = (f,v)u-va)uie). Yo € Ho(Q),

where
Ou Ov )
a(u,v) = E a,,(a:) 3 Bz AVuVodr, Yu,ve HY} (D). (4.21)
Lj Q

l]—

The following proposition justifies. as we already mentioned in Section 4.3,
the fact that a solution of system (4.20) is called a weak solution of system (4.19):

Proposition 4.14. Suppose that 09 is of class C'. Let Ac (CYQ))N*N, fe
C°(©)) and u € C?(2). Then u is solution of

{ —div (A(2) Vu(x)) = f(x) for any z € Q

4.22
u(z) =0 for any x € IN. (4-22)
iff u is solution of (4.20).

Proof. Suppose that u is solution of (4.22). Notice that from Propositions 3.28
and 3.34, one has that u € HJ(€2). Let us multiply the equation in (4.22) by an
arbitrary function v € D(2). By integrating by parts. we get

a(u, v)=/(;ft' dr, Yve D).
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where a is defined by (4.21). Recalling Definition 3.26 of the space Hj (), we
get by an obvious density argument. that

a(u,v) = Qfv dz, Yve Hi(9).

which, together with Remark 3.44, shows that u is a solution of_(4.20).
To prove the converse implication, notice that if u € C?(9) is a solution
of (4.20), then

/ AVuVvdr = / fvdr. Yv e D).
Q (1]

Integrating by parts, one has
/ [-div (AVu) - flode =0, Vve D).
Q

This, together with Theorem 1.44, implies that u is solution of (4.19), the fact
that u satisfies the Dirichlet boundary being a simple consequence of Theo-
rem 3.28 and Proposition 3.34. (]

Remark 4.15. For a complete exposition concerning the properties of classical
solutions, we refer the reader to Ladyzhenskaya and Uraltseva (1968), Gilbarg
and Trudinger (1977), Troianiello (1987). Let us just point out here that some
counterexamples (see Gilbarg and Trudinger, 1977) show that the assumptions
on the data from Proposition 4.14 are not sufficient to insure the existence of
a classical solution, i.e. a function in C?(Q) satisfying (4.22). For the existence
of such a solution. more regularity on the data and on  are necessary. This
justifies the introduction of the notion of weak solution. O

The first application of the Lax -Milgram theorem concerns the Dirichlet
boundary value problem (4.20).

Theorem 4.16 (Homogeneous Dirichlet problem). Suppose that the ma-
trix A belongs to M (a,3,Q). Then, for any f € H~1(Q), there exists a unique
solution u € H}(Q) of problem (4.20). Moreover.

1
el g < ;'U"H*‘(Q)- (4.23)

where ||lull z3(0) = |VullL2(0)-
If f € L?(R), the solution satisfies the estimate

Ca
Nl g < ~ Mlze- (4.24)

where Cq is the Poincaré constant given by Theorem 3.35.



The Dirichlet problem T3

Proof. The proof is straightforward by applying the Lax-Milgram theorem. In-
deed, from (4.21) and Remark 4.12. it follows that

2
— 2 1
L2@) = a||Vv||Lz(m, Yv € HO (Q). (4.25)

a(v,v) 2 af: Ilgxﬁ,
i=1

Due to the Poincaré inequality, the space Hj(f2) can be equipped by the equiv-
alent norm ||Vu||.2(q), so that

a(v,v) 2 alloll}y g (4.26)

which means that a is H} (2)-coercive. On the other hand, from the assumptions
on the matrix A and the Cauchy-Schwarz inequality (Proposition 1.34), we get

la(w, v)] < BIIVwllL2@ IVellLag) = Bllwlif @l g, (4.27)

Q

which gives the continuity of the form a on H}(Q) x H}(Q).
Consequently, we can apply the Lax--Milgram theorem for H = H}(Q), F = f
and a defined by (4.21) to obtain the existence and uniqueness of the solution

of (4.20) as well as estimate (4.23).
Suppose now that f € L?(2) and let u € H}(2) be the solution of (4.20).

One can choose u as test function to get

a(u,u) = (f. ¥)g-1(0).H3(0)-

From Remark 3.44 and Proposition 3.35, by using again the Cauchy-Schwarz
inequality, one has

S @) -1 53] = l_/!;fu dxl < Callfll2 o) llull 4 (o)

Then, (4.24) follows from (4.25). m]

Remark 4.17. If the matrix A is symmetric then, by Corollary 4.9 it follows
that the solution u given by Theorem 4.16, is the unique minimum point of the
functional J defined by
1
J(v) = 5/ AVu Vv dz — (f, 1’)H—I(Q)QH5(Q), Yv € H}(Q).
Q
0

Remark 4.18. Theorem 4.16 shows that the Dirichlet problem (4.20) is well-
posed (in the sense of Definition 4.13) for the choices

U = H} (). F=HQ)
U= H}Q), F=L*9).
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Assume now that %2 is Lipschitz continuous. Suppose we are given f in
H ' (Q) andgin H 3 (892). Consider the nonhomogeneous Dirichlet problem

{ —div (AVu)=f inQ
u=g ond

The trace notion (see Theorem 3.28 and Proposition 3.31) allows to give a weak
sense to this equation. We say that u is a weak solution of this problem iff

—div (AVu) = f inD'(Q
iv(AVu)=f lm () (4.28)
y(u) =g in H7(6Q).
Then, the following result holds:

Theorem 4.18 (Nonhomogeneous Dirichlet problem). Suppose that 9
is Lipschitz continuous and that the matrix A belongs to M(a,3,52). Let f
in H-Y(Q) and g in H}(8Q). Then problem (4.28) has a unique solution u in
H'(Q). Moreover,

lllm @y < Ciliflla-1i@) + C2llgll ;3 o0 (4.29)
where C) and C are two positive coustants depending on Q, a and 3.

Proof. Since g € H3#(8f), from Proposition 3.32(iii) there exists G € H 1)
such that ¥(G) = g and

G @) < CLDlgll 43 o0

Observe that by Proposition 3.42, f + div (A VG) € H~1(f2). Hence, by Theo-
rem 4.16 the following (homogeneous) Dirichlet problem with a defined by (4.21)

Find z € H}(Q) such that 430
a(z. U) = (f + div (A VG). v)H-l(Q)_HA(Q). Vv € H&(Q), ( ' )
admits a unique solution z € H}(R2). Moreover.
1 .
2}l o) < SIS +div (AVG)la-1q)- (4.31)

Set u =z + G. From Proposition 3.34 and the linearity of 4, one has y(u) =
g in H2(8Q). Further, choosing v € D(f) as test function in (4.30), one obtains

(=div (AVu), Va-v @)y = /QAVu Vv dz = a(u, v) = a(z, v) + a(G, v)
(f +div (AVG), v) g-1(0).13(02)
+/ AVG Vv dr

Q

= (f v)H-—l(Q)‘Hé(sl). Yo € D(Q),
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which means that —div (A Vu) = f in D'(Q2) and hence u satisfies (4.28).
We now make use of estimate (4.31) to derive (4.29). One has successively,

by using Proposition 3.32(iii) and Proposition 3.35,

i@ < llw—Gllar@ + IGla@) < l2lliz@ + IVallz@) + 1G] @)

< (1+Co)llzllay@) + Cr(Dligli 43 o0,

1+ Cq

~— (IAlla-10 + ldiv (4 VO)la-v@) + CrNgl 4 o0y

(4.32)

<

On the other hand, by the Cauchy-Schwarz inequality (Proposition 1.34) and
again by Proposition 3.32(iii),

|(div (4VG), v),,-l(m,,,ém:! /Q AVG Vo dz| < BC@)gl 43 ) IVl 20,

for any v € H}(S). This gives (due to Definition 3.41)
Idiv (AVG)la-1 i < ACHDl 13 o0
This, together with (4.32), implies that

14+ Ca 1+ Cq
lllae) € ——If -1 + ——BC1 DIl ;3 50, + CLEDIN 44 50y
Hence, estimate (4.29) holds with
1+ C 1+ C,
Cr=——F, Cp=2——2pCy(Q),
since [(1+ Cq)/0]B8 > 1. 0

4.5 The Neumann problem

Let f € (H'(2))’ and consider the homogeneous Neumann problem

{—div (AVu)+u=f inQ

% _ o onon. (4.33)
61/,4

where —6-3—— is defined by (4.18).
A
The corresponding variational formulation is

Find u € H'(R) such that (4.34)
a(u,v) = (f,v) @)y .H@)- Vv € HY(Q), ’

where
a(u,v) = / AVuy Vv dx +/ wvdr, Yu.ve HY(Q). (4.35)
Q Q
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Theorem 4.20 (Homogeneous Neumann problem). Suppose that the ma-
trix A € M(a,3,). Then, for any f € (H*(Q))', there exists a unique solution
u € HY(Q) of problem (4.34). Moreover,

1
lulf i) < ;(;“f ey (4.36)

where ap = min{1, a}. If f € L%(Q), the solution satisfies the estimate
1
lullaiey < E&"f l2(0)- (4.37)

Proof. By the definition of a. one has
a(v,) > allVvllZ2iq) + IWI1sq) 2 collvling), Yve HY(Q),

where ap = min{1, a}. Hence, the forin a is H'(Q)-elliptic with constant ag.
Therefore, Theorem 4.6 applies and estimates (4.36) and (4.37) are straightfor-
ward. O

Assume now that 8 is Lipschitz continuous. Let f € L%(Q), g € H~¥(9Q)
and consider the following nonhomogeneous Neumann problem:

{ —div (AVu)+u=f inQ
Ou (4.38)
m =g on .
The corresponding variational formulation is
Find u € H'() such that
a(u,v) = /‘;fv dr + (g’”>ﬂ'§(am.ﬂi(aa)’ (4.39)

v e H'(Q).

where now a is defined by (4.35).

Let us observe that if u is a solution of problem (4.39), the equation in (4.38)
holds in D’(?). Then, due to Proposition 3.47(ii), A Vu belongs to H(,div)
and therefore 8u/0v4 is well-defined as an element of H~%(8%). This is the
sense to be given to the boundary condition in (4.38).

We have the following existence and uniqueness result:

Theorem 4.21 (Nonhomogeneous Neumann problem). Suppose that 9
is Lipschitz continuous and that the matrix A € M(a,3,5?). Then, for any

f € L*(Q) and for any g € H % (), there exists a unique solution v € H Q)
of problem (4.39). Moreover,

1
el < = (2 + C (Dligll -3 o0, (4.40)

where ag = min{l, a} and C,(2) is the trace constant defined by Proposi-
tion 3.31.
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Proof. Set for any v € H}(Q),

F(v)=/ﬂfvdx+(g,v)H_5(m)'Hi(am. (a.41)
One has,
FOI < Il + 1ol oo 19l s ony

< Iflz@lela @l +Cr @l -y oo Il @,

where we made use of Proposition 3.31. Hence F € (H!(Q))’ with
IF |l gy < L2 + Cr (DNl ;-4 o0y (4.42)

Again we apply the Lax-Milgramn theorem 4.6 with F defined by (4.41) to get a
unique solution v € H!(Q). Estimate (4.40) is a direct consequence of (4.42). O

Suppose that Q2 is connected and consider now instead of (4.38), the following
nonhomogeneous Neumann problern:

{ —div (AVu)=f inQ

Bu (4.43)
m =g on o0,

under the same hypotheses on g and f as in Theorem 4.21. The corresponding
bilinear form is

a(u,v) = / AVu Vudz, VYu,ve H(Q). (4.44)
Q
One notices immediately that now, this form is no longer coercive on H'(f2) but,
due to Proposition 3.40, it is coercive on the Hilbert space
w(Q) = H'(Q)/R

given by Definition 3.39. Consequently, the natural variational formulation
of (4.43) is
Find % € W(Q) such that

a(it. 9) = /n S o d +(8,9) -3 o0 b 00 (4.45)
Yv € v, Vo e W(Q),
where a is defined by

a(a,v) = / AVuyVuvdr, Yu€u,ved Va,oe W(Q). (4.46)
Q

This problem makes sense if the right-hand side term is independent of v € v.
This is expressed by the compatibility condition (4.47) written below. Indeed,
we have the following result:
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Theorem 4.22. (Variant of the nonhomogeneous Neumann problem)
Assume that @ is connected and 9% is Lipschitz continuous. Let A be a matrix
in M(e, 8,9). Suppose that f € L*(?) and g€ H ~3%(9N) satisfy the following
compatibility condition:

/{;f dr + (g. I)H-i(an).uif(as;) =0. (4.47)

Then, there exists a unique solution u € W(2) of problem (4.45). Moreover,

1
lullwiay < = (I llz2e + Co (Dol o) (4.48)
where C, () is the trace constant defined by Proposition 3.31.

Proof. We will again apply the Lax-Milgram theorem (Theorem 4.6) to prob-
lem (4.45) with a = a defined by (4.46), H = W({2) and F defined by

F(3) = /va & + (9.9 -3 ooy b oy Y € V0 € W),

We have only to check that F is well defined on W (). i.e. that
F(w)=F(v) iffwver
This is a consequence of the compatibility condition (4.47). Indeed, if w ~ v

then, there exists a real constant C' such that w — v = C. By linearity, the
condition F(w) = F(v) reads F(w — v) = 0. that is to say

]r;fc.' de + (Q-C)H-i(am,ui(am =0

which again by linearity is equivalent to (4.47). w]

Remark 4.23. Observe that if, in particular. g € L2(812), then the compatibil-
ity condition (4.46) becomes

/ﬂ fdr + /00 gds =0. (4.49)
0

4.6 The Robin problem

In this section we consider two other examples of boundary conditions, namely
the nonhomogeneous Robin condition and the case where one has a Dirichlet
condition on a part of the boundary and a homogeneous Robin one on the rest
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of the boundary. Suppose that & is Lipschitz continuous and let f € L%(9),
g € H~%(89). Consider the problem

—div (AVu)+u=f inQ

4.50

_6_u. +du=g ondf, (4.50)
Ova

where d € R is such that d > 0. The variational formulation of problem (4.50)

is then
Find u € H'(2) such that

a(u,v) = L fvdr + (g’v)ﬂ‘i(m),ui(aa)’ (4.51)
Vo € H(9),

where

a(u,v) = / AVuVvdz + / uvdr+d | uvds, VYu,ve H(Q). (4.52)
Q Q o9

Theorem 4.24 (Nonhomogeneous Robin problem). Suppose that 0 is
Lipschitz continuous and that the matrix A € M(«.3,Q). Then, for any
f € L3(Q) and for any g € H~#(Q). there exists a unique solution u € H(2)
of problem (4.50). Moreover,

ey < oo (1512 + Co(Dgl - o) (4.53)

where ap = min{l, a} and C,(f?) is the trace constant defined by Proposi-
tion 3.31.

Proof. As in the proof of Theorem 1.21, let F € (H'(2))’ be defined by

F(v) = [ A (00,4 o 1 oy (4.54)

We will again apply the Lax Milgram theorem (Theorem 4.6) with H = H1().
Observe that as a consequence of Proposition 3.31, the bilinear form a(u, v) given
by (4.52) is continuous on H!(£2) x H'(2) and coercive. since d is positive. Ob-
serve also that the functional F in (4.54) is the same as that in (4.41) introduced
for the nonhomogeneous Neumann problem. Therefore, estimate (4.53) follows
from estimate (4.42). m]

Other boundary conditions can be studied. always as applications of the Lax-
Milgram theorem. Let us finish this section by the following example. Let 2 be
connected. Suppose that 9Q is Lipschitz continuous and such that 8Q = I, UT,,
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where T'; and I'; are two disjoint closed sets and Ty is of positive measure.
Consider the problem
—div (AVu)=f inQ

u=0 onI; (4.55)
@— +du=0 onTls,.
Ova

where d > 0. Let us introduce the space
V={vlve H(R), v(v) =0onT1},

which is well defined due to Remark 3.37. Observe that, thanks to Proposi-
tion 3.36, V can be equipped with the norm

lzlly = Vol L20)- (4.56)
Let f € L?(). The variational formulation of problem (4.55) is
Find u € V such that

a(u,v) = / fode (4.57)
Q
Yo eV,
where
a(u,v) = f AVuVovdr + d/ uvds., Yu,veV. (4.58)
Q a0

Theorem 4.25 (Mixed Dirichlet—Robin condition). Let 2 be connected.
Suppose that O is Lipschitz continuous and such that 0Q = I't UT', where I';
and T'y are two disjoint closed sets and T'y is of positive measure. Let A be a
matrix in M(a, 8,9), f € L?(Q) and d > 0. Then, there exists a unique solution
u € V of problem (4.57). Moreover,

Ca
lulty < —=Ifllz2(), (4.59)
where Cq is the Poincaré constant given by Proposition 3.36.

Proof. We apply the Lax--Milgram theorem (Theorem 4.6) with H = V, a de-
fined by (4.58) and F given by

Fv)= | fvdz. (4.60)
Q

Due to (4.56) and since d is positive, the bilinear form a is coercive on V. The
continuity of a is again a consequence of Proposition 3.38. Obviously, (4.60)
defines a continuous form on V and due to Proposition 3.36, one has

IFllv: < CallfllL2(0)-
Then, estimate (4.59) is straightforward. mi
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4.7 Periodic boundary conditions

We consider now the case of periodic boundary conditions.

Let Y be the interval of R™ defined by (2.1), i.e. Y =]0,¢; [x - x]0, €n [,
where ¢),...,¢N are given positive numbers.

Suppose that the coefficients a;; are Y-periodic (in the sense of Defini-
tion 2.1). Let f be Y-periodic and consider the problem

{ —div (AVu)=f inY

oo (4.61)
u Y-periodic.

A natural space for the solutions is Wper(Y'), introduced by Definition 3.51.
Hence, for f given in (Wper(Y))’, the variational formulation of problem (4.61)

is
Find % € Wjer(Y') such that

dy (u’ i)) = (f‘ i’)(wper(Y))"Wper(y) (4'62)
Vi) € Wper(Y)\

where
dY(ﬂ, 0) = / AVuVuvdy, VYue€ u,Yv €.
Y

Theorem 4.26 (Periodic boundary condition). Let A be a matrix in
M(a, B,Y) with Y -periodic coefficients and f € (Wper(Y'))'. Then problem (4.62)
has a unique solution. Moreover,

. 1
2wy (vy < 5 1l Wper (V- (4.63)

Proof. The claimed result is a simple application of Lax—Milgram theorem (The-
orem 4.6) with H = Wp,(Y) and

a(u, ’U) = dY (if. i)). Vil,i) € Wper(Y),

since, due to Proposition 3.52. the bilinear form a_, is coercive on Wpe(Y). O

Y

Let us recall that an element of Wy (Y') is a class of H;e,(Y)-functions,
equivalent in the sense of Definition 3.51. Hence Theorem 4.26 shows that prob-
lem (4.61) admits a solution in HJ(Y), defined up to an additive constant.

We can choose a representative element of the class of equivalence of i by
fixing this constant. In particular, we can ask for the solution of the initial
problem (4.61) to have a zero mean value, i.e. to solve the problem

—div (AVu)=f inY
u Y-periodic (4.64)
MY(") =0,
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where f is still in (Wper(Y))'.
The corresponding variational formulation is

Find u € Wy, (Y) such that
fy AVuVv dy = (f, V)(Woer (V) WperlY) (4.65)
Y € Wper(Y),

where
Wioer(Y) = {vlv € HF',Q,(Y), My (v) = 0} . (4.66)

and the bracket {f, U)W, (¥)) .Wper(y) iS Well-defined by Proposition 3.52.
Due to the Poincaré-Wirtinger inequality (Proposition 3.38), W,er(Y) is a
Banach space for the norm

lullw,.. vy = IVull2v),  for any u € Wper(Y).
In this setting, Theorem 4.26 reads as follows:

Theorem 4.27 (Variant of periodic boundary condition). Let A be a ma-
trix in M(a, 8,Y) with Y-periodic coefficients and f € (Wper(Y))'. Then prob-
lem (4.65) has a unique solution. Moreover,

1
Nullw,..vy < - N Woer (¥ - (4.67)

Let us rccall that, from Proposition 3.50, the extension by periodicity given
by (3.7) for an element of H,(Y) is in H'(w) for any bounded open set w
of RN. A natural question arises now: does the extension u# of the solution
u of problem (4.65) satisfy some equation (at least locally) in RN? If f =
—div h, with h € (L3(Y))N and Y-periodic, we can give a positive answer to
this question. In this case, the variational formulation (4.65) becomes

Find u € Wpe(Y) such that
/y AVuVuvdy = /} h Vvdx (4.68)
Vv € Wpe(Y).

Observe that the following relation:

<—-div h,, v)(w.P"(Y))l = l' h Vv dy, Yv € Wper(Y)a

identifies —div h as an element in (W, (Y))'. Moreover. it is obvious that
~div h € (Wper(Y))' in the sense of Proposition 3.52. Therefore, Theorem 4.27
applies and the following result holds:
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supp ¢

»

Fig. 4.1

Theorem 4.28. Let A be a matrix in M(a, 3.Y) with Y-periodic coefficients
and h in (L3(Y))N and Y-periodic. Let u € Wper(Y) be the solution of prob-
lem (4.68) and u# its extension by periodicity given by (3.7). Then u¥ is the
unique solution of the problem

—div (AVu*) = —div h in D/(RV)
u#  Y-periodic (4.69)
My (u#) =0.

Proof. 1t is easy to check by using Green's formula (Theorem 3.33) that u#|y
solves (4.68). Then, the uniqueness of the solution of (4.69) follows from that of
problem (4.68). To prove (4.69) we have to check that

/ A(Vu#) Vo dr = / hVpdr, VYo e D(RVN). (4.70)
RN RN

To begin with, observe that if y» € C3,(Y) (see Definition 3.48), we can choose
v =19 — My (%) as test function in (4.68) to obtain

/ AVuVy dy = / h Vo dy. (4.71)
Y Y

Let now ¢ € D(RM) and K = supp ¢. Let (Y;)i—1...m be a finite set of
translated cells of Y. recovering K (sce Fig. 4.1), i.e.

m
KC U Y.
i=1
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Let (6;)i=o....m be a partition of the unity associated to this covering, i.e. a
family of functions such that

m
9, e DRY), 0<6;<1, Vie{0,...,m}. ) 6;=1in RY,
i=0
supp §; C Y:, Vie{l,....m}. supp b C RN\K.

For the existence of this partition we refer for instance to Yosida (1964).
Since ¢ = 0 on the support of 8 one has

o= ,pZo —Z(tpﬂ) in RV, (4.72)
i=1

Denote by (p8;)# the extension by periodicity of ¢f; for any i = 1,...,m. Since
6; = 0 in a neighbourhood of 8Y;, the function (8;)¥ is in C;g,.(y), hence also
in H;e,(Y).

Using Lemma 2.3, the properties of §; and taking into account (4.72), one
has

# _ v # .
/R _A(Vu#) Vg dr 5;; /R _A(Vu*) V(o) da
> ‘/Y.A(Vu#)V(tpH,-)dz
-5 #
; /Y AV V((08:)*) dz. (4.73)

Observe now that the properties of 8; and ¢ allow to choose ¥ = (p6;)# as test
function in (4.71). Consequently,

Z / AVuV((08,)*) dr = Z / hV((08:)*) da. (4.74)

i=1

Using again Lemma 2.3 and the properties of 6;. it follows that

nyhv«‘po.-)#)dm = Z hV (¢0;) dx
i=1

/ hV(06:) dr_-/ hVy dz,

which, together with (4.73) and (4.74), gives (4.70) and ends the proof. (=]



5
Examples of periodic composite materials

In this chapter we introduce the periodic framework in which we will work
throughout this book. We give in Section 5.2 some examples of physical problems
for composite materials which are modelled by partial differential equations.

In Sections 5.3 and 5.4 we focus our attention on two particular situations,
the one-dimensional case and the layered materials. The first example is due
to S. Spagnolo and can be found in Spagnolo (1967, 1968) in the context of the
G-convergence (cf. Chapter 13 below). The case of layered materials was studied
by L. Tartar and by F. Murat (see Murat, 1978a, Murat and Tartar 1997a, and
Tartar 1977a) in the context of the H-convergence (cf. again Chapter 13).

For general references in periodic homogenization, we refer the reader to
Spagnolo (1968), De Giorgi and Spagnolo (1973), Babuska (1976), Bensoussan,
Lions, and Papanicolaou (1978), Sanchez-Palencia (1980), Ene and Pasa (1987),
Bakhvalov and Panasenko (1989), Jikov, Kozlov, and Oleinik (1994) and refer-
ences herein. For further developments concerning perforated domains and peri-
odic structures we refer to Lions (1981), Cioranescu and Saint Jean Paulin (1999)
as well as to references therein.

5.1 Setting of the problem

In this chapter, (2 denotes as previously, a bounded open set in RN and £ > 0 is
a parameter taking its values in a sequence which tends to zero.
Let

A (x) = (af;(P)h<ijcv e on Q, (5.1)
be a sequence of non-constant matrices such that
Af € M(a.8.9Q). (5.2)

This means (see (4.16) in Definition 4.11) that A¢ satisfies the following inequal-
ities:

€ 2
{ (A5(x)A, ) > alA| (5.3)

|45 (x)A] < BIA,

for any A € RN and a.e. on Q.
Introduce the operator

S 9
.Ae = —div (AEV) = - Z é—;(afj—a—m—) (5.4)
t J

iJ=1
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As we shall see in this book, the homogenization theory allows to describe the
asymptotic behaviour as € — 0 of partial differential equations of many types.
To begin with, we study the equation

Au=f (5.5)

with a Dirichlet boundary condition on 9.

This equation is a model case, particularly relevant both from the mathemat-
ical point of view and for applications. As a matter of fact, the main mathemat-
ical difficulties occurring in homogenization theory, are already present in this
model problem. On the other hand, as we will see in Section 5.2, the equations
of type (5.5) mode! thermal as well as electrical or linear elastic properties of
materials. When treating such problems for composite materials, the parameter
€ describes the heterogeneities of the material.

A classical problem of type (5.5} is the Dirichlet problem

{—div (AVeS) = f inQ

u* =0 ondnN, (56)

where f is given in H~!(Q). From Theorem 4.16 it follows that for any fixed ¢,
there exists a unique solution u¢ € H}(€) such that

/ A*Vu® Vvde = (f‘ ")[{-l(n).H&(Q), Vv € H& (Q). (57)
Q
Moreover, estimate (4.23) holds, i.e.

R 1
el agee) < SHFlla-1 (@) (5.8)

Consequently, from Theorem 1.18(i) and Proposition 3.17, it follows that there
exist a subsequence, denoted by {u€ }. and an element u® € H}(Q) such that

’

u® —=u® weakly in H}(). (5.9)

Observe that a prior: the limit u® depends on the subsequence for which (5.9)
holds.
At this point two natural questions arise:

e does u? satisfy some boundary value problem in Q?
e and if so, is «° uniquely determined?
In order to investigate these questions, let us introduce the vector

£ =(&.--- &N = XN:ai"—gu—s f:af LC) R ¥ (5.10)
j=1 Tox ,j=| M or; ’ .

J
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which (see (5.7)) satisfies
/ & Vodr = (f,v)H-l(Q)’Hé(Q), Yv e H(;(Q) (5.11)
Q
Obviously, from (5.2) and (5.8) it follows that

etz < 2170 (5.12)

Then, again from Theorem 1.18(i) there exist a subsequence, still denoted by
{¢5'}, and an element €9 € L2(R), such that

€ = €° weakly in (L2())V. (5.13)
Hence, we can pass to the limit in (5.11) written for the subsequence €', to get
/Q£°Vv dz = (f,v)y-v) a0 Vv € Hy(), (5.14)

ie.
—dive®=f inQ. (5.15)

Consequently, the first above question has a positive answer if one can describe
€0 in terms of u®.

Remark 5.1. If A€ is such that
A¢ — A strongly in [L®(Q))V >V,

one can easily give the relation between u? and £°. Indeed, in view of (5.9) and
Proposition 1.19, one has

hm / Ao Vut ¢ dz
= lim ("Acp, Vi) ooy o)
= (*Ap, V) Laqyv L2v = / AVilodr. VYo e [LA(Q)Y,
Q
where, for any matrix B, !B denotes its transposed. Therefore,
€0 = AVO.
Hence, from (5.9) and (5.15) one deduces that 40 is the unique solution of

—div (AVu®) = f inQ
w?=0 ondf.

From the Lax-Milgram theorem, this problem has a unique solution #° since
obviously, 4 € M(a, 8, 2). Thus, in this case one have also that the whole
sequence u® converges. 0
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Let us point out that the case considered in Remark 5.1 is a very peculiar one
and not relevant for the study of composite materials. Indeed, as we will see in
Section 5.3, for composite materials a strong convergence of the matrix A€ can
never occur. For a sequence of matrices satisfying (5.2) (periodic or not), one
can only deduce a weakly* compactness in L>(2) (see Remark 1.54) to some
matrix A*.

On the other hand, as we will see in Chapter 13, the fact that A® satisfies (5.2)
for any £, implies the existence of a matrix Ap (depending on the subsequence
€’), such that £% = Ao VuP so that «° is the unique solution of

—d: 0y _ .
{ dl(\)/ (AgVu®)=f inQ (5.16)
u =0 ondQ.
with
Ap € M(a,5.9Q), (5.17)

for some B’ > 8.

In general, A is different from A*. Moreover, one cannot uniquely identify
the matrix Ap so that one cannot say that the whole sequence u¢ converges to
uf.

In some situations, in particular in the periodic case, one can give explicit
formulas for the matrix Ag which show that Ay is independent of the subsequence
¢'. This implies that the limit «° is also independent of the subsequence ’.

Consequently, from Theorem 1.18(ii) it follows that the whole sequence u¢
converges to °. In this case problem (5.16) is called the homogenized problem,
Ay the homogenized (or effective) matrix and u® the homogenized solution.

Let us now introduce the general periodic framework in which we will work
from now on. As in Chapter 2, set

Y =]0.6; [x---x]0. €N .

where £}, ..., €y are given positive numbers. It is called the reference period or

reference cell.
Let a,8 € R, such that 0 < a < J and A = (a;)1<i.j<n be a N x N matrix
such that

a;, is Y-periodic, Vi.j=1..... N
{ (¥} p .) (5.18)

A€ M(a. 1Y),

where the periodicity is taken in the semse of Definition 2.1 and the class
M(a,B,Y) is given by Definition 4.11 for @ =Y. i.e.

{(A(y),\,,\) 2 alA?

[A(y)A] < BIA). (5.19)

for any A € R and a.e. on Y.
Set

a;,(z) = a; (C;) ae.onRY. Vij=1..... N (5.20)



Some physical models 89

and
A‘(m) = A(g) = (afj(a‘))ls,'_jsjv a.e. on RN. (521)

It is easy to check that A° satisfies (5.2) and (5.3) for any €. Then, all the
considerations above hold for problem (5.6) written for A¢ given by (5.21).
Observe that from Theorem 2.6 it follows that if ¢ — 0

A® > My (A). weakly* in L*=(9), (5.22)

where the matrix (My (A));; is defined by
1
My (s = 1 [ ). (5.23)
Y| Jy

Moreover, from Remark 2.9 we know that in general. convergence (5.22) is not
strong. Hence. in view of convergences (5.9) and (5.22), A*Vu* is the product
of two weakly convergent sequences. From Remark 2.7 we know that in general

&0 # My (A)V".

with £° given by (5.13).

In Sections 5.3 and 5.4 we will see that for examples of the one-dimensional
case and of layered materials, the homogenized matrix A? is obtained by taking
weak limits of some algebraic forniulas involving the coefficients of the matrix
A defined by (5.18). As seen in Chapter 6, for the general N-dimensional case,
the sitnation is completely different. since the coefficients of A° are no longer
obtained as algebraic formulas from A. Indeed, they are defined by means of
some periodic functions which are solutions in the reference cell Y of boundary
value problems of the same type as that studied in Section 4.7.

5.2 Some physical models

In this section we show how some classical physical problems can be modelled
by the Dirichlet problem (5.6), introduced in Section 5.1, as well as by other
boundary value problems that we will consider in this book.

A composite is a material containing two or more finely mixed components.
Composite materials are widely used nowadays in any kind of industries, since
they have very interesting properties. It is known in practice that they exhibit
in general ‘better’ behaviour (according to the performance one looks for), than
the average behaviour of its components, classical examples being ceramics or
supraconducting multifilamentary niaterials.

In a good composite, the heterogeneities are very small compared with the
global dimension of the sample. The smaller are the heterogeneities, the better is
the mixture, which appears then, at a first glance, as a *homogeneous’ material.
It is for this reason that one can assume that the heterogeneities are evenly
distributed.
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From the mathematical point of view, one can model this distribution by
supposing that it is a periodic one. This periodicity can be represented by a
small parameter, €.

In practice, one is interested to know the global behaviour of the composite
material when the heterogeneities are very very small. This means that ¢ is very
small, which mathematically signifies making € tend to zero.

As showed in the examples below, in the mathematical model the main char-
acteristics constants of a material are the coefficients of a partial differential
equation. For a composite with a e-periodic distribution, these coefficients will
clearly depend on the parameter ¢, so they jump between the different values of
the characteristic of its components.

This makes the model very difficult to treat, in particular from the numerical
point of view. Also, the pointwise knowledge of the characteristic of the material
does not provide in a simple way any information on its global behaviour.

As we will see throughout all this book, when passing to the limit as ¢ — 0,
we obtain ‘homogenized’ limit problems with constant coefficients. This is very
interesting in applications since, as is well known from engineers and physicians,
these coefficients are good approximations of the global characteristics of the
composite material, when regarded as an homogeneous one. Moreover, replacing
the problem by the limit one, allows to make easy numerical computations.

Let us introduce the geometrical model of a periodic mixture corresponding
to the problems we treat in this book. For the sake of simplicity, we describe
here the case of a mixture of two components.

Let 2 be the domain occupicd by the material, Y the reference cell, Y; C Y
and Y, C Y such that

Y=Y,uY;, vinY,=0.

Let € > 0 be a parameter which takes its values in a sequence which tends to
zero and set

o ={eln(2)-1}.  m-o\m-{opa(Z) =1},

where x; for i = 1,2, is the characteristic function of the set Y; (see Defini-
tion 1.40) extended by periodicity with period Y.

By this construction, the set Q2 is covered by a pavement of cells of the form
€Y = eY) UeY; (see Fig. 5.1).

Remark, in particular, that if we have

¢ ¢
Y, =]0.—21[x~-x]0, v, Ya =]5‘,e, [ - x]O, &y |

we are in the case of a layered material (see Fig. 5.2).

When taking ¢ — 0, the cells €Y covering 2 are smaller and smaller and
their number goes to oco. This signifies that, in this procedure, we are mixing
the two materials ‘better and better’ in the sense that the heterogeneities are
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finer and finer (see Figures 5.1 and 5.2). This is why this procedure is called
homogenization. Indeed, in this process of homogenization, the proportion of the
materials is kept constant. Actually, the proportion 6 of the material occupying
the set £} and given by

s 1 / :1:)
? = ——t = - ‘ 05 3 = 1 9
0: |Ql lQI Qxi € dx ( 1 + 02 )

is of the order of a constant C;. independent of €. Indeed, from Theorem 2.6 one
has, for £ — 0, that

. 1 Y; ) .
X, (E) = My(x;) = m/; x,(v)dy = % weakly* in L*(Q), i=1,2.
Therefore,
Y Yz
€ —_ = 3 = -0
01 Cl l}’l B 02 — C2 ‘YI

In the examples below, we will place ourselves in this geometrical framework.

Example 5.2 (Dirichlet problems). Consider first a homogeneous body oc-
cupying Q with thermal conductivity 7. For simplicity, we assume that the
material is isotropic, which means that v is a scalar. If f represents the heat
source and g the temperature on the surface Q2 of the body, then the tempera-
ture u = u(z) at the point z € Q satisfies the following Dirichlet problem:

{—7Au=f in Q
u=g oudqQ,

where Au = div(Vu). The flux of the temperature is defined by
g=v Vu

By linearity, we can always suppose that g = 0 on 8Q and consider the following
Dirichlet homogeneous problem:

{—')Au=f in Q
u=0 on .

If now the body is composed of two different materials of thermal conductivity ¥,
and -2, occupying respectively the subdomains ; and €5, the temperature and
the flux of the temperature in a point & € Q of the composite take, respectively,

the values
uy () ifre

u(x) = { )
ua(x) if 7 € Q.

q_{(11=’nVu1 in
g2 = 72 Vuy in Q.
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The usual physical assumptions are the continuity of the temperature u and of
the flux ¢ at the interface of the two materials. i.e.

{u,:ug on 9%, NI,
q1-m=gz-nz  ond Ny,

where n; is the outward normal unit vector to 8§;, i = 1.2. Obviously, n, = —n;
on 891 n 392
Taking into account these continuity conditions. if we set

T if;rG(h

r(z)= {-,2 if 7€ Qy,

the temperature u is solution of the stationary thermal problem

{—div(q Vuy=f inQ
u=0 on &f.

Finally, let us formulate the thermal problem in the above periodic setting.

To do so, set
@=nx(Z)+mx(:
Ye =T X1 . Y2 X2 : )

which represents the conductivity of the periodic composite material since, ob-
viously,
T if r € Qi

2 ifre Qg.

Ve(x) = {
Then, for any ¢, the temperature «® satisfies the problem

{ —div(hVu) = f in§
u® =0 on .

This is a homogeneous Dirichlet problem with the rapidly oscillating coefficient
7. Observe that this problem is a particular case of problem (5.6). We will
study it in details in Sections 5.3 and 5.4 and also in Chapters 5-9. Notice that
if we are in the case of layered material of Figure 5.2. obviously we have that v,
depends only on the variable ), namely 4.(2) = 7.(x1), which is the example
studied in Section 5.4.

It is clear from the equation that the temperature u depends on two scales
which are described by the two variables x and x/e. The first one. called ‘macro-
scopic’ is slow, and it gives the position of the point in ). The second one, the
‘microscopic’ variable, oscillates rapidly with £ and determines whether the point
isin Y or in Y.

In the case of anisotropic materials. v is no longer a scalar but a matrix A
representing the thermal conductivity (in the axis directions} so that the problem
to treat can be written as

{ —div (A*Vuf)=f inQ
u®* =0 onOf.
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which is exactly problem (5.6).

Let us also mention that this Dirichlet problem models many other physical
phenomena. Of course, the coefficient 4, will describe other characteristics of
the material. For instance, in the study of the torsion of a cylindrical composite
bar, one has v = 1/u where g is the shear modulus of the material, f is the
angle of the twist and u represents the stress function.

Also, in electricity the electrostatic potential u satisfies the same equation,
where v is the electrical conductivity and f stands for the distribution of the
electric charges.

If the phenomenon depends on the time, we will have the following equation,
called the ‘heat equation’ in thermicity:

u, — div(A°Vue) = f.  in Qx]0, T
ue =0 on 0Qx|0,T|
ue(z.0) = u? in Q,

where the operators div and V are taken with respect to the space variable z € ,
the sign ’ denotes the derivative with respect to the time variable ¢ €]0, T[ with
T > 0, and the initial state u? is given. We will study it in Chapter 11. 0

Example 5.3 (The wave equation). One can also study the wave propaga-
tion in a composite material. Then under the same notations as in the previous
example one has the system

u; —div(A°Vue) = f.  in 2x]0. 7]
ue =0 on INx]0, T[

ue(z.0) =u! inQ

¥(z,0) =u! inQ.

where u, is the wave propagation, f; is a source term. and ug, u! are the initial
data. We will study it in Chapter 12. QO

Example 5.4 (The linearized elasticity system). Suppose that we have
an elastic homogeneous body occupying the domain  C R® whose boundary
09 is the union of two disjoint parts. ['; and I'». In linearized elasticity, the
displacement u = (u;,u2,u3) is a solution of the system

J Jk.h=1
3 ,
duy,
Z Gigkh 7~ M =g on Iy
jok k=1 h
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for i = 1,2,3, where the coefficients of elasticity a;jxn satisfy the usual symme-
tries in elasticity, i.e.

Qijkh = Qjikh = Qkhij Vi, j.k,he€ {1, 2 3}

and where f = (f1, f2, f3) denotes the volume density of applied body forces and
g = (1, 92, g3) the density of surface forces. The last boundary condition means

that the Q is clamped on I';.
Consider now a composite of two materials with the above geometry, whose

coefficients of elasticity are aj;;, and a?jkh respectively. and set

1 z 2 T
afjkh(«’ﬂ) = Gk X1 (E) + Qjkn X2 (;)

Then the linearized elasticity system for the composite material is

for any 7 = 1.2.3. This system will be studied in Chapter 10. O

5.3 The one-dimensional case

In this section we present a one-dimensional problem which was studied by
Spagnolo (1967).
Let Q =|di, d>[ be an interval in R and consider the problem

d ( Ed”e) = f inld.dyf

— —— a ——
dr dr (5.24)
u®(d)) = u*(dz) = 0.
We assume here that a is a positive function in L>(0.¢,;) such that
ais ¢,-periodic,
{ 1P ' (5.25)
O0<a<a(r)<d<+oc.

where « and 3 are constants. The a* from (5.24) is the function defined by

3

af(x) = a(f) (5.26)

We have the following result:
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Theorem 5.5. Let f € L2(d,.d2) and af be defined by (5.25) and (5.26). Let
u¢ € H)(dy.dy) be the solution of problem (5.24). Then,

ut — u® weakly in H}(dy,d).

where 4 is the unique solution in H}(dy,d2) of the problem

d 1 du® :
a4 e wr T f in)dy,ds] (5.27)
M(Oofl)(;) .

40(d)) = v°(d2) = 0.
Proof. Observe first that estimate (4.24) holds true, that is

d
- " fllez-

Indeed, from the proof of Proposition 3.35, it is immediate that for Q =|d,, da|,
the Poincaré constant Cq is equal to dy — d). Then, one still has conver-
gences (5.9) for a subsequence still denoted by &, which reads here

{ue — 4% weakly in L?(d).d>)

flu ”Ho(d,,dg) =

€ 0 528
% — (-3;— weakly in L2(d.ds). 528

Define dut
65‘ ____ae_"_'
which satisfies
in )d,.d2]. (5.29)

Moreover, from the estimate on 4 and (5.25) one has

Hdo — d
i(—1”-—1—)||f|| L2(dy.d2)-

1€ M1 L2(dy a0y < p

Hence, from Theorem 1.18 one has the convergence (up to a subsequence)

£¢ =€ weakly in L(d,.dy). {(5.30)
Moreover, the limit €0 satisfies (see (5.15))
0
—Ti.l_' = in ](Il.dzl. (5.31)

Clearly. from the former estimate on £° and from equation (5.29). we have

lj(dg - d])
< —T—”ﬂlu’(d, dz) + 1 fll22(d, da)-

€

d
NN L2(ay ao) + e

L2(d, .d3)
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Hence, £¢ is bounded in H!(d,,d:). then compact in L?(d,,d;) thanks to The-
orem 3.23. Consequently, there exists a subsequence. still denoted by &, such
that

€ — ¢9 strongly in L2(dy.d3). (5.32)
We now establish the relation between £° and «°.
By definition e
ut 1,
e a5€ . (5.33)

< 400. (5.34)
Therefore, Theorem 2.6 applies to 1/a¢ and gives

1 m (1 —i/ﬁ L dr weakly* in L(dy, da),
a ©e\a/ 4 a(z) y" in ne2

where, due to (5.34),
Moo (1) #0. 559

Hence, using (5.32) and in view of Proposition 1.19, we can pass to the limit in
the ‘weak-strong’ product in the right-hand term in (5.33), to obtain

dus

0 2
- M(o (1)( )§ weakly in L*(d,,d3).

Consequently, from (5.28) we have

du® _ 0
dx M(oe.)( )5

Making now use of (5.31), it follows that u? is solution of the limit *homogenized’
equation (5.27). Due to (5.35). this problem has a unique solution. Hence, by
Theorem 1.18(ii), the whole sequence {u¢} weakly converges in Hj (d1, d2) to u®.
This ends the proof. ]

Remark 5.6. In this particular case of the dimension one, smce M, (1 /a)
is a constant, one can compute explicitly the limit solution u®. For example, if
]d1.d2[=]0, 1. one has

W) = ~M,,, ( )/ dy/ £(1) dt+M(0”( )(/ dy/ £() dt)
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Remark 5.7. Let us observe that the coefficient of the limit equation (5.27)

only depends on a. 0
Remark 5.8. Since in general, the harmonic mean value 1/[M o, tl)(l /a)] of a
is different from its arithmetic mean value M ©. m(a), clearly
1 du® du®
Y ” Mo @
Meoeola
so that
du’ du®
. hatedl . £ . er
}1_1}})(0 dz ) 7 Q%a )(B—I}(l) dr )’
in the sense of the L2-weak convergence. 0

Remark 5.9. We considered here the periodic case. Suppose now that {a®} is
a sequence (not necessarily periodic) such that

0<a<a’(z) <f<+oo.

Then, due to Theorem 1.26, there exists a subsequence &’ such that

a—le,- —a® weakly* in L®(d,.d2).
Let u¢ be the solution of (5.24). Samne arguments as in the proof of Theorem 5.5,

ShOW that '
ut — uo weakly in H(; (dl'd2)’

where u? is solution of the equation

d (1 du’ )
—Il‘-(;l—o EJ_') = f in ]dl.d2[,

uo(dl) = uo(dz) =0.

5.4 Layered materials

The result obtained for the one-dimensional case could suggest that in the N-
dimensional case the limit problem can be described in terms of the mean value
of the inverse matrix A~! of A. This is not true, as can already be seen in the
case of the layered materials we treat in this section, where the homogenized
coefficients are again the mean value of algebraic expressions of the components
of A (but not only those of A~1).

In the case of layered materials the coeflicients in system (5.6) depend on
one variable only. For the sake of simplicity, we restrict ourselves to the two-
dimensional periodic case. So, in this section, {2 denotes a bounded open set in
R? and

Y =]0. fl [X]O. 32 [
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where ¢, ¢, are given positive numbers.
Assume then that A = (a;;)1<i.j<2 is & 2 x 2 matrix such that

aij(y) = aij(11. ¥2) = aij(nn), Vi, j€{1,2}, (5.36)
and satisfying (5.18), that is
a;; is €-periodic, Vi, j € {1,2},
{A € M(o,3,Y).

Set, as before,

afj(;p) = afj(xl) = aij(?) a.e. on ]Rz, Vi, j € {1,2}

(5.37)
Ae(l') = Ae(xl) = A(i—l) = (afj(l‘))lsi,jsf_; a.e. on ]Rz.
Problem (5.6) reads
2
N A
> 5;;(%‘“)37,.) =/ e (5.38)

ij=1
u* =0 ondf.

Clearly, all the considerations in Section 5.1 concerning problem (5.6) still hold
for this particular case. The following result is due to Murat and Tartar (Murat,
1978a, Murat and Tartar 1997a and Tartar 1977a):

Theorem 5.10. Let f € L?(R) and af; satisfying (5.18), (5.36) and (5.37). Let
u® € H}(R) be the solution of problem (5.38). Then.

u® — u® weakly in H3(Q),

where u? is the unique solution in H§() of the homogenized problem

2
d ou’
- Z 5—-(6,’]‘-6——') -“-'-‘f in Q
g O%i zj (5.39)
w*=0 ona.
The matrix A = (G.5)1<4,j<2 Is a constant positive definite matrix defined by

) o a2 az1 _ 12021
d22 = “llM(o.e.)(au)M(o.t.)(an)+M‘°*"’(022 11 )
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Proof. Observe first that estimate (4.24) holds true from problem (5.38), i.e.

Ca
et lmg ) < —a'llf"u(m,

where Cq is the Poincaré constant given by Proposition 3.35. Also,

C
ez < 2 Aluacan- (5.40)

where (see (5.10)) £¢ is defined by

= (&.€5) = (Zal,a Z %50 ) (5.41)

and satisfies
o o8 .
- = Q. 5.42
or 1 6.12 j » ( )
As was proved in Section 5.1 (see (5.9) and (5.13)) one has the following conver-

gences for a subsequence still denoted by e,

{ue —u®  weakly in H}(Q)
€ =% weakly in (L2(2))2

Moreover 9 = (£9,£9) satisfies

oy 98 _ . .
“o%, " Or, f inS. (5.43)
The question is how to relate £ to the limit function u®. Of course, we
cannot compute directly the limit of (5.41) since, as remarked before, in this
formula we have products of only weakly convergent sequences. Neither can we
make use of equation (5.42) to derive. as we did for the one-dimensional case,
further information about 9¢5/8x, or 9¢5/8r2 separately. The idea is then to
make use of a compactness result in order to obtain a strong convergence in some
functional space. It is at this point that the fact that the coefficients depend
on only one variable is essential since. due to this property. we prove a strong
convergence for the sequence £9. The tools to do so are Proposition 3.57 and
Theorem 3.58 dealing with vector-valued functions.
We will identify £ on any open interval I of Q of the form

I =Ja;y. b [x]az.b2[C Q.

Due to the particular form of I, the space L%(I) can be regarded as a vector-
valued space (see Section 3.5) since Fubini’s theorem implies

L*(I) = L*(a).by; L%(az.by)). (5.44)
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Consequently, from (5.40) one has in particular

€5 | L2(ay b1z L2(azba)y S €. E=1.2, (5.45)

where C is a constant independent of .
We now prove that

&
oi <C. (5.46)
Z L2(ay,b1: H-1(a2.b2))
From (5.42), one has that
ok _ ., 0 .
O J+ 5z, M Q. (5.47)

and we will estimate the right-hand terms.
On one hand, since f belongs to L2(Q2), from (5.44) it follows (see Section 3.5)
that f € L2(ay,b1; L%(az,b2)) C L%(ay.b1; H(ay,b3)) with

[N L2(asbr: H-1(az2.62)) < UFNL2(ar.by: L2(azb2)) (5.48)

which is a consequence of Proposition 3.42.
On the other hand, by Proposition 3.59, for any v € L*(a),b; H}(az,bz)),

oue has
a €
<a§2 v
T2 L2(a1.b1: H-(a2.62)), L2(ay.by: H}(e2.b2))

by €
=/ <g€l(ml..). "(ml~')> dx].
a) T2 H‘l(ag.hg).H&(az.bg)

Furthermore, Remark 3.44, Green’s formula (Theorem 3.33) and Proposition 3.34

lead to
by OEE
/ <5§(x1. ), v(ay. -)> dz,
e L2 H-Yaz2.b2), H{(a2.b2)

_ _/bl <€5(11‘) (‘)_N(ﬂ_l) dr;. (5.49)
a 92 [ 13(az.80). L2(az b2)

Consequently. by using the Cauchy-Schwarz inequality and estimate (5.45), we
have successively

(52-r)
3:1:2 L2(ay.by: H~V(az2.b2)). L2(a;.b;: H&(a-)‘bg))

b,
< / 163017200260 12l 13 22.b2) 21

Qa)

< C“v"lﬂ(a; by: Hj(ag.b2))"
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This, together with (5.47) and (5.48), gives (5.46). Estimates (5.45) and (5.46)
imply that £ is bounded in the space W, defined by

W = {v | v € L%(a1,b1; L%(az.52)), b%); € L%(as,by; H—l(azabz))}-

By Theorem 3.58 we know that the following injection is compact:
W, C L¥(a1.by; H™(az2,b2)).

Therefore, the sequence £ is compact in L?(a1,b1; H~!(az,b2)). This, together
with its weak convergence to £° in L2(J), gives

£ — €0 strongly in L%(a;,b1; H™'(az2,b2)). (5.50)

We now show that this convergence is sufficient to identify £ and £3 in terms
of u°.

To begin with, observe that from the definition of £§ (see (5.41)) and taking
into account the fact that af, are dependent on z; only, one has

ous a$ 6u
o P = f & pde —f 2 —— pdz

- . ] 9 %2

- ./afl G /31‘2(‘111 )godm

Y S e 9¢

_ /I € odz+ / By 52 aa, (5.51)

for any ¢ € D(I). We will now pass to the limit in both sides of this identity. To
do so, remark first that, by the same arguments as those used for proving (5.49),
one has

1 b z
/T&‘Pdﬁ = / <§f(£1 ), St )> dz;
1211 ay 011(11' ) H-1(az2.b2). H(az,b2)

- (e _>
< 031/ L2(a1.81: H=1(az.bp)). L2(as.b1; Hi(a2,b2).
(5.52)

Moreover, ¢/a§; is bounded in L%(ay.by; H}(as,b;)). To see that, observe first
that by choosing A = (0, 1) in the coerciveness condition from (5.3), one has

0<a<ai, ae onl0,t

whence
1
0< =<
an

D[;—
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Consequently,
b bo
/ dzl/ 3:02( a§,(x1) 2
dp(x1, z2) |
L, [t

/al (@5 @02 ' Oz 2
1 [ 22(90(1, 22) | 1

< = / ____¢’(1‘ 2) drgdwls—glkpllfp(,). (5.53)
a a a2 (44

On the other hand, if {h¢} is a sequence in L?(a;,b;) then
(kS = h® weakly in L%(a;,b1) ) = (h*p = h% weakly in L*(I) ),
(5.54)
for any ¢ € D(I). This follows by Fubini’s theorem, since

by b2
he(x1) [/ o(z1.x2) ¥(x1.22) dx2 | dT

ay a2

/he¢¢dw=
|

for any ¥ € L%(I). Then, (5.54) applied to h® = 1/af, together with Theo-
rem 2.6, shows that

LN 1y, - L klv in L2(I
where we used the definition of d@,, in the statement of Theorem 5.10. Then,

£ Lo weakly in L?(a;.bi; Hi(az.b2)).
a.ll 0.

since, due to (5.53), it is bounded in this space.
Consequently, by using (5.50) and Proposition 1.19, we can pass to the limit

in (5.52) to get

1
lim { — & pde = — [ ? p dz. 5.55
=0 J; a5, 51 in Ji & v ( )
Recall now that from (5.9) and Theorem 3.23 one has in particular
u§ — u) strongly in L%(I). (5.56)

This, together with (5.54) and Proposition 1.19, shows that

. 39« a 7]
12 _ 12 0 9¥
El!—‘n(])‘[ ail 61‘2 d‘l - (0 fl) (a“) / a.tz d‘lf
a2 ol -
M(o.f,) (a“) . or3 dr, (5.57)

where we have made use of Definition 3.11.
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Hence, passing to the limit in (5.51), due to (5.55) and (5.57), one gets

6‘u. a)2 au
— —= D
i dz = /fl‘ﬂdﬂ? M(M)(au) B2 pdz, V€ D).

Consequently, Theorem 1.44 implies that

Az, & ©£)\ay ) Ozy’

a.e. on I and therefore on , since [ is arbitrary.
This, together with the definition of a?,, identifies £ as

ou° ar2 ) Ou° ou° o’
0 6, — +d — | =—=dn=—+a2—. .
& anaxl + auM(O.h)(a“ 97, allaxl + a)2 oz, (5.58)

Let us now identify £3. By again using Definition (5.41) and the fact that a;; are
dependent on x; only, one has

ou out a§ 0 as,a$
&= a;,a—ﬁ + a;%; = 21 f + — Fre [(a§2 - ':ilzl)u‘]. (5.59)

The same arguments as those used to prove (5.55) and (5.57). give respectively

. Q51 e o a2 0
lim ac, LGedr=M,, | = i £ ¢ dz,

=0 J; a1

and

. a$,as 8&;7 a12a921 o’
lim a5, — 2221 ) 4t X dr = - M az — dz.
e—0 ’( 22 a’il 61'2 (0.‘1) 22 a11 Ii a;l,‘z (p z

Hence, from (5.59) one derives

0 _ az1 _ 012821 ) o
& M(oc,)( ) +'M(0(,)(a22 an )"’

which, together with (5.58) and the definition of dg;. leads to

0
0 ax \ Ou o 212 3
=dn M a a
62 11 0.6, )(all) 3.1'1 + [ llM(O.ll)(all)M(O‘el)(all)

ar2a:; \ | ou° ou® ou°
+M a2 — — =g &
(0.[1)( 22 an )] 6;1-2 218 ry +a223_«r

Replacing this equality and (5.58) into (5.43). one obtains equation (5.39).
To complete the proof, it remains to show that problem (5.39) has a unique
solution. This will imply that the whole sequence u® converges to the limit u°.
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To do so, in view of Lax-Milgram theorem, it is sufficient to show that
the constant matrix A = (@.5)1<i.j<2 satisfies an ellipticity condition of the
form (4.16) (see also Remark 4.7). From (5.19) and the characterization of
a positive definite matrix (see for instance Ciarlet, 1982, Lang, 1993) it follows
that a;, and (al 122 —012(121) are positive almost everywhere in Y. This implies

that d;; and M(o m(an — ajza2;/ay) are positive constants too.

Then, an easy computation shows that the determinant of A is also positive.
This, together with the positivity of &), implies

2
Z d;j(y)6:€; > 0. forany §€ R2, € #0.
ig=1

To finish the proof of ellipticity. let h be the following function:

2

h(¢,¢) = D @i (¥)6Gs-

i.j=1

This function is continuous on the mnit sphere S which is a compact set of
R2. Hence, h achieves its minimum on S) and, due to the previous result, this
minimum is positive. So, there exists ap > 0 such that

h((() > a9, V(ES:

Consequently,
2 2
Z i, &€ = €12 Z di; % l% >ag. forany € € R?, £ #0,
ij=1 ig—1

since the vector (£,/|€|,&2/]€|) belongs to S;. This ends the proof of Theo-
rem 5.10. [m}

Remark 5.11. As for the one-dimensional case, the coefficients of the limit
problem only depend on the matrix A. and not on the other data f and . ¢

It is only for simplicity that we treated the two-dimensional case of layered
materials. A similar result holds for the N-dimensional case. Actually. suppose
now that A = (ai;)1<ij<n is an N x N matrix satisfying

aij(y) = ai;(n-....yn) = aij(;n). Ljefl..... N},
and (5.36). Then, the following result (see Murat and Tartar, 1997a) holds:

Theorem 5.12. Let §2 be a bounded domain in R™. Under hypotheses of The-
orem 5.10, if u¢ € H)(Q) is the solution of problem (5.39), then

w® = u® weakly in H{(Q),
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where u® is the unique solution in H} () of the homogenized problem

N
8 (., ou .
- Z Bz(aijga—:;) ——-f in Q

ij=1
=0 on 890

The matrix A = {@ij)1<i,j<2 is a constant positive definite matrix and its coef-
ficients are given by

1
o= ——y
M(o.e.)(a_u

dj = 511M(0“( lj), for2<j<N

1
o a1 ;
j; = dan M(O.en)(au)’ for2<j<N

. ai; ai __ @;ai)
agJ allM(O,lx)(all)M(o’el)(al]) +M(Oe )( aly )
for2<4i,j <N.

R N

The proof follows exactly that of Theorem 5.10 with obvious modifications.



6

Homogenization of elliptic equations: the
convergence result

We place ourselves in the framework introduced in Section 5.1. The aim of
this chapter is to describe the asymptotic behaviour as € — 0 of problem (5.6),

namely

{ ~div(A*VeS) = f inQ ©1)

u* =0 on0f,

where f is given in H~!(Q) and the matrix A€ is the Y-periodic matrix defined
by

r .
afj(:t)=a,-j(g) ae onRY, Vi j=1,....N (6.2)
and
J“ s
Af(z) = A(E) = (aj;(x))1<ij<n  a.e on RV, (6.3)
where

{aij is Y-periodic, Vi.j=1..... N (6.4)

A = (ayh<ij<n € M(a.B,Y).

with a, 8 € R. such that 0 < a < 3 and M(a.3.Y) is given by Definition 4.11.
Here, as before, Y denotes the reference cell defined by

Y =0, 61 [x - x]0, &x [,

where ¢y,...,¢y are given positive numbers. The Y-periodicity is taken in the
sense of Definition 2.1.

In Chapter 5 we have studied the particular cases of the dimension one and of
layered materials. As we already mentioned. to study the general N-dimensional
case we need to introduce some auxiliary functions which are solutions of periodic
boundary value problems in the reference cell Y. This is done in Section 6.1
below. In Section 6.2 we state the main homogenization result for problem (6.1).
This result will be proved in the next chapters by several methods. In Sections
6.3 and 6.4 we give the main properties of the homogenized matrix.
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6.1 Auxiliary periodic problems
In this section, we introduce two families of auxiliary periodic boundary value
problems defined on the reference cell Y. The first one involves the matrix A
and consequently, the operator A = —div(AV). The second family involves the
transposed matrix ‘A and so, the operator A* = —div(*AV).
The functions xx and ®wa
Consider, for any A € RV the solution of the problem

—div(A(y)VfA) = —div(A(y)A) inY

X, Y-periodic (6.5)

This kind of problem has been studied in Section 4.4. The variational formulation
of (6.5) is (see (4.68))

Find x 5 € Woer(Y) such that

a, (Y, )= /YA/\VU dy, (6.6)
Vv € Wper(Y).

where

ay(u, v) = /; AVuVuvdy., Vu, v € Wpe(Y) (6.7)

and (see (4.66))
WPel‘(Y) = {’l’ € H;er(y); MY(”) = 0}'

with H}_ (Y) given by Definition 3.48.

From Theorem 4.27 we know that (6.6) has a unique solution ¥ 5 € Wper(Y)

since div(AX) € (Wper(Y))'-
Let us now extend by periodicity (see (3.7)) ¥ , to the whole of R¥ and still

denote by ix this extension. Then. Theorem 4.28 shows that )?,\ is the unique
solution of the following problem:

—div(A(y) VY,) = —div (A(y)A) in D/(RV)

X , Y-periodic (6.8)
My (x,) = 0.
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Set now, for any A € RV,
W) = _‘Q,\ +A-y, (69)

which from (6.5) and (6.6). satisfies
a, (@x. v) =0, Yoe& Wpe(Y). (6.10)

and is the unique solution of
—div(A(y)Vwr) =0 inY
wyx—A-y  Y-periodic (6.11)
My (@) ~A-y) =0,
whose variational formulation is
Find @) such that @y — A-y € Wy (Y) and
a,.(@x. v) =0 (6.12)
Vo € Wper(Y).
Let us remark that from (6.8) and (6.9) one also has that @) satisfies
—div(A(y) Vida) =0 in D'(RV)
@y — A-y Y-periodic (6.13)
My (@x - X-y) =0.
In the sequel, we will often use the functions i,\ and ) for the choice A = ¢;

fori =1,...,N, where (e,-)fi , is the canonical basis of RN. We set, for simplicity,

5, =%,
SN - (6.14)
W =i, =yi — X5
foranyi = 1...., N. They obviously satisfy, respectively. the following problems:
Find X, € Wper(Y) such that
a}.(fi, v) =/Ae,-Vv dy (6.15)
y

Ve € Wier(Y).

and
Find @; such that ©; — y; € Wpe (V) and

aY(zZ?,'. v) =0 (6.16)
Yo € Wier(Y).
It is easily seen that, by linearity.
N N
f,\=zz\i 5&', L?,\=ZA,’ ;. V/\GRN.
i=1

i=1
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The functions x a and w)
Let now consider the transposed matrix ‘A of A, defined by
*A(y) = (ai(¥))i<ij<n ae. on RV,
Obviously, ! A satisfies (6.4) with the same constants a et 3, i.e.'A€ M (a,8,Y).
Consequently, if in problem (6.5) A is replaced by ‘A. we define another set of
functions, namely x K solutions of
—div(‘A(y)Vx,\) = —div('A(y)\) inY
X, Y -periodic (6.17)
My’(XA) = O'

and all the considerations above hold true.
So, for any A € RV, x , is the unique solution of the variational problem

Find x 5 € Wper(Y) such that

v
Yv € Wper(Y),

ar (x,. v) = ‘/;, ‘AAVu dy (6.18)

where
a;(u. v) = /} 'AVuVrdy. Yu, v € Wpe(Y). (6.19)

Moreover, its extension by periodicity to the whole RY, still denoted by x \
is the unique solution of the following problem:
—div("A(y) Vx,) = —div(‘A(y)A) in D'(RV)
X, Y-periodic (6.20)
M Y (Y A) = 0’
Also, if for any A € RV, we set

wy=-x, + Ay, (6.21)

then, from (6.17) and (6.18). ' satisfies

a:, (. ©) =0. Vo€ Wye(Y). (6.22)
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and is the unique solution of

—div(*A(y)Vwr) =0 inY
Wy —A-Y Y -periodic
My(un—A-y)=0.
The corresponding variational formulation is
Find wy such that wy — A-y € Wy (Y) and
a;(w,\, v)=0
Vv € Woe(Y).
From (6.15) and (6.16), w, satisfies
—div(!AVwy) =0 in D'(RN)
wy — Ay Y-periodic
My (wy —A-y) =0

As before, we also introduce the functions X, and w; defined by

Wi = We, = Yi — X,

for any i = 1...., N. They satisfy, respectively.
Find x; € Wpe(Y) such that

t
a® (i, v) =/ Ae;Vv dy
Y y

Yo € Wher(Y),
and
Find w; such that w; —y; € Wper(Y) and
a;, (w;, v) =0

Vo € Wier(Y).
By linearity one has

N N
XA = Z/\1 Xi. Wy = /\,' iy, YA€ RN.
i=1 i=1

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

The functions X A Wx, X N and w) play an essential role in the homogenization

of problem (6.1). Indeed, the homogenized matrix Ay from system (5.16) is
expressed in terms of these functions. In the following sections we give explicit

formulas for its coefficients af;.
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6.2 The main convergence result

We have the following result which is now classical and can be found in Saxncl}ez-
Palencia (1970b, 1980), Bakhvalov (1974), Bensoussan, Lions and Papanico-

laou (1978):

Theorem 6.1. Let f € H~'(2) and u® be the solution of (6.1) with A defined
by (6.2)-(6.4). Then,

{z’) ut = u’ weakly in H}(Q).
i) ATVu® — A% weakly in (L2())V.

where u° is the unique solution in Hy(S) of the homogenized problem

N
O (0 ?ﬁf) o
-2 B (“‘f oz, ) =f @ (6.29)

ij=1
=0 on 9.

The matrix A® = (af;)1<i.j<n is constant, elliptic and given by
A°)A = My (AVi@,), YAeRY (6.30)
or, cequivalently by
tA%A = My (YAVw,). VA €RV, (6.31)
where @, and w) are defined by (6.12) and (6.23). respectively.

Remark 6.2. Let f € H~'(Q2) and v be the solution of (6.1) with A¢ defined
by (6.2)-(6.4). As can be seen in the proof of Theorem 6.1 (see Section 8.1),
convergence (ii) is deduced from convergence (i). This fact is a particularity of
the periodic case due to the explicit computation of the homogenized coefficients.
Let us mention that in the general non-periodic case. convergence (ii) is not a
consequence of convergence (i) and has to be proved separately. We mentioned
this convergence in the statement of the theorem, since it is one of the important
homogenization results. ¢

The well-known result stated in Theorem 6.1 can be proved by different
methods. We will present in this book two of them. the variational method of
oscillating test functions due to Tartar (1977b. 1978) and the two-scale method
of Nguetseng (1989) and Allaire (1992). We also present the formal method of
asymptotic expansions (known as the multiple-scale method).

Tartar’s method is a general one. and is based on the construction of a suit-
able set of oscillating test functions which allows us to pass to the limit in prob-
lem (5.6). This is related to the notion of compensated compactness, which is
presented in Chapter 13. In particular. for the case of periodic coefficients (prob-
lem (6.1)-(6.4)), the test functions are periodic and are explicitly constructed in
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terms of @,. By passing to the limit one obtains the homogenized matrix A°
given by expression (6.31). This method is described in Chapter 8, where we also
give further convergence properties as, for instance the convergence of energies
and a corrector result.

In Chapter 9 we prove again the convergence result by the two-scale method
statcd in the periodic framework. This method, taking into account the two
scales of the problem, introduces a new notion of convergence, the ‘two-scale
convergence’, tested on functions of the form ¢/(z,z/<). The convergence in this
sense implies the weak convergence.

Before presenting Tartar’s method, we will turn our attention in Chapter 7,
to the multiple-scale method. This a classical one, widely used in Mechanics and
Physics for problems containing several small parameters describing different
scalings. It consists in searching the solution as a formal asymptotic expansion,
in terms of these parameters. It turns out that this method is particularly well-
adapted to the periodic framework, as witnessed by the results obtained in this
direction by Sanchez-Palencia (1970a. b), Lions (1978), Bensoussan, Lions, and
Papanicolaou (1978).

As already mentioned in Section 5.3, two scales characterize problem (6.1),
the macroscopic scale £ and the microscopic one z/¢, describing the micro-
oscillations. So, one is led to look for a development of u¢ of the form

u‘(a:)=uo(:v,§)+eul(- :)+eu2( ) —‘z_;euz( )

where u; = u;(x,y) are Y-periodic in the second variable y. From (6.1), one first
obtains that ug depends on x only, and then one shows that this ug is actually
the solution of the homogenized problem (6.29) with Ag defined by (6.30). The
interest in this is that in general it permits us to ‘guess’ formally the homogenized
problem.

Some natural questions arise at this point: how *far’ is u¢ from ug, i.e. what
is the error (in a suitable norm) when replacing u® by ug? What is the estimate
when replacing u* by a finite sum Efio €' u;(x,z/e)? We give here an error
estimate for the case M = 2 under some additional regularity assumptions on the
data and on the boundary of €. We refer the reader to Bensoussan, Lions, and
Papanicolaou (1978), Oleinik, Shamaev, and Yosifian (1992) for other details.

The next result will be proved in Chapter 7:

Theorem 6.3. Let f € H'(§2) and u® be the solution of (6.1) with A€ defined
by (6.2)-(6.4). Then, u® admits the following asymptotic expansion:

e S g (f)éu_o+ 2i@ce( 1) Pu_
0 Xk 3 0J‘k Pt 6xk6a:e
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where ug is solution of (6.29), Xx € Wpyer(Y) is defined by (6.15) and 6*¢ by

N & ~ N o~
ijOki o(Xe — .
—div (A(y)V@“) =—ad - z @10k Xe) Ja; Xe) _ Zakj —_(x;y- ye) inY

i J

i.7=1 1=1

g Y -periodic
My () =0.
Moreover, if f € C®(Q), 0Q is of class C* and, furthermore.
Rk, Ol e Wh(Y), Vk.£=1,...,N,
then, there exists a constant C independent of € such that

ad 2\ O 5 o= /T 0%uo
£ — — 9 —_— —— — ————————
u uo E;x’c(e)&‘ck-{—e Zo (e)&mkazg

€.k=1

< C el
HY(Q)

Remark 6.4. One of the main interests of Theorem 6.1 and 6.3 is related to nu-
merical computations. Indeed, these results suggest that one could approximate
by u° the ‘physical solution’ u¢ satisfying a problem with oscillating coefficients.
To find 4° one has first to solve N problems (6.15) written on Y in order to
determine the correctors X; and the matrix A%, and then to solve (6.29) in order
to compute 0. The numerical interest, when replacing u¢ by 4%, comes from the
fact that (6.15) is independent of ¢ and that (6.29) is a problem with constant
coefficients.

On the other hand, let us point ont that in order to prove the above error
estimate, we are obliged to seek more regularity on the functions Y, and gre ,
namely the fact that their first derivatives are bounded functions. The ques-
tion is then: under what hypotheses can we have this property? As matter of
fact, this property can be deduced from classical regularity results (see Agmon,
Douglis, and Nirenberg, 1959 or Ladyzhenskaya and Uraltseva, 1968, Gilbarg
and Trudinger, 1977 and Troianiello, 1987), under strong regularity assumptions
on the matrix A, namely at least its continuity. Unfortunately, this is not true
in general for composite materials (see Chapter 5 and also Example 2.5). ¢

We end this section by showing that the two expressions in (6.30) and (6.31)
define the same matrix A°.

Proposition 6.5. Let B° be the matrix defined by
B°)\ = My ('AVw,). VYAeRY, (6.32)
and A° defined by (6.30). Then A° = 'BY j.e.
LAON = My (AVw,). (6.33)
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Proof. To prove (6.33) it is sufficient to show that
Bp= A%\, VYA\pe RN,

From the definition of B° and (6.21) one has
1 1 1
BApu=— [ tAA-V; d=—/A Ad, --—-/AV dy.
=9 )y ( X,)ndy v J, Y i S, AV
By choosing v = x, in (6.6) one has

1 1 -

1 1 [, -
= mLA[tAdy—m‘/‘, AVxAVx#dy.

From this relation, and using v = f” as test function in (6.18), we finally obtain
from (6.9) and (6.30)

1 1
B\ = —-/A,\d-—f‘A,\V“d
BE WL YT T

= — A Ady———/AV Ad
vl fy 7 ] Sy VXA

1/ - 1
= — | A{pu—-V; Ady:——/AVu-y—x Ady = A% )\,
i /, Al x,) v/, ( Jrdy = A%

By

which ends the proof. O

From this proposition, it is easily seen that the following interesting result
holds:

Corollary 6.6. Let A be a matrix satisfying (6.4) and A° be the corresponding
homogenized matrix given by Theorem 6.1. Then, the homogenized matrix (*A)°
corresponding to A, is given by

(4)° = (4.

In Section 6.3 below we prove that the homogenized matrix is clliptic which
implies, via the Lax-Milgram theorem, the existence and uniqueness of the so-
lution u° of problem (6.29). Observe that the uniqueness of u® provides conver-
gence (5.9) for the whole sequence {uf} and not only for the subsequence {u*'}
introduced in (5.9).

6.3 The ellipticity of the homogenized matrix

In this Section we give some explicit formulas for the coefficients al; of the matrix
A® and we prove that it is elliptic.
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Observe that, from (6.30) and (6.14) one has immediately

A%, = My (AV#@;), Vj=1....N. (6.34)

Since

(AVi;); = 2 a,k
k=

from (6.14) and (6.34) one has

ax ..
MY (Zatk_) M) (a!J Za’!ka ")0 V?«,J = 19"°9N°

Therefore,

1_1 MY(aq) My (Zark J)

{(6.35)
= —l'/ aijdy— LZ/ aik& dy. Vi,j= 1....,N.
V1 Jy V1 & )y "o
Similarly, using (6.31) one has a secoud expression for a? 1 namely
ow; N I
ad; = My (Z“"Ja ) My (aiz) - My (Zauay;)
k=t (6.36)

N

1 Oxs N

=|77/Y“"J'dy‘[y_|2/‘,ak-15;—;dy, Vij=1,...,N.
k-1 v

Remark 6.7. As noticed in Section 5.1, in general A is different from the weak
limit My (A) (usually called ‘mixture low’) of A%. The interest of formulas (6.35)
and (6.36) is that they show that A° is actually obtained by adding to this inean
value a corrector term, expressed by means of gradients of the functions X; (or
x;). This is why the functions X, as well as \,, are called correctors.

Observe also that. as mentioned for the one-dimensional case in Remark 5.6
and in the case of layered materials in Remark 5.11. the homogenized coefficients
ad; do not depend on the data f and  of the problem. 0

Proposition 6.8. Let A® be defined by (6.30) and &; by (6.16). fori =1,..., N.
Then

a0 = ‘Z‘/a ow, di; y. Vij=1....N (6.37)
L. T e— kt 7 — ady. . = 1.... . .
VY Az Sy Oye By
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Proof. Recall that X; is solution of the following problem (see (6.15)):
a).(fj, v) =/ Ae; Vv dy, Vv € Wpe(Y).
Y

Choosing v = X; as test function one has

/ AVS(\JVS(\,' dy =/ AejVii dy.
Y Y

i.e.
] 1 3 6 [
E /akeax’ s dy = E /akjax dy = E /ake Y 2Xi gy, (6.38)

k=1 k.f=1
Hence
O(yJ xJ) Oxi
dy =0. (6.39)
Y] ,;.: / Ay

On the other hand, since

y A 331!331
N N
af] / 6)(1 3%
e dy =
g/valaye Y ,Z By 311

formula (6.35) can be written as follows:

ad; = IYlZ/ 6(y’ \,)ay, dy Vi.j=1,....N. (6.40)
k.t=1

Subtracting (6.39) from (6.40) gives

|Y| Z / y’ — \" d(yé;c )dy Viij=1...,N, (6.41)

which, together with (6.14). ends the proof of Proposition 6.8. o

By the same arguments. starting with formula (6.35) instead of (6.36), the
result stated in the next proposition. is straightforward.

Proposition 6.9. Let A° be defined by (6.30) and u; by (6.28), fori =1,...,N.
Then

N
1 3w ou'; 1
0 _— E hbot } dy = — Y — X
a 6yk 6y y l},IG) Wi, ]) !Yl }' X! yj X]))
(6.42)
foralli,j=1..... N. where a:, is defined by (6.19).
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The following result is an immediate consequence of formula (6.42):

Corollary 6.10. Suppose that the matrix A is symmetric. Then A° is also
symmetric.

Remark 6.11. Consider the particular case of the layered materials treated in
Chapter 5. The explicit expressions of the coefficients a?j given by Theorem 5.12
show that if A is diagonal, the matrix A® is diagonal too. It is easily seen that
in general case the matrix A is not diagonal even if A is diagonal. Indeed, when
the coefficients depend on all the variables, if e;; = 0 for i # j., from (6.36) one
has

7] ., L,
1..7_ IYI/ JJaX' dy#')- Vl,]=l“..,N.l#],
since, by definition, x; depends on all the variables y;. Q

We are now in position to prove the ellipticity of the homogenized matrix A°.

Proposition 6.12. Let A° be the matrix defined by (6.30). There exists a
positive number ag such that

N
3" af&iE, > aolgl?, for any € € RV, (6.43)
ij=1
Proof. Let £ € RN. Then, from (6.41) it follows that

al a, Y, — X
3 gt = IYI Z Z/“ & (y )E (y%yeXJ)d

t,j=1 i.j=1k.f=1

Setting ¢ = Z,’il &i(y: — X:) and using the ellipticity of A (assumption (6.4)),
we get

Z a,,&&, 2] / V()2 dy >0, for any £ € RV, (6.44)
iy=1

Let us show that this inequality implies that
N
Y adtig; >0, forany£eRY. £#0.
ij=1
Indeed, if this were not true. from (6.44) one would have some £ # 0 such that
V¢ =
This means that

(=) &(w — Xi) = constant.
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i.e.
Z &Gy = z {t Xi + constant,
i=1

and this is impossible since the right-hand side function is periodic by definition

and £ # 0.
Arguing as at the end of the proof of Theorem 5.10, one deduces inequal-
ity (6.43). o

Let us show another interesting characterization of the homogenized matrix.
From (6.35) and (6.36), one can write that

= My (4) — My (XO). (6.45)
where the N x N matrix X° = (X)1<ij<n is defined by
N -~ N
0x; Ox:
X5=) awzt= 6.46
Y ; oy kz_: " oy (6.46)

Formula (6.45) gives A° as the difference of two constant matrices. Obviously,
the matrix My (A) is elliptic. Observe that the matrix My (X?°) is positive.
Indeed, one has

Proposition 6.13. Let X° be defined by (6.46). Then

N
Z My (X))E€ >0, for any € € RN, (6.47)
i,j=1
Proof. Notice that from (6.38), it follows that

N
1 ax,ax

My (X)) = — 2Xi gy,
(%) Y12 Jv B, Oye

Hence, for any ¢ € R¥ one has
1 & % . O%;
S My (X066, = w2 3 f e &2 dy,
i,j=1 j=1k,f=1

We argue as in the proof of Proposition 6.12. Setting ¢ = Z,_l &iX: and using
the ellipticity of A (assumption (6.4)), we get

> My (X266 > 77 [ 19eP dyz 0. for any ¢ <R,

i,j=1

which proves (6.47). O
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6.4 Other formulas for the homogenized matrix

Formulas (6.35) and (6.36) give the homogenized coefficients in terms of N-
dimensional integrals over the domain Y. One can get rid of one integration,

and hence express a?j by integrals on a N — 1 dimensional domain, by using the

following result due to Sanchez-Palencia (1980, pp. 137-140):

Proposition 6.14. Let § = (6,....,0n) € L*(Y) be a Y-periodic function
satisfying

divd=0 inY. (6.48)
Set

Y: =J0, &1[x - - x]0, &=y [ X ]O, Lisa[x - -+ x [0.2n].

Then 0;(y1, . . ., ¥i-1,0,%i41.. .., yn) belongs to H'1/2(Y,~), foranyi=1,...,N.
Moreover, one has
1
|Yi|
where Y; =|0,£;[x - -+ x]0,€;_1[ X ]0. i1 [x -+ - x [0.€n].

MY(oi) = (0i(yla-”’yi—l’0’ yi+ls"-7yN)y l)H—l/z(Yi),Hlﬂ(Y‘)s (649)

Proof. Let T €]0,¢;[. Introduce the set
Y7={yeY|0<y <T}

Observe that by definition, # € H(Q2, div). From equation (6.48) and Propo-
sition 3.47 it follows that

./;, 0 V<pdy + (9 'n, 99)"—1/2(3}7)‘":/2(5“7-) =0, V(p € HI(Y). (6.50)
i

Choosing in particular ¢ = 1 in this identity, one has
(0 ‘n, l)H‘“?(BY‘.’).H'/Q(BYi") =0.

Observe now that n = —e; on ;N {y; =0} and n = ¢; on Y; N {y; = 7}
where {e;,...,en} is the canonical basis of RN. Therefore,

@:(wrs- - =150, Hiv1o - UN), 1) H-172(v,n (g, =0}), H 2 (Vi {,=0})
=By Yim1 T Yir s UV D12 (in =) B yi=r )

for every T €]0,¢;[. Integrating (6.50) with respect to 7 over ]0,¢;[ and using a
density argument, one deduces (6.49).

Let us also give a direct proof in the case where 8 is a smooth function (for
instance in L?(Y;)) so that we can integrate (6.48) over Y;”. We have, due to the
periodicity

0= div0dy=[ 0-nds+/ 8- -nds.
Y’ Yin{y:=0} Yin{yi=7}
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Hence, by using again the fact that n = —e; on ¥; N {y; =0} and n = ¢; on
Y; N {y; = 7}. one gets

0= / 0,‘ ds - / 0;‘ ds
Yin{y:=0} Yin{y;=7}

which leads to
/Y' 0. (y1s-- - Yic1.0,Yik1, -, YN) dy1 -+ - AYi—1@Yi1 - - dYN
=/Y. 0:(y1, .- s Yim1: Ty Yit1-- » YN) @Y1 -+ - dyi—1dyiy1 - dyn.
Integrating with respect to 7 over (0, ¢;), one obtains
g"‘/;,. 8:(y1,-- - ¥i-1.0:¥is1 . UN) Ay - dyi-1dYiy - - dYn =-/;,9¢(y) dy.
Multiply this identity by 1/|Y|. Since ¢;|Y;| = |Y|, one finally has
My(8;) = B}/:-l [Y' 0i(y1r- - Yio1.0.Yiz1,--- . yn) o1 -+ - dyim1dyi1 - - - dYN.

This is exactly (6.49) when 6 is in L%(Y;). m}

The following corollary is straightforward by using (6.14) and (6.35) (respec-
tively, (6.26) and (6.36)). Indeed, applying Proposition 6.14 to § = AV@; and
to 6 = *AVwj, one has

N
Corollary 6.15. Suppose that Zaih%;i"f € L%(Y;). Then, for any i,j =
1,..., N, one has h=1

N ~
a?j - —1-/ aij —_ Zaih% dyl,
il Jv, el =0

where dy’ = dy1 s dy,-_ldy,-+| e dyN.
If, similarly, E,’:’:l ah,-%;f": € L%(Y;), then for alli,j=1,...,N, one has

N
a° -1 a.._zah._‘?ﬁ dy'
) — i .
Y lxl Y; ! h=1 Jayh vi=0

6.5 The one and two-dimensional cases

In this section we want to show how the homogenized problems (5.27) and (5.39),
obtained in Chapter 5 for the one-dimensional case and the case of layered ma-
terials, can be written as a particular case of Theorem 6.1.
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Obviously, this is not necessary from the mathematical point of view, since
(5.27) and (5.39) have been rigorously proved in Theorem 5.5 and 5.10 respec-
tively. As a matter of fact, the hotnogenized coefficients in these theorems are
explicit (algebraic) formulas in terms of the coefficients a;; of A. It seems then
natural to see what are the correctors in these cases in order to derive (5.27)
and (5.39) from the general definition of A°.

Proposition 6.16. Under the assumptions of Theorem 5.5, one has

1 a dx
;—_-1— —Mlo.[l((a—0@> (6.51)
j0.6(\ o

where X is the solution of problem (6.15) written for N = 1, i.e.

«d—i(a(y)%) - —%(a(y)) in 10, 6]

X £1-periodic (6.52)
Mloye‘[(x) = 0’
and is given by
~ 1 LA
X(y) = - ] / dt +y + Co, (6.53)
M - 0 a(t)
10.64]\ a

A~

where C) is the constant for which M] 0.8 [(x) =0.
4]
Proof. From (6.52), one immediately has X verifies
dx
a(y)@ =a(y) +C,

where C is a constant to be determined. Hence

1

y
x(y)=C/0 mdt+y+co‘

where Cp is also a constant to be determined. The periodicity condition ¥(0) =
X(61), i.e.

6o
0=C/ ——dt + ¢
o «aff) !

gives the value of C, so that the solution ¥ of (6.52) is given by (6.53) with Cg
determined in such a way to have M] 0, [( X) = 0. Then, (6.51) is straightforward.

0
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Remark 6.17. Formula (6.51) allows to write the explicit coefficient in prob-
lem (5.27) under the general form (6.35). The interest of the approach of Chap-
ter 5 is that problem (5.27) has been obtained directly, without any auxiliary
periodic partial differential equation. )

In the same spirit, we can show that the explicit limit coefficients for the case
of layered materials, given in Theorem 5.10, can be written under the general

form (6.35) too.

Proposition 6.18. Suppose that the hypotheses of Theorem 5.10 are fulfilled
and let A be the limit matrix given herein. Then

A=A,
where A is the homogenized matrix given (6.35). That is

2
5 oX;
d;, = My(a;;) — M E aip—= |.
! v(ay) Y(k=l kayk)

The functions X1(y) = X1(y1) and X2(y) = X2(x1) are the solutions of prob-
lem (6.15) written for N = 2 and are respectively given by

(. 1 L¢] 1 d
Xl(yl)——'——‘“—‘r/o‘ a,l(t) t+y +Ch
10.4;{

a)

-~ Y1 ay5(t) 1 a2 L |
= dt — 1<
X2(y1) A an(®) » 3 Mlo.hl(au)/o a“(t)dt+Cg,
0.6

s

a1

|
(6.54)
where C) and C; are respectively, the constants for which MY(SZI) = 0 and

Proof. Let us first compute X, which is solution of (6.15) for ¢ = 1, i.e.
2
8x1) aau .
- a; =——— inY
i;l dy; ( 7 () By, on "
X1 Y-periodic
My (x1) =0.

Here the coefficients and the right-hand side of the equation are independent of
the second variable. Then it is natural to look for ¥, depending on , only. The
same computation as that made in the proof of Proposition 6.16 leads to the
first formula in (6.54). This together with (6.35) gives

ox 1
a?l = My(an1) - My (au 3;:) = N = a-
M]Ol;[( )

an
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Again by using (6.35) and (6.54), one has

ox a .
0(2)1 = My(az) - My (02152;%) = 0(1]1 Mlo.ld(a—ﬁ) = @91.

Let now compute Y2 which is solution of (6.15) for i = 2, i.e.

2
a 9x2 dayz .
_ Z " (au(yl) ) = _31/1 inY

=t (6.55)
X2 Y-periodic
My (x2) = 0.

Again, it is natural to look for X2 depending on y; only. Then, from (6.55), one
has that

a",
an(y) X;;:jl) =ay2(pn) + C.

with C a constant to be determined. Integrating once, one gets

- _ a2(t) n
wo = [ e [ gt

where C: is also a constant to be determined. The periodicity condition which
reduces to X2(0) = x2(¢1) since X2 depends on y; only, implies that

_ al2(t) &
0= /(‘) au(f) at + C/ an(t) a.

This gives the value of C, so that the solution X of (6.55) is given by the second
formula of (6.54) with C, determined in order to have M] 0 M(S(‘g) =0

One easily verifies that

)

and also

%
ay = MY(a22)“MY(021‘5§)

0 a2 azy a126G2)1 -
= a),M — M =]+ M az — = Gog9.
1 ]0.£1[(au ) ]0.4’1[(011) ]0.[1[ 22 a1 22

The proof is complete. o

Remark 6.19. Proposition 6.18 allows to rewrite (6.54) in the form

n 1
x1(y) = —a°/ ——dt+y +C
X1(z1) 11 ) an() h 1

(6.56)
v [P an(t) v
X2(11) = /0 au(t)dt—a?z/o n® dt + Ca.




7
The multiple-scale method

In this chapter we apply the multiple-scale method to the study of problem (6.1).
The method is presented in Section 7.1 and a formal asymptotic expansion for
uf is obtained. The goal of Section 7.2 is to prove the error estimate stated in

Theorem 6.3.
Recall that u€ is the solution of

Au® = finQ
71
{ue =0 on 0. (7.1)
where 4. (see (5.4)) is defined by
N
7] o
= —di € = — D — g.—
A; = —div (A°V) .-,2 o; (a,, azj)’ (7.2)
with
€ T . N ..
a,-]-(z) = @;j (E) ae inR"Y, Vij=1,...,N (7.3)
and
{ a;j Y-periodic, Vi,j=1,....N, (7.4)
A = (aij)1<i.j<n € M(a,B,Y), '

with o, € R, such that 0 < a < 3 and M(a,S,Y) given by Definition 4.11.
Here, as before, Y denotes the reference cell defined by

Y =|0,4, [x -+ x]O, €N |,

where ), ..., ¢N are given positive numbers.

7.1 The asymptotic expansion

As mentioned in Chapter 6, two scales describe the model: the variable z is the
‘macroscopic’ one, while x/e describes the ‘microscopic’ one. Indeed, if z € ,
by the definition of Y, there exists k € ZV such that z/e = (ks +y) withy €Y
and where k¢ = (k16y,...,kneén). Hence, = gives the position of a point in the
domain Q while y gives its position in the reference cell Y.

This suggests looking for a formal asymptotic expansion of the form

X T z
u(z) = uo (:c, E) + ey (a:, ;_-) + e2uy (1, E) + .- (7.5)
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with u;(z,y) for j = 1,2,..., such that

u;j(z,y) is defined forr € Rand y € Y
u;(-,y) is Y-periodic.

Let U = ¥(z,y) be a function depending on two variables of R¥ and denote by

¥, the following:
U (2) = \If(x, f)

which depends only on one variable. Notice that

oz; ' € 6y1 Oz; '

Consequently, from (7.2) one can write A, ¥, as follows:

AT (z) = [(e72 A0 + LA + A3)V] (:c g) (7.6)

where

\ i,j=1
Using (7.5)-(7.7) into (7.1) and equating the power-like terms of €, we have
to solve the following infinite system of equations:

{Ao‘llo =0 inY (7.8)

uo Y-periodic in y,

u = —A inY
{ o . 79)
u; Y-periodic in g,

{Aouz =f - 4‘?11%1 —Aup inY (7.10)

ug Y-periodic in y,

and

{Aoua+2 = —-f‘]u.s-f-.l —Au, inY (7.11)

uyy2 Y-periodic in y,

for s > 1.
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Remark 7.1. First of all, notice the special structure of this system. The un-
knowns u; can be determined successively. Indeed, the first equation (7.8) con-
tains only the unknown ug. If ug is known, the second equation (7.9) allows us
to determine u, in terms of ug. Similarly, the third equation (7.10) determines
U9 in terms of ug and u,, and so on. )

Remark 7.2. Note also that the operator Ay which appears in each equation
has the same form as A, with x/e replaced by y. It is a second order operator
in y, and in each equation above, x plays the role of a parameter. 0

Remark 7.3. All the equations above are of the form (4.61). We saw in Sec-
tion 4.7 that problem (4.61) can be understood either in the sense of variational
formulation (4.62) (and in this case its solution, given by Theorem 4.26, is a
class of equivalence) or in the sense of variational formulation (4.65). In this last
case, its solution, given by Theorem 4.27, is a function with zero mean value. In
the sequel we will use both of these formulations. O

Let us now solve successively systems (7.9)-(7.10), by applying the results
contained in Section 4.7.
We begin with system (7.8) whose variational formulation is (see (4.62))

Find g € Wpe(Y') such that
a, (i, ) =0 (7.12)
Vi € Woer(Y),

where

dY (a,9) = / AVuVuvdy, Yu€u,Yv € d. Vi, Vi € Wpe (Y), (7.13)
Y
and
Wer(Y) = Hpo(Y)/R.

Recall that Wy (Y) is the space of classes of equivalence with respect to the
relation
U~ v <> u~1isaconstant, Vu.v€ H;,,,(Y),

introduced in Definition 3.51 and that v denotes the class of equivalence of v.
We can apply Theorem 4.26 to problem (7.12) to obtain

'&0 = 0. in WPer(Y)

as the unique solution. Recalling that. by definition ug = up(x,y), this implies
that the solution of (7.12) is independent of y, so that

up(z.y) = up(x), for any ug € up. (7.14)
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Remark 7.4. In asymptotic expansion (7.5), the first element up is a priori
an oscillating function, since it depends on z/e. Relation (7.13) shows that
to actually depends only on z, it does not depend on £ and hence, does not
oscillate ‘rapidly’ with z/¢. This is why we now expect ug to be the ‘homogenized
solution’. It remains to find if there is an equation in Q satisfied by ug, in which
case we would have found the ‘homogenized equation’ too. 0

We now turn to equation (7.9). Using (7.7) and (7.14), this equation can be

rewritten as N
Oa;; Ou
bt} 0 inY

Aow == ) 3. 5z, (7.15)

ij=1
u; Y-periodic in y.
Its variational formulation is
Find 4; € Wpe(Y) such that

a,, (@1,9) = (F. OXWper (V) Wper () (7.16)
V'l-) e Wper(Y)g
where a, is given by (7.13) and F is defined by

. N oy LY .
(Fy N Woer () Woae(¥) = Z ar—O/ flz‘j(y)bf dy. VY € ¥, ¥ € Wye(Y).
igj=1 " 3 JY Yi
_ (7.17)
Observe that if ¢, 4, € 9 then
o _ s
dy; Oy

and so

(B, vy mg, o0 = (B, o)y Hi, v)-
This, due to Proposition 3.52, defines F as an element of (W,ec(Y))’ and hence
(7.17) makes sense.

Theorem 4.26 gives then a unique solution @ € Wpe(Y) of (7.16). The
linearity of (7.15) where Ay involves the variable y only, together with the fact
that dup/0z; is independent of y, suggests to Jook for this %, under the following
particular form:

AN
in(@,y) = = D_X;(1)5(@), in Woer(¥) (7.18)
Jj=1 J

where ¥ satisfies

. N Ba,:
AoX; = — inYy
! ; Oy: (7.19)

5"{ ; Y-periodic.
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for j = 1,...,N. It is easily seen that Theorem 4.26 together with Proposi-
tion 6.12 glvea a unique solution ¥ i € Wper(Y) of this problem. Moreover, as

observed in Remark 7.3, we can choose a representative element of x, satisfying
the variational formulation (4.65). Hence, Theorem 4.27 gives the existence and

uniqueness of X; € X ;+ the solution of
Find X; € Wper(Y) such that

a (XJJ/J) Z/ al] a v (7.20)

i=1

Vi € Wpee(Y),
where (see Definition 3.48 and (4.66))
Wper(Y) = {v € H;er(Y); My (v) = 0} .

Observe that this problem is exactly (6.15).
On the other hand, from (7.18) we see that any solution u, (z,y) of (7.9) has

the form

o0 . .
u(z,y) = Z xj(y) o + i (z), withu, €4, (7.21)
i=1

where @, is independent of y, i.e.
@ (z) €0 in Wyer(Y).

We now pass to equation (7.10). Taking into account (7.14) and (7.21), one
has

du, N o Ou, Oug
Fo Ay — Azuo—f'*'z (,J(y) J) Zla—%(aij(y)(a—%j+(—%—j)).

i,j=1 )=
(7.22)
Consequently, the variational formulation of (7.10) is
Find 12 € W (Y) such that
a, (82,9) = (Fi, 9)(Wpee (V) Wper(Y) (7.23)

Vi € Wyer(Y).
where ¢, is given by (7.13) and F, is defined by

om o
(FLy > (Wper (V) e (1) = / fody- Z / a"(y)afc; oy

i.0=1

+ 3 Lok (o (5 4 5o

l]_

YWey Pe Woer(Y). (7.24)
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This problem is well-posed if F} is an element of (Wper(Y))’, ie. if

(F1, 1), oy Hi vy = 0,

N
0 Ouy 3uo)) /
- 2 —{a;; —+— ] ]|dy = dy.
Lj:]fYaxi (a J(y)(ayj Ox; Y Yf i

This relation is a necessary and sufficient condition to insure the existence
and uniqueness of 1y, solution of (7.23) given by Theorem 4.26. Replacing herein
u, by its formula (7.18), and since f = f(z), we find that ug has to satisfy

N ~
) OXx Ouo auo))
- z —{ a;; - + dy = |Y|f,
i.j,kzlfy O (a" (y)( By; ok * 92;) ) ¥ s

or equivalently, by taking into account (7.14),

aik 32'&0 _
- Z LZ/ (azk aiJa—y;) dy] Bx,011 ={Y|f. (7.25)

t,k=1

which reads

By using the expression of A° in (6.35), one has

Z/ (agk agjay )dy—_- IY‘a?k, Vi,k': l,...,N.

Consequently, (7.25) is nothing else than

Oug .
_!Z az,( '*axk) f inQ (7.26)

1

Notice that (7.26) is exactly the equation from the homogenized problem (6.29)
in Theorem 6.1. The existence and uniqueness of uy € Hj(2) follows from
Proposition 6.12 via Lax-Milgram theorem so that,

Ug = uo,

with «° given by Theorem 6.1.

Remark 7.5. Let us point out that equation (7.26) has been obtained by a
formal method arguing as if all the functions were smooth, namely the coefficients
aij which for composite materials are not even continuous (see Section 5.2).
Nevertheless, the mathematical study of auxiliary problems (7.12), (7.16), (7.20)
and (7.23) above, is rigorous. ")
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Remark 7.6. Observe also that by this method one obtains the homogenized
matrix A® under the form (6.30), or the equivalent one {6.35) which involves the
matrix A and problems (6.5) and {6.11). This is intrinsic to the method. 103

As observed in Remark 7.1, we can compute successively the functions u;
in asymptotic expansion (7.7). We describe here only u;. Replacing (7.21)
into (7.10), an easy computation leads to the equation

4
akk 32 0
Aoz =1 - ,;. "3y, oz
N - N
0(aij(y)xk) 0%u° P
- + aij(y) 7—— inY
112 , Ow  Oz;0x wzﬂ 127 0x,0z;

ug Y-periodic in y.

\

By using (7.26) and renaming the indices, this becomes

r N oxe 0%
Aouz = — k; R T &u&r é;lakj (y)ay 6:z'¢6:vk
< N o~ 2,0 2,0
B(ai;(¥)) 8%u u®
— + , —_ Y
i,j.zk;l s Oxj0xi j,tz=1 aje(y) Bz, 07 in
| u2  Y-periodic in y,

which can be rewritten as

3(aij0kj Xe) O*u®

J k.f—1 al'kaxt ikl dy; Oz 0z,
) ORe—y) OO (7.27)
Z s 8y, Ozxdzy Y

Jk, =1
{ u2 Y-periodic in y.

Then, F; in (7.24) can also be rewritten as follows:

j d(a;;0,
(FL) Wper (V)Y Wper(y) = [_ ake f Yy + Z ( W %) 4, 4y
k,é=1 ij=1vY Yi

_ a(Xe - ye) ] %u°
Z: / ki j y 6a:k0:ng’

Jj=1"

Vo €y, P € wper(Y)-
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The same arguments as those used to write down (7.18), suggests to look for
Uz € o, with 4z under the form

N .
() = g*¢ Kl (7.28)
2 T’y) = Z (y) 6xka$(’ .
k£=1

where the function 8%¢ is solution of

N ~ ~

. — O(ai;0k; Xe) OXe —ye) .
qgktz_aO_E:__J__J___za..————- inY
* ij=1 dy: J=1 N 9y

6% Y-periodic.

Again, Theorem 4.27 gives the existence and uniqueness of 8% ¢ 6%¢, the solution
of the problem

( Find 8% ¢ Wper(Y') such that

a, (0*4,9) = — / vy ~ / a‘“u% Re)
* = (7.29)

wz/aja(Xf‘yl) vy

\ Vi € Wper(Y)'

From {7.28), one deduces that any solution uy = ua(x.y) of (7.10) has the form

N

u@y)= Y ) oo Bt — tin(e). withwpeds (730
k=1

where iy is independent of y.
Inserting the particular forms (7.21) and (7.30} of u; and ug (written with
= 0 and @, = 0 respectively), into expansion (7.5), we get

(2 — N o £ 6 u
ue(z) = 0($)—€'CZ=:IXI: (E) ——(x ) +¢€2 Z A’“( )c’h:kax (x)+--- (7.31)

k.£=1

which is precisely the expansion from Theorem 6.3.

Remark 7.7. The functions ¥ are called first-order correctors and 8¥¢ second-
order correctors. Q¢
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7.2 Proof of the error estimate
In this section we prove the following error estimate:

v -(uo—erk( )6—u9+~2 2. m( )3z31,)

k,0=1

<C el
HY ()

under the regularity hypotheses on the data given in Theorem 6.3.
Let us introduce

Ze(z) = uf(z) — (uo +euy + €2u2) (x, g) ,

where u; and u, are defined respectively, by (7.21) and (7.30) for @t; = @3 = 0,
ie.

N Buo
u(z,y) = -3 %Wz
=t (7.32)

N 2,0
ey = Y ) L

Let us calculate A.Z. where A is defined by (7.2). From (7.6) and (7.7), we
have

AsZe(w) = [(6_2.40 + €-I.A1 + .Az)Ze] (ID, g)
= [Aew® — e 2 4oup — 7 (Aot + A1)
—(Aouz + Aju) + Asup) — e(Ajug + Azuy) — €2A2u2] (.’C, g) .

Using (7.8), (7.9) and (7.10), we derive

AeZe(z) = [—e(Agul + A ‘UQ) — 52.,42&2] (:L‘, g) (7.33)
From definition (7.7) of A; and A; and (7.32). we get
N
_ o Puo
Ay = Lk.e:lazk(y)){e(y)m
N
ag~¢ FPug
A = - il
142 . ; a‘](y) 6 ( )a.riaa:ki)a:g
i.j.k.f=1
N
0 ke uo
_ —(as, ()0 (y) ) —=0__
s ayz ((l J(y) (y)) amjafl’kaaf(
N . Oy
2U2 Z iy y) (y)amiaxjaxkart

i.jk =1



134 The multiple-scale method

Remark that, due to the strong regularity assumptions made on f and 0%,
up is also smooth, being solution of an elliptic problem with constant coeffi-
cients (see, for instance Neéas, 1967, Lions and Magenes, 1968a, and Gilbarg
and Trudinger, 1977). Therefore, in particular all the derivatives of ug above,
are in L>®(Q).

Observe now that for the second term in the right-hand side of (7.33), we
have

N Y 3
T\ | L g (2) 0 (1) Fu)
Aluz(z,E) B z au(&') 0y,~ (6)333,'81:1:8:1:1

S [_a_(a..;u)](z)m
e Loy Y € ) 0z;0z10x¢

N
_ 0 (T \aef FPup(x)
- ;. Z oz; [a” (E 6 (6‘ )J a:l'ja:lrkaa’(

it

™
M=
Flo
—

o :
<
N
™8

R

~

(f) M]
i,J.k.e=1 e ) Oz jaxkaa:g
. 4
T\ oxe 3‘) 0 u,o(z)
—€ ai;{ = Jore( = ) =220t
"j§=1 ’ ( ¢ ) ¢ ) 0x;0x;0r,0x¢
N

- A [ (x5 ( z\ Pu(z) .
) 61‘-:’%:1 O [au (6 )0 € ) W] + eAquz (-’D, Z) .

Taking into account that 4 and ug vanish on the boundary 952, these computa-
tions show from (7.33), that Z. satisfies

N
a 0z
AcZ, = — E —jas,— | =cF° i
ele Or; (at] 611) F* inQ (7.34)

1=l

Z. = eG* on 9.
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where
o= 32 o)) eo2) 5 ()t
e R RO
o= S (2) 2 -« ()

Observe that (7.34) is a nonhomogeneous Dirichlet problem to which we will
apply Theorem 4.19 and in particular, estimate (4.29). To do so, let us check
that the data F© and G* salisfy the requisite assumptions of this theorem, i.e.
that ¢ € H~1(Q) and G¢ € H?(69).

Remark first that ¢ is of the form

N
FE=F5+e) 5‘}1«‘5. (7.35)
i=1 ¢

where

wo= 32 e (5(0) - 5 Qe

i.2.k.6=1

N
€(r) = (2 \gee () Puolz) ;
e ,khl“"(e)o (s)axjauaxe’ b

2

From the regularity of uo and the fact that the matrix A € L>(Y), and since
by definition (see (6.15) and (7.29)). %¢, 8¢ € H'(Y). one immediately has that
F§ € L*(). Moreover, from Theorem 2.6 it follows that

> [-eu(3)5(z)res(2) 2 )]

i.j.k.f=1

1F5 L2y < 118%uol|L=(a)

L2@)
<ec

b
where c is a constant independent of =. Similarly, one also has
WEE L2y <e, i=1,....N.

Consequently, from (7.35) and Proposition 3.42, we obtain that F€ € H-1(Q)

and moreover,
1F e 1@ < e, (7.36)

with ¢, independent of ¢.
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Let us now look at the function G°. We prove the following estimate:

NG 14 oy < 2672 (7.37)

It is at this point that we need the regularity assumptions on X and 6*¢ made
in the statement of Theorem 6.3. We employ here an argument from Oleinik,
Shamaev, and Yosifian (1992). Let us introduce the function m. defined as

follows:
m, € D(N)
m. =1 ifdist(z,00) <¢
m. =0 if dist(r,0Q) > 2¢

1
VmellL<@) < EC-

For the existence of such functions we refer the reader to Hopf (1957) and Li-
ons (1969, Chapter 1, Lemma 7.2). Set

¥ = me G°.

Due to the definition of m.. the support of ¥*¢ is a neighbourhood of 39 of
thickness 2¢ that we denote by Ue. Let us now show that ¢° € H'(Q) and that

el b,y < cse” 3, (7.38)

where c3 is a constant independent of £. Clearly, from the definition of m, and
the regularity properties of ug, one has that

|1¥ell 22y < € (7.39)
independently of €. On the other hand. for i = 1,.... N, we have

e,y _ 1y~ 0%k (2) Quo(@) | o () BPuo(z)
3a:,~(x) - mE(x)[egt’)y; (E) Oz +Zx"(;) Oz,0z;,

k=1

N opke (5) O%up(z) N - (g) Puo(z)
Ay \e/) Ox8xy € ) 0x;0210z,

k.£=1

1
ame [~ _ (r Qugy(x) Al ~e [ T\ Pup(x)
+ 31-‘;‘ [Z Xk(c:) 6.1‘k TE Zlo (E) (9231:6.’17( )

k=1

It easy to check that dv./0x; € L?(U,) for any i = 1,...,N. In order to
obtain (7.38), we need to estimate the norm of dv /8r; in L*(U.). From the
regularity assumptions on ¥ and 6%¢. the definition of m, and the regularity of
up, we derive that

, 1
IV¥elleae) < - eslluallan @,y + cs, (7.40)
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where the constants cs and ¢g are independent of €. Since U4, is a neighbourhood
of 80 of thickness 2¢, we can make use of a result from Oleinik, Shamaev, and
Yosifian (1992, Chapter 1, Lemma 5.1) which states that there exists a constant

¢7, independent of e, such that
1
ol sres,y < €2 1] Vuoll gr(a)- (7.41)

This, together with (7.39) and (7.40). proves (7.38).
Observe now that %¢ = G¢ on d42. Then, from Proposition 3.31 one has

and this, together with (7.38), implies (7.37).
We can now write estimate (4.29) from Theorem 4.19. By using (7.36) and
(7.37) we obtain

WZelltvy < €CrllENn-100) + C2elGoll 43 50

< eCyey + 6%02 3.

Recalling the definition of Z, this is the claimed error estimate. D

Remark 7.8. Let us make some comments about this proof. As we already
mentioned, the particular assumptions on ; and *¢ were used only to show
estimate (7.37) on G¢ but not estimate (7.36) on F*. This is related to the fact
that Z¢ is not an element of H}(f2), and so we had to estimate its trace G¢ on
the boundary 952. Observe that if for 3y, /0x; we argue as for F¢, by using only
the regularity of 40, we would have instead of (7.40) an estimate of the form

1
Vvl < 76
which would only imply that
1Z ey £ C

with a constant independent of €. This explains why it was necessary to introduce
the neighbourhood U,. Indeed. estimating the term ||ugl|z1(,) in (7.40) by (7.41)

leads to the gain of a term of order =3 Q
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Tartar’s method of oscillating test
functions

We begin this chapter with the proof of Theorem 6.1. This is done by using
the method introduced by Tartar (1977a, 1978). In Section 8.2 we prove the
convergence of the energy associated to problem (6.1). This convergence allows
us to show in Section 8.3 a corrector result. Sections 8.4 and 8.5 contain some
further convergence properties of the solution u® of the model problem (6.1).
Finally, in Section 8.6 we formulate the eigenvalues problem associated to (6.1)
and give its asymptotic behaviour as € — 0.

Let us recall our model problen. namely

{ —div (A*Vuf) = f inQ

1
u* =0 on 09, (8.1)

where f is given in H~1(?) and the matrix A€ is the Y-periodic matrix defined

by
afi(z) = a2 RV, Vij=1,...,N 8.2
i(®) = aij| < a.e. on R", i.j=1,..., (8.2)
and
x
Af(z) = A(;) = (af;(x)h<ijcny ae. on RY, (8.3)
where

a;; is Y-periodic, Vi.j=1...., N
(8.4)

A = (aih<ijsn € M(a.8,Y).
with @, 8 € R, such that 0 < a < 3 and M(«,3,Y) given by Definition 4.11.

8.1 Proof of the main convergence result

In this section we give a rigorous proof of Theorem 6.1, following a general
method due to Tartar (1977a, 1978). This method relies on the construction
of a class of oscillating test functions obtained by periodizing the solution of a
problem set in the reference cell. actually problem (6.17). As we will see during
the proof, the fact that (6.17) contains the adjoint operator —div(‘A(y)V), is the
key point in this method. Indeed, when trying to identify the limit £° in (5.15),
this essential fact allows to eliminate all the terms containing a product of two
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weekly convergent sequences. By this method, we will naturally obtain the
homogenized matrix A° under the form (6.31), or the equivalent (6.36), which
involves the matrix ‘A and problems (6.27) and (6.28). This is one of the main

features of Tartar’s method.
Let us recall briefly the framework introduced in Section 5.1. Let u® be the

solution of (8.1). We know that there exists a subsequence (still denoted by ¢),

such that
i)  u®—u® weakly in H}()

i) u® — u® strongly in L*(R2) (8.5)
i) €5 = €% weakly in (L2(Q))V,

where £° is the vector-function

= (&,-.-2€N) = (Z a); 317 Z N]a ) = A°Vu", (8.6}
and satisfies
/ﬂfe Vvdz = (f, t’)H-l(Q)‘Hg’(Q), Yv € H&(Q) (8.7)

Recall also that €0 satisfies
—divée®=f inQ,

i.e.

/Qfo Vvde = (f.0)u-1@).mi@)y Y0 € Hy(R). (88)
Therefore, Theorem 6.1 is proved if we show that
€0 = A’V (8.9)

Indeed, this, together with (8.8), implies that u° satisfies problem (6.29). On
the other hand, Proposition 6.12 and Theorem 4.16 provide the uniqueness of
such a solution. Consequently, the convergences in (8.5) take place for the whole
sequences. This is why we still denoted by ¢ the converging subsequences.

Set now
X be
w5 (z) =ew,\(g) =/\~.r—€x)‘(g), (8.10)

where w, and X, are defined by (6.21) and (6.18). Recalling that X, is Y-

periodic, in view of Theorem 2.6, it is obvious that
w§ = A-z weakly in L%().

Observe that from (6.21) one has

(Vo)) = (V) (£) = 2= W, (2).
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But V,w, is Y-periodic, since x N is Y-periodic and X is constant. Then by using
again Theorem 2.6,

Vows = My(A = Vyx,) = A= My(V,x,) weakly in L}(Q).

Observe now that from Theorem 3.33 writtenin Y foru =1and v = x , one has

/Vyxx(y)dy=/ x, nds, =0,
Y oy

where we have used Proposition 3.49. Hence
M}'(Vy)(,\) =0.

Consequently, we have the following convergences:

{i) w§ = A-x weakly in H'(0) (8.11)
i) w§ — A-xr strongly in L¥(Q), '
where we have used Theorem 3.23. Introduce the vector function
N Jw
= (}: Z Gy P ’\) =tA"Vus. (8.12)
j=t

From (8.3) and (8.10), we see that

(@) = 1[a(2) (vuten) (£)] = Cavym) (%):

Since A is Y-periodic, obviously AV, w) is Y-periodic too. Hence, applying
again Theorern 2.6 one derives the convergence

75 = My (*AVw,) = 'A°A  weakly in (L3())V, (8.13)

with A defined by (6.31).
We now prove that 75 satisfies

/ n5-Vedr =0, Veve Hy(Q). (8.14)
Q

To do so, let p € D(f2) and set

¢ (y) = p(ey), ae. onRN.
Obviously ¢¢ belongs to D(R”). Hence. from (6.25) one has

| /R . (‘AVuw)(y) Ve (y) dy = 0.
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By making the change of variable r = ey it follows that
[¢avu)(2) vota ay =0, Ve Do),
Q

since supp ¢ C Q. Recalling Definition 3.26 of HJ(f2), one immediately has

(8.14).
Let ¢ € D(Q) and choose pus as test function in (8.7) and pu® as test
function in (8.14). We have respectively,

[ﬂ £ - Vulpds+ /ﬂ £ Vouldr = (f.ouwl)g-raymy@y Vo€ DQ),

/ni-Vu‘wdz+/n§-V<puEda' = 0. Vpe D).
Q Q

Observe that from definitions (8.6) and (8.12), one has
€€ - Vs, = A°Vu® - Vus = *A"Vu§ - Vuf = 9§ - Vol
Therefore by subtraction, the first integrals in the expressions above cancel and
we obtain
[ vous e [ n5-Vou dr= (fop ufdn@mm. Vo€ D).
(8.15)
We now pass to the limit in this identity.

Let us point out here the main idea of Tartar’s method, namely the use of
adjoint problem in the definition of wy. As a matter of fact, it is precisely this
fact which allows one to cancel the two terms where one cannot identify the limit
since they contain products of only weakly convergent sequences. Moreover, as
we show below, the other terns all pass to the limit and the limit expression will
easily imply the claimed equality (8.9).

Take € — 0 in (8.15). Convergences {8.5)iii and (8.11)ii give

lim £‘~V<pwf\da~=/£°-V<p(A-z)da:.
€=0/q Q
Next, from convergences (8.13) and (8.5)ii one has

lim/ryi.vw u da-=/'A°,\.v¢ u dz.
e=0Jq Q

Then, from (8.15) and (8.11)i, we finally get
[ €500a) da= [ ANTou0 dr = (1. Odob- g Vo € D),
which can be rewritten in the form
L§°-vl(x-x)¢] dw—/ﬂ&o-/\cpd:c—/ntAo/\-Vgouodzt
= {f, A 2)oly-va)uy@) Ve € D).
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This gives, by using (8.8) written for the test function v = (A - x)p,
f £ Apdr= —/ tA°) . Vpul dz. Vo € D(RQ).
Q Q

Due to Definition 3.11 and taking into account the fact that tA° is constant,
we get
/ﬁo-Agodx = / A0 . Vil pdz, Vo e DQ).
Q 2
Hence, Theorem 1.44 implies that
€ A=AVl = A2V -\,

which gives (8.9), since A is arbitrary in RN. This ends the proof of Theorem 6.1.
]

8.2 Convergence of the energy

One interesting consequence of Theorem 6.1 is the convergence of the energy
associated to problem (8.1), namely of the quantity

Ef(uf) = / AV Vs dr.
Q

Actually, we prove the following result. which was originally proved by De Giorgi
and Spagnolo (1973) in the context of the G-convergence (see Chapter 13):

Proposition 8.1. Let u® be the solution of (8.1). Then,
Ef(uf) — EP(%) = f A°Vu® V0 dx,
Q

where u® and A° are given by Theorem 6.1.

Proof. From the variational formulation of (8.1) written for u® (see (5.7)), one
has

/ AEVus Vue dr = (f. u‘ )H"(ﬂ).H&(ﬂ)‘
Q

Convergence (8.5)i implies that

gi_.ﬂ'b o AEVUE Vut dr = <f. HO)H-‘(Q).H,}(Q)-

On the other hand, choosing u° as test function in the variational formulation
of (6.29), we have

/ AOVuo Vuo dr = (f. llo )H'I(Q).Hc‘,(ﬂ)'
Q

This gives the result. O
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In fact, we also have a convergence in the sense of distributions. Indeed,

Proposition 8.2. Let u® be the solution of (8.1). Then, the followiug conver-

gence holds:
AVt Vit — AV Vil in D(Q),

where 4° and A° are given by Theorem 6.1.

Proof. From Definition 3.9, one has to prove that

/f; AVuE Vut p dr — /‘; AV Vil o dx, for any p € D(R).  (8.16)
Using u ¢ in the variational formulation of (8.1) (see (5.7)), yields
[/ﬂA‘Vu‘ Vuf pdx = /sz A*Vu* V(uf ) dz - /Q A*Vuf Vo u dz

J = (f, u® lp)H—l(Q).Hé(Q) —/QA‘Vu‘ Ve uf dr (8.17)

k ={f v P y-rq.ui@) — /QEE Vi uf dz.

Observe that from (8.5)i, we have that
up = u weakly in H}(R), for any ¢ € D(Q).

This convergence, together with (8.5). (8.9) and Proposition 1.19, allows us to
pass to the limit in (8.17) to obtain

ell!l(l) A*Vu Vut ("2 dr = (f, llo ‘F’)H*‘(Q).Hf‘,(ﬂ) —/ §0 V‘P uo dzx
- Q

? (8.18)

= (f.u° P H-1(Q). HYQ) — [) £ V(pu®) dz + /Q vl p dz.
Taking now u® ¢ as test function in (8.8), one has
€ Vo) de = (a0 v
which, used in (8.18), leads to
fh‘!‘%./n AVus Vuf pdx = /Qéo Vil ¢ dz.

This is exactly (8.16) since £2 = A°VuO (see (8.9)). O
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We showed in Proposition 6.12 that there exists some constant ag > 0 such
that the matrix A° satisfies the ellipticity condition with this constant (see Re-
mark 4.12). Since A° is constant, one then has

AO € B'I(a01 ﬁO: Q)v
where 8y = max a?j. Recall that we started with the matrix A° € M(q, 8, Q2).
i.J
A natural question is to precise the constants ap and Bp. The answer is given
by the following result, a consequence of Proposition 8.2:

Proposition 8.3. One has

A° i
€M(a, — Q). (8.19)

Proof. Due to Definition 4.11 of the set M(a. 3%/a. Q2), one has to prove that
AQ satisfies the following inequalities:

i) (A°A ) > aA)?
2 8.20
i) 1< 2, (&:20
o
for any A € RV.
Let us first prove (8.20)i.
To do so. let 2% € H}(2) and 2¢ be the solution of
—div (4°V2%) = —div (A°V2%) inQ
{ 1:1( 2%) iv (A°V2°%) in (8.21)
z=0 on N
We can apply Theorem 6.1 to this problem to obtain
2= Z° weakly in H3(Q), (8.22)

where Z0 is the solution of
{ —div (A°VZ°) = —div (4°V2%) inQ
Z°=0 on 8.

The uniqueness of the solution Z° of this problem implies
z°=2°
From Proposition 8.2, we know that
AV V2 — A°V2° V20 in D(Q).

In particular, for any non-negative function ¢ in D(Q). we have

/ AV V2 pdr — / A%V20 V20 o dz. (8.23)
Q Q
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Since A® € M(a, 3, §2), one has
/ ATV Vol pda > a / V22 da. (8.24)
Q Q
From (8.22). we derive that

Vo V2t = /o V' weakly in (L2(Q))V.

The lower semi-continuity with respect to the weak convergence (see Proposi-
tion 1.14) implies

liminf/ V2o dz > / (V2012 o dz.
=0 Jo Q
This, together with (8.23), allows us Lo pass to the liminf in (8.24) to obtain
/ A’V V2l o dz > a/ |V2°% ¢ dx.
Q Q

Since 2° is arbitrary and the support of ¢ is a compact contained in 2, we can
y

choose 29 such that
22=X.z, onsupp ¢.

Then, as A? is constant, one has
(A°A, /\)/ pdr > al)\[2/ p dr,
Q Q

which implies (8.20)i, since ¢ is a non-negative function.
We now prove (8.20)ii. To do so. let us show first that

(A)7'AN) > 55 A%, (8.25)

for any A € RM and a.e. on Q, where (A%(z))~! is the inverse matrix of 4¢(z).
Recall that (A¢)~! is well defined since A° € M (a, 3, Q) (see Remark 4.12).

For A fixed in RV, set 4 = (A%)~}(x)A a.e. on 0. Then, using again the fact
that A¢ € M(a, 8, ), one has

(A5 M @A) = (A% (@) 1) 2 e [uef? = @ |(A9) (@) (8.26)
Recall (see Remark 4.12) that
14° @)l = sup AL,
uzo 4|

Hence, for any z in RV, one has

[A%(x)ae [ < [l [| A% (x)l2-
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This, written for u = (4¢)~!(x)A, becomes

‘) > M 8.27
A2 T, €20

From Remark 4.12, one deduces that

|(A5) " (a)A] > 'A'

This inequality, together with (8.26), gives (8.25).

To prove (8.20)ii let, as before, 20 € H} (), 2¢ the solution of (8.21) and ¢
a non-negative function in D(2).

Choosing A = AV :2¢ in (8.25), one easily has

/ V2t AV pdr > — 7 / |Af V262 o dx.
The same argument, used to pass to the limit in (8.24), gives
(A, A%)) / pdr > — [A°A2 / o dz.
Q g Q

Hence, since ¢ is a non-negative function,

a
o HAOA < X[ A%
This implies (8.20)(ii) and the proof of Proposition 8.3 is complete. (]

8.3 Correctors

Let u€ be the solution of problem (8.1) and u° the solution of the corresponding
homogenized problem. From Theoremn 6.1 one has, in particular, the following

convergence:
Vuf — Vu® = 0 weakly in (L2(Q))V. (8.28)

Remark 8.4. In general, convergence (8.28) cannot be improved. This can be
seen from the examples treated in Chapter 5. For the one-dimensional case
for instance, this is implicit in Remark 5.8. Indeed, if convergence (8.28) were
strong, one would have (in the sense of the L2-weak convergence)

du du
e\ dut
3’_’%(“ d:v) lima )(!‘_'.‘E. dx)

and in general this is not true. A fortiori, a similar argument works for layered
materials, in view of Theorem 5.10. ¢
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This remark shows that convergence (8.28) is in general, not strong. However,
we will prove that by adjusting the terin Vu°. we get a strong convergence. To
do so, we introduce the corrector matrix C¢ = (ij)lsi. j<N, defined by

Cs;(z) = .,(x) a.e. on €
; - (8.29)
Cijly) = 6i5 — Xj( )=a—'ij(y) a.e.onY,

where 5(‘1. and w; are given by (6.14), (6.15) and (6.16).

Some interesting properties of the corrector matrix C* are given by the fol-
lowing proposition:

Proposition 8.5. Let C¢ be defined by (8.29). Then

. € : 2 NxN
{1) C® = I weakly in (L?(9)) (8.30)

i)  A°C® — A weakly in (L3(Q))V,
where I is the unit N x N matrix.

Proof. Introduce, for ¢ = 1,..., N, the functions

@ (z) =e@,~(§) = -efi@). (8.31)

The same argument. used to prove (8.11), gives

{z’) wW; = r; weakly in H l(Q) (8.32)

i) @ > x; strongly in L?(Q).

From (8.29), it is easily seen that

Ow; ows
Cs = —2(r).
U( 7) = 3?}: ( ) O0z; )
Consequently, from (8.32) one immediately has (8.30)(i).
Let us introduce the vector function

Bw N
(Z a5 Z a7 ) ATV, (8.33)

From (8.3} and (8.31), we have
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The same argument as that used to prove (8.14), shows that 7} satisfies
/ REVe=0. Voe HNQ). (8.34)
Q

From (6.14) one also has that
which is Y -periodic since 52:' is Y -periodic and e; is constant. Therefore, we can
apply Theorem 2.6 to obtain
7t = My (AVD;) = A%;, weakly in (L2(Q))V, (8.35)

where we made use of (6.34). To conclude, observe that for any i = 1,..., N one

has
ﬁf = AECEG’,'.

This equality, together with (8.35) implies convergence (8.30)(ii). a
A consequence of Proposition 8.5 and of convergence (8.28), is that
Vus -~ CVul — 0 weakly in (L} (R))". (8.36)
Indeed, C¢Vu® € L'(Q) and for any ¢ € L>®(Q), from (8.30)(i) one has that

/CeVuO wdr — / Vil pdr.
Q Q

The interest of the corrector matrix C* is that convergence (8.36) is actually
strong, as stated in Proposition 8.7 below. As a matter of fact, this result holds
in the general non-periodic case and was proved by Murat and Tartar (1977a)
(see also Cioranescu and Murat, 1982).

Theorem 8.8. Let u® be the solution of problem (8.1) and u®, A° given by
Theorem 6.1. Then

Vu® — CVu’ -0 strongly in (L'(2))V. (8.37)

Moreover, if C € (L"(Y))¥*N for some r such that 2 < r < 0o, and Vu® €
(L5(RQ))N for some s such that 2 < s < oo, then

Vu® - CVu' - 0 strongly in (L)Y,

) rs
t =mmq 2, — %.
r+s

The proof of this result is based on the following proposition:

where
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Proposition 8.7. Let u¢ be the solution of problem (8.1) and u°, A° given by
Theorem 6.1. Then, there exists a positive constant ¢ independent of €, such
that for any ® € (D(2))", one has

lil:l_?(l)lp |Vus — C®}|L2q) < ¢||Vu® - @l L2(q)-
Proof. Let ® = (®1,...,®n) € (D(R))N. From (8.3) and (8.4) one gets
al|Vus - C®l32q) < /9 Af(Vuf — C°®)(Vu — C°®)dx
- /Q ATVuEVuE dr — /u ATV (CED) da
- / A (C*®)Vu' dr +/ AS(CD)(C*°®) dz.
’ ! (8.38)
We will pass to the limit in all the terms in the right-hand side of this inequality.

The first term in the right-hand side is nothing else than the energy, so we
can use Proposition 8.1 to obtain

f AV Vu dr — / A'Vu® VO dz. (8.39)
Q Q

To treat the second term, observe that from definition (8.29) of C*, one can write

N
lim [ A°Vus (C°®) dx = lim 3 / ATV (8,Vi) do
e—0 Q e—0 Q

i=1
= ;(eh_% /,, A*Vu* V(®; @) dr ~ lim /Q AV VO, @f dz)
Choosing ®; w¢ as test function in (8.1). one has
A ATVuE V(®; @) dr = (f. ®; ¥7) y-1(0), 11 ()
Then, using convergences (8.5) and (8.32), one derives

lim [ A*Vu® (C*®) da
€=0 jn

N
= Z(eh_l}})(f i W) -1 @m0 eli_l_}(l)[)AEVu‘ Ve, w; dﬂ’)

i=1

N
= Z((f, ®; 1‘:‘)”—1(9).”&(9) - / AOVuO V@i r; d;lt) .
i=1 Q
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Using now @; z; as test function in (6.29), we finally get
lim / ASVuE (C°®)dr = / A°Vy® @ dx. (8.40)
€—~0Jq Q

To treat the third term of the right-hand side of (8.38), let us take ®; u* as
test function in (8.34). We obtain, by taking into account convergences (8.5)ii

and (8.35),

Q

N
=3 lim /ﬁf-v«piuf)dz—fﬁf-wmufdx
= s 0 \Je Q
N N
= lim/ 7 -V u dr — Z/ A, - V®, v dz
Q i—q /N

e—0
i=1

N
: E(NE € Jo — : ET it £d. 4
lim QA(C ®) Vu da—geh_%/A Vi Vu &; dr

= / AP . Vil dr. (8.41)

For the last term in (8.38), we now choose ®;®;i$ as test function in (8.34).
Making use of (8.32) and (8.35), we have

3 E(NE € — EXTineE e & . -
lim QA (CE®)(C°®) dx = .,El lim / ATV Vs ®; ®; dx

N
- Zgi_%(/ﬁf-V(<I>i<I>jzﬁ§)dr—fﬁf'V(Qin)ﬁfdfv)

ij=1

_ / A%, V(®:8,) z, dz = / A3 & dz. (8.42)

i.g=1

Inserting (8.39), (8.40), (8.41) and (8.42) into (8.38), from Proposition 8.3 it
follows that

3
limsup [ V¢ — C*@ll1ae) < [% / A"(vu"-q»)(VuO-q»)dm]
£— Q

3
< \/; [V’ — ®|[12(q),

which ends the proof of Proposition 8.7. ]

Proof of Theorem 8.6. Convergence (8.37) follows from Proposition 8.7 by a den-
sity argument. Let § > 0 and &5 € (D(Q))" such that

"Vu - @5"[}(9) < é.
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The existence of such a ®; is insured by Theorem 1.38. Consequently, by the
triangular inequality, we have

limsup || Vu® — C*Vu0| L1 (q

e—0

< lim sup[[IVue - CGQJ"LI(Q) + “Ce‘l)g — Ctvuouu(g)]
e—0

< lims(t)lpcl VU — C®s||L2(q) + 2l Vu® — Bs][ L2y
e—
< cc1||Vu° - q’&”L’(Q) +c2d < e30.
where we have made use of convergence (8.30)(i), Proposition 1.14 and Proposi-

tion 8.7. This ends the proof of (8.37) since 4 is an arbitrary constant.
To prove the second statement of Theorem 8.6, again let 4 > 0 and now

choose ®;5 € (D(2))N such that
Ve — @[ 1) < 6.
Then, taking into account the expression of ¢ and using Proposition 8.7, we have
liten sup Vu — C*VUO||Le()

< limsup[||Vu® — C*®4|Le(q) + |C°®s ~ CEVU®||Le(e)]
e—0

. 0
< limsup ¢ [||Vu® — C°®s]| 120y + ||C®5 ~ C°Vud 'IL'%"’;(Q)]

e—0

< cq||Vu® ~ Bl 120y + limsup e, ||C®5 — C‘VuOIILJ;_
e—0 T (Q)

< 0 _ . ; P — OV

< 2| Vu® — @5Le(s2) +ln:1_§(1)1pc; |C®s — C*Vu 2

since t < 2 < s (see Corollary 1.35). Hence

limsup [|Vu® ~ CVu®||1+(q) < €26 + limsup ) ||C @5 — CVUO|| re .
e—0 e—0 LT+ (Q)

From the assumption on C, definition (8.29), Theorem 2.6 and Proposi-
tion 1.14, it follows that C* is bounded in (L"(Y))¥*". Consequently, making
use of Holder inequality (Proposition 1.34) with

_r+s ; r+s
= . = ,

8 r

one gets
IC5®5 — C*VA°|, 2, @ SNC L) IV — Bsl () < b

This, used in the above estimate, ends the proof since § is arbitrary. m]



152 Tartar's method of oscillating test functions

Remark 8.8. From regularity results due to Meyers (1963), there exists r > 2,
depending on a, 8. N and Y such that

Ce (LT(Y))NXN.

Moreover, if Q is regular, classical results due to Agmon, Douglis, and Niren-
berg (1959) (see also Ladyzhenskaya and Uraltseva, 1968, and Troianiello, 1987),
imply in particular, that Vu® € (L*(2))"N for some s > 2. Hence, the last state-
ment of Theorem 8.6 holds true for these r and s. 0

Remark 8.8. For the one-dimensional case and the layered materials, studied
in Sections 5.3 and 5.4, one can give the corrector matrix explicitly in view of

the results of Section 6.5.
Indeed, for the one-dimensional case, Proposition 6.16 leads to

B 1 1 a%y)
W= M T aw
1011[(0)

For the layered materials, from Proposition 6.18 (see also Remark 6.19), we have

_ah  _an()
C) = Cl) = | @) anln) - antn)
0 1

Y

Remark 8.10. From definition (8.29) and Theorem 6.3, one can see that Vu®
can be written in the form

N N
£ — 0() o (X _(Z£ - o Bt ?.u__(i ..
Vus(z) = Vu'(z) kglvy)(k(s) aﬂ(x) 5;"*(5)V(axk)(“’)+ .
N
& 0¢..)y _ < ‘3: 6_u'0.
Cf(z)Vu'(x) E;n(s) V(a$k)(r)+

so that C¢(2)Vu®(z) is the first term in the asymptotic expansion of Vu in the
sense of Theorem 6.3. 0

8.4 Some comparison results

The aim of this section is to show how some comparison properties of two ma-
trices in M(a,3.Y) are conserved by the homogenization process. The first
one (Theorem 8.12). due to Tartar (1977a. 1978) (see also Bensoussan, Lions,
and Papanicolaou, 1978, Chapter 1. Theorem 3.3). proves that under suitable



Some comparison resufts 153

assumptions, if two matrices are in a given order, this order is preserved by
passing to the limit. The second one (Theorem 8.15) is a stability result due
to Donato (1983a). For other comparison results we refer to Colombini and

Spagnolo (1977) and Boccardo and Murat (1982).
Let us mention that all the results we prove here hold for the general non

periodic case.

Definition 8.11. Let B and D be two N x N matrices. We say that B is less
than or equal to D in the matrix sense and we write B < D, iff

(BX. A) < (DX \),

for any A € RV,

Theorem 8.12. Let B and D be two Y -periodic N x N matrices in M(a, 8,Y),

such that
B<D. (8.43)

Suppose, furthermore, that B is symmetric. Then
BO S DO’

where B® and D° are the corresponding homogenized matrices given by Theo-
rein 6.1 (all the inequalities are taken in the sense of Definition 8.11).

Proof. Let wy g and wy p be given by problem (6.25) written respectively for B
and D. By Theorem 6.1 and using the symmetry of B one has, for any A € RV,

tDON = My (1DV
{ ¥ ( wx.p) (8.44)

Boz\ = M}'(va,\.a).
Set (see (8.10) and (8.12))

T x
w} p(z) = ewrp (—) w} g(x) = ews, (_)
A.D z A.8(T) ] (8.45)

3 _tnf 3 £ — ¢
Mo = "D Vu§ p. 15 p=BVug§g.

where
T

Df(z) = D(;) Bf(x) = B(é) a.e. on R".

-

From (8.44) and from Section 8.1, we have the following convergences (see (8.11)

and (8.13)):
i) w§p—A-x weakly in H(Q)

i) w§, — A-x strongly in L2(Q) (8.46)
ii) n5.p —'D°A weakly in (L2(Q))V.
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and
i) w{p—A-z weakly in H'(Q)

i) wipg— A-z strongly in L*(2) (8.47)
i) n5 g — B°A weakly in (L*(Q))V.

From assumption (8.43), and recalling that B is in M(c, 8,Y’) and is symmetric,
it follows that

0 < B°V(uw§p-wip)V(esp—wip)
= B°Vuw§ g Vui g — 2B°Vuj g Vus p + B*Vuj p Vusj p.

Since from (8.43) one has
B® < Df,

we get
0 < B*Vu§ g Vusi g — 2B*Vus g Vs p + DVuf p Vus p.
Consequently. for any ¢ € D(£2), ¢ > 0 one has
0< / B*Vuw; g Vu§ gy dz — 2/ B*VwS g Vus§ p ¢ dz
Q Q

+ / DVuw§ p Vus p p dr. (8.48)
Q

We can now pass to the limit for ¢ — 0 in each term of this inequality. For the
first term in the right-hand side, from (8.14) and (8.45) we have

[ BvussVusseds = [155V0sa0)de— [ 15 VoS sde
Q Q Q

= - [ B Vouss e
Hence, from convergences (8.47)ii and iii and integrating by parts, we have

lim / BEVu§ g Vusi gy dz = — / B°AVyp (A-z) dz = / (B°A,\) ¢ dz,
—0Ja ) Q
(8.49)
since B is a constant matrix.
Similarly, for the second term we get

[ EvutaVusovdr = [rsVsoe)dr- [ 155 Veouspde
Q Q Q

= - /Q .8 Vo i p dz,
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so that, from convergences (8.46)ii and (8.47)iii, we obtain

li“(l)/ B*VuS g Vul ppdx = —/ B°AVy (\-2) dz = / (B°A\,\) ¢ dz.
E— Q

? : (8.50)
Finally, since

/9 D*Vu§ p Vu§ pyp dx = /9 'D°Vu§ p Vw§ p g dr,
from (8.14) and (8.45), we get by a similar computation
/Q D*Vu§ p, Vui pp dr = —Lni’p Vo u§ p dz.
Consequently, from (8.46)ii and iii,

tim [ DVug, o Vs p p d = /Q (DA ) @ de. (8.51)

Passing to the limit in (8.48) and using (8.49), (8.50) and (8.51), one obtains
0< —(B°\, ) / o dz + (DA, ,\)/ o dz.
Q Q

This gives the result, since y is a non-negative function in D(). a

Corollary 8.13. Suppose that the matrix A is symmetric and let A% be given

by Theorem 6.1. Then
A% € M(a, 8. Q).

Proof. The result is an immediate consequence of Theorem 8.12 applied to B =
A and D = BI where I is the identity N x N identity matrix. Since A ¢
M(a,B,Y), (8.43) holds and since obviously, (3I)° = 8I, one has

A® < pI.
This, together with Proposition 8.3, ends the proof. ]

Remark 8.14. Let us observe that the ellipticity condition (8.20)(i) proved in
Proposition 8.3 can also be obtained from Theorem 8.12 applied to B = oI and
D= A 0

Theorem 8.15. Let B and D be two Y-periodic N x N matrices in M (a,8,Y)
and B® and D° the corresponding homogenized matrices given by Theorem 6.1.
Then, there exists a constant ¢ and q € R, depending on a, 3, N and Y, such

that
1/q
fb?]—de(‘(L |a,-,-—b,-J|dy) .
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Proof, Set, as in the Proof of Theorem 8.12.
r 3 I N
B*(z)=B z) Df(z)=D z) a.e. on R,

and let C§ and C¥;, be the corrector matrices corresponding respectively to B
and ' D. They are defined by (8.29) and (8.45) written for A =e;, i =1,...,N.
Let I be an arbitrary interval in RY containing at least one translated set of

Y. We prove first that

tCip B C5 — B® in D'(I)
(8.52)
tC;ip DECy — D° in D'(I).

(For the convergence in D’(I), see Definition 3.9). From the definition of cor-
rector matrices, an easy matrix computation shows that, for any ¢,j =1,..., N,
the lcorresponding elements of matrices ‘C:, B¢ C§ and 'Cip D¢ C§ are respec-
tively,

({Cip B C),; = Vui.p Bf Vus§ g = B Vu§ g Vol p
(thD D¢ %)ij = wa..D D¢ VIU;B = tDE wa"D ij‘B.
The same computation as that used to prove (8.50) gives

lim | B*Vw; g Vuf.pydr = /(Boe]-,e,-) pdr = /a?j pdx

lim [ 'D°Vut.p Vuw] gy dr = [(‘Doei.ej) pdzr = /Jb?j p dz,

e—0 I

for any ¢,7 =1,..., N and ¢ € D(I). Hence, (8.52) is proved.

From Remark 8.8, we know that there exists r > 2 (depending on a, 3, N and
Y) such that Cg and C:p are in L™(Y)V*". Consequently, from Theorem 2.6
and Remark 2.10, one deduces that there exists a constant ¢ depending on a, 3,
N and Y, such that

ICBIL -1y < el I*CepliLrn < el

Let 7 such that 1 < < r. Applying Holder’s inequality (Proposition 1.34),
we have

[, 4Ctp (B ~D*) C3[" dr < (o)l 5 I0BE = D)l ICEYH 5.,
= 1C* o2y NBE = DYl oy ICE I, o1

2y
< C|I| " "BE_DS"’[)‘n’(”.
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with 5

+ -, (8.53)

r

0| -

Again, by Remark 2.10, one has
a
|B¢ — Df|iLne(ny < c|I]7*{|B = DlLne(y)-

Therefore, making also use of (8.53). it follows that
[ 4Gt (B = D) C3[" de < el = Dlffgyy (854

This shows that tCp, (B¢ — Df)C% is bounded in (L7())N*N so that, from
Remark 1.45 (up to a subsequence), there exists a matrix P such that

tCip (B — D5)C§ — P weakly in (L"(I))N*V.

But (8.52) allows us to identify the limit P with B® — D°. Therefore, the whole
sequence converges. i.e.

tCip (B — DF)Cg — B® — D° weakly in (L"(I))N*V.

Recalling that B and DO are constant, the lower semi-continuity of the norm
in L" (see Proposition 1.14), gives

[I|1B® - D°|" = |B® — D°|}.,(;, < liminf ||*C7p (B® — D°) Cgl[7..)-
This, together with (8.54), implies
0_po 7%
|B® = D°| < 1||B = Dl|Lns(yy < €2l B — DI 3y

where ¢; depends on a, 8, N and Y. This is the claimed result with ¢ =s. O

8.5 Case of weakly converging data

Let us recall that in problem (8.1) the right-hand side f is fixed in H=1(f2). A
natural question is whether one can consider the case where f depends on ¢.
One can easily answer this question when the right-hand side converges either
strongly in H~1(f2) or weakly in L2(Q). The result is contained in Theorem 8.16
below.

The situation is much more complicated if one has only weak convergence in
H~1(R). Theorem 8.19 deals with this case.

Theorem 8.16. Let A® be defined by (8.2)-(8.4) and u° the solution of the
problem
{ —div (A*Vef) = f° inQ

=0 ondf. (8.55)
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Suppose that {f¢} is a sequence verifving one of the two following assumptions:

f¢ — f strongly in H™(9), (8.56)

or
f¢ = f weakly in L3(Q). (8.57)

Then,
{ue —u® weakly in H}(Q).

A*Vus — AVu®  weakly in (L2(Q))V,
where 0 is the unique solution in H}(S2) of the homogenized problem
N
o [ o .
-¥Y =)= Q
2 oz; (“'1 aa.-j) f in

ij=1
u’ =0 on S

and the matrix A° = (a};)1<i,<n is given by (6.35).
Moreover. one has the convergence of energies, i.e.

Ef(uf) = / AVt Vuf dr — E%u®) = / A'Vu® Vil dz,
Q Q

and also the convergence
AV Vut — A'Vu® Vil in D'(Q).
Finally, if C¢ is the corrector matrix given by (8.29), then.
Vuf — CVu® — 0 strongly in (L'(R))V.

IfC e (L™(Y))¥*N for some r such that 2 < r < oc. and Vu® € (L3(Q))N for
some s such that 2 < s < oc. then

Vus — C€Vu® - 0 strongly in (LI(Q)V,

T
t= lllill{2, 2 }
r+s

Proof. The proof follows exactly the same outline as that of Theorem 6.1, Propo-
gitions 8.1 and 8.2 as well as Theorem 8.6 given in the previous section of this
chapter. The oniy difference is that in all the terms containing f, we have to re-
place it by f*. Assumptions (8.56) or (8.57) allow us to pass to the limit without
any difficulty in all the terms we have to treat. m]

where
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As mentioned before, the result is completely different in the case where we
have only a weak convergence of f¢ in H~(2). In this case two main features
appear: first. we do not have a convergence result for the whole sequence {u°}.
Secondly, the right-hand side is not the weak limit of f* but a function defined
in a complicated way in terms of the corrector functions w;. This result is due
to L. Tartar. In order to state it, we have to introduce some auxiliary problems.

Assume that f€ is such that
fe— f weakly in H71(9Q). (8.58)

Let p. € H}(R2) be the solution of the problem

~-Ap.=f° inQ
8.5
{ pe =0 on o0. (8:59)

Let us introduce for i = 1,..., N the following functions:
g¢ = Vwl Vo, (8.60)

where w] is defined by (8.10).
From Proposition 1.14, convergences (8.32) and assumption (8.58). we know

that ) .
) Nf a1y e
. ; {8.61)
i) |lwellao < e
where ¢ is a constant independent of . Then. Theorem 4.16 shows that
loella o) < e (8.62)

Then, by using Holder inequality in definition (8.60). from (8.61)(ii) we have the
estimate
lgill iy <e. i=1..... N.

From Proposition 1.48 there exists a subsequence ¢’ such that
g5 — g weakly* in M(R). (8.63)
The following result characterizes the divergence of g*:

Proposition 8.17. Let g* be defined by (8.63). Under assumption (8.58) one
has
N

. v O
9" Ve dz = lim < feouf —>
/Q € ~°§ L Oxif vy mia) (8.64)

+{f. (¢ —2-Vo)y-ya)nia forany p € D(Q).
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Proof. Let & = (®;....®5) € (D(Q))V . Then

N

c.ddr = Vs Vped; dr
s AL

N N
= Z/ VpeV(w; ®;) dr — Z/ Ve wi V; dr

Z(fs wi ®i) -1 ).y — Z/Vpsw VY, dz.

i=1
We will now pass to the limit as ¢ — 0. To begin with, from (8.63), one has
obviously

lim g"-tbdx=/g*-¢d:r.
Q

e'—=0Jq
On the other hand, observe that due to (8.58) one can easily pass to the limit

in (8.59) to get that
pe — p weakly in H}(S2),

where p satisfies the limit problem

{—Ap:f in
p=0 ondqN.

Recall that w{ satisfies
{z’) wi = r; weakly in H'(Q)

i1) wf — x; strongly in L%(R). (8.65)

Consequently,
N

llm Z/Vpe'w Vo, dr = Z/Vp;ri V®,; dr
i=1/Q

N N
Z/Vp V(.ri@i)d.r—Z/Vpr,-Qi dr

= Z(f 2 Bi) -1 (). Ho(ﬂ)—Z/ aTq) d

- W@ - [ Vo-ddn

Putting together this information we have
l\.
/,, g ddr = en,lg.ogua ws @) -1 (0).13 (@)

—{for-®)y-r)Hr @) —/QVp-Qdm,
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so that

/ (¢* — Vp) - @ dx
Q
N ’ !
= el,i_rgoZ(f‘ w0 B g-vyape) — (2 R u-ra),m@)-
i=1

Choosing here ® = Vp with ¢ € D(£2} and using the equation satisfied by p, we
get the desired result. a

Remark 8.18. An interesting (and quite surprising) consequence of formula
(8.64) is the fact that the function div g* is independent of p¢, since it only
depends on f¢', w¢ and f. This ineans, in particular. that in definition (8.59) of
p° we can choose any elliptic operator instead of —A. For instance, let us define

pe by
{ ~div (BVp,)=f¢ inQ

p. =0 on 9N.
for an arbitrary B € M(a.3.5). Set

7 = Vu! BVp©.
Then, as before, there exists a subsequence ¢” such that
gf" — g; weakly* in A ().

One can follow step by step the proof of Proposition 8.17 (replacing every-
where Vp, by BVp,) to get again (8.64), written for div §* and the subsequence
&”, i.e.

N
— — 3 " " aw
/ng Wdz—el!'_“oz<f‘ , Wi Bz

=1

>H"(Q)-Ht§(9)
Hf, (=2 Vo)) u-r1quuy@ for any ¢ € D().

We are now able to formulate the following result:

Theorem 8.19. Let A® be defined by (8.2)-(8.4) and u be the solution of
problem (8.55), i.e.
{ —div (A*Vu¢) = f¢ inQ
u* =0 on .
with {f¢} a sequence satisfying (8.58).
Then, there exists a subsequence £’ such that

v =t weakly in H3(€2).
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where u* is the unique solution in H}(?) of the homogenized problem

N *
- Z ;_’_(a?jg“ ) = —~divg* inQ
i=1 X; X 5
w*' =0 ondf.

where
g =(g, - 9N

defined by (8.63), belongs to the space (L*(Q))N and aY; is given by (6.35).
Furthermore, if the sequence { f¢} satisfies (8.56) or (8.57), then

—divg*=f u* =4
where u° is given by Theorem 8.16.
Proof. Obviously, from (8.61) we have the a priori estimate
vl ey @) < e

where ¢ is independent of . Introduce the vector o¢ by setting

of = A°Vu* — Vp..
From (8.55) and (8.59), we have

—dive* =0 inQ. (8.66)
Moreover, from (8.62) it follows that

lolh L2y~ < ¢ (8.67)

independently of €. Consequently, there exists a subsequence of ¢’ still denoted
by ¢, such that

i)  uf —=u* weakly in H}(S)

i) 4 — u* strongly in L2(Q2) (8.68)
iii) of —o* weakly in (L2())V,
with
—dive* =0 inQ. (8.69)

We now will identify the limit o* by using the definition of 0. We will show
that
o* = AVu* - g*, (8.70)

which will imply that actually g* € (L?(2))V, whence —div g* € H~(Q2). This,
together with (8.66), (8.69) and (8.70), proves that u* satisfies the homogenized
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problem from the statement of the theorem. The Lax-Milgram theorem ap-
plied to this problem guarantees the uniqueness of its solution. Consequently,
convergences (8.68) will hold for the whole sequence ¢’.

Let now prove (8.70). To do so, set

T.e' = o"Vu’f'= i=1..... N, (871)

1

where wf' are the functions defined by (8.10). Recall that, by construction, wf'

satisfy, in particular, . )
—div A*Vwi)=0 inQ (8.72)

and convergences (8.65). Then, due also to (8.67), we see from (8.71) that
7§ € LY(R). Then. for ¢ € D() we can consider the integral

I, = / T,-eltpd:l‘.
Q
One has, by definition
L. =/ ATV Vot pdz - / Voe Vuf @ dr = / o' Vut ¢ dz. (8.73)
Q Q Q
On one hand, from (8.66), we have
I, = / o' V(wf @) dz ~ / o w§ Vo dr = —/ o wi Vo dz.
Q Q Q

We can pass to the limit in the last integral by using convergences (8.65)ii
and (8.66)iii to get

lim I, = —/a*mimpda::—/o*V(:cicp)d:t-i-/a*eupdxz/a,‘-'gpda:,
€'—0 Q Q Q Q

where we have also made use of equation (8.69).
On the other hand, (8.73) can be rewritten in an other form as follows:

1g=‘LwﬁwVme—Lwafwh
= /;; ATV V(u® ) dr - /Q AT Vug uE Vo dr ~ /‘; Vo Vuf p dz
= - /,; ‘AT Vuf v Vo dz — _/s; Vpe Vus§ o da.

where we used (8.72) with u'y as test function. In view of (8.13), (8.60), (8.63)
and (8.68)ii, we can pass to the limit in all the terms above to obtain

lim I, = —-/'Aoe,-u* V«pdx—/g{tpdx

&0 Q Q
/m%mvwa-/g¢m
Q Q

= / (A°Vu*); o dr — / g; o dr.
Q Q

Il
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Hence, using the former limit of /.. we have

fa{cpd:c=f(AOVu*)icpdx—/g;'npdw.
Q 2 Q

Since this is true for any ¢ = 1..... N and ¢ is arbitrary in D(Q), this im-

plies (8.70).
It remains to prove the last assertion of the theorem. To do so, observe now

that, if either (8.56) or (8.57) holds. then in view again of (8.65),

N N
Y Op
lim ¢, Wi =— <f,:c-—>
e’—»0,2<f t 6171' ; ! Or; H-1(Q).HA(Q)

= {f,x-Vo)u-19),Hi Q)

>H—l(m.ng(m

which, used in (8.64), yields
(=div ¢*. P)u-1(0).HYQ) = /n 9" Vodr = (f. o)u-1q).ui9)

Since ¢ is arbitrary in D(2). this implies
~div ¢* = f.

Hence u* solves the homogenized problem (6.29), so by uniqueness u* = u® and
the whole sequence {uf} converges to u°.
The proof of Theorem 8.19 is complete. 0

Remark 8.20. Observe that under assuimnption (8.58), the convergence of u®
can only be formulated for the subsequence &’. This is due to the fact that
convergence (8.63) holds in general only for a subsequence. 0

Remark 8.21. Let us mention that the set of possible limits u* does not depend
on the choice of p¢ since the limit problem in Theorem 8.19 is written for the
data —div ¢*. Indeed, as shown in Remark 8.18. —div g* (and consequently u*)
depends only on f¢', w¢', and f. 0

8.6 Convergence of eigenvalues

This section is devoted to the study of the eigenvalue problem and its behaviour
as ¢ — 0. The result we present in this section is contained in a general one,
given by Boccardo and Marcellini (1976) concerning sequences of matrices in
M(e, B3,Y) (with no periodicity assumption). We give for our periodic frame a
direct proof following that of Kesavan (1979).

In all this section. we suppose that the matrix A € M(a, 3.2) is symmetric,
i.e.

aij = aj;, fori,j=1,...,N.

Let us recall the general definition of eigenvalues and eigenvectors.
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Definition 8.22. Assume that B is a N x N symmetric matrix in M(a, 8,9).
The constant ) is an eigenvalue of the operator B = —div (BV) with Dirichlet
boundary condition, if there exists u # 0, a solution of the problem

(8.74)

{Bu =Au in§
u=0 ondfd

The function # is called an eigenfunction of B, associated with the eigenvalue A.
The set of the eigenvalues is called the spectrum of B.

The vector space of solutions of (8.74) for any fixed A in the spectrum of B,
denoted by £(X). is called the eigenspace associated with A.

Moreover, an eigenvalue ) is called simple if the corresponding eigenspace is

of dimension one.
It is easily seen that the symmetry assumption implies that the eigenvalues
X (if they exist) are all real. Consequently. the variational formulation of (8.74)

18

Find (u, A) € {Hy(S2) \ {0}] x R such that
/ BVuVuvdr =2 / uv dz, (8.75)
Q Q
vv € H ().
The following result is classical (see for instance Courant and Hilbert, 1962):

Proposition 8.23. Assume that B is a symmetric matrix in M(a, 3,Q). One
has the following properties:

i) The spectrum of B is a countable subset of R} whose unique accumulation
point is +00.

ii) For any eigenvalue A, the corresponding eigenspace £(\) is of finite dimen-
sion.
iii) The space L*(Q) is a Hilbert sum of all the eigenspaces of B.

Remark 8.24. In view of Proposition 8.23. one describes the spectrum of B as
a increasing sequence {\,} with

0< A A28+ = +ox.

where each eigenvalue is repeated as many times as the dimension of its corre-
sponding eigenspace.

Consequently. from (iii} of Proposition 8.23 there exists a corresponding se-
quence of eigenfunctions {u,} which forms an orthonormal basis in L2(£2). This
means (see Rudin, 1966) that

/ u; uj dr = dyj,
)
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where §;; is the Kronecker symbol, and

v= Z(/ U U dr) ur, Vv € L2(Q).
k=1 Q

Observe also that two eigenfunctions corresponding to two different eigenvalues
are orthogonal. 0O

One has the following characterization of the eigenvalues (see for instance
Courant and Hilbert. 1962):

Proposition 8.25. Assume that B is a symmetric matrix in M(a,3,Q) and
let (\,) be the spectrum of B and (u,) the basis of eigenfunctions introduced
in Remark 8.24. For any { > 1, let W, be the space spanned by the first ¢
eigenfunctions u,, . ..,u¢. Then, one has the following characterization:

/BVwVw dr /BVwVw dx
A¢ = max £2 = min 2
weEW, /1(12 dr wlWe_, /w2 dz
Q Q
/ BVwVwdzx
= min max =& (8.76)

WeDe weW ’
¢ /w2 dz
9)

where
De={W C H(}(Q) |dim W = ¢}.

Let now A° be defined by (8.3) and (8.4) and the corresponding homoge-
nized matrix Ao given by Theorem 6.1. Obviously. A¢ is symmetric and by
Corollary 6.10, Ay is symmetric too. Consequently, Propositions 8.23 and 8.25
hold for both B = A® and B = A,.

Denote by {A7} the sequence of eigenvalues of the operator A° = —div (A¢V)
and let {u7} be the corresponding sequence of eigenfunctions provided by Re-
mark 8.24. They are solutions of the problem

—div (A*Vug) = Afu; inQ
ug =0 ondN. (8.77)
Nuglt2(ny = 1.

Similarly, introduce the spectrum {A} of the operator A® = —div (4°V) given
by Proposition 8.23.

The natural question is if {A¢} is the limit of {A{} as ¢ — 0. The following
result (see Boccardo and Marcellini. 1976, and Kesavan. 1979). gives a complete
description of the asymptotic behaviour of the spectrum of A*:
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Theorem 8.26. With the above notations, one has the following properties:

i) For each ¢ fixed,
Ap = A

ii) There exists a subsequence €' such that
u§ — u¢ weakly in Hy(9).
where u; is an eigenfunction corresponding to A¢. The set (u¢) is an or-
thonorinal basis of L%(0).
iii) If the eigenvalue ¢ is simple. then the whole sequence {u3} converges to

ug.

Proof. The proof is done in several steps.

Step 1. We first show that the sequence {)§} is bounded independently of &.

To do so, we make use of the characterization (8.76) from Proposition 8.25.
Let (wj) be an orthonormal basis, corresponding to B = A° as in Remark 1.18

and W = [wn,....wg] be the subspace generated by wi,...,we. Then, us-

ing (8.76) for B = A°, we have

/ AVuw Vu dx / AVoVu dz

A = min max 2% < max
WeD weW vEW,
w dr v dx
Q

(8.78)
/ IVvIZ dr / A°V1Vv dz
< S max < —

vEW, / 2 da a veny / o? d
Q Q

where we used assumption (8.4) and Proposition 8.3. This, together with (8.76),
gives

X < gxg. (8.79)

i.e. the sequence {A$} is bounded independently of . Hence, for a subsequence

¢”. one has the convergence
xS Ae (8.80)

The fact that A; = A, (and that the whole sequence A5 converges to Ag) will
be shown in Step 3.
Step 2. In this step we prove the convergence from statement (ii). Recall-
ing (8.77) and (8.79), from Theorem 4.16 we have the estimate

gl myy < —



1688 Tartar's method of oscillating test functions

Consequently, there exists a subsequence €' such that
u§ — u¢ weakly in Hj(52)
u§ — ¢ strongly in L(Q) (8.81)
/\f' — A¢.

where we have also used (8.80).
Now, Theorcm 8.16, written for f¢ = A uf, implies in particular, that wu,

satisfies
{ —div (A°Vue) = Ajue inQ
e =0 ondf,

which proves that u, is an eigenvector of .A? corresponding to the eigenvalue A,.
On the other hand, by using (8.81), we can pass to the limit in the following

identity:
/uf uj dr = &;;.
L1

So, the set () is orthonormal in L2(12), i.e.

(8.82)

/ uf uj dr = 6,‘j. (883)
(9]

Obviously, this implies that these functions are linearly independent.
Step 3. We now prove that A? has no other eigenvalues except those defined
by (8.80), (8.82) and (8.83). This will complete the proof of (i) and (ii) since the
eigenvalues are ordered increasingly.

We argue by contradiction. Suppose that there exists an eigenfunction w
corresponding to some eigenvalue ). i.e. satisfying

{ Alw =) w inQ

.84
w®=0 onoN. (8:84)

and which is not given by (8.80), (8.82) and (8.83). Then, w does not belong to
any subspace generated by a finite fainily of linearly independent eigenfunctions
u¢ obtained above. Indeed, suppose that w = ", ¢; u;, where ¢; # 0 are
constants. Then, from (8.82) and (8.84), one has

m m m

/\Zc,-u,- =w = A%w = .Aozl'iu,- = EciA,-u,-.
i=1

i=] i=1

Hence,
m

S A -Adeiu =0,

i=1
which can hold only if A = A, since u; are linearly independent. But this is not
possible due to the assumption on w.
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Now, since w does not belong to any subspace generated by the family (ue),
due to Remark 8.24, w is orthogonal to this family. From the property (i) of

Proposition 8.23, there exists an ¢y such that
A(°+1 > /\.
Let us introduce U¢, a solution of the following problem:

{A‘U‘ = —div (A°VU*)=Aw in§
Ut =0 ondf.

We can apply Theorem 6.1 to this problem. So,
U = U° weakly in H} ().
and U? is the unique solution in H}(2) of the homogenized problem

{AOU(’:/\w in
U=0 ondQ.

From (8.84), the uniqueness implies that
w= U0,

so that
U¢ — w weakly in H} ().

Since (u5) is an orthonormal basis in L2(§2). one has (see Rudin, 1966)

Set

& 20
ve =U*® - Z(/Q Ufug da') ug = Z (/QU‘-ui d:z:) uy,.

k=1

By construction we have

/ veupdr=0, k=1..., fo,
Q

(8.85)

(8.86)

(8.87)

hence v, L Wy, where W is the space spanned by u....,us . From Proposi-

tion 8.25, it follows that

Jo AV V. dx
Jo lve]? dx

Afo+l <

(8.88)
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From the definition of v., we have

/ AV, Vo, dz = / ATVUS VU dz
Q Q
€o
-22( / U® uS d:::) / A*VU® Vi§ dr
Q o
fo
+ Z (/ Ue uj, )(/(}ngj da:)/QAEVuiVu; dz.

k.y=1
By using the variational formulation of (8.77) and (8.86), this can be rewritten
as follows:

o
/AEVveredx=A/wUsdm—22 /U‘uid:r A/wu; dx
Q Q ro \Jo Q

€ 2
+Z,\§( QUsui dz) .

where we have used (8.83). We can pass to the limit in all the integrals in the
right-hand side for the subsequence &’ from (8.81). Denote by W, the space
spanned by u,,....ug,. By using (8.81), (8.80), and (8.87) and recalling that in
particular, w L W¢,. we obtain

lim A"va Vo dr = u' dr — 22: ( / wup da:) / wuy dz
e'—0 [e) Q
€0 2
+2Ak (/ wuy dx) = A/ w? dz. (8.89)
Q Q

On the other hand,

€o 2
2 . £V2 €..€
/ﬂve da [(? e 22(/QU ukd.r)
(/U‘u,sc )(/Usui dx)/uku dx
k]- Q
{0
= /(U5)2dx ( U* uf, )
Q

where we pass to the limit for the subsequence ¢’. We obtain by the same
arguments as before. that

£y

2
; 2 g 2 9. _ - 2
51'1310 Qvt, dzx = /Q w dx g( L w ug d.r) = /{; w* dz.

1
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Using into (8.88) this convergence as well as convergence (8.89), we obtain
A(o+l S A‘

which contradicts (8.85). This proves that .A® has no other eigenvalues except
those defined by (8.80), (8.82), and (8.83). Hence, A¢ = )¢ for any £.

To complete the proof of (i) and (ii), it remains to show that the sequence
{u¢} obtained in Step 2 is complete. This can be done by contradiction.

Indeed, if this is not true, due to Proposition 8.23(iii) there exists an eigen-
function wy corresponding to some A which does not belong to any subspace
generated by the family {u;}. Then w is orthogonal to this family. From the
property (i) of Proposition 8.23, there exists an ¢, such that

A‘l"’l > A.
Arguing now exactly as before with A¢, 4+, instead of Agy 41, we have
A1 <A

which is the required contradiction.
Step 4. It remains to prove the last statement of the theorem. Let )\, be a
simple eigenvalue and u, be a corresponding eigenfunction such that

/ﬂ (ue)? dx = 1. (8.90)

Obviously, if the eigenvalue A, is simple, as a consequence of (i) and (ii), the
same is true for Aj (for € sufficiently small).

Let uj be an eigenvector corresponding to Aj, satisfying (8.77) and (8.83).
We can suppose that for any ¢

/ ug ug dr > 0. (8.91)
Q

From Step 2 (see (8.81)), for any subsequence £’ we have

’

u; — iy,

where 4; is an eigenvector associated with \,.
Observe now that i, and u; are two eigenvectors corresponding to the same
simple eigenvalue )¢, so that there exists a constant ¢ such that

Ifg = CUug¢.

Now, from (8.83) one has, after passing to the limit. that
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which, together with (8.90), implies that |¢| = 1.
On the other hand, passing to the limit into (8.91) yields

/ it ue dx >0,
Q

so that c =1, i.e.
l?( = Uyg.

Thus the whole sequence {u} converges to u¢. The proof of Theorem 8.26 is
complete. o
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The two-scale convergence method

In the first two sections of this chapter, we present the two-scale convergence
method and we use it in Section 9.3 to prove again Theorem 6.1. As the multiple-
scale method, it also takes into account the fact that we have a ‘macroscopic’
scale z and a ‘microscopic’ one z/¢.

The notion of two-scale convergence has been introduced by Nguetseng (1989)
and developed by Allaire (1992, 1994). It deals with the convergence of integrals

of the forin
[ (x f) dz,
Q 13

where the sequence {v¢} is bounded in L?(?) and ¥ = v(x,y) is a smooth
function periodic with respect to y.

Notice that we have already met this kind of integral when applying Tar-
tar’s oscillating test functions method. Indeed, this method is based on the
construction of functions of the form ' (z/¢) (Section 8.1} whose products by a
function ¢ € D(€) were used as test functions in the variational formulation of
problem (6.1).

Let us also mention that the two-scale convergence method justifies math-
ematically the (formal) asymptotic development obtained in Chapter 7 by the
multiple-scale method. Moreover, in Section 9.4 we show that when the correc-
tor functions are sufficiently smooth. the two-scale convergence method gives a
very simple proof for the corrector result stated in Section 8.3.

9.1 The general setting

As in the previous chapters. € is a bounded open set in RV and
Y =]0.6, [x--- x]0. N .

with ¢,,....€x given positive numbers, is the reference cell.
In this chapter we will use the following spaces:

¢ Cper(Y), the subspace of C(R") of Y-periodic functions.
o C%.(Y), the subspace of C>(Y") of Y-periodic functions.

e LB (Y), the subspace of LP(Y) of Y-periodic functions in the sense of
Definition 2.1.
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p‘,‘,,(Y) the space introduced in Definition 3.48.

® Wper(Y), the space introduced in Definition 3.51.
o L2(; Cper(Y)) and L2(Q; W,er(Y)), the spaces given by Definition 3.54,

o L (Vs C()), the space of measurable functions u : y € ¥ — u(y) €

C(T) such that [fu(z)llcy € L2er(Y).

o D(Q;C3(Y)). the space of measurable functions on € x R¥ such that
u(z,) € C35.(Y) for any x € 2 and the map x € 2 — u(z,-) € C2.(Y) is
indefinitely differentiable with a compact support included in €,

o C(Q; L. (Y)) the space of measurable functions on £ x RY such that
u(z,-) € LB (Y) for any z € § and the map x € 2 — u(z,-) € LP(Y) is
continuous.

Throughout this chapter. as mentioned above, we will have to work with
functions of the form ¥ (z,x/¢). The properties of this kind of function have
been investigated, in particular, by Bensoussan. Lions and Papanicolaou (1978),
Donato (1983a,b, 1985), Allaire (1992). Some of these properties will be useful
in the sequel, so, for the reader’s convenience. we recall them here.

Lemma 9.1.

i) Let ¢ € LP(R; Cper(Y)) with 1 < p < oc. Then ¢(-,-/e) € LP(Q) with
o(-2)

go(-, g) }Yl p( y) dy weakly in LP(2). (9.1)

S II¢(" ')"LP(Q.’ Cper(y))
Ly()

and

In particular. if ¢ € L2(%; Cper(Y)). then

glj'%/n [ga (.1'. g)} : dr = ﬁl’—f /Q /} [p(x. y)]2 dydzx. (9.2)

it) Suppose that o(z,y) = p1(2)22(y), Y1 € L), 2 € LT (Y) with 1 <
r,8 < ¢ and such that

+

~ | —
[N
-

Then (.. /e) € LP(NN) and

(,o(-, ;) - "T;}l) /; w2(y) dy weakly in LP(Q).

€
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y
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X

Fig. 9.1 By fork=1and k =2.

Remark 9.2. Suppose that o is not a product as in statement (ii). One can
ask if there are other functions than that contained in LP(Q; Cper(Y)) satis-
fying (9.1). As far as we know, there is no precise characterization of these
functions, but some counterexamples show that one can not weaken the hy-
pothesis from (i) too much. For instance. bounded functions do not possess
property (9.1). Indeed, the following example (see Donato 1983a. 1985) exhibit
a function in L°(Q x Y) and Y-periodic in the second variable, which do not
converge to its mean value.
Introduce. for k € N* = N\ {0}. the set (see Fig. 9.1)

Bi = { (z.¥) | (x.9) € [0,1]%. y ~ kx £ e(mod 1), |¢] < n}.
where 7, = 1/(4v/2 k 2¥) and
Va.beR. a~b(mod1l )<= Jz€Zsuchthata—-b=~=z.

Obviously, one has that

1
|Bi| < k2 V2 = RTT
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Then, if we set B = |J3°, B, we have |B| < 3 332, 1/2% = .

Let now h be the function defined by
B )_{l if (r.y) e B
TY=0 if(zy) e0.12\B.

Clearly, since B is measurable, h is a measurable function, hence h € L*°([0, 1)?).
Let us still denote by h its extension by periodicity (of period 1) with respect
to the second variable to the whole [0,1] x R. If property (9.1) were true, in
particular one would have. for any sequence & — 0.

1 i 11
lin / h(w,i) d:r=/ / h(z.y) d.rdy=/dm<%.
ex—0 Jjo Ek o Jo B

Consider the sequence £, = 1/k. By construction

h(a:. ei) = h(r.kz)=1. for r € [0,1],
k

so that h(-,-/ex) converges to 1. Consequently,

1 T
lim / h (.r, —) dr = 1.
ek—00 0 Ek

which is in contradiction with the former inequality.
Let us finally mention that i has even more regularity than simple bounded-
ness, namely h € C([0,1], L}, (Y)). as was proved by Allaire (1992). Therefore,

the counterexample shows that a L>(]0, 1{xQ) N C([0, 1], L] (Y'))-regularity is
not enough to insure (9.1). O

9.2 Two-scale convergence

We recall now the definition of the two-scale convergence and several important
results concerning this notion (see Nguetseng. 1989. and Allaire, 1992, 1994).

Definition 9.3. Let {v°} be a sequence of functions in L?(f2). One says that
{v} two-scale converges to vp = vo(r. y) with vo € L?(Q2 x Y) if for any function
¥ = P(z,y) € D(Q:C3e(Y)). one has

lim v"(:c)dv(.r. 1) dr = ~1,— / / vo(r.y) ¥(x. y) dy dx. (9.3
€=0 /o € Y1 Ja Jy

Remark 9.4. Due to density properties, it is easily seen that if {v*} two-scale
converges to vo. convergence (9.3) holds also for any ¢ € L2,(Y; C(Q)) as
well as for any ¥ of the form ¥(a.y) = ¥u(y) ¥2(2. y) with ¥ € L=(Y) and
Y2 € L2, (Y: C(%)).

For the same reasons. convergence (9.3) is still true for any function ¥ of
the form ¥(x.y) = v1(x)p2(y). where ¢, and ¢, are as in statement (ii) of

Lemma 9.1. Q
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Remark 9.5. It is easy to see that the two-scale convergence implies the weak
convergence. Indeed, if in Definition 9.3 we take 9 independent of y, then (9.3)
reads exactly as the following weak convergence:

¥ = V0= '-—}17|- vo(-.y)dy weakly in L2(Q).
Y

Clearly, if the two-scale limit vo is independent of y. then VO = v, so that
the weak and the two-scale limit coincide. Observe also that if a sequence {v¢}
two-scale converges, then it is bounded in L2(Q). 0

Remark 9.6. Suppose that the sequence {v°} admits an asymptotic develop-

ment of the form
T T
vé¥(z) = vo (.r. —) + e (;r, -) + -
€ £

where vp, v), ... are smooth Y-periodic functions. Then. applying Lemma 9.1 to
v¢(-)¢(-,-/€) with ¢ a smooth function, one has that {v°} two-scale converges
to vo = vp(z, y), which is the first term in the development. This can justify a
posteriori the multiple-scale method from Chapter 7. ¢

One of the main results on the two-scale convergence is the following com-
pactness theorem:

Theorem 9.7. Let {v¢} be a bounded sequence in L?(f2). Then, there exists
a subsequence {v° } and a function vg € L?( x Y) such that {v® } two-scale
converges to vg.

Proof. Let ¢ € L%(S%; Cper(Y)). Then, from the Holder inequality and Lemma

9.1, we have
/ve(.r)qb(x, E) dz
[y} 3

where C is independent of €. This means (see Definition 1.6), that v* can be
regarded as the element V¢ of the dual space of L2(§2; Cper(Y)), such that

< ClldliLz@: Cper(v))s (9.4)

I _
(VE, ONL2(Q: Cpee (YN L2(Q: Cpee(Y)) = /Q v‘(x)fb(w, ;) dz, V¢ € L2 (Y; C[@Q)).

Moreover, from (9.4), we have
IVENL2: Cpee ¥y S C.

Consequently, recalling (see Proposition 3.61) that L2(; Cper(Y)) is separable,
we can use Theorem 1.26 to extract a subsequence ¢’ such that

Ve = Vo weakly* in [L3(S); Cper(Y))]',
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so that
4
(Vo, 9)[L2(9; Cper (YD) L2(: Cper (Y))
{ = el,iglo(Vs, B)[L2(Q: Cper (Y )] .L2(: Cper (Y)) (9.5)

. e' . i
‘ elmnﬂ[}v (a)q)(m, é_,) dz.

On the other hand, from the boundedness of {v¢}, the Holder inequality and
convergence (9.2), one has

i 3 z <Cli = =C .
Jlim /Q% (-’L‘)¢(33, e') dz| < Ce,l210”¢( . e’) . ol L2@x )
This, combined with (9.5), gives
(Vo) D) (L2(9: Cpur (V)] L2(: Cpes (¥)) | £ CllBllL2(2xY)s (9.6)

for any ¢ € L%(§2; Cper(Y')). Since, by Proposition 3.61. the space L2(Q; Cper(Y))
is dense in L2(2 x Y), inequality (9.6) holds for any function ¢ € L2(f2 x ).
Therefore, Vp can be extended continuously to L?(f2 x Y) and so, from the
representation theorem (Theorem 1.36) the function V, can be identified with
an element v € L%(Q x Y) such that

(Vo5 D) [L3(92: Cpar (YD) L2(R: Cper (V) = /9 Yv(-"«‘ay)¢(3’-y) dz dy.
X

This, together with (9.5) leads to

lim / ve'(x)(b(a:, i"’;) dr =/ v(z.y)o(z,y) dz dy,
e'=0Jq € Qxy

which (see Definition 9.3) means that vy = |Y|v is the two-scale limit of the
sequence {v° }. u}

Another important result concerns the product of two sequences which two-
scale converge.

Theorem 9.8. Let {v°} be a sequence of functions in L*(Q) which two-scale
converges to vg € L?(Q x Y). Suppose furthermore. that

gi_r‘%/n[ve(z)]zdx = I—}ITL/Q/Y[I’U(my)Iz dzr dy. (9.7)

Then, for any sequence {w*} that two-scale converges to a limit wo € L3(2xY),
we have

1
v* W — |T;| /y vo(-.¥) wo(-.y) dy in D'(Q). (9.8)
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Proof. From the density property (ii) in Proposition 3.61. there exists a sequence
{wn} C L3(; Cper(Y)), such that for n — oc,

©n — 19 strongly in L3(Q x Y). (9.9)

Consider now the integral

/Q[ve(:r) —cp,,(m.g)rdx
= /s;lvs(w)]zdf‘2/‘;"5(-’)'»0"(1’;) d.r+/0[<p,.(:c, g)]zdx,

where we let € — 0. For the convergence of the first term in the right-hand side,
we use hypothesis (9.7). The second one converges simply by hypothesis while
for the third term we make use of convergence (9.2) from Lemma 9.1. We have
at the limit

1 1
imlIf = —// vo(z.y)]?drd —2—//1} z,¥)on(z,y) dz d
lim I, 77 Jo ), ol@ )l drdy =25z | ] vo(z,y)en(e,y) dzdy

1 2 1
L1 (. dxd:——//v— z,y)) dzdy.
71 [ enta)” azdy = o [ [ o= ona)? oy

Due to {9.9), the last integral converges to 0 as n — 00, so that

1 z\1?
1 1 € — 1 1 — € - —_— =
nhm P_I% I; = lim 31_% 7] /9/) [v (x) — ¢n (x e)] dz = 0. (9.10)

On the other hand, for any i) € D(Q) one has

€
Iﬂ

[r@v@una = [ [vf(r)—son(z. f)]w‘(x) ¥(z) do
+/Q&pn (a:. %) w®(z) P(z) dz, (9.11)

where we make first ¢ — 0 and then n — oc. To do so, observe that by the
Holder inequality, Remark 9.5 and Proposition 1.14. one derives

lim lim / () — Pn (.r, '—1-)] v (x) y(x) dz
0] Ja €
o\ 12 3
< Cnlll.lolo !"—%{./s; [v (2) — @n (.r. E)] d:zr} =0,

n—o0 €—
due to (9.10). Moreover, from (9.9) and the assumption that w® two-scale con-
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verges to wy. we have

lim lim Pn (;zt, -1-') w® () ¥(x) dr
Q £

ﬂ—‘me—'
= lim — / / wol, y)ou(@.y)(z) dzdy
n—oc lYl QJY

= mjg/) wol(z. y)vo(z. y)¥(z) dx dy.
Therefore, from (9.11) one has
1
tiny [ o*(@)u(0)91a) do = g [ 60) [ wole who(a.y) dye

which is precisely convergence (9.8). O

The next property gives further information on the two-scale convergence of
bonunded sequences in H!(92).

Theorem 9.9. Let {v°} be a sequence of functions in H'(S2) such that
v€ = o weakly in H(Q). (8.12)

Then {v¢} two-scale converges to vg. and there exist a subsequence ¢’ and vy =
v1(z,y) in L2 Wper(Y)) such that

Ve two-scale converges to Vg + V1.
Proof. Due to Theorem 9.7, one has a subsequence {¢’} such that

v two-scale converges to v € L2(2 x Y)
Vet two-scale converges to Ve [L2QxY))N.

Hence, for any v € (D(Q; IDe,(Y))) . one has

lnn/Vv (z)- 'z/)(z, ,) dr = lYl]/ Viz.y) - ¥(z,y) dz dy. (9.13)

By the definition of a derivative in the sense of distributions (see Definition 3.11),
it follows that

/w (z) - w(z —) dx=—2/ v‘(x)[au'( ;{) +%%%(x, -s"’i,)] dz.

Then, multiplying by &, one has

(s
=e’[nvve'(1)-d‘(. )dx+2/ 0’”’( f?) dx].

(9.14)
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Passing to the limit as ¢’ — 0, by (9.13) and the two-scale convergence of (v°),

we get
Z//v(xy .r,y)da:dy 0.

This, by Green’s formula (Theorem 3.33). yields in particular for any ¢ € D(§2 x
Y),

/Q_/; Vyu(x.y) - ¥(x.y) dzdy =0,
hence, by Theorem 1.44,
V=0 ac.onQxY.
Then, from Proposition 3.38 written in terms of Y we have
v(z,y) = My (v(x,:)) ae onQxY,

which means that v does not depend on y. Then, due to Remark 9.5 and con-
vergence (9.12), v = vp € H!(9).

Let now ¥ € (D( pe,(Y)) such that div, ¥ = zﬁ , 0%;/3y; = 0. From
(9.14) we get

lim / Vot (z) - \Il(x, )d.z = - 1,12102/ vf(x)@i(z i) dr

e’'—0 X

= lylsz vo(2) ——(x y) drdy (9-15)

i=1

l[[
= — Vug(z) - ¥(x,y) drdy,
| 77 . | V(@) vy drdy

where we have used the two-scale convergence of {v*'}. This, together with (9.13)
written for ¢ = ¥, gives

[ [ W)~ Vo) vy ray =0
QJY

We now make use of a classical result for which we refer the reader to Girault
and Raviart (1981) and Temam (1979). It states that if (F.@).2 = 0, for any ¢
such that div ¢ = 0. then F is a gradient. This result applied here for F(y) =
V(z,y) — Vvo(z) a.e. on ). implies that there exists a unique function v, €
L2(Q; Wper(Y)) such that

V(z.y} - Vio(e) = Vyuu(r.y).
This ends the proof of Theorem 9.9. (]
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Remark 9.10. From assumption (9.12), we know that the whole sequence {Vv*}
weakly converges to Vvg. A natural question is whether this whole sequence is
two-scale convergent. The answer is negative. since the function V' and conse-
quently, V,v;, can not be uniquely identified. Actually, from assumption (9.12)
and Remark 9.5, all we can say is that

1
Vun(s) = 57 [ Vig)dy.
Y[ Jy
which is not enough to insure the uniqueness of V. Qo

9.3 Proof of the main convergence result

We prove now Theorem 6.1 by the two-scale convergence method. Let 4 and f
be given as in Theorem 6.1 and let u¢ be the solution of (6.1), i.e.

{—-div (AVuf)=f in Q
u* =0 omn 9N

whose variational formulation is
{ Find u® € Hy(Q) such that

.16
/A‘Vue Vvdr = (f. v)""(ﬂ).H&(Q)? VI’GHA(Q) (91 )
Q

We proved in Section 5.1 that there exists a subsequence (still denoted by ¢),
such that

{i) u® = u«®  weakly in H}(Q) ©9.17)

i) u® —u®  strongly in L3(R).

From Theorem 9.9, we have that u® two-scale converges to u®. Moreover, there
exists u; = u;(z,y) in LQ(Q; Wper(Y)) such that, up to a subsequence, Vu®
two-scale converges to V,u® + V,u;. We will now prove that u® satisfies prob-

lem (6.29). Let vp € D(R) and v; € D(§%: CX,(Y)). Clearly. vo(-) + evr (-, é) €
H}(9), so that it can be taken as test function function in (9.16). One has

[ AfVus [Vz'o(:c) + eV, (.r. f) + V,v (x, %)] dx
Ja 3

(),
€/ H-v@).H) (@)

which can be rewritten as follows:
/ Vaus (! A%) [Vvo(x) + Vv (1 - )] dr + e[ AfVu V, (a:, f) dz
Q Q €
(9.18)

= (rw0r+en(2)) .
€/ 1 H-1(Q).H) ()

™| =
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where we want to pass to the limit as ¢ — 0.

For the first term, this is possible according to Remark 9.4. Indeed, *A° is
in L®(Y), Vuo(z) + Vyui(z,y) is in L2, (Y; C(Q)) so that *A*(y) [Vuo(z) +
Vv, (z, y)] can be used as test function in the two-scale convergence of Vu*.
Consequently,

tim | Vut (L A°) [Vvo(:c) +V,u (:c f)] dz
= I%I /Q fy (Vad(z) + Vyur(2,9)) (L AW))[Veo() + Vyv (2, 9)] de dy.

For the second term in (9.18). by using Lemma 9.1 written for o(z,y) =
Vo1 (z,y), the Holder inequality and the fact that A°Vu¢ is bounded in L?(f2)

(see 5.12), one derives that

lim e/ AV u* V. (a. ;J—:) dr = 0.
e—0 N £

To pass to the limit in the last term, notice that by the definition of vy and
v; one has that

vo(+) + evy ( :) — o weakly in H}(Q).

[

Hence, passing to the limit in (9.18) as ¢ — 0, we finally get

'l_l'l'/" /S; L(Vuo(z) + Vyui(r.y)) (tA(y))[V'vo(:L‘) +V,u (:L‘, 'l/)] dz dy
={f. 1’0)H-1(Q)\H},(Q)e

which can be rewritten as

{ ﬁ /g /Y A(y) (Ve(2) + Vyur (a.9)) (Veo(x) + Vyr (2.y)) dedy

= (f,vo}u-1(@).H} ()

(9.19)

Let us show that this equation is a variational equation in the space
H = Hy(2) x L2(: Wper(Y))

and that the hypotheses of the Lax Milgram theorem are fulfilled. Indeed, en-
dowing the space H with the norm

||V||%t = "00”%{5(5)] + [lnn "i?(sz; Wier (Y))* VV = (v.n)eH,

the bilinear form defined by

a(U,V) = T}I;T /9 /;/ A(y) (V°(z) + Vyur (. ) (Veo(z) + Vyu (2, y)) dz dy
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for any U = (u%uy) € H and V = (vo,v1) € H, is clearly continuous on H.
Observe now that one has

a(V,V) 2 o [[Voo(z) + Vyur (2, ) aaeyy ¥V = (0,01) €M, (9.20)

=
g
since A € M(a,3,Y). On the other hand,

2
IVvo(z) + Vyui (@, 9)|| 2 axvy = lvollzry @y + llvs 1220 Woer ()

(9.21)
+2 / /Y Voo(z) Vyu1(x,y) dedy = V|,
9]

since, by the Green formula (Theorem 3.33) and the periodicity of v; (Proposi-
tion 3.42),

/ﬂ /Y Voo(z) Vo (z,y) dedy = /Q [ /Y v,,(vvo(x)vl(x,y))dy]dx
= /Q[/ayvvo(l‘)vx(w,y)n(y) dsy] dz = 0.

The coerciveness of a on  is then established due to (9.19) and (9.20).
Furthermore, the map

F:V = (l’Oy”l) — (f, 1'0)H"(Q)-Hé(9)‘

is obviously linear and continuous on H.

Hence, we can apply the Lax-Milgram theorem (Theorem 4.6) to obtain the
existence and uniqueness of (u%,u)) € HE(R) x L3(; Whee(Y)), the solution
of (9.19), for any (vo,v1) € H3(R) x L2( Wper(Y)).

Choosing now first 19 = 0 and after v; = 0, we see that (9.19) is equivalent
to the problem

( —divy (A(y) Vyui(a.y)) = div, (A(y)) Ve(r) inQxY
+ ~div, [/} A@)(Vel(x) + Vyui (. ) dy] =|Y|f inQ (9.22)

u’=0 on N
\  uy(z,-) Y-periodic.

To end the proof of Theorem 6.1. we will argue exactly as in Section 7.1.
Observe that the first line in (9.22) is precisely problem (7.15) and we proved in
Chapter 7 that its solution is of the form (7.21). i.e.

N R a N
w(z.y) = - ; xjw)g,;'f + (z), (9.23)
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where ; € 0 in Wpe,(Y). The functions X; satisfy

—div, (A(y) V,%;) = - Z 6"‘1(“’) inY

i=1
My(x;) =0
X; Y-periodic,

for j = 1,...,N. Replacing u, given (9.23) in the second line in (9.22), one
obtains that u? satisfies (7.25), namely

%0
S5 ) e

Reasoning as in Section 7.1, this implies that u® is the unique solution
of (6.29). Consequently, the whole sequence in (9.17) converges to u°. The
proof of Theorem 6.1 is complete. m]

Remark 9.11. Let us point out the main difference between Tartar’s oscillating
test functions and the two-scale convergence one. The first method is based on
the use of oscillating functions, constructed specially for the matrix A under
consideration. The two-scale convergence method uses general oscillating test
functions which are not related to A but it needs to introduce special functional
spaces as done in Sections 9.1 and 9.2. ")

9.4 A corrector result

In this section, we place ourselves in the particular case where the homogenized
solution or the correcting term u; are more regular. In this case the following
corrector result can be proved by the two-scale convergence method:

Proposition 9.12. Letu; be given by (9.23) and suppose that V,X; € (L"(Y))",
i=1,...,N and Vu® € (L*(Q))"N with 1 < r,s < co and such that

1
+-=rc.

=2
[

Then
Vut -Vl - V,u ( E) — 0 strongly in (L2(S2))V.

Remark 9.13. Observe that Vu®—Vu®—V,u; (-, -/¢) is nothing else than Vu —
CeVu?, where C* is the corrector matrix introduced in Section 8.3. Observe also
that Theorem 8.6 in the particular case ¢t = 2 is exactly Proposition 9.12. ¢
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Proof of Proposition 9.12. Due to the regularity assumption and the ellipticity
of matrix A, we have

of|Vus - vl — Vyu (- )"L7(9)

< /Q A(-‘:-) (Vu‘(:c) - Va(z) — Vyuy (a:, f))
-(Vu‘(:c) - Vul(z) ~ Vi (x g)) dz

= (£, v u-1(0),H} (@)

_ fn (A+ tA)(g) Vut () [Vuo(x) + Vyu (:v g)] dz
+/QA(§) [Vuo(a') +V,u (x, g)} [Vuo(:c) + V,u (:c, E)J dz.

Let us show that the right-hand side of this inequality goes to zero as € — 0.
First, from Theorem 6.1 we have that

(Fru g @mye — v m-10).H1@)- (9.24)
Secondly, observe that due to Remark 9.4 the function (A +*A)(y) [Vu°(z)+

V,ui(z,y)] can be chosen as test function in the two-scale convergence of Vu®
to Vu? + V,u;. Then, using the symmetry of A + A, we obtain

lim | (A+14) (g) Vus (z) [vu“(x) + Vyu (z, f)] dz

= lim A Vué(z) [(A + ‘A) (g) (Vuo(z) + Vyu (a:, g))] dr

N T117l /n /Y(A +A) (1) [V (2) + Vyu (2,9)] [Ve'(2) + Vyui(z,9)] de dy

(

)

= r}lz_l L /}; 2A(y) [Vuo(;v) + Vyui(z, y)] [Vuo(:c) + Vyui(z, y)] dz dy.
(9.25)

\

Lastly, set

o(z.y) = A@)[Vel(z) + Vyu(z. )] [Ve(2) + Vyui(z,y)]

= & (z)
= AW)Ve'(z) Ve(z) - (4 + 4)(y) Ve'(z) (va(y) aj)
J

=1

N au (x)
+AW)| Y Vyx;(w) Zvyxk y) (:c)
j=1
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We can apply to this function the statement (ii) from Lemma 9.1 written for
p =1, to obtain

e11_1.1‘1)‘/“ A(g) [Vuo(a:) +Vyu (a:, g)] [Vuo(z) + Vyu (x, g)] dz

1
i /a/ AW)[Ve°(2) + Vyu (2,9)] [Ve°(2) + Vyu (2, )] dz dy.
Y
(9.26)
Taking into account convergences (9.24), (9.25) and (9.26), we finally get

ji_!}}){(fa v 1), H4(Q) — /‘; (4 +'4) (g) Vu(z) [V‘UO(E‘) + Vyu (27, g)] dz

+/QA(§) [Vuo(x) +V,u, (.r, g)] [Vuo(x) +Vyuy (z, g)] dx}

= (£ uu-10).m10)

1
g /s';/y A} [Ve(2) + Vyui(z,y)] [Veo(2) + Vyu (2, y)) drdy =0,
where we used equation (9.19). Consequently,

<0,

lm <
e—0 L3(Q)

Vuf - Vu® -V, (-, E)

and this ends the proof of Proposition 9.12. 0

Remark 9.14. Notice that the regularity assumptions on ¥; and «° are essential
in the above proof. If neither ¥; nor u® satisfy them, we can still prove in this
framework a convergence result in L!(Q). The statement of Proposition 8.7 can
also be proved by two-scale convergence arguments. Then, one has to argue as
in the proof of Theorem 8.6. O



10
Homogenization in linearized elasticity

In this chapter we are interested in the asymptotic behaviour as ¢ — 0 of the solu-
tion of the linearized elasticity system introduced in Section 5.2. We refer to Du-
vaut (1978), Sanchez-Palencia (1980), Bakhvalov and Panasenko (1989), Oleinik,
Shamaev, and Yosifian (1992), Sanchez-Hubert and Sanchez-Palencia (1992) for
this subject and to references herein.

In this chapter, we suppose that ) is a connected bounded open set in RV
such that 02 is Lipschitz continuous and 8Q = I'y UT'; where I'; and I'; are
two disjoint closed sets and I'; is of positive measure. Obviously, in the physical
models N < 3.

Notation 10.1. Throughout this chapter we adopt the Einstein summation
convention, i.e. we sum over repeated indices.

Furthermore, if B = (bijkn)1<i,jk,h<N is 8 fourth-order tensor, and m =
(m,‘j)ls,‘,jSN, m! = (m}j)ISiJSN are square matrices, we set

Bm = ((Bm)ij)i<ij<N = ((bijrn Mrn)ij)i<ij<n
Bmm! = bijkn mi; m,l‘,,l
1

m| = (‘:j m?j)z-

i,j=1

When studying elliptic problems we defined, for any open set @ of RY, the
class of matrices M(a, 3, O) (see Definition 4.11). We need to define here a class
of tensors which plays an equivalent role for the elasticity system.

Definition 10.2. Let o, € R, such that 0 < a < 3 and let © be an open set
of RN. We denote by M,(a,B,©) the set of the tensors B = (bijkahr<ij k<N
such that - -
i) bijxn € L™ (O), for anyi,j k,h=1,... N
zz) bi]kh = bjikh = bkhij) for any i’j, k9h = ls REE) N 10.1
i) alm[? < Bmm for any symmetric matrix m (10.1)
i) |B(z)m| < Blm| for any matrix m,

a.e. on 0.
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As classical in elasticity, let us introduce the linearized strain tensor ¢ defined
by

1/0yp; O¢; ..
e(p) = (e)1<iien,  €ij(p) = 3 (53% + 5‘%), Vi, j=1,...,N, (10.2)

for any ¢ = (¢1,.--,pn). Clearly, e(p) is a symmetric matrix.
Remark 10.3. From Definition 10.2 it follows that if B € M,(a, 3, O), then
{i) ale(p)? < Be(p) e(p)
it)  |B(z)e(p)] < B le(o)l;

for any ¢ = (©1,-..,@N)-
Also notice that from (10.2) and the symmetry property (10.1)(ii), the com-

ponents of the matrix B e(y) read

a
(Be(p));; = biskn exn(p) = bijkn 5:—:-

0

Let us now describe the periodic framework in which we work in this chapter.
As previously, introduce the reference cell

Y =]0, £’1 [X v X]O, eN [,

where ¢, ...,¢N are given positive numbers.
Let A = A(y) be a fourth-order tensor such that

{ aijkn is Y-periodic, Vi, j,k,h=1,...,N (10.3)
A = (@ijkr)1<i,jk,n<N € Me(a, 8,Y).
Set
aSn(z) = a,-jk,.(g) ae. onRY, Vi jkh=1,.. N (10.4)
and
Af(z) = A(g) = (afjkh(x))lsi.j,k,th a.e. on RV, (10.5)
It is easily seen that
A € M.(a, 8,9). (10.6)

We will study the asymptotic behaviour of the linearized elasticity system
introduced in Example 5.4, namely

0 (. Oup\ _ .
u*=0 onI, (10.7)

ol
€ k _
Gijkp a—""mh nj=g; only
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fori=1,...,N.
In Section 10.1 below we show the existence and uniqueness of the solution
of (10.7). In Section 10.2 and 10.3 we give the main homogenization results for

problem (10.7).

10.1 Existence and uniqueness

Let B € M.(a, 3,9Q) and consider the linearized elasticity system

2 (B )=k mo

ij 63;;,
u=0 onl} (10.8)
Oug
bijkn ooy, T8 om Ty,
fori=1,...,N.
Denote by ¢ = (0:j)1<i,j<n = Be(u) the stress tensor, defined by
0ij = bijkn exn(u). (10.9)
Thanks to Remark 10.3, system (10.8) can be rewritten in the equivalent
form 3
=—0;;+fi=0 inQ
B:Ej 1
u=0 on I‘l ( 010)
gij nj =¢g; on Iy
fori=1,...,N.

This allows us to write down a variational formulation of system (10.8) to
which we will be able to apply the Lax-Milgram theorem. To do so, let us
introduce an appropriate functional setting.

As in Section 4.6, define the space V' by

V ={v|ve H(N),y(v) =0onT},

and set
V= (V)N.

Due to Proposition 3.36, V can be equipped with the norm

N 3
lvlly = (Z "Vvi"iz(g)) ) (10.11)
i=1

for v = (v1,...,9n) € V and it is a Hilbert space for the scalar product

N
(u,v)y = Z(Vui, Vi) L2 (0)s

i=1
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for u,v € V. Observe that V' = (V/)V.
Let us make the following assumptions:

i) B = (bijkn)1<ijkn<N € Me(a, 5,9)
i) f=(frre fn) €V (10.12)
i) g=1(g1,..., on) € (HH([T))".

Here, the Hilbert space (H~3(T'z))" is equipped with the norm

N 3
_ - N
"h"(H-i(l'z))N = ('—Zl "htllil—i(l"g)) ’ Vh= (hh ceny hN) € (H %(Pg)) .

Notice that by construction

N
1
Bt} (-3 gy oy = .Z;(hi’ U y-d g ubyy € HP(T2).
=

Then, the variational formulation of problem (10.10) is the following:
Find u € V such that
[ B@letwelw) de = Fobvv + 0.9 yod pypw b e (1019)
Yv ey,

which can be rewritten as

i h
{Fmd u € V such that (10.14)
a(u,v) = (F,v), VveV,
where
a(u,v) = / B(z) e(u) e(v) dz, Yu, vE VY, (10.15)
0
and
(F) 'U) = (f: v)V',V + (97 v)(H-}(l'z))N.(H%(l‘g))” . (10.16)

Observe first that due to (10.12)(i) and definition (10.2), the bilinear form
in (10.15) is continuous on V x V. In order to apply Lax-Milgram theorem
(Theorem 4.6) we need to show that this form satisfies a coerciveness condition
(Definition 4.4). Notice that, due to Remark 10.3, we have that

a/ le()|® dz < a(v,v), Vv e V. (10.17)
Q
Then, the V-coerciveness will be proved if we show that

vl = L le(w)|? dz (10.18)
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defines a norm on V), equivalent to (10.11). This is easy to prove for v € (H} ()"
and is known as the first Korn inequality. For functions which do not vanish on
the whole boundary 852, such as the elements in V, the result is not obvious and
is based on the so-called second Korn inequality. We just recall this inequality
and for its proof, we refer the reader to Kondratiev and Oleinik (1989a,b, 1990)

and Oleinik, Shamaev, and Yosifian (1992).

Theorem 10.4 (Second Korn inequality). There exists a constant cx =
cx () such that

3
Noll (i oy~ < ek [ lvli¢z2n~ + (/‘; le(v)|? dl') }, (10.19)

for all v € (H'(Q))N.
Inequality (10.19) has the following consequence:

Proposition 10.5. The quantity |}|v||] in (10.18) defines on V a norm equivalent
to the norm ||v||y given by (10.11).

Proof. We follow the proof from Oleinik, Shamaev. and Yosifian (1992, Theo-
rem 2.5) which is done in two steps.

Step 1. We prove first that |||v|{| is a norm on V. To do this, it is enough to
show that

(veV, and Je(v)] =0) = v=0. (10.20)
Let |e(v)| = 0. This means that

av,- Bv,- _ L.

5;;-!— o2 =0. Vij=1,....N. (10.21)

It is well-known in classical mechanics (see, for instance Love, 1944, Truesdell
and Toupin, 1960), that if v is a smooth function, these relations imply that
there exists a matrix m with m;j = —mj;, and a vector b such that

vz)=mz+b (10.22)

(actually, this follows easily by differentiating the relations in (10.21)). The
boundary condition on I'; gives that m = 0 and b = 0, hence (10.20) holds.

If vis in V (but not smoother than H!), one still has (10.22). Its proof needs
an approximation of v by smooth functions with null linearized stress tensor. For
this point we refer again to Oleinik, Shamaev, and Yosifian (1992, Chapter 1,
Section 2.2).

Step 2. It is obvious that
vl £ cllvliv,

where the constant ¢ depends on N. Let us show the reverse inequality,

lvlly < e lilvlif, (10.23)
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where ¢; depends only on (2.
We follow the proof from Oleinik, Shamaev, and Yosifian (1992, Theorem 2.5)

which is done by contradiction. Suppose that (10.23) is not true. Then, one can
find a sequence of functions v, € V such that

i) lvnllv=1
10.24
i1) lim / le(vn)|? dz = 0. ( )
Q

n—+00

In view of Theorem 3.23 on Sobolev embeddings, there exists a subsequence, still
denoted by n, such that

v, - v strongly in L(§). (10.25)

Then, from (10.19) and (10.24)(ii), it follows by linearity that

1
Ck [ llun — "’m"(L’(Q))” + (/s; le(vn — vm)|2 d:l:) ]

< CK[ lvn — vl (L2~

+Cz( /ﬂ (le(va)l? + le(vm) 1) dx) J

Therefore, from (10.24)(ii) and (10.25), {v,} is a Cauchy sequence in H1(2), so
that

IN

||vn - ”m||(Hl(Q))N

v, — v strongly in V,

) vlv=1
i) / le(v)[? dz = 0. (10.26)
Q

Statement (10.24)(ii), together with Step 1, implies that v = 0, which con-
tradicts (10.26)(i). Hence, (10.23) holds and the proof of the corollary is now
complete. m]

with

The main result of this section is the following:

Theorem 10.6. Under assumptions (10.12), problem (10.13) has a unique so-
lution u € V. Moreover,

1
el < 2 (U + Co @gl -3 ) ) (10.27)

where C., () is the trace constant defined by Proposition 3.31.
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Proof. From (10.17) and Proposition 10.5, the bilinear form (10.15) is coercive
on V. We have already mentioned that it is also continuous on V x V. On the
other hand, arguing exactly as in the proof of Theorem 4.21, we have that (10.16)

defines F as an element in V' with
1l < 1S+ Co@9l - oy v

All the hypotheses of Theorem 4.6 (the Lax-Milgram theorem) are fulfilled,
whence the claimed result. m]

Remark 10.7. It is interesting to notice that, due to symmetry properties of
B, the form a given in (10.15) is symmetric. Then, from Theorem 4.8, it follows
that the solution u of (10.13) is the unique solution of the minimization problem

{ Find u € V such that
J(u) = inf J(v),

where
1
30) = 3 [ B@)e)etw)dz — (0w = ©9) - gy by
for all ve V. 0

10.2 Auxiliary periodic problems

As in the scalar case (Section 6.1), we introduce a family of auxiliary periodic
boundary value problems posed on the reference cell Y and related to the tensor
A defined by (10.3). They are the corresponding corrector functions for the
linearized elasticity system. In Section 6.1 we defined two different families of
auxiliary functions since we did not supposed any symmetry. In the present case,
due to symmetry properties (10.1)(ii}, we need to introduce only one family of
functions.

To begin with, for any £,m € {1,...,N}, let us define the vector-valued
function P (y) = (P{™(y)h<ken by

Plfm(y) = ym‘skt k = la R | N5 (10.28)

where dy; is the Kronecker symbol. Introduce, for any ¢,m € {1,...,N}, the
vector-valued function x*™ = (x{™)1<x<n, a solution of the system

3 O™ ~ Pim) : .
oz, (a,,kh T—) =0 inY, i=1,...,N

xi™  Y-periodic
My(xf™) =0
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which can be rewritten
d 8x;:m ) aaijlm . .
| Qiigp =) =L inY, i=1,...,N,
dz; (a,, *h “Bzh Oz ; "
xi™  Y-periodic
My (xg™) =0.

Using definition (10.2), the variational formulation of this problem is

(10.29)

Find x!™ € (Wper(Y))N such that

a, (™, v) = / Ae(P™) e(v) dy (10.30)
Y

Yv € (Wper(y))Na

where

a, (u, v) = fy AW)e(w)e(v) dy,  Vu, v € (Wyer(Y))N (10.31)

and (see 4.66)),
Weer(Y) = {v € Hp (Y); My(v) =0},

with H}.(Y) given by Definition 3.48.
Recall that due to the Poincaré-Wirtinger inequality (Theorem 3.28), the
space (Wper(Y))? can be equipped with the norm

N 3
Mol (Wer vy = (Z "Vvilliz(y')) ,

i=1

for v = (v1,...,9n8) € (Wpee(Y))N.

As for problem (10.13), the existence of a solution of problem (10.30) is
based on the Korn inequality below corresponding to the periodic case. We refer
the reader to Kondratiev and Oleinik (1989a,b) and to Oleinik, Shamaev, and
Yosifian (1992) for its proof.

Theorem 10.8 (Korn inequality for the periodic case). There exists a con-
stant cx = cx(Y') such that

Mol vy <ex (/v le()? dy) %,

for all v € (Wpee(Y))V.

Then one has immediately the following result:
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Proposition 10.9. The quantity

livllly = ( /Y le)|? dy)%

defines on (Wper(Y))"N a norm equivalent to the norm ||v||(w,.,(v))~-

We can now prove the existence and uniqueness of the corrector functions
ém

X

Proposition 10.10. Assume that A satisfies (10.3). Then, for any ¢{,m €
{1,..., N}, problem (10.30) has a unique solution x*™ € (Wper(Y))N.

Moreover, its extension by periodicity (see (3.7)) to the whole of RN, still
denoted by x‘™, is the unique solution of the problem

ém .
—f—(aijk,. ?ﬁc—) _ _Yaiem in D'(RN), i=1,...,N,

dz; oz oz,
o ot ’ (10.32)
Xi© Y-periodic

My (xf™) = 0.

Proof. The existence and uniqueness of system (10.31) are straightforward by
the Lax~Milgram theorem (Theorem 4.6). Due to Proposition 10.9, we can take,
in Theorem 4.6, H = (W (Y))" equipped with the norm |||v]|ly. The coer-
civeness of the form a, defined by (10.31) follows then from assumption (10.3)

and reads
alllvlliF <a (v, v), Yve (Wpe(Y))N. (10.33)

The proof of the second statement follows the outlines of the proof of Theo-
rem 4.28. ]

Set now, for any ¢,m € {1,..., N},

w'™ = —x*™ 4 pm (10.34)
which, from (10.29) satisfies
0 fm
—a—mt(aukh %‘Z‘T) =0 inY, i=1,...,N,
3

wf™ - P{™  Y-periodic
My (wf™ — Pf™) = 0.

In view of (10.30), its corresponding variational formulation is
Find w'™ with w®" — P € (W,er(Y))" such that
a, ('™, v)=0 (10.35)
Yo € (Woer(Y))™,
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Let still denote by x™ its extension by periodicity to the whole of RY™. Then
wi™ = —x™ 4 P™ satisfies

a 8'w,‘cm . o N .
—— .. —_—— = =l,...,N,
3z, (avkh oz, ) 0 in D'(R™), i

10.36
wf™ — P{™  Y-periodic ( )

My (wf™ - Pf™) = 0.
Let us mention that further properties of functions x*™, such as their sym-
metries, have been investigated by Léné (1984).
10.3 Homogenization results
Let now turn back to system (10.7) whose variational formulation is (see (10.3))
Find u® € V such that
£ £ — A ,
[ 4@ et e(0) d = (£, 4 00:8) g4 gy b (1090
Yve V.

The solution u® exists and is unique due to Theorem 10.6 applied with A¢
instead of B. which is allowed due to (10.6).
We are now interested in the behaviour of u as ¢ — 0. The homogenized

problem is given by the following result:

Theorem 10.11. Let f € V', g € (H™%(['y))Y and A* be given by (10.3)-
(10.5). Let u® € V be the solution of (10.37). Then.

{z’) u® = u® weakly in V.
i)  A%e(u®) = A%e(u’) weakly in (L2(Q))V*N,

where 1 = (4§..... u%,) is the unique solutiou in V of the homogenized system
6 0 aug
—a—\|Giixn a— ) =Ffi inQ
dr, \ " gz, i
«*'=0 onT, (10.38)
ol

0 k .

Qoeh =— N =g; only.
izkh o =8 2

for i = 1,...,N. The homogenized tensor A° = (a¥;,))1<i.jkh<n is con-
stant, verifies the symmetries of clasticity (10.1)(ii) and a coerciveness condi-
tion (10.1)(iii) for some a®. Its elements are given by

a?jkh =M, (“iﬂmehn(wkh))- (1039)

where w*" are defined by (10.34) and (10.35).
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Before proving this theorem, we give some other expressions for the tensor
A9 from which, in particular, we deduce its coerciveness.
From (10.28), one immediately has

1 /8P  Qpkh
e""(w)”(ﬁif_* Bye

3 ) = 1(6exOmn + Sendmi)-

Then, using (10.34) in (10.39) it follows that

aien = My (@ijrn) — My (@ijemeem (™))

1 1 Ay kb (10.40)
= mLaijkh(y) dy - Vi /; auzm(y)-gy-; dy,
since
eem(P*?) = 3(6¢k0mn + Oenbmk)-
Proposition 10.12. Let A" be given by (10.39). One has
1 . 1 .
en = 57 [, AW ) el dy = oy w), (1041

where ay is defined by (10.31).

Proof. The proof is analogous to that of Proposition 6.8. It consists in choosing
v = x** as test function in (10.30). After some easy calculations, we derive

(see (6.39))
/ Ay) e(P™ — ™) e(x*") dy = 0,
v
which, together with (10.40). implies (10.41). O

Corollary 10.13. Let A® be given bv (10.39). Then, there exist two positive
numbers a® and 3° such that

A% € M, (a®,3°,9).

Proof. We have to prove (10.1). Properties (10.1)(i) and (10.1)(iv) are trivial
since A is constant. The symmetries (10.1)(ii) are straightforward from (10.41)
and the symmetries of A.

It remains only to prove that there exists a positive number a®, such that

a®m|> < Amm  for any symmetric matrix m = (mijh<ij<n-  (10.42)

We follow the lines of the proof of Proposition 6.12. Let m be a symmetric
matrix. Then,

1 i 1
A’mm = a?jk,, mij Mip, = i ay (w9 myj, wh my) = m ay(Z2,Z), (10.43)
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where Z is the vector w* m;;. The coerciveness of ay implies that
A’mm > 0.

Let us show that this inequality holds strictly if m # 0. To do so, suppose
that m is a symmetric matrix such that A°mm = 0. The coerciveness (10.33)

of a, implies that
all|Z||ly = 0.

Hence, from Theorem 10.8, we have
V(wd my;) =0. Vi, jk=1,...,N.
Recalling definition (10.34), this means that
Oy miz) _ O(PY myj)
Oyn Oyn

Integrating over Y, since xj is Y-periodic, one has

= mgn. Vi gk h=1,...N.

0=|Y|{mgn. Vk.h=1,....N,

which implies m = 0. To prove the existence of an o satisfying (10.42), we
argue as at the end of the proof of Theorem 5.10. a

Proof of Theorem 10.11. We prove the result by the oscillating test functions
method due to Tartar which we used for the elliptic case in Chapter 8.
Due to (10.6) and Theorem 10.6. we have the a priori estimate

1
"uell(ﬁl(g))N S z;("f"\)' +C‘Y(Q)|Ig“(}l—§(r2))~)‘

Consequently, from Proposition 10.5, it follows that
/ le(u®)] dx < ¢,
Q

where ¢ is independent of €. Introduce the stress tensor (see {10.9)) o¢ =
(05 )1<i,5<nv = A° e(u®) defined by

€ _ Af £
0ij = Qijkn exn(u®),
which satisfies

& — , y
/9 ot (@) e(v) dz = (f,v)vv + (9,0 yop v by TP EV. (1044)

Moreover, thanks to (10.6), one also has

IlO’e"(L‘z(Q))NxN <ec
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From these a priori estimates, we have the following convergences (up to a sub-

sequence):
i) u —=u® weakly in (H'(Q))V

i) uf —>u® strongly in (L2(Q))V (10.45)
iii) o°— o weakly in (L*(Q))V*V.

We can pass to the limit in (10.44) to obtain

0 —
/Qa (z)e(v) dz = {f,v)v.v + (g, v)w'%(rz))ﬂ,(yi(n)w’ Yy € V. (10.46)
As in Chapter 8, we have now to identify ¢° in terms of u°. Indeed, Theo-
rem 10.11 is proved if we show that
0® = ACe(u0). (10.47)

since (10.46) is nothing else than the variational formulation of (10.38). On the
other hand, by Corollary 10.13 and Theorem 10.6 one has the uniqueness of such
a solution. This implies that (10.47) will provide the convergence for the whole
sequences in (10.45).

In order to prove (10.47), let us set

wkh (z) = ew*h (—f) = P*h(r) — e x** (;),

< -

where P*, x** and w*” are defined respectively. by (10.28), (10.29), and (10.34).
Recalling that x** is Y-periodic we obtain, in view of Theorem 2.6 that

{i) wkh = P*h - weakly in (HY(Q))N

10.48
i)  wk" - P strongly in (L2(Q))V. ( !

Introduce the matrix
'r)§h(a*) = A°(r) c’(u'fh)(.l') =(A ey(uvk")) (é)

where the notation ¢, means that the derivatives are taken with respect to
the variable y. Observe that by construction (see also the proof of (8.14)),
from (10.35) one has

/ N e(v) dr = 0. Ve e (HL()V. (10.49)
Q

By the same arguments as those used to prove (8.13). we have the convergence
neh — My (Aey(w*"))  weakly in (L2(Q))V*V.
Recalling definition (10.39). this signifies that
(n¥h)i; — ol weakly in L3(92). (10.50)
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Let now ¢ € D(R) and choose pw*" as test function in (10.44) and pu® as
test function in (10.49). We have

0 0
[ ot etuttypde+ 3 [ ot [(0i¥re st + () 5] de = (5t

1 Op 0<p
kh € - kh € €
/‘;ne e(u)wdx+2/n(ne )em u,-—-amm+u 5z, dz = 0.
Observe that from the symmetry of A¢,
o° e(wh) = nkh e(u®).

Consequently, by subtraction we obtain

1 1s] o

9 / ogm (wsh)t _‘P + (w:h)m _‘P d

2Ja Om Oz (10.51)

LR e O | . Bso] _ , )
2 /{;(775 )lm [u[ oz, + u,, —Bwe dr = (f, <pwe )v

Let us now pass to the limit in this identity as e — 0 in (8.15). By using
convergences (10.45) and (10.48) and definition (10.28) of P*", we have

1 0 Oy
2 /Qoem [yh5ke 7. + Ynbkm %z ] dz

(10.52)
1 o O o
[ i [18 2 4, 52| d = (f, 0P,
2 3 Tm
This can be rewritten in the form
[eords — [ otugdot [ cuneents) pds
= (fioP*™)yy
By using (10.46) written for the test function v = ¢ P*, this becomes
/Qagh pdr = /nagmkh eem(ul) ¢ dz, Vo € D(Q).
Hence Theorem 1.44 implies that
Oph = A €em (u°),
which is exactly (10.47). This ends the proof. o

We adapted to the linearized elasticity system the proof of the homogeniza-
tion result for the scalar case. In the same spirit, most of the results from Chap-
ter 8 can easily be generalized to the present problem. We merely state here the
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convergence of the energy and a corrector result, whose proofs can be done by
following step by step the proofs of the analogous results given in Sections 8.2

and 8.3.
Let us define the energies associated respectively to problem (10.37) and

(10.38),
Ef(uf) = / A° e(u®) e(vf) dz.
Q

and
E°u®) = / A% e(u®) e(u®) dz.
0
Then we have

Proposition 10.14. Let u° be the solution of problem (10.37) and u°, A°® given
by Theorem 10.11. Then,

Ef(uf) — E°(u°).

Moreover,
A% e(uf) e(u) — A%e(u®) e(u®) in D'(Q).

As in the elliptic case (see Proposition 8.3), this result allows us to make
precise the constants a® and 3° from Corollary 10.13. As matter of fact, the
following result holds:

Proposition 10.15. The matrix A° given by Theorem 10.11 is such that
BZ
Ale M,(a, ;,Q).

Finally, introduce the corrector tensor C* = (Ciiknr)1<isiknsn defined by

{ 5ikh () = Cijin (;) a.e. on
Cijkn(y) = eij(w*™(y)) ae. onY,
where w*" is given by (10.29) and (10.34).

Theorem 10.18. Let u® be the solution of problem (10.37) and u°, A® given
by Theorem 10.11. Then

e(u®) — C%e(u®) — 0 strongly in (L*(Q))V*V.

Moreover, if C € (L™(Y)))N* for some r such that 2 < r < oo, and Vu® €
(L*(Q))N*N for some s such that 2 < s < oo, then

e(u®) — C%e(u®) — 0 strongly in (LYQ))N*N,

t= min{2, rs }
r+s

where




11
Homogenization of the heat equation

In this chapter we are interested in the asymptotic behaviour as € — 0 of the
solution u, = u.(z,t) of the problem

u, —div(A*Vu,) = fo  in Ox]0,T[
ue =0 on INx]0,T| (11.1)
ue(,0) = ud(z) inQ,

where the operators div and V are taken with respect to the space variable
z €  and ’ denotes the derivative with respect to the time variable ¢ €]0, T7,
with T > 0. We suppose we are given the source term f, and the initial state
u?. Here, as in the previous chapters, the matrix A¢ is Y-periodic and defined

by
aj;(z) = a.](e) ae.onRM, Vij=1,...,N (11.2)

and
A‘(:c) = A(g) = (afj(.’lf))lsi‘jslv a.e. on ]RN, (11.3)

where

{al_’) is Y-pe!‘iOdiC, Vi’j = 1’ ce N (11-4)

A = (ai))i<i j<N € M(,8,Y),

with a, 8 € R, such that 0 < a@ < g and M(a,3,Y) given by Definition 4.11.

As mentioned in Section 5.2, problem (11.1) is known as the heat equation,
since it models the heat transfer in composite materials when the temperature
u, is time-dependent. If u, and the source f, are independent of the time, prob-
lem (11.1) reduces to the Dirichlet elliptic problem (5.6) modelling the stationary
heat diffusion (see Section 5.2). Problem (11.1) is a particular case of a large
class of partial differential equations called parabolic.

As for the elliptic case, there is a very large range of results concerning
parabolic problems. For general results concerning parabolic equations, we refer
the reader to Lions and Magenes (1968a) (see also Pazy, 1974, Wloka, 1987,
Cazenave and Haraux, 1998). For homogenization results concerning the heat
equation, we refer to Bensoussan, Lions, and Papanicolaou (1978), Sanchez-
Palencia (1980) for the periodic case and to Spagnolo (1967, 1968), Colombini
and Spagnolo (1977) for the general non-periodic one.
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In Section 11.1 below we will show the existence and uniqueness of the solu-
tion of (11.1) in a variational framework, when £, is in L?(2x]0,T[) and u? in
L?(Q). For the definition and properties of various time-dependent functional
spaces used in this chapter, we refer to Section 3.5. In Section 11.2 and 11.3 we
give the main homogenization results for problem (11.1).

11.1 Existence and uniqueness
Let Q2 be a bounded open set in RV and consider the following problem:

v —div(BVu) = f in Qx]0,T]|
u=0 on Nx]0,T[ (11.5)
u(z,0) = «%(z) inQ,

under the following assumptions:
i) B € M(a,8,90)
i)  fe L*}Qx]o,T|) (11.6)
i) u® e LN).
As in Chapter 3 (see Theorem 3.58) define
W= {v|veL*0,T; H}Q)), v’ € L*0,T; H™Y(Q))},
which is a Banach space with respect to the norm of the graph, i.e.
lwllw = vl L20,7; npcey) + 1V le20.1: 2-1¢02y)-
Then, the variational formulation of problem (11.5) is

( Find v € W such that
(u’(t), U)H—-I(Q)'Hol(g) + L B(z)Vu(a:, t) Vv(m) dz

(11.7)
- /ﬂ f@t)u(z)dz inD(0,T), Voe HAQ)

L 4(2,0) = v(z) in Q.

Remark 11.1. The initial condition has to be understood in L2() since, due
to Theorem 3.58, v € C([0,T}; L?(R2)). This implies, in particular, that

him Jlu(z, )| L2y = 1)l L2(q)-
¢

We prove in this section the existence and uniqueness of the solution of prob-
lem (11.7). To do so, we will use the Faedo-Galerkin method (see Lions and Ma-
genes, 1968a). This method is based on the fact that the Hilbert space H}(f)
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can be approximated by a sequence of finite dimensional subspaces {V,,} as
m — 0o. The proof consists in several steps. In the first one, we construct these
subspaces Vj,. In the second step, for any m € N, we formulate an approximate
problem of (11.7) and show that it has a unique solution u#,. In the third step,
we give a priori estimates of um, independent of m. In the fourth one, we pass
to the limit as m — oo and prove that u,, converges in an appropriate sense to
a solution u € W of (11.7). In the fifth step, we prove a priori estimate on u. In
the last step we prove the uniqueness of the solution.

Let us point out that the main interest of this method is the fact that it
provides a priori estimates on the solutions u. In our context, this is essential in
order to study the asymptotic behaviour as € — 0 of problem (11.1).

Theorem 11.2. Under assumptions (11.6), problem (11.7) has a unique solu-
tion u € W. Moreover, there exists a constant ¢ depending on ¢, 3, 2, and T

such that
lellw + el z=o,7; L2y < e(llfllzz@xio,rp + I1u°llL2(y)- (11.8)

Proof. As mentioned above, the proof consists in six steps.
Step 1. To construct the subspaces V,, we will make use of Proposition 8.23.
Let (w¢) be the orthonormal basis in L?(f2) given by (iii) from Proposition 8.23
and Remark 8.24 for the choice B = I in problem (8.75). This means that the
operator B is —A. Moreover, by definition the set (w;) is orthogonal in H} ().
Denote by V;,, be the m dimensional subspace of H}(f?), spanned by wy, ...,
Wen.
Let us introduce also the projection operator P, from L?() on V,, defined
by

m
Pov=) (v, Wi) o) Wis VU E L*(9). (11.9)

i=1
From classical results concerning Hilbert spaces (see for instance Yosida, 1964
Chapter 3), one has that

Pnv — v strongly in L%(Q), Vv e L%(R), (11.10)

and furthermore,
I Pmllcczz@); L2y < 1. (11.11)

Moreover, the restriction of P, to H3(f2), namely
m
Prv =Y (v,wi),, @ Vv e H)(Q),
i=1

is in C(H}(R); H}(2)) and satisfies

| Pl 1 ); 3 02y < 1 (11.12)
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Indeed,

m
2 — \2 12
1Puoliiey = 2 (0000 IVl
. 1=

IA

oo

RY )2 = 2 = 2 .
D00 ) |V gy = 1900, = Il
=

Moreover, as before,
P,v— v strongly in H () Vv e H}(Q). (11.13)
Observe now that P, can be extended to H~(Q2) by setting

m
Ppv = Z<v’ wi)”-l(n).ﬂé(ﬂ) w;, YvE H_I(Q).

=1

Let us show that one still has
| Prllccr-1 ) -2 ¢s2)) < 1- (11.14)

Indeed, for any z € H}(2), due to Remark 3.44, one can write

[(Pmv, 2 >g-1q)H30) | =

m
W wida-i @), m@) f w;i z dz
i=1 Q2

<v, Z(Z, wg)mm)wg

i=1 > H-1(Q),H}(2)

= (v, Pe2)p-1@).m3@| < Iola- @llzllmy e

where we have used (11.12) and Remark 3.44. Then (11.14) is straightforward.
0

Step 2. Since, by assumption (11.6), u® € L?(Q), if we set ud, = P,u°,
from (11.10) we have
u® — u® strongly in L%(9). (11.15)
Let now introduce, for any m € N*, the finite dimensional approximate problem
4 m
Find u,, = Z 95" (t)w; € Vin such that

=1

) fuﬁ,,(z,t}wkdz+/ BVup(z,t) Vwy dr
Q Q

=/f(x,t)wkdx, inD/(0,T) Vk=1,....m
Q

{ um (2,0) = ud,(z) in Q.
(11.16)
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From (11.9) and the initial condition in this problem, one has

m
Z m(o)wJ = um(o = u Z(u wJ)Lz(Q)
which implies g7 0) = (u, wy) L2@)’ since wy, . .., w,, are linearly independent.

Consequently, problem (11.16) is a system of m linear ordinary differential
equations of the first order with unknowns g, ..., gm, which reads

m m
dd& + Zg;-"(t)/ BVw; Vuy dx = / f(z,t) wy dz
t o Q e

g;cn(o) = (uO, wk)7

for any k = 1,...,m. Classical results (see, for instance Coddington and Levin-
son, 1955, Chapter 3) give the existence and uniqueness of a continuous solution
g7, ..., 9™ of this system on the interval [0,7]. Hence, u,, is determined and
belongs to C ([0, T]; Vim)-

Step 3. We will now prove that u,, satisfies some a priori estimates. To do
50, let us multiply the kth equation in (11.16) by gf* and sum over & from 1 to

m. We obtain
/ up (T, t) um(z, t) dr +/ BVup(z,t) Vup(z,t) dz = / f(z,t) um(z, t) dz.
Q Q Q

Recalling the ellipticity assumption on the matrix B and applying successively
the Cauchy-Schwarz inequality (Proposition 1.34) and the Poincaré inequality
(Proposition 3.35) in the right-hand side term, we derive

1d
Y vl gy + a"um"Ho(n) < [1fllz@y lumliL2@) < CallfllLa@)llumll a3 @)

= (sl ) (Valumlngen) < ey + FllmIy oy

where Cq is the Poincaré constant which is obviously independent of m. Inte-
grating over )0, t[ with ¢ € [0, T, it follows that

t
Iy + | (g o < ey + 2 j MF ()R

This, together with (11.15), implies that un, € L=(0, T: L3(Q))NL3(0, T; HA ()
with

humll Lo 0,7; L2(02)) + lumll 20,7 my0)) < co(luallz2eey + Il f "L’(ﬂx(O,T))% <a,
11.17)

where ¢y and ¢, are constants independent of m.



208 Homogenization of the heat equation

We will now give an a priori estimate for u/,. In order to do this, remark
first that the equation in (11.16) implies that

(4l (8),¥)L20) = (— div (BV)um(t) + f,v)L2 (), Vv € V.
This means that
U, () = =[P (F (um) + £)](2), (11.18)

where the operator P, is defined by (11.9) and F = — div (BV).
Since B verifies (11.6)(i), it is easily seen that F € L(H}(RQ); H~1(R)).
Therefore, for any u,, € V,, one has

IF (um) () -1 @) < Bllum (@) a30)-
Hence, F(um,) € L2(0,T; H~'(2)) and in view of (11.17),

IF(umdlL2or. a1y < Blum@lz20,1; my@y)
< ex(lludllez@) + I fllz2x,m)
where ¢ is a constant independent of m. Then, using (11.14), one deduces
from (11.18) the following a priori estimate:
il z20.7: -1y < €a(llumallz@) + IfllL2@xcoy) < €as (11.19)

where c3 and ¢4 are constants independent of m.
Step 4. By using the a priori estimates obtained in Step 3, we now pass to the
limit in (11.16) as m — oo.
Thanks to estimates (11.17) and (11.19), we can extract a subsequence (still
denoted by m), such that
Um = u  weakly* in L=(0,T; L%(9))
Um — u weakly in L2(0,T; H} () (11.20)
ul, = weakly in L?(0,T; H™}(Q)).
Indeed, the first convergence follows from Theorem 1.26 since from Proposi-
tion 3.59, one has [L}(0,T; L?()))’ = L*(0,T; L*(f2)) and from Proposition
3.55 one knows that the space L!(0,T; L?(f?)) is separable. The other conver-
gences follow from Theorem 1.18 and Proposition 3.55, recalling that H} () and
H~1(Q) are reflexive.
Now let ¥ be given in D(0,T) and v € H}(Q). Multiply the equation
in (11.16) by (v, wx) " (Q)w and sum over k£ from 1 to m. We get, after inte-

gration in ¢ over (0,T)

(T,
/o [ n@2)900) (Pro)(a) ot

T
< + / / B(z)Vaum(z, t) ¥() V(Pmv)(z) dadt (11.21)
0 Q

T
| - fo /0 £(2,8) ¥(t) (Prv)(2) de dt,
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where we have used definition (11.9). We now let m — oo here. All the terms
pass to the limit, thanks to convergences (11.20) and strong convergence (11.13).
We finally get

T T
| O30 @ medt+ [ [ B@)TuE0 90 Vo(o) ded

T
- / / (@, ) 9(t) v(z) dedt,

o8 (11.22)
which is exactly the variational equation in (11.7) since ¥ and v are arbitrary
respectively, in D(0,T) and H}(Q).

It remains to show that u satisfies the initial condition u(z, 0) = u°(z). To do
so, observe that since u,, € W, equation (11.21) is still valid if ¢ € C*({0, T}]).
Choose a 9 such that ¥(0) = 1 and ¥(T) = 0. Then, integrating by parts with
respect to ¢ in (11.21), one has

(—/OT/num(z,t) Y'(t) (Pmv)(z) drdt

A

T
+ /0 /ﬂ B(z)Vum(z,t) %(t) V(Pnv)(z) dz dt

T
- / / (@) $(t) (Prv)(z) dedt + / 4, (Pv)(2) da.
\ 0 [1] Q

We can pass here to the limit by the same argument as above using the strong
convergence (11.15). We obtain

T T
_ f f w(z, ) ¥'(t) v(z) dz dt + / / B(x)Vul(z, t) $(t) Vo(z) dzdt
0 QT 0 Q
_ / / (@, t) $(t) v(z) dzdt + / v ds.
0 Q 9]

Note that for the first term in this identity, due to Theorem 3.58 (iii) we have
/{;u(m, t) wl(t) v(x) dxr = (u(t), ¢'(t)v)H-1(Q)‘Hé(Q)
d
=~ WO V- @y + 5 [ 1l 09(0) v(o) de,

which can be integrated with respect to t. Since u € C([0,T); L*()) (see
Remark 11.1), we have

T
f#O06) Dn-sormyiardt + [ ot 000(e) de
0 2
T
+ /0 fn B(z)Vu(z, t) ¥(t) Vo(z) dz dt

T
= /0 /Q f(z,t)9(¢) v(z) de dt + /0 ©°(2) v(z) dz.
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Observing that (11.22) is still valid for ¢ € C*([0,T}), we deduce that
/ u(z,0)v dx = / W(z)v(z) dz, Vv € H(Q),
Q Q

which by Theorem 1.44 implies the required equality.
Step 5. We now prove estimate (11.8). We show it for the solution u obtained
in the previous steps. This is not restrictive, since in Step 6 we will prove the

uniqueness of the solution of problem (11.7).

Estimate (11.8) for the solution given by (11.20) is a simple consequence of
estimates (11.17) and (11.19). Using again convergences (11.15) and (11.20) and
the lower-semicontinuity of the norm from Propositions 1.14(ii) and 1.24(ii), we

get from (11.17)
Notll Lo 0,7; L2(0)) + llellL2g0.7; 12 (02))
< limjinf lup |l L= 0,7 L2(y) + Uminf [umll L2c0,r; 3 ()
< lglliglcf (el L= 0,7; L2(@2)) + letmllLaco,7: Hg(n)))
Se lim (luglicze) + 1 flizs@xo1y)

= co (Il L2y + I fllL2@xco.y)-
Similarly, from (11.19) we obtain

' ll2c0,7 -1y < es(lulllLzy + I fllL2exo.my))-

These estimates imply the required one (11.8).
Step 6. Let u; and u2 be two solutions corresponding to the same data. Their

difference satisfies (11.7) with f = 0 and «° = 0, namely

(w1 — u2)'(8), V) -1 ), 3 (0) + /9 B(z)V(u1 ~ u2)(z,t)) Vo(z) dz
=0 inD'(0,7T), Yve H}N),
(uy — u2)(z,0) =0 in Q.

Take v = u; — uz and usc Theorem 3.58. From the ellipticity of the matrix
B and Cauchy-Schwarz inequality (Proposition 1.34), we obtain

1d .
5 g lIw1 — ualliz(e) + el - 23y < 0.

Integrating over )0, ¢[ with ¢ € [0, T, it follows that

t
s = sy + [ = wal)lByyy dr <O

This implies that u; — uy = 0. O
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Remark 11.3. Let us mention that one can also take f € L2(0,T; H~'(2)) in
problem (11.5). Theorem 11.2 can easily be adapted to this case. For the sake
of simplicity, we have restricted ourselves to the case f € L(£2x]0, T). 0

11.2 The homogenization result

Let us now turn back to problem (11.1) with f. € L%(Q2x]0,T{) and u? € L3(Q).
The variational formulation is

[ Find u. € W such that
(L (), ) -1y gy + ] A5 (2) Ve (2, 1) Vol(z) dz
e (11.23)
- / fl@t)v(z)dz inD'(0,T), Voe HNQ),
Q

| ue(x,0) = u¥(z) in Q.

The existence and uniqueness of u, is given by Theorem 11.2. We will now study
what happens when £ — 0. Notice that the oscillations in (11.23) are only due
to the variable z. As will see below, in the homogenization process, the variable
t plays the role of a parameter and consequently, the homogenized matrix is that
of the elliptic case treated in the previous chapters. As a matter of fact, we have
the following result:

Theorem 11.4. Let f. € L2(2x]0,T]), u? € L%() and let u. be the solution
of (11.1) with A® defined by (11.2)—(11.4). Suppose that

{z) u? = u®  weakly .in L2(0) (11.24)
i) fo= f weakly in L2(92x]0, T[),
Then u. satisfies

i) ue — u  weakly in W,

{z’i) A*Vuy, — A°Vu®  weakly in (L2(2x]0, T]))"™, (11.25)

where u is the solution of the following limit problem:
v —div(A°Vu) = f in Qx]0, T
v=0 on dNx]0, T (11.26)
u(z,0) = u%(x) in Q.

Here, A° is the homogenized matrix given in Theorem 6.1 by (6.30).

Proof. For the proof, we make use of Tartar’s method of oscillating test functions.
We follow along the lines of the proof given in Section 8.1 for the elliptic case.

Observe first that since A° € M(a,[,Q), using assumption (11.24) and
Proposition 1.14, estimate (11.8) now reads

luellw + lluell L= o,7: 20y < e(lifellzz@xjorp + el @) < e, (11.27)
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where ¢ and ¢; are independent of €. Moreover, if we introduce the vector £¢

defined by
& (z,t) = (& (z,t), ..., Ex(z, b)) = A°%(t)Vue(z, t), (11.28)

from (11.27) and assumptions on A%, one has
1€¢1 L2 @xjo, v < Bes.
Consequently, there exists a subsequence, still denoted by ¢ such that

i) U = U weakly* in L*(0,T; L%())
M) ue—u weakly in L2(0,T; H3(R))
i) u —u strongly in L2(2x]0, T() (11.29)
w) u,—~u  weakly in L2(0,T; H~}(Q))
v) € —=¢  weaklyin (L2(Qx]0,T])",
where we have used the compact injection W ¢ L?(0,T; L*(Q)) = L?(92x]0, T)

(see Theorem 3.58). Then, convergence (11.25)(i) holds for this subsequence.
From its definition (11.28) and problem (11.23), it is easily seen that £°

satisfies

i T
_/; /9&(1', t)-Vu(z)p(t) dzdt = /(; Lfs(x, t) v(z)p(t) dzdt
T
B /o (Ue (), V)a-1(0), my P (2)

for any v € H}(Q) and ¢ € D(0,T). According to Proposition 3.59, this is
equivalent to

T T
fo /ﬂ £(z,) - Vo(a) p(t) dodt = /0 /9 fo(z,8) v(@)p(t) dodt

—(ttg, wp)lﬂ(a.b; H-1(R2)),L2(a,b; H}(R))»
(11.30)

where we can pass to the limit due to convergences (11.29). We obtain that I
satisfies

00 - + [ €0 Vo(z) da
- /,, f@ @) de mD(0,T), YoeHNQ). (1131)

At this point, as in the elliptic case, we only have to prove that

€0 = A°Vu. (11.32)
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We will make use, as before, of the oscillating test functions w§ defined by

(8.10), i.e.
z z
wi(z) =sw,\(;) =A~:L‘—exk(g),

where w), is defined by (6.27).
Let us recall the following convergences (see (8.11)):

{i) w§ = A-z weakly in H'()

T (11.33)
i) w§ — A-2 strongly in L*(R2).

Introduce also the vector function
05 = 1ATVus,
which satisfies the convergence (see (8.13))
75 = My ('AVw,) = 1A weakly in (L2())V, (11.34)
and the equation (see (8.14))
/Qni -Vodr=0, YveH)).

Let ¢ € D(Q) and ¢ € D(0,T). Choose here v = ¥ ucp and integrate over |0, .
Then

T T
/ f n5 - Vue(z. t) Y(x)p(t) dr dt + / / 75 - Vi(z) ue(x. t)p(t) dz dt = 0.
o Jo o Ja
(11.35)
Choosing now v = w5 in (11.30) and subtracting from (11.35) we obtain

T T
/0 /Q £ (2. 8) - Vib(x) 1 lt) drdlt — /0 fn n5 - V(@) ue(x, )p(t) dadt
T
- fo /Q Felzt) ¥(2) ws (@)e(t) dz dt

~ (e, () W ()P L2(a b H-1(0)).L2(ab: HY()s

where we pass to the limit by using convergences (11.24), (11.29), (11.32) and
(11.33) and obtain

T
/ /§°(x.t)-Vw(.l'}(z\-:r)zp(t) dr dt
(1] Q
T
= [ [ 4% Vula) uta, 0000 drdt
0 Q
T
= [ [ fa0u@ 0200 dra
JO Q

— (u' 9(x) (A 2)P) L2(abs H-1(Q)).L2(ab: HY(@))-
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From equation (11.31), by the same computation as in Section 8.1 we deduce

(11.32).
To end the proof, we have to show that u satisfies the initial condition

in (11.26). We make use of the same argument as in Step 4 of the proof of The-
orem 11.2. To do so, choose ¢ € C*([0,T}]) such that ¢(0) = 1 and ¢(T) =0
and v € D(Q) in (11.30). Then, from Theorem 3.58(iii), one has

T T
/ / €5 (3, 1) - Vo(z) o(t) dzdt = / / £, 8) v(=) @(2) de dt
0 Q (1] Q

T
+/(; (ue(t), v) H-1(0).13 )% (t) dt+/9ugvd:c.

Thanks to convergences (11.24), (11.29) we can pass to the limit in this
identity to get

T T
/ / €%(z.t) - Vo(z) ¢(t) drdt = / / fz, t)v(z)p(t) de dt
0 JQ 0 JQ

T
+/0 (u(®), VY -~1(0).1582) ¢'(8) dt"'/guol’ dz.

From this equality, multiplying (11.31) by ¢ and integrating with respect to ¢,
we obtain

T
/0 (@' (), o(t) ) -1 (02). 13 ()

T
= —/(; (u(t).v)ﬂai(g).ﬁé(g) cp'(t) dt + /ﬂuo(a:)v dzx.
This, together with Theorem 3.58(iii). implies that
u(x,0) = u%(x).

To conclude the proof. observe that since A" is elliptic (see Proposition 6.12),
Theorern 11.2 provides the uniqueness of the solution of problem (11.26). Con-
sequently, the whole sequences in {11.29) converge. ]

11.3 Convergence of the energy

Let ue be the solution of (11.1) whose variational formulation is (11.23), namely

( Find 1. € W such that
J <’u:.(t), U)H—I(Q)'H&(Q) + /{; As(a:)Vue(x, t) V(!(JJ) dr
= /ﬂfs(m, t)v{r)dz in D'(0.T), Yve H}(Q),

[ ue(2,0) = wd(z) in Q.
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Let u be the solution of the homogenized problem (11.26) whose variational
formulation is
[ Find u € W such that
(' (t), V) -1 (@)1 +/ A%(r)Vu(x.t) Vo(x) dr
“ (11.36)
= / fe.t)e(xr)dr inD'(0.T). Yove Hy(R),
Q

| u(x,0) = «®(z) in Q.
We introduce now the energies associated with these problems:

]
1) Ef(ue)(t) = ‘%"ue(t)"i?(rz) +/0 /Q A% (2)Vue(z,7) Vue(z,7) dedr

i)  E(u)(t) = %I[u(t)lliz(m+/0 /QAO(::')VN(J'. 1) Vu(x.7) drdr.

Choosing v = ue in (11.23) and © = u in (11.36). it easily seen that
t

i) Ef(ue)(t) = %"ugll%g(m +/ /Q fe(z.T)uc (2. 7) drdr
0

t
i)  E(u)(t) = %""0“7,2(52) +/0 Lf(a'.r) u(r.7) drdr.

since from Theorem 3.58(iii)

(11.37)

2 -
E Que(.r.t) dr = 2(1[;(1). us(t))H-n(m‘H‘}(Q).

d .
a-t- ‘/“ uz(.r. f) dr = 2(u'(t). tl(f))H SHQ)HAQ)"

The following convergence of encrgies holds true:

Proposition 11.5. Let f. € L2(Qx]0.T[), u? € L*(?) and let u. be the solu-
tion of (11.1) with A defined by (11.2)-(11.4). Suppose that
{ i) ul — u” strongly in L?(§2)

WSS weakly in L?(2x]0, TY). (11.38)

Then
Ef(u;) — E(u) in C([0.7)).

Proof. Let us prove first that £*(u.) belongs to a compact set in C([0.T]). Due
to the Ascoli Arzela theorem (see for instance Yosida. 1964). it is sufficient to

prove the following two properties:
i) [Ef(ue)(t)| S . Vte[0.T]
i) |E(ue)(t + h) — E€(ue)(t)] < 0(h). (11.39)
uniformly with respect to .Vt € [0.T — h|.Vh > 0.
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where 6 tends to zero as h goes to zero.

Applying the Holder inequality in (11.37)(i) and using estimate (11.27), as-
sumptions (11.4) and (11.38), one has immediately statement (i).

For the second statement, observe that (11.37)(i) yields

t+h
i / S Ve (2.7) de dr
£ Q

< h¥|ue)| < o.7: L2l fellL2@xgorn < erhi,

|E€(ue)(t + h) — Ef(ue)(t)] =

where we have again used the Holder inequality, estimate (11.27), and assump-
tion (11.38)(ii).
Hence, there exists a subsequence (still denoted by ¢) and some ¢ € C([0, 7))
such that
Ef(u.) - ¢ in C([0,T)). (11.40)

We now show that ( = E(u). Due to assumnptions (11.38) and convergences
(11.29)(iii), one can pass to the limit in (11.37)(i) to get

lim B*(uc)(t) = E(u)(t), V€ [0,T)

This identifies ¢ in (11.40) and ends the proof. (]

Remark 11.6. From the above proof. it is clear that the strong convergence
of the initial data w? is necessary in order to insure that { = E(u). The weak
convergence would only give a compactness of E€(u.) in C([0, T7). O

11.4 A corrector resuit

We prove here a corrector result, in the spirit of Section 8.3. The proof makes use
of arguments from Brahim-Otsmane. Francfort, and Murat (1992). As for the
elliptic case. the convergence of the energy plays an essential role. The corrector
matrix is the same as that of the elliptic case, namely C¢ = (Cf;)i<i j<n is
defined by

ij(:r) =Cyj (%) a.e. on

0% ow;
Ciy(y) = 6;5 - 53%(!/) = Ej(y) a.e. onY,

?

(11.41)

where fj and @; are defined by (6.15) and (6.16). One has the following result:

Theorem 11.7. Let u. be the solution of problem (11.1). Let u and A° be
given by Theorem 11.4. Under hypotheses (11.38) one has

{ i) ue — u strongly in C([0.T): L*(2)) (11.42)

ii)  Vue—CVu— 0 strongly in (L2(0.T: L'()))V.
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Moreover, if C € (L"(Y))¥*¥ for some r such that 2 < r < oo, and Vu €
(L*())N for some s such that 2 < s < oo, then

Vu, — CVu — 0 strongly in (L%(0,T: L{(Q)))V,

t= min{2, i}.
r+s

The proof of this result is based on the following proposition, which is anal-
ogous to the time-dependent case of Proposition 8.7.

where

Proposition 11.8. Suppose that the assumptions of Theorem 11.6 are fulfilled.
Set for any ® € C>=((0,T]; D(R))

pe(t) = 3llue(®) — ()72

+ /t/Ae(x)(Vue - CV®)(2.7) (Vue — C°V®)(x, T) dx dr.
0 JQ

Then
pe — p strongly in C([0,T})).

where
t
p(t) = 3|lu(t) —<I>(t)|liz(m+/o /QAO(.I’)(V’U ~V®)(x,7) (Vu—V®)Na,7) dzdr.

Proof. Remark that p. can be written as follows:
pe = pi + p2 + pL.

where

t
0

t
J 71 = $10000E s + [ [ 4cceve) (crve) arar
(11.43)

t
pi(t) = [ u.®dr +/ / AT(C*VP)Vucdrdr
Q o Ja

t
+/ /A"Vue (C5V®) drdT.
0 JQ

\

We now prove the convergence in C'(|0, T]) of each term of this decomposition.
First term. Notice that p! is nothing else that the energy E*(u.). Hence, by
Proposition 11.5,

t
pl — E(u) = %Hu(t)lliz(m +/0. LAO(.I')VU(J'. 7) Vu(z.7) drdr in C([0,TY)).
(11.44)
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Second term. We obtain first a pointwise convergence of the second term pZ.
To do so. thanks to convergences (8.32) and (8.35). we make exactly the same
computation as in (8.42) (with & replaced by V®). the variable ¢ playing the

role of a parameter. So,

t

p2 - %"‘I’(t)"i%m +/ [ A(2)V®(x,7) VO(x,7) drdr for any t € [0, T).
0 JQ

(11.45)

It remains to show that p? is a compact of C(|0.T]). Due to the compact injection
W1 (0,T) ¢ C([0.T)]) (see Theorem 3.27(iii)). it is sufficient to prove that p?
is bounded in W'>(0,T), i.e. that there exists a constant ¢ independent of ¢
such that

1621l = 0.7y + 1(02) Nl Lx 0.1 < -

Clearly, we only have to check this estimmate for the second term in defini-
tion (11.43) of p?. since ® is regular and independent of ¢. This estimate is
a consequence of (8.30)(i) and the assumptions on A. so that

1021 0.1y + 102 L~ 0.1y € 1(T +1) ”HCE”?)(Q)||V‘I’"iac(nx]o,7~[) <e

This, together with (11.45). gives

¢
pt— %"‘b(t)”%'z(g) + / / A2)VE (2, 7) VO(2.7) dedr, in C([0,T)).
0 Jo
(11.46)
Third term. We proceed as for the previous term. Remark first that the
pointwise convergence

t t
o2 —»fu@d:v+/ A'Vovu dmd*r-i—/ A"CuVedrdr
Q 0 Jo 0 Jao
for any t € [0, 7,
is straightforward by using the same computations as in (8.40) and (8.41) and
convergence (11.25). We now prove that p? is bounded in H'(0,T), showing
that
o2l 0.1y + 1(p2) Il 207y < 2.
A priori estimates (11.27) for u.. convergence (8.30)(i) and the assumptions on
A give immediately the boundedness of ||p2||z~.1)- One the other hand, from
Theorem 3.58 (iii). one has

D' = (1) ) p-v@)mp @ +/s ue(x.t) @' (x.t) dr
2
+ / A®(C°VP)Vu . dr + / A*Vu. (C°V®) du.
Q Q

From this expression. the boundedness of ||(p2)’||z2(0.7) is obvious by the same
arguments as above. Then. from the compactness of the injection H'(0,T) C
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C([0,T}) (see Theorem 3.27(iii)), one has the convergence

t t
p‘;’—v/u@dm+/ /AOVQVud.rdT+/ /AOVuVQd;rd‘r in C([0,TY).
o 0 Jo o Jo

(11.47)
Recalling that p. = p! +p2+p2. from definition (11.43) and convergences (11.44),
(11.46), and (11.47), an easy computation gives the claimed result. a

Proof of Theorem 11.7. We will prove here only convergences (11.42). since the
last statement of Theorem 11.8 follows by the same arguments as the last state-

ment in Theorem 8.6.
Let 4 >0 be given. From Proposition 3.60. there exists ®5 € C>([0. T}; D(2)),

such that . 2 i
{Z) Il — ®sllc(0.19: L2e2y) < O

) (11.48)
i)  |[[Vu-— V%"iz(nx]o.f‘[) <6

Then, if one writes
ue —u = (u: — B5) + (¥ — u).

one has

(lue — u||%r([o.1‘];1,2(sz)) < 2("": - ‘I’Jllg'([o.r]:m(m) +(|®s - ““%([o.r]; L?(Q)))
< 2lue — Pslleo.1y: L2y + 26 (11.49)

We will now estimate the termn |Ju, — ‘1’5"%'([0.7']: L2(n))- Yo do so, set

1 9
pd(t) = §||ue(t) = Ds()lI720

t
+/ A*(2)(Vue — C°V®s)(2.7) (Vue — CV®s) (2, 7) dz dT.
0 Ja
(11.50)
Using the ellipticity condition of A?, one has

1 t
QQH'MEU) - ‘P&"%z(m + 0/0 IVue — CV®s)2 20 < PL(). (11.51)
Then, from Proposition 11.8. we have
. 1 : .
lll:l_fgp 5"“:('5) - ®5(t)F 20 < lll;l sup 1oy = 1A lleqory.  (11.52)
where
(1) = Liu(t) — 5(0))2
P(0) = 5hut) - 25O

: (11.53)
+/ /AO(:I')(VU - V&®s)(r.7) (Vu = V&s)(x.7) dadr.
o Ja
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Using now Proposition 8.3 and (11.48) we obtain

ﬁ2
. 11.54
P leqorn < (5+5 )¢ (1154

Then, from (11.49) and (11.52), we have
: 252
llfgljtl)lp lue = wllZo.ry; L2(y < (1 + T)

which implies (11.42)(i), since ¢ is arbitrary.
To show (11.42)(ii), let us write Vu, — C*Vu in the form

Vi, — C*Vu = (Ve — CEV ;) + C5(V®; — Vu).
From the Holder inequality. (8.30)(i) and (11.48)(ii). we have
¢ T
limsup/ (|Vue(t) - C‘Vu(t)ll%.(m dt
e—0 0
T
< 2limsup/ |Vu(t) — Cevq’a(t)"%!(n) dt
e—0 0
T
+ 2limsup[ |CeV@5(t) — CEVu(t)||: g dt
0

J e—0

T
< limsupey / IVt () — CEV@5(8))2 2y dt

e—0

(11.55)

+2l|msup/ |C* ||,_2(Q)I|V‘I>6(t) Vu(t )"Iﬂ(ﬂ)dt

L < hm sup € / [|Vu.(t) — CEVPs(t) IILQ(Q) dt + ¢ 4.

Let us cstimate the integral term in the right-hand side. Using (11.51) written
with t = T, definitions (11.50). (11.53). and Proposition 11.8. it follows that

T
limsup [ [Vuc — CV el ey < 3 lim pE(T) = ()
which, together with (11.54), gives
, : g
ltenjtl)lp/ (Ve — CV®s(12(q) < (2 a) .

This, used in (11.55), ends the proof of (11.42)(ii). The proof of Theorem 11.7
is complete. O



12
Homogenization of the wave equation

In this chapter we are concerned with the asymptotic behaviour as ¢ — 0 of the
solution u. = u.(z,t) of the wave equation introduced in Section 5.2 (Exam-

ple 5.3), namely.
ul —div (A°Vu,) = f in Ox]0, 7]
ue =0 on 30x|0, T
ue(r,0) = u(z) inQ
u'(z,0) = u!(x) in Q.

(12.1)

where as in the previous chapter, the operators div and V are taken with respect
to the space variable z € Q) and ' denotes the derivative with respect to the time
variable ¢t €]0, 7| with T > 0. We suppose we are given the source term f. and
the initial states u) and u!. The matrix A° is Y-periodic and defined by

agj(x)=a,.j(§) ae onRY. Vij=1,..,N (12.2)

and
€ X £
Af(z) = A(E) = (at’j("'))lsi.jgN a.e. on RV, (12.3)

where o
Qij = 0y, Vl.J = 1,....N

a;j is Y -periodic, Vi.j=1....,N (12.4)
A= (aijh<ij<n € M(a.8,Y).

with a, 8 € R, such that 0 < a < 8 and M(a.3.Y) given by Definition 4.11.

Let us point out that in this chapter. contrary to the elliptic and parabolic
cases, we assume that the matrix A is symmetric. This assumption is essential
in the existence result.

Problem (12.1) is a particular case of a large class of partial differential equa-
tions called hyperbolic equations. For general results concerning this kind of
equations, we refer the reader to Lions and Magenes (1968a, Chapter 3, 1968b)
(see also Wloka, 1987; Lions, 1988). For homogenization results concerning the
wave equation we refer to Bensoussan. Lions. and Papanicolaou (1978) for the
periodic case, and to Brahim-Otsmane, Francfort, and Murat (1992) for the
general non-periodic one.
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In Section 12.1 we will show the existence and uniqueness of the solution
of (12.1) in a variational framework when f. is in L2(Q2x]0.TY), «¢ in H()
and u! in L2(Q2). For the definition and properties of time-dependent functional
spaces used in this chapter. we refer again to Section 3.5.

In Section 12.2 and 12.3 we give the main homogenization results for prob-

lem (12.1).

12.1 Existence and uniqueness
Let Q be a bounded open set in R and cousider the following problem:

w’ —div(BVu) = f in Qx]0.T]
u=0 on 3Nx]0.T]

u(r.0) = u®(xr) inQ (125)
w'(r.0) = u'(r) in®.
under the following assumptions:
i) B is symmetric and in Af(a. 3,9)
i) fe L?(2x]o,T)) (12.6)

ii)  u’ e HY(Q)
iv) u'e LY(N).

Let us introduce the space
Wz = {v|ve L}0.T: Hy(Q)). v’ € L3(Q2x]0.T]}.
which is clearly a Banach space with respect to the graph norm defined by
leltwe = llellLz.7: w3y + 10 lL2@xj0p-
Then, the variational formulation of problem (12.5) is the following one:
( Find » € W, such that
(" (8).v) g-10).030) + /n B(x)Vu(r,t) Vo(r) dr

J = /Q fx.Ov@)dr in D'(0.T). Vve HY(R) (12.7)

u(7.0) = u(z) in Q
\¢(2,0) = ul(z) in Q.

Remark 12.1. Suppose that u is a solution of (12.7). under assumptions (12.6).
Then one has the equality

v’ =div(BVu) + f in D'(Qx]0. 7).
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therefore .
u" € L*0.T; H™'()).

Consequently, Theorem 3.58(ii) applied to « € W and u' € W) implies
ue C([0,T): LX), o € C(0,T): HY(RQ)), (12.8)
so that the initial conditions make sense in L2(Q2) and H~1(f). respectively. ¢
We have the following result:

Theorem 12.2. Suppose that assumptions (12.6) are fulfilled. Then problem
(12.7) has a unique solution u € W,. Moreover,

we L®0.T; Hy(Q)). o € L=(0,T: L3()). u” € L*(0,T; H'(R))

and there exists a constant ¢ depending on a. 3, §2, and T such that

{ llell oo w3+l L= @1 L2 + e’ ll 201 -1 2 (12.9)

< el 2xiorp + Nu0llL2qey + Nt iy sn)-

Beforc proving this theorem, let us mention that the solution u is even more
regular. We recall the following result due to Lions and Magenes (1968a, Chap-
ter 3, Theorem 8.2):

Proposition 12.3. The solution u given by Theorem 12.2, is such that
v e C([0.7): H (). « € C(0.T): L¥(R)).
Moreover, if the data are more regular, namely
i) feC([0.T]: Hy()
i) u® € H}(Q) and Vu° € H}(Q).
i)  u'e H}(N)

then
u' € C([0.T): HY(). " € C([0.T): L3()).

In the proof of Theorem 12.2. we will make use of the following simplified
version of the classical Gronwall's lemma:

Lemma 12.4. Let v a function in C'([0.T]) and suppose that there exists a
positive number v such that

t
v(t) <14 +A v(7)dr. Vitel0.T]. (12.10)

Then
v(t) <qe”. Vite[0.T]
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Proof. Inequality (12.10) can be written as follows:

Lyt /' v(r)dr | <e7'y
dt o - )

which by integration leads to
t
/ o) dr < y(e' = 1).
0

This, replaced into (12.10) gives the result. m]

Proof of Theorem 12.2. As for the heat equation (see section 11.2), we will use
the Faedo—Galerkin method.

Step 1. Let (w,) be the orthonormal basis in L2(2) given by (iii) from Propo-
sition 8.23 and Remark 8.24 for the choice B = I in problem (8.75).

Denote by V;, be the m dimensional subspace of Hj(2), spanned by wy,...,
wp,. Introduce also the projection (see (11.9))

m
Prv= ;(v, u"')l.'*(ﬂ) w;. Ve L3(Q).
We refer to Step 1 of the proof of Theorem 11.2 for the properties of Py, namely

(11.10)-(11.14).

Step 2. Introduce, for any m € N*. the finite dimensional approximate problem

4 m
Find u,, = Z g;"(t)wj € V,, such that
Jj=1

J / u, (z.t) wy, dz +/ B(2)Vu,,(z,t) Vwy, dx
o Q

(12.11)
= / fl@.t)wy de. inD'(0.T) Vk=1,...,m
Q
Um(2,0) =40 (z) in N
( ul,(7,0) =ul,(z) inQ,
where, according to assumptions (12.6)(iii) and (12.6)(iv), we set
ud, = Ppu®.  ul = Poul.
From the properties of P, (see (11.10) and (11.13)), we have
i ul, — u® strongly in H}(
{ )t gly in Hy (€2) (12.12)
it)  w), — u' strongly in L3(9).
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Problem (12.8) is equivalent to the following system of m linear ordinary
differential equations of the second order with unknowns g*,...,gn:

dt2 +Z t)/BVw_, Vuy dr = /f(z t)wy dx

9:'(0) = (u W)
( 9 ),(0) = (ul~wk)&
for any k = 1,...,m. Classical results (see, for instance Coddington and Levin-
son, 1955) give the existence and uniqueness in C!([0.T}) of a solution {g7", ...,

g} of this system on the interval [0.T]. Hence, u., is determined and u,, and
u,, are in C((0,7]; Vin).

Step 3. We will now prove that u,, satisfies some a priori estimates. To do so,
let us multiply the kth equation in (12.11) by (g*)’ and sum over k from 1 to
. We obtain

/ up (x,t) upy (z. t) dz +/ B(z)Vum(x,t) Vu,,(z,1) dar:/ f(z,t) ul, (z,t) dz.
? e ? (12.13)

Due to the symmetry of B one has

/ B(x) Vi (z,t) Vail, (x.£) do = 5&? / B(2)Vitm(x, t) Vi (z,t) da.

Hence, (12.13) can be rewritten as

d
;t(lluﬁnﬂﬁz(n) + /9 B(r)Vuy, (2, t) Vi, (z,t) dl') < 2 fll 2@y llumllL2 (o)

<320 + ltthe 1 20)-
Integrating on (0,t) with ¢ < T and using the ellipticity of B. we get

i)y + alm 2

ra t
ka2 + L BYWS, Vul, dr + / 112 e dt + /O ()2 gy A

IA

t
< bl + By + M lExaxiomn + [ im0y dr.
Using properties (11.11) and (11.12) of the projection P,,, we finally have

"u;n(t)"iz(n) + allu, (x, t)"f,é @@
12 2
< e iz +d"u0”?f&(ﬂ) + “f“I),?(Qx(O.T))

t
+ /0 [t () + i (7233 ] -
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Applying now Gronwall’s lemma (Lemna 12.4), with
v =l 2y + d||"0||ul(g) + 1£1F 2% 0.7
we deduce the a priori estimate

||"m||Lx(o1‘ Hi)) T "":n"L"(O T: L2(S2))
< a(lfllzxgorp + ez + e g @)
where ¢; depends only on . 3. Q and 7. It remains to obtain an a priori
estimate for u];,. Observe that the equation in (12.11) implies that
(u::z(t)sv)lﬂ(ﬂ) = (=div (BV)u(t) + f, v)L’(Q)v Yv € V.
This signifies that
” =[P (F(um) + £I(t),
where P,, is defined by (11.9) and F = —div (BV). Arguing exactly as in Step 3
of the proof of Theorem 11.2 when showing (11.19). we obtain
lumllz2o.7: H-10)) < c2lllFllrz@xjorp + NelllLz ) + ! |y ) < s,

where ¢z and c¢3 are constants independent of m. Consequently,

lem |l L= 0.7: Hg @) + i< 0.7 L2y + Il 207 H-1 ()
< e(Ifllezxprp + 1ellzi + lutlay @),  (12.14)
where ¢ depends only on a, 3, Q and T.

Step 4. In this step we pass to the limit in the approximate problem. Esti-
mate (12.14) implies, up to a subsequence. the convergences

um — u  weakly* in L>(0,T: H}(Q))
u, —~u  weakly* in L¥(0.T; L?(Q)) (12.15)
u,, — u” weakly in L?(0,T; H-1(R)),
where we made use of Theorem 1.26 and Propositions 3.55 and 3.59 (see for
details Step 4 of the proof of Theorem 11.2).
Let us now pass to the limit in (12.11) for m — 0. We again proceed

as in the proof of Theorem 11.2. To do so. let ¥ € D(0.T) and v € H}(Q).

Multiplying the equation in (12.11) by (v, wy) L2 Q)z/:. summing over k from 1 to

m and integrating in ¢ over (0. 7). we get

/ / (z.8) ¥(t) (Pmv)(x) drdt

. / / B(x)Vium(2.1) ¥(t) V(Pov)(x) dr dt (12.16)

-/ / F(2,8) 1(t) (Pu)(2) da dt.
0 JQ
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where we used definition (11.9). By integration by parts with respect to ¢, one
has

( T
- [ 090 (Pt} o) d
0 JQ

T
1 +/0 /s;B('I')Vu"'(I‘t)'w(t)v(Pnﬂ’)(;r)dxdt

;
- / f F(-1) 6(t) (Puv)(z) de dt.
. 0 JQ

Here, all the terms pass to the limit thanks to convergences (12.15) and the
strong convergence (11.13). We obtain

T
- /OT/Q o (2. t) ' (t) v(x) de dt +/(: LB(.T)Vu(.r,t) W(t) Vo(z) dz dt

T
= / / flx.t) v(t) v(x) dr dt.
0 JQ
(12.17)
Due to Theorem 3.58 (iii). we have

T
/ / o (x. t) ¥ (t) v(2) dx
0 JQ
T T d
= —/ (u" (). () -1 (). 1y ) At +/ E/ W' (2. 8)%(t) v(x) dz dt
0 0 Q
T
= “/0 (u" (). ()Y -1 ).y ey .
since ¥(0) = ¥(T) = 0. This. together with (12.17). shows that u satisfies
T T
—/(U”(t)"(/«’(t)'l-’)H—1(9)‘}1‘%(9)(” +/ / B(J')VU(T. f) L’(t) Vl)(.’l!) dr dt
0 0 Jo

T
= / / f(x.t) p(t) v(x) dz dt.
0 Jo

(12.18)

It remains to check that the initial conditions u(.r.0) = «°(z) and '(x,0) =
u!(x) are satisfied. We follow the arguments from Step 4 from the proof of
Theorem 11.2. Choose in (12.16) (which is still valid if ¢ € C>°({0. T])) a function

¥ € C™([0.T)) such that v/(0) = 1 and ¥'(T) = 0. Then. from (12.16), we get

T
—/ _/“;n("’*t)’/"(f) (Pnt)(r) drdt
0o Ja
T
+ fo/QB("”)V""'("’")"'(')V(Pml')(x) dr dt

T
= / [ £, 8) y:(t) (P o)) dedt + / uk, () (Pt)(2) dr.
0 JQ 0
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where we pass to the limit to obtain

T
_ /OT /Q o' (z.t)y' (1) v(z) drdt + /0 ]ﬂ B(r)Vu(z.t) y(t) Vo(z) dr dt
T
= [ ] te0vwi das [0t dn
0 JQ Q

Again by Theorem 3.58 (iii). as u € C([0, T]: L?(§2)) (see Remark 12.1), we have

T
[ w0y + [ w0 v(o) do
0 (Y]
T
+ /(; /9 B(a)Vu(a,t) ¢(t) Vo(z) dz dt
T
- / / F(z.0) v(t) v(r) dedt + / ' (z) v(z) da.
0 JO Q

Since (12.18) is still valid for v € C>([0,T)). we deduce that

/u’(;r.O)v(:r) d.r=/ u'(r)v(r) dx, Vv e H)(S),
Q 0

which by Theorem 1.44 implies that u’(r,0) = u!(x).

To obtain the other initial condition, let us choose in (12.16) a function
¥ € C([0.7]) such that 4(0) = 0. ¢'(0) = 1 and /(T) = ¥/(T) = 0. We get,
by integrating twice by parts with respect to t.

T
/ / tim (28 4" (1) (Prat)(2) - it
0 JN
T
+/ /B(.r)Vu,,,(.l‘. t) ¢ (t) V(P,,,(')(Jr) drdt
OT (9]
- ] f () 1) (Port) () dr it / 0 ()o(z) da,
0 JQ Q

where we pass to the limit and obtain
T T
/ / u(a. t) " (t) v(x) dedt +/ / B(x)Vu(r.t) ¥(t) Ve(r) dr dt
0 Ja ¢ Ja

T
= ‘/0 /Qf(.’l‘,f) t"'(f) 'l'(]‘) drdt — ‘/Q UO(.T)?.’(:L‘) de.

We integrate by parts with respect to t in the first term, which is allowed by
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Remark 12.1. Then, we apply once more Theorem 3.58(iii) and get

T
/ (u" (). ¥ (t)v) g1 (). Hy (@) Ot — /9 u(z,0) v(r) dr
0
T T

+/ / B(z)Vu(x.t)¥(t) Ve(x) drdt = /(; /Qf(a:. t) ¥(t) v(x) dx dt
0 Jo

—/ «°(z)v(2) dz.
Q

This, by the same arguments as before, implies u(z.0) = «%(x).

Step 5. We now prove estimate (11.9). As in the case of the heat equation, we
show it for the solution u obtained above by the Faedo—Galerkin method. This
is not restrictive, since in Step 6 we will prove the uniqueness of the solution of
problem (12.7).

Estimate (12.9) for the solution u defined by (12.15) follows from a priori
estimate (12.13). We skip the proof. since it makes use of exactly the same
semi-continuity arguments as those from Step 5 in the proof of Theorem 11.2.

Step 6. Let u; and u; be two solutions corresponding to the same data. Their
difference w = u; — uy satisfies (12.5) with f =0, ¥ =0 and «' = 0, namely

(w" (), v) -1 (). 13 000) +/QB(1‘)V“'(1‘J) Vu(z) dx

=0 inD'(0,T). Yeve H)Q)
w(x.0)=0 inQ
w'(2.0) =0 in

If one could use w’ as test function in this problem, then one could easily obtain
an estimation giving the uniqueness. But this is not allowed, since we only
know (Theorem 12.2) that w’ is in L>(0,T: L?(R2)). so the first term would
not make sense. To avoid this difficulty we use an argument from Lions and
Magenes (1968a. Chapter 3).

Let s €]0, T be fixed and set

S
—/ w(r.r)dr fort<s
t

0 for t > s.

¥(z,t) =

Observe that one can take ' = ' in the variational formulation for w. After
integration with respect to t over ]0. T[, we obtain

T T
/0 (" (). ¥} -1 (). ) + / /IB(-P)VH'(J'J)VU’(T) dr =0.
Jo Js
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Note also that the function v/(¢) € L?(2). since

o —~w(r,t) fort<s
d)(a,t)-{ 0 for t > s.

Then, by using Theorem 3.58, Remark 3.44 and taking into account the initial
condition satisfied by w’ and the definition of ¥'. we have

T T
/0(u’"(f),ﬂ’)u—!(n).n(;(n)+/0 (W' () 'Y g-v ) 3 (@)

T T
= /(“'”(t)~"/')H—I(Q).Hé(ﬂ)+/0/Q"f"(-l"t)“'l(l‘~t)da‘dt
0

T d ,
= — | w'(x.t)y(r.t) dedt
| & [wenvien
= / w' (2. T)y(x, T) dr — / u'(z,0) y(r.0) dr = 0.
Q 0

Consequently. due to the definition of v, we have

s T
-/ / w(z.t)w'(z,t) drdt + / / B(xr)Vy'(r.t) Vir(z.t) dr =0,
0Jo o Ja
or equivalently. due to the synmmetry of B,

-1// w?(z,t) d.rdt+—d~/~/ B(x)Vy(x.t) Vyp(x.t) dadt = 0.
dt Jo Ja at Jy Ja

Since by definition
Ve(ar.s) =0 ae. onfd

taking into account the initial condition on w. one gets
lw(s)|720) + /u B(r)Vi(z,0) Vi(r.0) dr = 0.

The ellipticity of B implies
"‘“’(3)"?.2(9) + |V, U)Nie(m <0.

Hence,

w(s) = 0.
But s is arbitrary in J0. T, so that « = 0. ]
Remark 12.5. Oue can take f € L*(0.T: H~'(2)) in problem (12.5). The-

orem 12.2 can be easily adapted to this case. For simplicity. we took here
f € L¥3(Qx]0.TY)). 0
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12.2 The homogenization result

Let us now consider problem (12.1) and suppose we are given f. € L2(Q2x]0, T'[),
u? € H}(Q) and u? € L%(R2). The variational formulation of problem (12.1) is

f Find uc € W5 such that
(u;'(t), ’U)H-l(g)‘ys(g) +/ A‘(z)Vue(;z:, t) Vv(:l,') dz
Q

< =/fe(x,t)v(x) dz inD'(0.T), Yve H}(Q) (12.19)
Q

ue(2,0) =u(z) inQ
L ul(2,0) =ul(z) in Q.

Theorem 11.2 provides the existence and uniqueness of a solution u, such
that
ue € L®(0,T; HY()). ul e L®(0.T; L3Q)).

We now study the asymptotic behaviour of problem (12.19) as ¢ — 0. As for
the heat equation, studied in Chapter 11, the oscillations in (12.19) are only due
to the variable x, so that in the hommogenization process, the variable ¢ will play
the role of a parameter. In fact, we have the following result:

Theorem 12.6. Suppose that f. € L?(2x]0,T[), and 0 € H}(Q), u! € L*(Q).
Let uc be the solution of (12.19) with A¢ defined by (12.2)-(12.4). Assume that

i) ul = u® weakly in H}(Q)
it) ul —>u' weakly in L3(Q) (12.20)
i) f.—f weakly in L%(Qx]0, T).

Then, one has the convergences
i)  uwe—u weakly* in L¥(0.T; H}(R))

i)  u.—u  weakly* in L=(0,T: L*(Q))
i) A°Vu, = A°Va®  weakly in (L2(02x]0, T]))V,

where u is the solution of the homogenized problem:

v’ —div (A'Vu) = f  in 0x]0, T
u=0 on 31x]0,T|

u(z,0) =u%z) in Q

u'(2,0) = u!(r) inQ,

(12.21)

and A® is the homogenized matrix given in Theorem 6.1 by (6.30).
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Proof. As for the heat equation, we apply Tartar's method of oscillating test
functions, following along the lines of the proof given in Section 8.1 for the
elliptic case.

Since A¢ € M (a. 3,), from assmnption (12.20) and estimate (12.9) we have

el 0.1 my)) + Nuell 0. 2ca)) + el 207 -1 (@) (12.22)
< C(”fs||1,2(nx|o,r[) + "ug"um) + ”U:"Hg(sz)) < o,
where the constant ¢, is independent of ¢.
Then, if £° is defined by
E(w.t) = (E(2.1). ... Ex (2. 1)) = A°(t) Vue(x.2), (12.23)

from the assumptions on A€, one has in particular

& ll(z2xjo.Tp)~ < Ber.

These cstimations, together with Theorem 3.58, provide the existence of a sub-
sequence, still denoted by ¢. such that

i)  u.—u weakly* in L®(0.T: H}(Q))
i)  ue—u strongly in L2(Q2x]0.TY[)
i) u, —u' weakly* in L>(0.T; L3(Q))
iv) &€ —¢" weakly in (L2(Qx]0.T[))V.

(12.24)

From definition (12.23) and problem (12.19), by using Theorem 3.58 (iii) one
has that £¢ satisfies

T T
/(;/Qfe(m.t)-Vv(.r),:‘(t) (I‘t.‘it=4.[zfe($‘t) r(r)p(t) drdt

J (12.25)
+ / / uL(a.t) v(x)'(t) dz dt
0 Ja

for any v € Hg(f2) and p € D(0.T). where we can pass to the limit due to
convergences (12.20) and (12.24). Using once more Theorem 3.58. we obtain
that £° satisfies

{u"(t), 7’)H-'(Q).H(}(Q) +/ r.t)- Vu(r) dr

? (12.26)

= /‘ flr.t)e(r)de inD'(0.T), Vee HN Q).
2

Let us prove that
£ = AV, (12.27)
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We will make use again of the oscillating test functions w5 (see (8.10)). defined

by
X T
wi(z) = ew,\<%) =A-xr-€x, (E)’

where w) is defined by (6.27).
We recall the following convergences:

; € s X, 3 1(¢
{z) w§ = A-r weakly in H*(Q) (12.28)
%) w§ — A-r strongly in L%(R),
and set n§ = 'A°Vus. which satisfies the convergence (see (8.13))
5 = My ('AViny) = 'A% weakly in (L2(@)V. (12.29)

and the equation (see (8.14))
/nf\ Vvdr=0, VYveH}).
Q

Let & € D(8). Choose here v = 3 1.y and integrate on }0.T[. Then
T T
/ / 75 - Vue(z. t) ¥(2)p(t) da dt +/ / 75 - Vu(r) ue(z.t)p(t) dedt = 0.
o Ja o Ja

(12.30)
Taking v = Y w5 in (12.25) and subtracting from (12.30). we obtain

T T
//ﬁs(m.t)«vw(;r) wi (t) d.rdt—/ /1)§-V~¢r(r) ue(z, t)p(t) dzdt
0 Ja 0 Ja
T
= [ [ sttty us@pet deat

T
+/ /u;(.r.t)w(d') w§(x)¢' (t) drdt.
0 Ja

where we pass to the limit by using convergences (12.20), (12.24), (12.28) and
(12.29). We obtain

T T
/ / £%(x.) - Vio(z) (A - 2) p(t) drdt - / / (A% . Vi(a) u (2. t)p(t) drdt
0 JQ 0 JQ
,
- / / Fla ) o) (- 2)p(t) dedt
0 JQ

T
+ ‘/0 L?z'(.z’.f)?ﬁ(.r) (A -2) (1) dx dt.

From equation (12.26). by the same computation as in Section 8.1. we de-
duce (12.27).
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To show that u satisfies the initial conditions in {12.21), one makes use of
the same argument as in Step 4 of the proof of Theorem 12.2.

To do that, one chooses first in (12.30) ¢ € C*([0,T]) such that ¢’(0) =1
and ¢'(T) = 0 to obtain, when passing to the limit. u'(x,0) = u'(z), in view
of convergences (12.20) and (12.24). Then. choosing in (12.25) a function ¢ €
C>([0,T)) such that ©(0) = 0, ¢’(0) =1, ¢(T) = ¢'(T) = 0 and passing again
to the limit, one obtains u(z,0) = u%(z).

Finally, observe that since A is elliptic (see Proposition 6.12), Theorem 12.2
provides the uniqueness of the solution of problem (12.21). Consequently, the
whole sequences in (12.24) converge. This concludes the proof. 0

12.3 Convergence of the energy

In this section we prove. under suitable assumptions, the convergence of the
energy associated to problem (12.1) to the energy of the homogenized problem.
As already seen in the elliptic and parabolic cases, this property is essential in
the proof of the corrector result which will be given in Section 12.4.

Let us define the energies associated to problems (12.1) and (12.21) respec-
tively, by

1 1
Ef(uc)(t) = -||u’€(t)||%2(g) + —/ A (x)Vue(z,t) Vue(z.t) dx dt
2 2 Jo (12.31)

E(u)(t) = %"u’(t)lliz(m + ';‘/QAO(II’)VII(T, t) Vu(x,t) dr dt.

We will need the following result, which. when f = 0, is known as ‘the
conservation of the energy’:

Proposition 12.7. Suppose that assumptions (12.6) are fulfiled. Then the
solution u of problem (12.7) satisfies the following identity:

1 1
5"“’(’)"%2(9) + ) /sz B(z)Vu(r,t) Vu(z,t) dr dt

1 1 T
= 5"“1"%}(9) + 5/ BVx° Vi° dx +/ / f(z.7) &' (2,7) dr dr.
Q 0 Jao
(12.32)

Proof. If one could use u’ as test function in (12.7) then (12.32) would be im-
mediate, but this is not allowed, since we only know (Theorem 12.2) that u' is
in L°(0,T; L%(2)). To avoid this difficulty, we use a density argument (see
for instance, Lions, 1988, Chapter 1. Lemma 3.5). Let {ul}nen, {u))}nen and
{fn}nen be three sequences in D(f2) such that

i) uf —u’ strongly in HA(Q)
i) up —u' strongly in L2(Q2x]0,T)) (12.33)
i) fa— f  strongly in L2(Q2x]0, T]).
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as h — 0o. Consider for any h, the solution uy of the problem

ul! — div(BVuy) = fa in Qx]0. T
up, =0 on ?QX]O.’ T| (12.34)
up(x,0) = up(xr) in Q

uh(2,0) = up(x) in Q.

Due to the regularity of data in (12.34), from the regularity result in Propo-
sition 12.3, one can choose uj}, as test function in the variational formulation of
this problem (see (12.7). Due to the symmetry of B. one has. after integration
over )0, t[,

ld t T
st L[ Whle + [ [ B@)Vunte.r) Vunte.r) e ]
(1] 0 JQ

T
=//memﬂam
0 Ja
which implies that
1, , s 1
§|Iuh(t)||L2(Q) + A B(x)Vup(r,t) Vup(z,t) dr dt

1 1 T
= §||u},||iz(m + 3 / BV vl dx +/ / In(z,7) up(z, 7) dz dr.
Q 0o Ja
(12.35)

Observe now that from estimate (12.9) applied to problems (12.7) and (12.34)
one has, by linearity,

llu — unlli= .7 Hiey + N = wplli= .7 L2¢s2))
< e(lf - fallzz@xiorp + 1 = wRllLa) + ' — upll gy o),

where ¢ depends only on a, 3. Q. and T. Consequently,

{i) up —u  strongly in L>*(0,T: HA())
i)  u, —u' strongly in L>(0.T: L3(Q)),

as h — co. This, together with (12.33). allows us to pass to the limit in (12.35)
to get the claimed result. 0

From this proposition and definition (12.31) one has immediately the follow-
ing result:
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Corollary 12.8. Let E€(u,) and E(u) be given by (12.31). Then

y

1 1
i) Ef(ue)(t) = §||u;||§2lm +3 /ﬂ AV Vol dx
T
+ / fe(z, T)ul(x,7) dz dT

1
i) (u)(t)——uulu,,(m / A’V Vil dx

\ +/0 /‘;f(x,‘r) v (x,7) dzdr.

In Chapter 11. we proved the convergence of the energy associated with the
heat equation to that of the corresponding homogenized problem. To do so, we
needed to suppose a strong convergence of the initial condition.

For the case of the wave equation. the situation is more complicated. One
has to suppose the strong convergence of f. and u! and, moreover, to make a
special assumptlon on uQ. The peculiarity of this assumption is that it does not
concern ¢ but dlv(A‘VuO) namely one suppose that there exists an element
U® € H~1(Q) such that

—div (A°Vu?) — U® strongly in H~(Q). (12.37)

Observe that any element U° € H~!(2) can be written in the form U® =
—div(A°Vu®) for some u® € H}(S2). For that. one has just to solve the problem

{ —div (A°Ve®) =U° inQ

4 (12.36)

12.38
wW=0 ond. (12.38)

which has a unique solution «® € HJ(f), due to the ellipticity of the matrix
A® (Proposition 6.12) and Theorem 4.16. Consequently, convergence (12.37) is
equivalent to

div(A°Vud) — div(A°Vu®) strongly in H~'(9).
This implies in particular the following convergences:
{ i)y uw-oad® weakly in H} ()
i)  AVu? = AV weakly in (L3(Q))V.
which are an immediate consequence of Theorem 8.16 applied to the problem
{ ~div (A°Vu?) = F* in Q
u? =0 ondf.

(12.39)

(12.40)

where F* = —div(A*Vul). Observe that (12.37) is a stronger assumption
than (12.39). Indeed. convergence (12.39)(ii) only implies the weak convergence
of div(A*Vu?) to div(4A°Vu0) in H~}(N).

Let us prove the following convergence result:
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Proposition 12.9. Let f. € L2(2x]0.TY), u? € Hg(9). ul € L3() and let u,
be the solution of (12.1) with A defined by (12.2)~(12.4). Suppose that

There exists u® € H}(Q) such that (12.41)
—div (A°Val) — —div(A°Vu®) strongly in H™'(R2) '
and
{z’) ul = u' strongly in L¥(Q) (12.42)
i) fe— f strongly in L2(Q2x]0.T]). '
Then
E*(ue) — E() in C(0,T)). (12.43)

where u is the solntion of the homogenized problem

u" — div (A°Vu) = f in 2x]0. T
u=0 ondNx]0,T|

u(@.0) = u”(xr) iIn Q

o (2.0) = ul(x) in Q.

and A° is the homogenized matrix given in Theorem 6.1 by (6.30).

Proof. Since hypothesis (12.41) implies (12.20)(i) (see (12.39)), all the assump-
tions of Theorem 12.6 are satisfied, hence u. converges to u. Recall that in
particular, one has the estimate

Nuellr.=0.7: By + l[ulllz=(o.7: L2(2)) < €1 (12.44)

where the constant ¢, is independent of €.
The proof of (12.43) follows the same outlines as that of Proposition 11.5.
We prove first that

i) )Ef(ue)(t)) Sec. Vte[0.T)
i) |E€(ue)(t + k) - E*(u:)(t)] < O(h), (12.45)
uniformly with respect to €.Vt € [0.T — h].Vh > 0.

where 6 tends to zero as h — 0.

Statement (i) is straightforward by assumptions (12.4). (12.42) and the for-
mer estimate (12.44).

On the other hand, from Corollary 12.8. assumption (12.42) and estimate
(12.44). one has

t+h
|E (ue)(t + h) — ES(ul)(t)| = /: /Qfs(r. T)ue(2.7) drdr

1 1
< hrflugle=o.7: reenllfellL2@xjorpy < c2h?,
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where c; is independent of ¢.
Properties (12.45) mean that E<(u.) belongs to a compact set in C([0,T]),
according to the Ascoli-Arzeld theorem. Hence. there exists a subsequence (still

denoted by ¢) and ¢ € C([0.T]) such that
Ef(ue) — ¢ in C([0,T)).

Turning back to problem (12.40). in view of (12.41) and (12.39) one can
apply Theorem 8.16 written for f¢ = ~div (4°Vu2) to have the convergence of

energy,
/ AV Vul dr — / A°Vu® Vil dr.
Q Q
Then, due to the convergences from Theorem 12.6 and assumptions (12.41), we
can pass to the pointwise limit in (12.36)(i), to get
lin}) E%(u)(t) = E(u)(t). vte [0, 7).
E—

Hence, ( = E(u) and this ends the proof. 0o

12.4 A corrector result

We end this chapter by a corrector result. We will use. for its proof, arguments
from Brahim-Otsmane, Francfort, and Murat (1992). As already mentioned,
this result is based on the convergence of the energy. The proof is done in the
saine spirit as that for the heat equation (see Section 11.4). The corrector matrix

= (C§jh<i.j<n is still that introduced for the elliptic case. and is defined by

Ci(x)= Cy (-I:) a.e. on Q

(12.46)
Cijly) = dij — dh(y &L’ (y) a.e. onY.

where SZJ, and iv; are defined by (6.14). (6.15) and (6.16).

Theorem 12.10. Let u. be the solution of (12.1) with A¢ defined by (12.2)-
(12.4). Suppose that the data satisfv (12.40) and (12.41). Then

{a) ul, — o' strongly in C({0.7): L%())
i) Vue — CVu — 0 strongly in (C({0,T): L*(2)))V.

Moreover, if C € (L"(Y))N*N for some r such that 2 < r < o0, and Vu €
(L*())N for some s such that 2 < s < co. then

Vue — CVu — 0 strongly in (C([0.T): L{()))".

) rs
t= mm{?, —}
r+s

(12.47)

where
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The proof of this result is based on the following proposition, which is anal-
ogous to Proposition 11.8.

Proposition 12.11. Suppose that the assumptions of Theorem 12.10 are ful-
filled. Set for any ® € C>=((0,T]; D(R))

pelt) = 3hi(®) = ¥ (Oagq
T
+/ /A“'(:r)(Vue — C*V®)(x.7) (Vue — C°VP)(z,7) dx dr.
0o Jo

Then
pe — p strongly in C([0,T]).

where
1y V2 Tf 40
p(t) = §||u (t)—® (t)HLz(Q)+/0 /QA (€)(Vu—-V®)(r.7) (Vu-V®)(2.7) dzdr.

Proof. We follow the lines of the proof of Proposition 11.8. Write first p, in the
form

pe = ps + 07 + P2 (12.48)
where
T
(20 = 3O+ [ [ AVTudrar
1 T
RO =¥ O + [ [ 4% (V) (€V8) drar

K (12.49)
p3(t) =/u; <I>'d:r+/ /A‘ (CEV®) Vu, drdr
Q 0 Jo

T
+/ / A*Vu, (C°V®) drdr.
0 J2

\

We will see that all these terms converge in C([0. T)).
First term. Notice that p! is the energy E¢(u.) and hence by Proposition 12.9
it follows that

1 T
Pl — E(u) - §||u'(t)f|iz(m +/ / A%(x)Vu(r.7) Vu(z,7) dr dr,in C([0, T)).
0 Jo
(12.50)

Second term. For the second term p?. we argue exactly as we did when prov-
ing (11.46). Thus we obtain

2, Ly Tf 0 .
p: — §“<I> (720 +/{; LA (OVS(x.7) V(2. 7) dr dr.  in C((0.7T)).
(12.51)
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Third term. The pointwise convergence

T T
P2 - / u' &' dz +/ / A'VOVudzdr +/ / AVuVedrdr
Q o Jo o Ja
for any t € [0, T,

follows by using convergences (12.24) and the same computations as in (8.40)
and (8.41). It is easy to prove that p? is bounded in H'(0.T). A priori es-
timates (12.22) for u,, convergence (8.30)(i) and the assumptions on A imply
immediately the boundedness of ||p2||.(.7)- On the other hand, from Theo-
rem 3.58 (iii), one has

') = (l(-1). ‘I"('ef))nﬂ(n).u",(n)+/QU2($J)‘I’"(:PJ) dx
+ / A€ (CV®) Vg di + / AV, (CEV®) da.
@ Q

From this expression. the boundedness of ||(p?)’|| L26.7) 18 obvious by the same
arguments as above. Hence. one has the convergence

T T
p2— / uddr + / f A’VoVudrdr + j / A'WuV@®drdr in C([0,T)),
9] a JQ g JQ

(12.52)
due to the compact injection of H!(0.T) in C(|0,7]) (see Theorem 3.27(iii)).
Recalling (12.48). from definition (12.49) and convergences (12.50), (12.51) and
(12.52), the claimed result follows easily. o

Proof of Theorem 12.10. The proof is analogous to that of Theorem 11.7.
Let us just point out the main difference. One has to study the convergence

o112 ot 2
of the term |[ul — o’ |(‘([0,T)‘L9(!2)) instead of ||us — ""('([o.T];L?(n))'
To do so. for § > 0, by using Proposition 3.60, one introduces ®; €
C*(la, b]; D(Q)), such that

i)l = PGl sy L2y < O
i) ||V — V&l[Z2qxjorp < 0

Then, to prove the result, we write
Ue — u = (e — B5) + (5 — u).

and argue exactly as in the proof of Theorem 11.7. m]



13
General approaches to the non-periodic
case

In this chapter we present some results concerning the convergence of the solu-
tions of partial differential equations with non-periodic coefficients. For simplic-
ity, we will only present rcsults concerning the elliptic problems. All the results
can be extended to the heat and wave equations, as well as to the linearized
elasticity system.

As in the previous chapters, 2 denotes a bounded open set in RN and € > 0
is a parameter taking its values in a sequence which tends to zero.

Let o,08 € R, be such that 0 < a < . Recall (see Definition 4.11) that

M(a, 3,€2) denotes the set of N x N matrices A = (a;;)1<:.j<n € (L™= (Q))NXN

such that ) (AW) ) H°
: A(r)y,7) > ay|?
13.1

{iz') Al < 81l (13.1)

for any ¥ € RY and a.e. on Q.
In this chapter we consider the general elliptic problem
—div (A*Vuf)=f inQ
13.2
{ u* =0 ondN. (13.2)

where f is given in H~*(Q) and {A°} is a sequence of matrices in M (c, 3, Q).

In Section 13.1 we recall the notions of G-convergence and H-convergence in-
troduced respectively by Spagnolo (1967) and Tartar (1977a). These definitions
deal with the convergence of the solutions of problem (13.2). In Section 13.2
we present the compensated compactness due to Murat and Tartar (see Mu-
rat, 1978b and Tartar, 1979) and a corrector result.

Finally, in Section 13.3 we give some optimal bounds for the eigenvalues of
a homogenized matrix in the general case. We refer for that to Tartar (1985),
Lurie and Cherkaev (1984, 1986).

Throughout this book, we have restricted ourselves to the linear case. For the
study of the asymptotic behaviour of a large class of nonlinear problems one has
a general mathematical theory introduced by E. De Giorgi (see De Giorgi, 1975,
De Giorgi and Spagnolo. 1973, De Giorgi and Franzoni, 1975) and called I-
convergence. It deals with the convergence of the minima of functionals. There is
now a wide range of results in this field. We refer in particular to Dal Maso (1993)
for a general exposition. We refer also the reader to references in their work.
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13.1 G-convergence and H-convergence

In Section 5.1 we have shown some properties of problem (13.2). First, it has a
unique solution satisfying the estimate

1
I g < S 1Flli-2o-

Furthermore, the vector A Vu¢ satisfics the estimate

B
|A*Vus|L2¢n) < a”f"H-'(ﬂ)‘

so that there exists a subsequence such that

{i) uf —u® weakly in H}(R) (13.3)

i) ASVus — €0 weakly in (L2(Q))V.

Moreover, one has
—dive® = f inQ

The question is still whether one can find a relation between u? and £° and
a limit equation satisfied by u°.

From the end of the sixties these questions have been widely investigated.

The first significant work on this subject is due to S. Spagnolo who, in a
paper of 1967 {see Spagnolo, 1967). introduced the notion of G-convergence,
which deals with the convergence of the solutions of elliptic problems of the
type (13.2) as well as of the corresponding heat equation. In this framework, the
matrices A° are supposed to be symmetric.

Definition 13.1. Let {A®} be a sequence of symmetric matrices in M(a, 5, Q).
We say that it G-converges to the symmetric matrix A° € M(q,3,9) iff for
every function f of H~1(Q2), the solution u¢ of
~div (A*Vuf)=f inQ
v =0 ondQ,

is such that

0

u® —u® weakly in H{,

where u° is the unique solution of the problen

{ —div (A°Vu®) = f inQ
©®*=0 ondN.

The G-convergence has the following main properties:

Theorem 13.2. One has
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i) (uniqueness). The G-limit of a G-converging sequence {A¢} € M(a,3,9)
is unique.

ii) (locality). Let {A°} and {B¢} be two sequences of symmetric matrices in
M(a, B,Q) which G-converge respectively to A° and B°. If for somew C

one has
A% = B° inw. forevery e,

then
A°=B% inw.

ifi) (compactness). Let {A°} be a sequence of symmetric matrices in
M(c,8,9). Then there exists a subsequence {A®} and a matrix A €
M(a, 8,9) such that {A¢'} G-converges to A°.

iv) A sequence {A®} of symmetric matrices in M(a,f3,92) G-converges iff all
its G-converging subsequences have the same limit.

This kind of convergence has been extended to sequences of matrices in
M (o, 3,9Q) which are not necessarily symmetric. This leads to the notion of
H-convergence, introduced by Tartar (1977a) and developed by F. Murat and
L. Tartar (see Murat, 1978a. Murat and Tartar, 1997a).

Definition 13.3. A sequence {A°} in AM(a,3.Q) H-converges to A° €
M(d,3,Q) iff for every function f of H (). the solution u, of
~div (AEVue)r= f inQ (13.4)

u* =0 on .

is such that

{i) ut = u? weakly in H}(Q)
i) AVut — A°Vu®  weakly in (L2(Q))V,

where u? is the unique solution of the problem

{ ~div (A%Vu®) = f inQ

13.5
=0 onén. ( )

Let us point out the main difference between these two notions of convergence.
G-convergence deals with syminetric matrices and supposes the convergence of
the solutions u® only. H-convergence is defined for general sequences (not neces-
sarily symmetric) and suppose not only the convergence of the solutions u¢ but
also that of A°*Vu®. The main feature of H-convergence is that the additional
condition on the convergence of AVu® is essential in order to keep the main
properties stated in Theorem 13.2. Indeed one has

Theorem 13.4. One has the following properties:
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i) (uniqueness). The H-limit of a H-converging sequence {A¢} € M(a,3,9)
is unique.

ii) (locality). Let {A°} and {B¢} be two sequences in M{a.p, Q) which H-
converge respectively to A° and B°. If for some w C S one has

A =B° inw, forevery e,

then
A% =B% inw.

iii) (compactness). Let {A¢} be a sequence in M(c.3,9?). Then there exists
a subsequence {A'} and a matrix A® € M(a.3%/a. ) such that {A°'}

H-converges to A°.

iv) A sequence {A} of symmetric matrices in M(a.3.2) H-converges iff all
its H-converging subsequences have the same limit.

Remark 13.5. Observe that the H-limit A® provided by compactness in Theo-
rem 13.4 is in a larger class then A (c. 3,2), namely in M(a.3%/a, Q). QO

A natural question is what is the relation between the two convergences for
a sequence of symmetric matrices? The answer is given by

Proposition 13.6. For a a sequence { A°} of symmetric matrices in M(a, 8,(2)
G-convergence is equivalent to H-convergence.

The proof of this result makes use of the following comparison theorem, which
generalizes Theorem 8.12 to the non-periodic case. We refer for it to De Giorgi
and Spagnolo (1973) and to Tartar (1977a).

Theorem 13.7. Let {A®} and {B®} be two sequences in M(«, 3,§2) which H-
converge respectively to A° and B®. Suppose that for any €. the matrix B® is

symmetric and that
B < A%,

in the sense of Definition 8.11. Then
B < A°.

Proof of Proposition 13.6. Observe first that for any sequence {A¢} in
M(a, 3,9), if I denotes the NV x N identity matrix. one has

A® < 31, Ve

in the sense of Definition 8.11. Then. if { A°} is a sequence of symmetric matrices
which H-converges to some A% € M (o, 3%/a.§?), from Theorem 13.7 one has

AY < 31
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This implies that A° is in Af(a,3.Q) and then that the sequence {A°} G-
converges to A® .

Conversely, suppose that {A°} is a sequence of symmetric matrices in
M(a, 8,) which G-converges to some AC. From Theorem 13.4 there exists
a subsequence {A°'} and a matrix B® € M(a,3?/a.Q) such that {A°} H-
converges to B®. Due to the implication already proved, one has that {4° } G-
converges to BC. But since obviously. the subsequence { A€} also G-converges to
A®, the uniqueness of the G-limit provided by Theorem 13.2 shows that A° = BP.
Then, all the H-convergent subsequences of {A°} converge to A%. This, thanks
to Theorem 13.4, proves that the whote sequence {A¢} H-converges to A°. O

Let us now give one important consequence of Proposition 13.6.

Corollary 13.8. Let {A°} be a sequence of symmetric matrices in M(a, 3,Q)
which G-converges to A®. Then

A*VuE = A°Vu"  weakly in (L2(Q))V.

Remark 13.9. Let {A°} be the sequence of periodic matrices defined by (6.2)-
(6.4). Then. Theorem 6.1, together with Proposition 6.12, states precisely the
H-convergence of this sequence to the constant matrix A° defined by (6.30). ¢

The proof of the main theorems 13.2 and 13.4 are quite difficult and delicate.
They can be found in Spagnolo (1967). Murat and Tartar (1997a) and also in
Oleinik, Shamaev, and Yosifian (1992) and in Jikov. Kozlov, and Oleinik (1994).

13.2 Compensated compactness and correctors

One of the main tools for proving Theorem 13.4 above is the compensated com-
pactness due to F. Murat and L. Tartar (see for instance. Murat, 1978a and
Tartar, 1979). We recall this result as well as some related properties in this
section.

As we have seen throughout this book. the product of two weakly convergent
sequences does not converge. in general, to the product of the limits, and this is
the principal difficulty when trying to characterize £°. given in (13.3) in terms of
4. The compensated compactness shows that under some additional assump-
tious, the product of two weak convergent sequences in L*(§2) converges in the
sense of distributions to the product of the limits.

This result is interesting in itself and is widely used in many applications.

Theorem 13.10. Let {U¢} and {V*} two sequences in (L?())V such that

{U €=U weakly in (L2(Q))V
VE 2 VO weakly in (L2(2))V.
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Suppose that {div U¢} is compact in H™'(Q) and {curl V¢} is bounded in
(L2(Q))N*N | where the matrix curl V¢ = ((curl Ve)‘i)lsi.jgN is defined by

e JVFf
(curl V¥);; = 6% ~ _.rL fori,j=1,...,N.

Then
Ueve — U°V° in D/(Q).

In the framework of H-convergence, the interest of Theorem 13.10 is that it
can be applied to the case

Ut = A°Vu®. V& =Vrf.
where u® solves a problem of the form (13.1). Indeed.

Corollary 13.11. Suppose that {A¢} H-converges to A® and let u* be the so-
lution of problem (13.4). Suppose further that {v°} is a sequence in H(Q) such
that

v¢ —~v°  weakly in H'(Q).

Then one has

/ A*Vu® Vot pdr — / AV Vi pdz, Yy € D),
Q Q

where u® is the solution of (13.5).

Proof. By assumption, one has

{A‘ Vut = A°Vu®  weakly in (L2())V
Vo€ — Vu®  weakly in (L2(Q))V.

Consequently, Theorem 13.10 applies. since div A*Vu® = —f is fixed in
H~1(0) and obviously, curl V¢ = 0. O

This implies in particular that if {A°} H-converges to A°. then one has con-
vergence of the energy.

Proposition 13.12. Suppose that {A°} H-converges to A° and let u¢ be the
solution of problem (13.4). Then,

AV Vut — AV Vil in D(Q),
where u® is the solution of (13.5).

Proof. The proof is straightforward from Corollary 13.11 by choosing v¢ = 4.0
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At this point, let us also mention that most of the results proved in Chapter
8 for the periodic case can be extended to the case of an H-convergent sequence.
In particular one can construct a sequence of local corrector matrices, in order to
improve locally the weak convergence of Vu¢ to Vu? supposed in Definition 13.3.
To do so, we introduce first, for any open subset. w of 2 such that w C €, a

family of auxiliary functions wj as follows.
Let w) be an open subset of 2 such that & C w; C @} C Q and ¢ € D(w;)
such that ¢ = 1 on w. Further, let {A°} be a sequence H-converging to A4°.
Consider, for any A € R", the solution w$ of the problem

{—divwwi) = ~div(4°V[(A - 2)¢(2)]) inw) (13.6)
w§ =0 on dw. |

The existence and uniqueness of the solution w§ € H}(w,) is given by Theo-

rem 4.16.
Observe that, due to the particular forin of ¢, one has

—div(4*Vuw$) = —div(A°A) in w. (13.7)

Notice also, that according to Definition 13.4, w5 converges weakly in H3(w))
to the solution w9 of

—div(A°Vu]) = —div[A°V((A- x)p(r))] inw
w) =0 on duw.

Then, by uniqueness, one must have
wi(x) = (A - 2)p(x) inw.
so that, since ¢ = 1 on w. one has the convergence
wi = A-v  weakly in H'(w). (13.8)

In the sequel we set
wi = w;. . (13.9)

where (e;)¥  is the canonical basis of RV.
Remark 13.13. It is interesting to remark that for A = e; the relations (13.7)
and (13.8) are the essential properties of the functions w; introduced in Sec-

tion 6.1 in the periodic case (see (8.32) and (8.34)). 0

We are now in position to define the corrector matrix in the context of H-
convergence.

Definition 13.14. Suppose that {A°} H-converges to A® and let u¢ be the solu-
tion of problem (13.4). The corrector matrix C< = (C: Tih<ijen € (LP(w))V*N
is defined by
ous
Ci; = 2.

Oy;
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It is easily seen from (13.8) and (13.9) that
Cf = I weakly in (L%(w))V*V, (13.10)

where [ is the unit N x N matrix. Then, II-convergences implies in particular

that
Vut —CVu® — 0 weakly in (L' (w))V. (13.11)

Remark 13.15. Observe that the corrector matrix C* depends on the choice
of w) and ¢. But, since (13.7) and (13.8) are independent on w; and ¢, for any
choice of w, and ¢ one has convergences (13.10) and (13.11). 0

Remark 13.16. Observe that Definition 13.14 generalizes the definition of the
correctors given for the periodic case in Section 8.2. Convergences (13.10) and
(13.11) correspond to (8.30)(i) and (8.36). QO

The main corrector result is

Theorem 13.17. Suppose that {A°} H-converges to A° and let u€ be the so-
Iution of problem (13.4). Let {C¢} be any sequence of corrector matrices given
by Definition 13.14. Then,

Vuf — CVu® - 0 strongly in (L' (w))V. (13.12)

Moreover, if C¢ is bounded in (L™ (w))V*¥ for some r such that 2 < r < 00, and
Vul € (L*(w))VN for some s such that 2 < s < co. then

Vuf — C*Vu’ = 0 strongly in (L'{w))V, (13.13)
t:min{2. '3 }
r+s

The compactuess result in Theorem 13.4 states that any sequence A€ in
M (e, 3, Q) has a subsequence that H-converges to some matrix A® in M(c/, 8',9).
Suppose now that we are in the isotropic case. that is A% is of the form A¢ = 4.1,
where I is the identity matrix and

where

13.3 Optimal bounds

@ <1:(z) <3 ae onf Ve.
Then, problem (13.4) reads

{ —div(h V)= f inQ

u =0 on N (13.14)

In this case. since A is symmetric. A® is also the G-limit of A%. so that
A" is symmetric too and belongs to A(a. 3.Q). Consequently. A%(x) admits N
eigenvalues A (x)..... An(x) defined a.e. on §. which are strictly positive.
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In Section 5.1 we presented the model of a periodic physical case, where the
conductivity of the periodic composite material was given by

xr I
Ye(@)=m 1 (:) + 72 Xz(;)

This case corresponds then to a periodic mixture of two (homogeneous) ma-
terials. In particular, Theorem 6.1 applies to this situation and provides explicit
forinulas for the homogenized matrix A%. It will turn out that in general, Al is
not isotropic.

In the non-periodic case, one cannot explicitly describe A%

A natural question is if one can at least characterize the H-limit A° when A€

is of the form A® = 4.I and

L m ifrefq
2] = {72 if » € 5.
i.e.
Ye(2) = 71 . () + 12 X, (7). (13.15)
1 2
with

QU =Q. QN5 =0
This corresponds to a (non-periodic) mixture of two materials. Here Xqe for
i =1, 2, is the characteristic function of the set (. Obviously Xge =1 Xq,-
4 2

Suppose that the proportion of the two materials is kept constant, i.e.

% _ [ .
0] 0 €]0.1{. o] 6 (13.16)
and that the homogenized material is isotropic, i.e. A® is of the form AI. In
this case there are some well-known bounds on the eigenvalues of the matrix A°.
These bounds are known in physics. mechanics or chemistry under various names,
such as Hashin-Shtrikman (see Hashin and Shtrikman. 1962), Clausius—Mossoti,
Lorentz -Lorenz or Maxwell Garnett bounds.
Suppose now that there exists a function @(x) such that

X — 0 weakly* in L%(02). (13.17)
1

Then from (13.15) one has obviously
Ye = 0m1 + (1 — 0)r2  weakly™ in L>=(0). (13.18)

In this case and with AY not necessarily isotropic. one still has bounds on
the eigenvalues of the matrix A%, This is a general mathematical result due to
Tartar (1985) for the N-dimensional case (see also Murat and Tartar, 1997b).
They were also obtained for the two-dimensional case independently by Lurie
and Cherkaev (1984). We refer also to Lurie and Cherkaev (1986, 1997).
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Theorem 13.18. Let A° € M(a,d,) s'uch that A¢ = ~.I where 7. is given
by (13.15) with 71 < v2. Suppose that A* € A (a,3.Q) is a subsequence which
H-converges to A®. Then the eigenvalues A\ (z)..... An(z) of A satisfy a.e. on
Q, the following inequalities:
(%0(2) < M(®) S nal@). Vi=1....N,

al 1 1 N-1

Y < +
! Gt Ai(@) =m T @) =M ve(@)—m (13.19)

N 1 1 N-1
z < + .
Y2 = Ailx) T 12— () Y2 —Ya(T)

\ ;=1

where
Ya(2) = 6(x) 71 + (1 — 6(x)) 72.
L {0(x)  1-8(x)\" (13.20)
79(J)h('n M Y ) )

Conversely, if the eigenvalues of a symmetric matrix A° satisfy (13.19) for
some function 8 such that 0 < 6(z) <1 a.e. on 2, then there exists a sequence
of matrices A¢ of the form .1 satisfving (13.15) and (13.17), which H-converges
to A°.

In the two-dimensional case and under assumption (13.16), we can give a
geometric interpretation of the bounds in (13.19) by using Fig. 13.1.
The point C; = C1(6) for a fixed 8 € [0,1] is defined by

016) = (o9 20) = ( LT = (= 0.

and a simple computation made by using (13.20) shows that, when 6 varies
between 0 and 1, C, describes the hyperbola

1172
(hy) :n = ———.
N+ -—y

Observe that
C1(0) = (72, 72).  Ci(1) = (m. m)-

The point Cy = C3(0) is the reflection of C with respect to the line y, = y»,
that is to say C2(60) = (7a. 7g). It describes the hyperbola

172
Mmtr-n

The points By = B(0) and B; = B,(6) are given by

Bi1(6) = (Ya: 1a)-  B2(8) = (74- 7g)-

(h2) : y2 =
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y:
T2
B,
4
hy
G
h,
Y
0
o T2 ¥
Fig. 13.1

The first line in (13.19) means that the eigenvalucs are contained in the square
B, C; B C.

The other two inequalities in (13.19) say that actually the eigenvalues are
contained in the dashed area between the two hyperbola h3 and h4 whose equa-
tions are

1 1 1 1

+ = + )

Bi—m Yy2—n Yo~ N Ya—M
1 1 1 1

+ = + .

YT2—N 2-Y2 2=V Y2~

(h3) :

(hg) :

Remark 13.19. Let N = 2 and suppose that the matrix A is isotropic. Then,
one shows that inequalities (13.19) reduces to

/\—gASA-lﬂ
where
N =9’n+(1—9)‘72+’72,71
T (=-8m+byetmn
\ M+ (1~ +n
+

TA=0m A+t

These are actually the well-known Hashin-Shtrikman (or Clausius-Mossoti or
Lorentz-Lorenz or Maxwell-Garnett) inequalities mentioned above. )
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