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ELECTRONIC STRUCTURE

The study of the electronic structure of materials is at a momentous stage, with new algo-

rithms and computational methods, and rapid advances in basic theory. Many properties of

materials can now be determined directly from the fundamental equations for the electrons,

providing new insights into critical problems in physics, chemistry, and materials science.

This book is the first of two volumes that provide a unified exposition of the basic theory and

methods of electronic structure, together with instructive examples of practical computa-

tional methods and real-world applications. These books are appropriate for both graduate
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today – density functional theory – with emphasis upon understanding the ideas, practi-

cal methods, and limitations. Many references are provided to original papers, pertinent
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Preface

The field of electronic structure is at a momentous stage, with rapid advances in basic theory,

new algorithms, and computational methods. It is now feasible to determine many proper-

ties of materials directly from the fundamental equations for the electrons and to provide

new insights into vital problems in physics, chemistry, and materials science. Increasingly,

electronic structure calculations are becoming tools used by both experimentalists and the-

orists to understand characteristic properties of matter and to make specific predictions for

real materials and experimentally observable phenomena. There is a need for coherent,

instructive material that provides an introduction to the field and a resource describing the

conceptual structure, the capabilities of the methods, limitations of current approaches, and

challenges for the future.

The purpose of this and a second volume in progress is to provide a unified exposition

of the basic theory and methods of electronic structure, together with instructive examples

of practical computational methods and actual applications. The aim is to serve graduate

students and scientists involved in research, to provide a text for courses on electronic

structure, and to serve as supplementary material for courses on condensed matter physics

and materials science. Many references are provided to original papers, pertinent reviews,

and books that are widely available. Problems are included in each chapter to bring out

salient points and to challenge the reader.

The printed material is complemented by expanded information available on-line at a site

maintained by the Electronic Structure Group at the University of Illinois (see Ch. 24).

There one can find codes for widely used algorithms, more complete descriptions of many

methods, and links to the increasing number of sites around the world providing codes and

information. The on-line material is coordinated with descriptions in this book and will

contain future updates, corrections, additions, and convenient feedback forms.

The content of this work is determined by the conviction that “electronic structure” should

be placed in the context of fundamental issues in physics, while at the same time emphasizing

its role in providing useful information and understanding of the properties of materials.

At its heart, electronic structure is an interacting many-body problem that ranks among

the most pervasive and important in physics. Furthermore, these are problems that must be

solved with great accuracy in a vast array of situations to address issues relevant to materials.

Indeed, many-body methods, such as quantum Monte Carlo and many-body perturbation
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theory, are an increasing part of electronic structure theory for realistic problems. These

methods are the subject of the second volume.

The subjects of this volume are fundamental ideas and the most useful approaches at

present are based upon independent-particle approximations. These methods address di-
rectly and quantitatively the full many-body problem because of the ingenious formulation
of density functional theory and the Kohn–Sham auxiliary system. This approach provides a

way to approach the many-body problem, whereby certain properties can be calculated, in

principle exactly, and in practice very accurately for many materials using feasible approxi-

mations and independent-particle methods. This volume is devoted to independent-particle

methods, with emphasis on their usefulness and their limitations when applied to real prob-

lems of electrons in materials. In addition, these methods provide the starting point for

much of the work described in the planned second volume. Indeed, new ideas that build

upon the construction of an auxiliary system and actual independent-particle calculations

are critical aspects of modern many-body theory and computational methods that can pro-

vide quantitative description of important properties of condensed matter and molecular

systems.

It is a humbling experience to attempt to bring together the vast range of excellent work

in this field. Many relevant ideas and examples are omitted (or given short shrift) due to lack

of space, and others not covered because of the speed of progress in the field. Feedback on

omissions, corrections, suggestions, examples, and ideas are welcome in person, by e-mail,

or on-line.

Outline

Part I consists of the first five chapters, which include introductory material. Chapter 1

provides historical background and early developments of the theoretical methods that are

foundations for more recent developments. Chapter 2 is a short summary of characteris-

tic properties of materials and modern understanding in terms of the electronic structure.

Examples are chosen to illustrate the goals of electronic structure theory and a few of

the achievements of the last decades. Further details and applications are included in later

chapters. Chapters 3–5 present background theoretical material: Ch. 3 summarizes basic

expressions in quantum mechanics needed later; Ch. 4 provides the formal basis for the

properties of crystals and establishes notation needed in the following chapters; and Ch. 5

is devoted to the homogeneous electron gas, the idealized system that sets the stage for

electronic structure of condensed matter.

Part II, Chs. 6–9, is devoted to density functional theory upon which is based much of the

present-day work in the theory of electronic structure. Chapter 6 presents the basic existence

theorems of Hohenberg, Kohn, and others; and Ch. 7 describes the Kohn–Sham approach,

which is the theoretical basis for approximate inclusion of many-body effects in practical

independent-particle equations. This approach has proven to be very successful in many

problems and is by far the most widely used technique for quantitative calculations. Chap-

ter 8 covers examples of functionals; although the primary emphasis here is the use of the

functionals, selected material is included on the many-body effects implicitly incorporated
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into the functionals. This is required for appreciation of the limitations of widely used

approximate functionals and avenues for possible improvements. Finally, general aspects

of the solution of the Kohn–Sham equations are in Ch. 9, with further details and specific

applications given in later chapters.

Part III, Chs. 10 and 11, addresses the solution of mean-field Hartree–Fock and Kohn–

Sham equations in the simplest case, the spherical geometry of an atom, and the generation of

pseudopotentials. Atomic calculations illustrate the theory and are used directly as essential

parts of the methods described later. Pseudopotentials are widely used in actual calculations

on real materials and, in addition, their derivation brings out beautiful theoretical issues.

Part IV, Chs. 12–17, is devoted to the three core methods for solution of independent-

particle equations in solids. The goal is to describe the methods in enough detail to show

key ideas, their relationships, and relative advantages in various cases. But it is not the goal

to give all details needed to construct working algorithms fully. Many noteworthy aspects

are placed in appendices.

Part V, Chs. 18–23, represents the culmination of present-day electronic structure, which

has flowered to produce ideas and methods that enable prediction of many properties

of real materials. Probably the most important single development in recent years is the

“Car–Parrinello” method (Ch. 18) that has revolutionized the field of electronic structure,

making possible calculations on previously intractable problems such as solids at finite

temperature, liquids, molecular reactions in solvents, etc. New developments in the under-

standing and use of response functions and time-dependent density functional theory have

proved practical methods for computing spectra for phonons and spin excitations (Ch. 19)

and optical excitations (Ch. 20). New developments in the understanding and use of Wannier

functions and the theory of polarization and localization in solids (Chs. 21 and 22) have led

to new understanding of issues resolved only in the last decade. Finally, satisfying local de-

scriptions of electronic properties and potentially useful linear-scaling, “order-N” methods

are described in Ch. 23.

The short chapter, Ch. 24, “Where to find more” replaces a summary; instead of attempting

to summarize, it is more appropriate to point to further developments in a way that will be

updated in the future, namely an online site where there is further information coordinated

with this volume, computer codes, and links to many other sites.

The appendices are devoted to topics that are too detailed to include in the main text and

to subjects from different fields that have an important role in electronic structure.
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Notation

Abbreviations

BZ first Brillouin zone

wrt with respect to

+c.c. denotes adding the complex conjugate of the preceding

quantity

General physical quantities

E energy

� volume (to avoid confusion with V used for potential)

P = −(dE/d�) pressure

B = �(d2 E/d�2) bulk modulus (inverse of compressibility)

H = E + P� enthalpy

uαβ strain tensor (symmetrized form of εαβ)

σαβ = −(1/�)(∂ E/∂uαβ) stress tensor (note the sign convention)

FI = −(dE/dRI ) force on nucleus I

CI J = d2 E/dRI dRJ force constant matrix

n(r) density of electrons

Notation for crystals

�cell volume of primitive cell

ai primitive translation vectors

T or T(n) ≡ T(n1, n2, n3) lattice translations

= n1a1 + n2a2 + n3a3

τs, s = 1, . . . , S positions of atoms in the basis

bi primitive vectors of reciprocal lattice

G or G(m) ≡ G(m1, m2, m3) reciprocal lattice vectors

= m1b1 + m2b2 + m3b3

k wavevector in first Brillouin zone (BZ)

q general wavevector (q = k + G)
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Hamiltonian and eigenstates

Ĥ hamiltonian for either many particles or a single particle


({ri }) Many-body wavefunction of a set of particle positions

ri , i = 1, Nparticle; spin is assumed to be included in

the argument ri unless otherwise specified

Ei energy of many-body state

�({ri }) single determinant uncorrelated wavefunction

Hm,m′ matrix element of hamiltonian between states m and m ′

Sm,m ′ overlap matrix elements of states m and m′

ψi (r) independent-particle wavefunction or “orbital,”

i = 1, . . . , Nstates

εi independent-particle eigenvalue, i = 1, . . . , Nstates

fi = f (εi ) occupation of state i where f is the Fermi function

ψσ
i (r), εσ

i used when spin is explicitly indicated

αi (σ j ) spin wavefunction for particle j ; i = 1, 2

φi (r j , σ j ) single particle “spin-orbitals” (= ψσ
i (r j ) × αi (σ j ))

ψl(r ) single-body radial wavefunction

(ψl,m(r) = ψl(r )Ylm(θ, φ))

φl(r ) single-body radial wavefunction φl(r ) = rψl(r )

ηl(ε) phase shift

ψi,k(r) = eik·rui,k(r) Bloch function in crystal, with ui,k(r) periodic

εi,k eigenvalues that define bands as a function of k
Ĥ (k) “gauge transformed” hamiltonian given by Eq. (4.37);

eigenvectors are the periodic parts of the Bloch

functions ui,k(r)

χα(r) single-body basis function, α = 1, . . . , Nbasis. Orbital i is

expanded in basis functions α, i.e.

ψi (r) = ∑
α ciαχα(r)

χα(r − (τ + T)) localized orbital basis function on atom at position τ in

cell labelled by translation vector T
χOPW(r), χAPW(r),

χLMTO(r)

Basis function for orthogonalized, augmented or

muffin-tin orbital basis functions

wi (r − T) Wannier function i associated with band i and cell T
w̃i (r − T) Non-orthogonal transformation of Wannier functions

Density functional theory

F[ f ] General notational for F a functional of the function f
Exc[n] exchange–correlation energy in Kohn–Sham theory

εxc(r) exchange–correlation energy per electron

Vxc(r) exchange–correlation potential in Kohn–Sham theory

V σ
xc(r) exchange–correlation potential for spin σ

fxc(r, r′) Response δ2 Exc[n]/δn(r)δn(r′)
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Response function and correlation functions

χ (ω) general response function

χ0(ω) general response function for independent particles

K (ω) Kernel in self-consistent response function χ−1 = [χ0]−1 − K
ε(ω) frequency dependent dielectric function

n(r, σ ; r′, σ ′) pair distribution

g(r, σ ; r′, σ ′) normalized pair distribution (often omitting the spin indices)

G(z, r, r′) or Gm,m ′(z) Green’s function of complex frequency z
ρ(r, σ ; r′, σ ′) density matrix

ρσ (r, r′) density matrix diagonal in spin for independent-particles





PART I

OVERVIEW AND BACKGROUND TOPICS

1

Introduction

Without physics there is no life

Taxi driver in Minneapolis

Summary

Since the discovery of the electron in 1896–1897, the theory of electrons in
matter has ranked among the great challenges of theoretical physics. The funda-
mental basis for understanding materials and phenomena ultimately rests upon
understanding electronic structure. This chapter provides a brief outline with
original references to early developments of quantum mechanics and the
pioneering quantitative theories that foreshadowed most of the methods in use
today.

Electrons and nuclei are the fundamental particles that determine the nature of the matter

of our everyday world: atoms, molecules, condensed matter, and man-made structures.

Not only do electrons form the “quantum glue” that holds together the nuclei in solid,

liquid, and molecular states, but also electron excitations determine the vast array of elec-

trical, optical, and magnetic properties of materials. The theory of electrons in matter

ranks among the great challenges of theoretical physics: to develop theoretical approaches

and computational methods that can accurately treat the interacting system of many

electrons and nuclei found in condensed matter and molecules.

1.1 Quantum theory and the origins of electronic structure

Although electric phenomena have been known for centuries, the story of electronic struc-
ture begins in the 1890s with the discovery of the electron as a particle – a fundamental

constituent of matter. Of particular note, Hendrik A. Lorentz1 modified Maxwell’s theory

of electromagnetism to interpret the electric and magnetic properties of matter in terms of

the motion of charged particles. In 1896, Pieter Zeeman, a student of Lorentz in Leiden,

discovered [4] the splitting of spectral lines by a magnetic field, which Lorentz explained

with his electron theory, concluding that radiation from atoms was due to negatively charged

particles with a very small mass. The discovery of the electron in experiments on ionized

1 The work of Lorentz and many other references can be found in a reprint volume of lectures given in 1906 [3].
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gases by J. J. Thomson at the Cavendish Laboratory in Cambridge in 1897 [5,6] also led to

the conclusion that the electron is negatively charged, with a charge to mass ratio similar to

that found by Lorentz and Zeeman. For this work, the Nobel prize was awarded to Lorentz

and Zeeman in 1902 and to Thomson in 1906.

The compensating positive charge is composed of small massive nuclei, as was demon-

strated by experiments in the laboratory of Rutherford at Manchester in 1911 [7]. This

presented a major problem for classical physics: how can matter be stable? What prevents

electrons and nuclei from collapsing due to attraction? The defining moment occurred when

Niels Bohr (at the Cavendish Laboratory for post-doctoral work after finishing his disser-

tation in 1911), met Rutherford and moved to Manchester to work on this problem. There

he made the celebrated proposal that quantum mechanics could explain the stability and

observed spectra of atoms in terms of a discrete set of allowed levels for electrons [8].

Although Bohr’s model was fundamentally incorrect, it set the stage for the discovery of

the laws of quantum mechanics, which emerged in 1923–1925, most notably through the

work of de Broglie, Schrödinger, and Heisenberg.2

Electrons were also the testing ground for the new quantum theory. The famous Stern–

Gerlach experiments [15, 16] in 1921 on the deflection of atoms in a magnetic field were

formulated as tests of the applicability of quantum theory to particles in a magnetic field.

Simultaneously, Compton [17] proposed that the electron possesses an intrinsic moment,

a “magnetic doublet,” based upon observations of convergence of beams of rays. Cou-

pling of orbital angular momentum and an intrinsic electron spin of 1
2

was formulated by

Goudschmidt and Uhlenbeck [18], who noted the earlier hypothesis of Compton.

One of the triumphs of the new quantum mechanics, in 1925, was the explanation of the

periodic table of elements in terms of electrons obeying the exclusion principle proposed by

Pauli [19] that no two electrons can be in the same quantum state.3 In work published early in

1926, Fermi [21] extended the consequences of the exclusion principle to the general formula

for the statistics of non-interacting particles (see Eq. (1.1)) and noted the correspondence

to the analogous formula for Bose–Einstein statistics [22, 23].4 The general principle that

the wavefunction for many identical particles must be either symmetric or antisymmetric

when two particles are exchanged was apparently first discussed by Heisenberg [24] and,

independently, by Dirac [25] in 1926.5 Together with the later work [27] of Dirac formulating

2 The development of quantum mechanics is discussed, for example, in the books by Jammer [9] and Waerden [10].

Early references and a short history are given by Messiah [11], Ch. 1. Historical development of the theory of

metals is presented in the reviews by Hoddeson and Baym [12, 13] and the book Out of the Crystal Maze [14],

especially the chapter “The development of the quantum mechanical electron theory of metals, 1926–1933” by

Hoddeson, Baym, and Eckert.
3 This was a time of intense activity by many people [14] and Pauli referred to earlier related work of E. C.

Stoner [20].
4 Note similarity of the title of Fermi’s 1926 paper, “Zur Quantelung des Idealen Einatomigen Gases” with the

title of Einstein’s 1924 paper, “Quantentheorie des Idealen Einatomigen Gases.”
5 According to [14], Heisenberg learned of the ideas of statistics from Fermi in early 1926, but Dirac’s work

was apparently independent. In his 1926 paper, Dirac also explicitly pointed out that the wavefunction for

non-interacting electrons of a given spin (up or down) can be written as a determinant of one-electron orbitals.

However, it was only in 1929 that Slater showed that the wavefunction including spin can be written as a

determinant of “spin orbitals” [26].
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relativistic quantum mechanics, and the laws of statistical mechanics, the great advances

of the 1920s form the basis of all modern theories of electronic structure of matter, from

atoms and molecules to condensed matter.

Further progress quickly led to improved understanding of electrons in molecules and

solids. The most fundamental notions of chemical bonding in molecules (rules for which

had already been formulated by Lewis [28] and others before 1920) were placed upon a

firm theoretical basis by quantum mechanics in terms of the way atomic wavefunctions are

modified as molecules are formed (see, for example, Heitler and London in 1927 [29]). The

rules for the number of bonds made by atoms were provided by quantum mechanics, which

allows the electrons to be delocalized on more than one atom, lowering the kinetic energy

and taking advantage of the attraction of electrons to each of the nuclei.

The theory of electrons in condensed matter is a many-body problem in which one must

use statistical concepts to describe the intrinsic properties of materials in the large system

thermodynamic limit. Progress toward quantitative theories requires approximations, of

which the most widely used – still today – is the independent-electron approximation.

Within this approximation each electron moves independently of the others, except that the

electrons obey the exclusion principle and each moves in some average effective potential

which may be determined by the other electrons. Then the state of the system is specified

by independent-particle eigenstates, labeled by i , with occupation numbers fi , which in

thermal equilibrium are given by

f σ
i = 1

eβ(εσ
i −µ) ± 1

, (1.1)

where the minus sign is for Bose–Einstein [22, 23] and the plus sign is for Fermi–Dirac

statistics [21, 25]. Among the first accomplishments of the new quantum theory was the

realization in 1926–1928 by Wolfgang Pauli and Arnold Sommerfeld [30, 31], that it re-

solved the major problems of the classical Drude–Lorentz theory.6 The first step was the

paper [30] of Pauli, submitted late in 1926, in which he showed that weak paramagnetism

is explained by spin polarization of electrons obeying Fermi–Dirac statistics. At zero tem-

perature and magnetic field, the electrons are spin paired and fill the lowest energy states up

to a Fermi energy, leaving empty the states above this energy. For temperature or magnetic

field non-zero, but low compared to the characteristic electronic energies, only the electron

states near the Fermi energy are able to participate in electrical conduction, heat capacity,

paramagnetism, and other phenomena.7 Pauli and Sommerfeld based their successful theory

of metals upon the model of a homogeneous free-electron gas, which resolved the major

6 Simultaneous to Lorentz’ development [3] of the theory of electric and magnetic properties of matter in terms

of the motion of charged particles, Paul K. L. Drude developed a theory of optical properties of matter [32, 33]

in a more phenomenological manner in terms of the motion of particles. Their work formed the basis of the

purely classical theory that remains highly successful today, reinterpreted in the light of quantum mechanics.
7 Sommerfeld learned of the ideas from Pauli in early 1927 and the development of the theory was the main subject

of Sommerfeld’s research seminars in Munich during 1927, which included participants such as Bethe, Eckhart,

Houston, Pauling, and Peierls [12]. Both Pauli and Heisenberg were students of Sommerfeld, who went on to

found the active centers of research in quantum theory, respectively in Zurich and Leipzig. The three centers

were the hotbeds of activity in quantum theory, with visitors at Leipzig such as Slater, Peierls, and Wilson.
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mysteries that beset the Drude–Lorentz theory. However, at the time it was not clear what

would be the consequences of including the nuclei and crystal structure in the theory, both

of which would be expected to perturb the electrons strongly.

Band theory for independent electrons

The critical next step toward understanding electrons in crystals was the realization of the

nature of independent non-interacting electrons in a periodic potential. This was elucidated

most clearly8 in the thesis of Felix Bloch, the first student of Heisenberg in Leipzig. Bloch

[36] formulated the concept of electron bands in crystals based upon what has come to be

known as the “Bloch theorem” (see Chs. 4 and 12), i.e. that the wavefunction in a perfect

crystal is an eigenstate of the “crystal momentum.” This resolved one of the key problems in

the Pauli–Sommerfeld theory of conductivity of metals: electrons can move freely through

the perfect lattice, scattered only by imperfections and displacements of the atoms due to

thermal vibrations.

It was only later, however, that the full consequences of band theory were recognized.

Based upon band theory and the Pauli exclusion principle, the allowed states for each spin

can each hold one electron per unit cell of the crystal. Rudolf Peierls, in Heisenberg’s group

at Leipzig, recognized the importance of filled bands and “holes” (i.e. missing electrons

in otherwise filled bands) in the explanation of the Hall effect and other properties of

metals [37,38]. However, it was only with the work of A. H. Wilson [39,40], also at Leipzig

in the 1930s, that the foundation was laid for the classification of all crystals into metals,

semiconductors, and insulators.9

Development of the bands, as the atoms are brought together is illustrated in Fig. 1.1,

which is based upon a well-known figure by G. E. Kimball in 1935 [34]. Kimball considered

diamond-structure crystals, which were difficult to study at the time because the electron

states change qualitatively from those in the atom. In his words:

Although not much of a quantitative nature can be concluded from these results, the essential differ-

ences between diamond and the metals are apparent.

The classification of materials is based upon the filling of the bonds illustrated in Fig. 1.1,

which depends upon the number of electrons:

� Insulators have filled bands with a large energy gap of forbidden energies separating the

ground state from all excited states of the electrons.
� Semiconductors have only a small gap, so that thermal energies are sufficient to excite

the electrons to a degree that allows important conduction phenomena.
� Metals have partially filled bands with no excitation gaps, so that electrons can conduct

electricity at zero temperature.

8 Closely related work was done simultaneously in the thesis research of Hans Bethe [35] in 1928 (student of

Sommerfeld in Munich), who studied the scattering of electrons from the periodic array of atoms in a crystal.
9 Seitz [1] further divided insulators into ionic, valence, and molecular, as done in Fig. 2.1.
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Figure 1.1. Schematic illustration of energy levels for electrons, showing the evolution from

discrete atomic energies to bands of allowed states separated by forbidden gaps, as the atoms are

brought together. Within the independent-particle approximation this leads to the basic division of

solids into insulators, where the bands are filled with a gap to the empty states, and metals, where

the bands are partially filled with no gap. Following G. Kimball [34].

1.2 Emergence of quantitative calculations

The first quantitative calculations undertaken on multi-electron systems were for atoms,

most notably by D. R. Hartree10 [43] and Hylleraas [44, 45]. Hartree’s work pioneered the

self-consistent field method, in which one solves the equation numerically for each electron

moving in a central potential due to the nucleus and other electrons, and set the stage for

many of the numerical methods still in use today. However, the approach was somewhat

heuristic, and it was in 1930 that Fock [46] published the first calculations using properly

antisymmetrized determinant wavefunctions, the first example of what is now known as

the Hartree–Fock method. Many of the approaches used today in perturbation theory (e.g.

Sec. 3.7 and Ch. 19) originated in the work of Hylleraas, which provided accurate solutions

for the ground state of two-electron systems as early as 1930 [45].

The 1930s witnessed the initial formulations of most of the major theoretical methods for

electronic structure of solids still in use today.11 Among the first quantitative calculations of

electronic states was the work on Na metal by Wigner and Seitz [49,50] published in 1933

10 D. R. Hartree was aided by his father W. R. Hartree, a businessman with an interest in mathematics who carried

out calculations on a desk calculator [41]. Together they published numerous calculations on atoms. D. R. went

on to become one of the pioneers of computer science and the use of electronic computers, and he published a

book on calculation of electronic structure of atoms [42].
11 The status of band theory in the early 1930s can be found in the reviews by Sommerfeld and Bethe [47] and

Slater [48], and in the book Out of the Crystal Maze [14], especially the chapter “The development of the band

theory of solids, 1933–1960” by P. Hoch.
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Figure 1.2. Energy versus radius for Na calculated by Wigner and Seitz [49]. Bottom curve: energy

of lowest electron state calculated by the cellular method. Top curve: total energy, including an

estimate of the additional kinetic energy from the homogeneous electron gas as given in Tab. 5.3.

From [49].
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Figure 1.3. Energy bands in Na calculated in 1934 by Slater [51] using the cellular method of

Wigner and Seitz [49]. The bands clearly demonstrate the nearly-free-electron character, even

though the wavefunction has atomic character near each nucleus. From [51].

and 1934. They used the cellular method, a forerunner of the atomic sphere approximation,

which allows the needed calculations to be done in atomic-like spherical geometry. Even

with that simplification, the effort required at the time can be gleaned from their description:

The calculation of a wavefunction took about two afternoons, and five wavefunctions were calculated

on the whole, giving ten points of the figure.

The original figure, reproduced in Fig. 1.2, shows the energy of the lowest electronic state

(lower curve) and the total energy of the crystal (upper curve), which are in remarkable

agreement with experiment.

The electron energy bands in Na were calculated in 1934 by Slater [51] and Wigner

and Seitz [50], each using the cellular method. The results of Slater are shown in Fig. 1.3;
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Figure 1.4. Energy bands in Ge calculated by Herman and Callaway [61] using the orthogonalized

plane wave (OPW) method (Sec. 11.2). The results are for k along the line from � (k = 0) to the X
point (k = π/a) as defined in Fig. 4.10. These were among the first calculations capable of

reasonably accurate predictions for a diamond-structure semiconductor, and can be compared with

recent calculations such in shown in Fig. 2.25. From [61].

very similar bands were found by Wigner and Seitz. Although the wavefunction has atomic

character near each nucleus, nevertheless the bands are very free-electron-like, a result that

has formed the basis of much of our understanding of sp-bonded metals. Many calculations

were done in the 1930s and 1940s for high-symmetry metals (e.g. copper bands calculated by

Krutter [52]) and ionic solids (e.g. NaCl studied by Shockley [53]) using the cellular method.

The difficulty in a general solid is to deal accurately with the electrons both near the

nucleus and in the smoother bonding regions. Augmented plane waves (Ch. 16), pioneered

by Slater [54] in 1937 and developed12 in the 1950s [55,56], accomplish this with different

basis sets that are matched at the boundaries. Orthogonalized plane waves (Ch. 11) were

originated by Herring [57] in 1940 to take into account effects of the cores upon valence elec-

trons. Effective potentials (forerunners of pseudopotentials, Chs. 11 and 12) were introduced

in many fields of physics, e.g. by Fermi [58] in 1934 to describe scattering of electrons from

atoms and neutrons from nuclei. Perhaps the original application to solids was by H. Hell-

mann [59,60] in 1935–1936, who developed a theory for valence electrons in metals remark-

ably like a modern pseudopotential calculation. Although quantitative calculations were not

feasible for general classes of solids, the development of the concepts – together with ex-

perimental studies – led to many important developments, most notably the transistor.13

The first quantitatively accurate calculations of bands in difficult cases like semiconduc-

tors, where the electronic states are completely changed from atomic states as shown in

Fig. 1.1, were done in the early 1950s, as reviewed by Herman [62, 63].14 For example,

Fig. 1.4 shows the bands of Ge calculated by Herman and Callaway [61] in 1953. They

12 Apparently, the first published use of the term “augmented plane waves” was in the 1953 paper by Slater [55].
13 Two of the inventors of the transistor, J. Bardeen (student of Wigner) and W. Shockley (student of Slater), did

major original work in electronic structure as the topics of their theses.
14 In his readable account in Physics Today [63], Herman recounts that many of the calculations were done by his

mother (cf., the role of D. R. Hartree’s father).
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pointed out that their gap was larger than the experimental value. It turns out that this is

correct: the gap in the direction studied should be larger than the lowest gap, which is in a

different direction in the Brillouin zone – harder to calculate at the time. Comparison with

recent calculations, e.g. in Fig. 2.25, shows that the results were basically correct.

1.3 The greatest challenge: electron correlation

Even though band theory was extremely successful in describing electrons in solids, as

correlated with one another only through the exclusion principle and interacting only via

the effects of some average potential, the great question was: what are the consequences of

electron–electron interactions? One of the most important effects of this interaction was es-

tablished early in the history of electronic structure: the underlying cause of magnetism was

identified by Heisenberg [64] and Dirac [65] in terms of the “exchange energy” of interacting

electrons, which depends upon the spin state and the fact that the wavefunction must change

sign when two electrons are exchanged.15 In atomic physics and chemistry, it was quickly

realized that accurate descriptions must go beyond the effective independent-electron ap-

proximations because of strong correlations in localized systems and characteristic bonds

in molecules [69].

In condensed matter, the great issues associated with electron–electron interactions were

posed succinctly in terms of metal–insulator transitions described by Eugene Wigner [70]

and Sir Nevill Mott [71–73], upon which was built much of the research on many-body

effects in the 1950s to the present.16 One way to pose the issues is to contrast the formation

of bands shown in Fig. 1.1 with the effects of interactions, which are strongest in localized

systems, e.g. in the atomic limit. If the atom is an open-shell system, it is well-known that

Coulomb interactions lead to splitting of the independent-particle electron states into multi-

plets, with the ground state given by Hund’s rules [74–76]. In general, there is competition

between banding effects, expected to be dominant at high densities, and many-body atomic-

like effects, expected to be dominant at low densities. The most challenging issues occur

at intermediate densities where there are competing mechanisms. Characteristic examples

are summarized in Ch. 2, especially Sec. 2.13.

The role of correlation among electrons stands out as defining the great questions and

challenges of the field of electronic structure today. Experimental discoveries, such as the

high-temperature superconductors and colossal-magneto-resistance materials, have stimu-

lated yet new experimental techniques and brought to the fore issues of the theory of strongly

correlated electrons. Perhaps the ideas are expressed most eloquently by P. W. Anderson

in his book Basic Notions of Condensed Matter Physics [77] and in a paper [78] entitled

“More is different,” where it is emphasized that interactions may lead to phase transitions

to states with broken symmetry, long-range order, and other collective behavior that emerge

in systems of many particles. The lasting character of these notions are brought out in the

15 This was another milestone for quantum mechanics, since it follows from very general theorems [66–68] that

in classical mechanics, the energy of a system of charges cannot depend upon the magnetic field.
16 The 1977 Physics Nobel Prize was awarded to P. W. Anderson, N. F. Mott, and J. H. van Vleck “for their

fundamental theoretical investigations of the electronic structure of magnetic and disordered systems.”
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proceedings More is Different: Fifty Years of Condensed Matter Physics [79]. It is vital to

be mindful of the “big picture,” i.e. of the possible consequences of many-body electron–

electron interactions, as the community of scientists progresses toward practical, efficient,

theoretical approaches that can provide ever more realistic description of the electronic

structure of matter.

1.4 Recent developments

In the last decades of the 1900s many developments have set the stage for new understanding

and opportunities in condensed matter physics. Certainly the most important are experi-

mental advances: discoveries of new materials such as the fullerenes and high-temperature

superconductors; discoveries of new phenomena such as superconductivity and the quan-

tum Hall effect; and new techniques for measurements that have opened doors unimagined

before, such as the scanning tunnelling microscope (STM), high-resolution photoemission,

and many others. A survey of experiments is completely beyond the scope of this book, but

it is essential to mention certain important experimental probes, with references to specific

experiments on some occasions.

With regard to the theory, perhaps the single most influential advance was the theory of

superconductivity by Bardeen, Cooper, and Schrieffer (BCS) [80], which has influenced

all fields of physics by providing the basis for emergence of entirely new phenomena from

cooperative motions of many particles. In the broad sense, superconductivity is “electronic

structure;” however, the aspects of macroscopic coherence, applications, etc., are a field

unto themselves – the subject of many volumes – and only the underlying Fermi surface

properties and electron–phonon interactions are considered part of present-day electronic

structure theory. Indeed, Fermi surfaces are considered in many chapters, and electron–

phonon interactions is an intrinsic part of modern electronic structure theory, treated espe-

cially in Ch. 19.

In a different sense, a set of theoretical developments taken together has created a new

direction of research that influences all of physics and other sciences. These are the recent

advances in concepts and computational algorithms that have made it possible to treat real

systems, as found in nature, as well as idealized model problems. Four developments have

occurred in recent years and are now the basis for most current research in theory and

computational methods for electronic structure of matter:

� density functional theory for the electronic ground state and its extensions for excited

states;
� quantum Monte Carlo methods, which can deal directly with the interacting many-body

system of electrons and nuclei;
� many-body perturbation methods for the spectra of excitations of the electronic system;
� computational advances that make realistic calculations feasible and in turn influence the

very development of the field.

The remainder of this volume is devoted to independent-particle approaches that are

largely based upon density functional theory, which is the theoretical basis for approximate
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inclusion of many-body effects in the independent-particle equations. These methods have

proven to be very successful in many problems and are by far the most widely used approach

for quantitative calculations on realistic problems.17 Although the primary emphasis here

is on the use of the functionals, selected material is included on the many-body effects

implicitly incorporated into the functionals; this is required for appreciation of the limitations

of widely used approximate functionals and avenues for possible improvements.

Explicit many-body methods, such as quantum Monte Carlo [81], many-body perturba-

tion theory [82], and dynamical mean-field theory [83] are of increasing importance and

should be included in a complete exposition of electronic structure. Due to lack of space,

however, the present volume is limited to approaches that involve mean-field independent-

particle methods. Nevertheless, it is relevant to note that the growing use of explicit many-

body methods only makes it more essential to understand independent-particle methods,

because inevitably they are built upon input from independent-particle calculations.

SELECT FURTHER READING

Seitz, F. The Modern Theory of Solids (McGraw-Hill Book Company, New York, 1940), reprinted

in paperback by Dover Press, New York, 1987. A landmark for the early development of the

quantum theory of solids.

Slater, J. C. Quantum Theory of Electronic Structure, vols. 1–4 (McGraw Hill Book Company, New

York, 1960–1972). A set of volumes containing many references to original works.

17 A tribute to the progress in crossing the boundaries between physics, chemistry, and other disciplines is the

fact that the 1998 Nobel Prize in Chemistry was shared by Walter Kohn “for his development of the density-

functional theory” – originally developed in the context of solids with slowly varying densities – and by John

A. Pople “for his development of computational methods in quantum chemistry.”
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Overview

Summary

Theoretical analysis of the electronic structure of matter provides understanding
and quantitative methods that describe the great variety of phenomena observed.
A list of these phenomena reads like the contents of a textbook on condensed
matter physics, which naturally divides into ground state and excited state
electronic properties. The aim of this chapter is to provide an introduction to
electronic structure without recourse to mathematical formulas; the purpose is
to lay out the role of electrons in determining the properties of matter and to
present an overview of the challenges for electronic structure theory.

The properties of matter naturally fall into two categories determined, respectively, by

the electronic ground state and by electronic excited states. This distinction is evident

in the physical properties of materials and also determines the framework for theoretical

understanding and development of the entire field of electronic structure. In essence, the

list of ground state and excited state electronic properties is the same in most textbooks

[84, 86, 88] on condensed matter physics:

� Ground state: cohesive energy, equilibrium crystal structure, phase transitions between

structures, elastic constants, charge density, magnetic order, static dielectric and magnetic

susceptibilities, nuclear vibrations and motion (in the adiabatic approximation), and many

other properties.
� Excited states: low-energy excitations in metals involved in specific heat, Pauli spin

susceptibility, transport, etc; higher energy excitations that determine insulating gaps in

insulators, optical properties, spectra for adding or removing electrons, and many other

properties.

The reason for this division is that materials are composed of nuclei bound together by

electrons. Since typical energy scales for electrons are much greater than those associated

with the degrees of freedom of the more massive nuclei, the lowest energy ground state of

the electrons determines the structure and low-energy motions of the nuclei. The vast array

of forms of matter – from the hardest material known, diamond carbon, to the soft lubricant,

graphite carbon, to the many complex crystals and molecules formed by the elements of the
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periodic table – are largely manifestations of the ground state of the electrons. Motion of

the nuclei, e.g. in lattice vibrations, in most materials is on a time scale much longer than

typical electronic scales, so that the electrons may be considered to be in their instantaneous

ground state as the nuclei move. This is the well-known adiabatic or Born–Oppenheimer

approximation [89, 90] (see App. C).

Since the ground state of the electrons is an important part of electronic structure, a

large part of current theoretical effort is devoted to finding accurate, robust methods to treat

the ground state. To build up the essential features required in a theory, we will need to

understand the typical energies involved in materials. To be able to make accurate theoretical

predictions, we will need to have very accurate methods that can distinguish small energy

differences between very different phases of matter. By far the most widespread approach

for “first principles” quantitative calculations of solids is density functional theory [91–93],

which is therefore a central topic of this book. In addition, the most accurate many-body

method known at the present time, quantum Monte Carlo [81,94,95], is explicitly designed

to find the properties of the ground state or thermal equilibrium.

On the other hand, for given structures formed by nuclei, electronic excitations are the

essence of the “electronic properties” of matter – including electrical conductivity, optical

properties, thermal excitation of electrons, phenomena caused by extrinsic electrons in

semiconductors, etc. These properties are governed by the spectra of excitation energies

and the nature of the excited states. There are two primary types of excitation: addition or

subtraction of single electrons, and excitations keeping the number of electrons constant.

Since the excitations can be rigorously regarded as a perturbation upon the ground state, the

methods of perturbation theory are often key to theoretical understanding and calculation

of such properties [96].

Electronic excitations also couple to nuclear motion, which leads to effects such as

electron–phonon interaction. This caused broadening of electronic states and to potentially

large effects in metals, since normal metals always have excitation energies at arbitrarily

low energies, which therefore mix with low-energy nuclear excitations. The coupling can

lead to phase transitions and qualitative new states of matter, such as the superconducting

state. Here, we will consider the theory that allows us to understand and calculate electron–

phonon interactions (for example in Ch. 19), but we will not deal explicitly with the resulting

phase transitions or superconductivity itself.

2.1 Electronic ground state: bonding and characteristic structures

The challenge for electronic structure theory is to provide universal methods that accurately

describe real systems in nature. They must not be limited to any particular type of bonding,

since otherwise they would not be successful. Nevertheless, we want the theory to provide

understanding, and we seek methods that will not only provide numerical analysis (e.g.

binding energies) but that will also make possible analysis of general problems using simple

pictures that describe the dominant mechanisms governing the stable structures of matter.

The stable structures of solids are most naturally classified in terms of the electronic

ground state, which determines the bonding of nuclei. More extensive discussion of bonding
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(d )

(a ) (b )

(c )

Figure 2.1. The four primary types of bonding in solids. (a) Closed-shell systems, typified by rare

gases, remain atom-like, with weak bonding, and tend to form close-packed solids, such as fcc, hcp,

and bcc. (b) Ionic crystals can often be considered as closed-shell systems with large negative

anions and small cations in simple structures, such as NaCl, that maximize Coulomb attraction. (c)

Covalent bonds result from the formation of electronic states with pairs of electrons forming

directional bonds, leading to open structures such as diamond or graphite. (d) Metallic bonding is

typified by itinerant conduction electrons spread among the ion cores, forming close-packed

structures that are ductile and easily form alloys.

can be found in many other references [69, 84, 86, 88]; the key points for our purposes

are that the lowest energy state of the electrons determines the spatial structure of the

nuclei and, conversely, the spatial structure of the nuclei provides the external potential that

determines the Schrödinger equation for the electrons. We will not go into detail here; the

main conclusions can be reached by considering the general nature of electronic bands,

shown in Fig. 1.1, and bonds, illustrated by the ground state densities shown schematically

in Fig. 2.1.

The five characteristic types of bonding are listed below, four of which are illustrated in

Fig. 2.1:

1. Closed-shell systems, typified by rare gases and molecular solids, have electronic states

qualitatively similar to those in the atom (or molecule), with only small broadening

of the bands. Characteristic structures are close-packed solids, for the rare gases, and

complex structures, for solids formed from non-spherical molecules. The binding is often

described as due to weak van der Waals attraction balanced by repulsion due to overlap;

however, more complete analysis reveals that other mechanisms are also important.
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2. Ionic crystals are compounds formed from elements with a large difference in elec-

tronegativity. They can be characterized by charge transfer to form closed-shell ions,

leading to structures with large anions in a close-packed arrangement (hcp, fcc, or bcc)

and small cations in positions to maximize Coulomb attraction. However, quantitative

experiments and theory, as discussed in Ch. 22, show that it is not possible to identify

charges uniquely associated with ions; the key point is that the system is an insulator

with an energy gap.

3. Metallic systems are conductors because there is no energy gap for electronic excitation,

as illustrated in Fig. 1.1 when the bands are partially filled. Then the bands can easily

accept different numbers of electrons, leading to the ability of metals to form alloys

among atoms with different valency, and to the tendency for metals to adopt close-

packed structures, such as fcc, hcp, and bcc (see Ch. 4). Because the homogeneous

electron gas is the epitome of such behavior, it deserves special attention (Ch. 5) as an

informative starting point for understanding condensed matter, especially the sp-bonded

metals which are often called “simple metals.” Other metals, most notably the transition

series, are particularly important for their mechanical and magnetic properties, as well

as providing examples of many-body effects that are a challenge to theory.

4. Covalent bonding involves a complete change of the electronic states, from those of iso-

lated atoms or ions to well-defined bonding states in solids, illustrated by the crossover

in Fig. 1.1. This involves filling of electron bands up to the energy gap: the same cri-

terion has been recognized for the formation of covalent chemical bonds [69]. The

electronic density for covalent bonding, illustrated in Fig. 2.1, has been definitively

identified experimentally (e.g. [97]). Experimental densities are in good agreement with

theoretical results, as illustrated in Fig. 2.2 for Si. Directional covalent bonds lead to open

Figure 2.2. Electron density in Si shown as the difference of the total density from the sum of

spherical atomic densities. The left-hand figure shows a contour plot of experimental (exp)

measurements using electron scattering. The theoretical results were found using the linear

augmented plane wave (LAPW) method (Ch. 17) and different density functionals (see text and

Ch. 8). The difference density is in very good agreement with experimental measurements, with the

differences in the figures due primarily to the thermal motion of the atoms in the experiment. LDA,

local density approximation; GGA, generalized-gradient approximation. Provided by J. M. Zuo;

similar to figure in [100].



2.1 Bonding and characteristic structures 15

structures, very different from the close packing typical of other types of bonding. A major

success of quantitative theory is the description of semiconductors and the transition to

more close-packed metallic systems under pressure.

5. Hydrogen bonding (not shown in Fig. 2.1) is often identified as another type of bonding

[87]. Hydrogen is a special case, because it is the only chemically active element with

no core electrons; the proton is attracted to the electrons, with none of the repulsive

terms that occur for other elements due to their cores. For example, H can be stable

at the bond center in silicon, as shown in Fig. 2.17. The properties of water and ice

are greatly affected by the fact that protons can be shared among different molecules

(see, for example, [87], [98], and H2O: A Biography of Water by Philip Ball [99]). Of

course, hydrogen bonding is crucial in many other molecules and is especially important

for biological activity. This is one of the great challenges for ultimate application to

complex materials [87]; however, we shall not deal with the complexities of structures

caused by hydrogen bonding. For our purposes, it is sufficient to consider the ability of

electronic structure methods to describe the strength of the hydrogen bond in selected

cases.

The bonding in a real material is, in general, a combination of the above types. For

example, in a metal there can be directional covalent bonding as well as contributions of

ionic bonding due to local charge transfer. Molecular crystals involve strong covalent and

ionic intramolecular bonds and weak intermolecular van der Waals bonding. All crystals

with van der Waals bonding also have some degree of other types of bonding in which

the ground state energy is lowered due to the admixture of various electronic orbitals on

different atoms or molecules. Heteropolar covalent-bonded systems, such as BN, SiC, GaAs,

etc., all have some ionic bonding, which goes hand-in-hand with a reduction of covalent

bonding.

Electron density in the ground state

The electron density n(r) plays a fundamental role in the theory and understanding of the

system of electrons and nuclei. The density can be measured by scattering of X-rays [101]

and high-energy electrons [97, 100] giving direct evidence supporting the pictures shown

schematically in Fig. 2.1. Except for the lightest atoms, the total density is dominated

by the core. Therefore, determination of the density reveals several features of a material:

(1) the core density, which is essentially atomic-like, (2) the Debye–Waller factor, which

describes smearing of the average density due to thermal and zero-point motion (dominated

by the cores), and (3) the change in density due to bonding and charge transfer.

A thorough study [100] of Si has compared experimental and theoretical results calculated

using the LAPW method (Ch. 17) and different density functional approximations. The total

density can be compared to the theoretical value using an approximate Debye–Waller factor,

which yields information about the core density. The primary conclusion is that, compared

to the local density approximation (LDA), the generalized-gradient approximation (GGA,

see Ch. 8) improves the description of the core density where there are large gradients;
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however, there is little change in the valence region where gradients are small. In fact, non-

local Hartree–Fock exchange is the most accurate method for determining the core density.

This is a general trend that is relevant for accurate theoretical description of materials, and

is discussed further in Chs. 8 and 10.

The covalent bonds are revealed by the difference between the crystal density and that of

a sum of superimposed neutral spherical atoms.1 This is shown in Fig. 2.2, which presents

a comparison of experimental (left) with theoretical results for the LDA (middle) and

GGA (right). From the figure it is apparent that the basic features are reproduced by both

functionals; in addition, other calculations using LAPW [102] and pseudopotential [103,

104] methods are in good agreement. The conclusion is that the density can be measured

and calculated accurately, with agreement in such detail that differences are at the level of

the effects of anharmonic thermal vibrations ( [100] and references cited there).

Examples of theoretically calculated valence densities [105] for the series Ge, GaAs,

and ZnSe are shown later in Fig. 12.3. Theory also allows one to break the density into

contributions due to each band and to a decomposition in terms of localized Wannier

functions (Ch. 21) that provide much more information than the density alone.

2.2 Volume or pressure as the most fundamental variable

The equation of state as a function of pressure and temperature is perhaps the most funda-

mental property of condensed matter. The stable structure at a given P and T determines all

the other properties of the material. The total energy E at T = 0 as a function of volume �

is the most convenient quantity for theoretical analysis because it is more straightforward

to carry out electronic structure calculations at fixed volume. In essence, volume is a conve-

nient “knob” that can be tuned to control the system theoretically. Comparison of theory and

experiment is one of the touchstones of “ab initio” electronic structure research. Because

direct comparison can be made with experiment, this is one of the most important tests

of the state of the theory, in particular, the approximations made to treat electron–electron

interactions.

The fundamental quantities are energy E , pressure P , bulk modulus B,

E = E(�) ≡ Etotal(�),

P = −dE

d�
, (2.1)

B = −�
dP

d�
= �

d2 E

d�2
,

and higher derivatives of the energy. All quantities are for a fixed number of particles, e.g.

in a crystal, E is the energy per cell of volume � = �cell.

The first test is to determine the theoretical prediction for the equilibrium volume �0,

where E is minimum or P = 0, and bulk modulus B for the known zero pressure crystal

structure. Since �0 and B can be measured with great accuracy (and extrapolated to T = 0),

1 Covalent bonding is not readily apparent in the total density; even a superposition of atomic densities leads to a

total density peaked between the atoms.
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this is a rigorous test for the theory. One procedure is to calculate the energy E for several

values of the volume �, and fit to an analytic form, e.g. the Murnaghan equation of state

[108]. The minimum gives the predicted volume �0 and total energy, and the second

derivative is the bulk modulus B. Alternatively, P can be calculated directly from the virial

theorem or its generalization (Sec. 3.3), and B from response functions (Ch. 19).

During the 1960s and 1970s computational power and algorithms, using mainly atomic

orbital bases (Ch. 15) or the augmented plane wave (APW) method (Ch. 16), made possible

the first reliable self-consistent calculations of total energy as a function of volume for

high-symmetry solids. Examples of calculations include ones for KCl [109, 110], alkali

metals [111, 112], and Cu [113].2 A turning point was the work of Janak, Moruzzi, and

Williams [106, 114], who established the efficacy of the Kohn–Sham density functional

theory as a practical approach to computation of the properties of solids. They used the

Koringa–Kohn–Rostocker (KKR) method (Sec. 16.3) to calculate the equilibrium volume

and bulk modulus for the entire series of transition metals using the local approximation,

with results shown in Fig. 2.3. Except for a few cases where magnetic effects are essential,

the calculated values are remarkably accurate – within a few percent of experiment. The

overall shape of the curves has a very simple interpretation: the bonding is maximum

at half-filling, leading to the maximum density, binding energy, and bulk modulus. Such

comparison of the predicted equilibrium properties with experimental values are now one

of the routine tests of modern calculations.

Phase transitions under pressure

Pressure very different from zero is no problem for the theorist (positive or negative!), since

the volume “knob” is easily turned to smaller or larger values. Here also there are excellent

comparisons with experiment because there have been advances in experimental methods

which have made it possible to study matter over large ranges of pressures, sufficient to

change the properties of ordinary materials completely [115, 116]. In general, as the dis-

tance between the atoms is decreased, there is a tendency for all materials to transform to

metallic structures, which are close packed at the highest pressures. Thus many interesting

examples involve materials that have large-volume open structures at ordinary pressure, and

which transform to more close-packed structures under pressure. Even though experiments

are limited to structures that can actually be formed, theory has no such restrictions: under-

standing is gained by studying structures to quantify the reasons why they are unfavorable

and to find new structures that might be metastable. This is a double-edged sword: it is

very difficult for the theorist to truly “predict” new structures because of the difficulty in

considering all possible structures. (Simulation techniques (Ch. 18) are beginning to reach

a point where favorable structures can be found automatically, but often the time scales

involved are prohibitive.) Most “predictions” have the caveat that there may be other more

favorable structures not considered.

2 A theme of the work was comparison of Slater average exchange with the Kohn–Sham formula (a factor of 2/3

smaller). For example, Snow [113] made a careful comparison for Cu, and found the lattice constant and other

properties agreed with experiment best for a factor 0.7225 instead of 2/3.
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Figure 2.3. Calculated lattice constants and bulk moduli for the 3d and 4d series of transition metals,

compared to experimental values denoted by x. From Moruzzi, Janak, and Williams [106]

(see also [107]).
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The basic quantities involved are the free energy F(�, T ) = E(�, T ) − T S(�, T ),

where the volume � and temperature T are the independent variables, or the Gibbs free

energy G(P, T ) = H (P, T ) − T S(P, T ), where the pressure P and T are the independent

variables. The enthalpy H is given by

H = E + P�. (2.2)

At temperature T = 0, the condition for the stable structure at constant pressure P is that

enthalpy be minimum. One can also determine transition pressures by calculating E(�)

and using the Gibbs construction of tangent lines between the E(�) curves for two phases,

the slope of which is the pressure for the transition between the phases.

Molecular crystals and semiconductors are ideal examples to illustrate qualitative changes

under pressure. The structures undergo various structural transitions and transformation

from covalent open structures to metallic or ionic close-packed phases at high pressures

[119,120]. An extreme example is nitrogen, which only occurs in molecular N2 solids and

liquid at ordinary P and T , and a great challenge for many years has been to create non-

molecular solid N. In Sec. 13.3 the results are given of calculations [121] that predict a new

structure never before observed in any material – a real prediction.

Figure 2.4 shows the energy versus volume for Si calculated [103] using the ab initio plane

wave pseudopotential method and the local density approximation (LDA). This approach
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Figure 2.4. Energy versus volume for various structures of Si found using ab initio plane wave

pseudopotential calculations. Transition pressures are given by the slopes of the tangent lines to the

phases. The left-hand figure from the work of Yin and Cohen [103], is the first such fully

self-consistent calculation, the success of which greatly stimulated the field of research. The tangent

construction is indicated by the dashed line, the slope of which is the transition pressure. More recent

calculations (e.g. Fig. 13.3) are very similar for these phases and show that improved functionals

tend to lead to higher transition pressures closer to experiment. The right-hand figure is an

independent calculation [117] which includes the dense tetrahedral phases bc8 and st12. The

calculations find the phases to be metastable in Si but stable in C (see Fig. 2.10); similar results were

found by Yin [118].
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was pioneered by Yin and Cohen [103], a work that was instrumental in establishing the

viability of theoretical predictions for stable structures of solids. The stable structure at

P = 0 is cubic diamond (cd) as expected, and Si is predicted to transform to the β-Sn

phase at the pressure indicated by the slope of the tangent line, ≈8 GPa. The right-hand

figure includes phases labeled bc8 and st12, dense distorted metastable tetrahedral phases

that are predicted to be almost stable; indeed they are well-known forms of Si produced

upon release of pressure from the high-pressure metallic phases [122]. Many calculations

have confirmed the general results and have considered many other structures [120, 123]

including the simple hexagonal (sh) structure that was discovered experimentally [124,125]

and is predicted to be stable over a wide pressure range. Improved functionals increase the

transition pressure by moderate amounts, as shown in Sec. 13.3, in better agreement with

experimental pressure ≈11 GPa.

Similar calculations for carbon [117,118,126] correctly find the sign of the small energy

difference between graphite and diamond at zero pressure, and predict that diamond will

undergo phase transitions similar to those in Si and Ge, but at much higher pressures, ≈3,000

GPa. Interestingly, the dense tetrahedral phases are predicted to be stable above ≈1,200

GPa, as is indicated in the phase diagram Fig. 2.10.

There have been many such calculations and much work combining theory and exper-

iment for the whole range of semiconductors [119, 120]. Figure 2.5 compares the lowest

pressure transitions obtained experimentally with those predicted by the widely used local

density approximation (LDA). The most important conclusion to be drawn, is the agreement
that depends upon the delicate energy balance between the more open covalent and more
close-packed structures. This is an impressive achievement of “first principles” theory with
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local density approximation (LDA) are plotted vertically. The line at 45◦ indicates agreement

between theory and experiment. Although the agreement is impressive (see text) there is a tendency

to underestimate the reported pressure. See Fig. 13.3 for the change in Si with improved functionals.

Figure provided by A. Mujica, similar to plot in [120].
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no adjustable parameters. The second conclusion is that the agreement is not perfect: as

discussed in Ch. 8, improved functionals tend to favor more open structures. This has been

tested for Si using other functionals, with results [127] much closer to experiment as shown

later in Fig. 13.3. A combination of theory and experiment has led to a new picture of the

systematics of the transition from tetrahedral to high-pressure structures [119, 120], with a

number of competing distorted structures with low symmetries indicating interesting struc-

tural instabilities, followed by the well-known phases (β-Sn or simple hexagonal for less

ionic materials, or NaCl structures for more ionic materials) and, finally, the close-packed

structures.

2.3 Elasticity: stress–strain relations

The venerable subject of stress and strain in materials has also been brought into the fold of

electronic structure. This means that the origins of the stress–strain relations are traced back

to the fundamental definition of stress in quantum mechanics, and practical equations have

been derived that are now routine tools in electronic structure theory [104, 129]. Because

the development of the theory has occurred in recent years, the subject is discussed in more

detail in App. G.

The basic definition of the stress tensor σαβ is the generalization of (2.2) to anisotropic

strain,

σαβ = − 1

�

∂ Etotal

∂uαβ

, (2.3)

where uαβ is the symmetric strain tensor defined in (G.2). Likewise, the theoretical ex-

pressions are the generalization of the virial theorem for pressure to anisotropic stress

[104, 129].

Figure 2.6 shows the first reported calculation [128] of stress in a solid from the electronic

structure, which illustrates the basic ideas. This figure shows stress as a function of uniax-

ial strain in Si. The linear slopes yield two independent elastic constants, and non-linear

variations can be used to determine non-linear constants. For non-linear strains, it is most

convenient to use Lagrange stress and strain, tαβ and ηαβ (see [128]), which reduce to the

usual expressions in the linear regime. Linear elastic constants have been calculated for

many materials, with generally very good agreement with experiment, typically ≈5–10%.

Non-linear constants are much harder to measure, so that the theoretical values are often

predictions.

As an example of predictions of theory, Nielsen [130] has calculated the properties of

diamond for general uniaxial and hydrostatic stresses, including second-, third-, and fourth-

order elastic constants, internal strains, and other properties. The second-order constants

agree with experiment to within ≈6% and the higher order terms are predictions. At ex-

tremely large uniaxial stresses (4 Mb) the electronic band gap collapses, and a phonon

instability of the metallic diamond structure is found for compressions along the [110] and

[111] crystal axes. This is relevant for ultimate stability of diamond anvils in high-pressure

experiments.
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constants can be found from the linear slopes; the non-linear variation determines non-linear

constants. For non-linear strains it is most convenient to use Lagrange stress and strain, tαβ and ηαβ

defined in [128]. From [128].

2.4 Magnetism and electron–electron interactions

Magnetic systems are ones in which the ground state has a broken symmetry with spin

and/or orbital moments of the electrons. In ferromagnetic systems there is a net moment

and in antiferromagnetic systems there are spatially varying moments which average to zero

by symmetry. The existence of a magnetic ground state is intrinsically a many-body effect

caused by electron–electron interactions.3 Before the advent of quantum mechanics, it was

recognized that the existence of magnetic materials was one of the key problems in physics,

since it can be shown that within classical physics it is impossible for the energy of the

system to be affected by an external magnetic field [66–68]. The solution was recognized

in the earliest days of quantum mechanics, since a single electron has half-integral spin and

interacting electrons can have net spin and orbital moments in the ground state. In open-shell

atoms, this is summarized in Hund’s rules that the ground state has maximum total spin and

maximum orbital momentum consistent with the possible occupations of electrons in the

states in the shell.

In condensed matter, the key problem is the ordering of moments into long-range ordered

magnetic states. In many cases this is a matter of ordering of atomic-like spins, i.e. the

problem breaks into two parts: the formation of atomic moments due to electron–electron

interactions and the ordering of these localized moments, which can be described by the

models of Heisenberg or Ising [131]. On the other hand, many materials are magnetic even

3 In a finite system with an odd number of electrons, there must be some unpaired spin moment. This is a relatively

trivial case which can be considered separately.
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though the electronic states are greatly modified from those of the atom, a situation that is

termed “band magnetism” or “itinerant electron magnetism” [132].

A qualitative picture of magnetism emerges from the band picture, in which the ef-

fects of exchange and correlation among the electrons is replaced by an effective Zeeman

field HZeeman represented by an added term in the hamiltonian m(r)Vm(r), where m is the

spin magnetization m = n↑ − n↓ and Vm = μHZeeman.4 In analogy to the considerations of

energy versus volume in Sec. 2.2, it is most convenient to find energy for fixed field Vm and

the problem is to find the minimum of the energy and the susceptibility. The basic equations

are:

E = E(Vm) ≡ Etotal(Vm),

m(r) = − dE

dVm(r)
, (2.4)

χ (r, r′) = − dm(r)

dVm(r′)
= d2 E

dVm(r)dVm(r′)
.

If the electrons did not interact, the curvature of the energy χ would be positive with a

minimum at zero magnetization, corresponding to bands filled with paired spins. However,

exchange tends to favor aligned spins, so that Vm(r) itself depends upon m(r′) and can lead

to a maximum at m(r′) = 0 and a minimum at non-zero magnetization; ferromagnetic if

the average value m̄ is non-zero, antiferromagnetic otherwise. In general, Vm(r) and m(r′)
must be found self-consistently.

The mean-field treatment of magnetism is a prototype for many problems in the theory of

electronic structure. Magnetic susceptibility is an example of response functions described

in App. D where self-consistency leads to the mean-field theory expression (D.11); for

magnetism the expressions for the magnetic susceptibility have the form first derived by

Stoner [131, 133],

χ = N (0)

1 − I N (0)
, (2.5)

where N (0) is the density of states at the Fermi energy and the effective field has been ex-

panded at linear order in the magnetization Vm = V ext
m + I m for the effective interaction.5

The denominator in (2.5) indicates a renormalization of the independent-particle suscep-

tibility χ0 = N (0), and an instability to magnetism is heralded by the divergence when

the Stoner parameter I N (0) equals unity. Figure 2.7 shows a compilation by Moruzzi

et al. [107] of I N (0) from separate calculations of the two factors I and N (0) using den-

sity functional theory. Clearly, the theory is quite successful since the Stoner parameter

exceeds unity only for the actual ferromagnetic metals Fe, Co, and Ni, and it is near unity

for well-known enhanced paramagnetic cases like Pd.

4 Density functional theory, discussed in the following chapters, shows that there exists a unique mean-field

potential; however, no way is known of finding it exactly and there are only approximate forms at present.
5 The Stoner parameter I N (0) can be understood simply as the product of the second derivative of the exchange–

correlation energy with respect to the magnetization (the average effect per electron) times the density of

independent-particle electronic states at the Fermi energy (the number of electrons able to participate). This idea

contains the essential physics of all mean-field response functions as exemplified in App. D and Chs. 19 and 20.
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Figure 2.7. Stoner parameter for the elemental metals derived from densities of states and

spin-dependent mean-field interactions from density functional theory. This shows the basic

tendency for magnetism in the 3d elements Mn, Fe, Co, and Ni, due to the large density of states and

interactions, both of which are consequences of the localized atomic-like nature of the 3d states

discussed in the text. Data from Kübler and Eyert [134], originally from Moruzzi, et al. [107].

Modern calculations can treat the spin susceptibility and excitations accurately within

density functional theory using either “frozen” spin configurations or response functions,

with forms that are the same as for phonons described in the following section, Sec. 2.5 and

Ch. 19. An elegant formulation of the former approach based upon a Berry’s phase [135,136]

is described in Sec. 19.2. Examples of both Berry’s phase and response function approaches

applied to Fe are given in Figs. 19.3 and 19.5.

Magnetism is difficult to treat because real materials are in neither the atomic nor the band

limit. This is one of the primary examples of competition between intra-atomic correlation

effects and interatomic bonding effects (the broadening in Fig. 1.1). If spin–orbit interactions

can be neglected,6 the problem divides into spin and orbital moments. Spin is relatively easy

to treat in terms of spinors referred to appropriate axes in space. However, orbital moments

are notoriously difficult in all cases except spherically symmetric atoms (Ch. 10). Thus the

theory of magnetism in solids is one of the central challenges in condensed matter physics,

intrinsically involving many-body correlation, long-range order and phase transitions, and

intricate problems of the coexistence of orbital currents and crystalline order.

2.5 Phonons and displacive phase transitions

A wealth of information about materials is provided by the vibrational spectra that are mea-

sured experimentally by infrared absorptions, light scattering, inelastic neutron scattering,

and other techniques. The same holds for the response of the solid to electric fields, etc.

Such properties are ultimately a part of electronic structure, since the electrons determine

the changes in the energy of the material if the atoms are displaced or if external fields are

applied. So long as the frequencies are low the electrons can be considered to remain in

6 Spin–orbit interactions result from relativistic effects in the core and are important in heavy atoms (Ch. 10).
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their ground state, which evolves as a function of the displacements of the nuclei. The total

energy can be viewed as a function of the positions of the nuclei E({RI }) independent of

the nuclear velocities. This is the adiabatic or Born–Oppenheimer regime (see Ch. 3 and

App. C), which is an excellent approximation for lattice vibrations in almost all materials. In

exact analogy to (2.2), the fundamental quantities are energy E({RI }), forces on the nuclei

FI , force constants CI J ,

E = E({RI }) ≡ Etotal({RI }),
FI = − dE

dRI
, (2.6)

CI J = − dFI

dRJ
= d2 E

dRI dRJ
,

and higher derivatives of the energy.

Quantitatively reliable theoretical calculations have added new dimensions to our under-

standing of solids, providing information that is not directly available from experiments.

For example, except in a few cases, only frequencies and symmetries of the vibration modes

are actually measured; however, knowledge of eigenvectors is also required to reconstruct

the interatomic force constants CI J . In the past this has led to a plethora of models for

the force constants that all fit the same data (see, e.g., [137], [138] and references therein).

Large differences in eigenvectors were predicted for certain phonons in GaAs, and the issues

were resolved only when reliable theoretical calculations became possible [139]. Modern

theoretical calculations provide complete information directly on the force constants, which

can serve as a data base for simpler models and understanding of the nature of the forces.

Furthermore, the same theory provides much more information: static dielectric constants,

piezoelectric constants, effective charges, stress–strain relations, electron–phonon interac-

tions, and much more.

As illustrated in the examples given here and in Ch. 19, theoretical calculations for

phonon frequencies have been done for many materials, and agreement with experimental

frequencies within ≈5% is typical. Since there are no adjustable parameters in the theory,

the agreement is a genuine measure of the success of current theoretical methods for such

ground state properties. This is an example where theory and experiment can work together,

with experiment providing the crucial data and new discoveries, and the theory providing

solid information on eigenvectors, electron–phonon interactions, and many other properties.

There are two characteristic approaches in quantitative calculations:

� Direct calculation of the total energy as a function of the positions of the atoms. This is

often called the “frozen phonon” method.
� Calculations of the derivatives of the energy explicitly at any order. This is called the

“response function” or “Green’s function” method.

“Frozen phonons”

The term “frozen phonons” denotes the direct approach in which the total energy and forces

are calculated with the nuclei “frozen” at positions {RI }. This has the great advantage
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Figure 2.8. “Frozen phonon” calculations of energy versus displacement. Left: Two optic mode

displacements (that are degenerate in the harmonic approximation) in the superconductor MgB2

calculated using pseudopotentials and plane waves [140]. The deviations at large displacement

illustrate their different cubic anharmonicity considered to be potentially important for

superconductivity (see Sec. 2.12). Right: Two optic mode displacements of Ti atoms in BaTiO3 in

the tetragonal and rhombohedral directions. The points show results from two methods: dark

symbols calculated in [141] using local orbitals (Ch. 15) compared with open symbols from [142]

using full-potential LAPW methods (Ch. 17). The centrosymmetric position is unstable, and the

most stable minimum is for the rhombohedral direction resulting in a ferroelectric phase in

agreement with experiment. Figures provided by K. Kunc (left, similar to figure in [140]) and by

R. Weht and J. Junquera (right, similar to figure in [141]).

that the calculations use exactly the same computational machinery as for other problems:

for example, the same program (with only slightly different input) can be used to calculate

phonon dispersion curves (Ch. 19), surface and interface structures (Ch. 13), and many other

properties. Among the first calculations were phonons in semiconductors, calculated in 1976

using empirical tight-binding methods [143], and again in 1979 using density functional

theory and perhaps the first use of the energy functional Eq. (9.9), to find the small changes

in energy [144]. Today these are standard applications of total energy methods.

Two recent examples of energy versus displacement are shown in Fig. 2.8. On the left is

shown the energy for an optic phonon displacement in MgB2 calculated [140] using pseu-

dopotentials and plane waves. This illustrates cubic anharmonicity, which is very sensitive

to the details of the Fermi surface and may be relevant for the superconductivity recently

discovered in this compound [145]. On the right-hand side is shown energy versus displace-

ment of Ti atoms in BaTiO3, which is a ferroelectric with the perovskite structure shown in

Fig. 4.8. The negative curvature at the centrosymmetric position indicates the instability of

this structure. Displacements in the tetragonal and rhombohedral directions are shown; the

latter has the lowest energy minimum and is the predicted ferroelectric phase in agreement

with experiment. The points shown are calculated using two different methods, the LAPW

approach (Ch. 17) calculated in [142], and a numerical local orbital method (Ch. 15) as

reported in [141]. Such calculated energies can also be used as the basis for statistical
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mechanics models (see, e.g. [146]) to describe the ferroelectric phase transition as a func-

tion of temperature.

“Frozen polarization” and ferroelectricity

Incredible as it may seem, the problem of calculation of electric polarization from electron

wavefunctions was only solved in the 1990s, despite the fact that expressions for the energy

and forces have been known since the 1920s. As described in Ch. 22, the advance in recent

years [147, 148] relates a change in polarization to a “Berry’s phase” [149] involving the

change in phases of the electron wavefunctions. The theory provides practical methods

for calculation of polarization in pyroelectrics, and for effective charges and piezoelectric

effects to all orders in lattice displacements and strains. It is especially important that

the formulation allows calculation of the intrinsic polarization of a ferroelectric from the

intrinsic wavefunctions in the bulk crystal. Examples of results are given in Ch. 22.

Linear (and non-linear) response

Response function approaches denote methods in which the force constants are calculated

based upon expansions in powers of the displacements from equilibrium positions. This

has the great advantage that it builds upon the theory of response functions (App. D),

which can be measured in experiments and was formulated [150–152] in the 1960s. Recent

developments (see the review [153] and Ch. 19) have cast the expressions in forms much

more useful for computation, so that it is now possible to calculate phonon dispersion curves

on an almost routine basis.

Figure 2.9 shows a comparison between experimental and theoretical phonon dispersion

curves for GaAs [154]; such near-perfect agreement with experiment is found for many

semiconductors using plane wave pseudopotential methods. Another example, this time

for MgB2, is shown in Fig. 2.32 using the linear muffin-tin orbital (LMTO) approach. In
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Figure 2.9. Phonon dispersion curves calculated for the semiconductor GaAs [154]. The points are

from experiment and the curves from density functional theory using the response function method

(Ch. 19). Similar agreement is found for the entire family of semiconductors. Calculations for many

types of materials, e.g. in Figs. 19.4 and 19.5, have shown the wide applicability of this approach.
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Ch. 19 examples of results for metals are shown, where the results are also impressive, but the

agreement with experiment is not as good for the transition metals. Similar results are found

for many materials, agreeing to within ≈5% with experimental frequencies. The response

function approach is also especially efficient for calculations of dielectric functions, effective

charges, electron–phonon matrix elements, and other properties, as discussed in Ch. 19.

2.6 Thermal properties: solids, liquids, and phase diagrams

One of the most important advances in electronic structure theory of recent decades is

“quantum molecular dynamics” (QMD) pioneered by Car and Parrinello in 1985 [156] and

often called “Car–Parrinello” simulations. As described in Ch. 18, QMD denotes classical

molecular dynamics simulations for the nuclei, with the forces on the nuclei determined

by solution of electronic equations as the nuclei move. By treating the entire problem of
electronic structure and motion of nuclei together, this has opened the way for electronic

structure to study an entire range of problems far beyond previous capabilities, including

liquids and solids as a function of temperature beyond the harmonic approximation, thermal

phase transitions such as melting, chemical reactions including molecules in solution, and

many other problems. This work has stimulated many advances that are now embedded

in electronic structure methods, so that calculations on molecules and complex crystals

routinely optimize the structure in addition to calculating the electronic structure.

Because of advances in QMD simulations, it is now possible to determine equilibrium

thermodynamic phases and dynamics of the nuclei as a function of temperature and pressure.

As an example, Fig. 2.10 shows the prediction for the phase diagram of solid and liquid
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Figure 2.10. Predicted phase diagram of carbon [157] based upon experimental data at low P, T
and ab initio simulations of various solid and liquid phases at high P, T beyond experimental

capabilities. The line indicated in the liquid denotes a rapid change of average coordination N
from <4 (graphite-diamond-like) to ≈6 (similar to liquid silicon) around 5 Mbar of pressure and

T > 10, 000 K. Although this is apparently not a phase transition, it signifies the change of slope of

the liquid–solid phase boundary. Such calculations have led to revised understanding of the carbon

phase diagram which previously was based upon analogies to other group IV elements [158].
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carbon. This is of great interest in many fields of science, with technical, geological, and

astrophysical implications, as indicated by the conditions expected inside the Earth and the

planet Jupiter; however, previously there had been various wildly divergent proposals for the

phase diagram [158]. As shown in Fig. 2.10, there is a predicted [159,160] increase in melt-

ing temperature of diamond with pressure (opposite to Si and Ge) that has been confirmed

by experiments [158,161]. The higher pressure regions, however, are beyond current exper-

imental capabilities, so that the results shown are predictions. Prominent features are that

above P > ≈5 Mbar, C is predicted to act like the other group VI elements, with Tmelt de-

creasing with P . The diamond melting curve at high pressure is not directly observed in the

simulation, but it can be inferred from the Claussius–Clapyron equation that relates the slope

dPmelt/dTmelt to the change in specific volume at the transition. The finding of the simulation

is that at low P the liquid is less dense than diamond, whereas for P >≈5 Mbar, the nature of

molten carbon changes to a higher coordination (>4) dense phase like that known to occur in

molten Si and Ge at P = 0. At still higher pressure, static total energy calculations [117,118]

have found transitions to dense tetrahedrally coordinated structures (bc8, st12, etc.) and to

the simple cubic metallic phase at P ≈ 30 Mbar. This last prediction is confirmed by the

QMD simulations, where the phase boundary shown in Fig. 2.10 has been determined di-

rectly by melting and solidification as the temperature is raised or lowered [157]. Further

results are described in Sec. 18.6, especially in the lower pressure range where calculations

have been done with both Car–Parrinello [159] and tight-binding [162] QMD methods.

Among the foremost challenges in geophysics is to understand the nature of the core of

the Earth, which is made up primarily of Fe with other elements in solid and liquid phases.

This is a case where first principles QMD can provide crucial information, complementing

experiments that are very difficult at the appropriate temperature and pressure conditions

found deep in the Earth. Recent work has made great progress, and examples of full thermal

QMD simulations [163,164] of Fe using the projector augmented plane wave (PAW) method

(Sec. 13.2) are given in Sec. 18.6.

Water and aqueous solutions

Certainly, water is the liquid most important for life [99]. As a liquid, or in ice crystalline

forms, it exemplifies the myriad of complex features due to hydrogen bonding [87,98,99].

QMD has opened up the possibilities for new understanding of water, ice, and aqueous

solutions of ions and molecules. Of course, isolated molecules of H2O and small clusters can

be understood very well by the methods of quantum chemistry, and many properties of the

condensed states are described extremely well by fitted potentials. QMD can play a special

role in determining cases that are not understood from current experimental information.

Examples include the actual atomic-scale nature of diffusion processes, which involves

rearrangements of many molecules, the behavior of water under extreme conditions of

pressure and temperature, and high pressure phases of ice.

The first step is to describe hydrogen bonding accurately within density functional theory.

Tests for liquid water [165,166] and ice [167] have shown that the results are very sensitive

to both exchange and correlation. The local approximation gives bonding that is much
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Figure 2.11. Radial density distributions g(r ) for O-O, O-H, and H-H distances calculated [165]

with the Car–Parrinello QMD method (Ch. 18) using plane waves, pseudopotentials and the

“BLYP” functional (Ch. 8) compared with experimental results. The hydrogen bonding is very

sensitive to the functional. Two widely used forms (see text) appear to be good

approximations [165, 166] for water, but the theoretical basis is not well understood. From [165].

Figure 2.12. “Snapshots” of the motion of H and O atoms in a Car–Parrinello QMD simulation of

water under high-pressure, high-temperature conditions [166]. The motion of the atoms is shown

from left to right, particularly one proton that transfers, and the Wannier function for the electronic

state that transfers to form H+ and (H3O)−. (The Wannier functions are defined by the “maximal

localization” condition of Ch. 21.) Provided by E. Schwegler; essentially the same as Fig. 2 of [166].

too strong and some correlation functionals give bonding much too weak. Two widely used

generalized gradient approximation (GGA) functionals (PBE and BLYP, see Ch. 8) appear to

improve the description of water [165,166]. For example, the radial density distributions for

O-O, O-H, and H-H are compared with experimental results in Fig. 2.11, taken from [165];

similar agreement is found in [166].
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QMD simulations have been applied to many properties involving water, including dis-

sociation under standard conditions (very rare events) [168], at high pressures where the

molecules are breaking up [166,169], supercritical water [170], ions in solution ( [171] and

references given there), and many other properties. For example, the transfer of protons and

concomitant transfer of electronic orbitals are shown in Fig. 2.12, which also illustrates the

use of maximally localized Wannier functions (Ch. 21) to describe the electronic states. A

different approach for identification of the nature of the electronic states is the so-called

“electron localization function” (ELF) described in App. H.

2.7 Atomic motion: diffusion, reactions, and catalysis

A greater challenge yet is to describe chemical reactions catalyzed in solutions or on sur-

faces also in solution. As an example of the important role of theoretical calculations in

understanding materials science and chemistry, QMD simulations [172, 173] have appar-

ently explained a long-standing controversy in the Ziegler–Nata reaction that is a key step

in the formation of polymers from the common alpha olefins, ethylene and propylene. This

is the basis for the huge chemical industry of polyethylene manufacture, used for “plastic”

cups, grocery bags, the covers for CDs, etc. Since propylene is not as symmetric as ethylene,

special care must be paid to produce a stereoregular molecular chain, where each monomer

is bound to the next with a constant orientation. These high-quality polymers are intended

for special use, e.g. for biomedical and space applications. The Ziegler–Nata process allows

these cheap, harmless polymers to be made from common commercial gas, without strong

acids, high temperatures, or other expensive procedures.

The process involves molecular reactions to form polymers at Ti catalytic sites on MgCl2

supports; an example of a good choice for the support is made by cleaving MgCl2 to

form a (110) plane, as shown in Fig. 2.13. On this surface TiCl4 sticks efficiently, giv-

ing a high density of active sites. The QMD simulations find that the relevant energetics,

Figure 2.13. Simulation of the Ziegler–Nata reaction, which is of great importance for the

production of polyethylene. Predicted steps in the main phases of the second insertion leading to the

chain propagation: the π -complex (left), the transition state (middle), and insertion (right) of the

ethylene molecule lengthening the polymer. Figure provided by M. Boero; essentially the same as

Fig. 11 of Ref. [172].
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as well as the reactivity in the alkyl chain formation process, strongly depend on the lo-

cal geometry. The dynamical approach follows the reaction pathway in an unbiased way

during deposition of TiCl4 and complex formation, which are energetically downhill. Con-

strained dynamics can then be used to determine free-energy profiles and estimate activa-

tion barriers in the alkene insertion processes. Steps in the insertion of a second ethylene

molecule shown in the sequence in Fig. 2.13 offers insight into the chain growth process and

the stereochemical character of the polymer, providing a complete picture of the reaction

mechanism.

2.8 Surfaces, interfaces, and defects

Surfaces

There is no infinite crystal in nature: every solid has a surface; all “bulk” experiments

proceed with interactions through the surface. More and more experiments can probe the

details of the surface on an atomic scale, e.g. the scanning tunnelling microscope and

vastly improved X-ray and electron diffraction from surfaces. In no sense can this vast

subject be covered here; a few examples are selected, especially semiconductors where

the disruption of the strong covalent bonding leads to a variety of reconstructions of the

surface. The image Fig. 2.14, from [174], illustrates essentially all aspects of the problem:

atomic-scale structure, steps, and the core of the spiral, which is the end of a dislocation

that continues into the bulk and controls the growth mechanism. In addition, reactions at

surfaces of catalysts are particularly interesting and challenging for theory; an example is

the Ziegler–Nata reaction described in Sec. 2.7.

As illustrative of the great number of theoretical studies of surfaces, ionic semiconduc-

tors, such as III–V and II–VI crystals, present challenging issues for electronic structure

calculations. There is the possibility of anion- and cation-terminations with varying stoi-

chiometry: not only must the total energy be compared for various possible reconstructions

with the same numbers of atoms, but also one must compare structures with different num-

bers of atoms of each type, i.e. different stoichiometries. As an illuminating first step, the

stoichiometry of the atoms for different types of structures can be predicted from simple

electron counting rules [175, 176], i.e. charge compensation at the surface by the filling of

all anion dangling bonds and the emptying of cation dangling bonds. The full analysis, how-

ever, requires that the surface energy be determined with reference to the chemical potential

μI for each type of atom I , which can be controlled by varying its partial pressure in the

gas (or other phase) in contact with the surface [177, 178], thereby allowing experimental

control of the surface stoichiometry. The quantity to be minimized is not the free energy

E − T S, but the grand potential [179],

� = E − T S −
∑

I

μI NI . (2.7)

How can this be properly included in the theory? Fortunately, there are simplifications in a

binary AB compound [179]:
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Figure 2.14. Scanning tunnelling microscope (STM) image of a GaN (0 0 0 −1) surface, illustrating

many features that are challenges for theory: the atomic scale structure to perfect flat surfaces, bulk

line defects that terminate the surface, and steps that form in spirals around the defect that are the

sites for growth of the crystal. From Smith et al. [174].

1. The energy of the crystal EAB is close to its value at T = 0 (corrections for finite T can

be made if needed).

2. Assuming that the surface is in equilibrium with the bulk, there is only one free chemical

potential, which can be taken to be μA since μA + μB = μAB ≈ EAB.

3. In equilibrium, the ranges of μA and μB are limited since each can never exceed the

energy of the condensed pure element, μA ≤ EA, and μB ≤ EB.

This is sufficient for the theory to predict reconstructions of the surface assuming equi-
librium as a function of the real experimental conditions.

An example of recent work is the study of various ZnSe (1 0 0) surface reconstructions

based upon pseudopotential plane wave calculations [180]. Examples of the structures are

shown in Fig. 2.15. A c(2 × 2) reconstruction with half-monolayer coverage of two-fold

coordinated Zn atoms is stable in the Zn-rich limit. Under moderately Se-rich conditions,

the surface adopts a (2 × 1) Se-dimer phase. In the extreme Se-rich limit, the theoretical

calculations predicted a new structure with one and a half monolayer coverage of Se. This
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Figure 2.15. Energies of selected structures of the (1 0 0) surface of ZnSe as a function of the

chemical potential (see text) calculated by the plane wave pseudopotential method. The Se-rich

structure is an example of a theoretical prediction later found in experiment. Provided by A. Garcia

and J. E. Northrup; essentially the same as in [180].

was proposed to account for the high growth rates observed in atomic layer epitaxy and

migration enhanced epitaxy experiments at relatively low temperatures.

The structures in Fig. 2.15 also illustrate the importance of electrostatic effects in deter-

mining the pattern of a surface reconstruction that involves charge transfer within certain

“building blocks.” The preference for c(2 × 2) or 2 × 1 ordering of the building blocks is

determined so that the electrostatic interaction (i.e. minimization of the surface Madelung

energy – see App. F) is optimized, which was pointed out for GaAs (0 0 1) surfaces

[181].

Interfaces

The surface is really just an interface between a solid and vacuum. Other interfaces include

those between two materials. Of particular interest are semiconductor interfaces that have

been prepared and characterized with great control. Of particular importance are the “band

offsets” at the interface which confined the carriers in semiconductor quantum devices [182].

This is an issue that requires two aspects of electronic structure: establishing the proper

reference energy, which depends upon calculations of the interface dipole (Sec. F.5), and

the single particle energies relative to the reference. Studies of semiconductors described

in Ch. 13 are an example of a triumph of theory working with experiment, with a revision

of previously held rules due to theoretical calculations [183, 184].
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Figure 2.16. GaAs doped with Si was predicted by theory [185, 186] to have “negative U” defect

centers formed by the off-center displacement of Si atoms as a function of charge. Because of the

change in band structure upon alloying with Al, the stability of the center changes, as shown on the

right-hand side of the figure. Adapted from [185].

Defects

Every solid has defects. Crystals are particularly interesting because there are character-

istic defects: point defects, like vacancies and interstitials; one-dimensional defects, like

dislocations; and two-dimensional defects, like grain boundaries, interfaces (and the sur-

face viewed as a defect in the infinite crystal). An excellent example showing the role that

modern simulations can play in revealing the nature of important defects is the saga of

the DX center in GaAs [185]. Extensive experimental and theoretical work had shown that

donors in III–V compounds give rise to two types of electronic states, a shallow delocal-

ized state associated with the normal position of the donor and a deep state, called “DX,”

associated with lattice displacements. Chadi and Chang [185] carried out theoretical total

energy calculations to show that the atomic displacements responsible for the formation of

DX centers in Si- and S-doped GaAs are large bond-rupturing displacements, indicating

that DX is a highly localized and negatively charged defect. They found that the defect

center changes abruptly, with the atoms rebonding as shown in Fig. 2.16 and the charge

state changing by two electrons to form a “negative U” center. They concluded that DX cen-

ters are an unavoidable feature of substitutional dopants and suggested alternative doping

procedures.

Another case that apparently has been sorted out after many years of research is the

role of interstitial H in Si (see [187] and references given there). Extensive calculations for

H in different charge states and positions has shown that it forms a “negative-U” system,

changing from H+ to H− as the Fermi energy of the electrons is increased. The neutral state

H0 is always higher energy, meaning that if one electron is added to H+, it attracts a second

electron to create H−. How can this happen since electrons repel one another? The answer
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Figure 2.17. Minimum energy positions of H in Si for the three possible charge states. At the

left-hand side of the figure is shown the formation energy as a function of the Fermi energy, which is

the chemical potential for electrons and plays the same role as the chemical potentials in Fig. 2.15.

This shows that H acts as a “negative-U” defect, with the lowest energy state changing from H+ in

p-type material to H− in n-type. The Fermi energy is referred to the top of the valence band and the

formation energy to the neutral H0 energy. At the right-hand side of the figure are shown the

minimum energy structures: H+ (and also H0) occupies bond-center positions, whereas H− prefers

the position in the center of the tetrahedral hole in the Si crystal. From [187].

shown in Fig. 2.17 is that H is mobile and moves to different positions in the different charge

state, leading to the energy of formation of the interstitial shown on the right-hand side of

the figure.

2.9 Nanomaterials: between molecules and condensed matter

Among the most dynamic new areas of experimental and theoretical research are nanoclus-

ters and nanostructures. In some ways nanoclusters are just large molecules; there is no

precise distinction, but nanoclusters share the property of condensed matter that clusters

of varying size are made of. Yet nanoclusters are small enough that the properties can be

tuned by varying the size. This is exemplified by metallic clusters, the size of which can be

varied from a few atoms to macroscopic dimensions. At intermediate sizes the properties

are controlled by finite size quantization effects and by the fact that a large fraction of the

atoms are in surface regions. Because the structure is extremely hard to determine directly

from experiment, theory has a great role to play. The observation of “magic numbers”

for Na clusters can be understood on very simple grounds in terms of filling of shells in

a sphere [188, 189]. The atomic-scale structures and optical spectra of such clusters are

described in more detail in Ch. 20.

Semiconductor nanostructures have been of particular interest because confinement ef-

fects lead to large increases in the band gaps and efficient light emission has been observed,

even in Si for which coupling to light is extremely weak in the bulk crystal. In the case of

a pure semiconductor, the broken bonds lead to reconstruction of the surface, and in the

smallest clusters there is little resemblance to the bulk structures, as illustrated in Fig. 2.18.
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Figure 2.18. Atomic positions in competing Sin clusters consisting of n = 9, 10, and 13 atoms. In

each case, two very different structures are shown. The correct structure is not known from direct

experiments and theory plays an important role in sorting out likely candidates. Provided by J.

Grossman; from among the cases studied in [192].

For example, in Si13 there is competition between a symmetric structure with 12 outer

atoms surrounding a central atom and the low-symmetry structure found by Car–Parrinello

methods and simulated annealing [190]. The symmetric structure was argued [191] to be

stabilized by correlations not accounted for in the local approximation in density functional

theory; however, quantum Monte Carlo calculations [192, 193] found the low-symmetry

structure to be the most stable, in agreement with Car–Parrinello simulations.

On the other hand, if the surface is terminated by atoms such as hydrogen or oxygen,

which remove the dangling bonds, then the cluster is much more like a small, terminated

piece of the bulk. Nanoclusters of Si have been the subject of much experimental investi-

gation owing to their strong emission of light, in contrast to bulk Si which has very weak

emission. The energy of the light emitted is increased by quantum confinement of the elec-

tron states in the cluster, and the emission strength is greatly increased by breaking of bulk

selection rules due to the cluster size, shape, and detailed structure. This is an ideal case

for combined theoretical and experimental work to interpret experiments and improve the

desired properties. Calculations using time-dependent density functional theory (Sec. 7.6)

are used as an illustration of the methods in Ch. 20, e.g. the variation of the gaps versus

size, shown in Fig. 20.3.

Among the exciting discoveries of the last decades are the carbon fullerenes, C60, C70, . . . ,

by Kroto et al. in 1985 [195], and nanotubes, by Iijima [196]. They are extraordinary not only

because of their exceptional properties but also because of their elegant simplicity. C60 is the

most symmetric molecule in the sense that its point group (icosahedral) with 120 symmetry

operations is the largest point group of the known molecules. As shown in Fig. 2.19, a

“buckyball” has the shape of a football (a soccer ball in the USA), with all 60 carbon atoms

equivalent.7 Interest in fullerenes increased dramatically when Krätschmer, et al. [197]

7 The name for the structures derives from R. Buckminster Fuller, a visionary engineer who conceived the geodesic

dome. Interestingly, he was professor at Southern Illinois University in Carbondale.
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Figure 2.19. The structure of C60, the most symmetric of all molecules, with the shape of a football

(soccer ball) and the strength of a geodesic dome made famous by R. Buckminster Fuller. On the

right are shown the calculated [194] bands of a fcc crystal of C60. The highest occupied and lowest

unoccupied bands are most interesting for electrical properties and are derived from molecular states

designated in the text. Right figure from J. L. Martins; essentially the same as in [194].

discovered how to produce C60 in large enough quantities to make solids (fullerites). In rapid

succession it was found that intercalation of alkali–metal atoms in solid C60 leads to metallic

behavior [198], and that some alkali-doped compounds (fullerides) are superconductors

with transition temperatures surpassed only by the cuprates. Thus the electronic bands,

electron–phonon interactions, and electron–electron interactions are of great interest in

these materials, as reviewed by Gunnarsson [199].

The bands of a fcc crystal of C60 shown in Fig. 2.19 were calculated using plane waves

and norm-conserving pseudopotentials [194]. The essential results are that the bands are

primarily derived from the radial π orbitals and are broad enough to lead to band-like

conductivity, even though the states retain their molecular character in the sense that each

set of bands is derived primarily from one set of degenerate molecular orbitals. The highest

occupied and lowest unoccupied bands are derived respectively from hu and t1u molecular

states that are five-fold and three-fold degenerate.

Figure 2.20 shows STM images [200] of C60 on Si, which is representative of productive

collaboration of experiment and theory. The calculations were done using local orbital

methods (Ch. 15) and a more detailed figure of atomic-scale bonding of the C60 molecule

to the Si surface is shown in Fig. 15.5.

Nanotubes of carbon, discovered in 1991 by Iijima [196], are made from graphene-like

sheets (or multiple sheets) rolled into a tube [203–205].8 In perfect nanotube structures

there are no pentagons and every carbon atom is at the vertex joining three hexagons. The

various ways the sheet can be rolled lead to an enormous variety of semiconductors and

metals, in some cases with helicity, such as the example shown in Fig. 14.8. These are ideal

systems as the bands are beautifully described by theoretical rolling of the Brillouin zone

8 Graphene denotes a single plane; the various structures of graphite result from different stackings of graphene

planes.
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Figure 2.20. Scanning tunnelling microscope images of C60 “buckyballs” in Si (top) compared to

calculated images from [200]. The calculations were done with the local orbital SIESTA code

(Ch. 15) and using the Tersoff–Hamann [201] theoretical expressions for the STM image.

Figure 2.21. Example of a BN/C nanotube junction, illustrating the atom positions in an (8,0) tube

along with the density of the highest occupied electronic state which is localized near the C portion

of the tube. This can be considered as a “quantum dot” or as a supercell constructed to calculate the

properties of the individual BN/C interfaces in the same spirit as illustrated for three-dimensional

materials in Fig. 13.6. Provided by J. Bernholc; similar to figure in [202]. See Ch. 14 for examples

of atomic and electron structures of nanotubes.

of graphene. However, the curvature adds a coupling on the σ and π bonds not present

in flat graphene sheets [203, 204] and large changes in the bands can occur in tubes with

very small radius, as described in Sec. 13.5 based on the work of [206] and in Sec. 14.7.

Nanotubes are chosen as an elegant, instructive example of the tight-binding approach in

Ch. 14.

Similar tubes of BN have been proposed theoretically [207] and latter made ex-

perimentally [208]. BN tubes always have a gap and are potential semiconductor de-

vices. In addition they can have interesting piezolectric and pyroelectric effects [202].

Figure 2.21 shows the electron density for the highest occupied state in an example where the

C nanotube is metallic, leading to metal–semiconductor junctions in the C–BN junction

nanotube. The calculations [202] were done using real-space methods [209] described in

Chs. 12 and 13.
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2.10 Electronic excitations: bands and band gaps

Electronic excitations can be grouped into two types: excited states with the same number N
of electrons as the ground state, and single particle excitations in which one electron is sub-

tracted N → N − 1 or added N → N + 1. The former excitations determine the specific

heat, linear response, optical properties, etc., whereas the latter are probed experimentally

by tunnelling and by photoemission or inverse photoemission [85].

The most important quantity for adding and removing electrons is the fundamental gap,

which is the minimum difference between the energy for adding and subtracting an electron.

The lowest gap is not an approximate concept restricted to independent-particle approxi-

mation. It is defined in a general many-body system as the difference in energy between

adding an electron and removing one: if the ground state has N electrons, the fundamental

gap is

Emin
gap = min{[E(N + 1) − E(N )] − [E(N ) − E(N − 1)]}. (2.8)

Metals are systems in which the gap vanishes and the lowest energy electron states are

delocalized. On the other hand if the fundamental gap is non-zero or if the states are

localized (due to disorder) the system is an insulator.

Angle- and energy-resolved photoemission

The primary tool for direct observation of the spectrum of energies for removing an elec-

tron as a function of the crystal momentum k [85, 210] is angle-resolved photoemission,

shown schematically in Fig. 2.22. Because the electrons are restricted to a surface region,

photoemission is a surface probe and care must be taken to extract bulk information. The

momentum of the excitation in the crystal parallel to the surface is determined by momentum
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Figure 2.22. Schematic diagram of photoemission spectroscopy (PES) used to investigate the

electron removal spectrum by an incident photon as indicated. The electron can escape through the

surface if its energy is above the work function threshold. The momentum in the plane is fixed

directly by the measured angle as indicated and the momentum perpendicular to the surface within

the crystal must be calculated within a model, as discussed in the text and Fig. 2.23. The

time-reversed experiment of “inverse photoemission” is a measure of the addition spectra.
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Figure 2.23. Illustration of the determination of electron momentum perpendicular to the surface by

the dependence upon incident photon energy. Spectra for emission from the (111) surface of Ag at

five photon energies are show in the left-hand figure [211]. (The state with no dispersion is a surface

state.) Interpretation of the dispersion is indicated in the right-hand figure. The momentum

perpendicular to the surface is selected by the dispersion relation of the final state, which is

nearly-free-electron-like. This leads to the dispersion of the s-like band perpendicular to the surface

(the 
–L direction) shown at the bottom right. Provided by T. C. Chiang.

conservation as illustrated in Fig. 2.22. The method for determining the dispersion perpen-

dicular to the surface is illustrated in Fig. 2.23; assuming a known dispersion for the excited

electron inside the crystal (for example, if the higher bands are free-electron-like), the oc-

cupied bands ε(k⊥) can be mapped out from the dependence upon the photon energy. In an

independent-particle picture there are sharp peaks in the energies of the emitted electrons

that are the eigenvalues or bands for the electrons. Weak interactions lead to small broaden-

ings and shifts of the peaks, whereas strong interactions can lead to qualitative changes. The

lower right part of Fig. 2.23 shows the s band of Ag, for which the sharp peaks observed in

the experiment [211] are well described by band theory.

Angle-resolved photoemission was demonstrated as a quantitative experimental method

in the late 1970s, and has become a very powerful method for studies of electrons. The main

points are already shown in the earliest work illustrated by Fig. 2.24 for Cu and Fig. 12.2

for GaAs. In each case the theory came before the experiment and the agreement is a clear

indication of the usefulness of independent-particle methods and band theory. The bands

of Cu shown in Fig. 2.24 consist of five narrow d bands and one partially filled s band,

in remarkable agreement with experiment. The theoretical calculations were done with

the APW method and an approximate potential derived from an atomic calculation [213].

In fact, the agreement is not as good for more recent self-consistent density functional

calculations. A typical result is that the d bands are too close to the Fermi energy, which
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Figure 2.24. Experimental energy bands of Cu measured by angle-resolved photoemission [212]

(points) compared with the classic APW calculations of Burdick [213] using the Chodorow

potential, which is a sum of potentials derived from atomic calculations. (More recent band

calculations are very similar.) Independent particle calculations describe Cu very well because it has

an essentially filled d shell plus a wide s band (like Na shown in Fig. 5.6). Provided by S. Hufner.

is a symptom of the inaccuracies in the approximations for exchange and correlation (see

Ch. 8).

The measured bands [214] for GaAs in Fig. 12.2 are in excellent agreement with the prior

theoretical work of Pandey and Phillips [215] calculated with an empirical pseudopotential.

As discussed in Ch. 12, the near-perfect agreement with the photoemission data is due to

the fact that the pseudopotential was adjusted to fit optical data; nevertheless, the agreement

shows the value of the interpretation based upon independent-particle theory.

With recent dramatic improvements in resolution [210] using synchrotron radiation,

photoemission has become a powerful tool to measure the detailed dispersion and many-

body effects for the one-electron removal spectrum in crystals. As an example, the spectra

for MgB2 shown in Fig. 2.30 indicate that the bands are well described by independent-

particle theory. In other materials, however, there is not such good agreement. Cases that

are more strongly correlated provide the most important challenges in electronic structure

today [216].

Electron addition spectra: inverse photoemission

Inverse photoemission can map out the electron addition spectrum, i.e. the empty states

in independent-particle theories. The process is the inverse of that shown in Fig. 2.22.
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Figure 2.25. Quasiparticle bands in Ge calculated using the “GW” approximation with

pseudopotentials and a gaussian basis [219] compared to experimental points from

photoemission [221] and inverse photoemission [222] (right figure) and to LDA bands (dashed line

in left figure). The LDA bands are essentially the same as those in Fig. 17.8 calculated by the LMTO

and plane wave methods. The LDA bands illustrate the well-known “band-gap problem” that leads

to a zero gap in Ge. This is improved by many-body quasiparticle methods; similar improvements

are found with the exact exchange (EXX) density functional [223] (see Fig. 2.26 and Ch. 8).

Figure 2.25 illustrates the comparison of theory and experiment for Ge for both addition

and removal spectra. This example is chosen because it illustrates both the success of band

theory and a spectacular failure of the widely used LDA approximation. The left-hand panel

compares two types of theoretical results: independent-particle bands calculated using the

local density approximation (LDA, see Ch. 8) and the many-body “GW” quasiparticle

theory [217–219].9 The two methods agree closely for the filled bands but the LDA predicts

a zero band gap, so that Ge would be a metal in this approximation. This is a striking

example of the general result that gaps are predicted to be too small. The right-hand panel

shows experimental results for both photoemission and inverse photoemission, which are

in good agreement with the “GW” quasiparticle energies.

Electron addition and removal spectra: theory

Despite the impressive agreement with experiment of many density functional theory cal-

culations for ground state properties, the same calculations for insulators often lead to

mediocre (or disastrous) predictions for excitations. The fundamental gap is the key issue,

and widely used approximate functionals in density functional theory lead to gaps (Eq. (2.8))

that are significantly below experimental values for essentially all materials. This is illus-

trated by results of calculations using the local density approximation (LDA) for a range of

9 “GW” methods are essentially random phase approximation (RPA) calculations (see Sec. 5.4) for the quasipar-

ticle self-energy, originally developed for jellium [220] and now being carried out on complex materials (for a

review see [82]). Such methods also include exchange plus higher order diagrams.
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Figure 2.26. The lowest gaps of semiconductors predicted by the two different density functionals:

local density approximation (LDA) and the non-local “exact exchange” (EXX; see Ch. 8). The LDA

results illustrate the well-known underestimate of gaps in most DFT calculations, even a zero gap in

Ge. Exact exchange theory is more difficult to treat, but it gives much improved gaps in remarkable

agreement with experiment. From [223]. Provided by M. Staedele.

semiconductors, shown by the open symbols in Fig. 2.26. All gaps are too small and (as

illustrated in Fig. 2.25) Ge is even predicted to be a metal. The underestimation of the gap

may be caused by effects similar to the underestimate of transition pressures in Fig. 2.5;

however, the effect upon the gaps is much larger and brings out much more fundamental

challenges to the theory.

Improvement of the theory of excitations in insulators is a key part of current electronic

structure research. The fundamental issues in the Kohn–Sham approach are brought out in

Ch. 7 and actual improved functionals are presented in Secs. 8.6 and 8.7. The low gaps
are not intrinsic to the Kohn–Sham approach and are greatly improved by better treatment

of the non-local exchange, such as the orbital-dependent “exact exchange” (EXX) version

of Kohn–Sham theory and “hybrid functionals,” which incorporate features missing in the

LDA and any GGA-type functionals. For example, the EXX functional leads to greatly

improved gaps, as shown in Fig. 2.26, without destroying the accuracy of the ground state

energies [223] if a local functional for correlation is included. Hybrid functionals are widely

used for molecules and also lead to similar improved results for total energies and gaps [224],

as illustrated in Fig. 15.3. The goal is to provide an approach to calculation of excitation

spectra and energy gaps that is accurate, robust, and less computationally intensive than the

many-body “GW” quasiparticle calculations.

2.11 Electronic excitations: heat capacity, conductivity and optical spectra

Excitations that conserve the number of electrons can be viewed as electron–hole excitations
in which the added electron interacts with a “hole” left by removing an electron. The lowest
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energy is less than or equal to Emin
gap ,

Emin
ex < Emin

gap , (2.9)

since the electron–hole interaction is attractive. Therefore, measurements, such as specific

heat and optical spectra, that conserve the number of electrons can be used to establish

bounds on Emin
gap and establish that a material is a metal or insulator.

The most universal measure of excitations that conserve electron number is the heat

capacity since it encompasses all possible excitations equally with no bias. The heat capacity

at low temperature T is the measurable quantity that definitively separates systems with

an energy gap for electronic excitations from those with no gap; in a perfect crystal this

is also the distinction between metals and insulators. A normal metal is characterized by

specific heat ∝T, which is the fundamental evidence for the Landau Fermi liquid theory

[96, 225, 226]. This leads to the of idea of “quasiparticles,” low-energy excitations that act

like weakly interacting electrons, even though there are in fact strong interactions. Such

pictures often provide an excellent description of specific heat, electrical conductivity, and

Pauli paramagnetism. The density of states in the independent-particle picture is discussed

in Sec. 4.7 and examples of single-particle DOS are given in Figs. 2.31 and 16.13. If the

specific heat is exponentially small at low T, this is definitive evidence for a gap and no

low-energy excitations.

The Fermi surface is a surface in reciprocal space that is defined in a many-body system

as the locus of points where the quasiparticle lifetime is infinitely long and the quasipartcle

energy equals the Fermi energy μ. In an independent-particle approximation the states have

infinite lifetime at all energies, and the Fermi surface separating filled and empty states

is the surface defined by ε(k) = μ. The surface has been mapped out in great detail in

many crystals from the very low-energy excitations at low temperature, e.g. using the small

periodic changes in magnetization of the electrons as a function of applied magnetic field that

were first observed in 1930 by de Haas and van Alfen, and which became a key experimental

tool in the 1950s. The theoretical analysis is described in many texts [84, 86, 88]. The

calculated Fermi surface for MgB2 shown in Fig. 2.31 is an example that illustrates very

different portions of the Fermi surface that play distinct roles in the thermal and electrical

properties and superconductivity.

Electronic conductivity and optical properties

Dielectric functions and conductivity are the most important response functions in con-

densed matter physics because they determine the optical properties of materials, electri-

cal conductivity, and a host of technological applications. In addition, optical spectra are

perhaps the most widespread tool for studying the electronic excitations themselves. The

phenomenological formulation of Maxwell’s equations in the presence of polarizable or

conducting media can be cast in terms of the complex frequency-dependent dielectric func-

tion ε(ω) or conductivity σ (ω). The relations are summarized in App. E and the formulation

in terms of electronic excitations is the subject of Ch. 20. Note that the number of electrons
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Figure 2.27. Calculated and experimental optical spectra of GaAs. Left: Comparison of experiment

(light solid) with two density functional theory calculations [223], LDA (dashed) and EXX (heavy

solid). Right: Spectra calculated with GW quasiparticles with (solid lines) and without (dashed)

electron–hole interaction [227].

does not change, i.e. optical absorption can be viewed as the simultaneous addition of an

electron and a hole, which can interact with one another.

Figure 2.27 shows two examples of calculated optical spectra of the semiconductor

GaAs. The figure on the left illustrates the results from two different density functionals:

the famous underestimate of the band gap using LDA, and the improvement using “exact

exchange” (EXX; see Fig. 2.26 and Ch. 8). However, there is still a major discrepancy

in the heights of the peaks. On the right are shown results from two many-body calcu-

lations. Using the “GW” quasiparticles without including the electron–hole interaction

suffers from the same problem; however, inclusion of electron–hole interaction by solv-

ing the two-particle Bethe–Salpeter equation leads to much better overall agreement with

experiment.

The effect of electron–hole interactions is much greater in wide-band-gap materials like

CaF2, as shown in Fig. 2.28. In this case there are qualitative changes with most of the

absorption shifted to the bound exciton state. Similar results have been found for LiF, and

other wide-band-gap insulators.

There is another approach to calculation of excitation spectra for the case where the

number of electrons does not change: time-dependent density functional theory (TDDFT)

[229–232] which in principle provides the exact solution for n(t) that follows from the

time-dependent Schrödinger equation (see Ch. 20). This approach has been used with

approximate exchange–correlation functionals with considerable success for optical spec-

tra confined systems such as molecules and clusters [231, 233–235] and magnetic exci-

tations in solids [236]. An example of the energy gap in hydrogen-terminated Si clusters

as a function of cluster size is shown in Fig. 20.3 calculated assuming the usual adia-

batic LDA functional. However, the adiabatic functional misses important physics and

the search for improved time-dependent functionals is a topic of much current research

[237, 238].
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Figure 2.28. Optical spectrum of CaF2 calculated neglecting (dashed line) and including (solid line)

electron–hole interactions. This illustrates the fact that spectra can be completely modified by strong

electron–hole interactions in wide-band-gap insulators, with much of the oscillator strength in the

bound exciton peak around 11 eV that is completely missing in an independent electron approach.

(The width of the bound exciton peak and the weak tails in the spectra at low energies are artifacts of

the calculation.) From [228].

2.12 Example of MgB2: bands, phonons, and superconductivity

Magnesium diboride MgB2 serves as an example of many aspects of modern electronic

structure theory and experiment and the interplay between the two. Although this material

has been known for many years, a flurry of activity was stimulated by the discovery [145] of

superconductivity at the relatively high temperature of Tc = 39 K. Much work has been done

to elucidate the electronic states, phonons and the mechanism for superconductivity. This

is an excellent example of combined theory and experiment to understand a new material

with unusual electronic states. Intitially, the theoretical calculations were real predictions

that have been tested by recent experiments such as angle-resolved photoemission [239]

that have become feasible as sample quality has improved.

It is useful to consider MgB2 in the light of the similarities and differences from its

cousin hexagonal graphite. The structures of the two materials can be understood in terms

of the honeycomb graphene plane shown in Fig. 4.5. The simple hexagonal form of graphite

consists of these planes stacked with hexagons over one another in the three-dimensional

simple hexagonal structure, Fig. 4.2. This is also the structure of MgB2 which is illustrated

in 4.6. The boron atoms form graphene-like planes in the simple hexagonal structure and

the Mg atoms occupy sites in the centers of the hexagons between the layers. Since each

Mg atom provides two valence electrons, the total electron valence count per cell is the

same for graphite and MgB2. Thus we can expect the band structures to be closely related

and the bands near the Fermi level to be similar.

The bands have been calculated by many groups with the same conclusions; the results

[240] presented in Fig. 2.29 are chosen because they show the comparison with hexagonal

graphite, given on the right. The symmetry point notations are those for the simple hexagonal

Brillouin zone in Fig. 4.10. The shading of points indicates the degree of σ bonding character

of the states, i.e. the strong in-plane bonding states. The graphite bands are only slightly
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Figure 2.29. Electron bands of MgB2 (left) and primitive hexagonal graphite calculated [240] using

LAPW method (Ch. 17). The planar σ bonding states, highlighted with larger symbols, are higher in

energy in MgB2 so that they are partially unoccupied. The symmetry labels are given in Fig. 4.10

and the Fermi surface calculated using a similar method is shown in Fig. 2.31. From [240].

modified from those of a single plane of graphene, which has the Fermi energy exactly at

the K points where the π bands touch to give a zero gap and a Fermi surface that is a set of

points in two-dimensions (see Sec. 14.7). In graphite, the σ bonding states are shifted well

below the Fermi energy, whereas in MgB2 the bonding is weaker so that the σ bands cross

the Fermi energy. In addition, there is greater dispersion perpendicular to the layers (e.g.


 → A), especially for the π bands, which are rather three-dimensional in nature.

Subsequent to the calculations, measurements of the dispersion has been made by angle-

resolved photoemission [239]. Since certain bands have little dispersion perpendicular to

the layers, the parallel dispersion can be measured directly as shown in Fig. 2.22. Measured

spectra and the plots of the peaks obtained by analysis of second derivatives of the spectra

are shown in Fig. 2.30. The agreement with the bands in Fig. 2.29 is interpreted [239] as

evidence that the electronic states are not strongly correlated so that an independent-particle

approach captures the salient features.

The calculated Fermi surface of MgB2 has two very different parts as shown in Fig. 2.31

[241]. The sheets of the surface near 
 are almost two-dimensional; this is also clear in

Fig. 2.29, which shows the nearly flat band close to the Fermi energy in the 
 → A direction

that is formed from the in-plane σ bonding states. Since the σ bands are degenerate at 
,

the small splitting near 
 shown in Fig. 2.29 leads to two closely spaced sheets of the Fermi

surface. Although the area of the surface is small the nearly two-dimensional character leads

to this part of the Fermi surface contributing ≈30% of the density of states at the Fermi

energy [241].

The other ingredients in superconductivity are the phonons and electron–phonon inter-

actions. Many calculations have been done for MgB2, with the basic conclusion that the

strongest coupling is provided by the Eg optic phonons at k ≈ 0. An example of a calculation

of the entire phonon dispersion curves ω(k), density of states F(ω), and electron–phonon

interaction α2 F(ω) is shown in Fig. 2.32. The black dots indicate the strength of the interac-

tion of various phonons with exceptionally strong coupling of the Eg phonons at frequency

near 600 cm−1. It is also evident that the optic phonons near k = 0 are “softened,” i.e. there
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Figure 2.30. Angle-resolved photoemission!spectra of MgB2 (left) and analysis of second derivatives

of the spectra for dispersion in the plane in the 
 → K direction [239]. The “experimental bands”

have remarkable agreement with the calculated bands in Fig. 2.29, which is interpreted as showing

that the electronic states are well described by an independent-particle approach. The state near 


does not correspond to bulk bands and is interpreted as a surface state. From [239].
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Figure 2.31. Left: Fermi surface of MgB2 from [241]. The sheets near the 
 point are nearly

two-dimensional and are composed of in-plane σ bonding states, as shown in Fig. 2.29. The other

sheets are from the π bands that have larger dispersion. Right: Electronic density of states (DOS) for

the different bands in MgB2 near the Fermi energy. The partial DOS correspond to the two wide π

bands and the two nearly two-dimensional σ bonding bands shown in Fig. 2.29 and the Fermi

surface at the left. Although the surface around 
 is small, it is crucial in the superconducting

properties: it accounts for a large fraction of the density of states at the Fermi energy and the bonding

states couple strongly to phonons as shown in Fig. 2.32. Provided by J. Kortus and I. I. Mazin.
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Figure 2.32. Dispersion curves, phonon density of states, and the electron-phon-coupling

spectrum [242, 243] α2 F for MgB2 calculated [155] using the LMTO method (Ch. 17). The size of

the black dots indicates the strength of the electron–phonon interaction, showing strongest coupling

for the Eg phonons at frequency near 600 cm−1. The dip in the dispersion curves for optic phonons

near k = 0 also indicates strong electron–phonon coupling (see also Fig. 19.4.). Calculations of the

transition temperature [155, 244] based upon the calculated properties are in general agreement with

experiment. From [155].

is a dip in the dispersion curves that indicate strong electron–phonon coupling. (Such an

effect is also present in other strong coupling superconductors, for example for Nb shown in

Fig. 19.4.) In addition, there is a large cubic anharmonicity for the Eg displacement pattern,

illustrated in Fig. 2.8, which is very sensitive to the details of the Fermi surface indicating

large electron–phonon coupling.

The full theory of superconductivity is outside the scope of this volume. A very short sum-

mary is given in Sec. 19.8 and there are excellent reviews such as [242,243]. The important

point for our purposes is that the basic ingredients in the theory of phonon-mediated super-

conductivity are the bread and butter of electronic structure: the electronic bands, the Fermi

surface, the single-particle densities of states, phonon dispersion, and electron–phonon in-

teractions. For the case of MgB2, calculations using different methods [155, 240, 241, 244]

support the phonon-mediated mechanism. The surprisingly large transition temperature

appears to be due to the states at the Fermi surface that are nearly two-dimensional and

have σ bonding character (the cylinders of the Fermi surface in Fig. 2.31) which couple

strongly to the phonons. Furthermore, there are other interesting features that emerge from

the theory, including two-gap superconductivity that results from solution of the Eliashberg

equations [155, 244].

2.13 The continuing challenge: electron correlation

The competition between correlation due to interactions and delocalization due to kinetic

energy leads to the most challenging problems in the theory of electrons in condensed matter.
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Correlations are responsible for metal–insulator transitions, the Kondo effect, heavy fermion

systems, high-temperature superconductors, and many other phenomena (see, e.g., [216]).

Low dimensionality leads to larger effects of correlation and new phenomena such as

the quantum Hall effect. In one dimension, the Fermi liquid is replaced by a Luttinger–

Tomanaga liquid in which the excitations are “holons” and “spinons.”

In some cases, independent-particle methods are sufficient to include effects of correlation

through effective mean-field interactions; indeed, this is the key to the success of density

functional theory in quantitative description of systems with weak or moderate correlation.

The term “strong correlation” is generally used to denote just those systems where mean-

field approximations (at least those used at present) break down and fail to describe the

important physics. Such problems are appropriate subjects for entire texts, and this section

is merely a pointer to remind the reader of important issues not solved by present-day

approximate forms of density functional theory and other independent-particle methods.

Materials systems that exhibit strong correlation effects are ones on the boundary be-

tween localized and delocalized. They often involve the latter 3d and 4d transition metals;

the anomalous 4f rare earths Ce, Sm, Eu, and Tb; and the 5f actinides. These states are

intermediate between the highly localized 4f rare earths and the more delocalized band-like

metals, which include the early 3d and 4d elements and the non-transition metals. The

3d transition metal oxides are in the intermediate range where metal–insulator transitions

occur, along with high-temperature superconductivity, which is thought to involve electron

correlations, even though the understanding is still elusive [216]. The anomalous rare earth

elements are ones where the addition or removal energy is close to the Fermi energy, indi-

cating that the 4f occupation is unstable, leading to “mixed-valence” and “heavy-fermion”

behavior. For example, CeCu2Si2 has a specific heat coefficient ≈1,000 times larger than

expected from a band calculation [245] of “electrons.”

As the theory of electronic structure becomes more powerful and more predictive, it

is even more relevant to keep in mind the “big picture” of the possible consequences of

many-body electron–electron interactions. Not only is a proper accounting of the effects

of interactions essential for quantitative description of real materials, but also imaginative

exploration of correlation can lead to exciting new phenomena qualitatively different from

predictions of usual mean-field theories. As emphasized in the introduction, Sec. 1.3, the

concepts are captured in the notion [78] of “More is different” with recent developments

summarized in More is Different: Fifty Years of Condensed Matter Physics [79].
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3

Theoretical background

Summary

Our understanding of the electronic structure of matter is based upon theoretical
methods of quantum mechanics and statistical mechanics. This chapter reviews
fundamental definitions and expressions, including the most basic forms valid
for many-body systems of interacting electrons and useful, simplified formulas
valid for non-interacting particles. This material is the foundation for succeeding
chapters, which deal with further developments of the theory and the methods
to carry out calculations.

3.1 Basic equations for interacting electrons and nuclei

The subject of this book is recent progress toward describing properties of matter from

theoretical methods firmly rooted in the fundamental equations. Thus our starting point is

the hamiltonian for the system of electrons and nuclei,

Ĥ = −
-h2

2me

∑

i

∇2
i −

∑

i,I

Z I e2

|ri − RI | + 1

2

∑

i �= j

e2

|ri − r j |

−
∑

I

-h2

2MI
∇2

I + 1

2

∑

I �=J

Z I Z J e2

|RI − RJ | , (3.1)

where electrons are denoted by lower case subscripts and nuclei, with charge Z I and mass

MI , denoted by upper case subscripts. It is essential to include the effects of difficult many-

body terms, namely electron–electron Coulomb interactions and the complex structures

of the nuclei that emerge from the combined effects of all the interactions. The issue

central to the theory of electronic structure is the development of methods to treat electronic

correlations with sufficient accuracy that one can predict the diverse array of phenomena

exhibited by matter, starting from (3.1).1 It is most informative and productive to start

with the fundamental many-body theory. Many expressions, such as the force theorem, are

1 Here relativistic effects, magnetic fields, and quantum electrodynamics are not included. These will be incor-

porated later to varying degrees. For example, the Dirac equation is included in Ch. 10 on atoms, and inclusion

in solids is discussed in Ch. 11 on pseudopotentials and Ch. 16 on augmented methods. Magnetic fields are

included explicitly only as Zeeman terms.
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more easily derived in the full theory with no approximations. It is then straightforward to

specialize to independent-particle approaches and the actual formulas needed for most of

the following chapters.

There is only one type of term in the general hamiltonian that can be regarded as “small,”

the inverse mass of the nuclei 1/MI . A perturbation series can be defined in terms of this

parameter which is expected to have general validity for the full interacting system of

electrons and nuclei. If we first set the mass of the nuclei to infinity, then the kinetic energy

of the nuclei can be ignored. This is the Born–Oppenheimer or adiabatic approximation

[89] defined in App. C, which is an excellent approximation for many purposes, e.g. the

calculation of nuclear vibration modes in most solids [90,152]. In other cases, it forms the

starting point for perturbation theory in electron-phonon interactions, which is the basis

for understanding electrical transport in metals, polaron formation in insulators, certain

metal–insulator transitions, and the BCS theory of superconductivity. Thus we shall focus

on the hamiltonian for the electrons, in which the positions of the nuclei are parameters.

Ignoring the nuclear kinetic energy, the fundamental hamiltonian for the theory of elec-

tronic structure can be written as

Ĥ = T̂ + V̂ext + V̂int + EI I . (3.2)

If we adopt Hartree atomic units -h = me = e = 4π/ε0 = 1, then the terms may be written

in the simplest form. The kinetic energy operator for the electrons T̂ is

T̂ =
∑

i

−1

2
∇2

i , (3.3)

V̂ext is the potential acting on the electrons due to the nuclei,

V̂ext =
∑

i,I

VI (|ri − RI |), (3.4)

V̂int is the electron–electron interaction,

V̂int = 1

2

∑

i �= j

1

|ri − r j | , (3.5)

and the final term EI I is the classical interaction of nuclei with one another and any other

terms that contribute to the total energy of the system but are not germane to the problem

of describing the electrons. Here the effect of the nuclei upon the electrons is included in a

fixed potential “external” to the electrons. This general form is still valid if the bare nuclear

Coulomb interaction is replaced by a pseudopotential that takes into account effects of

core electrons (except that the potentials are “non-local;” see Ch. 11). Also, other “external

potentials,” such as electric fields and Zeeman terms, can readily be included. Thus, for

electrons, the hamiltonian, (3.2), is central to the theory of electronic structure.
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Schrödinger equation for the many-body electron system

The fundamental equation governing a non-relativistic quantum system is the time-

dependent Schrödinger equation,

i-h
d�({ri }; t)

dt
= Ĥ�({ri }; t), (3.6)

where the many-body wavefunction for the electrons is �({ri }; t) ≡ �(r1, r2, . . . , rN ; t),
the spin is assumed to be included in the coordinate ri , and, of course, the wavefunction

must be antisymmetric in the coordinates of the electrons r1, r2, . . . , rN . The eigenstates

of (3.6) can be written as �({ri }; t) = �({ri })e−i(E/
-h)t . This is the basis for understanding

dynamical properties in Ch. 20 and App. D.

For an eigenstate, the time-independent expression for any observable is an expectation

value of an operator Ô , which involves an integral over all coordinates,

〈Ô〉 = 〈�|Ô|�〉
〈�|�〉 . (3.7)

The density of particles n(r), which plays a central role in electronic structure theory, is

given by the expectation value of the density operator n̂(r) = ∑
i=1,N δ(r − ri ),

n(r) = 〈�|n̂(r)|�〉
〈�|�〉 = N

∫
d3r2 · · · d3rN

∑
σ1

|�(r, r2, r3, . . . , rN )|2
∫

d3r1d3r2 · · · d3rN |�(r1, r2, r3, . . . , rN )|2 , (3.8)

which has this form because of the symmetry of the wavefunction in all the electron coor-

dinates. (The density for each spin results if the sum over σ1 is omitted.) The total energy

is the expectation value of the hamiltonian,

E = 〈�|Ĥ |�〉
〈�|�〉 ≡ 〈Ĥ〉 = 〈T̂ 〉 + 〈V̂int〉 +

∫

d3r Vext(r)n(r) + EI I , (3.9)

where the expectation value of the external potential has been explicitly written as a simple

integral over the density function. The final term EI I is the electrostatic nucleus–nucleus (or

ion–ion) interaction, which is essential in the total energy calculation, but is only a classical

additive term in the theory of electronic structure.

The eigenstates of the many-body hamiltonian are stationary points (saddle points or the

minimum) of the energy expression (3.9). These may be found by varying the ratio in (3.9)

or by varying the numerator subject to the constraint of orthonormality (〈�|�〉 = 1), which

can be done using the method of Lagrange multipliers,

δ[〈�|Ĥ |�〉 − E(〈�|�〉 − 1)] = 0. (3.10)

This is equivalent to the well-known Rayleigh–Ritz principle [245,246] that the functional

�RR = 〈�|Ĥ − E |�〉 (3.11)
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is stationary at any eigensolution |�m〉.2 Variation of the bra 〈�| leads to

〈δ�|Ĥ − E |�〉 = 0. (3.12)

Since this must hold for all possible 〈δ�|, this can be satisfied only if the ket |�〉 satisfies

the time-independent Schrödinger equation

Ĥ |�〉 = E |�〉. (3.13)

In Exercise 3.1 it is shown that the same equations result from explicit variation of � in

(3.9) without Lagrange multipliers.

The ground state wavefunction �0 is the state with lowest energy, which can be deter-

mined, in principle, by minimizing the total energy with respect to all the parameters in

�({ri }), with the constraint that � must obey the particle symmetry and any conservation

laws. Excited states are saddle points of the energy with respect to variations in �.

Ground and excited electronic states

The distinction between ground and excited states pointed out in Ch. 2 is equally obvi-

ous when approached from the point of view of solving the many-body equations for the

electrons. Except in special cases, the ground state must be treated by non-perturbative

methods because the different terms in the energy equation are large and tend to cancel.

The properties of the ground state include the total energy, electron density, and correlation

functions. From the last one can derive properties that at first sight would not be considered

to be ground state properties, such as whether the material is a metal or an insulator. In any

case, one needs to establish which state is the ground state, often comparing states that are

very different in character but similar in energy.

On the other hand, excitations in condensed matter are usually small perturbations on the

entire system. These perturbations can be classified into variations of the ground electronic

state (e.g. small displacements of the ions in phonon modes) or true electronic excitations,

e.g. optical electronic excitations. In both cases, perturbation theory is the appropriate

tool. Using perturbation techniques, one can calculate excitation spectra and the real and

imaginary parts of response functions. Nevertheless, even in this case one needs to know

the ground state, since the excitations are perturbations on the ground state.

These approaches apply both in independent-particle and in many-body problems. The

ground state is special in both cases and it is interesting that both density functional theory

and quantum Monte Carlo are primarily ground state methods. The role of perturbation

theory is rather different in independent-particle and many-body problems – in the latter, it

plays a key role in the basic formulation of the problem in diagrammatic perturbation series

and in suggesting the key ideas for summation of appropriate diagrams.

2 This is an example of functional derivatives described in App. A for the case where the energy functional (3.9)

is linear in both the bra 〈�| and the ket |�〉 functions. Thus one may vary either, or both at the same time, with

the same result.
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3.2 Coulomb interaction in condensed matter

It is helpful to clarify briefly several points that are essential to a proper definition of energies

in extended systems with long-range Coulomb interaction. For a more complete analysis

see App. F. The key points are:

� Any extended system must be neutral if the energy is to be finite.
� Terms in the energy must be organized in neutral groups for actual evaluation.

In (3.9) the most convenient approach is to identify and group together terms representing

the classical Coulomb energies,

ECC = EHartree +
∫

d3r Vext(r)n(r) + EI I , (3.14)

where EHartree is the self-interaction energy of the density n(r) treated as a classical charge

density

EHartree = 1

2

∫

d3rd3r ′ n(r)n(r′)
|r − r′| . (3.15)

Since EI I is the interaction among the positive nuclei and
∫

d3r Vext(r)n(r) is the interaction

of the electrons with the nuclei, (3.14) is a neutral grouping of terms so long as the system

is neutral. Evaluation of classical Coulomb energies is an intrinsic part of quantitative

electronic structure calculations; methods for dealing with long-range Coulomb interaction

are described in App. F.

It then follows that the total energy expression, (3.9), can be written as

E = 〈T̂ 〉 + (〈V̂int〉 − EHartree) + ECC, (3.16)

where each of the three terms is well defined. The middle term in brackets, 〈V̂int〉 − EHartree,

is the difference between the Coulomb energies of interacting, correlated electrons with

density n(r) and that of a continuous classical charge distribution having the same density,

which is defined to be the potential part of the exchange–correlation energy Exc in density

functional theory (see Secs. 6.3 and 7.3, especially the discussion related to Eq. (7.15)).3

Thus all long-range interactions cancel in the difference, so that effects of exchange and

correlation are short ranged. This is a point to which we will return in Ch. 7 and App. H.

3.3 Force and stress theorems

Force (Hellmann–Feynman) theorem

One of the beautiful theorems of physics is the “force theorem” for the force conjugate to

any parameter in the hamiltonian. This is a very general idea perhaps formulated first in

1927 by Ehrenfest [251], who recognized that it is crucial for the correspondence principle

of quantum and classical mechanics. He established the relevant relation by showing that the

3 This definition differs from that given in many texts (see Sec. 3.6) as the difference from Hartree–Fock, since

the Hartree–Fock density differs from the true density.
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expression for force given below equals the expectation value of the operator corresponding

to acceleration 〈d2 x̂/dt2〉. The ideas are implicit in the 1928 work of Born and Fock [252],

and the explicit formulas used today were given by Güttiger [253] in 1932. The formulas

were included in the treatises of Pauli [254] and Hellmann [255], the latter reformulating

them as a variational principle in a form convenient for application to molecules. In 1939,

Feynman [256] derived the force theorem and explicitly pointed out that the force on a

nucleus is given strictly in terms of the charge density, independent of the electron kinetic

energy, exchange, and correlation. Thus as an “electrostatic theorem,” it should apparently be

attributed to Feynman. The nomenclature “Hellmann–Feynman theorem” has been widely

used, apparently originating with Slater [41]; however, we will use the term “force theorem.”

The force conjugate to any parameter describing a system, such as the position of a

nucleus RI , can always be written

FI = − ∂ E

∂RI
. (3.17)

From the general expression for the total energy (3.9), the derivative can be written using

first-order perturbation theory (the normalization does not change and we assume 〈�|�〉 =
1 for convenience),

− ∂ E

∂RI
= −〈�| ∂ Ĥ

∂RI
|�〉 − 〈 ∂�

∂RI
|Ĥ |�〉 − 〈�|Ĥ | ∂�

∂RI
〉 − ∂ EI I

∂RI
. (3.18)

Using the fact that at the exact ground state solution the energy is extremal with respect to all

possible variations of the wavefunction, it follows that the middle two terms in (3.18) vanish

and the only non-zero terms come from the explicit dependence of the nuclear position.

Furthermore, using the form of the energy in (3.9), it follows that the force depends upon

only the density n of the electrons and the other nuclei,

FI = − ∂ E

∂RI
= −

∫

d3rn(r)
∂Vext(r)

∂RI
− ∂ EI I

∂RI
. (3.19)

Here n(r) is the unperturbed density and the other nuclei are held fixed, as shown schemat-

ically in the left-hand side of Fig. I.1. Since each nucleus interacts with the electrons and

other nuclei via Coulomb interactions, the right-hand side of (3.19) can be shown (Exer-

cise 3.3) to equal the nuclear charge times the electric field due to the electrons, which is

the electrostatic theorem of Feynman. Thus even though the kinetic energy and internal

interactions change as the nuclei move, all such terms cancel in the force theorem.

In the case of non-local potentials (such as pseudopotentials), the force cannot be ex-

pressed solely in terms of the electron density. However, the original expression is still valid

and useful expressions can be directly derived from

− ∂ E

∂RI
= −〈�| ∂ Ĥ

∂RI
|�〉 − ∂ EI I

∂RI
. (3.20)

Because the force theorem depends upon the requirement that the electronic states are at

their variational minimum, it follows that there must be a continuum of “force theorems”

that corresponds to the addition of any linear variation in � or n to the above expression.

Although such terms vanish in principle, they can have an enormous impact upon the
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accuracy and physical interpretation of resulting formulas. The most relevant example in

electronic structure is the case of core electrons: it is more physical and more accurate

computationally to move the electron density in the core region along with the nucleus

rather than holding the density strictly fixed. Methods to accomplish this are described in

App. I and illustrated in Fig. I.1.

Finally, there are drawbacks to the fact that expressions for the force theorem depend

upon the electronic wavefunction being an exact eigenstate. If the basis is not complete, or

the state is approximated, then there may be additional terms. For example, if the basis is not

complete and it depends upon the positions of the nuclei, then there are additional terms that

must be explicitly included so that the expression for the force given by the force theorem

is identical to the explicit derivative of the energy (Exercise 3.4). Explicit expressions are

given for use in independent-particle Kohn–Sham calculations in Sec. 9.4.

Generalized force theorem and coupling constant integration

The derivative of the energy with respect to any parameter λ in the hamiltonian can be

calculated using the variational property of the wavefunction. Furthermore, an integral

expression provides a way to calculate finite energy difference between any two states

connected by a continuous variation of the hamiltonian. The general expressions can be

written,

∂ E

∂λ
= 〈�λ|∂ Ĥ

∂λ
|�λ〉 (3.21)

and


E =
∫ λ2

λ1

dλ
∂ E

∂λ
=

∫ λ2

λ1

dλ〈�λ|∂ Ĥ

∂λ
|�λ〉. (3.22)

For example, if a parameter such as the charge squared of the electron e2 in the interaction

energy in the hamiltonian is scaled by e2 → e2λ, then λ can be varied from 0 to 1 to vary

the hamiltonian from the non-interacting limit to the fully interacting problem. Since the

hamiltonian involves the charge only in the interaction term, and (3.5) is linear in e2 (the

nuclear term is treated separately as the “external potential”), it follows that the change in

energy can be written


E =
∫ 1

0

dλ〈�λ|Vint|�λ〉, (3.23)

where Vint is the full interaction term (3.5) and �λ is the wavefunction for intermediate

values of the interaction4 given by e2 → e2λ. The disadvantage of this approach is that

it requires the wavefunction at intermediate (unphysical) values of e; nevertheless, it can

be very useful, e.g. in the construction of density functionals for interacting many-body

systems.

4 The change in energy can be computed for any ground or excited state. States of different symmetry can be

followed uniquely even if they cross. In many cases it is more efficient to solve a matrix equation (the size of

the number of states of the same symmetry that are strongly mixed).
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Stress (generalized virial) theorem

A physically different type of variation is a scaling of space, which leads to the “stress

theorem” [128,129] for total stress. This is a generalization of the well-known virial theorem

[254,257–260] for pressure P which was derived in the early days of quantum mechanics.

An elegant derivation was given by Fock [259] in terms of “Streckung des Grundgebietes”

(“stretching of the ground state”).

The stress is a generalized force for which the ideas of the force theorem can be applied.

The key point is that for a system in equilibrium, the stress tensor σαβ is minus the derivative

of the energy with respect to strain εαβ per unit volume

σαβ = − 1

�

∂ E

∂εαβ

, (3.24)

where α and β are the cartesian indices, and where strain is defined to be a scaling of

space, rα → (δαβ + εαβ)rβ , where r is any vector in space including particle positions and

translation vectors. The effect is to transform the wavefunction by scaling every particle

coordinate [129],

�ε({ri }) = det(δαβ + εαβ)−1/2�({(δαβ + εαβ)−1riβ}), (3.25)

where the prefactor preserves the normalization. Since the wavefunction also depends upon

the nuclear positions (either explicitly, treating the nuclei as quantum particles, or implicitly,

as parameters in the Born–Oppenheimer approximation discussed after (3.1)), so also must

the nuclear positions be scaled. Of course, the wavefunction and the nuclear positions

actually change in other ways if the system is compressed or expanded; however, this has

no effect upon the energy to first order because the wavefunction and the nuclear positions

are at variational minima.

Substituting �ε({ri }) into expression (3.9) for the energy, changing variables in the

integrations, and using (3.24) leads directly to the expression [129]

σαβ = −
〈

�

∣
∣
∣
∣
∣

∑

k

-h2

2mk
∇kα∇kβ − 1

2

∑

k �=k ′

(xkk′)α(xkk′ )β

xkk′

(
d

dxkk′
V̂

)∣
∣
∣
∣
∣
�

〉

, (3.26)

where the sum over k and k ′ denotes a double sum over all particles, nuclei and electrons,

where the interaction is a function of the distance xkk′ = |xkk ′ |. The virial theorem for

pressure P = −∑
α σαα is the trace of (3.26), which follows from isotropic scaling of

space, εαβ = εδαβ . If all interactions are Coulombic and the potential energy includes all

terms due to nuclei and electrons, the virial theorem leads to

3P� = 2Ekinetic + Epotential, (3.27)

where � is the volume of the system. The expression (3.26) is a general result valid in any

system in equilibrium, classical or quantum, at any temperature, so long as all particles

interact with central two-body forces. Explicit expressions [104, 128] used in practical

calculations in Fourier space are discussed in App. G.
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3.4 Statistical mechanics and the density matrix

From quantum statistical mechanics one can derive expressions for the energy U , entropy

S, and free energy F = U − T S, at a temperature T. The general expression for F is

F = Trρ̂

(

Ĥ + 1

β
ln ρ̂

)

, (3.28)

where ρ̂ is the density matrix and β = 1/kB T . Here Tr means trace over all the states of the

system which have a fixed number of particles N . The final term is the entropy term, which

is the log of the number of possible states of the system. A general property of the density

matrix is that it is positive definite, since its diagonal terms are the density. The correct

equilibrium density matrix is the positive definite matrix that minimizes the free energy,

ρ̂ = 1

Z
e−β Ĥ , (3.29)

with the partition function given by

Z = Tr e−β Ĥ = e−βF . (3.30)

In a basis of eigenstates �i of Ĥ , ρ̂ has only diagonal matrix elements,

ρi i ≡ 〈�i |ρ̂|�i 〉 = 1

Z
e−βEi ; Z =

∑

j

e−βE j , (3.31)

where ρi i is the probability of state i. Since the �i form a complete set, the operator ρ̂ in

(3.29) can be written

ρ̂ =
∑

i

|�i 〉ρi i〈�i |, (3.32)

in Dirac bra and ket notation.

In the grand canonical ensemble, in which the number of particles is allowed to vary, the

expressions are modified to include the chemical potential μ and the number operator N̂ .

The grand potential � and the grand partition function Z are given by

Z = e−β� = Tr e−β(Ĥ−μN̂ ), (3.33)

where now the trace is over all states with any particle number, and the grand density matrix

operator is the generalization of (3.29),

ρ̂ = 1

Z
e−β(Ĥ−μN̂ ). (3.34)

All the equilibrium properties of the system are determined by the density matrix, just as

they are determined by the ground state wavefunction at T = 0. In particular, any expectation

value is given by

〈Ô〉 = Tr ρ̂ Ô, (3.35)

which reduces to a ground state expectation value of the form of (3.7) at T = 0. For the case

of non-interacting particles, the general formulas reduce to the well-known expressions for

fermions and bosons given in the next section.
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3.5 Independent-electron approximations

There are two basic independent-particle approaches that may be classified as “non-

interacting” and “Hartree–Fock.” They are similar in that each assumes the electrons are

uncorrelated except that they must obey the exclusion principle. However, they are differ-

ent in that Hartree–Fock includes the electron–electron Coulomb interaction in the energy,

while neglecting the correlation that is introduced in the true wavefunction due to those

interactions. In general, “non-interacting” theories have some effective potential that in-

corporates some effect of the real interaction, but there is no interaction term explicitly

included in the effective hamiltonian. This approach is often referred to as “Hartree” or

“Hartree-like,” after D. R. Hartree [43] who included an average Coulomb interaction in

a rather heuristic way.5 More to the point of modern calculations, all calculations follow-

ing the Kohn–Sham method (see Chs. 7–9) involve a non-interacting hamiltonian with an

effective potential chosen to incorporate exchange and correlation effects approximately.

Non-interacting (Hartree-like) electron approximation

With our broad definition, all non-interacting electron calculations involve the solution of

a Schrödinger-like equation

Ĥ effψ
σ
i (r) =

[

−
-h2

2me
∇2 + V σ

eff(r)

]

ψσ
i (r) = εσ

i ψσ
i (r), (3.36)

where V σ
eff(r) is an effective potential that acts on each electron of spin σ at point r.6 The

ground state for many non-interacting electrons is found by occupying the lowest eigenstates

of (3.36) obeying the exclusion principle. If the hamiltonian is not spin-dependent, then up

and down spin states are degenerate and one can simply consider spin as a factor of two

in the counting. Excited states involve occupation of higher energy eigenstates. There is

no need to construct an antisymmetric wavefunction literally. Since the eigenstates of the

independent-particle Schrödinger equation are automatically orthogonal, an antisymmetric

wavefunction like (3.43) can be formed from a determinant of these eigenstates. It is then

straightforward to show that, if the particles are non-interacting, the relations reduce to the

expressions given below for the energy, density, etc. (Exercise 3.6).

The solution of equations having the form of (3.36) is at the heart of the methods described

in this volume. The basic justification of the use of such independent-particle equations for

electrons in materials is density functional theory, which is the subject of Chs. 6–9. The

5 Historically, the first quantitative calculations on many-electron systems were carried out on atoms by D. R.

Hartree [43] who solved, numerically, the equation for each electron moving in a central potential due to other

electrons and the nucleus. Hartree defined a different potential for each electron because he subtracted a self-term

for each electron that depended upon its orbital. However, following the later development of the Hartree–Fock

method [46], it is now customary to define the effective “Hartree potential” with an unphysical self-interaction

term so that the potential is orbital independent. This unphysical term has no effect since it is cancelled by the

exchange term in Hartree–Fock calculations.
6 Spin is introduced at this point because it is necessary to introduce a spin-dependent effective potential in order

for the independent-particle equations to reproduce spin polarized electron states properly.



62 Theoretical background

following chapters are devoted to methods for solving the equations and applications to the

properties of matter, such as predictions of structures, phase transitions, magnetism, elastic

constants, phonons, piezoelectric and ferroelectric moments, and many other quantities.

At finite temperature it is straightforward to apply the general formulas of statistical

mechanics given in the previous section to show that the equilibrium distribution of electrons

is given by the Fermi–Dirac (or Bose–Einstein) expression (1.1) for occupation numbers

of states as a function of energy (Exercise 3.7). The expectation value (3.35) is a sum over

many-body states � j , each of which is specified by the set of occupation numbers {nσ
i } for

each of the independent particle states with energy εσ
i . Given that each nσ

i can be either 0 or

1, with
∑

i nσ
i = N σ, it is straightforward (see Exercise 3.8) to show that (3.35) simplifies

to

〈Ô〉 =
σ∑

i

f σ
i 〈ψσ

i |Ô|ψσ
i 〉, (3.37)

where 〈ψσ
i |Ô|ψσ

i 〉 is the expectation value of the operator Ô for the one-particle state ψσ
i ,

and f σ
i is the probability of finding an electron in state i, σ given in general by (1.1). The

relevant case is the Fermi–Dirac distribution

f σ
i = 1

eβ(εσ
i −μ) + 1

, (3.38)

where μ is the Fermi energy (or chemical potential) of the electrons. For example, the

energy is the weighted sum of non-interacting particle energies εσ
i

E(T ) = 〈Ĥ〉 =
σ∑

i

f σ
i εσ

i . (3.39)

Just as in the general many-body case, one can define a single-body density matrix

operator

ρ̂ =
∑

i

|ψσ
i 〉 f σ

i 〈ψσ
i |, (3.40)

in terms of which an expectation value (3.37) is 〈Ô〉 = Tr ρ̂ Ô in analogy to (3.35). For

example, in an explicit spin and position representation, ρ̂ is given by

ρ(r, σ ; r′, σ ′) = δσ,σ ′
∑

i

ψσ∗
i (r) fiψ

σ
i (r′), (3.41)

where the density is the diagonal part

nσ (r) = ρ(r, σ ; r, σ ) =
∑

i

f σ
i |ψσ

i (r)|2. (3.42)

Hartree–Fock approximation

A standard method of many-particle theory is the Hartree–Fock method that was first applied

to atoms in 1930 by Fock [46]. In this approach one writes a properly antisymmetrized

determinant wavefunction for a fixed number N of electrons, and finds the single determinant
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that minimizes the total energy for the full interacting hamiltonian (3.2). If there is no spin–

orbit interaction, the determinant wavefunction � can be written as a Slater determinant7

� = 1

(N !)1/2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(r1, σ1) φ1(r2, σ2) φ1(r3, σ3) . . .

φ2(r1, σ1) φ2(r2, σ2) φ2(r3, σ3) . . .

φ3(r1, σ1) φ3(r2, σ2) φ3(r3, σ3) . . .

. . . . . .

. . . . . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.43)

where the φi (r j , σ j ) are single particle “spin-orbitals” each of which is a product of a

function of the position ψσ
i (r j ) and a function of the spin variable αi (σ j ). (Note that ψσ

i (r j )

is independent of spin σ in closed-shell cases. In open-shell systems, this assumption

corresponds to the “spin-restricted Hartree–Fock approximation.”) The spin-orbitals must be

linearly independent and if, in addition, they are orthonormal the equations simplify greatly;

it is straightforward to show (Exercise 3.10) that � is normalized to 1. Furthermore, if the

hamiltonian is independent of spin or is diagonal in the basis σ = | ↑〉; | ↓〉, the expectation

value of the hamiltonian (3.2), using Hartree atomic units, with the wavefunction (3.43) is

given by (Exercise 3.11)

〈�|Ĥ |�〉 =
∑

i,σ

∫

drψσ∗
i (r)

[

−1

2
∇2 + Vext(r)

]

ψσ
i (r) + EI I

+ 1

2

∑

i, j,σi ,σ j

∫

drdr′ψσi ∗
i (r)ψ

σ j ∗
j (r′)

1

|r − r′|ψ
σi
i (r)ψ

σ j

j (r′)

− 1

2

∑

i, j,σ

∫

drdr′ψσ∗
i (r)ψσ∗

j (r′)
1

|r − r′|ψ
σ
j (r)ψσ

i (r′). (3.44)

The first term groups together the single-body expectation values which involve a sum

over orbitals, whereas the third and fourth terms are the direct and exchange interactions

among electrons, which are double sums. We have followed the usual practice of including

the i = j “self-interaction,” which is spurious but which cancels in the sum of direct and

exchange terms. When this term is included, the sum over all orbitals gives the density and

the direct term is simply the Hartree energy defined in (3.15). The “exchange” term, which

acts only between same spin electrons since the spin parts of the orbitals are orthogonal

for opposite spins, is discussed below in Sec. 3.6 and in the chapters on density functional

theory.

The Hartree–Fock approach is to minimize the total energy with respect to all degrees

of freedom in the wavefunction with the restriction that it has the form (3.43). Since or-

thonormality was used to simplify the equations, it must be maintained in the minimization,

which can be done by Lagrange multipliers as in (3.10) to (3.13). If the spin functions

are quantized along an axis, variation of ψσ∗
i (r) for each spin σ leads to the Hartree–Fock

7 The determinant formulation had been realized by Dirac [25] before Slater’s work, but the determinant of spin-

orbitals is due to Slater [26], who considered this as his most popular work [41] because it replaced difficult

group theoretical arguments by this simple form.
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equations
[

−1

2
∇2 + Vext(r) +

∑

j,σ j

∫

dr′ψσ j ∗
j (r′)ψσ j

j (r′)
1

|r − r′|

]

ψσ
i (r)

−
∑

j

∫

dr′ψσ∗
j (r′)ψσ

i (r′)
1

|r − r′|ψ
σ
j (r) = εσ

i ψσ
i (r), (3.45)

where the exchange term is summed over all orbitals of the same spin including the self-term

i = j that cancels the unphysical self-term included in the direct term. If the exchange term

is modified by multiplying and dividing by ψσ
i (r), (3.45) can be written in a form analogous

to (3.36) except that the effective hamiltonian is an operator that depends upon the state

Ĥ
i
effψ

σ
i (r) =

[

−
-h2

2me
∇2 + V̂ i,σ

eff (r)

]

ψσ
i (r) = εσ

i ψσ
i (r), (3.46)

with

V̂ i,σ
eff (r) = Vext(r) + VHartree(r) + V̂ i,σ

x (r), (3.47)

and the exchange term operator V̂x is given by a sum over orbitals of the same spin σ

V̂ i,σ
x (r) = −

∑

j

∫

dr′ψσ∗
j (r′)ψσ

i (r′)
1

|r − r′|
ψσ

j (r)

ψσ
i (r)

. (3.48)

Note that this is a differential-integral equation for each orbital ψσ
i in terms of the exchange

operator V̂ i,σ
x (r) that is an integral involving ψσ

i and all the other ψσ
j with the same spin.

The term in square brackets is the Coulomb potential due to the “exchange charge den-

sity”
∑

j ψσ∗
j (r′)ψσ

i (r′) for the state i, σ . Furthermore, V̂ i,σ
x (r) diverges at points where

ψσ
i (r) = 0; this requires care in solving the equations, but is not a fundamental problem

since the product V̂ i,σ
x (r)ψσ

i (r) has no singularity.

We will not discuss the solution of the Hartree–Fock equations in any detail since this

is given in many texts [247, 261]. Unlike the case of independent Hartree–like equations,

the Hartree–Fock equations can be solved directly only in special cases such as spherically

symmetric atoms and the homogeneous electron gas. In general, one must introduce a basis,

in which case the energy (3.44) can be written in terms of the expansion coefficients of the

orbitals and the integrals involving the basis functions. Variation then leads to the Roothan

and Pople–Nesbet equations widely used in quantum chemistry [247, 261]. In general,

these are much more difficult to solve than the independent Hartree–like equations and the

difficulty grows with size and accuracy since one must calculate N 4
basis integrals.8

Koopmans’ theorem

What is the meaning of the eigenvalues of the Hartree–Fock equation (3.45)? Of course,

Hartree–Fock is only an approximation to the energies for addition and removal of electrons,

8 For large systems, Coulomb integrals between localized functions can be reduced to linear in Nbasis [262].
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since all effects of correlation are omitted. Nevertheless, it is very valuable to have a rigorous

understanding of the eigenvalues, which is provided by Koopmans’ theorem:

The eigenvalue of a filled (empty) orbital is equal to the change in the total energy (3.44), if an electron

is subtracted from (added to) the system, i.e. decreasing (increasing) the size of the determinant by

omitting (adding) a row and column involving a particular orbital φ j (ri , σi ), keeping all the other
orbitals the same.

Koopmans’ theorem can be derived by taking matrix elements of (3.45) with the normal-

ized orbital ψσ∗
i (r) (see Exercise 3.18). For occupied states, the eigenvalues are lowered

by the exchange term, which cancels the spurious repulsive self-interaction in the Hartree

term. To find the energies for addition of electrons, one must compute empty orbitals of

the Hartree–Fock equation (3.45). For these states there also is no spurious self-interaction

since both the direct and the exchange potential terms in (3.45) involve only the occupied

states. In general, the gap between addition and removal energies for electrons are greatly

overestimated in the Hartree–Fock approximation because of the neglect of relaxation of

the orbitals and other effects of correlation.

In finite systems, such as atoms, it is possible to improve upon the use of the eigenvalues

as approximate excitation energies. Significant improvement in the addition and removal

energies result from the “delta Hartree–Fock approximation,” in which one calculates total

energy differences directly from (3.44), allowing the orbitals to relax and taking into account

the exchange of an added electron with all the others. The energy difference approach for

finite systems can be used in any self-consistent field method; hence the name “
SCF.”

Illustrations are given in Sec. 10.6.

3.6 Exchange and correlation

The key problem of electronic structure is that the electrons form an interacting many-body

system, with a wavefunction, in general, given by �({ri }) ≡ �(r1, r2, . . . , rN ), as discussed

in Sec. 3.1. Since the interactions always involve pairs of electrons, two-body correlation

functions are sufficient to determine many properties, such as the energy given by (3.9).

Writing out the form for a general expectation value (3.7) explicitly, the joint probability

n(r, σ ; r′, σ ′) of finding electrons of spin σ at point r and of spin σ ′ at point r′, is given by

n(r, σ ; r′, σ ′)

=
〈
∑

i �= j

δ(r − ri )δ(σ − σi )δ(r′ − r j )δ(σ ′ − σ j )

〉

(3.49)

= N (N − 1)
∑

σ3,σ4,...

∫

dr3 · · · drN |�(r, σ ; r′, σ ′; r3, σ3; . . . , rN , σN )|2, (3.50)

assuming � is normalized to unity. For uncorrelated particles, the joint probability is

just the product of probabilities, so that the measure of correlation is 
n(r, σ ; r′, σ ′) =
n(r, σ ; r′, σ ′) − n(r, σ )n(r′, σ ′), so that

n(r, σ ; r′, σ ′) = n(r, σ )n(r′, σ ′) + 
n(r, σ ; r′, σ ′). (3.51)
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It is also useful to define the normalized pair distribution,

g(r, σ ; r′, σ ′) = n(r, σ ; r′, σ ′)
n(r, σ )n(r′, σ ′)

= 1 + 
n(r, σ ; r′, σ ′)
n(r, σ )n(r′, σ ′)

, (3.52)

which is unity for uncorrelated particles so that correlation is reflected in g(r, σ ; r′, σ ′) − 1.

Note that all long-range correlation is included in the average terms so that the remaining

terms 
n(r, σ ; r′, σ ′) and g(r, σ ; r′, σ ′) − 1 are short range and vanish at large |r − r′|.

Exchange in the Hartree–Fock approximation

The Hartree–Fock approximation (HFA) consists of neglecting all correlations except those

required by the Pauli exclusion principle; however, the exchange term in (3.44) represents

two effects: Pauli exclusion and the self-term that must be subtracted to cancel the spurious

self-term included in the direct Coulomb Hartree energy. The effect is always to lower the

energy, which may be interpreted as the interaction of each electron with a positive “ex-

change hole” surrounding it. The exchange hole 
nx (r, σ ; r′, σ ′) is given by 
n(r, σ ; r′, σ ′)
in the HFA, where � in (3.50) is approximated by the single determinant wavefunction �

of (3.43). If the single-particle spin-orbitals φσ
i = ψσ

i (r j ) × αi (σ j ) are orthonormal, it is

straightforward (Exercise 3.13) to show that the pair distribution function can be written

nHFA(r, σ ; r′, σ ′) = 1

2!

∑

i j

∣
∣
∣
∣
φi (r, σ ) φi (r′, σ ′)
φ j (r, σ ) φ j (r′, σ ′)

∣
∣
∣
∣

2

, (3.53)

and the exchange hole takes the simple form


nHFA(r, σ ; r′, σ ′) = 
nx (r, σ ; r′, σ ′) = −δσσ ′

∣
∣
∣
∣
∣

∑

i

ψσ∗
i (r)ψσ

i (r′)

∣
∣
∣
∣
∣

2

. (3.54)

It is immediately clear from (3.51) and (3.54) that the exchange hole of an electron involves

only electrons of the same spin and that the probability vanishes, as it must, for finding

two electrons of the same spin at the same point r = r′. Note that from (3.54) and (3.41), it

follows that in the HFA 
nx (r, σ ; r′, σ ′) = −δσσ ′ |ρσ (r, r′)|2, where ρσ (r, r′) is the density

matrix, which is diagonal in spin.

This is an example of the general property [263] that indistinguishability of particles

leads to correlations, which in otherwise independent-particle systems can be expressed in

terms of the first-order density matrix:


nip(x; x′) = ±|ρσ (x, x′)|2, (3.55)

or

gip(x; x′) = 1 ± |ρσ (x, x′)|2
n(x)n(x′)

, (3.56)

where the plus (minus) sign applies for bosons (fermions) and x incorporates all coordi-

nates including position r and spin (if applicable). Thus 
nip(x; x′) is always positive for

independent bosons and always negative for independent fermions.
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There are stringent conditions on the exchange hole: (1) it can never be positive,


nx (r, σ ; r′, σ ′) ≤ 0 (which means that gx (r, σ ; r′, σ ′) ≤ 1), and (2) the integral of the

exchange hole density 
nx (r, σ ; r′, σ ′) over all r′ is exactly one missing electron per elec-

tron at any point r. This is a consequence of the fact that if one electron is at r, then that same

electron cannot also be at r′. It also follows directly from (3.54), as shown in Exercise 3.12.

The exchange energy, the last term in (3.44), can be interpreted as the lowering of the energy

due to each electron interacting with its positive exchange hole,

Ex = [〈V̂int〉 − EHartree(n)
]

HFA
= 1

2

∑

σ

∫

d3r
∫

d3r ′ 
nx (r, σ ; r′, σ ′)
|r − r′| . (3.57)

In this form it is clear that the exchange energy cancels the unphysical self-interaction term

in the Hartree energy.

The simplest example of an exchange hole is a one electron problem, such as the hydrogen

atom. There is, of course, no real “exchange” nor any issue of the Pauli exclusion principle,

and it is easy to see that the “exchange hole” is exactly the electron density. Its integral is

unity, as required by the sum rule, and the exchange energy cancels the spurious Hartree

term. Because of this cancellation, the Hartree–Fock equation (3.45) correctly reduces to

the usual Schrödinger equation for one electron in an external potential.

The next more complex case is a two-electron singlet such as the ground state of He. In

this case (see Exercise 3.16) the two spins have identical spatial orbitals and the exchange

term is minus one-half the Hartree term in the Hartree–Fock equation (3.44), so that the

Hartree–Fock equation (3.45) simplifies to a Hartree–like equation of the form of (3.36)

with Veff a sum of the external (nuclear) potential plus one-half the Hartree potential.9

For systems with many electrons the exchange hole must be calculated numerically,

except for special cases. The most relevant for us is the homogeneous gas considered in the

following section.

Beyond Hartree–Fock: correlation

The energy of a state of many electrons in the Hartree–Fock approximation (3.44) is the

best possible wavefunction made from a single determinant (or a sum of a few determinants

in multi-reference Hartree–Fock [247] needed for degenerate cases). Improvement of the

wavefunction to include correlation introduces extra degrees of freedom in the wavefunction

and therefore always lowers the energy for any state, ground or excited, by a theorem often

attributed to MacDonald [264]. The lowering of the energy is termed the “correlation energy”

Ec.

This is not the only possible definition of Ec, which could also be defined as the difference

from some other reference state. The definition in terms of the difference from Hartree–

Fock is a well-defined choice in the sense that it leads to the smallest possible magnitude of

Ec, since EHFA is the lowest possible energy neglecting correlation. Another well-defined

9 This is exactly what D. R. Hartree did in his pioneering work [43]; however, his approach of subtracting a

self-term for each electron is not the same as the more proper Hartree–Fock theory for more than two electrons.
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choice arises naturally in density functional theory, where Ec is also defined as the difference

between the exact energy and the energy of an uncorrelated state as (3.44), but with the

difference that the orbitals are required to give the exact density (see Sec. 3.2 and Ch. 7). In

many practical cases this distinction appears not to be of great importance; nevertheless, it is

essential to define the energies properly, especially as electronic structure methods become

more and more powerful in their ability to calculate effects of correlation.

The effects of correlation can be cast in terms of the remaining part of the pair correlation

function beyond exchange nc(r, σ ; r′, σ ′) defined in terms of (3.50) and (3.51) by


n(r, σ ; r′, σ ′) ≡ nxc(r, σ ; r′, σ ′) = nx (r, σ ; r′, σ ′) + nc(r, σ ; r′, σ ′). (3.58)

Since the entire exchange–correlation hole obeys the sum rule that it integrates to 1, the

correlation hole nc(r, σ ; r′, σ ′) must integrate to zero, i.e. it merely redistributes the density

of the hole. In general, correlation is most important for electrons of opposite spin, since

electrons of the same spin are automatically kept apart by the exclusion principle. For the

ground state the correlation energy is always negative and any approximation should be

negative. Excited states involve energy differences from the ground state, e.g. an exciton

energy. Depending upon the effects of correlation in the two states, the difference can be

positive or negative.

The correlation energy is more complicated to calculate than the exchange energy because

correlation affects both kinetic and potential energies. Both effects can be taken into account

by a “coupling constant integration” using the methods of Sec. 3.3. Although it is not the

goal in this volume to delve into the theory of interacting systems, selected results are

given in the chapters on the homogeneous gas, Ch. 5, and density functional theory (see

especially Ch. 7) since present-day electronic structure theory strives to incorporate some

approximation for the correlation energy in realistic calculations.

3.7 Perturbation theory and the “2n + 1 theorem”

Perturbation theory describes the properties of a system with hamiltonian Ĥ
0 + λ
Ĥ as a

systematic expansion in powers of the perturbation, which is conveniently done by orga-

nizing terms in powers of λ. The first order expressions depend only upon the unperturbed

wavefunctions and 
Ĥ to first-order and have already been given as the force or “general-

ized force” in Sec. 3.3. To higher order one must determine the variation in the wavefunction.

The general form valid in a many-body system can be written in terms of a sum over the

excited states of the unperturbed hamiltonian [11, 265, 266],


�i ({ri }) =
∑

j �=i

� j ({ri }) 〈� j |
Ĥ |�i 〉
Ei − E j

. (3.59)

The change in the expectation value of an operator Ô in the perturbed ground state can be

cast in the form


〈Ô〉 =
∑

j �=i

〈
� j |Ô|�i 〉 + c.c. =
∑

j �=i

〈�i |Ô|� j 〉〈� j |
Ĥ |�i 〉
Ei − E j

+ c.c., (3.60)
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which can readily be generalized to finite T. An advantage of writing the general many-body

expression is that it shows immediately that the perturbation of the many-body ground state

�0 involves only the excited states, an aspect that has to be demonstrated in the simpler

independent-particle methods.

In an independent-particle approximation the states are determined by the hamiltonian

Ĥ eff in the effective Schrödinger equation (3.36). The change in the individual independent-

particle orbitals, 
ψi (r) to first order in perturbation theory, can be written in terms of a

sum over the spectrum of the unperturbed hamiltonian Ĥ
0

eff as [11, 265, 266],


ψi (r) =
∑

j �=i

ψ j (r)
〈ψ j |
Ĥ eff|ψi 〉

εi − ε j
, (3.61)

where the sum is over all the states of the system, occupied and empty, with the exception

of the state being considered. Similarly, the change in the expectation value of an operator

Ô in the perturbed ground state to lowest order in 
Ĥ eff can be written


〈Ô〉 =
occ∑

i=1

〈ψi + δψi |Ô|ψi + δψi 〉

=
occ∑

i=1

empty∑

j

〈ψi |Ô|ψ j 〉〈ψ j |
Ĥ eff|ψi 〉
εi − ε j

+ c.c. (3.62)

In (3.62) the sum over j is restricted to conduction states only, which follows from the fact

that the contributions of pairs of occupied states i, j and j, i cancel in (3.62) (Exercise 3.21).

Expressions Eqs. (3.61) and (3.62) are the basic equations upon which is built the theory

of response functions (App. D) and methods for calculating static (Ch. 19) and dynamic

responses (Ch. 20) in materials.

The “2n + 1 theorem” states that knowledge of the wavefunction to all orders 0 through
n determines the energy to order 2n + 1. Perhaps the first example of this theorem was

by Hylleraas [45] in 1930 in a study of two-electron systems, where he showed that the

first-order derivative of an eigenfunction with respect to a perturbation is sufficient to find

the second and third derivatives of the energy. In the same paper, Hylleraas observed that

there is an expression for the second derivative that is variational (minimal) with respect

to errors in dψ/dλ (see Sec. 19.5). In the intervening years there have been many works

proving the full “2n + 1 theorem,” which recently has been extended to density functional

theory and other functionals obeying minimum energy principles [153, 267, 268].

It is instructive to write down an example of the third-order energy to see the relation to

variational principles following the approach in [267]. The principles can be illustrated for

a single state, and the derivation is readily extended to many states [267]. If Ĥ is expanded

in powers of λ, Ĥ = Ĥ
(0) + λĤ

(1) + λ2 Ĥ
(2)

, and similarly for ψ , and the eigenvalue ε,

then the Schrödinger equation (Ĥ − ε)ψ = 0 to order m can written:

m∑

k=0

(Ĥ − ε)(m−k)ψ (k) = 0, (3.63)
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with the constraint
m∑

j=0

〈ψ ( j)|ψ (m− j)〉 = 0, m �= 0. (3.64)

Here are collected all terms of order λm and then λ is set to 1. Taking matrix elements of

(3.63) leads to
m∑

j=0

m∑

k=0

�(m − j − k)〈ψ ( j)|(Ĥ − ε)(m− j−k)|ψ (k)〉 = 0, (3.65)

where �(p) = 1, p ≥ 0; 0, p < 0.

The desired expressions can be derived by applying the condition that (3.65) be variational

with respect to ψ (k) at each order k = 0, . . . , m. This is facilitated by writing (3.65) in the

form of an array, illustrated here for m = 3,

0 = 〈ψ (3)|H̄ (0)|ψ (0)〉
+ 〈ψ (2)|H̄ (1)|ψ (0)〉 + 〈ψ (2)|H̄ (0)|ψ (1)〉
+ 〈ψ (1)|H̄ (2)|ψ (0)〉 + 〈ψ (1)|H̄ (1)|ψ (1)〉 + 〈ψ (1)|H̄ (0)|ψ (2)〉
+ 〈ψ (0)|H̄ (3)|ψ (0)〉 + 〈ψ (0)|H̄ (2)|ψ (1)〉 + 〈ψ (0)|H̄ (1)|ψ (2)〉 + 〈ψ (0)|H̄ (0)|ψ (3)〉. (3.66)

Variation of each |ψ (k)〉 (〈ψ (k)|) in turn means that the sum of elements in each row (column)

of (3.66) vanishes. From this it follows that one can eliminate the higher orderψ (k), k = 2, 3,

with the result (Exercise 3.24)

ε(3) = 〈ψ (0)|Ĥ (3)|ψ (0)〉 + 〈ψ (1)|Ĥ (2)|ψ (0)〉 + c.c.

+ 〈ψ (1)|Ĥ (1) − ε(1)|ψ (1)〉. (3.67)

Such expressions are used in electronic structure theory to derive accurate energies from

approximate wavefunctions, e.g. in certain expressions in the linearized methods of Ch. 17.
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Exercises

3.1 Show that the many-body Schrödinger equation (3.13) also results from explicit variation of

the energy in (3.9) without use of Lagrange multipliers.

3.2 Show that the independent-particle Schrödinger equation (3.36) is a special case of the many-

body solution. First show this for one particle; then for many non-interacting particles.

3.3 As part of his undergraduate thesis, Feynman showed that the force theorem applied to a nucleus

leads to the force being exactly the electric field at the given nucleus due to the charge density of

the rest of the system (electrons and other nuclei) times the charge of the given nucleus. Derive

this result from (3.19).

3.4 Derive the additional terms that must be included so that the expression for the force given

by the force theorem is identical to the explicit derivative of the energy, if the basis depends

explicitly upon the positions for the nuclei. Show that the contribution of these terms vanishes

if the basis is complete.

3.5 Derive the stress theorem (3.26). Show that this equation reduces to the well-known virial

theorem (3.27) in the case of isotropic pressure and Coulomb interactions.

3.6 Show that the relations for non-interacting particles given in the equations following (3.36)

remain valid, if a fully antisymmetric determinant wavefunction like (3.43) is created from the

orbitals. Note that this holds only if the particles are non-interacting.

3.7 Derive the Fermi–Dirac distribution (3.38) for non-interacting particles from the general defi-

nition of the density matrix (3.32) using the fact that the sum over many-body states in (3.32)

can be reduced to a sum over all possible occupation numbers {nσ
i } for each of the independent

particle states, subject to the conditions that each nσ
i can be either 0 or 1, and

∑
i nσ

i = N σ.

3.8 Following Exercise 3.7, show that (3.35)) simplifies to (3.37) for any operator in the independent-

particle approximation.

3.9 Why is the independent particle density matrix (3.41) diagonal in spin? Is this always the case?

3.10 Show that the Hartree–Fock wavefunction (3.43) is normalized if the independent-particle

orbitals are orthonormal.

3.11 Show that the Hartree–Fock wavefunction (3.43) leads to the exchange term in (3.44) and that

the variational equation leads to the Hartree–Fock equation (3.45) if the independent-particle

orbitals are orthonormal. Explain why the forms are more complicated if the independent-

particle orbitals are not orthonormal.

3.12 Show explicitly from the definition (3.54) that the exchange hole around each electron always

integrates to one missing electron. Show that, as stated in the text, this is directly related to

the fact that “exchange” includes a self-term that cancels the unphysical self-interaction in the

Hartree energy.

3.13 Derive the formulas for the pair distribution (3.53) and the exchange hole (3.54) for non-

interacting fermions by inserting the Hartree–Fock wavefunction (3.43) into the general defi-

nition (3.50).
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3.14 By expanding the 2 × 2 determinant in (3.53): (a) show that

∑

σ ′

∫

dr ′
nx (r, σ ; r′, σ ′) = (N − 1)n(r, σ ), (3.68)

where n(r, σ ) is the density; and (b) derive the formula (3.54) for the exchange hole.

3.15 The relation (3.55) is a general property of non-interacting identical particles [263]. As shown in

(3.54), 
nx (r, σ ; r′, σ ′) is always negative for fermions. Show that for bosons with a symmetric

wavefunction, the corresponding exchange term is always positive.

3.16 Derive the results stated after (3.57) that: (a) for a one-electron problem like hydrogen, the

exchange term exactly cancels the Hartree term as it should; and (b) for the ground state of two

electrons in a spin singlet state, e.g. in helium, the Hartree–Fock approximation leads to a Veff

sum of the external (nuclear) potential plus one-half the Hartree potential.

3.17 Following the exercise above, consider two electrons in a spin triplet state. Show that the

situation is not so simple as for the singlet case, i.e. that in the Hartree–Fock approximation

there must be two different functions Veff for two different orbitals.

3.18 Derive Koopmans’ theorem by explicitly taking matrix elements of the hamiltonian with an

orbital to show that the eigenvalue is the same as the energy difference if that orbital is removed.

3.19 For adding electrons one must compute empty orbitals of the Hartree–Fock equation (3.45).

There is no self effect of the empty state since only occupied orbitals are included in the sum.

Show that the same result for the addition energy is found if one explicitly includes the state in

a calculation with one added electron, but keeps the original orbitals unchanged.

3.20 In a finite system Hartree–Fock eigenfunctions have the (surprising) property that the form

of the long-range decay of all bound states is the same, independent of binding energy. For

example, core states have the same exponential decay as valence states, although the prefactor

is smaller. Show that this follows from (3.45).

3.21 Show that all contributions involving i and j both occupied vanish in the expectation value

(3.62).

3.22 Show that the correlation hole always integrates to zero, i.e. it rearranges the charge correlation.

This does not require complex calculations beyond Hartree–Fock theory; all that is needed is

to show that conservation laws must lead to this result.

3.23 As an example of the force theorem consider a one-dimensional harmonic oscillator with

hamiltonian given by − 1
2
(d2/dx2) + 1

2
Ax2, where A is the spring constant and the mass is set

to unity. Using the exact solution for the energy and wavefunction, calculate the generalized

force dE/dA by direct differentiation and by the force theorem.

3.24 Derive the formula (3.67) for energy to third order from the preceding equations.

3.25 Exercise 19.11 considers the variational principle in perturbation theory applied to a system

composed of two springs. Let each spring have a non-linear term 1
2
γ1(x1 − x0)3 and similarly

for spring 2. Find an explicit expression for the change in energy to third order due to the applied

force.
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Periodic solids and electron bands

Summary

Classification of crystals and their excitations by symmetry is a general ap-
proach applicable to electronic states, vibrational states, and other properties.
The first part of this chapter deals with translational symmetry which has the
same universal form in all crystals, and which leads to the Bloch theorem that
rigorously classifies excitations by their crystal momentum. (The discussion
here follows Ashcroft and Mermin, [84], Chs. 4–8.) The other relevant symme-
tries are time reversal and point symmetries. The latter depend upon a specific
crystal structure and are treated only briefly. Detailed classification can be found
in many texts, and computer programs that deal with the symmetries can be
found on-line at sites listed in Ch. 24.

4.1 Structures of crystals: lattice + basis

A crystal is an ordered state of matter in which the positions of the nuclei (and consequently

all properties) are repeated periodically in space. It is completely specified by the types and

positions of the nuclei in one repeat unit (primitive unit cell), and the rules that describe the

repetition (translations).

� The positions and types of atoms in the primitive cell are called the basis. The set of

translations, which generates the entire periodic crystal by repeating the basis, is a lattice

of points in space called the Bravais lattice. Specification of the crystal can be summarized

as:

Crystal structure = Bravais lattice + basis.

� The crystalline order is described by its symmetry operations. The set of translations

forms a group because the sum of any two translations is another translation.1 In addition

there may be other point operations that leave the crystal the same, such as rotations,

1 A group is defined by the condition that the application of any two operations leads to a result that is another

operation in the group. We will illustrate this with the translation group. The reader is referred to other sources for

the general theory and the specific set of groups possible in crystals, e.g. books on group theory, see [270–272],

and the comprehensive work by Slater [269].
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a1

a2
b2

b1

Wigner–Seitz cell

a1

a2
b2

b1

Figure 4.1. Real and reciprocal lattices for a general case in two dimensions. In the middle are

shown possible choices for primitive vectors for the Bravais lattice in real space, a1 and a2, and the

corresponding reciprocal lattice vectors, b1 and b2. In each case two types of primitive cells are

shown, which when translated fill the two-dimensional space. The parallelepiped cells are simple to

construct but are not unique. The Wigner–Seitz cell in real space is uniquely defined as the most

compact cell that is symmetric about the origin; the first Brillouin zone is the Wigner–Seitz cell of

the reciprocal lattice.

reflections, and inversions. This can be summarized as:

Space group = translation group + point group.2

The lattice of translations

First we consider translations, since they are intrinsic to all crystals. The set of all translations

forms a lattice in space, in which any translation can be written as integral multiples of

primitive vectors,

T(n) ≡ T(n1, n2, . . .) = n1a1 + n2a2 + . . . , (4.1)

where ai , i = 1, . . . , d are the primitive translation vectors and d denotes the dimension of

the space. For convenience we write formulas valid in any dimension whenever possible

and we define n = (n1, n2, . . . , nd ).

In one dimension, the translations are simply multiples of the periodicity length a, T (n) =
na, where n can be any integer. The primitive cell can be any cell of length a; however, the

most symmetric cell is the one chosen symmetric about the origin (−a/2, a/2) so that each

cell centered on lattice point n is the locus of all points closer to that lattice point than to

any other point. This is an example of the construction of the Wigner–Seitz cell.

The left-hand side of Fig. 4.1 shows a portion of a general lattice in two dimensions.

Space is filled by the set of all translations of any of the infinite number of possible choices

2 In some crystals the space group can be factorized into a product of translation and point groups; in others (such

as the diamond structure) there are non-symmorphic operations that can only be expressed as a combination of

translation and a point operation.
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a1

a2 a1 a2

a3

 a3

Figure 4.2. Simple cubic (left) and simple hexagonal (right) Bravais lattices. In the simple cubic

case, the cell shown is the Wigner–Seitz cell and the Brillouin zone has the same shape. In the

hexagonal case, the volume shown contains three atoms; the Wigner–Seitz cell is also a hexagonal

prism rotated by 90◦ and 1/3 the volume. The reciprocal lattice is also hexagonal and rotated from

the real lattice by 90◦, and the Brillouin zone is shown in Fig. 4.10.

of the primitive cell. One choice of primitive cell is the parallelepiped constructed from

the two primitive translation vectors ai . This cell is often useful for formal proofs and

for simplicity of construction. However, this cell is not unique since there are an infinite

number of possible choices for ai . A more informative choice is the Wigner–Seitz cell,

which is symmetric about the origin and is the most compact cell possible. It is constructed

by drawing the perpendicular bisectors of all possible lattice vectors T and identifying the

Wigner–Seitz cell as the region around the origin bounded by those lines.

In two dimensions there are special choices of lattices that have additional symmetry

when the angles between the primitive vectors are 90 or 60◦. In units of the length a, the

translation vectors are given by:

square rectangular triangular

a1 = (1, 0) (1, 0) (1, 0),

a2 = (0, 1)
(
0, b

a

)
,

(
1
2
,

√
3

2

)
.

(4.2)

Examples of crystals having, respectively, square and triangular Bravais lattices are shown

later in Figure 4.5.

Figures 4.2–4.4 show examples of three-dimensional lattices that occur in many crystals.

The primitive vectors can be chosen to be (in units of a):

simple cubic simple hex. fcc bcc

a1 = (1, 0, 0) (1, 0, 0)
(
0, 1

2
, 1

2

) ( − 1
2
, 1

2
, 1

2

)
,

a2 = (0, 1, 0)
(

1
2
,

√
3

2
, 0

) (
1
2
, 0, 1

2

) (
1
2
, − 1

2
, 1

2

)
,

a3 = (0, 0, 1)
(
0, 0, c

a

) (
1
2
, 1

2
, 0

) (
1
2
, 1

2
, − 1

2

)
.

(4.3)

The body centered cubic (bcc) and face centered cubic (fcc) lattices are shown, respectively,

in Figs. 4.3 and 4.4, each represented in the large conventional cubic cell (indicated by the
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a3

a1

a2

Figure 4.3. Body centered cubic (bcc) lattice, showing one choice for the three lattice vectors. The

conventional cubic cell shown indicates the set of all eight nearest neighbors at a distance
√

3
2

a
around the central atom. (There are six second neighbors at distance a.) On the right-hand side of

the figure is shown the Wigner–Seitz cell formed by the perpendicular bisectors of the lattice vectors

(this is also the Brillouin zone for the fcc lattice).

a1

a3

a2

Figure 4.4. Face centered cubic (fcc) lattice, drawn to emphasize the close packing of 12 neighbors

around the central site. (The location of sites at face centers is evident if the cube is drawn with a

lattice site at each corner and on each face of the cube.) Left: One choice for primitive lattice vectors

and the parallelepiped primitive cell, which has lower symmetry than the lattice. Right: the

symmetric Wigner–Seitz cell (which is also the Brillouin zone for the bcc lattice).

dashed lines) with a lattice site at the center. All nearest neighbors of the central site are

shown: eight for bcc and 12 for fcc lattices. One choice of primitive vectors is shown in each

case, but clearly other equivalent vectors could be chosen, and all vectors to the equivalent

neighbors are also lattice translations. In the fcc case, the left-hand side of Fig. 4.4 shows

one possible primitive cell, the parallelepiped formed by the primitive vectors. This is the

simplest cell to construct; however, this cell clearly does not have cubic symmetry and other

choices of primitive vectors lead to different cells. The Wigner–Seitz cells for each Bravais

lattice, shown respectively in Figs. 4.3 and 4.4, are bounded by planes that are perpendicular

bisectors of the translation vectors from the central lattice point. The Wigner–Seitz cell is
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particularly useful because it is the unique cell defined as the set of all points in space closer

to the central lattice point than to any other lattice point; it is independent of the choice of

primitive translations and it has the full symmetry of the Bravais lattice.

It is useful for deriving formal relations and for practical computer programs to express

the set of primitive vectors as a square matrix ai j = (ai ) j , where j denotes the cartesian

component and i the primitive vector, i.e. the matrix has the same form as the arrays of

vectors shown in Eqs. (4.2) and (4.3).

The volume of any primitive cell must be the same, since translations of any such cell

fill all space. The most convenient choice of cell in which to express the volume is the

parallelepiped defined by the primitive vectors. If we define �cell as the volume in any

dimension d (i.e. it has units (length)d ), simple geometric arguments show that �cell = |a1|
(d = 1); |a1 × a2|, (d = 2); and |a1 · (a2 × a3)|, (d = 3). In any dimension this can be

written as the determinant of the a matrix (see Exercise 4.4),

�cell = det(a) = |a|. (4.4)

The basis of atoms in a cell

The basis describes the positions of atoms in each unit cell relative to the chosen origin.

If there are S atoms per primitive cell, then the basis is specified by the atomic position

vectors τs , s = 1, S. Two-dimensional cases are both instructive and relevant for important

problems in real materials. In particular, we consider the CuO square planar structure and the

hexagonal graphene structure. These will serve as illustrative examples of simple bands in

Ch. 14 and as notable examples of full calculations in Chs. 13 and 17. The square lattice for

CuO2 planes, found in the cuprate high-temperature superconductors, is shown in Fig. 4.5.

The lattice vectors are given above and the atomic position vectors are conveniently chosen

with the Cu atom at the origin τ1 = (0, 0) and the other positions chosen to be τ2 = ( 1
2
, 0)a

and τ3 = (0, 1
2
)a. It is useful to place the Cu atom at the origin since it is the position of

a1

a2    
τ2

a1

a2

τ2

τ3

Figure 4.5. Left: Square lattice for CuO2 planes common to the cuprate high-temperature

superconductors: there are three atoms per primitive cell. Right: Honeycomb lattice for a single

plane of graphite or hexagonal BN: the lattice is triangular and there are two atoms per primitive cell.
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a1

a2
a3

a1 + a2

 

Figure 4.6. Crystal structure of MgB2, which is an example of lattice, electronic, and

superconducting properties given in Ch. 2. Right: A top view of the boron honeycomb planes with

Mg atoms (shaded) in the centers of the hexagons. Left: Stacking of planes to make a simple

hexagonal three-dimensional structure with Mg atoms between the boron planes. The figure shows

the projection of the atoms onto a plane defined by the a3 and τ3 vectors, which are in the plane of

the page.

highest symmetry in the cell, with inversion, mirror planes, and four-fold rotation symmetry

about this site.3

A second two-dimensional example is a single plane of graphite or a plane of hexagonal

BN, which forms a honeycomb lattice with a triangular Bravais lattice and two atoms

per primitive cell, as shown on the right-hand side of Fig. 4.5. If the two atoms are the

same chemical species, the structure is that of a plane of graphite. The primitive lattice

vectors are a1 = (1, 0)a and a2 = (
1
2
,

√
3

2

)
a, where the nearest neighbor distance is a/

√
3.

If one atom is at the origin, τ1 = (0, 0), possible choices of τ2 include τ2 = (0, 1/
√

3)a
and τ2 = (1, 1/

√
3)a, where the latter is symmetric with respect to the primitive vectors, as

shown in Fig. 4.5. It is also useful to define the atomic positions in terms of the primitive

lattice vectors by τs = ∑d
i=1 τ L

si ai , where the superscript L denotes the representation in

lattice vectors. In this case, one finds τ2 = 2
3
(a1 + a2) or τ L

1 = [0, 0] and τ L
2 = [

2
3
, 2

3

]
.4

Layered three-dimensional crystals are formed by stacking two-dimensional planes, such

as the actual crystals of the CuO materials and graphite. For example, the three-dimensional

structure of the high-temperature superconductor YBa2Cu3O7 is shown in Fig. 17.3. An

example treated in Ch. 2 is MgB2, which is composed of hexagonal boron planes exactly

like the honeycomb graphite layers in Fig. 4.5 (with every atom equivalent) and with Mg

atoms between layers in the centers of the hexagons. The three-dimensional structure is

simple hexagonal as shown in Fig. 4.6, where a3 is perpendicular to the layers (the c-axis)

and τ3 is the vector from one boron site to the Mg site. The lattice is the same as hexagonal

graphite band structures and the bands for the two crystals are compared in Fig. 2.29.

NaCl and ZnS are two examples of crystals with the fcc Bravais lattice and a basis of

two atoms per cell, as shown in Fig. 4.7. The primitive translation vectors are given in the

3 In any case where the origin can be chosen as the center of symmetry, the Fourier transforms of all properties,

such as the density and potential, are real. Also, all excitations can be classified into even and odd relative to

this origin, and the four-fold rotational symmetry allows the roles of the five Cu d states to be separated.
4 Simple reasoning shows that all covalently bonded crystals are expected to have more than one atom per primitive

cell (see examples of diamond and ZnS crystals and Exercise 4.8).
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x

y
z

τ

2

Figure 4.7. Two examples of crystals with a basis of two atoms per cell and fcc Bravais lattice. Left:

Rocksalt (or NaCl) structure. Right: zinc-blende (cubic ZnS) structure. The positions of the atoms

are given in the text. In the former case, a simple cubic crystal results if the two atoms are the same.

In the latter case, if the two atoms are identical the resulting crystal has diamond structure.

previous section in terms of the cube edge a and illustrated in Fig. 4.4. For the case of NaCl,

it is convenient to choose one atom at the origin τ1 = (0, 0, 0), since there is inversion

symmetry and cubic rotational symmetry around each atomic site, and the second basis

vector is chosen to be τ2 = (
1
2
, 1

2
, 1

2

)
a. In terms of the primitive lattice vectors, one can

see from Fig. 4.7 that τ2 = ∑d
i=1 τ L

2i ai , where τ L
2 = [

1
2
, 1

2
, 1

2

]
. It is also easy to see that if

the two atoms at positions τ1 and τ2 were the same, then the crystal would actually have a

simple cubic Bravais lattice, with cube edge asc = 1
2
afcc.

A second example is the zinc-blende structure, which is the structure of many III–V and

II–VI crystals such as GaAs and ZnS. This crystal is also fcc with two atoms per unit cell.

Although there is no center of inversion in a zinc-blende structure crystal, each atom is

at a center of tetrahedral symmetry; we can place the origin at one atom, τ1 = (0, 0, 0)a,

and τ2 = (
1
4
, 1

4
, 1

4

)
a, as shown in Fig. 4.7, or any of the equivalent choices. Thus this

structure is the same as the NaCl structure except for the basis, which in primitive lattice

vectors is simply τ L
2 = [

1
4
, 1

4
, 1

4

]
. If the two atoms in the cell are identical, this is the

diamond structure in which C, Si, Ge, and grey Sn occur. A bond center is the appropriate

choice of origin for the diamond structure since this is a center of inversion symmetry. This

can be accomplished by shifting the origin so that τ1 = −(
1
8
, 1

8
, 1

8

)
a, and τ2 = (

1
8
, 1

8
, 1

8

)
a;

similarly, τ L
1 = −[

1
8
, 1

8
, 1

8

]
and τ L

2 = [
1
8
, 1

8
, 1

8

]
.

The perovskite structure illustrated in Fig. 4.8 has chemical composition ABO3 and occurs

for a large number of compounds with interesting properties including ferroelectrics (e.g.

BaTiO3), Mott-insulator antiferromagnets (e.g. CaMnO3), and alloys exhibiting metal–

insulator transitions (e.g. Lax Ca1−x MnO3). The crystal may be thought of as the CsCl

structure with O on the edges. The environment of the A and B atoms is very different,

with the A atoms having 12 O neighbors at a distance a/
√

2 and the B atoms having six O

neighbors at a distance a/2. Thus these atoms play a very different role in the properties.

Typically the A atom is a non-transition metal for which Coulomb ionic bonding favors the

maximum number of O neighbors, whereas the B atom is a transition metal where the d states



80 Periodic solids and electron bands
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Figure 4.8. The perovskite crystal structure with the chemical composition ABO3. This structure

occurs for a large number of compounds with interesting properties, including ferroelectrics (e.g.

BaTiO3), antiferromagnets (e.g. CaMnO3), and alloys (e.g. Pbx Zr1−x TiO3 and Lax Ca1−x MnO3). The

crystal may be thought of as cubes with A atoms at the center, B at the corners, and O on the edges.

The environment of the A and B atoms is very different, the A atom having 12 O neighbors at a

distance a/
√

2 and the B atoms having six O neighbors at a distance a/2. (The neighbors around

one B atom are shown.) The Bravais lattice is simple cubic.

x C
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c

(111)

a

Figure 4.9. Stacking of close-packed planes to create close-packed three-dimensional lattices. Left:

The only possible close packing in two dimensions is the hexagonal layer of spheres labeled A, with

lattice constant a. Right: Three-dimensional stacking can have the next layers in either B or C

positions. Of the infinite set of possible layer sequences, only the fcc stacking (. . . ABCABC . . . )

forms a primitive lattice; hexagonal close-packed (hcp) (. . . ABABAB . . . ) has two sites per

primitive cell; all others have larger primitive cells.

favor bonding with the O states. Note the contrast of the planes of B and O atoms with the

CuO2 planes in Fig. 4.5: although the planes are similar, each B atom in the cubic perovskites

is in three intersecting orthogonal planes, whereas in the layered structures such as La2CuO4,

the CuO2 planes are clearly identified, with each Cu belonging to only one plane.

Close-packed structures

In two dimensions there is only one way to make a “close-packed structure,” defined as a

structure in which hard spheres (or disks) can be placed with the maximum filling of space.

That is the triangular lattice in Fig. 4.5 with one atom per lattice point. In the plane, each atom

has six neighbors in a hexagonal arrangement, as shown in Fig. 4.9. All three-dimensional
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close-packed structures consist of such close-packed planes of atoms stacked in various

sequences. As shown in Fig. 4.9, the adjacent plane can be stacked in one of two ways: if

the given plane is labeled A, then two possible positions for the next plane can be labeled

B and C.

The face centered cubic structure (shown in Fig. 4.4) is the cubic close-packed structure,

which can be viewed as the sequence of close-packed planes in the sequence . . . ABCABC

. . .. It has one atom per primitive cell, as may be seen by the fact that each atom has the

same relation to all its neighbors, i.e. an A atom flanked by C and B planes is equivalent

to a B atom flanked by A and C planes, etc. Specifically, if the lattice is a Bravais lattice

then the vector from an atom in the A plane to one of its closest neighbors in the adjacent C

plane must be a lattice vector. Similarly, twice that vector is also a lattice vector, as may be

verified easily. The cubic symmetry can be verified by the fact that the close-packed planes

may be chosen perpendicular to any of the [111] crystal axes.

The hexagonal closed-packed structure consists of close-packed planes stacked in a

sequence . . . ABABAB . . . . This is a hexagonal Bravais lattice with a basis of two atoms

that are not equivalent by a translation. (This can be seen because – unlike the fcc case –

twice the vector from an A atom to a neighboring B atom is not a vector connecting atoms.

Thus the primitive cell is hexagonal as shown Fig. 4.2 with a equal to the distance between

atoms in the plane and c the distance between two A planes. The ideal c/a ratio is that for

packing of hard spheres, c/a = √
8/3 (Exercise 4.11). (The two atoms in the primitive cell

are equivalent by a combination of translation by c/2 and rotation by π/6, but this does not

affect the analysis of the translation symmetry.)

There are an infinite number of possible stackings or “polytypes” all of which are “close

packed.” In particular, polytypes are actually realized in crystals with tetrahedral bonding,

like ZnS. The two simplest structures are cubic (zinc-blende) and hexagonal (wurtzite),

based upon the fcc and hcp lattices. In this case, each site in one of the A, B, or C planes

corresponds to two atoms (Zn and S) and the fcc case is shown in Fig. 4.7.

4.2 The reciprocal lattice and Brillouin zone

Consider any function f (r) defined for the crystal, such as the density of the electrons,

which is the same in each unit cell,

f (r + T(n1, n2, . . .)) = f (r), (4.5)

where T is any translation defined above. Such a periodic function can be represented by

Fourier transforms in terms of Fourier components at wavevectors q defined in reciprocal

space. The formulas can be written most simply in terms of a discrete set of Fourier com-

ponents if we restrict the Fourier components to those that are periodic in a large volume

of crystal �crystal composed of Ncell = N1 × N2 × · · · cells. Then each component must

satisfy the Born–Von Karmen periodic boundary conditions in each of the dimensions

exp(iq · N1a1) = exp(iq · N2a2) . . . = 1, (4.6)
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so that q is restricted to the set of vectors satisfying q · ai = 2π
integer

Ni
for each of the primitive

vectors ai . In the limit of large volumes �crystal the final results must be independent of the

particular choice of boundary conditions.5

The Fourier transform is defined to be

f (q) = 1

�crystal

∫

�crystal

dr f (r) exp(iq · r), (4.7)

which, for periodic functions, can be written:

f (q) = 1

�crystal

∑

n1,n2,...

∫

�cell

dr f (r)eiq·(r+T(n1,n2,...))

= 1

Ncell

∑

n1,n2,...

eiq·T(n1,n2,...)
1

�cell

×
∫

�cell

dr f (r)eiq·r. (4.8)

The sum over all lattice points in the middle line vanishes for all q except those for which

q · T(n1, n2, . . .) = 2π × integer for all translations T. Since T(n1, n2, . . .) is a sum of

integer multiples of the primitive translations ai , it follows that q · ai = 2π × integer.

The set of Fourier components q that satisfy this condition is the “reciprocal lattice.” If

we define the vectors bi , i = 1, d that are reciprocal to the primitive translations ai , i.e.

bi · a j = 2πδi j , (4.9)

the only non-zero Fourier components of f (r) are for q = G, where the G vectors are a

lattice of points in reciprocal space defined by,

G(m1, m2, . . .) = m1b1 + m2b2 + . . . , (4.10)

where the mi , i = 1, d are integers. For each G, the Fourier transform of the periodic

function can be written,

f (G) = 1

�cell

∫

�cell

dr f (r) exp(iG · r). (4.11)

The mutually reciprocal relation of the Bravais lattice in real space and the reciprocal

lattice becomes apparent using matrix notation that is valid in any dimension. If we define

square matrix bi j = (bi ) j , exactly as was done for the ai j matrix, then primitive vectors are

related by

bT a = 2π1 → b = 2π (aT )−1 or a = 2π (bT )−1. (4.12)

It is also straightforward to derive explicit expressions for the relation of the ai and bi

5 Of course invariance to the choice of boundary conditions in the large-system limit must be proven. For short-

range forces and periodic operators the proof is straightforward, but the generalization to Coulomb forces requires

care in defining the boundary conditions on the potentials. The calculation of electric polarization is especially

problematic and a satisfactory theory has been developed only within the past few years, as is described in

Ch. 22.



4.2 The reciprocal lattice and Brillouin zone 83

vectors; for example, in three dimensions, one can show by geometric arguments that

b1 = 2π
a2 × a3

|a1 · (a2 × a3)| (4.13)

and cyclical permutations. The geometric construction of the reciprocal lattice in two di-

mensions is shown in Fig. 4.1.

It is easy to show that the reciprocal of a square (simple cubic) lattice is also a square

(simple cubic) lattice, with dimension 2π
a . The reciprocal of the triangular (hexagonal)

lattice is also triangular (hexagonal), but rotated with respect to the crystal lattice. The bcc

and fcc lattices are reciprocal to one another (Exercise 4.9). The primitive vectors of the

reciprocal lattice for each of the three-dimensional lattices in Eq. (4.3) in units of 2π
a are

given by:

simple cubic simple hex. fcc bcc

b1 = (1, 0, 0)
(

1, − 1√
3
, 0

)
(1, 1, −1) (0, 1, 1),

b2 = (0, 1, 0)
(

0, 2√
3
, 0

)
(1, −1, 1) (1, 0, 1),

b3 = (0, 0, 1)
(
0, 0, a

c

)
(−1, 1, 1) (1, 1, 0).

(4.14)

The volume of any primitive cell of the reciprocal lattice can be found from the same

reasoning as used for the Bravais in real space. This is the volume of the first Brillouin zone

�BZ (see Sec. 4.2) which can be written for any dimension d in analogy to Eq. (4.4) as

�BZ = det(b) = |b| = (2π )d

�cell

. (4.15)

This shows the mutual reciprocal relation of �BZ and �cell. The formulas can also be

expressed in the geometric forms �BZ = |b1| (d = 1); |b1 × b2|, (d = 2); and |b1 · (b2 ×
b3)|, (d = 3).

The Brillouin zone

The first Brillouin zone (which we will denote as simply the “Brillouin zone” or BZ) is

the Wigner–Seitz cell of the reciprocal lattice, which is defined by the planes that are the

perpendicular bisectors of the vectors from the origin to the reciprocal lattice points. It is on

these planes that the Bragg condition is satisfied for elastic scattering [84,86]. For incident

particles with wavevectors inside the BZ there can be no Bragg scattering. Construction

of the BZ is illustrated in Figs. 4.1–4.4, and widely used notations for points in the BZ of

several crystals are given in Fig. 4.10.

Useful relations

Expressions for crystals often involve the lengths of vectors in real and reciprocal space,

|τ + T| and |k + G| and the scalar products (k + G) · (τ + T). If the vectors are expressed

in a cartesian coordinate system, the expressions simply involve sums over each cartesian



84 Periodic solids and electron bands

Hx

z

y

H

P

Γ

Λ

Δ

Σ
N

Γ

Λ

Δ Σ

x

y

z

R

M

X

X

Σ

M

Γ

Δ

A H

K

L

z

H

y

x

K

T

Γ

X

K

L

X

X

K
W

Λ

Δ
Σ

U
x 

z

X

y

WU

(a) (b)

(c)
(d )

Figure 4.10. Brillouin zones for several common lattices: (a) simple cubic (sc), (b) face centered

cubic (fcc), (c) body centered cubic (bcc), and (d) hexagonal (hex). High-symmetry points and lines

are labeled according to Bouckaret, Smoluchowski, and Wigner; see also Slater [269]. The zone

center (k = 0) is designated � and interior lines by Greek letters, points on the zone boundary by

Roman letters. In the case of the fcc lattice, a portion of a neighboring cell is represented by dotted

lines. This shows the orientation of neighboring cells that provides useful information, for example,

that the line � from � to K continues to a point outside the first BZ that is equivalent to X. This line

is shown in many figures, such as Figs. 2.24 and 12.2.

component. However, it is often more convenient to represent T and G by the integer

multiples of the basis vectors, and positions τ and wave vectors k as fractional multiples

of the basis vectors. It is useful to define lengths and scalar products in this representation,

i.e. to define the “metric.”

The matrix formulation makes it easy to derive the desired expressions. Any position

vector τ with elements τ1, τ2, . . . , in cartesian coordinates can be written in terms of the

primitive vectors by τ = ∑d
i=1 τ L

i ai , where the superscript L denotes the representation in

lattice vectors and τ L has elements τ L
1 , τ L

2 , . . . , that are fractions of primitive translation

vectors. In matrix form this becomes (here superscript T denotes transpose)

τ = τ La; τ L = τa−1 = 1

2π
τbT , (4.16)

where b is the matrix of primitive vectors of the reciprocal lattice. Similarly, a vector k in

reciprocal space can be expressed as k = ∑d
i=1 kL

i bi with the relations

k = kLb; kL = kb−1 = 1

2π
kaT . (4.17)
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The scalar product (k + G) · (τ + T) is easily written in the lattice coordinates, using

relation (4.9). If T(n1, n2, . . .) = n1a1 + n2a2 + · · · and G(m1, m2, . . .) = m1b1 + m2b2 +
. . ., then one finds the simple expression

(k + G) · (τ + T) = 2π

d∑

i=1

(kL
i + mi )(τ

L
i + ni ) ≡ 2π (kL + m) · (τ L + n). (4.18)

The relation in terms of the cartesian vectors is readily derived using (4.16) and (4.17). On

the other hand, the lengths are most easily written in the cartesian system. Using (4.16) and

(4.17) and the same vector notation as in (4.18), it is straightforward to show that lengths

are given by,

|τ + T|2 = (τ L + n)aaT (τ L + n)T ; |k + G|2 = (kL + m)bbT (kL + m)T , (4.19)

i.e. aaT and bbT are the metric tensors for the vectors in real and reciprocal spaces expressed

in their natural forms as multiples of the primitive translation vectors.

Finally, one often needs to find all the lattice vectors within some cutoff radius,

e.g. in order to find the lowest Fourier components in reciprocal space or the nearest

neighbors in real space. Consider the parallelepiped defined by all lattice points in real

space T(n1, n2, n3); −N1 ≤ n1 ≤ N1; −N2 ≤ n2 ≤ N2; −N3 ≤ n3 ≤ N3. Since the vectors

a2 and a3 form a plane, the distance in space perpendicular to this plane is the projection

of T onto the unit vector perpendicular to the plane. This unit vector is b̂1 = b1/|b1|
and, using (4.19), it is then simple to show that the maximum distance in this direction

is Rmax = 2π N1

|b1| . Similar equations hold for the other directions. The result is a simple

expression (Exercise 4.15) for the boundaries of the parallelepiped that bounds a sphere of

radius Rmax,

N1 = |b1|
2π

Rmax; N2 = |b2|
2π

Rmax; . . . . (4.20)

In reciprocal space the corresponding condition for the parallelepiped that bounds a sphere

of radius Gmax is,

M1 = |a1|
2π

Gmax; M2 = |a2|
2π

Gmax; . . . , (4.21)

where the vectors range from −Mi bi to +Mi bi in each direction.

4.3 Excitations and the Bloch theorem

The previous sections were devoted to properties of periodic functions in a crystal, such

as the nuclear positions and electron density, that obey the relation (4.5), i.e. f (r +
T(n1, n2, . . .)) = f (r) for any translation of the Bravais lattice T(n) ≡ T(n1, n2, . . .) =
n1a1 + n2a2 + . . . , as defined in (4.1). Such periodic functions have non-zero Fourier

components only for reciprocal space at the reciprocal lattice vectors defined by (4.10).
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Excitations of the crystal do not, in general, have the periodicity of the crystal.6 The

subject of this section is the classification of excitations according to their behavior under

the translation operations of the crystal. This leads to a Bloch theorem proved, in a general

way, and applicable to all types of excitations: electrons, phonons, and other excitations

of the crystal.7 We will give explicit demonstrations for independent-particle excitations;

however, since the general relations apply to any system, the theorems can be generalized

to correlated many-body systems.

Consider the eigenstates of any operator Ô defined for the periodic crystal. Any such

operator must be invariant to any lattice translation T(n). For example, Ô could be the

hamiltonian Ĥ for the Schrödinger equation for independent particles,

Ĥψ(r) =
[

−
-h2

2me
∇2 + V (r)

]

ψi (r) = εiψi (r). (4.22)

The operator Ĥ is invariant to all lattice translations since Veff (r) has the periodicity of the

crystal8 and the derivative operator is invariant to any translation.

Similarly, we can define translation operators T̂n that act on any function by displacing

the arguments, e.g.

T̂nψ(r) = ψ[r + T(n)] = ψ(r + n1a1 + n2a2 + . . .). (4.23)

Since the hamiltonian is invariant to any of the translations T(n), it follows that the hamil-

tonian operator commutes with each of the translations operators T̂n,

Ĥ T̂n = T̂n Ĥ . (4.24)

From (4.24) it follows that the eigenstates of Ĥ can be chosen to be eigenstates of all T̂n

simultaneously. Unlike the hamiltonian, the eigenstates of the translation operators can be

readily determined, independent of any details of the crystal; thus they can be used to “block

diagonalize” the hamiltonian, rigorously classifying the states by their eigenvalues of the

translation operators, and thus leading to the “Bloch theorem” derived explicitly below.

The key point is that the translation operators form a simple group in which the product

of any two translations is a third translation, so that the operators obey the relation,

T̂n1
T̂n2

= T̂n1+n2
. (4.25)

Thus the eigenvalues tn and eigenstates ψ(r) of the operators T̂n

T̂nψ(r) = tnψ(r), (4.26)

6 We take the Born–Von Karmen boundary conditions that the excitations are required to be periodic in the

large volume �crystal composed of Ncell = N1 × N2 × · · · cells, as was described previously in (4.6). See the

footnote there regarding the proofs that the results are independent of the choice of boundary conditions in the

thermodynamic limit of large size.
7 The derivation here follows the “first proof” of the Bloch theorem as described by Ashcroft and Mermin [84].

Alternative proofs are given in Chs. 12 and 14.
8 The logic also holds if the potential is a non-local operator (as in pseudopotentials, with which we will deal

later).
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Figure 4.11. Schematic illustration of Bloch states in one dimension at K = 0 and at the zone

boundary k = π/a. The envelope is the smooth function that multiplies a periodic array of

atomic-like 3s functions, chosen to be the same as in Fig. 11.2.

must obey the relations

T̂n1
T̂n2

ψ(r) = t(n1+n2)ψ(r) = tn1
tn2

ψ(r). (4.27)

By breaking each translation into the product of primitive translations, any tn can be written

in terms of a primitive set t(ai )

tn = [t(a1)]n1 [t(a2)]n2 . . . . (4.28)

Since the modulus of each t(ai ) must be unity (otherwise any function obeying (4.28) is

not bounded), it follows that each t(ai ) can always be written

t(ai ) = ei2πyi . (4.29)

Since the eigenfunctions must satisfy periodic boundary conditions (4.6), (t(ai ))
Ni = 1, so

that yi = 1/Ni . Finally, using the definition of the primitive reciprocal lattice vectors in

(4.9), Eq. (4.28) can be written

tn = eik·Tn , (4.30)

where

k = n1

N1

b1 + n2

N2

b2 + · · · (4.31)

is a vector in reciprocal space. The range of k can be restricted to one primitive cell of

the reciprocal lattice since the relation (4.30) is the same in every cell that differs by the

addition of a reciprocal lattice vector G for which G · T = 2π × integer. Note that there

are exactly the same number of values of k as the number of cells.
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This leads us directly to the desired results:

1. The Bloch theorem.9 From (4.27), (4.30), and (4.31), one finds

T̂nψ(r) = ψ(r + Tn) = eik·Tnψ(r), (4.32)

which is the celebrated “Bloch theorem” that eigenstates of the translation operators

vary from one cell to another in the crystal with the phase factor given in (4.32). The

eigenstates of any periodic operator, such as the hamiltonian, can be chosen with definite

values of k which can be used to classify any excitation of a periodic crystal. From (4.32)

it follows that eigenfunctions with a definite k can also be written

ψk(r) = eik·ruk(r), (4.33)

where uk(r) is periodic (uk(r + Tn) = uk(r)). Examples of the Bloch theorem for

independent-particle electron states in many different representations are given in

Chs. 12–17.

2. Bands of eigenvalues. In the limit of a large (macroscopic) crystal, the spacing of the k
points goes to zero and k can be considered a continuous variable. The eigenstates of the

hamiltonian may be found separately for each k in one primitive cell of the reciprocal

lattice. For each k there is a discrete set of eigenstates that can be labeled by an index i .
This leads to bands of eigenvalues εi,k and energy gaps where there can be no eigenstates

for any k.

3. Conservation of crystal momentum. It follows from the analysis above that in a perfect

crystal the wavevector k is conserved modulo any reciprocal lattice vector G. Thus it is

analogous to ordinary momentum in free space, but it has the additional feature that it is

only conserved within one primitive cell, usually chosen to be the Brillouin zone. Thus two

excitations at vectors k1 and k2 may have total momentum k1 + k2 outside the Brillouin

zone at origin and their true crystal momentum should be reduced to the Brillouin zone

around the origin by adding a reciprocal lattice vector. The physical process of scattering

of two excitations by some perturbation is called “Umklapp scattering” [84].

4. The role of the Brillouin zone (BZ). All possible eigenstates are specified by k within

any primitive cell of the periodic lattice in reciprocal space. However, the BZ is the cell

of choice in which to represent excitations; its boundaries are the bisecting planes where

Bragg scattering occurs and inside the Brillouin zone there are no such boundaries. Thus

bands εi,k are analytic functions of k inside the BZ and non-analytic dependence upon

k can occur only at the boundaries.

Examples of Brillouin zones for important cases are shown in Fig. 4.10 with labels

for high-symmetry points and lines using the notation of Bouckaret, Smoluchowski, and

Wigner (see also Slater [269]). The labels define the directions and points used in many

figures given in the present work for electron bands and phonon dispersion curves.

5. Integrals in k space. For many properties, such as the counting of electrons in bands,

total energies, etc., it is essential to sum over the states labeled by k. The crucial point is

9 The properties of waves in periodic media were derived earlier by Flouquet in one dimension (see note in [84])

and is often referred to in the physics literature as the “Bloch–Flouquet theorem.”
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that if one chooses the eigenfunctions that obey periodic boundary conditions in a large

crystal of volume �crystal composed of Ncell = N1 × N2 × · · · cells, as was done in the

analysis of (4.6), then there is exactly one value of k for each cell. Thus in a sum over

states to find an intrinsic property of a crystal expressed as “per unit cell” one simply

has a sum over values of k divided by the number of values Nk . For a general function

fi (k), where i denotes any of the discrete set of states at each k, the average value per

cell becomes

f̄ i = 1

Nk

∑

k

fi (k). (4.34)

If one converts the sum to an integral by taking the limit of a continuous variable in

Fourier space with a volume per k point of �BZ/Nk ,

f̄ i = 1

�BZ

∫

BZ

dk fi (k) = �cell

(2π )d

∫

BZ

dk fi (k), (4.35)

where �cell is the volume of a primitive cell in real space.

6. Equation for the periodic part of Bloch functions. The Bloch functions ψi,k(r) =
eik·rui,k(r) are eigenfunctions of the real hamiltonian operator Ĥ . By inserting the ex-

pression for ψi,k(r) in terms of ui,k(r), the equation becomes

e−ik·r Ĥeik·rui,k(r) = εi,kui,k(r). (4.36)

For the hamiltonian in (4.22), the equation can be written

Ĥ (k)ui,k(r) =
[

−
-h2

2me
(∇ + ik)2 + V (r)

]

ui,k(r) = εi,kui,k(r). (4.37)

4.4 Time reversal and inversion symmetries

There is an additional symmetry that is present in all systems with no magnetic field. Since

the hamiltonian is invariant to time reversal in the original time-dependent Schrödinger equa-

tion, it follows that the hamiltonian can always be chosen to be real. In a time-independent

equation, such as (12.1), this means that if ψ is an eigenfunction, then ψ∗ must also be

an eigenfunction with the same real eigenvalue ε. According to the Bloch theorem, the

solutions ψi,−k(r) can be classified by their wavevector k and a discrete band index i . If

ψi,−k(r) satisfies the Bloch condition (4.32), then it follows that ψ∗
i,k(r) satisfies the same

equation except with a phase factor corresponding to −k. Thus there is never a need to

calculate states at both k and −k in any crystal, ψi,−k(r) can always be chosen to be ψ∗
i,k(r),

and the eigenvalues are equal εi,−k = εi,k. If in addition the crystal has inversion symmetry,

then (4.37) is invariant under inversion since V (−r) = V (r) and (∇ + ik)2 is the same if

we replace k and r by −k and −r. Thus the periodic part of the Bloch function can be

chosen to satisfy ui,k(r) = ui,−k(−r) = u∗
i,k(−r).
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Spin–orbit interaction

So far we have ignored spin, considering only solutions for a single electron in a non-

relativistic hamiltonian. However, relativistic effects introduce a coupling of spin and spatial

motion, i.e. the “spin–orbit interaction” given in Sec. 10.4. For the present purposes, the only

relevant point is that time reversal leads to reversal of both spin and momentum. Thus the

relation of states at k and −k is ψ↑,i,k(r) = ψ↓,i,−k(r)∗. This is an example of the Kramers

theorem which requires that all states must occur in degenerate pairs in any system with

time reversal symmetry.

Symmetries in magnetic systems

If time reversal symmetry is broken, the problem is changed significantly. All effects of a

magnetic field can be included by modifying the hamiltonian in two ways: p → (p − e
c A),

where A is the vector potential, and Ĥ → Ĥ + Ĥ Zeeman, with ĤZeeman = gμH · →
σ . The

latter term is easy to add to an independent-particle calculation in which there is no spin–

orbit interaction; there are simply two calculations for different spins. The first term is not

hard to include in localized systems like atoms; however, it is exceptionally difficult in

extended metallic systems where it leads Landau diamagnetism, very interesting effects in

quantum Hall systems, etc. We will not treat such effects here.

In ferromagnetic systems there is a spontaneous breaking of time reversal symmetry.

The ideas also apply to finite systems with a net spin, e.g. if there is an odd number of

electrons. As far as symmetry is concerned, there is no difference from a material in an

external magnetic field. However, the effects originate in the Coulomb interactions, which

can be included in an independent-particle theory as an effective field (often a very large

field). Such Zeeman-like spin-dependent terms are regularly used in independent-particle

calculations to study magnetic solids such as spin-density functional theory. In Hartree–

Fock calculations on finite systems, exchange induces such terms automatically; however,

effects of correlation are omitted.

Antiferromagnetic solids are ones in which there is long-range order involving both space

and time reversal symmetries, e.g. a Neel state is invariant to a combination of translation

and time reversal. States with such a symmetry can be described in an independent-particle

approach by an effective potential with this symmetry breaking form. The broken symmetry

leads to a larger unit cell in real space and a translation (or “folding”) of the excitations into a

smaller Brillouin zone compared with the non-magnetic system. There is no corresponding

exact symmetry in finite systems, only a tendency toward antiferromagnetic correlations.

Antiferromagnetic solids are one of the outstanding classes of condensed matter in which

many-body effects may play a crucial role. Mott insulators tend to be antiferromagnets, and

metals with antiferromagnetic correlations often have large enhanced response functions.

This has been brought out in Chapter 2 on qualitative description of electrons in solids, and

the difficulties of the many-body problem have led to the great debate about such systems

over the years.
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4.5 Point symmetries

This section is a brief summary needed for group theory applications. Discussion of group

theory and symmetries in different crystal classes are covered in a number of texts and

monographs. For example, Ashcroft and Mermin [84] give an overview of symmetries with

pictorial representation; Slater [269] gives detailed analyses for many crystals with group

tables and symmetry labels; and there are many useful books on group theory [270–272].

Computer codes that automatically generate and/or apply the group operations can be found

on-line, with links given in Ch. 24.

The total space group of a crystal is composed of the translation group and the point

group. Point symmetries are rotations, inversions, reflections, and their combinations that

leave the system invariant. In addition, there can be non-symmorphic operations that are

combinations with translations or “glides” of fractions of a crystal translation vector. The

set of all such operations, {Rn, n = 1, . . . , Ngroup} forms a group. The operation on any

function g(r) of the full symmetry system (such as the density n(r) or the total energy Etotal)

is

Rng(r) = g(Rnr + tn), (4.38)

where Rnr denotes the rotation, inversions, or reflections of the position r and tn is the

non-symmorphic translation associated with operation n.

The two most important consequences of the symmetry operations for excitations can

be demonstrated by applying the symmetry operations to the Schrödinger equation (4.22),

with i replaced by the quantum numbers for a crystal, i → i, k. Since the hamiltonian is

invariant under any symmetry operation Rn , the operation of Rn leads to a new equation with

r → Ri r + ti and k → Ri k (the fractional translation has no effect on reciprocal space). It

follows that the new function,

ψ
Ri k
i (Ri r + ti ) = ψk

i (r); or ψ
R−1

i k
i (r) = ψk

i (Ri r + ti ), (4.39)

must also be an eigenfunction of the hamiltonian with the same eigenvalue εk
i . This leads

to two consequences:

� At “high symmetry” k points, R−1
i k ≡ k, so that (4.39) leads to relations among the eigen-

vectors at that k point, i.e. they can be classified according to the group representations.

For example, at k = 0, in cubic crystals all states have degeneracy 1, 2, or 3.
� One can define the “irreducible Brillouin zone” (IBZ), which is the smallest fraction of the

BZ that is sufficient to determine all the information on the excitations of the crystal. The

excitations at all other k points outside the IBZ are related by the symmetry operations.

If a group operation R−1
i k leads to a distinguishable k point, then (4.39) shows that the

states at R−1
i k can be generated from those at k by the relations given in (4.39), apart

from a phase factor that has no consequence, and the fact that the eigenvalues must be

equal,

ε
R−1

i k
i = εk

i .
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Figure 4.12. Grids for integration for a 2d square lattice, each with four times the density of the

reciprocal lattice in each dimension. The left and center figures are equivalent with one point at the

origin, and six inequivalent points in the irreducible BZ shown in grey. Right: A shifted special point

grid of the same density but with only three inequivalent points. Additional possibilities have been

given by Moreno and Soler [277], who also pointed out that different shifts and symmetrization can

lead to finer grids.

In all crystals, the BZ can always be reduced by at least a factor of 2 using relation of

states at k and −k; in a square lattice, the IBZ is 1/8 the BZ, as illustrated in Fig. 4.12;

in the highest symmetry crystals (cubic), the IBZ is only 1/48 the BZ.

4.6 Integration over the Brillouin zone and special points

Evaluation of many quantities, such as energy and density, require integration over the BZ.

There are two separate aspects of this problem:

� Accurate integration with a discrete set of points in the BZ. This is specific to the given

problem and depends upon having sufficient points in regions where the integrand varies

rapidly. In this respect, the key division is between metals and insulators. Insulators have

filled bands that can be integrated using only a few well-chosen points such as the “special

points” discussed below. On the other hand, metals require careful integration near the

Fermi surface for the those bands that cross the Fermi energy where the Fermi factor

varies rapidly.
� Symmetry can be used to reduce the calculations since all independent information can

be found from states with k in the IBZ. This is useful in all cases with high symmetry,

whether metals or insulators.

Special points

The “special” property of insulators is that the integrals needed all have the form of (4.34)

where the sum is over filled bands in the full BZ. Since the integrand fi (k) is some function

of the eigenfunctions ψi,k and eigenvalues εi,k, it is a smoothly varying,10 periodic function

of k. Thus fi (k) can be expanded in Fourier components,

fi (k) =
∑

T

fi (T)eik·T, (4.40)

10 For an individual band the variation is not smooth at crossings with other bands; however, the relevant sums

over all filled bands are smooth so long as all bands concerned as filled. This is always the case if the filled and

empty bands are separated by a gap as in an insulator.
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where T are the translation vectors of the crystal. The most important point is that the

contribution of the rapidly varying terms at large T decreases exponentially, so that the sum

in (4.40) can be truncated to a finite sum. The proof [273] is related to transformations of

the expressions to traces over Wannier functions (see Ch. 21) and the observation that the

range of fi (T) is determined by the range of the Wannier functions.

Special points are chosen for efficient integration of smooth periodic functions.11 The

single most special point is the Baldereschi point [275], where the integration reduces to a

single point. The choice is based upon: (1) the fact that there is always some one “mean-

value point” where the integrand equals the integral, and (2) use of crystal symmetry to

find such a point approximately. The coordinates of the mean-value point for cubic lattices

were found to be [275]: simple cubic, k = (π/a)(1/2, 1/2, 1/2); body centered cubic, k =
(2π/a)(1/6, 1/6, 1/2); and face centered cubic, k = (2π/a)(0.6223, 0.2953, 1/2). Chadi

and Cohen [276] have generalized this idea and have given equations for “best” larger sets

of points.

The general method proposed by Monkhorst and Pack [273] is now the most widely used

method because it leads to a uniform set of points determined by a simple formula valid for

any crystal (given here explicitly for three dimensions):

kn1,n2,n3
≡

3∑

i

2ni − Ni − 1

2Ni
Gi , (4.41)

where Gi are the primitive vectors of the reciprocal lattice. The main features of the

Monkhorst–Pack points are:

� A sum over the uniform set of points in (4.41), with ni = 1, 2, . . . , Ni , exactly integrates a
periodic function that has Fourier components that extend only to Ni Ti in each direction.

(See Exercise 4.21. In fact, (4.41) makes a maximum error for higher Fourier components.)
� The set of points defined by (4.41) is a uniform grid in k that is a scaled version of the

reciprocal lattice and offset from k = 0. For many lattices, especially cubic, it is preferable

to choose Ni to be even [273]. Then the set does not involve the highest symmetry points;

it omits the k = 0 point and points on the BZ boundary.
� The Ni = 2 set is the Baldereschi point for a simple cubic crystal (taking into account

symmetry – see below). The sets for all cubic lattices are also the same as the offset

Gilat–Raubenheimer mesh (see [278]).
� An informative tabulation of grids and their efficiency, together with an illuminating de-

scription is given by Moreno and Soler [277], who emphasized the generation of different

sets of regular grids using a combination of offsets and symmetry.

The logic behind the Monkhorst–Pack choice of points can be understood in one dimen-

sion, where it is easy to see that the exact value of the integral,

I1 =
∫ 2π

0

dk sin(k) = 0, (4.42)

11 In this sense, the method is analogous to Gauss–Chebyshev integration. (See [274], who found that Gauss–

Chebyshev can be more efficient than the Monkhorst–Pack method for large sets of points.)
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is given by the value of the integrand f1(k) = sin(k) at the mid-point, k = π where sin(k) =
0. If one has a sum of two sin functions, f2(k) = A1 sin(k) + A2 sin(2k), then the exact value

of the integral is given by a sum over two points

I2 =
∫ 2π

0

dk f2(k) = 0 = f2(k = π/2) + f2(k = 3π/2). (4.43)

The advantage of the special point grids that do not contain the k = 0 point is much greater

in higher dimensions. As illustrated in Fig. 4.12 for a square lattice, an integration with a grid

4 × 4 = 16 times as dense as the reciprocal lattice can be done with only three inequivalent

k points in the irreducible BZ (defined in the following subsection). This set is sufficient

to integrate exactly any periodic function with Fourier components up to T = (4, 4) × a,

where a is the square edge. The advantages are greater in higher dimensions.

Irreducible BZ

Integrals over the BZ can be replaced by integrals only over the IBZ. For example, the sums

needed in the total energy (general expressions in Sec. 9.2 or specific ones for crystals,

such as (13.1)) have the form of (4.34). Since the summand is a scalar, it must be invariant

under each operation, fi (Rnk) = fi (k). It is convenient to define wk to be the total number

of distinguishable k points related by symmetry to the given k point in the IBZ (including

the point in the IBZ) divided by the total number of points Nk . (Note that points on the BZ

boundary related by G vectors are not distinguishable.) Then the sum (4.34) is equivalent

to

f̄ i =
IBZ∑

k

wk fi (k). (4.44)

Quantities such as the density can always be written as

n(r) = 1

Nk

∑

k

nk(r) = 1

Ngroup

∑

Rn

IBZ∑

k

wknk(Rnr + tn). (4.45)

Here points are weighted according to wk, just as in (4.44), and in addition the variable r
is transformed in each term nk(r). Corresponding expressions for Fourier components are

given in Sec. 12.7.

Symmetry operations can be used to reduce the calculations greatly. Excellent examples

are the Monkhorst–Pack meshes applied to cubic crystals, where there are 48 symmetry

operations so that the IBZ is 1/48 the total BZ. The set defined by Ni = 2 has 23 = 8 points

in the BZ, which reduces to 1 point in the IBZ. Similarly, Ni = 4 → 43 = 64 points in the

BZ reduces to 2 points; Ni = 6 → 63 = 216 points in the BZ reduces to 10 points. As an

example, for fcc the 2-point set is (2π/a)(1/4, 1/4, 1/4) and (2π/a)(1/4, 1/4, 3/4), which

has been found to yield remarkably accurate results for energies of semiconductors, a fact

that was very important in early calculations [143]. The 10-point set is sufficient for almost

all modern calculations for such materials.
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Interpolation methods

Metals present an important general class of issues for efficient sampling of the desired

states in the BZ. The Fermi surface plays a special role in all properties and the integration

over states must take into account the sharp variation of the Fermi function from unity to

zero as a function of k. This plays a decisive role in all calculations of sums over occupied

states for total quantities (e.g. the total electron density, energy, force, and stress in Ch. 9)

and sums over both occupied and empty states for response functions and spectral functions

(Ch. 19 and App. D).

In order to represent the Fermi surface, the tetrahedron method [279–282] is widely used.

If the eigenvalues and vectors are known at a set of grid points, the variation between the

grid points can always be approximated by an interpolation scheme using tetrahedra. This

is particularly useful because tetrahedra can be used to fill all space for any grid. A simple

case is illustrated on the left-hand side of Fig. 4.13, and the same construction can be used

for any, e.g. an irregular grid that has more points near the Fermi surface and fewer points

far from the Fermi surface where accuracy is not needed. The simplest procedure is a linear

interpolation between the values known at the vertices, but higher order schemes can also be

used for special grids. Tetrahedron methods are very important in calculations on transition

metals, rare earths, etc., where there are exquisite details of the Fermi surfaces that must be

resolved.

One example is the method proposed by Blöchl [282] in which there is a grid of k points

and tetrahedra that reduces to a special-points method for insulators. It also provides an

interpolation formula that goes beyond the linear approximation of matrix elements within

the tetrahedra, which can improve the results for metals. The use of a regular grid is helpful

since the irreducible k points and tetrahedra can be selected by an automated procedure.

An example of results for Cu metal is shown on the right-hand side of Fig. 4.13. Since the
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Figure 4.13. Example of generation of tetrahedra that fill the space between the grid points (left) and

the results (right) of total energy calculations for Cu as a function of grid spacing �, comparing the

linear method and the method of [282]. From [282].
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Fermi surface of Cu is rather simple, the improvement over simple linear interpolation may

be surprising; it is due largely to the fact that the curvature of the occupied band crossing

the Fermi energy (see Fig. 2.24) is everywhere positive so that linear interpolation always

leads to a systematic error.

4.7 Density of states

An important quantity for many purposes is the density of states (DOS) per unit energy E
(and per unit volume � in extended matter),

ρ(E) = 1

Nk

∑

i,k

δ(εi,k − E) = �cell

(2π )d

∫

BZ

dk δ(εi,k − E). (4.46)

In the case of independent-particle states, where εi,k denotes the energy of an electron (or

phonon), (4.46) is the number of independent-particle states per unit energy. Quantities

like the specific heat involve excitations of electrons that do not change the number, i.e. an

excitation from a filled to an empty state. Similarly, for independent-particle susceptibilities,

such as general forms of χ0 in App. D and the dielectric function given in (20.2), the

imaginary part is given by matrix elements times a joint DOS, i.e. a double sum over bands

i and j but a single sum over k due to momentum conservation, as a function of the energy

difference E = ε j − εi .

It is straightforward to show that the DOS has “critical points,” or van Hove singularities

[283], where ρ(E) has analytic forms that depend only upon the space dimension. In three

dimensions, each band must have square root singularities at the maxima and minima and

at saddle points in the bands. A simple example is illustrated later in Fig. 14.3 for a tight-

binding model in one, two, and three dimensions. Examples of single-particle electron DOS

are given in Figs. 2.31 and 16.13, for optical spectra in Figs. 2.27 and 2.28, and for phonons

in Figs. 2.9 and 2.32. Interestingly, the ideal of critical points can be applied to any function

of a periodic variable. For example, Fig. 13.3 shows the distribution of local values of the

density parameter rs in crystalline Si [127].

SELECT FURTHER READING

Detailed analyses for many crystals with group tables and symmetry labels given in:

Ashcroft, N. and Mermin, N. Solid State Physics, (W. B. Saunders Company, New York, 1976).

Slater, J. C. Symmetry and Energy Bonds in Crystals (Collected and reprinted version of 1965 Quantum
Theory of Molecules and Solids, Vol. 2) (Dover, New York, 1972).

Many useful books on group theory:

Heine, V. Group Theory, Pergamon Press, New York, 1960.

Tinkham, M. Group Theory and Quantum Mechanics, McGraw-HIll, New York, 1964.

Lax, M. J. Symmetry Principles in Solid State and Molecular Physics, John Wiley and Sons, New

York, 1974.
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Exercises

4.1 Derive the expression for primitive reciprocal lattice in three dimensions given in (4.13).

4.2 For a two-dimensional lattice give an expression for primitive reciprocal lattice vectors that is

equivalent to the one for three dimensions given in (4.13).

4.3 Show that for the two-dimensional triangular lattice the reciprocal lattice is also triangular and

is rotated by 90◦.

4.4 Show that the volume of the primitive cell in any dimension is given by (4.4).

4.5 Find the Wigner–Seitz cell for the two-dimensional triangular lattice. Does it have the symmetry

of a triangle or of a hexagon. Support your answer in terms of the symmetry of the triangular

lattice.

4.6 Draw the Wigner–Seitz cell and the first Brillouin zone for the two-dimensional triangular

lattice.

4.7 Consider a honeycomb plane of graphite in which each atom has three nearest neighbors. Give

primitive translation vectors, basis vectors for the atoms in the unit cell, and reciprocal lattice

primitive vectors. Show that the BZ is hexagonal.

4.8 Covalent crystals tend to form structures in which the bonds are not at 180◦. Show that this

means that the structures will have more than one atom per primitive cell.

4.9 Show that the fcc and bcc lattices are reciprocal to one another. Do this in two ways: by drawing

the vectors and taking cross products and by explicit inversion of the lattice vector matrices.

4.10 Consider a body centered cubic crystal, like Na, composed of an element with one atom at each

lattice site. What is the Bravais lattice in terms of the conventional cube edge a? How many

nearest neighbors does each atom have? How many second neighbors? Now suppose that the

crystal is changed to a diatomic crystal like CsCl with all the nearest neighbors of a Cs atom

being Cl, and vice versa. Now what is the Bravais lattice in terms of the conventional cube edge

a? What is the basis?

4.11 Derive the value of the ideal c/a ratio for packing of hard spheres in the hcp structure.

4.12 Derive the formulas given in (4.12), paying careful attention to the definitions of the matrices

and the places where the transpose is required.

4.13 Derive the formulas given in (4.18).

4.14 Derive the formulas given in (4.19).

4.15 Derive the relations given in (4.20) and (4.21) for the parallelepiped that bounds a sphere in

real and in reciprocal space. Explain the reason why the dimensions of the parallelepiped in

reciprocal space involve the primitive vectors for the real lattice and vice versa.

4.16 Determine the coordinates of the points on the boundary of the Brillouin zone for fcc (X, W, K,

U) and bcc (H, N, P) lattices.

4.17 Derive the formulas given in (4.20) and (4.21). Hint: Use the relations of real and reciprocal

space given in the sentences before these equations.
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4.18 Show that the expressions for integrals over the Brillouin zone (4.35), applied to the case of

free electrons, lead to the same relations between density of one spin state nσ and the Fermi

momentum kσ
F that was found in the section on homogeneous gas in (5.5). (From this one

relation follow the other relations given after (5.5).)

4.19 In one dimension, dispersion can have singularities only at the end points where E(k) − E0 =
A(k − k0)2, with A positive or negative. Show that the singularities in the DOS form have the

form ρ(E) ∝ |E − E0|−1/2, as illustrated in the left panel of Fig. 14.3.

4.20 Show that singularities like those in Fig. 14.3 occur in three dimensions, using (4.46) and the

fact that E ∝ Ak2
x + Bk2

y + Ck2
z with A, B, C all positive (negative) at minima (maxima) or

with different signs at saddle points.

4.21 The “special points” defined by Monkhorst and Pack are chosen to integrate periodic func-

tions efficiently with rapidly decreasing magnitude of the Fourier components. This is a set of

exercises to illustrate this property:

(a) Show that in one dimension the average of f (k) at the k points 1
4

π

a and 3
4

π

a is exact if f is

a sum of Fourier components k + n 2π

a , with n = 0, 1, 2, 3, but that the error is maximum for

n = 4.

(b) Derive the general form of (4.41).

(c) Why are uniform sets of points more efficient if they do it not include the � point?

(d) Derive the 2- and 10-point sets given for an fcc lattice, where symmetry has been used to

reduce the points to the irreducible BZ.

4.22 The bands of any one-dimensional crystal are solutions of the Schrödinger equation (4.22) with

a periodic potential V (x + a) = V (x). The complete solution can be reduced to an informative

analytic expression in terms of the scattering properties of a single unit cell and the Bloch theo-

rem. This exercise follows the illuminating discussion by Ashcroft and Mermin [84], Problem

8.1, and it lays a foundation for exercises that illustrate the pseudopotential concept (Exer-

cises 11.2, 11.6, and 11.14) and the relation to plane wave, APW, KKR, and MTO methods,

respectively, in Exercises 12.6, 16.1, 16.7, and 16.13.)

An elegant approach is to consider a different problem first: an infinite line with Ṽ (x) = 0

except for a single cell in which the potential is the same as in a cell of the crystal, Ṽ (x) = V (x)

for −a/2 < x < a/2. At any positive energy ε ≡ (-h2/2me)K 2, there are two solutions: ψl(x)

and ψr (x) corresponding to waves incident from the left and from the right. Outside the cell,

ψl (x) is a given by ψl (x) = ei K x + re−i K x , x < − a
2
, and ψl (x) = tei K x , x > a/2, where t and

r are transmission and reflection amplitudes. There is a corresponding expression for ψr (x).

Inside the cell, the functions can be found by integration of the equation, but we can proceed

without specifying the explicit solution.

(a) The transmission coefficient can be written as t = |t |eiδ , with δ a phase shift which is related

the phase shifts defined in App. J as clarified in Exercise 11.2. It is well known from scattering

theory that |t |2 + |r |2 = 1 and r = ±i |r |eiδ , which are left as an exercise to derive.

(b) A solution ψ(x) in the crystal at energy ε (if it exists) can be expressed as a linear combination

of ψl (x) and ψr (x) evaluated at the same energy. Within the central cell all functions satisfy the

same equation and ψ(x) can always be written as a linear combination,

ψ(x) = Aψl (x) + Bψr (x), −a

2
< x <

a

2
, (4.47)
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with A and B chosen so that ψ(x) satisfies the Bloch theorem for some crystal momentum k.

Since ψ(x) and dψ(x)/dx must be continuous, it follows that ψ( a
2
) = eikaψ(− a

2
) and ψ ′( a

2
) =

eikaψ ′(− a
2
). Using this information and the forms of ψl (x) and ψr (x), find the 2 × 2 secular

equation and show that the solution is given by

2t cos(ka) = e−i K a + (t2 − r 2)ei K a. (4.48)

Verify that this is the correct solution for free electrons, V (x) = 0.

(c) Show that in terms of the phase shift, the solution, (4.48), can be written

|t | cos(ka) = cos(K a + δ), ε ≡
-h2

2me
K 2. (4.49)

(d) Analyse (4.49) to illustrate properties of bands and indicate which are special features of

one dimension. (i) Since since |t | and δ are functions of energy ε, it is most convenient to fix

ε and use (4.49) to find the wavevector k; this exemplifies the “root tracing” method used in

augmented methods (Ch. 16). (ii) There are necessarily band gaps where there are no solutions,

except for the free electron case. (iii) There is exactly one band of allowed states ε(k) between

each gap. (iv) The density of states, (4.46), has the form shown in the left panel in Fig. 14.3.

(e) Finally, discuss the problems with extending this approach to higher dimensions.
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Uniform electron gas and simple metals

Summary

The simplest model system representing condensed matter is the homogeneous
electron gas, in which the nuclei are replaced by a uniform positively charged
background. This system is completely specified by the density n (or rs , which
is the average distance between electrons) and the spin density n↑ − n↓ or the
polarization ζ = (n↑ − n↓)/n. The homogeneous gas illustrates the problems
associated with interacting electrons in condensed matter and is a prelude to
the electronic structure of matter, which is governed by the combined effects
of nuclei and electron interaction.

The homogeneous electron gas is the simplest system for illustrating key properties of

interacting electrons and characteristic magnitudes of electronic energies in condensed

matter. Since all independent-particle terms can be calculated analytically, this is an ideal

model system for understanding the effects of correlation. In particular, the homogeneous

gas best illustrates the issues of Fermi liquid theory [225, 226], which is the basis for

our understanding of the “normal” (non-superconducting) state of real metals in terms of

effective independent-particle approaches.

A homogeneous system is completely specified by its density n = Ne/�, which can be

characterized by the parameter rs , defined as the radius of a sphere containing one electron

on average,

4π

3
r 3

s = �/Ne = 1

n
; or rs =

(
3

4πn

)1/3

. (5.1)

Thus rs is a measure of the average distance between electrons. Table 5.1 gives values of rs

for valence electrons in a number of elements. The values shown are typical of characteristic

electron densities in solids. For simple crystals, rs is readily derived from the structure and

lattice constant; expressions for fcc and bcc, and the VI, III–V, and II–VI semiconductors

are given in Exercises 5.1 and 5.2.

Of course, density is not constant in a real solid and it is interesting to determine the

variation in density. For example, Fig. 13.3 shows the distribution of local values of the

density parameter rs for valence electrons in Si [127]. In ordinary diamond-structure Si,
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Table 5.1. Typical rs values in elemental solids in units of the Bohr radius a0. The valence

is indicated by Z . The alkalis have bcc structure; Al, Cu, and Pb are fcc; the other group

IV elements have diamond structure; and other elements have various structures. The

values for metals are taken from [86] and [88]; precise values depend upon temperature

Z = 1 Z = 2 Z = 1 Z = 2 Z = 3 Z = 4

Li 3.23 Be 1.88 B C 1.31

Na 3.93 Mg 2.65 Al 2.07 Si 2.00

K 4.86 Ca 3.27 Cu 2.67 Zn 2.31 Ga 2.19 Ge 2.08

Rb 5.20 Sr 3.56 Ag 3.02 Cd 2.59 In 2.41 Sn 2.39

Cs 5.63 Ba 3.69 Au 3.01 Hg 2.15 Tl Pb 2.30

there is a significant volume with low density (the open parts of the diamond structure).

However, in the compressed metallic phase of Si with Sn structure, the variation in rs is

only ± ≈20%.

The hamiltonian for the homogeneous system is derived by replacing the nuclei in (3.1)

with a uniform positively charged background, which leads to

Ĥ = −
-h2

2me

∑

i

∇2
i + 1

2

4π

ε0

[
∑

i �= j

e2

|ri − r j | −
∫

d3rd3r ′ (ne)2

|r − r′|

]

→ −1

2

∑

i

∇2
i + 1

2

[
∑

i �= j

1

|ri − r j | −
∫

d3rd3r ′ n2

|r − r′|

]

, (5.2)

where the second expression is in Hartree atomic units -h = me = e = 4π/ε0 = 1, where

lengths are given in units of the Bohr radius a0. The last term is the average background

term which must be included to cancel the divergence due to Coulomb interaction among

the electrons. The total energy is given by

E = 〈Ĥ〉 = 〈T̂ 〉 + 〈V̂int〉 − 1

2

∫

d3rd3r ′ n2

|r − r′| , (5.3)

where the first term is the kinetic energy of interacting electrons and the last two terms

are the difference between the potential energy of the actual interacting electrons and the

self-interaction of a classical uniform negative charge density, i.e. the exchange–correlation

energy.1 Note that the difference is well defined, since there is a cancellation of the divergent

Coulomb interactions, as discussed following (3.16).

In order to understand the interacting gas as a function of density, it is useful to express

the hamiltonian (5.2) in terms of scaled coordinates r̃ = r/rs instead of atomic units (r in

units of a0) assumed in the second expression in (5.2). Then (5.2) becomes (see Exercise 5.3

1 This can be derived from expression (3.16) for the energy, since in this case the total charge density (electrons +
background) is everywhere zero, so that the final term in (3.16) vanishes.



102 Uniform electron gas and simple metals

for the last term that is essential for the expression to be well defined)

Ĥ =
(

a0

rs

)2 ∑

i

[

−1

2
∇̃2

i + 1

2

rs

a0

(
∑

j �=i

1

|r̃i − r̃ j | − 3

4π

∫

d3r̃
1

|r̃|

)]

, (5.4)

where energies are in atomic units. This expression shows explicitly that one can view the

system in terms of a scaled unit of energy (the Hartree scaled by (a0/rs)2) and a scaled

effective interaction proportional to rs/a0. In other words, the properties as a function

of density rs/a0 are completely equivalent to a system at fixed density but with scaled

electron–electron interaction e2 → (rs/a0)e2 at fixed density and a scaled unit of energy.

5.1 Non-interacting and Hartree–Fock approximations

In the non-interacting approximation, the solutions of (3.36) are eigenstates of the kinetic

energy operator, i.e. normalized plane waves ψk = (1/�1/2)eik·r with energy εk = -h2

2me
k2.

The ground state for a given density of up and down spin electrons is the determinant

function (3.43) formed from the single-electron states with wavevectors inside the Fermi

surface, which is a sphere in reciprocal space of radius kσ
F , the Fermi wavevector for each

spin σ . The value of kσ
F is readily derived, since each allowed k state in a crystal of volume

� is associated with a volume in reciprocal space (2π )3/� (see Exercise 5.4 and Ch. 4.)

Each state can contain one electron of each spin so that

4π

3

(
kσ

F

)3 = (2π )3

�
N σ

e ; i.e.
(
kσ

F

)3 = 6π2nσ or kσ
F = (6π2)1/3(nσ )1/3. (5.5)

If the system is unpolarized, i.e. n↑ = n↓ = n/2, then kF = k↑
F = k↓

F , where

(kF )3 = 3π2n; or kF = (3π2)1/3n1/3 =
(

9

4
π

)1/3

/rs . (5.6)

The expression for the Fermi wavevector has the remarkable property that it also applies

to interacting electron systems: the Luttinger theorem [285,286] guarantees that the Fermi

surface exists at the same kσ
F as in the non-interacting case, so long as there is no phase

transition.

In the independent-particle approximation, Fermi energy Eσ
F0 for each spin is given by

Eσ
F0 =

-h2

2me

(
kσ

F

)2 = 1

2

(
kσ

F a0

)2 → 1

2

(
kσ

F

)2
, (5.7)

where the last expression is in atomic units with a0 = 1. Useful relations for the Fermi

wavevector and various energies are given in Tabs. 5.2 and 5.3.

The total kinetic energy per electron of a given spin in the ground state is given by

integrating over the filled states

T σ
0 =

-h2

2me

4π
∫ kσ

F
0

dkk4

4π
∫ kσ

F
0

dkk2
= 3

5
Eσ

F0, (5.8)
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Table 5.2. Characteristic energies for each spin σ for

the homogeneous electron gas in the Hartree–Fock

approximation: the Fermi energy Eσ
F0; kinetic energy

T σ
0 and Hartree–Fock exchange energy per electron

Eσ
x which is negative; and the increase in band width

in the Hartree–Fock approximation �WHFA.

Quantity Expression Atomic units

Eσ
F0

-h2

2me
(kσ

F )2 1
2
(kσ

F )2

T σ
0

3
5

Eσ
F

3
5

Eσ
F

−Eσ
x

3e2

4π
kσ

F
3

4π
kσ

F

�W σ
HFA

e2

π
kσ

F
1
π

kσ
F

Table 5.3. Useful expressions for the unpolarized homogeneous electron gas in terms

of rs in units of the Bohr radius a0. See caption of Tab. 5.2 for definitions of energies

Quantity Expression Atomic units Common units

kF ( 9
4
π )1/3/rs 1.919,158/rs 3.626,470/rs (Å−1)

EF0
1
2
( 9

4
π )2/3/r2

s 1.841,584/r2
s 50.112,45/r2

s (eV)

T0
3
5

EF 1.104,961/r2
s 30.067,47/r2

s (eV)

−Ex
3

4π
( 9π

4
)1/3/rs 0.458,165,29/rs 12.467,311/rs (eV)

�WHFA ( 9
4π2 )1/3/rs 0.145,838,54/rs 3.968,4684/rs (eV)

(see Exercise 5.7 for one and two dimensions.) Since the energy is positive, the homogeneous

gas is clearly unbound in this approximation. The true binding in a material is provided by

the added attraction to point nuclei and the attractive exchange and correlation energies.

Density matrix

The density matrix in the homogeneous gas illustrates both the general expressions and

the nature of the spatial dependence in many-electron systems. The general expression for

independent fermions (3.41) simplifies for the homogeneous gas (for each spin) to

ρ(r, r′) = ρ(|r − r′|) = 1

(2π )3

∫

dk f (ε(k))eik·(r−r′), (5.9)

where ε(k) = k2/2, which is just a Fourier transform of the Fermi function f (ε(k)). To

evaluate the function it is convenient to transform the expression using a partial integration

[287], yielding

ρ(r ) = β

(2π )2

1

r

d

dr

1

r

d

dr

∫ ∞

−∞
dk cos(kr ) f ′

(

β

(
1

2
k2 − µ

))

. (5.10)
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Figure 5.1. The dimensionless density matrix at T = 0 in the non-interacting homogeneous gas (the

term in square brackets in (5.11) as a function of y = kFr ). The oscillations have spatial form

governed by the Fermi wavevector kF and describe charge around an impurity (Friedel oscillations)

or magnetic interactions in a metal (Ruderman–Kittel–Kasuya–Yosida oscillations) [84, 86, 246].

See also Fig. 5.3 which shows the consequences for the pair correlation function.

This is a particularly revealing form that makes it clear why long-range oscillations in

r = |r − r′| must result from sharp variation in the derivative of the Fermi function f ′(ε),

long known in Fourier transforms and attributed to Gibbs [288]. Since f ′(ε) approaches

a delta function at low temperature, the range of ρ(r ) must increase as the temperature is

reduced. At T = 0, ρ(r ) decays as 1/r2 [246],

ρ(r ) = k3
F

3π2

[

3
sin(y) − y cos(y)

y3

]

, (5.11)

with y = kFr . The function in square brackets is defined to be normalized (Exercise 5.6)

and is plotted in Fig. 5.1, where the decaying oscillatory form is evident, often called Friedel

oscillations for charge and Ruderman–Kittel–Kasuya–Yosida oscillations for magnetic in-

teractions [84, 86, 246]. Numerical results [287, 289] and simple analytic approximations

[263, 287] can be found for T �= 0 which show an exponential decay constant ∝kB T/kF .

Hartree–Fock approximation

In the Hartree–Fock approximation, the one-electron orbitals are eigenstates of the non-

local operator in (3.45). The solution of the Hartree–Fock equations in this case can be

done analytically: the first step is to show that the eigenstates are plane waves, just as

for non-interacting electrons (see Exercise 5.8). Thus the kinetic energy and the density

matrix are the same as for non-interacting electrons, as they must be since the Hartree–Fock

wavefunction contains no correlation beyond that required by the exclusion principle. The
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Figure 5.2. Left: The factor f (x), (5.13), in the homogeneous gas that determines the dispersion

εHFA(k) in the Hartree–Fock approximation. Right: εHFA(k) for three densities (rs = 1, 2, 4)

compared to the non-interacting case. The lowest density (largest rs) is lowest at k = 0 and has the

most visible singularity at the Fermi surface, x = 1. The normalized dimensionless eigenvalue is

defined by the square brackets in (5.14), and rs = 0 is the non-interacting limit −1 + x2.

next step is to derive the eigenvalue for each k, which is k2/2 plus the matrix element of

the exchange operator (3.48). The integrals can be done analytically (the steps are outlined

in Exercise 5.9 following [84, 225]), leading to

εk = 1

2
k2 + kF

π
f (x), (5.12)

where x = k/kF and

f (x) = −
(

1 + 1 − x2

2x
ln |1 + x

1 − x
|
)

. (5.13)

(Note that the expression applies to each spin separately.)

The factor f (x), shown in Fig. 5.2, is negative for all x ; at the bottom of the band (x = 0),

f (0) = −2, and at large x it approaches zero. Near the Fermi surface (x = 1), f (x) varies

rapidly and has a divergent slope; nevertheless the limiting value at x = 1 is well defined,

f (x → 1) = −1. Thus in the Hartree–Fock approximation, exchange increases the band

width W by �W = kF/π . This holds separately for each spin, and in the unpolarized case,

the factor can also be written �W = (
9

4π2

)1/3
/rs (see Table 5.3 and Exercise 5.10).

The Hartree–Fock eigenvalue relative to the Fermi energy, i.e. defined with εk ≡ 0 at

k = kF , can be written in scaled form,

εk = 1

2
k2

F

{

(x2 − 1) + 2

πkF
[ f (x) + 1]

}

. (5.14)

The expression in curly brackets is plotted on the right-hand side of Fig. 5.2 for several

values of rs . The broadening of the filled band due to interactions in the Hartree–Fock

approximation is indicated by the value at k = 0, which is −1 for non-interacting electrons.

The singularity at the Fermi surface, first pointed out by Bardeen, [290], is a consequence

of long-range Coulomb interaction and the existence of the Fermi surface where the sepa-

ration of the occupied and empty states vanishes. The velocity at the Fermi surface dε/dk
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diverges (Exercise 5.11), in blatant contradiction with experiment, where the well-defined

velocities are determined by such measurements as specific heat and the de Haas–van Alfen

effect [84, 86]. Thus this is an intrinsic failure of Hartree–Fock that carries over to any

metal. The Hartree–Fock divergence, however, can be avoided either if there is a finite

gap (i.e. in an insulator where Hartree–Fock is qualitatively correct and is widely applied

in quantum chemistry) or if the Coulomb interaction is screened to be effectively short

range. This is the ansatz, i.e. the approach, of Fermi liquid theory: that the interactions are

screened for low-energy excitations, leading to weakly interacting “quasiparticles,” which

is commonly justified by partial summation of diagrams in the random phase approximation

(RPA) [225, 226].

The exchange energy and exchange hole

The exact total energy of the homogeneous gas is given by (5.3), which can be separated into

the Hartree–Fock total energy, which is the sum of kinetic energy of independent electrons

plus the exchange energy, and the remainder, termed the “correlation energy.” As we have

seen in Sec. 3.6, the exchange energy and exchange hole can be computed directly from

the wavefunctions, which can be done analytically in this case. In addition, the exchange

energy per electron is simply the average of the exchange contribution to the eigenvalue
kF
π

f (x) in (5.12) multiplied by 1/2 to take into account the fact that interactions should not

be double-counted. Using the fact that the average value of f (x) is −3/2 (Exercise 5.12),

it follows that the exchange energy per electron is

εσ
x = Eσ

x /Nσ = − 3

4π
kσ

F = −3

4

(
6

π
nσ

)1/3

. (5.15)

In the unpolarized case, one finds εx ≡ ε
↑
x = ε

↓
x = − 3

4π
( 9π

4
)1/3/rs and the explicit numerical

relations in Table 5.3.

For partially polarized cases, the exchange energy is just a sum of terms for the two spins,

which can also be expressed in an alternative form in terms of the total density n = n↑ + n↓

and fractional polarization,

ζ = n↑ − n↓

n
. (5.16)

It is straightforward to show that exchange in a polarized system has the form

εx (n, ζ ) = εx (n, 0) + [εx (n, 1) − εx (n, 0)] fx (ζ ), (5.17)

where

fx (ζ ) = 1

2

(1 + ζ )4/3 + (1 − ζ )4/3 − 2

21/3 − 1
, (5.18)

which is readily derived [291] from (5.15).

The exchange hole gx defined in (3.54) or (3.52) involves only electrons of the same spin

and in a homogeneous system is a function only of the relative distance |r| = |r1 − r2|, so

that gx (r1, σ1; r2, σ2) = δσ1,σ2
gσ1,σ1

x (|r|). In the homogeneous gas, the form of the exchange

hole can be calculated analytically in two ways (see Exercise 5.13): the definitions can
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Figure 5.3. Exchange hole gx (r ) in the homogeneous electron gas, (5.19) plotted as a function of

r/rs , where rs is the average distance between electrons in an unpolarized system. The magnitude

decreases rapidly with oscillation, as shown in the greatly expanded right-hand figure. Note the

similarity to the calculated pair correlation function for parallel spins in Fig. 5.5.

be used directly [96] by inserting the plane wave eigenfunctions (normalized to a large

volume �) and evaluating the resulting expression. Alternatively, gx (r ) can be found from

the general relation (3.56) of the pair correlation function and the density matrix in a non-

interacting system2 together with the density matrix ρ(r ) given by (5.11). For each spin,

the hole can be given in terms of the dimensionless variable y = kσ
Fr with the result

gσ,σ
x (y) = 1 −

[

3
sin(y) − y cos(y)

y3

]2

, (5.19)

which is shown graphically in Fig. 5.3. The exchange hole in the homogeneous gas illustrates

the principle that for fermions the hole nx must always be negative, i.e. gσ,σ
x must be less

than 1, and it approaches 1 as an inverse power law with the well-known Friedel oscillations

due to the sharp Fermi surface.

5.2 The correlation hole and energy

“Screening” is the effect in a many-body system whereby the particles collectively correlate

to reduce the net interaction among any two particles. For repulsive interactions, the hole

(reduced probability of finding other particles) around each particle tends to produce a net

weaker interaction strength.

Thomas–Fermi screening

The grandfather of models for screening is the Thomas–Fermi approximation for the elec-

tron gas, which is the quantum equivalent of Debye screening in a classical system. The

screening is determined by analyzing the response of the gas to a static external charge

density with Fourier component k. The response at wavevector k is determined by the

2 The arguments can be applied to any non-interacting particles [263]; for bosons the result is that gx (r ) =
1 + |ρ(r )|2/n2 is always greater than 1. See Sec. 3.6 and Exercise 3.15.



108 Uniform electron gas and simple metals

change in energy of the electrons, which is a function of only density in the Thomas–Fermi

approximation (Sec. 6.1). The result is that the long-range Coulomb interaction is screened

to an exponentially decaying interaction, which in Fourier space can be written as

1

k2
→ 1

k2 + k2
TF

, (5.20)

where kTF is the Thomas–Fermi screening wavevector (the inverse of the characteristic

screening length). For an unpolarized system, kTF is given by (see Exercise 5.14 and [84])

kTF = r1/2
s

(
16

3π2

)1/3

kF =
(

12

π

)1/3

r−1/2
s , (5.21)

where rs is in atomic units, i.e. in units of the Bohr radius a0.

This is the simplest estimate for the characteristic length over which electrons are cor-

related, which is very useful in understanding the full results below in a homogeneous gas

and estimates for real systems.

Correlation energy

It is not possible to determine the correlation hole and energy analytically. The first quanti-

tative form for the correlation energy of a homogeneous gas was proposed in the 1930s by

Wigner [70,292], as an interpolation between low- and high-density limits.3 At low density

the electrons form a “Wigner crystal” and the correlation energy is just the electrostatic

energy of point charges on the body centered cubic lattice. At the time, it was thought

that the exchange energy per electron approached a constant in the high-density limit, and

Wigner proposed the simple interpolation

εc = − 0.44

rs + 7.8
(in a.u. = Hartree). (5.22)

Correct treatment of correlation confounded many-body theory for decades until the work

of Gellmann and Breuckner [293], who summed infinite series of diagrams to eliminate

divergences that are present at each order and calculated the correlation energy exactly

in the high-density limit, rs → 0. For an unpolarized gas (n↑ = n↓ = n/2), the result is

[293, 294]

εc(rs) → 0.311 ln(rs) − 0.048 + rs(A ln(rs) + C) + . . . , (5.23)

where the ln terms are the signature of non-analyticity that causes so much difficulty. At

low density the system can be considered a Wigner crystal with zero point motion leading

to [226, 295]

εc(rs) → a1

rs
+ a2

r3/2
s

+ a3

r2
s

+ . . . , (5.24)

3 The first formula proposed by Wigner [70] was in error due to an incorrect expression for the low-density limit,

as point out in [292].



5.2 The correlation hole and energy 109

C
or

re
la

tio
n 

en
er

gy
 p

er
 e

le
ct

ro
n 

(H
a)

0

−0.03

0
−0.06

10

rs(a0)

20

RPA

Lindgren–Rosen (1970)
Wigner (1934)
Ceperley–Alder (1980)

Figure 5.4. Correlation energy of an unpolarized homogeneous electron gas as a function of the

density parameter rs . The most accurate results available are quantum Monte Carlo calculations; the

curve labeled “Ceperley–Alder” is the work of those authors [297] fitted to the interpolation formula

of Vosko, Wilk, and Nusair (VWN) [301]; the Perdew–Zunger (PZ) fit [300] is almost identical on

this scale. In comparison are shown the Wigner interpolation formula, (5.22), the RPA (see text),

and an improved many-body perturbation calculation taken from Mahan [96], where it is attributed

to L. Lindgren and A. Rosen. Figure provided by H. Kim.

There has been considerable work in the intervening years [96], including the well-

known work of Hedin and Lundqvist [220] using the random phase approximation (RPA),

which is the basis of much of our present understanding of excitations, and other recent

work such as self-consistent “GW” calculations [296]. The most accurate results for ground

state properties are found from quantum Monte Carlo (QMC) calculations that can treat

interacting many-body systems [297–299], which are the benchmark for other methods. The

QMC results for the correlation energy εc(rs) per electron in an unpolarized gas are shown in

Fig. 5.4 where they are compared with the Wigner interpolation formula, RPA, and improved

many-body calculations of Lindgren and Rosen (results given in [96], p. 314). One very

important result is that for materials at typical solid densities (rs ≈ 2 − 6) the correlation

energy is much smaller than the exchange energy; however, at very low densities (large

rs) correlation becomes more important and dominates in the regime of the Wigner crystal

(rs > ≈80).

The use of the QMC results in subsequent electronic structure calculations relies upon

parameterized analytic forms for Ec(rs) fitted to the QMC energies calculated at many

values of rs , mainly for unpolarized and fully polarized (n↑ = n) cases, although some

calculations have been done at intermediate polarization [298]. The key point is that the

formulas fit the data well at typical densities and extrapolate to the high- and low-density

limits, (5.23) and (5.24). Widely used forms are due to Perdew and Zunger (PZ) [300] and
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Vosko, Wilkes, and Nussair (VWN) [301], which are given in App. B and are included in

subroutines for functionals referred to there and available on-line.

The simplest form for the correlation energy as a function of spin polarization is the one

made by PZ [300] that correlation varies the same as exchange

εc(n, ζ ) = εc(n, 0) + [εc(n, 1) − εc(n, 0)] fx (ζ ), (5.25)

where fx (ζ ) is given by (5.18). The slightly more complex form of VWN [301] has been

found to be a slightly better fit to more recent QMC data [298].

It is also important for understanding the meaning of both exchange and correlation

energies to see how they originate from the interaction of an electron with the exchange–

correlation “hole” discussed in Sec. 3.6. The potential energy of interaction of each electron

with its hole can be written

εpot
xc (rs) = Epot

xc /N = 1

N

[〈V̂int〉 − EHartree(n)
] = 1

2n
e2

∫

d3r
nxc(|r|)

|r| , (5.26)

where the factor 1/2 is included to avoid double-counting and we have explicitly indicated

interaction strength e2, which will be useful later. The exchange–correlation hole nxc(|r|),
of course, is spherically symmetric and is a function of density, i.e. of rs . In the ground

state, ε
pot
xc is negative since exchange lowers the energy if interactions are repulsive and

correlation always lowers the energy. However, this is not the total exchange–correlation

energy per electron εxc, because the kinetic energy increases as the electrons correlate to

lower their potential energy.

The full exchange–correlation energy including kinetic terms can be found in two ways:

kinetic energy can be determined from the virial theorem [303] or from the “coupling

constant integration formula” described in Ch. 3. We will consider the latter as an example

of the generalized force theorem, i.e. the coupling constant integration formula (3.23) in

which the coupling constant e2 is replaced by λe2, which is varied from λ = 0 (the non-

interacting problem) to the actual value λ = 1. Just as in (3.23), the derivative of the energy

with respect to λ involves only the explicit linear variation of ε
pot
xc (rs) in (5.26) with λ and

there is no contribution from the implicit dependence of nλ
xc(|r|) upon λ, since the energy

is at a minimum with respect to such variations. This leads directly to the result that

εxc(rs) = 1

2n
e2

∫

d3r
nav

xc(r )

r
, (5.27)

where nav
xc(r ) is the coupling-constant-averaged hole

nav
xc(r ) =

∫ 1

0

dλnλ
xc(r ). (5.28)

The exchange–correlation hole has been calculated by quantum Monte Carlo methods

at full coupling strength λ = 1, with results that are shown in Fig. 5.5 for various densities

labeled rs . By comparison with the exchange hole shown in Fig. 5.3, it is apparent that

correlation is much more important for antiparallel spins than for parallel spins, which are

kept apart by the Pauli principle. In general, correlation tends to reduce the long-range part

of the exchange hole, i.e. it tends to cause screening.
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Figure 5.5. Spin-resolved normalized pair-correlation function gxc(r ) for the unpolarized

homogenous electron gas as a function of scaled separation r/rs , for rs varying from rs = 0.8 to

rs = 10. Dots, QMC data of [302]; dashed line, Perdew–Wang model; solid line, coupling constant

integrated form of [303]. From [303].
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Variation of the exchange–correlation hole with rs can also be understood as variation

with the strength of the interaction. As pointed out in (5.4), variation of e2 from 0 to 1 at

fixed density is equivalent to variation of rs from 0 to the actual value. Working in scaled

units r/rs and rs → λrs , one finds

nav
xc

(
r

rs

)

=
∫ 1

0

dλnλ
xc

(
r

λrs

)

. (5.29)

Examples of the variation of the hole nxc( r
λrs

) are shown in Fig. 5.5 for various rs for parallel

and opposite spins in an unpolarized gas. Explicit evaluation of εxc(rs) has been done using

this approach in [303]. Note that this expression involves λrs < rs in the integrand, i.e. the

hole for a system with density higher than the actual density. Exercises 5.15 and 5.16 deal

with this relation, explicit shapes of the average holes for materials, and the possibility of

making a relation that involves larger rs (stronger coupling).

5.3 Binding in sp-bonded metals

The stage was set for understanding solids on a quantitative basis by Slater [304] and by

Wigner and Seitz [49,50] in the early 1930s. The simplest metals, the alkalis with one weakly

bound electron per atom, are represented remarkably well by the energy of a homogeneous

electron gas plus the attractive interaction with the positive cores. It was recognized that

the ions were effectively weak scatterers even though the actual wavefunctions must have

atomic-like radial structure near the ion. This is the precursor of the pseudopotential idea

(Ch. 11) and also follows from the scattering analysis of Slater’s APW method and the KKR

approach (Ch. 16). Treating the electrons as a homogeneous gas, and adding the energies

of the ions in the uniform background, leads to the expression for total energy per electron,

Etotal

N
= 1.105

r2
s

− 0.458

rs
+ εc − 1

2

α

rs
+ εR, (5.30)

where atomic units are assumed (rs in units of a0), and we have used the expressions in

Tab. 5.3 for kinetic and exchange energies, and εc is the correlation energy per electron.

The last two terms represent interaction of a uniform electron density with the ions: α is

the Madelung constant for point charges in a background, and the final term is a repulsive

correction due to the fact that the ion is not a point. Values of α are tabulated in Tab. F.1

for representative structures. The factor εR is due to core repulsion, which can be estimated

using the effective model potentials in Fig. 11.3 that are designed to take this effect into

account. This amounts to removing the attraction of the nucleus and the background in a

core radius Rc around the ion

εR = n2π

∫ Rc

0

drr2 e2

r
= 3

4πr3
s

2πe2 R2
c = 3

2

a0 R2
c

r3
s

= 3

2

R2
c

r3
s

, (5.31)

where the last form is in atomic units.

Expression (5.30) contains much of the essential physics for the sp-bonded metals, as

discussed in basic texts on solid state physics [84,86,88]. For example, the equilibrium value
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of rs predicted by (5.30) is given by finding the extremum of (5.30). A good approximation

is to neglect εc and to take α = 1.80, the value for the Wigner–Seitz sphere that is very

close to actual values in close-packed metals as shown in Tab. F.1 and (F.9). This leads to

rs

a0

= 0.814 +
√

0.899 + 3.31

(
Rc

a0

)2

, (5.32)

and improved expressions described in Exercise 5.17. Without the repulsive term, this leads

to rs = 1.76, which is much too small. However, a core radius ≈2a0 (e.g. a typical Rc in

the model ion potentials shown in Fig. 11.3 and references given there) leads to a very

reasonable rs ≈ 4a0. The kinetic energy contribution to the bulk modulus is

B = �
d2 E

d�2
= 3

4πrs

1

9

d2

dr 2
s

1.105

r2
s

= 0.176

r5
s

= 51.7

r5
s

Mbar, (5.33)

where a Mbar (=100 GPa, see Tab. O) is a convenient unit. This sets a scale for understanding

the bulk modulus in real materials, giving the right order of magnitude (often better) for

materials ranging from sp-bonded metals to strongly bonded covalent solids.

5.4 Excitations and the Lindhard dielectric function

Excitations of a homogeneous gas can be classified into two types (see Sec. 2.10): electron

addition or removal to create quasiparticles, and collective excitations in which the number

of electrons does not change. The former are the bands for quasiparticles in Fermi liquid

theory. How well do the non-interacting or Hartree–Fock bands shown in Fig. 5.2 agree

with improved calculations and experiment? Figure 5.6 shows photoemission data for Na,

which is near the homogeneous gas limit, compared to the non-interacting dispersion k2/2.

Interestingly, the bands are narrower than k2/2, i.e. the opposite of what is predicted by

Hartree–Fock theory. This is a field of active research in many-body perturbation theory to

describe the excitations [82]. For our purposes, the important conclusion is that the non-
interacting case is a good starting point close to the measured dispersion. This is germane

to electronic structure of real solids, where it is found that Kohn–Sham eigenvalues are a

reasonable starting point for describing excitations (see Sec. 7.4).

Excitations that do not change the particle number are charge density fluctuations (plasma

oscillations) described by the dielectric function, and spin fluctuations that are described

by spin response functions. Expressions for the response functions are given in Chs. 19

and 20 and in Apps. D and E. The point of this section is to apply the expressions to a

homogeneous system where the integrals can be done analytically. The discussion here

follows Pines [225], Secs. 3–5, and provides examples that help to understand the more

complex behavior of real inhomogeneous systems. In a homogeneous system, the dielectric

function, (E.8) and (E.11), is diagonal in the tensor indices and is an isotropic function of

relative coordinates ε(|r − r′|, t − t ′), so that in Fourier space it is simply ε(q, ω). Then,

we have the simple interpretation that ε(q, ω) is the response to an internal field,

D(q, ω) = E(q, ω) + 4πP(q, ω) = ε(q, ω)E(q, ω), (5.34)
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Figure 5.6. Experimental bands of Na determined from angle-resolved photoemission [305]

compared to the simple k2/2 dispersion for a non-interacting homogeneous electron gas at the

density of Na, which is close to the actual calculated bands in Na. Such agreement is also found in

other materials, providing the justification that density functional theory is a reasonable starting

point for understanding electronic structure in solids such as the sp-bonded metals. From [305]; see

also [306].

or, in terms of potentials,

ε(q, ω) = δVext(q, ω)

δVtest(q, ω)
= 1 − v(q)χ∗

n (q, ω), (5.35)

where v(q) = 4πe2

q2 is the frequency-independent relation of the Coulomb potential at

wavevector q to the electron density n(q). No approximation has so far been made, if

χ∗ is the full many-body response function (called the “proper” response function) to the

internal electric field.

The well-known RPA [225] is the approximation where all interactions felt by the elec-

trons average out because of their “random phases,” except for the Hartree term, in which

case each electron experiences an effective potential Veff that is the same as that for a test

charge Vtest. Then χ∗
n (q, ω) = χ0

n (q, ω) and the RPA is an example of effective-field re-

sponse functions treated in more detail in Sec. 20.2 and App. D. In a homogeneous gas,

the expression for χ0 given in Sec. 20.2 becomes an integral over states where |k| < kF is

occupied and |k + q| > kF is empty, which can be written,

χ0
n (q, ω) = 4

1
4π
3

k3
F

∫ k=kF

dk
1

εk − ε|k+q| − ω + iδ
�(|k + q| − kF ). (5.36)

The integral can be evaluated analytically for a homogeneous gas where εk = 1
2
k2, leading

to the Lindhard [307] dielectric function. The imaginary part can be derived as an integral

over regions where the conditions are satisfied by k < kF , |k + q| > kF and the real part
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Figure 5.7. Lindhard dielectric function ε(k, ω) for k � kTF given in (5.38) for a homogeneous

electron gas in the random phase approximation (RPA). The imaginary part of ε is large only for low

frequency. The frequency at which the real part of ε(k, ω) vanishes corresponds to a peak in the

imaginary part of ε−1(k, ω), which denotes the plasma oscillation at ω = ωP (k). For low

frequencies, the real part approaches k2
TF/k2, the same as the Thomas–Fermi form (5.20).

of the energy denominator vanishes. The real part can be derived by a Kramers–Kronig

transform (D.15), with the result (Exercise 5.18) [225],

Im ε(q, ω) = π

2

k2
TF

q2

ω

qvF
, ω < qvF − εq ,

= π

4

k2
TF

q2

kF

q

[

1 − (ω − εq )2

(qvF )2

]

, qvF − εq < ω < qvF + εq ,

= 0, ω > qvF − εq , (5.37)

where vF is the velocity at the Fermi surface, and

Re ε(q, ω) = 1 + k2
TF

2q2

+ kF k2
TF

4q3
×

{[

1 − (ω − εq )2

(qvF )2

]

ln |ω − qvF − εq

ω + qvF − εq
| + ω → −ω

}

. (5.38)

The form of ε(q, ω) for a homogeneous gas is shown in Fig. 5.7 for small q. The imaginary

part of ε vanishes for ω > qvF + εq , so that there is no absorption above this frequency.

The real part of the dielectric function vanishes at the plasmon frequency ω = ωp, where

ω2
p = 4πnee2/me, with ne the electron density. This corresponds to a pole in the inverse

dielectric function ε−1(q, ω). The behavior of ε at the plasma frequency can be derived

(Exercise 5.18) from (5.38) by expanding the logarithms, but the derivation is much more

easily done using the general “f sum rule” given in Sec. E.3, together with the fact that the

imaginary part of ε(q, ω) vanishes at ω = ωp.

The Lindhard expression reveals many important properties that carry over qualitatively

to solids. The low-frequency peak is still present in metals and is called the Drude absorption

and there is generally additional broadening due to scattering [84, 86, 88]. In addition, the

static screening Re ε(q, 0) has oscillations at twice the Fermi wavevector q = 2kF , which

lead to Friedel oscillations and the Kohn anomaly for phonons. Related affects carry over to
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response functions of solids (App. D and Ch. 19), except that 2kF is replaced by anisotropic

vectors that span the Fermi surface.

The primary difference in real materials is that there are also interband transitions that

give non-zero imaginary ε above a threshold frequency. Examples of imaginary parts of

ε(q ≈ 0, ω) for crystals are shown in Figs. 2.27 and 2.28. Interband absorption also causes

a broadening of the plasmon peak in ε−1(q, ω), but, nevertheless, there still tends to be

a dominant peak around the plasma frequency. Examples are given in Ch. 20, where the

absorption of light by nanoscale clusters exhibits clearly the plasma-like peak.
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Exercises

5.1 For fcc and bcc crystals with Z valence electrons per primitive cells, show that rs is given,

respectively, by

rs = a

2

(
3

2π Z

)1/3

and rs = a

2

(
3

π Z

)1/3

.

If rs is in atomic units (a0) and the cube edge a is in Å, then rs = 0.738Z−1/3a and rs =
0.930Z−1/3a.

5.2 For semiconductors with eight valence electrons per primitive cell in diamond- or zinc-blende-

structure crystals, show that rs = 0.369a.

5.3 Argue that the expression for Coulomb interaction in large parentheses in (5.4) is finite due

to cancellation of the two divergent terms. Show that the scaled hamiltonian given in (5.4) is

indeed equivalent to the original hamiltonian (5.2).

5.4 Derive the relation (5.5) between the Fermi wavevector kσ
F and the density nσ for a given spin.

Do this by considering a large cube of side L , and requiring the wavefunctions to be periodic

in length L in each direction (Born–von Karmen boundary conditions).

5.5 Show that relation (5.6), between kF and the density parameter rs for an unpolarized gas, follows

from the basic definition (5.5) (see also previous problem.)

5.6 Show that expression (5.10) follows from (5.9) by carrying out the indicated differentiation and

partial integration. Use this form to derive the T = 0 form, (5.11). Also show that the factor in

brackets approaches unity for y → 0.

5.7 Verify expression (5.8) for the kinetic energy of the ground state of a non-interacting electron

gas. Note that in (5.8), the denominator counts the number of states and the numerator is the
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same integral but weighted by the kinetic energy of a state, so that this equation is independent

of the number of spins. Derive the corresponding results for one and two dimensions.

5.8 Show that plane waves are eigenstates for the Hartree–Fock theory of a homogeneous electron

gas – assuming the ground state is homogeneous, which may not be the case when interactions

are included. Thus the kinetic energy is the same for Hartree–Fock theory as for non-interacting

particles.

5.9 Derive expression (5.12) for eigenvalues in the Hartree–Fock approximation from the gen-

eral definition in (3.48). Hint: The exchange integral for plane wave states has the form

−4π
∑k ′<kF

k′ 1/|k − k′|2. This leads to the singular log form in three dimensions. For more

details, see [84, 225].

5.10 Derive the broadening of the bands in the Hartree–Fock approximation from the unpolarized

gas �W = (9/4π2)1/3/rs using (5.12).

5.11 Derive analytically that the electron velocity v = dε/dk diverges at k = kF in the Hartree–Fock

approximation. Argue that: (1) this happens in all metals due to the Coulomb interaction and

the Hartree–Fock approximation, and (2) there is no divergence for short-range interactions.

5.12 Show that the average value of the factor f (x) in (5.13) is −3/4, as stated before (5.15). Then,

for the ground state of the homogeneous gas, verify the result for the exchange energy (5.15).

5.13 Show that (5.19) follows directly from evaluating the expressions in (3.54) or (3.52) by inserting

the plane wave eigenfunctions (normalized to a large volume �) and evaluating the resulting ex-

pression. Alternatively, gx (r ) can be found from the general relation (3.56) of the pair correlation

function and the density matrix for non-interacting fermions [246,263], gx (r ) = 1 − |ρ(r )|2/n2,

where n is the density and the density matrix ρ(r ) is given by (5.11).

5.14 Consider a point charge in an otherwise uniform gas. Use the Thomas–Fermi (TF) approximation

(Ch. 6) to derive the TF screening length (5.21). (Hint: Assume of the change in the density

due to the impurity is δn(r ) = exp(−kTFr )/r and determine the decay constant kTF from the TF

equations expanded to linear order.)

5.15 Derive the expression for the exchange–correlation hole (5.29) in terms of the hole at larger

densities (smaller rs). Would there be an analogous form that involves an integral of λ from 1

to ∞, i.e. for larger rs?

5.16 Using Fig. 5.5 sketch the shape of the average hole, (5.29), for antiparallel-spin electrons Al,

Na, and Cs.

5.17 Derive the expression for the equilibrium rs given in (5.32) from the expression for total energy

and using α = 1.80. In which direction will the predicted rs change if correlation is included?

Find the explicit expression using the Wigner interpolation formula for εc.

5.18 Derive the Lindhard expression for the dielectric function of a homogeneous gas (5.38). This

is a tedious integral and the steps are given by Pines [225], p. 144.





PART II

DENSITY FUNCTIONAL THEORY

6

Density functional theory: foundations

E Pluribus Unum

Summary

The fundamental tenet of density functional theory is that any property of a
system of many interacting particles can be viewed as a functional of the ground
state density n0(r); that is, one scalar function of position n0(r), in principle,
determines all the information in the many-body wavefunctions for the ground
state and all excited states. The existence proofs for such functionals, given in the
original works of Hohenberg and Kohn and of Mermin, are disarmingly simple.
However, they provide no guidance whatsoever for constructing the functionals,
and no exact functionals are known for any system of more than one electron.
Density functional theory (DFT) would remain a minor curiosity today if it were
not for the ansatz made by Kohn and Sham, which has provided a way to make
useful, approximate ground state functionals for real systems of many electrons.
The subject of this chapter is density functional theory as a methodology for
many-body systems; Ch. 7 describes the Kohn–Sham ansatz that replaces the
interacting problem with an auxiliary independent-particle problem with all
many-body effects included in an exchange–correlation functional; Ch. 8 deals
with widely used approximations for the exchange–correlation functional; and
Ch. 9 is devoted to solution of the Kohn–Sham independent-particle equations
in a general form useful for all Kohn–Sham calculations. Following chapters in
this volume are devoted to algorithms for actual calculations, and applications
to problems in atomic, molecular, and condensed matter physics.

Density functional theory is a theory of correlated many-body systems. It is included here

in close association with independent-particle methods, because it has provided the key step

that has made possible development of practical, useful independent-particle approaches that

incorporate effects of interactions and correlations among the particles. As such, density

functional theory has become the primary tool for calculation of electronic structure in

condensed matter, and is increasingly important for quantitative studies of molecules and

other finite systems. The remarkable successes of the approximate local density (LDA) and

generalized-gradient approximation (GGA) functionals within the Kohn–Sham approach
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have led to widespread interest in density functional theory as the most promising approach

for accurate, practical methods in the theory of materials.

The modern formulation of density functional theory originated in a famous paper written

by P. Hohenberg and W. Kohn in 1964 [308]. These authors showed that a special role can

be assigned to the density of particles in the ground state of a quantum many-body system:

the density can be considered as a “basic variable,” i.e. that all properties of the system

can be considered to be unique functionals of the ground state density. Shortly following

in 1965, Mermin [309] extended the Hohenberg–Kohn arguments to finite temperature

canonical and grand canonical ensembles. Although the finite temperature extension has

not been widely used, it illuminates both the generality of density functional theory and the

difficulty of realizing the promise of exact density functional theory. Also in 1965 appeared

the other classic work of this field by W. Kohn and L. J. Sham [92], whose formulation of

density functional theory has become the basis of much of present-day methods for treating

electrons in atoms, molecules, and condensed matter.

The goal of the chapters on density functional theory is to elucidate the fundamental ideas

and current practices; to give the reader sufficient background to use density functional

theory intelligently for real problems; and to expose potential pitfalls and possible avenues

for future developments. The present chapter is concerned with the basic formulation of

the theory; Ch. 7 deals with the Kohn–Sham auxiliary system that has made possible

accurate, feasible approaches to the full many-body electron problem. The theory of the

exchange–correlation functional and practical approximate functionals are the subject of

Ch. 8, along with a few selected results. Chapter 9 deals with general aspects of the Kohn–

Sham equations, with explicit algorithms and results left to later chapters.

6.1 Thomas–Fermi–Dirac approximation: example of a functional

The original density functional theory of quantum systems is the method of Thomas [316]

and Fermi [317] proposed in 1927. Although their approximation is not accurate enough for

present-day electronic structure calculations, the approach illustrates the way density func-

tional theory works. In the original Thomas–Fermi method the kinetic energy of the system

of electrons is approximated as an explicit functional of the density, idealized as non-

interacting electrons in a homogeneous gas with density equal to the local density at any

given point. Both Thomas and Fermi neglected exchange and correlation among the elec-

trons; however, this was extended by Dirac [318] in 1930, who formulated the local ap-

proximation for exchange (see Secs. 5.1 and 8.1) still in use today. This leads to the energy

functional for electrons in an external potential Vext(r)

ETF[n] = C1

∫

d3r n(r)(5/3) +
∫

d3r Vext(r)n(r)

+ C2

∫

d3r n(r)4/3 + 1

2

∫

d3rd3r ′ n(r)n(r′)
|r − r′| , (6.1)

where the first term is the local approximation to the kinetic energy with C1 = 3
10

(3π2)(2/3) =
2.871 in atomic units (see Sec. 5.1), the third term is the local exchange with C2 = − 3

4
( 3
π

)1/3
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(Eq. (5.15) for the case of equal up and down spins) and the last term is the classical

electrostatic Hartree energy. (In App. H, improved approximations for inhomogeneous

systems including gradients are given.)

The ground state density and energy can be found by minimizing the functional E[n] in

(6.1) for all possible n(r) subject to the constraint on the total number of electrons
∫

d3r n(r) = N . (6.2)

Using the method of Lagrange multipliers (Exercise 6.1), the solution can be found by an

unconstrained minimization of the functional

�TF[n] = ETF[n] − μ

{∫

d3rn(r) − N

}

, (6.3)

where the Lagrange multiplier μ is the Fermi energy. For small variations of the density

δn(r), the condition for a stationary point is1

∫

d3r
{
�TF[n(r) + δn(r)] − �TF[n(r)]

} →
∫

d3r

{
5

3
C1n(r)2/3 + V (r) − μ

}

δn(r) = 0, (6.4)

where V (r) = Vext(r) + VHartree(r) + Vx (r) is the total potential. Since (6.4) must be satisfied

for any function δn(r), it follows that the functional is stationary if and only if the density

and potential satisfy the relation

1

2
(3π2)(2/3)n(r)2/3 + V (r) − μ = 0. (6.5)

Extensions to account for effects of inhomogeneity have been proposed by many people,

the best known being the Weizsacker [319] correction, 1
4
(∇nσ (r))2/nσ (r), but more recent

work [320] has found the correction to be reduced to 1
36

(∇nσ (r))2/nσ (r) (see [246], Sec.

2.11.6 and Appendix 2.4). Exercise 6.2 treats aspects of the equations including the gradient

corrections.

The attraction of density functional theory is evident by the fact that one equation for the

density is remarkably simpler than the full many-body Schrödinger equation that involves

3N degrees of freedom for N electrons. The Thomas-Fermi approach has been applied,

for example, to equations of state of the elements [321]. However, the Thomas-Fermi-

type approach starts with approximations that are too crude, missing essential physics and

chemistry, such as shell structures of atoms and binding of molecules [322]. Thus it falls

short of the goal of a useful description of electrons in matter.

6.2 The Hohenberg–Kohn theorems

The approach of Hohenberg and Kohn is to formulate density functional theory as an exact
theory of many-body systems. The formulation applies to any system of interacting particles

1 This is an example of functional equations described in App. A; see specifically (A.5).
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Vext(r)
HK⇐= n0(r)

⇓ ⇑
�i ({r}) ⇒ �0({r})

Figure 6.1. Schematic representation of Hohenberg–Kohn theorem. The smaller arrows denote the

usual solution of the Schrödinger equation where the potential Vext(r) determines all states of the

system �i ({r}), including the ground state �0({r}) and ground state density n0(r). The long arrow

labeled “HK” denotes the Hohenberg–Kohn theorem, which completes the circle.

in an external potential Vext(r), including any problem of electrons and fixed nuclei, where

the hamiltonian can be written2

Ĥ = −
-h2

2me

∑

i

∇2
i +

∑

i

Vext(ri ) + 1

2

∑

i 	= j

e2

|ri − r j | . (6.6)

Density functional theory is based upon two theorems first proved by Hohenberg and Kohn

[308]. Here we first present the theorems and the proofs along with discussion of the

consequences; Sec. 6.3 contains the alternative formulation of Levy and Lieb, which is more

general and gives a more intuitive definition of the functional. The relations established by

Hohenberg and Kohn are illustrated in Fig. 6.1 and can be started as follows:

� Theorem I: For any system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle

density n0(r).

Corollary I: Since the hamiltonian is thus fully determined, except for a constant shift of

the energy, it follows that the many-body wavefunctions for all states (ground and excited)

are determined. Therefore all properties of the system are completely determined given
only the ground state density n0(r).

� Theorem II: A universal functional for the energy E[n] in terms of the density n(r) can

be defined, valid for any external potential Vext(r). For any particular Vext(r), the exact

ground state energy of the system is the global minimum value of this functional, and the

density n(r) that minimizes the functional is the exact ground state density n0(r).

Corollary II: The functional E[n] alone is sufficient to determine the exact ground state

energy and density. In general, excited states of the electrons must be determined by

other means. Nevertheless, the work of Mermin (Sec. 6.4) shows that thermal equilibrium

properties such as specific heat are determined directly by the free-energy functional of

the density.

These assertions are so encompassing and the proofs are so simple, that it is crucial for

any practitioner in the field to understand the basis of the theorems and the limits of the

logical consequences.

2 The nuclei–nuclei interaction can be added later; it is irrelevant, except that care is need to treat Coulomb

interactions in extended systems (Sec. 3.2). Special considerations are required to include magnetic fields and

there are subtle issues for electric fields in extended systems, see Sec. 6.4.
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Proof of Theorem I: density as a basic variable

The proofs of the Hohenberg–Kohn theorems are disarmingly simple. Consider first The-

orem I, using the general expressions given in (3.8) and (3.9) for the density and energy

in terms of the many-body wavefunction. Suppose that there were two different external

potentials V (1)
ext (r) and V (2)

ext (r) which differ by more than a constant and which lead to the

same ground state density n(r). The two external potentials lead to two different hamiltoni-

ans, Ĥ (1) and Ĥ (2), which have different ground state wavefunctions, � (1) and � (2), which

are hypothesized to have the same ground state density n0(r). (It is straightforward to find

different �s with the same density, as discussed below.) Since � (2) is not the ground state

of Ĥ (1), it follows that

E (1) = 〈�(1)|Ĥ (1)|� (1)〉 < 〈�(2)|Ĥ (1)|�(2)〉. (6.7)

The strict inequality follows if the ground state is non-degenerate, which we will assume

here following the arguments of Hohenberg and Kohn.3 The last term in (6.7) can be

written

〈�(2)|Ĥ (1)|� (2)〉 = 〈�(2)|Ĥ (2)|� (2)〉 + 〈� (2)|Ĥ (1) − Ĥ (2)|� (2)〉 (6.8)

= E (2) +
∫

d3r
[
V (1)

ext (r) − V (2)
ext (r)

]
n0(r), (6.9)

so that

E (1) < E (2) +
∫

d3r
[
V (1)

ext (r) − V (2)
ext (r)

]
n0(r). (6.10)

On the other hand if we consider E (2) in exactly the same way, we find the same equation

with superscripts (1) and (2) interchanged,

E (2) < E (1) +
∫

d3r
[
V (2)

ext (r) − V (1)
ext (r)

]
n0(r). (6.11)

Now if we add together (6.10) and (6.11), we arrive at the contradictory inequality E (1) +
E (2) < E (1) + E (2). This establishes the desired result: there cannot be two different external

potentials differing by more than a constant which give rise to the same non-degenerate

ground state charge density. The density uniquely determines the external potential to within

a constant.

The corollary follows since the hamiltonian is uniquely determined (except for a constant)

by the ground state density. Then, in principle, the wavefunction of any state is determined

by solving the Schrödinger equation with this hamiltonian. Among all the solutions which

are consistent with the given density, the unique ground state wavefunction is the one that

has the lowest energy.

3 This is not a necessary restriction. The proof can readily be extended to degenerate cases [323], which are also

included in the alternative formulation by Levy [324–326] discussed in Sec. 6.3. Except in special cases the

density of any one of the degenerate ground states uniquely determines the external potential. In the exercises is

an example, where two degenerate states have exactly the same density so that the expectation values of general

operators cannot be unique functionals of the density. Even then, the expectation value of the energy is the same

for all linear combinations of the degenerate states so that the Hohenberg–Kohn theorem is recovered.
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Despite the appeal of this result, it is clear from the reasoning that no prescription has

been given to solve the problem. Since all that was proved is that n0(r) uniquely determines

Vext(r), we are still left with the problem of solving the many-body problem in the presence

of Vext(r). For example, for electrons in materials, the external potential is the Coulomb

potential due to the nuclei. The theorem only requires that the electron density uniquely

determines the positions and types of nuclei, which can easily be proven from elementary

quantum mechanics (see Exercise 6.6). At this level we have gained nothing: we are still

faced with the original problem of many interacting electrons moving in the potential due

to the nuclei.

Proof of Theorem II

The second theorem is just as easily proven once one has carefully defined the meaning

of a functional of the density and restricted the space of densities. The original proof of

Hohenberg–Kohn is restricted to densities n(r) that are ground state densities of the electron

hamiltonian with some external potential Vext. Such densities are called “V -representable.”

This defines a space of possible densities within which we can construct functionals of the

density. (As discussed below in Sec. 6.3 it is possible to extend the range of validity of the

functional.) Since all properties such as the kinetic energy, etc., are uniquely determined if

n(r) is specified, then each such property can be viewed as a functional of n(r), including

the total energy functional

EHK[n] = T [n] + Eint[n] +
∫

d3r Vext(r)n(r) + EI I

≡ FHK[n] +
∫

d3r Vext(r)n(r) + EI I , (6.12)

where EI I is the interaction energy of the nuclei (see (3.2) and related discussion). The

functional FHK[n] defined in (6.12) includes all internal energies, kinetic and potential, of

the interacting electron system,

FHK[n] = T [n] + Eint[n], (6.13)

which must be universal by construction since the kinetic energy and interaction energy of

the particles are functionals only of the density.4

Now consider a system with the ground state density n(1)(r) corresponding to external po-

tential V (1)
ext (r). Following the discussion above, the Hohenberg–Kohn functional is equal to

4 Note that here “universal” means the same for all electron systems, independent of the external potential Vext(r).

The Hohenberg–Kohn approach leads to different functionals for different particles depending upon their masses

and interactions. In this book the functionals described are for electrons, unless explicitly indicated otherwise.

In fact there is another important application of the ideas of density functional theory in the theory of electronic

structure: the case of “non-interacting electrons,” i.e. fermions with the electron mass but with no interactions

among themselves, which are the particles that explicitly enter the Kohn–Sham equations. It is advantageous to

use the general ideas of density functionals in that case as well, and we will carefully indicate the distinction

between the different use of the functionals for the Kohn–Sham equations.
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the expectation value of the hamiltonian in the unique ground state, which has wavefunction

� (1)

E (1) = EHK[n(1)] = 〈�(1)|Ĥ (1)|� (1)〉. (6.14)

Now consider a different density, say n(2)(r), which necessarily corresponds to a different

wavefunction � (2). It follows immediately that the energy E (2) of this state is greater than

E (1), since

E (1) = 〈�(1)|Ĥ (1)|� (1)〉 < 〈�(2)|Ĥ (1)|�(2)〉 = E (2). (6.15)

Thus the energy given by (6.12) in terms of the Hohenberg–Kohn functional evaluated for

the correct ground state density n0(r) is indeed lower than the value of this expression for

any other density n(r).

It follows that if the functional FHK[n] was known, then by minimizing the total energy

of the system, (6.12), with respect to variations in the density function n(r), one would

find the exact ground state density and energy. This establishes Corollary II. Note that the

functional only determines the ground state properties; it does not provide any guidance

concerning excited states.

6.3 Constrained search formulation of density functional theory

An alternative definition of a functional due to Levy [324–326] and Lieb [327–329] is very

instructive, because it:

� extends the range of definition of the functional in a way that is formally more tractable

and clarifies its physical meaning;
� provides an in-principle way to determine the exact functional;
� leads to the same ground state density and energy at the minimum as in the Hohenberg–

Kohn analysis, and also applies for degenerate ground states.

The idea of Levy and Lieb (LL) is to define a two-step minimization procedure beginning

with the usual general expression for the energy in terms of the many-body wavefunction

� given by (3.9). The ground state can be found, in principle, by minimizing the energy

with respect to all the variables in �. However, suppose one first considers the energy

only for the class of many-body wavefunctions � that have the same density n(r). For any

wavefunction, the total energy can be written

E = 〈�|T̂ |�〉 + 〈�|V̂int|�〉 +
∫

d3r Vext(r)n(r). (6.16)

Now if one minimizes the energy (6.16) over the class of wavefunctions with the same

density n(r), then one can define a unique lowest energy for that density

ELL[n] = min
�→n(r)

[〈�|T̂ |�〉 + 〈�|V̂int|�〉] +
∫

d3r Vext(r)n(r) + EI I

≡ FLL[n] +
∫

d3r Vext(r)n(r) + EI I , (6.17)
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where the Levy–Lieb functional of the density is defined by

FLL[n] = min
�→n(r)

〈�|T̂ + V̂int|�〉. (6.18)

In this form, ELL[n] is manifestly a functional of the density and the ground state is found

by minimizing ELL[n].

The Levy–Lieb formulation is much more than just a restatement of the Hohenberg–Kohn

functional, (6.12). First, (6.18) clarifies the meaning of the functional and provides a way to

make an operational definition: the minimum of the sum of kinetic plus interaction energies
for all possible wavefunctions having the given density n(r). The LL functional also has

important formal differences from the Hohenberg–Kohn functional; in particular, the LL

functional in (6.18) is defined for any density n(r) derivable from a wavefunction �N for

N electrons. This is termed “N -representability” and the existence of such a wavefunction

�N for any density satisfying simple conditions is known [330], as discussed in Sec. 6.5. In

contrast, the Hohenberg–Kohn functional is defined only for densities that can be generated

by some external potential; this is called “V -representability” and the conditions for such

densities are not known in general. At the minimum of the total energy of the system in a

given external potential, the Levy–Leib functional FLL[n] must equal the Hohenberg–Kohn

functional defined in (6.13), since the minimum is a density which can be generated by an

external potential. In addition, the LL form eliminates the restriction in the original proof of

Hohenberg–Kohn to non-degenerate ground states; now one can do the search in the space

of any one of a set of degenerate states.

Thus it has been established that a functional can be defined for any density (subject to

certain conditions given below), and that by minimizing this functional one would find the

exact density and energy of the true interacting many-body system. Just as for the original

Hohenberg–Kohn proofs, however, we are faced with the cold fact that no method has

been given to find the functional other than the original definition in terms of many-body

wavefunctions. Nevertheless, as we shall see in the following chapter, the dependence of

the functional upon the kinetic and potential energies of the full, correlated many-body

wavefunction points the way toward constructing approximate functionals that are of great

utility in practical calculations and in understanding the effects of exchange and correlation

among the electrons.

6.4 Extensions of Hohenberg–Kohn theorems

Spin density functional theory

The above analysis also shows how the Hohenberg–Kohn theorems can be generalized to

several types of particles. The reason for the special role of the density and the external

potential in the Hohenberg–Kohn theorems, rather than some other properties of the parti-

cles, is simply that these quantities enter the total energy (3.9) explicitly only through the

simple bilinear integral term
∫

d3r Vext(r)n(r). If there are other terms in the hamiltonian

having this form, then each such pair of external potential and particle density will obey a

Hohenberg–Kohn theorem.
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The most relevant example for our purposes is a Zeeman term that is different for up

and down spin fermions (i.e. a magnetic field that acts only on the spins, not on the orbital

motion). This is in fact one of the important effects of an external magnetic field, so that

this can be considered as a physically realistic approximation. Within this model, one can

rigorously generalize all the above arguments to include two types of densities, the parti-

cle density n(r) = n(r, σ = ↑) + n(r, σ = ↓) and the spin density s(r) = n(r, σ = ↑) −
n(r, σ = ↓). This leads to an energy functional

E = EHK[n, s] ≡ E ′
HK[n], (6.19)

where in the last form it is assumed that [n] denotes a functional of the density which

depends upon both position in space r and spin σ . “Spin density functional theory” is

essential in the theory of atoms and molecules with net spins, as well as solids with magnetic

order [291, 314, 331]. (Note that this does not include effects of a magnetic field upon the

orbital motion, which requires an extension to current functional theory [332–335].)

In the absence of external Zeeman fields, the lowest energy solution may be spin polarized,

i.e. n(r, ↑) 	= n(r, ↓), which is analogous to the broken symmetry solution of unrestricted

Hartree–Fock theory. (This must happen in a finite system with an odd number of electrons,

and also occurs in some atoms polarized to Hund’s rules and in magnetic solids.) The spin

functional is useful in these cases as well; however, the original Hohenberg–Kohn theorem

remains valid and the ground state, in principle, is determined by the total ground state

density n(r) = n(r, ↑) + n(r, ↓) for any system where there is no spin-dependent external

potential (see Exercise 6.9). The only modification of the statements of the theorems is to

take into account the fact that the broken symmetry solution is necessarily degenerate.

Mermin finite temperature and ensemble density functional theory

The theorems of Hohenberg and Kohn for the ground state carry over to the equilibrium

thermal distribution by constructing the density corresponding to the thermal ensemble.

For each of the conclusions of Hohenberg and Kohn for the ground state, there exists a

corresponding argument for a system in thermal equilibrium, as was shown by Mermin [309]

shortly after the Hohenberg–Kohn paper. To show this, Mermin constructed a grand potential

functional of the trial density matrices ρ̂,

�[ρ̂] = Trρ̂

[

(Ĥ − μN̂ ) + 1

β
ln ρ̂

]

, (6.20)

whose minimum is the equilibrium grand potential

� = �[ρ̂0] = − 1

β
ln Tr e−β(Ĥ−μN̂ ), (6.21)

where ρ̂0 is the grand canonical density matrix

ρ̂0 = e−β(Ĥ−μN̂ )

Tr e−β(Ĥ−μN̂ )
. (6.22)
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The proof is completely analogous to the Hohenberg–Kohn proofs and uses only the mini-

mum property of �[ρ̂] and the fact that the energy depends upon the external potential only

through the term
∫

Vext(r)n(r). (The independent-particle version of the Mermin functional

is given in Sec. 9.2.)

The Mermin theorem leads to even more powerful conclusions than the Hohenberg–

Kohn theorems, namely that not only the energy, but also the entropy, specific heat, etc., are

functionals of the equilibrium density. However, the Mermin functional has not been widely

applied. The simple fact is that it is much more difficult to construct useful, approximate

functionals for the entropy (which involves sums over excited states) than for the ground

state energy. For example, in the Fermi liquid description of a metal the specific heat

coefficient at low temperature is directly related to the effective mass at the Fermi surface.

Thus the Mermin functional for the free energy must correctly describe the effective mass

(with all its many-body renormalization) as well as the ground state energy, whereas only

the latter is required in the Hohenberg–Kohn functional.

The Hohenberg–Kohn theorems can also be generalized to other ensembles which are

useful for aspects such as defining a functional of electron number as a continuous variable

[336], whereas the original Hohenberg–Kohn theorems are formulated only for a ground

state with a fixed integer number of electrons. The equilibrium thermal ensemble of Mermin

at fixed chemical potential is an example where the number of electrons fluctuates around the

average number given by the expectation value of the number operator N̂ . From ensemble

theory, it also follows, that there must be discontinuities in the derivative of the energy with

respect to number at integer occupations or, in the case of solids, for filled bands. These

are difficult properties to build into the functional and are absent present-day approximate

density functionals.

Current density and time-dependent density functional theory

The Hohenberg–Kohn theorems apply only to systems that are time reversal invariant. If

there is a magnetic field or time-dependent electric field, the hamiltonian involves terms of

the form Vext(r)n(r) and p · Aext. Thus by exactly the same logic as the original Hohenberg–

Kohn arguments, the properties must depend upon both the density n and the current density

j = − e
m p [332, 333, 335]. However, the structure of the theory must be fundamentally

different because there is no analogue of the variational principle for the ground state

energy or equilibrium free energy.

The generalization of the Hohenberg–Kohn approach to time-dependent problems has

been provided by Runge and Gross [230]. For a localized systems with simply connected

geometry, the theory can be cast in terms of the time-dependent density since the cur-

rent is determined by ∇j = −dn/dt . The result is that given the initial wavefunction
at one time t ′, the state at later times t is a functional of the time-dependent density

n(r, t ′′) for all t ′ ≤ t ′′ ≤ t . This may be viewed as the formal construction of a density

functional theory for excitations. Although the time-dependent fuctional must be quite
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intricate, there has been considerable progress within the Kohn–Sham approach, as de-

scribed in Sec. 7.6.

In general, however, the theory must involve the current density. In particular, in system

with no boundaries, the evolution is not a functional only of the density. For example, in

a uniform ring of charge the density is unchanged if there is a net current, and the state is

determined only if the current is specified [337]. Thus there is an essential link with current

functionals and to properties such as the static electric polarization.

Electric fields and polarization

The issue of electric fields and polarization comes into play in extended systems. In infinite

space, the potential due to an electric field V (x) = Ex is unbounded; there is no lower bound

to the energy and therefore there is no ground state. This is a famous problem [338, 339]

in the theory of the dielectric properties of materials. However, if the ground state does not

exist, the Hohenberg–Kohn theorems on the ground state do not apply [340].

Is there any way to include an electric field in density functional theory? This is a very

subtle problem and the answer is that in the presence of an electric field, one must apply

some constraint, within which there is a stable ground state. In the case of molecules,

this is routinely done simply by constraining the electrons to remain near the molecule.

In a solid, however, the constraint is not so obvious. To the knowledge of the author, all

proposals involve constraining the electrons to be in localized Wannier functions (Ch. 21) or

equivalent conditions on Bloch functions. Since the energy contains a term E · P, where P is

the macroscopic polarization, the theory must become a “density polarization theory”(see

[341, 342] and references cited there). An interesting point is that in a system with a net

polarization at zero field E = 0 (e.g. a ferroelectric) the polarization is determined by the
density alone [341], i.e. the original Hohenberg–Kohn theorem applies. (But see Chs. 7 and

22 for the opposite conclusion in the Kohn–Sham approach.)

6.5 Intricacies of exact density functional theory

The challenge posed by the Hohenberg–Kohn theorems is how to make use of the reformu-

lation of many-body theory in terms of functionals of the density. The theorems are in terms

of unknown functionals of the density, and it is easy to show that these must be non-local

functionals, depending simultaneously upon n(r) at different positions r, which are difficult

to cast in any simple form.

Allowed densities for electrons

There are a number of general questions related to the nature of the possible densities

that are allowed for fermions, given only that they must integrate to the correct number of

particles:
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� Can one readily construct different wavefunctions � that have the same density n(r)?

Yes. An illuminating example is the homogeneous electron gas. All plane waves have

the same uniform density, but only the choice of the lowest kinetic energy states gives

the lowest energy ground state for the non-interacting case. Interacting electrons also have

the same uniform density even though the wavefunctions are correlated and thus quite

different from a single determinant. The same logic can be applied to inhomogeneous

cases, such as discussed in Exercise 6.6.
� Is it possible to construct an antisymmetric wavefunction for fermions that can describe

any possible density (“N -representability”)?

Yes, given a few restrictions on the density. As shown by Gilbert [330], it is possible to

construct any density integrating to N total electrons of a given spin from a single Slater

determinant of N one-electron orbitals, subject only to the condition that n(r) ≥ 0, and∫ |∇n(r)1/2|2 is finite. In certain cases, explicit techniques exist for constructing such

wavefunctions [93, 343], as described in Exercise 6.7.
� Is it possible to generate any such density as the ground state of some local external

potential (“V -representability”)?

No. A number of “reasonable” looking densities have been shown to be impossible to

be the ground state for any V [325,327]. Such densities are termed “non-V -representable.”

This applies to any linear combination of densities of a set of degenerate states; al-

though the densities look “reasonable” they are not the ground state for the given number

of electrons and any potential. An example is the spherically averaged density of an

open-shell atom. If one weakens the question to ask if there are densities that cannot be

generated by any smooth potential (one without delta functions) then one can find many

counterexamples, e.g. any excited state density for single particles in finite systems. (The

density of one electron in a 2s state in H is discussed in Exercise 6.7.)

Properties obeyed by the exact density functional theory

The Hohenberg–Kohn arguments are very general for properties of interacting particle

systems, yet special emphasis is on the ground state. Thus questions arise as to what prop-

erties of a material should be given correctly by the minimization of the Hohenberg–

Kohn functional, if it were known exactly. These examples make it clear how diffi-
cult it is to fulfill all the properties guaranteed by the Hohenberg–Kohn and Mermin
theorems!

� Are excitation energies given correctly by the exact density functional theory?

Yes. In principle, all properties are determined since the entire hamiltonian is determined.
� Are excitation energies given correctly by minimization of the exact Hohenberg–Kohn or

Levy–Lieb functionals?

No. The functional evaluated near the minimum provides no information about excitations,

which are associated with saddle points at higher energies.
� Is the exact specific heat versus temperature given correctly by the exact finite temperature

Mermin functional?
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Yes. Even though the specific heat involves excitations from the ground state, nevertheless

the thermal averages over these excitations must be a unique functional of the density and

the temperature.
� Are static susceptibilities given correctly by the ground state functional?

Yes. All static susceptibilities are second derivatives of ground state energies with respect

to external fields. Thus they must be given correctly by the variation of the ground state

Hohenberg–Kohn functional as functions of external fields.5

� Is the exact Fermi surface of a metal given by the exact ground state density functional

theory?

Yes. This is not a trivial question for two reasons. First, for the question to be meaningful,

the many-body metal must have a well-defined Fermi surface; for the present purposes

we assume this. Second, it is not a priori obvious that the Fermi surface is a ground state

property. One way to see that the Fermi surface is determined by ground state properties

is to consider susceptibilities to static perturbations. The exact density functional theory

must lead to the correct Kohn anomalies and Friedel oscillations of the density far from

an impurity, which depend in detail on the shape of the Fermi surface of the unperturbed

metal.
� Must a Mott insulator (an insulator due to correlations among the electrons) be predicted

correctly by the exact density functional theory?

Yes. This follows from the above arguments on a metal in the special case where the

Fermi surface vanishes.

6.6 Difficulties in proceeding from the density

The purpose of this section is to emphasize that density functional theory does not provide

a way to understand the properties of a material merely by looking at the form of the density.

Although the density is in principle sufficient, the relation is very subtle and no one has

found a way to extract directly from the density any general set of properties, e.g. whether

the material is a metal or an insulator. The key point is that the density is an allowed density

of a quantum mechanical system; it is this fact that builds in the quantum effects.

The difficulty can be illustrated by considering a case where the exact solution can be

found – N non-interacting electrons in an external potential. This is the central problem

in the Kohn–Sham approach to density functional theory which is discussed in Ch. 7. In

that case the exact Hohenberg–Kohn functional given by (6.12) is nothing other than the

kinetic energy. In order to evaluate the kinetic energy exactly, the only way known is to

revert to the usual expression in terms of a set of N wavefunctions. There is no known

way to go directly from the density to the kinetic energy. The kinetic energy expressed in

terms of wavefunctions has derivatives as a function of the number of electrons that are

discontinuous at integer occupation numbers (see Exercise 6.12). From the virial theorem

5 The dielectric susceptibility is a special case because the ground state is not strictly defined in the presence of

an electric field. In an infinite system is it essential to consider the polarization in addition to the bulk density

in order to have a well-defined thermodynamic limit see Ch. 22.
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that relates kinetic and potential energies, it follows immediately that all parts of the exact

functional (kinetic and potential) will vary in a non-analytic manner as a function of the

number of electrons. This is a property of a global integral of the density and is not simply

determined from any aspect of the density only in some local region.

In the case of solids, the density is remarkably similar to sums of overlapping atom

densities. For example, Fig. 2.2 shows the difference in density of electrons in Si from

superposed atoms, which is much smaller than the total density. In fact, the covalent bond

is hard to distinguish in the total density. An ionic crystal is often considered as a sum

of ions, but it is also well represented as the sum of neutral atoms [344]. This is pos-

sible because the negative anion is so large that its density extends around the positive

cation, making the density similar to that of neutral atoms. Thus, even for well-known

ionic crystals, it is not obvious how to extract pertinent information from the electron den-

sity. It is yet more difficult to distinguish metals from insulators (see Exercise 7.15 for an

example).

This leads us to the Kohn–Sham approach, the success of which is based upon the fact

that it includes the kinetic energy of non-interacting electrons in terms of independent-

particle wavefunctions, in addition to interaction terms explicitly modelled as functionals

of the density. Because the kinetic energy is treated in terms of orbitals – not as an explicit
functional of the density – it builds in the quantum properties that have no simple relation

to the density. In the example of an ionic crystal, the key point is that the density is made up

of fermions that obey the exclusion principle. It is this fact that leads to filling of four bands

per cell and an insulating gap, which is the essence of this ionic crystal. So long as the true

many-body solution is sufficiently close to the independent-particle formulation, e.g. the

states must have the same symmetry, then the Kohn–Sham approach provides insightful

guidance and powerful methods for electronic structure theory.
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Exercises

6.1 Derive the Thomas-Fermi equation, (6.5), from the variational of the functional. Use the method

of Lagrange multipliers as given in (3.10) and used in (6.3).

6.2 Derive the Thomas–Fermi–Weizsacker equation which is the generalization of (6.5) when

the Weizsacker gradient term is included. The gradient expression is given following (6.5).

Variations of a functional of the gradient of the density are discussed in Ch. 8.

6.3 See Exercise 5.14.

6.4 The simplest example of the Mermin theorem is the homogeneous gas. For a gas held at fixed

volume, as the temperature is varied the density does not change. Describe the meaning of the

Mermin functional in this case.

6.5 Theorem I of Hohenberg–Kohn shows that n0(r), in principle, uniquely determines all properties

of the many-body system of electrons, including ground and excited states. We have argued that,

for example, the electron density uniquely determines the positions and types of nuclei, which

then defines the complete hamiltonian and therefore, in principle, determines all properties.

Show explicitly that only the density and its derivatives near the nuclei are sufficient to establish

the proof in this case.

6.6 In one dimension it is possible to construct orthonormal independent-particle orbitals that

describe any density that satisfies simple positivity and continuity conditions. See Exercise 7.9.

6.7 Following the approach of Sec. 6.5, show that it is not possible to construct the density of the

2s state of hydrogen (one electron in the potential of a proton) as the ground state density of

any smooth potential, i.e. one without delta functions.

6.8 Consider the lowest energy state of Li with three electrons, which may be 1s22s, or one of the

degenerate states (1s)22p0, 1s22p−, or 1s22p+. The densities of the last two states are identical,

so that the density does not determine the state. Show that, nevertheless, the energy is the same

for any combination of these states so that the energy is still a functional of the density as needed

for the Hohenberg–Kohn functional.

6.9 In this problem you are asked to show that in the absence of an external magnetic field the total

density is, in principle, enough to determine all the properties of the system even if it is spin

polarized. To do this, consider the system in a Zeeman field h · σ that distinguishes between

σ parallel and antiparallel to h. Show that if h is reversed, the new solution will have exactly

the same density, but with σ reversed. Using this fact show that you can reach the desired

conclusion.

6.10 Suppose particles can be divided into two types (e.g. spins) of density n1 and n2 with internal

energy Eint[n1, n2]. If the external potential acts on n1 and n2 equally, the total energy can be

written Etotal = E[n1, n2] + ∫
Vextn, where n = n1 + n2. Show that Etotal is a functional only

of n. Do this in three ways: (a) using arguments similar to the original arguments of Hohenberg

and Kohn; (b) the Levy–Lieb constrained search method; and (c) formal solution by variational

equations in terms of n and σ = n1 − n2.
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6.11 Consider a many-body hamiltonian Ĥ = Ĥ int + Vext, where Ĥ int denotes all intrinsic internal

kinetic and interaction terms and Vext is the external potential. Show that the external potential

Vext(r) is determined to within a constant, given Ĥ int and any eigenfunction �i . Hint: solve for

Vext(r) using the Schrödinger equation. (Note a specific example of a determinant wavefunction

is considered as an exercise in Ch. 7.)

6.12 Show that in a finite system the kinetic energy must be a non-analytic function of the density n
with derivatives that are discontinuous at integer occupations. Hint: It is sufficient to show the

result in an independent-particle example (see Exercise 7.5) with an argument that the result

must also apply to many-body cases. Generalize this argument to all properties of the system

and to solids with an insulating gap.
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The Kohn–Sham auxiliary system

If you don’t like the answer, change the question.

Summary

Density functional theory is the most widely used method today for electronic
structure calculations because of the approach proposed by Kohn and Sham in
1965: to replace the original many-body problem by an auxiliary independent-
particle problem. This is an ansatz1 that, in principle, leads to exact calculations
of properties of many-body systems using independent-particle methods; in
practice, it has made possible approximate formulations that have proved to be
remarkably successful. As a self-consistent method, the Kohn–Sham approach
involves independent particles but an interacting density, an appreciation of
which clarifies the way the method is used. The present chapter is devoted to the
basic formulation of the Kohn–Sham approach and the ideas behind the crucial
ingredient, the exchange–correlation energy functional Exc[n]. Information on
approximate functionals in widespread use is deferred to Ch. 8, and methods
for solution of the Kohn–Sham equations using the functionals are the subjects
of Ch. 9 and much of the remainder of this tome.

7.1 Replacing one problem with another

The Kohn–Sham approach is to replace the difficult interacting many-body system obeying

the hamiltonian (3.1) with a different auxiliary system that can be solved more easily. Since

there is no unique prescription for choosing the simpler auxiliary system, this is an ansatz
that rephrases the issues. The ansatz of Kohn and Sham assumes that the ground state

density of the original interacting system is equal to that of some chosen non-interacting

system. This leads to independent-particle equations for the non-interacting system that

can be considered exactly soluble (in practice by numerical means) with all the difficult

many-body terms incorporated into an exchange–correlation functional of the density. By

solving the equations one finds the ground state density and energy of the original interacting

1 Ansatz: attempt, approach. A mathematical assumption, especially about the form of an unknown function,

which is made in order to facilitate solution of an equation or other problem [Oxford English Dictionary].
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system with the accuracy limited only by the approximations in the exchange–correlation

functional.

Indeed, the Kohn–Sham approach has led to very useful approximations that are now

the basis of most calculations that attempt to make “first-principles” or “ab initio” predic-

tions for the properties of condensed matter and large molecular systems. The local density

approximation (LDA) or various generalized-gradient approximations (GGAs) described

below, are remarkably accurate, most notably for “wide-band” systems, such as the group

IV and II–V semiconductors, sp-bonded metals like Na and Al, insulators like diamond,

NaCl, and molecules with covalent and/or ionic bonding. It also appears to be successful for

many cases in which the electrons have stronger effects of correlations, such as transition

metals. However, these approximations fail for many strongly correlated cases including

the copper oxide planar materials which are antiferromagnetic insulators for exactly half-

filled bands, whereas the LDA or present GGA functionals find them to be metals [216].

This leads to the present situation in which there is great interest in utilizing and improving

the density functional approach: to build upon the many successes of current approxima-

tions and to overcome the known deficiencies and failures in strongly correlated electron

systems.

Here we will consider the Kohn–Sham ansatz for the ground state, which is by far the

most widespread way in which the theory has been applied. However, in the big picture this
is only the first step. The fundamental theorems of density functional theory (Chapter 6)

show that in principle the ground state density determines everything. A great challenge in

present theoretical work is to develop methods for calculating excited state properties. We

will return to these issues at the end of this chapter, but for the moment we will be concerned

only with the theory of the ground state.

The Kohn–Sham construction of an auxiliary system rests upon two assumptions:

1. The exact ground state density can be represented by the ground state density of

an auxiliary system of non-interacting particles. This is called “non-interacting-V -
representability;” although there are no rigorous proofs for real systems of interest, we

will proceed assuming its validity. This leads to the relation of the actual and auxiliary

systems shown in Fig. 7.1.

2. The auxiliary hamiltonian is chosen to have the usual kinetic operator and an effective

local potential V σ
eff(r) acting on an electron of spin σ at point r. The local form is not

essential,2 but it is an extremely useful simplification that is often taken as the defining

characteristic of the Kohn–Sham approach. As in Ch. 6, we assume that the external

potential V̂ext is spin independent;3 nevertheless, except in cases that are spin symmetric,

the auxiliary effective potential V σ
eff(r) must depend upon spin in order give the correct

density for each spin.

2 The original paper of Kohn and Sham also proposes an alternative Hartree–Fock-like approach with a non-local

orbital-dependent operator for exchange, as in (3.45), to which effects of correlation are added.
3 Here spin–orbit interactions are ignored.
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Vext(r)
HK⇐= n0(r)

KS⇐⇒ n0(r)
HK0=⇒ VKS(r)

⇓ ⇑ ⇑ ⇓
�i ({r}) ⇒ �0({r}) ψi=1,Ne (r) ⇐ ψi (r)

Figure 7.1. Schematic representation of Kohn–Sham ansatz. (Compare to Fig. 6.1.) The notation

HK0 denotes the Hohenberg–Kohn theorem applied to the non-interacting problem. The arrow

labeled KS provides the connection in both directions between the many-body and

independent-particle systems, so that the arrows connect any point to any other point. Therefore, in

principle, solution of the independent-particle Kohn–Sham problem determines all properties of the

full many-body system.

The actual calculations are performed on the auxiliary independent-particle system

defined by the auxiliary hamiltonian (using Hartree atomic units -h = me = e = 4π/ε0 = 1)

Ĥ σ
aux = −1

2
∇2 + V σ (r). (7.1)

At this point the form of V σ (r) is not specified and the expressions must apply for all

V σ (r) in some range, in order to define functionals for a range of densities. For a system of

N = N↑ + N↓ independent electrons obeying this hamiltonian, the ground state has one

electron in each of the Nσ orbitals ψσ
i (r) with the lowest eigenvalues εσ

i of the hamiltonian

(7.1). The density of the auxiliary system is given by sums of squares of the orbitals for

each spin

n(r) =
∑

σ

n(r, σ ) =
∑

σ

N σ∑

i=1

|ψσ
i (r)|2, (7.2)

the independent-particle kinetic energy Ts is given by

Ts = −1

2

∑

σ

N σ∑

i=1

〈ψσ
i |∇2|ψσ

i 〉 = 1

2

∑

σ

Nσ∑

i=1

∫

d3r |∇ψσ
i (r)|2, (7.3)

and we define the classical Coulomb interaction energy of the electron density n(r) inter-

acting with itself (the Hartree energy defined in (3.15))

EHartree[n] = 1

2

∫

d3rd3r ′ n(r)n(r′)
|r − r′| . (7.4)

The Kohn–Sham approach to the full interacting many-body problem is to rewrite the

Hohenberg–Kohn expression for the ground state energy functional (6.12) in the form

EKS = Ts[n] +
∫

drVext(r)n(r) + EHartree[n] + EI I + Exc[n]. (7.5)

Here Vext(r) is the external potential due to the nuclei and any other external fields (assumed

to be independent of spin) and EI I is the interaction between the nuclei (see (3.2)). Thus

the sum of the terms involving Vext, EHartree, and EI I forms a neutral grouping that is
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well defined (see Sec. 3.2). The independent-particle kinetic energy Ts is given explicitly

as a functional of the orbitals; however, Ts for each spin σ must be a unique functional

of the density n(r, σ ) by application of the Hohenberg–Kohn arguments applied to the

independent-particle hamiltonian (7.1); see Exercise 7.4.

All many-body effects of exchange and correlation are grouped into the exchange–

correlation energy Exc. Comparing the Hohenberg–Kohn, (6.12) and (6.19), and Kohn–

Sham, (7.5), expressions for the total energy (recall that the auxiliary density n(r, σ ) of

(7.2) is required to equal the true density for each spin σ ) shows that Exc can be written in

terms of the Hohenberg–Kohn functional (6.13) as

Exc[n] = FHK[n] − (Ts[n] + EHartree[n]) , (7.6)

or in the more revealing form

Exc[n] = 〈T̂ 〉 − Ts[n] + 〈V̂int〉 − EHartree[n]. (7.7)

Here [n] denotes a functional of the density n(r, σ ) which depends upon both position in

space r and spin σ . One can see that Exc[n] must be a functional since the right-hand sides

of the equations are functionals. The latter equation shows explicitly that Exc is just the

difference of the kinetic and the internal interaction energies of the true interacting many-

body system from those of the fictitious independent-particle system with electron–electron

interactions replaced by the Hartree energy.

If the universal functional Exc[n] defined in (7.7), (or εxc([n], r) in (7.14)), were known,

then the exact ground state energy and density of the many-body electron problem could

be found by solving the Kohn–Sham equations for independent-particles. To the extent

that an approximate form for Exc[n] describes the true exchange–correlation energy, the

Kohn–Sham method provides a feasible approach to calculating the ground state properties

of the many-body electron system.

7.2 The Kohn–Sham variational equations

Solution of the Kohn–Sham auxiliary system for the ground state can be viewed as the

problem of minimization with respect to either the density n(r, σ ) or the effective potential

V σ
eff(r) (see Sec. 8.7). Since Ts (7.3) is explicitly expressed as a functional of the orbitals but

all other terms are considered to be functionals of the density, one can vary the wavefunctions

and use the chain rule to derive the variational equation4

δEKS

δψσ∗
i (r)

= δTs

δψσ∗
i (r)

+
[

δEext

δn(r, σ )
+ δEHartree

δn(r, σ )
+ δExc

δn(r, σ )

]
δn(r, σ )

δψσ∗
i (r)

= 0, (7.8)

subject to the orthonormalization constraints

〈ψσ
i |ψσ ′

j 〉 = δi, jδσ,σ ′ . (7.9)

4 Note that even if Exc is explicitly represented as a functional of the wavefunctions (as in the optimized effective

potential OEP method, Sec. 8.7), one does not use δExc/(δψσ∗
i (r)), which would lead to non-local potential

operators.
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This is equivalent to the Rayleigh–Ritz principle [249, 250] and the general derivation of

the Schrödinger equation in (3.10)–(3.12), except for the explicit dependence of EHartree

and Exc on n.

Using expressions (7.2) and (7.3) for nσ (r) and Ts , which give

δTs

δψσ∗
i (r)

= −1

2
∇2ψσ

i (r);
δnσ (r)

δψσ∗
i (r)

= ψσ
i (r), (7.10)

and the Lagrange multiplier method for handling the constraints (3.10)–(3.13), this leads

to the Kohn–Sham Schrödinger-like equations:

(H σ
KS − εσ

i )ψσ
i (r) = 0, (7.11)

where the εi are the eigenvalues, and HKS is the effective hamiltonian (in Hartree atomic

units)

Hσ
KS(r) = −1

2
∇2 + V σ

KS(r), (7.12)

with

V σ
KS(r) = Vext(r) + δEHartree

δn(r, σ )
+ δExc

δn(r, σ )

= Vext(r) + VHartree(r) + V σ
xc(r). (7.13)

The meaning of the functional derivatives in the definitions of the Kohn–Sham potential,

(7.8) and (7.13), is described in App. A along with illustrative examples. The physical

interpretation of Exc[n] and V σ
xc(r) is the subject of the following section.

Equations (7.11)–(7.13) are the well-known Kohn–Sham equations, with the resulting

density n(r, σ ) and total energy EKS given by (7.2) and (7.5). The equations have the

form of independent-particle equations with a potential that must be found self-consistently

with the resulting density. These equations are independent of any approximation to the

functional Exc[n], and would lead to the exact ground state density and energy for the

interacting system, if the exact functional Exc[n] were known. Furthermore, it follows from

the Hohenberg–Kohn theorems (see Exercise 7.3) that the ground state density uniquely

determines the potential at the minimum (except for a trivial constant), so that there is

a unique Kohn–Sham potential V σ
eff(r)|min ≡ V σ

KS(r) associated with any given interacting

electron system.

Solution of the equations is deferred to later chapters. General aspects of the solution of

the self-consistent equations are the subject of Ch. 9. Specific approaches and results are

the subject of much of the rest of this volume.

7.3 Exc, Vxc, and the exchange–correlation hole

The genius of the Kohn–Sham approach is that by explicitly separating out the independent-

particle kinetic energy and the long-range Hartree terms, the remaining exchange–

correlation functional Exc[n] can reasonably be approximated as a local or nearly local
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functional of the density. This means that the energy Exc can be expressed in the form

Exc[n] =
∫

dr n(r)εxc([n], r), (7.14)

where εxc([n], r) is an energy per electron at point r that depends only upon the density

n(r, σ ) in some neighborhood of point r.5 Only the total density appears in (7.14) because

the Coulomb interaction is independent of spin; in a spin polarized system, εxc([n], r)

incorporates the information on the spin densities.

Although the energy density εxc([n], r) is not uniquely defined by the integral (7.14), a

physically motivated definition of εxc([n], r) follows from the analysis of the exchange–

correlation hole described in Secs. 3.6, 5.1, and 5.2. An informative relation of εxc([n], r)

to the exchange–correlation hole can be found using the “coupling constant integration

formula” described in the theoretical background, Chapter 3, which was called “adiabatic

connection” by Harris [345].6 In this case the electronic charge is varied from zero (the non-

interacting case) to the actual value (1 in atomic units used here), with the added constraint

that the density must be kept constant during this variation. Then all other terms remain

constant and the change in energy is given by

Exc[n] =
∫ e2

0

dλ〈�λ|dVint

dλ
|�λ〉 − EHartree[n] = 1

2

∫

d3rn(r)

∫

d3r ′ n̄xc(r, r′)
|r − r′| , (7.15)

where n̄xc(r, r′) is the coupling-constant-averaged hole

n̄xc(r, r′) =
∫ 1

0

dλnλ
xc(r, r′). (7.16)

Here nxc(r, r′) is the hole described in Sec. 3.6 summed over parallel (σ = σ ′) and antipar-

allel (σ �= σ ′) spins. Furthermore, the integral in (7.15) involves only the spherical average

of the hole density.

Together with (7.14), Eq. (7.15) shows that the exchange–correlation density εxc([n], r)

can be written as

εxc([n], r) = 1

2

∫

d3r ′ n̄xc(r, r′)
|r − r′| . (7.17)

This is an important result which shows that the exact exchange–correlation energy can

be understood in terms of the potential energy due to the exchange–correlation hole aver-

aged over the interaction from e2 = 0 to e2 = 1. For e2 = 0 the wavefunction is just the

independent-particle Kohn–Sham wavefunction so that n0
xc(r, σ, r′, σ ′) = nx (r, σ, r′, σ ′),

where the exchange hole is known from (3.54). Since the density everywhere is required

to remain constant as λ is varied, clearly εxc([n], r) is implicitly a functional of the density

in all space. Thus Exc[n] can be considered as an interpolation between the exchange-only

and the full correlated energies at the given density n(r, σ ).

5 A polarized insulator is a case where εxc(r) is not a function of the density only in a nearby region. In addition

to the density, it is must be a functional of the polarization in the neighborhood of point r. See Sec. 22.1.
6 An extensive description is given by Parr and Yang [93].
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Analysis of the nature of the averaged hole n̄xc(r, r′) is one of the primary approaches

for developing improved approximations for Exc[n]. In particular, the exchange–correlation

hole obeys a sum rule that its integral must be unity, as shown in Chapter 3. The sum rule

is satisfied for any case that is derived from an actual electron hamiltonian and it places

constraints on any approximate forms that may be proposed [346]. This and other sum

rules [347] are among the primary guidelines for systematic improvement of functionals.

Homogeneous gas

The exchange–correlation hole in the homogeneous electron gas has been presented in

Ch. 5. The results are relevant here because they present representative cases from weak

to strong correlation and they are the basis for the local density approximation. In the

non-interacting limit there is no correlation between electrons of different spin and the

hole is purely the exchange hole given by (5.19) and shown in Fig. 5.3. At full coupling

strength the hole has been calculated by quantum Monte Carlo methods, with results shown

in Fig. 5.5. The average hole is some mean between the two, which can also be found by

an appropriate average of the holes from high density (where correlation is negligible) to

the actual density. The key point is that Fig. 5.5 allows one to have a feeling for the radial

shapes and the characteristic extent of the exchange–correlation hole.

Atoms

The holes have also been calculated in other systems. In general, of course, the hole is

dependent upon the electron position and is non-spherical; however, for the energy, only

spherical average is needed. In small systems such as atoms, the correlations can be cal-

culated essentially exactly by configuration interaction methods. For example, Gunnarsson

et al. [348] have found nx (r, r′) for the neon atom as shown in Fig. 7.2, which illustrates the

fact that the hole is extremely non-spherical, and yet the spherical average, shown on the

right, is quite similar to the hole in the homogeneous electron gas with density equal to

the local density at the point chosen.

Solids

There are very few quantitative calculations in solids; an example is shown in Figs. 7.3

and 7.4 for Si determined by a quantum Monte Carlo simulation with a chosen varia-

tional wavefunction [349]. The figures show separately the exchange and correlation holes,

demonstrating the basic fact that the exchange dominates over correlation. This is a conse-

quence of the sum rule that it integrates to 1 and the fact that its contribution to the energy

is largely to remove the self-interaction term in the Hartree interactions. Despite the fact

that the hole varies greatly from high-density bond-center regions to low-density interstitial

regions, the spherical average is given reasonably well by the local density approximation.

However, the large difference in the interstitial region shown in Fig. 7.4 indicates possible

sources of inaccuracies. Since the hole obeys a sum rule, the deepening at short range due
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Figure 7.2. Exchange hole in a Ne atom. Left: n(r, r′) plotted for two values of |r| as a function of

|r′ − r| along a line through the nucleus, and compared to the local density approximation. The

origin is centered on an electron a distance |r |. All quantities are in units of the Bohr radius, a0.

Right: The spherical average, as a function of the relative distance, which shows the close

resemblance to the local density approximation. From Gunnarsson et al. [348].
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the correlation hole. From Hood et al. [349].
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Figure 7.4. Spherical and coupling-constant-averaged exchange–correlation hole in Si, calculated as

in Fig. 7.3, compared with the LDA approximation. Left: Hole around an electron at the bond

center. Middle: Hole around an electron at the interstitial hole. Right: a comparison to scale. From

Hood, et al. [349].

to correlation must be offset by a decrease at large range, i.e. screening that effectively

decreases the range of correlation.

Exchange–correlation potential Vxc

The exchange–correlation potential V σ
xc(r) is the functional derivative of Exc, which can be

written as

V σ
xc(r) = εxc([n], r) + n(r)

δεxc([n], r)

δn(r, σ )
, (7.18)

where εxc([n], r) is defined in (7.14), and is a functional of the density n(r′, σ ′). It is

instructive to examine the properties that the exact Vxc must satisfy. First, it is not a potential

that can be identified with interactions between particles and it behaves in ways that seem

paradoxical. Expression (7.18) illustrates such properties: the second term (sometimes called

the “response potential” [350]) is due to the change in the exchange–correlation hole with

density. In an insulator, this derivative is discontinuous at a band gap where the nature of the

states changes discontinuously as a function of n. This leads to a “derivative discontinuity”

whereby the Kohn–Sham potential for all the electrons in a crystal changes by a constant

amount when a single electron is added [351, 352]. Thus even in the exact Kohn–Sham

theory, the difference between the highest occupied and lowest unoccupied eigenvalues

should not equal the actual band gap. Similarly, there can be a shift in absolute energies of

states of one molecule due to the presence of another molecule far away [353].

The behavior of the Kohn–Sham potential as a function of density seems paradoxical.

How can adding one electron shift the potential for all the other electrons in a solid? The

answer is in the definition of the functional and the behavior can be understood from

examination of the kinetic energy. The great advance of the Kohn–Sham approach over the

Thomas–Fermi approximation is the incorporation of orbitals to define the kinetic energy. In

terms of orbitals, it is easy to see that the kinetic energy Ts for independent particles in (7.3)

changes discontinuously in going from an occupied to an empty band, since the ψσ
i (r) are

different for different bands. In terms of the density this means the formal density functional

Ts[n] has discontinuous derivatives at densities that correspond to filled bands. This is a
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direct consequence of quantum mechanics and is not paradoxical; the real problem is that

it is difficult to incorporate into an explicit density functional. It is likewise straightforward

to see that the true exchange–correlation functional must change discontinuously. None of

these properties is incorporated in any of the simple explicit functionals of the density, such

as the local density or gradient approximations (Secs. 8.1 and 8.2); however, they occur

naturally (and are not paradoxical) in terms of orbital-dependent formulations, such as the

OEP (Sec. 8.7).

A different way to see the properties is to note that the Kohn–Sham potential VKS is defined
by the requirement that it yield the exact charge density. This is an exacting requirement

that must be accomplished by the properties of Vxc, since all the other terms in V σ
KS(r) =

Vext(r) + VHartree(r) + V σ
xc(r), (7.13), are known or are simple explicit functionals of the

density. Thus one way to determine V σ
xc(r) is the requirement that V σ

KS(r) lead to the exact

density. Conversely, the application of the Hohenberg–Kohn theorem to the Kohn–Sham

non-interacting system implies that the exact density can be fit by only one V σ
xc(r), which

is unique except for an additive constant.

7.4 Meaning of the eigenvalues

It is often said that Kohn–Sham eigenvalues have no physical meaning. Indeed, the eigen-

values are not the energies to add or subtract electrons from the interacting many-body

system. There is only one exception [354]: the highest eigenvalue in a finite system, which

is minus the ionization energy, −I . The asymptotic long-range density of a bound system

is governed by the occupied state with highest eigenvalue; since the density is assumed to

be exact, so must the eigenvalue be exact. No other eigenvalue is guaranteed to be correct

by the Kohn–Sham construction.

Nevertheless, the eigenvalues have a well-defined meaning within the theory and they can

be used to construct physically meaningful quantities. One approach is the development

of perturbation expressions for excitation energies starting from the Kohn–Sham eigen-

functions and eigenvalues. This can take the form of a functional [355] or it can be an

operational definition, such as an explicit many-body calculation that uses the Kohn–Sham

eigenfunctions and eigenvalues as input. The latter is actually done in quantum Monte Carlo

and many-body perturbation approaches (for reviews see, respectively, [81] and [82]). For

example, the most accurate calculations at the present time for gaps in solids are based upon

fixed-node diffusion Monte Carlo, where the resulting energies are a functional only of the

nodes of the many-body trial function. If the trial function is taken to be a determinant made

of Kohn–Sham orbitals [81], each result is operationally a functional of the Kohn–Sham

potential.

Within the Kohn–Sham formalism itself, the eigenvalues have a definite mathematical

meaning, often known as the Slater–Janak theorem [356]. The eigenvalue is the derivative

of the total energy with respect to occupation of a state

εi = dEtotal

dni
=

∫

dr
dEtotal

dn(r)

dn(r)

dni
. (7.19)
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For a non-interacting system this is trivial. However, for the Kohn–Sham problem it raises

interesting points. The exchange–correlation energy is a functional of the density and the

derivative of the potential terms in dEtotal/dn(r) in (7.19) is the effective potential Vxc(r)

in (7.18). As pointed out following that equation, Vxc(r) contains a “response part” that

is the derivative of εxc([n], r) with respect to n(r). This can vary discontinuously between

states giving rise to jumps in eigenvalues that are at first surprising. This is the well-known

“band-gap discontinuity” [351, 352].

Thus it follows that for the critical problem of the gap in an insulator, the eigenvalues of

the ground state Kohn–Sham potential should not be the correct gap, at least in principle.

However, the magnitude of the discontinuity has not been established and there is active

research especially using “optimized effective potentials” (Sec. 8.7) to clarify the issues

regarding electron addition and removal energies.

7.5 Intricacies of exact Kohn–Sham theory

This section asks similar questions of Kohn–Sham theory as were asked in Sec. 6.5 of

Hohenberg–Kohn density functional theory. In some cases the answers are the same and

will be abbreviated here, but in other cases the difference in the answers is fundamental for

understanding practical forms of density functional theory.

Allowed densities for electrons

Since the Hohenberg–Kohn theorems also apply to independent-particle problems, the

reasoning of Sec. 6.5 shows that:

� One can construct different wavefunctions ψi that have the same density n(r).
� An antisymmetric wavefunction for fermions can describe any possible density (“N -

representability”) with some analyticity conditions.
� It is not possible to generate any reasonable density as the ground state of some local

external potential (“V -representability”). One example is a linear combination of densities

of a set of degenerate states. A second is the density corresponding to an excited state of

a potential, which cannot be the ground state of another potential if it is required not to

have singularities. (The example of a 2s state in H is discussed in Exercise 6.7).

The new question is:

� For any ground state density of an interacting electron system, is it possible to reproduce

the density exactly as the ground state density of a non-interacting electron system (“non-

interacting-V -representability”)?

The answer is not known. This is the Kohn–Sham ansatz, which is the basis for the entire

industry, but it has never been proven in general. It is obviously true for the homogeneous

gas; it can be demonstrated easily for any one- or two-electron problem (see Exercises 7.2

and 7.13); and it has been shown by Kohn and Sham [92] for small deviations from
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the homogeneous gas (Exercise 7.10); but, to the knowledge of the author, there are no

general proofs. Nevertheless, results of calculations appear very “reasonable” and detailed

tests have shown that it is possible to fit the best numerical densities in many cases. We

will follow the standard practice and proceed under the assumption that the Kohn–Sham

ansatz is either valid or is good enough to be worth all this effort. The definition of “exact

Kohn–Sham theory” followed here is exact – assuming that it exists.

Properties obeyed by “exact Kohn–Sham theory”

The Kohn–Sham approach places even heavier emphasis on the ground state than the

Hohenberg–Kohn theorems. The only properties guaranteed to be correct by construction

in the exact Kohn–Sham theory are the density and the energy. Thus questions arise as

to what properties of a material should be given correctly by Kohn–Sham theory, if the

exchange correlation functional was known exactly.

� Is the spin density correct in Kohn–Sham theory?

Yes. A spin-dependent effective potential is introduced specifically to give the correct

density and spin density. Non-collinear spin functionals (Sec. 8.4) allow the proper rotation

invariance, which is broken in theories that fix only the z-component of the spin.
� Are static charge and spin susceptibilities given correctly by the ground state functional?

Yes. All static susceptibilities are second derivatives of ground state energies with respect

to external fields. Thus they must be given correctly by the variation of the ground state

Kohn–Sham functional as functions of external fields.7

� Is the macroscopic polarization in a crystal given correctly by the Kohn–Sham theory in

terms of the density n(r) in the bulk of the crystal?

No. It has long been known that the polarization could not be derived simply from the den-

sity. Recent developments derive the polarization from the phases of the wavefunctions,

not given correctly by the Kohn–Sham orbitals (see Ch. 22).
� Is the exact Fermi surface of a metal given by eigenvalues in the exact Kohn–Sham theory?

No. Even though the density is reproduced, the Fermi surface may not be correct due to

the requirement of a local potential [357].
� Must a Mott insulator – an insulator due to correlations among the electrons – be predicted

correctly by the eigenvalues in the exact Kohn–Sham theory?

No. This follows from the above arguments on a metal that the Fermi surface is not correct

in general.
� Are excitation energies given correctly by the eigenvalues of the Kohn–Sham equations?

No. The eigenvalues are not the true energies for adding or subtracting electrons, nor for

neutral excitations (see Sec. 7.4).
� Is any excitation energy given correctly by an eigenvalue of the Kohn–Sham equations?

7 The dielectric susceptibility is a special case and care must be taken to describe the electric polarization properly.

There is a term outside the usual Kohn–Sham theory related to the following question and described in Ch. 22.
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Yes. The highest eigenvalue in a finite system must be correct [354] since that state

dominates the long-range tail of the density, which is defined to be correct.
� Is the exact specific heat versus temperature given correctly by the exact finite temperature

Mermin functional?

Yes. Even though the specific heat involves excitations from the ground state, nevertheless

the thermal averages over these excitations must be a unique functional of the density

and the temperature. However, it is more difficult to derive the exchange–correlation

functional as function of temperature.
� Is it possible to determine excitation energies by any means using the Kohn–Sham theory?

Yes. This question is in the spirit of the Hohenberg–Kohn existence proofs. Since the

Kohn–Sham density is exact by construction, it follows from the Hohenberg–Kohn theo-

rems that all properties are determined since the entire hamiltonian is determined. Thus

there should be some way to use the Kohn–Sham potential and eigenfunctions to deter-

mine all excitations exactly, but this requires a theory beyond the naive use of Kohn–Sham

eigenvalues. One approach is to use the eigenstates as the basis for a many-body calcu-

lation, which is literally done in configuration interaction, Monte Carlo [81], and many-

body perturbation theory calculations [82]. In finite systems, the “
SCF” (Sec. 10.6)

calculation of energy differences is a practical approach. Other formulations bring exci-

tations into the fold of the Kohn–Sham approach itself, most importantly, time-dependent

Kohn–Sham theory.

7.6 Time-dependent density functional theory

The Kohn–Sham ansatz replaces the many-body problem with an independent-particle

problem, in which the effective potential depends on the density. Thus the Kohn–Sham ap-

proach involves independent particles but an interacting density. As discussed in Sec. 7.4,

the eigenvalues of the Kohn–Sham equations are independent-particle eigenvalues that do

not correspond to true electron removal or addition energies. Similarly, eigenvalue differ-

ences do not correspond to excitation energies.

How can the Kohn–Sham approach properly describe excitations? The answer is to

return to the formulation in terms of the interacting density. In the full many-body problem,

excitations are most readily described in terms of the response functions, i.e. the response

of the system to external perturbations. The excitation energies in the response in (3.60) are

the exact many-body excitation energies. Following the analysis of frequency-dependent

dynamical response functions in App. D, the exact density response function has poles as a

function of frequency ω at the exact excitation energies. Therefore, the goal is to construct

a theory of the dynamical density response function within the Kohn–Sham framework.

Such a theory exists: “time-dependent Kohn–Sham density functional theory” is a re-

markably simple generalization of the original static Kohn–Sham method [231, 358, 359].

The ideas are similar to the time-dependent Hartree–Fock approximation, which has a long

history [318,360], and were perhaps first used by Ando [361] for model problems in semi-

conductors and by Zangwill and Soven [229] for atoms. The formal theory due to Runge

and Gross [230] is, in principle, exact for finite systems, as described in Sec. 6.4. The
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time-dependent Kohn–Sham equations can be derived from the stationarity principle for

the action [230].

δA

δn(r, t)
= 0, (7.20)

where

A =
∫ t1

t0

dt〈�(t)|
[

i
d

dt
− Ĥ (t)

]

|�(t)〉. (7.21)

If one adds the Kohn–Sham idea of replacing the density with the density of independent

particles, this leads to time-dependent Kohn–Sham density functional theory (TDDFT), in

which there is a time-dependent Schrödinger-like equation

i-h
dψi (t)

dt
= Ĥ (t)ψi (t), (7.22)

with an effective hamiltonian that depends upon time t

Ĥeff(t) = −1

2
∇2 + Vext(r, t) +

∫
n(r′, t)

|r − r′|dr′ + Vxc[n](r, t), (7.23)

where Vxc[n](r, t) is a function of r and t and a functional of n(r′, t ′). Note that in

the formally exact theory, Vxc[n](r, t) is a functional of n(r′, t ′) for all earlier times
t ′ ≤ t . The difficult problem is the construction of useful functionals that incorporate

effects of non-locality in time. Essentially all work to date (see Ch. 20) uses the adi-
abatic approximation in which the exchange–correlation potential Vxc[n(t)](r) depends

only upon the density at the same time, e.g. in the adiabatic LDA (ALDA), it is simply

Vxc(r, t) = Vxc(n(r, t)).
The challenges in TDDFT are closely related to other issues. For example, the difficulty

in going beyond the adiabatic approximation can be illustrated by a system driven near

a resonance, where the functional should take into account the particular states involved

in the transition. This is an extension of the problem in the time-independent theory of

including orbital dependent effects, not easily captured in the density alone. Another issue

is in extended systems where the evolution of the system must be regarded as a functional of

the current density [333, 335, 337, 362]. This is an extension of the problem of polarization

(Ch. 22) to the time-independent theory.

7.7 Other generalizations of the Kohn–Sham approach

The overarching guiding principle of the Kohn–Sham approach is the replacement of the full

many-body problem with a simpler problem. In the usual Kohn–Sham theory of (7.1), the

simpler problem is a system of non-interacting particles chosen to reproduce only the correct

ground state density and energy. In this framework, the eigenvalues and eigenfunctions do

not correspond to actual excitations, except the highest eigenvalue of a localized system.

However, this is not essential: the density is supposed to determine everything. Why not
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require that other properties of the Kohn–Sham system are equal to the exact values? For

example, the ground state energy and density and also the band gap?

The essence of a “generalized Kohn–Sham theory” is that many possible mappings can

be made of the full interacting problem onto simpler auxiliary systems. For example, the

auxiliary systems could include certain interactions instead of the Kohn–Sham choice of a

non-interacting system.8 A general approach for requiring that the auxiliary system repro-

duce the density and some other quantity has been outlined by Jansen [363]. The simplest

example is spin density theory which includes the spin density as well as number density.

A recent example is the “density polarization theory” [340–342] pointed out in Ch. 22.

A primary aim of on-going research is the prediction of band gaps including the deriva-

tive discontinuity; there are both formal approaches showing existence proofs [355] and

practical approaches that involve approximate forms that are explicit functionals of the

wavefunctions (Sec. 8.7) that are promising for description of excitations as well as ground

state properties. (See, e.g., [364] and references therein.)
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Exercises

7.1 For any one-electron problem, one can readily determine whether or not any given density is

a possible ground state density. Using the known properties of solutions of the Schrödinger

equation, give a sufficient set of conditions that any function must satisfy in order to guarantee

that it is the ground state density of some potential. See Exercise 7.7 for an example of an

allowed density and Exercise 6.7 for a function that is not an allowed ground state density.

7.2 For any density n(r) that is allowed (see Exercise 7.1) and integrates to one electron, show that

the Kohn–Sham potential V σ
eff(r)|min ≡ V σ

KS(r) is unique, except for an arbitrary constant, and

give an explicit algorithm for constructing V σ
KS(r) from n(r). See Exercise 7.7 for an explicit

example of an allowed density.

7.3 Generalize the arguments of Exercise 7.2 to show that V σ
KS(r) is unique, except for an arbitrary

constant, for a non-interacting Kohn–Sham system of any integer number of electrons.

7.4 For any non-interacting Kohn–Sham system, use the result of Exercise 7.3 to show that the

kinetic energy Ts for each spin σ must be a unique functional of the density n(r, σ ) for that

spin. Generalize the argument to show that all properties of the system are uniquely determined

by the density.

7.5 Based upon the result of Exercise 7.4, show that in a finite system with discrete states the

kinetic energy functional Ts[n] must be a non-analytic function of the density n with derivatives

that are discontinuous at integer occupations. Hint: Use the known solutions of the Schrödinger

equation, ψi that are different for each i . Generalize this argument to all properties of the system

and to filled bands in the case of a solids.

7.6 As an example of the fact that arbitrary densities cannot be constructed from the lowest eigen-

states of a non-interacting hamiltonian, see Exercise 6.7. Use this example as the basis for

constructing a general argument that it is not possible to construct any density from a determi-

nant formed from the lowest N eigenvectors of a non-interacting particle problem.

7.7 As an example of the explicit construction of a potential determined by the density, find the one-

dimensional potential V (x) that gives the density A exp(−αx2), where normalization constant

A is chosen so that the density corresponds to one electron. Express the answer in terms of α.

7.8 For a one-electron radial problem it is straightforward to find the unique Kohn–Sham potential

that will lead to any radial density with no nodes. (The Schrödinger equation in radial coordinates

is given in Sec. 10.1.)

(a) Find the potential VKS(r ) that gives the hydrogen atom density.

(b) Find the potential for a gaussian density A exp(−αr 2), where A is a normalization constant

chosen so that the density integrates to one (See also Exercise 7.7.). Express the answer in terms

of α.

7.9 This problem is an example of explicit construction of orthonormal independent-particle orbitals

that describe any density of N particles and, furthermore, that there are many such choices for

the same density. This example is for one dimension and is taken from p. 55 of [93]. For a

density n(x) and s(x) ≡ n(x)/N given in the range x1 ≤ x ≤ x2, define the set of functions

ψk(x) = [s(x)]1/2 exp [i2πkq(x)], (7.24)
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with q(x) ≡ ∫ x
x1

s(x ′)dx ′ and k = integers or half-integers. Show that the orbitals satisfy the

desired conditions since each has the same density s(x) and the orbitals are orthonormal. Show

that it follows that an infinite number of such choices can be made.

7.10 Show that, to lowest-order, small deviations from the homogeneous density can be reproduced

by non-interacting fermions. Hint: Use the fact that, to lowest order, any change in the density

is linear in the potential.

7.11 It is interesting to note that construction of a kinetic energy functional of the density is a “fermion

problem.” For non-interacting bosons, construct explicitly a practical, exact density functional

theory.

7.12 Consider an independent-particle hamiltonian Ĥ = Ĥint + Vext for which the wavefunction for

any state i is a single determinant i and the subscript “int” denotes all internal terms. Then the

total energy can be written Etot = Eint[] + ∫
d3rVext(r)n(r). Show that the external potential

Vext(r) is determined to within a constant given Ĥint and any eigenfunction i , not only the

ground state. (Hint: Solve for Vext(r) using the Schrödinger equation.) Explain why it is more

difficult numerically to find Vext(r) from the wavefunction for an excited state than for the

ground state.

7.13 For a two-electron problem in a singlet state, it is straightforward to find the Kohn–Sham

potential that will lead to any density with no nodes. The purpose of this exercise is to emphasize

the relation to the one-electron case in Exercise 7.8 by constructing the potential VKS(r ) for the

following cases:

(a) a density that is twice that of the H atom;

(b) a gaussian density A exp(−αr2), where A is chosen so that the density integrates to two

electrons.

7.14 Project: Using an atomic program (such as the one discussed in conjunction with Ch. 10) one

can find the density of a closed-shell atom and the Kohn–Sham potential.

(a) This exercise is to invert the problem: construct a minimization program to find the potential

V (r ) that will produce that density and show that it is the same potential. This is essential for

the potential to be unique.

(b) Now modify the density by multiplying by a gaussian and normalizing. For this density find

the potential.

7.15 Project: Use the empirical pseudopotential program (Sec. 12.6) to find the bands and charge

densities of Si in the diamond structure at the lattice constant 5.431 Å. The bands should be

insulating and the bonds should be visible in the charge density.

(a) Now compress the system until it is metallic (this can only be done in theory; in reality it

transforms). Can you tell when the system becomes a metal just from the density? In principle, if

you had the exact functional, what aspect of the density would be the signature of the insulator–

metal transition?

(b) Do a similar calculation replacing the Si atoms with Al, still in the diamond structure

with lattice constant 5.431 Å. (Of course this is a theoretical structure.) There are three Al

electrons/atom, i.e. six electrons per cell, and it turns out to be a metal. Show that it must be

metallic without doing the calculation. Does the density plot look a lot like Si? Can you find

any feature in the density that shows it is a metal?
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Functionals for exchange and correlation

Functional functionals

Summary

Density functional theory is the most widely used method today for electronic
structure calculations because of the success of practical, approximate func-
tionals. The crucial quantity in the Kohn–Sham approach is the exchange–
correlation energy which is expressed as a functional of the density Exc[n].
This chapter is devoted to relevant approximate functionals, in particular, the
local density approximation (LDA) and examples of generalized-gradient ap-
proximations (GGAs). Explicit formulas for certain widely used functionals
are given in App. B. Non-local formulations are an active area of research lead-
ing to new classes of functionals, in particular, orbital-dependent functionals
including the “optimized effective potential” (OEP) method and “hybrid func-
tionals.” Important features are illustrated by a few selected results on atoms
and molecules.

As emphasized in the previous chapter, the genius of the Kohn–Sham approach is two-fold:

first, the construction of an auxiliary system leads to tractable independent-particle equations

that hold the hope of solving interacting many-body problems. The famous Kohn–Sham

equations are given in (7.11)–(7.13). Second, and perhaps more important, by explicitly

separating out the independent-particle kinetic energy and the long-range Hartree terms,

the remaining exchange–correlation functional Exc[n] can be reasonably approximated as a

local or nearly local functional of the density. Even though the exact functional Exc[n] must

be very complex, great progress has been made with remarkably simple approximations.

This chapter is devoted to those approximations.

8.1 The local spin density approximation (LSDA)

Already in their seminal paper, Kohn and Sham pointed out that solids can often be con-

sidered as close to the limit of the homogeneous electron gas. In that limit, it is known that

the effects of exchange and correlation are local in character, and they proposed making the
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local density approximation (LDA) (or more generally the local spin density approximation

(LSDA)), in which the exchange–correlation energy is simply an integral over all space

with the exchange–correlation energy density at each point assumed to be the same as in a

homogeneous electron gas with that density,

ELSDA
xc [n↑, n↓] =

∫

d3rn(r)εhom
xc (n↑(r), n↓(r))

=
∫

d3rn(r)[εhom
x (n↑(r), n↓(r)) + εhom

c (n↑(r), n↓(r))]. (8.1)

(Here the axis of quantization of the spin is assumed to be the same at all points in space, but

this can be generalized as in Sec. 8.4.) The LSDA can be formulated in terms of either two

spin densities n↑(r) and n↓(r), or the total density n(r) and the fractional spin polarization

ζ (r) defined in (5.16),

ζ (r) = n↑(r) − n↓(r)

n(r)
. (8.2)

The LSDA (with the generalization to non-collinear spins in Sec. 8.4) is the most general

local approximation and is given explicitly by (5.17) and (5.18) for exchange and by ap-

proximate (or fitted) expressions given in Sec. 5.2 for correlation. For unpolarized systems

the LDA is found simply by setting n↑(r) = n↓(r) = n(r)/2.

Once one has made the local approximation of the L(S)DA, then all the rest follows.

Since the functional Exc[n↑, n↓] is universal, it follows that it is exactly the same as for the

homogeneous gas. The only information needed is the exchange–correlation energy of the

homogeneous gas as a function of density; the exchange energy of the homogeneous gas

is given by a simple analytic form (Ch. 5) and the correlation energy has been calculated

to great accuracy with Monte Carlo methods [297]. Variations of exchange and correlation

energies with density are discussed in Ch. 5 (where they are compared with insightful

approximations), and explicit analytic forms fitted to the numerical results are given in

App. B. As long as there are no further approximations in the calculations, the results of

LDA and LSDA calculations can be considered as tests of the local approximation itself; the

local approximation lives or dies depending upon how the answers agree with experiment

(or with many-body calculations that can be considered essentially exact).

The rationale for the local approximation is that for the densities typical of those found

in solids, the range of the effects of exchange and correlation is rather short, as dis-

cussed for the “exchange–correlation hole” described in the previous chapter. However,

this is not justified by a formal expansion in some small parameter, and one must test

the extent to which it works by actual applications. We expect it will be best for solids

close to a homogeneous gas (like a nearly-free-electron metal) and worst for very inho-

mogeneous cases like atoms where the density must go continuously to zero outside the

atom.

Among the most obvious faults is the spurious self-interaction term. In the Hartree–Fock

approximation the unphysical self-term in the Hartree interaction is exactly cancelled by

the non-local exchange interaction. However, in the local approximation to exchange, the
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cancellation is only approximate and there remain spurious self-interaction terms that are

negligible in the homogeneous gas but large in confined systems such as atoms. Nevertheless,

even in very inhomogeneous cases, the LSDA works remarkably well. One reason for the

success is that the hole obeys all the sum rules since it is the exact hole for some hamiltonian,

even if it is not the correct hamiltonian [314]. Thus the hole satisfies constraints imposed by

the sum rules that are difficult to satisfy if one makes arbitrary approximations. Furthermore,

the detailed shape of the hole need not be correct since only the spherical average of the xc

hole enters the energy.

The degree to which the LSDA is successful has made it useful in its own right, and

has stimulated ideas for constructing improved functionals (such as the GGAs described in

Sec. 8.2).

8.2 Generalized-gradient approximations (GGAs)

The success of the LSDA has led to the development of various Generalized-gradient

approximations (GGAs) with marked improvement over LSDA for many cases. Widely

used GGAs can now provide the accuracy required for density functional theory to be

widely adopted by the chemistry community. In this section we briefly describe some of

the physical ideas that are the foundation for construction of GGAs.

The first step beyond the local approximation is a functional of the magnitude of the gra-

dient of the density |∇nσ | as well as the value n at each point. Such a “gradient expansion

approximation” (GEA) was suggested in the original paper of Kohn and Sham, and carried

out by Herman et al. [369] and others. The low-order expansion of the exchange and corre-

lation energies is known [370]; however, the GEA does not lead to consistent improvement

over the LSDA. It violates the sum rules and other relevant conditions [369] and, indeed,

often leads to worse results. The basic problem is that gradients in real materials are so large

that the expansion breaks down.

The term generalized-gradient expansion (GGA) denotes a variety of ways proposed

for functions that modify the behavior at large gradients in such a way as to preserve

desired properties. It is convenient [367] to define the functional as a generalized form of

(8.1),

EGGA
xc [n↑, n↓] =

∫

d3rn(r)εxc(n↑, n↓, |∇n↑|, |∇n↓|, . . .)

≡
∫

d3rn(r)εhom
x (n)Fxc(n↑, n↓, |∇n↑|, |∇n↓|, . . .), (8.3)

where Fxc is dimensionless and εhom
x (n) is the exchange energy of the unpolarized gas given

in Table 5.3.

For exchange, it is straightforward to show (Exercise 8.1) that there is a “spin-scaling

relation,”

Ex
[
n↑, n↓] = 1

2

[
Ex

[
2n↑] + Ex

[
2n↓]]

, (8.4)
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Figure 8.1. Exchange enhancement factor Fx as a function of the dimensionless density gradient s
for various GGAs. (From H. Kim, similar to Fig. 1 of [367] but for a larger range of s). Note that in

the relevant range for most materials, 0 < s ∼< 3, the magnitude of the exchange is increased by a

factor ≈1.3–1.6. (This provides an a posteriori reason why there was some success in using the

constant factor 4/3 in Slater’s average local exchange.)

where Ex [n] is the exchange energy for an unpolarized system of density n(r). Thus for

exchange we need to consider only the spin-unpolarized Fx (n, |∇n|). It is natural to work

in terms of dimensionless reduced density gradients of mth order that can be defined by

sm = |∇mn|
(2kF )mn

= |∇mn|
2m(3π2)m/3(n)(1+m/3)

. (8.5)

Since kF = 3(2π/3)1/3r−1
s , sm is proportional to the mth-order fractional variation in density

normalized to the average distance between electrons rs . The explicit expression for the first

gradients can be written (Exercise 8.2)

s1 ≡ s = |∇n|
(2kF )n

= |∇rs |
2(2π/3)1/3rs

. (8.6)

The lowest order terms in the expansion of Fx have been calculated analytically [367,370]

Fx = 1 + 10

81
s2

1 + 146

2025
s2

2 + · · · · (8.7)

Numerous forms for Fx (n, s), where s = s1, have been proposed; these can be illustrated

by the three widely used forms of Becke (B88) [371], Perdew and Wang (PW91) [372], and

Perdew, Burke, and Enzerhof (PBE) [373].1 In Fig. 8.1, we compare the factors Fx for these

three approximations. Most other approximations lead to an Fx that falls between B88 and

PBE, so the qualitative results obtained by employing other functionals can be appreciated

from the behavior of these functionals. As shown in Fig. 8.1, one can divide the GGA into

two regions: (i) small s (0 < s ∼< 3) and (ii) large s(s ∼> 3) regions. In region (i), which is

1 A revised PBE form called “RPBE” has also been proposed in [374].
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relevant for most physical applications, different Fx s have nearly identical shapes, which

is the reason that different GGAs give similar improvement for many conventional systems

with small density gradient contributions. Most importantly, Fx ≥ 1, so all the GGAs lead to

an exchange energy lower than the LDA. Typically, there are more rapidly varying density

regions in atoms than in condensed matter, which leads to greater lowering of the exchange

energy in atoms than in molecules and solids. This results in the reduction of binding energy,

correcting the LDA overbinding, and improving agreement with experiment, which is one

of the most important characteristics of present GGAs [224].

Note that in the range 0 < s ∼< 3 the average value of the enhancement is roughly 4/3,

making the average exchange similar to that proposed by Slater, although for very different

reasons. Perhaps this accounts for the improvement that has often been found in calculations

that use the factor 4/3 or an adjustable factor called “Xα” that tends to be between 1 and

4/3.

In region (ii), the different limiting behaviors of Fx s result from choosing different

physical conditions for s → ∞. In B88-GGA, FB88-GGA
x (s) ∼ s/ ln(s) was chosen to

give the correct exchange energy density (εx → −1/2r ) [371]. In PW91-GGA, choosing

FPW91-GGA
x (s) ∼ s−1/2 satisfies the Lieb–Oxford bound (see [373]) and the non-uniform

scaling condition that must be satisfied if the functional is to have the proper limit for a thin

layer or a line [372]. In PBE-GGA, the non-uniform scaling condition was dropped in favor

of a simplified parameterization with FPBE-GGA
x (s) ∼ const. [373]. The fact that different

physical conditions lead to very different behaviors of Fx s in region (ii) not only reflects

the lack of knowledge of the large density gradient regions but also an inherent difficulty

of the density gradient expansion in this region: even if one form of GGA somehow gives

the correct result for a certain physical property while others fail, it is not guaranteed that

the form is superior for other properties in which different physical conditions prevail.

Correlation is more difficult to cast in terms of a functional, but its contribution to the total

energy is typically much smaller than the exchange. The lowest order gradient expansion

at high density has been determined by Ma and Brueckner [375] (see [373]) to be

Fc = εLDA
c (n)

εLDA
x (n)

(1 − 0.219, 51s2
1 + · · ·). (8.8)

For large density gradients the magnitude of correlation energy decreases and vanishes as

s1 → ∞. This decrease can be qualitatively understood since large gradients are associ-

ated with strong confining potentials that increase level spacings and reduce the effect of

interactions compared to the independent-electron terms. As an example of a GGA for

correlation, Fig. 8.2 shows the correlation enhancement factor FPBE-GGA
c for the PBE func-

tional, which is almost identical to that for the PW91-GGA. The actual analytic form for

the PBE correlation is given in App. B.

There are now many GGA functionals that are used in quantitative calculations, espe-

cially in chemistry [224]. Correlation is often treated using the Lee–Yang–Parr (LYP) [376]

functional, which was derived from the orbital dependent Colle–Salvetti functional [377].

That functional was in turn derived for the He atom and parameterized to fit atoms with more

electrons. Krieger and coworkers [378] have constructed a functional (KCIS) based upon



8.3 LDA and GGA expressions for the potential V σ
xc(r) 157

0 2 4 86 10

s

0

0.1

0.2

0.3

0.4

0.5

F
cP

B
E

-G
G

A

rs = 10.0 (LDA)

rs = 5.0 (LDA)

rs = 2.0 (LDA)

rs = 0.5 (LDA)

Figure 8.2. Correlation enhancement factor Fc as a function of the dimensionless density gradient s
for the PBE functional. The actual form is given in App. B. Other functionals are qualitatively

similar. (See caption of Fig. 8.1).

many-body calculations [379] of an artificial “jellium with a gap” problem that attempts

to incorporate the effect of a gap into a functional. Most other functionals have parameters

adjusted to fit to molecular data. Selected explicit forms can be found in [93, 224, 368].

8.3 LDA and GGA expressions for the potential V σ
xc(r)

The part of the Kohn–Sham potential due to exchange and correlation V σ
xc(r) is defined by

the functional derivative in (7.13) or (7.18). The potential can be expressed more directly for

LDA and GGA functionals, (8.1) and (8.3), since they are expressed in terms of functions

(not functionals) of the local density of each spin n(r, σ ) and its gradients at point r. Explicit

forms are given in App. B.

In the LDA, the form is very simple,

δExc[n] =
∑

σ

∫

dr
[

εhom
xc + n

∂εhom
xc

∂nσ

]

r,σ
δn(r, σ ), (8.9)

so that the potential,

V σ
xc(r) =

[

εhom
xc + n

∂εhom
xc

∂nσ

]

r,σ
, (8.10)

involves only ordinary derivatives of εhom
xc (n↑, n↓). Here the subscript r, σ means the quan-

tities in square brackets are evaluated for nσ = n(r, σ ). The LDA exchange terms are

particularly simple: since εhom
x (nσ ) scales (nσ )1/3 it follows that

V σ
x (r) = 4

3
εhom

x (n(r, σ )). (8.11)
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The correlation potential depends upon the form assumed, with selected examples given in

App. B.

In the GGA one can identify the potential by finding the change δExc[n] to linear order

in δn and δ∇n = ∇δn,

δExc[n] =
∑

σ

∫

dr
[

εxc + n
∂εxc

∂nσ
+ n

∂εxc

∂∇nσ
∇

]

r,σ
δn(r, σ ). (8.12)

The term in square brackets might be considered to be the potential; however, it does not

have the form of a local potential because of the last term which is a differential operator.

There are three approaches to handling the last term. The first is to find a local V σ
xc(r) by

partial integration (see App. A) of the last term in square brackets to give

V σ
xc(r) =

[

εxc + n
∂εxc

∂nσ
− ∇

(

n
∂εxc

∂∇nσ

)]

r,σ
. (8.13)

This is the form most commonly used; however, it has the disadvantage that it requires higher

derivatives of the density that can lead to pathological potentials and numerical difficulties,

for example, near the nucleus or in the outer regions of atoms, where the density is rapidly

varying or is very small (see Exercise 8.3).

A second approach is to use the operator form (8.12) directly by modifying the Kohn–

Sham equations [380]. Using the fact that the density can be written in terms of the wave-

functions ψi , the matrix elements of the operator can be written (for simplicity we omit the

variables r and σ )

〈ψ j |V̂xc|ψi 〉 =
∫

[
Ṽxcψ

∗
j ψi + ψ∗

j Vxc · ∇ψi + (Vxc · ∇ψ∗
j )ψi

]
, (8.14)

where Ṽxc = εxc + n(∂εxc/∂n) and Vxc = n(∂εxc/∂∇n). This form is numerically more

stable; however, it requires inclusion of the additional vector operator in the Kohn–Sham

equation, which may significantly increase the computational cost; for example, in plane

wave approaches four Fourier transforms are required instead of one.

Finally, a different approach proposed by White and Bird [381] is to treat Exc strictly as a

function of the density; the gradient terms are defined by an operational definition in terms

of the density. Then (8.12) can be written using the chain rule as

δExc[n] =
∑

σ

∫

dr
[

εxc + n
∂εxc

∂nσ

]

r,σ
δn(r, σ )

+
∑

σ

∫ ∫

drdr′n(r)

[
∂εxc

∂∇nσ

]

r,σ

δ∇n(r′)
δn(r)

δn(r, σ ), (8.15)

where (δ∇n(r′)/δn(r)) denotes a functional derivative (which is independent of spin). For

example, on a grid, the density for either spin is given only at grid points n(rm) and the

gradient at ∇n(rm) is determined by the density by a formula of the form

∇n(rm) =
∑

m′
Cm−m′ n(rm′), (8.16)
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so that

δ∇n(rm)

δn(rm ′)
→ ∂∇n(rm)

∂n(rm′)
= Cm−m′ . (8.17)

(Note that each Cm′′ = {C x
m′′ , C y

m ′′ , Cz
m′′ } is a vector in the space coordinates.) In a finite

difference method, the coefficients Cm ′′ are nonzero for some finite range; in a Fourier

transform method, the Cm′′ follow simply by noting that

∇n(rm) =
∑

G

iGn(G)eiG·rm = 1

N

∑

G,m′
iGeiG·(rm−rm′ )n(rm′ ). (8.18)

Finally, varying n(rm, σ ) in the expression for Exc and using the chain rule leads to

V σ
xc(rm) =

[

εxc + n
∂εxc

∂n

]

rm ,σ

+
∑

m ′

[

n
∂εxc

∂|∇n|
∇n

|∇n|
]

rm′ ,σ

Cm ′−m . (8.19)

This form reduces the numerical problems associated with (8.13) without a vector operator

as in (8.14). Note that V σ
xc(rm) is a non-local function of n(rm′ , σ ), the form of which depends

upon the way the derivative is calculated. This is an advantage in actual calculations because

it ensures consistency between Exc and Vxc. The method can be extended to other bases by

specifying the derivative in the appropriate basis.

8.4 Non-collinear spin density

In the usual (collinear) case of a spin polarized system, there are two densities [n↑(r), n↓(r)]

and potentials [V ↑
xc(r), V ↓

xc(r)] for spin up and down. This is, however, not the most general

form since the spin axis can vary in space. In this “non-collinear spin” case [291], the

density at every point is represented by a vector giving the spin direction, or equivalently,

by a local spin density matrix

ραβ(r) =
∑

i

fiψ
α∗
i (r)ψ

β

i (r), (8.20)

and the Kohn–Sham hamiltonian (7.12) becomes a 2 × 2 matrix

Hαβ

KS (r) = −
-h2

2me
∇2 + V αβ

KS (r), (8.21)

where the only part of V αβ

KS that is non-diagonal in αβ is V αβ
xc .

Although this looks like a major complication, the only real difficulty is in the nature of

the functional ε
αβ
xc . In the local approximation it is given simply by finding the local axis

of spin quantization and using the same functional form εhom
xc (n↑(r), n↓(r)) given in (8.1).

Examples of calculation can be found in [382–385]. Modifications of GGA expressions

involve the gradient of the spin axis.
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8.5 Non-local density formulations: ADA and WDA

A different approach to the generalization of the local density approximation proposed by

Gunnarsson et al. [348] is to construct a non-local functional that depends on the density

in some region around each point r. The original proposals were designed to provide a

natural extension of the local functional in a way that satisfies the sum rules. This led

to two approaches, the average density approximation (ADA) and the weighted density

approximation (WDA) [348]. In the ADA, the exchange–correlation hole (7.16) and energy

(7.17) are approximated by the corresponding quantity for a homogeneous gas of average

density n̄σ instead of the local density n(r, σ ). This leads to

EADA
xc [n↑, n↓] =

∫

d3rn(r)εhom
xc (n̄↑(r), n̄↓(r)), (8.22)

where

n̄(r) =
∫

d3r′ w(n̄(r); |r − r′|) n(r′) (8.23)

is a non-local functional of the density for each spin separately. The important point is the

non-local nature of the ADA exchange–correlation hole whose extent depends not only

upon the density at the observation point but upon a weighted average around r. The weight

function w can be chosen in several ways. Gunnarsson et al. [348] originally proposed a

form based on the linear response of the homogeneous electron gas, and given in tabular

form. The WDA is related, but differs in the way the weighting is defined.

Tests have shown that there are advantages of the ADA and WDA, but there have not been

extensive studies. A clear superiority over the ordinary LDA and GGAs is that in the limit

where a three-dimensional system approaches two dimensional (e.g. in a confined electron

gas in semiconductor quantum wells) the non-local functionals are well behaved whereas

most of the LDA and GGA functionals diverge [386] (see Ex. 8.4). On the other hand, the

ADA and WDA functionals suffer from the serious difficulty that core electrons distort the

weighting in an unphysical way, so that any reasonable weighting must involve some shell

decomposition to separate the effects on core and valence electrons.

8.6 Orbital-dependent functionals I: SIC and LDA + U

The most enduring problem with the Kohn–Sham approach is that no systematic way has

been developed to improve the functionals for exchange and correlation. The problems are

most severe in materials in which the electrons tend to be localized and strongly interacting,

such as transition metal oxides and rare earth elements and compounds. These systems

exhibit phenomena associated with correlation such as metal–insulator transitions, heavy

fermion behavior, and high-temperature superconductivity (see, for example, [216]). Vari-

ous methods have been developed to extend the functional approach to incorporate effects

that are expected to be important on physical grounds. Two of these are SIC and LDA + U.

“SIC” denotes methods that use approximate functionals and add “self-interaction cor-

rections” to attempt to correct for the unphysical self-interaction in many functionals for
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exchange and correlation Exc. The self-interaction of an electron with itself in the Hartree

interaction is cancelled in exact treatments of exchange, as in Hartree–Fock and EXX dis-

cussed in Sec. 8.7. However, this is not the case for approximations to Exc, and the errors

can be significant since these terms involve large Coulomb interactions. There is a long

history to such approaches, the first by Hartree himself [43] in his calculations on atoms.

As noted in Sec. 3.5, Hartree defined a different potential for each occupied state by sub-

tracting a self-term due to the charge density of that state. In finite systems, implementing

such corrections is straightforward; however, for an extended state in a solid, the correction

vanishes since the interaction scales inversely with the size of the region in which the state

is localized. Thus, in extended systems there is some arbitrariness in the definition of a SIC.

An approach to extended systems has been developed in which a functional is defined

with self-terms subtracted; minimization of the functional in an unrestricted manner allows

the system of electrons to minimize the total energy by delocalizing the states (in a crystal,

this is the usual Kohn–Sham solution with vanishing correction) or by localizing some or all

of the states to produce a different solution [300,387]. This approach has an intuitive appeal

in that it leads to atomic-like states in systems like transition metal oxides and rare earth

systems, where the electrons are strongly interacting. This is often considered to be a better

starting point for understanding such materials than the mean-field Kohn–Sham solution

(see, for example, [216]). For example, studies using the SIC-LSDA have led to an improved

description of the magnetic state and magnetic order in transition metal oxides [388], high

Tc materials [389], and 4f occupation in rare earth compounds [390].

The quaint acronym “LDA+U” stands for methods that involve LDA- or GGA-type cal-

culations coupled with an additional orbital-dependent interaction [366,391]. The additional

interaction is usually considered only for highly localized atomic-like orbitals on the same

site, i.e. of the same form as the “U” interaction in Hubbard models [392,393]. The effect of

the added term is to shift the localized orbitals relative to the other orbitals, which attempts

to correct errors known to be large in the usual LDA or GGA calculations. For example, the

promotion energies in transition metal atoms in Fig. 10.2 illustrate the fact that the relative

energies shift depending upon the approximation for exchange. Since orbital energies are

shifted by occupations, the LDA+U and SIC approaches have much in common. The “U”

parameter is often taken from “constrained density functional” calculations (Sec. 10.6) so

that the theories do not contain adjustable parameters.

Many examples of “LDA+U” calculations are given in [366]. The prototypical examples

are the magnetic oxides. For example, the usual spin density theory for NiO finds the correct

spin states and an energy gap, but the value of the gap is much too small. This is corrected

by a “U” term that increases the gap between the filled and empty 3d states. A much more

severe case is CoO, which is an insulator with a gap of 2.4 eV, but which is a metal in density

functional theory calculations unless a term involving orbital polarization is included [394].

This is an effect that can formally be considered within current density functional theory

(Sec. 6.4). Within a spherical approximation around the Co atom, it leads to on-site terms

for the 3d states with an additional self-consistent potential that is proportional to ml , the

component of the orbital angular momentum along the quantization axis. Since the effective

field is self-consistent, the solution may be zero orbital moment or there may be an instability
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to forming a moment. This was found to happen in CoO, splitting the ml states and leading

to an insulating gap [394].

Perhaps the best known cases are the parent compounds of the CuO superconductors

which are found to be non-magnetic metals in the usual LDA and GGA calculations (see

Ch. 17) whereas “LDA+U” calculations find the correct antiferromagnetic insulator solution

[366].

8.7 Orbital-dependent functionals II: OEP and EXX

The essential advance of the Kohn–Sham approach over Thomas-Fermi-type methods is that

the kinetic energy (7.3) is explicitly expressed as a functional of the independent-particle

orbitals ψi . It is implicitly a functional of the density, since the orbitals are determined by

VKS, which in turn is a functional of n; however, the functional dependence upon n must be

highly non-trivial, non-analytic, and non-local. In particular, derivatives of the Kohn–Sham

kinetic energy dTs/dn are discontinuous functions of n at densities corresponding to filled

shells. This is the way in which shell structure occurs in the Kohn–Sham approach, whereas

it is missing in Thomas-Fermi-type approximations.

These properties of the kinetic energy suggest a way to improve exchange–correlation

functionals by expressing Exc explicitly in terms of the independent-particle orbitals ψi . It is

known that the true Exc functional must have discontinuities at filled shells [351,352,395],

which is essential for a correct description of energy gaps between filled bands. Such

effects occur automatically in an orbital-dependent formulation, offering the possibility

for improved description of the effect of correlation upon band gaps in density functional

theory.

How does one formulate the Kohn–Sham theory with orbital-dependent functionals

Exc[{ψi }? In fact there is a long history of such methods that predates the work of Kohn

and Sham, apparently first formulated in a short paper [396] by Sharp and Horton in 1953

as the problem of finding “that potential, the same for all electrons, such that when . . . given

a small variation, the energy of the system remains stationary.” This approach has come

to be known as the optimized effective potential (OEP) method [231, 365, 397]. The key

point is that if one considers orbitals ψi that are determined by a potential through the usual

independent-particle Schrödinger equation, then it is straightforward, in principle, to define

the energy functional of the potential V,

EOEP[V ] = E[{ψi [V ]}]. (8.24)

The OEP method is fully within the Kohn–Sham approach since it is just the optimization

of the potential V that appears in the very first Kohn–Sham equation (7.1). Furthermore,

as emphasized in Sec. 9.2, the usual Kohn–Sham expressions are operationally functionals

of the potential; the OEP is merely an orbital formulation of the general idea. The OEP

method has been applied primarily to the Hartree–Fock exchange functional, which is

straightforward to write in terms of the orbitals (the fourth term in (3.44)), which is called

“exact exchange” or “EXX.” However, the OEP approach is more general and applicable

to orbital-dependent correlation functionals as well.
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The variational equation representing the minimization of energy (8.24) can be written

using the density formalism as an intermediate step. Since the potential V acts equally on

all orbitals, it follows that

V σ,OEP
xc (r) = δEOEP

xc

δnσ (r)
, (8.25)

which can be written (see Exercise 8.5) using the chain rule [223, 365] as

V σ,OEP
xc (r) =

∑

σ ′

N σ ′
∑

i=1

∫

dr′ δEOEP
xc

ψσ ′
i (r′)

ψσ ′
i (r′)

δnσ (r)
+ c.c. (8.26)

=
∑

σ ′

N σ ′
∑

i=1

∫

dr′
∫

dr′′
[

δEOEP
xc

δψσ ′
i (r′)

δψσ ′
i (r′)

δV σ ′,K S(r′′)
+ c.c.

]
δV σ ′,K S(r′′)

δnσ (r)
,

where V σ ′,KS is the total potential in the independent-particle Kohn–Sham equations that

determine the ψσ ′
i . Each term has a clear meaning and can be evaluated from well-known

expressions:

� The first term is an orbital-dependent non-local (NL) operator that can be written

δEOEP
xc

δψσ ′
i (r′)

≡ V σ ′,NL
i,xc (r′)ψσ ′

i (r′). (8.27)

For example, in the exchange-only approximation, V σ ′,NL
i,xc (r′) is the orbital-dependent

Hartree–Fock exchange operator (3.48).
� The second term can be evaluated by perturbation theory,2

δψσ ′
i (r′)

δV σ ′,KS(r′′)
= Gσ ′

0 (r′, r′′)ψσ ′
i (r′′), (8.28)

where the Green’s function for the non-interacting Kohn–Sham system is given by (see

(D.3) which is written here with spin explicitly indicated)

Gσ
0 (r, r′) =

∞∑

j �=i

ψσ
j (r)ψσ∗

j (r′)

εσ i − εσ j
. (8.29)

� The last term is the inverse of a response function χ0 given by

χ
σ,KS
0 (r, r′) = δnσ (r)

δV σ ′,KS(r′′)
=

N σ∑

i=1

ψσ∗
i (r)Gσ

0 (r, r′)ψσ
i (r′), (8.30)

where we have used a chain rule and the fact that n is given by the sum of squares of

orbitals, (7.2).

2 Note that G0 and the derivative in (8.28) are diagonal in spin since they involve the non-interacting Kohn–Sham

system.
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The integral form of the OEP equations (see Exercise 8.5) can be found by multiplying

(8.27) by χσ
0 (r, r′) and integrating:

N σ∑

i=1

∫

dr′ψσ∗
i (r′)

[
V σ,OEP

xc (r′) − V σ,NL
i,xc (r′)

]
Gσ

0 (r′, r)ψσ
i (r) + c.c. = 0. (8.31)

This form shows the physical interpretation that V σ,OEP
xc (r) is a particular weighted average

of the non-local orbital-dependent potentials.

The integral form is the basis for useful approximations for which the potential can be

given explicitly, e.g. as proposed by Krieger, Li, and Iafrate (KLI) [365,398–400]. Although

KLI gave a more complete derivation, a heuristic derivation [365,396,398] is to replace the

energy denominator in the Green’s function by a constant �ε. Then the value of �ε drops

out of (8.31) and (8.29) becomes

Gσ
0 (r, r′) →

∞∑

j �=i

ψσ
j (r)ψσ∗

j (r′)

�ε
= δ(r − r′) − ψσ

i (r)ψσ∗
i (r′)

�ε
. (8.32)

As discussed in Exercise 8.8, the KLI approximation leads to the simple form

V σ,KLI
xc (r) = V σ,S

xc (r) +
N σ∑

i=1

nσ
i (r)

nσ (r)

[
V̄ σ,KLI

i,xc − V̄ σ,NL
i,xc

]
, (8.33)

where V σ,S
xc (r) is the density-weighted average proposed by Slater [401]

V σ,S
xc (r) = V σ,S

xc (r) +
Nσ∑

i=1

nσ
i (r)

nσ (r)
V̄ σ,NL

i,xc (8.34)

and the V̄ are expectation values

V̄ σ,KLI
i,xc = 〈ψσ

i |V σ,KLI
xc |ψσ

i 〉,
V̄ σ,NL

i,xc = 〈ψσ
i |V σ,NL

i,xc |ψσ
i 〉. (8.35)

Finally, by taking matrix elements of (8.33), the equations become a set of linear equations

for the matrix elements V̄ σ,KLI
i,xc , which can be solved readily. The KLI approximation,

including only exchange, has been shown to be quite accurate in many cases [365].

Slater local approximation for exchange

An interesting detour is the difference between the Kohn–Sham formula for the exchange

potential (8.11) and the local form Slater had proposed earlier [401] based upon his ap-

proach of finding a local potential that is a weighted average of the non-local Hartree–Fock

exchange operators (8.34). By averaging the exchange potential of the homogeneous gas,

Slater found Vx = 2εx , rather than the factor 4
3

in (8.11) found by Kohn and Sham from

the derivative of the exchange energy. In the context of the non-local exchange energy

functional, it is not immediately clear which is the better approximation to carry over to an

inhomogeneous system. Only recently has this issue been resolved [397, 399] by careful
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treatment of the reference for the zero of energy in transferring the potential from the gas

to an inhomogeneous system and the second factor in 8.33. The result is the Kohn–Sham

form (8.11).

It has been observed that the Slater local approximation for exchange often gives eigen-

values in better agreement with experiment than does the Kohn–Sham form. This has led

to the “Xα” approximation with an adjustable constant. In hindsight, this can be justified

in part by the fact that gradient corrections lead to typical increases of similar magnitude,

as shown in Fig. 8.1.

8.8 Hybrid functionals

The form of the coupling constant integration for the exchange–correlation energy, (7.15),

is the basis for constructing a class of functionals called “hybrid” because they are a combi-

nation of orbital-dependent Hartree–Fock and an explicit density functional. These are the

most accurate functionals available as far as energetics is concerned and are the method of

choice in the chemistry community (see, e.g. [402] and [224]).

The hybrid formulation arises by approximating the integral in (7.15) in terms of informa-

tion at the end points and the dependence as a form of the coupling constant λ. In particular,

at λ = 0 the energy is just the Hartree–Fock exchange energy, which is easily expressed

in terms of the exchange hole that can be calculated from the orbitals (the fourth term in

(3.44)). Becke [403] has argued that the potential part of the LDA or GGA functional is

most appropriate at full coupling λ = 1, and has suggested that the integral (7.15) can be

approximated by assuming a linear dependence on λ leading to the “half-and-half” form

Exc = 1

2
(EHF

x + EDFA
xc ), (8.36)

where DFA denotes an LDA or GGA functional. Later Becke presented parameterized

forms that are accurate for many molecules, such as “B3P91” [403,404], a three-parameter

functional that mixes Hartree–Fock exchange, the exchange functional of Becke (B88), and

correlation from Perdew and Wang (PW91). Alternatively, the B3LYP form uses the LYP

correlation. The definition of the exchange–correlation energy is

Exc = ELDA
xc + a0(EHF

x − EDFA
x ) + ax EBecke

x + ac Ec, (8.37)

with coefficients that are empirically adjusted to fit atomic and molecular data.

The coupling-constant integration approach has also been used to generate hybrid func-

tionals by Perdew and coworkers, but with the idea of deriving the form theoretically.

Based upon arguments on the variation of Exc(λ) as a function of λ, Perdew, Ernzerhof,

and Burke [405] proposed the form

Exc = ELDA
xc + 1

4
(EHF

x − EDFA
xc ), (8.38)

that is, mixing in 1/4 the Hartree–Fock exchange energy. They have also given rationale

for variations and for the values found previously by fitting. For example, the “1/4” form
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has been tested using the PBE [373] form for EDFA
xc on a large set of molecules and found

to be roughly comparable in accuracy to functionals with several fitted parameters [402].

Hybrid functionals can be used in different ways. Their use is not strictly within the usual

Kohn–Sham approach if the Hartree–Fock equations are solved with a non-local exchange

operator; however, it can be brought into the Kohn–Sham family by the OEP (Sec. 8.7).

The most striking change due to use of the hybrid functionals is the predicted excitation

energies; an example are the calculated bands of Si shown in Fig. 15.3 determined using

the B3LYP functional.

8.9 Tests of functionals

It is instructive to examine the consequences of different approximations for the exchange–

correlation functional in the simplest cases, where the conceptual structure is apparent and

the quantitative results reveal aspects that may carry over to more complicated problems.

One-electron problems: hydrogen

For any one-electron problem, Hartree–Fock provides the exact solution for the total energy

and the lowest eigenvalue of the Hartree–Fock equation (3.45) is the exact energy to remove

the electron. This is because there is no correlation and the exchange potential (3.48) exactly

cancels the self-interaction in the Hartree potential. However, the excited state eigenvalues

of (3.45) denote the energy to add a second electron assuming there is no correlation and
no change in the occupied orbital. There are often very large errors in the addition energies,

e.g. for the H atom treated by Hartree–Fock, there are no bound states for added electrons,

whereas in fact a second electron is bound by a small energy.

Exact exchange (EXX, Sec. 8.7) is Kohn–Sham density functional theory with the

Hartree–Fock orbital-dependent exchange functional. For one electron, the bound state

is exact, just as in Hartree–Fock; however, EXX is qualitatively different for excited states.

In this case, the local Kohn–Sham potential is just the external potential, and the excited

eigenvalues are the exact eigenvalues for the single electron in the external potential. For the

H atom, this is the Rydberg series of excitations. Thus, excited state EXX eigenvalues corre-

spond to excitation energies with no change in the number of electrons and are not energies

for addition of electrons. Their interpretation as excitation energies also applies for high

Rydberg states of multi-electron atoms, and suggests this interpretation for other cases as

well [406].

On the other hand, one-particle problems are severe tests for approximate functionals

such as the LDA and GGAs. The functionals are designed to deal with many electrons (e.g.

the homogeneous gas) and their application to a one-particle problem introduces unphysical

terms: (1) the unphysical self-interaction in the Hartree term is not cancelled exactly by the

approximate exchange functional, and (2) it is spurious to introduce a correlation functional

into a one-particle problem. The question is: how much damage is done in these cases where

exact answers are known? The first row of Tabs. 8.1 and 8.2 gives the results for the value
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Table 8.1. Exchange energies (−Ex , in Ha) for selected spherically symmetric atoms.

Exact values denote “exact exchange” (EXX) in the Kohn–Sham theory. The other

energies are calculated using the same EXX density. The functionals are described in the

text. The last row is the mean absolute value of the error for 12 atoms given in [407].

Atom Exact LSDA PBE RPBE BLYP HCTH PKZB

H 0.3125 0.2680 0.3059 0.3112 0.3098 0.3055 0.3081

He 1.0258 0.8840 1.0136 1.0313 1.0255 1.0063 1.0202

Be 2.6658 2.3124 2.6358 2.6801 2.6578 2.6114 2.6482

N 6.6044 5.908 6.5521 6.6252 6.5961 6.5145 6.5255

Ne 12.1050 11.0335 12.0667 12.1593 12.1378 12.0114 11.9514

Error, % 0 9.8 0.8 0.3 0.2 1.4 1.3%

Table 8.2. Correlation energies (−Ec, in Ha) for selected spherically symmetric atoms.

The various functionals are evaluated for the same EXX density as in Tab. 8.1. The RPBE

correlation functional is omitted since it is the same as PBE, and KCIS denotes the

correlation functional derived in [378] incorporating effects of a gap. See caption of

Tab. 8.1. From [407].

Atom Exact LSDA PBE BLYP HCTH PKZB KCIS

H 0.0000 0.0222 0.0060 0.0000 0.0132 0.0000 0.0000

He 0.0420 0.1125 0.0420 0.0438 0.0753 0.0473 0.0408

Be 0.0950 0.2240 0.0856 0.0945 0.1505 0.0936 0.0861

N 0.1858 0.4268 0.1799 0.1919 0.2772 0.1841 0.1805

Ne 0.3939 0.7428 0.3513 0.3835 0.5046 0.3635 0.3667

Error, % 0 128.3 6.4 4.5 51.8 5.8 4.3%

of exchange and correlation energies for H resulting from various functionals [407]. The

difference from the exact value indicates the accuracy. The most obvious result is that there

are significant errors in the LSDA that are considerably improved by the GGAs. Note that

the separate errors in exchange and correlation in the LSDA tend to cancel, so that the error

in the final LSDA energy is ≈0.48 Ha. This is in surprisingly good agreement with the exact

value, 0.5 Ha. Although there is no such cancellation for the GGAs, their final results for

the total energy are much improved over LSDA.

Two-electron problems: He and H2

The neutral He atom and H2 molecule are the simplest two-electron systems which nev-

ertheless exemplify issues related to many of the most important problems in condensed

matter physics. The exchange and correlation energies for He are also given in Tabs. 8.1
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Figure 8.3. Energy versus separation R for an H2 molecule, comparing LSDA (unrestricted) and

Hartree–Fock (restricted-RHF) with the exact energies from [408]. The two sets of curves are for the

spin singlet (bonding) and triplet (antibonding) states. The most remarkable result is the accuracy of

the LSDA near the minimum, whereas the Hartree–Fock curve is too high since it omits correlation.

At large R the unrestricted LSDA has a broken symmetry solution that approaches the usual

spin-polarized isolated-atom LSDA limit. The triplet Hartree–Fock energy approaches the exact

isolated atom limit, E ≡ 0, for large R, but the singlet approaches the wrong limit in the restricted

approximation. Figure provided by O. E. Gunnarsson.

and 8.2. The good agreement for the LYP functional may not be surprising since it was

constructed using He as a starting point; however, the quality of the results is impressive

for functionals such as PBE constructed from information on the homogeneous gas.

The neutral H2 molecule is a two-electron system that can be considered to be like He

at very short distances R between the protons. At equilibrium lengths (and shorter) it is an

excellent approximation to consider the exact system of two correlated electrons starting

from the independent electron approximation, introducing correlation as a quantitative

effect. The LDA is remarkably accurate, as shown in Fig. 8.3. However, at large distances

there is a strong correlation between the electrons, with a greatly reduced probability of

finding two electrons near the same atom at one time, compared to the probability of 1
4

which would occur in the non-interacting case.

How do the eigenvalues compare with experimental removal energies? Since the high-

est eigenvalue is exact in an exact Kohn–Sham calculation, this is a test of approximate

functionals. As illustrated in Fig. 8.4, there is a large effect in finite systems due to the

long-range form of the potential [409]. The self-interaction term that occurs in approximate

functionals has the effect of adding a spurious repulsive term that raises the eigenvalues

and makes states too weakly bound. Proper treatment of the non-local exchange eliminates

this effect and makes the states more strongly bound. Similar consequences of non-local

exchange are found in calculations on many-electron atoms as illustrated in Sec. 10.5.
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Figure 8.4. Exchange–correlation potential in two-electron ions, comparing the exact Vxc with the

LDA. Each is derived from an essentially exact density. Note that the LDA potential is too high

leading to an eigenvalue that is also too high. This can be easily understood from the fact that the

exact potential has an attractive 1/r form at long range that is missing in the LDA. From Almbladh

and Pedroza [409].

Tests for sets of atoms, molecules, and solids

The various functionals have been tested by many authors on various systems, for example

extensive tests on the “extended G2” set of atoms and molecules (see [224], [410], and

references cited there). The PBE [373] and hybrid PBE [405] functionals with fewer pa-

rameters have been compared to other functionals and found to be of approximately the same

accuracy for the extended G2 set [402], for other molecules including transition metals [411],

hydrogen bonding [167] in H2O, for phase transitions in solids [412], and many other ex-

amples. In Tabs. 8.1 and 8.2 are given results comparing functionals for several atoms. The

last line is the mean absolute error for 12 atoms tested and reported in [407], which indicates

rather severe errors in LSDA and great improvement (but not always uniform) in the GGAs.

SELECT FURTHER READING

See references in “Select further reading” in Chapter 7.
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Exercises

8.1 Derive the “spin-scaling relation” (8.4). From this it follows that in the homogeneous gas, one

needs only the exchange in the unpolarized case.

8.2 (a) Show that the expression for the dimensionless gradients s1 = s in (8.5) can be written in

terms of rs as (8.6).

(b) Find the form of the second gradient s2 in terms of rs .

8.3 Use the known form of the density near a nucleus to analyze the final term in (8.13) near the

nucleus. Show that the term involves higher-order derivatives of the density that are singular at

the nucleus.

(a) Argue that such a potential is unphysical using the facts that the exact form of the exchange

potential is known and correlation is negligible compared to the divergent nuclear potential.

(b) Show that, nevertheless, the result for the total energy is correct since it is just a transformation

of the equations.

(c) Finally, discuss how the singularity can lead to numerical difficulties in actual calculations.

8.4 Show that if a three-dimensional system is compressed in one direction so that the electrons are

confined to a region that approaches a two-dimensional plane, the density diverges and the LDA

expression for the exchange energy approaches negative infinity. Show that this is unphysical

and that the exchange energy should approach a finite value that depends upon the area density.

Argue that this is not necessarily the case for a GGA, but that the unphysical behavior can be

avoided only by stringent conditions on the form of the GGA.

8.5 Derive the general OEP expression, (8.25), using the chain rule, and show that it leads to the

compact integral expression, (8.31).

8.6 Write out explicit expressions for the inversion of the response function needed in (8.25) by

expressing the response function in a basis. Consider appropriate bases for two cases: a radially

symmetric atom (with the potential and density on a one-dimensional radial grid) and a periodic

crystal (with all quantities represented in Fourier space).

8.7 An impediment in actual application of the OEP formula, (8.25) is the fact that the response

function is singular. Show that this is the case since a constant shift in the potential causes no

change in the density. Describe how such a response function can be inverted. Hint: One can

define a non-singular function by projecting out the singular part. This may be most transparent

in the case of a periodic crystal where trouble arises from a constant potential which is known

to be undetermined.
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8.8 Show that the approximation, (8.32), substituted into the integral equation, (8.31), leads to the

KLI form, (8.33), and discuss the ways in which this is a much simpler expression than the

integral equation, (8.31).

8.9 Problem on a diatomic molecule that demonstrates the breaking of symmetry in mean-field

solutions such as LSDA.

(a) Prove that the lowest state is a singlet for two electrons in any local potential.

(b) Show this explicitly for the two-site Hubbard model with two electrons.

(c) Carry out the unrestricted HF calculation for the two-site Hubbard model with two electrons.

Show that for large U the lowest energy state has broken symmetry.

(d) Carry out the same set of calculations for the hydrogen molecule in the LSDA. This can

be done using programs available on-line (Ch. 24). Show that the lowest energy state changes

from the correct symmetric singlet to a broken symmetry state as the atoms are pulled apart.

(e) Explain why the unrestricted solution has broken symmetry in parts (c) and (d), and discuss

the extent to which it represents correct aspects of the physics even though the symmetry is not

correct.

(f) Explain how to form a state with proper symmetry using the solutions of (c) and (d) and a

sum of determinants.

8.10 Compute the exact exchange potential as a function of radius r in an H atom using the exact

wavefunction in the ground state. This can be done with the formulas in Ch. 10 and numerical

integration. Compare with the LDA approximation for the exchange potential using the exact

density and expression (8.11), (note the system is full-spin polarized). Show the comparison

explicitly by plotting the potentials as a function of radius. Justify the different functional forms

of the potentials at large radius in the two cases.

8.11 The hydrogen atom is also a test case for correlation functionals; of course, correlation should

be zero in a one-electron problem. Calculate the correlation potential using the approximate

forms given in App. B (or the simpler Wigner interpolation form). Is the result close to zero?

Does the correlation potential tend to cancel the errors in the local exchange approximation?

8.12 Apply the KLI approximation to H in its ground state. Is the KLI approximation exact in this

case (as is the original EXX)?
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Solving the Kohn–Sham equations

Summary

The Kohn–Sham equations provide the framework for finding the exact density
and energy of the ground state of a many-body electron problem using standard
independent-particle methods. These equations form the basis for much of the
electronic structure developments described in the remainder of this volume.
This chapter is devoted to the general form of the solution in terms of cou-
pled self-consistent independent-particle Schrödinger-like equations. In order
to apply the equations, one needs only the equations given in Ch. 7 (and sum-
marized in the flow chart, Fig. 9.1) along with an explicit expression for the
exchange–correlation functional Exc[n]. The reader is directed to Chs. 7 and 8
for discussion of the Kohn–Sham method itself, which follows directly from
the choice of the auxiliary system, and the rationale for construction of the
exchange–correlation functional Exc[n]. Examples of explicit forms for ap-
proximate functionals are given in Ch. 8 and App. B.

9.1 The self-consistent coupled Kohn–Sham equations

The Kohn–Sham equations derived in Sec. 7.2 are summarized in the flow chart in Fig. 9.1.

They are a set of Schrödinger-like independent-particle equations which must be solved

subject to the condition that the effective potential V σ
eff(r) and the density n(r, σ ) are consis-

tent. The explicit reference to spin will be dropped, except where needed, and notation Veff

and n will be assumed to designate both space and spin dependence (of course, the potential

for each spin depends upon the densities for both spins). An actual calculation utilizes a

numerical procedure that successively changes Veff and n to approach the self-consistent

solution. The computationally intensive step in Fig. 9.1 is “solve KS equation” for a given

potential Veff. This is the subject of the following chapters. Here this step is considered a

“black box” that uniquely solves the equations for a given input V in to determine an output

density nout, i.e. V in → nout. Conversely, for a given form of the xc functional, any density

n determines a potential Veff as shown in the second box. (This is the same as (7.13) and

examples of specific expressions are given in Sec. 8.3.)

The problem is that, except at the exact solution, the input and output potentials and

densities do not agree. To arrive at the solution one defines operationally a new potential
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Figure 9.1. Schematic representation of the self-consistent loop for solution of Kohn–Sham

equations. In general, one must iterate two such loops simultaneously for the two spins, with the

potential for each spin a functional of the density of both spins.

nout → V new, which can then start a new cycle with V new as the new input potential. Clearly,

the procedure shown in Fig. 9.1 can be made into the iterative progression

Vi → ni → Vi+1 → ni+1 → . . . , (9.1)

where i labels the step in the iteration. The progression converges with a judicious choice

of the new potential in terms of the potential or density found at the previous step (or steps).

Methods for reaching self-consistency are described in Sec. 9.3. However, it is first best

to probe the nature of various possible total energy functionals. The expressions are needed
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for the final calculation of the energy and, in addition, the behavior of any of the functionals

near the correct solution provides the basis for analysis of the convergence characteristics

using that functional.

9.2 Total energy functionals

The subject of this section is the behavior of various functionals, all of which have the same

minimum energy solution of the Kohn–Sham equations, but behave differently away from

the minimum. In particular, it is not essential to regard the density as the independent variable

in the equations; different functionals can be found by a Legendre transformation to change

the independent and dependent variables, as is familiar in thermodynamics. In terms of the

Kohn–Sham equations, this means the behavior as a functional of the difference of input

and output quantities �V = V out − V in and �n = nout − nin, where nout is the resulting

density from solving the Schrödinger-like equation with the potential V in. It is essential to
utilize correct variational expressions in order to have the desired variational properties.

The original expression for the Kohn–Sham energy functional is given by (7.5), which is

repeated here, with the grouping of all the potential terms to define Epot[n],

EKS = Ts[n] + Epot[n], (9.2)

Epot[n] =
∫

drVext(r)n(r) + EHartree[n] + EI I + Exc[n]. (9.3)

The first three terms on the right-hand side of the second equation together form a neutral

grouping equal to the classical Coulomb interaction ECC in (3.14). Since the eigenvalues

of the Kohn–Sham equations are given by

εσ
i = 〈ψσ

i |Hσ
K S|ψσ

i 〉, (9.4)

the kinetic energy can be expressed as

Ts = Es −
∑

σ

∫

dr V σ,in(r)nout(r, σ ), (9.5)

where

Es =
∑

σ

Nσ∑

i=1

εσ
i . (9.6)

The advantages of this formulation are that the eigenvalues are available in actual calcu-

lations and, furthermore, Es in (9.6) is itself a functional. It is the ground state energy

of a non-interacting electron system, for which the Hohenberg–Kohn theorems, the force

theorem, etc., all apply in a particularly simple way.

The Kohn–Sham functional of the potential EKS[V ]

Although the Kohn–Sham energy (9.2) is, in principle, a functional of the density, it is

operationally a functional of the input potential EKS[V in], as indicated in the flow chart,
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Fig. 9.1. (Here V denotes the potential for each spin, V σ (r).) At any stage of a Kohn–Sham

calculation when the energy is not at the minimum, V in determines all the quantities in the

energy. This is clearly shown if we write EKS from (9.2) as

EKS[V in] = Es[V in] −
∑

σ

∫

dr V σ,in(r)nout(r, σ ) + Epot[n
out], (9.7)

where the first two terms on the right-hand side are a convenient way of calculating the

independent-particle kinetic energy as in (9.5), and Epot is the sum of potential terms given

in (9.3) evaluated for n = nout. Since Es is the sum of eigenvalues, (9.6), and nout(r, σ ) is

the output density, each determined directly by the potential V σ,in(r), clearly the energy is

a functional of V in. Of course, EKS formally can be regarded as a functional of nout, since

there is a one-to-one relation of the output density and the input potential (except for a

trivial constant in V in); however, the Kohn–Sham equations provide no way of choosing

nout except as an output determined by a potential.

The solution of the Kohn–Sham equations is for the potential V in that minimizes the

energy, (9.7). Then V in = VKS, the output density nout is the ground state density n0, and

the potential and density are consistent with the relation in (7.13). The functional EKS[V in]

is variational and all other potentials lead to energies that are higher by an amount that is

quadratic in the error V in − VKS. Near the minimum energy solution, the error in the energy

must also be quadratic in the error in the density δn = nout − n0, so that

EKS[V in] = EKS[VKS] + 1

2

∑

σ,σ ′

∫

drdr′
[

δ2 EKS

δn(r, σ )δn(r′, σ ′)

]

n0

δn(r, σ )δn(r′, σ ′), (9.8)

where the second term is always positive.

Explicit functionals of the density

As shown by Harris [415], Weinert, et al. [416], and Foulkes and Haydock [417], one can

choose different expressions for the total energy functional that are given explicitly in terms

of the density. The functional is cast in terms of the density nin that, via (7.13), determines

the input potential V [nin] ≡ Vnin , which in turn leads directly to the sum of eigenvalues,

the first term on the right-hand side of (9.7). The energy is then defined by evaluating the

functional Epot[nin] in (9.3) in terms of the chosen input density nin(r, σ ) (instead of the

output density nout(r, σ ) as in the Kohn–Sham functional),

EHWF[nin] ≡ Es[Vnin ] −
∑

σ

∫

dr V σ
nin (r)nin(r, σ ) + Epot[n

in]. (9.9)

The stationary properties of this functional can be understood straightforwardly following

the arguments of Foulkes [417]. For a given input density nin and potential Vnin , the difference

in the two expressions for the energy involves only the potential terms

EKS[V in] − EHWF[nin] =
∑

σ

∫

dr V σ
nin (r)

[
nout(r, σ ) − nin(r, σ )

]

+ [
Epot[n

out] − Epot[n
in]

]
. (9.10)
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Near the correct solution where �n = nout − nin is small, one can expand the difference

in (9.10) in powers of �n. The linear terms cancel (which follows from the fact that

V σ
nin (r) = [δEpot/(δn(r, σ ))]nin , see Exercise 9.2), so that the lowest order terms are

EKS[V in] − EHWF[nin] ≈ 1

2

∑

σ,σ ′

∫

drdr′K (r, σ ; r′, σ ′)nin�n(r, σ )�n(r′, σ ′), (9.11)

where the kernel K is defined to be

K (r, σ ; r′, σ ′) ≡ δ2 EHxc[n]

δn(r, σ )δn(r′, σ ′)

= 1

|r − r′|δσ,σ ′ + δ2 Exc[n]

δn(r, σ )δn(r′, σ ′)
, (9.12)

evaluated for n = nin. (Note that K has been defined in terms of EHxc[n] ≡ EHartree[n] +
Exc[n]; the other terms in Epot[n] do not contribute since they are constant or linear in n.)

Since the differences in the energies are quadratic in the errors in the density, it follows that

at the exact solution where �n(r, σ ) = 0, the functional EHWF[nin] equals the usual Kohn–

Sham energy and it is stationary. However, it is not variational, which can be seen from

(9.11). Since the kernel K tends to be positive (see below), then EHWF[nin] is lower than

EKS[V in]. Thus even though EKS[V in] is always above the Kohn–Sham energy, EHWF[nin]

may be lower by an amount that is second order in the error �n(r, σ ).

The primary advantage of the explicit functional of the density (9.9) is that, for densities

near the correct solution, it can accurately approximate the true Kohn–Sham energy. In

particular, it is often an excellent approximation to stop the calculation after one calculation

of eigenvalues with no self-consistency: in this case one does not even need to calculate

the output density. This approach is remarkably successful if n(r) is approximated by a

sum of atomic densities [144, 415, 417–419]. Perhaps the first example was calculation of

phonon frequencies [144]. Foulkes has used this as a conceptual basis for the success of

empirical tight-binding models where the energy is given strictly by sums of eigenvalues

plus additional terms that can be accounted for in this approach (see Sec. 14.4 on tight-

binding). In addition, it is particularly simple to calculate the energy relative to neutral

atoms in terms of the difference in the density from a sum of neutral atoms. This yields

directly desirable physical quantities, as described in Sec. F.4.

In a full self-consistent calculation the functional (9.9) is useful at each step of the iteration

in Fig. 9.1. It is now standard to calculate both energies, (9.7) and (9.9), at each step in the

iteration. The KS functional of the potential is variational, but the non-variational functional

of the density energy is usually closer to the true energy for reasons explained in Sec. 9.3.

It is also very useful to calculate both energies and treat the difference as a measure of the

lack of self-consistency during a calculation.

It is tempting to assume that the explicit density functional (9.9) is a maximum as a

function of density. However, this is not the case in general because the second derivative

functional K (r, σ ; r′, σ ′) in (9.12) is not guaranteed to be positive definite [420–422]. From

the definition of K in (9.12), the first term is positive definite since it is due to the repulsive

Hartree term. One might expect that the second attractive term would never overcome
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the repulsion. However, approximations such as the LDA violate this condition since the

extreme local δ(|r − r′|) behavior leads to large negative contributions for short wavelength

density variations.

Generalized functionals of V and n, E [V, n]

It is also possible to define functionals of the density and potential varied independently, as

pointed out by a number of authors [417,419,423,424]. We will denote n and V by nin and

V in to emphasize that both are independent input functions. The expression is exactly the

same as (9.9), except that V in is regarded as an independent function so that the expression

can be written

E[V in, nin] = Es[V in] −
∑

σ

∫

V σ,in(r)nin(r, σ )dr + Epot[n
in]. (9.13)

The first term is solely a functional of V in, the last term is a functional only of nin, and the

only coupling of V in and nin is through the simple bilinear second term. The properties of the

functional can be seen clearly following the description by Methfessel [419]. Considering

variations around any V in and nin, to linear order

δE[V in, nin] =
∑

σ

∫
[
V σ

nin (r) − V σ,in(r)
]
δn(r, σ )dr

+
∑

σ

∫
[
nout

V in (r, σ ) − nin(r, σ )
]
δV σ (r)dr, (9.14)

where V σ
nin (r) = [ δEpot

δn(r,σ )

]
nin is the potential determined by the input density (as used in (9.9)),

and nout
V in (r, σ ) is the output density determined by the potential V in (as used in (9.7)). Since

the terms in brackets vanish at self-consistency, the functional is stationary and the value

equals the Kohn–Sham energy EKS[V KS].

It is also straightforward to show [419] that for any fixed density nin, the stationary point

of E[V in, nin] as a function of V in is in fact a global maximum as a function of V in, at which

point the value of Es[V max] − ∑
σ

∫
V σ,max(r)nin(r, σ )dr equals the Kohn–Sham kinetic

energy functional Ts[nin]. Although the maximum property may seem surprising, it follows

from inequalities similar to the Hohenberg–Kohn arguments and it can be understood from

(9.14), which shows that

δE

δV σ (r)
= nout(r, σ ) − nin(r, σ ) ⇒ δ2 E

δV σ (r)δV σ ′
(r′)

= δnout(r, σ )

δV σ ′
(r′)

. (9.15)

The eigenvalues of this functional are always negative since the density decreases where the

potential is increased [419]. The curvature of E as a functional of nin is given by the kernel

(9.12), which involves only the potential terms EHxc[n] since the other terms are constant

or linear. As explained following (9.12), E tends to be a minimum as a functional of nin;

however, this is not guaranteed and only with constraints on the density variations is the

solution a minimum [419].
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The importance of the stationarity is that one can approximate both V in and nin. For

example, one can choose convenient forms for the potentials, such as spherical muffin-

tin-type potentials often used in augmented methods. If one carries out the Kohn–Sham

calculation exactly for this potential, of course this is just a restatement of the variational

property of EKS[V ]. The generalized functional shows that the errors in the energy are still

quadratic if the density is also approximated using convenient functional forms. This can

be used to advantage in calculations as illustrated in [419].

Thermal functionals

Introducing temperature has many potential benefits:

� Direct calculation of thermal quantities: entropy S, free energy F = E − TS, etc.
� The density matrix becomes shorter range as the temperature increases, which can be

used to advantage, e.g. in order-N methods (Ch. 23).
� Smearing the occupation makes calculations for metals less sensitive to numerical ap-

proximations.

Expressions for the energy are given by any of the previous functionals with the sum

of single particle energies Es → Es(T ) generalized to finite T as in (3.39). The entropy is

given by the single particle form of the Mermin finite temperature functional (6.20),

S = −
[
∑

i

fi ln fi +
∑

i

(1 − fi ) ln(1 − fi )

]

, (9.16)

where fi denotes the occupation number f (εi − μ).

These formulas can be used as a clever way to calculate E(T = 0). The simple idea is that

E(T ) increases quadratically with T , whereas F(T ) decreases quadratically. A combination

of the two, E + F (see Exercise 9.4), can cancel the quadratic terms and give an expression

equal to E(T = 0) with only quartic corrections. For example, this been used by Gillan [425]

to calculate the vacancy energy in Al using a calculation actually done at a temperature of

10,000 K . The high temperature greatly simplifies the calculations by reducing the finite

size effects in the calculation.

In iterative methods (App. M), one is seeking to find the solution for both the potential

and the wavefunctions at the same time, i.e. the wavefunctions are not consistent with the

potential, as is assumed in the above expressions. As shown in [426], one can generalize

the Fermi function fi to a matrix fi j , which is constrained to have eigenvalues in the range

[0, 1]. Then the density is given by

n(r) =
∑

i j

fi jψ
∗
i (r)ψ j (r), (9.17)

and the grand energy functional (6.20) is generalized to

�̃[V in, nin, T, μ] = E[V in, nin]0 + μ(N0 − Tr[ f ])

+ kB T Tr [ f ln f + (1 − f ) ln(1 − f )] . (9.18)
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This form is particularly useful in iterative methods where it can speed the convergence

in metals by effectively allowing for unitary transformations of the wavefunctions that are

problematic because they correspond to low energy “slow modes” of the electronic system.

The most complete expression for a generalized functional is found by including tem-

perature T via the Mermin functional (see Sec. 6.4) and the chemical potential μ to allow

variation in particle number. Then, as shown by Nicholson et al. [424], one can define a

grand functional,

�[V in, nin, T, μ] = E[V in, nin, T ]0 + μ
(

N0 −
∑

i

fi

)

+ kB T
[ ∑

i

fi ln fi +
∑

i

(1 − fi ) ln(1 − fi )
]
. (9.19)

This functional is stationary with respect to V in, nin, μ, T , and the form of the occupation

function f (ε).

9.3 Achieving self-consistency

A key problem is the choice of procedure for updating the potential V σ or the density nσ

in each loop of the Kohn–Sham equations illustrated in Fig. 9.1. Obviously one can vary

either V σ or nσ , but it is simpler to describe in terms of nσ , which is unique, whereas V σ

is subject to shift by a constant. (The spin index σ is omitted below for simplicity.)

The simplest approach is linear mixing, estimating an improved density input nin
i+1 at step

i + 1 as a fixed linear combination of nin
i and nout

i at step i ,

nin
i+1 = αnout

i + (1 − α)nin
i = nin

i + α(nout
i − nin

i ). (9.20)

This is the best choice in the absence of other information and is essentially moving in an

approximate “steepest descent” direction for minimizing the energy.

Why cannot one simply take the output density at one step as the input to the next?

What are the limits on α? How can one do better? The answers lie in linear analysis of

the behavior near the minimum [413, 427].1 As in (9.8), let us define the deviation from

the correct density to be δn ≡ n − nKS at any step in the iteration. Then near the solution, the

error in the output density to linear order in the error in the input is given by

δnout[nin] = nout − nKS = (χ̃ + 1)(nin − nKS), (9.21)

where

χ̃ + 1 = δnout

δnin
= δnout

δV in

δV in

δnin
. (9.22)

Here δnout/δV in is a response function defined to be χ0 in (D.3) and δV in/δnin is K defined

in (9.12). Thus the needed function χ̃ can be calculated and is closely related to other uses

of response functions. The best choice for the new density is one that would make the error

zero, i.e. nin
i+1 = nKS. Since nout

i and nin
i are known from step i , if χ̃ is also known, then

1 The description here follows that of Pickett in [413].
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(9.21) can be solved for nKS,

nKS = nin
i − χ̃−1

(
nout

i − nin
i

)
. (9.23)

If (9.23) were exact, this would be the answer and the iterations could stop; since it is not

exact this gives the best input for the next iteration.

Although (9.23) is a more complex integral equation, it bears a strong resemblance to the

linear-mixing equation (9.20). If we resolve the response function χ̃ into eigenfunctions

χ̃ (r, r′) = ∑
m χm fm(r) fm(r′), the eigenvalues χm give the optimal α for the change in

density resolved into the density eigenvectors fm(r). Furthermore, the radius of convergence

of the linear-mixing scheme is determined by the maximum eigenvalue χ̃−1
max = 1/χ̃min

of the matrix χ̃−1. If a constant α is used, it is straightforward to show [413] that the

maximum error at iteration i varies as (1 − αχ̃−1
max)i , so that the iterations converge only if

α < 2/χ̃−1
max = 2χ̃min (see Exercises 9.8 and 13.3).

Physically, the response of the system is a measure of the polarizability. Linear mixing

with large α works well for strongly bound, rigid systems, such as regions near atom cores.

However, convergence can be very difficult to achieve for “soft cases,” for which metal

surfaces are an especially difficult example. Convergence algorithms using the response

kernel K have been proposed [428] for such cases. In these examples, it is most useful to

analyze the response in Fourier space, which is done in Sec. 13.1 in the chapter on plane

waves.

Numerical mixing schemes

The difficulty with the analysis in terms of the response kernel χ̃ (or K ) is that in real

problems, it can be found only by calculations (similar to those for response functions,

App. D and Ch. 19) that are more costly than many iterations of a standard minimization

algorithm. It can be much more efficient to adopt methods from the numerical literature

that build up the information on the Jacobian J (the second derivative matrix) of the system

automatically rather than using physical arguments. In fact, the matrix χ̃ is the Jacobian J ,

but in this section we will use the notation J to be consistent with commonly used notation

(see App. L).

A general numerical approach for reaching a consistent solution2 is the Broyden method

[431] described in App. L. In this approach the desired quantity, the inverse Jacobian

J−1 itself, is built up as the iterations proceed. Starting with an approximate form, J−1 is

improved at each iteration in a way so that the change in density for step i + 1 is made in

a direction orthogonal to all previous directions. (This is the general idea in all numerical

methods that generate a “Krylov subspace” – see Apps. M and L.) The magnitude of the

step is chosen to be such that it would give the result of step i projected onto the subspace

generated thus far. (Note the similarity of this last requirement with solution (9.23) using

χ̃−1; the difference is that in the Broyden method only partial information is known about

2 This method was first used in solid state calculations by Bendt and Zunger [429] and described in more detail

by Srivastava [430].



9.3 Achieving self-consistency 181

1000

100

10

0.1

0.01

1

0 5 10 15 20

Iteration

d

Broyden

α = 0.1

+

+

+

+
+

+ +
+

+
+ + +

+
+

+
+

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

+ + +

Figure 9.2. Convergence of the density for a W(1 0 0) surface (see (9.25) for the definition of d)

versus iteration number for linear mixing and the Broyden method. From [432].

the Jacobian at any step i .) Thus the Broyden method combines the “best of both worlds” to

make an automatic method that generates the needed parts of the Jacobian as the calculation

proceeds, with essentially no added cost above that encountered in simple linear mixing.

At each iteration i the input density for the next step is given by an equation analogous

to (9.23) except that χ̃ is replaced by the approximate Jacobian Ji

nin
i+1 = nin

i − J −1
i

(
nout

i − nin
i

)
, (9.24)

and J−1
i is improved at each step by expression (L.24). This can be used directly if the

Jacobian matrix is small, i.e. if there are only a few components of the density for which

convergence is a problem. An example is given in Sec. 13.1 in the chapter on plane waves.

Srivastava [430] has shown how to avoid storage of the Jacobian matrices by writing

the predicted change δnin
i+1 in terms of a sum over all the previous steps involving only the

initial J−1
0 . An example of the power of the Broyden method using this approach is shown

in Fig. 9.2 for the density at a (1 0 0) surface of W using an LAPW method (Ch. 17). The

quantity shown is the “distance” d, which is the norm of the residual

d = 1

�cell

∫

�cell

d3r (nout − nin)2, (9.25)

plotted for linear mixing with α = 0.1 and for Broyden with J0 = α1.

The modified Broyden method proposed by Vanderbilt and Louie [433] and adapted by

Johnson [434] to also incorporate Srivistava’s improvements [430] can be considered the

state-of-the-art. The basic equation is given in (L.25) with discussion of the weights given
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Figure 9.3. Convergence of the density for an alloy versus iteration number for linear mixing, the

Anderson method [435] and the modified Broyden method. For the last case α was chosen so large

that at first there is divergence until the Jacobian is improved sufficiently to lead to convergence.

From [434].

in the original and subsequent papers. An example of the results for a disordered alloy

Ni0.35Fe0.65 near a magnetic instability using a KKR method (Ch. 16) is given in Fig. 9.3.

9.4 Force and stress

It is straightforward to see that the usual form (Sec. 3.3) of the force theorem holds in

the density functional calculations. The essential point is that – at the correct solution –

the energy is at a variational minimum (or saddle point in generalized functionals) with

respect to the density. Thus changes in the density as a nucleus is moved do not contribute

to the first-order derivatives. The result follows from the Hohenberg–Kohn expression for

the total energy, (6.12), or any of the expressions in Sec. 9.2. Since the only terms that

depend explicitly upon the positions of the nuclei are the interaction EI I and the external

potential, one immediately finds

FI = − ∂ E

∂RI
= −

∫

dr n(r)
∂Vext(r)

∂RI
− ∂ EI I

∂RI
, (9.26)

which is the “electrostatic theorem” for the forces due to Feynman [256] and given in

(3.19). For non-local pseudopotentials, the force is only formally a function of the density;

operationally it is defined in terms of the Kohn–Sham wavefunctions, with the general

expression given in (3.20) and explicit plane wave expressions given in (13.3).

There are many possible alternative expressions for forces since any linear variation of

the density can be added to (9.26) with no change in the result. The main point is very simple

and is illustrated in Fig. I.1: the usual force theorem involves a nucleus moving relative to

all the electrons as shown on the left-hand side of Fig. I.1. It is more appropriate in many
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actual calculations (especially ones involving core electrons) to move part of the density

along with the nucleus as illustrated in the middle part of the figure. The resulting equations

can be made very simple through clever choices, as described in App. I.

In actual calculations, there are two factors that can affect the use of the force theorem

(9.26): (1) explicit dependence of the basis upon the positions of the atoms, and (2) errors

due to non-self-consistency. Both factors can be addressed by considering the nature of

the terms omitted in going from (3.18) to (3.19). The middle terms in (3.18) that involve

variations of the wavefunctions can be written in the independent-particle case as

F(2)
I = −2Re

∑

i

∫

dr
∂ψ∗

i

∂RI

[
1

2
∇2 + VKS − εi

]

ψi

−
∫

dr
[
VKS − V in

] ∂n

∂RI
, (9.27)

where the term involving εi is due to the orthonormality constraint just as in the derivation

of the Kohn–Sham equation. Here VKS is defined to be the self-consistent Kohn–Sham

potential for the given basis set, and V in is the non-self-consistent input potential that leads

to the wavefunctions ψi .

Since the ψi are the eigenstates of the hamiltonian with potential V in, the first term in

(9.27) is zero if the changes in the ψi maintain orthonormality when the atom is displaced.

This happens in two cases: (1) if the basis is independent of the atom positions (as in plane

waves), or (2) the basis is complete. However, this term is non-zero if the basis is tied to the

atoms (as in atom-centered orbitals) and the basis is incomplete. This contribution, often

called the Pulay correction term [436], is straightforward – but often tedious – to include in

a calculation. Only if it is included will the force be equal to the change in total energy per

unit displacement. One of the great advantages of plane waves is that it is manifestly zero

even if the basis is not complete.

The last term in (9.27) is the contribution due to the lack of self-consistency in the solution.

This is a more serious concern for forces than for the energy, since the energy is variational

(errors are second order), whereas the force expression is not. Strategies can be devised for

approximate inclusion of such terms at any stage in the self-consistency iterations, even

though the final potential VKS is not known. These methods are based on essentially the

same logic as those for achieving self-consistency discussed in Sec. 9.1, where the goal is

to find the optimum choice of potential at the next step.

Stress

Stress and strain are important concepts in characterizing the states of condensed matter;

however, general expressions in terms of the ground state wavefunction have been formu-

lated only recently [104, 129]. There are a number of subtle issues and complications, so

that a separate appendix, App. G, is devoted to the definition of stress and strain and to the

resulting formulas that can be used in various applications.

The main results are that the stress tensor is the generalization of pressure to all the

independent components of dilation and shear, and the “stress theorem” provides a way
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to calculate all components of the stress tensor from the ground state wavefunction as

a generalization of the virial theorem for pressure. In condensed matter, the state of the

system is specified by the forces on each atom and by the macroscopic stress, which is an

independent variable. The conditions for equilibrium are: (1) the total force vanishes on

each atom, and (2) the macroscopic stress equals the externally applied stress. This is well

established in classical simulations [437] (e.g. the Parrinello–Rahman [438] and variable

metric methods [439]) and is now an integral part of electronic structure calculations [440]

in which one relaxes the structure by minimizing with respect to both the positions of the

atoms in a unit cell and the size and shape of the cell.
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Exercises

9.1 In actual calculations one can determine the energy from either of the two functionals (9.8) or

(9.9). Describe how it can be useful to compute both. Which is expected to be closest to the

actual converged result before convergence is reached? Which is a true variational bound? Can

the difference be used as a measure of convergence?

9.2 As posed before Eq. (9.11), derive the expressions for the linear terms and thus the form of (9.11).

9.3 Fill in the steps to show that (9.13) defines a functional that is indeed extremal at the correct

solution for independent variations of potential and density.

9.4 On general thermodynamic grounds, show that E(T ) increases quadratically with T , whereas

F(T ) decreases quadratically. Thus a linear combination of E(T ) and F(T ) can be chosen in

which the quadratic terms cancel. Using the expressions for E(T ) and F(T ) that follow from

the occupation numbers, find the value of α for which αE(T ) + (1 − α)F(T ) = E(T = 0) with

corrections ∝ T 4.

9.5 Complete the arguments to show that (9.19) is extremal at the correct solution for independent

variations of all the quantities: V in, nin, μ, T , and the form of the occupation function f (ε).

9.6 Show that the form of the electronic entropy
∑

i fi ln fi + ∑
i (1 − fi ) ln(1 − fi ) presented in

(9.19) in fact follows from the general many-body from in terms of the density matrix given by

Mermin in (6.20).
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9.7 Show that χ̃ in (9.21) is given by

χ̃ + 1 = δnout

δnin
= δnout

δV in

δV in

δnin
, (9.28)

where δnout/δV in is a response function defined to be χ 0 in (D.3) and the last term δV in/δnin is

K defined in (9.12). Thus the needed function χ̃ can be calculated and is closely related to other

uses of response functions.

9.8 Derive the constraint on the α parameter in the simple linear mixing scheme in terms of the

response function; i.e. that the iterations converge only if α < 2/χ̃−1
max = 2χ̃min. See also Exer-

cise 13.3.

9.9 Derive the two terms in the corrections to the force given in (9.27) for a self-consistent

independent-particle method, starting from the general form, Eq. (3.18). The self-consistency

adds the second term that is not present is the general case where the hamiltonian never changes.

Hint: Derive this term from the original definition of the force as a derivative of the total energy.





PART III

IMPORTANT PRELIMINARIES ON ATOMS

10

Electronic structure of atoms

Summary

This chapter is concerned with the issues of solving the self-consistent Kohn–
Sham and Hartree–Fock equations in the simplest geometry. We will not be
concerned with the intricate details of the states of many-electron atoms, but
only those aspects relevant to our primary goal, the electronic structure of con-
densed matter and molecules. Studies of the atom illustrate the concepts and are
directly relevant for following sections since they are the basis for construction
of ab initio pseudopotentials (Ch. 11) and the augmentation functions (Ch. 16)
that are at the heart of augmented plane wave (APW), linear combination of
muffin-tin orbitals (LMTO), and KKR methods. Furthermore, we shall see that
calculations on atoms and atomic-like radial problems are extremely useful in
qualitative understanding of many aspects of condensed matter, including band
widths, equilibrium volume, and bulk modulus, as discussed in Sec. 10.7.

10.1 One-electron radial Schrödinger equation

We start with the case of the hydrogenic one-electron atom. Although this is treated in

many texts, it is useful to establish notation that will be used in many chapters. In the non-

relativistic case, there is no spin–orbit coupling and the wavefunction can be decoupled into

a product of space and spin. (The relativistic Dirac equations and spin–orbit interactions

are treated in Sec. 10.4.) Since the potential acting on the electron is spherically symmet-

ric Vext(r) = Vext(r ) = −Z/r , the spatial part of the orbital can be classified by angular

momentum (L = {l, ml})

ψlm(r) = ψl(r )Ylm(θ, φ) = r−1φl (r )Ylm(θ, φ), (10.1)

where the normalized spherical harmonics are given by

Ylm(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l [cos(θ )]eimφ, (10.2)
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with Pm
l (x) denoting the associated Legendre polynomials defined in Sec. K.2. The tradi-

tional labels for angular momenta are s, p, d, f, g, . . . , for l = 0, 1, 2, 3, . . . , and explicit

formulas for the first few functions are given in (K.10).

Using the form of the Laplacian in spherical coordinates,

∇2 = 1

r2

∂

∂r

(

r2 ∂

∂r

)

+ 1

r2 sin(θ )

∂

∂θ

[

sin(θ )
∂

∂θ

]

+ 1

r2 sin2(θ )

(
∂2

∂φ2

)

, (10.3)

the wave equation can be reduced to the radial equation (Exercise 10.1) for principal quantum

number n

− 1

2r2

d

dr

[

r2 d

dr
ψn,l (r )

]

+
[

l(l + 1)

2r2
+ Vext(r ) − εn,l

]

ψn,l(r ) = 0, (10.4)

or

−1

2

d2

dr 2
φn,l (r ) +

[
l(l + 1)

2r2
+ Vext(r ) − εn,l

]

φn,l (r ) = 0. (10.5)

The equations can be solved for bound states with the boundary conditions φn,l (r ),

ψn,l(r ) → 0 for r → ∞, and φn,l (r ) ∝ rl+1 and ψn,l (r ) ∝ r l for r → 0, and subject to

the normalization condition
∫ ∞

0

drφn,l (r )2 = 1. (10.6)

For a one-electron atom, the well-known analytic solutions have eigenvalues independent

of l given by

εn,l = −1

2

Z 2

n2
(10.7)

in Hartree atomic units.

Logarithmic grid

It is convenient to have regular grids in numerical algorithms; however, for atoms a higher

density of radial points is needed near the origin and only a low density in the outer region. In

the program of Herman and Skillman [445] this is accomplished by doubling the grid density

several times as one proceeds toward the nucleus. This is simple in concept but leads to a

complicated algorithm. Another choice is to use a logarithmic grid with ρ ≡ ln(r ), which

is suggested by the hydrogenic orbital which has amplitude ∝ exp(−Zr ), where Z is the

atomic number. If we define φ̃l (ρ) = r1/2ψ(r ), then the radial equation (10.5) becomes (see

Fischer [441] and Exercise 10.2)
{

−-h2

2me

d2

dρ2
+ l

2

(

l + 1

2

)2

+ r 2[Vext(r ) − εn,l ]

}

φ̃l(ρ) = 0, (10.8)

This has the disadvantage of transforming the interval 0 ≤ r ≤ ∞ to −∞ ≤ ρ ≤ ∞. In

practice, one can treat an inner region 0 ≤ r ≤ r1 with a series expansion [441]

φl(r ) ∝ r l+1

[

1 − Zr

l + 1
+ αr2 + O(r3)

]

(10.9)
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where α is given in Sec. 6.2 of [441]. The boundary r1 is chosen so that ρ1 = ln(Zr ) is

constant for all atoms. Then the outer region ρ1 ≤ ρ ≤ ∞ can be treated on a regular grid

in the variable ρ.

The atomic equations can be solved on a regular grid in r or ρ following the flow chart

for a Kohn–Sham calculation given in Fig. 9.1. The radial equations can be solved using the

Numerov method described in App. L, Sec. L.1. Excellent atomic programs exist often built

upon the one written originally by Herman and Skillman [445]. The ideas are described in

great detail by Slater [442, 443] and by Fischer [441] in the Hartree–Fock approximation,

and a simplified description is given by Koonin and Meredith [444]. Links to programs

developed in the group of the author and other programs are given in Ch. 24.

10.2 Independent-particle equations: spherical potentials

The Kohn–Sham equations for a general problem have been given in (7.11)–(7.13), which are

independent-particle equations with a potential that must be determined self-consistently.

The same form applies to the Hartree–Fock equations (3.45) or (3.46), except that the

exchange potential (3.48) is state-dependent. In each case, the solution requires solving

independent-particle equations having the same form as the one-electron equation (10.5) or

(10.4), except that Vext is replaced by some effective potential Veff that must be determined

self-consistently.

For closed-shell systems, such as rare gas atoms, all the filled states are spin-paired and

the charge density n(r )

n(r ) =
occupied∑

n,l

(2l + 1)|ψn,l (r )|2 =
occupied∑

n,l

(2l + 1)|φn,l (r )|2/r2 (10.10)

has spherical symmetry. The potential

Veff(r ) = Vext(r ) + VHartree(r ) + Vxc(r ). (10.11)

is obviously spherically symmetric in the Kohn–Sham approach. In the Hartree–Fock case,

the last term is the orbital-dependent exchange V̂ n,l
x (r), but it is not difficult to show

(Exercise 10.5) that matrix elements of V̂x are independent of m and σ , and lead to an

effective radial potential for each n, l.
Thus the independent-particle states can be rigorously classified by the angular momen-

tum quantum numbers L = {l, ml} and there is no net spin. This leads to the simplest case

radial equations with eigenvectors φl,ml independent of spin and eigenvalues independent

of ml . The resulting radial equation for φn,l (r ), analogous to (10.5), is

−1

2

d2

dr 2
φn,l (r ) +

[
l(l + 1)

2r2
+ Veff(r ) − εn,l

]

φn,l (r ) = 0, (10.12)

which can be solved for bound states with the same boundary conditions and normalization

as for the one-electron atom.
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Achieving self-consistency

The general form for solution of self-consistent equations has been given in Sec. 9.3.

In a closed-shell case the effective potential is spherically symmetric (Exercise 10.5). In

most cases, strongly bound states pose no great problems and the linear-mixing algorithm,

(9.20), is usually sufficient. (A value of α < 0.3 will converge for most cases, but may

have to be reduced for heavy atoms.) However, weakly bound “floppy” states may need the

more sophisticated methods described in Sec. 9.3. and systems with near degeneracies (e.g.

energies of 3d and 4s states in transition metal atoms) may present special problems, since

the order of states may change during the iterations, so that filling the states according to

the minimum energy principle leads to abrupt changes in the potential. Since this principle

really applies only at the minimum, often there is a simple solution; however, in some cases,

there is no stable solution.

An essential part of the problem is the calculation of the Hartree or Coulomb potential.

There are two approaches: solution of the Poisson equation [444] or analytic formulas

that can be written down for the special case of wavefunctions that are radial functions

times spherical harmonics [443]. The former approach has the advantage that the Poisson

equation,

d2

dr 2
VHart(r ) = −4πn(r ), (10.13)

has the form of the second-order equation (L.1) and can be solved by numerical methods

similar to those used for the Schrödinger equation [444]. The latter approach involves

expressions that are applicable to open-shell atoms (Sec. 10.3) and special cases of the

Fock integrals needed in for Hartree–Fock calculations [443].

The exchange–correlation potential Veff(r ) depends upon the type of independent-particle

approximation. An explicit expressions for the state-dependent exchange potential V n,l
x (r ) in

the Hartree–Fock approximation is given in the following section. (The exchange potential

is purely radial for a closed-shell atom, and is shown in Exercise 10.5.) The OEP formulation

of the energy is exactly the same as for Hartree–Fock but the potential is required to be

Vx (r ) independent of the state. In approximations such as the LDA and GGAs, explicit

expressions are given in App. B. Examples of results for selected spherically symmetric

atoms with various functionals are given in Tabs. 8.1 and 8.2 and are discussed further in

Sec. 10.5.

10.3 Open-shell atoms: non-spherical potentials

The term “open shell” denotes cases where the spins are not paired and/or the angular mo-

mentum states m = −l, . . . , l, are not completely filled for a given l. Then the proper classi-

fication is in terms of “multiplets,” with given total angular momentum J = { j, m j } that are

linear combinations of the space (L = {l, ml}) and spin (S = {s, ms}) variables. In general,

one must deal with multiple-determinant wavefunctions. Even though the external potential
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(the nuclear potential for an atom) has spherical symmetry, the effective independent-particle

potential Veff(r) does not, since it depends upon the occupations of the orbitals. The only

simplification is that one can choose the axes of quantization so that Veff(r) = Veff(r, θ ) has

cylindrical symmetry. Fortunately, a method due to Slater [401] shows how to reduce all the

needed calculations to purely radial calculations, by using symmetry to choose appropriate

multiplets. There are no general rules, but an extensive compilation of cases is given in App.

21 of [443].1 In the atom one needs to consider only the cases where Veff is purely radial

Veff(r ) or cylindrical Veff(r, θ ).

For open-shell problems there are a set of approximations with various degrees of accu-

racy:

� Restricted: treat the problem as spherical (derive Veff(r ) by a spherical average over any

non-spherical terms) and independent of spin (average over spin states so that orbitals are

the same for each spin state). This is the correct form for closed-shell, spin = 0 systems,

and, with care, can be viewed as an approximation for open shells.
� Spin-unrestricted: treat as spherical but allow the potential and the orbitals to depend upon

the spin. This is the correct form for half-filled shells with maximum spin so that they are

closed-shell for each spin separately. This case has been treated in the section on closed

shells.
� Unrestricted: treat the full problem in which only the total ml and ms are good quantum

numbers. In this case, Slater’s method [443] can be used to simplify the problem.

Equations for open-shell cases

For the fully unrestricted case, additional complications arise from the electron–electron

interaction terms. If we chose an axis then the density n(r, θ ) and the potential Vxc(r, θ )

have cylindrical symmetry. In the Kohn–Sham approach, the wavefunctions are expanded in

spherical harmonics and angular integrals with Vxc(r, θ ) must be done numerically because

the non-linear relation of Vxc(r) to n(r) means that an expansion of Vxc(r, θ ) in spherical

harmonics has no maximum cutoff in L . Also the Coulomb potential has multi-pole moments

and solution of the Poisson equation is not as simple as in the spherical case.

For the open-shell case, the Hartree–Fock equations are actually simpler because the

exchange term can be expanded in a finite sum of spherical harmonics. In order to calculate

the matrix elements of the electron–electron interaction, one can use the well-known ex-

pansion [448] in terms of the spherical harmonics (App. K), which allows the factorization

into terms involving r1 and r2

1

|r1 − r2| = 4π

∞∑

l=0

l∑

m=−l

1

2l + 1

r l
<

rl+1
>

Y ∗
−lm(θ2, φ2)Y−lm(θ1, φ1), (10.14)

1 In general one needs non-diagonal Lagrange multipliers εn,l;n′,l′ [443], but these terms appear to be small [443].
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where r< and r> are the lesser and the greater of r1 and r2. Using this expression, matrix

elements involving the orbitals i, j, r, t can be written

〈i j | 1

r12

|r t〉 = δ(σi , σr ) δ(σ j , σt ) δ(mi + m j , mr + mt )

×
kmax∑

k=0

ck(li , mi ; lr , mr ) ck(lt , mt ; l j , m j ) Rk(i, j ; r, t), (10.15)

where

Rk(i, j ; r, t) =
∫ ∞

0

∫ ∞

0

φ
†
ni ,li

(r1)φ
†
n j ,l j

(r2)
rk
<

rk+1
>

φnr ,lr (r1)φnt ,lt (r2)dr1dr2. (10.16)

The δ functions in (10.15) reflect the fact that the interaction is spin-independent and

conserves the z component of the angular momentum. The angular integrals can be done

analytically resulting in the Gaunt coefficients ck(l, m; l ′, m ′), which are given explicitly

in [443] and App. K. Fortunately, the values of Rk are only needed for a few values of

k; the maximum value is set by the vector-addition limits |l − l ′| ≤ kmax ≤ |l + l ′|, and,

furthermore, ck = 0 except for k + l + l ′ = even.

The radial Hartree–Fock equations are derived by functional derivatives of the energy

with respect to the radial functions ψn,l,m,σ (r ). If we define a function2

Y k(ni , li ; n j , l j ; r ) = 1

rk

∫ r

0

dr ′ φ†
ni ,li

(r ′)φn j ,l j (r
′)r ′k + r k+1

∫ ∞

r
dr ′ φ†

ni ,li
(r ′)φn j ,l j (r

′)
1

r ′k+1
,

(10.17)

and use the relation between the Gaunt and Clebsch–Gordan coefficients (K.17), then the

Hartree potential is given by

VHartree(r ) =
∑

σ=↑,↓

∑

j=1,Nσ

min(2li ,2l j )∑

k=0

(−1)mi +m j
(2li + 1)(2l j + 1)

(2k + 1)2

Y k(n j , l j ; n j , l j ; r )

r

× Ck0
li 0,li 0

Ck0
l j 0,l j 0

Ck0
li mi ,li −mi

Ck0
l j m j ,l j −m j

(10.18)

and the exchange potential acting on state ni , li , σi can be written

Vx (r ) = −
∑

σ=↑,↓
δ(σ, σi )

∑

j=1,Nσ

li +l j∑

k=|li −l j |

(2li + 1)(2l j + 1)

(2k + 1)2

[
Ck0

li 0,l j 0
C

kmi −m j

li mi ,l j −m j

]2 Y k(n j , l j ; n j , l j ; r )

r

φn j ,l j (r )

φni ,li (r )
, (10.19)

where C j3m3

j1m1, j2m2
are the Clebsch–Gordan coefficients defined in App. K.

2 This follows the definition of Slater [442], p. 180.
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10.4 Relativistic Dirac equation and spin–orbit interactions

Relativistic effects are essential for heavy atoms. Fortunately, they originate deep inside

the core, so that it is sufficient to solve the relativistic equations in a spherical atomic

geometry. The results carry over to molecules and solids essentially unchanged. In the

actual calculation on solids or molecules, relativistic effects can be included directly within

the augmentation methods (Ch. 16), where the calculation is equivalent to that on an atom,

or indirectly within other methods, e.g. pseudopotentials (Ch. 11). Relativistic effects can

be built into pseudopotentials by generating them using relativistic atomic calculations; the

pseudopotentials can then be used in a non-relativistic Schrödinger equation to determine

the valence states including relativistic effects [449, 450].

The famous equation proposed by Dirac in 1928 [27, 451] generalizes the Schrödinger

equation in a relativistically covariant form

i-h
∂

∂t
� = (cα · p + βmc2)ψ = H�, (10.20)

where � is a four-component single-particle wave function that describes spin- 1
2

particles.

Here p = −ı-h∇ is the usual momentum operator, and the (4 × 4) matrices αi and β are

written in terms of the Pauli matrices

αi =
(

0 σi

σi 0

)

, β =
(

1 0

0 −1

)

, (10.21)

where σi are the (2 × 2) Pauli spin matrices

σ1 =
(

0 1

1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0

0 −1

)

, (10.22)

and the unit entries of β are (2 × 2) unit matrices. Solution of Eq. (10.20) in its general form

can be found in many texts, such as [452] and [453], and a clear discussion of a practical

solution in the case of a spherical potential can be found in [446] and [447], and in the

reviews [134] and [132].

It is convenient to write the solution in the form

�(xµ) = e−iεt/-h
(

φ(r)

χ (r)

)

, (10.23)

where φ(r) and χ (r) are time-independent two-component spinors describing the spatial

and spin- 1
2

degrees of freedom. The Dirac equation becomes a set of coupled equations for

φ and χ ,

c(σ · p)χ = (ε − V − mc2)φ,

c(σ · p)φ = (ε − V + mc2)χ. (10.24)

For electrons (positive energy solutions), φ is the large component and χ is the small

component (by a factor ∝ 1/(mc2)).

In the case of a spherical potential V (r ), one can make use of conservation of parity

and total angular momentum denoted by the quantum numbers jm. Then the wavefunction
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for each principle quantum number n can be written in terms of radial and angular-spin

functions [453],

ψ l
n jm =

(
gnj (r )ϕl

jm

i fnj (r ) σ ·r
r ϕl

jm

)

, (10.25)

which defines two functions with the same jm but opposite parity for the two possible

values l = j ± 1
2
. The two-component functions ϕl

jm can be written explicitly as:

for j = l + 1

2
,

ϕl
jm =

√
l + 1

2
+ m

2l + 1
Y

m− 1
2

l χ 1
2
+ 1

2
+

√
l + 1

2
− m

2l + 1
Y

m+ 1
2

l χ 1
2
− 1

2
,

for j = l − 1

2
, (10.26)

ϕl
jm =

√
l + 1

2
− m

2l + 1
Y

m− 1
2

l χ 1
2
+ 1

2
−

√
l + 1

2
+ m

2l + 1
Y

m+ 1
2

l χ 1
2
− 1

2
.

The resulting equations for the radial functions are simplified if we define the energy,

ε′ = ε − mc2, (10.27)

a radially varying mass,

M(r ) = m + ε′ − V (r )

2c2
, (10.28)

and the quantum number κ ,

κ = ±( j + 1

2
)

{+, if l = j + 1
2

⇒ κ = l,

−, if l = j − 1
2

⇒ κ = −(l + 1).
(10.29)

Note that κ(κ + 1) = l(l + 1) in either case. Then the coupled equations can be written in

the form of the radial equations [132, 134, 446, 447]

−
-h2

2M

1

r2

d

dr

(

r2 dgnκ

dr

)

+
[

V +
-h2

2M

l(l + 1)

r2

]

gnκ

,

−
-h2

4M2c2

dV

dr

dgnκ

dr
−

-h2

4M2c2

dV

dr

(1 + κ)

r
gnκ = ε′gnκ , (10.30)

and

d fnκ

dr
= 1

-hc
(V − ε′)gnκ + (κ − 1)

r
fnκ . (10.31)

These are the general equations for a spherical potential; no approximations have been

made thus far. Equation (10.30) is the same as an ordinary Schrödinger equation except
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that the mass M is a function of radius and there are two added terms on the left-hand

side, which are, respectively, the Darwin term and the spin–orbit coupling. The latter can

be written out explicitly in terms of the spin using the relation

L · σϕκm = −-h(1 + κ)ϕκm, (10.32)

where ϕκm is the appropriate ϕl
jm determined by κ .

Scalar relativistic equation and spin–orbit coupling

If we make the approximation that the spin–orbit term is small, then we can omit it in

the radial equations for g and f and treat it by perturbation theory. Then (10.31)–(10.33)

depend only upon the principle quantum number n and orbital angular momentum l and

can be written in terms of the approximate functions, g̃nl and f̃nl , leading to,

−
-h2

2M

1

r2

d

dr

(

r2 dg̃nl

dr

)

+
[

V +
-h2

2M

l(l + 1)

r2

]

g̃nl −
-h2

4M2c2

dV

dr

dg̃nl

dr
= ε′g̃nl (10.33)

and

f̃nl =
-h

2Mc

dg̃nl

dr
, (10.34)

with the normalization condition
∫

(g̃2
nl + f̃ 2

nl)r
2 dr = 1. (10.35)

Equation (10.33) is the scalar relativistic radial equation, which can be solved by the same

techniques as the usual non-relativistic equation. The other equations can then be treated

easily on the radial grid.

Finally, the spin–orbit term can be included following the approach of MacDonald

et al. [447]. Together with relation (10.32) the spin–orbit hamiltonian coupling the large

components of the wavefunction has the form

ĤSO =
-h2

2M2c2

1

r

dV

dr
L · σ , (10.36)

which can often be treated as a small perturbation. Since this term originates deep in the

core near the nucleus where 1
r

dV
dr is large, the present spherical derivation of the spin–orbit

term carries over from the atom to a solid or molecule.

10.5 Example of atomic states: transition elements

Examples for selected spherically symmetric atoms have been given in Tabs. 8.1 and 8.2

using various functionals for exchange and correlation, respectively. Three atoms shown

there (He, Be, and Ne) are closed shell and the other two (H and N) are half-filled shells
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Figure 10.1. Radial wavefunction φl (r ) = rψl (r ) for Mn in the 3d5↑4s2 state showing all the

orbitals. Note that the 4s states are much more delocalized than the 3d states even though they have

similar energies. In contrast, the maximum in the 3d is close to that of the 3s and 3p even though

these are much lower in energy and are called “semi-core” states. Since the atom is spin polarized,

the orbital shapes depend upon the spin. There is a clear effect on the 3d and 4s, which is not shown

for simplicity.

in which the spatial wavefunction is spherically symmetric. The latter are called “spin

unrestricted” and require spin functionals with separate potentials for V σ
eff(r ) for spin up

and down. The results show that the local approximation works remarkably well, considering

that it is derived from the homogeneous gas, and that GGAs in general improve the overall

agreement with experiment.

Hydrogen is the special case where the one-electron solution for the ground state energy

is exact. This is satisfied in any theory that has no self-interactions, including Hartree–

Fock and exact exchange (EXX). The results in the tables indicate the error in the other

functionals in this limit. The accuracy is quite remarkable, especially for functionals derived

from the homogeneous gas, which supports the use of the functionals for the entire range

from homogeneous solids to isolated atoms. Nevertheless, there are important errors. In

particular, there are large effects upon the eigenvalues due to the long-range asymptotic

form of the potential. The form is correct in Hartree–Fock and EXX calculations that take

into account the non-local exchange, but is incorrect in local and GGA approximations.

The effects are large in one- and two-electron cases, shown explicitly in Sec. 8.9, but are

smaller in heavier atoms with many electrons.

As an example of a many-electron atom, the wavefunctions for spin polarized Mn are

shown in Fig. 10.1, calculated without relativistic corrections and spin–orbit coupling. The

states of this transition metal element illustrate the difference between the loosely bound

outer 4s states and the more localized 3d states. The atom is in the 3d5↑4s2 state and the
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Figure 10.2. Promotion energies for d → s electrons in the 3d transition metal series. Shown are the

energies �sd ≡ Etotal[3dn−14s1] − Etotal[3dn−24s2] from experiment (solid line) and from calculated

total energy differences with different functionals. This shows that LSDA (open circles), typically

tends to underestimate the promotion energy, i.e. the d states are underbound, whereas full non-local

exchange (solid circles) tends to have the opposite effect. Including correction for self-interaction

(open squares) and screening, the exchange (solid squares) improves the results considerably. Such

effects carry over to solids as well. From [454].

right-hand side of the figure shows the up and down wavefunctions for the outer states.

Since the d shell is filled for one spin (Hund’s first rule for maximum spin), the atom is in a

spherically symmetric spatial state. Note that the 3d states are actually in the same spatial

region as the strongly bound “semi-core” 3s and 3p states.

Atomic calculations can be used to gain insight into practical aspects of density func-

tional theory and how it can be expected to work in solids. Transition metals provide an

excellent example because the d states retain much of their atomic character in the solid.

For example, the relative energies of the 3d and 4s states can be expected to carry over

to the solid. Figure 10.2 shows the promotion energies for transferring a d electron to

an s state. The energies plotted are the experimental promotion energies and the calcu-

lated values with different functionals. The calculated energies are total energy differences
�sd ≡ Etotal[3dn−14s1] − Etotal[3dn−24s2], not differences of eigenvalues, since �sd is a

better measure of the true energy for promotion than the eigenvalue difference. The primary

point to notice is that there are opposite tendencies for the local approximation (LSDA) and

for exact non-local exchange (EXX) which is very close to Hartree–Fock. The former leads

to underbinding of the d relative to the state, whereas the latter leads to overbinding. The

example of screened exchange is one version of hybrid functionals (Sec. 8.8) that tend to

give results intermediate between Hartree–Fock and LDA.
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Three conclusions can be drawn from the atomic calculations that are very important for

applications in molecules and solids:

� Typical density functional theory calculations using LDA or GGA functionals can be

expected to give errors in the relative positions of bands, especially bands of different

character, such as localized 3d versus delocalized 4s states. The errors can be of the order

of electron volts.
� Hybrid functionals (Sec. 8.8) are promising ways to improve accuracy of practical func-

tionals applied to molecules and solids. Such functionals are widely applied in chemistry

where implementation is rather simple as a mixture of Hartree–Fock and LDA or GGA

calculations. Only a few applications to solids have been done, but they are promising

(see, for example, tests on a large set of molecules in [402] and the band structure of Si

given in Fig. 15.3.
� The results for transition metals illustrate the large difference between valence orbitals

that are delocalized (s and p) and the d states that are much more localized. The effects of

exchange and correlation are much more important in highly localized orbitals, leading

to effects of strong correlation in transition metal systems. The essence of the “LDA+U”

approach (Sec. 8.6) is to include orbital-dependent interactions that describe this large

difference; however, it is rather heuristic in character and does not lead to a universal

functional. The “U” term modifies the energies of selected localized orbitals as a function

of their occupancy in a way that describes a correlated system better than the universal

functionals. This can provide qualitatively improved descriptions of strongly correlated

systems like transition metal oxides [366].

10.6 Delta-SCF: electron addition, removal, and interaction energies

In localized systems, electron excitation, addition, and removal energies can all be calculated

as energy differences �E12 = E2 − E1 for a transition between states 1 and 2, instead of

eigenvalues calculated for state 1 or 2. This is known as “delta-SCF” and in self-consistent

field methods, it produces more accurate results since the energy difference includes effects

of relaxation of all the orbitals. Following the Slater transition state argument ( [455], p. 51),

the energy difference can be approximated by the eigenvalue calculated at the occupation

half-way between the two states. For example, an electron removal energy is the eigenvalue

when 1/2 an electron is missing in the given state; a transition energy is the eigenvalue

difference calculated when 1/2 an electron is transferred between the two states,

�E(N → N − 1) = E(N − 1) − E(N ) ≈ εi

(

N − 1

2

)

, (10.37)

where i denotes a particular state and N − 1
2

means the density is n(r) − 1
2
|ψi (r)|2. See

Exercise 10.8 for a statement of the ideas involved in the arguments and their proof.

The delta-SCF or transition state methods can be used in atomic calculations and com-

pared with experiment. For example, in [456] it was shown that results from both delta-SCF

and transition state calculations using LDA are in good agreement with experiment for the



10.7 Atomic sphere approximation in solids 199

first and second ionization energies of 3d electrons in Cu. In addition, it is straightforward

to calculate interaction energies as energy differences. An effective interaction energy that

includes relaxation of the orbitals is given by the difference of first and second ionization

energies, which in terms of the transition state rule can be written

U ≡ [E(N − 1) − E(N )] − [E(N − 2) − E(N − 1)] ≈ εi

(

N − 1

2

)

− εi

(

N − 3

2

)

.

(10.38)

See Exercise 10.11 for discussion of the interpretation and suggested exercises.

In a solid it is not a obvious how to carry out such a calculation, since there is no localized

state whose occupation can be varied. (Of course, there is no effect if the state is delocalized

in an infinite system.) One general approach is to identify a localized state, e.g. a Wannier

state or an approximation thereto, and do calculations very much like those in an atom.

Another approach is the “constrained DFT” approach in which the potential is varied in a

region corresponding to a localized orbital; the variation in occupation can then be used to

find similar information. Examples are the calculation of addition and removal energies for

4f electrons [457] and for 3d electrons, giving results like those shown in Fig. 10.2. These

calculations can also be used to find effective “U” interaction parameters. The difference

between the energies needed to add or to remove electrons in the same shell is a direct

measure of the interactions between electrons in that shell. This approach has been used

with considerable success in many calculations for transition metal oxides, e.g. in [456]

and [458] for La2CuO4.

10.7 Atomic sphere approximation in solids

In a solid the wavefunctions tend to be atomic-like near each atom. This results from

the full calculations described later, but it is instructive to see that qualitative (sometimes

quantitative) information about electronic bands, pressure, and energy of simple solids

can be derived from calculations with spherical symmetry, analogous to the usual atomic

calculations of Secs. 10.2 or 10.4 with only one difference: a change of boundary conditions

to mimic the extreme limits of each band in a solid. Such calculations are also instructive

because they are very closely related to the radial atomic-like calculations used in augmented

plane wave (APW), linear combination of muffin-tin orbitals (LMTO), and KKR methods

of Chs. 16 and 17.

The basic ideas are in the original work of Wigner and Seitz [49], extended by Andersen

[461] to describe the width of bands formed by states with a given angular momentum.

The environment of an atom in a close-packed solid is mimicked by boundary conditions

on an atomic sphere, i.e. approximating the Wigner–Seitz cell as a sphere. As indicated in

Fig. 10.3, for each angular momentum l the free-atom boundary conditions are replaced by

the condition that the wavefunction be zero at the boundary (the highest energy antibonding-

type state that corresponds to the top of the band) or have zero derivative at the boundary

(the lowest energy bonding-type state that corresponds to the bottom of the band). The

difference is the band width Wl for angular momentum l.
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Figure 10.3. Left: Schematic figure of the radial wavefunction in the atomic sphere approximation

(ASA) to a solid, where r0 is the Wigner–Seitz radius, roughly 1/2 the distance to a neighboring

atom. The lines denote the different boundary conditions that correspond to the “bottom” lowest

energy bonding-type state, the “top” highest energy antibonding-type state, and the usual free-atom

state. The difference in energy from bottom to top is an estimate of the band width in a solid. Right:

Estimates of the d-band width for the 3d transition metals from Eq. (10.41) (called “ASM”)

compared to full calculations using the LMTO method (Ch. 17) by Andersen and Jepsen [459]. The

circles show an additional approximation described in [460]. From Straub and Harrison [460].

This simple picture contains the important ingredients for understanding and semiquan-

titative prediction of band widths in condensed matter. The width is directly related to the

magnitude, the wavefunction, and its slope at the boundary. Thus the width varies from

narrow-band atomic-like to wide-band delocalized states exactly as indicated in the fist

figure of this book, Fig. 1.1, as there is increased overlap of the atomic states. Furthermore,

it is reasonably accurate as illustrated on the right-hand side of Fig. 10.3 from the work

of Straub and Harrison [455]. It gives an estimate that is particularly good in close-packed

systems, but also is a good starting point for liquids and even dense plasmas [462–465] One

can also calculate properties like the pressure, as discussed in Sec. I.3. This gives a great

start to understanding electronic structure of condensed matter!

Explicit expressions for the band widths can be derived from the radial equation, (10.4),

for the wavefunction ψn,l (r ). The band formed for each state n, l is considered separately,

and we can drop the subscripts to simplify the equations. Consider any two solutions

ψ1(r ) and ψ2(r ) with eigenvalues ε1 and ε2 obtained with two different specific boundary

conditions. Let the equation for ψ1(r ) be multiplied by r2ψ2(r ) and integrated from r = 0

to the boundary r = r0, and similarly for the equation for ψ2(r ). Integrating by parts and

subtracting the equations leads to [460] (Exercise 10.12),

−1

2
r2

0

(

ψ2 dψ1

dr
− ψ1 dψ2

dr

)

r−r0

= (ε1 − ε2)

∫ r0

0

drr2ψ1ψ2. (10.39)
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If we let ψ2(r ) be the solution for the top of the band (ψ2(r0) = 0) and ψ1(r ) for the bottom

(dψ1(r )/dr = 0 at r = r0), then this equation can be written

W ≡ ε2 − ε1 = −1

2

r2
0

(
ψ1 dψ2

dr

)

r=r0∫ r0

0
drr2ψ1ψ2

. (10.40)

This gives the width W for each n, l in terms of the two solutions with the boundary

conditions described above.

Finally, a simple, insightful expression for the band width as a function of the Wigner–

Seitz radius r0 can be derived [460] from a single atomic calculation with the usual boundary

conditions. As suggested by the interpretation of the bottom and top of the band as bonding

and antibonding, as illustrated in Fig. 10.3, the value of the bonding function at r0 is

approximately twice the value of the atomic function ψa , and similarly for the slope.

Further approximating the product to be ψ1ψ2 ≈ [ψa]2 leads to the very simple expression

(see Exercise 10.12)

W ≈ −2
r2

0

(
ψa dψa

dr

)

r=r0∫ r0

0
drr2(ψa)2

. (10.41)

The right-hand side of Fig. 10.3 shows the band widths for d-bands in transition metals

calculated from this simple formula compared to full calculations using the LMTO method

(Ch. 17).
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Exercises

10.1 Show explicitly that the wave equation can indeed be written in the form of Eq. (10.4).

10.2 Derive the form of the radial equation, (10.8) in terms of the transformed variable ρ ≡ ln(r ).

Give two reasons why a uniform grid in the variable ρ is an advantageous choice for an atom.

10.3 Show that the Hartree–Fock equations are exact for the states of H. Show that the change in

energy computed by energy differences gives exact excitations; but the eigenvalues do not.

10.4 Show that the OEP equations are exact for the states of H, just like Hartree–Fock. But unlike

Hartree–Fock the eigenvalues give exact excitation energies.

10.5 Show that the general Hartree–Fock equations simplify in the closed-shell case so that the

exchange potential is spherically symmetric.

10.6 Show that for the ground state of He the general Hartree–Fock equations simplify to the very

simple problem of one electron moving in the average potential of the other, with both electrons

required to be in the same spatial orbital.

10.7 There are results that emerge in relativistic quantum mechanics that may be surprising. For

example, show that there is a 2p state that has non-zero expectation value at the origin, whereas

it is zero in the non-relativistic theory.

10.8 The Slater transition state argument ( [455], p. 51) is based upon two facts. First, an eigenvalue

is the derivative of the energy with respect to the occupation of the given state (the “Janak

theorem”), and, second, that the eigenvalue varies with occupation and can be represented in

a power series.

(a) Using these facts derive the “half-way” rule.

(b) Argue that one can derive the “half-way” rule based purely on the fact that one wants a

result that is symmetric between the two states.

(c) Derive the explicit expression (10.37) for electron removal.

10.9 Solve the Schrödinger equation in Sec. 10.1 for a particle in a spherical box of radius R. If the

boundary conditions are that ψ = 0 at r = R, show that the solutions are ψ(r ) = sin kr/r and

derive the eigenvalues and normalization factors for the states with the three lowest energies.

Show that all energies scale as ∝1/R2.

10.10 Derive the pressure −dE/d� from the expression for the energy in the problem above. Show

that this is equivalent to the expression for the pressure in a spherical geometry given in (I.8).

10.11 The expression (10.38) provides a way to calculate interactions.

(a) Show that these are “effective” in the sense that orbital relations are included and are exact
if the energies E(N ), E(N − 1), and E(N − 2) are exact.

(b) Derive expression (10.38) using the same arguments as in Exercise 10.8.

(c) Use an atomic code to calculate the first and second ionization energies of 3d electrons in

Cu. The difference is the effective d–d interaction. A better measure of the net effect in a solid
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is to calculate the difference E(3d9) − E(3d84s1). Compare your results with those of [456].

In this case, the effective d–d interaction is decreased because the added s electron “screens”

the change in charge of the d state. As argued in [457] this is close to the screening that occurs

in a solid; hence, the screened interaction is the appropriate effective interaction in the solid.

10.12 Following the arguments given in conjunction with (10.39)–(10.41), derive the approximate

expressions (10.40) and (10.41) for the band width. The full argument requires justifying the

argument that this corresponds to the maximum band width in a solid and deriving the explicit

expression using the linearized formulas for energy as a function of boundary condition.

10.13 The wavefunction for atomic hydrogen can be used to estimate hydrogen band widths at various

states, using the approximate form of Eq. (10.41). Apply this approach to the H2 molecule to

calculate bonding/anti-bonding splitting and compare these with the results shown in Fig. 8.3.

Use this expression to derive a general argument for the functional form of the splitting as a

function of proton separation R at large R. Evaluate explicitly at the equilibrium R and compare

with Fig. 8.3. Calculate the band width expected for hydrogen at high density (rs = 1.0) where

it is expected to be stable as a close packed crystal with 12 neighbors. (The result can be

compared with the calculations in Exercises 12.13 and 13.5.)

10.14 Use an atomic code (possibly modified to have different boundary conditions) to calculate the

band widths for elemental solids using the approach described in Sec. 10.7. As an example

consider 3d and 4s bands in fcc Cu. Compare these with the bands shown in Fig. 2.24.
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Pseudopotentials

Summary

The fundamental idea of a “pseudopotential” is the replacement of one problem
with another. The primary application in electronic structure is to replace the
strong Coulomb potential of the nucleus and the effects of the tightly bound
core electrons by an effective ionic potential acting on the valence electrons.
A pseudopotential can be generated in an atomic calculation and then used to
compute properties of valence electrons in molecules or solids, since the core
states remain almost unchanged. Furthermore, the fact that pseudopotentials
are not unique allows the freedom to choose forms that simplify the calcula-
tions and the interpretation of the resulting electronic structure. The advent of
“ab initio norm-conserving” and “ultrasoft” pseudopotentials has led to accu-
rate calculations that are the basis for much of the current research and devel-
opment of new methods in electronic structure, as described in the following
chapters.

Many of the ideas originated in the orthogonalized plane wave (OPW)
approach that casts the eigenvalue problem in terms of a smooth part of the
valence functions plus core (or core-like) functions. The OPW method has
been brought into the modern framework of total energy functionals by the pro-
jector augmented wave (PAW) approach that uses pseudopotential operators
but keeps the full core wavefunctions.

11.1 Scattering amplitudes and pseudopotentials

The scattering properties of a localized spherical potential at any energy ε can be formulated

concisely in terms of the phase shift ηl(ε), which determines the cross-section and all

properties of the wavefunction outside the localized region. The derivation and explicit

formulas are given in Sec. J.1. This is a central concept for many phenomena in physics,

such as scattering cross-sections in nuclear and particle physics, resistance in metals due to

scattering from impurities, and electron states in crystals described by phase shifts in the

augmented plane wave and multiple scattering KKR methods (Ch. 16). The essential point
for this chapter is that all properties of the wavefunction outside the scattering region are
invariant to changes in the phase shift by any multiple of 2π .
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Pseudopotentials have a long history in such problems. The basic idea is that the scattering,

i.e. phase shifts modulo 2nπ , can be reproduced over a range of energies by a different

potential chosen to have more desirable properties. One of the early examples of this

idea is illustrated in Fig. 11.1, taken from papers by Fermi and coworkers on low-energy

electron scattering from atoms [58] and low-energy neutron scattering from nuclei [477].

The incident plane wave is resolved into spherical harmonics as in Fig. J.1, and the figure

shows the radial wavefunction for one angular momentum l in a scattering state with a small

positive energy. The closely spaced nodes in the wavefunction near the origin indicate that

the kinetic energy is large, i.e. that there is a strong attractive potential. In fact, there must

be lower energy bound states (with fewer nodes) to which the scattering state must be

orthogonal.1

It is instructive to consider the changes in the wavefunction φ = rψ outside the scattering

region as a function of the scattering potential. If there were no potential, i.e. phase shift

ηl(ε) = 0, then Eq. (J.4) leads to φ ∝ r jl (κr ), which extrapolates to zero at r = 0. In the

presence of a potential the wavefunction outside the central region is also a free wave but

phase shifted as in (J.4). A weak potential leads to a small phase shift η < 2π . If the potential

is made more attractive, the phase shift increases with a new bound state formed for each

integer multiple 2π . From the explicit solution (J.4), it is clear that the wavefunction outside

the central region is exactly the same for any potential that gives the same phase shift ηl(ε)

modulo any multiple of 2π . In particular, the scattering in Fig. 11.1 can be reproduced

at the given energy ε by a weak potential that has no bound states and a scattering state

with no nodes. For example, one can readily find a square well with the same scattering

properties at this energy (see Exercise 11.2). The aim of pseudopotential theory is to find

useful pseudopotentials that faithfully represent the scattering over a desired energy range.

Perhaps the first use of pseudopotentials in solids was by Hellmann [59, 60] in 1935,

who developed an effective potential for scattering of the valence electrons from the ion

cores in metals and formulated a theory for binding of metals that is remarkably similar to

present-day pseudopotential methods. The potentials, however, were not very weak [478],

so that the calculations were not very accurate using perturbation methods available at the

time.

Interest in pseudopotentials in solids was revived in the 1950s by Antoncik [479, 480]

and Phillips and Kleinman [481], who showed that the orthogonalized plane wave (OPW)

method of Herring [57, 482] (see Sec. 11.2) can be recast in the form of equations for

the valence states only that involves a weaker effective potential. Their realization that the

band structures of sp-bonded metals and semiconductors could be described accurately by

a few empirical coefficients led to the basic understanding of a vast array of properties

of sp-bonded metals and semiconductors. Excellent descriptions of the development of

pseudopotentials before 1970 can be found in the review of Heine and Cohen [467, 469]

and in the book Pseudopotentials in the Theory of Metals by Harrison [468].

1 The figure also illustrates that for low-energy scattering, the phase shift is equivalent to a scattering length

(Exercise 11.1); however, the linear extrapolation is not useful, in general, if the scattering wavelength becomes

comparable to the size of the scatterer.
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Figure 11.1. Radial wavefunction φ = rψ for low-energy scattering as illustrated in a figure from

the 1934 and 1935 papers of Fermi and coworkers for low-energy electron scattering from

atoms [58] and neutron scattering from nuclei [477]. The nodes in the wavefunction near the origin

show that the potential is attractive and strong enough to have bound states. The cross-section for

scattering from the localized potential is determined by the phase shift (or equivalently the

extrapolated scattering length as discussed in Exercise 11.1) and is the same for a weaker

pseudopotential with the same phase shift modulo 2π .

Most modern pseudopotential calculations are based upon “ab initio norm-conserving”

potentials (Secs. 11.4–11.8), which in large measure are a return to the model potential

concepts of Fermi and Hellmann, but with important additions. The requirement of “norm-

conservation” is the key step in making accurate, transferable pseudopotentials, which is

essential so that a pseudopotential constructed in one environment (usually the atom) can

faithfully describe the valence properties in different environments including atoms, ions,

molecules, and condensed matter.2 The basic principles are given in some detail in Sec. 11.4

because they are closely related to scattering phase shifts (App. J), the augmentation ap-

proaches of Ch. 16, and the properties of the wavefunctions needed for linearization and

given explicitly in Sec. 17.1. Section 11.5 is devoted to the generation of “semilocal” po-

tentials Vl(r ) that are l-dependent, i.e. act differently upon different angular momenta l. In

Sec. 11.8 we describe the transformation to a separable, fully non-local operator form that

is often advantageous.

This approach has been extended by Blöchl [473] and Vanderbilt [474], who showed that

one can make use of auxiliary localized functions to define “ultrasoft pseudopotentials”

(Sec. 11.10). By expressing the pseudofunction as the sum of a smooth part and a more

2 Of course, there is some error due to the assumption that the cores do not change. Many tests have shown that

this is an excellent approximation in atoms with small, deep cores. Errors occur in cases with shallow cores and

requiring high accuracy.
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rapidly varying function localized around each ion core (formally related to the original

OPW construction [57] and the Phillips–Kleinman–Antoncik transformation), the accuracy

of norm-conserving pseudopotentials can be improved, while at the same time making the

calculations less costly (although at the expense of added complexity in the programs).

Most recently, the advent of the projector augmented wave (PAW) formulation

(Sec. 11.11) has completed reformulation of the OPW method into a form that is par-

ticularly appropriate for density functional theory calculations of total energies and forces.

The valence wavefunctions are expressed as a sum of smooth functions plus core functions,

which leads to a generalized eigenvalue equation just as in the OPW approach. Unlike

pseudopotentials, however, the PAW method retains the entire set of all-electron core func-

tions along with smooth parts of the valence functions. Matrix elements involving core

functions are treated using muffin-tin spheres as in the augmented methods (Ch. 16). As

opposed to augmented methods, however, the PAW approach maintains the advantage of

pseudopotentials that forces can be calculated easily.

The concept of a pseudopotential is not limited to reproducing all-electron calculations

within independent-particle approximations, such as the Kohn–Sham density functional

approach. In fact, the original problem of “replacing the effects of core electrons with an

effective potential” presents a larger challenge: can this be accomplished in a true many-

body theory taking into account the fact that all electrons are indistinguishable? Although

the details are beyond the scope of the present chapter, Sec. 11.12 provides the basic issues

and ideas for construction of pseudopotentials that describe the effects of the cores beyond
the independent electron approximation.

11.2 Orthogonalized plane waves (OPWs) and pseudopotentials

Orthogonalized plane waves (OPWs), introduced by Herring [57, 482] in 1940, were the

basis for the first quantitative calculations of bands in materials other than sp-bonded metals

(see e.g. [61, 483, 484] and the review by Herman [62]). The calculations of Herman and

Callaway [61] for Ge, done in the 1950s, is shown in Fig. 1.4; similarly, OPW calculations

provided the first theoretical understanding that Si is an indirect band-gap material with the

minimum of the conduction band near the X (k = (1, 0, 0)) zone boundary point [485,486].

Combined with experimental observations [487], this work clarified the nature of the bands

in these important materials. The OPW method is described in this chapter because it is

the direct antecedent of modern pseudopotential and projector augmented wave (PAW)

methods.

The original OPW formulation [57] is a very general approach for construction of basis

functions for valence states with the form

χOPW
q (r) = 1

	

{

eiq·r −
∑

j

〈u j |q〉u j (r)

}

, (11.1)

where

〈u j |q〉 ≡
∫

dru j (r)eiq·r, (11.2)
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from which it follows that χOPW
q is orthogonal to each function u j . The functions u j (r) are

left unspecified, but are required to be localized around each nucleus.

If the localized functions u j are well chosen, (11.1) divides the function into a smooth

part plus the localized part, as illustrated on the left-hand side of Fig. 11.2. In a crystal a

smooth function can be represented conveniently by plane waves; hence the emphasis upon

plane waves in the original work. In the words of Herring [57]:

This suggests that it would be practical to try to approximate [the eigenfunction in a crystal] by a

linear combination of a few plane waves, plus a linear combination of a few functions centered about

each nucleus and obeying wave equations of the form3

1

2
∇2u j + (

E j − Vj

)
u j = 0. (11.3)

The potential Vj = Vj (r ) and the functions u j are to be chosen to be optimal for the problem.

With this broad definition present in the original formulation [57], the OPW approach is

the prescience of all modern pseudopotential and PAW methods. As is clear in the sections

below, those methods involve new ideas and clever choices for the functions and operations

on the functions. This has led to important advances in electronic structure that have made

many of the modern developments in the field possible.

For present purposes it is useful to consider the orthogonalized form for the valence states

in an atom, where the state is labeled by angular momentum lm and, of course, the added

functions must also have the same lm. Using the definitions (11.1) and (11.2), it follows

immediately that the general OPW-type relation takes the form

ψv
lm(r) = ψ̃v

lm(r) +
∑

j

Blmj ulmj (r), (11.4)

where ψv
lm is the valence function, ψ̃v

lm is the smooth part, and all quantities can be expressed

in terms of the original OPWs by Fourier transforms:

ψv
lm(r) =

∫

dq clm(q) χOPW
q (r), (11.5)

ψ̃v
lm(r) =

∫

dq clm(q) eiq·r, (11.6)

Blmj =
∫

dq clm(q) 〈u j |q〉. (11.7)

A schematic example of a 3s valence state and the corresponding smooth function is illus-

trated in Fig. 11.2.

It is also illuminating to express the OPW relation (11.4) as a transformation

|ψv
lm〉 = T |ψ̃v

lm〉. (11.8)

3 This is the original equation except that the factor of 1
2 was not included since Herring’s equation was written

in Rydberg atomic units.
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Figure 11.2. Schematic example of a valence function that has the character of a 3s orbital near the

nucleus (which is properly orthogonal to the 1s and 2s core states) and two examples of smooth

functions (dashed lines) that equal the full wavefunction outside the core region. Left: Represents

the smooth part of the valence function ψ̃ defined by OPW-like equations (11.4) and (11.6). Right:

Illustrates a smooth pseudofunction ψPS
l that satisfies the norm-conservation condition (11.21). In

general, ψPS
l is not as smooth as ψ̃ .

This is, of course, nothing more than a rewritten form of Eq. (11.4), but it expresses in

compact form the idea that a solution for the smooth function ψ̃v
lm is sufficient; one can

always recover the full function ψv
lm using a linear transformation denoted T in (11.8). This

is exactly the form used in the PAW approach in Sec. 11.11.

The simplest approach is to choose the localized states to be core orbitals ulmi = ψ c
lmi ,

i.e. to choose the potential in (11.3) to be the actual potential (assumed to be spherical near

the nucleus), so that ψc
lmi are the lowest eigenstates of the hamiltonian

Hψc
lmi = εc

liψ
c
lmi . (11.9)

Since the valence state ψv
lm must be orthogonal to the core states ψ c

lmi , the radial part of

ψv
l (r ) must have as many nodes as there are core orbitals with that angular momentum. One

can show (Exercise 11.3) that the choice of uli = ψ c
li leads to a smooth function ψ̃v

l (r) that

has no radial nodes, i.e. it is indeed smoother than ψv
l (r). Furthermore, often the core states

can be assumed to be the same in the molecule or solid as in the atom. This is the basis for

the actual calculations [62] in the OPW method.

There are several relevant points to note. As is illustrated on the left-hand side of Fig. 11.2,

an OPW is like a smooth wave with additional structure and reduced amplitude near the

nucleus. The set of OPWs is not orthonormal and each wave has a norm less than unity

(Exercise 11.4)

〈χOPW
q |χOPW

q 〉 = 1 −
∑

j

|〈u j |q〉|2. (11.10)

This means that the equations for the OPWs have the form of a generalized eigenvalue

problem with an overlap matrix.

The pseudopotential transformation

The pseudopotential transformation of Phillips and Kleinman [481] and Antoncik [479,480]

(PKA) results if one inserts the expression, (11.4), for ψv
i (r) into the original equation for
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the valence eigenfunctions

Ĥψv
i (r) =

[

−1

2
∇2 + V (r)

]

ψv
i (r) = εv

i ψ
v
i (r), (11.11)

where V is the total effective potential, which leads to an equation for the smooth functions,

ψ̃v
i (r),

Ĥ PKAψ̃v
i (r) ≡

[

−1

2
∇2 + V̂ PKA

]

ψ̃v
i (r) = εv

i ψ̃
v
i (r). (11.12)

Here

V̂ PKA = V + V̂ R, (11.13)

where V̂ R is a non-local operator that acts upon ψ̃v
i (r) with the effect

V̂ Rψ̃v
i (r) =

∑

j

(
εv

i − εc
j

) 〈ψc
j |ψ̃v

i 〉ψc
j (r). (11.14)

Thus far this is nothing more than a formal transformation of the OPW expression,

(11.11). The formal properties of the transformed equations suggest both advantages and

disadvantages. It is clear that V̂ R is repulsive since (11.14) is written in terms of the energies

εv
i − εc

j which are always positive. Furthermore, a stronger attractive nuclear potential

leads to deeper core states so that (11.14) also becomes more repulsive. This tendency

was pointed out by Phillips and Kleinman and Antoncik and derived in a very general

form as the “cancellation theorem” by Cohen and Heine [488]. Thus V̂ PKA is much weaker

than the original V (r), but it is a more complicated non-local operator. In addition, the

smooth pseudo-functions ψ̃v
i (r) are not orthonormal because the complete function ψv

i also

contains the sum over core orbitals in Eq. (11.4). Thus the solution of the pseudopotential

equation (11.12) is a generalized eigenvalue problem.4 Furthermore, since the core states

are still present in the definition, (11.14), this transformation does not lead to a “smooth”

pseudopotential.

The full advantages of the pseudopotential transformation are realized by using both the

formal properties of pseudopotential V̂ PKA and the fact that the same scattering properties

can be reproduced by different potentials. Thus the pseudopotential can be chosen to be

both smoother and weaker than the original potential V by taking advantage of the non-

uniqueness of pseudopotentials, as discussed in more detail in following sections.

Even though the potential operator is a more complex object than a simple local potential,

the fact that it is weaker and smoother (i.e. it can be expanded in a small number of

Fourier components) has great advantages, conceptually and computationally. In particular,

it immediately resolves the apparent contradiction (see Ch. 12) that the valence bands εv
nk in

many materials are nearly-free-electron-like, even though the wavefunctions ψv
nk must be

very non-free-electron-like since they must be orthogonal to the cores. The resolution is that

the bands are determined by the secular equation for the smooth, nearly-free-electron-like

ψ̃v
nk that involves the weak pseudopotential V̂ PKA or V̂ model.

4 “Norm-conserving” potentials described in Sec. 11.4 remove this complication; however, non-orthogonality is

resurrected in “ultrasoft” pseudopotentials, which are formally similar to the operator construction described

here (see Sec. 11.10).
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Rc(l ) Rc
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00

Figure 11.3. Left: “Empty core” model potential of Ashcroft [489] in which the potential is zero

inside radius Rc(l), which is different for each l. Right: Square well model potential with value Al

inside a cutoff radius Rc, proposed by Abarenkov and Heine [490] and fit to atomic data by Animalu

and Heine [491, 492] (see also by Harrison [468]). The fact that the potentials are weak, zero, or

even positive inside a cutoff radius Rc is an illustration of the “cancellation theorem” [488].

11.3 Model ion potentials

Based upon the foundation of pseudopotentials in scattering theory, and the transformation

of the OPW equations and the cancellation theorem, the theory of pseudopotentials has

become a fertile field for generating new methods and insight for the electronic structure

of molecules and solids. There are two approaches: (1) to define ionic pseudopotentials,

which leads to the problem of interacting valence-only electrons, and (2) to define a total
pseudopotential that includes effects of the other valence electrons. The former is the more

general approach since the ionic pseudopotentials are more transferable with a single ion

potential applicable for the given atom in different environments. The latter approach is

very useful for describing the bands accurately if they are treated as adjustable empirical

potentials; historically empirical pseudopotentials have played an important role in the

understanding of electronic structures [467,469], and they reappear in Sec. 12.6 as a useful

approach for understanding bands in a plane wave basis.

Here we concentrate upon ionic pseudopotentials and the form of model potentials that

give the same scattering properties as the pseudopotential operators of Eqs. (11.13) and

(11.14) or more general forms. Since a model potential replaces the potential of a nucleus

and the core electrons, it is spherically symmetric and each angular momentum l, m can be

treated separately, which leads to non-local l-dependent model pseudopotentials Vl(r ). The

qualitative features of l-dependent pseudopotentials can be illustrated by the forms shown

in Fig. 11.3. Outside the core region, the potential is Z ion/r , i.e. the combined Coulomb

potential of the nucleus and core electrons. Inside the core region the potential is expected

to be repulsive [488] to a degree that depends upon the angular momentum l, as is clear

from the analysis of the repulsive potential in (11.14).

The dependence upon l means that, in general, a pseudopotential is a non-local operator

that can be written in “semilocal” (SL) form

V̂SL =
∑

lm

|Ylm〉Vl (r )〈Ylm |, (11.15)

where Ylm(θ, φ) = Pl(cos(θ ))eimφ . This is termed semilocal (SL) because it is non-local

in the angular variables but local in the radial variable: when operating on a function
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f (r, θ ′, φ′), V̂SL has the effect

[
V̂SL f

]
r,θ,φ

=
∑

lm

Ylm(θ, φ)Vl (r )

∫

d(cosθ ′)dφ′Ylm(θ ′, φ ′) f (r, θ ′, φ′). (11.16)

All the information is in the radial functions Vl(r ) or their Fourier transforms, which are

defined in Sec. 12.4. An electronic structure involves calculation of the matrix elements of

V̂SL between states ψi and ψ j

〈ψi |V̂SL|ψ j 〉 =
∫

dr ψi (r, θ, φ)
[
V̂SLψ j

]
r,θ,φ

. (11.17)

(Compare this with Eq. (11.41) for a fully non-local separable form of the pseudopotential.)

There are two approaches to the definition of potentials:

� Empirical potentials fitted to atomic or solid state data. Simple forms are the “empty

core” [489] and square well [490–492] models illustrated in Fig. 11.3. In the latter case,

the parameters were fit to atomic data for each l and tabulated for many elements by

Animalu and Heine [491, 492] (tables given also by Harrison [468]).5

� “Ab initio” potentials constructed to fit the valence properties calculated for the atom. The

advent of “norm-conserving” pseudopotentials provided a straightforward way to make

such potentials that are successfully transferrable to calculations on molecules and solids.

11.4 Norm-conserving pseudopotentials (NCPPs)

Pseudopotentials generated by calculations on atoms (or atomic-like states) are termed

“ab initio” because they are not fitted to experiment. The concept of “norm-conservation”

has a special place in the development of ab initio pseudopotentials; at one stroke it simplifies

the application of the pseudopotentials and it makes them more accurate and transferable.

The latter advantage is described below, but the former can be appreciated immediately.

In contrast to the PKA approach (Sec. 11.2) (where the equations were formulated in

terms of the smooth part of the valence function ψ̃v
i (r) to which another function must

be added, as in Eq. (11.4)), norm-conserving pseudofunctions ψPS(r) are normalized and

are solutions of a model potential chosen to reproduce the valence properties of an all-

electron calculation. A schematic example is shown on the right-hand side of Fig. 11.2,

which illustrates the difference from the un-normalized smooth part of the OPW. In the

application of the pseudopotential to complex systems, such as molecules, clusters, solids,

etc., the valence pseudofunctions satisfy the usual orthonormality conditions as in Eq. (7.9),

〈ψσ,PS
i |ψσ ′,PS

j 〉 = δi, jδσ,σ ′ , (11.18)

5 Construction of such model potentials from atomic information presents a conceptual problem: the potential

represents the effects of V̂ PKA, which depends upon the valence eigenvalue εv
i in the atom which is defined

relative to a reference energy equal to zero at infinity; however, the goal is to apply the pseudopotentials to

infinite solids, where this is not a well-defined reference energy, and to molecules, where the levels are shifted

relative to the atom. How can one relate the eigenvalues of the two types of systems? This was a difficult issue

in the original pseudopotentials that was resolved by the conditions for construction of “norm-conserving”

pseudopotentials described in Sec. 11.4.
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so that for the Kohn–Sham equations have the same form as in (7.11),

(Hσ,PS
KS − εσ

i )ψσ,PS
i (r) = 0, (11.19)

with Hσ,PS
KS given by (7.12) and (7.13), and the external potential given by the pseudopotential

specified in the section following.

Norm-conservation condition

Quantum chemists and physicists have devised pseudopotentials called, respectively,

“shape-consistent” [493,494] and “norm-conserving” [471].6 The starting point for defining

norm-conserving potentials is the list of requirements for a “good” ab initio pseudopotential

given by Hamann, Schluter, and Chiang (HSC) [471]:

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic reference con-

figuration.

2. All-electron and pseudo valence wavefunctions agree beyond a chosen core radius Rc.

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree at Rc.

4. The integrated charge inside Rc for each wavefunction agrees (norm-conservation).

5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo

wavefunctions agrees at Rc, and therefore for all r ≥ Rc.

From Points 1 and 2 it follows that the NCPP equals the atomic potential outside the

“core region” of radius Rc; this is because the potential is uniquely determined (except for a

constant that is fixed if the potential is zero at infinity) by the wavefunction and the energy

ε, that need not be an eigenenergy. Point 3 follows since the wavefunction ψl (r ) and its

radial derivative ψ ′
l (r ) are continuous at Rc for any smooth potential. The dimensionless

logarithmic derivative D is defined by

Dl(ε, r ) ≡ rψ ′
l (ε, r )/ψl (ε, r ) = r

d

dr
lnψl(ε, r ), (11.20)

also given in (J.5).

Inside Rc the pseudopotential and radial pseudo-orbital ψPS
l differ from their all-electron

counterparts; however, Point 4 requires that the integrated charge,

Ql =
∫ Rc

0

drr2|ψl (r )|2 =
∫ Rc

0

drφl(r )2, (11.21)

is the same for ψPS
l (or φPS

l ) as for the all-electron radial orbital ψl (or φl) for a valence

state. The conservation of Ql insures that: (a) the total charge in the core region is correct,

and (b) the normalized pseudo-orbital is equal7 to the true orbital outside of Rc (in contrast

to the smooth orbital of (11.6) which equals the true orbital outside Rc only if it is not

normalized). Applied to a molecule or solid, these conditions ensure that the normalized

6 Perhaps the earliest work was that of Topp and Hopfield [495].
7 Equality can be strictly enforced only for local functionals, not for non-local cases as in Hartree–Fock and EXX

potentials. For example, see [496].
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pseudo-orbital is correct in the region outside Rc between the atoms where bonding occurs,

and that the potential outside Rc is correct as well since the potential outside a spherically

symmetric charge distribution depends only on the total charge inside the sphere.

Point 5 is a crucial step toward the goal of constructing a “good” pseudopotential: one

that can be generated in a simple environment like a spherical atom, and then used in a more

complex environment. In a molecule or solid, the wavefunctions and eigenvalues change

and a pseudopotential that satisfies Point 5 will reproduce the changes in the eigenvalues

to linear order in the change in the self-consistent potential. At first sight, however, it is

not obvious how to satisfy the condition that the first energy derivative of the logarithmic

derivatives dDl(ε, r )/dε agree for the pseudo- and the all-electron wavefunctions evaluated

at the cutoff radius Rc and energy εl chosen for the construction of the pseudopotential of

angular momentum l.
The advance due to HSC [471] and others [493,494] was to show that Point 5 is implied

by Point 4. This “norm-conservation condition” can be derived straightforwardly, e.g. fol-

lowing the derivation of Shirley et al. [497], which uses relations due to Luders [498] (see

Exercises 11.8 and 11.9 for intermediate steps). The radial equation for a spherical atom or

ion, (10.12), which can be written

−1

2
φ′′

l (r ) +
[

l(l + 1)

2r 2
+ Veff(r ) − ε

]

φl (r ) = 0, (11.22)

where a prime means derivative with respect to r , can be transformed by defining the variable

xl(ε, r )

xl(ε, r ) ≡ d

dr
lnφl (r ) = 1

r
[Dl(ε, r ) + 1]. (11.23)

It is straightforward to show that (11.22) is equivalent to the non-linear first-order differential

equation,

x ′
l (ε, r ) + [xl(ε, r )]2 = l(l + 1)

r2
+ 2[V (r ) − ε]. (11.24)

Differentiating this equation with respect to energy gives

∂

∂ε
x ′

l (ε, r ) + 2xl(ε, r )
∂

∂ε
xl(ε, r ) = −1. (11.25)

Combining this with the relation valid for any function f (r ) and any l,

f ′(r ) + 2xl (ε, r ) f (r ) = 1

φl(r )2

∂

∂r
[φl(r )2 f (r )], (11.26)

multiplying by φl (r )2 and integrating, one finds at radius R

∂

∂ε
xl(ε, R) = − 1

φl (R)2

∫ R

0

drφl (r )2 = − 1

φl (R)2
Ql(R), (11.27)

or in terms of the dimensionless logarithmic derivative Dl(ε, R)

∂

∂ε
Dl (ε, R) = − R

φl (R)2

∫ R

0

drφl (r )2 = − R

φl (R)2
Ql(R). (11.28)
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This shows immediately that if φPS
l has the same magnitude as the all-electron function

φl at Rc and obeys norm-conservation (Ql the same), then the first energy derivative of the

logarithmic derivative xl(ε, R) and Dl(ε, R) is the same as for the all-electron wavefunction.

This also means that the norm-conserving pseudopotential has the same scattering phase

shifts as the all-electron atom to linear order in energy around the chosen energy εl , which

follows from expression (J.6), which relates to Dl(ε, R) and the phase shift ηl(ε, R).8

11.5 Generation of l -dependent norm-conserving pseudopotentials

Generation of a pseudopotential starts with the usual all-electron atomic calculation as de-

scribed in Ch. 10. Each state l, m is treated independently except that the total potential is

calculated self-consistently for the given approximation for exchange and correlation and

for the given configuration of the atom. The next step is to identify the valence states and

generate the pseudopotentials Vl(r ) and pseudo-orbitals ψPS
l (r ) = rφPS

l (r ). The procedure

varies with different approaches, but in each case one first finds a total “screened” pseudopo-

tential acting on valence electrons in the atom. This is then “unscreened” by subtracting

from the total potential the sum of Hartree and exchange–correlation potentials V PS
Hxc(r ) =

V PS
Hartree(r ) + V PS

xc (r )

Vl (r ) ≡ Vl,total(r ) − V PS
Hxc(r ), (11.29)

where V PS
Hxc(r ) is defined for the valence electrons in their pseudo-orbitals. Further aspects

of “unscreening” are deferred to Sec. 11.6.

It is useful to separate the ionic pseudopotential into a local (l-independent) part of the

potential plus non-local terms

Vl(r ) = Vlocal(r ) + δVl (r ). (11.30)

Since the eigenvalues and orbitals are required to be the same for the pseudo and the all-

electron case for r > Rc, each potential Vl (r ) equals the local (l-independent) all-electron

potential, and Vl(r ) → − Z ion

r for r → ∞. Thus δVl(r ) = 0 for r > Rc and all the long-range

effects of the Coulomb potential are included in the local potential Vlocal(r ). Finally, the

“semilocal” operator (11.15) can be written as

V̂SL = Vlocal(r ) +
∑

lm

|Ylm〉δVl(r )〈Ylm |. (11.31)

Even if one requires norm-conservation, there is still freedom of choice in the form of

Vl(r ) in constructing pseudopotentials. There is no one “best pseudopotential” for any given

element – there may be many “best” choices, each optimized for some particular use of the

pseudopotential. In general, there are two overall competing factors:

8 This relation is very important and used in many contexts: in App. J it is seen to be the Friedel sum rule, which

has important consequences for resistivity due to impurity scattering in metals. In Ch. 17 it is used to relate the

band width to the value of the wavefunction at the boundary of a sphere.
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Figure 11.4. Example of norm-conserving pseudopotentials, pseudofunctions, and logarithmic

derivative for the element Mo. Left bottom: Vl (r ) in Rydbergs for angular momentum l = 0, 1, 2

compared to Zion/r (dashed). Left top: All-electron valence radial functions φl (r ) = rψl (r ) (dashed)

and norm-conserving pseudofunctions. Right: Logarithmic derivative of the pseudopotential

compared to the full atom calculation; the points indicate the energies, ε, where they are fitted. The

derivative with respect to the energy is also correct due to the norm-conservation condition (11.27).

From [471].

� Accuracy and transferability generally lead to the choice of a small cutoff radius Rc and

“hard” potentials, since one wants to describe the wavefunction as well as possible in the

region near the atom.
� Smoothness of the resulting pseudofunctions generally leads to the choice of a large cutoff

radius Rc and “soft” potentials, since one wants to describe the wavefunction with as few

basis functions as possible (e.g. plane waves).

Here we will try to present the general ideas in a form that is the basis of widely used

methods, with references to some of many proposed forms that cannot be covered here.

An example of pseudopotentials [471] for Mo is shown in Fig. 11.4. A similar approach

has been used by Bachelet, Hamann, and Schlüter (BHS) [499] to construct pseudopotentials

for all elements from H to Po, in the form of an expansion in gaussians with tabulated

coefficients. These potentials were derived starting from an assumed form of the potential

and varying parameters until the wavefunction has the desired properties, an approach also
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Figure 11.5. Comparison of pseudopotentials for carbon (dotted line for s and solid line for p) in real

space and reciprocal space, illustrating the large variations in potentials that are all norm-conserving

and have the same phase shifts at the chosen energies. In order from left to right generated using the

procedures of: Troullier and Martins [502]; Kerker [501]; Hamann, Schlüter, and Chiang [471];

Vanderbilt [500]. From Troullier and Martins [502].

used by Vanderbilt [500]. A simpler procedure is that of Christiansen et al. [493] and

Kerker [501], which defines a pseudo-wavefunction φPS
l (r ) with the desired properties for

each l and numerically inverts the Schrödinger equation to find the potential Vl(r ) for which

φPS
l (r ) is a solution with energy ε. The wavefunction outside the radius Rc is the same as

the true function and at Rc it is matched to a parameterized analytic function. Since the

energy ε is fixed (often it is the eigenvalue from the all-electron calculation, but this is not

essential) it is straightforward to invert the Schrödinger equation for a nodeless function

φPS
l (r ) for each l separately, yielding

Vl,total(r ) = ε −
-h2

2me

[
l(l + 1)

2r 2
−

d2

dr2 φ
PS
l (r )

φPS
l (r )

]

. (11.32)

The analytic form chosen by Kerker is φPS
l (r ) = ep(r ), r < Rc, where p(r ) = polynomial

to fourth power with coefficients fixed by requiring continuous first and second derivatives

at Rc and norm-conservation.

One of the important considerations for many uses is to make the wavefunction as smooth

as possible, which allows it to be described by fewer basis functions, e.g. fewer Fourier

components. For example, the BHS potentials [499] are a standard reference for comparison;

however, they are generally harder and require more Fourier components in the description

of the pseudofunction than other methods. Troullier and Martins [502] have extended the

Kerker method to make it smoother by using a higher order polynomial and matching more

derivatives of the wavefunction. A comparison of different pseudopotentials for carbon is

given in Fig. 11.5 showing the forms both in real and reciprocal space. The one-dimensional

radial transforms Vl(q) (or “form factors”) for each l are defined in Sec. 12.4; these are
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the functions that enter directly in plane wave calculations and their extent in Fourier

space determines the number of plane waves needed for convergence. A number of authors

have proposed ways to make smoother potentials to reduce the size of calculations. One

approach [503,504] is to minimize the kinetic energy of the pseudofunctions explicitly for

the chosen core radius. This can be quantified by examination of the Fourier transform and

its behavior at large momentum q. Optimization of the potentials can be done in the atom,

and the results carry over to molecules and solids, since the convergence as a function of

the range qmax is the same in all the cases.

The forms used in chemistry literature [494] have generally been much more rapidly vary-

ing, often singular at the origin. In recent work, however, Hartree–Fock pseudopotentials

that have no singularities [505, 506] have been generated for use in many-body quantum

chemical calculations.

Relativistic effects

Effects of special relativity can be incorporated into pseudopotentials, since they originate

deep in the interior of the atom near the nucleus, and the consequences for valence electrons

can be easily carried into molecular or solid state calculations. This includes shifts due

to scalar relativistic effects and spin–orbit interactions. The first step is generation of a

pseudopotential from a relativistic all-electron calculation on the atom for both j = l + 1/2

and j = l − 1/2. From the two potentials we can define [413, 499]

Vl = l

2l + 1

[
(l + 1)Vl+1/2 + lVl−1/2

]
, (11.33)

δV so
l = 2

2l + 1

[
Vl+1/2 − Vl−1/2

]
. (11.34)

Scalar relativistic effects are included in the first term and the spin–orbit effects are included

in a short–range non-local term [449, 450],

δV̂ so
SL =

∑

lm

|Ylm〉δV so
l (r )L · S〈Ylm |. (11.35)

11.6 Unscreening and core corrections

In the construction of ab initio pseudopotentials there is a straightforward one-to-one rela-

tion of the valence pseudofunction and the total pseudopotential. It is then a necessary step

to “unscreen” to derive the bare ion pseudopotential which is transferable to different envi-

ronments. However, the process of “unscreening” is not so straightforward. If the effective

exchange–correlation potential were a linear function of density (as is the Hartree potential

VHartree) there would be no problem, and (11.29) could be written as

Vl,total = Vl(r ) + VHartree([nPS], r) + Vxc([nPS], r), (11.36)

where the notation [nPS] means the quantity is evaluated as a functional of the pseudonymity

nPS. This is true for the Hartree potential, but the fact that Vxc is a non-linear functional of n
(and may also be non-local) leads to difficulties and ambiguities. (Informative discussions

can be found in [507] and [496].)
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Non-linear core corrections

So long as the exchange–correlation functional involves only the density or its gradients

at each point, then the unscreening of the potential in the atom can be accomplished by

defining the effective exchange–correlation potential in (11.29) as

Ṽxc(r) = Vxc([nPS], r) + [
Vxc([nPS + ncore], r) − Vxc([nPS], r)

]
. (11.37)

The term in square brackets is a core correction that significantly increases the transferability

of the pseudopotential [507]. There are costs, however: the core charge density must be

stored along with the pseudodensity and the implementation in a solid must use Ṽxc(r)

defined in (11.37), and the rapidly varying core density would be a disadvantage in plane

wave methods. The second obstacle can be overcome [507] using the freedom of choice

inherent in pseudopotentials by defining a smoother “partial core density” ncore
partial(r ) that can

be used in (11.37). The original form proposed by Louie, Froyen, and Cohen [507] is9

ncore
partial(r ) =

{
A sin(Br )

r , r < r0,

ncore(r ), r > r0,
(11.38)

where A and B are determined by the value and gradient of the core charge density at r0,

a radius chosen where ncore is typically 1 to 2 times nvalence. The effect is particularly large

for cases in which the core is extended (e.g. the 3d transition metals where the 3p “core”

states strongly overlap the 3d “valence” states) and for magnetic systems where there may

be a large difference between up and down valence densities even though the fractional

difference in total density is much smaller. In such cases description of spin-polarized

configurations can be accomplished with a spin-independent ionic pseudopotential, with no

need for separate spin-up and spin-down ionic pseudopotentials.

Non-local Exc functionals

There is a complication in “unscreening” in cases where the Exc functional is intrinsically

non-local, as in Hartree–Fock and exact exchange (EXX). In general it is not possible to

make a potential that keeps the wavefunctions outside a core radius the same as in the

original all-electron problem because the non-local effects extend to all radii. The issues

are discussed thoroughly in [496].

11.7 Transferability and hardness

There are two meanings to the word “hardness.” One meaning is a measure of the variation

in real space which is quantified by the extent of the potential in Fourier space. In general,

“hard” potentials describe the properties of the localized rigid ion cores and are more

transferable from one material to another; attempts to make the potential “soft” (i.e. smooth)

have tended to lead to poorer transferability. However, there is considerable effort to make

9 The form in (11.38) has a discontinuity in the second derivative r0, which causes difficulties in conjunction with

GGA functionals. This problem is readily remedied by using a more flexible functional form.
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accurate, transferable potentials that nevertheless do not extend far in Fourier space, e.g.

the “optimized” pseudopotentials [503].

The second meaning is a measure of the ability of the valence pseudo-electrons to describe

the response of the system to a change in the enviroment properly [508–510]. We have

already seen that norm-conservation guarantees that the electron states of the atom have the

correct first derivative with respect to change in energy. This meaning of “hardness” is a

measure of the faithfulness of the response to a change in potential. Potentials can be tested

versus spherical perturbations (change of charge, state, radial potential) using the usual

spherical atom codes. Goedecker and Maschke [508] have given an insightful analysis

in terms of the response of the charge density in the core region; this is relevant since

the density is the central quantity in density functional theory and the integrated density is

closely related to norm-conservation conditions. Also tests with non-spherical perturbations

ascertain the performance with relevant perturbations, in particular, the polarizability in an

electric field [510].

Tests in spherical boundary conditions

We have seen in Sec. 10.7 that some aspects of solids are well modeled by imposing different

spherical boundary conditions on an atom or ion. A net consequence is that the valence

wavefunctions tend to be more concentrated near the nucleus than in the atom. How well do

pseudopotentials derived for an isolated atom describe such situations? The answer can be

found directly using computer programs for atoms and pseudoatoms (Ch. 24); examples are

given in the exercises. These are the types of tests that should be done whenever generating
a new pseudopotential.

11.8 Separable pseudopotential operators and projectors

It was recognized by Kleinman and Bylander (KB) [472] that it is possible to construct a

separable pseudopotential operator, i.e. δV (r, r′) written as a sum of products of the form

�i fi (r)gi (r′). KB showed that the effect of the semilocal δVl(r ) in (11.30) can be replaced,

to a good approximation, by a separable operator ˆδV NL so that the total pseudopotential has

the form

V̂NL = Vlocal(r ) +
∑

lm

|ψPS
lm δVl〉〈δVlψ

PS
lm |

〈ψPS
lm |δVl |ψPS

lm 〉 , (11.39)

where the second term written explicitly in coordinates, ˆδV NL(r, r′), has the desired sepa-

rable form. Unlike the semilocal form (11.15), it is fully non-local in angles θ, φ and radius

r . When operating on the reference atomic states ψPS
lm , ˆδV NL(r, r′) acts the same as δVl(r ),

and it can be an excellent approximation for the operation of the pseudopotential on the

valence states in a molecule or solid.

The functions 〈δVlψ
PS
lm | are projectors that operate upon the wavefunction

〈δVlψ
PS
lm |ψ〉 =

∫

dr δVl(r )ψPS
lm (r)ψ(r). (11.40)
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Each projector is localized in space, since it is non-zero only inside the pseudopotential

cutoff radius where δVl(r ) is non-zero. This is independent of the extent of the functions

ψPS
lm = ψlm(r )Pl(cos(θ ))eimφ , which have the extent of atomic valence orbitals or can even

be non-bound states.

The advantage of the separable form is that matrix elements require only products of

projection operations (11.40)

〈ψi |δV̂NL|ψ j 〉 =
∑

lm

〈ψi |ψPS
lm δVl〉 1

〈ψPS
lm |δVl |ψPS

lm 〉 〈δVlψ
PS
lm |ψ j 〉. (11.41)

This can be contrasted with (11.17), which involves a radial integral for each pair of functions

ψi and ψ j . This leads to savings in computations that can be important for large calculations.

However, it does lead to an additional step which may lead to increased errors. Although, the

operation on the given atomic state is unchanged, the operations on other states at different

energies may be modified, and care must be taken to ensure that there are no artificial

“ghost states” introduced. (As discussed in Exercise 11.12, such ghost states at low energy

are expected when Vlocal(r ) is attractive and the non-local δVl(r ) are repulsive. This choice

should be avoided [511].)

It is straightforward to generalize to the case of spin–orbit coupling, using the states of the

atom derived from the Dirac equation with total angular momentum j = l ± 1
2

[450, 472].

The non-local projections become

V̂
j=l± 1

2

NL = Vlocal(r ) +
∑

lm

|ψPS
l± 1

2
,m

Vl± 1
2
〉〈δVl± 1

2
ψPS

l± 1
2
,m

|
〈ψPS

l± 1
2
,m

|δVl± 1
2
|ψPS

l± 1
2
,m

〉 . (11.42)

The KB construction can be modified to generate the separable potential directly with-

out going through the step of constructing the semilocal Vl(r ) [474]. Following the same

procedure as for generating the norm-conserving pseudopotential, the first step is to de-

fine pseudofunctions ψPS
lm (r) and a local pseudopotential Vlocal(r ) which are equal to the

all-electron functions outside a cutoff radius r > Rc. For r > Rc, ψPS
lm (r) and Vlocal(r ) are

chosen in some smooth fashion as was done in Sec. 11.5. If we now define new functions

χPS
lm (r) ≡

{

εl −
[

−1

2
∇2 + Vlocal(r )

]}

ψPS
lm (r), (11.43)

it is straightforward to show that χPS
lm (r) = 0 outside Rc and that the operator

δV̂NL =
∑

lm

|χPS
lm 〉〈χPS

lm |
〈χPS

lm |ψPS
lm 〉 (11.44)

has the same properties as the KB operator (11.39), i.e. ψPS
lm is a solution of ĤψPS

lm = εlψ
PS
lm

with Ĥ = − 1
2
∇2 + Vlocal + δV̂NL.

11.9 Extended norm conservation: beyond the linear regime

Two general approaches have been proposed to extend the range of energies over which the

phase shifts of the original all-electron potential are described. Shirley and coworkers [497]
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have given general expressions that must be satisfied for the phase shifts to be correct to

arbitrary order in a power series expansion in (ε − ε0)N around the chosen energy ε0.

A second approach is easier to implement and is the basis for further generalizations that

hold great promise for future work in electronic structure (see Sec. 17.8). The construction

of the projectors can be done at any energy εs and the procedure can be generalized to

satisfy the Schrödinger equation at more than one energy for a given l, m [473, 474].

(Below we omit superscript PS and subscript l, m for simplicity.) If pseudofunctions ψs

are constructed from all-electron calculations at different energies εs , one can form the

matrix Bs,s ′ = 〈ψs |χs′ 〉, where the χs are defined by (11.43). In terms of the functions

βs = ∑
s ′ B−1

s,s′χs′ , the generalized non-local potential operator can be written

δV̂NL =
∑

lm

[
∑

s,s′
Bs,s′ |βs〉〈βs′ |

]

lm

. (11.45)

It is straightforward to show (Exercise 11.13) that each ψs is a solution of Ĥψs = εsψs .

With this modification, the non-local separable pseudopotential can be generalized to agree

with the all-electron calculation to arbitrary accuracy over a desired energy range.

The transformation (11.45) exacts a price; instead of the simple sum of products of

projectors in (11.41), matrix elements of (11.45) involve a matrix product of operators. For

the spherically symmetric pseudopotential, the matrix is s × s and is diagonal in l, m. (A

similar idea is utilized in Sec. 17.8 to transform the equations for the general problem of

electron states in a crystal.)

11.10 Ultrasoft pseudopotentials

One goal of pseudopotentials is to create pseudofunctions that are as “smooth” as possible,

and yet are accurate. For example, in plane wave calculations the valence functions are

expanded in Fourier components, and the cost of the calculation scales as a power of the

number of Fourier components needed in the calculation (see Ch. 12). Thus one meaningful

definition of maximizing “smoothness” is to minimize the range in Fourier space needed to

describe the valence properties to a given accuracy. “Norm-conserving” pseudopotentials

achieve the goal of accuracy, usually at some sacrifice of “smoothness.”

A different approach known as “ultrasoft pseudopotentials” reaches the goal of accurate

calculations by a transformation that re-expresses the problem in terms of a smooth function

and an auxiliary function around each ion core that represents the rapidly varying part of

the density. Although the equations are formally related to the OPW equations and the

Phillips–Kleinman–Antoncik construction given in Sec. 11.2, ultrasoft pseudopotentials are

a practical approach for solving equations beyond the applicability of those formulations.

We will focus upon examples of states that present the greatest difficulties in the creation

of accurate, smooth pseudofunctions: valence states at the beginning of an atomic shell, 1s,

2p, 3d, etc. For these states, the OPW transformation has no effect since there are no core

states of the same angular momentum. Thus the wavefunctions are nodeless and extend into
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Figure 11.6. 2p radial wavefunction ψ(r ) for oxygen treated in the LDA, comparing the all-electron

function (solid line), a pseudofunction generated using the Hamann–Schluter–Chiang

approach( [471] (dotted line), and the smooth part of the pseudofunction ψ̃ in the “ultrasoft” method

(dashed line). From [474].

the core region. Accurate representation by norm-conserving pseudofunctions requires that

they are at best only moderately smoother than the all-electron function (see Fig. 11.6).

The transformation proposed by Blöchl [473] and Vanderbilt [474] rewrites the non-local

potential in (11.45) in a form involving a smooth function φ̃ = rψ̃ that is not norm conserv-
ing. (We follow the notation of [474], omitting the labels PS, l, m, and σ for simplicity.)

The difference in the norm equation (11.21), from that norm-conserving function φ = rψ

(either an all-electron function or a pseudofunction) is given by

�Qs,s ′ =
∫ Rc

0

dr�Qs,s′ (r ), (11.46)

where

�Qs,s′ (r ) = φ∗
s (r )φs′ (r ) − φ̃∗

s (r )φ̃s ′(r ). (11.47)

A new non-local potential that operates on the ψ̃s′ can now be defined to be

δV̂ US
NL =

∑

s,s′
Ds,s ′ |βs〉〈βs ′ |, (11.48)

where

Ds,s ′ = Bs,s′ + εs′�Qs,s′ . (11.49)

For each reference atomic states s, it is straightforward to show that the smooth functions

ψ̃s are the solutions of the generalized eigenvalue problem
[
Ĥ − εs Ŝ

]
ψ̃s = 0, (11.50)

with Ĥ = − 1
2
∇2 + Vlocal + δV̂ US

NL and Ŝ an overlap operator,

Ŝ = 1̂ +
∑

s,s ′
�Qs,s ′ |βs〉〈βs ′ |, (11.51)

which is different from unity only inside the core radius. The eigenvalues εs agree with the

all-electron calculation at as many energies s as desired. The full density can be constructed



224 Pseudopotentials

from the functions �Qs,s′(r ), which can be replaced by a smooth version of the all-electron

density.

The advantage of relaxing the norm-conservation condition �Qs,s′ = 0 is that each

smooth pseudofunction ψ̃s can be formed independently, with only the constraint of match-

ing the value of the functions ψ̃s(Rc) = ψs(Rc) at the radius Rc. Thus it becomes possible

to choose Rc much larger than for a norm-conserving pseudopotential, while maintaining

the desired accuracy by adding the auxiliary functions �Qs,s′ (r ) and the overlap operator

Ŝ. An example of the un-normalized smooth function for the 2p state of oxygen is shown

in Fig. 11.6, compared to a much more rapidly varying norm-conserving function.

In a calculation that uses an “ultrasoft pseudopotential” the solutions for the smooth

functions ψ̃i (r) are orthonormalized according to

〈ψ̃i |Ŝ|ψ̃i ′ 〉 = δi,i ′, (11.52)

and the valence density is defined to be

nv(r) =
occ∑

i

ψ̃∗
i (r)ψ̃i ′ (r) +

∑

s,s′
ρs,s ′�Qs,s′(r), (11.53)

where

ρs,s′ =
occ∑

i

〈ψ̃i |βs ′ 〉〈βs |ψ̃i 〉. (11.54)

The solution is found by minimizing the total energy

Etotal =
occ∑

i

〈ψ̃n| − 1

2
∇2 + V ion

local +
∑

s,s′
Dion

s,s′ |βs〉〈βs′ ||ψ̃n〉

+ EHartree[nv] + EI I + Exc[nv], (11.55)

which is the analog of (7.5) and (9.3), except that now the normalization condition is given by

(11.52).10 If we define the “unscreened” bare ion pseudopotential by V ion
local ≡ Vlocal − VHxc,

where VHxc = VH + Vxc, and similarly Dion
s,s ′ ≡ Ds,s ′ − DHxc

s,s ′ with

DH xc
s,s ′ =

∫

drVH xc(r)�Qs,s′(r ), (11.56)

this leads to the generalized eigenvalue problem

[

−1

2
∇2 + Vlocal + δV̂ US

NL − εi Ŝ

]

ψ̃i = 0, (11.57)

where δV̂ US
NL is given by the sum over ions of (11.48). Fortunately, such a generalized

eigenvalue problem is not a major complication with iterative methods (see App. M).

10 Note that one can add a “non-linear core correction” in Exc just as in other pseudopotential methods.
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11.11 Projector augmented waves (PAWs): keeping the full wavefunction

The projector augmented wave (PAW) method [475, 476, 512] is a general approach to

solution of the electronic structure problem that reformulates the OPW method, adapting it

to modern techniques for calculation of total energy, forces, and stress. Like the “ultrasoft”

pseudopotential method, it introduces projectors and auxiliary localized functions. The PAW

approach also defines a functional for the total energy that involves auxiliary functions and

it uses advances in algorithms for efficient solution of the generalized eigenvalue problem

like (11.57). However, the difference is that the PAW approach keeps the full all-electron

wavefunction in a form similar to the general OPW expression given earlier in (11.1);

since the full wavefunction varies rapidly near the nucleus, all integrals are evaluated as

a combination of integrals of smooth functions extending throughout space plus localized

contributions evaluated by radial integration over muffin-tin spheres, as in the augmented

plane wave (APW) approach of Ch. 16.

Here we only sketch the basic ideas of the definition of the PAW method for an atom,

following [475]. Further developments for calculations for molecules and solids [475,476,

512] are deferred to Sec. 13.2. Just as in the OPW formulation, one can define a smooth part

of a valence wavefunction ψ̃v
i (r) (a plane wave as in (11.1) or an atomic orbital as in (11.4)),

and a linear transformation ψv = T ψ̃v that relates the set of all-electron valence functions

ψv
j (r) to the smooth functions ψ̃v

i (r). The transformation is assumed to be unity except with

a sphere centered on the nucleus, T = 1 + T0. For simplicity, we omit the superscript v,

assuming that the ψs are valence states, and the labels i, j . Adopting the Dirac notation,

the expansion of each smooth function |ψ̃〉 in partial waves m within each sphere can be

written (see Eqs. (J.1) and (16.5)),

|ψ̃〉 =
∑

m

cm |ψ̃m〉, (11.58)

with the corresponding all-electron function,

|ψ〉 = T |ψ̃〉 =
∑

m

cm |ψm〉. (11.59)

Hence the full wavefunction in all space can be written

|ψ〉 = |ψ̃〉 +
∑

m

cm
{|ψm〉 − |ψ̃m〉} , (11.60)

which has the same form as Eqs. (11.4) and (11.8).

If the transformation T is required to be linear, then the coefficients must be given by a

projection in each sphere

cm = 〈 p̃m |ψ̃〉, (11.61)

for some set of projection operators p̃. If the projection operators satisfy the biorthogonality

condition,

〈 p̃m |ψ̃m′ 〉 = δmm ′, (11.62)

then the one-center expansion
∑

m |ψ̃m〉〈 p̃m |ψ̃〉 of the smooth function ψ̃ equals ψ̃ itself.
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The resemblance of the projection operators to the separable form of pseudopotential op-

erators (Sec. 11.8) is apparent. Just as for pseudopotentials, there are many possible choices

for the projectors with examples given in [475] of smooth functions for p̃(r) closely related

to pseudopotential projection operators. The difference from pseudopotentials, however, is

that the transformation T still involves the full all-electron wavefunction

T = 1 +
∑

m

{|ψm〉 − |ψ̃m〉} 〈 p̃m |. (11.63)

Furthermore, the expressions apply equally well to core and valence states so that one can

derive all-electron results by applying the expressions to all the electron states.

The general form of the PAW equations can be cast in terms of transformation (11.63).

For any operator Â in the original all-electron problem, one can introduce a transformed

operator Ã that operates on the smooth part of the wavefunctions

Ã = T † ÂT = Â +
∑

mm ′
| p̃m〉 {〈ψm | Â|ψm ′ 〉 − 〈ψ̃m | Â|ψ̃m′ 〉} 〈 p̃m ′ |, (11.64)

which is very similar to a pseudopotential operator as in (11.39). Furthermore, one can add

to the right-hand side of (11.64) any operator of the form

B̂ −
∑

mm ′
| p̃m〉〈ψ̃m |B̂|ψ̃m ′ 〉〈 p̃m′ |, (11.65)

with no change in the expectation values. For example, one can remove the nuclear Coulomb

singularity in the equations for the smooth function, leaving a term that can be dealt with

in the radial equations about each nucleus.

The expressions for physical quantities in the PAW approach follow from (11.63) and

(11.64). For example, the density is given by11

n(r) = ñ(r) + n1(r) − ñ1(r), (11.66)

which can be written in terms of eigenstates labeled i with occupations fi as

ñ(r) =
∑

i

fi |ψ̃i (r)|2, (11.67)

n1(r) =
∑

i

fi

∑

mm ′
〈ψ̃i |ψ̃m〉ψ∗

m(r)ψm′ (r)〈ψ̃m′ |ψ̃i 〉, (11.68)

and

ñ1(r) =
∑

i

fi

∑

mm ′
〈ψ̃i |ψ̃m〉ψ̃∗

m(r)ψ̃m′ (r)〈ψ̃m′ |ψ̃i 〉. (11.69)

The last two terms are localized around each atom and the integrals can be done in spherical

coordinates with no problems from the string variations near the nucleus, as in augmented

methods. Section 13.2 is devoted to the PAW method and expressions for other quantities

in molecules and condensed matter.

11 The equations are modified if the core functions are not strictly localized in the augmentation spheres [513].



11.12 Additional topics 227

11.12 Additional topics

Operators with non-local potentials

The non-local character of pseudopotentials leads to complications that the user should be

aware of. One is that the usual relation of momentum and position matrix elements does not

hold [514, 515]. The analysis at Eq. (19.31) shows that for non-local potentials the correct

relation is

[H, r] = i
-h

me
p + [δVnl , r] , (11.70)

where δVnl denotes the non-local part of the potential. The commutator can be worked out

using the angular projection operators in δVnl [514, 515].

Reconstructing the full wavefunction

In a pseudopotential calculation, only the pseudowavefunction is determined directly.

However, the full wavefunction is required to describe many important physical proper-

ties, e.g. the Knight shift and the chemical shift measured in nuclear resonance experi-

ments [516,517]. These provide extremely sensitive probes of the environment of a nucleus

and the valence states, but the information depends critically upon the perturbations of the

core states. Other experiments, such as core level photoemission and absorption, involve

core states directly.

The OPW and PAW methods provide the core wavefunctions. Is it possible to reconstruct

the core wavefunctions from a usual pseudopotential calculation? The answer is yes, within

some approximations. The procedure is closely related to the PAW transformation (11.63).

For each scheme of generating “ab initio” pseudopotentials, one can formulate an explicit

way to reconstruct the full wavefunctions given the smooth pseudofunction calculated in

the molecule or solid. Such reconstruction has been used, e.g. by Mauri and coworkers, to

calculate nuclear chemical shifts [517, 518].

Pseudohamiltonians

A pseudohamiltonian is a more general object than a pseudopotential; in addition to changing

the potential the mass is varied to achieve the desired properties of the valence states. Since

the pseudohamiltonian is chosen to represent a spherical core, the pseudo kinetic energy
operator is allowed only to have a mass that can be different for radial and tangential motion

and whose magnitude can vary with radius [519]. Actual pseudohamiltonians derived thus

far have assumed that the potential is local [519–521]. If such a form can be found it will

be of great use in Monte Carlo calculations where the non-local operators are problematic

[519, 520]; however, it has so far not proven possible to derive pseudohamiltonians of

general applicability.
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Beyond the single-particle approximation

It is also possible to define pseudopotentials that describe the effects of the cores beyond
the independent-electron approximation [493,522–524]. At first sight, it seems impossible

to define a hamiltonian for valence electrons only, omitting the cores, when all electrons are

identical. However, a proper theory can be constructed relying on the fact that all low-energy

excitations can be mapped one-to-one onto a valence-only problem. In essence, the outer

valence electrons can be viewed as quasiparticles that are renormalized by the presence of

the core electrons. Further treatment is beyond the scope of the present work, but extensive

discussion and actual pseudopotentials can be found in [522, 523].
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Exercises

11.1 Consider s-wave (l = 0) scattering in the example illustrated in Fig. 11.1. Using formula (J.4)

for the radial wavefunction ψ , with the definition φ = rψ , and the graphical construction

indicated in Fig. 11.1, show that the scattering length approaches a well-defined limit as

κ → 0, and find the relation to the phase shift η0(ε).

11.2 The pseudopotential concept can be illustrated by a square well in one dimension with width

s and depth −V0. (See also Exercises 11.6 and 11.14; the general solution for bands in one

dimension in Exercise 4.22; and relations to the plane wave, APW, KKR, and MTO methods,

respectively, in Exercises 12.6, 16.1, 16.7, and 16.13.)

A plane wave with energy ε > 0 travelling to the right has a reflection coefficient r and

transmission coefficient t (see Exercise 4.22).

(a) By matching the wavefunction at the boundary, derive r and t as a function of V0, s, and ε.

Note that the phase shift δ is the shift of phase of the transmitted wave compared to the wave

in the absence of the well.

(b) Show that the same transmission coefficient t can be found with different V ′
0 and/or s ′ at

a chosen energy ε0.

(c) Combined with the analysis in Exercise 4.22, show that a band in a one-dimensional

crystal is reproduced approximately by the modified potential. The bands agree exactly at

energy εk = ε0 and have errors linear in εk − ε0 + higher order terms.

11.3 Following Eq. (11.9) it is stated that if uli = ψ c
li in the OPW, then the smooth function ψ̃v

l (r)

has no radial nodes. Show that this follows from definition of the OPW.

11.4 Verify expression (11.10) for the norm of an OPW. Show this means that different OPWs are

not orthonormal and each has norm less than unity.

11.5 Derive the transformation from the OPW equation (11.11) to the pseudopotential equation

(11.12) for the smooth part of the wavefunction.

11.6 Consider the one-dimensional square well defined in Exercise 11.2. There (and in Exer-

cise 4.22) the scattering was considered in terms of left and right propagating waves ψl and

ψr . However, pseudopotentials are defined for eigenstates of the symmetry. In one dimension

the only spatial symmetry is inversion, so that all states can be classified as even or odd. Here

we construct a pseudopotential; the analysis is also closely related to the KKR solution in

Exercise 16.7.

(a) Using linear combinations of ψl and ψr , construct even and odd functions, and show they

have the form

ψ+ = e−ik|x | + (t + r )eik|x |,

ψ− = [
e−ik|x | + (t − r )eik|x |] sign(x). (11.71)

(c) From the relation of t and r given in Exercise 4.22, show that the even and odd phase shifts

are given by

e2iη+ ≡ t + r = ei(δ+θ ),

e2iη− ≡ t − r = ei(δ−θ ), (11.72)

where t = |t |eiδ and θ ≡ cos−1(|t |).
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(d) Repeat the analysis of Exercise 11.2 and show that the band of a one dimensional crystal

at a given energy ε is reproduced by a pseudopotential if both phase shifts η+(ε) and η−(ε)

are correct.

11.7 Find the analytic formulas for the Fourier transforms of a spherical square well potential

V (r ) = v0, r < R0, and a gaussian potential V (r ) = A0 exp − αr2, using the expansion of a

plane wave in spherical harmonics.

11.8 Show that the radial Schrödinger equation can be transformed to the non-linear first-order

differential equation (11.24).

11.9 Show that (11.26) indeed holds for any function f and that this relation leads to (11.27) with

the choice f (r ) = (∂/∂ε)xl (ε, r ). To do this use the fact that φ = 0 at the origin so that the

final answer depends only upon f (R) and φ(R) at the outer radius.

11.10 Show that the third condition of norm conservation (agreement of logarithmic derivatives of

the wavefunction) ensures that the potential is continuous at Rc.

11.11 Use a code from the on-line source given in Ch. 24 to generate a “high quality” (small Rc)

pseudopotential for Si in the usual atomic ground state 3s23p2. Check that the eigenvalues are

the same as the all-electron calculation.

(a) Use the same pseudopotential to calculate the eigenvalues in various ionization states +1,

+2, +3, +4. How do the eigenvalues agree with the all-electron results.

(b) Repeat for a poorer quality (larger Rc) pseudopotential. Is the agreement worse? Why or

why not?

(c) Carry out another set of calculations for a “compressed atom,” i.e. confined to a radius ≈ 1
2

the nearest neighbor distance. (This may require changes in the code.) Calculate the changes

in eigenvalues using the all-electron code and using the same pseudopotential, i.e. one derived

from the “compressed atom.” How do they agree?

(d) Non-linear core correlation corrections can also be tested. In many generation codes, the

corrections can simply be turned on or off. One can also calculate explicitly the exchange–

correlation energy using the pseudo and the entire density. The largest effects are for spin

polarized transition metals, e.g. Mn 3d5↑ compared to 3d4↑ 3d1↓.

11.12 Show that unphysical “ghost states” can occur at low energies as eigenvalues of the hamiltonian

with the non-local potential operator (11.39) if Vlocal(r ) is chosen to be large and negative

(attractive) so that the non-local δVl (r ) must be large and positive. Hint: Consider the limit of

a very large negative Vlocal(r ) acting on a state that is orthogonal to φl (r ).

11.13 Show that each ψs is a solution of Ĥψs = εsψs if the “ultrasoft” potential is constructed using

(11.45).

11.14 The square well in one dimension considered in Exercises 11.2 and 11.6 illustrates ideas of

the OPW and pseudopotential methods and also shows close relations to other methods (see

Exercise 11.2). In this example we consider a bound state with ε < 0, but similar ideas apply

for ε > 0 (Exercise 11.2).

(a) A deep well has states analogous to core states with εc � 0. Consider a well with width

s = 2a0 and depth −V0 = −12Ha. Solve for the two lowest “core” states using the approx-

imation that they are bound states of an infinite well. Solve for the third “valence” state by

matching the wavefunction.
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(b) Construct a generalized OPW-like valence state using the definition ψv (x) = ψ̃v (x) +
∑

j B j u j (x), analogous to (11.4). Rather than using the expressions in Fourier space, it is

easiest to use the definition Bj = 〈u j |ψ̃v〉. The overlap B j is zero for one of the “core” states;

give the reason and generalize the argument to apply to core states of an atom in three dimen-

sions. Show that the “smooth state” ψ̃v is indeed smoother than the original ψv .

(c) Construct the PKA pseudopotential analogous to (11.13) and show that its operation on

ψ̃v is effectively that of a weaker potential.

(d) Construct a model potential with the same width s but weaker potential V ′
0 that has the

same logarithmic derivative at the “valence” energy ε. Is this potential norm-conserving?

(e) Construct a norm-conserving potential, which can be done by first finding a nodeless

norm-conserving wavefunction and inverting it as in (11.32). If the form of the wavefunction

is analytic, e.g. a polynomial inside the well, all steps can be done analytically.

(f ) Write a computer code to integrate the one-dimensional Schrödinger equation and evaluate

the logarithmic derivative as a function of energy near ε and compare the results for the original

problem with the pseudopotentials from parts (d) and (e).

(g) Transform the potential to a separable form as in Sec. 11.8. There is only one projector

since only one state is considered. Show that for a symmetric well in one dimension the general

form involves only two projectors for even and odd functions.

(h) Generate an “ultrasoft” potential and the resulting generalized eigenvalue problem analo-

gous to (11.57). Discuss the relation to the OPW method and PKA form of the potential.

(i) Generate a PAW function and show the relation to the OPW and APW methods (part (b)

above and Exercise 16.1).





PART IV

THE THREE BASIC METHODS DETERMINATION OF

ELECTRONIC STRUCTURE

There are nine and sixty ways of constructing tribal lays,
And every single one of them is right!

Rudyard Kipling, In the Neolithic Age

Overview of Chapters 12–17

There are three basic approaches to the calculation of independent-particle electronic states

in materials. There are no fundamental disagreements: all agree when applied carefully and

taken to convergence. Indeed, each of the approaches leads to instructive, complementary

ways to understand electronic structure and each can be developed into a general framework

for accurate calculations.

� Each method has its advantages: each is most appropriate for a range of problems and

can provide particularly insightful information in its realm of application.
� Each method has its pitfalls: the user beware. It is all too easy to make glaring errors or

over-interpret results if the user does not understand the basics of the methods.

The three types of methods and their characteristic pedagogical values are:

1. Plane wave and grid methods provide general approaches for solution of differential

equations, including the Schrödinger and Poisson equations. At first sight, plane waves

and grids are very different, but in fact each is an effective way of representing smooth

functions. Furthermore, grids are involved in modern efficient plane wave calculations

that use fast Fourier transforms.

Chapter 12 is devoted to the basic concepts and methods of electronic structure.

Plane waves are presented first because of their simplicity and because Fourier transforms

provide a simple derivation of the Bloch theorem. Since plane waves are eigenfunctions of

the Schrödinger equation with constant potential, they are the natural basis for description

of bands in the nearly-free-electron approximation which provides important insight

into band structures of many materials including sp-bonded metals, semiconductors,

etc. Pseudopotentials are intertwined with plane wave methods because they allow

calculations to be done with a feasible number of plane waves. The basic ideas can be

understood in terms of empirical pseudopotentials which provide a compact description
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of bands in terms of a few Fourier components of the potentials. Real-space grids provide

an alternative way to solve the equations, which is especially useful for finite systems.

Chapter 13 is devoted to self-consistent “ab initio” methods that utilize plane waves

(and/or grids) to solve the Kohn–Sham equations. Because of the simplicity of plane

waves, they are often the basis of choice for development of new methods, such as Car-

Parrinello quantum molecular dynamics simulations (Ch. 18), efficient iterative methods

(App. M), and many other innovations. Plane waves and grids are appropriate for smooth

functions, namely pseudopotentials or related operators. “Norm-conserving” potentials

provide accurate solutions with pseudofunctions that are orthonormal solutions of ordi-

nary differential equations.

Two approaches have brought the OPW approach into the framework of total energy

functionals: ultrasoft pseudopotentials and projector augmented wave (PAW) formula-

tion. With “ultrasoft” pseudopotentials the problem is cast in terms of localized spherical

functions and smooth wavefunctions that obey a generalized eigenvalue equation with an

OPW-type hamiltonian. The projector augmented wave (PAW) formulation completes

the transformation by expressing the wavefunctions as a sum of smooth functions plus

core functions, just as in the OPW approach. Unlike pseudopotentials, the PAW method

keeps the entire set of all-electron core functions and the smooth parts of the valence

functions. Matrix elements involving core functions are treated using muffin-tin spheres

as in augmented methods (Ch. 16). Nevertheless, the ultrasoft and PAW methods maintain

the advantage of pseudopotentials that forces can be calculated easily.

2. Localized atomic(-like) orbitals (LCAO) provide a basis that captures the essence

of the atomic-like features of solids and molecules. They provide a satisfying, localized

description of electronic structure widely used in chemistry, in recently developed “order-

N” methods (Ch. 23), and in constructing useful models.

Chapter 14 defines the orbitals and presents basic theory. In particular, local orbitals

provide an illuminating derivation (indeed the original derivation of Bloch in 1928) of

the Bloch theorem. The semiempirical tight-binding method, associated with Slater and

Koster, is particularly simple and instructive since one needs only the matrix elements

of the overlap and hamiltonian. Tables of tight-binding matrix elements can be used to

determine electronic states, total energies, and forces with very fast, simple calculations.

Chapter 15 is devoted to methods for full calculations done with localized bases such

as gaussians, Slater-type orbitals, and numerical radial atomic-like orbitals. Calculations

can vary from quick (and often dirty) to highly refined with many basis orbitals per atom.

Even in the latter case, the calculations can be much smaller than with plane waves or

grids. However, compared to general bases like plane waves and grids, it is harder to

reach convergence and greater care is needed in constructing basis functions of sufficient

quality.

3. Atomic sphere methods are the most general methods for precise solution of the Kohn–

Sham equations. The basic idea is to divide the electronic structure problem, providing

efficient representation of atomic-like features that are rapidly varying near each nucleus

and smoothly varying functions between the atoms.
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Chapter 16 is devoted to the original methods in which smooth functions are “aug-

mented” near each nucleus by solving the Schrödinger equation in the sphere at each

energy and matching to the outer wavefunction. The resulting APW and KKR meth-

ods are very powerful, but suffer from the fact that they require solution of non-linear

equations. The Green’s function KKR method is particularly elegant, providing local

information as well as global information such as the Fermi surface. The non-linearity

does not present any problem in a Green’s function approach; however, it is difficult to

extend the KKR approach beyond the muffin-tin potential approximation. Muffin-tin or-

bitals (MTOs) are localized, augmented functions that can lead to physically meaningful

descriptions of electronic states in terms of a minimal basis, including the concept of

“canonical bands,” described in terms of structure constants and a very few “potential

parameters.”

Chapter 17 deals with the advance that has made augmented methods much more

tractable and useful: the “L” methods that make use of linearization of the equations

around reference energies. This allows any of the augmented methods to be written in

the familiar form of a secular equation linear in energy involving a hamiltonian and

overlap matrix. The simplification has led to further advances, e.g. the development of

full-potential methods, so that LAPW provides the most precise solutions of the Kohn–

Sham equations available today. The LMTO approach describes electronic states in terms

of a reduced linear hamiltonian with basis functions that are localized and designed to

provide understanding of the electronic states. LMTO involves only a small basis and can

be cast in the form of an “ab initio” orthogonal tight-binding hamiltonian with all matrix

elements derived from the fundamental Kohn–Sham hamiltonian. It is also possible to

go beyond linearization and a methodology is provided by the “NMTO” generalization

to order N .
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Plane waves and grids: basics

Summary

Plane waves and grids provide general methodologies for solution of differen-
tial equations including the Schrödinger and Poisson equations: in many ways
they are very different and in other ways they are two sides of the same coin.
Plane waves are especially appropriate for periodic crystals where they provide
intuitive understanding as well as simple algorithms for practical calculations.
Methods based upon grids in real space are most appropriate for finite systems
and are prevalent in many fields of science and engineering. We introduce them
together because modern electronic structure algorithms use both plane waves
and grids with fast Fourier transforms.

This chapter is organized first to give the general equations in a plane wave
basis and a transparent derivation of the Bloch theorem, complementary to the
one given in Ch. 4. The remaining sections are devoted to relevant concepts and
useful steps, such as nearly-free-electron approximation and empirical pseu-
dopotentials, that reveal the characteristic properties of electronic bands in ma-
terials. This lays the ground work for the full solution of the density functional
equations using ab initio non-local pseudopotentials given in Ch. 13.

12.1 The independent-particle Schrödinger equation in a plane wave basis

The eigenstates of any independent particle Schrödinger-like equation in which each elec-

tron moves in an effective potential Vef f (r),1 such as the Kohn–Sham equations, satisfy the

eigenvalue equation

Ĥe f f (r)ψi (r) =
[

−
-h2

2me
∇2 + Vef f (r)

]

ψi (r) = εiψi (r). (12.1)

In a solid (or any state of condensed matter) it is convenient to require the states to be

normalized and obey periodic boundary conditions in a large volume � that is allowed to

go to infinity. (Any other choice of boundary conditions will give the same result in the large

1 The derivations in this section also hold if the potential is a non-local operator acting only on valence electrons

(as for a non-local pseudopotential) or is energy dependent (as in the APW method). See Exercise 12.8.
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� limit [90].) Using the fact that any periodic function can be expanded in the complete set

of Fourier components, an eigenfunction can be written

ψi (r) =
∑

q

ci,q × 1√
�

exp(iq · r) ≡
∑

q

ci,q × |q〉, (12.2)

where ci,q are the expansion coefficients of the wavefunction in the basis of orthonormal

plane waves |q〉 satisfying

〈q′|q〉 ≡ 1

�

∫

�

dr exp(−iq′ · r) exp(iq · r) = δq,q′ . (12.3)

Inserting (12.2) into (12.1), multiplying from the left by 〈q′| and integrating as in (12.3)

leads to the Schrödinger equation in Fourier space
∑

q

〈q′|Ĥe f f |q〉ci,q = εi

∑

q

〈q′|q〉ci,q = εi ci,q′ . (12.4)

The matrix element of the kinetic energy operator is simply

〈q′| −
-h2

2me
∇2|q〉 =

-h2

2me
|q|2δq,q′ → 1

2
|q|2δq,q′ , (12.5)

where the last expression is in Hartree atomic units. For a crystal, the potential Vef f (r) is

periodic and can be expressed as a sum of Fourier components (see Eqs. (4.7) to (4.11))

Vef f (r) =
∑

m

Vef f (Gm) exp(iGm · r), (12.6)

where Gm are the reciprocal lattice vectors, and

Vef f (G) = 1

�cell

∫

�cell

Vef f (r) exp(−iG · r)dr, (12.7)

with �cell the volume of the primitive cell. Thus the matrix elements of the potential

〈q′|Vef f |q〉 =
∑

m

Vef f (Gm)δq′−q,Gm , (12.8)

are non-zero only if q and q′ differ by some reciprocal lattice vector Gm .

Finally, if we define q = k + Gm and q′ = k + Gm ′ (which differ by a reciprocal lattice

vector Gm ′′ = Gm − Gm′ ), then the Schrödinger equation for any given k can be written as

the matrix equation
∑

m ′
Hm,m ′(k)ci,m ′(k) = εi (k)ci,m(k), (12.9)

where2

Hm,m ′(k) = 〈k + Gm |Ĥe f f |k + Gm′ 〉 =
-h2

2me
|k + Gm |2δm,m ′ + Vef f (Gm − Gm ′). (12.10)

2 The effective potential Vef f (Gm − Gm′ ) must be generalized for non-local potentials to depend on all the

variables Vef f (Km , Km′ ), where Km = k + Gm (see Sec. 12.4).
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Here we have labeled the eigenvalues and eigenfunctions i = 1, 2, . . . , for the discrete set

of solutions of the matrix equations for a given k. Equations (12.9) and (12.10) are the

basic Schrödinger equations in a periodic crystal, leading to the formal properties of bands

derived in the next section as well as to the practical calculations that are the subject of the

remainder of this chapter.

12.2 The Bloch theorem and electron bands

The fundamental properties of bands and the Bloch theorem have been derived from the

translation symmetry in Sec. 4.3; this section provides an alternative, simpler derivation3

in terms of the Fourier analysis of the previous section.

1. The Bloch theorem. Each eigenfunction of the Schrödinger equation, (12.9), for a given

k is given by (12.2), with the sum over q restricted to q = k + Gm , which can be written

ψi,k(r) =
∑

m

ci,m(k) × 1√
�

exp(i(k + Gm) · r) = exp(ik · r)
1√
Ncell

ui,k(r), (12.11)

where � = Ncell�cell and

ui,k(r) = 1√
�cell

∑

m

ci,m(k) exp(iGm · r), (12.12)

which has the periodicity of the crystal. This is the Bloch theorem also stated in (4.33): any

eigenvector is a product of exp(ik · r) and a periodic function. Since we require ψi,k(r)

to be orthonormal over the volume �, then ui,k(r) are orthonormal in one primitive cell,

i.e.

1

�cell

∫

cell

dru∗
i,k(r)ui ′,k(r) =

∑

m

c∗
i,m(k)ci ′,m(k) = δi,i ′, (12.13)

where the final equation means the ci,m(k) are orthonormal vectors in the discrete index

m of the reciprocal lattice vectors.

2. Bands of eigenvalues. Since the Schrödinger equation, (12.9), is defined for each k
separately: each state can be labeled by the wavevector k and the eigenvalues and eigen-

vectors for each k are independent unless they differ by a reciprocal lattice vector. In the

limit of large volume �, the k points become a dense continuum and the eigenvalues

εi (k) become continuous bands. At each k there are a discrete set of eigenstates labeled

i = 1, 2, . . . , that may be found by diagonalizing the hamiltonian, (12.10), in the basis

of discrete Fourier components k + Gm , m = 1, 2, . . . .

3. Conservation of crystal momentum. Since any state can be labeled by a well-defined

k it follows that k is conserved in a way analogous to ordinary momentum in free space;

however, in this case k is conserved modulo addition of any reciprocal lattice vector G. In

fact, it follows from inspection of the Schrödinger equation, (12.9), with the hamiltonian,

(12.10), that the solutions are periodic in k, so that all unique solutions are given by k in

one primitive cell of the reciprocal lattice.

3 This derivation follows the “second proof” of the Bloch theorem given by Ashcroft and Mermin [84].
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4. The role of the Brillouin zone. Since all possible eigenstates are specified by the

wavevector k within any one primitive cell of the periodic lattice in reciprocal space,

the question arises: is there a “best choice” for the cell? The answer is “yes.” The first

Brillouin zone (BZ) is the uniquely defined cell that is the most compact possible cell,

and it is the cell of choice in which to represent excitations. It is unique among all prim-

itive cells because its boundaries are the bisecting planes of the G vectors where Bragg

scattering occurs (see Sec. 4.2). Inside the Brillouin zone there are no such boundaries:

the bands must be continuous and analytic inside the zone. The boundaries are of special

interest since every boundary point is a k vector for which Bragg scattering can occur;

this leads to special features, such as zero group velocities due to Bragg scattering at the

BZ boundary. The construction of the BZ is illustrated in Figs. 4.1, 4.2, 4.3, and 4.4, and

widely used notations for points in the BZ of several crystals are given in Fig. 4.10.

5. Integrals in k space For many properties such as the counting of electrons in bands,

total energies, etc., it is essential to integrate over k throughout the BZ. As pointed out

in Sec. 4.3, an intrinsic property of a crystal expressed “per unit cell” is an average over

k, i.e. a sum over the function evaluated at points k divided by the number of values Nk ,

which in the limit is an integral. For a function fi (k), where i denotes the discrete band

index, the average value is

f̄ i = 1

Nk

∑

k

fi (k) → �cell

(2π )d

∫

BZ

dk fi (k), (12.14)

where �cell is the volume of a primitive cell in real space and (2π )d/�cell is the volume

of the BZ. Specific algorithms for integration over the BZ are described in Sec. 4.6.

12.3 Nearly-free-electron approximation

The nearly-free-electron approximation (NFEA) is the starting point for understanding

bands in crystals. Not only is it a way to illustrate the properties of bands in periodic crystals,

but the NFEA quantitatively describes bands for many materials. In the homogeneous gas,

described in Ch. 5, the bands are simply the parabola ε(q) = (-h2/2me)|q|2. The first step

in the NFEA is to plot the free-electron bands in the BZ of the given crystal. The bands are

still the simple parabola ε(q) = (-h2/2me)|q|2, but they are plotted as a function of k where

q = k + Gm , with k restricted to the BZ. Thus for each Bravais lattice, the free-electron

bands have a characteristic form for lines in the Brillouin zone, with the energy axis scaled

by �−2/3, where � is the volume of the primitive cell. By this simple trick we can plot the

bands that result from the Schrödinger equation, (12.9), for a vanishing potential.

An example of a three-dimensional fcc crystal is shown in Fig. 12.1. The bands are

degenerate at high symmetry points like the zone center, since several G vectors have the

same modulus. Introduction of a weak potential on each atom provides a simple way of

understanding NFEA bands, which are modified near the zone boundaries. An excellent

example is Al, for which bands are shown in Fig. 16.6, compared to the free-electron

parabolic dispersion. The bands are very close to free-electron-like, yet the Fermi surface

is highly modified by the lattice effects because it involves bands very near zone boundary
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Figure 12.1. Free-electron bands plotted in the BZ of a fcc crystal. The BZ is shown in Fig. 4.10,

which defines the labels. Compare this with the actual bands of Al in Fig. 16.6 that were calculated

using the KKR method. Al is an ideal case where the bands are well explained by a weak

pseudopotential [467–469, 529].

points where degeneracies are lifted and there are first-order effects on the bands. The

bands have been calculated using many methods: the KKR method is effective since one is

expanding around the analytic free-electron Green’s function (outside the core) [527]; the

OPW [528] and pseudopotential methods [481] make use of the fact that for weak effective

scattering only a few plane waves are needed. Computer programs available on-line (Ch. 24)

can be used to generate the bands and understand them in terms of the NFEA using only a

few plane waves. See Exercises 12.4, 12.7, 12.11, and 12.12.

The fcc NFEA bands provide an excellent illustration of the physics of band structures.

For sp-bonded metals like Na and Al, the NFEA bands are very close to the actual bands

(calculated and experimental). The success of the NFEA directly demonstrates the fact that

the bands can in some sense be considered “nearly-free” even though the states must actually

be very atomic-like with structure near the nucleus so that they are properly orthogonal to

the core states. The great beauty of the pseudopotential, APW, and KKR methods is that

they provide a very simple explanation in terms of the weak scattering properties of the

atom even though the potential is strong.

12.4 Form factors and structure factors

An important concept in the Fourier analysis of crystals is the division into “structure

factors” and “form factors.” For generality, let the crystal be composed of different species

of atoms each labeled κ = 1, nspecies, and for each κ there are nκ identical atoms at positions

τκ, j , j = 1, nκ in the unit cell. Any property of the crystal, e.g. the potential, can be written,

V (r) =
nspecies∑

κ=1

nκ∑

j=1

∑

T

V κ (r − τκ, j − T), (12.15)
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where T denotes the set of translation vectors. It is straightforward (Exercise 12.2) to show

that the Fourier transform of (12.15) can be written as

V (G) ≡ 1

�cell

∫

�cell

V (r) exp(iG · r)dr =
nspecies∑

κ=1

�κ

�cell

Sκ (G)V κ (G), (12.16)

where the structure factor for each species κ is

Sκ (G) =
nκ∑

j=1

exp(iG · τκ, j ) (12.17)

and the form factor is4

V κ (G) = 1

�κ

∫

all space

V κ(r) exp(iG · r)dr. (12.18)

The factors in (12.16)–(12.17) have been chosen so that V κ (|G|) is defined in terms of a

“typical volume” �κ for each species κ , so that V κ (|G|) is independent of the crystal. In

addition, the structure factor is defined so that Sκ (G = 0) = nκ . These are arbitrary – but

convenient – choices; other authors may use different conventions.

Equation (12.16) is particularly useful in cases where the potential is a sum of spherical

potentials in real space,

V κ (r − τκ, j − T) = V κ(|r − τκ, j − T|). (12.19)

This always applies for nuclear potentials and bare ionic pseudopotentials. Often it is also

a reasonable approximation for the total crystal potential as the sum of spherical poten-

tials around each nucleus.5 Using the well-known expansion of plane waves in spherical

harmonics, (J.1), Eq. (12.18) can be written as [104, 413, 470]

V κ(G) = V κ (|G|) = 4π

�κ

∫ ∞

0

drr2 j0(|G|r )V κ (r ). (12.20)

For a nuclear potential, V κ (G) is simply

V κ
nucleus(|G|) = 4π

�κ

−Z κ
nucleuse

2

|G|2 , G �= 0,

= 0, G = 0, (12.21)

where the divergent G = 0 term is treated separately, as discussed in Sec. 3.2 and App. F.

For a bare pseudopotential, the potential form factor (12.20) is the transform of the pseu-

dopotential Vl(r), given in Ch. 11. Again the G = 0 term must be treated carefully. One

procedure is to calculate the potential and total energy of point ions of charge Zκ in a com-

pensating background that represents the G = 0 Fourier component of the electron density.

4 Note the difference from (4.11), between (12.18) and where for the latter the integral is over the cell instead of

all space; Exercise 12.3 shows the equivalence of the expressions.
5 Many studies have verified that the total potential V (r) is close to the sum of neutral atom potentials. This is

especially true for examples like transition metals where the environment of each atom is nearly spherical. See

Ch. 16.
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In that case, there is an additional contribution that arises from the fact that the ion is not a

point charge [530],

ακ =
∫

4πr 2dr

[

V κ
local(r ) −

(

− Zκ

r

)]

. (12.22)

Each ion contributes a constant term in the total energy (see Eq. (13.1) below) equal to

(Ne/�)ακ , where Ne/� is the average electron density.

The generalization of (12.16) to non-local potentials V κ
NL(r, r′) is straightforward. For

each k and basis vectors Gm and Gm′ , it is convenient to define Km = k + Gm and Km ′ =
k + Gm′ . The structure factor S(G) still depends only upon G = Km − Km ′ = Gm − Gm′ ,

but the matrix elements of the semilocal form factor are more complicated since the matrix

elements depends upon two arguments. Using the fact that the spherical symmetry of the

non-local operator guarantees that it can be written as a function of the magnitudes |Km |,
|Km ′ | and the angle θ between Km and Km′ , the matrix elements of the semilocal form factor

(11.15), are (Exercise 12.9)

δV κ
N L (Km, Km′ ) = 4π

�κ

∑

l

(2l + 1)Pl(cos(θ ))

∫ ∞

0

drr 2 jl (|Km |r ) jl(|Km′ |r )δV κ
l (r ).

(12.23)

This formula has the disadvantage that it must be evaluated for each |Km |, |Km′ |, and θ , i.e.

for a three-dimensional object. In order to treat this in a computationally efficient manner,

one can discretize this function on a grid and interpolate during an actual calculation.

The separable Kleinman–Bylander form, (11.39), is simpler because it is a sum of prod-

ucts of Fourier transforms. Each Fourier transform is a one-dimensional function of |Km |
(and the same function of |Km ′ |) which is much more convenient. The form in k space is

analogous to that in real space [413,472]. (Here we denote the azimuthal quantum number

as ml to avoid confusion with the index m for basis functions Gm .)

δV κ
N L(Km, Km ′) =

∑

lml

Y ∗
lml

(K̂m)T ∗
l (|Km |) × Tl (|Km′ |)Ylml (K̂m ′)

〈ψ P S
lm |δVl |ψ P S

lm 〉 , (12.24)

where Tl(q) is the Fourier transform of the radial function ψ P S
l (r )δVl (r ). The simplicity of

this form has led to its widespread use in calculations. Furthermore it is straightforward to

extend to “ultrasoft” potentials that involve additional projectors (see Sec. 11.10).

12.5 Approximate atomic-like potentials

A first step in including the effects of the nuclei is to assume that the potential is a sum of

atomic-like potentials. This gives all the qualitative features of the bands and often given

semi-quantitative results. One procedure is simply to use the potential directly from an

atomic calculation; another is to assume the potential has some simple analytic form. For

example, if we approximate the electrons as nearly-free-electron-like then the total potential

due to the nuclei and electrons to first order in perturbation theory is given by

Vtotal (G) ≈ Vscreened(G) ≡ Vbare(G)/ε(G), (12.25)
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where Vbare is a bare nuclear or ionic potential and ε(G) is the screening function. In the

NFE limit, the screening is evaluated for the homogeneous gas, so it is isotropic ε(|G|) and

a reasonable approximation is the Thomas–Fermi screening, where ε can be written

ε(|G|) = |G|2
|G|2 + k2

0

, (12.26)

using Eqs. (5.20) and Eq. (5.21), where k0 is dependent only upon the electron density (i.e.

rs). Furthermore, since the screening is linear in this approximation, the total potential is a

sum of spherical screened nuclear or ionic potential which are neutral and atomic-like.

This approach was instrumental in the early work on ab initio pseudopotentials, e.g.

the Heine–Abarenkov potentials [467, 468, 490] that are derived from atomic data and

have been very successfully used in solids with an approximate screening function such as

Eq. (12.26). A simple, instructive example is hydrogen at high pressure, i.e. high density or

small rs ≈ 1. This corresponds to about 10 GPa, pressures that can be found in the interiors

of the giant planets. At such densities, hydrogen is predicted to form a monatomic crystal

with nearly-free-electron bands. Since the “bare” potential is just ∝1/|G|2, it is easy to work

out the screened potential in the Thomas–Fermi approximation. Exercise 12.13 calculates

the appropriate form factors, estimates band structure in perturbation theory, carries out

calculations using available programs (or by writing one’s own), and compares with fully

self-consistent calculations.

This approximation is sufficient to illustrate two points. First, the total potential near each

nucleus is very well approximated by a spherical atomic-like form. This is widely used in

augmented methods such as APW, KKR, and LMTO that treat the region around the nucleus

using spherical coordinates (Chs. 16 and 17). Second, the approximation demonstrates the

problems with the straightforward application of plane waves. Except for the lowest Z
elements, materials with core electrons require huge numbers of plane waves (see Exer-

cise 12.10). This is why pseudopotentials (Ch. 11) are so intimately related to the success

of plane wave methods.

12.6 Empirical pseudopotential method (EPM)

Even though the general ideas of pseudopotentials have been known for many years [58–60],

and model potentials close to those used in recent work were already applied to solids as

early as the 1930s [59, 60], the modern use of pseudopotentials started with the work of

Phillips and Kleinman [481], and Antonchik [479,480]. Those authors realized that the band

structure of sp-bonded metals and semiconductors could be quantitatively described by a

few numbers: the values of the spherical atomic-like potentials at a few lowest reciprocal

lattice vectors. By fitting to experimental data, a few parameters could be used to describe

a tremendous amount of data related to the band structure, effective masses and band gaps,

optical properties, etc. The “empirical pseudopotential” method has been described in detail

by Heine and Cohen [467, 469], who showed the connections to the underlying theory.

Applications to metals are covered thoroughly by Harrison [468], and a very complete
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Figure 12.2. Experimental energy bands of GaAs measured by photoemission in [214] compared to

empirical pseudopotential calculations [215]. The pseudopotential was fitted earlier to independent

optical data, so this is a test of the transferability of information within an independent-particle

theory. From [214].

exposition of the method and results for semiconductors has been given by Cohen and

Chelikowsky [470].

The EPM method has played an important role in understanding electronic structure,

especially for the sp-bonded metals and semiconductors. As an example, Fig. 12.2 shows

the bands of GaAs measured [214] by photoemission spectroscopy are compared with EPM

bands calculated [215] many years before. The agreement with the photoemission data is

nearly perfect for this non-local pseudopotential that was adjusted to fit the band gaps,

effective masses, and optical spectra [470]. Comparison of Fig. 12.2 with Fig. 2.25 shows

the agreement with inverse photoemission and recent many-body calculations, and the fact

that the adjusted EPM provides a better description of the bands than do LDA calculations.

The pseudocharge density has been calculated for many materials [470]: as illustrated in

Fig. 12.3, the results show the basic features of the chemical bonding and the nature of

individual states. Thus the EPM plays two important roles:

� On a fundamental level, the EPM provides stimulus for the development of independent-

particle band methods for solids because of its success in describing many different

experiments within a single independent-particle theory.
� On a practical level, the EPM approach continues to be important because it allows bands

of many important materials to be described using a few parameters, namely the first few

Fourier components of the potential, Eq. (12.20).

The method is more than just a fitting procedure if one makes the approximation that the

total potential is a sum of spherical potentials that have analytic form and are transferable
between different structures. Although this is an approximation, it has been tested in many

cases and, at least, provides semiquantitative results. With the assumption of transferability,

the EPM method can readily be applied to calculations for many structures and for properties
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Figure 12.3. Theoretical calculations of the valence charge density of semiconductors showing the

formation of the covalent bond and the progression to more ionic character in the series Ge, GaAs,

and ZnSe. The results have the same basic features as full self-consistent calculations such as that

for Si in Fig. 2.2. From [105].

like electron–phonon interactions (see, e.g. [531]), where the distorted lattice is simply

viewed as a different structure.

The simplicity of the EPM makes possible calculations not feasible using ab initio pseu-

dopotentials. It is a great advantage to have an analytic representation since it can be used for

any structure. For example, EPM calculations for films [532] and “quantum dots” formed

from thousands of atoms [533, 534] have been carried out using the iterative methods dis-

cussed in App. M. For example, [533,534] report calculations of the electronic structure of

pyramidal quantum dots containing up to 250,000 atoms, using spin–orbit-coupled, non-

local, empirical pseudopotentials and with results that differ from those found using the

effective-mass approximation.

A computer code for EPM (and tight-binding) calculations is available on-line as de-

scribed in Ch. 24 and in schematic form in App. N. The code is modular, separating aspects

that are common to all band methods from those that are specific to one method. The code

includes examples of local empirical potentials for Si, Ga, and As [532] and example re-

sults including those given in Figs. 14.6 and 14.7. Options are given for a user to create

new potentials. See Exercises 12.11, 12.12, and 12.13 for examples of problems illustrating

EPM calculations.
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12.7 Calculation of electron density: introduction of grids

One of the most important operations is the calculation of the density of electrons n. The

general form for a crystal treated in independent-particle theory, e.g. Eqs. (3.42) or (7.2),

can be written as

n(r) = 1

Nk

∑

k,i

f (εi,k)ni,k(r), with nik(r) = |ψi,k(r)|2, (12.27)

which is an average over k points (see Eq. (12.14)), with i denoting the bands at each k
point (including the spin index σ ) and f (εi,k) denoting the Fermi function. For a plane wave

basis, expression (12.11) for the Bloch functions leads to

ni,k(r) = 1

�

∑

m,m ′
c∗

i,m(k)ci,m′ (k) exp(i(Gm ′ − Gm) · r) (12.28)

and

ni,k(G) = 1

�

∑

m

c∗
i,m(k)ci,m ′′ (k), (12.29)

where m′′ denotes the G vector for which Gm ′′ ≡ Gm + G.

The symmetry operations Rn of the crystal can be used as in Secs. 4.5 and 4.6 to find the

density in terms only of the k points in the IBZ,

n(r) = 1

Nk

∑

i,k

ni,k(r) = 1

Ngroup

∑

Rn

IBZ∑

k

wk

∑

i

f (εi,k)ni,k(Rnr + tn), (12.30)

and

n(G) = 1

Ngroup

∑

Rn

exp(iRnG · tn)
IBZ∑

k

wk

∑

i

f (εi,k)ni,k(RnG). (12.31)

The phase factor due to the translation exp(iRnG · tn) follows from (12.28).

Despite the simplicity of (12.29), it is not the most efficient way to calculate the density

n(r) or n(G). The problem is that finding all the Fourier components using (12.29) involves

a double sum, i.e. a convolution in Fourier space that requires N 2
G operations, where NG

is the number of G vectors needed to describe the density. For large systems this becomes

very expensive. On the other hand, if the Bloch states are known on a grid of NR points

in real space, the density can be found simply as a square, in NR operations. The trick is

to use a fast Fourier transform (FFT) that allows one to transform from one space to the

other in N log N operations, where N = NR = NG . The flow chart, Fig. 12.4, illustrates

the algorithm, and the general features for all such operations are described in Sec. M.11.

A great advantage is that n(r) is needed to find εxc(r) and Vxc(r). The inverse transform
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Change of basis: R → G

n{G} = [F FT ]−1n{R}

�

Accumulate over i ,k

n{R} = ∑
i,k ni,k{R}

Square wavefunction

ni,k{R} = ui,k{R} · ui,k{R}

Change of basis: G → R

ui,k{R} = [F FT ] · ui,k{G}

�

�

�

Wavefunction – band i , wavevector k

ui,k{G} ≡ 1√
�cell

ci,{G}(k), (Eq. (12.12))

Figure 12.4. Calculation of the density using Fourier transforms and grids. The notation {G} and

{R} denotes the sets of N G vectors and N grid points R. Since the fast Fourier transform (FFT)

scales as N ln N , the algorithm is faster than the double sum needed to calculate n{G} that scales as

N 2. In addition, the result is given in both real and reciprocal space, needed for calculation of the

exchange–correlation and Hartree terms. The algorithm is essentially the same as used in iterative

methods, App. M.

can be used to find n(G) which can be used for solving the Poisson equation in Fourier

space.

It is relevant to note that the density n requires Fourier components that extend twice as

far in each direction as those needed for the wavefunction ψ because n ∝ |ψ |2. Also the

FFT requires a regular grid in the form of a parallelepiped, whereas the wavefunction cutoff

is generally a sphere with (1/2)|k + G|2 < Ecutoff. Thus the number of points in the FFT

grid for density N = NR = NG is roughly an order of magnitude larger than the number

N wf
G of G vectors in the basis for the wavefunctions. Nevertheless, the FFT approach is

much more efficient for large systems since the number of operations scales as N log N .
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12.8 Real-space methods

Since the Kohn–Sham equations are a set of coupled second-order differential equations,

it is natural to ask: why not use methods widely employed in many areas of computational

physics, finite element, finite difference, multi-grid, wavelets, etc? In fact, such methods

are used for problems like quantum dots in semiconductors and are under development for

other areas of electronic structure. There is a recent review by Beck [525] and the methods

will be only briefly mentioned here. As we have already pointed out in the calculation of

the density, many operations are easier in real space. For example, if ψi (r) is explicitly

represented on a grid, then n(r) = ∑
i |ψi (r)|2 with no need for an FFT as required in the

plane wave method. The Hartree potential can be found using FFTs or real-space multi-

grid algorithms which have been highly optimized. For solution of both the Poisson and

Schrödinger equations, real-space methods are particularly advantageous for finite systems,

where the wavefunctions vanish outside a boundary and the Coulomb potentials, in general,

do not obey periodic boundary conditions.

Other advantages can be appreciated only in terms of the iterative methods described

in App. M. All such methods require the operation Ĥψ instead of diagonalization of a

matrix. The action of a local potential on the wavefunction is simply a point-by-point

multiplication in real space, V (r)ψ(r). Non-local pseudopotentials can also be handled

since the non-locality extends only over the small core region; the procedure is in some

ways simpler than for plane waves since the wavefunctions are already in real space. Thus

the solution of the Kohn–Sham equations in real-space methods has the same form as for

plane waves except that no Fourier transform is needed.

Finite difference

In a finite difference (FD) method the kinetic energy laplacian operator is evaluated from

values of the function at a set of grid points. For example, the FD method of Chelikowsky

et al. [526, 535] uses higher order expansions for the kinetic energy laplacian operator,

separable in the x, y, z orthogonal components. For a uniform orthogonal three-dimensional

(3D) grid with points (xi , y j , zk), the mth order approximation is
[
∂2ψ

∂x2

]

xi ,y j ,zk

=
m∑

−m

Cmψ(xi + mh, y j , zk) + O(h2m+2), (12.32)

where h is the grid spacing and m is a positive integer. As illustrated on the left-hand side

of Fig. 12.5, the laplacian at the central point is computed in terms of values of the function

on the “cross” of points along the axes; the size of the dots for the 25 points represents

the decreasing magnitude of Cm . This approximation is accurate to O(h2m+2) assuming

ψ can be approximated by a polynomial in h.6 Algorithms are available to compute the

coefficients Cm for any grid to arbitrary order in h [536]. Expansion coefficients for m = 1, 6

for a uniform grid are given in Table I of [535].

6 The method can readily be extended to non-orthogonal systems and non-uniform grids, but at the price of having

to compute many different sets of C .
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Figure 12.5. Two examples of stencils for finite difference calculation of the laplacian. The size of

the points represents the weights schematically. Left: Orthogonal “cross” with 25 points [535].

Right: More compact cube of 27 points that has been used with the “Mehrstellen” (Numerov)

method [209].

A different approach uses the “Mehrstellen” operator, which is an extension of the

Numerov method (Sec. L.1) to higher dimensions(see [537], p. 164 as cited in [209]).

As illustrated on the right-hand side of Fig. 12.5, the 27 points are more compact in space

than the 25-point cross. This is an advantage, especially for finite systems where the more

extended “cross” leads to larger boundary effects.

There are a number of working algorithms applied to many problems [209,526,535,538–

540]. Applications are left to the following chapter since they involve full self-consistent

calculations; however, the basic ideas of the laplacian operators belong here. Calculations

using finite difference algorithms have been applied to many problems, including clusters

and other finite systems [359,526,535,541,542]. Examples are shown in Ch. 20. A multigrid

method [209, 538] based upon the Mehrstellen form for the laplacian has been applied to

many periodic and non-periodic problems, such as the C–BN nanotube junction shown

in Fig. 2.21. Real-space methods can also be combined [539, 540] with adaptive grids to

increase resolution where needed.

Finite elements and multi-resolution

Finite elements are widely used in many fields [543]; they form a localized basis in which

variational calculations can be done, unlike the finite difference method which simply ap-

proximates the laplacian. A finite element basis is usually chosen to be a set of functions,

each of which is strictly localized, that overlap so that together they can form an approx-

imation to a smooth function. Examples are triangular “hat” functions and polynomial

spline functions. The former describe a piecewise linear function and the latter a smoother

approximation. Matrix elements of the operators are integrals 〈m|Ô|m ′〉 just as for any

other basis. Examples are piecewise cubic functions of Pask et al. [544, 545]; a B-spline

basis closely related to traditional finite element bases, Hernandez et al. [546]; and piece-

wise third-order polynomials, Tsuchida and Tsukada [547]. See [525] for a more complete

review.
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Figure 12.6. Schematic figure of adaptive coordinates defined by a smooth transformation that maps

a regular grid onto a non-uniform set of points. The transformation can be thought of as working in

curved space. The example shows a transformation to provide greater resolution near an atom.

Multiresolution denotes the ability to describe all regions with desired accuracy: those

where there are strong variations and high resolution is needed, and others where less

resolution is required. There are two general types of approaches. First, there are the well-

developed finite difference and finite element methods with non-uniform grids or using

non-uniform placement of localized basis functions with different widths. These work well

where the structure is known in advance. Recently there has been great interest in two

developments, multi-grid methods [548,549] and wavelet-type bases [550,551]. Multi-grid

methods can be used with any algorithm for solution of the differential equations, and it

works by cycling up and down between levels of resolution to use the speed of coarse

functions while adding corrections due to fine functions. There are full-functioning codes

for electronic structure that use the multigrid approach [209, 538, 552], with applications

to problems such as the C–BN nanotube junction illustrated in Fig. 2.21. Wavelets involve

localized bases that are optimized in important ways, e.g. the Daubichies wavelets are

orthonormal at the same level and between levels. These approaches are described in reviews

[525, 553] which are oriented toward electronic structure and cannot be covered in more

detail here.

Adaptive curvilinear coordinates

An attractive idea suggested by Gygi [554] and Hamann [555] is to warp the grid using a

smooth transformation as illustrated in Fig. 12.6. The transformation can be defined in terms

of a smooth set of basis functions that map the regular points ri specifying the grid to the

points r′
i (ri ). For example, the transformation can be specified in terms of plane waves. The

method can be adaptive in the sense that one can make an algorithm to determine where

more resolution is needed and adjust the adaption. In any case, the resulting equations

expressed on the regular grid ri have the form of operators in curved space. An alternative

approach uses a local set of fixed transformations [539,540] around each atom that overlap
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to form the complete transformation; these are easy to visualize and are equivalent to a form

of global transformation [556].
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Exercises

12.1 See many excellent problems (and solutions) on the nearly-free-electron approximation in the

book by Mihaly and Martin [248].

12.2 Show that the Fourier transform of (12.15) leads to the expression in terms of form and structure

factors given in (12.16).

12.3 Show the equivalence of expressions (4.11) and (12.18) which express the final Fourier com-

ponent in two ways, one an integral over the cell and the other as a structure factor times an

integral for one unit only but over all space.

12.4 Plot the bands for a nearly-free-electron system in one dimension if the lattice constant is a.

(a) First plot the bands using analytic expressions for the energy in the free-electron limit.

(b) Then qualitatively sketch the changes if there is a small lattice potential.
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(c) Use the empirical pseudopotential program (Sec. 12.6) or write your own to calculate the

bands for a pure sine wave potential V (x) = V0 sin(2πx/a). This is the Matthieu potential for

which there are solutions; check your results with known results.

12.5 Consider a one-dimensional crystal with potential V (x) = V0 cos(2πx/a) as in Exercise 12.4.

In this exercise make the simplifying approximation that a state with wavevector k is the

solution of the 2 × 2 hamiltonian

∣
∣
∣
∣
∣

k2

2
− ε(k) V0

V0
(k − G)2

2
− ε(k)

∣
∣
∣
∣
∣
= 0, (12.33)

where G = 2π/a. Give the analytic expressions for the bands ε(k) and the periodic part of the

Bloch functions uk (x). If there are two electrons per cell, give the expression for the density

n(x) as an integral over k. Evaluate the density using a grid of “special” k points (Sec. 4.6). Note

that more points are required for an accurate answer if V0 is small. Plot the lowest two bands

and the electron density for the case where V0 = 1
4
(π/a)2 in atomic units. (See Exercise 21.12

Wannier functions and Exercise 22.10 for polarization using a variation of this model.)

12.6 Consider a one-dimensional crystal with a square well potential which in the cell at the origin

has the form V (x) = V0 for −s/2 < x < s/2 and V = 0 otherwise. The potential is repeated

periodically in one dimension with V (x + Na) = V (x), with cell length a > s. (See also

Exercises 11.2, 11.6, 11.14; the general solution for bands in one dimension in Exercise 4.22;

and relations to the APW, KKR, and MTO methods, respectively, in Exercises 16.1, 16.7, and

16.13.)

(a) First find the Fourier transform of the potential V (G).

(b) Next construct a computer code or use one like that in App. N to solve for the bands. As an

explicit example, choose a = 4, s = 2, and V0 = 0.2 in atomic units and choose a sufficient

number of plane waves so that the solution is accurate.

(c) Compare the results with the solutions in Exercise 16.1 in which the bands are found by

matching the wavefunctions at the boundary, i.e. a simple example of the APW method. Of

course, the result must be the same as derived by other methods: compare and contrast the plane

approach with the general solution for any potential in one dimension given in Exercise 4.22.

12.7 Find the bands for Al using a simple empirical pseudopotential. One source is the paper

by Segall [527] that shows bands similar to those in Fig. 16.6 calculated with V (1 1 1) =
0.0115Ha and V (111) = 0.0215Ha and mass m∗ = 1.03m. (The last can be included as a

scaling factor.) Use the NFEA to calculate energies at the X point analytically. Use the empirical

pseudopotential program (Sec. 12.6) to generate full bands.

12.8 Show that the derivations in Sec. 12.1 also hold for non-local potentials as given in Eq. (12.24).

12.9 Derive the semilocal and separable forms of the pseudopotential in Eqs. (12.23) and (12.24).

Hint: Use the definitions of the potential operators in real space in Ch. 11 and the expansion

of a plane wave in spherical harmonics, Eq. (J.1).

12.10 Pseudopotentials are used because calculations with the full nuclear Coulomb potential are

very expensive for heavy atoms of nuclear charge Z . Derive the power law with which the

number of plane waves needed scales with Z . Do this by using perturbation theory for very high

Fourier components, where the matrix element is given by V (G) and the energy denominator
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is approximately given by the kinetic energy. Argue that screening is not effective for high

Fourier components.

12.11 Use the empirical pseudopotential program (App. N) to find the bands and charge densities

of Si in the diamond structure at the lattice constant 5.431 Å. The bands should be insulating

and the bonds should be visible in the charge density.

(a) Verify that the minimum along the  direction (see Fig. 4.10) is qualitatively the same

as in experiment, which is given in many texts, e.g. [86], and is given by the more accurate

tight-binding bands shown in Fig. 14.6.

(b) Now compress the system until it is metallic (this can only be done in theory; in reality

it transforms). Can you tell when the system becomes a metal just from the density? In

principle, if you had the exact functional, what aspect of the density would be the signature

of the insulator–metal transition?

(c) Do a similar calculation replacing the Si atoms with Al, still in the diamond structure

with lattice constant 5.431 Å. (Of course this is a theoretical structure.) There are three Al

electrons/atom, i.e. six electrons per cell and it turns out to be a metal. Show that it must be

metallic without doing the calculation. Does the density plot look a lot like Si? Can you find

any feature that shows it is a metal?

12.12 Use the empirical pseudopotential program (App. N) to find the bands for GaAs.

(a) Verify that it has a direct gap at �.

(b) Displace the atoms in the unit cell a small amount along the (111) direction. Check the

spitting of the top of the valence band at �. Is the spitting what you expect?

(c) Repeat with the displacement in the (100) direction.

12.13 This exercise is to work out the form factor for the screened H potential in the Thomas–Fermi

approximation and calculate the bands for fcc H at very high density, rs = 1.0.

(a) Estimate the deviation of the bands from the free electron parabola by calculating the gaps

at the X and L points of the BZ in lowest non-zero-order perturbation theory.

(b) Carry out calculations using the empirical pseudopotential program (App. N) and compare

with the results from perturbation theory.

(c) Compare with the simple expression for the band width in Exercise 10.13 and with fully

self-consistent band structure results as described in Exercise 13.5.
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Plane waves and grids: full calculations

Summary

The subject of this chapter is the role of plane waves and grids in modern elec-
tronic structure calculations, which builds upon the basic formulation of Ch. 12.
Plane waves have played an important role from the early OPW calculations
to widely used methods involving norm-conserving pseudopotentials. Plane
waves continue to be the basis of choice for many new developments, such
as quantum molecular dynamics simulations (Ch. 18), owing to the simplicity
of operations. Efficient iterative methods (App. M) have made it feasible to
apply plane waves to large systems, and recently developed approaches such as
“ultrasoft” pseudopotentials and projector augmented waves (PAWs Ch. 11)
have made it feasible to apply plane waves to difficult cases such as materials
containing transition metals. Real-space grids are an intrinsic part of efficient
plane wave calculations and there is a growing development of real-space meth-
ods, including multigrids, finite elements, wavelets, etc.

Basic Schrödinger-like equations for eigenstates expanded in a plane wave basis can be

found in Sec. 12.1 and related equations for real-space grids in Sec. 12.8. These methods

are appropriate in cases where the potentials and wavefunctions are smooth. Thus application

of these methods to real materials means that they must be combined with a transformation

to remove the core states, such as OPWs, pseudopotentials, or PAWs (Ch. 11). Many aspects

of pseudopotential calculations have been given in Sec. 12.6. The additional steps that are

required for a full self-consistent “ab initio” calculation are:

� If the calculation is “ab initio”, i.e. there are no parameters, then the pseudopotential must

be derived from theoretical calculations, usually on an atom, as described in Ch. 11. Such

pseudopotentials are “bare potentials” and the total potential is determined. This is one of

two essential steps that take the calculation beyond the empirical pseudopotential method

of Sec. 12.6.
� The total effective potential in the Kohn–Sham Schrödinger-like equations is a sum of

the “bare” ion pseudopotentials and the effective potentials from the valence electrons,

the Hartree, and the exchange–correlation potential. This requires that the equations be

solved self-consistently as described in general in Ch. 9.
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� The primary results in a Kohn–Sham density functional theory are the total energy and

related quantities such as forces and stresses, which are sufficient for ground state prop-

erties. In addition, there are eigenvalues and eigenvectors that are only approximately

related to true excitation energies, as discussed in Chs. 7 and 20.

Grid methods are in fact closely related to plane waves and are discussed in Secs. 12.7

and 12.8. Since the only fundamental difference is the way the kinetic energy is treated,

all the methods for smooth functions described here can be translated into real-space grid

methods. However, such methods are not well developed at present; we will not reiterate

the details and merely refer the reader back to Sec. 12.8 for the general approaches.

13.1 “Ab initio” pseudopotential method

Expressions for total energy, force, and stress in Fourier space

The starting point for derivation of the full Kohn–Sham theory is the total energy for

which general expressions have been given in Chs. 8 and 9; the subject of this section

is the derivation of explicit expressions in reciprocal space. For example, the variational

expression for energy (Eqs. (7.5) or (9.7)) in terms of the output wavefunctions and density

can be written [104, 413, 530, 561]

Etotal[Veff] = 1

Nk

∑

k,i

wk,i

{
∑

m,m ′
c∗

i,m(k)

[ -h2

2me
|Km |2δm,m ′ + Vext(Km, Km′ )

]

ci,m′ (k)

}

+
∑

G

εxc(G)n(G) + 1

2
4πe2

∑

G�=0

n(G)2

G2
+ γEwald +

(
∑

κ

ακ

)
Ne

�
. (13.1)

Since Etotal is the total energy per cell, the average over k and sum over bands is the same as

for the density in (12.27). Similarly, the sums can be reduced to the IBZ just as in (4.44). The

potential terms involve Km ≡ k + Gm ; the xc term is the total exchange–correlation energy;

and the final three terms are considered below. Alternatively, one can use expression Eq. 9.7

for the energy, in which the eigenvalues replace the term in square brackets in Eq. 13.1. As

discussed in Ch. 9, the form in (13.1) is manifestly a functional of Veff, which determines

each term (except the final two terms that depend only upon the structure and number of

electrons).

Correct treatment of the Coulomb terms is accomplished by consistently separating out

the G = 0 components in the potential and the total energy. The Hartree term in 13.1 is the

Coulomb interaction of the electrons with themselves excluding the divergent term due to
the average electron density. Similarly, the G = 0 Fourier component of the local potential
is defined to be zero in (13.1). Both these terms are included in the Ewald term γEwald, which

is the energy of point ions in a compensating background (see App. F, Eq. (F.5)), i.e. this

term includes the ion–ion terms as well as the interactions of the average electron density

with the ions and with itself. Only by combining the terms together is the expression well
defined. The final term in (13.1) is a contribution due to the non-Coulombic part of the local

pseudopotential (see Eq. (12.22)) where Ne
�

is the average electron density.



256 Plane waves and grids: full calculations

Following the analysis of Sec. 9.2, one can define a functional1

Ẽtotal = 1

Nk

∑

k,i

wk,iεi +
∑

G

[εxc(G) − Vxc(G)] n(G)

+
[

γEwald − 1

2
4πe2

∑

G�=0

n(G)2

G2

]

+
(

∑

κ

ακ

)
Ne

�
, (13.2)

where all terms involve the input density n ≡ nin. This expression is not variational but

instead is a saddle point as a function of nin around the consistent solution nout = nin. It

is very useful because it often converges faster to the final consistent energy so that it is

useful at every step of a self-consistent calculation. Furthermore, it is the basis for useful

approximations, e.g. stopping after one step and never evaluating any output quantity other

than the eigenvalues [144, 415, 417–419].

The force on any atom τκ, j can be found straightforwardly from the “force theorem” or

“Hellmann–Feynman theorem” given in Sec. 3.3. For this purpose, expression (13.1) is the

most useful and the explicit expression for Eq. (3.20) in Fourier components can be written

Fκ
j =− ∂ E

∂τκ, j
=−∂γEwald

∂τκ, j
− i

∑

m

GmeiGm ·τκ, j )V κ
local(Gm)n(Gm)

−i

Nk

∑

k,i

wk,i

∑

m,m ′
c∗

i,m(k)
[
Km,m ′ei(Km,m′ ·τκ, j )δV κ

NL(Km, Km′ )
]

ci,m′ (k), (13.3)

where the Ewald contribution is given in (F.10). Here the external pseudopotential has

been separated into the local part, which contains the long-range terms, and the short-range

non-local operator δV κ
ext(Km, Km ′), with Km,m ′ ≡ Km − Km ′ . The expression for stress in

Fourier components is given in Sec. G.3.

Solution of the Kohn–Sham equations

The Kohn–Sham equation is given by (12.9) and (12.10) with the local and non-local

parts of the pseudopotential specified by the formulas of Sec. 12.4. Consistent with the

definitions above, the local part of the potential in the Kohn–Sham equation can be written

straightforwardly as the Fourier transform of the external local potential (12.16), Hartree,

and xc potentials in (7.13),

V σ
KS,local(G) = Vlocal(G) + VHartree(G) + V σ

xc(G), (13.4)

where all G = 0 Fourier components are omitted. The G = 0 term represents the average

potential which is only a shift in the zero of energy that has no consequence for the bands,

since the zero of energy is arbitrary in an infinite crystal [184, 290, 562]. The full potential

is Eq. (13.4) plus the non-local potential Eqs. (12.23) or (12.24).

1 The electron Coulomb term on the second line cancels the double counting in the eigenvalues. The terms are

arranged in two neutral groupings: the difference of the ion and the electron terms in the square bracket and the

sum of eigenvalues that are the solution of the Kohn–Sham equation with a neutral potential.
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The equations are solved by the self-consistent cycle shown in Fig. 9.1, where the solution

of the equations for a fixed potential is the same as for a non-self-consistent EPM calculation.

The new steps that must be added are:

� Calculation of the output density nout(G)
� Generation of a new input density nin(G), which leads to the new effective potential
� After self-consistency is reached, calculation of the total energy (Eqs. (13.1), (13.2), or

related variational formulas using the expressions of Sec. 9.2), forces, stress, etc.

Approach to self-consistency

The plane waves framework affords a simple case in which to discuss the approach to self-

consistency, bringing out issues addressed in Sec. 9.3. The simplest approach – that works

very well in many cases – is linear mixing

V σ,in
i+1 (G) = αV σ,out

i (G) + (1 − α)V σ,in
i (G). (13.5)

Choice of α by trial-and-error is often sufficient since the same value will apply to many

similar systems.

In order to go further and analyze the convergence, one can treat the region near conver-

gence where the error in the output density or potential is proportional to the error in the

input potential δV in. Using the definition of the dielectric function, the error in the output

potential is given by2

δV out(G) =
∑

G′
ε(G, G′)δV in(G′). (13.6)

(Note that this does not apply to the G = 0 component, which is fixed at zero.) It follows

that the error in the output density δnout(G) = δV out(G)(G2/4πe2) is also governed by the

dielectric function, and the kernel χ in Eq. (9.21) is related by χ (G, G′) = ε(G, G′)G ′2/G2.

In general the dielectric function approaches unity for large G or G′, however, it may be much

larger than unity for small wavevectors. For example, for Si, ε ≈ 12 for small wavevectors,

so that the error in the output potential (or density) is 12 times larger than the error in the
input! For a metal, the problem is worse since ε diverges.

How can the iterations reach the solution? There are two answers. First, for crystals with

small unit cells, this is not a problem because all the G �= 0 components of the potential

are for large values of |G|, and the G ≡ 0 is taken care of in combination with the Ewald

term (see App. F). It is only if one has small non-zero components that problems arise. This

happens for large unit cells and is called the “charge sloshing problem.” It is worst for cases

like metal surfaces where the charge can “slosh” to and from the surface with essentially

no cost in energy. In such cases the change is in the right direction but one must take only

small steps in that direction. If a linear mixing formula is used, then the mixing of the output

must be less than 1/ε(Gmin) for convergence.

2 Note the similarity to the Thomas–Fermi expression, (12.25). The reason that we have ε here instead of ε−1 is

that here we are considering the response to an �internal field.
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The relation to the dielectric function also suggests an improved way to reach conver-

gence. It follows from (13.6) that the exact potential can be reached after one step (see also

Eqs. (9.21) and (9.23)) by solving the equation

δV out(G) ≡ V out(G) − VKS(G) =
∑

G′
ε(G, G′)

[
V in(G′) − VKS(G′)

]
(13.7)

for the converged Kohn–Sham potential VKS(G). The input and output potentials are known

from the calculation; however, the problem is that it is very difficult to find ε(G, G′) –

a more difficult problem than solving the equations. Nevertheless, approximate forms for

ε(G, G′) such as the diagonal Thomas–Fermi form, Eq. (12.26), can be used to improve

the convergence [428]. One can also take advantage of the fact that a linear mixing leads

to exponential convergence (or divergence) near the solution; by fitting three points to an

exponential, the solution for an infinite number of steps can be predicted [563].

From a numerical point of view the dielectric matrix (or the second derivatives defined in

Ch. 9) are nothing more than the Jacobian. Since it is in general not known, approximations

(such as approximate dielectric functions) are really “preconditioners” as discussed in the

chapter on iterative methods and in App. M. This leads to the practical approach now widely

used: for high Fourier components the dielectric function is near unity and nearly diagonal,

so one can use (13.5) with α ≈ 0.5 to 1; for low Fourier components one can use general

numerical approaches to build up the Jacobian iteratively as the calculations proceed, e.g.

the Broyden-type methods described in Sec. 9.3.

13.2 Projector augmented waves (PAWs)

The projector augmented wave (PAW) method [475] described in Sec. 11.11 is analogous to

pseudopotentials in that it introduces projectors acting on smooth valence functions ψ̃v that

are the primary objects in the calculation. It also introduces auxiliary localized functions

like the “ultrasoft” pseudopotential method. However, the localized functions actually keep

all the information on the core states like the OPW and APW (see Ch. 16) methods. Thus

many aspects of the calculations are identical to pseudopotential calculations; e.g. all the

operations on smooth functions with FFTs, generation of the smooth density, etc., are the

same. However, since the localized functions are rapidly varying, augmentation regions

around each nucleus (like the muffin-tin spheres in Ch. 16) are introduced and integrals

within each sphere are done in spherical coordinates.

The expressions given in Sec. 11.11 apply here also. The linear transformation to the

all-electron valence functions ψv = T ψ̃v is assumed to be a sum of non-overlapping atom-

centered contributions T = 1 + ∑
R TR, each localized to a sphere denoted �vecr. If the

smooth wavefunction is expanded in spherical harmonics inside each sphere, omitting the

labels v and i as in (11.58),

|ψ̃〉 =
∑

m

cm |ψ̃m〉, (13.8)

with the corresponding all-electron function,

|ψ〉 = T |ψ̃〉 =
∑

m

cm |ψm〉. (13.9)
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Hence the full wavefunction in all space can be written

|ψ〉 = |ψ̃〉 +
∑

Rm

cRm
{|ψRm〉 − |ψ̃Rm〉} . (13.10)

The biorthogonal projectors 〈 p̃Rm | in each sphere are the same as defined in (11.62) since

the spheres are non-overlapping.

Thus the expressions carry over with the generalization to many spheres, for example,

the density given by Eqs. (11.66)–(11.69). Here it is particularly relevant to give the form

for the total energy, from which follow the basic Kohn–Sham equations and expressions for

forces, etc. [475, 476]. Like the density, the energy can be written as a sum of three terms,

Etotal = Ẽtotal + E1
total + Ẽ1

total, (13.11)

where Ẽ denotes the energy due to the smooth functions evaluated in Fourier space or a grid

that extends throughout space, Ẽ1 denotes the same terms evaluated only in the spheres

on radial grids, and E1 the energy in the spheres with the full functions. The classical

Coulomb terms are straightforward in the sense that they are given directly by the density;

however, they can be rearranged in different ways to improve convergence of the Coulomb

sums. In the PAW approach, an additional density is added to both auxiliary densities

in ñ(r) and ñ1(r) so that the multi-pole moments of the terms n1(r) − ñ1(r) in (11.66)

vanish. Thus the electrostatic potential due to these terms vanishes outside the augmentation

spheres around each atom, just as is accomplished in full-potential LAPW methods [564].

A discussion of different techniques for the additional density terms [475, 476] is given

in [476]. The expression for Exc also divides into three terms with each involving the total

density evaluated in the different regions [476]. It is not hard to derive the expressions

for the Kohn–Sham equations by functional derivatives of the total energy and a detailed

account can be found in [475].

It is advantageous that expressions for the total energy are closely related in the ultrasoft

and the PAW formulations, differing only in the choice of auxiliary functions and technical

aspects. Thus the expressions for forces and stress are also essentially the same. In particular,

the large intra-atomic terms do not enter the derivatives and forces can be derived by

derivatives of the structure constants [565]. Stress can also be derived as referred to in [476].

Computer programs for atomic calculations needed to construct the PAW basis functions,

as well as PAW calculations on solids using plane waves, are available on-line (see Ch. 24)

and are described in papers by Holzwarth and coworkers [559, 560].

13.3 Simple crystals: structures, bands, . . .

Plane waves are the method of choice for Kohn–Sham calculations in important classes of

problems. The ideal examples are crystals with small primitive cells and atoms accurately

represented by pseudopotentials. If the cell in real space is small, then a relatively small set

of plane waves k + Gm is an effective basis that takes advantage of the periodicity. There

are no shape approximations and they are applicable to open structures with no extra effort.

Operations are simple and it is straightforward to calculate total energy, electron density,

forces, stresses, etc. Norm-conserving pseudopotentials (Sec. 11.9) provide a direct way
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to extend the approach to any problem if enough electrons are included in the valence

shells and enough plane waves are used. Ultrasoft pseudopotentials and the PAW method

(Secs. 11.10, 11.11, and 13.2) permit accurate calculations with a smaller set of plane waves.

Because plane waves are so pervasive, many applications are given in other chapters.

Examples include the calculations of total energies and phase transition pressures for Si in

Figs. 2.4 and 2.5; the first stress calculations illustrated by Fig. 2.6; bands in C60 solids in

Fig. 2.19; Wannier functions and resulting bands shown in Figs. 21.4 and 21.6; and “frozen

phonons” illustrated in Fig. 2.8.

Among the most extensive and important types of calculations are total energies calcu-

lated by the ab initio pseudopotential method to determine the equilibrium structures of

a crystal under pressure, pioneered in the work of Yin and Cohen [103, 561]. Figure 2.5

compares LDA calculations with experiment for transition pressures from the tetrahedrally

coordinated diamond or zinc-blende structures to higher coordinated metallic or NaCl struc-

tures. As emphasized in Sec. 2.2, the results are in remarkable agreement with experiment,

which is also found for a large range of materials, including semiconductors, sp-bonded

metals, the chalcogenides, etc. The ab initio pseudopotential method using plane waves has

played a key role in the theoretical development of electronic structure owing to the ease

with which different structures can be studied, including low-symmetry ones. It should be

emphasized that other full-potential methods can be applied to this problem, and in general,

these theoretical methods agree well.

Comparison of methods

It is essential to establish the level of accuracy of the different methods and to demonstrate

that they agree when done carefully. For this, one need use only one functional, namely

the local density approximation. Comparison with experimental results is another matter,

as these results are often improved with GGA and other functionals. Table 13.1 shows the

calculated lattice constants a and bulk moduli B for selected crystals, as well as the magnetic

moment of bcc Fe. The agreement between methods is excellent except for CaF2, where

there is large core polarization not taken into account in the present implementation of PAW

that assumes rigid cores. The comparison with experiment for Fe is greatly improved with

GGA functionals [566]. Similar tests [476] on molecules and solids, ranging from the first

row elements to transition metals, show similar accuracy; this confirms the applicability

and accuracy of the different methods when treated carefully.

Stability of various phases

As stressed in Sec. 2.2 the stability of phases as a function of volume or pressure is perhaps

the most fundamental thermodynamic property of matter. Examples were given of pressure-

induced phase transformations of open-structure materials, such as diamond and silicon, to

other structures including more close-packed metals. Figure 13.1 shows two examples of

calculations of energy versus volume that illustrate different points. On the left are energies

of nitrogen in the molecular α-phase and various possible high-pressure non-molecular
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Table 13.1. Calculated properties of selected crystals using the local density

approximation and various methods that involve plane waves: norm-conserving

pseudopotentials (NCPPs), projector augmented waves (PAWs), “ultrasoft”

pseudopotentials (USPPs) and linearized APWs (Ch. 17).

C Si CaF2 bcc Fe

Method a B a B a B a B m

NCPPa 3.54 460 5.39 98 5.21 90 2.75c 226c

PAWa 3.54 460 5.38 98 5.34 100

PAWb 3.54 460 5.40 95 5.34 101 2.75 247 2.00

USPPb 3.54 461 5.40 95 5.34 101 2.72 237 2.08

LAPWa 3.54 470 5.41 98 5.33 110 2.72d 245d 2.04d

EXPa 3.56 443 5.43 99 5.45 85–90 2.87d 172d 2.12d

Since the results depend upon many details of the calculations, the values shown are mainly from two

references that carried out careful comparisons: aHolzwarth, et al. [512] and bKresse and Joubert [476].

Other values for Fe are from cCho and Scheffler [568] and dStixrude, et al. [566]. References for

experimental values are cited in [512] and [566].
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Figure 13.1. Left: Total energy of nitrogen versus volume in molecular structures and the “cubic

gauche” non-molecular structure predicted at high pressure [121]. Right: Energy versus volume for

hcp Fe showing agreement of calculations performed using ultrasoft pseudopotentials, the PAW

method, and full-potential LMTO and LAPW calculations [164].

structures calculated [121] using the LDA and norm-conserving pseudopotentials. An out-

standing aspect of this work is the creativity of the authors in finding a structure called

“cubic gauche” (CG) that was not known before for any material, but which was predicted

to be significantly more stable than any other structure suggested previously. This is an

example of the theoretical prediction of a new polymeric phase of N: there is no experi-

mental confirmation of this phase as yet, but it may be consistent with recent high-pressure

experiments [567].
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Figure 13.2. Right: Total energy of SiO2 in α-quartz and in the known high-pressure stishovite

phase calculated using the LDA and PW91 GGA [569] (Sec. 8.2). With the LDA, stishovite is found

to be the most stable form with the lowest energy, whereas the GGA leads to the collect result that

α-quartz has lower energy and stishovite is stabilized under pressure. The quality of the

pseudopotential is shown by comparion of the pseudopotential phase shifts tan−1 with those from

the all-electron calculation (offset by multiples of 2π for clarity). From Hamann [380].

On the right-hand side of Fig. 13.1, the equation of state of hcp Fe at high pressure is

shown. This is the pressure range relevant for understanding the behavior of Fe in the core

of the Earth. The curves show the theoretical agreement of calculations made using ultrasoft

pseudopotentials, the PAW method, and full-potential LMTO and LAPW calculations [164].

This in agreement with the results in Tab. 13.1 and shows that, with care, the approaches

can be used under extreme conditions. An important point for our purpose, is that the same

PAW methods have been used in full-thermal simulations of liquid Fe under Earth-core

conditions, as described in Sec. 18.6.

Another example of the stability of crystal phases as a function of pressure is demonstrated

by SiO2, which has various low-pressure polymorphs, including α-quartz structure and silica

glass, that consists of corner-sharing SiO4 tetrahedra. A high-pressure phase, stishovite,

has tetragonal rutile structure with octahedrally coordinated SiO effectively in three-fold

coordination. Figure 13.2 shows the energy versus volume for the two structures and for two

functionals: the LDA and the PW91 GGA [569] (Sec. 8.2) calculated by Hamann [380]. As

is found in other cases, the LDA favors the dense phase: in this case indicating that α-quartz

and silica (window) glass would be unstable at ordinary pressure! The GGA favors more

open structures and leads to proper ordering of the structures, with the energy difference in

at least qualitative agreement with experiment.

The calculations for SiO2 also illustrate other points. The left-hand side of Fig. 13.2

shows the agreement of the all-election and pseudopotential atomic phase shifts over the

energy range of the valence electrons (see also Sec. 11.4). The calculations were done

using adaptive coordinates [555, 570], illustrated in Fig. 12.6, in order to accommodate

hard pseudopotentials needed for accurate calculations involving oxygen. Finally, careful
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Figure 13.3. Left: Calculated energies for Si comparing different functionals [127]. The LDA is

denoted as “CA” and other functionals are described in Ch. 8: Perdew–Wang 91 (PW91) and

Becke–Parr (BP). The energies are arbitrarily set equal for the diamond structure. In fact, the GGA

functionals lead to lower total energies compared to LDA. Transition pressures are increased for the

GGA functionals compared to the LDA because lowering of the total energy is more pronounced for

the open diamond structure (which has larger gradients) than for the more close-packed β-Sn

structure. Right: Density of points in the unit cell at which the valence electron density has a value

n = 1/( 4π

3
r 3

s ) plotted versus rs (see text for description). From [127].

calculation with the all-electron LAPW method (Ch. 17) found energy differences between

the two phases that agree to within ≈0.02 eV, only barely visible on the scale of Fig. 13.2.

Comparison of functionals: phase transition in Si

The most studied element is Si for which there have been calculations on an extensive

set of structures [123] including diamond structures, various compact distorted tetrahedral

structures, and many metallic structures. This illustrates the great advantage of the plane

wave pseudopotential method that can treat many structures in an unbiased way. Silicon

is also a test case where changes in transition pressure for different functionals have been

calculated [127]. Figure 13.3 shows a comparison of LDA (denoted “CA”) and typical GGA

functionals (see Ch. 8). The transition pressure changes from 8.0 GPa for the LDA to 12.2

GPa for the Perdew–Wang 91 (PW91) and 14.6 GPa for the Becke–Parr (BP) functionals,

which can be compared with the reported experimental pressure of ≈12.5 GPa [120].

The right-hand side of Fig. 13.3 is an illuminating plot that reveals several aspects of

Si in diamond and high-pressure β-Sn structures. The plot shows the density of points

in the unit cell at which the valence electron density (the core density is not included) has

the value n = 1/( 4π
3

r3
s ). The horizontal range shows the maximum and minimum values of

the local rs parameter and the vertical axis shows the normalized number of points at each

value of rs . Since the density is periodic in the cell, this plot has the same critical point

structure as the density of states discussed in Sec. 4.7 and illustrated in Fig. 14.3. Clearly,

the high-pressure phase has only a small range of rs so that it is nearly a homogeneous

gas. The diamond structure has a larger range and thus larger gradients and larger effects of

GGA. On the left-hand side of Fig. 13.3 the energies are arbitrarily set equal for the diamond
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structure (since only relative energies matter for the transition) but, in fact, the GGAs lower
all the energies, with the diamond structure lowered most compared to the LDA.

Electronic bands

Among the enumerable calculations of bands, it is appropriate to consider only a few ex-

amples that illustrate characteristic aspects of pseudopotentials and plane waves (or grids),

careful comparisons to other methods, and salient points about the bands in density func-

tional theory. As a first point, it should be emphasized that all calculational techniques,

when carried out carefully, yield essentially the same results for the bands.

Many calculations have shown that the dispersion in both the occupied and unoccupied

bands of many materials are well predicted by LDA and GGA functionals. However, the

great failure of these functionals is that the band gap between the occupied and unoccupied

bands is too small. An extreme example is Ge which is predicted to be a metal in the LDA,

a result first found using the all-electron relativistic LMTO approach [571]. These effects

are illustrated for Ge and GaAs in Figs. 2.25, 17.9, and 17.8, all of which show that the

valence bands are in excellent agreement with experiment but the conduction bands are

shifted downward. These examples show that accurate results can be found using carefully

constructed pseudopotentials with plane waves or with gaussians. However, they also show

that care must be taken in the generation and use of pseudopotentials to capture all the

relevant effects.

To show the power of plane wave calculations in problems that are very non-plane-wave-

like, Fig. 13.4 shows the electronic bands of the perovskite structure (Fig. 4.8) ferroelectric
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Figure 13.4. Example of BaTiO3 bands calculated [572] using plane waves and the “band-by-band”

minimization method (Sec. M.8). This is an ionic system with narrow bands each derived primarily

from one atomic-like state that is identified in the figure. Calculation of the Wannier functions for

each of the separated groups of bands has been used to analyze the origin of the anomalous effective

charges (Tab. 22.1) and understanding of the ferroelectric moment.
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material BaTiO3, as calculated [572] using plane waves and the “band-by-band” minimiza-

tion method (Sec. M.8). This is an example of a very ionic material with narrow bands

each derived primarily from one atomic-like state that is identified in the figure. Yet there

are crucial effects due to the fact that the system is not completely ionic. Because there

is incomplete charge transfer, i.e. the bands have mixed atomic character, there are large

redistributions of charge as the atoms move. This effect of hybridization (or covalency),

especially involving the Ti 3d and O 2p states, leads to the extremely large anomalous

effective charges shown in Tab. 22.1 and to the quantitative theory of ferroelectric polariza-

tion [572, 573]. As a practical matter, it essential, for accurate results, that the “semi-core

states” are treated as valence states (in this case Ti 3p and 3s have similar radial extent to

the 3d state). Thus the Ti pseudopotential only eliminates the Ti 1s, 2s, and 2p core states.

A major challenge is to go beyond the simple LDA and GGA functionals. As discussed

in Secs. 8.7 and 8.8, orbital-dependent functionals include crucial effects such as the “band

gap discontinuity;” however, these functionals are much more difficult to use. Because of

their simplicity, pseudopotentials and plane waves are the methods of choice for exploratory

calculations to test methods and new ideas. One example is the calculation of bands using

the non-local exact exchange (EXX) functional. There is a marked improvement in the

band gaps, as shown in Fig. 2.26, without affecting detrimentally the good agreement for

total energies [223]. In particular, Ge is predicted to be a semiconductor with a gap in

very good agreement with experiment. In finite systems – atoms, molecules and clusters –

grids are particularly appropriate for calculations of excitations [526] and examples of

time-dependent density functional theory calculations are illustrated in Ch. 20.

13.4 Supercells: surfaces, interfaces, phonons, defects

Plane waves also turn out to be the method of choice for a very different set of problems:

surfaces, interfaces, phonons, defects, etc. Despite the fact that these are all cases in which

there is no periodicity in at least one direction, plane waves are nevertheless an effective

basis. If one adopts the simple brute-force method of forming a “supercell,” then the problem

is made artificially periodic and all the usual plane wave methods apply. Despite the obvious

disadvantage that many plane waves are required, the combination of efficient iterative

methods (App. M) and powerful computers makes this an extremely effective approach.

From a more fundamental point of view, the variation in calculated properties with the

size of the “supercell” is an example of finite-size-scaling, which is a powerful method to

extrapolate to the large-system limit. This is the opposite of the approach in Ch. 23 to treat

localized properties; each has advantages and disadvantages.

Schematic examples of supercells in one dimension are shown in Fig. 13.5. The figure

shows an example of perfect crystal disturbance (a phonon displacement), a superlattice

formed by different atoms, and a slab with vacuum on either side. In fact, the periodic cell

made by repeating the cell shown is possibly a real physical problem of interest in its own

right. In addition, the limit of infinite horizontal cell size can be used in various ways to

represent the physical limit of an isolated plane of displaced atoms, an isolated interface,

and a surface. Although each case may be better treated by some other method, the fact
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L

T

Figure 13.5. Examples of the use of “supercells” for the case of zinc-blende crystals with the long

axis in the [1 0 0] direction and the vertical axis in the [1 1 0] direction. The unit cell is shown by the

dashed boundary. Left: Perfect crystal with one plane of atoms displaced; as described in Sec. 19.2,

calculation of forces on other planes, e.g. the one shown by the dashed line, allows calculation of

longitudinal (L) or transverse (T) phonon dispersion curves in the [1 0 0] direction. Middle: interface

between two crystals, e.g. GaAs–AlAs, which allows calculation of band offsets, interface states,

etc. Right: Two surfaces of a slab created by removing atoms, leaving a vacuum spacer. Complicated

reconstructions often lead to increased periodicity in the surface and larger unit cells as indicated.

that plane waves can treat all cases and can be used to describe the limits accurately is an

enormous advantage.

“Frozen” phonons and elastic distortions

An example of the use of supercells in calculating phonon properties is given in Sec. 19.2.

Any particular cell can be used to calculate all the vibrational properties at the discrete

wavevectors corresponding to the reciprocal lattice vectors of the supercell. This is very

useful for many problems, and a great advantage is that non-linear, anharmonic effects can

be treated with the same method (see, e.g. Fig. 2.8). Furthermore, it is possible [574–576]

to derive full dispersion curves from the direct force calculations on each of the atoms in

a supercell, like those shown on the left-hand side of Fig. 13.5. The requirement is that

the cell extended to twice the range of the forces, which can be accomplished. An example

of phonon dispersion curves in GaAs in the [100] direction is shown in Fig. 19.2. The

inverse dielectric constant ε−1 and the effective charges Z∗
I can also be calculated from the

change in the potentials due to an induced dipole layer in the supercell [574] or by finite

wavevector analysis [577].

Interfaces

The presence of interfaces between bulk materials is one on the major problems of materi-

als science [182]. Interfaces determine the strength of real materials, electrical properties,

etc. Perhaps the most perfect interfaces are those grown with atomic precision in semicon-

ductors. Four-fold coordination can be maintained across the interface with essentially no

defects. The change is just that due to chemical identity of the atoms and relaxations of the

structure. Therefore this is a case where detailed comparison can be made between theory
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Figure 13.6. Average potential and band alignment at a strained layer interface Ge grown on a Si

substrate. The left panel shows the average potential offset determined by the interface calculation.

The right panel shows the alignment of the bands relative to the average potential fixed by a bulk

calculation performed using the same potential. The bands shown are the top of the valence band

(omitting spin–orbit splitting), which is three-fold degenerate in cubic Si but split in the strained Ge.

Growth on a Ge substrate leads to strained Si, and intermediate cases and alloys are expected to be

described by interpolation.

and experiment. Extensive calculations have been done for many combinations of semicon-

ductors, e.g. using plane waves [183, 578, 579] and using the LMTO method [580, 581]

A representative example [578] of Si/Ge is shown in Fig. 13.6. In this case, there is a

uniaxial strain induced by a lattice matching condition in addition to the change in chemical

identity. The parallel lattice constant is fixed by the substrate, creating a uniaxial strain in

the thin layer. The figure illustrates the results for strained Ge grown on a Si substrate. The

left panel shows the planar averaged potential,3 which quickly reaches the periodic bulk

potential, with an offset determined by the calculations. The relative alignment of the Si

and Ge bands (the band “offset”) is fixed by referring the bulk of the bands of each material

to the average potentials indicated. The dilation leads to a shift of the average potential and

shifts of all the bands, and the uniaxial part of the strain leads to splitting of the top of the

valence bands, as shown on the right-hand side of the figure. Similarly, growth on a Ge

substrate leads to strained Si. Intermediate cases and alloys can be treated by interpolation.

For polar interfaces, simple electron counting [176, 582] shows that there can be filled

bands only if the stoichiometry is satisfied, which may require mixing of atoms in the inter-

face layer(s). Furthermore, the band offset can be changed by dipoles due to arrangement

of the atoms as has been demonstrated for ZnSe/Ge/GaAs (1 0 0) interfaces [583]. This is

in fact the same physics as the change in work function of a metal due to surface effects,

and illustrates the fact that the absolute value of the potential in a crystal is not an intrinsic
property; instead, it is fixed by the boundary conditions and/or external fields.

3 The potential shown in Fig. 13.6 is the local pseudopotential; if done correctly, the final results are invariant to

choice of pseudopotential or all-electron potential since the alignment is due to an intrinsic part plus terms that

depend only on the interface dipole (App. F).
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Si9H12 Si15H16 Si21H20

Figure 13.7. Models of the Si(1 0 0) surface including clusters of different size and the slab

geometry shown at the bottom, treated by plane wave calculations [585]. The issue is whether or not

the Si dimers buckle as shown in the figure; this has not been firmly established experimentally. In

each case, the atoms at the top are allowed to relax to model the surface and search for dimerization.

Other “surface” atoms are held in bulk positions and are passivated with hydrogen to tie off dangling

bonds. Small clusters are often used because traditional quantum-chemical many-body methods are

feasible only for small systems. However, the calculation of [585] leads to the conclusion that large

clusters or a slab is required for this delicate problem. From [585].

Surfaces

Examples of surface structures determind by plane wave total energy calculations were

given in Sec. 2.8 for ZnSe, which illustrating the many issues that occur in polar semicon-

ductors. In particular, surface stoichiometry must be considered as a variable, which means

that the surfaces are governed by the grand potential [179, 180], Eq. (2.7). The results

of [180], shown in Fig. 2.15, predict a sequence of different reconstructions and changes

in stoichiometry as a function of the chemical potential for either of the elements.

Elemental solids are simpler but nevertheless can exhibit an array of surface reconstruc-

tions. Calculated absolute surface energies for various surfaces of C, Si, and Ge are reported

in [584] which gives many earlier references. A well-known example of surface reconstruc-

tion is the (1 0 0) surface of Si and Ge. As indicated in Fig. 13.7, each surface atom has

broken bonds and the surface reconstructs with atoms dimerizing to form a new bond so

that each surface atom has three bonds. This leaves one electron per surface atom: for a

symmetric unbuckled dimer, the two extra electrons can make a π bond, whereas if the

dimer buckles so that the two atoms have inequivalent positions, the two electrons can

form a “lone pair” in the lower energy state. However, it is not firmly settled whether or
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not the buckled dimer is the lowest energy state. Density functional theory (DFT) calcula-

tions using LDA and various GGAs have been done by many groups in attempts to resolve

the structure. The effects are sufficiently subtle that the results can depend upon whether

the calculations are done using finite clusters or slabs. Particularly extensive studies have

been reported in [585] and [586], which give earlier references. Figure 13.7 shows geome-

tries that represent different approaches varying from small clusters (hydrogen terminated

everywhere except in the desired surface region) to a slab. All were treated with plane

waves [585], illustrating the ability of plane waves to treat the different geometries in an

unbiased way. The conclusion is that electronic interactions between adjacent Si dimers

in a row are essential in stabilizing the buckled ground state, so that large clusters must

be used to model the Si (1 0 0) surface adequately. Both density functional theory [585]

and quantum Monte Carlo calculations [586] find the lowest energy state to be the buckled

dimer.

The calculations also predict the electronic structure that can be measured experimentally.

For example, surface bands for Ge [587] are shown in Fig. 15.2, comparing GW quasiparticle

and LDA bands. That work uses gaussians, but essentially the same results are found with

plane waves.

13.5 Clusters and molecules

Finite systems such as clusters and molecules can be studied conveniently using either plane

waves or grids. Grids are an obvious choice for localized functions since only that part of

the grid where the functions are non-zero need be considered. In the case of plane waves,

it is essential to construct a supercell in each dimension in which the system is localized.

Since the supercell must be large enough so that any spurious interactions with the images

are negligible, this means that many plane waves must often be used; nevertheless, this may

still be an effective way of solving the problem.

Calculations that employ grids are featured in Ch. 20 on excitations, where finite differ-

ence methods [526,535] have been used effectively for total energy minimization and time-

dependent DFT studies of finite systems from atoms to clusters of hundreds of atoms [359].

Multigrid methods have been developed, with results illustrated in Fig. 2.21 for a boron–

carbon nanotube junction.

As an example of plane wave calculations, Fig. 13.8 from [206] shows the bands for a

small-diameter carbon nanotube. Nanotubes are described in more detail in Sec. 14.7 where

they are considered as an excellent example where tight-binding is the natural description.

Yet plane waves provide essential results and insights. The example in Fig. 13.8 is for a tube

that would be an insulator if it were simply “rolled graphite” and, indeed, that is the result

of the simplest tight-binding models. However, for small tubes there can be large changes.

The band labeled (a) was discovered in plane wave calculations [206] to be pushed down

to cross the Fermi energy and create a metallic state. This is due to curvature and resulting

mixing of states, which is shown on the right-hand side of the figure by the charge density

for this band. The fact that the density is higher on the outside than the inside shows that the

wavefunction is not simply derived from the π state of graphite, which would yield equal
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Figure 13.8. Electronic states of small nanotubes are significantly modified from simple “rolled

graphite.” Left: Bands for a (6,0) “zig-zag” tube (see Sec. 14.7) calculated with plane waves [206].

The fact that graphene-like bands are strongly mixed, causes one band to be lowered below the

Fermi level to make the tube metallic. Right: density of the lowered band, which is primarily on the

outside, not symmetric as would be the case if it were radial graphene-like p states.

density inside and out. The same effect is captured using other methods [588] and improved

non-orthogonal tight-binding, as discussed in Sec. 14.7.
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Exercises

13.1 The on-line site in Ch. 24 has links to planewave codes and many examples and tutorials for

calculations on real materials. These codes can be used in the calculations for metallic H in

Ex. 13.5

13.2 Show that the Eq. (9.7) leads to the expression Eq. (13.2) written in Fourier components. In

particular, show that the groupings of terms lead to two well-defined neutral groupings: the

difference of the ion and the electron terms in the square bracket and the sum of eigenvalues

that are the solution of a the Kohn–Sham equation with a neutral potential.

13.3 Derive the result that the α parameter in the linear mixing scheme (13.5) must be less than

1/ε(Gmin) for convergence. Show that this is a specific form of the general equations in Sec. 9.3

and is closely related to Exercise 9.8. In this case it is assumed that εmax occurs for G = Gmin.

Discuss the validity of this assumption. Justify it in the difficult extreme case of a metal surface

as discussed in Sec. 13.1.

13.4 Show that the density distribution of periodic quantities in real space, e.g. the distribution

of local values of rs ∝ n(r)−1/3 shown in Fig. 13.3 have the same types of critical points as

the distributions, such as the density of states, which is a density in k-space. Hint: The basic

arguments hold for any crystal represented in either space.

13.5 This exercise is to calculate the band structure of metallic H at high density (rs = 1 is a

good choice) in the fcc structure and to compare with (1) the free-electron bands expected for

that density and (2) bands calculated with the Thomas–Fermi approximation for the potential

(Exercise 12.13). Use the Coulomb potential for the proton and investigate the number of plane

waves required for convergence. (There is no need to use a pseudopotential at high density,

since a feasible number of planes is sufficient.) Comparison with the results of Exercise 12.13

can be done either by comparing the gaps at the X and L points of the BZ in lowest non-zero-

order perturbation theory, or by carrying out the full band calculation with the Thomas–Fermi

potential.
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Localized orbitals: tight-binding

Summary

Localized functions afford a satisfying description of electronic structure and
bonding in an intuitive localized picture. They are widely used in chemistry
and have been revived in recent years in physics for efficiency in large simula-
tions, especially “order-N” methods (Ch. 23). The semi-empirical tight-binding
method is particularly simple and instructive since the basis is not explicitly
specified and one needs only the matrix elements of the overlap and the hamilto-
nian. This chapter starts with a definition of the problem of electronic structure
in terms of localized orbitals, and considers various illustrative examples in the
tight-binding approach. Many of the concepts and forms carry over to full cal-
culations with localized functions that are the subject of the following chapter,
Ch. 15.

The hallmark of the approaches considered in this chapter and the next is that the wave-

function is expanded in a linear combination of fixed energy-independent orbitals, each

associated with a specific atom in the molecule or crystal. For example, the linear com-

bination of atomic orbitals (LCAO) formulation denotes a basis of atomic or modified

atomic-like functions. Such a basis provides a natural, physically motivated description

of electronic states in materials; in fact, possibly the first theory of electrons in a crys-

tal was the tight-binding1 method developed by Bloch [36] in 1928. The history of this

approach is summarized nicely by Slater and Koster [589], who point out that the sem-

inal work of Bloch considered only the simplest s-symmetry function and the first to

consider a basis of different atomic orbitals were Jones, Mott, and Skinner [594] in

1934.

We will highlight three ways in which the local orbital, or tight-binding, formulation

plays an important role in electronic structure:

� Of all the methods, perhaps tight-binding provides the simplest understanding of the fun-

damental features of electronic bands. In particular, this provided the original derivation

1 Here “tight-binding” means “highly localized atomic states,” whereas it has taken different meaning (Sec. 14.4)

in more recent years.
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of the Bloch theorem [36], which will also suffice for us to derive the theorem yet again

in Sec. 14.1.
� Empirical tight-binding methods can provide accurate, useful descriptions of electronic

bands and total energies. In this approach, one assumes a form for the hamiltonian and

overlap matrix elements without actually specifying anything about the orbitals except

their symmetry. The values of the matrix elements may be derived approximately or may

be fitted to experiment or other theory. This is generically called “tight-binding” and is

widely used as a fitting procedure or as a quick (and sometimes dirty) electronic structure

method. As such it is the method of choice for development of many ideas and new

methods, e.g. “order-N” techniques in Ch. 23. This is the subject of later sections in this

chapter.
� Finally, local orbitals can be used as a basis to carry out a full self-consistent solution

of independent-particle equations. Analytic forms, especially gaussians, are extensively

used in chemistry, where standard basis sets have been developed. Alternatively, one

can use atomic-like orbitals with all integrals calculated numerically. Localized orbital

methods are powerful, general tools, and are the subject of Ch. 15.

14.1 Localized atom-centered orbitals

A local orbital basis is a set of orbitals χα(r − RI ), each associated with an atom at position

RI . In order to simplify notation, we will let m denote both α and site I , so that m =
1, . . . , Nbasis labels all the states in the basis, which can also be written χm(r − Rm).2

In a crystal, the atoms in a unit cell are at positions τκ, j , where τκ, j is the position of

j = 1, . . . , nκ atoms of type κ . The composite index {κ, j, α} → m allows the entire basis

to be specified by χm(r − (τm + T)), where T is a translation vector. The matrix elements

of the hamiltonian of a state m in the cell at the origin and state m ′ in the cell labeled by

translation vector T is

Hm,m ′(T) =
∫

dr χ∗
m(r − τm)Ĥχm ′[r − (τm′ + T)], (14.1)

which applies to any orbitals m and m ′ in cells separated by the translation T, since the

crystal is translationally invariant. Similarly, the overlap matrix is given by

Sm,m ′(T) =
∫

dr χ∗
m(r − τm)χm′ [r − (τm ′ + T)]. (14.2)

The Bloch theorem for the eigenstates can be derived by defining a basis state with

wavevector k,

χmk(r) = Amk

∑

T

eik·Tχm[r − (τm + T)], (14.3)

where Amk is a normalization factor (Exercise 14.3). The analysis proceeds much like the

2 Here the subscript m is a generic label for a basis function as in other chapters; when used in combination with

l, m denotes the azimuthal quantum number, e.g. in Sec. 14.2.
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derivation of the Bloch theorem in a plane wave basis in Secs. 12.1 and 12.2, except

that here the wavevector k is restricted to the Brillouin zone. This is sufficient since the

phase factor eik·T in (14.3) is unchanged if a reciprocal lattice vector is added. Using the

translation invariance of the hamiltonian, it is straightforward (Exercise 14.2) to show that

matrix elements of the hamiltonian with basis functions χmk and χm′k′ are non-zero only

for k = k′, with

Hm,m ′(k) =
∫

dr χ∗
mk(r)Ĥχm ′k(r) =

∑

T

eik·T Hm,m ′(T), (14.4)

and

Sm,m ′(k) =
∫

dr χ∗
mk(r)χm′k(r) =

∑

T

eik·TSm,m ′ (T). (14.5)

Since the hamiltonian conserves k, an eigenfunction of the Schrödinger equation in a

basis always can be written in the form

ψik(r) =
∑

m

cm(k) χmk(r), (14.6)

and the secular equation for wavevector k is

∑

m ′

[
Hm,m ′ (k) − εi (k)Sm,m ′ (k)

]
ci,m ′(k) = 0. (14.7)

This has the same form as Eq. (12.9) except that in (14.7) the orbitals are not assumed

to be orthonormal. The only fundamental sense in which local orbitals are different from

any other basis is that the locality of χm(r − (τm + T)) is expected to cause Hm,m ′(T) and

Sm,m ′ (T) to decrease and become negligible for large distances |τm − (τm′ + T)|.

14.2 Matrix elements with atomic orbitals

Much can be gained from consideration of the symmetries of the basis orbitals and the

crystal or molecule. This is the basis for tight-binding approaches (Sec. 14.4) and continues

to be essential in full calculations (Ch. 15). An appropriate choice for basis functions is a

set of atomic-like functions centered on the atom sites. On each site κ, j the basis functions

can be written as radial functions multiplied by spherical harmonics,

χα(r) → χnlm(r) = χnl (r )Ylm(r̂), (14.8)

where n indicates different functions with the same angular momentum. Real basis func-

tions can also be defined using the real angular functions S+
lm = 1√

2
(Ylm + Y ∗

lm) and

S−
lm = 1√

2i
(Ylm − Y ∗

lm) defined in Eq. (K.11). These are useful for visualization and in actual

calculations, but the Ylm are most convenient for symmetry analysis. Examples of real s, p,

and d orbitals are given in Fig. 14.1.
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ppπ

ssσ spσ sdσ

ppσ

pdσ pdπ

ddσ ddπ ddd

Figure 14.1. Schematic figures of local orbitals indicating all possible overlap and two-center

hamiltonian matrix elements for s, p, and d orbitals, which are classified by the angular momentum

about the axis with the notation σ (m = 0), π (m = 1), and δ (m = 2). The orbitals shown are the

real combinations of the angular momentum eigenstates. Positive and negative lobes are denoted by

solid and dashed lines, respectively. Note that the sign of the p orbitals must be fixed by convention;

here and in Tab. 14.1 the positive px lobe is along the positive x-axis, etc.

The matrix elements, Eqs. (14.1) and (14.2), can be divided into one-, two-, and

three-center terms. The simplest is the overlap matrix S in (14.2), which involves only

one center if the two orbitals are on the same site (T = 0 and τm = τm′ ) and two centers

otherwise. The hamiltonian matrix elements in (14.1) consist of kinetic and potential terms

with

Ĥ = −1

2
∇2 +

∑

Tκ j

V κ [|r − (τκ j + T)|], (14.9)

where the first term is the usual kinetic energy and the second is the potential decomposed

into a sum of spherical terms centered on each site κ, j in the unit cell.3 The kinetic

part of the hamiltonian matrix element always involves one or two centers. However, the

potential terms may depend upon the positions of other atoms; they can be divided into the

following.

� One-center, where both orbitals and the potential are centered on the same site. These

terms have the same symmetry as an atom in free space.
� Two-center, where the orbitals are centered on different sites and the potential is on one

of the two. These terms have the same symmetry as other two-center terms.
� Three-center, where the orbitals and the potential are all centered on different sites. These

terms can also be classified into various symmetries based upon the fact that three sites

define a triangle.

3 This decomposition can always be done formally. Often V κ (|r|) can be approximated as spherical atomic-like

potentials associated with atom of type κ .
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� A special class of two-center terms with both orbitals on the same site and the potential

centered on a different site. These terms add to the one-center terms above, but depend

upon the crystal symmetry.

Two-center matrix elements

Two-center matrix elements play a special role in calculations with local orbitals and are

considered in more detail here. The analysis applies to all overlap terms and to any hamil-

tonian matrix elements that involve only orbitals and potentials on two sites. For these

integrals the problem is the same as for a diatomic molecule in free space with cylindrical

symmetry. The orbitals can be classified in terms of the azimuthal angular momentum about

the line between the centers, i.e. the value of m with the axis chosen along the line, and

the only non-zero matrix elements are between orbitals with the same m = m ′. If Klm,l ′m′

denotes an overlap or two-center hamiltonian matrix element for states lm and l ′m′, then in

the standard form with orbitals quantized about the axis between the pair of atoms, the ma-

trix elements are diagonal in mm ′ and can be written Klm,l ′m ′ = Kll ′mδm,m ′ . The quantities

Kll ′m are independent matrix elements that are irreducible, i.e. they cannot be further re-

duced by symmetry. By convention the states are labeled with l or l ′ denoted by s, p, d, . . . ,

and m = 0, ±1, ±2, . . . , denoted by σ, π, δ, . . . , leading to the notation Kssσ , Kspσ ,

Kppπ , . . . .

Figure 14.1 illustrates the orbitals for the non-zero σ , π , and δ matrix elements for s,

p, and d orbitals. The orbitals shown are actually the real basis functions S±
lm defined in

Eq. (K.11) as combinations of the ±m angular momentum eigenstates. These are oriented

along the axes defined by the line between the neighbors and two perpendicular axes. All

states except the s state have positive and negative lobes, denoted by solid and dashed

lines, respectively. Note that states with odd l are odd under inversion. Their sign must

be fixed by convention (typically one chooses the positive lobe along the positive axis).

(The direction of the displacement vector is defined to lie between the site denoted by

the first index and that denoted by the second index.) For example, in Fig. 14.1, the Kspσ

matrix element in the top center has the negative lobe of the p function oriented toward

the s function. Interchange of the indices leads to Kpsσ = −Kspσ and, more generally, to

Kll ′m = (−1)l+l ′ Kl ′lm (Exercise 14.4).

An actual set of basis functions is constructed with the quantization axis fixed in space, so

that the functions must be transformed to utilize the standard irreducible form of the matrix

elements. Examples of two-center matrix elements of s and pi = {px , py, pz} orbitals for

atoms separated by displacement vector R are shown in Fig. 14.2. Each of the orbitals

on the left-hand side can be expressed as a linear combination of orbitals that have the

standard form oriented along the rotated axes, as shown on the right. An s orbital is invariant

and a p orbital is transformed to a linear combination of p orbitals. The only non-zero

matrix elements are the σ and π matrix elements, as shown. The top row of the figure

illustrates the transformation of the px orbital needed to write the matrix element Ks,px

in terms of Kspσ and the bottom row illustrates the relation of Kpx ,pz to Kppσ and Kppπ .

Specific relations for all s and p matrix elements are given in Tab. 14.1. Matrix elements
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Table 14.1. Table of two-center matrix elements for either the overlap or the

hamiltonian, with real orbitals s and px , py, pz . The vector R between sites, as

shown in Fig. 14.2, is defined to have direction components R̂ ≡ {x, y, z}, and

the matrix element is expressed in terms of the σ and π integrals Kssσ , Kspσ ,

and Kppπ . Examples of matrix elements are shown; all other s and p matrix

elements are related by symmetry. Expressions for d orbitals are given in many

places including [344], [589], and [590], and arbitrary angular momenta can be

treated using the procedures in Sec. N.5.

Element Expression

Ks,s Kssσ

Ks,px x2 Kspσ

Kpx ,px x2 Kppσ + (1 − x2)Kppπ

Kpx ,pz xz(Kppσ − Kppπ )

R

R

ppσ

ppπ

R

spσ

x

y
z

R

spx

R

px pz

Figure 14.2. Schematic figures for two-center matrix elements of s and pi = {px , py, pz} orbitals for

atoms separated by displacement vector R. Matrix elements are related to σ and π integrals by the

transformation to a combination of orbitals that are aligned along R and perpendicular to R. The top

figure illustrates the transformation to write a real matrix element Ks,px in terms of Kspσ : the s

orbital is unchanged and the px orbital is written as a sum of the σ orbital, which is shown, and the

π orbitals, which are not shown because there is no spπ matrix element. The lower figure illustrates

the transformation needed to write Kpx ,pz in terms of Kppσ and Kppπ . The coefficients of the

transformation for all s and p matrix elements are given in Tab. 14.1. Matrix elements for arbitrary

angular momenta can be found using the rotation matrix method described in Sec. N.5.
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for arbitrary angular momenta can be found using the rotation matrix method described in

Sec. N.5.

For the lowest angular momenta it is instructive to write out the expressions explicitly. If

the basis orbitals are defined in a system of fixed axes x̂, ŷ, ẑ, then they must be transformed

to new axes for each pair of neighbors. If the vector between the neighbors is R, the new

axes are x̂ ′, ŷ ′, ẑ′ with ẑ′ parallel to R. The transformation is illustrated in Fig. 14.2 for the

examples of s, px and pz, px matrix elements; the explicit coefficients for the transformation

are given in Tab. 14.1, which is sufficient to generate all sp matrix elements.

Three-center matrix elements

The hamiltonian matrix elements, in general, depend upon the presence of other atoms,

resulting in three-center or multi-center matrix elements. Such terms are discussed in Ch. 15

since they arise naturally in the integrals required in a local orbital basis. In this chapter we

consider only the “empirical tight-binding” or “semiempirical tight-binding” approaches

that involve only the matrix elements Hm,m ′ (T) and Sm,m ′ (T) expressed in a parameterized

form, without an explicit representation for the basis orbitals.

The only rigorous result that one can apply immediately to the nature of matrix elements

(14.1) and (14.2) is that they must obey crystal symmetry. This is often very helpful in

reducing the number of parameters to a small number for a high-symmetry crystal as is done

in the tables of Papaconstantopoulos [591] for many crystalline metals. In this form, the

tight-binding method is very useful for interpolation of results of more expensive methods

[591].

14.3 Slater–Koster two-center approximation

Slater and Koster (SK) [589] developed the widely used [344, 590] approach that bears

their name. They proposed that the hamiltonian matrix elements be approximated with the

two-center form and fitted to theoretical calculations (or empirical data) as a simplified

way of describing and extending calculations of electronic bands. Within this approach, all

matrix elements have the same symmetry as for two atoms in free space given in Fig. 14.2

and Tab. 14.1. This is a great simplification that leads to an extremely useful approach

to understanding electrons in materials. Of all the methods for treating electrons, the SK

approach provides the simplest, most illuminating picture of electronic states. In addition,

more accurate treatments involving localized orbitals (Ch. 15) are often best understood in

terms of matrix elements having SK form plus additional terms that modify the conclusions

in quantitative ways.

Slater and Koster gave extensive tables for matrix elements, including the s and p matrix

elements given in Tab. 14.1. In addition, they presented expressions for d states and analytic

formulas for bands in several crystal structures. Examples of the latter are given below in

Sec. 14.4 to illustrate useful information that can be derived. However, the primary use of

the SK approach in electronic structure has become the description of complicated systems,
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including the bands, total energies, and forces for relaxation of structures and molecular

dynamics. These different applications have very different requirements that often lead to

different choices of SK parameters.

For the bands, the parameters are usually designed to fit selected eigenvalues for a par-

ticular crystal structure and lattice constant. For example, the extensive tables derived by

Papaconstantopoulos [591] are very useful for interpolation of results of more expensive

methods. It has been pointed out by Stiles [595] that for a fixed ionic configuration, effects

of multi-center integrals can be included in two-center terms that can be generated by an

automatic procedure. This makes it possible to describe any band structure accurately with a

sufficient number of matrix elements in SK form. However, the two-center matrix elements

are not transferable to different structures.

On the other hand, any calculation of total energies, forces, etc., requires that the param-

eters be known as a function of the positions of the atoms. Thus the choices are usually

compromises that attempt to fit a large range of data. Such models are fit to structural data

and, in general, are only qualitatively correct for the bands. Since the total energy depends

only upon the occupied states, the conduction bands may be poorly described in these mod-

els. Of particular note, Harrison [344,590] has introduced a table that provides parameters

for any element or compound. The forms are chosen for simplicity, generality, and ability

to describe many properties in a way that is instructive and useful, albeit approximate.

The basis is assumed to be orthonormal, i.e. Smm ′ = δmm ′ . The diagonal hamiltonian matrix

elements are given in a table for each atom. Any hamiltonian matrix element for orbitals

on neighboring atoms separated by a distance R is given by a factor times 1/R2 for s and p

orbitals and 1/Rl+l ′ for l > 1. The form for s and p orbitals comes from scaling arguments

on the homogeneous gas [590] and the form for higher angular momenta is taken from

muffin-tin orbital theory (Sec. 16.7).

Many other SK parameterizations have been proposed, each tailored to particular elements

and compounds. Examples are given in Secs. 14.4–14.8, chosen to illustrate various aspects

of electronic structure calculations in the present and other chapters. Care must be used in

applying the different parameterizations to the appropriate problems.

14.4 Tight-binding bands: illustrative examples

This section is concerned with electronic bands calculated using tight-binding with the SK

two-center form for the hamiltonian. First, we consider simple cases that can be worked

out analytically, with further examples in exercises. This is followed by applications that

illustrate the power of the approach for relevant problems, such as the electronic structure

of nanotubes.

s-bands in line, square, and cubic Bravais lattices

The simplest possible example of bands is for s-symmetry states on each site I in a Bravais

lattice so that there is only one band. As a further simplification, we consider the case of
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Figure 14.3. Tight-binding bands in the square lattice with only an s state on each site and nearest

neighbor interactions. The left figure shows the BZ and the dashed line shows the Fermi surface in

the case of a half-filled band. The right figure shows the bands with k along the lines between the

high-symmetry points.

orthogonal basis states and non-zero hamiltonian matrix elements 〈I |Ĥ |I ′〉 ≡ t only if I
and I ′ are nearest neighbors. The on-site term can be chosen to be zero, 〈0|Ĥ |0〉 = 0. There

are three cases (line, square, and cubic lattices) that can be treated together. For the cubic

lattice with spacing a the general expressions (14.4) and (14.7) reduce to

ε(k) = H (k) = 2t
[
cos(kx a) + cos(kya) + cos(kza)

]
. (14.10)

The bands for the square lattice in the x, y-plane are given by this expression, omitting the

kz term; for a line in the x-direction, only the kx term applies.

This simple example leads to useful insights. In particular, the bands are symmetric

about ε(k) = 0 in the sense that every state at +ε has a corresponding state at −ε. This

can be seen by plotting the bands in two ways: first in the usual Brillouin zone centered on

k = 0, and second in a cell of the reciprocal lattice centered on k = (π/a, π/a, π/a). Since

cos(kx a − π ) = − cos(kx a), etc., it follows that the bands have exactly the same shape

except that the sign of the energy is changed,

ε(k) = −ε[k − (π/a, π/a, π/a)]. (14.11)

The same arguments apply to the line and square: the line has a simple cosine band and the

bands for a square lattice are illustrated in Fig. 14.3. The densities of states (DOS) for one,

two, and three dimensions are shown in Fig. 14.4. The shapes can be found analytically in

this case, which is the subject of Exercise 14.5.

There are several remarkable consequences in the case of the square. The energy ε(k) = 0

at a zone face k = (π/a, 0), which is easily verified using (14.10) and omitting the kz term.

This is a saddle point since the slope vanishes and the bands curve upward and downward in
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Figure 14.4. Schematic densities of states (DOS) for an s-band in a one-dimensional (1-D) line, a

two-dimensional (2-D) square, and a three-dimensional (3-D) simple cubic lattice with nearest

neighbor interactions t . The bands are symmetric about the center and the width of each segment is

4t , i.e. the width of the 1-D DOS is 4t , that of the 2-D DOS is 8t divided into two parts, and the 3-D

band has width 12t divided into three parts of equal width. The special property of the square lattice

in this leads to a logarithmic singularity at the band center. See also Exercise 14.5 for further

information.

different directions as shown in Fig. 14.3. This leads to a density of states with a logarithmic

divergence at ε = 0 (Exercise 14.6). Furthermore, for a half-filled band (one electron per

cell), the Fermi surface is at energy ε(k) = 0. This leads to the result shown in Fig. 14.4

that the Fermi surface is a square (Exercise 14.6) rotated by π/4 with half the volume of

the Brillouin zone, and the density of states diverges at ε = EF as shown in Fig. 14.3. If

there are second-neighbor interactions, the symmetry of the bands in ±ε is broken and the

Fermi surface is no longer square.

Non-orthogonal orbitals

Solution of the tight-binding equations in terms of non-orthogonal orbitals can be done

simply in terms of the overlap matrix S using Eq. (14.7). The matrix elements of S can be

parameterized in the same way as the hamiltonian, with the added benefit that the two-center

form is rigorous and each orbital is to be normalized so that Smm = 1. The effect can be

illustrated by line, square, or simple cubic lattices, with nearest neighbor overlap defined

to be s. Then the solution for the bands, Eq. (14.10), is generalized to

ε(k) = H (k)

S(k)
= 2t

[
cos(kx a) + cos(kya) + cos(kza)

]

1 + 2s
[
cos(kx a) + cos(kya) + cos(kza)

] . (14.12)

The effect of non-zero s is discussed in Exercises 14.15 and 14.16. In this case, the symmetry

about ε = 0 is broken, so that the conclusions on bands and the Fermi surface no longer

apply. In fact s has an effect like longer range hamiltonian matrix elements, indeed showing

strictly infinite range but rapid exponential decay.

Non-orthogonal orbitals play an essential role in realistic tight-binding models. As dis-

cussed more completely in Sec. 14.9, it is never rigourously consistent to cut off the hamil-

tonian matrix elements while assuming orthogonal orbitals. This is a manifestation of the
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well-known properties of Wannier functions (Ch. 21) and the fact that Wannier functions

are very environment dependent. On the other hand, non-orthogonal functions can be much

more useful because they are more transferable between different environments. This is

illustrated by examples in Secs. 14.9 and 21.4.

Two atoms per cell

The simplest possible example of bands for an ionic crystal with two types of atoms is

the generalization of the model to two s-symmetry states on two sites in the unit cell.

Consider the same structures as above (a line, square, or cube) but with alternation of

the two types of atoms on the sites. In three dimensions this leads to the NaCl structure

shown in Fig. 4.7. This figure also illustrates the case of the square (one plane of the

NaCl structure) and the line (one line of that structure). The bands can be illustrated by

the one-dimensional case, in which case the two bands are the eigenvalues of the secular

equation

∣
∣
∣
∣

�
2

− ε(k) 2t cos(ka)

2t cos(ka) −�
2

− ε(k)

∣
∣
∣
∣ = 0, (14.13)

where the on-site matrix elements are chosen as ±�/2 in order to have average value zero

and t is the matrix element between nearest neighbors. It is simple to derive the analytic

bands ε(k) = ±
√

(2t cos(ka))2 + (�/2)2, which are symmetric in ±ε and have a mini-

mum gap � between the bands. Exercise 14.17 considers the extension to non-orthogonal

orbitals.

14.5 Square lattice and CuO2 planes

The problem of an s band in a square lattice has a particularly noteworthy application in the

case of the cuprate high-temperature superconductors.4 Figure 4.5 shows the square lattice

structure of CuO2 planes that is the common feature of these materials, e.g. each of the

planes in the bilayer in YBa2Cu3O7 shown in Fig. 17.3. Extensive calculations, exemplified

by the bands presented in Fig. 17.4, have shown that the primary electronic states at the

Fermi energy are a single band formed from Cu d and O p states. The band has the same

symmetry as dx2−y2 states centered on each Cu (where x and y are in directions toward

the neighboring Cu atoms. This can be understood in terms of the Cu and O states shown

in Fig. 14.5. The three states per cell form a bonding, a non-bonding, and an anti-bonding

combination, with the anti-bonding band crossing the Fermi level. In fact, the single anti-

bonding band has the same symmetry as a Cu dx2−y2 band with an effective hamiltonian

matrix element (Exercise 14.14) so that the problem is equivalent to a model with one dx2−y2

4 This is a well-known case [216] where the simple LDA and GGA functionals predict a metal at half-filling

whereas the real solution is an antiferromagnetic insulator. Nevertheless, the metallic state created by doping

appears to be formed from the band as described here.
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Figure 14.5. Tight-binding models representing electronic states in the square lattice structure of a

CuO plane. On the left is shown the three-band model representing one Cu dx2−y2 and two O p states

per cell. As discussed in the text, the most relevant states are the anti-bonding combination of Cu

and O states that are equivalent to the model shown on the right with modified orbitals that have

dx2−y2 symmetry around each Cu site. The effective orbitals are more extended, as shown on the

right; actual calculated orbitals shown in Fig. 17.11 are more realistic and show extended shape with

dx2−y2 symmetry. Finally, the band is isomorphic to a single s band because, by symmetry, all

hamiltonian matrix elements have the same symmetry; e.g. the nearest neighbor elements all have

the same sign, as is evident from the right-hand figure.

state per Cu, as shown on the right-hand side of Fig. 14.5. This highly schematic figure is

supported by detailed calculations of the one-band orbital shown in Fig. 17.11. The orbital

has dx2−y2 and is extended in the direction of the Cu–O bonds. Indeed, it is extended in the

directions along the Cu–O bonds, with large amplitude on the O sites. If the orbitals are

required to be orthonormal, like Wannier functions, then each orbital must also extend to

the neighbouring Cu sites.

Finally, the problem is isomorphic to a single s band; this occurs because nearest neighbor

dx2−y2 states always have lobes of the same sign (++ or −−) so that the matrix elements

are equal for all four neighbors, exactly as for s symmetry states. Thus the simplest model

for the bands is a single s band, with dispersion shown in Fig. 14.4, and a square Fermi

surface at half-filling. In fact, there are second-neighbor interactions which modify the bands

and the calculated Fermi surface [456, 458]. The single band resulting from the orbital in

Fig. 17.11 is shown in Fig. 17.12. It accurately describes the actual band, and its dispersion is

significantly different from the nearest neighbor model due to longer range matrix elements

in a realistic model.

14.6 Examples of bands: semiconductors and transition metals

In this section two simple examples of tight-binding bands are given using the Slater–

Koster approximation: Si and Ni. The simplest case is the bands of Si with a minimum basis

of one s state and 3 p states per atom. A number of features can be derived analytically

(Exercise 14.23). In particular, the states at k = 0 are pure s or pure p; the lowest state is

the bonding combination of the s states and the top of the valence band is the three-fold
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Figure 14.6. Band structure of Si calculated with the Slater–Koster parameters determined by Vogl

and coworkers [596] with an added s∗ orbital, which is the simplest addition that leads to a

reasonable description of the lowest conduction bands. Provided by N. Romero; programs described

schematically in App. N and available on-line (Ch. 24).

degenerate bonding combination of px , py , and pz states. The eigenvalues are readily derived

in terms of the matrix elements of the hamiltonian, the on-site energies Es and Ep, and the

matrix elements Hssσ , Hspσ , Hppσ , and Hppπ .

The bands of Si shown in Fig. 14.6 were calculated using SK parameters [596] that

were designed to describe energies of electronic states accurately, especially those near

the band gap that are most relevant for determination of the electronic properties. By

including a second s symmetry state (called s∗) this model provides the simplest quan-

titative description of the lowest conduction band. In fact, full calculations show that the

actual effect is due to the admixture of Si 3d states in the conduction bands. For ex-

ample, a non-orthogonal tight-binding model, constructed as described in Sec. 14.9, in-

cluding d states has been shown [597] to reproduce well both the LDA bands and total

energies.

The bands derived from the parameters in Harrison’s “universal” table [344, 590] are

considered in Exercise 14.24. They have the same qualitative form for the valence bands as

the more accurate bands shown in Fig. 14.6; however, the conduction bands are qualitatively

incorrect. This illustrates that care must be taken in using an approach like tight-binding;

the detailed shape of the conduction band is not given well by a tight-binding approach

designed to describe properties like the total energy that depend only upon the filled bands.
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Figure 14.7. Bands of Ni calculated with parameters from the table of Harrison [344, 590]. This is a

case where the main features of the narrow d bands and wide s band are well described; compare

with full calculations in Figs. 16.4 and 16.5 and the canonical LMTO fcc bands in Fig. 16.12. The

high-energy parts of the band are not correct because the s band is not sufficient. See also caption of

Fig. 14.6.

The bands of transition metals have features that are dominated by localized d states.

Tight-binding is a very natural approach for these states, as is also emphasized in the tight-

binding LMTO method (Secs. 16.7 and 17.5). Figure 14.7 shows the bands of Ni calculated

using Harrison’s parameters [344,590]. The bands have the right features, compared to full

calculations, for narrow d bands, s–d hybridization, and the s band. The highest energy

part of the bands plotted is inadequate; other states become more relevant and the bands

continue to higher energies with no gaps.

14.7 Electronic states of nanotubes

Nanotubes are ideal for illustrating the use of tight-binding to reveal the most vital infor-

mation about the electronic structure in a simple, illuminating way. Carbon nanotubes were

discovered in 1991 by Iijima [196] and recognized to be nanoscale versions of “micro-

tubes,” long tubular graphitic structures that had been grown using iron particles for catal-

ysis [205]. In a perfect single-wall tube, each carbon atom is equivalent and is at a junction

of three hexagons. The various ways a sheet of graphene (i.e. a single honeycomb-structure
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Figure 14.8. Rolling of a graphene sheet to form a nanotube. On the left is shown a tube with

circumference indicated by the circle c. The middle and right figures show a graphene translation

vector c = na1 + ma2 with n = 6 and m = 1 and the chiral (6, 1) tube formed by rolling to join the

site related by c. The basis vectors a1 and a2 shown are the same as in Fig. 4.5 and in [204, 598]; in

this notation the example shown is a (6,1) nanotube. Provided by J. Kim; programs available on-line

(Ch. 24).

plane of carbon) can be rolled into a tube leads to an enormous variety of semiconductors

and metals [203–205]. These can be understood in terms of a simple tight-binding model

for the electrons, based upon modifying the bands of graphene in ways that are readily

understood.

The structures of nanotubes are defined in terms of a graphene layer as shown in Fig. 14.8.

The vector indicated connects atoms in the layer that are equivalent in the tube, i.e. the tube

is defined by rolling the plane of graphene to bring those points together. The tube axis is

perpendicular to the vector. The convention is to label the vector with multiples of graphene

translation vectors, a1 and a2, defined as in Fig. 4.5. The example shown is for a (6, 1) tube

which denotes (6 × a1, 1 × a2) and which defines the chiral tube shown on the right. Special

examples of “zig-zag” (n, 0) and “armchair” (n, n) tubes are shown in Fig. 14.9. These are

not chiral, but have very different properties due to the underlying atomic structure. See

Exercise 14.20.

The first step is to make a simple model for the bands of graphene, which has the planar

honeycomb structure shown in Fig. 4.5. The Brillouin zone is shown in Fig. 14.9 (the same

as for the three-dimensional hexagonal zone in Fig. 4.10 with kz = 0), where K denotes the

corner and M the edge center. Full calculations like those shown in Fig. 2.29 demonstrate

the well-known fact that the bands of graphite at the Fermi energy are π bands, composed

of electronic states that are odd in reflection in the plane. For a single, flat graphene sheet,

symmetry forbids coupling of π bands to σ bands that are well below and well above

the Fermi energy. The π bands are well represented as linear combinations of pz orbitals

of the C atoms, where z is perpendicular to the plane. Since graphene has two atoms per cell,

the pz states form two bands. If there is a nearest neighbor hamiltonian matrix element t ,
the bands are given by [204]

∣
∣Ĥ (k) − ε(k)

∣
∣ =

∣
∣
∣
∣
−ε(k) H12(k)

H ∗
12(k) −ε(k)

∣
∣
∣
∣ = 0, (14.14)
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Figure 14.9. Structures, Brillouin zones, and bands of the “zig-zag” (a) and “armchair” (b)

nanotubes. The bands are calculated using the orthogonal tight-binding model of Xu et al. [162].

The zig-zag tubes shown are denoted (13, 0) and (12, 0); the latter is insulating and the former has a

small gap that is due to curvature. However, for smaller tubes, the curvature can induce large effects,

including band overlap leading to metallic tubes as shown in Fig. 13.8 and discussed in the text. The

armchair (n, n) tubes are always metallic since the lines of allowed states with k along the tube

always include � and one of the K points. (b) Illustrates the bands for a (3, 3) tube. In each case the

bands of the tube are plotted in the one-dimensional BZ denoted � → X. Provided by J. Kim;

programs available on-line (Ch. 24).

where (with the lattice oriented as in Figs. 4.5 and 14.9(a))

H12(k) = t
[
eikya/

√
3 + 2e−iky a/2

√
3 cos

(
kx

a

2

)]
, (14.15)

where a is the lattice constant. This is readily solved to yield the bands [204]

ε(k) = ±|H12(k)| = ±t

[

1 + 4 cos

(

ky

√
3a

2

)

cos
(

kx
a

2

)
+ 4 cos2

(
kx

a

2

)
]1/2

. (14.16)

The most remarkable feature of the graphene bands is that they touch at the corners of the

hexagonal Brillouin zone, e.g. the point denoted K (kx = 4π/3a, ky = 0) shown in the

BZ in Fig. 14.9. This and other aspects are brought out in Exercise 14.19. Note also that

the bands are symmetric in ±ε. Since there is one π electron per atom, the band is half-filled

and the bands touch with finite slope at the Fermi energy, i.e. a Fermi surface consisting

of points. It is this unusual feature that gives rise to the grand array of possibilities for the

electronic structure of nanotubes.

The first approximation is to assume that the bands are unchanged from graphene and

the only effect is that certain states are allowed by the boundary condition. The condi-

tion on allowed functions is that they must be single valued in the circumferential di-

rection but have Bloch boundary conditions along the tube axis. This leads to allowed

k vectors, that are shown as lines in Fig. 14.9. The resulting bands have been analyzed

in general [203–205] with the simple conclusion that there is a gap between filled and
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empty states unless the allowed k lines pass through the point K. If they do include

K, e.g. the armchair tube, then the interesting situation of one-dimensional metallic

bands arises.

A convenient approach to finding the actual bands is through tight-binding models that

provide a beautiful description of the electronic properties of graphene. Examples are

shown in Fig. 14.9 for the insulating even-order zig-zag, the almost metallic odd-order

zig-zag (see the following paragraph), and metallic armchair tubes. The calculations are

done with a simple orthogonal tight-binding model [162] that describes graphene well;

however, it cannot be expected to describe all possible effects in nanotubes, as shown

below.

The next approximation is to include expected effects due to curvature [203, 204]. The

simplest depends only upon symmetry: curvature makes bonds along the axis inequivalent

to those at an angle to the axis. Therefore, the k point where the bands touch moves away

from the point K opening a small gap, as shown in Fig. 14.9 for the (13, 0) zig-zag tube.

The gap is expected to increase for small tubes with larger curvature. On the other hand,

there is no effect upon the band crossing at point K, which is along the tube axis for the

armchair tube, so that it remains metallic in all cases.

Finally, one can ask: have all the effects been included? The answer is, “no.” As shown in

Fig. 13.8, calculations [206] on small tubes have shown that the bands can be qualitatively

changed from the graphene-like states considered thus far. The reason is that in small tubes

there is large mixing of the graphene-like states, including a particularly strong admixture

of π states with a σ anti-bonding state that pushes a band below the Fermi level. This leads

to the prediction [206] that small diameter nanotubes can be metallic due to band overlap,

even in cases where analogy to graphene would expect an insulator. This effect is also found

in high-quality local orbital calculations [588].

What is required for a tight-binding model to capture such effects? There is no unique

answer because it is difficult to construct simple models that can describe many different

(unforeseen) geometries. Nevertheless, there is considerable success using ideas outlined

in Sec. 14.9. Notably, the tight-binding model of [599] has been fitted to LDA calcula-

tions of many properties (eigenvalues, total energies, phonons, etc.) of carbon in various

coordinations and geometries. The non-orthogonal basis improves transferability to dif-

ferent structures. Indeed, results using this model lead to bands in good agreement with

both the plane wave calculations [206] for small tubes, as shown in Fig. 13.8, and with the

graphene-like bands for larger tubes.

Boron nitride nanotubes

Nanotubes of boron nitride have been proposed theoretically [207] and later made ex-

perimentally [208]. Structures for the tubes are allowed if they maintain the B–N equal

stoichiometry, and the tubes always have a large gap due to the difference between the B

and N atoms. Thus the electronic properties are very different from carbon nanotubes and

BN tubes hold the potential to act like one-dimensional semiconductors in the III–V family.
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Like other III–V materials they exhibit piezoelectric and pyroelectric effects, but in this

case the one dimensionality leads to extreme anisotropy and novel electric polarization and

piezoelectric effects [202, 600].

In addition, heterostructure tubes can potentially be created that could be one-dimensional

analogs of semiconductor quantum structures. For example, Fig. 2.21 shows the electron

density for the highest occupied state in metal–semiconductor junctions of BN–C nan-

otubes, calculated [202] using real-space methods [209] described in Chs. 12 and 13. The

system can be treated as a supercell much like the semiconductor structures in Fig. 13.6;

however, there are new aspects introduced by the geometry, by the fact that a single de-

fect can have qualitative effects in one dimension, etc. The basic features of the elec-

tronic states can also be understood using tight-binding. The requirements are that the

model must contain information on C and BN, the B–NC and N–C interactions at the in-

terface, and the relative energies of the bands in the C and BN tubes. The weakness of

tight-binding is that these parameters must be obtained from some other calculation; the

strength is that once the parameters are obtained and shown to be reasonably transferable,

tight-binding methods make possible very fast, illuminating calculations on complicated

structures.

14.8 Total energy, force, and stress in tight-binding

The total energy in any self-consistent method, such as the Kohn–Sham approach, can be

written as in Eqs. (9.7) and (9.9) expressed as a sum of eigenvalues (Eq. (9.6)) plus the

interaction of the nuclei and a correction needed to avoid double counting the interactions

Etotal =
∑

i

εi f (εi ) + F[n]. (14.17)

Here f (εi ) is the Fermi function and i labels eigenstates including the spin index; in a

crystal the sum is over all bands and k in the BZ. In terms of Epot in (9.3), F[n] is given by

F[n] ≡ Epot[n] −
∫

dr VKS(r)n(r)

= EI I − EHartree[n] +
∫

dr [εxc(r) − Vxc(r)]n(r), (14.18)

where VKS is the Kohn–Sham potential taken to be spin independent for simplicity.

In the tight-binding method, the parameterized hamiltonian matrix elements lead to the

eigenvalues εi . How can the second term be included in such an approach? How can it be

approximated as a function of the positions of the nuclei, even though the full theory defines

F[n] as a complicated functional of the density? An elegant analysis of the problem has been

given by Foulkes and Haydock [417] based upon the expression for the energy, Eq. (9.9).

They used the variational properties of that functional and the choice of the density as a

sum of neutral spherical atom densities, which is a good approximation [415, 416, 601]. It

immediately follows that the difference of the Hartree and ion–ion terms in (14.18) is a
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sum of short-range, pair-wise interactions between atoms. The exchange–correlation term

in (14.18) is also short range and it can be approximated as a pair potential. Thus we are led

to the approximation that F can be expressed as a sum of terms f (|RI − RJ |) that depend

only on distances to near neighbors, so that the total energy in the tight-binding approach

can be expressed as

Etotal =
N∑

i=1

∑

m,m ′
c∗

i,m Hm,m ′ci,m ′ +
∑

I<J

f (|RI − RJ |), (14.19)

where the eigenvectors are given by

ψi =
∑

m

ci,mχm . (14.20)

Finally, defining the density matrix,

ρm,m ′ =
N∑

i=1

c∗
i,mci,m ′ , (14.21)

the energy can be written

Etotal =
∑

m,m ′
ρm,m ′ Hm,m ′ +

∑

I<J

f (|RI − RJ |) = Tr{ρ̂ Ĥ} +
∑

I<J

f (|RI − RJ |). (14.22)

The added functions F or f can be found by fitting to additional information related to

the total energy, e.g. the elastic constants or phonon frequencies. There can be no unique

form of F , however, because of the fundamental ambiguity in separating the two terms

in (14.17). An arbitrary function of the nuclear positions can be added to the hamiltonian

matrix elements, shifting all eigenvalues rigidly with no change in the physics. The function

F must be chosen consistent with the choice in the matrix elements. One choice of F is a

sum of pair potentials, as is done in many models such as that of Harrison [344, 590] and

models mentioned below. A different approach to is define eigenvalues that include a shift

due to repulsive affects [602],

ε′
i ≡ εi + F/Ne. (14.23)

Then the total energy is simply

Etotal =
N∑

i=1

ε′
i = Tr{ρ̂ Ĥ ′}, (14.24)

and the challenge is to parameterize the tight-binding matrix elements to describe both the

eigenvalues and the total energy. Considerable success has been demonstrated with this

form (see Sec. 14.9). In any case, the results depend upon the availability of calculated

and/or experimental energies and the adequacy of the forms chosen to represent different

structures.
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Forces can be found by taking derivatives of the energy using the force theorem just

as in other methods. In tight-binding, the matrix elements are considered as functions of

the positions of the nuclei and the expression follows from the condition that the energy

is variational w.r.t. the density matrix ρ̂ (Exercise 14.21). Taking the derivative of (14.22)

with respect to the position of atom I leads to

FI = −Tr

{

ρ̂
∂ Ĥ

∂RI

}

−
∑

J 
=I

∂ f (|RI − RJ |)
∂RI

, (14.25)

where the last term is absent if equation (14.24) is used. Pressure and stress are also straight-

forward since the stress tensor, Eq. (G.4), can be written as the sum of terms with the

form

σαβ = − 1

�

∂ Etotal

∂uαβ

= −Tr

{

ρ̂
∂ Ĥ

uαβ

}

−
∑

J 
=I

∂ f (|RI − RJ |)
∂uαβ

. (14.26)

The first term involves the derivative of the matrix elements with distance and the final term

is a sum of two-body contributions as treated in Sec. G.2.

Examples of tight-binding models for total energies

Perhaps the most useful and widely used tight-binding formulations are for carbon and

silicon, for which there are several very successful parameterizations. For carbon, these are

extremely useful for the amazing variety of structures found, including graphite, diamond,

buckyballs, nanotubes, and amorphous and liquid carbon. For example, the form of Xu

et al. [162] was constructed to fit the total energies of C in low-coordination structures,

the chain, graphitic and diamond. The potential has been used for many simulations and

agrees well with other calculations, e.g. the bands of nanotubes shown in Fig. 14.9 and

simulations of liquid carbon [162] leading to the radial density distribution in Fig. 18.2.

Other potentials are also successful and widely used, such as [603] and forms given in

Sec. 14.9.

A number of parameterizations, e.g. those in [604–607], have been developed for Si and

applied to problems involving defects, diffusion, and many other interesting properties. For

example, Fig. 23.8 shows the results of an O(N ) molecular dynamics calculation [608,609]

of the structure of complex {311} defects done using the model of Kwon et al. [605], with

checks on smaller cells with plane wave density functional theory calculations.

14.9 Transferability: non-orthogonality and environment dependence

There is a basic difficulty in generating tight-binding models that can describe very different

structures, in particular, those with different numbers of near neighbors such as open- and

close-packed structures [590]. In models that have only two-center matrix elements, the
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values of the matrix elements must take into account effects of three-center terms. These

effects change drastically between structures such as diamond (four nearest neighbors that

lead to 4 × 3 = 12 three-center terms) and a close-packed structure (12 nearest-neighbors

that lead to 12 × 11 = 132 three-center terms). There are two primary approaches toward

making tight-binding models that are transferable between such different structures. One is

to define environment-dependent tight-binding matrix elements, the values of which depend

upon the presence of other neighbors. The other approach involves non-orthogonal tight-

binding, which is more transferable than orthogonal forms. The reasons are brought out in

Sec. 21.4, where it is clear that a small basis of orthogonal functions must be long-ranged

and environment dependent in order to be accurate; on the other hand, non-orthogonal

functions can accurately describe bands even if they are short-range atomic-like functions

that are almost environment independent. Indeed, such functions are also the bread and

butter of the local orbital methods of Ch. 15.

The different models can be exemplified by the extensive body of work of Cohen, Mehl,

and Papaconstantopoulos [602], developed in many subsequent papers,5 which utilizes

non-orthogonal tight-binding with environment-dependent matrix elements. This approach

employs shifted eigenvalues ε′
i , defined in (14.23), with the diagonal on-site matrix el-

ements dependent upon a sum of densities representing the neighboring atoms. The ex-

plicit form suggested [602] for the state at atom I with angular momentum l and spin

σ is

HIlσ =
3∑

n=0

b(n)
I lσρ

2n/3
Iσ , (14.27)

where the b(n)
I lσ are parameters and ρIσ depends upon the surrounding atoms

ρIσ =
∑

J 
=I

exp(−λ2
I Jσ RI J ) f

(
RI J − R0

Rc

)

. (14.28)

Here the exponential factor represents a density assigned to a neighboring atom, with the

scales set by the parameters λI Jσ , and f is a cutoff factor taken to be the Fermi function.

The spin dependence is needed for magnetic systems. The intersite matrix elements of the

hamiltonian and overlap are each parameterized and have the same same functional form

that can be written

Kγ (R) =
(

3∑

n=0

c(n)
γ Rn

)

exp(−g2
γ R) f

(
R − R0

Rc

)

, (14.29)

where Kγ (R) denotes either hamiltonian and overlap matrix elements, and the subscript γ

denotes ssσ , spσ , spπ , etc.

5 See links at sites given in Ch. 24.
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Figure 14.10. Left: Density of states of ferromagnetic Fe in the bcc structure with a = 5.40a0,

comparing LAPW (solid) and fitted tight-binding (dashed curves). Right: Total energy versus

volume for Fe in various structures, comparing points from LAPW calculations (+, ferromagnetic

bcc; square, ferromagnetic fcc; ×, paramagnetic bcc) and lines from the tight-binding calculations.

The left figure and the most of the total energies illustrate the quality of the fit. The total energy of

the ferromagnetic fcc state was not fitted and the results are a test of transferability. For example, the

tight-binding calculations reproduce the delicate collapse of the moment at ≈70a3
0 where the

paramagnetic and ferromagnetic energies cross. From [610].

This form has been applied to a large number of systems, including carbon [599], silicon

[597,599], and many transition metals. As an example, Fig. 14.10 shows the results for the

density of states of ferromagnetic Fe in the bcc structure and the total energies in fcc and

bcc structures, both paramagnetic and ferromagnetic. The tight-binding parameters are the

same for all structures and are fitted with a total of 106 parameters6 to the LAPW results

at several volumes for paramagnetic and ferromagnetic bcc and paramagnetic fcc Fe. The

total energies and moments for ferromagnetic fcc Fe were not fitted but reproduce correctly

the energies, including collapse of the moment to form a paramagnetic state at ≈70a3
0. It is

evident that the fits are extremely good and useful for analysis, given that the tight-binding

calculations are orders of magnitude faster than the LAPW ones.

SELECT FURTHER READING

Classic paper:

Slater, J. C. and Koster, G. F., “Simplified LCAO method for the periodic potential problem,” Phys.
Rev. 94:1498–1524, 1954.

Books on electronic structure:

Harrison, W. A., Electronic Structure and the Properties of Solids, Dover, New York, 1989.

Harrison, W. A., Elementary Electronic Structure, World Publishing, Singapore, 1999.

Book on tight-binding:

Papaconstantopoulos, D. A., Handbook of Electronic Structure of Elemental Solids, Plenum, New

York, 1986.

6 There are 40 parameters each for intersite hamiltonian and overlaps, and 13 on-site terms (s, p, deg, dt2g).
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Collection on applications in material science:

Tight-Binding Approach to Computational Materials Science, edited by P. E. A. Turchi, A. Gonis,

and L. Colombo, Materials Research Society, Warrendale PA, 1998. [603]

Review article:

Goringe, C. M., Bowler, D. R. and Hernandez, E., “Tight-binding modelling of materials,” Rep. Prog.
Phys. 60:1447–1512, 1997. [604]

Exercises

14.1 See many excellent problems (and solutions) on tight-binding bands, densities of states, and

the meaning of the bands in the book by Mihaly and Martin [248].

14.2 Using translation invariance of the matrix elements, show that matrix elements of the hamil-

tonian with basis functions χmk and χm′k′ are non-zero only for k = k′, i.e. the Bloch theorem,

and derive the form given in (14.4).

14.3 Derive the factor Amk in (14.3) required for the Bloch basis states χmk(r) to be normalized.

Show that Amk = 1 if the functions χm(r − (τm + T)) are orthonormal and that in general

Amk = (Sm,m(k = 0))−
1
2 , where S(k) is defined in (14.5). This relation is used in Exercise 21.2

in examples of Wannier functions.

14.4 Show that, in general, one has the relation Kll ′m = (−1)l+l ′ Kl ′lm under interchange on the

indices of the K matrix. This follows from a consistent definition of the orbitals.

14.5 Show that for an s band in a line, square lattice, and simple cubic lattice with only nearest

neighbor hamiltonian matrix elements, the respective densities of states (DOS) have the forms

shown schematically in Fig. 14.4. First determine the form for the DOS for the one-dimensional

line analytically. Then use this result along with the fact that the bands, (14.10), are simply

a sum of cosines for orthogonal directions to derive the form of the DOS for the square and

simple cubic lattice. Show that the bands are divided into segments of width 4t as stated,

and show that in three dimensions the DOS is exactly symmetric and flat in the central

range.

14.6 Consider an s band in a square lattice with nearest neighbor matrix element t and one electron

per cell. Show that the Fermi surface is a square as shown in Fig. 14.3 and there is a divergence

in the density of states at the Fermi energy as shown in Fig. 14.4.

14.7 Derive the expression for the tight-binding s band ε(k) in a simple cubic crystal. Assume

the states are orthonormal and have hamiltonian matrix elements t1, t2, and t3 for the first

three neighbors. The bands for t2 = t3 = 0 are an approximation for the s-like conduction

bands in CsCl which has simple cubic structure. Compare with a calculated band struc-

ture in the literature, or using a code like that in App. N, using the fact that the states

at k = 0 can be classified into purely s and p symmetry and are derived mainly from Cs

states.

14.8 Derive the expression for an s band ε(k) in a fcc crystal with nearest neighbor hamiltonian ma-

trix element t assuming the states are orthonormal. This should be a qualitative approximation
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for the lowest conduction band in a fcc metal like Al or an ionic insulator like NaCl which

has the fcc structure. Compare with the nearly-free-electron bands in Fig. 12.1, Fig. 16.6,

calculated band structures in the literature, or using a code like that in App. N. (Note that there

is a relation to the expressions derived in Exercise 14.7 for second neighbors in a simple cubic

lattice. Explain the relation in detail.)

14.9 Derive the expression for an s band in a hcp crystal with nearest neighbor hamiltonian ma-

trix element t assuming the states are orthonormal. Assume the c/a ratio is the ideal value.

Explicitly evaluate the bands in the direction along the c axis perpendicular to the hexagonal

planes. Show that the lower and upper bands touch at the zone boundary, i.e. there is no gap at

the zone boundary. Explain why this happens even though there are two atoms per primitive

cell.

14.10 Derive expressions for p bands respectively in simple cubic and fcc crystals with nearest

neighbor hamiltonian matrix element tppσ and tppπ . Compare with calculated bands in the

literature for the Cl p state in CsCl and NaCl, respectively, to find reasonable values of tppπ

and tppσ .

14.11 There is a close relation of p bands to the equations for phonons as expressed in Exercises 19.3–

19.5. As an example, derive the explicit relation of tight-binding equations for p bands in

Exercise 14.10 and the phonon dispersion curves in Exercise 19.6 for a nearest neighbor

central potential model.

14.12 Consider the one-dimensional tight-binding model with two atoms per cell labeled A and B. If

the basis is one s state on each atom, the model can denoted pictorially by [−εA − t1 − εB −
t2 − · · ·], where εA, εB are the on-site energies and t1, t2 the hopping matrix elements. By

varying the parameters, this model describes a symmetric ionic crystal (εA 
= εB , t1 = t2), a

molecular elemental crystal (εA = εB , t1 
= t2), and any ionic/molecular combination. Derive

the bands as a function of the parameters and show that there is a gap between the two bands

for all cases except the one-atom/cell limit where εA = εB , t1 = t2. See Exercises 21.10, 21.11,

22.8, and 22.9 for examples of Wannier functions, polarization, and effective charges using

this model.

14.13 Consider a model like that in Exercise 14.12 except that the state on the B atom has p symmetry.

For on-site energies εA > εB , this is a one-dimensional model for an ionic crystal like NaCl.

From the symmetry of the crystal, show that two bands are formed from the s and px states

decoupled from bands formed by the orthogonal py and pz states. Assume the states are

orthonormal and there are only nearest neighbor hamiltonian matrix elements of magnitude

t . In terms of � = εA − εB and t , give analytic expressions for s–px bands εi (k). Describe

any simplifications in the expressions at k = 0 and the BZ boundary. Plot the bands in the

Brillouin zone for the case � = 4t and show there is qualitative agreement with published

bands of NaCl in the (100) direction. What values of � and t provide a reasonable description

of NaCl bands? Suggest changes that would better describe the bands.

14.14 Show that the model of Cu and O states shown on the left-hand side of Fig. 14.5 leads to

effective model nearest neighbor interactions between Cu states as shown on the right-hand

side of the figure. Hint: Construct a 3 × 3 matrix and diagonalize to find the highest band that

corresponds to the band that crosses the Fermi energy in Fig. 17.11.
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14.15 Show that the expression for bands with non-orthogonal basis orbitals, Eq. (14.12), is cor-

rect. The bands are no longer symmetric about ε = 0. Why is this? What is the physical

interpretation? See the following problem for more general properties.

14.16 This problem is to analyze the general consequences of the overlap term in a non-orthogonal

basis. Show that the effect of the overlap can be transformed to an orthogonal form, with the

result that the hamiltonian matrix elements have infinite range, decaying exponentially. This

is the correct result as shown by the decay of orthonormal Wannier functions in Ch. 21. Thus

show that rigorously it can never be fully consistent to assume that the hamiltonian matrix

elements are finite range and yet the orbitals are orthogonal. The same conclusion is found in

Exercise 21.2.

14.17 Find the explicit expression for the generalization of Eq. (14.13) to non-orthogonal orbitals

with a nearest neighbor overlap s. Is the minimum gap increased, decreased, or left unchanged

by inclusion of non-zero s.

14.18 Give a simple argument why “cosine” appeared many times in this chapter, whereas “sine”

did not appear at all.

14.19 This problem relates to the structure and bands of a plane of graphene. Show that the Brillouin

zone has the shape and orientation shown in the two cases in Fig. 14.9; also show that one

of the K points is given by kx = 4π/3a, ky = 0 and find the coordinates of all six K points.

Show that the bands indeed touch at all six K points.

14.20 Show that rolling of a graphene sheet to form (n, 0) and (n, n) tubes leads, respectively, to

the structures and BZs for the “zig-zag” and “armchair” tubes that are shown in Fig. 14.9.

For the armchair tubes show that the allowed states always include the states at the K point in

graphene, so that simple mapping of graphene bands always leads to the prediction of metallic

bands. For the zig-zag tubes, give the conditions for which the allowed states include the

graphene K point.

14.21 Show that the expressions for the force and stress theorems in tight-binding form, Eqs. (14.25)

and (14.26), follow immediately from the condition that energy is minimum w.r.t. the coeffi-

cients in the wavefunctions.

14.22 Consider a heteropolar diatomic molecule with a total of two electrons. The hamiltonian is

approximated by a orthogonal tight-binding model with one state per atom and hamiltonian

matrix elements H11 = E1, H22 = E2, and H12 = H21 = t(x), where x is the distance between

atoms. Find the analytic expression for the ground state energy E .

(a) Calculate the force on atoms 1 and 2 directly from the derivative of the analytic expression

for the energy, and also from the force theorem.

(b) Do the same for a generalized force dE/d�, where � = E1 − E2.

14.23 Find expressions for the valence and conduction band eigenvalues in a diamond-structure

crystal at k = 0 in terms of the matrix elements of the hamiltonian, the on-site energies Es

and Ep, and the matrix elements Hssσ , Hspσ , Hppσ , and Hppπ . Do this in two steps. First, show

that the eigenstates at k = 0 are pure s or pure p. Next, use this fact to find expressions for

the four eigenvalues for bonding and anti-bonding s and p states. Assuming four electrons per

atom, identify the valence and conduction states and the gap between filled and empty states at
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k = 0. Find numerical values for Si using Harrison’s “universal” table [344,590] and compare

with Fig. 14.6.

14.24 Project: Calculate the bands of Si using the parameters in Harrison’s “universal” table [344,

590]. Construct a simple tight-binding code (or use one available on-line at the site in Ch. 24)

to calculate the bands and compare these to those shown in Fig. 14.6. The valence bands

should be similar but the conduction bands are quite different.
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Localized orbitals: full calculations

Summary

As emphasized in the previous chapter, localized functions provide an intuitive
description of electronic structure and bonding. This chapter is devoted to quan-
titative methods in which the wavefunction is expanded as a linear combination
of localized atomic(-like) orbitals, such as gaussians, Slater-type orbitals, and
numerical radial atomic-like orbitals. Such calculations can be very efficient;
they can also be very accurate, as shown by the highly developed codes used
in chemistry; and they provide the basis for creation of new methods, such as
“order-N” (Ch. 23) and Green’s function approaches. There is a cost, however:
full self-consistent DFT calculations require specification of the basis, and the
price paid for efficiency is loss of generality (in contrast to the “one basis fits
all” philosophy of plane wave methods). Since details depend upon the basis,
we can only describe general principles with limited examples.

It is instructive to note that there are important connections to localized
muffin-tin orbitals (MTOs) (Ch. 16), the linear LMTO method (Ch. 17). This has
led to an “ab initio tight-binding” method (Sec. 17.6) in which a minimal basis
of orthogonal localized orbitals is derived from the Kohn–Sham hamiltonian.

15.1 Solution of Kohn–Sham equations in localized bases

The subject of this chapter is the class of general methods for electronic structure calculations

in terms of the localized atom-centered orbitals defined in Sec. 14.1. The orbitals may

literally be atomic orbitals, leading to the LCAO method or various atomic-like orbitals.

These are powerful methods widely used in chemistry (see, e.g. [247, 261, 611–613]) and

of increasing importance in condensed matter (see, e.g. [613–615, 617]). Unlike the tight-

binding methods of the previous chapter, these methods are fully “ab initio,” i.e. they

involve no parameters and solve the full Kohn–Sham or Hartree–Fock equations in a basis

of orbitals. Unlike plane waves, however, the orbitals must be chosen for the given system to

be accurate and efficient, and there is a problem of “overcompleteness” if one attempts to go

to convergence. Nevertheless, there is great experience in constructing appropriate orbitals,

so that localized orbitals are often the basis of choice, providing crucial understanding and

calculational procedures that can be both fast and accurate with careful choice of orbitals.
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In constructing desirable localized basis functions, there are two (often competing) con-

siderations: reduction of the number of basis functions and ease of computation of the

needed integrals. The former consideration means each function must be well tailored to

the problem, which has led to many choices; only a few examples can be considered here.

These competing requirements have led to the two general classes of orbitals discussed

in Secs. 15.2 and 15.4, that involve, respectively, analytic basis functions and numerical

orbitals.

The goal of having a small basis leads to some overall conclusions that can be seen from

general principles. The most common approach is to use atom-centered orbitals that are

the products of radial functions and spherical harmonics defined in Eq. (14.8). The primary

degrees of freedom are captured by a small set of l, m and radial functions the shape of

which must be optimized. It is often advantageous to choose a small set of radial functions

that are optimal for a given environment. However, we shall concentrate upon more general,

flexible methods with a basis of several radial orbitals for each l, m channel.

Basis functions: naming conventions and examples

The common notation in the field is that multiple radial functions for the same l, m are

denoted “multiple-zeta”, i.e. single-ζ or “SZ,” double-ζ or “DZ,” triple-ζ or “TZ” for 1, 2,

or 3 radial functions, etc. The nomenclature arises from the use of ζ to denote the range

of the basis functions. There are some general guidelines for the choice of optimal radial

basis functions. For example, it is well known that in a molecule or solid, the localized

orbitals typically are best described by atomic-like orbitals with shorter range and larger

amplitude at the nucleus than in the atom [247, 613]. This is a direct consequence of the

fact that the fundamental driving force for the binding of molecules or solids is the lowering

of total energy because the electrons can be closer to the nuclei without paying as much

cost in kinetic energy, compared to electrons in isolated atoms. Furthermore, the long-range

exponential tails of the atomic orbitals are irrelevant or incorrect in regions that overlap

other atoms. Thus basis orbitals tend not to be as extended as atomic functions. Different

radial functions can be generated in many ways. One of the most elegant uses the ideas of

the energy derivative of the wavefunction ψ̇ derived in Sec. 17.1. Using the same principles

as invoked in the LMTO approach and in norm-conserving pseudopotentials (Sec. 11.9),

the change in the wavefunction in different environments is described to linear order by a

combination of ψ and ψ̇ . Thus, ψ , ψ̇ , ψ̈ , etc., form a possible set of localized orthonormal

radial functions. On the other hand, it is often essential to include longer range functions,

e.g. to describe the decay of wavefunctions in the vacuum around molecules or at surfaces.

Since, the environment of an atom in a molecule or solid is not spherical, in general

the basis requires higher angular momenta than the minimal basis in the atom. The first

such functions are called “polarization functions,” which have angular momentum l+ one

unit larger than the maximum occupied state in the atom. It is pertinent to note that it is

not appropriate to use the atomic state of angular momentum l+. Such a state tends to be

very diffuse and not relevant to the actual change in the function in the molecule or solid.

A much better choice [247, 613, 617] is the actual change in the wavefunction of angular
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momentum l upon application of a weak electric field; this is a real “polarization function”

that is localized and captures the essence of the lowest-order effect of the non-spherical

environment. Inclusion of polarization functions in the basis is denoted by “P,” e.g. “TZP”

for triple-ζ with polarization functions.

The solution of the Kohn–Sham equations has exactly the same form as for the tight-

binding equations of Ch. 14 except that the matrix elements must be computed explicitly

and the potential must be derived self-consistently. Thus, as in all Kohn–Sham or Hartree–

Fock methods, the key problem is to calculate the integrals for the matrix elements of the

hamiltonian, the solution of the Poisson equation, and the generation of the potential in the

self-consistency cycle. The ease with which one can do these operations is greatly affected

by the choice of the basis functions, which has led to a number of methods. Furthermore, it

is one of the major reasons for the development of standard sets of basis functions, as given

in references such as [247, 261, 611, 612].

15.2 Analytic basis functions: gaussians

By far the most useful and used basis functions for electronic structure calculations of

molecules are gaussians multiplied by polynomials, apparently first adopted by Boys [618]

and expounded upon in many texts such as [247, 261, 611, 612]. The great virtue is that

all matrix elements can be computed analytically, greatly simplifying and speeding up

calculations.1

Gaussians have the property, illustrated in Fig. 15.1, that the product of any two gaussians

is a gaussian

e−α|r−RA|2 e−β|r−RB |2 = K ABe−γ |r−RC |2 , (15.2)

where (Exercise 15.2)

γ = α + β, (15.3)

RC = αRA + βRB

α + β
, (15.4)

and

K AB =
[

2αβ

π (α + β)

]3/4

e− αβ

γ
|RA−RB |2

. (15.5)

1 The general principle that determines the usefulness of the analytic basis functions is the existence of an

“expansion theorem” for the orbital centered on one site in terms of the basis functions on neighboring sites

χα(r − R) =
∑

α′
Bαα′ (R, R′) χα′ (r − R′), (15.1)

which greatly facilitates evaluation of the integrals. Examples of functions that possess this property are poly-

nomials multiplied by gaussians (rβ e−αr2
), Slater-type orbitals (rβ e−αr ), and spherical Bessel, Neumann,

and Hankel functions. The advantages of the expansion theorem are emphasized in Chs. 16 and 17, where the

expansion formulas for spherical Bessel, Neumann, and Hankel functions are crucial to the formulation of the

KKR and (L)MTO methods.
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ACB

Figure 15.1. The overlap of two gaussians is another gaussian, with center, width, and weight given

by (15.2)–(15.5). From this basic result, matrix elements of kinetic energy and polynomials can be

constructed by simple procedures (see text).

Analytic relations can be found for gaussians multiplied by any polynomial of the radius by

differentiating the above formulas using the fact that (d/dx)ex2 = 2xex2

and so forth up to

any power. Similarly, it is straightforward to evaluate the laplacian applied to any gaussian

multiplied by a polynomial. Thus for a basis set consisting of gaussians times polynomials

(and spherical harmonics) centered at any site, all multi-center integrals can be evaluated
analytically.

The expressions for the overlap and kinetic energy matrix elements can be easily derived

(Exercise 15.3). The charge density |ψ(r)|2, where ψ(r) is a sum of such basis functions,

is also readily expressed as a sum of gaussians. Potential matrix elements depend upon

the form of the potential. Two cases are of particular interest: if the potential is a sum

of gaussians, the matrix elements are simply a sum of analytic three-center integrals; in

addition, matrix elements of the Coulomb interaction with the nuclei and between the

electrons can be computed analytically in terms of “Boys functions.” Since these are the

only integrals needed in Hartree–Fock calculations, gaussians have long enjoyed their status

as the basis of choice. (For density functional theory some of the advantage is lost since the

exchange–correlation potential is a non-linear functional of the density that is not directly

expressible as gaussians even if the density is a sum of gaussians.)

Detailed expressions for the total energy, etc., are not given here, since they can be found

from the expressions in Sec. 15.5. However, here is one major point. The Hartree–Fock

equations can be written directly in terms of four center integrals, since the Coulomb matrix

elements involve four orbitals. This is an effective approach for small systems; however,

it scales as N 4
orbital. For large systems, especially for the Kohn–Sham equations, it is more

effective to generate the total potential due to all occupied orbitals and to evaluate the matrix

elements using grids [262].

The downside of gaussians is that they are eigenstates of a harmonic oscillator, which

has little in common with potentials in a material made of atoms. For this reason there

is great use of standardized “slater type orbitals” (STOs), which are sums of gaussians
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with fixed coefficients [247,261,611,612]. A STO retains all the nice features of gaussians

while at the same time having a form closer to an atomic-type orbital. In essence, a STO

is a radial orbital that is expanded in a convenient basis; however, instead of allowing all

the coefficients of the gaussians to vary, standard optimized sets have been generated that

can be used to compare calculations with identical bases and to achieve different levels of

accuracy with different bases.

15.3 Gaussian methods: ground state and excitation energies

Electronic structure calculations using gaussians and STOs are far too numerous to attempt

to summarize here and they are covered in great detail elsewhere, for example, in references

such as [247,261,611,612]. The methods are so successful that there are many commercially

available codes adapted to molecular systems. In addition, gaussian bases can be efficient for

the periodic systems that are more relevant to the subject matter treated here. In particular,

gaussian methods capable of Hartree–Fock calculations for crystals have a special role

in current developments of electronic structure. Many recent calculations have used the

CRYSTAL code [614, 615] for which further information is available at the website given

in Ch. 24.

Of course, gaussian bases can be used to calculate ground state properties including

energies, forces, atomic geometries, and other properties using either Hartree–Fock or

density functional theory methods. There are many examples [247, 261, 611, 612] and a

recent review [619] brings out the point that gaussian methods are very efficient and can

be applied to complex systems. For example, linear-scaling “order-N” methods have been

developed and applied to problems such as the structures of large RNA molecules [619]

(see caption of Fig. 23.10). Calculations of the energies of the Ge crystal and its surfaces

are illustrated by the work shown in Figs. 2.25 and 15.2.

Perhaps the most salient advantage of gaussian bases is that Coulomb integrals can

be computed analytically. It is for this reason that gaussians have been the workhorse of

Hartree–Fock calculations and it for this reason that gaussians can play a special role in

any problem involving Coulomb integrals. This includes Hartree–Fock, “exact exchange”

(EXX; Sec. 8.7), “hybrid density functional theory” (Sec. 8.8), and the many-body “GW”

calculations, all of which involve computation of exchange integrals. These methods are

particularly relevant for the key problem in density functional theory calculations: accurate,

robust prediction of the band gap and other electronic excitations. Therefore, gaussians are

in many ways the basis of choice for this important area of electronic structure.

A relevant example is given in Fig. 2.25 which shows the bands for Ge calculated with a

gaussian basis, both using the standard local density approximation (LDA) and the many-

body “GW” quasiparticle approach. Both calculations agree well with plane wave pseu-

dopotential and LMTO results, e.g. as shown by comparison of the LDA bands in Fig.

2.25 with those shown in Fig. 17.9. Figure 2.25 illustrates the (in)famous zero-band gap

for Ge in the LDA that is greatly improved in GW results. The flexibility of the gaussian

approach is illustrated by application of the same methods to more complex systems, e.g.

to electronic bands for the dimerized Ge (1 0 0) surface [587] shown in Fig. 15.2, which
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Figure 15.2. Bands for buckled dimer in Ge [587] for a structure that is similar to the Si surface

shown in Fig. 13.7. The bulk states are denoted by shaded areas, and surface states in the gap by

lines. Bands denoted D and B are surface states associated with the surface “dangling” bonds and

with the “back” bond between the first and second layers. The dashed lines are for the LDA

(showing the zero-gap problem) and the solid lines are calculated in the GW approximation. Dots

indicate experimental results referenced in [587]. From [587].

compares the LDA and GW quasiparticle bands with experimental results. Note that the

occupied LDA valence bands agree well with GW calculations, including surface states,

but the LDA conduction bands are too low, exhibiting once again the zero-gap problem.

Among the most promising approaches for improved excitation energies within density

functional theory are EXX and hybrid functional approaches (Secs. 8.7 and 8.8). For ex-

ample, calculations of bands have been done using the CRYSTAL code for materials such

as La2CuO4 [620] and UO2 [621], where the correct insulating antiferromagnetic state is

found unlike the usual LDAs or GGAs that predict a metallic non-magnetic state. A sim-

ple example is Si for which the band structure [622] resulting from the hybrid “B3LYP”

functional2 is shown in Fig. 15.3. The figure shows good agreement with the points cal-

culated from GW [219] and quantum Monte Carlo (QMC) [623] methods, which in turn

are close to observed energies. For example, the lowest gap at the X point is found to be

1.57 eV compared with 1.51 (QMC), 1.43 (GW), and 1.25 eV from empirical potential

results [105] fitted to experiment. This can be compared with the Hartree–Fock overesti-

mate of 5.3 eV and LDA underestimate of 0.63 eV. Along with other work, e.g. the EXX

calculations [223] summarized in Fig. 2.26, these results show the promise of methods with

improved treatment of exchange.3

2 The B3LYP functional derived by Becke [404] was adjusted to fit data on molecules; it is given by Eq. (8.37)

with a0 = 0.2, ax = 0.72, and ac = 0.81, with the LYP correlation functional.
3 Care needs to be taken in comparing methods with one another and with experiment due to basis set limitations,

which is a practical consideration in local orbital calculations in solids. The higher bands of Si in Fig. 15.3 are

qualitatively incorrect due to the limited basis set. In addition, features such as the energy of the lowest bands

at X are known to be very sensitive to the basis and require d states as discussed in Sec. 14.6.
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Figure 15.3. Bands of Si calculated [622] using a gaussian basis (CRYSTAL code [614, 615]) and

the “B3LYP” hybrid functional [404] (see text). As expected for a hybrid functional the results are

intermediate between Hartree–Fock and LDA, and the results are in general agreement with

GW [219] (squares), QMC [623] (circles), and experimental (triangles) energies. The curves can

also be compared to the fitted tight-binding bands in Fig. 14.6. The values for lowest gap at the X

point given in the text illustrate the improvement over LDA or Hartree–Fock. Adapted from [622].

15.4 Numerical orbitals

Efficient algorithms using numerical orbitals can be constructed for either all-electron [624,

625] or pseudopotential methods [616, 617]. Construction of the orbitals is very similar in

either case. However, evaluation of the matrix elements in a local orbital calculation may

be different. Since pseudopotentials and pseudofunctions are smooth, it is possible to carry

out many integrals directly on a grid. For all-electron states, on the other hand, it is essential

to have a method that accurately integrates the region around each nucleus where the

wavefunctions vary rapidly.

Construction of orbitals

Localized orbitals can be constructed from atomic-like programs with spherically sym-

metric potentials. It is possible to use the atomic orbitals themselves, but their long-range

tails are not desirable. Since they are not really appropriate in a solid or molecule, the tails

actually decrease the accuracy of the calculations and at the same time introduce trouble-

some long-range terms. It is more desirable to define shorter range, more “compressed”

orbitals that are better suited to the final application. The effects are relevant primarily

for the valence states since the core states are localized and little affected by boundary

conditions.
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Figure 15.4. Confining potentials and pseudo wavefunctions for numerical basis functions of Mg.

The orbital is the solution with an atomic potential modified by the addition of a confining potential

as shown at the bottom for various choices. From Junquera [626], where the citations to other

potentials are given.

Many different procedures have been proposed for generation of compressed, short-range

orbitals. Each involves modification of the atomic potential so that it is strongly repulsive at

large distance. This makes the orbitals confined, which is more realistic and, in addition, has

advantages for the calculation since fewer matrix elements need be included. However, such

confined orbitals may not be sufficient, especially at surfaces, since they cut off the charge

density in the vacuum in an unphysical way. Examples of types of potentials for generating

orbitals that have been used for calculations on solids include those shown in Fig. 15.4. The

orbitals [620] constructed by the hard-wall confining potential have the advantage that they

are strictly localized, but the disadvantage that the second derivative has a divergence that

makes a finite contribution to kinetic matrix elements. The other confining potentials are

constructed to have chosen degrees of confinement versus smoothness.

Integrals involving the orbitals

Many of the needed integrals depend only upon the positions of the atoms. Efficiency is not

a premium for these terms because they can be calculated in advance and used later. This
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includes the overlap, kinetic energy matrix element, and non-local pseudopotential terms

in Eqs. (14.2) and (14.1). The first two are two-center terms that are functions only of the

distance R between the centers for the case where the angular momentum axis is along the

line joining the centers. Rotation to treat the general case is given in Sec. 14.2. An effective

procedure is to calculate the values at many discrete values of R and interpolate to find the

matrix elements during a calculation. Thus we can view these matrix elements as known

two-body functions,

Sm,m ′ (R) =
∫

dr χ∗
m(r)χm′ (r − R), (15.6)

and

Tm,m ′ (R) =
∫

dr χ∗
m(r)

1

2
∇2χm ′(r − R), (15.7)

where m denotes the atom type and orbital on that atom.

Potential terms are not so easy to express since they involve three centers (wavefunctions

on two centers and the potential on a third). However, non-local pseudopotential terms have

special features that can be used to advantage. First, non-local terms are fixed for each atom

and never change during a calculation. Second, if a separable form (the Kleinman–Bylander

form of Sec. 11.8, the “ultrasoft” pseudopotential of Sec. 11.10, or the PAW in Sec. 11.11)

is used, then all three-center terms factorize into sums of products of two-center terms.

These can be tabulated in advance as a function of distance.

Thus we are left with the problem of treating the matrix elements of the local potentials.

This includes the full Kohn–Sham potential or any local parts of the potential. In a pseu-

dopotential method, this can be treated exactly as is done with plane waves – sums on a grid.

All operations on the grid, such as finding the density and exchange–correlation functions,

can be done exactly as for plane waves. The only differences are that the wavefunctions in

the local orbital basis must be transferred to the grid and the integrals are done by summing

on the grid points to find the matrix elements

V local
m,m′ (T) =

∫

dr χ∗
m(r − τm)V local(r)χm′ (r − (τm ′ + T)). (15.8)

If the wavefunctions are smooth, for example, with pseudopotentials, the integral in

(15.8) can be carried out on a regular grid [617]. In an all-electron method, the integration

must be done carefully around each nucleus since the wavefunctions vary rapidly. One

approach [627] is to use the “muffin-tin” partitioning of space illustrated in Fig. 16.1, in

which case the integration can be done on radial grids around each nucleus and uniform grids

in the interstitial regions very much like the procedures in augmented methods. Another

general approach is to break up the integral into overlapping domains using functions

αi (r) that together cover all space. If we define the normalized weight functions wi (r) =
αi (r)/

∑
j α j (r), any integral can be written as

∫

dr f (r) =
∑

i

∫

dr wi (r) f (r). (15.9)
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Each integral on the right-hand side can be done on a different grid; in particular, radial

grids can be used around each atom to deal with the rapid variations near the nucleus

[624, 625, 628].

15.5 Localized orbitals: total energy, force, and stress

Any of the expressions for the total energy in Sec. 9.2 can be used in a local orbital basis.

The expressions can be written most compactly in terms of the density matrix ρmm ′ . If the

eigenvectors are ψi (r) = ∑
m cimχm(r − Rm), then ρmm ′ is given by

ρmm ′ =
∑

i

f (εi )c
∗
imcim ′ . (15.10)

In the present case, χm(r − Rm) are the localized basis functions, where m denotes both

orbital α and site I , and Rm denotes the position of atom RI on which orbital m is centered.

All quantities in the total energy expressions can be cast in terms of ρmm ′ . In particular,

the sum of eigenvalues in (9.4) and (9.6) is given by

Es =
N∑

i=1

εi f (εi ) =
∑

mm ′
ρmm ′[HK S]mm ′, (15.11)

where [HK S]mm ′ denotes matrix elements of the Kohn–Sham effective hamiltonian, and the

spatial electron density is given by

n(r) =
∑

i

f (εi )|ψi (r)|2 =
∑

mm′
ρmm ′χ∗

m(r − Rm)χm ′(r − Rm′ ). (15.12)

These are sufficient to determine the energy in any of the various expressions in the Kohn–

Sham approach.

It is useful to be more specific because certain forms are advantageous in a localized

basis [617, 629]. In particular, calculation of forces, stress, and Coulomb energies can be

facilitated by the choice of the energy functional. Calculation of Coulomb terms (including

the local pseudopotential term) can be done conveniently by grouping terms due to each

nucleus (or ion) I with a compensating localized, spherical charge nI (r), as is described

in Sec. F.4. Any convenient localized electron density can be used; if the orbitals are

constructed from an atomic-like calculation, an obvious choice is the density resulting from

these orbitals. The needed expressions for the Coulomb terms are given in Secs. F.3 and F.4

in terms of the electron density written as

n(r) ≡
∑

I

n I (r) + δn(r), (15.13)

which is equivalent to Eq. (F.17).
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Inserting the expression for the Coulomb and local potential terms, Eqs. (F.18) and (F.19),

into that for total energy (F.15), a convenient form4 for the total energy is [617, 629]

Etot =
∑

mm ′
ρmm ′

[
Tmm ′ + V N L

mm′
] +

∑

I<J

U NA
I J (|RI − RJ |) +

∑

I

U NA
I

+
∫

drV NA(r)δn(r) + 1

2

∫

drδVHartree(r)δn(r)

+
∫

drεxc(r)n(r). (15.14)

Here U NA
I denotes the potential energy of the neutral atom, U NA

I J (|RI − RJ |) is the classical

interaction of two neutral atom densities, and the two terms involving δn(r) are the first-

and second-order changes in the potential energy due to the changes in the density in the

solid. As discussed in Sec. F.4, the local part of the pseudopotential is included in U NA
I and

V NA(r). Since the exchange–correlation energy is a non-linear functional of ρ, it cannot be

divided in the same way and is left as the usual expression. Similarly, it is more convenient

to express the first term that involves the density matrix directly as shown.

Force and stress

Expression (15.14) is particularly appropriate for calculation of derivatives. The solution

of the self-consistent Kohn–Sham equations leads to a minimization of the total energy

with respect to the coefficients cim in the wavefunction. Therefore the derivative of Etot

with respect to ρmm ′ vanishes. Thus the derivatives of the first three terms in (15.14) can

be considered as functions of the distances between the atoms, since Tmm ′ and V N L
mm ′ are

functions only of distances, as shown in Sec. 15.4. It is straightforward [617,629] to express

their contribution to the force on atom I in terms of derivatives that involve its position

relative to other atoms RI − RJ . The contribution of such two-body terms to the stress can

be derived from the analysis of Sec. G.2. The fourth term is a constant that has no effect.

The fifth term involving V NA contributes a term of exactly the same form

−
∫

dr
∂V NA

∂RI
δn(r), (15.15)

since the “NA” terms move rigidly with the atom. For the stress this term can be included

by scaling the density.

The last three terms all involve n or δn. They contribute to stress as in other formulas

involving the density; however, their contributions to the force would vanish if the density

had no explicit dependence on the atom positions. Indeed, this is the case for plane waves

where the basis is not related to atom positions. However, the local orbitals are displaced

with the atom; if the basis is not complete (Exercise 15.4), there are “Pulay corrections”

due to the fact that the density changes to first order. These terms can be calculated using

4 The term δEI I in (F.15) is omitted here. It should be added to cancel an unphysical term if the extent of the

smeared ion cores is allowed to be so large that they overlap.



15.6 Applications of numerical local orbitals 309

the fact that they arise from the change in n(r) for fixed ραβ . For any functional F[n], the

derivative is

−∂ F[n]

∂RI
= −

∫

dr
δF[n]

δn(r)

∂n(r)

∂RI
, (15.16)

where (here m → α, I to clarify the role of the position RI )

∂n(r)

∂RI
=

∑

α,β J

[

ρα,β J
∂χ∗

α (r − RI )

∂RI
χβ (r − RJ ) + c.c.

]

. (15.17)

Since the functions χα are localized, the sum can be restricted to only include atoms J
within some range of I .

15.6 Applications of numerical local orbitals

The primary application of numerical local orbitals is for density functional calculations,

using either all-electron [624, 625] or pseudopotential methods [616, 617]. They can be

applied to arbitrary molecules and crystals, e.g. the example of the ferroelectric distortion

in BaTiO3 illustrated in Sec. 2.5. Local orbitals are particularly efficient for complicated

systems with many atoms per cell or with vacuum regions, where plane waves become

expensive to use. For example, linear scaling calculations based upon numerical orbitals have

been developed and applied to problems such as quantum molecular dynamics, structural

relaxation and electronic states of large DNA molecules, as illustrated in Fig. 23.10. Another

example is C60 bound to Si surfaces, with comparison of theoretical and experimental STM

images shown in Fig. 2.20. This is a very large problem requiring detailed atomic-scale

description of the Si bulk and surface, the C60 molecules, and the (unknown) binding

mechanisms of the C60 to the surface. Further investigation has been done [630] using the

SIESTA code, with Fig. 15.5 showing results of the reconstruction of the surface to bind the

molecule in two different ways. To simulate the surface at terraces of the 7 × 7 reconstructed

surface, a 2 × 2 adatom surface reconstruction was used. The structure of several possible

adsorption configurations was optimized using the forces from the force theorem, finding

good candidates for the two different adsorption states observed experimentally. While the

C60 molecule remains nearly spherical, the silicon substrate is quite soft, especially the

adatoms, which move substantially to form extra C–Si bonds at the expense of breaking Si–

Si bonds. Structural relaxation has a large effect on the adsorption energies, which strongly

depend on the adsorption configuration, and depend much less upon the charge transfer.

15.7 Green’s function and recursion methods

One of the primary uses of local orbitals is Green’s function-type methods that take advan-

tage of the locality. For example, self-consistent calculations of localized defects in semi-

conductors were calculated using Green’s functions to treat the infinite medium around the

defect [631, 632]. Similarly, adatoms on metal surfaces have been treated using Green’s

function gaussian orbital codes [633, 634]. Although Green’s function methods are widely
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(a)

S3

(b)

DB

Figure 15.5. Atomic scale bonding of a C60 molecule to a Si (111) surface [630] calculated using

the SIESTA code [617], which employs numerical local orbitals. The surface was modelled as a

2 × 2 adatom reconstruction and several possible adsorption configurations were optimized, leading

to the two geometries labeled S3 and DB which are proposed as candidates for the two different

adsorption states observed experimentally. The C60 molecule remains nearly rigid, but the Si

substrate deforms, especially the adatoms, which move substantially, breaking Si–Si bonds to form

C–Si bonds. From [630].

used with simpler tight-binding hamiltonians (Ch. 23), these approaches have not been

extensively used in fully self-consistent density functional theory calculations because of

difficulties in calculation of the hamiltonian. Most self-consistent work has involved “super-

cell” methods (Sec. 13.4) and quantum molecular dynamics (Ch. 18) to treat such problems

with periodic boundary conditions.

With the re-emergence of interest in local non-periodic methods and the advent of linear

scaling methods, there is now renewed interest in Green’s function approaches. Indeed,

many approaches described in Ch. 23 are variations of Green’s function methods that utilize

localized functions.

15.8 Mixed basis

Mixed basis methods utilize a combination of localized and delocalized bases, e.g. the

appealing choice of gaussians and plane waves [635]. This gives the possibility of two

widely used methods, plane waves and gaussians, and any linear combination. The hallmark

of a mixed basis approach is that both bases are used in the same region of space and the

equations are expressed in terms of the usual overlap and hamiltonian matrix elements. The

motivations have much in common with ultrasoft pseudopotential and projector augmented

wave methods, which also include additive localized functions that augment the smooth

functions near the nuclei. However, those methods transform the problem so that one needs

to solve equations that involve only the smooth plane waves and the localized functions

do not appear as explicit basis functions. This is a great advantage that allows much of the

additional work to be done once and for all on the atomic reference state, simplifying the

final calculation.
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A different use of the mixed basis idea is to utilize plane waves and Gaussians in different
spatial directions [636]. This can be used to advantage, for example, for surfaces that are

periodic in two directions but not in the third. Thus the basis functions become

χk,m,n(r) = ei(k+Gm )·re−α|z−zn |2 , (15.18)

which denotes a Fourier component k + Gm in the x, y plane of the surface and multiplied

by a gaussian centered at position zn . A surface or interface can thus be represented by

“layer” wavefunctions that are extended in the plane and centered on atomic layers.
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Exercises

15.1 The on-line site in Ch. 24 has links to local orbital codes and many examples and tutorials for

Hartree–Fock and Kohn–Sham calculations on atoms, molecules, and crystals.

15.2 Show that the product of two gaussians is a gaussian as in Eq. (15.2), and derive the expressions

for the coefficients in the product gaussian Eqs. (15.3)–15.5.

15.3 Find the analytic formula for the kinetic energy matrix element between gaussian basis func-

tions with spreads α and β and separated by displacement R.

(a) First consider only simple gaussians with s symmetry and not multiplied by powers of the

radius.
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(b) Then show that the formulas can be generalized to any l, m and power r p by taking appro-

priate derivatives of expressions derived in (a). You do not need to work out all the detailed

formulas, which can be found in texts.

15.4 Derive Eq. (15.17) using a chain rule and show that the right-hand side vanishes if the basis is

complete. Hint: Use the completeness relation.

15.5 Construct a simple computer program for a gaussian s band in one dimension. This entails

calculating the overlap and hamiltonian matrix elements that are analytic if we assume the

potential is also a sum of gaussians centered on each atom. Vary the band shapes from nearly-

nearest-neighbor tight-binding-like given in (14.12) to nearly-free-electron-like.

15.6 Use the results for the eigenvectors from Exercise 15.5 to construct Wannier functions. Construct

the atom-centered “maximally projected” form defined in Sec. 21.2 with the phase (sign) chosen

to maximize the function on the central atom.

(a) Show that the function has positive and negative values (a plot is best) and it is longer range

than the gaussian basis function.

(b) With a careful fit to the long-range behavior (the log of the absolute value) of the Wannier

function, show it decays exponentially as a function of distance as claimed in Sec. 21.2.
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Augmented functions: APW, KKR, MTO

Summary

Augmentation provides a method of constructing a basis that is in some ways the
“best of both worlds:” the smoothly varying parts of the wavefunctions between
the atoms represented by plane waves or other smoothly varying functions, and
the rapidly varying parts near the nuclei represented as radial functions times
spherical harmonics inside a sphere around each nucleus. The solution of the
equations becomes a problem of matching the functions at the sphere boundary.
The original approach is the augmented plane wave (APW) method of Slater,
which leads to equations similar to the pseudopotential and OPW equations,
but with matrix elements of a more complicated, energy-dependent potential
operator. The disadvantage of augmentation is that the matching conditions
lead to non-linear equations, which has led to the now widely used linearized
methods described in Ch. 17. The KKR method is a multiple-scattering Green’s
function approach that yields directly local quantities. The muffin-tin orbital
(MTO) approach reformulates the KKR method, leading to physically mean-
ingful descriptions of the electronic bands in terms of a small basis of localized,
augmented functions.

16.1 Augmented plane waves (APWs) and “muffin tins”

The augmented plane wave (APW) method, introduced by Slater [54] in 1937, expands the

eigenstates of an independent-particle Schrödinger equation in terms of basis functions, each

of which is represented differently in the two characteristic regions illustrated in Fig. 16.1.

In the region around each atom the potential is similar to the potential of the atom and

the solution for the wavefunction is represented in a form appropriate to the central region

of an atom. In the interstitial region between atoms the potential is smooth and the wave-

function is represented in a form appropriate to smooth variations coupling the atomic-like

regions.

If the total effective potential is approximated as spherically symmetric Veff(r) → Veff(r )

within each sphere, and constant Veff(r) → V0 in the interstitial region, it is termed a “muffin-

tin potential.” This approximation is very appropriate for many problems and allows for dra-

matic simplifications, since the wavefunctions can be represented in terms of the eigenstates
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Figure 16.1. The “muffin-tin” division of space into intra-atomic spheres of radius S, and interstitial

regions. This is the basis for representing wavefunctions differently in the different regions used in

all augmented formulations. The muffin-tin potential approximates the potential in the two regions,

but the division into spheres and interstitial regions is more general and can be applied to any

potential. (The picturesque name derives from the fact that the figure looks like a pan for cooking

muffins.)

Figure 16.2. Schematic representation of the APW basis functions for k = 0 (top) and the zone

boundary (real part shown in bottom panel). The sphere boundaries are represented by the vertical

dashed lines. In the interstitial region, each APW is a single plane wave. Inside each sphere the

APW is a solution of the radial equation, with the boundary condition that it match the plane wave

in value. A single APW has a discontinuous derivative at the boundaries. The solution for the

eigenstate minimizes the final discontinuity in the derivative, leading to Bloch states like those

illustrated in Fig. 4.11.
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in each region, i.e. spherical harmonics around each atom and plane waves in between. The

entire problem is recast into a matching or boundary condition problem. It is most instruc-

tive to first discuss the APW approach for such idealized muffin-tin potentials; however,

we emphasize that the Schrödinger equation with a general potential (and the full Pois-

son equation) can be solved using the APW basis. Generalization of the equations to “full

potential” problems is discussed in Ch. 17 after linearization is introduced.

In many ways, the APW approach brings together the “best of both worlds” with the abil-

ity to treat highly localized atomic-like states (e.g. core states) using atomic-like spherical

functions and delocalized states using delocalized plane waves – the Bloch wavefunctions

for the crystal illustrated in Fig. 4.11 are solved separately in the two regions in terms

of the APW basis functions, defined in Eq. (16.2) and illustrated in Fig. 16.2). The dis-

advantage is the difficulty of matching the functions and solving the resulting non-linear

equations in this basis. We will first describe the original non-linear methods which illus-

trate many of the main ideas and the relations to other methods, OPW, pseudopotential,

and KKR, etc., through their common features of describing the valence states in terms of

the scattering properties of the atoms, which in turn are determined by the phase shifts.

A separate chapter (Ch. 17) is devoted to linearized methods because of their concep-

tual and practical importance in transforming the augmented methods into more useful

forms.

Just as in the plane wave (see Eq. (12.11)) or OPW (see Eq. (11.1)) method , each Bloch

function ψi,k(r) is expanded in a set of basis functions labeled by the reciprocal lattice

vectors Gm , m = 1, 2, . . . ,

ψi,k(r) =
∑

m

ci,m(k)χAPW
k+Gm

(r). (16.1)

However, in the APW method each basis function χk+G(r) is represented as a single plane

wave only in the interstitial region between atoms, and within a sphere of radius S around

each atom the function is represented in spherical harmonics:

χAPW
k+Gm

(r) =
⎧
⎨

⎩

exp(i(k + Gm) · r), r > S,

∑
Ls CLs(k + Gm)ψLs(ε, r), r < S,

(16.2)

where the compact notation for the wavefunction,1

ψLs(ε, r) = i lYL (r̂ )ψls(ε, r ), (16.3)

is introduced to simplify the notation. The angular momentum is indicated by upper case

L ≡ l, ml , YL (r̂ ) ≡ Yl,ml (θ, φ) are spherical harmonics, with r and r̂ referred to an origin τs

for each atom s in the unit cell. The function ψls(ε, r ) is a solution of the radial Schrödinger

1 The factor of i l is introduced to simplify the coefficients that result when matching plane waves that have the

factor i l ; see expansion (16.5).



316 Augmented functions: APW, KKR, MTO

equation regular at the origin at energy ε, i.e. it satisfies (10.12), written here keeping factors

of -h and me
2

[ -h2

2me

(

− d2

dr2
+ l(l + 1)

r2

)

+ Vs(r ) − ε

]

rψls(r ) = 0. (16.4)

It is important here that ε is a variable and need not be an eigenvalue. Schematic forms of

two χAPW
k+Gm

(r) are shown along a line through the atoms in Fig. 16.2.

The coefficients CLs(k + Gm) are obtained by requiring the waves to match at the surface

of the muffin-tin spheres, i.e. that the phase shifts match as described in scattering theory,

Sec. J.1. Using the expansion given in (J.1),

eiq·r = 4π
∑

L

i l jl (qr ) Y ∗
L (q̂) YL (r̂), (16.5)

where jl(qr ) are spherical Bessel functions, it follows that χAPW is continuous at the sphere

boundary if

CLs(Km) = 4π eiKm ·τs jl(|Km |Ss)
Y ∗

L (K̂m)

ψls(ε, Ss)
, (16.6)

where Km = k + Gm . An APW is, by construction, discontinuous in slope on the muffin-tin

boundary (see Fig. 16.2), a fact that must be taken into account when applying the kinetic

energy operator.

Within the APW basis, the secular equation can be written
∑

m

{〈m ′|H − εi,k|m〉 + 〈m ′|H S|m〉} ci,m(k) = 0, (16.7)

where

〈m′|H − εn(k)|m〉 =
∫

cell

d3r χ∗
k+Gm′ (r) [H − εn(k)] χk+Gm (r), (16.8)

and the discontinuity is incorporated into the integral over the sphere surface(s) using

Green’s identity (Exercise 16.2)

〈m ′|H S|m〉 =
∫

S
dS χ∗

k+Gm′ (r)

[
∂

∂r
χk+Gm (r−) − ∂

∂r
χk+Gm (r+)

]

=
∫

S
dSχ∗

k+Gm′ (r)

[
∂

∂r
ln χk+Gm (r−) − ∂

∂r
ln χk+Gm (r+)

]

χk+Gm (r−), (16.9)

where + (−) indicates just outside (inside) the sphere.

One way to proceed is to solve the secular equation (16.8) in terms of matrix elements of

the hamiltonian and the overlap matrix, just as for any non-orthogonal orbital. However, one

can take advantage of the fact that the basis functions are not fixed but instead are chosen to

satisfy the Schrödinger equation inside each muffin-tin sphere at energy ε. Thus the integral

2 The factor -h2/2me = 1
2 in Hartree atomic units, where -h = me = e = 1 is used in this text. In the present chapter

and the next, -h and me are explicitly indicated where needed to avoid confusion with expressions in the literature,

since many authors use “Rydberg atomic units,” where -h = 2me = e2/2 = 1.
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(16.8) is zero inside each sphere and needs to be evaluated only in the interstitial region

where the hamiltonian is just the kinetic energy operator and χ is a plane wave. All the

information about the way each atom affects the bands is incorporated into the boundary

terms, i.e. boundary conditions upon the plane waves. This is, of course, not surprising

since the wavefunction both inside and outside the spheres must each obey the Schrödinger

equation in their respective regions subject to the boundary conditions.3

Following this approach, it is straightforward to cast the APW equation (16.7) in a form

identical to that in plane wave Fourier methods,

∑

G

{[ -h2

2me
(k + G)2 − εi,k

]

δG′G + V APW
G′,G (εk, k)

}

ci,G(k) = 0, (16.10)

where the first term is the usual kinetic energy for a plane wave extended throughout the cell

including the sphere, the energy is relative to the constant in the muffin-tin potential, and

all effects due to the potential in the sphere are collected into an APW “potential” V̂ APW,

which is an operator that is both non-local and energy dependent. The matrix elements of

V̂ APW for a sphere at τ = 0 in the unit cell are [639, 134]

V APW
G′,G (εk, k) = −4π S2

�cell

( -h2

2me
|k + G|2 − εk

)
j1

(|G − G′|S)

|G − G′|

+
-h2

2me

4π S

�cell

∑

l

{
(2l + 1)Pl(cos(θGG′) jl

(|k + G′|S)
jl (|k + G|S)

}

× �Dl,G(εk), (16.11)

with θGG′ the angle between vectors k + G and k + G′, and S the sphere radius. For a crystal

with more than one sphere centered at positions τs , it is simple to show that the potential

is a sum of terms with phase factors exp(i(G − G′) · τs) just as in the plane wave method

(Eq. 12.16 and Exercise 12.2). The first term in the APW potential operator (16.11) subtracts

the kinetic energy for that part of the plane wave inside the spheres (see Loucks [639] p. 32–

33), and the last term4 includes all the effects of the atoms in terms of the difference of the

dimensionless logarithmic derivative �Dl,G(ε) from that of an empty sphere

�Dl,G(ε) =
[

r
d

dr
ln ψl(ε, r ) − r

d

dr
ln jl (|k + G|r )

]

r=S

, (16.12)

which follows from (16.9) for the boundary “kink” term, with the function just inside the

sphere given by ψl(ε, r ) and the function just outside by the partial wave component of the

unscattered plane wave jl . (The normalization is not needed for the logarithmic derivative.)

It is interesting that the “potential” operator involves
-h2

2me
; this is because it really is a

“matching operator.”

3 This is exactly the same condition as used in Ch. 11 where the pseudowavefunctions were shown to equal the true

wavefunctions in the outer part of the atom, so long as the eigenvalue was the same and the wavefunction satisfied

the boundary conditions at the sphere boundary. Furthermore, the specification of the boundary condition in

terms of the logarithmic derivative in (16.12) is the same as in (11.20) or (J.5); here the evaluation is done at the

muffin-tin boundary and with the assumption that the total potential has the spherical muffin-tin form.
4 Another form slightly different and more convenient for computation is given by Loucks [639] p. 37).
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16.2 Solving APW equations: examples

The APW equations are more difficult than the usual independent-particle equations that are

linear in energy ε, such as (12.9) for plane waves or (14.7) for localized orbitals, where all

the eigenvalues and eigenvectors can be determined at once from a single diagonalization.

Instead, the APW equations must be solved separately for each eigenstate as follows:

� Solution of the matrix equation (16.10) has exactly the same form as the usual linear

equations, except that the potential operator depends upon the logarithmic derivatives in

(16.12) that are functions of the energy ε = εi,k , which are not known in advance and are

different for each band.
� In order to find the logarithmic derivatives, the radial equations (16.4) for rψl(ε, r ) ≡
φl(ε, r ) must be solved for each band energy εi,k , individually. However, εi,k are estab-

lished only in conjunction with solution of the plane wave equations (16.10). In general,

this requires “root tracing,” i.e. searching for the zeros of the determinant on the APW

matrix given in (16.10). This may be done by fixing ε and varying k or vice versa.
� There can be simplification in some cases, e.g. highly localized states, such as core states

that are completely contained in the sphere, are fully specified by ψl(ε, r ) and there is no

k dependence and it can often be considered to be the same as in an atom. This is termed

the “frozen-core approximation.”

Illustrative examples

Two limiting cases illustrate the power and generality of the APW method: the nearly-free-

electron case and the opposite limit in which the spherical potential has a strong resonance.

It is important that, despite the artificial division of space, the free-electron case is solved

trivially. If the potential inside the muffin-tin sphere is set to be the same constant value as in

the interstitial, exact solutions inside the spheres are spherical Bessel functions jl , in which

case the difference in logarithmic derivatives vanishes �Dl(εk) = 0. It follows immediately

that the eigenvalues of (16.10) are just those for free electrons εk = 1
2
|k + G|2. If the phase

shift �Dl(εk) �= 0 but is small, then the dispersion εk will be only slightly modified. This is

the “nearly-free-electron case” and the APW method clarifies an important point: this does
not necessarily mean the potential is small or that the wavefunctions are close to a single
plane wave. The difference in phase shift can be small even for strong potentials. Explicit

cases, where actual phase shifts are close to free-electron values, are for Na ([443], p. 242)

and many examples in [640]. Logarithmic derivatives for Cu are presented in Fig. 16.3,

which shows that the phase shifts for l = 0, 1, 3 are very close to the free-electron values

(see Exercise 16.5). Thus the APW approach explains the nearly-free-electron character of

bands in many materials that are weak scatterers just as well as the OPW or pseudopotential

methods.
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Figure 16.3. Logarithmic derivatives of the radial wavefunctions in Cu, defined in (16.12) as a

function of energy in Hartrees for different angular momenta l, evaluated at a sphere radius

S = 2.415a0 appropriate for metallic Cu. For comparison are shown the free-electron curves

(Exercise 16.5). The l = 2 d channels show strong resonance, leading to narrow bands, whereas the

l = 0, 1, 3 channels reveal the nearly-free-electron behavior. These are essentially the same as for

the Chodorow potential [645] used by Burdick [213] to calculate the bands shown in Fig. 2.24.

From Kubler and Eyert [134], who attribute the figure to Slater and Mattheiss.

The opposite limit is a resonance at energy ε0 where the phase shift becomes large. In an

isolated atom, the logarithmic derivative D(ε) evaluated at large radius diverges at ε = ε0,

signifying a bound state at that energy. (This is one of the standard methods to find bound

states in actual atomic programs.) In a crystal, the fact that the phase shift at radius S
changes rapidly with energy means that the Bloch boundary conditions for different k can

be satisfied with only small changes in energy, i.e. a band ε(k) with only a small dispersion.

In the case of Cu, the l = 2 logarithmic derivative disperses rapidly corresponding to the

d bands in Cu, which are much narrower than the s–p bands. In general, the bands start as

parabolic and each resonance introduces a new band, which has the physical interpretation

of each atomic state broadening into a band in the crystal.

Calculations of bands using the APW method

The power of the APW approach was first fully realized after the advent of electronic com-

puters, in particular, for the first accurate calculations of bands of transition and rare earth

metals. A well-known early example is the band structure of Cu calculated by Burdick [213]

in 1963 and reproduced in Fig. 2.24 where the bands are compared with measurements from

angle-resolved photoemission experiments by Thiry et al. [212] in 1979. The logarithmic

derivatives in the APW equations were calculated using the Chodorow potential [645],

derived in 1939 for the Cu atom and are essentially the same as shown in Fig. 16.3. The

impressive agreement between measured and calculated energies is due to two factors: (1)

the potential was modelled as a sum of atomic potentials fitted to the atom, and (2) Cu has

a filled (closed-shell) d band and a wide s–p band, a case in which independent-particle
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methods are expected to work well.5 In general, one should exercise caution in identifying

Kohn–Sham eigenvalues as excitation energies and one should not expect such agreement.

In Fig. 2.24, the bands are shown along high-symmetry lines of the Brillouin zone (BZ)

depicted in Fig. 4.10, since Cu has the fcc crystal structure. The lowest band is minimum at

the  point (k = 0) in the BZ, with energy defined to be ε = 0; the label 1 designates the

same symmetry as an s wave function (l = 0). The nearly parabolic εk curve is modified

because it mixes with narrower bands (examples of a resonance) that start at  with labels

25
′ and 12, which are labels for d (l = 2) states in cubic symmetry: 25

′ is three-fold

degenerate and transforms under rotations like xy, yz and zx , whereas 12 is two-fold

degenerate and transforms like x2 − y2 and 2z2 − x2 − y2. The bands labeled �5 and �3

are two-fold degenerate d states along the lines shown. At higher energy around the Fermi

level, the bands are also approximately parabolic; this is the feature that explains why Cu

is a good electrical conductor. The states X4
′ at ε ≈ 0.80 Ry and �2

′ at ε ≈ 0.61 Ry have

labels that designate p symmetries (l = 1) which is expected for a free-electron band, and

the eigenvalues are quite close to free-electron energies at the density of one electron per

Cu atom as discussed in Exercise 16.5.

Bands for the entire series of 3d transition metals are presented in Fig. 16.4, which shows

narrow d bands crossing the wider s–p bands. The 3d bands are much broader than the 4f

bands of the lanthanides, but narrow enough to indicate that many atomic-like properties

carry over to the solid. At the end of the series is the noble metal Cu in which the d bands are

filled, but only slightly below the Fermi energy, which leads to its closed-shell, non-magnetic

behavior, and its yellow color. The transition metals have partially occupied d bands. This

leads to their magnetic behavior and correlations among the d electrons. Nevertheless,

independent-particle methods are in many ways adequate to describe the basic properties of

these metals [132], e.g. the prediction of magnetism from the Stoner criterion, as illustrated

in Fig. 2.7 [107, 134, 132]. The total energies are remarkably well described by the local

density approximation, as illustrated in Fig. 2.3.

It should be emphasized, however, that density functional theory methods often lead to

qualitatively wrong predictions for more strongly correlated electron systems, notably the

rare earths and the transition metal oxides [216]. In a nutshell, methods that start from

the homogeneous gas (LDAs and GGAs) tend to predict solutions that are too much like

the gas – non-magnetic and metallic – whereas methods that involve Hartree–Fock exchange

(Hartree–Fock itself and exact exchange (EXX)) tend to predict solutions that are too

much like Hartree–Fock - too magnetic and insulating. Methods such as self-interaction

correction (SIC) and “LDA+U” can apparently describe aspects of strongly correlated

electron systems, but at the cost that the functionals are not universal.

The bands εk for the non-d states are close to free-electron bands; however, the wave

functions are far from single plane waves. Although they are close to a single plane wave

between the atomic spheres, inside each sphere the wave functions have all the oscillations

5 The bands are also expected to be predicted qualitatively by density functional theory in LDA or GGA ap-

proximations, except that the energies of the filled d states will be too shallow and the s–p bands too broad in

accordance with experience on many systems.
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Figure 16.4. Bands of 3d metals showing the narrow d bands crossing the wide s band, and the

progression of band filling across transition series. Calculations were done by Mattheiss [646] using

the APW method.

characteristic of atomic 4s and 4p wave functions. The point is that a single plane wave

joins smoothly onto the solution of the Schrödinger equation inside the sphere, illustrated

in Fig. 4.11, so that the energy is essentially the same as that of the plane wave. In addition,

the s–p states hybridize with the d states, which acts like a resonance in the scattering of the

s electrons from the atoms. This is the basis of the“s–d model” [647], which describes the
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Figure 16.5. Spin polarized bands of ferromagnetic Ni in the fcc structure [648]. Solid lines indicate

the majority-spin and dashed lines the minority-spin bands. The numbers indicate symmetry labels

at high-symmetry points. This figure represents the results using the Kohn–Sham local spin density

approximation. (The Slater local exchange gives poorer agreement with experiment, especially

around the L point, as shown in [648].)

s–p bands near the energies of the d states and the resulting dispersion in the narrow d bands

(Exercise 16.6).

As an example of spin-dependent bands in a ferromagnet, Fig. 16.5 shows the bands for

Ni in the fcc structure calculated by Connolly [648]. The solid lines show the majority-

spin and the dashed lines the minority-spin bands calculated with the local spin density

formalism of Kohn and Sham. Connolly also found the bands using the Slater local exchange

and concluded that it gives much poorer agreement with experiment. The larger exchange

causes significant changes in the bands, particularly around the L point.

Practical aspects

How large is the secular equation? The number of plane waves is determined by the fact that

they must accurately represent the variations in the wavefunctions in the interstitial region.

These are determined by the fact that they must match the solutions inside the spheres which

is incorporated into the logarithmic derivatives in (16.10). Thus, in general, we expect the

number of plane waves (i.e. the number of APWs) to be comparable to the number of plane
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waves needed in a norm-conserving pseudopotential calculation, so long as the atoms have

relatively smooth orbitals and large interstitial regions (like Si). However, unlike norm-

conserving pseudopotentials, the number of basis functions does not increase as the states

become more localized around the atoms (e.g. 3d states in transition metals or 4f in rare

earths) since the augmentation takes care of the regions around the atoms. Indeed, roughly

40 APW basis functions are needed for each atom in the unit cell for transition metals [134].

In this respect, APW methods are more closely related to “ultrasoft pseudopotential” and

PAW methods (Sec. 11), which can also describe localized states, since they add localized

functions and use plane waves only for the smooth part. In addition, spherical harmonics

with high angular momenta are required for accurate description of the bands (see also

Sec. 17.3).

The APW method is not restricted to muffin-tin potentials and it can be extended to

general potentials [110]. The APW basis can be defined as before (using an effective muffin-

tin potential determined by averaging the full potential) but now one must calculate matrix

elements of the full potential. The solution has the same general form as (16.10) and (16.11),

but it becomes more complicated because the matrix elements are no longer diagonal in

angular momentum in the sphere nor in momentum in the interstitial region. The extension

becomes much more feasible using linearized methods and further discussion is given in

Sec. 17.9.

16.3 The KKR or multiple-scattering theory (MST) method

In the words of J. Ziman [637]:

From mathematical point of view, the most refined method of calculating energy band structures is

the subtle procedure invented independently by Korringa [649] and Kohn and Rostoker [650]. This

method is indeed so fundamental that it is to be found in all its essentials in a study by Rayleigh [651]

[in 1892] of the propagation of sound waves through an assembly of spheres.

The KKR method, also called “multiple-scattering theory” (MST) or Green’s function

method, finds the stationary values of the inverse transition matrix T rather than the hamil-

tonian. This is the method used in the pioneering work of Moruzzi and coworkers [106, 107],

highlighted in Sec. 2.2, that first established the efficacy of density functional theory for

calculation of properties of close-packed metals. In addition, KKR is the method of choice

for most calculations on liquids, disordered systems, and impurities in various metallic and

non-metallic hosts. Probably the most important features of the KKR or Green’s function

formulation are: (1) it separates the two aspects of the problem: the structure (positions of

the atoms) from the scattering (chemical identity of the atoms); and (2) Green’s functions

provide a natural approach to a localized description of electronic properties that can be

adapted to alloys and other disordered systems.

Here we consider only muffin-tin potentials, where each site can be viewed as a spherical

scatterer; and electrons propagate between sites with the free propagator or Green’s function.

This greatly simplifies the equations and was the basis of all KKR calculations until recently

when full potential methods have been introduced [652, 653]. The problem of overlapping
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potentials is subtle and the reader is referred to papers in the collection in [642] and references

given there.

A Green’s function G describes propagation of a particle from one event to another

[654], e.g. G(ε, r, r′) that describes propagation of an independent particle from point r to

r′ at energy ε. In terms of a reference Green’s function G0 (for example, the free-particle

propagator given in (16.19) below) and scattering matrix elements t , representing single

scattering events from any of the atoms in the system, the full Green’s function can be

written in schematic form as

G = G0 + G0tG0 + G0tG0tG0 + · · ·
= G0 + G0tG ⇒

G = (G−1
0 − t)−1. (16.13)

Similarly, one can sum the series to write G as

G = G0 + G0T G0, (16.14)

where T is the full multiple scattering matrix for the entire system

T = t + tG0t + tG0tG0t + · · ·
= t + tG0(t + tG0t + · · ·)
= t + tG0T ⇒

T = (t−1 − G0)−1. (16.15)

The stationary states of the system are given by the poles of G or T as functions of ε and

hence are obtained from the zeros of the determinant6

det(t−1 − G0) = 0. (16.16)

For independent-particle electronic structure problems with hamiltonian Ĥ =
−(-h2/2me)∇2 + Veff(r),7 a convenient starting point is to take G0 to be the free Green’s

function. It is useful to first give the well-known solution for the Helmholtz equation

(∇2 + κ2)g(r − r′) = δ(r − r′), for which the real solution is

g(x) = − 1

4π

cos(κx)

x
, (16.17)

where x = |r − r′|. Thus the Green’s function for the Schrödinger equation with V = 0

satisfies

[

−
-h2

2me
∇2

r − (ε − V0)

]

G0(ε, r − r′) = δ(r − r′), (16.18)

6 As indicated by the form of (16.14), one must take care to avoid spurious poles appearing in the final solution

at the positions of the poles of G0.
7 Here -h2/2me is explicitly indicated to avoid confusion with references that assume me = 1/2.



16.3 The KKR or multiple-scattering theory (MST) method 325

which has the solution

G0(ε, x) = 2me

-h2

1

4π

cos(κx)

x
, (16.19)

where (-h2/2me)κ2 = ε − V0 and V0 is the “muffin-tin zero” reference energy. For positive

energies ε, G0(ε, x) is a slowly decaying oscillatory function; for negative ε, it decays

exponentially.

Within the muffin-tin spherical approximation, the scattering amplitude t(ε) of an electron

from each sphere conserves angular momentum L ≡ {l, m} referred to the center of that

sphere. Because the scattering is unitary and independent of m [641, 655], tl(ε) and can be

written in terms of the phase shift ηl(ε) (see Sec. J.8)

tl(ε) = i

2κ
(ei2ηl (ε) − 1) = − 1

κ
eiηl (ε)sin(ηl(ε)). (16.20)

The scattering amplitude plays a key role in many phenomena in physics, such as Friedel

oscillations around an impurity, resistivity due to impurities, etc. (see Sec. J.1). The scat-

tering is represented pictorially in Fig. J.1. In the present case, the great advantage is that

the electronic bands and Green’s functions can be described by a few phase shifts ηl(ε),

typically l ≤ 3.

The full solution for the multiple-scattering problem for the muffin-tin potential is given

by (16.16), where G0 depends only upon the structure and the energy ε, and t incorporates

all the effects of the potential inside each sphere. The expressions needed are for the Green’s

function G0(ε, |r − r′|) when r and r′ are in the same and different spheres. For different

spheres, this requires that a spherical wave of angular momenta L about one sphere be

expressed in terms of waves centered at another site, which involves a sum over L ′ at that

sphere. The needed formulas are given in [11, 134, 641], which can be understood using

the addition formula for plane waves

eik·(r−R1) = eik·(r−R2)eik·(R2−R1), (16.21)

together with the identity (16.5). The result for sites R �= R′ is given by (see Exercise 16.3)

G0(ε, |r − r′|) =
∑

L ,L ′
i l jl(κr )YL (r̂)BL L ′ (−i)l ′ jl ′ (κr ′)Y ∗

L ′ (r̂′), (16.22)

where r and r′ are referred to the centers of their respective spheres, and BL L ′ denotes the

“KKR structure constants”

BL L ′ (ε, R − R′) = −4πκ
∑

L ′′
i l ′′C L

L ′ L ′′nl ′′ (κ|R − R′|)YL ′′ ( ̂R − R′), (16.23)

where the Cs are directly related to the Gaunt coefficients cl ′′(l m, l ′ m ′) defined in (K.14),

C L
L ′ L ′′ ≡

∫

d�Y ∗
L (�)YL ′(�)YL ′′ (�) =

√
2l ′′ + 1

4π
cl ′′ (l m, l ′ m′). (16.24)
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For the general case where the scattering amplitude tl(ε, R) is site-dependent, the resulting

equation for the Green’s function (16.13) is

[
G L L ′(ε, R, R′)

]−1 =
[[

BL ,L ′(ε, R − R′)
]−1 − tl(ε, R)δR,R′δL ,L ′

]
, (16.25)

and condition (16.16) for stationary states becomes

det
[
t−1
l (ε, R)δRR′δL L ′ − BL L ′(ε, R − R′)

] = 0, (16.26)

where R, R′ denote centers of the spheres, and BL L ′(ε, 0) ≡ 0 for the same site. As it stands,

this is a matrix equation in all the sites and angular momenta – a formal expression valid

for crystals, molecules, and disordered solids.

KKR band structure equations

The original equation of Koringa [649] results if we consider a crystal where the scattering is

the same at every site, centered on the translations vectors T. Then the determinant equation

can be solved separately for each wavevector k. The structure constants can be defined as

BL L ′(ε, k) =
∑

T�=0

BL L ′ (ε, T) e−ik · T, (16.27)

and the bands ε = εk are the solution of

det
[
t−1
l (ε)δL L ′ − BL L ′(ε, k)

] = 0. (16.28)

The well-known form for the KKR equations is found by using expression (16.20) for t
(only the real part is needed) in terms of the phase shifts,

∑

L ′
[BL L ′(εk, k) + κ cot(ηl(εk)) δL L ′ ] aL ′ (k) = 0. (16.29)

This can be generalized straightforwardly to more than one atom per cell, α = 1, . . . , N ,

leading to one band per atom and angular momentum

∑

L ′

N∑

β=1

[
BL L ′ (τα − τβ, εk, k) + κ cot ηlβ(εk) δL L ′ δαβ

]
aL ′β(k) = 0. (16.30)

The dispersion relation εk can be found from the roots of the determinant of the matrix in

square brackets. Often it is most effective to fix the energy and scan the wavevector k to find

the roots, since the phase shifts depend only on energy and the structure constants depend

only on k at a given energy. For example, the Fermi surface can be mapped out conveniently

in this way.

The eigenvectors of (16.29) or (16.30) determine the wavefunction, since the eigenvec-

tors of the Green’s function are the same as those of the hamiltonian. Inside each sphere

the solution is simply a linear combination of the augmentation functions (apart from a

normalization factor)

ψk(r) =
∑

L ′

N∑

β=1

aL ′β(k) ψL ′β(r), (16.31)
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Figure 16.6. Band structure of Al (solid line) calculated by the KKR method [527] compared to

free-electron bands (dashed lines). The results can also be easily understood in terms of a weak

effective scattering in the plane wave method and the nearly-free-electron approximation, Ch. 12.

From [527].

where ψL ′β are known since they were used to find the phase shifts and t matrix. Out-

side the spheres the wavefunction can be found from the Green’s function equation (see

Exercise 16.8)

ψk(r) = −
∫

dr′G0(εn
k, |r − r′|)V (r′)ψk(r′), (16.32)

which can be evaluated with r′ restricted to the interstitial region with boundary conditions

on each sphere or with an integral over all space. The integral can be done in different

ways, since the free Green’s function G0 given in 16.19 is long-ranged for energy in the

continuum, but is exponential for energies below the continuum (see also Sec. 16.7).

The size of the secular equation depends on the maximum angular momentum needed.

In the case of Cu and the elementary transition metals it is sufficient to take lmax = 3

and therefore the rank of the secular equation is 16. Note that the basis is much smaller

than in the APW (or plane wave) method; the number of functions is determined by the

principle angular momenta of the atomic states needed and not by an accuracy criterion for

representation of the wavefunctions.

The KKR method has provided some of the most influential and insightful examples

of electronic structure calculations. For example, Fig. 16.6 shows the bands of Al [527].

This is an ideal case for the muffin-tin approximation and illustrates the simple physics

that emerges from the KKR approach. The results are similar to previous OPW [528] and

pseudopotential calculations [481], all showing the free-electron character of the valence

bands. The KKR method conveniently integrates over all plane waves in the analytic Green’s



328 Augmented functions: APW, KKR, MTO

function, whereas the plane wave methods make use of the fact that for weak effective

scattering only a few plane waves are needed.

KKR is the method used for the first quantitative calculations of the total energy, equi-

librium lattice constants, and bulk moduli given in Fig. 2.3; the density of states and Stoner

interaction that led to Fig. 2.7; and hosts of other properties, as documented in [107, 132, 642]

and many other sources. As a band method, however, it suffers from the same non-linearity

difficulties as the APW method and it is very difficult to extend to a full potential [653].

Therefore, we focus upon Green’s function approaches where KKR shines.

KKR Green’s function equations

The power of the KKR approach is most apparent in its formulation as a Green’s function

method that determines electronic properties directly from GL L ′(ε) in (16.13). The explicit

form in real space for the muffin-tin potential is given by GL L ′(ε, R, R′) in (16.25). In a

crystal with one atom per cell (the expressions are easily generalized to many atoms per

cell) the Green’s function is a function only of the relative separation GL L ′(ε, R − R′). It is

most convenient to work with the Fourier transform G L L ′(ε, k) which can be evaluated at

each k separately, as follows from the Bloch theorem. Furthermore, in a crystal, the fact that

G L L ′ (ε, k) is only a small matrix, of dimension determined by lmax, is a great advantage:

the inversion of such small matrices is of negligible computational cost and the method can

be very efficient depending upon the effort required to set up the matrices.

The Green’s function provides a spectral representation and many physical properties can

be calculated as integrals over energy. The basic relations given in Sec. D.4 apply to any

representation of a Green’s function. In particular, the imaginary part of G(ε, R) provides

a local density of states, whereas G(ε, k) provides a “Bloch spectral representation” i.e.

energy and wavevector resolved spectra. For example, the density of states per unit energy

ε in the L channel is given by the diagonal part of G with L = L ′,

nL (ε, k) = − 1

π
Im GL L (ε + iδ, k), (16.33)

where δ is a positive infinitesimal. The total density of states at wavevector k is given

by n(ε, k) = ∑
L nL (ε, k), which is a sum of delta functions of unity weight at the band

energies ε = εi (k).

This Green’s function approach provides a convenient of way of calculating the band

structure. For example, the Fermi surface can be calculated directly as the locus of states

with εF = εi (k) by calculating only the Green’s function at εF , without calculating the

entire band structure. But how does one know εF and the potential Veff from which the

phase shifts are derived? The Fermi energy can be fixed by a fast procedure for counting

the total number of states up to a given energy which is given by a formula due to Lloyd

[656] that effectively evaluates the integral in (D.27). The potential is fixed by the density,

which is considered next.

The density in real space n(r) can be calculated from the projected density at each site R
due to angular momentum component L . The local density of states is

nL (ε, R) = − 1

π
Im GL L (ε + iδ, R), (16.34)
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and the total density in the sphere at site R is

nL ,R = − 1

π

∫ EF

∞
dε Im GL L (ε + iδ, 0). (16.35)

Another quantity that is easily derived is the sum of eigenvalues of occupied states, which

is given by

∑

i

εi = − 1

π

∑

L

∫ EF

∞
dε ε Im G L L (ε + iδ, 0). (16.36)

The last equation represents a way of summing the eigenvalues: each eigenvalue leads to a

pole in G(ε) which gives a contribution of ε to the integral in (16.36). This provides all the

information needed to determine the total energy.

The integrals for total quantities can also be evaluated as contour integrals as shown

in Fig. D.1 and given in Eqs. (D.27)–(D.28), which can be evaluated by a discrete sum

over points on the contour in the complex plane. Thus one evaluates the Green’s function

for chosen complex energies z, so that there is no disadvantage due to the non-linear

nature of the secular equations. Furthermore, wherever the contour is far from any pole, the

Green’s function G L L (z, R) decays exponentially as a function of distance |R|, so that it

can be evaluated using only a cluster of atoms. However, in a metal, the contour necessarily

approaches the poles at the Fermi energy, and G(z, R) must exhibit long-range oscillatory

behavior in real space (Friedel or Ruderman–Kittel oscillations) due to the sharp cutoff in

Fourier space at the Fermi surface.

16.4 Alloys and the coherent potential approximation (CPA)

Alloys represent important classes of materials ranging from metallic alloys, where mechan-

ical and magnetic properties can be controlled, to semiconductors where delicate electronic

properties are tuned by composition. There are two general types of theoretical approaches:

direct calculations on selected supercells and methods that average over disorder. The for-

mer approach allows direct studies of effects of short-range order and can be very powerful

using clusters and supercell methods (see, e.g. [657] and refences given there.) We will

concentrate upon the coherent potential approximation (CPA), which provides an intuitive,

yet accurate, approach when combined with Green’s function methods. Such methods are

widely applied in crystalline metallic alloys. The formulation that underlies present-day

work is due to Soven [658] and Velicky, et al. [659], and earlier work of Lax [660] and

Beeby [661].

The general idea of the CPA approach is to formulate an effective (or coherent) potential

which, when placed on every site of the alloy lattice, will mimic the electronic properties

of the actual alloy. As distinguished from a “virtual crystal approximation” in which the

alloy is replaced by an average crystal potential, the coherent potential is derived from

averaging the scattering properties of the different atoms embedded in an effective potential

as illustrated in Fig. 16.7. Requiring the weighted site average to be the same as the effective

potential results in a complex, energy-dependent CPA potential. This is readily treated in
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= CA + CBA B

Figure 16.7. Schematic illustration of the averaging over sites in the CPA. The shaded spheres

represent an effective average environment and the equation indicates that the average is required to

equal the weighted average over sites A and B with concentrations CA and CB , each in the same

average environment. This leads to the complex CPA potential most readily represented by a

Green’s function.
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Figure 16.8. Bloch spectral function for a Cu0.77Ni0.23 alloy calculated using the KKR–CPA

muffin-tin approximation for potential. The figure shows peaks that disperse revealing the

underlying crystal-like bands and broadening that is due to the disorder treated in the coherent

potential approximation (CPA). From [663].

terms of Green’s functions in which a complex energy is naturally introduced. An early

formulation of the KKR–CPA method, with application to Cu–Ni alloys, is that of Stocks,

Temmerman, and Gyorffy [662].

As an example of the “band structure” of alloys calculated in the CPA approximation,

Fig. 16.8 shows the Bloch spectral function at five k points along the � direction in a
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Cu0.77Ni0.23 alloy [663]. The peaks (that would be delta functions in a perfect crystal)

indicate effective bands that are broadened by scattering due to disorder. The energy- and

k-dependent broadening is directly related to scattering rates and lengths, and therefore to

transport properties such as resistivity [664].

The KKR–CPA equations can also yield total quantities such as energy, pressure, and

magnetization in random substitutional alloys [666]. As an example, a recent calculation

of the total energy and magnetic moments in disordered Fex Cu1−x alloys [665] finds an

abrupt first-order transition from a non-magnetic Cu-like phase to a magnetic phase with a

change in volume. Alloys can also be treated in a response function approach in which the

differences are treated in perturbation theory (see, e.g. [236]).

16.5 Muffin-tin orbitals (MTOs)

Muffin-tin orbitals form a basis of localized augmented orbitals introduced by Andersen

[667] in 1971 and subsequently extended into an entire methodology. The goal of the

MTO approach is not merely to devise another band structure method but to provide a

satisfying interpretation of the electronic structure of materials in terms of a minimal basis
of orbitals. Like local orbital methods, the electronic states are described in a small number

of meaningful orbitals; however, unlike those approaches the minimal basis can be accurate

because the MTOs are generated from the Kohn–Sham hamiltonian itself.

This section is devoted to the MTO approach, which sets the stage for the linearized LMTO

extension [643, 644] (Ch. 17) that exhibits the real power of the approach. The (L)MTO

approach has led to many new concepts and methods, for example, “canonical bands”

[643, 644], a new approach to the first-principles tight-binding method [668], and many

other features. The (L)MTO methodology has been developed in a way most appropriate

for close-packed solids, and the descriptions in the literature are often difficult to penetrate

because the basic theory is interwoven with approximations and motivational aspects. The

goal of the presentation here and in Sec. 17.5 is to bring out the simplicity of the (L)MTO

approach, the ways in which the concepts enhance our understanding, difficulties in its use

in structures that are open or have low symmetry, and the power of the method in actual

calculations when used appropriately.

An MTO can be understood in terms of a single atomic sphere with a flat potential

in all space outside the sphere, which is the subject of Sec. J.1 and is closely related

to the KKR method. The MTO is defined to be a localized basis function continuous in

value and derivative at the sphere boundary. Direct application of the KKR formalism

would be to construct an orbital as the energy dependent ψl(ε, r ) inside the sphere as in

(J.3), and matching the wavefunction outside the sphere, leading to the form ∝ jl(κr ) −
tan(ηl (ε)) nl(κr ) outside the sphere, where jl and ηl are spherical Bessel and Neumann

functions. For negative energies, the Neumann functions are replaced by Hankel functions

h(1)
l = jl + iηl , which have the asymptotic form i−le−|κ|r/|κ|r , and the Bessel functions

are unbounded. Such orbitals are not suitable as basis functions since, at negative energies,

they are normalizable only at ε corresponding to eigenvalues where the coefficient of the

Bessel function vanishes.
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The insight of Andersen [667] was to reformulate the problem defining a new set of

functions that depend separately on κ and ε,

χMTO
L (ε, κ, r) = i lYL (r̂ )

⎧
⎨

⎩

ψl(ε, r ) + κ cot(ηl (ε)) jl (κr ), r < S,

κnl (κr ), r > S,

(16.37)

where YL (r̂ ) ≡ Y m
l (r̂ ) and the factor i l is a convenient definition (This is the same as adopted

in [643, 134, 132] and it leads to bound state functions that are real, as shown in Sec. J.1).

The definition in (16.37) leads to a very simple envelope function outside the sphere with the

property that each MTO basis function is well defined, both inside the sphere (since jl(κr )

is regular at the origin) and outside the sphere (since nl(κr ) is regular at ∞). Furthermore,

the states are normalizable for all negative energies for any κ . Of course, the χMTO cannot

be eigenstates of a single-muffin-tin potential, but they are basis functions with desirable

features for the many-site problem.

The form of (16.37) contains the seed of an idea that flows through the development of

the MTO and LMTO methods: the wavefunction inside the sphere has been modified in a

way that takes into account the presence of neighboring atoms to some approximation. The

Bessel function jl(κr ) added for r < S is a step toward incorporating into the wavefunction

effects due to the neighbors so that a minimal basis of MTO functions χMTO can accurately

describe the system.

The equations for many atoms can be derived using an expansion theorem of the form

of (15.1), which expresses the tail of an MTO extending into another sphere in terms of

functions centered on that sphere. Fortunately, there is a well-known expansion analogous

to (16.22),

nL (κ, r − R) = 4π
∑

L ′ L ′′
C L

L ′ L ′′n∗
L ′′ (κ, R − R′) jL ′(κ, r − R′), (16.38)

where the C L
L ′ L ′′ are defined by (16.24). At this point, the MTO basis can be used for

calculation of bands by requiring that the total wave function be a solution both inside and

outside the spheres, i.e. that the energy and κ be related by (-h2/2me)κ2 = ε − V0. This

amounts to a transformation of the KKR method and would lead to non-linear equations

equivalent to (16.28) or (16.29).

However, the MTO approach can also be used in a different way. By treating the

χMTO
L (ε, κ, r) defined in (16.37) as functions of ε and κ separately, a judicious fixed choice

of κ can be used to define a basis that greatly simplifies the problem and yet is accurate

for many problems. This has the advantage that one can define structure constants SL ′ L (R)

or SL ′ L (k) that depend only upon the structure (and the fixed value of κ); in contrast, the

KKR “structure constants” are not really constant but are functions of energy ε. This leads

to a second hallmark of the (L)MTO approach: developing the method in such a way to

take advantage of the fact that an error in the wavefunction leads to higher-order errors in

the energy and certain other properties, so that a minimal basis and energy-independent

structure constants suffice for accurate calculations.
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Figure 16.9. Atomic sphere approximation (ASA) in which the muffin-tin spheres are chosen to

have the same volume as the Wigner–Seitz cell, which leads to overlapping spheres. The ASA is

often a very good approximation for a close-packed solid. Even some open structures (like diamond)

can be formed from close-packed spheres (Exercise 16.11) by including “empty spheres” not

centered on atoms [669, 670].

16.6 Canonical bands

The simplest version of the MTO equations results if the constant κ is chosen to be κ = 0,

which has been shown to be remarkably accurate for many problems, especially close-

packed crystals. The rationale for the freedom to chose κ is that it is finally needed only to

represent the variation in the wavefunction in the interstitial between the spheres; if there is

only a short distance between the spheres (as in a close-packed solid), the wavefunction will

be nearly correct because it has the correct value and slope at the sphere boundary. Many

of the applications and much of the motivation for the method [644, 643] is associated

with the atomic sphere approximation (ASA) in which the Wigner–Seitz sphere around

each atom is replaced by a sphere as shown schematically in Fig. 16.9. It is evident that

for close-packed cases the distances between spheres are indeed short; since the spheres

overlap, the extrapolation to connect the spheres can be either forward or backward.

For κ = 0, the wavefunction satisfies the Laplace equation in the interstitial region, i.e.

it is equivalent to the electrostatic potential due to a multi-pole moment. The form can

be derived from the previous equations with the κ → 0 limit of the Bessel and Neumann

functions: inside the sphere jl → (r/S)l with logarithmic derivative D = l and outside,

nl → (r/S)−l−1 with D = −l − 1. The MTO in (16.37) can be written ([134], Eq. (1-221);

see also [643], Eq. (2.1))

χMTO
L (ε, 0, r) = i l YL (r̂ )ψl(ε, S)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψl (ε, r )

ψl(ε, S)
− Dl(ε) + l + 1

2l + 1

( r

S

)l
, r < S,

+ l − Dl(ε)

2l + 1

(
S

r

)l+1

, r > S,

(16.39)
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where Dl (ε) the dimensionless logarithmic derivative of ψl(ε, r ) evaluated at the boundary

r = S. This function is continuous and differentiable everywhere (Exercise 16.12). The

expansion theorem can be found as the κ → 0 limit of (16.38), which is a well-known

multi-pole expansion,

[
S

|r − R|
]l+1

i l YL ( ̂r − R)

= 4π
∑

L ′

[ r

S

]l ′

i l ′YL ′(r̂)

{
(2l ′′ − 1)!!

(2l − 1)!!(2l ′ + 1)!!
C L

L ′ L ′′

[
S

|R|
]l ′′+1

i−l ′′Y ∗
L ′′ (R̂)

}

, (16.40)

where l ′′ = l ′ + l and m ′′ = m ′ − m and the notation (. . .)!! denotes 1 × 3 × 5 . . . .

The essential features of the method are illustrated by a crystal with one atom per cell

(extension to more atoms per cell is straightforward). Details of the calculation of the

structure constants can be found in [643]; we give only limited results to emphasize that

they can be cast in closed form using well-known formulas. The structure factor in k space

is found from the Fourier transform of (16.40),

∑

T�=0

eik·T
[

S

|r − T|
]l+1

i l YL ( ̂r − T) ≡
∑

L ′

−1

2(2l ′ + 1)

[ r

S

]l ′

i l ′YL ′(r̂)SL ′ L (k), (16.41)

where the factors have been chosen to make SL ′ L (k) hermitian [643]. The result is

SL ′ L (k) = gl ′m′,lm

∑

T�=0

eik·T
[

S

|T|
]l ′′+1 [√

4π i l ′′YL ′′ (T̂)
]∗

, (16.42)

where gl ′m ′,lm can be expressed in terms of Gaunt coefficients [643].

An MTO basis function with wavevector k is constructed by placing a localized MTO

on each lattice site with the Bloch phase factor, e.g. for κ = 0,

χMTO
L ,k (ε, 0, r) =

∑

T

eik·T χMTO
L (ε, 0, r − T). (16.43)

The wavefunction in the sphere at the origin is the sum of the “head function” (Eq. 16.39

for r < S) in that sphere plus the tails (Eq. (16.39) for r > S) from neighboring spheres,

and can be written using Eq. (16.41), as

χMTO
L ,k (ε, 0, r) = ψl(ε, r )i lYL (r̂ ) − Dl(ε) + l + 1

2l + 1
ψl (ε, S)

( r

S

)l
i lYL (r̂ )

+ l − Dl(ε)

2l + 1
ψl(ε, S)

∑

L ′

( r

S

)l ′ 1

2(2l ′ + 1)
i l ′ YL ′ (r̂ ) SL L ′(k). (16.44)

The solution can now be found for an eigenstate as a linear combination of the Bloch MTOs

Eq. (16.44),

ψk(ε, r) =
∑

L

aL (k) χMTO
L ,k (ε, 0, r). (16.45)

Since the first term on the right-hand side of (16.44) is already a solution inside the atomic

sphere, ψk(ε, r) can be an eigenfunction only if the linear combination of the last two terms
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Figure 16.10. Potential function Pl(ε) (bottom) compared to logarithmic derivative Dl (ε) (top)

versus energy. The functions are related by (16.47) and the energies {A, C, B} denote, respectively,

the top, center, and bottom of the nth band formed from states of angular momentum l. The energy

V denotes the singularities in Pl (ε) that separate bands. The key point is that Pl (ε) is a smooth

function for all energies in the band so that it can be parameterized as discussed in the text. (Taken

from similar figure in [643], Ch. 2.)

on the right-hand side of (16.44) vanishes – called “tail cancellation” for obvious reasons.

This condition can be expressed as

∑

L

{SL L ′ (k) − Pl(ε) δL L ′ } aL (k) = 0, (16.46)

where Pl(ε) is the “potential function”8

Pl(ε) = 2(2l + 1)
Dl(ε) + l + 1

Dl(ε) − l
. (16.47)

Equation (16.46) is a set of linear, homogeneous equations for the eigenvectors aL (k) at

energies ε = εk for which the determinant of the coefficient matrix vanishes

det [SL L ′(k) − Pl(ε) δL L ′] = 0. (16.48)

This is a KKR-type equation, but here SL L ′(k) does not depend on the energy.

The potential function Pl(ε) contains the same information as the phase shift or the

logarithmic derivative Dl(ε), and the relation between them is illustrated in Fig. 16.10.

Pl(ε) provides a convenient description of the effective potential in (16.48) because it

varies smoothly as a function of energy in the region of the eigenvalues, as opposed to the

8 We use the symbol Pl since it is the standard term. It should not be confused with a Legendre polynomial
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Figure 16.11. Canonical unhybridized bands for an fcc lattice. Comparison with Figs. 2.24, 16.4,

and 16.5 shows that this “canonical band” structure has remarkable similarity to the full calculated

bands in an elemental fcc crystal. The canonical bands have only one material-dependent factor that

scales the overall band width, and even that parameter can be found from simple atomic calculations

as discussed in Secs. 10.7 and 17.5. Further improvement can be included through information

about the potential function as described in the text. Provided by O. K. Andersen; similar to those in

[461], [644], [464] and [643].

logarithmic derivative Dl (ε) that varies strongly and is very non-linear in the desired energy

range. This leads to the simple, but very useful, approximations discussed next.

One of the powerful concepts that arises from (16.46) or (16.48) is “canonical bands,”

which allow one to obtain more insight into the band structure problem. In essence it is

the solution of the problem of states in an atomic sphere (as considered in Sec. 10.7 but

here with non-spherical boundary conditions imposed by the lattice through the structure

constants, SL L ′(k); see also further discussion in Sec. 17.1). Since the potential function,

Pl(ε) does not depend on the magnetic quantum number, m, the structure matrix

SL L ′ (k) ≡ Slm,l ′m′ (k) (16.49)

contains (2l + 1) × (2l + 1) blocks. If one neglects hybridization, i.e. if one sets the ele-

ments of SL L ′(k) with l �= l ′ equal to zero, the unhybridized bands [εli (k)] are simply found

as the i th solution of the equation
∣
∣Pl(ε) − Slm,lm ′(k)

∣
∣ = 0. (16.50)

This motivates the idea of “canonical bands,” which are defined to be the 2l + 1 eigenval-

ues Sl,i (k) of the block of the structure constant matrix, Slm,lm′ (k), for angular momentum

l. Since each Sl,i (k) depends only upon the structure, canonical bands can be defined once

and for all for any crystal structure. An example of canonical bands is given in Fig. 16.11

for unhybridized s, p and d canonical bands for an fcc crystal plotted along symmetry lines
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Figure 16.12. Canonical densities of states for unhybridized d bands in the fcc, bcc, and hcp

structures. The d states dominate the densities of states for transition metals; the DOS s and p bands

are not shown. From [464]. (See also [461], [644], and [643].)

in the Brillouin zone [643, 644, 461, 464]. Similar bands for bcc and hcp can be found

in [643, 459, 464] and the canonical bands for hcp along -K are shown in the left panel

of Fig. 17.7. The canonical d densities of states for fcc, bcc, and hcp crystals are given in

Fig. 16.12. All the information about the actual material-dependent properties are included

in the potential function P(ε).

The potential function P(ε) captures information about the bands in a material in terms

of a few parameters, all of which can be calculated approximately (often accurately) from

very simple models. A simple three-parameter form that contains the features shown in

Fig. 16.10 is

Pl(ε) = 1

γ

ε − Cl

ε − Vl
, (16.51)

which can be inverted to yield9

ε(Pl ) = Cl + γ (Cl − Vl)
Pl

1 − γ Pl
≡ Cl +

-h2

2μS2

Pl

1 − γl Pl
, (16.52)

9 Here we keep the explicit factors of -h and me to indicate energy units clearly and to avoid confusion with

notation in the literature.
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where -h2/2μS2 ≡ γ (Cl − Vl). This expression has an important physical interpretation

with μ an effective mass that sets the scale for the band width. The formulation takes

added significance from the fact that μ can be calculated from the wavefunction in the

sphere. It is a matter of algebra (Exercise 16.10) to relate μ to the linear energy variation

of the logarithmic derivative Dl(ε) at the band center (ε = Cl , where Dl (ε) = −l − 1),

which is then simply related to the value of the wavefunction at the sphere boundary, as

given explicitly in (17.10). This expresses the simple physical fact that the band width

is due to coupling between sites, which scales with the value of the wavefunction at the

atomic sphere boundary as discussed in Sec. 10.7. Expressions can also be derived for

γ [643].

Combining (16.52) with (16.50) leads to the unhybridized band structure

εli (k) = Cl +
-h2

2μS2

Sl,i (k)

1 − γl Sl,i (k)
. (16.53)

This formulation provides a simple intuitive formulation of the energy bands in terms of

the “canonical bands” Sl,i (k), with center fixed by Cl , the width scaled by an effective mass

μ, and a distortion parameter γ that is very similar to the effect of a non-orthogonal basis.

If γ is small, the canonical bands illustrated in Fig. 16.11 and the DOS in Fig. 16.12 are

a scaled version of the actual bands and DOS of a crystal, thus providing a good starting

point for understanding the bands. This can be seen from the remarkable similarity to the

calculated bands in Figs. 16.4, 2.24, and 16.5 and to the tight-binding bands in Fig. 14.7.

(Indeed, the real-space interpretation of canonical bands leads to a new formulation of

tight-binding described in Sec. 16.7.) Of course, it is necessary to take into account hy-

bridization to describe the bands fully. This is a notable achievement: essential features
of all five d bands are captured by one parameter, the mass in (16.53). Furthermore, as

we shall see in Sec. 17.5, the mass can be determined simply from an atomic calculation.

In addition, the bands can be improved by including the parameter γ which distorts the

canonical bands as in (16.53), and which can also be calculated from atomic information.

Canonical bands can be used to predict tight-binding parameters, which follows from the

structure factors in real space and is discussed in the next section. Finally, many important

results for real materials can be found simply using the notions of canonical bands; how-

ever, the examples are best deferred to Sec. 17.7 to include features of the linear LMTO

method.

16.7 Localized “tight-binding” MTO and KKR formulations

The subject of this section is transformations to express the MTO and KKR methods in

localized form, with the goal of making possible “first-principles” tight-binding (Ch. 14),

localized interpretations, linear scaling methods (Ch. 23), and other developments in elec-

tronic structure. The original formulations of the KKR method involve structure constants

BL L ′ in (16.23) that oscillate and decay slowly as a function of distance |R − R′|. For
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Figure 16.13. Schematic illustration of MTO orbital centered on the site indicated by the dark

sphere. Left: A standard MTO. Outside its sphere it decays as a power law with a smooth tail that

extends through other spheres. Right: The “screened MTO” that results from linear transformation

of the MTOs set of. The essence of the transformation is to add neighboring MTOs with opposite

signs as shown; since the tails of the original MTO functions have excatly the same form as the

fields due to electronstatic multipoles, the long-range behaviour can be “screened” by a linear

combination that cancels each multi-pole field. The transformation to localized functions can also be

understood in terms of the construction of Wannier functions; see text.

positive energies10 the range is so long that it is not possible to make any simple short-range

pictures analogous to the local orbital or tight-binding pictures.

The MTO formalism partly remedies this situation to provide a more localized picture.

The distance dependence in (16.40) illustrates the important features that emerge from the

MTO approach: since κ = 0 has been shown to be a good approximation in many cases

and since all the information about interactions between sites is contained in the structure

constants, this identity shows the characteristic feature that interactions between orbitals of

angular momenta L = l, m and L ′ = l ′, m ′ decrease as a structure factor

SL L ′ (|R|) ∝
[

S

|R|
]l+l ′+1

. (16.54)

For high angular momenta, the sums converge rapidly, which provides a new formulation

of tight-binding [590] in which the matrix elements decay as (1/r )l+l ′+1 and are derived

from the original independent-particle Schrödinger equation.

For l = 0 and l = 1, however, this does not lead to a simple picture because the sums do

not converge rapidly – in fact there are singularities in the longest range terms just as for the

Coulomb problem. This is not a pleasant prospect for providing a simple physical picture

of electronic states! How can the properties of the MTO basis be interpreted to provide a

more satisfying picture? The answer lies in the fact that the long-range terms are Coulomb

multi-pole in nature; the distance dependence has inverse power because it is equivalent to

the long-range behavior of electrostatic multi-pole fields. By a unitary transformation that

is equivalent to “screening of the multipoles” one can transform to a fully localized tight-

binding form for all angular momenta [668]. There are many ways of screening multipoles,

all having the effect shown in Fig. 16.13 that contributions from neighboring sites are

added with opposite sign to give net exponential decay of the basis function. An example

10 If the problem is transformed to complex energies, e.g. in Green’s function method, the range can be short. See

Sec. D.4.
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Figure 16.14. Schematic illustration for creation of localized Green’s functions G0 in the KKR

method. Because of strong repulsive potentials at every site, G0 decays exponentially at all energies

in the range of the energy bands.

of a transformation choice is given in [668]. The reason that one can transform to a set of

exponentially decaying orbitals is not accidental; this properly can be understood using the

same ideas as for the construction of Wannier functions. Since the space spanned by the

minimal basis MTO hamiltonian is a finite set of bands, bounded both above and below in

energy, the transformations given in Ch. 21 can be used to construct localized functions that

span this finite basis subspace.

A localized form of KKR also can be generated very straightforwardly, even though the

ideas may at first seem counterintuitive. The idea is simply to choose a different reference

G0 instead of the free propagator equation, (16.19), that satisfies (16.18). If G0 is chosen

to be the solution of the Schrödinger equation for a particle in a set of strongly repulsive

potentials, as illustrated in Fig. 16.14, then G0(r) is localized for all energies of interest

[652]. Simply inserting this into the Dyson equation, (16.13), leads to a localized form for

any of the KKR expressions in Sec. 16.3. The greatest advantage is realized in the Green’s

function formulation in which the non-linearity is not a problem and the equations can be

made fully localized. “Order-N” methods have been developed using this approach (see,

e.g. [671] and Ch. 23).

There are important advantages of using augmented localized orbitals over the standard

tight-binding-like local orbital approach. A basis of fixed local orbitals has the inherent

difficulty that the tails of orbitals extending into the neighboring atoms are far from the

correct solution – e.g. they do not obey the correct cusp conditions at the nucleus – and

a sufficient number of orbitals (beyond a minimal basis) must be used to achieve the “tail

cancellation” that is built into the KKR and MTO methods. In general, local orbitals are non-

orthogonal, whereas the transformed MTO basis can be made nearly orthogonal [668, 672].

On the other hand there are disadvantages in the use of KKR and MTO methods. The

KKR formalism is more difficult to apply to general low-symmetry problems where the

potential is not of muffin-tin form. The localized MTO form has been developed for close-

packed systems and application to open structures requires care and often introduction of

empty spheres (see also Sec. 17.5). Thus these methods have been applied primarily to
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close-packed metals and high-symmetry ionic crystals, but have not been widely applied to

molecules, surfaces, and related systems.

16.8 Total energy, force, and pressure in augmented methods

Total energies and related quantities are more difficult to calculate than in the pseudopo-

tential method because of the large energies and strong potentials involved. It is especially

important to use appropriate functions for the total energy, such as (9.9) which was derived

by Weinert and coworkers [416] explicitly for APW-type methods. Augmented methods

have played a key role in total energy calculations since the 1960s when self-consistent cal-

culations became feasible, e.g. for KCl [110], alkali metals [111, 112], and Cu [113]. One of

the most complete studies was done by Janak, Moruzzi, and Williams [114, 106], who were

pioneers in making Kohn–Sham density functional theory a practical approach to compu-

tation of the properties of solids. Their results, shown in Fig. 2.3, were calculated using the

KKR method. Many other examples of LAPW calculations are given in Chs. 2 and 17.

Straightforward application of the “force (Hellmann–Feynman) theorem” is fraught with

difficulty in any all-electron method. The wavefunctions must be described extremely accu-

rately very near the nucleus in order for the derivative to be accurate, and the wavefunctions

must be extremely well converged since the force is not a variational quantity. The problem

is in the core electrons. In the atom because of spherical symmetry the force on the nucleus

must vanish, which is easy to accomplish since the core states are symmetric. If the nucleus

is at a site of low symmetry in a molecule or solid, however, the electric field E at the nucleus

and the net force is non-zero. Even though the core electrons are nearly inert, in fact they

polarize slightly and transmit forces to the nucleus. It is only by proper inclusion of the

polarized core that one arrives at the correct conclusion that the force due to an electric field

on an ion (nucleus plus core) is the “screened” force F = Z ionE instead of the “bare” force

F = ZnucleusE.

Difficult problems associated with calculation of the force on a nucleus can be avoided

by the use of force expression that are alternative to the usual force theorem. As emphasized

in App. I, difficult core–nucleus terms can be explicitly avoided by displacing rigidly the

core around each nucleus long with the nucleus. The resulting expressions then involve

additional terms due to displacement of the core. Although they lack the elegant simplicity

of the original force theorem, they can be much more intuitive and appropriate for actual

calculations. A method for calculation of forces and stresses in APW (and LAPW) ap-

proaches has been developed by Soler and Williams [673] and by Yu, Singh, and Krakauer

[674]. The general ideas, given in Sec. I.5, involve finding the force on a sphere in terms of

the boundary conditions that transmit forces from the plane waves plus Coulomb forces on

the charge in the sphere due to charges outside. The expressions can be found by directly

differentiating the explicit APW expressions for the energy.

Within the atomic sphere approximation the pressure can be calculated using the remark-

ably simple expressions given in Sec. I.3. Only the wavefunctions at the boundary of the

sphere are needed. This can be applied in any of the augmented methods, and examples are

given using the LMTO approach in Sec. 17.7.
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16.9 Exercises

16.1 The basic ideas of the APW method can be illustrated by a one-dimensional Schrödinger

equation for which the solution is given in Exercise 4.22. In addition, close relations to pseu-

dopotentials, plane wave, KKR, and MTO methods are brought out by comparison with

Exercises 11.14, 12.6, 16.7, and 16.13. Consider an array of potentials V (x) spaced by lattice

constant a; V (x) is arbitrary except that it is assumed to be like a muffin-tin composed of

non-overlapping potentials with V (x) = 0 in the interstitial regions. For actual calculations it

is useful to treat the case where V (x) is a periodic array of square wells.

(a) Consider the deep well defined in Exercise 11.14 with width s = 2a0 and depth −V0 =
−12Ha. Solve for the two lowest states (analogous to “core” states) using the approximation

that they are bound states of an infinite well.
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(b) Construct APW functions that are eikx outside the well; inside, the APW is a sum of solu-

tions at energy ε (as yet unknown) that matches eikx at the boundary. Show that the expansion

inside the cell analogous to (16.2), and the plane wave expansion, analogous to (16.5), are

sums only over two terms, sine and cosine, and give the explicit form for the APW.

(c) Derive the explicit APW hamiltonian for this case. Include the terms from the discontinuity

of the derivative. Show that the equation has the simple interpretation of plane waves in the

interstitial with boundary conditions due to the well.

(d) Construct a computer code to solve for the eigenvalues and compare to the results of the

general method described in Exercise 4.22.

(e) Use the computer code also to treat the shallow square well defined in Exercise 12.6 and

compare with the results found there using the plane wave method.

(f) Compare and contrast the APW, plane wave, and the general approach in Exercise 4.22.

16.2 Derive the form for the contribution to the hamiltonian matrix elements from the kink in the

wavefunctions given in Eq. (16.9) using Green’s identity to transform to a surface integral.

16.3 Derive the identity given in (16.22)–(16.24) for the expansion of a spherical wave defined

about one center in terms of spherical waves about another center. One procedure is through

the use of Eq. J.1, which is also given in (16.5).

16.4 Evaluate values for the logarithmic derivatives of the radial wavefunctions for free electrons

and compare with the curves shown in Fig. 16.3 for Cu. The expressions follow from (16.5)

(also given in Eq. (J.1)) for zero potential and the functions should be evaluated at the radius

S = 2.415a0 appropriate for metallic Cu.

16.5 Show that the nearly parabolic band energies for Cu in Fig. 2.24 are well approximated by

free-electron values given that Cu has fcc crystal structure with cube edge a = 6.831a0. Show

also that the states at the zone boundary labeled would be expected to act like p states (l=1,

odd) about each atom. (Quantitative comparisons are given in [134], p. 25).

16.6 As the simplest example of the “s–d” hybridization model, derive the bands for a 2 × 2 hamil-

tonian for flat bands crossing a wide band in one dimension: H11(k) = E1 + W cos(2πk/a),

H22(k) = E2, and H12(k) = H21(k) = �. Find the minimum gap, and the minimum direct gap

in the bands. Show that the bands have a form resembling the bands in a transition metal.

16.7 The KKR method can be illustrated by a one-dimensional Schrödinger equation, for which

the solution is given in Exercise 4.22. See [664] for an extended analysis. Close relations to

pseudopotentials, plane wave, APW, and MTO methods are brought out by comparison with

Exercises 11.6, 12.6, 16.1, and 16.13. As in Exercise 16.1, the KKR approach can be applied

to any periodic potential V (x). The KKR solution is then given by (16.29) with the structure

constants defined in (16.27). (Here we assume V (x) is symmetric in each cell for simplicity.

If it is not symmetric there are also cross terms η+−.)

(a) The phase shifts are found from the potential in a single cell. In Exercise 11.6 it is shown

that the scattering is described by two phase shifts η+ and η−.

(b) In one dimension the structure constants define a 2 × 2 matrix BL ,L ′ (ε, k), with L = +, −
and L ′ = +, −. Each term is a sum of exponentials that oscillates and does not converge

at large distance. Find physically meaning expressions for BL ,L ′ (ε, k) by adding a damped

exponential convergence factor.
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(c) Using the relations from Exercise 11.6, show that the KKR equations lead to the same

results as the general solution, (4.49), with δ = η+ + η− and |t | = cos(η+ − η−).

16.8 This exercise is to show the relation of the Green’s function expression, (16.32), and the

Schrödinger equation. This can be done in four steps that reveal subtle features.

(a) Show that application of the free-electron hamiltonian Ĥ0 to both sides of the equation leads

to a Schrödinger-like equation but without the eigenvalue. Hint: Use the fact that Ĥ0 G0 =
δ(|r − r′|).
(b) Show that this is consistent with the Schrödinger equation using the fact that a constant

shift in V has no effect on the wavefunction.

(c) Give an auxiliary equation that allows one to find the eigenvalue.

(d) Finally, give the expression for the full Green’s function G analogous to (16.13) from

which one can derive the full spectrum of eigenvalues.

16.9 Show that χMTO
L (ε, 0, r), defined in (16.39) is continuous and has continuous derivative (i.e.

D is the same inside and outside) at the boundary r = S.

16.10 Find the relation of the mass parameter μ to the energy derivative d D(E)/d E evaluated at the

band center, assuming Pl has the simple form given in (16.51).

16.11 The diamond structure can be viewed as a dense-packed structure of touching spheres with

some spheres not filled with atoms. Show this explicitly, starting with the crystal structure

shown in Fig. 4.7 and insert empty spheres in the holes in the structure.

16.12 Show that (16.39) indeed leads to a function that is continuous and has a continuous derivative

at its boundary.

16.13 The MTO method can be illustrated by a one-dimensional Schrödinger equation. The purpose

of this exercise is to show that the solution in Exercises 4.22 and 16.7 can be viewed as

“tail cancellation.” (An extended analysis can be found in [675].) This re-interpretation of the

equations can be cast in terms of the solutions of the single cell problem given in Exercise 4.22,

ψl and ψr , which correspond to waves incident from the left and from the right; only the part

outside the cell is needed. Consider the superposition of waves inside a central cell at T = 0

formed by the sum of waves ψl (x) and ψr (x) from all other cells at positions T �= 0 with a

phase factor eikT . Show that the requirement that the sum of waves from all other cells vanishes

at any point x in the central cell (i.e. tail cancellation) and leads to the same equations as in

Exercises 4.22 and 16.7.
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Augmented functions: linear methods

Summary

The great disadvantage of augmentation is that the basis functions are en-
ergy dependent, so that matching conditions must be satisfied separately for
each eigenstate at its (initially unknown) eigenenergy. This leads to non-linear
equations that make such methods much more complicated than the straightfor-
ward linear equations for the eigenvalues of the hamiltonian expressed in fixed
energy-independent bases such as plane waves, atomic orbitals, gaussians, etc.
Linearization is achieved by defining augmentation functions as linear combina-
tions of a radial function ψ(Eν, r ) and its energy derivative ψ̇(Eν, r ) evaluated
at a chosen fixed energy Eν . In essence, ψ(Eν , r ) and ψ̇(Eν, r ) form a basis
adapted to a particular system that is suitable for calculation of all states in an
energy “window.” Any of the augmented methods can be written in linearized
form, leading to secular equations like the familiar ones for fixed bases. The
simplification has other advantages, e.g. it facilitates construction of full po-
tential methods not feasible in the original non-linear problem. In addition, the
hamiltonian thus defined leads to linear methods that take advantage of the
fact that the original problem has been reduced to a finite basis. This approach
is exemplified in the LMTO method which defines a minimal basis that both
provides physical insight and quantitative tools for interpretation of electronic
structure.

It should be emphasized from the outset that the terms “non-linear” and “linear” have noth-
ing to do with the fundamental linearity of quantum mechanics. Linearity of the governing

differential equation, the Schrödinger equation, is at the heart of the quantum nature of

electrons and any non-linearities would have profoundly undesirable consequences. Lin-
earization and linear methods have to do with practical matters of solving and interpreting

the independent-particle Schrödinger equations.

Formulations in which the wavefunctions are expressed as linear combinations of fixed

basis functions, such as plane waves, gaussians, atomic-like orbitals, etc., are manifestly

linear. This leads directly to standard linear algebra eigenvalue equations, which is a great

advantage in actual calculations. Since the same basis is used for all states, it is simple to

express the conditions of superposition, orthogonality, etc., and it is simple to determine

many eigenfunctions together in one calculation.
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Augmented methods are also linear in the fundamental sense that the wavefunctions

can be expressed as linear combinations of basis functions. However, non-linear equations

for the eigenstates arise because the basis is energy dependent. This choice has great ad-

vantages, effectively representing electronic wavefunctions both near the nucleus and in

the interstitial regions between the atoms. But there is a high price. The matching con-

ditions lead to non-linear equations due to the intrinsic energy-dependence of the phase

shifts that determine the scattering from the atoms. This results in greatly increased com-

putational complexity since each eigenstate must be computed separately, as described in

Ch. 16.

Linearization of non-linear equations around selected reference energies allows the con-

struction of operators that act in the same way as ordinary familiar linear operators, while at

the same time taking advantage of the desirable attributes of the augmentation and achiev-

ing accurate solutions by choice of the energies about which the problem is linearized. The

LAPW approach illustrates clearly the advantages of linearization.

Linear methods result from the same process, but lead to different formulation of the

problem. The resulting hamiltonian matrix is expressed in terms of the wavefunctions

and their energy derivatives, which are determined from the original independent-particle

Schrödinger equation. Thus this defines a hamiltonian matrix in a reduced space. Working

with this derived hamiltonian leads to a class of linear methods that provide physically

motivated interpretations of the electronic structure in terms of a minimal basis. This is the

hallmark of the LMTO method.

In a nutshell the key idea of linearization is to work with two augmented functions, ψl(r )

and its energy derivative denoted by ψ̇l(r ), each calculated at the chosen reference energy.

These two functions give greater degrees of freedom for the augmentation, which allow the

functions to be continuous and to have continuous derivatives at the matching boundaries.

However, the basis does not double in size: the energy dependence is taken into account to

first order by the change of the wavefunction with energy. The wavefunction is correct to first

order ∝ (�ε), where �ε is the difference of the actual energy from the chosen linearization

energy; therefore, the energies are correct to (�ε)2 and variational expressions [643] are

correct to (�ε)3, illustrating the “2n + 1” theorem (Sec. 3.7) which is important in actual

applications. The methods can be used with any augmentation approach, and have led to

the widely used LAPW, LMTO, and other methods.

17.1 Energy derivative of the wavefunction: ψ and ψ̇

In this section we assume that the potential has muffin-tin form, i.e. spherically symmetric

within a sphere of radius S about each atom and flat in the interstitial. The equations can

be generalized to non-muffin-tin potentials using the same basis functions. Initially, we

consider a single spherical potential. The analysis involves radial equations exactly like

those for atoms and scattering problems (Sec. J.1) and the analysis has useful relations to

the derivation of norm-conserving pseudopotentials in Sec. 11.4 although the application

is quite different.
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Figure 17.1. Radial d function, P ≡ S1/2ψ(r ), and energy derivatives, Ṗ ≡ S−2∂ P/∂ E , and

P̈ ≡ S−4∂2 P/∂ E2, for ytterbium. From [644].

The goal is to sidestep the problems of the non-linear methods of Ch. 16. Linearized

methods achieve this by expanding the solution of the single-sphere Schrödinger equation

in terms of ψl (ε, r ) belonging to one arbitrarily chosen energy, ε = Eν , i.e.1

(

−
-h2

2me

d2

dr 2
+ Vsphere − Eν

)

rψl(Eν, r ) = 0 (17.1)

and its energy derivative

ψ̇(ε, r ) ≡ ∂

∂ε
ψ(ε, r )|ε=Eν

. (17.2)

If we define the derivative with respect to energy to mean a partial derivative keeping ψ

normalized to the same value in the sphere (even though it is not an eigenfunction at an

arbitrary Eν), then it is easy to show that ψ and ψ̇ are orthogonal,

〈ψ |ψ̇〉 = 0, (17.3)

so that the two functions indeed span a larger space. Furthermore, one can readily show

that

(Ĥ − ε)ψ̇(ε, r ) = ψ(ε, r ) (17.4)

and similar relations in Eq. (17.38) in Exercise 17.1. It is also straightforward to show that

each successive energy derivative of the function ψ(r ) is given by simple relations like

〈ψ̇ |ψ̇〉 = −1

3

ψ̈(S)

ψ(S)
. (17.5)

The functions ψ , ψ̇ , and ψ̈ are illustrated in Fig. 17.1 for ytterbium [644], where it is shown

that each order of derivative corresponds to a decrease in size by an order of magnitude.

1 The factor -h2/2me is included explicitly to avoid confusion with the equations given in other sources.
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The augmentation functions as a function of energy can be specified in terms of the

dimensionless logarithmic derivative, which is defined as

D(ε) =
[

r

ψ(ε, r )

dψ(ε, r )

dr

]

r=S

. (17.6)

The linear combination of ψ and ψ̇ that has logarithmic derivative D is given by

ψ(D, r ) = ψ(r ) + ω(D) ψ̇(r ), (17.7)

where ω(D) has dimensions of energy and is given by

ω(D) = −ψ(S)

ψ̇(S)

D − D(ψ)

D − D(ψ̇)
, (17.8)

with D(ψ̇) denoting the logarithmic derivative of ψ̇ . If ψ(r ) and ψ̇(r ) are calculated at a

reference energy Eν , then (17.7) is the wavefunction to first order in the energy E(D) − Eν .

It then follows that the variational estimate of the eigenvalue,

E(D) = 〈ψ(D)|Ĥ |ψ(D)〉
〈ψ(D)|ψ(D)〉 = Eν + ω(D)

1 + ω(D)2〈ψ̇(D)|ψ̇(D)〉 , (17.9)

is correct to third order and the simpler expression Eν + ω(D) is correct to second order

[459].

The logarithmic derivative at the sphere radius S can also be expressed in a Taylor series

in E − Eν . The first term is given by the analysis in Sec. 11.4, where Eq. (11.28) shows

that to first order

D(E) − D(Eν) = −me

-h2

1

Sψl(S)2
(E − Eν ), (17.10)

where we have substituted ψ = φ/r . (The factor me/
-h2 = 1 in Hartree atomic units and

me/
-h2 = 1/2 in Rydberg units.) In deriving (17.10) from (11.28), it is assumed that, the

charge Ql(S) in the sphere is unity. This is not essential to the logic, but it is convenient

and valid in the atomic sphere approximation, and is a good approximation in many cases.

Higher-order expressions are given in [459] and [643] and related expressions in the pseu-

dopotential literature in [497].

17.2 General form of linearized equations

We are now in a position2 to define an energy-independent orbital χ j (r) everywhere in space

for a system of many spheres,

χ j (r) = χ e
j (r) +

∑

L ,s

[
ψl,s(r − τs)�Ls j + ψ̇l,s(r − τs)�Ls j

]
i lYL ( ̂r − τs), (17.11)

where ψl,s and ψ̇l,s are the radial functions in each sphere and � and � are factors to be

determined. Between the spheres the function is defined by the envelope function χ e
j (r),

2 This section follows the approach of Kübler and V. Eyert [134].
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which is a sum of plane waves in the LAPW method. In the LMTO approach, χe
j (r) is a

sum of Neumann or Hankel functions as specified in (16.37) or is proportional to (r/S)−l−1

in the κ = 0 formulation of (16.39).

The explicit form of the linearized equations depends upon the choice of the envelope

function, but first we can give the general form. The result is quite remarkable: because of

the properties of ψ and ψ̇ expressed in (17.3) and (17.4) (see Exercise 17.1), the form of

the hamiltonian can be greatly simplified. Furthermore, the “hamiltonian” is expressed in

terms of the solution for the wavefunctions; this allows a reinterpretation of the problem as

a strictly linear solution of the new hamiltonian expressed as matrix elements in the reduced

space of states that span an energy range around the chosen linearization energy.

For a crystal the label s can be restricted to the atoms in one cell, and a basis function

with Bloch symmetry can be defined at each k by a sum over cells T,

ψLsk(r) =
∑

T

eik·TψLs(r − T), (17.12)

and similarly for ψ̇Ls , so that (17.11) becomes

χ jk(r) = χ e
jk(r) +

∑

L ,s

[
ψLsk(r)�Ls j (k) + ψ̇Lsk(r)�Ls j (k)

]
i lYL ( ̂r − τs). (17.13)

The wavefunction is defined by the coefficients �Ls j and �Ls j that are constructed at each k
so that the basis function χ jk(r) satisfies the continuity conditions, with actual equations that

depend upon the choice of basis (see sections below). The construction of the hamiltonian

Hi j (k) and overlap matrices Si j (k) can be divided into the envelope part and the interior of

the spheres at each k, yielding (see Exercise 17.2)

Si j (k) = 〈ik| jk〉e +
∑

L ,s

[
�

†
Lsi (k)�Ls j (k) + �

†
Lsi (k)〈ψ̇ls |ψ̇ls〉�Ls j (k)

]
. (17.14)

and

Hi j (k) − Eν Si j (k) = 〈ik|H − Eν | jk〉e +
∑

L ,s

�
†
Lsi (k)�Ls j (k). (17.15)

The secular equation
∑

j

[
Hi j (k) − εSi j (k)

]
a j (k) = 0 becomes

∑

j

[〈ik|H − Eν | jk〉e + Vi j (k) − ε′Si j (k)
]

a j (k) = 0, (17.16)

where ε′ = ε − Eν is the energy relative to Eν .3 The potential operator acting inside the

spheres is given by

Vi j (k) = 1

2

∑

Ls

[
�

†
Lsi (k)�Ls j (k) + �Lsi (k)�

†
Ls j (k)

]
, (17.17)

which has been made explicitly hermitian [414]. Note that unlike the APW operator V APW in

(16.10), there is no energy dependence in Vi j (k). The linear energy dependence is absorbed

into the overlap term ε′Si j (k) in (17.16).

3 For simplicity, a single linearization energy Eν is used here; in general, Eν depends on l and s, leading to

expressions that are straightforward but more cumbersome.



350 Augmented functions: linear methods

As promised, the resulting equations are remarkable, with the “hamiltonian” expressed

in terms of � and �, i.e. in terms of the wavefunctions ψ and ψ̇ calculated in the sphere

at the chosen energy Eν . However, this is not the whole story. It would appear that the

basis must be doubled in size by adding the function ψ̇ along with each ψ ; this is exactly

what happens in the usual local orbital formulation where one possible way to improve

the basis is by adding ψ̇ to the set of basis functions. Similarly, the basis is doubled in

the related “augmented spherical wave” (ASW) approach [678], which uses functions at

nearby energies ψ(Eν) and ψ(Eν + �E) instead of ψ(Eν) and ψ̇(Eν). However, as we

shall see in the following two sections, there is a relation between � and � provided by the

boundary conditions. Therefore, it will turn out that the basis does not double in size, but

nevertheless the wavefunction is correct to linear order in ε − Eν . Thus errors in the energy

are ∝ (ε − Eν)2, and variational estimates of the energy ( [643], Sec. 3.5) are accurate to

∝ (ε − Eν)3, an example of the “2n + 1” theorem, Sec. 3.7.

17.3 Linearized augmented plane waves (LAPWs)

If we choose a plane wave for the envelope function, we obtain the LAPW method [414]

(see also [677,679–682] and on-line information referred to in Ch. 24). The quantum label

j becomes a reciprocal lattice vector Gm and the form of (16.2) for an APW can be adapted

χLAPW
k+Gm

(r) =
⎧
⎨

⎩

exp(i(k + Gm) · r), r > S,

∑
Ls CLs(k + Gm)ψLs(Dls|Km |, r)i lYL ( ̂r − τs), r < S,

(17.18)

where s denotes the site in the unit cell, L ≡ l, ml , Km ≡ k + Gm . The solution inside the

sphere of radius Ss is fixed by matching the plane wave, requiring the function to be continu-

ous and have continuous first derivative. This boundary condition leads to ψls(Dls|Km |, r) as

a combination of ψls and ψ̇ls as given below. It is this step that includes energy dependence

to first order without increasing the size of the basis.

Since the expansion of the plane wave is given by Eq. (J.1), this is accomplished if the

logarithmic derivative is the same as for the plane wave,

DlsK =
[

x
j ′
l (x)

jl(x)

]

x=K Ss

, (17.19)

which fixes the solution inside the sphere s for a given L and K to be given by (see Eq. (17.7))

ψls(DlsK , r ) = ψls(r ) + ωlsK ψ̇ls(r ), (17.20)

and the total solution in the sphere is given by (16.6) with

jl (Kmr ) → jl(Km Ss)

ψls(DlsK , Ss)
ψls(DlsK , r ). (17.21)
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Thus coefficients � and � are given by

�LsGm (k) = 4π eiKm ·τs
jl (Km Ss)

ψls(DlsKm , Ss)
YL (K̂m) (17.22)

and

�LsGm (k) = �LsGm (k) ωlsGm , (17.23)

where Km = k + Gm and Km = |Km |.
The resulting equations have exactly the same form as the APW equations (16.10)

and (16.12), with the addition of the overlap term and the simplification that the opera-

tor V LAPW
G′,G (k) is independent of energy. The explicit kinetic energy terms are the same as in

(16.10), which is energy-independent. The remaining terms in the secular equation, (17.16),

involving �, �, and the overlap can be used conveniently in actual calculations [414] in

the form given in (17.14)–(17.16) with relations (17.22) and (17.23). The expressions can

also be transformed into a form for V LAPW
G′,G (k) that is very similar to the APW expression

(16.12), with additional terms but with no energy dependence [132, 134].

Major advantages of the LAPW method are its general applicability for different materi-

als and structures, its high accuracy, and the relative ease with which it can treat a general

potential (Sec. 17.9). Disadvantages are increased difficulty compared to plane wave pseu-

dopotential methods (so that it is more difficult to develop techniques such as Car–Parrinello

simulations based upon the LAPW method) and the fact that a large basis set is required

compared to KKR and LMTO methods (so that it is more difficult to extract the simple

physical interpretations than for those methods).

More on the LAPW basis

How large is the basis required in realistic LAPW calculations? A general idea can be

derived from simple reasoning [414]. The number of plane waves, chosen to have wavevector

G < Gmax, is expected to be comparable to pseudopotential calculation for materials without

d and f electrons (since the rapidly varying part of the d and f states are taken care of by

the radial functions), e.g. ≈100 plane waves/atom, typical for high-quality pseudopotential

calculations on Si (see also Sec. 16.2). The size of the basis is somewhat larger than for

the APW since each function is continuous in value and slope. The expansion in angular

harmonics is then fixed by the requirement that the plane waves continue smoothly into the

sphere of radius S: since a Ylm has 2l zeros around the sphere, an expansion up to lmax can

provide resolution ≈2π S/ lmax in real space or a maximum wavevector ≈lmax/S. Thus, in

order for the angular momentum expansion to match smoothly onto plane waves up to the

cutoff Gmax, one needs lmax ≈ SGmax, which finally results in lmax ≈ 8 (see Exercise 17.3)

and larger for accurate calculations in complex cases [414, 683].

17.4 Applications of the LAPW method

The LAPW method, including the full-potential generalization of Sec. 17.9, is the most

accurate and general method for electronic structure at the present time. The calculations
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Figure 17.2. Full potential LAPW calculations of the total energy of W in bcc and fcc structures.

Note the break in the vertical scale. The two curves for each structure denote integrations over the

irreducible BZ with 30 and 90 points, respectively. The absolute value of the energy is given in the

figure on the left. On the right is shown the convergence with plane wave cutoff Skmax, where S is

the radius of the muffin-tin sphere. From [684].

can be done for structures of arbitrary symmetry with no bias if the basis is extended to

convergence. Extensive tests of convergence are illustrated in Fig. 17.2 taken from the work

of Jansen and Freeman [684] in the early development of the full-potential LAPW method.

The figure shows the total energy of W in the bcc and fcc crystal structures as a function of

volume. The total energy is ≈ −16,156 Ha and the energy is converged to less than 0.001

Ha, including the basis set convergence and integration over the BZ. On the right-hand side

of Fig. 17.2 is shown the convergence as a function of plane wave cutoff kmax plotted on a

logarithmic scale.

Examples of comparisons of LAPW with other methods are given in Tab. 13.1. When done

carefully, pseudopotential and PAW agree well with LAPW for most cases. Exceptions are

materials in which there is significant core relaxation, such as the Ca core in CaF2. Although

core relaxation can, in principle, be included in pseudopotential methods, it requires special

efforts not yet developed. LAPW calculations automatically include all the core states, so

that it is straightforward to include relaxation (or exclude it when not needed), relativistic

effects [446], nuclear magnetic resonance chemical shifts, electric field gradients at the

nucleus, and many other effects.

However, the generality and accuracy of LAPW comes at a price: there is a large basis

set of plane waves and high angular momentum functions which in turn means that the

potentials must be represented accurately (to twice the cutoffs in wavevectors and angular

moments used for the wavefunctions) as described in Sec. 17.9. Other methods are faster,

in which case LAPW calculations can serve as a check. Other methods are much more
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adaptable for generation of new developments that are the subject of Part V, Chs. 18–23.

In fact all the developments of quantum molecular dynamics, polarization and localization,

excitations, and O (N ) methods were stimulated by other approaches and have been adapted

to LAPW in only a few cases.

Examples of total energies and bands have already been shown in Ch. 2. One is the energy

versus displacement for the unstable optic mode that leads to the ferroelectric distortion in

BaTiO3 shown in Fig. 2.8. The LAPW results [142] are the standard to which the other

calculations are compared for this relatively simple structure. As shown in Fig. 2.8, local

orbital pseudopotential methods (and also plane wave calculations) give nearly the same

results when done carefully. When using a pseudopotential, it has been found to be essential

to treat the Ba semicore states as valence states for accurate calculations.

The other examples in Ch. 2 are MgB2 and graphite, for which LAPW bands are shown in

Fig. 2.29. These are cases involving s and p states where pseudopotentials are traditionally

applied and, indeed, pseudopotentials give essentially identical results. There are advantages

with LAPW, nevertheless, since the same codes and the same level of approximation can

be utilized for these open structures with light atoms as for materials with heavy atoms and

d and/or f states. Also the DOS for ferromagnetic Fe is shown in Fig. 14.10, where it is

compared to tight-binding fit to the LAPW bands.

Perhaps the most important class of application in which the LAPW approach is par-

ticularly adapted are compounds involving transition metals and rare earth elements. Un-

derstanding many properties of these interesting materials often involves small energy

differences due to magnetic order and/or lattice distortions. Linearization simplifies the

problem so that one can use full potential methods with no shape approximations. Since the

LAPW approach describes the wavefunctions with unbiased spherical and plane waves, it

is often the method of choice.

Perhaps the best example are the bands and total energies for the high-temperature super-

conductors [683]. For, example, the structure of YBa2Cu3O7 is shown in Fig. 17.3. There

are two CuO2 planes that form a double layer sandwiching the Y atoms, one CuO chain and

two Ba–O layers per cell. The structure must be optimized with respect to all the degrees of

freedom and three independent cell parameters. The O atoms in the planes are not exactly in

the same plane as the Cu atoms and the “dimpling” has significant effects on the bands. The

process of energy minimization with respect to the atomic positions leads to comparison

with experiment, including phonon energies that are found to be in very good agreement

with experiment, e.g. for YBa2Cu3O7 in [685].

Figure 17.4, as an example, shows one of the host of calculations [683] that have led to

similar conclusions. The most important conclusion is that the states near the Fermi energy

are primarily the one simple band made up of states that involve the Cu dx2−y2 and O p

states in an anti-bonding combination. The number of electrons is just enough to almost

fill the bands, and there is one hole per Cu atom in the band that crosses the Fermi energy

(Exercise 17.8). The properties of this band on a square lattice representing one plane have

been emphasized in Sec. 14.5 and a quantitative description of this band, disentangled from

the rest, is given later in Figs. 17.10 and 17.11.
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Figure 17.3. Crystal structure of YBa2Cu3O7 showing two CuO2 planes that form a double layer

sandwiching the Y atoms, the CuO chain, and the two Ba–O layers per cell. The orthorhombic BZ is

shown with the y-direction along the chain axis. Other high-temperature superconductors have

related structures all involving CuO2 planes. Provided by W. Pickett, similar to Fig. 6 in [683].
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Figure 17.4. Band structure of YBa2Cu3O7 computed using the LAPW method [686]. Other

calculations [683] with various methods give essentially the same results. The band that protrudes

upward from the “spaghetti” of other bands is the antibonding (out-of-phase) Cu–O band that is

mainly O 2p in character. Simple counting of electrons (Exercise 17.8) shows that the highest band

has one missing electron per Cu, leading to the Fermi level in the band, as shown. Provided by

W. Pickett, similar to Fig. 25 in [683].
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Thus the Kohn–Sham equations indicate which states are important at the Fermi energy.

Yet there is a fundamental failure of the simplest forms of density functional theory, i.e. the

LDA and GGA approximations. Experimentally the CuO systems with one hole per Cu are

antiferromagnetic insulators, not metals with half-filled bands. It is far beyond the subject

of this book to attempt to summarize all the issues. Let it suffice to say that it appears to be

essential to describe both non-local exchange (which can be done in Hartree–Fock or exact

exchange methods (Ch. 8)) and correlation among the electrons in the band near the Fermi

energy.

17.5 Linear muffin-tin orbital (LMTO) method

The LMTO method [643,644] builds upon the properties of muffin-tin orbitals, which have

been defined in Sec. 16.5 in terms of the energy ε and the decay constant κ that characterizes

the envelope function. For a fixed value of κ an LMTO basis function inside a sphere is

defined to be a linear combination of ψ(ε, r ) and ψ̇(ε, r ) evaluated at the energy ε = Eν as

in (17.11). The differences from an MTO defined in (16.37) are: (1) inside the “head sphere”

in which a given LMTO is centered, it is a linear combination of ψl (Eν, r ) and ψ̇l(Eν, r );

and (2) the tail in other spheres is replaced by a combination of ψ̇l(Eν, r ). The form of an

LMTO can be expressed in a very intuitive and compact form by defining functions Jl and

Nl , which play a role analogous to the Bessel and Neumann functions jl and nl in (16.37):

χLMTO
L (ε, κ, r) = i lYL (r̂)

⎧
⎨

⎩

ψl (ε, r ) + κ cot(ηl(ε))Jl(κr ), r < S,

κ Nl(κr ), r > S,

(17.24)

The form of Jl is fixed by the requirement that the energy derivative of χLMTO
L vanishes at

ε = Eν for r ≤ S,

d

dε
χLMTO

L (ε, κ, r) = i lYL (r̂ )

[

ψ̇l (ε, r ) + κ
d

dε
cot(ηl (ε))Jl (κ, r )

]

= 0, (17.25)

which leads to (Exercise 17.4)

Jl(κr ) = − ψ̇l(Eν, r )

κ d
dε

cot(ηl (Eν))
, r ≤ S. (17.26)

This defines an energy-independent LMTO basis functionχLMTO
L (Eν, κ, r) inside the sphere,

given by the first line of (17.24) with ε = Eν .

The augmented Neumann functions NL can be defined as the usual nl in the interstitial,

with the tails in other spheres given by the same expansion as in (16.38) with nl → Nl and

jl → Jl ,

NL (κ, r − R) = 4π
∑

L ′,L ′′
CL L ′ L ′′n∗

L ′′(κ, R − R′)JL ′ (κ, r − R′), (17.27)
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where NL (κ, r) ≡ i lYL (r̂)Nl(κr ), etc. Thus an LMTO is a linear combination of ψ and ψ̇ in

the central sphere, which continues smoothly into the interstitial region and joins smoothly

to ψ̇ in each neighboring sphere.

If we chose κ = 0 for the orbital in the interstitial region, as was done for an MTO

in Sec. 16.6, then the expressions can be simplified in a way analogous to (16.44). The

wavefunction inside the sphere is chosen to match the solution ∝ (r/S)−l−1 in the interstitial;

this is accomplished for r < S by choosing the radial wavefunction with D = −l − 1 as

defined in (17.7), i.e. ψl (D = −l − 1, r ) ≡ ψl−(r ). In turn this can be expressed in terms

of ψ and ψ̇ at a chosen reference energy together with ω from (17.8). The tails from other

spheres continued into the central sphere must replace the tail ∝ (r/S)l keeping the same

logarithmic derivative, i.e. (r/S)l → ψl(D = l, r ) ≡ ψl+(r ) with the proper normalization.

The result is

χLMTO
L ,k (r) = ψL−(r)

ψl−(S)
− 1

ψl+(S)

∑

L ′
ψL ′+(r)

1

2(2l ′ + 1)
SL L ′ (k). (17.28)

This defines an energy-independent LMTO orbital, along with the continuation into the

interstitial region. The orbital itself contains effects of the neighbors through the struc-

ture constants and through a second effect, the requirement on the logarithmic derivative

D = −l − 1 in the first term needed to make the wavefunction continuous and have con-

tinuous slope. Thus the orbital contains the tail cancellation to lowest order and the energy
dependence to linear order has been incorporated into the definition of the LMTO basis
function.

The LMTO method then finds the final eigenvalues using the LMTO basis and a variational

expression with the full hamiltonian. This has many advantages: the energy is thus accurate

to second order (and third order using appropriate expressions [643]) and the equations

extend directly to full-potential methods. This is analogous to the expression for a single

sphere and is accomplished by solving the eigenvalue equation,

det
∣
∣〈kL|Ĥ |kL ′〉 − ε〈kL|kL ′〉∣∣ = 0, (17.29)

by standard methods. It is clear from the form of (17.28) that the matrix elements of the

hamiltonian and overlap will be expressed as a sum of one-, two- and three-center terms,

respectively, involving the structure constants to powers 0, 1, and 2. The expressions can be

put in a rather compact form after algebraic manipulation, and we will only quote results

[134, 643]. Here we consider only a muffin-tin potential which simplifies the expressions.

If we define ωl− = ωl(−l − 1), ωl+ = ωl(l), �l = ωl+ − ωl−, and ψ̃l = ψl−
√

(S/2), then

the expression for χ jk(r) in (17.13) can be specified by

�L L ′′ (k) = ψ̃−1
l δL L ′′ + ψ̃l ′′

�l ′′
SL L ′′ (k), (17.30)

and

�L L ′′ (k) = ωl ′′− ψ̃−1
l δL L ′′ + ψ̃l ′′

�l ′′
ωl ′′+ SL L ′′(k). (17.31)
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The expressions for the matrix elements are, in general, complicated since they involve the

interstitial region, but the main points can be seen by considering only the atomic sphere

approximation (ASA) as used in Sec. 16.6 in which the interstitial region is eliminated.

Also the equations are simplified if the linearization energy Eν is set to zero, i.e. the

energy ε is relative to Eν ; this is always possible and it is straightforward to allow Eν to

depend upon l as a diagonal shift for each l. The resulting expressions have simple forms

[134, 643]

〈Lk|H |kL ′〉 = ωl−
ψ̃l

2
δL L ′ +

[
ωl+
�l

+ ωl ′+
�l ′

]

SL L ′ (k)

+
∑

L ′′
SL L ′′ (k)

[

ψ̃2
l ′′

ωl ′′+
�2

l ′′

]

SL ′′ L ′(k), (17.32)

and

〈kL|kL ′〉 = {
(1 + ω2

− 〈ψ̇2〉)/ψ̃2
}

l
δL L ′

+ {{(1 + ω+ ω− 〈ψ̇2〉)/�}l + {· · ·}l ′
}

Sk
L L ′

+
∑

L ′′
Sk

L L ′′ [ψ̃2 ( 1 + ω2
+〈ψ̇2〉)/�2]l ′′ Sk

L ′′ L ′ . (17.33)

The terms involving δL L ′ are one-center terms (which are diagonal in L for spherical po-

tentials); terms with one factor of SL L ′′ are two-center; and those with two factors are

three-center terms. The hamiltonian has the interpretation that the on-site terms involve the

energy ωl− = ωl(−l − 1) of the state with D = −l − 1, whereas all terms due to the tails

involve the energy ωl+ = ωl (l) for the state with D = l. Similarly, the overlap terms involve

〈ψ̇2〉 and combinations of ω+ and ω−.

Thus, within the ASA the LMTO equations have very simple structure, with each term in

(17.32) and (17.33) readily calculated from the wavefunctions in the atomic sphere. Within

this approximation, the method is extremely fast, and the goal has been reached of a minimal

basis that is accurate. Only wavefunctions with l corresponding to the actual electronic states

involved are needed. This is in contrast to the LAPW method where one needs high l in order

to match the spherical and plane waves at the sphere boundary. Furthermore, the interstitial

region and a full potential can be included; the same basis is used but the expressions for

matrix elements are more cumbersome. The size of the basis is still minimal and the method

is very efficient.

There is a price, however, for this speed and efficiency. The interstitial region is not

treated accurately since the LMTO basis functions are single inverse powers or Hankel

or Neumann functions as in (17.24). Open structures can be treated only with correction

terms or by using “empty spheres.” The latter are useful in static, symmetric structures, but

the choice of empty spheres is problematic in general cases, especially if the atoms move.

Finally, there is no “knob” to turn to achieve full convergence as there is in the LAPW

method. Thus the approximations in the LMTO approach are difficult to control and care

is needed to ensure robust results.
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Improved description of the interstitial in LMTO approaches

One of the greatest problems with the LMTO approach, as presented so far, is the ap-

proximate treatment of the interstitial region. The use of a single, energy-independent tail

outside each sphere was justified in the atomic sphere approximation (Fig. 16.10) where the

distances between spheres is very small (and in the model the interstitial is non-existent).

This approximation fails for open structures where the interstitial region is large, e.g. in

the diamond structure, and applications of the LMTO method depend upon tricks like

the introduction of empty spheres [669, 670]. This can be done for high-symmetry struc-

tures, but the method cannot deal with cases like the changing structures that occur in a

simulation.

An alternative approach is to generalize the form of the envelop function, generalizing

the single Hankel or power law function given in (16.39), (16.37), or (17.24). One approach

is to work with multiple Hankel functions with different decay constants κi that can better

describe the interstitial region and yet keep the desirable features of Hankel functions

[687, 688]. Using this approach, a full-potential LMTO method has been proposed [689]

that combines features of the LMTO, LAPW, and PAW approaches. Like the LAPW it has

multiple functions outside the spheres, but many fewer functions. Like the PAW method, the

smooth functions are continued inside the sphere where additional functions are included

as a form of “additive augmentation.”

The form of the basis function proposed is an “augmented smooth Hankel function.” In

(17.24), the tail of the LMTO function is a Neumann function, which at negative energy

(imaginary κ) becomes a Hankel function, which is the solution of

(∇2 + κ2) h0(r) = −4πδ(r). (17.34)

This function decays as i−le−|κ|r/|κ|r at large r and it diverges at small r as illustrated in

Fig. 17.5. The part inside the sphere is not used in the usual LMTO approach and it makes the

function unsuitable for continuation in the sphere. Methfessel and van Schilfgaarde [689]

instead defined a “smooth Hankel function” that is a solution of

(∇2 + κ2) h̃0(r) = −4πg(r). (17.35)

If g(r) is chosen to be a gaussian, g(r) ∝ exp(r2/R2
sm), then h̃0(r) is a convolution of a

gaussian and a Hankel function. It has the smooth form shown in Fig. 17.5 and has many

desirable features of both functions, including analytic formulas for two-center integrals and

an expansion theorem. It is proposed that the form of the smooth function near the muffin-tin

radius more closely resembles the true function than the Hankel function, and that the sum

of a small number of such functions can be a good representation of the wavefunctions in

the interstitial region [689].

17.6 “Ab initio” tight-binding

It has been pointed out in Sec. 16.7 that the MTO approach provides a localized basis and

tight-binding-type expressions for the Kohn–Sham equations. With a unitary transformation
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Figure 17.5. Comparison of standard and “smooth” Hankel functions for l = 0 (solid lines), l = 1

(dashed), and l = 2 (dotted) for the case κ = i and the smoothing radius Rsm = 1.0 in the gaussian.

From [689].

that is equivalent to “screening of electrostatic multipoles,” one can transform to a compact

short-range form [668]. The transformation applies in exactly the same way in the LMTO

approach since it depends only upon the form of the envelop function outside the sphere.

The matrix elements between different MTOs decrease as R−(l+l ′+1) which leads to short-

range interactions for large l. Matrix elements for l + l ′ = 0, 1, or 3 can be dealt with by

suitable transformations [668].

There are two new features provided by linearization. Most important, the linear equations

have the same form as the usual secular equations so that all the apparatus for linear equations

can be applied. Second, transformation of the equations leads to very simple expressions

for the on-site terms and coupling between sites in terms of ψ and ψ̇ . The short-range

LMTO is the ψ function in one sphere coupled continuously to the tails in neighboring

spheres which are ψ̇ functions. This provides an orthonormal minimal basis tight-binding

formulation in which there are only two-center terms, with all hamiltonian matrix elements

determined from the underlying Kohn–Sham differential equation. The disadvantage is that

all the terms are highly environment dependent, i.e. each matrix element depends in detail

upon the type and position of the neighboring atoms.

This “ab initio” tight-binding method is now widely used for many problems in electronic

structure. Because the essential calculations are done in atomic spheres, determination of

the matrix elements can be done very efficiently. Combination of the recursion method

(Sec. 23.3) and the tight-binding LMTO [668] provides a powerful method for density-

functional calculations for complex systems and topologically disordered matter [690,691].

For example, in Fig. 23.3 is shown the electronic density of states of liquid Fe and Co

determined using tight-binding LMTO and recursion [692]. The calculations were done on

600 atom cells with atomic positions, representing a liquid structure generated by classical

Monte Carlo and empirical interatomic potentials. Such approaches have been applied to

many problems in alloys, magnetic systems, and other complex structures.
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Figure 17.6. Development of the band structure of hcp Os in the LMTO method. From left to right:

non-relativistic “canonical” (Sec. 16.6) bands neglecting hybridization of d and s, p bands (shown

dark); including hybridization (with dark lines indicating the most affected bands); relativistic bands

without spin orbit; fully relativistic bands. From [464]; original calculations in [693].

17.7 Applications of the LMTO method

Here we present several illustrations of understanding and quantitative information gained

from the LMTO method in its simplest form. The first is the equilibrium volume and bulk

moduli. It is a great advantage to calculate the pressure directly using the formulas valid

in the ASA given in Sec. I.3. The equilibrium volume per atom � is the volume for which

the pressure P = 0, and the bulk modulus is the slope B = −dP/d�. The results for 4d

and 5d transition metals [464] compare well with the calculations using the KKR method

presented in Fig. 2.3. The results are quite impressive and show the way that important

properties of solids can be captured in simple calculations with appropriate interpretation.

A second example is the progression of energy bands from the simplest unhybridized

“canonical” form to the full calculation. Figure 17.6 shows this progression for hcp Os

along one line in the BZ from unhybridized canonical bands on the left to full hybridized

relativistic bands on the right.

It is instructive the give an example of LMTO applied to semiconductors which have

open structures – very different from close packed metals for which MTOs were originally

designed. By including empty spheres [669, 670] the structure becomes effectively close-

packed and accurate calculations can be done with only a few basis functions per empty

sphere. An example is the calculation of Wannier functions [694] described in Sec. 21.2

and band offsets of semiconductor structures [580, 581]. As examples of band structure

calculations, Figs. 17.7 and 17.8 show calculations for GaAs and Ge including relativistic

effects and core relaxation [571]. This was the first work to show that with proper LDA
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Figure 17.7. Band structure of GaAs (solid lines) calculated using the local density approximation

(LDA) including scalar relativistic effects in the LMTO formalism [571]. The dots indicate results

of pseudopotential calculations, which are essentially identical. The gap is lower than experiment, as

indicated by the LDA results given in Fig. 2.26. From [571].
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Figure 17.8. Band structure of Ge calculated using the local density approximation (LDA) including

scalar relativistic effects in the LMTO formalism [571]. Note that the band gap is essentially zero.

Since spin–orbit coupling will split the valence band (not shown), this will cause an overlap of the

valence and conduction bands – which means that in the LDA, Ge is predicted to be a metal! The

same result is found in pseudopotential calculations done later, for example, as shown in Fig. 2.25.

From [571].
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Figure 17.9. Structure sequence for the lanthanide series of trivalent rare earth elements as

calculated by Duthi and Pettifor [695]. The notation is “Sm” for the low-symmetry samarium

structure and “dhcp” for the double hcp structure, and two different values for the c/a ratio are

considered. Stabilization is interpreted to result from filling of the bonding part of the d band

following the reasoning of Friedel [697]. From [695].

treatment, Ge is a metal! Also shown in Fig. 17.7 are bands for GaAs calculated using the

plane wave pseudopotential method, which give essentially identical results.

Another example that illustrates many different features of the LMTO approach is the

work of Duthi and Pettifor [695], which provided a simple explanation for the sequence

of structures observed in the series of rare earths elements. Because the energy differences

between the structures is very small, these authors made use of the simplification given in

Eq. (I.7), which expresses an energy difference between structures in terms of the difference

of the sum of eigenvalues. In these expressions they used the atomic sphere approximation

(ASA) in which the potential is essentially the same for a given element for the different

structures, since the atomic volume is almost the same in the different structures. Finally, the

sum of eigenvalues was calculated using the tight-binding form of LMTO and the recursion

method of Haydock and coworkers (Sec. M.5 and [696]). The results are presented in

Fig. 17.9 which shows the structure sequence hcp, the samarium structure, dhcp (double

hcp), and fcc. Stabilization results from filling of the d band and can be considered to be

an example of Friedel is argument [697] that stabilization is due to filling of the bonding

states, but it took the combination of ideas in [695] to sort out the way in which bonding

varies with structure.

17.8 Beyond linear methods: NMTO

Recent developments in MTO methods show how approximations that were introduced

during development of the LMTO approach can be overcome. The new NMTO approach
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[698, 699] provides a more consistent formalism, treats the interstitial region accurately,

and goes beyond the linear approximation.

In the MTO and LMTO approaches, energy-independent orbitals were generated using

the approximation of a fixed κ in the envelop function that describes the interstitial region.

This breaks the relation of κ and the eigenvalue that causes non-linearities in the KKR

method. However, it also is an approximation that is justified only in close-packed solids. In

contrast, the wavefunction inside the sphere is treated more accurately through linearization.

The NMTO method treats the sphere and interstitial equally by working with MTO-type

functions ψL (En, r − R) localized around site R and calculated at fixed energies En both

inside the sphere and in the interstitial (assumed to have a flat muffin-tin potential). The

NMTO basis function is then defined to be a linear combination of N, such functions evaluate

at N energies,

χNMTO
RL (εr) =

N∑

n=0

∑

R′ L ′
ψL ′(En, r − R′)L N

nL ′R′,LR(ε, r), (17.36)

where L N
n (ε) is the transformation matrix that includes the idea of screening (mixing states

on different sites) and a linear combination of states evaluated at N fixed energies.

As it stands, the NMTO function is energy dependent and appears to be merely a way

to expand the basis. However, Andersen and coworkers [698, 699] have shown a way of

generating energy-independent functions χNMTO
RL (r) using a polynomial approximation so

that the Schrödinger equation is solved exactly at the N chosen energies. The ideas are a

generalization of the transformation given in Sec. 11.9, which were chosen to give the correct

phase shifts at an arbitrary set of energies. The basic ideas can be understood, following

the steps in Exercise 11.12, where the exact transformation, (11.45), is easily derived. In

the present case, the transformation is more general, mixing states of different angular

momenta on different sites as indicated in (17.36). The result of the transformation is that

each eigenfunction is accurate to order (ε − E0)(ε − E1) · · · (ε − EN ) and the eigenvalue

to order (ε − E0)2(ε − E1)2 · · · (ε − EN )2.

As an illustration of the NMTO approach, Fig. 17.10 shows the dx2−y2 orbital centered

on a Cu atom in YBa2Cu3O7. This orbital is not unique; it is chosen to represent the mixed

Cu–O band that crosses the Fermi level, as shown in Fig. 17.4. Note that the state centered

on one Cu atom is extended, with important contributions of neighboring O and Cu sites.

The band resulting from that single orbital is shown as dark circles in Fig. 17.11, which can

be compared with the states near the Fermi energy in Fig. 17.4. (Also shown are the energies

at which the state is required to fit the full band structure.) The important point is that the

procedure leads to an accurate description of the desired band, without the “spaghetti”

of other bands. Such a function is derived by focusing on the energy of interest and by

“downfolding” the effects of all the other bands by identifying the angular momentum

channels of interest in the transformation, (17.36).

Although it is beyond the scope of this book, we can draw two important conclusions

about the promise of the NMTO approach. First, for MTO-type methods, it appears to

remove the limitation to close-packed structures, and, second, it allows accurate solution
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Figure 17.10. Orbital of dx2−y2 symmetry centered on a Cu atom in YBa2Cu3O7 chosen to describe

the actual band crossing the Fermi energy and derived using the NMTO method [699]. The resulting

band derived from this single orbital is shown in Fig. 17.11. From [699].
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Figure 17.11. Band from the orbital shown in Fig. 17.10 (dark symbols) compared to the full bands

(light symbols), which are essentially the same as the bands in Fig. 17.4. Also shown are the

energies at which the band is designed to agree. The band is well described even when it has

complicated shape and crosses other bands. From [699].

for general structures. This means that the MTO approach can provide a “first-principles

tight-binding approach” (see Secs. 16.7 and 17.5) applicable to general structures of crystals

and molecules. Furthermore, if calculations can be done efficiently, then NMTO calculations

can provide forces and can be used in molecular dynamics. Taking a broader perspective,

the NMTO approach is a promising addition to all-band structure methods, potentially

providing new approaches beyond the present linearized methods.

17.9 Full potential in augmented methods

One of the most important outcomes of linearization is the development of full-potential

augmented methods, e.g. for LAPW [414, 677, 681, 682] and LMTO [700] methods. Al-

though actual implementations may be cumbersome and cannot be described here, the basic

ideas can be stated very simply. Since the linearized methods have been derived in terms
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of matrix elements of the hamiltonian in a fixed basis, one simply needs to calculate ma-

trix elements of the full non-spherical potential �V in the sphere and the full spatially

varying potential in the interstitial. The basis functions are still the same APW, PAW, or

LMTO functions χL , which are derived from a spherical approximation to the full potential.

However, the spheres merely denote convenient boundaries defining the regions where the

basis functions and the potential have different representations. In principle, there are no

approximations on the wavefunctions or the potential except for truncations at some lmax

and Gmax. If the basis is carried to convergence inside and outside the spheres, the accuracy

is, in principle, limited only by the linearization.

Inside each sphere the potential is expanded in spherical harmonics,

V (r, θ, φ) =
∑

L

Vl(r )i l Ylm(θ, φ), (17.37)

so that matrix elements 〈L|V |L ′〉 can be calculated in terms of radial integrals. Similarly,

the interstitial matrix elements are no longer diagonal in plane waves, but they can be found

straightforwardly by integrating in real space. In the PAW method and the multiple-κ LMTO

method, the smooth functions continue into the sphere and it is convenient also to define

the potential as a smooth part everywhere plus a sharply varying part restricted to spheres.

In that case, the matrix elements of the smooth part can be calculated by FFT methods just

as is done in pseudopotential methods (Sec. 13.1).

Of course, in the self-consistent calculation one also needs to calculate the potential

arising from the density. This necessitates a procedure in which the Poisson equation is

solved taking into account the sharply varying charge density inside the spheres. This is

always possible since the field inside can be expanded in spherical harmonics and outside

the spheres can be represented by smooth functions plus multipole fields due to the charge

inside the spheres. Perhaps the simplest approach is to define both the density and the

potential as smooth functions everywhere, with sharply varying components restricted to

spheres [414, 475].

There is a quantitative difference between the LAPW and LMTO approaches in the

requirements on the full potential. Since the minimal basis LMTO only involves functions

with lmax given by the actual angular momenta of the primary states making up the band

(e.g. l = 2 for transition metals), only angular momenta up to 2lmax are relevant. However,

for the LAPW methods, much higher angular momenta in the wavefunctions (typically

lmax ≈ 8 to 12 for accurate calculations) are required to satisfy the continuity conditions

accurately. In principle, very large values of lmax are needed for the potential, and in practice

accurate numerical convergence can be reached with lmax ≈ 8 to 12. The difference results

from the fact that the LAPW basis is much larger; in order to represent the interstitial region

accurately many plane waves are needed, which leads to the need for high angular momenta

in order to maintain the continuity requirements (see Exercises 17.5–17.7).

SELECT FURTHER READING

Original papers:

Andersen, O. K., “Linear methods in band theory,” Phys. Rev. B 12: 3060–3083, 1975.



366 Augmented functions: linear methods

Andersen, O. K. and Jepsen, O., “Explicit, first-principles tight-binding theory,” Physica 91B: 317,

1977.

Marcus, P. M., “Variational methods in the computation of enegy bands,” Int. J. Quant. Chem. 1S:

567–588, 1967. [690]

Summary of various methods:

Blaha, P. Schwarz, K. Sorantin, P. and Trickey, S.B., “Full-potential, linearized augmented plane wave

programs for crystalline systems,” Computer Phys. Commun. 59(2): 399, 1990.
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Exercises

17.1 Derive Eq. (17.4) from the definition of ψ̇ . In addition, show the more general relation

(Ĥ − ε)ψ (n)(ε, r ) = nψ (n+1)(ε, r ), (17.38)

where n is the order of the derivative. Hint: Use the normalization condition.

17.2 Carry out the manipulations to show that the hamiltonian and overlap matrix elements can

be cast in the linearized energy-independent form of Eqs. (17.14) to (17.17). Thus the matrix

elements are expressed in terms of � and �, which are functions of the wavefunctions ψ and

ψ̇ calculated in the sphere at the chosen energy Eν .

17.3 Derive the result that lmax ≈ 8 in LAPW calculations. Consider a simple cubic crystal with one

atom/cell with the volume of the atomic sphere ≈1/2 the volume of the unit cell. The order of

magnitude of ≈100 planes waves is reasonable since it corresponds to a resolution of ≈1001/3

points in each direction. If the plane waves are in a sphere of radius Gmax, find Gmax in terms

of the lattice constant a. This is sufficient to find an estimate of lmax using the arguments in the

text. If the number of plane waves were increased to 1,000, what would be the corresponding

lmax?

17.4 The condition (17.25) requires that the LMTO be independent of the energy to first order and is

the key step that defines an LMTO orbital; this removes the rather arbitrary form of the MTO

and leads to the expression in terms of ψ̇ . Show that this condition leads to the expression,

(17.26), for the J function proportional to ψ̇ inside the sphere.

17.5 If the augmented wavefunction (LAPW or LMTO) is expanded in Ylm up to lmax, what is

the corresponding ldensity
max needed in an exact expansion for the charge density for the given

wavefunction? Give reasons why it may not be essential to have ldensity
max this large in an actual

calculation.

17.6 If the density is expanded in Ylm up to ldensity
max , what is lmax for the Hartree potential? For Vxc?
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17.7 What is the maximum angular momentum lpot
max of the potential (17.37) needed for exact eval-

uation of matrix elements 〈L|V |L ′〉 if the wavefunction is expended up to lmax? Just as in

Exercise 17.5, give reasons why smaller values of lpot
max may be acceptable.

17.8 Consider the compound YBa2Cu3O7. Determine the number of electrons that would be required

to fill the oxygen states to make a closed-shell ionic compound. Show that for YBa2Cu3O7 there

is one too few electrons per Cu atom. Thus, this material corresponds to one missing electron

(i.e. one hole per Cu).
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Imagination is more important than knowledge
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Quantum molecular dynamics (QMD)

Summary

Of all the recent methods for computing the properties of materials from elec-
tronic equations, one stands out: i.e. the quantum molecular dynamics (QMD)
simulations pioneered by Car and Parrinello in 1985 [156]. This work and
subsequent developments have led to a revolution in the capabilities of theory
to treat real, complex molecules, solids, and liquids including thermal motion
(molecular dynamics), with the forces derived from the electrons treated by
(quantum) density functional methods. Altogether, four advances create the
new approach to electronic structure. These comprise:

� optimization methods (instead of variational equations),
� equations of motion (instead of matrix diagonalization),
� fast Fourier transforms (FFTs) – (instead of matrix operations), and
� a trace of occupied subspace (instead of eigenvector operations).

Car and Parrinello combined these features into one unified algorithm for elec-
tronic states, self-consistency, and nuclear movement. There has also been an
explosion of alternative approaches that utilize the force theorem, together with
efficient iterative methods described in App. M or simpler tight-binding-type
methods. These are described in the present chapter as well as the Car–Parrinello
method per se.

18.1 Molecular dynamics (MD): forces from the electrons

The basic equations for the motion of classical objects are Newton’s equations. For a set of

nuclei treated as classical masses with an interaction energy E[{RI }] dependent upon the

positions of the particles {RI }, the equations of motion are

MI R̈I = − ∂ E

∂RI
= FI [{RJ }]. (18.1)

Such equations can be solved analytically only in the small-amplitude harmonic approxi-

mation. In general, the solution is done by numerical simulations using discrete time steps

based upon discrete equations such as the Verlet algorithm, the properties of which are well
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established. [437] At each time step t the position of each nucleus is advanced to the next

time step t + �t depending upon the forces due to the other nuclei at the present time step:

RI (t + �t) = 2RI (t) + RI (t − �t) + (�t)2

MI
FI [{RJ (t)}], (18.2)

where the first two terms are just the law of inertia. The key property of the Verlet algorithm,

well established in classical simulations, is that the errors do not accumulate. Despite the

fact that the equations are only approximate for any finite �t , the energy is conserved and

the simulations are stable for long runs.

Of course, the forces on the nuclei are determined by the electrons in addition to direct

forces between the nuclei. In the past this has been done by effective potentials (such as

the Lennard–Jones potential) that incorporate effects of the electrons. These are adequate

for many cases like rare gas atoms, but it is clear that one must go beyond such simple

pair potentials for real problems of interest in materials. One approach is to use empirical

models which attempt to include additional effects and, usually, are parameterized.

Advances in electronic structure calculations have made molecular dynamics (MD)

simulations possible with forces derived directly from the electrons with no parameters.

Such simulations are often termed “ab initio” or “first principles,” but here we shall use

the nomenclature “quantum MD (QMD)” simulations. Within the Born–Oppenheimer

(adiabatic) approximation1 the electrons stay in their instantaneous ground state as the

nuclei move. Thus the correct forces on the nuclei are given by the force (Hellmann–

Feynman) theorem, Eq. (3.18), which is practical to implement in pseudopotential density

functional theory as shown by many examples in previous chapters. We repeat here the

basic formulas from Chs. 7 and 9 in slightly different notation. Within the Kohn–Sham

approach to density functional theory, the total energy of the system of ions and electrons is

given by

E[{ψi }, {RI }] = 2
N∑

i=1

∫

ψ∗
i (r)

(

−1

2
∇2

)

ψi (r)dr + U [n] + EI I [{RI }], (18.3)

U [n] =
∫

drVext(r)n(r) + 1

2

∫ ∫

drdr′ n(r)n(r′)
|r − r′| + Exc[n], (18.4)

n(r) = 2
N∑

i=1

|ψi (r)|2, (18.5)

FI = − ∂ E

∂RI
, (18.6)

where ψi are the one-electron states, RI are the positions of the ions, EI I is the ion–ion

interaction, n(r) is the electronic charge density, Vext(r) is the electron–ion interaction,

1 This is an excellent approximation for many properties such as phonon energies, as discussed in Ch. 3 and

App. C.
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Exc[n] is the exchange-correlation energy, and FI is the force given by the force theorem

expressed in (3.18), (13.3), and other forms.

The key problem, however, is that the calculations must be very efficient. The development

of new efficient algorithms by Car and Parrinello [156] and others [440,710] has led to the

explosion of many forms of QMD simulations since 1985.

18.2 Car–Parrinello unified algorithm for electrons and ions

The essential feature of the Car–Parrinello approach takes advantage of the fact that the

total energy of the system of interacting ions and electrons is a function of both the classical

variables {RI } for the ions and the quantum variables {ψi } for the electrons. Instead of

considering the motion of the nuclei and the solution of the equations for the electrons at

fixed {RI } as separate problems (an approach that is inherent in the flow charts describing

the usual approach in Fig. 9.1 and Fig. M.1), the Car–Parrinello approach considers these as

one unified problem. Within the Born-Oppenheimer (adiabatic) approximation, the problem

becomes one of minimizing the energy of the electrons and solving for the motion of the

nuclei simultaneously. This applies to relaxation of the nuclei to find stable structures as

well as to thermal simulations of solids and liquids using MD methods. In one stroke,

calculation of the ground-state electronic structure and simulation of material phenomena

have been unified.2

In the Car–Parrinello approach, the total Kohn–Sham energy is the potential energy as a

function of the positions of the nuclei. Molecular dynamics for the nuclei using forces from

this energy is the defining criterion for all forms of so-called “ab initio MD” using density

functionals. The special feature of the Car–Parrinello algorithm is that it also solves the
quantum electronic problem using MD. This is accomplished by adding a fictitious kinetic

energy for the electronic states, which leads to a fictitious lagrangian for both nuclei and

electrons [156]3

L =
N∑

i=1

1

2
(2μ)

∫

dr|ψ̇i (r)|2 +
∑

I

1

2
MI Ṙ2

I − E[ψi , RI ]

+
∑

i j

�i j

[∫

drψ∗
i (r)ψ j (r) − δi j

]

. (18.7)

The final term in (18.7) is essential for orthonormality of the electronic states. This la-

grangian leads to MD equations for both classical ionic degrees of freedom {RI } and elec-

tronic degrees of freedom, expressed as independent-particle Kohn–Sham orbitals ψi (r).

2 It is essential to emphasize that the Car–Parrinello algorithm does not treat the real dynamics of electrons, which

requires a time-dependent Schrödinger equation, (7.22) or (20.11). The algorithm is designed to find the ground

state (adiabatic or Born-Oppenheimer) solution for the electrons as the nuclei move.
3 Note the similarity to the lagrangian in (M.14), except that here the signature ingredient of the Car-Parrinello

method, the “fictitious electronic mass,” is added. Such fictitious lagrangians are also used in other quantum

field theories [704].
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The resulting equations of motion are

μψ̈i (r, t) = − δE

δψ∗
i (r)

+
∑

k

�ikψk(r, t)

= −Hψi (r, t) +
∑

k

�ikψk(r, t), (18.8)

MI R̈I = FI = − ∂ E

∂RI
. (18.9)

The equations of motion (18.8) and (18.9), are just Newtonian equations for acceleration

in terms of forces, subject to the constraint of orthogonality in the case of electrons. The

masses of the ions are their physical masses, and the “mass” for the electrons is chosen

for optimal convergence of the solution to the true adiabatic solution. Thus the equations

can be solved by the well-known Verlet algorithm (App. L) with the constraints handled

using standard methods for holonomic constraints [711]. This can be achieved by solving

the equations for �ik at each time step so that ψi are exactly orthonormal using an iterative

method called SHAKE [701, 711]. The resulting discrete equations for time tn = nδt , are

ψn+1
i (r) = 2ψn

i (r) − ψn−1
i (r) − (�t)2

μ

[

Ĥψn
i (r) −

∑

k

�ikψ
n
k (r, t)

]

,

Rn+1
I = 2Rn+1

I − Rn−1
I + (�t)2

MI
FI . (18.10)

Note the similarity to those equations for minimization of electronic energy, e.g. (M.15).

The most time-consuming operation (applying the hamiltonian to a trial vector) is exactly the

same in all the iterative methods; the only difference is the way in which the wavefunctions

are updated as a function of time t or step n.

The stationary solution

The meaning of the equations can be clarified by considering a stationary solution of the

equations, which we now show is equivalent to the usual Kohn–Sham variational equations.

At steady state, all time derivatives vanish and (18.9) leads to

Hψi (r, t) =
∑

k

�ikψk(r, t), (18.11)

which is the usual solution with �ik the matrix of Lagrange multipliers. Taking the matrix

elements, (18.11) shows that � is the transpose of H (�ik = Hki ), where H is the usual

Kohn–Sham hamiltonian. Diagonalizing � leads to the eigenvalues of the Kohn–Sham

equations. Furthermore, this is a self-consistent solution since we have minimized the full

Kohn–Sham energy, (18.3). Thus the solution is stationary if, and only if, the Kohn–Sham

energy is at a variational minimum (or saddle point). In fact, cooling the system down by

reducing the kinetic energy is termed dynamical simulated annealing, which is a way to find

the minimum of the non-linear self-consistent Kohn–Sham equations. This is illustrated in

the original paper of Car and Parrinello; their results copied here in Fig. 18.1 show the

eigenvalues reaching the values that would also be found in a self-consistent calculation.
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Figure 18.1. Eigenvalues at k = 0 for crystalline Si calculated by quenching the “fictitious kinetic

energy” in the lagrangian to reach the steady state [156].

Nuclear dynamics

The real power of the Car–Parrinello method is found in simulations of the coupled motion

of nuclei and electrons. This leads to the ability to include the real dynamics of the nuclei

in ab initio electronic structure algorithms, treating e.g., thermal motion, liquids, thermal

phase transitions, etc. Also, by quenching, one can search for stable structures. Examples

are given later in Sec. 18.6.

It should be emphasized that the fictitious kinetic energy has nothing to do with the real

quantum mechanical energy of the electrons and the electron dynamics that results from this

lagrangian is also fictitious; it does not represent the real excitations of the electron system.

The purpose of this fictitious kinetic energy is to allow the ground state of the electrons

to move efficiently through the space of basis functions, always staying close to the true

ground state. This is in fact realized in many cases, but is also problematic in other cases

as discussed below.

Difficulties in the Car–Parrinello unified algorithm

There are three primary disadvantages in using the Car–Parrinello approach.

First, any effects of the fictitious lagrangian must be examined and reckoned with if they

are problematic. The method works well for systems with an energy gap (for all steps in the

simulation). The characteristic frequency of the fictitious oscillations of the electron degrees

of freedom are ∝ Egap/μ (Exercise 18.2) and, if all such frequencies are much greater than



376 Quantum molecular dynamics (QMD)

typical nuclear vibration frequencies, then the electrons follow the nuclei adiabatically as

they should. This is tested by checking the conservation of proper energy (not including the

fictitious kinetic energy). Simple examples and discussion are given in [702], [703], [704],

and the exercises at the end of this chapter. Even in the best cases, however, one still needs

to choose the mass so that the adiabatic condition is satisfied to within acceptable accuracy.

There has been controversy on this point [712], but a joint study of Car, Parrinello, and

Payne [713] concluded that, with care, problems can be avoided.

Second, the time step �t must be short. It is governed by the fictitious electronic degrees

of freedom and must be chosen smaller than in typical simulations for ions alone. A typical

“mass” for the electrons is μ = 400me (as used for carbon [714]). In general, the value

depends upon the basis functions, and an issue arises in the plane wave method where

(18.14) below reveals a problem for high Fourier components of the wavefunction. Since

the diagonal part of the hamiltonian H (G, G) ∝ |G|2 for large |G|, a coefficient cn
i (G) is

multiplied by ((�t)2/μ)|G|2. This endangers one of the desirable properties of plane waves:

that the cutoff can be increased indefinitely to achieve convergence. It has been proposed

to integrate the high Fourier components over the time step interval (since they obey a very

simple harmonic oscillator equation) instead of taking the linear variation [710]. Another

approach is to take different masses for different Fourier components [706, 707].

Finally, it was recognized from the beginning that problems occur with level crossing,

where the gap vanishes, and in metals. This leads to unphysical transfer energy to the

fictitious degrees of freedom (Exercise 18.2). The problem has been side-stepped by use

of “thermostats” that pump energy into the ion system and remove it from the fictitious

kinetic energy of the electron system. This has been used, e.g., in calculations of metallic

carbon at high pressure [159].4 However, problems with metals simulations have led to the

widespread use of alternative approaches (see Sec. 18.4).

18.3 Expressions for plane waves

The Car–Parrinello equations can be made more transparent by choosing an explicit basis.

The equations have exactly the same form for any orthonormal basis and we choose plane

waves as the best example. For simplicity of notation we consider Bloch states only at the

center of the Brillouin zone, k = 0, in which case the Bloch functions can be written

ui (r) =
∑

G

ci (G)
1√
�

exp(iG · r), (18.12)

where � is the volume of the unit cell. Since each band holds one electron per cell (of a

given spin) the ci (G) are orthonormal
∑

G

c∗
i (G)c j (G) = δi j . (18.13)

4 It is also possible to treat the occupations as dynamical variables in a way related to the ensemble density

functional theory method [426], which can potentially allow the Car–Parrinello unified algorithm to apply

directly to metals.
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The discrete time step equation corresponding to (18.10) becomes

cn+1
i (G) = 2cn

i (G) − cn−1
i (G) − (�t)2

μ

[
∑

G′
H (G, G′)cn

i (G′) −
∑

k

�ikcn
k (G)

]

, (18.14)

where �t denotes the time step. The equation for �ik is derived by assuming that cn
i (G) and

cn−1
i (G) are each orthonormal and imposing the condition that cn+1

i (G) is also orthonormal.

The complete solution is then found by updating the electron density at each iteration,

finding the new Kohn–Sham effective potential, and, if desired, moving the atoms according

to Eq. (18.2) using the force theorem. The procedure then starts over with a new iteration.

Thus all the operations have been combined into one unified algorithm.

The algorithm as presented is still too slow to be useful because of the matrix multiplica-

tion in Eq. (18.14), for which the number of operations scales as the square of the number

of plane waves N 2
PW. To circumvent this bottleneck, Car and Parrinello used fast Fourier

transforms (FFTs) to reduce the scaling to NPWlogNPW. The ideas have very general appli-

cability and are described in Secs. 12.7 and M.11, where the algorithms are summarized

in Figs. 12.4 and M.2. The key steps are the operation Ĥψ and calculation of the density.

The kinetic energy operation is a diagonal matrix in Fourier space, whereas multiplication

by V is simple in real space where V is diagonal. By the use of the FFT, the operations can

be carried out, respectively, in Fourier and real spaces, and the results collected in either

space. The limiting factor is the FFT, which scales as NPWlogNPW. The sequence of steps

is described in Fig. M.2.

Finally, at every step the energy and force on each nucleus can be calculated using the force

theorem expressed in plane waves, Eq. (13.3). A variant of this form, however, may be more

convenient for simulations with large cells. As explained in Sec. F.3 and [705], the force

on an ion due other ions (the Ewald term) can be combined with the local pseudopotential

term, leading to a combined expression in reciprocal space plus correction terms expressed

as short-range forces between ions, Eq. (F.16). The last are easily included in a standard

MD simulation.

The method can be extended to “ultrasoft” pseudopotentials [565] and to the PAW method

[475, 476], which is very useful for simulations with atoms that require high plane wave

cutoffs using norm-conserving pseudopotentials, e.g., transition metals. The basic idea is

that in any such approach the same general formulation can be used for updating the plane

wave coefficients, calculating forces, etc. The difference is that there are additional terms

rigidly attached to the nuclei that must be added in the expressions [475, 476, 565].

18.4 Alternative approaches to density functional QMD

As pointed out in Sec. 18.1, quantum molecular dynamics (QMD) and relaxation of atom

positions can be carried out by any method that derives forces from the electrons. Of course,

the force (Hellmann–Feynman) theorem, Eq. (3.18), is well known and has been widely

applied in pseudopotential calculations (e.g., Chs. 13 and 19). The problem is that the forces

must be calculated very efficiently for simulations of large systems. Progress was underway
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contemporaneous with the Car–Parrinello work on self-consistent density functional the-

ory methods (e.g., [429]) and simpler tight-binding-type methods (e.g., [715]). There has

been great progress in creating new algorithms [440], so that there are now very efficient

alternatives to the unified algorithm of Car and Parrinello. The bottom line is that different
approaches can each be used to great advantage; each works well if used with care; and
each has particular advantages that can be utilized in individual situations.

Instead of one unified algorithm, a key feature of alternative approaches is that the motion

of the ions and the updating of the electrons are done by different algorithms. Although

the elegance of a unified approach is lost, this division gives additional options that can be

used to advantage. The numerically intensive steps are essentially the same: the calculation

of the energy gradients with respect to atom positions and electron wavefunctions used in

the Car–Parrinello equations are exactly the same as in the iterative methods of App. M.

The same tricks can be used, e.g., the use of FFTs. There may be a difference, however, in

how often these steps have to be applied. By dividing the problem into two parts, the entire

algorithm has the following general properties:

� The time step is governed by the nuclear dynamics, i.e. it is the same as in an ordinary

classical MD calculation. This is longer (by about an order of magnitude) than the step

in the Car–Parrinello algorithm, so that the atoms move further in one step.
� At each step, the electrons must be solved accurately – much more accurately than in the

Car–Parrinello method. This requires more cycles of self-consistency at each MD step,

roughly an order of magnitude more calculations per MD step than in the Car–Parrinello

method. Thus, to a first approximation, the two approaches require similar amounts of

computation.
� Different iterative methods (App. M) can be chosen to find the eigenvalues and eigenvec-

tors of all the occupied states, or only the occupied subspace that spans the eigenvectors.

The latter is in general faster; the former has the advantage that the eigenvalues can be

used in the Fermi function to treat metals with no essential problems.
� Since the computation needed to reach self-consistency is such an important factor in

the iterative methods, this is a promising avenue for improvement. Thus there can be

significant advantages with algorithms designed to give a better starting guess for the

potential and wavefunctions at each MD step and faster convergence to self-consistency.

This is a matter of active development, e.g., in [716].

18.5 Non-self-consistent QMD methods

Much simpler (and faster computationally) simulation methods can be devised if there is no

requirement for the full self-consistent Kohn–Sham equations to be solved. The simplest

approach uses the empirical tight-binding method (Ch. 14) in which the hamiltonian is

given strictly in terms of matrix elements that are simple functions of the positions of the

atoms. Since the basis set is also small (several orbitals per atom) it may be more efficient

simply to diagonalize the matrices rather than use an iterative method. Then eigenvectors,

energies, and forces can be calculated for all positions of the atoms, usually much faster
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than a typical self-consistent plane-wave algorithm. This approach [715] was developed

simultaneously with the Car-Parrinello work and still enjoys widespread use because of its

speed and simplicity.

Another approach is to solve the electronic problem within a basis using an approximate

non-self-consistent form of the hamiltonian. Such methods are “ab initio” since they are not

parameterized and the approximation forms have been used effectively for many problems

with a total potential that is a sum of atomic-like potentials [601, 603]. Together with the

explicit functional for the energy in terms of the input density, Eq. (9.9), and the usual ex-

pressions for the forces, this enables a complete, albeit approximate, DFT QMD algorithm.

Self-consistency can be added in limited ways that still preserve efficiency, as done e.g.,

in [717].

18.6 Examples of simulations

It is instructive to apply the Car–Parrinello algorithm to simplified problems. Examples are

described in detail in Exercises 18.2 and 18.3 that illustrate the simplest 2-state problem;

finding the eigenstates of a simple problem by quenching (the analog of the original calcu-

lation of Car and Parrinello in Fig. 18.1), and the equations of motion using the fictitious

lagrangian.

Phase stability: carbon, iron, . . .

As an examples of calculations on real materials, carbon is particularly interesting because

of its many forms with extreme properties. Simulations were crucial in providing informa-

tion for understanding of the phase diagram at high pressure and high temperature, which

has been the subject of debate and revisions for decades. The most complete phase diagram

of carbon proposed to date is given in Fig. 2.10 based upon data at low pressures and

Car–Parrinello simulations at high pressure and high temperature. The high P,T regions are

unknown in laboratory experiments, but are conditions found in geology and astrophysics.

The region above 5,000 K and around 1 Mbar (100 GPa) is very difficult to access

experimentally, which has led to controversies, e.g., whether liquid C is a metal or insulator.

Since the electrons are treated with quantum Kohn–Sham theory as the atoms move, the

simulations also yield information on the nature of liquid carbon and can answer such

questions.

Simulations using the Car–Parrinello method were carried out by Galli, et al. [159] using

Bachelet–Hamann–Schluter [499] pseudopotentials, a plane wave basis (usually with a

small cutoff of 20 Ry that introduces some errors and with checks at +32 Ry), a fictitious

mass of μ = 200 a.u., and a time step of �t = 4 a.u. Typical calculations involved heating

and quenches of the order of 3,000 steps, each followed by an anneal of ≈5,000 steps

to create an amorphous carbon structure at room temperature. This was then heated in

steps and finally equilibrated for ≈10,000 steps to compute averages in the liquid state at

T = 5,000 K. Because of the energy transfer problem in metals, thermostats were used as

described in Sec. 18.2.
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Figure 18.2. Simulations of liquid carbon at P ≈ 0 and T = 5,000 K. Left: Radial density

distribution g(r ) calculated by Car–Parrinello plane wave methods [159] and using tight-binding

methods [162]. The definite peak at r ≈ 2.3a0 and minimum at r ≈ 2.8a0 provide a quantitative

definition of bonded neighbors as those with r < 2.8a0. Right: Snapshot of typical configuration

showing bonded atoms, neighboring 2-, 3-, and 4-fold coordination present in the low-pressure

liquid [159].

The calculated radial density distribution g(r ) for liquid C at P ≈ 0 and T = 5,000 K

is shown in Fig. 18.2, where it can be seen that very similar conclusions result from the

Car–Parrinello plane wave calculations and tight-binding calculations of Xu, et al. [162].

The latter uses an environment-dependent form of tight-binding matrix elements that has

been shown to describe well the properties of C in two-, three-, and four-fold coordinated

structures. The bonded neighbors of each atom are defined to be other atoms within a distance

that includes the first peak, r < 2.8a0, as illustrated in a typical snapshot of the liquid shown

on the right, all the atoms are found to have two-, three-, and four-fold coordination, with no

disconnected atoms or higher coordination. The average coordination is ≈2.9 [159], which

is consistent with the fact that higher coordinated structures are at much higher energies

and become relevant only at much higher pressures as shown in Fig. 2.10.

A great advantage of QMD methods is that both electronic and thermal nuclear properties

are accessible in the same calculation. For example, in liquid carbon there is a question: is it

insulating (diamond like) or metallic? The time-averaged electronic density of states does

not answer the question. As shown on the left-hand side of Fig. 18.3, the average density

of states is almost free-electron like. On the other hand, there is very strong scattering of

the electrons by the ions which might lead to localization. Theory can avoid semantics and

directly calculate the conductivity σ (ω) given by Eq. (E.11) and the well-known Eq. (20.2)

in terms of momentum matrix elements. This yields σ (ω) at any configuration of the nuclei

and the final results are found by averaging over configurations in the MD simulation.

The result shown in Fig. 18.3 is a conductivity at T = 5,000 K that has typical Drude

form [84, 86] with a very short mean free path of the order of the interatomic spacing.

One of the great challenges of geology is to understand the nature of the interior of the

Earth. The conditions are very difficult to reproduce in the laboratory, since the pressure
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Figure 18.3. Electronic properties of liquid carbon at P ≈ 0 and T = 5,000 K. Left: Time-averaged

density of states which is close to the free-electron parabola (dashed line). Right: Conductivity σ (ω)

calculated for a given ionic configuration using Eq. (E.11) and averaged over configurations. The

form of σ (ω) is similar to the Drude form, expected for metal, and the dc conductivity can be

estimated from the extrapolation ω → 0. From [159].

and temperature are estimated to be ≈135 GPa, ≈4,000 K at the mantle/core boundary

and ≈330 GPa, ≈5,000 K at the boundary of the outer and inner core. Since the core is

made of Fe with undetermined amounts of other elements, there is a great opportunity for

simulations to make a major contribution. Toward this end, remarkable achievements have

been made by Alfè, Gillan, Kresse, and coworkers, [164], who have carried out simulations

on Fe (and Fe–S mixtures [163]) using plane waves and ultrasoft pseudopotentials or the

PAW method. The methods were carefully tested on crystalline phases of Fe, demonstrating

very good agreement with full-potential LAPW calculations (Ch. 17) for energies, pressure–

volume relations, and phonon frequencies. The QMD simulations were performed using the

approach of Kresse and Furthmüller [718] in which the electronic equations were solved

iteratively to provide forces acting on the nuclei.

The radial density distribution for liquid Fe with fixed density ρ = 10,700 Kg/m3 (the

value at the core/mantle boundary) is shown in Fig. 18.4 for several temperatures. The

calculated pressure ranges from 312 to 172 GPa. The weight of the peak in g(r ) corresponds

to slightly over 12 neighbors, i.e. to a close-packed liquid. As expected, the peak broadens

with increasing T, with no transitions. This represents the first steps in calculations of the

melting curve, solid solubilities, etc., that require calculations of the free energy, which is

notoriously difficult in simulations [437].

The most important liquid: water

Perhaps the greatest challenge of all is to treat water and aqueous solutions of ions and

molecules. Examples of simulation results are shown in Figs. 2.11 and 2.12. The status at
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Figure 18.4. The calculated radial density distribution g(r ) of liquid Fe at fixed density equal to the

value at the core/mantle boundary as a function of temperature [164]. The lowest temperature T =
4,300 K is the expected temperature at the boundary. The simulations were done using the PAW

method (Sec. 13.2) and the methods of [476]. The integral under the first peak is ≈12 atoms

indicating a close-packed liquid at all pressures. From [164].

present is that simulations are making great progress in predicting important properties, but

the details are crucially important. This is certain to be among the most important fields of

future research.

Reactions and catalysis

QMD methods provide a general approach to calculations of reaction paths and catalysis.

This is far too great a subject to attempt to cover in this book. The example of the Ziegler–

Natta reaction shown in Fig. 2.13 illustrates the ways that QMD can provide insight into

the nature of atomic-scale reactions and clarify proposed mechanisms [172,173]. However,

a word of caution is in order: reaction barriers are particularly sensitive to electronic cor-

relations and present density functionals often are simply not accurate enough for many

problems.

Structures of defects, surfaces, clusters, . . .

A vast number of calculations have been performed to predict the atomic-scale structures

of molecules, clusters, surfaces, etc. Most of these do not involve molecular dynamics, but

use force calculations to relax the structures to find (meta)stable minima. Examples are

the semiconductor defect and surface structures shown in Figs. 2.15–2.17 and the buckled-

dimer structure of the Si (100) surface shown in Fig. 13.7. The latter case has been studied

extensively, including MD simulations, because of controversies in comparison of STM

experiments with theory that raise the issue of whether thermal motion stabilizes the sym-

metric state (see references in [586]). The final answer may not yet be determined.

An exciting area of research involves nanoclusters, where theory has much to add since

information about such structures is difficult to determine experimentally. Examples of Si

clusters shown in Fig. 2.18 have all been determined by relaxation or MD. An instructive
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Figure 18.5. Equilibrium structures and magnetic moments of small Fe clusters as calculated [384]

using plane waves and ultrasoft pseudopotentials. Of particular note are the predicted non-collinear

spin states. Such calculations with the non-colinear spin formalism are needed for treating

magnetism at finite temperature [382, 383]. From [384].

example is Si13, where there is competition between a symmetric structure with 12 outer

atoms surrounding a central atom [191] and a low-symmetry structure found by quenching

finite temperature MD simulations [190]. In fact, quantum Monte Carlo calculations [192,

193] confirm that the low-symmetry structure is lower in energy.

As an example involving magnetism, Fig. 18.5 shows predicted structures of Fe3 and

Fe5 molecules [384]. This work used ultrasoft pseudopotentials and plane waves, and, most

importantly, used non-collinear formalism (Sec. 8.4) to predict the spin density shown in the

figure. Such molecules can be treated with other methods that have also found non-collinear

spin density. Furthermore, non-collinear formalism is essential for treating bulk magnetism

at finite temperature [382, 383].
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Exercises

18.1 In the text it was stated that the “SHAKE” algorithm [701,711] maintains constraints in a holo-

nomic manner, i.e. with no energy loss. An alternative might be the Gram–Schmidt procedure

in which one updates the wavefunctions with Ĥψi and then orthonormalizing starting with the

lowest state.

(a) Show that this will cause energy loss. Hint: One way is to consider the two-state problem in

Exercise 18.2. Treat the wavefunctions explicitly and show that there is a difference from the

equations given below in which the constraint is imposed analytically.

(b) Read the references for SHAKE [701, 711] and summarize how it works.

18.2 Car–Parrinello-type simulation for one electron in a two-state problem is the simplest case and

is considered in the tutorial-type paper by Pastore, Smargiassi, and Buda [703]. In this case, the

wavefunction can always be written as a linear combination of any two orthonormal states φ1

and φ2,

ψ = cos

(
θ

2

)

φ1 + sin

(
θ

2

)

φ2.

With this definition orthogonality and normalization are explicitly included and we can consider

θ to be the variable in the fictitious lagrangian (written for simplicity in the case where φ1 and

φ2 are eigenvectors):

L = μ|dθ

dt
|2 + ε1cos2 + ε2sin2

Solving the Lagrange equations gives

μ
d2θ (t)

dt2
= (ε2 − ε1) sin (θ (t) − θ0) ,

which is the equation for a pendulum. For small deviations θ − θ0, the solution is simple

harmonic oscillations of frequency ω2
e = �E/μ. Thus so long as the oscillations are small, the

electronic degrees of freedom act like simple oscillators.

Pastore et al. [703] have analyzed the two-state model and large cell calculations to identify

the key features, as illustrated in the figures from their paper. If μ is chosen so that the fictitious

electronic frequencies are well above all lattice frequencies and motions are small, then there
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is only slow energy transfer and the Car–Parrinello method works well. This can be done in an

insulator. But level crossing, metals, etc., give interesting difficulties.

The exercise is to analyze the algorithm for three cases in which the system is driven by an

external perturbation of frequency ω0:

(a) For the case of small amplitudes and μ chosen so that ωe >> ω0, show that the electrons

respond almost instantaneously adiabatically following the driving field.

(b) For the more difficult case with ωe of order ω0, show that the electrons couple strongly

with large non-linear oscillations. (Note: This fictitious dynamics is not the correct quantum

dynamics.)

(c) For the case where there is a level crossing and �E changes sign, show that the electrons

can undergo real transitions. (See note in (b).)

18.3 Project for simulation of quantum systems with Car–Parrinello methods. The purpose of this

problem set is to write programs and carry out calculations in simple cases for the Car–Parrinello

method for simulation of quantum systems by molecular dynamics techniques. Ignore the spin

of the electron, which only adds a factor of 2 in paramagnetic cases with even numbers of

electrons per cell.

(a) For the case of an “empty lattice” where the potential energy is a constant set equal to zero,

write down the Car–Parrinello equations of motion for the electrons. Work in atomic units.

(i) Set up the problem on a one-dimensional lattice, where the wavefunctions are required

to be periodic with length L. Write a program which iterates the Verlet equation for a single

wavefunction expressed in terms of Fourier coefficients up to M ∗ (2π/L).

(ii) Choose L = 10 a.u., μ = 300 a.u., and M = 16, which are reasonable numbers for solids.

Start with a wavefunction having random coefficients, velocities zero, and iterate the equations.

Choose a time step and show that the fictitious energy is conserved for your chosen time step.

Show that you can carry out the exercise equivalent to the original calculation of Car and

Parrinello in Fig. 18.1. Extract energy from the system by rescaling the velocities at each step.

Show that the system approaches the correct ground state with energy zero. Make a graph of

the energy versus time analogous to Fig. 18.1.

(iii) Now consider several states. Add the orthogonalization constraints, and find the ground

state for two, three, and four filled states. Verify that you find the correct lowest states for a line

with periodic boundary conditions.

Make a graph of the total energy and fictitious kinetic energy as a function of time. Show the

variation in total energy on a fine scale to verify that it is well conserved.

(b) Now add a potential V (x) = A sin(2πx/L). Use an FFT to transform the wavefunction to

real space, multiply by the potential, and the inverse FFT to transform back to Fourier space.

(i) For two electrons per cell (up and down) one has a filled band with a gap to the next band. Find

the ground wavefunction and electron density for a value of A = 1 Hartree, a reasonable number

for a solid. (All results can be verified by using the plane wave methods and diagonalization as

described in Ch. 12.)

(c) Consider a system with the electrons coupled to slow classical degrees of freedom, let A

be coupled to an oscillator, A = A0 + A1x , and the energy of the oscillator E = 0.5Mω2
0 x2.

Choose values typical for ions and phonon frequencies (Ch. 19).

(i) Choose a fictitious mass μ so that all the electronic frequencies are much greater than ω0.

See Exercise 18.2.
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(ii) Start the system at x = 0, which is not the minimum, and let it evolve. Does the oscillator

go through several periods before significant energy is transferred to the electron state? Plot

the total energy of the system and the fictitious kinetic energy as a function of time. Show that

the total energy is accurately conserved, and the fictitious kinetic energy is much less than the

oscillator kinetic energy for several cycles.

(iii) The oscillator should oscillate around the minimum. Check, by calculating the total energy

by the quenching method, for fixed x, for several values of x near the minimum. Is the minimum

in energy found this way, close to the minimum found from the oscillations of the dynamic

system?
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Response functions: phonons, magnons, . . .

Summary

Many properties of materials – mechanical, electrostatic, magnetic, thermal,
etc. – are determined by the variations of the total energy around the equilibrium
configuration, defined by formulas such as (2.2)–(2.7). Experimentally, vast
amounts of information about materials are garnered from studies of vibration
spectra, magnetic excitations, and other responses to experimental probes. This
chapter is devoted to the role of electronic structure in providing predictions and
understanding of such properties, through the total energy and force methods
described in previous chapters, as well as recent advances in efficient methods
for calculation of response functions themselves. Through these developments,
calculation of full phonon dispersion curves, dielectric functions, infrared activ-
ity, Raman scattering intensities, magnons, anharmonic energies to all orders,
phase transitions, and many other properties have been brought into the fold of
practical electronic structure theory.

The primary properties considered in previous chapters are the total energy and (generalized)

forces. These are sufficient to treat a vast array of problems including stability of structures,

phase transitions, surfaces and interfaces, spin polarization, “ab initio” molecular dynamics,

etc. One can also use such direct methods to calculate all the derivatives of the energy with

respect to perturbations, by carrying out full self-consistent calculations for various values

of the perturbation, and extracting derivatives from finite difference formulas. This has been

used very successfully, for example, in the “frozen phonon” method illustrated in Fig. 2.8

and described further in Sec. 19.2.

Is it possible to calculate the derivatives directly? The answer is, of course, “yes,” since

it is just a matter of well-known perturbation theory and response functions, for which the

general theory is summarized in App. D. The subject of this chapter is recent developments

that allow the expressions to be re-written in ways that are much more efficient for actual

calculations, together with examples for phonons, dielectric functions, and magnons. As

an example of the power of the approach, determination of phonon or magnon dispersion

curves for a crystal can be done in the “frozen phonon” method only with large “supercell”

calculations. In contrast, the perturbation theory approach allows the phonon frequencies

at any k to be found from a much smaller calculation based on one unit cell.
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19.1 Lattice dynamics from electronic structure theory

Since nuclear motion is slow compared to typical electron frequencies, it is an excellent

approximation to neglect any dependence of electronic energies on the velocities of nuclei,

i.e. the adiabatic or Born and Oppenheimer (BO) approximation [89] (App. C; see also [90],

App. VIII, and [466], pp. 169–172). Then the equations of motions for the nuclei are

determined by the total energy E(R) of the system of electrons and nuclei with the nuclear

positions R regarded as parameters. Here RI are the coordinate and mass MI of nucleus

I , R ≡ {RI } indicates the set of all the nuclear coordinates, and E(R) is the ground state

energy, Eq. (3.9) or any of the forms given in Sec. 9.2. E(R) is often referred to as the

Born–Oppenheimer energy surface and the adiabatic motion of the nuclei is restricted to

this surface.

The complete quantum description of the nuclei is determined by the Schrödinger equa-

tion for the nuclei, which is a formidable many-body problem [152] important for light

atoms. If the nuclei are treated classically, the problem reduces to coupled classical equa-

tions of motion for each nuclear position RI (t)

MI
∂2RI

∂t2
= FI (R) = − ∂

∂RI
E(R), (19.1)

which can be treated by molecular dynamics. All effects of the electrons are contained in

the forces that can be calculated from the electronic structure in simulations described in

Ch. 18.

For stable solids at moderate temperature, it is much more useful and informative to cast

the expressions in terms of an expansion of the energy E(R) in powers of displacements

and external perturbations, as in Eqs. (2.2)–(2.7). Equilibrium positions {R0
I } = R0 are

determined by the zero-force condition on each nucleus,

FI (R0) = 0. (19.2)

Quantum zero-point motion, thermal vibrations, and response to perturbations are described

by higher powers of displacements,

CI,α;J,β = ∂2 E(R)

∂RI,α∂RJ,β

, CI,α;J,β;K ,γ = ∂3 E(R)

∂RI,α∂RJ,β∂RK ,γ

, . . . , (19.3)

where Greek subscripts α, β, . . . , indicate cartesian components.

Within the harmonic approximation [90], the vibrational modes at frequency ω are de-

scribed by displacements

uI (t) = RI (t) − R0
I ≡ uI eiωt , (19.4)

so that (19.1) becomes for each I

−ω2 MI uIα = −
∑

Jβ

CI,α;J,βu Jβ. (19.5)
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The full solution for all vibrational states is the set of independent oscillators, each with

vibrational frequency ω, determined by the classical equation

det

∣
∣
∣
∣

1√
MI MJ

CI,α;J,β − ω2

∣
∣
∣
∣ = 0, (19.6)

where the dependence upon the masses MI , MJ has been cast in a symmetric form.

For a crystal, the atomic displacement eigenvectors obey the Bloch theorem, Eqs. (4.32)

and (4.33), i.e. the vibrations are classified by k with the displacements us(Tn) ≡ Rs(Tn) −
R0

s (Tn) of atom s = 1, S in the cell Tn given by

us,Tn = eik·Tn us(k). (19.7)

Inserting this into (19.6) leads to decoupling of the equations at different k (just as for

electrons – Exercise 19.2), with frequencies ωik, i = 1, 3S called dispersion curves that are

solutions of the 3S × 3S determinant equation

det

∣
∣
∣
∣

1√
Ms Ms′

Cs,α;s′,α′ (k) − ω2
ik

∣
∣
∣
∣ = 0, (19.8)

where the reduced force constant matrix for wavevector k is given by

Cs,α;s ′,α′(k) =
∑

Tn

eik·Tn
∂2 E(R)

∂Rs,α(0)∂Rs ′,α′(Tn)
= ∂2 E(R)

∂us,α(k)∂us′,α′(k)
. (19.9)

Since the vibrations are independent, quantization is easily included as usual for harmonic

oscillators: phonons are the quantized states of each oscillator with energy -hωik.

A useful analogy can be made between phonons and electrons described in a tight-binding

model. Since the nuclei have three spatial degrees of freedom, the equation of motion, (14.7),

has exactly the same form as (19.8) for the case with only three states of p symmetry for

the electrons. The set of exercises comprising Exercises 19.1–19.7 is designed to show the

relationships, derive phonon dispersion curves in simple cases, and explicitly transform

a computational code for the tight-binding algorithm into a code for phonon frequencies

with force constants described by models analogous to the parameterized models used in

tight-binding methods.

Examples of dispersion curves are given in Figs. 2.9, 2.32, 19.2, and 19.4. There are three

acoustic modes with ω → 0 for k → 0 and the other 3S − 3 modes are classified as optic.

In insulators, there may be non-analytic behavior with different limits for longitudinal and

transverse modes, illustrated in Figs. 19.2 and 2.9.

The framework is set for derivation of the lattice dynamical properties from electronic

structure so long as attention is paid to certain features:

� Careful treatment of the long-range effects due to macroscopic electric fields in insulators.
� Formulation of the theory of elasticity in ways that facilitate calculations.

The key aspects of dealing with macroscopic electric fields are treated in Sec. E.6. In

particular, “Born effective charges” Z∗
I,αβ are defined in (E.20) in terms of the polarization
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per unit displacement in the absence of a macroscopic electric field. Similarly, proper piezo-

electric constants eα,βγ are defined in terms of polarization per unit strain in the absence of a

macroscopic electric field. Fortunately, the theory and practical expressions for polarization

are well established due to recent advances (Ch. 22). The result is that Cs,α;s′,α′(k) can be

divided into terms that are analytic, as in the small k limit, plus non-analytic contributions

that can be treated exactly in terms of Z ∗
I,αβ and eα,βγ . These considerations are required in

any approach that aspires to be a fundamental theory of lattice properties.

The basic definition of stress is given in (G.4) and the elastic constants, defined in (G.5),

are the subject of many volumes [86, 88, 721, 722]. The important point to emphasize here

is that both the electrons and the nuclei contribute directly to the stress, for which there

are rigorous formulations (App. G). The expressions use the (generalized) force theorem

which depends upon the requirement that all internal degrees of freedom be at their minimum
energy values. This includes the electron wavefunctions and the nuclear positions, which are

described by “internal strains” that are determined by the zero-force condition, Eq. (G.13).

In many simple cases, e.g. in Bravais lattices, the force is zero by symmetry for zero internal

strain; however, in general, the positions of the nuclei in a strained crystal are not fixed by

symmetry, and any fundamental calculations of elastic properties must find the internal

strains from the theory.

19.2 The direct approach: “frozen phonons,” magnons, . . .

The most direct approach is simply to calculate the total energy and/or forces and stresses as

a function of the position of the nuclei, i.e. “frozen phonons”, using any of the expressions

valid for the electronic structure. Then the relevant quantities are defined by numerical

derivatives for displacements

CI,α;J,β ≈ − �FI,α

�RJ,β

, Z∗
I,αβ |e| ≈ �Pα

�RI,β

∣
∣
∣
∣
Emac

, (19.10)

and for strains

Cαβ;γ δ ≈ −�σαβ

�uαβ

, eαβγ ≈ �Pα

�εαβ

∣
∣
∣
∣
Emac

. (19.11)

Such calculations are widely used since they require no additional computational algorithms;

furthermore, this is the method of choice in cases where there are large displacements since

the energy is automatically found to all orders. The direct approach played a critical role

in early work, for example [143] and [723], where it was shown that phonons in materials

(other than the sp-bonded metals) could be derived from the electronic structure.

Transition metals are an excellent example where electronic structure calculations of

“frozen phonon” energies can provide much information on the total bonding and the

states near the Fermi energy that couple strongly to the phonons. The phonon energies

for many transition metals have been shown to be well described, e.g. in [724] and [725],

by calculations at wavevectors k along high-symmetry directions. For example, there is

an interesting anomaly in the longitudinal frequency for k = (
2
3
, 2

3
, 2

3

)
in the bcc structure
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Figure 19.1. Theoretical calculation of the energy versus displacement for longitudinal

displacements with wavevector k = (
2
3
, 2

3
, 2

3

)
in the bcc structure [725]. For Mo and Nb the

minimum energy is for bcc structure. The curvature agrees well with measured phonon frequencies

and corresponds to a sharp dip in the phonon dispersion curves, which is a precursor to the phase

transition that actually occurs in Zr. The minimum energy structure for Zr at low temperature is the

“ω phase,” which forms by displacements shown in the inset, with each third plane undisplaced and

the other two planes forming a more dense bilayer. From [725].

crystals Mo and Nb. This is a precursor to the phase transition that actually occurs in Zr which

has bcc structure only above 1,100 K [134, 725]. Figure 19.1 shows the calculated energy

versus displacement for this phonon for Mo, Nb, and Zr. The inset shows the displacements

that correspond to the “ω phase” with each third plane undisplaced, and the other two planes

displaced to form a more dense bilayer. The LDA calculations agree well with the phonon

frequencies in Mo and Nb and with the observed low-temperature structure of all three

elements. The transition to bcc at high temperature is believed to be an effect of entropy,

since it is well known that many metals have bcc structure at high temperature. A simple

explanation is provided by the general arguments of Heine and Samson [726] that such

a superlattice can occur for a 1/3 filled d band, which is the case for Zr. The electronic

structure calculations provide a more complete picture, showing that this is not a delicate

Fermi surface effect but is a combination of effects of s–p states and directional (covalent)

d bonding involving states in a range around the Fermi energy [725].

Two examples of recent work have been given in Fig. 2.8, which shows the energy versus

displacement for the superconductor MgB2 and the ferroelectric BaTiO3. From this infor-

mation one can then extract the various orders of the anharmonic terms; for example, all the

terms that are required to construct a microscopic model [727] that can be used to construct
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Figure 19.2. Dispersion curves for phonons in GaAs in the [1 0 0] direction calculated using the

frozen phonon method. The supercell used for the calculation is a longer version of the cell shown in

Fig. 13.5 with displacements as indicated that are either transverse or longitudinal. Compare with

Fig. 13.6 and Sec. 13.4, which illustrate the versatility of supercells for many problems. From [574].

free energy models, and to study thermal phase transitions. Direct calculation of displace-

ment energies has been done for hosts of materials, for example the high-temperature

superconductors where the results are in good agreement with experiment even though

the gaps and magnetic structure may be completely wrong. Since the electrons are treated

directly, the information for electron–phonon interactions is intrinsically included – see

Sec. 19.8.

It is also possible [574–576] to derive full dispersion curves from the direct force calcula-

tions on “supercells” as illustrated in Fig. 13.5 for a zinc-blende crystal. Any given phonon

corresponds to a displacement of planes of atoms perpendicular to the wavevector k, as

shown on the left-hand side of the figure. All the information needed in Eq. (19.10) for all
phonons with a given direction k̂ can be derived by displacing each inequivalent plane of

atoms and calculating the force of all the atoms [574]. One must do a separate calculation

for each inequivalent plane and each inequivalent displacement (four in the case shown in

Fig. 13.5, for longitudinal and transverse displacement of Ga and As). If the size of the

supercell exceeds twice the range of the forces, then all terms can be identified with no

ambiguities. The results [574] for GaAs are shown in Fig. 19.2, compared with experiment.

These are early calculations that used a semiempirical local pseudopotential. It is satisfying

that better agreement with experiment has been found in more recent calculations [153,728]

using ab initio norm-conserving potentials and the response function method (Sec. 19.3).
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Figure 19.3. Dispersion curves for magnons in Fe: open circles are experimental points, compared

to the dark circles that are theoretical results [136] calculated using the Berry’s phase

approach [135]. Triangles show magnon energies for an alloy with 12% Si. From [136].

The inverse dielectric constant ε−1 and the effective charges Z∗
I can also be calculated from

the change in the potentials due to an induced dipole layer [574].

The practical advantage of this approach is immediately apparent from the fact that exactly

the same methods can be used to calculate the properties of superlattices and interfaces.

As shown in the middle figure of Fig. 13.5, a superlattice can be created by the theoretical

alchemy of replacing Ga with Al in part of the supercell. Furthermore, the same methods

apply directly to surfaces where part of the supercell is vacuum. This is illustrated on the

right-hand side figure of Fig. 13.5, where the surface may undergo massive reconstruction

beyond any perturbation expansion.

Another instructive example of the use of supercells is the calculation [577] of the inverse

dielectric constant ε−1(k) by imposing a periodic electrostatic potential of wavevector k,

i.e. a “frozen field.” If the atoms are held fixed, the resulting potential leads to the static

electronic inverse dielectric constant ε−1
0 (k); if the atoms are allowed to displace so that the

forces are zero, one finds the result including the lattice contribution ε−1
∞ (k). In each case,

the k → 0 limit can be found by extrapolation from a few values of k and using the fact

that ε−1
∞ (k) ∝ k2 at small k.

Spins excitations, or magnons, can be treated in the same way by calculating the energy

of “frozen magnons.” But how does one freeze the magnetization? Unlike phonons, mag-

netization is a continuous function that must be calculated. An elegant way of doing this is

to generalize Berry’s phase idea, Sec. 22.2, for electric polarization to the magnetic case of

Niu and Kleinman [135]. An example of results [136] from this method for Fe, calculated

using plane waves with a pseudopotential, are shown in Fig. 19.3: this shows excellent

agreement with experiment. In this case, a supercell is not needed: because the magnon is

a spiral excitation, the excitation obeys a generalized Bloch theorem [131] in which each

cell is rotated equally with respect to its neighbors.
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19.3 Phonons and density response functions

Historically,1 the first approach for calculation of phonons was based on response functions:

since all harmonic force constants, elastic constants, etc. involve only second derivatives of

the energy, they can be derived using second-order perturbation theory. Furthermore, this

builds upon the fact that in many cases one can calculate small changes more accurately

than the total energy itself. This section is devoted to the formulation, which is directly

useful for simple cases and leads up to the efficient methods of Sec. 19.4.

The general expressions for the response to an external perturbation Vext(r) that varies

with parameters λi (where λ denotes the position of an atom, the strain, etc.) are

∂ E

∂λi
= ∂ EI I

∂λi
+

∫
∂Vext(r)

∂λi
n(r)dr, (19.12)

∂2 E

∂λi∂λ j
= ∂2 EI I

∂λi∂λ j
+

∫
∂2Vext(r)

∂λi∂λ j
n(r)dr +

∫
∂n(r)

∂λi

∂Vext(r)

∂λ j
dr,

plus higher-order terms. The first equation is just the force (Hellmann–Feynman) theorem,

which involves only the external potential and the unperturbed density. The first two terms

in the second equation involve only the unperturbed density; however, the last term requires

knowledge of ∂n(r)/∂λi . Using the chain rule, the last term can be written in symmetric

form [152]
∫

∂Vext(r′)
∂λi

∂n(r)

∂Vext(r′)
∂Vext(r)

∂λ j
drdr′ =

∫
∂Vext(r′)

∂λi
χ (r, r′)

∂Vext(r)

∂λ j
drdr′, (19.13)

where χ is the density response function, Eq. (D.6). The expressions may be written in

either r or q space as in (D.7), and may be expressed in terms of inverse dielectric function

using the relation ε−1 = 1 + VCχ , given explicitly in (E.15).

Following this approach, elegant “textbook” expressions for any second derivative of the

energy can be found in two steps: using a relation like (D.11),

χ = χ0[1 − χ 0 K ]−1, or χ−1 = [χ0]−1 − K, (19.14)

that expresses χ in terms of the kernel K in (D.10) and the non-interacting response function

χ0. In turn, χ 0 is given by (D.3)–(D.5), which are derived from standard expressions of

perturbation theory in terms of sums over the entire spectrum of eigenstates. The form that

is most useful for comparison with Green’s function methods is Eq. (D.2), repeated here,

�n(r) = 2
N∑

i=1

∞∑

j=N+1

ψ∗
i (r)ψ j (r)

〈ψ j |�VKS|ψi 〉
εi − ε j

. (19.15)

The formulation of response functions in (19.14) and (19.15) is extremely fruitful in

cases where the response function can be approximated by a simple form. For example,

calculations of phonon dispersion curves in sp-bonded metals are well-described by χ

from the homogeneous electron gas, i.e. the static Lindhard dielectric function ε−1(|q|),
Eq. (5.38), which is an analytic, scalar function of the one-dimensional magnitude |q|. The

1 See references 2–13 in [152].
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foundation for the theory is the nearly-free-electron approximation with the ions represented

by weak pseudopotentials [467, 468].2

However, the approach is very difficult for accurate calculations on general materials.

There are two primary problems: The quantities involved are six-dimensional functions

ε−1(q, q′), that become large matrices ε−1
GG′ (k) in crystals. Furthermore, calculation of each

of the entries in the matrix involves a sum over the BZ of the filled and empty bands (as in

Eqs. (D.3)–(D.5)) up to some energy sufficient for convergence. This is a very difficult task

which we will not belabor; the next section describes a much more efficient approach.

19.4 Green’s function formulation

An alternative, much more effective, approach is the recently developed “density functional

perturbation theory” (DFPT) [153, 267, 728, 730], which has important relations to earlier

classic works [45, 731]. Instead of calculation of the inverse dielectric function ε−1
GG′(k),

which gives the response to all possible perturbations, DFPT is designed to calculate the

needed response to a particular perturbation. Instead of the standard perturbation theory

sums over empty states, the expressions are transformed into forms that involve only the

occupied states, which can be calculated using efficient electronic structure methods. This

leads to two related types of expressions: (1) self-consistent equations for the response

function in terms of the change in the wavefunctions to a given order, or (2) variational

expressions in which the calculation of a response at any given order of perturbation is cast

as a problem of minimizing a functional defined at that order. The theory can be applied to

any order (Sec. 3.7) but the main ideas can be seen in the lowest order linear response.

The formulation can be understood by first returning to the fundamentals of perturbation

theory. In terms of the wavefunctions, the first-order change in density is

�n(r) = 2 Re
N∑

i=1

ψ∗
i (r)�ψi (r), (19.16)

where �ψi (r) is given by first-order perturbation theory as

(HKS − εi )|�ψi 〉 = −(�VKS − �εi )|ψi 〉. (19.17)

Here HKS is the unperturbed Kohn–Sham hamiltonian, �εi = 〈ψi |�VKS|ψi 〉 is the first-

order variation of the KS eigenvalue, εi , and the change in the effective potential is given

by

�VKS(r) = �Vext(r) + e2

∫

dr′ �n(r′)
|r − r′| +

∫

dr′ dVxc(r)

dn(r′)
�n(r′)

≡ �Vext(r) +
∫

dr′K (r, r′)�n(r′). (19.18)

The kernel K (r, r′) is pervasive in the response function formalism and is discussed further

in Ch. 8 and App. D (where K is given in k space in Eq. (D.10)). It incorporates the effects

2 The formulas in terms of density response functions do not apply directly to non-local pseudopotentials, but

appropriate modifications can be made [729].
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of Coulomb interaction and exchange and correlation to linear order through fxc(r, r′) =
dVxc(r)/dn(r′).

The standard perturbation theory approach is to expand (19.17) in eigenfunctions of

the zero-order Schrödinger equation, which leads to expression (19.15). Although this

approach is not efficient because it requires knowledge of the full spectrum of the zero-

order hamiltonian and sums over many unoccupied states, nevertheless, the expressions are

useful for demonstration of important properties. In particular, (19.15) shows that �n(r)

involves only mixing of the unoccupied ( j > N ) space into the space of the occupied

(i ≤ N ) states because contributions from the occupied states cancel in pairs in the sum.

It is much more effective for actual calculations to view the set of equations, Eqs. (19.16)–

(19.18), as a self-consistent set of equations for �n and �VKS to linear order in �Vext. It

might appear that there is a problem since the left-hand side of (19.17) is singular because

the operator has a zero eigenvalue, for which the eigenvector is ψi . However, as shown

in (19.15), the response of the system to an external perturbation only depends on the

component of the perturbation that couples the manifold occupied states with the empty

states. The desired correction to the occupied orbitals can be obtained from (19.17) by

projecting the right-hand side onto the empty-state manifold,

(HKS − εi )|�ψi 〉 = −P̂empty�VKS|ψi 〉, (19.19)

where the projection operator is given by (see also Eq. (21.16))

P̂occ =
N∑

i=1

|ψi 〉〈ψi |; P̂empty = 1 − P̂occ. (19.20)

In practice, if the linear system is solved by the conjugate-gradient or any other iterative

method in which orthogonality to the occupied-state manifold is enforced during iteration,

there is no problem with the zero eigenvalue.

The basic algorithm for DFPT consists of solving the set of linear equations (19.19) for

�ψi given the definition in (19.20) and expression (19.18) for �VKS in terms of �n, which

is given by (19.16). Since �n is a function of the set of occupied �ψi , this forms a self-

consistent set of equations. Any of the efficient iterative methods (App. M) developed for

electronic structure problems can be applied to reach the solution by iteration. This is a more

efficient approach than the standard “textbook” approach outlined following (19.13): the

equivalent of the matrix inverse in (19.14) is accomplished by the self-consistent solution

for �ψi and �VKS, and the sum over excited states is accomplished by mixing of the

unoccupied space into the occupied space using (19.19).

19.5 Variational expressions

Variational expressions in perturbation theory have a long history, for example the ingenious

use of the variational principle for accurate solution of the two-electron problem by Hylleraas

[45] in the 1930s. The ideas have been brought to the fore recently by Gonze [268, 719]

(see also [153]) who has derived expressions equivalent to the Green’s function formulas

of Secs. 19.4 and 19.6. The variational perspective provides an alternative approach for
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solution of electronic structure problems, and is one that involves minimization rather than

solution of linear equations.

The basic idea of variational expressions in perturbation theory is very simple. If a system

has internal degrees of freedom, that are free to adjust (within any constraints that they must

obey), then the static response to an external perturbation requires that all internal degrees

of freedom adjust to minimize the energy. Exercise 19.5 gives a simple example of a system

made up of two harmonic springs with an internal degree of freedom. In electronic structure

the perturbation is a change in the external potential �Vext, and the internal degrees of

freedom are the density n(r) or the wavefunctions ψi . These can be viewed as independent

variables, i.e. one can define a functional E (m)[n] or E (m)[ψi ] valid at a chosen order m
of perturbation theory, and the correct solution is found by minimizing the functional. Just

as for the variational principle that leads to the Schrödinger or Kohn–Sham equations, the

energy, ψi , and n(r) are determined by minimizing the energy.

The variational principle in perturbation theory can be derived directly from the same

variational principle that leads to the Schrödinger or Kohn–Sham equations, but the new

point is that it is applied only to a given order. For example, to second order in the changes

�Vext = Vext − V 0
ext and �n = n − n0, the Kohn–Sham energy functional, Eq. (7.5) or

(9.7), can be written in a form similar to (9.8) with the addition of terms involving �Vext,
3

E (2)[Vext, n] = E[V 0
ext, n0] +

∫

drn0(dr)�Vext(r)

+ 1

2

∫

drdr′
[

δ2 E

δVext(r)�n(r′)

]

�Vext(r)�n(r′) (19.21)

+ 1

2

∫

drdr′
[

δ2 E

δn(r)δn(r′)

]

�n(r)�n(r′),

where derivatives are evaluated at the minimum energy solution with V 0
ext and n0. There is

no term involving �V 2
ext since the functional is linear in Vext. The first intergral in (19.21)

is the force theorem. The middle line is linear in �n. The last line is quadratic in �n and

is always positive since the functional is minimum at V 0
ext and n0. Minimization of the

functional is, in principle, merely a matter of minimizing a quadratic form, no harder than

the harmonic springs in Exercise 19.5. However, practical solutions must be done in terms

of the wavefunctions ψi since the functionals of density are unknown.

In terms of the orbitals, expression (19.21) becomes [153] (omitting terms that are zero

for �Vext = 0)

E (2)[Vext, ψi ] = E[V 0
ext, ψ

0
i ]

+ 1

2

∑

i

∫

drdr′
[

δ2 E

δVext(r)δψi (r′)

]

�Vext(r)�ψi (r′) (19.22)

+ 1

2

∑

i j

∫

drdr′
[

δ2 E

δψi (r)δψ j (r′)

]

�ψi (r)�ψ j (r′),

3 Spin indices are omitted for simplicity and the subscript “KS” is omitted because the expressions apply more

generally.
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where

[
δ2 E

δVext(r)δψi (r′)

]

= ψ0
i (r)δ(r − r′),

[
δ2 E

δψi (r)δψ j (r′)

]

= H 0
KS(r, r′) + K (r, r′)�ψi (r)�ψ j (r′)�ψi (r)�ψ j (r′),

(19.23)

with K defined in (19.18); (see also (D.10)).

The solution can be found directly by minimizing (19.22) with respect to �ψi subject to

the orthonormality constraint

〈
ψ0

i + �ψi |ψ0
j + �ψ j

〉 = δi j . (19.24)

The steepest descent directions for �ψi are found by writing out the equations, which

also show equivalence to the Green’s function method [153]. Minimizing E (2)[Vext, ψi ] in

(19.22) with condition (19.24) leads to

H 0
KS�ψi −

∑

j

�i j�ψ j = − (�Veff − εi ) ψi +
∑

j

�i j�ψ j , (19.25)

where �Veff is the change in total effective potential given to the second order by (19.18).

Taking matrix elements with respect to the orbitals, one recovers (Exercise 19.10) the form

given in (19.19).

19.6 Periodic perturbations and phonon dispersion curves

The DFPT equations have a marvellous simplification for the case of a crystal with a

perturbation at a given wavevector, e.g. a phonon of wavevector kp, with displacements

given by Eq. (19.7). To linear order, the change in density, external potential, and Kohn–

Sham potential all have Fourier components only for wavevectors kp + G, where G is any

reciprocal lattice vector. The expressions can be written

�Vext(r) = �v
kp

ext(r)eikp ·r =
∑

T

Vs[r − Rs(T)]

∂Rs(T)
e−ikp ·(r−Rs (T))us(kp)eikp ·r,

�VKS(r) = �v
kp

KS(r)eikp ·r, (19.26)

�n(r) = �nkp (r)eikp ·r.

The wavefunction for an electron at wavevector ke is modified to linear order only by mixing
of states with wavevector ke + kp, so that (19.19) becomes

(
H ke

KS − ε
ke
i

)∣
∣�ψ

ke+kp

i

〉 = −[
1 − P̂

ke+kp
occ

]
�V

kp

KS

∣
∣ψke

i

〉
. (19.27)

To linear order the density is given by

�nkp (r) = 2
∑

ke,i

u∗
ke,i (r)�uke+kp,i (r), (19.28)
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where u denotes the periodic part of the Bloch function, and the Kohn–Sham potential is

�v
kp

KS(r) = �v
kp

ext(r) +
∫

dr′
[

1

|r − r′| + fxc(r, r′)
]

�nkp (r). (19.29)

The DFPT algorithm for the calculation of the response to any periodic external perturba-

tion �v
kp

ext(r) is the solution of the set of equations (19.27)–(19.29). Note that the calculation

involves only pairs of wavevectors, ke and ke + kp for the electrons, in the linear equation

(19.27), and a sum over all ke and filled states i for the self-consistency. The calculations

can be done using the same fast Fourier transform (FFT) techniques that are standard in

efficient plane wave methods (Ch. 13 and App. M): Eqs. (19.27) and (19.29) can be solved

partly in r space and partly in k space, and (19.28) is most efficiently done in r space, with

transformations done by FFTs.

Figure 2.9 shows the results of DFPT calculations for the phonon dispersion curves of

GaAs [154], done using the local approximation (LDA). Similar results are found for other

semiconductors and it is clear that agreement with experiment is nearly perfect. Calculations

have been done for many other materials, and an example is the set of results presented in

Fig. 19.4 for the phonon dispersion curves of a set of metals. From top to bottom, these

represent increasing electron–phonon interactions and increasing complexity of the Fermi

surface. The LDA is essentially perfect for Al (as expected!), but the GGA provides a

significant improvement in Nb. Another example are the dispersion curves, phonon density

of states, and electron–phonon coupling for MgB2 shown in Fig. 2.32, calculated [155]

using the LMTO method [730, 733]. Similar results are found for many materials using

many methods, finding agreement with experimental frequencies within ≈5% is typical.

19.7 Dielectric response functions, effective charges, . . .

Electric fields present a special problem due to long-range Coulomb interaction. This arises

in any property in which electric fields are intrinsically involved, e.g. dielectric functions,

effective charges, and piezoelectric constants. One approach is to formulate the theory

of response functions at finite wavelengths and take limits analytically [152, 734]. Is it

possible to generate an efficient Green’s function approach that involves only the infinite

wavelength q = 0 limit? The answer is “yes,” but only with careful analysis. The problem

is that the limit corresponds to a homogeneous electric field with potential Vext(r) = E · r,

which leads to an ill-defined hamiltonian in an extended system; see Ch. 22. The saving

grace is that perturbation theory in the electric field involves matrix elements of the form

of Eq. (19.15) or (19.19), i.e. only off-diagonal matrix elements of the perturbing potential

between eigenfunctions of the unperturbed hamiltonian. These matrix elements are well

defined even for a macroscopic electric field, which can be seen by re-writing them in terms

of the commutator between r and the unperturbed hamiltonian,

〈ψi |r|ψ j 〉 = 〈ψi |[H, r]|ψ j 〉
εi − ε j

, i = j. (19.30)
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Figure 19.4. Phonon dispersion curves calculated for the metals Al, Pb, and Nb compared with

experiment [732]. The agreement using the LDA is excellent for Al and progressively worse for the

other metals, which are further from the homogeneous gas, where GGA functionals improve the

agreement. The dips in the phonon dispersion curves for Pb and Nb indicate strong electron–phonon

interactions and sensitivity to Fermi surface features that are important for superconductivity in

these elements.

If the total potential acting on the electrons is local, the commutator is simply proportional

to the momentum operator,

[H, r] = −
-h2

me

∂

∂r
= i

-h

me
p. (19.31)

For non-local potentials, the commutator involves an explicit contribution from the potential

[514, 515] as defined in (11.70). Littlewood [735] has used the momentum form for the

matrix elements to derive expressions for the dielectric functions of crystals in terms of the
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periodic Bloch functions, and the explicit iterative Green’s function algorithm corresponding

to Eqs. (19.16)–(19.20) is given in [153].

An example of the application of the ideas is the calculation of effective charges Z∗ in

ionic insulators. Linear response calculations have been done for many materials, e.g. the

ferroelectric perovskite materials with formula unit ABO3. Anomalously large effective

charges of the B atoms and the O atoms moving along the line joining them has been found

and interpreted as resulting from covalency [736, 737]. Results are essentially the same as

those given in Tab. 22.1 from [573] using the Berry’s phase method.

19.8 Electron–phonon interactions and superconductivity

Electron–phonon coupling plays a crucial role in the theory of transport and superconduc-

tivity in solids, and there are excellent sources showing the relation of the microscopic

interactions to the phenomena [199,242,243]. In particular, the basic quantity in the Eliash-

berg [738] equations for phonon-mediated superconductivity is α2 F(ω), where F(ω) is a

phonon density of states and α denotes an average over all phonons of energy ω. An example

is shown in Fig. 2.32.

The quantities that can be derived from the underlying electronic structure are the elec-

tron bands and density of states, the phonon dispersion curves and density of states, and

electron–phonon coupling (App. C). The matrix element for scattering an electron from

state ik to jk + q while emitting or absorbing a phonon νq with frequency ω is given by

[243]

gik; jk+q(ν) = 1
√

2Mωνq
〈ik|�Vνq| jk + q〉, (19.32)

where M is the (mode-dependent) reduced mass and 1/
√

(2Mωνq) is the zero-point phonon

amplitude.

For scattering at the Fermi surface, one can define the dimensionless coupling to the

phonon branch ν, where ν = 1, . . . , 3S, with S the number of atoms per cell, by [243]

λν = 2

N (0)

∑

q

1

ωνq

∑

i jk

∣
∣gik; jk+q(ν)

∣
∣2

δ(εik)δ(ε jk+q − εik − ωνq), (19.33)

where N (0) is the electronic density of states per spin at the Fermi energy and ωνq is

the energy of phonon ν with the wavevector q. The energy of electron band i with the

wavevector k is εik and gik; jk+q(ν) is the matrix element between the states ik and jk + q
due to the induced potential when phonon νq is excited. The delta functions restrict the

electron scattering to the Fermi surface.

A key quantity in the theory is the induced potential �V per unit displacement needed

in the matrix element (19.32). To linear order it is given by

�Vνq = ∂V

∂uνq
=

∑

Iα

Xνq(Iα)
∂V

∂uIα
, (19.34)
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where uνq is the phonon normal coordinate and Xνq(Iα) is the eigenvector of the dynamical

matrix, Eq. (19.8), expressed in terms of displacements uIα of the nucleus I in the α

direction. Since the phonon is low frequency, the potential �Vνq is a “screened potential,”

i.e. the electrons react to contribute to the effective potential.

There are four general methods for calculation of the matrix elements with the properly

screened �Vνq:

� Displacement of rigid atomic-like potentials, e.g. muffin-tin potentials [739]. The justifi-

cation is that the coupling is primarily local [740] and the potential is very much like a

sum of atomic potentials, which has been shown to be appropriate for transition metals,

even with displaced atoms. The same ideas apply for displacement of any effective total

potential, such as empirical pseudopotentials.
� Calculations using a general expression for the screening which can be conveniently

expressed in Fourier space as

∂V (q + G)

∂uνq
=

∑

G′
ε−1(q + G, q + G′)

∂Vion(q + G′)
∂uνq

, (19.35)

following the definition of ε−1, given, e.g., above Eq. (19.14). This is particularly conve-

nient when one can use a simple model for ε−1, e.g., the Lindhard function, Eq. (5.38),

which is appropriate for simple metals. In general, however, it more efficient to use the

Green’s function approach.
� Methods using direct calculation of the linear order screened potential [153, 733]. This

can be done conveniently using the Green’s function technique described in Secs. 19.4 and

19.6. As is clear from Eq. (19.35), one of the by-products of the calculation of phonons

is the screened �Vνq itself. This needs to be done for all relevant phonons needed for the

integral over the Fermi surface.
� Self-consistent “frozen phonon” calculations [685, 741]. As described in Sec. 19.2, the

calculations involve V directly to all orders in the displacement. The linear change in

potential can be extracted as the linear fit to calculations with finite displacements of the

atoms. Alternatively, one can find the mixing of wavefunctions from which the matrix

elements can be found. The “frozen phonons” can be determined on a grid of k points

and interpolated to points on the Fermi surface.

The full calculation requires a double sum over the Brillouin zone and determination of

the matrix elements g at each pair of points and for each phonon ν.

19.9 Magnons and spin response functions

Response functions for spin excitations are the fundamental quantities measured in spin-

dependent neutron scattering from solids just as lattice dynamical response functions are

the fundamental quantities measured in lattice dynamics experiments. Since spin dynamics

is strongly affected by magnetic order and excitations tend to be damped by coupling to
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Figure 19.5. Spin response spectral functions Imχ(q, ω) for Fe. The line shows the dispersion

corresponding to the maximum in Imχ compared with experimental values (points). Compare also

with Fig. 19.3. Note that the excitations broaden at higher frequency and momentum. From [720].

the electron degrees of freedom, the form of the spectral function Imχ (q, ω) is often of

importance. For many years the basic formalism has been known and calculations have

been done with standard Green’s function techniques and realistic band structures of met-

als, e.g. in the work of Cooke [742] and many more recent calculations. The method is

based on a simple extension of the random-phase approximation of the relevant Green’s

function equation and an interpolation formalism for treating wave functions and matrix

elements.

Recently a new Green’s function method has been developed that generalizes the approach

used for phonons to treat spin response functions [720]. The formulas are closely related

and involve spin density instead of number density. An example of results for Fe using the

LMTO approach is shown in Fig. 19.5. Comparison with Fig. 19.3 shows good agreement

with calculations done using Berry’s phase method and the plane wave pseudopotential

method. In addition, however, the results in Fig. 19.5 shown the full spectral function, with

its broadening increasing rapidly for wavevectors near the zone boundary, in qualitative

agreement with experiment. Such work has been extended to alloys using the KKR–CPA

method and for the treatment of disorder within linear response theory [236].
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Exercises

19.1 See many excellent problems (and solutions) on phonons in the book by Mihaly and Martin

[248].

19.2 Show that the Bloch theorem for phonons follows from exactly the same logic as for electrons

treated in the local orbital representation (Exercise 14.2).

19.3 By comparing expressions (14.7) and (19.8), show that the equations for phonons are exactly

the same as a tight-binding formulation in which there are three states of p symmetry for

each atom, corresponding to the three degrees of freedom for the atomic displacements. Show

explicitly the correspondence of the terms of the two problems, especially the fact that the

eigenvalue in the electron problem corresponds to the square of the frequency in the phonon

problem.

19.4 This exercise is to explain a salient difference in the tight-binding electron and the phonon

problems. The force constant has the property of translational invariance; show that the fact

that the total energy does not change if all the atoms are displaced uniformly leads to the

relation
∑

J CI,α;J,β = 0. This condition can be used to fix the self term CI,α;I,β so that, unlike

the electron tight-binding problem, the on-site term is not an independent variable. In addition,

show that this means that there are three zero frequency phonon modes at k = 0.

19.5 The simplest model for phonons is the central force model in which the energy is a function

only of the distance between the nearest-neighbors. Find expressions for a force constant

CI,α;J,β using the definition as a second derivative of the energy expressed as a sum of pair

terms E = ∑
I<J EI J (|RI − RJ |). Show that the resulting expressions are equivalent to a

tight-binding problem of electron p states, Exercise 14.10, with the tppπ matrix elements equal

to zero.

19.6 Find expressions for phonon dispersion curves respectively in elemental simple cubic and fcc

crystals using the simplest model for phonons, a nearest-neighbor central potential model with

energy given by E = 1
2

∑
I<J K |RI − RJ |2, where J is restricted to nearest neighbor. Show

the relation to tight-binding equations for p bands in Exercise 14.10 as explicit examples of

the relationship given in Exercises 19.3–19.5.

(a) Show that there are two dispersion curves that have zero frequency for all k in simple cubic

but not in fcc crystals. Explain why this instability occurs in a simple cubic crystal in a central

potential model.

(b) There is a corresponding result in the tight-binding model for p bands in a simple cubic

crystal if the only non-zero matrix element is tppσ between nearest neighbors. Show that in

this case there are two bands with no dispersion.
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19.7 Project: Using the properties established in Exercises 19.3–19.5, construct a computer program

to evaluate phonon frequencies in a model analogous to a tight-binding model for electrons.

The program described in App. N can be used, including only p symmetry states. The input

information must include the masses and a model, which could be the central force model

described in Exercise 19.6.

19.8 Why is there no term involving ∂2n/(∂λi ∂λ j ) in the expression for ∂2 E/(∂λi ∂λ j ) in

Eq. (19.12)?

19.9 Derive Eq. (19.15), which is the same as from the basic perturbation expression (D.1) and

(19.16). In particular, show that all contributions involving i and j , both occupied, vanish in

the expression for the change in the density.

19.10 Show that Eq. (19.19) follows from (19.25) by taking matrix elements of the equation.

19.11 This is an example of the variational principle in perturbation theory. Consider a system

composed of three points x0, x1, x2 in a line connected by two springs. The energy is E =
1
2
k1(x1 − x0)2 + 1

2
k2(x2 − x1)2. Suppose forces f = f0 = − f2 are applied to the two ends.

(a) Identify the functional F[ f, x1] valid for all f and x1.

(b) If the middle position x1 is free to move, calculate the change in position x1 − x0 and total

length x2 − x0 as a function of f .

(c) See Exercise 3.25 for extension to non-linear springs.
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Summary

Excitation spectra reveal the properties of matter in terms of the response to
time- or frequency-dependent perturbations. Particularly important examples
are the dielectric function ε(ω) and the inverse function ε−1(ω) defined in
App. E. The basic formulas relating the response to the electronic structure are
rooted in perturbation theory and response functions (Sec. 3.7 and App. D). This
chapter is devoted to dynamic response functions for electrons in self-consistent
field methods, such as the Kohn–Sham approach, and to the alternative approach
of solving directly the time-dependent Kohn–Sham equation to find the solu-
tion to all orders. The formal structure is based upon time-dependent density
functional theory (TDDFT) (Sec. 7.6), which provides an exact framework in
principle. In practice, simple approximations are remarkably successful in many
cases and there is active research to develop new functionals.

As emphasized in the overview, Sec. 2.10, two types of excitations are of primary importance

for electronic structure: excitations in which an electron is added or subtracted from the

system, and excitations in which the number of electrons remains fixed. The former are of

great interest as the “one-electron excitations” in an interacting many-body system; however,

in independent-particle theories, such as the Hartree–Fock or Kohn–Sham approaches, these

excitations are just the eigenstates of the independent-particle hamiltonian. In a crystal, the

eigenvalues form well-defined bands εik with none of the renormalization and broadening

that can only be included in a many-body theory. Many examples of bands are given in

other chapters and will not be covered further here.

Even within independent-particle theories, however, a new set of concepts emerges for

excitations in which the number of electrons does not change, e.g. optical excitations. The

excitation of the system to linear order in the perturbation is described by a dynamic linear

response function, as in App. D. This chapter is concerned with three important aspects of the

formulation: the general form of linear response functions, expanding upon the expressions

in App. D; the particular case of the dielectric function; and applications of time-dependent

density functional theory (TDDFT) in Ch. 7. The last provides an in-principle way to treat

the response of a many-body system exactly; in practice, it has been shown to be very useful

in actual calculations on clusters.
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20.1 Dielectric response for non-interacting particles

It is useful to first give the form of the dielectric function in the independent-particle

approximation. Consider the macroscopic long-wavelength limit treated in the vector gauge.

The perturbation can be written in terms of the vector potential A as in Eq. (E.19)

�Ĥ (t) = 1

2me

∑

i

{[
p̂i − e

c
A(t)

]2

− p̂2
i

}

, (20.1)

where E(t) = − 1
c

dA
dt and E(ω) = − iω

c A(ω). The desired response is the macroscopic av-

erage current density j = −e〈v〉, and since p = mv − e
c A, it follows that j = −e

m 〈p + e
c A〉,

and the relation of j(ω) to E(ω) determines the conductivity σ (ω). Using (D.16) and (E.11),

it follows that [88]

εαβ(ω) = δαβ − e2

me


1

ω2

∑

i

[

fiδαβ +
∑

j

fi − f j
-hme

〈ψi |pα|ψ j 〉〈ψ j |pβ |ψi 〉
εi − ε j + ω + iη

]

, (20.2)

where the fi are occupation numbers and η > 0 is a small damping factor. (The first term

comes from the contribution of A to the current operator (Exercise 20.1).)

This expression shows the basic reason that measurements of optical spectra are one of

the most powerful tools for studies of electronic properties of crystals [470, 531]. Since

the p matrix elements do not vary rapidly as a function of energy for transitions between

each pair of bands of electronic states, the imaginary part of ε(ω) or the real part of σ (ω)

directly reveals singularities in the density of states for optical transitions. In the non-

interacting approximation, this is a joint density of states for transitions between pairs of

filled and empty bands weighted by the matrix elements. Examples of ε(ω) calculated in the

independent-particle approximation are given in Figs. 2.27 and 2.28; see [470] and [531]

for many other examples.

The dielectric function can also be calculated by considering scalar potentials at finite

wavelength, and taking the long-wavelength limit. For a finite system, such as a cluster,

with size much less than the wavelength of light, this is a convenient approach. In a finite

system, the external perturbation1 can be written in terms of the applied electric field Eext(t)
acting upon an electron at point r,

�Ĥ (t) = �Vext(r, t) = −eEext(t) · r, (20.3)

instead of (20.1). The response is the dipole moment given by (see Eq. (22.3))

�d(t) = 1




∫

all space

dr �n(r, t) r. (20.4)

For a driving field of frequency ω the expression for linear response corresponding to (20.2)

involves matrix elements of the position operator r. An easy way to derive the resulting

expression is to use the transformation given in Eqs. (19.30) and (19.31) to convert to matrix

elements of r.

1 Here the electron charge −e is explicitly included to avoid confusion, since the standard definition of E is the

field acting on a positive charge.
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20.2 Time-dependent density functional theory and linear response

Dielectric properties are affected by interactions among the electrons, leading to fundamen-

tal changes from expression (20.2), which neglects interactions. The fact that the electron

(in the otherwise empty band) and hole (in the otherwise filled band) attract one another

leads to bound states in the gap and changes the entire spectrum. Examples are also shown

in Figs. 2.27 and 2.28, where the latter case illustrates that the spectrum is dominated by

electron–hole interaction in a wide-band-gap insulator like CaF2. There are two basic ap-

proaches for inclusion of interactions: many-body perturbation theory and self-consistent

field methods. Both are active fields of research for calculation of optical response in real

materials; however, the former is beyond the scope of this volume. The latter is in the

realm of independent-particle methods, including well-known methods like the “random

phase approximation” (RPA) and Hartree–Fock. Here we emphasize time-dependent Kohn–

Sham theory because it holds the promise of exact results2 – even though at present actual

calculations are based upon approximations, often rather severe.

The reader may ask: “Was the fundamental starting point of Kohn–Sham theory, the

mapping of the many-body system to an independent-particle problem?” We seem to

be coming full circle and claiming more. Is there a contradiction? The answer is that

the Kohn–Sham approach is a theory of independent particles, but an interacting den-
sity. The evolution of the interacting density is cast in terms of the evolution of electrons

that obey independent-particle Schrödinger-like equations, with a time-dependent effective

potential.

The general form of response functions in self-consistent field theories is given in App. D

in terms of the non-interacting response functions χ 0 and the interaction kernel K. In

particular, the dynamical density response function is given by (D.20), repeated here,

χ (ω) = χ0(ω)[1 − χ0(ω)K (ω)]−1, (20.5)

where K is the Fourier transform of the space- and time-dependent kernel given in (D.19).

To put flesh on these bare bones, we can give useful explicit expressions following [231]. Ex-

panding the expressions in terms of the time-independent Kohn–Sham orbitals, the needed

expressions can be written using

δnσ (r, ω) =
∑

i j

ψσ
i (r)ρσ

i jψ
σ
j (r), (20.6)

and matrix elements of the effective potential δ[Veff]
σ
i j ≡ 〈ψσ

i |δVeff(r, ω)|ψσ
j 〉. Thus the

non-interacting χ0 becomes [231]

χ0
i jσ,i ′ j ′σ ′ = δρσ

i j

δ[Veff]
σ ′
i ′ j ′

= δi i ′δ j j ′δσσ ′
f σ
i − f σ

j

ω − (
εσ

i − εσ
j

) . (20.7)

The interacting response function can be derived from the relation δVeff = δVext + δVH +
δVxc ≡ δVext + δVHxc which to linear order is given by δVeff = δVext + K δn. The full

2 In Sec. 7.6 are given qualifications that an exact theory must involve current functionals and long-range func-

tionals.
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expression can be written in the form given in Sec. D.2,

χi jσ,i ′ j ′σ ′ = δρσ
i j

δ[Vext]
σ ′
i ′ j ′

= χ0
i jσ,i ′ j ′σ ′

[

δi i ′δ j j ′δσσ ′ +
∑

i ′′ j ′′σ ′′
Ki jσ,i ′′ j ′′σ ′′ χi ′′ j ′′σ ′′,i ′ j ′σ ′

]

, (20.8)

where K is the array of matrix elements of the interaction terms

Ki jσ,i ′ j ′σ ′ = δ[VHxc]σi j

δρσ ′
i ′ j ′

(20.9)

=
∫

dr
∫

dr′ψσ ∗
i (r)ψσ

j (r)

[
δσσ ′

|r − r′| + f σσ ′
xc (r, r′, ω)

]

ψσ ′ ∗
i ′ (r′)ψσ ′

j ′ (r′),

where fxc is the second derive of Exc[n] given explicitly in (D.18) and (D.19).

With some algebra (Exercise 20.2), the solution of the equation can be cast in the form

of an eigenvalue equation [231]
[
ω2

i jσ δi i ′δ j j ′δσσ ′ + 2
√

fi jσωi jσ Ki jσ,i ′ j ′σ ′
√

fi ′ j ′σ ′ωi ′ j ′σ ′
]
Fn = 
2

n Fn, (20.10)

where fi jσ = f σ
i − f σ

j and ωi jσ = εσ
i − εσ

j . The TDDFT problem thus becomes a matrix

problem with the basis of pairs of Kohn–Sham states i jσ . If there are Nocc filled orbitals and

one includes Nempty empty orbitals of each spin, then the size of the matrices is Npair × Npair,

where Npair = 2Nocc × Nempty. Thus this approach is appropriate for molecules and small

clusters where the matrices are of manageable size.

Many calculations have been done using the adiabatic LDA and GGA approximations

[231, 234] which improve agreement with experiment compared to the non-interacting

approximation, although the agreement is not as good as for static structural properties.

These methods are now routinely used for applications to molecules and clusters, and the

approach can also be applied to crystals [235] using the periodicity.3

Metal clusters are an interesting class of systems that can be varied from atomic size

to the bulk [189]. The simplest approximation is spherical jellium ignoring the atomic

structure, which leads to the correct general features of the optical spectra dominated by

a plasmon-like peak.4 The question for quantitative calculations is the extent to which the

real atomic structure matters. An example of one of the first quantitative calculations on

metal clusters, reproduced in Fig. 20.1, shows a two-peak structure very different from the

jellium model, with the main peak shifted and in better agreement with experiment. The shift

in the main peak from the non-interacting particle response, Eq. (20.2), shows the effects

of the Coulomb interaction in this confined geometry. Many such calculations have been

reported (e.g. [234]), including quantum molecular dynamics (QMD) simulations [743] that

account for thermal broadening due to dynamical motion of the nuclei.

Semiconductor clusters or “quantum dots” terminated by H or other elements are of great

interest because of their enhanced optical properties (see, e.g. [745]). Figure 20.2 shows

3 Note that there are formal problems in infinite systems, as outlined in Sec. 7.6.
4 In a bulk solid, the plasma peak [84] is due to a longitudinal density response dominated by a peak in the inverse

function Im ε−1(ω) for ω ≈ ωp ; however, in a small confined system, the distinction between longitudinal and

transverse is lost and there is a peak in the absorption of light at ω ≈ ωp .



410 Excitation spectra and optical properties

Li8

σ(ω)
σ0(ω)
Jellium

Exp

0

2

4

6

8

10

α
(ω

) 
(a

.u
.)

0 2 4 6
ω (ev)

Figure 20.1. Example of optical spectrum of a metal cluster (Li8) calculated [744] by

time-dependent density functional theory (TDDFT) using the adiabatic local density approximation

(LDA). The inset shows the structure of the cluster determined from the usual ground state density

functional theory. The resulting spectrum is significantly changed from the spherical jellium model,

in better agreement with experiment (arrow), and from the non-interacting approximation

(dotted line labeled σ0). From [744].

2 4 6 8 10
Photon energy (eV)

P
ho

to
ab

so
rp

tio
n 

(a
.u

.)

LDA

TDLDA

SiH4

Si5H12

Si35H36

Si147H100

Figure 20.2. Optical spectra of selected hydrogen-terminated Si systems, from the molecule SiH4 to

the Si147H100 cluster. The solid lines are spectra from TDLDA calculations, which are compared to

uncorrected independent-particle spectra (dotted lines) that follows from Eq. (20.2) applied to a

finite system. For SiH4, TDLDA results in a small shift to lower energy; whereas for the larger

clusters, the intensity of the optical absorption shifts to higher energy due to Coulomb interactions

and finite size effects (see text). Provided by I. Vasiliev.
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Figure 20.3. Optical properties of Si nanoclusters predicted by time-dependent LDA (TDLDA)

compared to experiment. The graph shows results for the lowest gap and for a higher energy,

designating a threshold in the optical strength that corresponds to experimental assignments of an

effective gap [359]. Provided by I. Vasiliev.

TDLDA spectra for selected structures compared to independent-particle spectra. For the

smallest system (the SiH4 molecule), TDDFT results in a small shift to lower energy due to

the fact that the electron and hole are confined to a small volume reducing the energy due

to Coulomb attraction. For large clusters, still much smaller than the wavelength of light,

the spectra shift to higher energy and have a plasma-like resonance that couples to light

because of finite size effects.

The lowest energy excitations and an effective gap corresponding to the onset of strong

absorption are shown in Fig. 20.3 for H-terminated Si clusters as a function of diameter.

Experimental results are shown for molecules and for large clusters. The gap increases

with decreasing cluster size due to quantum confinement effects, and it is evident that the

theory explains the trends in general agreement with experiment. For example, the gap of

Si nanoclusters is increased above the bulk gap, so that Si clusters can become efficient

emitters of blue light [746].

20.3 Variational Green’s function methods for dynamical linear response

Dynamical linear-response functions and can also be formulated using techniques closely

related to the iterative or variational Green’s function methods of Ch. 19 [747]. The approach

involves an algorithm like that in Eqs. (19.16)–(19.20) for the static case. In the dynamic

case, however, the left-hand side of Eq. (19.17) involves the frequency ω. The method can be

applied, at least for frequencies in the absorption gap where there are no resonances, in the

same manner as the static algorithm. In addition, the approach can be extended [748] to high

order by applying the “2n + 1” theorem to the action functional as defined in time-dependent
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density functional theory. A first application was for the case of two-photon transitions in

the hydrogen atom [747], followed by work on linear and non-linear susceptibilities of a

range of semiconductors [748]. However, there has not been widespread use thus far.

20.4 Explicit real-time calculations

The evolution of each one-particle state ψi (t) is given by a Schrödinger-like equation, (7.22),

repeated here,

i-h
dψi (t)

dt
= Ĥ (t)ψi (t), (20.11)

with an effective hamiltonian that depends upon time t given in (7.23). As pointed out

following that equation, there are difficult issues in creating a fully satisfactory functional

since it must depend upon the density at previous times. Nevertheless, much work has been

done with the simplest possible adiabatic approximation in which Vxc(r, t) is taken to be the

usual approximation in terms of the density at time t , i.e. neglecting any memory effects.

The same approximation is made in the linear response formulas if fxc is assumed to be

frequency independent.

There are two important differences from the linear response approach. The evolution is

not limited to small perturbations and can be used for non-linear effects, including extreme

conditions created by laser pulses [749, 750]. In addition, there is an advantage to using

the real-time approach for large systems. Since only the occupied states are evolved, the

calculations can be made to scale linearly with the size of the system. In contrast, the

linear response matrix formalism of Sec. 20.2 involves diagonalization of matrices of size

Npair × Npair.

One approach is to calculate the temporal propagation by iteration of the time-dependent

Schrödinger equation in steps in real time. This can be done in many ways with the choice

of algorithm governed by the fact that the propagation is unitary, which is essential for

particle number conservation. Many of the basic ideas originated in nuclear physics [751]

and an excellent exposition can be found in the text by Koonin and Meredith [444]. If the

functions ψi (t) are expanded in a fixed time-independent basis

ψi (t) =
∑

α

ci,α(t)χα, (20.12)

then the iteration from cn
i,α at time t n to cn+1

i,α′ at time t n+1 = tn + δt is given by

cn+1
i,α =

∑

α′
[e−iĤδt ]α,α′cn

i,α′, (20.13)

where Ĥ is a matrix in the basis α, α′. Because the complex exponential operator has unity

modulus, Eq. (20.13) is a unitary transformation. The size of the time step δt is limited by

condition that Ĥ (t) can be considered constant over the interval δt ; nevertheless, one can

still choose the time at which Ĥ (t) is evaluated. Since Ĥ must be updated as a function of the

time-dependent density, this can have important consequences for efficiency. Two examples

are the predictor–corrector method [233] and the “railway curve interpolation” [752].

There are four types of approaches in actual calculations.
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Explicit operations with the exponential

In general it is not possible to perform the exponentiation of an operator exactly, and one

must bring the operators to diagonal form. In that case, exp(A) = ∑
i |ζi 〉 exp(Aii )〈ζi |,

Aii = 〈ζi |A|ζi 〉, with ζi an eigenvector of A, Aii = 〈ζi |A|ζi 〉, and exp(Aii ) the ordinary

exponential of a scalar (Exercise 20.3). This can be done separately for the potential (V)

and kinetic (T) operators, which are diagonal, respectively, in real and reciprocal space.

However, the hamiltonian involves both operators, which cannot in general be separated

since they do not commute. Nevertheless, one can use a Suzuki–Trotter expansion, of which

a simple example is

exp[−i(T + V )δt] � exp

(

−i
1

2
V �t

)

exp(−iT �t) exp

(

−i
1

2
V �t

)

, (20.14)

plus corrections ∝ δt2 (Exercise 20.4). This approach is well suited for plane-wave or

real-space methods, where efficient fast Fourier transform algorithms provide an exact
transformation between finite plane wave expansions and real-space grids. The transforma-

tions are exactly the same as used in ground state plane codes and described in Sec. M.11,

especially Fig. M.2.

Expansion of the exponential

The simplest approach is to expand the exponential in (20.13) in powers of the hamiltonian,

which leads to

cn+1 =
[

1 − i Ĥδt − 1

2
Ĥ

2
δt2 + · · ·

]

cn. (20.15)

The expansion can easily be carried to high orders and the calculation done by iterative

application of Ĥ . Just as for other iterative methods (App. M), the operations can be

done efficiently so long as the hamiltonian is sparse, e.g. with localized states, or using

transformations such the FFT to make all operations sparse (Sec. M.11, especially Fig. M.2).

Although the operations are not manifestly unitary, they can be used for practical calculations

[233] with small δt .

Unitary expansion of the exponential

The expansion of the exponential can be done in an alternative form using the Crank–

Nicholson operator [444],

cn+1 = 1 − i Ĥ δt
2

+ · · ·
1 + i Ĥ δt

2
+ · · · cn. (20.16)

This method is unitary, strictly preserving the orthonormality of the states for an arbitrary δt .
For time-independent hamiltonians, it is also explicitly time-reversal invariant, and exactly

conserves energy. In practice, with a suitable choice of δt , energy is satisfactorily conserved

even when the hamiltonian changes with time. The disadvantage is that it involves an inverse

operator, which requires a matrix inversion or solution of linear equations [444].
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Expansion in Chebyshev polynomials

An alternative to iterative approaches is to expand in Chebyshev orthogonal polynomials

[753] that provide a global fit to the propagation over the entire time range,

e−iHt � e−iEavt
N∑

n=0

an

(
�Et

2

)

Tn(Hnorm), (20.17)

where Tn are the Chebyshev polynomials (Sec. K.5) and the expansion coefficients an(x)

can be shown to be analogous to Bessel functions of the first kind of order n. Here Hnorm ≡
(2H − Eav)/�E is a normalized hamiltonian, where Eav = (Emax + Emin)/2 and �E =
Emax − Emin, with Emax and Emin the maximum and minimum eigenvalues of H. The

Chebyshev polynomials are chosen because their error decreases exponentially when N
is large enough, due to the uniform character of the Chebyshev expansion [753].

TDDFT calculations have proven to be very useful for the optical properties of finite

systems with size 
 wavelength of light, such as clusters. The most useful quantity is

the dipole strength function, S(ω), which is proportional to the experimentally measured

photoabsorption cross-section. S(ω) is related to the polarizability by5

S(ω) = 2m

πe2-h
ω Im α(ω), (20.18)

and it satisfies the f sum rule

-h
∫ ∞

0

dωS(ω) =
∑

i

fi = Ne, (20.19)

where fi are the oscillator strengths. The quantity that can be readily calculated is α(ω) =
d(ω)/E(ω), where d is the dipole moment and E the applied electric field.

A convenient way of calculating α(ω) is to find the equilibrium ground state ψ Ē
i of

the finite system in a constant applied electric field Ē in the x̂ direction, i.e. with time-

independent hamiltonian Ĥ = Ĥ 0 − eĒx . At time t = 0, the field Ē is suddenly removed

and for t > 0 the system evolves with initial independent-particle states ψ Ē
i and the hamil-

tonian Ĥ 0. In the TDDFT approach, Ĥ 0 is a function of time for t > 0 since the den-

sity n(r, t) is a function of time; however, there is no explicit external time dependence.

The electric field E(ω) is the Fourier transform of a step function E(t) = Ē�(−t), so

that E(ω) = Ē/(iω) and Im α(ω) = ω Re d(ω)/Ē . Finally, d(ω) can be calculated from

d(t) = e
∫

drn(r, t)x = e
∑

i 〈ψi (t)|x |ψi (t)〉 and Fourier transforming to give

d(ω) =
∫ ∞

0

dteiωt−δt d(t), (20.20)

where the factor e−δt is a damping factor introduced for convergence at large times. An

actual example of real-time behavior of the dipole moment of C60 is shown in Fig. 20.4,

which yields the spectrum shown as the dashed line in Fig. 20.5.

5 Here m, e and -h are written out explicitly to enable the conversion to usual units.
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Figure 20.4. Dipole moment d(t) of the C60 molecule as a function of time. At t = 0 the molecule is

in the ground state with a dipole moment in the presence of an applied electric field, and the field is

suddenly set to zero after which the dipole oscillates as shown. This is the actual data [754] from

which is derived the spectrum shown in Fig. 20.5. The inset shows the short time transient behavior.

The oscillations over a longer time are dominated by periods corresponding to the large peaks in

Fig. 20.5. The time step is 5.144 × 10−3/eV or 2.128 × 10−17 s and the total time in the evolution is

130 fs. Provided by A. Tsolakidis.
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Figure 20.5. Strength function S(ω) in Eq. (20.18) for light absorption in the C60 molecule using the

local orbital method of [754] and derived by Fourier transform of the real-time data in Fig. 20.4.

(Similar results are found with the real-space, real-time method of [233].) There is good agreement

of theoretical results in the lower energy range with experiment (as quoted in [233]). Provided by

A. Tsolakidis.
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There are now a number examples of real-time calculations that use the adiabatic LDA or

GGA approximations. One of the first is that of Yabana and Bertsch [233], who considered

large metal clusters and the C60 molecule. The spectra for Li147 are similar to jellium (as

expected), in contrast to the results in Fig. 20.1 for Li8. The calculations for C60 are similar

to that shown in Fig. 20.5; there is considerable structure, in general agreement with experi-

ment, although there is more broadening in the experiment. The aspect that can best be com-

pared to experiment is the integrated strength in the low-energy range, which agrees well.

The real-time method can also be implemented [754] for localized bases where it is

difficult to exponentiate the hamiltonian operator directly. Instead, it is convenient to use

the Crank–Nicholson form in Eq. (20.16). This is explicitly unitary and inversion of the

matrix 1 + i Ĥ δt
2

+ · · · can be done since a local orbital basis can be very small and since

there can be efficient inversion methods for matrices close to the unit matrix. An example

of the real-time response is illustrated in Fig. 20.4 and the spectrum is shown in Fig. 20.5.

Of course, a confined local orbital basis cannot describe well the continuum and in this case

the spectrum above ≈30 eV is not expected to be accurate.

20.5 Beyond the adiabatic local approximation

A fully satisfactory time-dependent theory must go beyond the adiabatic local (or general-

ized gradient) approximation [237]. An important step is to include the non-local exchange,

which has been shown to be important for band gaps and excitations. For example, Fig. 2.26

shows the improvement in the eigenvalues of the Kohn–Sham equation due to inclusion of

“exact exchange” (EXX). This will be reflected in the TDDFT spectra as well. Comparison

of spectra of small clusters with various functionals, including EXX, has recently been

done in [755]. Functionals with the correct asymptotic behavior [756] outside the system

improve the ionization energies, which can greatly affect the spectra, shifting the onset of

the continuum. Time dependence in the exchange–correlation functional itself is related to

other problems, such as current functionals [332, 333], and is a much more difficult to cast

into useful form [237].

SELECT FURTHER READING

Basic expressions for dielectric functions:

Ashcroft, N. W. and Mermin, N. D., Solid State Physics, W.B. Saunders Company, Philadelphia, 1976.

Kittel, C., Introduction to Solid State Physics, John Wiley and Sons, New York, 1996.

Marder, M., Condensed Matter Physics, John Wiley and Sons, New York, 2000.

Pines, D., Elementary Excitations in Solids, Wiley, New York, 1964.

Basic formulation of time-dependent density functional theory:

Casida, M. E., in Recent Developments and Applications of Density Functional Theory, edited by

J. M. Seminario, Elsevier, Amsterdam, 1996, p. 391.

Gross, E. K. U., Ullrich, C. A. and Gossmann, U. J., in Density Functional Theory, edited by E. K. U.

Gross and R. M. Dreizler, Plenum Press, New York, 1995, p. 149.



Exercises 417

Onida, G. Reining, L. and Rubio, A. “Electronic excitations: density-functional versus many-body

green’s-function approaches,” Rev. Mod. Phys. 74: 601, 2002.

Runge, E. and Gross, E. K. U. “Density-functional theory for time-dependent systems,” Phys. Rev.
Lett. 52: 997–1000, 1984.

Real-space methods:

Vasiliev, I., Ogut, S. and Chelikowsky, J. R. “First-principles density-functional calculations for optical

spectra of clusters and nanocrystals,” Phys. Rev. B 65: 115416, 2002.

Explicit time-dependent methods:

Koonin, S. E. and Meredith, D. C., Computational Physics, Addison Wesley, Menlo Park, CA, 1990,

Ch. 7.

Yabana, K. and Bertsch, G. F. “Time-dependent local-density approximation in real time,” Phys. Rev.
B 54: 4484–4487, 1996.

Exercises

20.1 Derive expression (20.2) for the dielectric function for non-interacting particles. Show that the

first term in brackets comes from the A2 term as stated following Eq. (20.2).

20.2 Derive the matrix equation (20.10) for the eigenvalues 
n of the density response from the

preceding equations. Although there are many indices, this is a straightforward problem of

matrix manipulation.

20.3 The general approach for exponentials of operators is described in the text preceding Eq. (20.14);

it is also used in the rotation operators in Sec. N.5. Show that for any operator A, exp(A) =
∑

i |ζi 〉 exp(Aii )〈ζi |, where Aii and ζi are eigenvalues and eigenvectors of A. Hint: Use the

power series expansion of the exponential and show the equivalence of the two sides of the

equation at every order.

20.4 Show that Eq. (20.14) has error of order ∝ δt2. Would the error be of the same order if the

potential part were not symmetric?
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Wannier functions

Summary

Wannier functions are enjoying a revival as important, practical tools for elec-
tronic structure. They have a long history of providing useful localized functions
for formal proofs; however, they are often not regarded as useful because of their
inherent non-uniqueness, that is, a dependence upon the choice of a “gauge.”
This has changed with the realization that Wannier functions can be used ef-
fectively to calculate important physical quantities in a gauge-invariant man-
ner. In addition, the particular construction of “maximally localized Wannier
functions” provides elegant connections to the Berry’s phase formulation of
polarization. The subjects of this and the following two chapters are closely
related: the expressions given here are useful in understanding localization and
polarization, the subject of Ch. 22, and the discussion there brings out the
physical meaning of the quantities derived in this chapter. The emergence of
“order-N” methods (Ch. 23) has given impetus to the development of useful
localized functions closely related to Wannier functions.

21.1 Definition and properties

Wannier functions [338, 759, 763] are orthonormal localized functions that span the same

space as the eigenstates of a band or a group of bands. Extensive reviews of their properties

have been given by Wannier [338], Blount [759], and Nenciu [339]. Here we consider

properties relevant to understanding the electronic properties of materials and to present-

day practical calculations.

The eigenstates of electrons in a crystal are extended throughout the crystal with each

state having the same magnitude in each unit cell. This has been shown in the independent-

particle approximation Sec. 4.3 using the fact that the hamiltonian Ĥ in (4.22) commutes

with the translations operations T̂n in (4.23). Thus eigenstates of hamiltonian Ĥ are also

eigenstates of T̂n, leading to the Bloch theorem, Eqs. (4.33) or (12.11),

ψk
i (r) = eik·ruk

i (r), (21.1)

which here is taken to be normalized in one cell. Since the overall phase of each eigenstate
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Figure 21.1. Schematic example of Wannier functions that correspond to the Bloch functions in

Fig. 4.11. These are for a band made of 3s atomic-like states and the smooth functions denote the

smooth part of the wavefunction as illustrated in Fig. 11.2.

is arbitrary, any Bloch function is subject to a “gauge transformation”

ψk
i (r) → ψ̃k

i (r) = eiφi (k)ψk
i (r) (21.2)

which leaves unchanged all physically meaningful quantities.1

Wannier functions are Fourier transforms of the Bloch eigenstates. For one band i the

function associated with the cell labeled by the lattice point Tm is

wi (r − Tm) = �cell

(2π )3

∫

BZ

dke−ik·Tm ψk
i (r) = �cell

(2π )3

∫

BZ

dkeik·(r−Tm )uk
i (r), (21.3)

as shown schematically in Fig. 21.1. The function wi associated with a different cell Tm ′ is

the same function, except it is translated by Tm′ − Tm . Conversely, Eq. (21.3) leads to

ψk
i (r) =

∑

m

e−ik·Tm wi (r − Tm). (21.4)

The transformation (21.3) assumes that the Bloch functions ψk
i (r) are periodic in reciprocal

space, i.e. the “periodic gauge” where

ψk
i (r) = ψk+G

i (r) (21.5)

1 In general, φi (k) is completely arbitrary, but in some cases it is desirable to restrict φi (k) to be a continuous

function of k, i.e. a “differentiable gauge.” It is then implicitly assumed that ψk
i (r) is also a smooth function

of k.
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for all reciprocal lattice vectors G. This is clearly obeyed by the Bloch functions given by

(21.4).

Wannier functions, labeled i = 1, 2, . . . , can be defined for a set of bands j = 1, 2, . . . , .

In general, the functions are defined as a linear combination of the Bloch functions of

different bands, so that the definition is an extension of (21.2). Each Wannier function is

given by (21.3) with

uik =
∑

j

U k
j i u

(0)
jk, (21.6)

where U k
j i is a k-dependent unitary transformation. For example, in the diamond or zinc-

blende semiconductors, four occupied bands, together, are needed to form Wannier functions

with sp3 character, that have a simple interpretation in terms of chemical bonding.

It is straightforward to show (Exercise 21.3) that the Wannier functions are orthonormal

〈Tmi |Tm′ j〉 =
∫

all space

drw∗
i (r − Tm)w j (r − Tm′ ) = δi jδnn′ , (21.7)

using (21.3) and the fact that the eigenfunctions ψk
i (r) are orthonormal. Note that the integral

in (21.7) is over all space.

Matrix elements of the position operator r̂ can be defined using notation analogous to

(21.7) with the result [759]

〈Ti |r̂|0 j〉 = i
�

(2π )3

∫

dke−ik·T〈uik|∇k|u jk〉, (21.8)

and conversely

〈uik|∇k|u jk〉 = −i
∑

T

e−ik·T〈Ti |r̂|0 j〉, (21.9)

where it is understood that ∇k acts only to the right. These expressions can be derived by

noting that

〈uik|u jk+q〉 = 〈ψik|e−iq·r|ψ jk+q〉 =
∑

T

e−ik·T〈Ti |e−iq·r|0 j〉, (21.10)

and expanding in powers of q. Similarly to second order in q this leads to (see Exercise 21.4)

〈Ti |r̂2|0 j〉 = − �

(2π )3

∫

dke−ik·T〈uik|∇2
k|u jk〉. (21.11)

Non-uniqueness of Wannier functions

The most serious drawback of the Wannier representation is that the functions are not

uniquely defined. They can vary strongly in shape and range, as opposed to the Bloch

functions that are unique (except for an overall phase that is constant in space). This can

be seen from (21.3) together with (21.2) or (21.6): the Wannier function changes because

variations in φi (k) or U k
j i change the relative phases and amplitudes of Bloch functions at

different k and different bands i .
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The centers of Wannier functions defined by 〈Ti |r̂|Ti〉 are an important example. Blount

[759] has shown that the sums of the centers of all the Wannier functions in a cell, i.e. the

center of mass r̄, is invariant, except that of course r̄ can change by any translation vector

to an equivalent point.2 However, all higher moments are “gauge dependent,” i.e. they are

not invariant to the choice of “gauge,” φi (k) in (21.2) or U k
j i in (21.6).

21.2 “Maximally projected” Wannier functions

The term “maximally projected Wannier functions” is introduced here to describe a simple,

intuitive approach for construction of Wannier functions [758, 764]. For simple bands, it

is sufficient to choose the phases of the Bloch functions so that the Wannier function is

maximum at a chosen point; more generally, one can choose phases so that the Wannier

function has maximum overlap with a chosen localized function – hence the term “maximal

projection.” As will be clear from the discussion below, the construction is valuable for

general proofs [758], for construction of functions that allow a localized formulation of the

electronic structure problem [765,766], for actual calculations in materials [694], and for a

general approach in linear-scaling order-N methods (Ch. 23).

The simplest example has been analyzed by Kohn [758, 767]. For a crystal with one

atom per cell and a single band derived from s-symmetry orbitals, the Wannier function

wi (r) on site Tm = 0 can be chosen to be the sum of Bloch functions ψk(r) with phases

such that ψk(0) is real and positive for each k. The Wannier function thus defined by (21.3)

is maximal on site 0 and decays as a function of distance from 0. In the case of a one-

dimensional crystal, it has been proven [758, 767] that the decay is exponential and this

is the only exponentially decaying Wannier function that is real and symmetric about the

origin. However, there are no proofs for a general three-dimensional crystal.3 Similarly,

one can construct bond-centered functions by requiring a maximal value at a given bond

center.

This approach can be extended to more general cases by requiring that the phase of the

Bloch function be chosen to have maximum overlap with a chosen localized function, i.e.

maximum projection of the function. An example is a p-symmetry atom-centered Wannier

function chosen to have maximal overlap with a p atomic-like state on an atom in the cell

at the origin. Maximum projection on any orbital in the basis is easy to accomplish in

localized basis representations, simply by choosing the phase of each Bloch function so

that the amplitude is real and positive for the given orbital. In a plane wave calculation, for

example, it means taking a projection much like the projectors for separable pseudopotentials

(Sec. 11.8). For bond-centered functions, one can require maximal overlap with a localized

bonding-like function.

2 This has an important physical interpretation in the theory of polarization in Ch. 22.
3 The proofs of Kohn have been extended by He and Vanderbilt [768] to show that in the one-dimensional case

the Wannier functions and various matrix elements between them decay as an exponential multiplied by (1/r )α ,

where α is fractional and has characteristic values for each of the different quantities. Taraskin, Drabold, and

Elliott [769] have shown that the results also apply to a two-band problem on a simple cubic lattice in three

dimensions.
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Figure 21.2. Bond-centered Wannier function for Si calculated [694] by requiring the phases of the

Bloch functions to have real, positive amplitude at one of the four equivalent band centers. Note the

similarity to Fig. 21.4. The decay of the orbital on a log scale is shown in Fig. 21.3.

Stated in this broad way, the construction leads to a transformation of the electronic

structure problem into a new basis of localized orthonormal orbitals. This is the basis of

the formulations of Bullett [765] and Anderson [766] that provide a fundamental way of

deriving generalized Hubbard-type models [392, 393], and used, for example to calculate

model parameters for orbitals centered on Cu and O in CuO2 materials [770] and for orbitals

that span a space of d and s symmetry functions in Cu metal [771].

A construction often used in “order-N” calculations is to find functions localized to a

sphere within some radius around a given site. This can be interpreted as “maximal overlap”

with a function that is unity inside the sphere and zero outside, usually applied with the

boundary condition that the function vanish at the sphere boundary.

Bond-centered Wannier in silicon

The construction of bond-centered Wannier functions in diamond structure crystals is dis-

cussed by Kohn [758] and careful numerical calculations have been done by Satpathy and

Pawlowska [694] for Si – the standard test case, of course. The calculations used the LMTO

method (Ch. 17), in which the orbitals are described in terms of functions centered on the

atoms (and on empty spheres). A bond-centered Wannier function is generated simply by

choosing the phases of the Bloch functions to be positive on one of the four bond centers

in a unit cell. The function can then be plotted in real space as shown in Fig. 21.2; note the

striking resemblance to the “maximally localized” function shown below on the left-hand

side of Fig. 21.4.

Satpathy and Pawlowska [694] also showed numerically that the bond-centered function

in Fig. 21.2 decays exponentially, as presented in Fig. 21.3. This is perhaps the first such

accurate numerical test of the exponential decay in solids like Si, which has since been

found in many other calculations. Presumably the reason for the similarity of the Wannier
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Figure 21.3. The decay of the bond-centered Wannier function for Si (shown in Fig. 21.2) in various

directions, plotted on a log scale. It is evident that the decay is consistent with an exponential,

although there are no rigorous proofs that this is the case in a real three-dimensional material.

Figure 21.4. “Maximally localized” Wannier functions for Si (left) and GaAs (right) from [762].

Each figure shows one of the four equivalent functions found for the four occupied valence bands.

Provided by N. Marzari.

functions for Si in Figs. 21.2 and 21.4 is related to Kohn’s proof in one dimension that

the function is uniquely fixed by the requirements that the function be real, symmetric,

and exponentially decaying; however, there is no general proof in three dimensions at the

present time.

21.3 Maximally localized Wannier functions

Finding highly localized Wannier functions (or transforms of Wannier functions) with

desired properties is a venerable subject in chemistry [760, 761, 772, 773], where they are

called “localized molecular orbitals.” Such functions are useful in constructing efficient
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methods (see Ch. 23 on “order-N” algorithms) and in providing insight through simple

descriptions of the electronic states using a small number of functions [760,761,773,774].

Although there are many possible ways to define “maximally localized,”4 one stands out:

minimization of the mean square spread � defined by

� =
Nbands∑

i=1

[〈r2〉i − 〈r〉2
i

]
, (21.12)

where 〈· · ·〉i means the expectation value over the ith Wannier function in the unit cell

(whose total number Nbands equals the number of bands considered). As shown by Marzari

and Vanderbilt [762] this definition leads to an elegant formulation, in which a part of the

spread, Eq. (21.12), can be identified as an invariant (Eq. (21.14) below). Furthermore, this

invariant part leads to a physical measure of localization as shown by Souza, et al. [775]

(see Sec. 22.5).

Because the Wannier functions are not unique, the � defined in (21.12) is not invariant

under gauge transformations of the Wannier functions [762]. Nevertheless, Marzari and

Vanderbilt were able to decompose � into a sum of two positive terms: a gauge-invariant

part �I , plus a gauge-dependent term �̃:

� = �I + �̃, (21.13)

�I =
Nbands∑

i=1

[

〈r2〉i −
∑

T j

|〈T j |r̂|0i〉|2
]

, (21.14)

�̃ =
Nbands∑

i=1

∑

T j �=0i

|〈T j |r̂|0i〉|2. (21.15)

Clearly, the second term �̃ is always positive. The clever part of the division in (21.13),

however, is that �I is both invariant and always positive. Furthermore, it has a simple

interpretation that may be seen by identifying the projection operator P̂ onto the space

spanned by the Nbands bands,5

P̂ =
Nbands∑

i=1

∑

T

|Ti〉〈Ti | =
Nbands∑

i=1

∑

k

|ψik〉〈ψik|, (21.16)

and Q̂ = 1 − P̂ defined to be the projection onto all other bands. Writing out (21.14) leads

to the simple expression (here α denotes the vectors index for r)

�I =
Nbands∑

i=1

3∑

α=1

〈0i |r̂α Q̂r̂α|0i〉, (21.17)

which is manifestly positive (Exercise 21.5). The presence of the Q̂ projection operator

leads to an informative interpretation of (21.17) as the quantum fluctuations of the position

operator from the space spanned by the Wannier functions into the space of the other bands.

4 For example, a widely used criterion is to maximize the self-Coulomb interaction [772].
5 This is the same as defined in Eq. (19.20), except that here the sum need not be over all occupied states.
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This can also be viewed as a consequence of the fact that the position operator does not

commute with P̂ or Q̂ (Exercise 21.8), so that expression (21.17) is not simply the mean

square width of the Wannier function. Instead �I is an invariant, as is apparent in the explicit

expressions in k space given below and is explained further in [762].6 Furthermore, the fact

that (21.17) represents fluctuations leads to the physical interpretation of �I brought out in

Sec. 22.5.

Practical expressions in k space

Expressions for �I and �̃ in terms of the Bloch states can be derived by substituting the

definitions of the Wannier functions, Eq. (21.3), into (21.14) and (21.15). It is an advantage

for practical calculations to write the formulas in terms of discrete sums instead of integrals

using Eq. (12.14). If one uses a finite difference approximation for the derivatives w.r.t k in

(21.8) and (21.11), one finds [762]

〈r〉 j = i

Nk

∑

kb

wbb
[〈u jk|u jk+b〉 − 1

]
, (21.18)

and

〈r2〉 j = 1

Nk

∑

kb

wb
[
2 − Re〈u jk|u jk+b〉

]
, (21.19)

where b denote the vectors connecting the points k to neighboring points k + b and wb

denotes the weights in the finite difference formula.

Although these formulas reduce to the integral in the limit b → 0, they are not acceptable

because they violate the fundamental requirement of translation invariance for any finite b.

If one makes the substitution ψk
i (r) → e−ik·Tm ψk

i (r), the expectation values should change

by a translation,

〈r〉 j → 〈r〉 j + Tm,

〈r2〉 j → 〈r2〉 j + 2〈r〉 j · Tm + T 2
m, (21.20)

so that � is unchanged. These properties are not obeyed by (21.18) or (21.19).

Acceptable expressions can be found [762] that have the same limit for b → 0 yet satisfy

Eq. (21.20). Functions with the desired character are complex log functions that have a

Taylor series expansion, ln(1 + i x) → i x − x2 + · · · for small x (similar to Eqs. (21.18)

and (21.19) for x real), but are periodic functions for large Re{x}. If we define 〈uik|u jk+b〉 ≡
Mi j (k, b), (21.18) and (21.19) can be replaced by7 (Exercise 21.6)

〈r〉 j = i

Nk

∑

kb

wbbIm ln M j j (k, b), (21.21)

6 An interesting feature is that �I can be expressed in terms of a “metric” that defines the “quantum distance”

along a given path in the Brillouin zone [762]. This “distance” quantifies the change of character of the occupied

states unk as one traverses the path, leading to the heuristic interpretation of �I as representing a measure of

the dispersion throughout the Brillouin zone [762].
7 These forms are not unique. Alternatives are pointed out in [762] and the expression for the center, Eq. (21.21),

is not the same as given earlier in the theory of polarization [147].



426 Wannier functions

and

〈r2〉 j = 1

Nk

∑

kb

wb
{
1 − |M j j (k, b)|2 + [Im ln M j j (k, b)]2

}
. (21.22)

The invariant part can be found in a way similar to (21.22) with the result

�I = 1

Nk

∑

kb

wb

[

Nbands −
Nbands∑

i j

|Mi j (k, b)|2
]

, (21.23)

which is positive (Exercise 21.7). The meaning of this term and closely related expressions

are given in Sec. 22.5.

In one dimension it is possible to choose Wannier functions so that �̃ = 0, i.e. the

minimum possible spread. However, in general, it is not possible for �̃ to vanish in higher

dimensions. This follows (Exercise 21.8) from the expression for �̃ given later in Eq. (21.28)

and the fact that the projected operators {P̂ x̂ P̂, P̂ ŷ P̂, P̂ ẑ P̂} do not commute, i.e. the

matrices representing the matrix elements 〈Ti |x̂ |T′ j〉 do not commute.

Minimization by steepest descent

Finding Wannier functions that are maximally localized can be accomplished by minimizing

the spread, Eq. (21.22), as a function of the Bloch functions. (This means minimizing �̃

since �I is invariant.) For a given set of Bloch functions u(0)
jk one can consider all possible

unitary transformations given by Eq. (21.6), which can be written as,

M(k, b) = [Uk]†M(0)(k, b)Uk+b, (21.24)

where M and U are understood to be matrices in the band indices. To minimize, one can

vary Uk, which is done most conveniently by defining

Uk = eWk
, (21.25)

where Wk is an antihermitian matrix (Exercise 21.14). The solution can be found by the

method of steepest descent (App. L). The gradient can be found by considering infinitesimal

changes, Uk → Uk(1 + δWk). Expressions for the gradient,

δ�

δWk
= Gk, (21.26)

in k space are given in [762]; we will give equivalent expressions in (21.28) and (21.29) that

bring out the physical meaning. Choosing δWk = εδGk along the steepest decent direction

leads to a useful minimization algorithm, which corresponds to updating the M matrices at

each step n

M(n+1)(k, b) = e−δWk
M(n)(k, b)eδWk+b

, (21.27)

where the exponentiation can be done by diagonalizing δW.

Examples of Wannier functions calculated by this “maximal localization” prescription

are shown in Fig. 21.4 for Si and GaAs [762]. These functions are derived by considering the
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full set of four occupied valence bands, leading to four equivalent bonding-like orbitals. For

GaAs there is an alternative possibility: since the four valence bands (see Fig. 17.8) consist of

one well-separated lowest band plus three mixed bands at higher energy, Wannier functions

can be derived separately for the two classes of bands. The result is one function that is

primarily s-like on the As atom and three functions primarily p-like on the As atom [762].

However, these Wannier functions do not lead to the maximum overall localization, so that

the bonding orbitals appear to provide the most natural picture of local chemical bonding.

Wannier functions in disordered systems

Up to now the derivations have focused entirly upon crystals and have used Bloch functions.

How can one find useful maximally localized functions for non-crystalline systems, such as

molecules or disordered materials? This is particularly important for interpretation purposes

and for calculations of electric polarization, etc., in large Car-Parrinello-type simulations

(Ch. 18) where often calculations are done only for periodic boundary conditions, i.e. for

k = 0. Many properties, such as the total dipole moment of the sum of Wannier functions,

are invariant (Sec. 22.3), so any approach that finds accurate Wannier functions is sufficient.

For other properties, it is desirable to derive maximally localized functions.

The most direct approach is to construct “maximally projected” functions (Sec. 21.2)

that are chosen to have weight at a center or maximum overlap with a chosen function. A

closely related procedure is actually used in the “order-N” linear-scaling methods described

in Sec. 23.5 that explicitly construct Wannier-like functions constrained to be localized to a

given region [776]. These methods provide an alternative approach for direct construction

of Wannier functions without ever constructing eigenstates. An example of such a Wannier

function is shown in Fig. 23.9 for a typical bonding function in a large cell of 4096 atoms

that is a model for amorphous Si [777]. The contour plots show the logarithm of the square

of the Wannier function which decays exponentially over 20 orders of magnitude. This is a

case where the O(N ) linear scaling method is much more efficient for construction of the

Wannier function than is a method that constructs the function from eigenstates.

It is also useful to construct “maximally localized” functions. For example, they are

directly useful in the concept of localization (Sec. 22.5). The functions can be derived by

working directly with the definitions in real space and minimizing �̃ given by Eq. (21.15).

It follows from the definitions (as shown in App. A of [762] and further elucidated in [778]

and [779]), that (21.15) can be written as

�̃ = Tr[X̂ ′ 2 + Ŷ ′ 2 + Ẑ ′ 2], (21.28)

where Xi j = 〈0i |x̂ |0 j〉, [X D]i j = Xiiδi j , and X ′
i j = Xi j − [X D]i j , with corresponding ex-

pressions for Ŷ and Ẑ . For infinitesimal unitary transformation |i〉 → |i〉 + ∑
j δW ji | j〉, the

gradient of (21.28) can be written as (see Exercise 21.15) δ� = 2Tr[X̂ ′δ X̂ + Ŷ ′δŶ + Ẑ ′δ Ẑ ],

where δ X̂ = [X̂ , δŴ ]. Finally, one finds δ� = Tr[δŴ Ĝ], where

δ�̃

δŴ
= Ĝ = 2{[X̂ ′, X̂ D] + [Ŷ ′, ŶD] + [Ẑ ′, Ẑ D]}. (21.29)
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These forms are the most compact expressions for �̃ and its gradient. They are directly

useful in real-space calculations in terms of Wannier functions wi (r); the corresponding

forms in k space [762] can be derived using the transformations of Sec. 21.1 and used in

(21.26).

An example of Wannier functions calculated at steps in a quantum molecular dynamics

simulation of water under high-pressure, high-temperature conditions are shown in Fig. 2.12.

Three “snapshots” during a simulation show a sequence that involves a proton transfer and

the associated transfer of a Wannier function (only this one of all the Wannier functions is

shown) to form H+ and (H3O)−.

21.4 Non-orthogonal localized functions

One can also define a set of non-orthogonal localized orbitals w̃i that span the same space as

the Wannier functions wi and which can be advantageous for practical applications and for

intuitive understanding [772]. Just as for Wannier functions, one must choose some criterion

for “maximal localization” to fix the w̃i . A recent work of Liu, et al. [774] is particularly

illuminating since it uses the same mean square radius criterion as in Eq. (21.12) and

provides a practical approach for calculating the functions directly related to optimizing

functionals in O(N) methods (Sec. 23.5).

The transformation to non-orthogonal w̃i can be defined by

w̃i =
Nbands∑

j=1

Ai j w j , (21.30)

where A is a non-singular matrix that must satisfy

Nbands∑

i=1

(Ai j )
2 = 1, (21.31)

since the w̃i are defined to be normalized. The mean square spread, Eq. (21.12), generalizes

to [774]

�[A] =
Nbands∑

i=1

[〈w̃i |r2|w̃i 〉 − 〈w̃i |r|w̃i 〉2
]
, (21.32)

which is to be minimized as a function of the matrix A subject to two conditions: A is non-

singular and satisfies Eq. (21.31). It is simple to enforce the latter condition; however, it is

not so simple to search only in the space of non-singular matrices. It is shown in [774] that

one can use the fact that a non-singular matrix must have full rank, i.e. rank(A) = N . Using

rank(A) = rank(A† A) and the variational principle, Eq. (23.33), developed for minimizing

the energy functional [780] with S → A† A, the result is

rank(A) = −min{Tr[(−A† A)(2X − X A† AX )]}, (21.33)

which is minimized for all hermitian matrices X . Defining a constraint functional

�a[A, X ] = (N − Tr((A† A)(2X − X A† AX )))2, it follows that maximally localized non-
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Figure 21.5. Comparison of orthogonal and non-orthogonal maximally localized orbitals for C–C σ

bonds (left) and C–H bonds (right) in benzene C6H6. The non-orthogonal orbitals are more localized

and more transferrable since the extended wiggles in the orthogonal functions depend in detail upon

the neighboring atoms. From [774].

orthogonal orbitals w̃i can be found by minimizing �[A] + Camin{�a[A, X ]}, for all ma-

trices A that satisfy Eq. (21.31). Here Ca is an adjustable positive constant and the second

term ensures that the final transformation matrix A is non-singular (Exercise 21.16).

An example of maximally localized orbitals for a benzene molecule are shown in Fig. 21.5,

where we see that the non-orthogonal orbitals are much more localized and much easier to

interpret as simple bonding orbitals than the corresponding orthogonal orbitals. The short

range of the non-orthogonal orbitals can be used in calculations to reduce the cost, for

example, in O(N) methods as discussed in Sec. 23.5.

21.5 Wannier functions for “entangled bands”

The subject this section is construction of Wannier-type functions that describe bands in

some energy range even though they are not isolated and are “entangled” with other bands.

Strictly speaking, Wannier functions as defined in Sec. 21.1 will not be useful; if the bands

cannot be disentangled then there will be non-analytic properties resulting from mixing

with others bands in the integrals over the Brillouin zone. However, one can define useful

functions that have real-space properties like Wannier functions and form an orthonormal,
localized basis for a subspace of bands that spans a desired range of energies.

There are two basic approaches for construction of functions that span a desired subspace.

One approach is to identify the type of orbitals involved and to generate a reduced set of

localized functions that describes the energy bands over a given range. Outside that range,

the full band structure is, of course, not reproduced: the reduced set of bands has an upper

and a lower bound, i.e. they form a set of isolated bands in the reduced space. This is in

essence the idea of “maximally projected” functions of Sec. 21.2, but now constrained only

to match the bands over some range. An example of such an approach is the “downfolding”
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Figure 21.6. Bands of Cu produced by maximally localized Wannier-like functions [781]. Top

panel: Functions that span the six-dimensional subspace for the 5 d states and 1 s state compared to

the full band structure. Similar results for the bands are found in [771]. The bands are accurately

reproduced up to well above the Fermi energy, even though the higher bands are missing. The lower

panel shows results if the subspace is decomposed into the 5 d orbitals (chosen as maximally

localized with a narrow energy window around the primarily d bands) plus the complement that is

the s orbital. From [781].

method [699, 782] the results of which are illustrated in Figs. 17.11 and 17.12. The single

orbital centered on a Cu atom is sufficient to describe accurately the main band that crosses

the Fermi energy without explicitly including the rest of the “spaghetti” of bands.

The second approach [771, 781] generalizes the idea of “maximally localized” Wannier

functions (Sec. 21.3) to maximize the overlap with Bloch functions only over an energy
window. This also generates a finite subspace of bands that describes the actual bands only

within the chosen range. Of course, the functions are not unique since there are many

choices for the energy range and weighting functions. Two recent calculations for Cu done

using pseudopotentials and plane waves [781] and the LMTO method [771] give very similar

results for the desired bands, but with different localized functions. For example, maximally

localized functions constructed from 6 d and s bands taken together are each centered in

interstitial positions near the Cu atom [781]. The bands for the six-dimensional subspace of

orbitals are given in Fig. 21.6, which shows that the band structure is accurately represented

for energies extended to well above the Fermi energy, even though the higher bands are

missing. The lower panel of the figure shows a different decomposition with the subspace

decomposed into 5 d orbitals (which have the expected form of atom-centered d orbitals

in a cubic symmetry crystal) plus the complement that is an optimal s-symmetry orbital.

Similar results for the bands are found using the LMTO method [771] where the authors

also showed that the functions decay exponentially (or at least as a very high power).
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Exercises

21.1 This exercise is to construct a localized Wannier function for the s bands described in Sec. 14.4

and Exercises 14.5 and 14.6. The hamiltonian has only nearest-neighbor matrix elements t and

the basis is assumed to be orthogonal. For all cases (line, square, and simple cubic lattices),

show that one can choose the periodic part of the Bloch functions uk
i (r) to be real, in which

case they are independent of k. Next, show from the definition, Eq. (21.3), that this choice

leads to the most localized possible Wannier function, which is identical to the basis function.

21.2 This exercise is to analyze Wannier functions for s bands as described in Exercise 21.1, except

that the basis is non-orthogonal with nearest-neighbor overlap s. Show that one can choose

the periodic part of the Bloch functions uk
i (r) to be real, and find the k dependence of uk

i (r)

as a function of s. (Hint: For non-orthogonal functions the normalization coefficient given in

(14.3) and Exercise 14.3 is k dependent, which in constructing the Wannier function using

Eq. (21.3).) Show that the resulting Wannier function has infinite range; even though it decays

rapidly, its amplitude does not vanish at any finite distance.

21.3 Derive Eq. (21.7) using definition (21.3) and properties of the eigenfunctions.

21.4 Show that expression (21.11) to second order in q follows in analogy to the expansion that

leads to Eq. (21.10).
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21.5 Show that �I is always positive by noting that Q̂ = Q̂2 so that Eq. (21.17) can be written as

the sum of expectation values of squares of operators.

21.6 Show that (21.21) and (21.22) have the same limit for b → 0 as Eqs. (21.18) and (21.19) and

that they obey the translation invariance conditions, Eq. (21.20). Show further that this means

that � is unchanged.

21.7 Show that �I in Eq. (21.23) is positive using the definition of the M matrices and the fact that

the overlap of Bloch functions at different k points must be less than unity.

21.8 Explain why it is not possible to make �̃ vanish in higher dimensions.

(a) First show that the projected operators {P̂ x̂ P̂, P̂ ŷ P̂, P̂ ẑ P̂} do not commute. Show this is

equivalent to the statement that x̂ and P̂ do not commute. Then show that x̂ and P̂ do not

commute.

(b) Use the fact that non-commuting operators cannot be simultaneously diagonalized to

complete the demonstration.

21.9 Demonstrate that it is possible to find functions with �̃ = 0 in one dimension by explicitly min-

imizing �̃ for a one-band, nearest-neighbor tight-binding model with overlap (see definitions

in Sec. 14.4):

Hi,i±1 = t ; Si,i±1 = s, (21.34)

where Si,i = 1.

(a) First consider the case with s = 0: show that in this artificial model the minimum spread

is the spread of the basis function. However, one can also choose more delocalized states, e.g.

the eigenstates.

(b) For s �= 0, find the minimum spread �I as a function of t . Show it is greater than in part (a).

For explicit evaluation of the spread �I , use (21.23) with the eigenvectors given by analytic

solution of the Schrödinger equation and the sum over k done approximately on a regular grid

of values in one dimension.

21.10 This exercise is to construct maximally localized Wannier functions for the one-dimensional

ionic dimer model in Exercise 14.12 using the fact that the gauge-dependent term in it can be

made to vanish.

(a) Let t1 = t2 so that each atom is at a center of symmetry. Show that the maximally localized

Wannier function for the lower band is centered on the atom with lower energy εA or εB , and

the function for the upper band is centered on the atom with higher energy. (Hint: If there is a

center of inversion the periodic part of the Bloch functions can be made real.)

(b) Similarly, there are two centers of inversion if εA = εB and t1 �= t2. Show that in this case

the Wannier functions are centered respectively on the strong and the weak bonds between the

atoms.

(c) In each of the cases above, calculate the maximally localized Wannier function as a sum of

localized basis functions. The eigenfunctions can be calculated analytically and the Wannier

functions constructed using the definition in (21.3) and approximating the integral by a sum

over a regular grid of k points. (This can be done with a small computer code. Note that the

grid spacing must be small for a small gap between the bands.)

21.11 Using the model of Exercise 14.12 and the methods described in Sec. 21.3, construct a computer

code to calculate the centers of the Wannier functions in a general case, εA �= εB and t1 �= t2.
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This can be used to find polarization and effective charges as described in Exercises 22.8 and

22.9.

21.12 Construct the maximally localized Wannier function for the lowest band in the one-dimensional

continuum model of Exercise 12.5. Show that the function is centered at the minimum of the

potential. Calculate the functions using the analytic expressions for the Bloch functions and

the same approach as in Exercise 21.10, part (c).

21.13 See Exercise 15.6 for a project to construct Wannier functions in one dimension.

21.14 Show that Uk, defined in Eq. (21.25), is unitary if Wk is antihermitian, i.e. Wi j = −W ∗
j i .

21.15 Show that the gradient, Eq. (21.29), follows from the definitions. To do this, verify the operator

commutation relations, and note that Tr[X̂ ′ X̂ D] = 0, etc.

21.16 Show that the minimization of the functional �[A] + Camin{�a[A, X ]} leads to the desired

solution of a non-singular transformation to non-orthogonal orbitals. Hint: Use the conditions

stated following Eq. (23.33) and the relations given in (21.30)–(21.33).
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Polarization, localization, and Berry’s phases

Summary

Electric polarization is one of the basic quantities in physics, essential to the
theory of dielectrics, effective charges in lattice dynamics, piezoelectricity, fer-
roelectricity, and other phenomena. However, descriptions in widely used texts
are often based upon oversimplified models that are misleading or incorrect.
The basic problem is that the expression for a dipole moment is ill defined
in an extended system, and there is no unique way to find the moment as a
sum of dipoles by “cutting” the charge density into finite regions. For extended
matter such as crystals, a theory of polarization formulated directly in terms of
the quantum mechanical wavefunction of the electrons has only recently been
derived, with an elegant formulation in terms of a Berry’s phase and alternative
expressions using Wannier functions. The other essential property of insula-
tors is “localization” of the electrons. Although the concept of localization is
well known, recent theoretical advances have provided new quantitative ap-
proaches and demonstrated that localization is directly measurable by optical
experiments. This chapter is closely related to Ch. 21 on Wannier functions, in
particular to the gauge-invariant center of mass and contribution to the spread
of Wannier functions �I of Sec. 21.3.

The theory of electrodynamics of matter [448,790] (see App. E) is cast in terms of electric

fields E(r, t) and currents j(r′, t ′). (Here we ignore response to magnetic fields.) In metals,

there are real currents and, in the static limit, electrons flow to screen all macroscopic

electric fields. Thus, the description of the metal divides cleanly into two parts: the bulk,

which is completely unaffected by the external fields, and surface regions, where there is

an accumulation of charge δn(r) that adjusts to bring the surfaces to an equipotential. The

surface thus determines the absolute value of the potential in the interior relative to vacuum

(see Sec. 13.4), but this has no affect upon any physical properties intrinsic to the bulk

interior of the metal.

The fundamental definition of an insulator, on the other hand, is that it can support a

static electric field. In insulators, charge cannot flow over macroscopic distances, but there

can be time-dependent currents termed polarization currents. The state of the material is
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defined by the polarization field P(r, t) which satisfies the equation

∇ · P(r, t) = −δn(r, t), (22.1)

or, using the conservation condition ∇ · j(r, t) = −dn(r, t)/dt ,

dP(r, t)

dt
= j(r, t) + ∇ × M(r, t), (22.2)

where M(r, t) is an arbitrary vector field. The theory of dielectrics [448, 790] is based

upon the existence of local constitutive relations of P(r, t) to the macroscopic electric field,

atomic displacements, strain, etc. (see also Ch. 19).

The first part of this chapter addresses the problem of the definition of polarization in

condensed matter. This is treated in some detail because there has been great confusion for

many years that has been satisfactorily resolved only recently. The issue is the definition of

the static macroscopic polarization P, i.e. the average value of P(r), as an intrinsic property

of the bulk of an insulating crystal, i.e. with no dependence upon surface termination. The

essential question for electronic structure theory is: can one determine the macroscopic
polarization P in terms of the intrinsic bulk ground state wavefunction? This is the fun-

damental problem if we want to find proper theoretical expressions for the polarization

in a ferroelectric or pyroelectric material. Expressions for energy, force, magnetization,1

and stress have been given in previous chapters; electric polarization completes the set of

properties needed to specify the macroscopic state of insulators. In addition, expressions

valid to all orders in perturbation theory provide an alternative to the response function

approach of Ch. 19.

Traditional textbooks [84, 86, 88, 448, 790, 791] are little help:2 ionic crystals are repre-

sented by point charge models and polarization is considered only in approximate models,

such as the Clausius–Mossotti model of a solid as a collection of polarizable units. How-

ever, the electron density n(r) is a continuous function of r and there is no way of finding a

unique value of P as a sum of dipole moments of units derived by “cutting” the density into

parts [786]. Attempts to make such identifications have lead to much confusion and claims

that properties such as piezoelectric constants are not true bulk properties (see [787] for a

review). The polarization of ferroelectrics or pyroelectrics is even more problematic [784].

The resolution to these issues and an elegant – yet practical – quantum mechanical

formulation has only recently been derived. This places polarization firmly in the body of

electronic structure theory. As shown in Sec. 22.1, the key steps are to relate changes in

the polarization to integrals over currents flowing through the interior of the body. This

is the basis for the new developments (Sec. 22.2) that express the integrated current as a

geometric Berry’s phase involving integrals over the phases of the electronic wavefunctions.

This was realized by King-Smith and Vanderbilt [147] who built upon the earlier work of

1 Only spin was treated explicitly; orbital magnetization is a difficult problem that requires special treatment as

does polarization.
2 An exception is Marder [88], whose presentation is based upon the recent theoretical advances described in

more detail here.
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Thouless and coworkers [792–794]. For reviews see Resta [148,788] and for the extension

to interacting many-body systems see Ortiz and Martin [795].

The formulation of polarization in terms of “phases” of the wavefunctions has led to a

re-examination of density functional theory, since the density is independent of the phases.

The problem was pointed out by Gonze, Ghosez, and Godby [340], and the resolution is very

subtle and can only be summarized here. In the absence of a macroscopic electric field, the

bulk polarization is, in principle, a functional of the bulk density in the spirit of the original

Hohenberg–Kohn theorem since the wavefunction is also a functional of the density. But

if there is a macroscopic electric field, the state of the bulk is not determined by the bulk
density alone [796] but can be written in terms of a “density polarization theory”( [341,342]

and references cited there).

The properties of an insulator are fundamentally related to localization [783]. Recent

work [775, 789, 797, 798] has shown how to express polarization and localization in a

unified way in terms of the ground state wavefunction. A summary of this work is given

in Sec. 22.5, including useful explicit formulas for the localization length in an insulator,

which are experimentally measurable [775, 798] and which reduce to the invariant part of

the spread of the Wannier functions, Eq. (21.17), in the independent-particle approximation.

22.1 Polarization: the fundamental difficulty

In a finite system, as shown in Fig. 22.1 there is no problem in defining the average value

of the polarization P. From Eq. (22.1) one can integrate by parts and use the requirement

that P(r) = 0 outside the body (see Exercise 22.1) to express P in terms of the total dipole

moment d,

P ≡ d
�

= 1

�

∫

all space

dr n(r) r. (22.3)

This integral is well defined since the density vanishes outside the finite system and there

is no difficulty from the factor r. This expression has the desired properties: in particular, a

change in polarization �P = P(1) − P(0) is given strictly in terms of the density difference

+
--

--

--

-- e

d

+
+

+

Figure 22.1. Illustration of finite system for which the total dipole moment is well defined. However,

the total dipole cannot be used to find the bulk polarization in the large system limit because there is

a surface contribution that does not vanish. A bulk theory must be cast solely in terms of bulk

quantities.
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Figure 22.2. Point charge model of an ionic crystal. The dipole is obviously not unique since the

cells shown all have different moments. However, a change in moment is the same for all cells so

long as charges do not cross boundaries.

�n = n(1) − n(0) independent of the path along which the density changed in going from

the starting point 0 to the end point 1.

In an extended system, the goal is to identify an intrinsic bulk polarization Pbulk. The

first step is to specify what is meant by “intrinsic bulk.” A well-defined thermodynamic

reference state of a bulk material can be specified by requiring the macroscopic electric

field Emac to vanish. This is the only well-defined reference state [84,86,88,562] since it is

only in this case that the bulk is not influenced by extrinsic charges at long distance. With

this requirement, the electrons in a crystal are in a periodic potential, which is a fortunate

situation for the derivation of the theoretical value for the polarization. (Of course, this is not

the whole story: there are real physical effects due to long-range electric fields, which is the

subject of the dielectric theory of insulators [448, 790]. The complete description requires

a full quantum mechanical theory involving both the thermodynamic reference state, with

Emac ≡ 0, and changes in the presence of macroscopic electric fields that can be treated by

perturbation theory (App. E and Ch. 19).

In an extended system, any interpretation of polarization based upon Eq. (22.3) suffers

from a fatal difficulty originating in the factor of the position vector r, which is unbounded.

This is illustrated for a periodic array of point charges in Fig. 22.2. Suppose we consider a

large finite system of charges that repeat the pattern shown. Depending upon the termination

of the charges there can be a surface contribution due to factor r that remains even in

the infinite system limit. If we attempt to consider only one unit cell, then the choices

shown in Fig. 22.2 illustrate three choices all with different moments. Another approach is

the Clausius–Mossotti-type models where the material is assumed to be a set of localized

“molecule-like” densities, each of which has a moment and is polarizable (see [84], Chap. 27,

and [86], Chap. 13). Even though all such models are at first sight oversimplifications, we

shall see that they can be derived from well-defined theoretical approaches.

The first step is to note that if we try to apply the ideas of the simplified models directly

to the charge density, it is impossible to find the polarization (or changes in the polarization)

simply from the density [786]. This is due to the fact that the electron charge density is

continuous and there is no direct way to “cut” it into pieces that is unique. Thus a different

approach has to be used. The next step is to note that changes in the polarization in the point
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charge model are well defined except for jumps when charges cross the boundary. This is

true only because of the assumption of point charges, which turns out to be important in

the Wannier function interpretation of Sec. 22.3, which will also give ways to construct

localized overlapping densities that can play the role of the units in the Claussius–Mosotti

model.

A proper definition of polarization in an infinite periodic crystal requires that the ex-

pression in terms of the ill-defined r operator be replaced by a different form. This can

be done using the relation to the current Eq. (22.2), in which case the static changes in

the polarization can be calculated from adiabatic evolution of the system with “time” re-

placed by a parameter λ that characterizes the evolution (e.g. λ might represent positions

of atoms). Thus a change in polarization �P can be determined strictly from the polariza-

tion current that flows through the bulk [786,799–801]. Since the macroscopic current is a

physically measurable unique quantity this provides a well-defined procedure for calculating

the changes in polarization as a purely bulk property. Indeed the change �P is the quan-

tity that appears in the fundamental definition of polarization, given in (E.5) and repeated

here,

P(r, t) =
∫ t

dt ′ jint(r, t ′). (22.4)

To clarify that the integrated current is the desired quantity, we must carefully specify

the experimentally measurable quantity that can be identified as a physical polarization.

As shown schematically in Fig. 22.3, the basic experimental measurement is a current that
flows through an external circuit under the conditions that the internal macroscopic field
vanishes. This makes it clear that changes in polarization �P are the quantities measured

directly. Since the current is physically measurable this expression eliminates the difficulties

that occur if one tries to extend (22.3) to an infinite system. As examples of physical

+ + + + + + +

E

P

2P0

-- -- -- -- -- -- --

Figure 22.3. Left: Schematic illustration for measurement of a change in polarization �P. In order

to keep the two surfaces at the same potential (i.e. zero macroscopic field), the integrated current

that flows in the external circuit exactly balances any change in surface charge. Since the surface

charge is given by (see Eq. (22.1)) �nsurface = − ∫
surface

∇ · �P(r) = �Pbulk, this is a direct measure

of �P. Right: Schematic hysteresis loop for a ferroelectric showing that a change in polarization is

the quantity actually measured to determine the remnant permanent polarization P0 for zero

macroscopic electric field E .
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measurements, piezoelectric constants are changes �P caused by a strain εi j measured

under conditions where there is no flow of internal free charges that could “short out”

the external circuit [802].3 Ferroelectrics are materials whose state can be switched by an

external field, so that the magnitude of the intrinsic polarization |P| can be found as one-half

the measured change �P between states of opposite remnant polarization.

There is still one feature missing. Up to now we have only used definitions and dielectric

theory. The expression, Eq. (22.4), for polarization is correct but not sufficient. There is no

proof or physical reasoning that shows that the value of the polarization is independent of

the path in the integral. Thus as it stands, Eq. (22.4) is not acceptable as a definition of an

intrinsic bulk property. Quantum theory provides the needed proof: this is the subject of the

next section.

22.2 Geometric Berry’s phase theory of polarization

Recently [147, 148, 795], there has been a breakthrough providing a new approach for cal-

culation of polarization in crystalline dielectrics. Within independent-particle approaches,

all physical quantities can be written as integrals over the filled bands in the complete Bril-

louin zone taking advantage of periodicity in k space. The change in polarization can be

found when a parameter of the hamiltonian, λ, is changed adiabatically (e.g. when atoms

are displaced which leads to a Kohn–Sham potential V λ
KS) from definition (22.4) with time

t replaced by the parameter λ,

�P =
∫ 1

0

dλ
∂P
∂λ

, (22.5)

where the macroscopic electric field is required to vanish at all λ.

The analysis starts with the perturbation expression for ∂P/∂λ in terms of momentum

matrix elements that are well defined in the infinite system

∂P
∂λ

= −i
e-h

�me

∑

k

occ∑

i

empty∑

j

〈ψλ
ki | p̂ |ψλ

k j 〉〈ψλ
k j | ∂V λ

KS/∂λ |ψλ
ki 〉

(ελ
ki − ελ

k j )
2

+ c.c., (22.6)

where the sum over i, j is assumed to include a sum over the two spin states. This expression

can be cast in a form involving only the occupied states following the approach of Thouless

and coworkers [792] (see also Ch. 19) using the transformed k-dependent hamiltonian,

Ĥ (k, λ), whose eigenfunctions are the strictly periodic part of the Bloch functions uλ
ki (r)

as expressed in (4.37). The relations required are (Exercise 22.2)

〈ψλ
ki |p̂|ψλ

k j 〉 = me
-h

〈uλ
ki |[∂/∂k, Ĥ (k, λ)]|uλ

k j 〉 (22.7)

3 There is a distinction between “proper” and “improper” piezoelectricity, the latter being the change of moment

when a material with a permanent moment is rotated. Only the former is a real response of the material [785,803]

as is clear in Fig. 22.3 where obviously nothing happens if the sample and electrodes are rotated. Vanderbilt [803]

has shown that the Berry’s phase expressions below give the proper terms since the G vectors rotate with the

crystal.
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k

l

p/a−p/a

l = 1  

l = 0

Figure 22.4. Schematic figure of region of integration in (k, λ) space for calculation of �P using the

Berry’s phase formula Eq. 22.9.

and

〈ψλ
ki |∂V λ

KS/∂λ|ψλ
k j 〉 = 〈uλ

ki |[∂/∂λ, Ĥ (k, λ)]|uλ
k j 〉. (22.8)

Substituting in (22.6) and using completeness relations (Exercise 22.3) leads directly to the

result [147, 795] for the electronic contribution to �P

�Pα = −|e| 2

(2π )3
Im

∫

BZ

dk
∫ 1

0

dλ

occ∑

i

〈
∂uλ

ki

∂kα

∣
∣
∣
∣
∂uλ

ki

∂λ

〉

. (22.9)

The integrals over the two directions of k perpendicular to kα are done simply as averages

and we focus only upon the one-dimensional integral over k ≡ kα .

The general nature of Eq. (22.9) is made clear by realizing that it is a “Berry’s phase”

[149].4 The key point is that Eq. 22.9 involves a two dimensional integral over parameters

k and λ in the Ĥ (k, λ). These parameters play the role of the slowly changing parame-

ters in the approach of Berry [149]. By defining a reduced dimensionless vector (a/2π )k
(where a has dimensions of length), the right-hand side is easily shown to be a factor

[ea/volume] multiplied by a dimensionless quantity which is gauge-independent and is pre-

cisely the Berry’s phase. The two-dimensional region in (k, λ) space is shown in Fig. 22.4,

and using Stokes’ theorem the surface integral can be converted into a line integral along

the closed path defined as the boundary of the region. Because the parameters form a two-

dimensional space, the line integral can be defined and the area enclosed by the path defines a

phase [148, 149].

Although the complete expression depends upon the path in (k, λ) space [795], a choice

of phases of the wavefunctions to obey the “periodic gauge condition,” Eq. 21.5, which can

be written

uλ
k+G,i (r) = eiG·ruλ

k,i (r), (22.10)

where G is a reciprocal lattice vector, leads to a cancellation of the contribution of the two

integrals over λ at k and k + G. This leads to the simplest “two-point” formula [147, 148]

4 See discussions in [148], [795], and [342].
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that depends only upon the difference of the integrals over k at the end-points λ = 0 and

λ = 1,5

�Pα = i
−|e|
(2π )3

∫

BZ

dk
occ∑

i

[〈uλ=1
ki |∂kα

uλ=1
ki 〉 − 〈uλ=0

ki |∂kα
uλ=0

ki 〉]

+ (integer) × −|e|
A

, (22.11)

where A is the cell volume divided by the length of the unit cell in the direction α, i.e. the area

of a cell perpendicular to α. The last term in (22.11) represents “quanta of polarization”

that originate in integer multiples of 2π in the Berry’s phase. Interestingly, they can be

interpretated as transport of an integer number of electrons across the entire crystal, leaving

the bulk invariant. This is the part of the transport that was emphasized by Thouless et al.,

for the quantum Hall effect [792] and quantized charge transport in an insulator [793,794]

in the case where the hamiltonian is changed along a closed path returning to the same point,

i.e. Ĥ (k, λ = 1) = Ĥ (k, λ = 0). In contrast, changes in the Berry’s phase by fractions of

2π correspond to polarization of the bulk crystal.

Note that the geometric phase is non-zero only if the periodic functions uλ
ki are complex;

this occurs if there is no center of inversion, which is of course exactly the condition under

which there may be a non-zero polarization. Hence, the change in macroscopic polarization
between two different insulating states can be regarded as a measure of the phase difference
between the initial and final wavefunctions. In all mean-field approaches, this means Slater

determinants of single-body functions uλ
ki , but the formula generalizes directly to correlated

many-body wavefunctions [795].

For actual calculations in crystals, it is convenient to express the polarization terms of

the Bloch functions calculated on a grid in the Brillouin zone, rather than the derivatives

required in Eq. (22.11). The grid can be constructed with lines of J points in the α di-

rection along which the derivative is to be calculated. The Bloch functions at the two

sides on the BZ (k0 and kJ ) are required to be the same, i.e. the periodic gauge. It is not

sufficient to simply express the derivative as a finite difference because this would not

be gauge invariant. As shown in [147], a possible choice is to replace the integral over

kα by

−i
∫

BZ

dkα

occ∑

i

[〈uλ
ki |∂kα

uλ
ki 〉

] → �
[
ln �J−1

j=0 det (〈uλ
k j i |uλ

k j+1i ′ 〉)
]
, (22.12)

where the determinant is that of the N × N matrix formed by allowing i and i ′ to range over

all occupied states. Note that the overall phase of each uλ
k j i

cancels in the sum since each

function appears in a bra and a ket in the product. Expression (22.12) involving discrete

points k j , approaches the continuum expression, (22.11), in the limit of J → ∞. This form

is now widely used for calculations of polarization, as exemplified below.

5 Spin is included in the sum over i . Some authors include a factor of 2 for spin, assuming no spin dependence.
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22.3 Relation to centers of Wannier functions

The “two-point” expression for a change in polarization, Eq. (22.11), due to the electrons

can be immediately cast in terms of functions involving the centers of Wannier functions,

using relation (21.8). The result is

�Pα = −|e|
�

occ∑

i

[〈0i |r̂|0i〉λ=1 − 〈0i |r̂|0i〉λ=0
]
. (22.13)

This has the simple interpretation that the change in polarization is the same as if the

electrons were localized at points corresponding to the centers of the Wannier functions.

In general, the center of each function is not unique, but the sum of moments of all the

functions is unique as shown by Blount [759] and which follows from the gauge invariance

of the Berry phase.

Thus the derivation in terms of Wannier functions provides a rigorous basis for the

simplified models of charges in crystals. For example, the model in terms of point charges

can be identified with the centers of the Wannier functions; each charge is not unique,

but any change in polarization is well defined, modulo the “quantum of polarization.”

Furthermore, the “quantum” has the simple interpretation that the electrons can be shifted

by a translation between equivalent Wannier functions, which of course is a symmetry

operation of the infinite crystal. Similarly, the Clausius–Mossotti model becomes a rigorous

theory of polarization in insulators (at least in the independent-particle approximation) if

the polarizable units are taken to be overlapping Wannier functions. Even though the units

are not unique, the total polarization is well defined.

22.4 Calculation of polarization in crystals

As examples of the calculation of polarization it is appropriate to consider effective charges,

given by Eq. (E.20), because the results can be compared with experiments that can measure

the charges accurately in terms of the splittings of longitudinal and transverse modes. For

example, several groups [573, 736, 737] have derived the anomalous effective charges in

perovskites, such as BaTiO3, which have ferroelectric transitions. In such materials there

are several infrared (IR) active modes and it is not possible to determine directly from the

experiment the individual effective charges of the atoms, because all the IR modes interact

with one another and are mixed. They can be decomposed into contributions from different

atoms only by using information on the lattice dynamics from a theoretical model. In

contrast, the ab initio calculations determine the atomic effective charges and the vibrational

modes; thus the effective charges for the eigenmodes can be directly predicted and compared

with experiment. The prediction is that there is a great mixing of the IR modes, so that the

lowest transverce optic (TO) mode is most closely associated with the highest longitudinal

optic (LO) mode, giving a very large effective charge for that mode, i.e. the phonon that

softens at the ferroelectric phase transition. The anomalously large effective charges of the B
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Table 22.1. Born effective charges for the atoms and

mode effective charges for the IR active modes in

ABO3 perovskites. The two charges given for the

O atoms are, respectively, for displacements in the

plane formed by the O atom and 4B neighbors,

Z∗
1(O), and in the perpendicular direction toward the

2A neighbors, Z∗
2(O). Taken from Zhong, et al. [573].

Type BaTiO3 PbTiO3 NaNbO3

Z*(A) 2.75 3.90 1.13

Z*(B) 7.16 7.06 9.11

Z∗
1(O) −5.69 −5.83 −7.01

Z∗
2(O) −2.11 −2.56 −1.61

|Z*(TO1)| 8.95 7.58 6.95

|Z*(TO2)| 1.69 4.23 2.32

|Z*(TO3)| 1.37 3.21 5.21

atoms and the O atoms moving along the line toward the B atoms are interpreted as resulting

from covalency. Selected results are shown in Tab. 22.1, taken from [573]; essentially the

same results have been found using linear response methods [736, 737]; however, Berry’s

phase approach has the advantage that it applies directly to the finite polarizations that

develop in the ferroelectric states.

Examples of calculations of linear (Gonze et al. [804]) and non-linear susceptibilities

(Dal Corso and Mauri [805]) have been done using transformations between the Wannier

and Bloch orbitals and the “2n + 1 theorem” (Sec. 3.7).

Spontaneous polarization

Spontaneous polarization occurs in any crystal that lacks a center of inversion. In ferro-

electrics, the value P0 can be measured as indicated in Fig. 22.3 because the direction of

the polarization can be reversed. Values of the ferroelectric remnant polarization have been

calculated for a limited number of ferroelectric materials, with values in general agreement

with measured ones [148]. For example, the calculated residual polarization [736] of KNbO3

is �P = 0.35 C/m2 compared with the measured value [806] of 0.37 C/m2, although it is

very difficult to find the intrinsic moment experimentally [784].

In other crystals, such as wurtzite structure, there is a net asymmetry with the positive

direction of the c-axis inequivalent from the negative direction. The two directions are

detected experimentally by the fact that their surfaces are inequivalent. It is not so easy to

reverse this axis since it requires breaking and remaking of all the bonds in the crystal. Such

crystals are pyroelectrics [722] because the change in the polarization with temperature can

be measured. How can the absolute value of the polarization be determined? The absolute
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value can be expressed in terms of quantities that can be defined theoretically: the difference

�P given the Berry’s phase formula between the acual crystal and a crystal in which P = 0

by symmetry. This can be calculated by constructing a path between the two crystals by

“theoretical alchemy”, in which the charge on the nuclei is varied, or by large displacements

of atoms to change the crystal structure. Both of these possibilities are straightforward in

calculations. Although there is no corresponding direct experiment, there are experimental

consequences which occur at an interface between regions with different polarization, so

that ∇ · P leads to a net charge.

22.5 Localization: a rigorous measure

An insulator is distinguished from a conductor at zero temperature by its vanishing d.c.

conductivity and its ability to sustain a macroscopic polarization, with and without an

applied electric field [448, 790]. The theory of polarization, presented thus far, has shown

the fundamental relation of the latter property to the ground state wavefunction for the

electrons. Regarding the former property, the classic paper “Theory of the insulating state”

by W. Kohn [783] has clarified that the many-body system of electrons in an insulator is

“localized” in contrast to the delocalized state in a metal. However, until recently there was

no rigorous quantitative measure of the degree of localization. In fact, such a measure is

provided by the theory of polarization: not only the average value, but also the fluctuations

of the polarization [775, 788, 789].

The relation between polarization and localization was established by Kudinov [807],

who proposed to measure the degree of localization in terms of the mean square quantum
fluctuation of the ground state polarization. Kudinov considered the quantum fluctuation

of the net dipole moment, 〈�d̂
2〉 = 〈d̂2〉 − 〈d̂〉2

in a large, but finite, volume �. Using

the zero-temperature limit of the fluctuation–dissipation theorem [263,808–811], the mean

square fluctuation is related to the linear response function by

〈�d̂α
2〉

V
=

-h

π

∫ ∞

0

dω
1

ω
Reσαα(ω) =

-h

π

1

4π

∫ ∞

0

dωImεαα(ω). (22.14)

For a metal with σ (ω) 
= 0 for ω → 0, the right-hand side diverges, i.e. the mean square

fluctuation of the dipole moment diverges in the large � limit. However, for an insulator

σ (ω = 0) is finite and Kudinov proposed that the integral has a well-defined limit for large

volume. Since the dipole is a charge times a displacement, d̂ = −eX̂, where X̂ = ∑N
i x̂i is

the center of the mass position operator of N electrons in the volume, relation (22.14) can

be used to define a mean square displacement of the electrons, and thus a localization length

ξ . Souza et al. [775] have shown that the arguments carry over to the infinite system with

proper interpretation of the position operator X consistent with the polarization operator,6

6 That is, the expectation value 〈X〉 is equivalent [775] to the Berry’s phase expressions given in Sec. 22.2.
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with the result for the length in the α direction

ξ2
α = lim

N→∞
1

N

[〈X̂2
α〉 − 〈X̂α〉2

]

= lim
N→∞

�2

e2 N

[〈P̂2
α 〉 − 〈P̂α〉2

]
. (22.15)

In terms of measurable conductivity, ξ 2
α is given by

ξ 2
α =

-h

πe2n

∫ ∞

0

dω
1

ω
Reσαα(ω). (22.16)

Bounds can be placed upon the length [775, 798]. Using the inequality
∫ ∞

0

dω
1

ω
Reσαα(ω) ≤ 1

Emin
gap

∫ ∞

0

dωReσαα(ω), (22.17)

where Emin
gap is the minimum direct gap and the sum rule, Eq. (E.13), lead to an upper bound

ξ 2
α ≤

-h2

2me Emin
gap

. (22.18)

On the other hand, arguments based upon standard perturbation formulas for the static

susceptibility χ = (ε − 1)/4π lead to a lower bound [798]

ξ2
α ≥ Emin

gap

2n
χ, (22.19)

which also illustrates that ξ diverges in a metal where χ necessarily diverges. The inequal-

ities can be derived, as described in more detail in Exercise 22.5, in terms of integrals of

the real part of the conductivity σ ′(ω) and the average gap defined by Penn [812] in terms

of the electron density and the polarizability.

The localization length also relates to important theoretical quantities, establishing rigor-

ous relations with experimental measurables and providing tests for approximate theories.

The demonstrations have been done in several ways [775, 813] (see a review in [788]).

For particles that are independent except that they are indistinguishable, there is a general

relation, Eq. (3.55), between the correlation function and the density matrix, repeated here

for fermions

�nip(x; x′) = −|ρ̂σ (x, x′)|2. (22.20)

As shown by Sgiarovello et al. [813], transformations of the density matrix lead to the

relation [775]

3∑

α=1

ξ 2
α = �I

me
, (22.21)

in terms of the invariant part of the spread of the Wannier functions, Eq. (21.14), thus giving

a physical meaning to the invariant spread.

The localization length can be determined directly from the ground state wavefunction

using the expressions in Sec. 21.3 for Eq. (21.14) or alternative forms given in [813].
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Figure 22.5. Calculated [813] mean square fluctuation of the electron center of mass 〈x2〉 = ξ 2
α

plotted versus the inverse of the minimum direct gap in various semiconductors. Two points for each

material (except Si and Ge, see text) are for experimental (solid dots) and theoretical (open circles)

gaps. The line indicates the upper bound that would apply if all the oscillator strength were

associated the minimum gap. It is clear that inequality (22.18) is well obeyed. Calculations were

done using expressions for 〈x2〉 that can be expressed in terms of Eq. (22.21) and a variation of the

expressions given in Sec. 21.3 for Eq. (21.14). From [813].

Quantitative calculations for many semiconductors have been carried out by [813] with the

results shown in Fig. 22.5, compared to the bounds in Eq. (22.18). Note that the figure has

two points for each material, representing the experimental minimum direct gap and the

theoretical gap in the actual density functional theory calculations. (The theoretical points

for Si and Ge are not shown because they are too far off scale due to the “gap problem.”)

The inequality must be obeyed for the theoretical gap and the figure shows that it is well

obeyed for the experimental gap as well.

22.6 Geometric Berry’s phase theory of spin waves

The Berry’s phase approach for electric polarization can be extended to spin as well [135,

136]. The basic idea is that the spin wave is assumed to be adiabatic and the wavefunction

for the electrons is considered to evolve adiabatically in time with a position-dependent

Berry’s phase. The derivatives of the phase contribute to the energy, as well as to all other

spatial variations of the wavefunction. Practical expressions can be worked out in spin-

dependent density functional theory (including non-collinear spins) for the energy and
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detailed spin distribution of a spin wave. An example of a calculation [136] is shown in

Fig. 19.5 from [720].
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Exercises

22.1 Verify that the well-known expression for a dipole moment, Eq. (22.3), follows from the

definition of the polarization field, Eq. (22.1), with the boundary condition given.

22.2 Show that expressions (22.7) and (22.8) for the expectation values in terms of the commutators

follow from the definition of Ĥ (k, λ).

22.3 Show that Eq. (22.9) follows from the previous equations as stated in the text. Hint: Use

completeness relations to eliminate excited states.

22.4 Show that the dipole moment averaged over all possible cells vanishes in any crystal.
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22.5 Define a “localization gap” EL by turning Eq. (22.18) into an equality: ξ 2 ≡ -h2/(2me EL).

(a) Using the f sum rule and Eq. (22.16), show that EL can be expressed as the first inverse

moment of the optical conductivity distribution:

E−1
L = 1

-h

∫
ω−1σ ′(ω) dω

∫
ω0σ ′(ω) dω

.

(b) Use the f sum rule and the Kramers–Krönig expression for ε(0) to show that the Penn

gap [812] EPenn defined via the relation ε(0) = 1 + (-hωp/EPenn), where ωp is the plasma

frequency, can be expressed as the second inverse moment:

E−2
Penn = 1

-h2

∫
ω′−2σ ′(ω) dω
∫

ω0σ ′(ω) dω
.

(c) Using the results of (a) and (b), show that inequalities (22.18) and (22.19) can be recast in

a compact form as follows:

E2
Penn ≥ EL Emin

gap ≥ (Emin
gap )

2
.

22.6 Find a reasonable estimate and upper and lower bounds for
∑3

α=1 ξ 2
α using gaps and dielectric

constants of typical semiconductors and the expressions given in Exercise 22.5. The lowest

direct gaps can be taken from Fig. 22.5 and values of the dielectric functions can be found in

texts such as [84, 86, 88], e.g. ε ≈ 12 in Si.

22.7 It is also instructive to calculate values of the average “Penn gap” [812] which is defined in

Exercise 22.5. The Penn gap is an estimate of the average gap in the optical spectrum and is

directly related to the inequalities in Exercises 22.5 and 22.6. As an example, find the gap in Si

with ε ≈ 12 and compare with the minimum direct gap. Find values for other semiconductors

as well, using standard references or [812].

22.8 Construct a small computer code to calculate the electronic contribution to the polarization

from the Berry’s phase expressions given in Sec. 22.2 for the one-dimensional ionic dimer

model of Exercise 14.12 in a general case, εA 
= εB and t1 
= t2. Compare with the calculations

of the centers of the Wannier function found in Exercise 21.11.

22.9 The effective charge, Eq. (E.20), is defined by the change in the polarization induced by

displacement on an atom. An important part of the charge is the “dynamical” electronic

contribution that results from changes in the electronic wavefunctions in addition to rigid

displacements. A simple model for this is given by the one-dimensional ionic dimer model of

Exercise 14.12. Consider εA 
= εB and let t1 = t + δt and t2 = t − δt . A change in δt causes

a change in polarization in addition to any change due to rigid displacement of ionic charges.

For a given �ε ≡ εA − εB calculate δP/δt for small δt using computer codes for the Berry’s

phase (Exercise 22.8) or the centers of the Wannier functions (Exercise 21.11). Show that the

contribution to the effective charge can be large and have either sign (depending upon the

variation of t with displacement), which can explain large “anomalous effective charges” as

described in Sec. 22.4.

22.10 Consider the one-dimensional continuum model of Exercise 12.5 for which Wannier functions

are found in Exercise 21.12. The polarization is zero since the crystal has a center of inversion

and the eigenfunctions can be chosen to be real. If the entire crystal is shifted rigidly a
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distance �x , so that V (x) → V0 cos(2π (x − �x)/a), the origin is not at the center of inversion

and the eigenfunctions are not real. Using the Berry’s phase expressions in Sec. 22.2, show

that the change in the electronic contribution to the polarization is �P = −2|e|�x/a. The

interpretation of this simple result is that the electrons simply move rigidly with the potential.

Give the reasons that this shift does not actually lead to a net polarization since in a real crystal

this electronic term is exactly cancelled by the contribution of the positive nuclei which shift

rigidly.
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Locality and linear scaling O(N ) methods

Nearsightedness
W. Kohn

Throwing out k-space
V. Heine

Summary

The concept of localization can be imbedded directly into the methods of elec-
tronic structure to create new algorithms that take advantage of locality or
“nearsightedness” as coined by W. Kohn. As opposed to the textbook start-
ing point for describing crystals in terms of extended Bloch eigenstates, many
physical properties can be calculated from the density matrix ρ(r, r′), which is
exponentially localized in an insulator or a metal at finite T . For large systems,
this fact can be used to make “order-N” or O(N ) methods where the compu-
tational time scales linearly in the size of the system. There are two aspects of
the problem: “building” the hamiltonian and “solving” the equations. Here we
emphasize the second aspect, which is more fundamental, and describe repre-
sentative O(N ) approaches that either treat ρ(r, r′) directly or work in terms of
Wannier-like localized orbitals.

The reader should be aware (beware) that O(N ) methods are under develop-
ment; there are problems and shortcomings in actual practice.

Every textbook on solid state physics begins with the symmetry of crystals and the entire

subject of electronic structure is cast in the framework of the eigenstates of the hamiltonian

classified in k space by the Bloch theorem. So far this volume is no exception. However,

the real goal is to understand the properties of materials from the fundamental theory

of the electrons and this is not always the best approach, either for understanding or for

calculations.

What does one do when there is no periodicity? At a surface? In an amorphous solid or a

liquid? In a large molecule? One approach is to continue to use periodic boundary conditions

on artificial “supercells” chosen to be large enough that the effects of the boundary conditions

are small or can be removed from the calculation by an analytic extrapolation procedure.
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This approach can be very effective and is widely used, especially with efficient plane wave

methods (Ch. 13) and “ab initio” simulations (Ch. 18).

The subject of this chapter is an alternative approach built upon the general principle of

locality or nearsightedness, i.e. that properties at one point can be considered independent

of what happens at distant points. If the theory is cast in a way that takes advantage of the

locality, then this will lead to algorithms that are “linear scaling” (“order-N” or O(N )), i.e.

the computational time and computer memory needed is proportional to N as the number

of particles N is increased to a large number. O(N ) methods emerge naturally in classical

mechanics: if there are only short-range interactions, the forces on each particle depend only

upon a small number of neighboring particles. One step in a molecular dynamics calculation

can be done updating the position of each particle in time ∝ N .1 The same conclusion holds

even if there are long-range Coulomb forces, since there are various methods to sum the

long-range forces in time ∝ N [820].

The problem is that quantum mechanics inherently is not O(N ). The full description of the

states of a quantum system is not local: the solutions of the wave equation, in general, depend

upon the boundary conditions; eigenstates in extended systems, in general, are extended;2

and the indistinguishability of identical particles requires that the wavefunctions obey the

symmetry or antisymmetry conditions among all particles, whether they are nearby or far

away. Features such as critical points in the band structure, a sharp Fermi surface in k space,

Kohn anomalies [84], etc., all require extended quantum mechanical waves. The simplest

case is the ground state of N electrons in the independent-particle approximation, which

is an antisymmetric combination of N eigenstates, each of which is, in general, extended

through a volume also proportional to N . Working in terms of the independent-particle

eigenstates leads to scaling at least ∝ N 2, and specific methods are often worse. Full matrix

diagonalization scales as N 3
basis, where the number of basis functions Nbasis ∝ N . The widely

used Car–Parrinello-type algorithms in a plane wave basis scale as N 2 Nbasis, with Nbasis >>

N in the orthogonalization step. Solutions of correlated many-body problems, in general,

scale much worse, growing exponentially in N for exact solutions and as high powers

for practical configuration interaction calculations [819]. Widely used variants of quantum

Monte Carlo simulations [81, 95] of ground state or equilibrium properties have the same

scaling as independent-particle methods, but with a larger prefactor in the computational

time. Recently, a linear-scaling version [821] has been introduced.

23.1 Locality and linear scaling in many-particle quantum systems

Despite the inherent non-locality in quantum mechanics, many important properties can be

found without calculating the eigenstates, using information that is only “local” (as defined

below). For example, the density and total energy are integrated quantities that are invariant

1 It is a more difficult question if all desired properties can be found in time proportional to the total size of the

system; for example, there could be slow relaxation modes that become increasingly difficult to determine as

the system size increases. We will not deal with such issues here.
2 In disordered systems, some or all eigenstates may be localized, in which case the usual eigenstate methods can

be O(N ). Even then it may be possible to transform to more localized representation.
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Figure 23.1. Schematic diagram of treating a quantum system in terms of overlapping regions.

to unitary transformations of the states, and these quantities are sufficient to determine the

stable ground state and the force on every nucleus. In this chapter we discuss algorithms

that actually calculate such quantities with computational time ∝ N .

The term “nearsightedness” has been coined by Walter Kohn [822] for such integrated

quantities that can be calculated at one point r in terms only of information at points r′

in a neighborhood of r. This embodies the ideas developed by Friedel [697] and Heine

and coworkers [465] on locality and other work such as the 1964 paper by Kohn, “The

nature of the insulating state,” in which the key idea is the localization of electronic states

in insulators. Nearsightedness is a property of a many-body system of particles: the density

of an individual eigenstate at any point is dependent upon the boundary conditions and

the potential at all other points; however, for systems of many particles, the net effect is

reduced due to interference between the different independent-particle eigenstates (i.e. in

the sum in Eqs. (23.1) and (23.2) below). In insulators and metals at non-zero temperature,

the one-electron density matrix decays exponentially, and in metals at T = 0 as a power

law (1/R3 in three-dimensions), with Gibbs oscillations due to the sharp cutoff at the Fermi

surface. Interactions introduce correlations with the longest range being van-de-Waals-type

that decay as 1/R6 in the energy and 1/R3 in the wavefunction [819]. We will use the

term “local” in this sense to mean “dependent upon only distant regions to an extent which

decays rapidly:” exponential decay is sufficient to ensure convergent algorithms; however,

the power law decay in metals at T = 0 is problematic so that special care is needed.

There are a number of different linear-scaling O(N ) approaches, all of which take advan-

tage of the decay of the density matrix with distance, and which truncate it at some point. The

schematic idea is shown in Fig. 23.1. One of the great advantages of the density matrix for-

malism is that it is a general approach applicable at finite temperature, where all correlations

become shorter range. Therefore, in general, the range of the density matrix is decreased

and O(N ) algorithms should become more feasible and efficient. In addition, the possibility

of continuous variation of fractional occupation of states is of great advantage in prob-

lematic cases where occupation must be fractional by symmetry or jumps discontinuously
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at T = 0. This problem is well known in standard electronic structure algorithms and is

discussed in Ch. 9, where a fictitious temperature is often added to improve calculations by

smoothing details of the state distribution.

For non-interacting particles, the density matrix can be written (see Sec. 3.5) as

ρ̂ =
M∑

i=1

|ψi 〉 fi 〈ψi | or ρ(r, r′) =
M∑

i=1

ψ∗
i (r) fiψi (r′), (23.1)

where fi = 1/(1 + exp(β(εi − μ)) is the Fermi function and β = 1/kB T . For T �= 0, the

number of states M must be greater than the number of electrons N , which is related to the

Fermi energy μ by N = ∑M
i=1 fi . At T = 0 this becomes

ρ̂ =
N∑

i=1

|ψi 〉〈ψi | or ρ(r, r′) =
N∑

i=1

ψ∗
i (r)ψi (r′). (23.2)

Even if the independent-particle eigenfunctions are extended, the density matrix is expo-

nentially localized and vanishes at large relative separation |r − r′| in all cases for T �= 0

(see discussion following Eq. (5.10)) and at T = 0 in an insulator.

The sum of independent-particle energies Es , written in terms of eigenstates, is given by

Es =
M∑

i=1

1

1 + exp(β(εi − μ))
εi , (23.3)

where the sum is over all eigenvalues. (This is also sufficient for Kohn–Sham theory

(Sec. 9.2) where the total energy can always be found from Es plus terms that involve

only the density n(r) = ρ(r, r).) In general, one can rewrite the sum over all eigenvectors

as a trace, so that energy can be written

Es = Tr

{
1

1 + exp(β(Ĥ − μ))
Ĥ

}

= Tr{ρ̂ Ĥ}. (23.4)

Similarly, the grand potential that describes the energy for different numbers of particles is

given by

�s = Tr

{
1

1 + exp(β(Ĥ − μ))
(Ĥ − μ)

}

= Tr{ρ̂(Ĥ − μ)}. (23.5)

The difficulty in using the Fermi function is the exponentiation of the operators that are

non-diagonal, if one wishes to avoid diagonalization, e.g. in an O(N ) scheme.

At T = 0 in an insulator, the expressions are closely related to the construction of Wannier

functions. The N eigenstates can be transformed to N localized orthogonal Wannier-like

functions wi (Ch. 21)

ρ̂ =
N∑

i=1

|wi 〉〈wi |, T = 0. (23.6)

It may also be advantageous [780, 823] to work in terms of non-orthogonal functions ŵ i
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that are transformations of the Wannier functions

ρ̂ =
N∑

i=1, j

|wi 〉S−
i j 〈w j |, T = 0, (23.7)

where S− is the inverse of the overlap matrix.3 For T �= 0 the form of the decay can be

derived for model problems, such as the free-electron gas discussed in Sec. 5.1.

For all cases, the challenge is to determine efficient, robust ways to find the density matrix

ρ̂ or the generalized Wannier functions wi or w̃i . In the latter case, the functions are not

unique, which leads to possible advantages that can accrue by using particular choices and

possible problems due to approximations that violate the invariance of the functionals.

There are two aspects to the creation of linear-scaling methods, both relying upon sparsity

of the hamiltonian and overlap matrices, assumed to have non-zero elements only for a finite

range as shown schematically in Fig. 23.1:

� “Building” the hamiltonian, i.e. generating the non-zero matrix elements in a sparse form

that is linear in the size of the system. For many approaches, this is the rate limiting step

for sizes up to hundreds of atoms, and therefore it is relevant even if the solution is done

with traditional O(N 2) or O(N 3) methods.
� “Solving” the equations. This is the more fundamental aspect that is necessary for O(N )

scaling in the large N limit. We will consider approaches that treat ρ(r, r′) (or a Green’s

function) or work in terms of Wannier-like localized orbitals. The key division is be-

tween “non-variational methods” that truncate well-known expansions, and “variational

methods” that approximate the solution of variational functionals.

23.2 Building the hamiltonian

The hamiltonian can be constructed in a sparse form in real space in any case in which the

basis functions are localized to regions smaller than the system size. The most obvious basis

for such an approach are local orbitals, as discussed in Chs. 14 and 15. The tight-binding

model approach is ideal for this purpose since the matrix elements of Ĥ and the overlap

matrix Ŝ are defined to be short range. In the full local orbital method, matrix elements of the

hamiltonian vanish beyond some distance only if the orbitals are strictly localized. This can

be accomplished in a basis of numerical orbitals purposefully chosen to be strictly localized

as described in Sec. 15.4. In general, analytic bases such as gaussians decay exponentially

but never vanish entirely, so they must be used with care.

The augmented approaches can also be cast in localized forms. LMTOs can be trans-

formed to an orthogonal tight-binding form, in which the hamiltonian has a power law

decay (Sec. 17.5) that is much shorter range than in the original method. In Green’s func-

tion methods, such as KKR, G is generated in terms of G0, which is very long range for

positive energies, but decays exponentially for negative energies. This has been used to

construct an O(N ) KKR method [671] in which G0 is the numerically calculated Green’s

3 Here we use the notation of [780] which generalizes the definition of S−1 as shown later in Eq. (23.28).
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function for an electron in an array of repulsive centers, as described in Sec. 16.7. In these

methods one must invert a matrix labeled by the orbital quantum numbers at the atomic

sites, and linear scaling is accomplished in constructing the hamiltonian or Green’s function

matrix including only neighbors in a “local interaction zone.” The approach, termed “locally

self-consistent multiple scattering” (LSMS), involves a calculation on a finite cell around

each site; an alternative approach to use Lanczos or recursion methods to solve the multiple

scattering problem around each site [824].

It is, however, not essential that the basis be localized. One of the original ideas is due to

Galli and Parrinello [705], who combined the plane wave Car–Parrinello algorithm (Ch. 18)

with transformations of the wavefunctions to a localized form as in Eq. (23.5). Physical

properties are unchanged due to the invariance of the trace. By constraining orbitals to be

localized to regions, they showed that one can construct an algorithm that automatically

generates localized functions and a sparse hamiltonian, even though the plane wave basis

is not localized.

23.3 Solution of equations: non-variational methods

Green’s functions, recursion, and moments

The original ideas for electronic structure methods that take advantage of the locality grew

out of Green’s function approaches, using the facts that the density matrix and the sum of

eigenvalues are directly expressible in terms of integrals over the Green’s function. The

basic relations are given in Sec. D.4 and in Eqs. (16.34)–(16.36), which we re-write here in

slightly different notation. If the basis states are denoted χm (here assumed to be orthonormal

for simplicity), then local density of states projected on state m is given by

nm(ε, R) = − 1

π
ImGm,m(ε + iδ). (23.8)

For example, m might denote a site and basis orbital on that site. The sum of eigenvalues

of occupied states projected on state m can be found from the relation

∑

i

εi |〈i |χm〉|2 = − 1

π

∫ EF

−∞
dε ε ImGm,m(ε + iδ, 0), (23.9)

and the total sum of eigenvalues is given by

∑

i

εi = − 1

π

∑

m

∫ EF

−∞
dε ε ImGm,m(ε + iδ, 0). (23.10)

The left-hand sides of Eqs. (23.9)–(23.10) are in the standard eigenstate form, whereas the

right-hand sides are in the form of Green’s functions that can be evaluated locally. This

provides all the information needed to determine the total energy and related quantities

from integrals over the Green’s functions.

Elegant methods have been devised to calculate the Green’s functions as local quantities.

The basic idea can be illustrated by Fig. 23.1 in which we desire to determine the Green’s
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function G0,0(ε + iδ) for the orbital 0 shown as dark gray. This can be accomplished by

repeated applications of the hamiltonian, called recursion [696], which has close relations

to the Lanczos algorithm (Sec. M.5). The ideas are used in tight-binding approaches (sum-

marized, e.g. in [593]), KKR Green’s function methods (see Sec. 16.3 for the basic ideas

and references such as [671] and [824] for O(N ) algorithm developments), and LMTO

Green’s function methods that use recursion (see, e.g. [691]). The diagonal elements of

the Green’s function can be used to find the charge density and the sum of single particle

energies; however, there are difficulties in finding the off-diagonal elements of the Green’s

function needed for forces. This problem is addressed by “bond-order” potential methods

[825–827].

The basic idea of the recursion method [696, 828] is to use the Lanczos algorithm

(Sec. M.5) as a method to construct a Green’s function, using the properties of a tridi-

agonal matrix. The Lanczos recursion relation, Eq. (M.9), for the hamiltonian applied to a

sequence of vectors,

ψn+1 = Cn+1[Ĥψn − Hnnψn − Hnn−1ψn−1], (23.11)

generates the set of vectors ψn and the coefficients in the tridiagonal matrix (M.10), αn =
Hnn and βn = Hn−1 n . The normalization constant is readily shown (Exercise 23.1) to be

Cn+1 = 1/βn , n ≥ 1. If the starting vector ψ0 is a basis state localized at a site,4 and the

hamiltonian is short range, then the algorithm generates a sequence of states in “shells”

around the central site. The diagonal part of the Green’s function for state 0 is given by the

continued fraction [593, 696, 828]

G0,0(z) = 1

z − α0 − β2
1

z − α1 − β2
2

z − α2 − β2
3

. . .

(23.12)

where z is the complex energy.

The properties of the continued fraction and a proper termination are the key features of

the recursion method, and an introductory discussion can be found in [829]. If the fraction

is terminated at level N , then the density of states consists of N delta functions that is useful

only for integrations over G(z). If a constant imaginary energy δ is used as a terminator,

this is equivalent to a lorentzian broadening of each delta function. However, there are other

approaches that are just as simple but much more elegant and physical. One follows from

the observation [829] that the coefficients αn and βn tend to converge quickly to asymptotic

values that can be denoted α∞ and β∞. If one sets the coefficients αn = α∞ and βn = β∞
for all n > N , then one can evaluate the remainder of the fraction analytically. This leads

4 Here 0 denotes the starting state which can be any state in the basis, e.g. any of the localized atomic-like states

on site i .
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Figure 23.2. Density of states (DOS) for an s band in a simple cubic lattice with nearest-neighbor

interactions. The recursion is up to N = 20 levels on cells of size (21)3 with open boundary

conditions (left) and periodic boundary conditions (right). Compared to the schematic DOS in

Fig. 14.3 recursion yields correct features, although there are oscillations. The similarity of the two

results demonstrates the insensitivity of local properties to the boundary conditions. (The small

asymmetry results from odd-length paths to its image in an adjacent cell.) From [829].

to replacement of the β2
N+1 coefficient by t(z) given by

t(z) = 1

z − αN+1 − β2
N+2

z − αN+2 − β2
N+3

z − . . .

= 1

z − α∞ − β2∞t(z)
, (23.13)

which has the solution [829] (Exercise 23.3)

t(z) = 1

2β2∞

{
(z − α∞) − [

(z − α∞)2 − 4β2
∞

]1/2
}

. (23.14)

This has the appealing form of a terminator that is an analytic square root function, which

is real outside the range α∞ ± 2|β∞| and has a branch cut corresponding to a band width

4|β∞|. The ideal choice is that which yields the correct band width. In actual practice it

is important not to choose |β∞| too small in which case there are spurious delta functions

in the range between the real band width and the approximate interval α∞ ± 2|β∞|. If the

range is overestimated, there is broadening but no serious problems.

An example of the use of the recursion method is shown in Fig. 23.2 for the density of

states (DOS) for an s band in a simple cubic lattice with nearest-neighbor interactions. The

bands are given analytically in Sec. 14.4 and the DOS is shown schematically in Fig. 14.3.

In comparison, the DOS calculated with the recursion method up to N = 20 levels shows

correct features, but with added oscillations. Other types of terminators can improve the

convergence to the exact result [696]. The two results shown in Fig. 23.2 are for open and

periodic boundary conditions, showing the basic point of the insensitivity of local properties

to the boundary conditions.

The recursion method is very powerful and general. It is not limited to tight-binding and

it can be applied to any hermitian operator to generate a continued fraction form for the

Green’s function. This is a stable method to generate the density of states so long as care

is taken in constructing a proper terminator for the continued fraction [593, 696, 828]. An
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Figure 23.3. Electronic density of states (DOS) for liquid Fe (a) and Co (b) calculated with the

tight-binding LMTO method (Sec. 17.5) and recursion [692]. The liquid was simulated by 600 atom

cells generated by classical Monte Carlo and empirical interatomic potentials. The density is similar

to the crystal (see, for example, the canonical DOS in Fig. 16.13) broadened by the disorder.

From [692].

example is shown in Fig. 23.3, which shows the electronic density of states of liquid Fe and

Co determined using the tight-binding LMTO method (Sec. 17.5) and recursion [692]. The

actual calculations were done on 600 atom cells with atomic positions generated by classical

Monte Carlo methods with empirical interatomic potentials. This illustrates a powerful

combination of the recursion approach with a basic electronic structure method that is now

widely used for many problems in complicated structures and disordered systems.

Determination of the moments of the density of states is also a powerful tool to extract

information in an O(N ) fashion. Moments of the local DOS for basis function m

μ(n)
m ≡ 〈m|[Ĥ ]n|m〉, (23.15)

in principle, contain all the information about the local DOS, and thus about all local

properties. The basic ideas are described in Sec. L.7 where the two issues, generating the

moments efficiently and inverting the moment information to reconstruct the DOS, are

emphasized.

There are a number of ways to generate the moments; one, very stable, approach is to

construct the moments in terms of the tridiagonal matrix elements generated by the Lanczos

algorithm. For the state labeled 0, the moments can be written [593]

μ
(0)
0 = 1,

μ
(1)
0 = α0,

μ
(2)
0 = α2

0 + β2
1 , (23.16)

μ
(3)
0 = α3

0 + 2α0β
2
1 + α1β

2
1 ,

μ
(4)
0 = α4

0 + 3α2
0β

2
1 + 2α0α1β

2
1 + α2

1β
2
1 + β2

1β2
2 + β4

1 ,

and so forth.
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Figure 23.4. Density of states (DOS) for electrons in the fullerenes from C60–C3840. The structures

are shown later in Fig. 23.7 and the same tight-binding model of [162] is used in both cases. The

figure illustrates the evolution of the DOS from delta functions of the C60 molecule to the spectrum

of graphene shown in the bottom panel which has the critical point features of a two-dimensional

DOS, as shown in Fig. 14.3. The smaller molecules and graphene were computed using

diagonalization methods; the DOS for the larger clusters was calculated by the method of moments

as implemented in [832] (see Sec. L.7). The results demonstrate the detailed structure that can be

resolved using ≈150 moments. From [831].

Inversion of the moments to find the DOS is the well-known, difficult, “classical moment

problem” [822] discussed in Sec. L.7. As an example of the construction of the density

of states using moments for an actual problem done in O(N ) fashion, Fig. 23.4 shows

the calculated [831] density of states (DOS) of the series of fullerenes (the structures are

shown later in Fig. 23.7) using the orthogonal tight-binding model of [162]. The bottom

panel shows the DOS for a sheet of graphene and the progression is evident from the

molecule to the continuous spectrum with the critical points of a two-dimensional crystal.

The results are found with usual diagonalization for calculations the small molecules and

are constructed for the large fullerenes up to C3840 from ≈150 moments using the maximum

entropy method [832] discussed in Sec. L.7. The results show the exquisite detail that can

be achieved, including the sharp features and the approach to the spectrum of graphene

calculated exactly for the same tight-binding model. Similarly, the phonon spectrum can be

calculated in an O(N ) manner as reported for these systems in [833].
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Bond order and forces in recursion

A key problem with the recursion method is the difficulty in computing off-diagonal matrix

elements of G that are essential for forces. The expression in terms of the density matrix

is given in (14.25); omitting the simple two-body term, the contribution from the sum of

eigenvalues is given by

FI = −Tr

{

ρ̂
∂ Ĥ

∂RI

}

= −
∑

m,m ′
ρm,m ′

∂ Hm,m ′

∂RI
. (23.17)

General expressions in terms of Green’s functions with localized bases are given by

Feibelman [634]. The generic problem is the calculation of ‘bond order,” which is the

off-diagonal components of the density matrix ρm,m ′ that correspond to bonding and are

given by integrals over Gm,m ′ (z) analogous to (23.8)–(23.10). There has been considerable

work to derive efficient recursion-type expressions for the bond order [825–827]. The basic

idea is that off-diagonal terms Gm,m ′ (z) can be calculated using recursion with a starting

vector

ψ0 = 1√
2

[χm + eiθχm′ ], (23.18)

and computing Gm,m ′(z) from

Gm,m ′(z) = ∂Gλ
0,0(z)

∂λ
, (23.19)

with λ = cos(θ ). Further generalizations of this idea have been derived as described in [827]

with a summary in [593].

“Divide and conquer” or “fragment” method

One of the first O(N ) methods is based directly upon the argument that the interior of a large

region depends only weakly upon the boundary conditions. The procedure termed “divide

and conquer” [834] or “fragment molecular orbital method” [835] is to divide a large system

into small subsystems each of size Nsmall, for example the central orbital (gray) plus the

set of orbitals shown as heavy circles in Fig. 23.1. For each of these systems one can solve

for the electronic eigenstates using ordinary N 3 methods. For each small system one must

add “buffer regions” of size Nbuffer (the outer orbitals in Fig. 23.1) large enough so that the

density and energy in the original small subsystem converges and is independent of the buffer

termination. The solution for the density and other properties is then kept only for the interior

of each small region. In many ways, the “divide and conquer” approach is the counterpart

of using supercells: although there is wasted computational effort, the approach is attractive

because it uses standard methods and there is much experience in extracting information

from small systems with well-chosen terminations. Using traditional methods, the cost

is of order (Nsmall + Nbuffer)
3 for each subsystem, which may be prohibitive, especially

for three-dimensional systems where Nbuffer may need to be very large. Nevertheless, the

method is O(N ) for large enough systems and it may be particularly applicable for long
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linear molecules with large energy gaps (i.e. small localization lengths (see Ch. 22)) that

are important in biochemistry (see, e.g. [835]).

Polynomial expansion of the density matrix

One class of methods uses the form in Eq. (23.4) directly and expands the Fermi function in

(23.4) in powers of the hamiltonian. This is the approach used, e.g. in [836] and [837]. The

basic requirement is for the expansion to have the same properties as the Fermi function,

i.e. that all states with eigenvalues far above the Fermi energy μ have vanishing weight, all

those well below μ have unity weight, and the variation near μ is reproduced accurately.

This is difficult to accomplish in an expansion; however, if the eigenvalues are limited

to the range [Emin, Emax], then the expansion can be done efficiently using Chebyshev

polynomials Tn defined in Sec. K.5. The advantage of the Chebyshev polynomials is that

they are orthogonal and fit the function over the entire range [−1, +1] (see Sec. K.5) and they

can be generated recursively using the relation (K.19). Let us define �E = Emax − Emin, the

scaled hamiltonian operator H̃ = (Ĥ − μ Î )/�E , and the scaled temperature β̃ = β�E .

Then we can express the expansion of the Fermi operator as

F̂[Ĥ ] = 1

1 + eβ(Ĥ−μ)
→ c0

2
Î +

Mp∑

j=1

c j Tj (H̃ ). (23.20)

The highest power needed in the expansion depends upon the ratio of the largest energy

in the spectrum to the smallest energy resolution required. The higher the temperature the

lower the power needed, since the Fermi function is smoother. For a metal, T must be of the

order of the actual temperature (or at least smaller than the energy scale on any variations in

the states near μ). For insulators, a larger effective T can often be chosen so long as states

below (above) the gap are essentially filled (empty). For hamiltonians that are bounded

(such as in tight-binding), the ratio Emax/T can be estimated and powers ≈10 to 100, are

needed for realistic cases.

The key idea is that all operations can be done by repeated applications of Ĥ to a basis

function, which amounts to repeated multiplication of a matrix times a vector. Each of the

basis functions shown in Fig. 23.1 is treated one at a time.5 In the general case, this procedure

scales as N 2
basis, since it involves multiplication of a vector by the matrix. However, if Ĥ

is sparse, only a few matrix elements are non-zero (e.g. the non-zero elements in a tight-

binding hamiltonian that involve only a few neighbors) and the multiplication, times one

localized basis function, is independent of the size of the system. Furthermore, if we invoke

the localization property of the density matrix, all matrix operations can be made sparse,

so that the calculation scales as order Nbasis ∝ N . This method has two great advantages:

(1) the computation scales linearly with the number of other basis functions included in the

5 The Chebyshev polynomial expansion can also be used with random vectors to generate a statistical estimate of

extensive quantities, such as the total energy [832,838]. “maximum entropy” or related methods. This is useful

for extremely large matrices where it is not feasible to take the trace.
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maximum range, compared to cubic scaling in the “divide and conquer” and the variational

function methods; and (2) the algorithm is perfectly parallel. Major disadvantages are:

(1) that the results of the expansion are not variational since the truncation errors can be of

either sign; and (2) the fact that an independent calculation must be done for each orbital

means that information is discarded, in comparison to the variational methods that exchange

information between the subparts of the system.

The Chebyshev expansion method can be a very efficient procedure if the basis set is

small, e.g. in tight-binding models, where M is only a factor of order 2 larger than N .

However, it fails for unbounded spectra, because the polynomial expansion must be taken

to higher and higher orders as the range of the spectrum is increased. For a typical plane wave

calculation, high powers would be required sine the energy range is large and Nbasis >> N .

Inverse power expansion of the density matrix

There are several approaches that work with an unbounded spectrum employing operators

that properly converge at high energies. One is the inverse power method, which is in

essence a Green’s function approach, Sec. D.4, and is closely related to the recursion

method, Sec. M.5. In this approach, one expands the Fermi function as follows:

F̂[Ĥ ] = 1

1 + exp[β(Ĥ − μ)]
→

Mpole∑

i=1

wi

Ĥ − zi
. (23.21)

Using the well-known relations for contour integration, the sum over poles on the real axis

can be converted into an integral in the complex plane enclosing the poles [96, 671, 839]

as discussed in Sec. D.4 and shown schematically in Fig. D.1. For each of the terms with

zi in the complex plane, the inverse operator Ĝi (zi ) can be found in a basis by solving

linear equations (Ĥ − zi )Ĝi (zi ) = I . In terms of basis functions in real space, the operators

Ĝi (zi ) are more localized for large complex zi , which is advantageous for calculations

(Exercise 23.5). Their maximum range is where the contour crosses the real axis. In order

to describe the contour integral accurately in an insulator one needs the number of poles

Mpole ∝ (μ − Emin)/Egap; in a metal there is no gap and an accurate evaluation of the integral

near the axis requires poles with a more dense spacing ∝ T . An advantage of this approach

is that, unlike the power expansion, it always converges independent of the high-energy

spectrum. Furthermore, it corresponds to the physical picture that high-energy processes are

more localized, and low-energy ones more delocalized. An example of multiple-scattering

Green’s function calculations [671] is shown in Fig. 23.5.

Exponential operators

Perhaps the most fundamental approach of all is to work directly with the time-dependent

Schrödinger equation. The density matrix for quantum statistics is exp(−β Ĥ ), which is

equivalent to the imaginary time propagator. Thus essentially the same techniques can be

used as in the real-time methods of Sec. 20.4. As β → ∞, the operation of exp(−β Ĥ ) on
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Figure 23.5. Total energy of Cu and Mo calculated using multiple-scattering theory with localized

regions, plotted as a function of the radius of the localization region [671]. These are, in fact, hard

cases, since the density matrix is most delocalized in perfect crystals, leading to the sharp variations

shown. Provided by Y. Wang; similar to [671].

any wavefunction � projects out of the ground state provided it is not orthogonal to �.

The expressions can be evaluated using the fact that exp(−β Ĥ ) = (exp(−δτ Ĥ ))n , where

δτ = β/n represents a temperature that is higher by a factor n. In the high-temperature,

short-time regime, the operations can be simplified using the Suzuki–Trotter decomposition,

as in Eq. (20.14) rewritten here,

exp[−δτ (T + V )] � exp

(

−1

2
δτ V

)

exp(−δτT ) exp

(

−1

2
δτ V

)

, (23.22)

which is factored into exponentials of kinetic and potential terms. One approach for the

kinetic term is to use an implicit method that solves linear equations (see Sec. M.10 and

[840]). One can also use FFTs to transform from real space (where V is diagonal) to

reciprocal space (where T is diagonal) as in Sec. M.11. The former is widely used for

quantum dots [840] and the latter has been used in simulations, e.g. of hydrogen fluid at

high temperature and pressure [841].

23.4 Variational density matrix methods

Two properties must be satisfied6 by the density matrix ρ̂ at T = 0:

� “Idempotency,” which literally means ρ̂2 = ρ̂, which is equivalent to requiring all eigen-

values of ρ̂ to be 1 or 0.
� The eigenvectors of the density matrix with eigenvalue 1 are the occupied eigenvectors

of the hamiltonian.

6 The density matrix minimization approach can also be extended to finite temperature. Corkill and Ho [842] have

used the Mermin functional to allow a continuous variation of the occupation instead of the strict idempotency

requirements of the original method.
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Figure 23.6. Functional forms for the cubic “McWeeny” purification algorithm [843] for the density

matrix (left) and the quadratic Mauri–Ordejon–Kim functional [844–846] for the wavefunctions

(right). “Purification” of the density matrix results because the function 3x2 − 2x3 is always closer

to 0 or 1 than the input value x , as shown by the dashed line (= x). The form 2x2 − x4 applied to the

localized wavefunctions is minimized for occupied functions normalized to 1, empty functions to 0.

Li et al. [843] showed how to use a minimization method to drive the density matrix

to its proper T = 0 form. See also Exercise 23.7 for further details. The starting point

is the “McWeeny purification [261]” idea: if ρ̃i j is an approximate trial density matrix

with eigenvalues between 0 and 1, then the matrix 3ρ̃2
i j − 2ρ̃3

i j is always an improved

approximation to the density matrix with eigenvalues closer to 0 or 1. This is illustrated

in Fig. 23.6 (left panel) which shows the function y = 3x2 − 2x3. It is easy to see that

for x < 1/2, y < x , i.e. the occupation is closer to zero, whereas for x > 1/2, y > x , i.e.

the occupation is closer to one. However, if one iterates the matrix using the purification

equation alone, there is no reason for the eigenvectors to satisfy the second requirement,

i.e. to correspond to the lowest energy states. In order to make a functional which when

minimized yields the proper idempotent density matrix that also minimizes the total energy,

one can modify the usual expression, Eq. (23.5), for the grand potential at T = 0 to use the

“purified” form,

�s = Trρ̂(Ĥ − μ) → Tr(3ρ̂2 − 2ρ̂3)(Ĥ − μ). (23.23)

Since the functional is minimum for the true density matrix, the energy given by (23.23) is

variational.

The functional can be minimized by iteration using the gradients

∂�s

∂ρ̂
= 3[ρ̂(Ĥ − μ) + (Ĥ − μ)ρ̂] − 2[ρ̂2(Ĥ − μ) + ρ̂(Ĥ − μ)ρ̂ + (Ĥ − μ)ρ̂2],

(23.24)

which denotes the matrix expression for the derivative with respect to each of the elements

of the density matrix ρ̂. So long as the density matrix is never allowed to go into the

unphysical region where the eigenvalues are <0 or >1, then the algorithm is stable and



23.4 Variational density matrix methods 465

540240
960

1500 2160
3840

86406000

Figure 23.7. Example of giant fullerenes studied by order-N calculations [848]. The shapes are

determined by minimizing the tight-binding energy [162] using density matrix purification

method [843] and clearly indicate a progression from near-spherical shape for smaller fullerenes to a

faceted (polyhedral) geometrical shape made up of graphite-like faces, sharply curved edges, and

12 pentagons at the vertices. Similar results were found by Itoh et al. [849] using the Wannier

function method.

the gradients always point toward a lower energy and an improved density matrix. Any

matrix satisfying the physical conditions can be used as a starting point. A possible choice

is ρi j = δi j (Nelec/Nbasis), and more optimal choices can be found for any particular problem.

The method can be extended to non-orthogonal bases [847]. A principle difficulty with this

method is that it requires explicit operations of multiplying matrices which are of the size

of the basis Nbasis. Thus it is appropriate for small bases such as in tight-binding, but not for

large bases, such as plane waves where Nbasis >> Nelec (but see Sec. 23.7 for alternative

methods).

As an example of calculations using the density matrix purification algorithm of [843],

Fig. 23.7 shows selected large icosahedral fullerenes (up to C3840) for which the structures
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were optimized [848] using the tight-binding potential of Xu et al. [162]. The calculations

clearly indicate a progression from near-spherical shape for smaller fullerenes to a faceted

(polyhedral) geometrical shape made up of graphite-like faces, sharply curved edges, and

12 pentagons at the vertices. The same conclusions were reached independently [849] using

the linear-scaling Wannier function approach (Sec. 23.5).

The density matrix methods [843] can also be employed for MD calculations using the

force theorem for the forces in terms of the density matrix and the derivative of the hamilto-

nian, as given in Sec. 14.8. The same tight-binding potential [162] as employed for the giant

fullerenes has been used in simulations of liquid and amorphous carbon. The calculated

radial density distribution g(r ) of liquid carbon at ordinary pressure agrees well with plane

wave Car–Parrinello calculations as shown in Fig. 18.2 and have been done with both usual

matrix diagonalization [162] and linear-scaling density matrix methods [850]. In addition,

the results are essentially the same as found in [836], which used the Fermi projection

operator approach of Sec. 23.3. The combination of tight-binding and linear-scaling meth-

ods has allowed calculations on larger sizes and longer times than is feasible using other

methods.

23.5 Variational (generalized) Wannier function methods

A different approach is to work with the localized wavefunctions in (23.2) rather than with

the density matrix itself. However, in searching for the Wannier-like functions it is not

convenient to require the constraint of orthonormality implicit in (23.2). One possibility is

to work with non-orthogonal functions and use the correct general expression

Etotal = Trρ̂ Ĥ =
N∑

i, j=1

S−1
i j H ji , (23.25)

where S is the overlap matrix. Here matrices are defined by Hji = 〈w̃ j |Ĥ |w̃i 〉 (or with

w̃ → w for orthogonal functions), etc. However, the entire problem can be rewritten in a

more advantageous form through the invention of a new class of functionals [844,845], the

simplest of which is

Ẽtotal =
N∑

i=1

Hii −
N∑

i, j=1

(Si j − δi j )Hji =
N∑

i, j=1

(2δi j − Si j )Hji , (23.26)

where the terms Si j − δi j are like Lagrange multipliers that replace the constraint of or-

thonormality. The special property of Ẽ is that Ẽtotal ≥ Etotal for all wavefunctions whether

or not they are normalized or orthogonal. Since Ẽtotal = Etotal for the orthonormal functions,

it follows that one can minimize Ẽtotal with respect to the wavefunctions with no constraints,

leading to orthonormal functions at the minimum.

The behavior of Ẽtotal considered as a functional of the wavefunctions can be seen

by expressing (23.26) in terms of the eigenvectors. (Added discussion can be found in

Exercise 23.8.) If the coefficient of the j th eigenvector is c j , then the contribution to Ẽ is

ε j (2c2
j − c4

j ). Figure 23.6 (right panel) plots the function y = 2x2 − x4, which shows the
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Figure 23.8. Projection on the {0 1̄ 1} plane of a rodlike {3 1 1} defect containing four interstitial

chains I . The structure of {3 1 1} defects commonly observed in ion-implanted silicon is

characterized by random combinations of /I I/ and /I O/ units indicated by the boxes. The

calculations find the structure of the defects by O(N ) MD simulations using a tight-binding

method [605], with the result that the extended defects are significantly lower in energy (≈2 eV per

interstitial) than for isolated interstitials in the bulk. Analogous work has been done using the

density matrix approach [851, 852]. Figure provided by J. Kim.

consequences graphically. For eigenvalues that are negative there is an absolute minimum

at |c j | = 1, i.e. a properly normalized function. The same holds for the general case where

we have many states, and minimization leads to an orthonormal set of functions that spans

the space. For positive eigenvalues there is a local minimum at c j = 0, but also a runaway

solution in the unphysical |c j | > 1 that must be avoided.

The functional has been extended by Kim et al. [846] to include more states than electrons,

and to minimize the grand potential �s = Tr{ρ̂(Ĥ − μ)}, which can be written in matrix

form analogous to (23.26) (Exercise 23.9)

Ẽ ′
s = Tr{(2 − S)(H − μI )}, (23.27)

where S and H denote matrices Si j and Hi j and I is the unit matrix. From the above

reasoning it follows that (23.27) is minimized by filling all states below the Fermi energy,

and leaving empty all those above. (It is not difficult to restrict the variations to avoid the

runaway solution.) One can work with a limited number of states (somewhat larger than

the number of electrons) and all operations scale as the number of these states. Thus this

functional achieves the additional desired feature that the incorporation of extra states makes

it easier to reach the minimum, and one can avoid being trapped in the wrong states at level

crossings, etc.

An example of calculations using the Kim et al. functional is shown in Fig. 23.8, which

shows results for the structure of {311} defects commonly observed in ion-implanted sili-

con [608, 609]. Similar tight-binding calculations have been done with the density matrix

approach [851, 852]. The structures in Fig. 23.8 were determined by O(N ) molecular dy-

namics tight-binding calculations using the model of Kwon et al. [605], and checks were

performed on smaller cells in the relaxed geometries with full density functional theory

calculations using plane wave DFT calculations with VASP codes [718]. For an interstitial

in the bulk the two methods give similar formation energies, 3.4 eV in the planewave LDA

method compared with 3.9 eV from the tight-binding calculation. The use of tight-binding

methods made possible molecular-dynamics simulations for up to 1 psec at 300 to 600 K to
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observe atomic rearrangements. The calculations find extended {311} defects are formed by

condensation of interstitial chains with successive rotations of pairs of atoms in the {011}
plane. After determination of the extended structure, DFT calculations of the total energy

are used to establish its stability. The calculations show that the rodlike {311} defects are

greatly favored with formation energies per interstitial much lower than in the bulk (as low

as 0.7 and 1.2 eV calculated by the two methods). This is an example of the combination

of methods in which O(N ) calculations greatly enhance studies of complex problems in

materials; at the same time it illustrates the need to calibrate tight-binding models carefully

against more accurate methods.

Non-orthogonal orbitals

Finally, generalizing the functional to non-orthogonal localized orbitals w̃i , as in (23.7),

has the advantage that the w̃i can be shorter range and more transferable than orthogonal

Wannier functions. The latter property is illustrated in Sec. 21.4; it means that good guesses

can be made for the orbitals initially and as the atoms move in a simulation. The difficulty

is two-fold: finding an efficient way to construct the inverse and dealing with the singular S
matrix that results if one allows extra orbitals that have zero norm as in the Kim functional,

Eq. (23.27). In the latter case, the size of S is the number of orbitals, but the rank (see below)

is the number of electrons, i.e. N = rank{S}.
An elegant formulation has been given in [780] and [774], building upon earlier work

[823,853], and using the same ideas as for generating non-orthogonal functions in Sec. 21.4.

The first step is to define the inverse S− of a singular matrix S by the relation [780]

SS−S = S, (23.28)

so that S− = S−1 if S is non-singular. Next, a functional can be defined that accomplishes

the inverse in a way similar to the “Hotelling” method [854]

Tr{BS−} = minTr{B(2X − X SX )}, (23.29)

where B is any negative definite matrix and the minimization is for all possible hermitian

matrices X (Exercise 23.6). Putting this together with the generalization of expression

(23.25) for the energy

Etotal = Trρ̂ Ĥ =
N∑

i, j=1

S−
i j Hji , (23.30)

leads to the functional

Ẽ ′
total(N ) → Tr[2X − X SX ][H − ηS] + ηN , (23.31)

where the constant η is added to shift the eigenvalues to negative energies. Finally, even the

constraint on the rank of S can be removed by defining the functional in terms of the Fermi

energy μ as

Ẽ ′
total(N ) → Tr[2X − X SX ][H − ηS] + (η − μ)rank(S) + μN , (23.32)
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where the same trick can be used for rank(S)

rank(S) = Tr[SS−] = −min{Tr[(−S)(2X − X SX )]}. (23.33)

The energy Ẽ ′
total(N ) is the minimum for all non-orthogonal wavefunctions w̃i that define

the S and H matrices and all hermitian matrices X .

If the orbitals are confined, then the minimum of functionals (23.31) or (23.32) is for

non-orthogonal orbitals, since they are more compact than orthogonal ones. Furthermore,

one can constrain the orbitals further to require maximal localization, in which case the

functionals still give the same energy, and the orbitals are more physical and intuitive, as

discussed in Sec. 21.4.

Combining minimization and projection

There are advantages to both the projection methods and the variational methods. An ex-

ample of a calculation that combines these methods is the calculation of Wannier functions

in disordered systems [776,777,855]. The variational approaches using Wannier functions

suffer from the problem that they scale as M3, where M is the size of the localization

region. Furthermore, it has been found in practice [845] that convergence is slow due to

fact that the energy function is only weakly dependent upon the tails of the function. Of

the other hand, the projection method scales as M and can be used to improve the func-

tions in the tails. Stephan and coworkers [776, 855] combined the methods to: (1) project

Wannier-like functions in a large region; (2) find the largest coefficients, which leads to

the best “self-adaptive” functions instead of imposing an arbitrary cutoff; and (3) use min-

imization method functions to improve the final functions. An example of the density of a

bonding-type Wannier function calculated for a model of amorphous Si containing 4,096

atoms is shown in Fig. 23.9, plotted on a logarithmic scale extending over 20 orders of

magnitude [777]. The distinct dark lines in the figure represent the zeros of the Wannier

function.

23.6 Linear-scaling self-consistent density functional calculations

Full self-consistent density functional theory calculations can be cast in an O(N ) linear-

scaling form, since the charge density can be computed in O(N ) fashion and thus one can

“build” the hamiltonian (Sec. 23.2) with effort that scales as O(N ). The difference from

the tight-binding calculation is that one must explicitly represent the orbitals and one must

deal with self-consistency. Because of the difficulties in carrying out such full calculations

on very large systems, much less work has been done than with the simpler tight-binding

methods. One such approach is illustrated in Fig. 23.5 using the KKR multiple-scattering

approach [671].

The local orbital approach is perhaps the most direct implementation since it has exactly

the same form as the tight-binding method, except that it involves calculations of all the

matrix elements from a basis of orbitals. Any of the approaches in Ch. 15 can be used.

An example of a calculation [856] for a complete turn of a selected DNA molecule is
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Figure 23.9. Electron density of a Wannier function calculated for a model of amorphous Si

containing 4,096 atoms. The example shown is a function centered on a bond. The density is plotted

on a logarithmic scale extending over 20 orders of magnitude. Figure provided by D. Drabold,

similar to those in [777].

shown in Fig. 23.10. The density, potential, and thermal simulations of the atoms were

calculated using O(N ) procedures in the SIESTA code [617]. For a given structure, the

resulting potential can then be used in an ordinary N 3 diagonalization (or a more efficient

inverse iteration procedure such as the RMM-DIIS method; see Sec. 23.8 and App. M) to

find selected eigenstates, in particular the fundamental gap between the lowest unoccupied

(LUMO) and highest occupied (HOMO) orbitals, which are shown in Fig. 23.10. Further

information is given in [856], which investigated the effects of disorder (a mutation) upon

localization of the states and electrical conductivity. Calculations on similar size systems,

including a fragment of an RNA molecules with 1,026 atoms, have been done using linear-

scaling gaussian density matrix methods [619].

23.7 Factorized density matrix for large basis sets

Large basis sets such as plane waves and grids are desirable in order to have robust methods

that always converge to the correct answer. For such approaches, however, straightforward

application of linear-scaling approaches may not be feasible. In particular, the density matrix

formalism leads to unwieldy expressions since it requires matrices of size Nbasis × Nbasis.
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Figure 23.10. Electron density of selected eigenstates in a DNA molecule calculated one complete

turn using the self-consistent local orbital SIESTA code and a GGA functional. The density contour

shown is 5 × 10−4a−3
0 the lighter shaded region is the sum of densities of the 11 highest occupied

(HOMO) states; and the darker region represents the 11 lowest unoccupied (LUMO) states.

Calculations of comparable complexity have been done using gaussian bases and linear-scaling

density matrix methods, e.g. for a fragment of an RNA molecule with 1,026 atoms [619]. Figure

provided by E. Artacho, similar to results in [856].

Even if the matrix is sparse, it still becomes very large in the limit of finely spaced grids. How

can it be feasible to use density matrix methods with such bases? The answer is remarkably

simple: only a limited number of orbitals are needed, but each orbital needs to have many

degrees of freedom. This is the basis for replacing (23.23) with a factorized form [857]

ρ(r, r′) =
∑

i j

�∗
i (r)Ki j� j (r′), (23.34)

where � j (r) = ∑
ν cν

j φν(r) denotes an orbital expanded in a (large) basis set φν(r) and

Ki j is a matrix of a size comparable to that needed in a tight-binding calculation. Thus the

“purified” density matrix in the reduced space of the orbitals can be written

K = 3L O L − 2L O L O L , (23.35)

where L is a trial density matrix and O is the overlap matrix of the orbitals. In this form,

one minimizes the functional with respect to Li j and the coefficients cν
j . Different choices

lead to different tradeoffs between the number of orbitals involved in the matrix operations

in (23.35) and the number of basis functions needed for each orbital in (23.34). Clearly, the

general non-orthogonal formulation in (23.31) or (23.32) can be even more advantageous as
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a general approach to making the orbitals as confined as possible, and therefore as optimal

as possible for representation in a large basis.

The same idea can, of course, be applied to the Wannier-function-type methods. In

fact, the local orbital approach is already in this form, since a limited number of localized

Wannier functions are each expanded in a basis of atomic-like orbitals. One can also expand

each localized function in a representation on a grid, as is done, e.g. in [858] where non-

orthogonal functions are used in a method similar to that proposed by Stechel and coworkers

[823,853]. An expansion in overlapping spherical waves has been proposed by Haynes and

Payne [859].

23.8 Combining the methods

Most of the O(N ) methods described in this chapter are based upon the localization of

the density matrix in space: they capture the physics and perform well for wide-band-gap

insulators, highly disordered materials, and metals at (very) high temperature. But they

fail on all counts whenever the localization length is large, e.g. in a good metal at ordinary

temperatures. Such states can be isolated by methods that separate the physics by localization

in energy, i.e. spectral methods (App. M), rather than by localization in space. How can

one combine the methods to take advantage of the properties of each? There can be many

approaches, but all have the general feature that O(N ) methods can be used for solution at

one level, e.g. a metallic system at very high temperature T , and the spectral method for

the difference between the high- and low-T solutions that depends only upon states near

the Fermi energy.

Spectral methods described in App. M are designed to find selected states efficiently. If

the hamiltonian operator can be cast in sparse form (i.e. the hamiltonian is localized in real

space or one can use transforms as in Sec. M.11) each state can be found with effort ∝ Nbasis

or ∝ Nbasis ln Nbasis. Of course, the usual approach in which all states are desired requires

effort that scales as ∝ N × Nbasis ∝ N 2 or ∝ N 2 ln Nbasis. The effort needed to treat only

the states near the Fermi energy is ∝ N 2 × kBT/μ, where T is the needed smearing for

an efficient O(N ) scheme and the Fermi energy μ represents the characteristic total energy

range of the electronic states. Although the effort scales as ∝ N 2, there is a small prefactor,

so that such spectral methods can be effective. Finally, first attempts [860] have been made

to take advantage of the fact that states vary smoothly near the Fermi energy and create a

linear-scaling spectral resolution approach that is applicable to metals.
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Exercises

23.1 Derive the result stated in the text that the normalization constant in (23.11) is given by

Cn+1 = 1/βn , n ≥ 1. Show this by directly calculating the normalization of ψn+1 assuming

ψn is normalized.

23.2 Derive the continued fraction representation of (23.12) using the Lanczos algorithm for the

coefficients. It follows that the spectrum of eigenvalues is given by the poles of the continued

fraction (i.e. the zeros of the denominator) in (23.12). (Thus the spectrum of eigenvalues is

given either by the continued fraction form or by the zeros of the polynomial of the previous

problem.)

23.3 Derive the form of the terminator given in (23.13) and (23.14). Show that imaginary part is

non-zero in the band range indicated, so that no poles and only continuous DOS can result in

this range. In fact, there is another solution with a plus sign in the square root in (23.14); show

that this is not allowed since t(z) must vanish for |z| → ∞.

23.4 Show that the square root form for terminator (23.14) satisfies Kramers–Kronig relations,

Eq. (D.15), as it must if G(z) is a physically meaningful Green’s function.

23.5 Show that the Green’s function G(z) = 1/(Ĥ − z) becomes more localized for large z for the

case where Ĥ is a short-range operator in real space. This is the essence of localization in both

the recursion and Fermi function expansion methods. Hint: First consider the z → ∞ limit and

then terms in powers of Ĥ/z.

23.6 Derive Eq. (23.29) by showing that the variation around X = S− is quadratic and always positive

for matrices B that are negative definite.

23.7 This exercise is to derive the form of the “purification” functional, Eq. (23.24), that leads to

idempotency of the density matrix.

(a) The first step is to demonstrate that the function y = 3x2 − 2x3 has the form shown in the

left panel of Fig. 23.6 and that the result y is always closer to 0 or 1 than the input x .

(b) Next, generalize this to a matrix equation for any symmetric matrix leading to eigenvalues

closer to 0 or 1.

(c) Finally, show that the functional (23.23) minimized using the gradients (23.24) leads to the

desired result.

23.8 This exercise is designed to provide simple examples of the properties of the unconstrained

functional, Eq. (23.26).

(a) Consider a diagonal 2 × 2 hamiltonian with H11 = ε1 < 0, H22 = ε2 > 0, and H12 = H21 =
0 in an orthonormal basis, ψ1 and ψ2. Show that minimization of the functional leads to the

ground state ψ1 properly normalized.
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(b) Now consider the same basis as in part (a) but with a hamiltonian that is not diagonal:

H11 = H22 = 0 and H12 = H21 = ε0. Show that in this case the functional also leads to the

properly normalized ground state ψ = 1√
2
(ψ1 + ψ2).

23.9 Show that the functional, Eq. (23.27), has the property that it leads to orthonormal eigenvectors

for states below the Fermi energy μ and projects to zero the amplitude of any states with

eigenvalue above the Fermi energy.



24

Where to find more

It is not appropriate to summarize or conclude this volume on the basic theory and methods

of electronic structure. The field is evolving rapidly with new advances in basic theory,

algorithms, and computational methods. New developments and applications are opening

unforeseen vistas. Volumes of information are now available on-line at thousands of sites.

It is more appropriate to provide a resource for information that will be updated in the

future, on-line information available at a site maintained at the University of Illinois:

http://ElectronicStructure.org

A link is maintained at the Cambridge University Press site:

http://books.cambridge.org/0521782856.htm

Resources for materials computation are maintained by the Materials Computation Center

at the University of Illinois, supported by the National Science Foundation:

http://www.mcc.uiuc.edu/

Additional sites include the Department of Physics, the electronic structure group at the

University of Illinois, and the author’s home page:

http://www.physics.uiuc.edu/

http://www.physics.uiuc.edu/research/ElectronicStructure/

http://w3.physics.uiuc.edu/∼rmartin/homepage/

The on-line information includes:

� Additional material coordinated with descriptions in this book, as well as future updates,

corrections, additions, and convenient feedback forms.
� Information related to many-body methods beyond the scope of this volume.
� Links to courses, tutorials, and codes maintained at the University of Illinois. Specific

codes are meant for pedagogical use, teaching, or individual study, and are coordinated

with descriptions in this book, for example, the general purpose empirical pseudopotential

and tight-binding code (TBPW) in App. N.
� Links to codes for electronic structure calculations. This will include resources at the

Materials Computation Center and many other sites.
� Links to many other sites around the world that provide codes, tutorials, courses, data,

descriptions, and other information related to electronic structure.

http://books.cambridge.org/0521782856.htm
http://w3.physics.uiuc.edu/~rmartin/homepage/


Appendix A

Functional equations

Summary

A functional F[ f ] is a mapping of an entire function f onto a value. In elec-
tronic structure, functionals play a central role, not only in density functional
theory, but also in the formulation of most of the theoretical methods as function-
als of the underlying variables, in particular the wavefunctions. This appendix
deals with the general formulation and derivation of variational equations from
the functionals.

A.1 Basic definitions and variational equations

The difference between a function f (x) and a functional F[ f ] is that a function is defined

to be a mapping of a variable x to a result (a number) f (x); whereas a functional is a

mapping of an entire function f to a resulting number F[ f ]. The functional F[ f ], denoted

by square brackets, depends upon the function f over its range of definition f (x) in terms of

its argument x . Here we a describe some basic properties related to the functionals and their

use in density functional theory; more complete description can be found in [93], App. A.

A review of functional derivatives or the “calculus of variations” can be found in [861]

and [862].

To illustrate functionals F[ f ] we first consider two simple examples:

� A definite integral of w(x) f (x), where w(x) is some fixed weighting function,

Iw [ f ] =
∫ xmax

xmin

w(x) f (x)dx . (A.1)

� The integral of ( f (x))α, where α is an arbitrary power:

Iα[ f ] =
∫ xmax

xmin

( f (x))αdx . (A.2)

A functional derivative is defined by a variation of the functional

δF[ f ] = F[ f + δ f ] − F[ f ] =
∫ xmax

xmin

δF

δ f (x)
δ f (x)dx, (A.3)
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where the quantity δF/δ f (x) is the functional derivative of F with respect to variation of

f (x) at the point x . In Eq. (A.1), the fact that the functional is linear in f (x) leads to a

simple result for the functional derivative

δ Iw

δ f (x)
= w(x). (A.4)

The variational derivation of the many-body Schrödinger equation in (3.10) and (3.12) is

an example of this simple form.

The second example of a non-linear functional is of the form needed to minimize the

Thomas–Fermi expression, Eq. (6.4). From definition (A.3) one can also show (Exer-

cise A.1) that

δ Iα
δ f (x)

= α( f (x))α−1, (A.5)

following the same rules as normal differentiation. In general, however, the functional

derivative at point x depends also upon the function f (x) at all other points. Clearly, the

definition can be extended to many variables and functions F[ f1, f2, . . .].

A.2 Functionals in density functional theory including gradients

In Kohn–Sham density functional theory, the potential, Eq. (7.13), is a sum of functional

derivatives. The external term has the linear form of Eq. (A.1); the Hartree term is also

simple since it is bilinear; and V σ
xc(r) is found by varying the more complex functional

having the form

Exc[n] =
∫

n(r)εxc(n(r), |∇n(r)|)dr. (A.6)

Variations of the gradient terms can be illustrated by the general form:

I [n] =
∫

g( f (r), |∇ f (r)|)dr, (A.7)

so that varying the function f leads to

δ I [g, f ] =
∫ [

δg

δ f
δ f (r) + δg

δ|∇ f |δ|∇ f (r)|
]

dr. (A.8)

Now using

δ|∇ f (r)| = δ∇ f (r) · ∇ f (r)

|∇ f (r)| = ∇ f (r)

|∇ f (r)| · ∇[δ f (r)] (A.9)

and integrating by parts, one finds a standard form of variations of gradients

δ I [g, f ] =
∫ {

δg

δ f
− ∇·

[
δg

δ|∇f|
∇f(r)

|∇f(r)|
]}

δ f (r)dr. (A.10)

This form is used in Sec. 8.3, where other forms for the functional derivative are also given

that may be advantageous in actual calculations.
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SELECT FURTHER READING
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Exercises

A.1 Show that Eq. (A.5) follows from (A.3), and that application of the expression to the Thomas–

Fermi approximation leads to expression (6.4).

A.2 Derive the form of the variational expression in (A.10) involving the gradient terms.



Appendix B

LSDA and GGA functionals

Summary

In this appendix are given representative forms for the exchange–correlation
energy and potential in the LSDA and GGA approximations. The forms given
here are chosen because they are widely used and are relatively simple. Actual
programs that provide energies and potentials for these and other forms can be
found on-line (see Ch. 24).

B.1 Local spin density approximation (LSDA)

The local density approximation is based upon the exact expressions for the exchange en-

ergy, Eq. (5.15), and various approximations and fitting to numerical correlation energies

for the homogeneous gas. Comparison of the forms is shown in Fig. 5.4. The first functions

were the Wigner interpolation formula, Eq. (5.22), and the Hedin–Lundqvist [220] form;

the latter is derived from many-body perturbation theory and is given below. As described

in Ch. 5, the quantum Monte Carlo (QMC) calculations of Ceperley and Alder [297],

and more recent work [298, 299, 303] provide essentially exact results for unpolarized and

fully polarized cases. These results have been fitted to analytic forms for εc(rs), where rs

is given by Eq. (5.1), leading to two widely used functionals due to Perdew and Zunger

(PZ) [300] and Vosko, Wilkes, and Nusiar (VWN) [301], which are very similar quan-

titatively. Both functionals assume an interpolation form for fractional spin polarization,

and Ortiz and Balone [298] report that their QMC calculations at intermediate polarization

are somewhat better described by the VWN form. In all cases, the correlation potential is

given by

Vc(rs) = εc(rs) − rs

3

dεc(rs)

drs
. (B.1)

Here are listed selected forms for the unpolarized case; complete expressions can be found

in references [224], [368], and [413].

1. Hedin–Lundqvist (HL) [220].

εHL
c (rs) = −C

2

[

(1 + x3) ln

(

1 + 1

x

)

+ x

2
− x2 − 1

3

]

, (B.2)
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where A = 21, C = 0.045, and x = rs/A. The correlation potential is

V HL
c (rs) = −Ce2

2
ln

(

1 + 1

x

)

, (B.3)

2. Perdew–Zunger (PZ) [300]

εPZ
c (rs) = −0.0480 + 0.031 ln(rs) − 0.0116rs + 0.0020rs ln(rs), rs < 1

= −0.1423/(1 + 1.0529
√

rs + 0.3334rs), rs > 1. (B.4)

The expression [300] for V PZ
c is not given here since it is lengthy, but it is straightforward.

For fractional spin polarization, the interpolation for εPZ
c (rs) is assumed to have the same

function form as for exchange, Eq. (5.17), with f given by (5.18).

3. Vosko–Wilkes–Nusiar (VWN) [301]

εVWN
c (rs) = Ae2

2

[

log

[
y2

Y (y)

]

+ 2b

Q
tan−1

(
Q

2y + b

)

− by0

Y (y0)

{

log

[
(y − y0)2

Y (y)

]

+ 2(b + 2y0)

Q
tan−1

(
Q

2y + b

)}]

(B.5)

Here y = r 1/2
s , Y (y) = y2 + by + c, Q = (4c − b2)1/2, y0 = −0.10498 b = 3.72744,

c = 12.93532, and A = 0.0621814. The corresponding potential can be obtained from

Eq. (B.1) with [413]

rs
dεVWN

c (rs)

drs
= A

e2

2

c(y − y0) − by0 y

(y − y0)(y2 + by + c)
. (B.6)

B.2 Generalized gradient approximation (GGAs)

There are many different forms for gradient approximations; however, it is beyond the scope

of the present work to give the formulas for even the most widely used forms. The reader

is referred to papers and books listed as “Select further reading.”

B.3 GGAs: explicit PBE form

The PBE form is probably the simplest GGA functional. Hence we give it as an explicit

example. The reader is referred to other sources such as the paper on “Comparison shopping

for a gradient-corrected density functional,” by Perdew and Burke [367]. The PBE functional
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[373] for exchange is given by a simple form for the enhancement factor Fx defined in Sec.

8.2. The form is chosen with Fx (0) = 1 (so that the local approximation is recovered) and

Fx → constant at large s,

Fx (s) = 1 + κ − κ/(1 + μs2/κ), (B.7)

where κ = 0.804 is chosen to satisfy the Lieb–Oxford bound. The value of μ = 0.21951

is chosen to recover the linear response form of the local approximation, i.e. it is chosen to

cancel the term from the correlation. This may seem strange, but it is done to agree better

with quantum Monte Carlo calculations. This choice violates the known expansion at low

s given in Eq. (8.7), with the rationale of better fitting the entire functional.

The form for correlation is expressed as the local correlation plus an additive term both

of which depend upon the gradients and the spin polarization. The form chosen to satisfy

several conditions is [373]

EGGA−PBE
c [n↑, n↓] =

∫

d3r n
[
εhom

c (rs, ζ ) + H (rs, ζ, t)
]
, (B.8)

where ζ = (n↑ − n↓)/n is the spin polarization, rs is the local value of the density pa-

rameter, and t is a dimensionless gradient t = |∇n|/(2φkTFn). Here φ = ((1 + ζ )2/3 +
(1 − ζ )2/3)/2 and t is scaled by the screening wavevector kTF rather than kF . The final form

is

H = e2

a0

γφ3 log

(

1 + β

γ
t2 1 + At2

1 + At2 + A2t4

)

, (B.9)

where the factor e2/a0, with a0 the Bohr radius, is unity in atomic units. The function A is

given by

A = β

γ

[

exp

(
−εhom

c

γφ3 e2

a0

)

− 1

]−1

. (B.10)
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Appendix C

Adiabatic approximation

Summary

The only small parameter in the electronic structure problem is the inverse
nuclear mass 1/M , i.e. the nuclear kinetic energy terms. The adiabatic or Born-
Oppenheimer approximation is a systematic expansion in the small parameter
that is fundamental to all electronic structure theory. It comes to the fore in
the theory of phonons, electron-phonon interactions, and superconductivity
(Ch. 19).

C.1 General formulation

The fundamental hamiltonian for a system of nuclei and electrons, Eq. (3.1), can be written

Ĥ = T̂ N + T̂ e + Û , (C.1)

where U contains all the potential interaction terms involving the set of all-electron coor-

dinates {r} (which includes spin) and the set of all nuclear coordinates {R}. Since the only

small term is the kinetic energy operator of the nuclei T̂ N , we treat it as a perturbation upon

the hamiltonian, Eq. (3.2), for nuclei fixed in their instantaneous positions. The first step

is to define the eigenvalues and wavefunctions Ei ({R}) and �i ({r} : {R}) for the electrons

which depend upon the nuclear positions {R} as parameters. This is the same as Eq. (3.13)

except that the positions of the nuclei are indicated explicitly, and i = 0, 1, . . . , denotes the

complete set of states at each {R}.
The full solutions for the coupled system of nuclei and electrons1

Ĥ�s({r, R}) = Es�s({r, R}), (C.2)

where s = 1, 2, 3, . . . , labels the states of the coupled system, can be written in terms of

�i ({r} : {R}),
�s({r, R}) =

∑

i

χsi ({R})�i ({r} : {R}), (C.3)

since �i ({r} : {R}) defines a complete set of states for the electrons at each {R}.

1 Adapted from notes of K. Kunc and the author.
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The states of the coupled electron–nuclear system are now specified by χsi ({R}), which

are functions of the nuclear coordinates and are the coefficients of the electronic states �mi .
In order to find the equations for χsi ({R}), insert expansion (C.3) into (C.2), multiply the

expression on the left by �i ({r, R}), and integrate over electron variables {r} to find the

equation

[TN + Ei ({R}) − Es] χsi ({R}) = −
∑

i ′
Cii ′χsi ′ ({R}), (C.4)

where TN = − 1
2
(
∑

J ∇2
J /MJ ) and the matrix elements are given by Cii ′ = Aii ′ + Bii ′ , with

Aii ′({R}) =
∑

J

1

MJ
〈�i ({r} : {R})|∇J |�i ′({r} : {R})〉∇J , (C.5)

Bii ′ ({R}) =
∑

J

1

2MJ
〈�i ({r} : {R})|∇2

J |�i ′ ({r} : {R})〉. (C.6)

Here 〈�i ({r} : {R})|O|�i ′ ({r} : {R})〉 means integrations over only the electronic variables

{r} for any operator O.

The adiabatic or Born-Oppenheimer approximation [89] is to ignore the off-diagonal Cii ′

terms, i.e. the electrons are assumed to remain in a given state m as the nuclei move. Although

the electron wavefunction �i ({r} : {R}) and the energy of state m change, the electrons do

not change state and no energy is transferred between the degrees of freedom described by

the equation for the nuclear variables {R} and excitations of the electrons, which occurs only

if there is a change of state i → i ′. The diagonal terms can be treated easily. First, it is simple

to show (see Exercise C.1) that Aii = 0 simply from the requirement that � is normalized.

The term Bii ({R}) can be grouped with Ei ({R}) to determine a modified potential function

for the nuclei Ui ({R}) = Ei ({R}) + Bii ({R}). Thus, in the adiabatic approximation, the

nuclear motion is described by a purely nuclear equation for each electronic state i
[

−
∑

J

1

2MJ
∇2

J + Ui ({R}) − Eni

]

χni ({R}) = 0, (C.7)

where n = 1, 2, 3, . . . , labels the nuclear states. Within the adiabatic approximation, the

full set of states s = 0, 1, . . . , is a product of nuclear and electronic states.

Equations (C.7) with the neglect at the Bii term is the basis of the “frozen phonon” or

perturbation methods for calculation of phonon energies in the adiabatic approximation

(Ch. 19). So long as we can justify neglecting the off-diagonal terms that couple different

electron states, we can solve the nuclear motion problem, Eq. (C.7), given the function

Ui ({R}) for the particular electronic state i that evolves adiabatically with nuclear motion.

(The term Bii is typically very small due to the large nuclear mass.) In general, this is an

excellent approximation except for cases where there is degeneracy or near degeneracy of

the electronic states. If there is a gap in the electronic excitation spectrum much larger than

typical energies for nuclear motion, then the nuclear excitations are well determined by the

adiabatic terms. Special care must be taken for cases such as transition states in molecules

where electronic states become degenerate, or in metals where the lack of an energy gap

leads to qualitative effects.
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C.2 Electron-phonon interactions

Electron-phonon interactions result from the off-diagonal matrix elements Cii ′ that describe

transitions between different electronic states due to the velocities of the nuclei. The dom-

inant terms are given in Eq. (C.5), which involves a gradient of the electron wavefunctions

with respect to the nuclear positions and the gradient operator acting on the phonon wave-

function χ . Combination of these operators leads to an electronic transition between states

i and i ′ coupled with emission or absorption of one phonon.

The steps involved in writing the formal expressions are to express the nuclear kinetic

operator ∇J in Eq. (C.5) in terms of phonon creation and annihilation operators [96] and

to write out the perturbation expression for the matrix element. The latter step can be

accomplished by noting that the variation in the electron function due to the displacement

of nucleus J is caused by the change in potential V due to the displacement. To linear order

the relation is

〈�i ({r} : {R})|∇J |�i ′({r} : {R})〉 = 〈�i ({r} : {R})|∇J V |�i ′ ({r} : {R})〉
Ei ′ ({R}) − Ei ({R}) . (C.8)

This leads to the form of the electron-phonon matrix elements in Sec. 19.8 and treated in

references such as [243].
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Exercises

C.1 Show that the requirement that � is normalized is sufficient to prove Aii = 0. Hint: Use the fact

that any derivative of 〈�|�〉 must vanish.

C.2 Derive the equation for nuclear motion, (C.7), from (C.4) using the assumption of the adiabatic

approximation as described before (C.7).

C.3 For small nuclear displacements about their equilibrium positions, show that (C.7) leads to

harmonic oscillator equations.

C.4 For a simple diatomic molecule treated in the harmonic approximation, show that (C.7) leads to

the well-known result that the ground state energy of the nuclear–electron system is Emin + 1
2
-hω,

where ω is the harmonic oscillator frequency.



Appendix D

Response functions and Green’s functions

Summary

Response functions are the bread and butter of theoretical physics and the
connection to important experimental measurements. The basic formulas are
rooted in well-known perturbation expressions given in Ch. 3. This appendix is
devoted to characteristic forms and properties of response functions, sum rules,
and Kramers–Kronig relations. The most important example is the dielectric
function described in App. E. Useful expressions are given for self-consistent
field methods, which leads to “RPA” and other formulas needed in Chs. 5, 19,
and 20.

D.1 Static response functions

Static response functions play two important roles in electronic structure. One is the cal-

culation of quantities that directly relate to experiments, namely the actual response of the

electrons to static perturbations such as strain or applied electric fields, and the response at

low frequencies that can be considered “adiabatic” (App. C) that governs lattice dynamics,

etc. This is the subject of Ch. 19. The other role is the development of methods in the the-

ory of electronic structure to derive improved solutions utilizing perturbation expansions

around more approximate solutions. This is the basis of the analysis in Ch. 9.

The basic equations follow from perturbation theory, which was summarized in Sec. 3.7,

in particular in Eq. (3.62) which is repeated here:

�〈Ô〉 =
occ∑

i=1

〈ψi |Ô|ψi 〉 =
occ∑

i=1

empty∑

j

〈ψi |Ô|ψ j 〉〈ψ j |�Ĥeff|ψi 〉
εi − ε j

+ c.c. (D.1)

The sum over j is be restricted to empty states only, since contributions of pairs of occupied

states i, j and j, i cancel in the sum.

The most relevant quantity for static perturbations is the density, for which Eq. (3.62)

becomes

�n(r) =
occ∑

i=1

empty∑

j

ψ∗
i (r)ψ j (r)

〈ψ j |�Veff|ψi 〉
εi − ε j

+ c.c. (D.2)
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The response to a variation of the total potential Veff(r) at point r = r′ (see App. A for

definition of functional derivatives) defines the density response function

χ0
n (r, r′) = δn(r)

δVeff(r′)
= 2

occ∑

i=1

empty∑

j

ψ∗
i (r)ψ j (r)ψ∗

j (r′)ψi (r′)

εi − ε j
, (D.3)

which is symmetric in r and r′ since it is the response of n(r) to a perturbation Veff(r′)n(r′) ∝
n(r′). Equation (D.3) may also be written in a convenient form

χ0
n (r, r′) =

occ∑

i=1

ψ∗
i (r)Gi

0(r, r′)ψi (r′), Gi
0(r, r′) =

∞∑

j �=i

ψ j (r)ψ∗
j (r′)

εi − ε j
, (D.4)

where Gi
0 is an independent-particle Green’s function (Sec. D.4).

The Fourier transform of χ0
n (r, r′) is the response to particular Fourier components, which

is often the most useful form. If we define �Veff(r) = �Veffe
iq·r and n(q′) = ∫

drn(r)eiq′·r

in (D.2), then one finds (Exercise D.1)

χ0
n (q, q′) = δn(q′)

δVeff(q)
= 2

occ∑

i=1

empty∑

j

M∗
i j (q)Mi j (q′)

εi − ε j
, (D.5)

where Mi j (q) = 〈ψi |eiq·r|ψ j 〉. This can be a great simplification, for example, in a homo-

geneous system, χ0
n (q, q′) �= 0 only for q = q′ (Ch. 5), or in crystals (Chs. 19 and 20).

The response function χ0 plays many important roles in electronic structure theory. The

simplest is in approximations in which the electrons are considered totally non-interacting;

then, �Veff = �Vext and χ0 represents the response to an external perturbation. However, in

an effective mean-field theory, like the Hartree–Fock or Kohn–Sham theories of Chs. 7 and

9, the internal fields also vary and the effective hamiltonian must be found in a self-consistent

procedure. This leads to the following section in which χ 0 still plays a crucial role.

D.2 Response functions in self-consistent field theories

In a self-consistent field theory, the total effective field depends upon the internal variables;

e.g. in the Kohn–Sham approach, Veff = Vext + Vint[n]. Since the electrons act as indepen-

dent particles in the potential Veff, χ
0
n is still given by (D.3)–(D.5). However, the relation to

the external field is changed. To linear order, the response to an external field is given by

χ = δn

δVext

, (D.6)

which is shorthand for the functional form that can be written in r space or q space,

χ (r, r′) = δn(r)

δVext(r′)
or χ (q, q′) = δn(q)

δVext(q′)
. (D.7)

Similarly, the linear response of the spin density m = n↑ − n↓ to an external Zeeman field

�Ĥ = V m
ext has the same form

χ = δm

δV m
ext

, (D.8)



D.3 Dynamic response and Kramers–Kronig relations 487

so that the analysis applies to both total density and spin density.

The response function can be written (omitting indices for simplicity)

χ = δn

δVeff

δVeff

δVext

= χ0

[

1 + δVint

δn

δn

δVext

]

= χ0 [1 + Kχ ] , (D.9)

where the kernel K given in r space in (9.12) or in q space as

K (q, q′) = δVint(q)

δn(q′)
= 4π

q2
δq,q′ + δ2 Exc[n]

δn(q)δn(q′)
≡ VC (q)δq,q′ + fxc(q, q′). (D.10)

Solving (D.9) (Exercise D.2), leads to the ubiquitous form [96, 284, 865]

χ = χ0[1 − χ 0 K ]−1 or χ−1 = [χ0]−1 − K, (D.11)

that appears in many contexts. The approximation fxc = 0 is the famous “random phase

approximation” (RPA) [225] for the Coulomb interaction; many approximations for fxc have

been introduced and any of the exchange–correlation functionals implies a form for fxc. The

density response function χ (r, r′) or χ(q, q′) is central in the theory of phonons (Ch. 19),

dielectric response in App. E, and other response functions. The extension to dynamical

response leads to the theory for much of our understanding of electronic excitations, Ch. 20.

For spin response, the Coulomb term VC is absent and the kernel f m
xc leads to the Stoner

response function, Eq. (2.5), and the RPA expressions for magnons.

The classic approach for finding χ is to calculate χ0 from (D.3)–(D.5) and solve the

inverse matrix equation (D.11). Despite the elegant simplicity of the equations, the solution

can be a laborious procedure except in the simplest cases. An equally elegant approach much

more suited for calculations in real electronic structure problems is described in Ch. 19.

D.3 Dynamic response and Kramers–Kronig relations

Harmonic oscillator

The basic ideas of linear response can be appreciated starting with the simple classical

driven harmonic oscillator as described eloquently by P. C. Martin [811]. The equation for

the displacement x is

M
d2x(t)

dt2
= −K x(t) − �

dx(t)

dt
+ F(t), (D.12)

where F(t) is the driving force and � is a damping term. If the natural oscillation

frequency is denoted ω0 = √
K/M , the response to a force F(t) = F(ω)e−iωt with fre-

quency ω is

χ (ω) ≡ x(ω)

F(ω)
= 1

M

1

ω2
0 − ω2 − iω�/M

. (D.13)

Note that for real ω the imaginary part of χ (ω) is positive since � > 0 corresponds to

energy loss. Furthermore, as a function of complex ω, χ (ω) is analytic in the upper half-

plane, ω > 0; all poles in the response function χ (ω) are in the lower half-plane. This
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leads to the causal structure of χ (ω) that implies the Kramers-Kronig relations below

(Exercise D.4).

Frequency–dependent damping

The well-known form for the harmonic oscillator response with a constant � suffers from a

fatal problem: a constant � violates mathematical constraints on the moments of χ (ω) and

it violates physical reasoning since loss mechanisms vary with frequency. If one introduces

a more realistic �(ω), there is a simple rule: it is also a response function and must obey

the laws of causality, i.e. �(ω) must also be a causal function that obeys Kramers-Kronig

relations. For example, it might be modeled by a form like (D.13),

�(ω) = 1

ω2
1 − ω2 − iωγ1

, (D.14)

and so forth. Clearly, this can continue, leading to a continued fraction that is an example

of the general memory function formulation of Mori [866].

Kramers–Kronig relations

Because the response functions represent the causal response of the system to external

perturbations, they must obey analytic properties illustrated for the harmonic oscillator in

(D.13). That is, the response function χ (ω) continued into the complex plane is analytic for

all ω > 0 in the upper half-plane and has poles only in the lower half-plane. By contour

integrations in the complex plane [88, 225] (Exercise D.5), one can than derive the

Kramers-Kronig relations that allow one to derive the real and imaginary parts from one

another in terms of principle value integrals:

Reχ (ω) = − 1

π

∫ ∞

−∞
dω′ Imχ (ω′)

ω − ω′ ,

Imχ (ω) = 1

π

∫ ∞

−∞
dω′ Reχ (ω′)

ω − ω′ . (D.15)

Dynamic response of a quantum system

The response to a time-dependent perturbation is given by Eq. (3.6), which is conveniently

solved for a periodic perturbation ∝ e−iωt . The analysis is given in original references

[867–870] and in many texts [84, 88, 96, 225, 246, 863], leading to the Kubo–Greenwood

formula. A general response function in the non-interacting approximation1 can be written

as a complex function, with a small imaginary damping factor η > 0,

χ0
a,b(ω) = 2

occ∑

i=1

empty∑

j

[Ma
i j ]

∗Mb
i j

εi − ε j + ω + iη
, (D.16)

1 The full many-body expressions can also formally be written in exactly the same form with Ma
i j = 〈�i |Ôa |� j 〉

and εi → Ei , which shows that properties such as the Kramers-Kronig relations apply in general and are not

restricted to independent-particle approximations.
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where the Ma
i j = 〈ψi |Ôa|ψ j 〉 and Mb

i j are matrix elements of appropriate operators, e.g.

the Fourier components defined following Eq. (D.5) or the momentum matrix elements in

the expression for the dielectric function in Eq. (20.2). The real and imaginary parts can be

written explicitly as

Reχ0(ω)a,b =
occ∑

i=1

empty∑

j

[Ma
i j ]

∗Mb
i j

(εi − ε j )2 − ω2
,

Imχ0(ω)a,b =
occ∑

i=1

empty∑

j

|[Ma
i j ]

∗Mb
i jδ(ε j − εi − ω). (D.17)

An important result from Eq. (D.17) is that the imaginary part of the response function

χ0(ω) is just a joint density of states (Sec. 4.7) as a function of ω = ε j − εi , weighted by

the matrix elements.

Dynamical response in self-consistent field theories

The generalization of the independent-particle expressions to self-consistent field ap-

proaches is straightforward using the expressions derived in Sec. D.2. The only change

is that the effective field is itself time- or frequency-dependent, Veff → Veff(t) or Veff(ω).

Within the linear response regime, the relevant quantity is the kernel K given in r space in

Eq. (9.12) or in q space by (D.10), generalized to include time dependence. The explicit

expression in q space is

K (q, q′, t − t ′) = δVint(q, t)

δn(q′, t ′)

= 4π

q2
δq,q′δ(t − t ′) + δ2 Exc[n]

δn(q, t)δn(q′, t ′)
, (D.18)

where the Coulomb interaction is taken to be instantaneous and we have used the fact that

K can only depend upon a time difference. Fourier transforming leads to the form

K (q, q′, ω) = VC (q)δq,q′ + fxc(q, q′, ω), (D.19)

and a similar expression in r space. Thus the dynamical generalization of (D.11) can be

written in compact form as

χ (ω) = χ0(ω)[1 − χ0(ω)K (ω)]−1. (D.20)

Note that K itself is a response function, so that it also must have the analytical properties

required by causality, it must vanish at high frequency, etc. Specific expressions that illustrate

how to use this general expression are given in Sec. 20.2.

D.4 Green’s functions

Green’s functions are widely used in theoretical physics [96, 654, 863]. For independent-

particle hamiltonians, the most important Green’s function is the spectral function in terms
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Re z 

EF

Im z

EF

Re z

Im z

Figure D.1. Contours for line integration over the spectral function to derive integrated quantities.

The contours shown enclose all poles below the Fermi energy. (Dotted contours indicate empty

states not included.) The integral of the trace Tr(G(z)) = ∑
α Gα,α(z) is the total number of

particles. The sum of independent-particle energies is TrĤ [G(z)], etc. The left-hand figure indicates

a metal where the contour necessarily passes arbitrarily close to a pole. The right-hand figure

indicates an insulator where the contour passes through a gap. Whenever z is far from any pole, G
decays as a function of distance and therefore can be considered localized.

of the time-independent eigenstates of the hamiltonian

G(z, r, r′) =
∑

i

ψi (r)ψi (r′)
z − εi

, (D.21)

where z is a complex variable. This may be written in a more general form in terms of any

complete set of basis states χα(r),

G(z, r, r′) =
∑

α,β

χα(r)

[
1

z − Ĥ

]

α,β

χβ(r′), (D.22)

or

Gα,β(z) = [
z − Ĥ

]−1

α,β
. (D.23)

The density of states per unit energy projected on the basis function α is given by

nα(ε) = − 1

π
ImGα,α(z = ε + iδ), (D.24)

where δ is a positive infinitesimal, and the total density of states is given by

n(ε) = − 1

π
ImTrG(z = ε + iδ). (D.25)

Total integrated quantities at T = 0 can be derived by contour integrations in the complex

z plane as illustrated in Fig. D.1. Integration of G(z) around each pole in a counterclockwise

direction gives 2π i . The contour C can be any closed line that encircles the poles, so that

the density matrix is given by

ρ(r, r′) = 1

2π i

∫

C
dz G(z, r, r′); (D.26)

the density by n(r) = ρ(r, r); the total number of electrons by

N =
∫ EF

−∞
dεn(ε) = 1

2π i

∫

C
dz TrG(z); (D.27)
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and sum of occupied eigenvalues by

∑

i occ

εi =
∫ EF

−∞
dε ε n(ε) = 1

2π i

∫

C
dz z TrG(z). (D.28)

Since the total energy in the Kohn–Sham method can be derived from the sum of eigenvalues

and the density, it follows that all quantities related to total energy can be derived from the

independent-particle Kohn–Sham Green’s function. Expressions for energies and forces are

given in Ch. 23.

SELECT FURTHER READING

Doniach, S., and Sondheimer, E. H., Green’s Functions for Solid State Physicists (Reprinted in
Frontiers in Physics Series, No. 44), W. A. Benjamin, Reading, Mass., 1974.

Fetter, A. L., and Walecka, J. D., Quantum Theory of Many-particle Systems, McGraw-Hill, New

York, 1971. [862]

Mahan, G. D., Many-Particle Physics, 3rd Ed., Kluwer Academic/Plenum Publishers, New York,

2000.

Martin, P. C., Measurement and Correlation Functions, Gordon and Breach, New York,

1968.

Pines, D., Elementary Excitations in Solids, Wiley, New York, 1964.

Exercises

D.1 Derive the general form of the density response function χn in Fourier space, (D.5). This applies

to any function, periodic or non-periodic.

D.2 Derive the second form given in (D.11) from the first expression. Hint: Move all terms involving

χ to the left-hand side, solve for χ in terms of χ0 and K , and invert both sides of the equation.

D.3 See Exercise 9.7 for the way in which the response function can be used to analyze the form of

the energy functionals near the minimum.

D.4 Show that the response of a harmonic oscillator, Eq. (D.13), obeys the KK relations. Hint:

The key point is the sign of the damping term that corresponds to energy loss, i.e. � > 0. See

Exercise D.5 for an explanation.

D.5 Derive the KK relations, Eq. (D.15), from the analytic properties of the response functions.

Causality requires that all poles as a function of complex frequency z be in the lower plane

z < 0. Hint: An integral along the real axis can be closed in the upper plane with a contour that

is at |z| → ∞. Since the contour encloses no poles, the line integral vanishes; also the integral

at infinity vanishes. The integral along the axis can be broken into the principal value parts and

the residue parts leading to Eq. (D.15). See [88, 225].



Appendix E

Dielectric functions and optical properties

Summary

Dielectric functions are the most important response functions in condensed
matter physics: photons are perhaps the most important probe in experimental
studies of matter; electrical conductivity and optical properties are among the
most important phenomena in technological applications as well as everyday
life. Dielectric functions can be defined in terms of currents and fields, which is
most appropriate for conductivity and optical response, or in terms of densities
and scalar potentials, which is most appropriate for static problems. The needed
expressions follow from Maxwell’s equations; however, care must be taken in
defining the polarization in extended matter, which is treated here and in Ch. 22.
This appendix provides the phenomenological definitions; the role of electronic
structure is to provide the fundamental foundations in terms of the underlying
quantum theory of the electrons, which is the subject of Chs. 19, 20, and 22.

E.1 Electromagnetic waves in matter

Maxwell’s equations for electromagnetic fields interacting with particles having charge Q
(Q = −e for electrons) and number density n

∇ · E = 4π Qn, ∇ × E(t) = −1

c

dB
dt

,

∇ · B = 0, ∇ × B(t) = 4π

c
j + 1

c

dE
dt

, (E.1)

are the fundamental equations that describe the interactions of particles in matter. The

arguments r, t have been omitted for simplicity and j is the charge current density that

satisfies the continuity equation

∇ · j = −Q
dn

dt
. (E.2)

The basic equations of electronic structure, in particular, the hamiltonian, Eq. (3.1), are

based upon (E.1) in the non-relativistic limit where the speed of light c → ∞ in which

case it is sufficient to take B = 0 and work with the scalar potential V, which satisfies the
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Poisson equation

∇2V = −4π Qn , with E = −∇V . (E.3)

However, in order to describe important physical phenomena, such as the propagation of

electromagnetic waves in matter and the response to external fields, it is essential to return

to the full equations in (E.1). Here we summarize1 the phenomenological theory of matter

interacting with external time-dependent fields, defining the appropriate quantities carefully

to set the stage for proper derivation from electronic structure theory (see especially Chs. 20

and 22).

Two steps are crucial for defining the structure of the theory:

� In order to derive properties of matter under the influence of external fields, the charges

and currents in Maxwell’s equations must be divided into “internal” and “external,”

n = nint + next; j = jint + jext. (E.4)

Although such a division can be made for any perturbation, electromagnetic interactions

are of special importance because the long-range interactions lead to effects that extend

over macroscopic distances into the interior of bodies.
� It is useful to define polarization P by

P(r, t) =
∫ t

dt ′ jint(r, t ′), (E.5)

which together with (E.2) yields

∇ · P(r, t) = −Qnint(r, t). (E.6)

Note that each equation leaves the value of P defined only to within an additive constant.
This is easily remedied in a finite system, but is an issue in quantum theory of extended

matter that has been fully resolved only recently as summarized in Ch. 22.

In terms of the displacement field D = E + 4πP, Maxwell’s equations can be written in

the form

∇ · D = 4π Qnext, ∇ × E(t) = −1

c

dB
dt

,

∇ · B = 0, ∇ × B(t) = 4π

c
jext + 1

c

dD
dt

. (E.7)

The advantage of this form is that all source terms are “external.” In the interior of a sample,

next and jext vanish even though they can lead to fields inside the sample. As shown by (E.1)

and (E.7), E is the total field in the material, whereas D is the field due only to external

sources. Thus the value of D at any point is independent of the material and is the same as

if the material were absent.

1 Following the clear presentation of [88], Sec. 20.2.
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E.2 Conductivity and dielectric tensors

Solution of the equations requires the material relation of jint or nint to the total fields E and

B. To linear order, the most general relation is

jint(r, t) =
∫

dr′
∫ t

dt ′σ (r, r′, t − t ′)E(r′, t ′), (E.8)

where σ (r, r′, t − t ′) is the microscopic conductivity tensor. For a perturbation with time

dependence ∝ exp(iωt), (E.8) becomes

jint(r, ω) =
∫

dr′σ (r, r′, ω)E(r′, ω), (E.9)

which implies

D(r, ω) =
∫

dr′ε(r, r′, ω) · E(r′, ω) or E(r, ω) =
∫

dr′ε−1(r, r′, ω)D(r′, ω), (E.10)

where

ε(r, r′, ω) = 1 δ(r − r′) + 4π i

ω
σ (r, r′, ω). (E.11)

Note that ε and σ are the response to the total field E, whereas ε−1 is the response to an

external field. Interestingly, σ (ω), ε(ω) − 1, and ε−1(ω) − 1 are all response functions and

each satisfies Kramers-Kronig relations, (D.15).

The macroscopic average functions ε̄(ω) or σ̄ (ω) are directly measured by the index of

refraction for photons and response to macroscopic electric fields, e.g. conductivity and

dielectric response where the measured voltage is the line integral of the internal electric

field E. On the other hand, scattering of charged particles directly measures ε−1(q, ω)( [225]

p. 126), where q and ω are the momentum and energy transfers.

E.3 The f sum rule

The dielectric functions satisfy the well-known “ f sum rule,” for which Seitz [1] attributes

the original derivation to Wigner [872] and Kramers [873]. A simple way to derive the sum

rule ( [225], p. 136) is to note that in the ω → ∞ limit, the electrons act as free particles,

from which it follows that (Exercise E.1)

εαβ(ω) → δαβ

[

1 − ω2
p

ω2

]

, (E.12)

where ωp is the plasma frequency ω2
p = 4π (N Q2/	me), with N/	 the average density.

(As a check note that this is the first term in square brackets in Eq. (20.2).) Combining this

with the Kramers-Kronig relations, Eq. (D.15) leads to (Exercise E.2)

∫ ∞

0

dω ω Imεαβ(ω) = π

2
ω2

pδαβ, or

∫ ∞

0

dω ω Reσαβ(ω) = π

2

Q2

me

N

	
δαβ. (E.13)
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A similar sum rule is satisfied by ε−1
αβ (ω). Finally, all the versions of the f sum rule apply

to the exact many-body response as well as to the simple non-interacting approximation,

because the sum rule depends only upon the Kramers-Kronig relations and the high ω → ∞
limit, in which the electrons always act as uncorrelated free particles.

E.4 Scalar longitudinal dielectric functions

The dielectric relations, Eq. (E.10), can also be written in terms of scalar potentials. This

is sufficient for static problems and is convenient for many uses, especially applications in

density functional theory, which is cast in terms of potentials and densities. This is called

“longitudinal” because it only applies to electric fields that can be derived from a potential

E(r) = −∇V (r). Thus the electric field in Fourier space E(q) = iqV (q) is longitudinal,

i.e. parallel to q. Combining (E.3), (E.4), and (E.7), it follows that [152]

ε−1(q, q′, ω) = δV C
total(q, ω)

δVext(q′, ω)
or ε(q, q′, ω) = δVext(q, ω)

δV C
total(q

′, ω)
, (E.14)

where the total Coulomb potential is denoted V C
total, i.e. the potential acting on an infinitesimal

test charge which does not include the effective exchange–correlation potential Vxc that acts

upon an electron.

Expressions for ε and ε−1 in terms of electronic states can be derived from the general

formulas for response functions χ0 (Eqs. (D.3)–(D.5)) and χ (Eq. (D.11)). In particular, it

follows that (Exercise E.3)

ε−1(q, q′, ω) = δ(q − q′) + VC (q)χ (q, q′, ω), (E.15)

where VC (q) = 4πe2/q2 is independent of ω (the same as in Eq. (D.10) and we have

set Q = −e). For a theory in which the electrons interact via an effective field, as in the

Kohn–Sham approach, χ is most readily calculated using the expression (D.11)

ε−1 = 1 + VCχ0

1 − (VC + fxc)χ0
= 1 − fxcχ

0

1 − (VC + fxc)χ0
. (E.16)

The equation appears simple because the arguments have been omitted, but actual evalu-

ation can be tedious since products such as fxcχ
0 stand for convolutions over all internal

wavevectors and frequencies.

The simplest case is the electron gas (Ch. 5), where χ is non-zero only for q = q′ and

the expressions can be evaluated analytically. The Lindhard expressions, Eq. (5.38), for

χ0(q, ω) are given in Sec. 5.4, from which can be derived all the other response functions.

In a crystal, the wavevectors can always be written as q = k + G and q′ = k + G′,
where k is restricted to the first Brillouin zone, so that ε(k + G, k + G′, ω) is a matrix

εGG′(k, ω) and, similarly, for the inverse matrix, ε−1
GG′(k, ω). Optical phenomena involve

long wavelengths, G = 0 and G′ = 0, and are described by the macroscopic dielectric

function ε(k, ω), defined by the ratio of internal to external macroscopic fields (G = G′ =
0) keeping the short wavelength (G′ �= 0) external fields fixed, it follows that [152, 871]
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(Exercise E.4)

ε(k, ω) = δVext(k, ω)

δV C
total(k, ω)

= 1

ε−1
00 (k, ω)

. (E.17)

Finally, the full dielectric tensor can be recovered considering different directions k̂ using

the fact [152] that for long wavelengths, the scalar dielectric function is related to the

dielectric tensor by [152]

ε(k, ω) = lim
|k|→0

k̂αεαβ(k, ω)k̂β. (E.18)

In a cubic crystal εαβ = εδαβ , but in general (E.18) depends upon the direction in which the

limit is taken.

E.5 Tensor transverse dielectric functions

The general cases of time-dependent electric and magnetic fields can conveniently be treated

by calculation of the current response to the vector potential A. The perturbation can be

written in terms of A as

�Ĥ (t) = 1

2me

∑

i

{[
pi − e

c
A(t)

]2

− p2
i

}

, (E.19)

where E(t) = −(1/c)(dA/dt) or E(ω) = −(iω/c)A(ω), and the magnetic field is given by

B = ∇ × A. The desired response is the current density j. For a transverse electromagnetic

wave this is the appropriate response function.

Formulas for response function in the independent-particle approximation have the gen-

eral form given in App. D and are given explicitly in Sec. 20.1. Self-consistent field ex-

pressions have exactly the same form as for the scalar dielectric function except that they

involve an effective “exchange–correlation vector potential” that is the fundamental quantity

in “current functional theory” [333, 335, 362].

E.6 Lattice contributions to dielectric response

In an ionic insulator, the motion of the ions contributes to the low-frequency dielectric

response [90, 152, 874], where the electronic contribution can be considered constant as

a function of frequency ω. All quantities are properly defined holding the macroscopic
electric field Emac constant, which gives the intrinsic response. The macroscopic field is

controlled by external conditions, boundary conditions, etc., and such effects should be

taken into account in the specific solution. The Born effective charge tensor for each ion I
is defined by

Z∗
I,αβ |e| = dPα

dRI,β

∣
∣
∣
∣
Emac

, (E.20)
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where the macroscopic electric field is held constant. The effective charge is non-zero for

some displacements in any ionic crystal, and it has been shown that in all elemental crystals

with three or more atoms per cell [875] (with the exception [876] of two special cases out

of the 230 space groups) there must also non-zero effective charges. In fact, there are large

measured effective charges and infrared absorption known in elemental crystals such as

trigonal Se [875]. The polarization caused by the effective charges leads to non-analytic

terms in the force constant matrix defined in Eq. (19.9), which has the form (see Eq. 4.7

of [152]).

Cs,α;s ′,α′(k) = C N
s,α;s′,α′ (k) + 4πe2

	

[
∑

γ

k̂γ Z∗
I,γ α

]†
1

ε(k)

[
∑

γ

k̂γ Z∗
I,γβ

]

, (E.21)

where C N is the normal analytic part of C and ε(k) is the low-frequency electronic dielectric

constant. The full dielectric function including the lattice contribution is given by Cochran

and Cowley [874] and the low-frequency limit is given in [152], Eq. (7.1).

Similarly, one can define proper piezoelectric constants [722,877,878] in the absence of

macroscopic fields,

eαβγ = dPα

duαβ

∣
∣
∣
∣
Emac

, (E.22)

where uαβ denotes the strain tensor of Eq. (G.2). The effect can be separated into a pure

strain effect and an internal displacement contribution,

eα,βγ = e0
α,βγ + |e|

∑

s,δ

Z∗
s,αδs,δ,βγ , (E.23)

where Z∗
s,αδ is the same effective charge tensor that governs infrared response of optic

modes and  is defined in (G.14). This division facilitates calculations and clarifies relations

of measurable physical quantities. Crystals with permanent moments present a particular

problem, in that a rotation of the moment might be termed a piezoelectric effect. This is

an “improper effect” and it has been shown that “proper” expressions for the polarization,

such as the Berry’s phase form in Sec. 22.2, do not contain such terms [803].
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Exercises

E.1 Derive (E.12) for the dielectric tensor at high frequency using only the fact that electrons respond

as free particles at sufficiently high frequency. It may be helpful to relate to the high-frequency

limit of the harmonic oscillator response function give in Sec. D.3.

E.2 Show that the f sum rule, (E.13), follows from the high-frequency behavior in (E.12) and the

Kramers-Kronig relations, (D.15).

E.3 Show that (E.15) results from the definition of internal and external charges in Eq. (E.4) and the

definition of ε−1 in (E.14).

E.4 The expression for the macroscopic dielectric function, (E.17), can be derived by carefully

applying the definition that it is the ratio of external to total internal fields given in (E.17) for the
case where the short wavelength external fields vanish, and using the definition that the inverse

function is the response to external fields. Use these facts to derive (E.17).



Appendix F

Coulomb interactions in extended systems

Summary

The subject of this appendix is formulations and explicit equations for the
total energy that properly take into account the long-range effects of Coulomb
interactions. We emphasize the Kohn–Sham independent-particle equations and
expressions for total energy; however, the ideas and many of the equations also
apply to many-body calculations. There are three main issues:

� Identifying various convenient expressions that each yield properly the in-
trinsic total energy per formula unit for an extended bulk system.

� Understanding and calculating the effect upon the average potential in a bulk
material due to dipole terms at surfaces and interfaces.

� Treating finite systems, where there is no essential difficulty, but where it is
convenient to carry out the calculations in a periodic “supercell” geometry.

F.1 Basic issues

There is a simple set of guiding principles that must be followed to properly treat long-range

Coulomb interactions in extended systems. If the calculations are carried out in a cell that

represents an infinite system, i.e. the unit cell of a crystal, or a “supercell” constructed so

that its limiting behavior represents a macroscopic system, then:

� The cell must be chosen to be neutral;
� The neutral cell can be used to define a proper thermodynamic “reference state” if in

addition we require that there is no average (macroscopic) electric field;
� The average electrostatic potential is not an intrinsic property of condensed matter. The

value is ill defined in an infinite system. In a large (but finite) sample, the value relative

to vacuum depends upon surface conditions.

The first condition is obvious because otherwise the Coulomb energies of the extended

system diverge. The second is less obvious, but is clearly required because there is no

lower bound to the energy in an infinite system with an electric field. In a metal there is no

problem since there can be no uniform electric field in equilibrium. However, in general, in

an insulator, the total energy is the energy of this “reference state” plus changes in energy
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due to the presence of long-range electric fields. This is the essence of a dielectric in which

the energy is a function of applied fields [448, 790], which can be described in terms of

dielectric response functions derived by perturbation theory (Ch. 19).1

The expressions for the total energy given in Sec. 3.2 and in the chapters on density

functional theory (see e.g., Eqs. (7.5), (9.7), (9.9), and (9.13)) are organized into neutral

groupings so that they are in the proper form to define the intrinsic, extensive properties of

condensed matter in the large size (or thermodynamic) limit. These classical Coulomb con-

tributions to the total energy given in Eq. (3.14) are determined solely by the charge density

of the electrons, the nuclei, and any external charges. All effects of quantum mechanics on

the electrons and correlations among the electrons can be separated into the other terms in

the total energy as expressed in Eq. (3.16) and the “xc” terms in density functional theory;

these are short-range in nature and not subject to convergence problems.

A comment is in order regarding terminology. In density functional theory, the “external

potential” has a central role. However, the external potential due to the charged nuclei

diverges in an infinite system. This nomenclature should cause no difficulty so long as one

maintains the principle that the long-range part of the Hartree potential is grouped with the

nuclear potential in order to have a well-defined “external potential” and total energy. For

example, in the bulk of a crystal the potential regarded as external may include effects of

electrons at a large distance which are not part of the intrinsic bulk system.

There are three typical ways to specify the Coulomb energy and the potential of extended

systems. One is to add and subtract a uniform background: then the energy can be expressed

as the sum of the classical energy of nuclei (or ions) in a compensating negative background

plus the total energy of the system of electrons in a compensating positive background. This

has the advantage of simplicity and may be close to the real situation in materials where the

electrons are nearly uniform. However, it leads to expressions for the total energy that often

involve small differences between large numbers that are difficult to interpret physically.

The second approach is to “smear” the ions, which allows a convenient rearrangement of

terms that is especially useful in Fourier space expressions. A third method is a variation

in which one finds the difference from isolated neutral atoms (or neutral spherical atomic-

like species). Then we only deal with the difference between two neutral systems, which

has obvious advantages since it relates to the real physical problem of the binding energy

relative to atoms. However, it requires that we either specify properties of the real atom or

define an arbitrary neutral reference density.

F.2 Point charges in a background: Ewald sums

The Ewald method for summing the Coulomb interactions of point charges is based upon

transformation of the potential due to an infinite periodic array of charges. The result is two

sums, one in reciprocal space and one in real space, each of which is absolutely convergent.

The approach is intimately connected to the expressions for total energy, which must be

1 Special care must be taken if there is a polarization in the absence of an average electric field, i.e. in pyroelectrics

or polled ferroelectrics. See Ch. 22.
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evaluated in a consistent way to eliminate the divergent terms in both the total energy and the

Kohn–Sham potential. This is the approach used in Sec. 13.1, in particular in Eq. (13.1). The

arguments given here are the justification for the exclusion of the G = 0 Fourier components

in the expressions for the Hartree term in the Kohn–Sham potential and the G = 0 term in

the Hartree energy.

The first step is the identification of appropriate neutral groupings by adding and subtract-

ing a uniform positive background charge density n+, which is equivalent to adding n+ and

a uniform negative density n− = −n+. This allows us to rewrite the total energy, Eq. (3.14),

(or any of the expressions in the density functional theory chapters) as the classical Coulomb

energy

ECC = E ′
Hartree[n(r) + n+] +

∫

d3r V ′
ext(r)n(r) + E ′

I I , (F.1)

where each term is neutral. The effects of n+ are incorporated in E ′
Hartree, which is the

Hartree-like energy having exactly the same form as Eq. (3.15)

E ′
Hartree[n] = 1

2

∫

d3rd3r ′ [n(r) + n+)(n(r′) + n+]

|r − r′| = 1

2
4π

′∑

G�=0

|n(G)|2
G2

, (F.2)

with n replaced by the neutral density n + n+. In Fourier space, the addition of n+ simply

amounts to omitting the G = 0 term since n + n+ has zero average value. In (F.1), V ′
ext is the

potential due to the nuclei (or ions) plus the negative background n−; again, in Fourier space,

one simply omits the G = 0 term. The final term is the sum of all interactions involving the

nuclei (or ions) and n−, which is defined to be the Madelung energy and can be evaluated

by the Ewald transformation.

The Ewald transformation2 is based upon the fact that expressions for lattice sums can be

written in either real or reciprocal space, or a combination of the two. The explicit formulas

utilize the relation ([88], p. 271),

∑

T

1

|r − T| → 2√
π

∑

T

∫ ∞

η

dρe−|r−T|2ρ2

+ 2π

�

∑

G�=0

∫ η

0

dρ
1

ρ3
e−|G|2/(4ρ2)eiG·r, (F.3)

where T are the lattice translation vectors and G are reciprocal lattice vectors. The integrals

can be computed in terms of error functions, erf(x) = 2√
π

∫ x
0

due−u2

and erfc(x) = 1 −
erf(x), leading to (see Exercise F.1, [88], p. 271 and [886]),

∑

T

1

|r − T| →
∑

T

erfc(η|r − T|)
|r − T|

+ 4π

�

′∑

G�=0

1

|G|2 e
−|G|2

4η2 cos(G · r) − π

η2�
. (F.4)

2 The formulas were originally given by Ewald [882], Kornfeld [883] and Fuchs [884] and can be found in

extensive reviews, e.g., [879] and [885].
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Figure F.1. A lattice of point charges in a uniform compensating background as considered in the

Ewald calculation. On the right single a nucleus in a compensating sphere, which provides a good

approximation for the Coulomb energy in a close-packed lattice (see Eq. (F.9)).

By dividing the Coulomb sum into two terms in real and reciprocal space, each term in (F.3)

and (F.4) is absolutely convergent. The value of η determines the way the sum is apportioned

in real and reciprocal space: the result must be independent of η if carried to convergence,

and a choice of η ≈ |G|min allows each sum to be computed with only a few terms.

The sum on the left-hand sides of these two equations is the electrostatic potential at

a general point r due to a lattice of unit charges, which is an ill-defined sum. The arrow

in each equation denotes two definitions required to specify the right-hand side. First, the

sum is made finite by including a compensating background, which is accomplished by the

omission of the G = 0 term. Second, even with the compensating term, the sum is only

conditionally convergent, which reflects the fact that the absolute value of the potential is

not defined in an infinite system. In (F.4), the last term is chosen so that the average value

of the potential is zero [886]. Since the absolute value of the potential does not affect the

total energy of a neutral system, this is sufficient for the total energy given in (F.5) below.

However, the average potential is required for other properties as discussed in Sec. F.5; this

is not specified by the conditions given so far.

The total Coulomb energy per unit cell of a periodic array of point charges plus the com-

pensating uniform negative background (see Fig. F.1) can be expressed using the potential

at each site from (F.4), omitting the self-term for each ion. Assuming that the system is

neutral and has no net polarization, the expressions are absolutely convergent (with none of

the arbitrariness that occurs in the potential) and can be written for charges Zs at positions

τs , s = 1, . . . , S as

γE = e2

2

∑

s,s′
Zs Zs′

′∑

T

1

|τs,s′ − T|

= e2

2

∑

s,s′
Zs Zs′

[ ′∑

T

erfc(η|τs,s′ − T|)
|τs,s′ − T| + 4π

�

′∑

G�=0

1

|G|2 e
−|G|2

4η2 cos(G · τs,s ′)

]

− e2

2

[
∑

s

Z2
s

]
2η√
π

− e2

2

[
∑

s

Zs

]2
π

η2�
, (F.5)
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Table F.1. Typical values of the Madelung constant α for simple ionic crystals and for

simple elemental crystals where the background term has been included.

CsCl NaCl wurtzite zinc-blende

1.762,68 1.747,57 1.638,70 1.638,06

bcc fcc hcp sc diamond

1.791,86 1.791,75 1.791,68 1.760,12 1.670,85

where τs,s ′ = τs′ − τs and the primes on the sums indicate that the divergent terms are

omitted. Self-terms for the ions are excluded by the omission of the T = 0 term for s = s ′

and by the first term in the last line that cancels a self-term included in the reciprocal

space term. The G = 0 term is omitted and the correct effects are taken into account by

the second term in the last line, which is the analytic limit for G → 0. This term is absent

in the calculation of Madelung energy for an ionic crystal where
∑

s Zs = 0, but it must

be included for evaluating the energy of positive ions in a background of density n− =
− ∑

s Zse/�. Expression (F.5) can be used to compute the EI I term in the total energy in

(7.5) and the needed term in (13.1), (13.2), and other expressions.

Finally, the real- and reciprocal space sums in Eq. (F.5) can be written in a different form.

The reciprocal space sum can be transformed to the square of a single sum over nuclei I
(Exercise F.4),

∑

s,s ′
Zs Zs ′

′∑

G�=0

1

|G|2 e
−|G|2

4η2 cos(G · τs,s ′) =
′∑

G�=0

1

|G|2
[
∑

s

ZseiG·τs e
−|G|2

8η2

]2

, (F.6)

which is the Coulomb energy of a charge distribution consisting of gaussian charges at

the ion sites. The real-space sum in Eq. (F.5) involving complementary error functions is

a short-range sum over neighbors of the difference of the interaction of point charges and

gaussian distributed charges.

Madelung constant

The Madelung constant α is a dimensionless constant that characterizes the energy per cell

of point charges in a lattice γE

γE = −α
(Ze)2

2R
. (F.7)

Representative values of α for are given in Tab. F.1, where 2R is the nearest-neighbor

distance for ionic crystals (top line of Tab. F.1.) and R = Rws for elemental crystals (bottom

line of Tab. F.1). The neutralizing background is included in the calculation of γE as in

Eq. (F.5) for all cases where the sum of point charges is not zero; however, it does not

enter for ionic crystals with neutral cells of positive and negative charges (see additional

comments in Exercise F.2).

For close-packed metals, the energies in Tab. F.1 are very close to the energy of single-

point charge Ze in a sphere of uniform compensating charge, where the volume of the
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sphere equals that of the Wigner–Seitz cell and its radius is R = RWS, as illustrated on

the right-hand side of Fig. F.1. This can be understood simply because the cell is nearly

spherical and there are no interactions between neutral spherical systems so that only internal

energies need to be considered. The electrostatic potential at radius r due to the background

is (Exercise F.3)

V (r ) = Ze

[
r 2

2R3
− 3

2R

]

, r < R, (F.8)

where the constant is chosen to cancel the Ze/r potential from the ion at r = R. The total

energy is the interaction of the ion with the background, plus the self-interaction of the

uniform distribution, (Exercise F.3)

Esphere = (Ze)2

[

− 3

2R
+

(
3

2R
− 9

10R

)]

= −0.90
(Ze)2

R
= −1.80

(Ze)2

d
, (F.9)

which is very close to the Madelung energies for the close-packed metals in Tab. F.1.

Force and stress

The part of the force on any atom due to the other nuclei or ions, treated as point charges, is

easy to calculate from the analytic derivative of the Ewald energy, Eq. (F.5). The background

is irrelevant in the derivative and one finds

−∂γEwald

∂τs
= −e2

2
Zs

∑

s′
Zs′

′∑

T

[

ηH (ηD)
D
D2

]

D=τs,s′−T

+ 4π

�

e2

2
Zs

∑

s′
Zs′

′∑

G�=0

[
1G
|G|2 e

−|G|2
4η2 sin(G · τs,s ′)

]

, (F.10)

where H ′(x) is

H ′(x) = ∂erfc(x)

∂x
− x−1erfc(x). (F.11)

The contribution of the Ewald term to the stress can be found using the forms in App. G.

The sum in real space involves short-range two-body terms that can be expressed in the

form of Eq. (G.7), and the sum in reciprocal space has the form of (G.8). The final result is

(appendix of [104])

∂γEwald
∂εαβ

= π

2�η2

∑

G �=0

e−G2/4η2

G2/4η2

∣
∣
∣
∣
∣

∑

s

ZseiG·τs

∣
∣
∣
∣
∣

2 [
2GαGβ

G2
(G2/4η + 1) − δαβ

]

+ 1

2
η

∑

s,s ′T

Zs Zs′ H ′(ηD)
Dα Dβ

D2

∣
∣
∣
∣
(D=τs′ −τs+T�=0)

+ π

2�η2

[
∑

s

Zs

]2

δαβ. (F.12)
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F.3 Smeared nuclei or ions

The terms in the total energy can also be rearranged in a form that is readily applied in

pseudopotential calculations.3 The long-range part of the ion pseudopotential is in the local

term V local
I (r) defined for each ion I . If we define the charge density that would give rise to

this potential as

nlocal
I (r) ≡ − 1

4π
∇2V local

I (r), (F.13)

then the total energy for electrons in the presence of the smeared ion density can be written

in terms of the total charge density

ntotal(r) ≡
∑

s

nlocal
I (r) + n(r). (F.14)

One can also define a model ion density different from Eq. (F.13); the ideas remain the same

and equations given here are easily modified.

With this definition of ntotal, the ion–ion, the Hartree, and local external terms can be

combined to write the total energy, Eq. (7.5), in the form

EKS = Ts[n] + 〈δV̂NL〉 + Exc[n] + E ′
Hartree[ntotal] −

∑

I

E self
I + δEI I , (F.15)

where the non-local pseudopotential term has been added, as has also been done in Eq. (13.1).

The Hartree-like term E ′
Hartree is defined as in Eq. (F.2) with n → ntotal; the “self” term

subtracts the ion self-interaction term included in E ′
Hartree; and the last term δEI I is a short-

range correction to remove spurious effects if the smeared ion densities nlocal
I (r) overlap.

The correspondence with the Ewald expression can be seen by choosing the densities

nlocal
I (r) to be Gaussians, in which case this analysis is nothing but a rearrangement of the

total energy using the Ewald expression, (F.5). The Fourier sum in (F.5) is included with the

electron Hartree and external terms to define ẼHartree[ntotal]; the real-space sum in Eq. (F.5)

is simply the short-range corrections termed δEI I , and the constants in (F.5) are the “self”

terms.

Force and stress

The force can be found by differentiating the energy, Eq. (F.15), and the force theorem,

keeping in mind that ntotal explicitly depends upon the ion positions. One finds an expression

analogous to (13.3) and (F.10), with the Ewald and local terms rearranged,

Fκ
j = −

∑

m

iGmeiGm ·τκ, j V κ
local(Gm)ntotal(Gm) − ∂δEI I

∂τκ, j
+ [

Fκ
j

]NL
, (F.16)

3 See [705] and [617] for description of the ideas and practical expressions for calculations. This form is especially

suited for Car–Parrinello simulations, as discussed in Sec. 18.3.
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where
[
Fκ

j

]NL

are the non-local final terms on the right-hand side of Eq. (13.3), and the

contributions due to δEI I are simple short-range two-body terms. Stress is found in a form

analogous to the expressions in Sec. F.2.

F.4 Energy relative to neutral atoms

It is appealing and useful to formulate expressions for the total energy relative to atoms.4

This can be viewed as a reformulation of the expressions in the previous section. The total

energy relative to separated atoms is the difference of Eq. (F.15) from the sum of correspond-

ing energies for the separated atoms. There is no simple expression for the difference in

kinetic, non-local, and exchange–correlation energies which must be calculated separately.

However, there is a simplification in the Coulomb terms that can be used to advantage.

Let us define a neutral density for each atom nNA
I (r) as the sum of its electronic density

nI (r) and the local density representing the positive ion, just as in (F.14). Then the total

density can be written as

ntotal(r) ≡
∑

I

nNA
I (r) + δn(r), (F.17)

where δn(r) = n(r) − natom(r), with natom(r) the sum of superimposed atomic densities.

Substituting (F.17) into (F.2) leads directly to

E ′
Hartree[ntotal] = E ′

Hartree[nNA] +
∫

dr V NA(r)δn(r) + E ′
Hartree[δn], (F.18)

where V NA(r) is the sum of Coulomb potentials due to the neutral ion densities.

Since both nNA and δn are neutral densities, i.e. having zero average value, each of the

individual terms in (F.18) is well defined and can be treated individually using the Hartree-

like expression, Eq. (F.2). One approach is to evaluate the first term using the fact that

nNA(r) is a periodic charge density and transforming to Fourier space. However, this does

not take advantage of the construction of nNA(r) as a sum of neutral, spherical densities.

Using this fact, the first term can be written as a sum of intra-atom terms plus short-range

interactions between the neutral atomic-like units; subtracting the unphysical self-term for

the nucleus (or ion) as in (F.15), we have

E ′
Hartree[nNA] −

∑

I

E self
I =

∑

I

U NA
I +

∑

I<J

U NA
I J (|RI − RJ |), (F.19)

where

U NA
I =

∫

drV local
I (r)nI (r) + 1

2

∫

drV Hartree
I (r)nI (r), (F.20)

and the interaction U NA
I J (|RI − RJ |) is non-zero only for overlapping densities. If the

density is strictly zero beyond a cutoff radius, then the interactions also vanish for any

4 Such a form is particularly useful in local orbital methods where an atomic or atomic-like density is readily

available. Informative analysis is given in [601] and [617].
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Figure F.2. Schematic for a dipole layer of charge σ (z) and the resulting offset of the average

potential. On the left is the well-known problem of a parallel-plate capacitor and on the right a

schematic illustration of a realistic smooth interface density like that at a surface or interface.

non-overlapping spherical densities [601]. These expressions for the energy are used in

expression (15.14), that is particularly useful for local orbital approaches.

F.5 Surface and interface dipoles

Planar distributions of charge are an important special case of the effects of long-range

Coulomb interactions that play a major role in surface and interface phenomena. The average

electrostatic potential is shifted due to a surface or interface dipole, which gives rise to

interface-dependent band-offsets and surface-dependent work functions (see Secs. 2.8 and

13.4). The underlying cause is the long-range Coulomb interaction and the key point is that

in the bulk of condensed matter the absolute energy of a charged particle (e.g. an electron)
is not an intrinsic bulk property. One can specify energy relative to some other state (for

example, the vacuum) only if the charge state of the entire system is known.

The physical problem is specified by charge density n(r), which is non-zero only near a

planar surface or interface. The density n(r) includes both electrons and nuclei, and must

be neutral for the energy per particle to be finite. If the coordinate system is fixed with ẑ
perpendicular to the plane and x̂, ŷ in the plane, then n(r) can be divided into an average

density per unit area σ (z) plus δn(r), where the latter can vary in the x̂, ŷ plane. The

variations in the plane δn(r) give rise to potentials that decrease exponentially [887] as a

function of |z|. The typical decay length is proportional to the length Lxy over which δn(r)

varies. Thus the only long-range effects are due to σ (z).

This leaves us with the problem shown in Fig. F.2, which is equivalent to the planar

capacitor shown on the left. The electrostatics is very simple and the only effect for z
outside the region of the surface or interface is a constant shift of the electrostatic potential

that is given by integrating the electric field, which is equivalent to the dipole term

�V̄Coulomb =
∫

dz z σ (z). (F.21)
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(b)

(d )(c)

(a)

Figure F.3. Schematic illustration of the use of periodic boundary conditions to find the electrostatic

potential and to solve Kohn–Sham equations for the isolated system shown in (a). The periodically

repeated density shown in (b) leads to artificial interactions with the images. Subtracting a model

density nLM(r) in (c) from (a) (F.23) leaves the density n′(r) that has no moments for M ≤ Mmax.

Calculations are done using the periodically repeated n′(r) in (d) with expression (F.24) for the

electrostatic potential. Provided by P. Schultz; equivalent to Fig. 1 of [880].

This is the dipole that must be calculated from the electronic structure in order to predict

band-offsets at interfaces and work functions at surfaces, as referred to in Secs. 2.8 and

13.4.

F.6 Reducing effects of artificial image charges

It is often convenient to apply periodic boundary conditions in calculations of isolated

molecules, clusters, or defects in solids. The advantage is that all the machinery developed

for crystals is immediately applicable. The disadvantage is unwanted effects due to the use

of artificial periodic boundary conditions. There are two types of effects: artificial bands

due to overlapping wavefunctions and potentials due to “image charges” from periodically

repeated units. Since the bound state wavefunctions are exponentially localized, the longest

range effects are Coulomb interactions. Thus it is very useful to identify ways of performing

the calculations that minimize effects of the image potentials.

A transparent approach to the problem, with practical equations, can be found in a paper

by Schultz [880], as illustrated in Fig. F.3. The goal is to find the properties of the isolated

system in part (a) using calculations with periodic cells of volume� ≡ 1/L3. If the density is

merely repeated periodically as in (b) using the usual expressions relating the potentials and

densities valid in crystals, then this artifice introduces spurious potentials due to interactions

between the system and its periodic images. The effects can be understood in terms of the

multi-pole moments of the charge density of one cell (we omit tensor indices for simplicity)

〈n〉M =
∫

drrM n(r ). (F.22)
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If the cell is charged (monopole M = 0 moment), the sums diverge for any �; if there

is a dipole (M = 1) moment, the limit as � → ∞ depends upon the shape of the cell;

quadrupole (M = 2) moments lead to convergent expressions for energy (with an error ∝
1/L5 = 1/�5/3), but the potential is only conditionally convergent; the sums are convergent

for higher multi-poles.

A general approach to the problem [880] is to divide the density into two parts,

n(r) ≡ n′(r) + nLM(r), (F.23)

where nLM(r) is a model “local moment counter charge” density chosen to reproduce the

moments, Eq. (F.22), of n(r) for M ≤ Mmax. One isolated model density nLM(r) is illustrated

in Fig. F.3(c) and the remaining n′(r), which has vanishing moments for M ≤ Mmax, is

periodically repeated in (d). The resulting Coulomb potential can be represented as the sum

of two terms

VCoulomb(r) = V ′
Coulomb(r) + VCoulomb,LM(r), (F.24)

where n′(r) and V ′
Coulomb(r) can easily be treated in reciprocal space, whereas VCoulomb,LM(r)

is determined by the model density nLM(r) with correct boundary conditions for an isolated

unit, as shown in Fig. F.3(c). Note that this is not merely a post-processing step after a usual
periodic cell calculation; the potential calculated during the self-consistency iterations is

determined from Eq. (F.24) and not from the first term alone.

There is an additional consideration in the case of a defect in a solid. Since the medium

is polarizable, the change in density due to a defect is not localized and, in general, the

integrals for moments (F.22) do not converge within the cell. This can be overcome by

another application of the general idea of adding model densities, since the long-range

terms can be found from perturbation theory for the polarization of the given material due

to the slowly varying long-range electric fields.5

An important example deserves special mention: an atom, molecule, or defect with charge

Z [881]. Periodically repeated charged units can be treated by adding a constant neutralizing

background density nB = −Z/�, as in the Ewald method of Sec. F.2. The total energy

E(�) can then be calculated as in any other periodic system; however, it includes spurious

interaction among the units and the background ∝ 1/L . This leading term can be cancelled

by subtracting the energy of point charges Z in the background, i.e. Z 2α/(2L), where α is

the Madelung constant (Sec. F.2). However, there is a difference between the interaction

of the background with a point charge and with the real density of the unit. This is a local

effect ∝ 1/� since the background density varies as ∝ 1/�. Correcting for this term leads

to a more convergent formula for the energy valid for cubic cells [881]

E(L) = E∞ − α
Z 2

2L
− 2π Z Q

3L3
+ O(1/L5), (F.25)

where Q is the isotropic quadrupole moment Q = 〈n〉2 = ∫
drr2n(r ). A different approach

has been proposed by Kantorovich [888] that applies for cells of arbitrary shape.

5 This approach also applies to stress and strain due to defects which obey relations analogous to those for

electrostatics.
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Exercises

F.1 Show that the potential in (F.4) has zero average value as claimed. As a hint in the reasoning,

the final term can be considered as the limit G → 0 of the middle term.

F.2 Discuss the values of the Madelung constant in Tab. F.1. Compare these with the result of the

previous problem. Why are the values larger or smaller? Rationalize the variation of α among

the structures.

F.3 The problem of a point charge at the center of a sphere with a neutralizing uniform charge

density can be solved analytically. Derive the expressions given for the potential, (F.8) and

energy, (F.9). Hint: Use the knowledge that the potential due to the uniform distribution must

vary as r2 (Why?) and that the last term in (F.8) has been chosen to make V = 0 at the boundary

for the neutral cell (Why?). (Related analysis is given for the Wigner interpolation formula for

electron correlation energy by Pines [225], p. 92–94.)

F.4 Show that the two expressions for the Ewald energy, (F.5) and (F.6), are equivalent. As a first

step in the proof show that the right-hand side of (F.6) is real. Hint: Expand exponentially and

use the cosine addition formula cos(A − B) = cos A cos B + sin A sin B.

F.5 Explain the meanings of the terms in real and reciprocal space in (F.5) in terms of the physical

interactions of gaussian charge distributions, and verify the statements made in the interpretation

following (F.6).
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F.6 Construct a program to perform Ewald sums in (F.4) and (F.5). (A code is available at the URL

given in Ch. 24.)

F.7 Use your program for Ewald sums in Exercise F.6 to check the values of the Madelung constant

in Tab. F.1.

F.8 For a chosen simple crystal structure calculate the energy versus lattice constant a. Show that

it varies as 1/a. From the slope of energy vesus volume, calculate the pressure. Check that this

agrees with the pressure given by the stress theorem, Eq. (F.12).

F.9 Show analytically that in the simple crystal structures in Tab. F.1, the force on each atom

vanishes. Verify this numerically using the force theorem.

F.10 Construct a crystal with two atoms per cell, e.g. diatomic molecules with spacing d placed on

an fcc lattice with lattice constant a. Calculate the energy for several values of d; from the slope

calculate the force on an atom and compare with the force found using the force theorem, (F.10).

F.11 Following the previous problem, calculate the stress using the stress theorem, Eq. (F.12), and

compare with the slope of the energy versus lattice constant a. Give the analytic proof that the

stress is given by scaling both d and a, and also show this numerically by direct calculation.

F.12 Consider a molecule represented by plus and minus charges so that it has a dipole moment.

Place the molecules on a simple cubic lattice and evaluate the Ewald energy. Now make the

cell long in one direction so that it is orthorhombic with a = b � c. (Be sure that the program

sums over sufficient vectors in both real and reciprocal space for this anisotropic case.) Find the

energy for dipoles along the c direction and for dipoles oriented along a. Are they different?

Why? What does this have to do with Ch. 22?

F.13 Modify the program to calculate the potential at an arbitrary point. For the case in the problem

above with dipoles along the c direction, show that the potential has the dipole offset given by

Eq. (F.21). Vary the in-plane lattice constant a = b (but still with a = b � c) and show the

point stated in Sec. F.5 that variation of the fields in the plane decreases exponentially as a

function of distance from the plane of dipoles.



Appendix G

Stress from electronic structure

Summary

The subject of this appendix is the macroscopic stress that enters mechanical
properties of matter in the form of stress–strain relations. The stress tensor is
the generalization of pressure to all the independent components of dilation
and shear, and the “stress theorem” is the generalization of the virial theorem
for scalar pressure to all components of the stress tensor. In condensed matter,
the state of the system is specified by the forces on each atom and the stress,
which is an independent variable. The conditions for equilibrium are: (1) that
the total force vanishes on each atom, and (2) that the macroscopic stress equals
the externally applied stress.

G.1 Macroscopic stress and strain

Stress and strain are important concepts in characterizing the states of condensed matter

[177, 721, 722, 890]. A body is in a state of stress if it is acted upon by external forces or

if one part of the body exerts forces upon another part. If we consider two types of forces

as illustrated in Fig. G.1: those acting interior to a volume element and those that act upon

(or through) the surface of the element due to the surrounding material, which are shown as

arrows in the figure. The latter forces (per unit area) are the stresses transmitted throughout

the interior of the volume. Since these forces balance on any surface in equilibrium, the stress

can be determined in terms of only the intrinsic internal forces; i.e. stress is an intrinsic

property of a material in a given state. This brings stress into the realm of “electronic

structure” as one of the properties of a body determined by the quantum state of the system

of electrons and nuclei.

For condensed matter in which the stress is homogeneous, averaged over volumes of

macroscopic dimensions, the state of the system is specified by the forces on each atom and

the stress, which is an independent variable. The conditions for equilibrium are that the total

force vanishes on each atom, whereas the macroscopic stress is fixed by externally applied

forces. The equation of state is the relation of stress to the internal variables, such as the

density and temperature. For example, in a homogeneous liquid, the state of the system is

fully specified by the volume, pressure, and temperature, and the relation to the underlying

hamiltonian is given by the virial theorem that relates pressure to the expectation value of
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+ ++

+ ++

+ ++

+ ++

+ ++

+ ++

Figure G.1. Illustration of a crystal in equilibrium with no applied forces and with a strain induced

by tensile forces (arrows). A uniform strain of all space including the ion cores is shown; this is the

essence of the concept of “Streckung des Grundgebietes” (“stretching of the ground state”)

employed by Fock [259] to derive the virial theorem. Of course this is not what really happens, but it

is sufficient for calculation of macroscopic stress from the generalized force theorem (G.4). An

alternative approach is shown in Fig. H.2.

the operators for the kinetic energy and the virial of the interaction between particles. This

was first proven in quantum mechanics by Born, Heisenberg, and Jordan [257] and later by

Finkelstein [258], Hylleraas [44], Fock [259], and Slater [260]. In a crystal, however, there

can be shear stress σαβ in equilibrium, and the equation of state is specified in terms of stress–

strain relations. The stress tensor in quantum systems was considered by Schrödinger [891],

Pauli [254], Feynman [892], and others (e.g. [893]), and a fundamental relation in terms of

the intrinsic hamiltonian has been formulated in the form of the “stress theorem” [104,129],

which is a generalization of the elegant scaling arguments of Fock [259].

Strain is a deformation of a material that causes a displacement of a point ri → r′
i , i.e. a

displacement u = r′ − r. The displacement u as a function of the coordinate r specifies the

deformation (see Chap. 1 of [721]). Consider two nearby points joined by the vector dr which

is deformed to dr′. The distance between the points changes from dl =
√

(dr2
1 + dr2

2 + dr 2
3 )

to the corresponding dl ′. To lowest order in u, dl ′ is given by

(dl ′)2 = dl2 + 2uα,βdrαdrβ, (G.1)

where summation over repeated cartesian indices α, β is assumed, and where

uα,β = 1

2

(
∂uα

∂rβ

+ ∂uβ

∂rα

)

(G.2)

is the strain tensor. Note that this is equivalent to a metric tensor that gives lengths in the

deformed system in terms of undeformed coordinates [894]

(dl ′)2 = drαgα,βdrβ ; gα,β = δα,β + 2uα,β . (G.3)

It is also convenient to define the unsymmetrized strain tensor εαβ , which is a scaling of

space, rα → (δαβ + εαβ)rβ . This is often simpler to use, but we must always remember that
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it is the symmetric form, Eq. (G.2), that relates to internal energies; antisymmetric terms

are rotations that have no effect upon relative internal coordinates.

If the strain is homogeneous over macroscopic regions,1 then the macroscopic average

stress tensor σαβ is the derivative of the energy with respect to the strain tensor, per unit

volume,

σαβ = − 1

2�

∂ Etotal

∂gαβ

or σαβ = − 1

�

∂ Etotal

∂uαβ

. (G.4)

The sign of the stress is chosen as in [721] and [129]: since definition (G.4) applies to the

internal forces in the system, a negative value indicates that the internal energy decreases

for positive (expansive) strain, i.e. it is under compression. For example, under hydrostatic

compression, pressure is given by P = −(1/3)
∑

α σαα .

Elastic phenomena are described by stress–strain relations, e.g. to linear order the elastic

constants are given by

Cαβ;γ δ = 1

�

∂2 Etotal

∂uαβ∂uγ δ

= −∂σαβ

∂uγ δ

. (G.5)

Symmetry [86, 272, 722] can be used to specify Cαβ;γ δ as a 6 × 6 array Ci j for a general

crystal. For a cubic crystal, there are only three independent constants: C11 = Cxx,xx , C12 =
Cxx,yy , and C44 = Cxy,xy . (See [722] or the solid state texts [84, 86, 88] for other cases.)

The theory of finite strains can be treated directly from basic theory since the stress is

defined by the derivative (G.4), which applies for any state with arbitrary magnitude of

strain. In addition, the positions of the atoms in the unit cell are fixed by the zero-force

relation (Sec. G.4) at any strain. Thus calculation of stress as a function of strain can be

used to find linear and non-linear stress–strain relations [104, 129]. However, care must

be taken in defining stress–strain relations because strain is not unique since it is defined

relative to a reference state.

Using the generalized force theorem, Eq. (3.21), the expression for stress, Eq. (G.4), can be

evaluated using various ways of distorting the system. The example of uniform infinitesimal

strain of all space (including core states) is shown in Fig. G.1; an alternative, illustrated in

Fig. H.2, can be considered if the expression (G.4) is generalized to a non-uniform strain.

The derivative in Eq. (G.4) can be evaluated using any of the various expressions that relate

total energy Etotal to fundamental electronic energies. The resulting expressions can appear

to be very different and, indeed, even within one approach different contributions to Etotal

may be treated differently. The various types of expressions can be grouped into categories

that reveal physical insight and suffice for important applications in electronic structure.

G.2 Stress from two-body pair-wise forces

In electronic structure all fundamental forces are two-body central interactions Vkk ′ ≡
V (|rk − rk ′ |), where k and k ′ denote any pair of particles with the relative coordinates

1 In general, strain uα,β or metric gα,β is a tensor field that is a function of position r. Fields will be considered

in App. H.
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rkk ′ = rk − rk ′ . In any case in which the particles are explicitly represented by such terms

in the total energy, then the stress is given by the generalized virial (Exercise G.1)

σαβ = − 1

2�

∑

k �=k′

d

drk
Vkk ′

drk

dεαβ

= 1

2�

∑

k �=k ′
Fkk′,αrk,β , (G.6)

which can be written in the manifestly symmetric form

σαβ = 1

2�

∑

k �=k′

(rkk′)α(rkk′)β

rkk′

(
d

drkk′
V

)

. (G.7)

Here the sum over k and k ′ is over all particles considered. Note that Fkk′,α is the contribution
to the force on particle k due to particle k′; it is not the total force Fk,α on particle k, which

vanishes in equilibrium.

Equation (G.7) provides the stress due to classical particles directly in terms of the

potentials and forces; it can also be viewed as a quantum mechanical operator which leads

to the most general form of the potential part of the stress in a many-body system, Eq. (3.26).

The formulation in (G.7) or (G.6) also provides the needed expressions for any terms in

the equation for total energy that depend upon the distance between particles or parameters

in the energy. This is the useful form for the real-space terms in the Ewald stress given in

(F.12) and for the total energy terms in tight-binding or local orbital approaches that are

expressed as a function of distances (see Eq. (14.26) and related terms in Sec. 15.5).

G.3 Expressions in Fourier components

Although it might appear that Eqs. (G.7) and (3.26) are the end of the story for potential

interactions, this is not the case. Even in the general many-body expression, Eq. (3.26),

the long-range classical Coulomb term should be treated with special care, e.g. using ex-

pressions in Fourier space. Mean-field approaches like density functional theory do not

represent particle positions directly, and the effective potential is not represented in terms

of a potential due to specific other particles. Instead, VKS(r) is defined only by the condition

that it reproduces the correct density. How does one proceed? The practical approach is

simply to differentiate all the terms in Etotal.

Expressions in Fourier space can be treated straightforwardly by using the fact that strain

also scales in reciprocal space: qα → (δαβ − εαβ)qβ , where q is any vector in reciprocal

space. The derivation is simplified by the fact that structure factors Sκ (G), Eq. (12.17), and

�n(G) are invariant. For example, the Hartree term (F.2) (which appears in the total energy

expressions (3.14), term (9.3), and specific expressions in other chapters), leads to the stress

contribution (Exercise G.2)

− 1

�

∂ EHartree

∂εαβ

= 1

2
4πe2

′∑

G�=0

n(G)2

G2

[

2
GαGβ

G2
− δαβ

]

, (G.8)

which is clearly symmetric, as it should be.
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Kinetic contributions

Scaling also applies to kinetic terms using d/drα → (δαβ − εαβ)(d/drβ). This leads directly

to a general expression, Eq. (3.26), valid in both many-body and independent-particle for-

mulations. The expressions are particularly simple for wavefunctions expressed in Fourier

space: the energy given in Eq. (13.1),

Ts =
-h2

2me

1

Nk

∑

k,i

∑

m

c∗
i,m(k)ci,m(k)|k + Gm |2, (G.9)

leads to the kinetic contribution to the stress (Exercise G.3)

− 1

�

∂Ts

∂εαβ

=
-h2

me

1

Nk

∑

k,i

∑

m

c∗
i,m(k)ci,m(k)(k + Gm)α(k + Gm)β. (G.10)

In Ch. 15 use is made of the fact that tight-binding and local orbital forms of the matrix

elements of the kinetic energy operator can be cast in terms of functions of distances between

atoms [418, 617], so that a two-body form like Eq. (G.7) can be used instead of a generic

form like (G.10).

Ewald contribution to stress

Using the above forms, many different expressions for stress can be found that may be

more or less convenient in various methods. The application to the Ewald term is given in

Sec. F.2. Here we reproduce the expression for the stress corresponding to the plane wave

formula, Eq. (13.1), for total energy, as given in Eq. (2) of [104]: The strain derivative is

∂γEwald

∂εαβ

= π

2�ε

∑

G �=0

e−G2/4ε

G2/4ε

∣
∣
∣
∣
∣

∑

τ

Zτ eiG·xτ

∣
∣
∣
∣
∣

2 [
2GαGβ

G2
(G2/4ε + 1) − δαβ

]

+ 1

2
ε1/2

′∑

ττ ′T

Zτ Zτ ′ H ′(ε1/2 D)
Dα Dβ

D2
+ π

2�ε

[
∑

τ

Zτ

]2

δαβ, (G.11)

where D = xτ ′ − xτ + T and the sum is only for terms with D �= 0. Note that here ε

denotes a convergence parameter (not the strain εαβ) which may be chosen for computational

performance. Zτ denotes the atomic core charge of atom τ , T the lattice translation vectors,

and xτ the atomic positions in the unit cell. The function H ′(x) is

H ′(x) = ∂[erfc(x)]/∂x − x−1erfc(x), (G.12)

with erfc(x) denoting the complementary error function.

G.4 Internal strain

The expressions for stress in the previous sections have been derived assuming a homo-

geneous scaling of space, including the electron wavefunctions and positions of the nu-

clei [104,129]. However, this is not the whole story for the actual measured stress. The proof
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that this is a correct expression for the stress hinges upon the requirement that the energy

be minimum with respect to all internal degrees of freedom. In addition to the requirement

that the electron wavefunction be at the variational minimum, one must add the requirement

that each nucleus I be at the minimum energy position, i.e. that the force on each nucleus

vanishes, FI = 0, in the presence of the strain. Only for simple crystal structures and certain

symmetry strains are the positions of the nuclei fixed by symmetry. In general, one must

find the positions given by condition FI = 0, and the displacement at which this occurs is

defined to be

us,α =
∑

β

εαβτs,β + uint
s,α, (G.13)

where the first term represents uniform scaling of the basis and the second, the deviations or

“internal strains” (see, e.g., [90] and [104] and references given there). To linear order the

internal strains are proportional to the external strain, defining “internal strain parameter”

,

uint
s,γ =

∑

αβ

s,γ αβ εαβ. (G.14)

The effect can be understood in simple examples, such as diamond or zinc-blende struc-

tures. In the unstrained crystal, planes of atoms perpendicular to the (1 1 1) direction are

spaced alternately 1/4 and 3/4 times
√

3a/4; for a uniaxial strain in the (1 1 1) direction, the

spacing is not determined by symmetry. The problem is equivalent to the one-dimensional

chain of molecules described in Exercise G.4.

Internal strains are crucial for understanding and predicting stress–strain relations. How-

ever, internal strain parameters have been measured in only a few cases because of the

difficulty of experimental measurements of atomic positions in a strained crystal. Thus this

is a crucial area where theory adds information to our knowledge of elasticity even in cases

where macroscopic elastic constants are well established.

SELECT FURTHER READING

Basic theory of elasticity:

Landau, L. D. and Lifshitz, E. M., Theory of Elasticity, Pergamon Press, Oxford, England,

1958.

General Theory:

Nielsen, O. H. and Martin, R. M., “Quantum-mechanical theory of stress and force,” Phys. Rev.
B 32(6):3780–3791, 1985.

Applications in a plane wave basis:

Nielsen, O. H. and Martin, R. M., “Stresses in semiconductors: ab initio calculations on Si, Ge, and

GaAs,” Phys. Rev. B 32(6):3792–3805, 1985.



518 Stress from electronic structure

Expressions in localized bases:

Soler, J. M., Artacho, E., Gale, J., Garcia, A., Junquera, J., Ordejon, P. and Sanchez-Portal, D.,

“The SIESTA method for ab intio order-N materials simulations,” J. Phys. : Condens. Matter
14:2745–2779, 2002.

Feibelman, P. J., “Calculation of surface stress in a linear combination of atomic orbitals representa-

tion,” Phys. Rev. B 50:1908–1911, 1994.

Exercises

G.1 Show that for particles interacting via two-body central potentials the contribution to the stress

tensor is given by the generalized virial expression (G.6). Further, transform the expression to

the symmetric form (G.7).

G.2 Derive the expression, (G.8), for the Hartree contribution to the stress tensor.

G.3 Using the argument of the scaling of reciprocal space, show that the kinetic contribution to the

stress can be written in the form (G.10), which is convenient for plane wave calculations.

G.4 Find the elastic constant C = d2 E/dL2 and the internal strain parameter  defined by Eq. (G.14)

for a one-dimensional chain of diatomic molecules. The atoms in a molecule are spaced a distance

R1 and are connected by a spring with constant K1; spacing between the molecules is R2 and

they are connected by a spring with constant K2. The cell length is L = R1 + R2. Show that the

system has the expected behavior that the molecules are incompressible for K1 � K2.

G.5 Show that in any crystal with one atom per cell the internal strain is zero by symmetry.

G.6 As an example of the condition in the previous problem, show that for the molecular chain in

Exercise G.4, internal strain vanishes for R1 = R2 and K1 = K2. For a homonuclear case, this

means one atom per cell. Note that the internal strain is still zero for a diatomic ionic crystal

with two different atoms so long as R1 = R2 and K1 = K2.

G.7 Show that it is impossible to have a chain with three inequivalent atoms per cell and still have

zero internal strain.



Appendix H

Energy and stress densities

Summary

A density is a field defined at each position r, for example the particle number
density n(r), which is a well-defined, experimentally measurable function. It
would be desirable to have expressions for other densities, in particular, energy
and stress densities. However, energy and stress densities are not unique on
a microscopic quantum scale, even though they are the basis of the theory
of elasticity on a macroscopic scale. This appendix brings out three points:
(1) certain integrals of energy and stress densities are unique and very useful;
(2) there are important contributions to the energy or stress density that are
completely unique – these include all terms that arise from the fact that electrons
are a many-body system of fermions; (3) all other terms that are non-unique can
be shown to involve only the single scalar number density – there are different
possible choices for these terms, each involving only derivatives of the density
n(r) or the classical Coulomb potential V CC (r) which is directly related to
n(r). It follows that all the issues of non-uniqueness are exactly the same as in
a one-particle problem.

Only one density is widely used in electronic structure – the particle density n(r). It is

the fundamental measurable quantity in quantum mechanics and the fundamental density

in density functional theory. Theoretical expressions for n(r) are well defined and lead to

unique results. Here we emphasize that other densities have the potential to play a useful role

in electronic structure theory. In particular, energy and stress densities have the potential to

be very useful in electronic structure, beyond their limited use thus far.

The difficulty in formulating energy and stress densities is their inherent non-uniqueness.

The problem is that, unlike the particle density n(r) which is defined by Eq. (3.8), there

are no operators in quantum mechanics that uniquely define “energy at a point” or “stress

at a point.” Of course, there are expressions for the total energy and stress, but this is not

sufficient to define an energy or stress density. The value at any point is always subject to

“gauge transformations” that leave the total invariant.

Is there any sense in which an energy or stress density can be useful? The answer is yes,

for two reasons:



520 Energy and stress densities

1. Many important quantities can be shown to be invariant to the choice of gauge. For

example, total surface energy and surface stress are defined by integrals over the surface

region. Because the integral extends from the vacuum to the bulk interior of the system,

it can be shown [895, 899, 900] that gauge-dependent terms vanish in the integrals.

Similarly, the expressions for force in terms of surface integrals of the stress density in

App. I are invariant and can be very useful (Sec. H.3). For such quantities, it may be

convenient to choose a particular gauge, even though one must not associate any physical

meaning to the gauge-dependent integrand.

2. Specific analysis can identify terms in the energy and stress densities that are well

defined. As shown below, with appropriate definitions, unique densities result from all
contributions to the energy or stress that arise from the fact that electrons constitute a
many-body system of fermions

All non-unique terms in the energy or stress densities involve only derivatives of the total
density n(r) and the classical Coulomb potential V CC(r). It follows that all issues of non-
uniqueness are exactly the same as in a one-particle problem.

H.1 Energy density

The total energy of a system of electrons and nuclei can be written in the general form,

Eq. (3.16), or the Kohn–Sham form, Eq. (7.5),

E = 〈T̂ 〉 + [〈V̂int〉 − EHartree] + ECC = Ts + ECC + Exc, (H.1)

where Ts is the independent-particle kinetic energy and the Coulomb terms are grouped to

ensure they are well defined in an infinite system. An energy density e(r) (denoted by a

lower case, italic Roman letter) or a density per particle ε(r) ≡ e(r)/n(r) (lower case Greek

letter) is a function which when integrated over all space yields the total energy E , e.g.

E =
∫

dre(r), (H.2)

with

e(r) = tip(r) + eCC(r) + exc(r). (H.3)

If we separate out the ion–ion interaction EI I , which has no effect on the equations for the

electrons except to ensure neutrality, the total energy can be written

E =
∫

drn(r)ε(r) + EI I , (H.4)

with1

ε(r) = τip(r) + Vext(r) + 1

2
VHartree(r) + εxc(r). (H.5)

1 The factor of 1/2 in the Hartree term might be thought of as an ad hoc assignment of 1/2 of the energy to each

particle; however, it follows from the much deeper fact that electrons are identical. Any other assignment of the

energy would violate this symmetry.
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Classical Coulomb energy density

The first problem in defining an energy density is the classical Coulomb term. There are

two forms for the energy density in electrostatics [448, 790]

ECC = 1

8π

∫

dr|ECC(r)|2 = 1

2

∫

drV CC(r)[n(r) + n+(r)], (H.6)

where ECC = −∇V CC is the electric field due to the total charge density of the electrons

and nuclei n(r) + n+(r). Each of the integrands can be viewed as an energy density eCC(r)

and each has advantages in different situations. The first expression is the Maxwell energy

density assigned to the field instead of the particles. The second expression has the form of

the interaction of particles with the energy assigned to the position of the particles. Even

though this part of the energy density is not unique, it is purely classical and all forms can

be expressed in terms of the charge density. (Note the close analogy with the “boson” part

of the kinetic energy, Eq. (H.14), below.)

There is an important practical distinction between the two forms in Eq. (H.6). Only in

the second case can the energy be written in the form of (H.5), with Vext(r) the Coulomb the

potential due to the nuclei n+(r) and VHartree(r) the classical Coulomb potential due to the

electrons n(r).

Exchange–correlation energy density

Chapter 7 discusses the physical reasoning for expressions for εxc(r) as a functional of the

exchange–correlation hole around an electron at point r. Even though it is not defined by

the fact that its integrals must yield the total Exc, εxc(r) is uniquely specified by the definition
that it is the additional energy per electron at point r due to exchange and correlation. This

follows from expression (7.17) as a coupling constant integration, and it can be understood

by an independent derivation [901]: the potential part of εxc(r) is obviously unique because

it is given in terms of the pair correlation functions, which are measurable functions. The

kinetic energy contribution to εxc(r) is only the change in kinetic energy due to correlation;

this density τc(r) is also unique [901–903] by extension of the arguments given below for

τx (r).

Kinetic energy density for independent-particles

Finally, we consider the first term in the Kohn–Sham energy, the kinetic energy of indepen-

dent particles Ts . This is treated in some detail because the analysis leads to expressions

that are useful in construction of functionals and in analysis of actual electronic structure

calculations.

In analogy to the Coulomb energy in Eq. (H.6), the kinetic energy of N independent

fermions can be expressed in different forms

Ts = −1

2

N∑

i=1

∫

drψ∗
i (r)∇2ψi (r) = 1

2

N∑

i=1

∫

dr|∇ψi (r)|2. (H.7)
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The equivalence of the two forms follows from integration by parts, where boundary terms

vanish for bound states since ψi vanish at the boundary or for period functions where

boundary terms cancel. Thus either integrand,

t (1)(r) = −1

2

N∑

i=1

ψ∗
i (r)∇2ψi (r) or t (2)(r) = 1

2

N∑

i=1

|∇ψi (r)|2, (H.8)

can be regarded as a “kinetic energy density” t(r) since the integral of either density is the

total kinetic energy.

How is possible to find any part of the kinetic energy density that is unique and useful?

First divide the problem into parts: the kinetic energy density of independent bosons with

density n(r) plus the excess “exchange kinetic energy density” of the fermions can be written

t(r) = tn(r) + tx (r). (H.9)

This can be accomplished2 by expressing the wavefunctions as

ψi (r) = s(r)φi (r); s(r) = n(r)1/2. (H.10)

Thus
∑N

i=1 |φi (r)|2 = 1 at each point r, from which it immediately follows that (Exer-

cise H.1)

N∑

i=1

∇|φi (r)|2 = 0;
N∑

i=1

∇2|φi (r)|2 = 0 (H.11)

at each point r. From the first equation in (H.11), it follows that cross terms involving

∇s(r) and ∇φi (r) vanish in any expression for the kinetic energy density. Using the second

equality, it is straightforward to show that
∑N

i=1 |∇φi (r)|2 = −∑N
i=1 φi (r)∇2φi (r), so that

tx (r) = n(r)τx (r), (H.12)

with

τx (r) = 1

2

N∑

i=1

|∇φi (r)|2 = −1

2

N∑

i=1

φi (r)∇2φi (r), (H.13)

which is manifestly invariant to the choice of form of the kinetic energy, Eq. (H.8). The

“exchange kinetic energy per particle” τx (r) also has a clear physical meaning; it is the

curvature of the exchange hole [904–906], which can be shown to be the relative kinetic

energy of pairs of electrons [907].3 The curvature is clear from plots of the exchange hole

in the Ne atom in Fig. 7.2, as well as Figs. 5.5 and 7.4, which also include correlation.

Therefore, the excess exchange kinetic energy density tx (r) (and the density per particle

τx (r) = tx (r)/n(r)) is a unique, meaningful density.

2 The approach taken here was pointed out to the author by E. Stechel.
3 The excess fermion kinetic energy density itself is the appropriate physically meaningful density for some

properties. For example, exchange should depend upon only the fermion part. In fact, exchange functionals [908]

have been constructed in terms of τx , based upon the fact that the short-range shape of the exchange hole is

determined by tx (r).
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The remaining term involves only derivatives of s(r) = n(r)1/2. Its contribution to the

total kinetic energy in Eq. (H.7) is the same as that of N non-interacting bosons with density

n(r), i.e. with each boson having wavefunction s(r), which can be written

Tn = 1

2

∫

dr|∇s(r)|2 = −1

2

∫

drs(r)∇2s(r). (H.14)

Clearly, either 1
2
|∇s(r)|2 or − 1

2
s(r)∇2s(r) are acceptable choices for the density tn . (The

latter is the same as the Weizsacker [319] term in Sec. 6.1.) Thus the issue of non-uniqueness

of the kinetic energy density has been reduced to the simplest form involving only the density.

Since the density is a scalar function of one coordinate, the non-uniqueness issues are the

same as for a one-particle problem.

Like the classical Coulomb terms, only one form of the kinetic energy density has the

form of an energy per particle, the second expression in (H.14), for which the density can

be written

tn(r) = n(r)τn(r), (H.15)

with

τn(r) = 1

2

[∇s(r)

s(r)

]2

= 1

8

[∇n(r)

n(r)

]2

. (H.16)

Energy density per particle: convenient expressions

The expressions for the energy density per electron at each point r have the advantage that

they are closely related to the Kohn–Sham equation which is cast in terms of the density of

electrons and is derived from variational equations, Eq. (7.8). Combining expression (H.5)

with (H.16) leads to (Exercise H.3)

ε(r) =
∑

i

εi |ψi (r)|2 − 1

2
VHartree(r) + [εxc(r) − Vxc(r)], (H.17)

where the first term is an eigenvalue weighted density and the other terms correct for

overcounting.4 The first term in (H.17) is essentially a projected density of states that can

be used to identify local energies and bonding [909].

H.2 Stress density

In an inhomogeneous system, the stress field is not uniform (even for uniform strain). Is it

possible to define a unique stress density field σαβ(r)? Forces are well-defined measurable

4 This expression is the same as that given by Cohen and Burke [896], 1
2 Vext(r), except that they also subtracted,

i.e. they assigned 1/2 the interaction energy to the external potential (the nuclei). Unlike electron–electron

interaction, where the factor of 1/2 follows from particle symmetry, this assignment is arbitrary. The choice

made in (H.5) and (H.17) is consistent with the definition of energy in the Kohn–Sham equations.
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quantities; however, the stress density related to the force density f (r) acting on particles

at point r is

∇βσαβ(r) = fα(r). (H.18)

For dimension d > 1, this relation does not uniquely determine the stress density [129,

721, 910, 911], since the curl of any vector field can be added to σαβ(r) with no change

in the forces. The stress field can also be defined as the generalization of Eq. (G.4) to an

inhomogeneous metric field gαβ(r),

σαβ(r) = − 1

2


∂ Etotal

∂gαβ(r)
, (H.19)

but this still leads to a non-unique expression [898] of the same form as given earlier by

Godfrey [910].

An illuminating point that has been clarified in recent work [901] is that, just as in

the energy density, all non-unique terms can be written as simple expressions in terms
of derivatives of the charge density n(r) and electrostatic potential V CC(r). For the case

of the Kohn–Sham independent-particle theory within the local density approximation for

exchange and correlation εxc, the expressions given by Nielsen and Martin (NM) [129] (see

also [911]), Godfrey [910], and Rogers and Rappe [898] can all be written as

σαβ(r) = −
-h2

me

[

n
∑

i

∇αφi∇βφi

]

r

−
-h2

4me

[∇αn∇βn

n
+ δαβ [C − 1] ∇2n − C∇α∇βn

]

r
(H.20)

+ 1

4π

[

EαEβ − 1

2
δαβEγ Eγ

]

r
+ δαβn(r)

[
εLDA

xc (n) − V LDA
xc (n)

]
r ,

where all non-uniqueness in the kinetic terms is subsumed into the parameter C (= 4β in

the notation of [898]). The other terms involving φi are unique for the same reasons as in

the energy density.

H.3 Applications

The energy density has been used in various ways. For example, the first term in Eq. (H.17)

is essentially a projected density of states that can be used to identify local energies and

bonding [909].

Integrals of energy densities: surface energies

Certain integrals over the energy density can be shown to be well defined, independent of

any “gauge transformations.” For example, the form of the energy density involving the

Maxwell density |E(r)|2 and the analogous kinetic density involving |∇n(r)|2 has been
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Figure H.1. The “electron localization function” (ELF): Eq. (H.21) versus radius for Ne and

Ar [897]. The minima clearly indicate the shell structure separated in space. On the other hand, the

density is monotonic and has almost no structure. This indicates that the ELF (or any function of the

kinetic energy density) holds the potential for improved functionals. From [897].

used [895, 899, 900] to calculate absolute surface energies of semiconductors that would

not be possible by the usual total energy methods.

Electron localization function (ELF)

As emphasized above, the exchange kinetic energy density is well defined and is related

to exchange hole curvature. This is the basis for definition of the “electron localization

function” (ELF) which is a transformation of τx (r). The form proposed by Becke [897] is

defined for each spin σ ,

ELF(r) ≡ [1 + χσ (r)]−1, (H.21)

where χσ = tσ
x /tσ

TF, with tσ
x (r) the exchange kinetic energy density given by Eq. (H.13)

for spin σ at point r and tσ
TF(r) the Thomas–Fermi expression, Eq. (6.1), for spin σ in

a homogeneous gas at a density equal to n(r), which is a convenient normalization. The

definition in (H.21) is chosen so that 0 < ELF < 1, with larger values corresponding to

larger “localization,” i.e. a tendency of an electron of spin σ not to have another same spin

electron in its vicinity. Among the properties brought out by the ELF function is the shell

structure, which is difficult to visualize from the density alone. For example, Fig. H.1 shows

the ELF function for Ne and Ar calculated in the Hartree–Fock approximation [897]. The

shells are shown by the distinct minima, whereas the density is monotonic and has almost
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Figure H.2. A different way to expand the crystal from the uniform scaling illustrated in Fig. G.1.

The regions around each nucleus are kept rigid and all the variation is the regions between the

atoms, i.e. a non-uniform change of coordinates which can be expressed as the original coordinates

with a non-uniform metric. Any such variation is a valid form for the generalized force theorem and

this approach has great advantages in methods that treat the cores explicitly.

no structure. Also in any one-electron system χ = tx = 0 so that ELF = 1. Similarly, in a

many-electron problem, large values of the ELF function indicate a tendency of electrons to

be in non-bonded states. This has been used to analyze complex problems, e.g. simulations

of water involving proton transfer [912].

Stress density

The stress density provides alternative ways to calculate the macroscopic stress in a solid.

The basic idea follows from the definition of stress as a force per unit area [129]. Consider

a material that is in equilibrium in the presence of a macroscopic stress, i.e. all internal

variables (the electron wavefunction and the positions of the nuclei) are at equilibrium.

Then the macroscopic stress is the force per unit area transmitted across any surface that

divides the macroscopic solid into two parts. Thus, the stress is the first derivative of the

total energy for a displacement of the two half-spaces. A convenient procedure in a crystal

is the non-uniform expansion illustrated in Fig. H.2, which shows a crystal with cells pulled

apart on the boundaries. The linear change in energy is just the surface integral of the stress

field on the boundaries. Since each of the cell boundaries can be considered to divide the

crystal into two half-spaces, macroscopic stress is given by the surface integral of the stress

density on the cell boundaries. The contributions to the stress calculated in this way are:

(1) the Coulomb forces per unit area transmitted across the boundary (i.e. the force on one

side due to charge on the other side of the boundary), (2) the kinetic stress density at the

boundary, which has the same form as a gas of particles that carry momentum across the

boundary, and (3) the exchange–correlation terms that are unique but difficult to determine

exactly. Finally, the result is unique for any valid form of the stress tensor, since the integral

over the surface of a unit cell is invariant to gauge transformations [129].
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The calculation of stress from surface integrals closely resembles the calculation of forces

by the expressions given in App. I. In particular, the formula for the pressure in the local

density and atomic sphere approximations, Eqs. (I.8) or (I.9), is a very useful special case of

the more general formulation of the stress field given here. In methods that explicitly deal

with core states, this approach has great advantages: the core states remain invariant and

only the outer valence states evaluated at the cell boundaries are needed in the calculation

of stress.

This idea has been derived in several different ways5 in the context of the atomic sphere

approximation [462–465, 913], where the pressure can be found from an integral over the

sphere surface. In a monatomic close-packed solid, the atomic sphere approximation (ASA)

is very good and the equations simplify because there are no Coulomb interactions between

the neutral spheres, leaving only kinetic and exchange–correlation terms. Two different

forms that are convenient for evaluation are given in Sec. I.3. These are very useful in actual

calculations, and examples of results for close-packed metals are cited in Sec. 17.7 and

App. I.
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Exercises

H.1 Show that
∑N

i=1 |∇φi (r)|2 = −∑N
i=1 φi (r)∇2φi (r) follows from the requirement

∑N
i=1 |φi (r)|2 = 1 at all (r).

Hint: Use Eqs. (H.10) and (H.11).

5 A good exposition of the relation of the derivations is given by Heine [465].
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H.2 Show that the excess fermion kinetic energy density in Eq. (H.13) follows from (H.11). The

previous problem may be helpful.

H.3 Show that (H.17) follows from the definitions of the terms in the energy density given before

and the Kohn–Sham equation for the eigenvalues.

H.4 Show that the formulas for the stress given by Nielsen and Martin [129] in their Eqs. (33) and

(34) can be written in the form of Eq. (H.21), using definition (H.10).



Appendix I

Alternative force expressions

Summary

It is very useful to formulate expressions for forces alternative to the usual force
theorem of Sec. 3.3. The basic idea is that since the wavefunction is required to
be at a variational minimum, the energy is invariant to any change in the wave-
function to linear order. The usual force theorem assumes that the wavefunction
remains unchanged when a parameter is changed, but there are an infinite num-
ber of other possibilities. An important example involves core electrons; it is
much more physical and leads to simpler expressions if the core states are as-
sumed to be rigidly attached to nuclei when a nucleus moves or the crystal is
strained. This leads to very useful expressions for forces, stress (pressure), and
generalized forces that are energy differences taken to first order for various
changes.

The “force theorem” or “Hellmann–Feynman theorem,” Eqs. (3.19) or (9.26)

FI = − ∂ E

∂RI
= −

∫

d3rn(r)
∂Vext(r)

∂RI
− ∂ EI I

∂RI
, (I.1)

or the generalized form, Eq. (3.21)

∂ E

∂λ
=

〈
�λ

∣
∣
∣
∂ Ĥ

∂λ

∣
∣
∣�λ

〉
, (I.2)

applies to any variation and to non-local potentials as in Eq. (13.3) for pseudopotentials. The

same fundamental ideas lead to the “stress theorem,” Eq. (3.26), and the practical expression

in App. G. These expressions follow from first-order variation of the energy, assuming all the

electronic degrees of freedom are at the variational minimum. The expressions correspond

to evaluating the force as the derivative of the energy with respect to the parameter λ,

keeping the electrons fixed. This is illustrated on the left-hand side of Fig. I.1.

The subject of this appendix is alternative formulas that take advantage of the fact that

the electronic degrees of freedom are at a variational minimum. Because the derivative of

the energy with respect to any of these variables vanishes, any linear change can be added

with no change in the force. The resulting degrees of freedom can be used to transform
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Figure I.1. Illustration of two ways of calculating forces. Left: The usual force theorem, Eq. (I.1),

follows if the electron density is held constant to first order as the nucleus moves. Center: A region

of charge is moved rigidly with the nucleus. Right: Definition of the region B that is “cut out” and

moved rigidly leading to the changed density in region C.

the expressions into different forms that can be more useful in specific cases. An extreme

form – that is useful in practice – is shown in the center of Fig. I.1 and explained in Sec. I.1.

There are two general approaches for choosing alternative expressions:

� Use of the variational principle, involving the effective potential and density to re-express

Eq. (I.1) in forms that involve changes in the density n(r) and/or changes in the total

internal potential Veff(r). The advantage is that the resulting expressions may be easier to

evaluate.
� Geometric relations that relate the force acting on the nucleus to the force transferred

across a boundary that surrounds the nucleus. This can be formulated in terms of a stress

field which is a force per unit area, establishing relations with the stress density field.

Actual expressions can often be shown to be equivalent to specific choices of variations

of n(r) and Veff(r).

I.1 Variational freedom and forces

The usual form of the “force theorem” follows immediately since the first-order change in

energy can be considered to arise solely from the term
∫

dr Vext(r)n(r) in Eq. (9.3) with

all other changes summing to zero. Alternative formulations for force in density functional

theory can be understood using the functionals derived in Sec. 9.2. Different expression can

be derived using the most general functional, Eq. (9.13), which is variational with respect
to both the effective potential and the density for a given external potential [417, 419, 423,

424, 914].

The essential point for our purpose is that one can add any change in Veff(r) or n(r)

with no change in the force. The disadvantage of this approach is that one must calculate

the first-order change in the individual terms in Eq. (9.13); the advantage is that difficult

problems can be greatly reduced or eliminated. For example, consider the force acting on a

nucleus. The usual expression is derived by displacing the nucleus while holding the density
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constant, even the density of core electrons of that nucleus as illustrated on the left-hand

side of Fig. I.1.

An alternative approach is to displace the electron density in a region around the nucleus

rigidly with the nucleus; then there are no changes in the large core–nucleus interaction

and one arrives at the physically appealing picture that the force is due to the nucleus and

core moving together relative to the other atoms. It is important to note that this is not an
approximation; it is merely a rearrangement of terms. How can this be done? One way that

at first appears extremely artificial is to “cut out a region of space” and displace it. This

leaves a slice of vacuum on one side and double density on the other, as shown on the

right-hand side of Fig. I.1. The effect in the case of moving a nucleus is shown in the center

of the figure.

Despite the totally unphysical nature of this change of density, the final consequences

are physical and there are advantages in the way the equations can be formulated as first

shown by Mackintosh and Andersen [464] and described by Heine [465]. A very simple

derivation has been presented by Jacobsen, Norskov, and Puska ( [423] App. A) using the

properties of the functional, Eq. (9.13), where we can choose any variation of the density

and effective potential. Since the densities are frozen, it is straightforward to evaluate all

the terms involving the electron density to linear order:

δECC = δECC
A↔B +

∫

C
n(r)V CC

A+B(r),

δExc =
∫

C
n(r)εxc[n(r)], (I.3)

δT = δ

[
∑

i

εi

]

−
∫

C
n(r)Veff(r),

where δECC
A ↔B denotes classical Coulomb interactions between regions A and B (interac-

tions inside A and B do not change); V CC
A+B is the potential due to regions A and B (that due

to region C is higher order); δExc is only considered in the local density approximation;

and δT is the change in kinetic energy. Then the total change is (Exercise I.1)

δEtotal = δ

[
∑

i

εi

]

+ δECC
A↔B +

∫

C
n(r)

{
V CC

A+B(r)εxc[n(r)] − Veff(r)
}
. (I.4)

Finally, one has freedom to choose Veff(r) in region C and a clever choice is to make

[423] the last term vanish. This means simply to define Veff(r) to have an added term

εxc(n(r) − Vxc(n(r) only in region C. With this definition of the derivative, ∂Veff(r)/∂RI is

a delta function on the boundary on region B, and for this change in Veff, the force is given

strictly in terms of the eigenvalues plus the force from electrostatic interactions that cross
the A–B boundary:

−∂ Etotal

∂RI
= −∂

∑
i εi

∂RI
− ∂ ECC

A↔B

∂RI
. (I.5)



532 Alternative force expressions

I.2 Energy differences

The expressions for “force” in terms of the eigenvalue sums are actually most useful for

calculation of small, but finite, energy differences between cases that involve small changes

in the potential. Thus a convenient way of calculating the energy difference due to a small

change (adding an external field, change of volume or shape, displacement of an atom, etc.)

using standard programs is to calculate the finite energy difference

�Etotal = �
∑

i

εi + �ECC
A↔B (I.6)

for potentials as defined above. Perhaps the simplest example in solid state physics – which

is also very useful – is the difference in energy between fcc, hcp, and bcc structure metals.

In each case the potential is well approximated as neutral and spherical, i.e. the ASA of

Sec. 16.6. Then the Coulomb terms vanish and the energy difference is just

�Etotal → �
∑

i

εi , (I.7)

where it is essential not to use the self-consistent potential for each structure: instead the
eigenvalues εi for each structure are calculated using the same potential! To linear order of

accuracy, the difference, Eq. (I.7), can be evaluated using the potential from any one of the

structures. Since the differences are small, this procedure is very useful, taking advantage of

the variational freedom to make the calculation more accurate and at the same time easier!

I.3 Pressure

The same ideas apply for any derivative, e.g. stress and pressure, as described in general in

Sec. H.2. Figure H.2 illustrates the choice of “pulling apart” rigid units in a crystal, leaving

space in between. From appropriate derivatives of the total energy one can calculate the

stress on the boundaries. Furthermore, the stress on a boundary that cuts all space into

two parts (e.g. a boundary drawn through the spaces in Fig. H.2) can be used to define the

macroscopic stress: because all forces between the two half-spaces must cross the boundary,

the average stress on the boundary is rigorously the macroscopic stress with no non-unique

gauge terms [129].

An extremely useful application of the alternative form of the force theorem is the cal-

culation of pressure in an isotropic situation. In a crystal, this means the ASA (Sec. 16.5,

especially Fig. 16.10). Also the idea is useful for liquids and matter at high pressure and

temperature where the average environment is spherical [462–465]. This is the fortunate

situation in which the electrostatic terms vanish because there are no Coulomb fields outside

a neutral sphere. The pressure is given simply by the change in sum of eigenvalues for the

change in effective potential defined following Eq. (I.4). The resulting expression can be

written in terms of the wavefunctions as [462, 465] (see Exercise I.2)

3P	 =
∫

dS ·
{

∑

i

[
∇ψ∗

i (r · ∇ψi ) − ψ∗
i ∇(r · ∇ψi ) + c.c.

] + 1

3
nεxcr

}

. (I.8)
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Using the fact that ψi is a solution of the Kohn–Sham equations in spherical geometry, it

was shown by Pettifor [465, 913] that the expression can be rewritten as

4π S2 P =
∑

l

∫

dEnl(E)ψ2
l (S, E)

{

[E − Vxc(S)]S2 + (Dl − l)(Dl + l + 1) + 1

3
εxc(S)S2

}

. (I.9)

These expressions are particularly convenient for calculation of the equation of state

of materials in the ASA approximation because they give the experimentally measurable

pressure P directly instead of the total energy (which is very large since it includes all the

core electrons). The equilibrium volume 	 is for P(	) = 0; the bulk modulus is the slope

B = −dP/d	; the cohesive energy as a function of volume can be found as the integral

�Etotal = ∫
Pd	; and, finally, the absolute total energy is the cohesive energy plus the total

energy of the atom that can be found separately.

Expressions for the pressure in the ASA can also be derived from the stress density

(Sec. H.2) as was shown by Nielsen and Martin [129] and as can be seen in Eq. (H.21).

There is no ambiguity of the stress field in this case because it is a one-dimensional (radial)

problem, and the pressure is the radial stress, i.e. the force per unit area. Also, Eq. (H.21)

simplifies because there are no Coulomb terms at the sphere boundary so that the final

expressions involve only kinetic and exchange–correlation terms, finally leading to expres-

sions equivalent to those above [129].

I.4 Force and stress

An alternative expression [129, 915] for the total force on a volume is given by the well-

known relation that a force field is a divergence of a stress field [721]

fα(r) =
∑

β

∇βσα,β(r). (I.10)

By integrating over a volume containing a nucleus, e.g. region B in Fig. I.1, and using

Gauss’ theorem, the total force on the region is given in terms of a surface integral of the

stress field

F total
α =

∑

β

∫

S
dSŜβσα,β(r), (I.11)

where S is the surface of the volume and Ŝ is the outward normal unit vector. Although

there are non-unique terms in the stress field (Sec. H.2), the force is well defined and gauge

invariant because such terms vanish in the divergence or in the integral.

Grafenstein and Ziesche [915] have shown that Eq. (I.11) leads to the form of the gen-

eralized force expression given in Eq. (I.5) for the particular case of the local density

approximation. This provides an additional way of understanding the meaning of the terms,

since it does not depend upon the seemingly arbitrary tricks used in the derivation of (I.5).
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In addition, the relation to the stress field provides a simple interpretation valid for both

independent-particle and many-body problems. First, since the system is assumed to be in

equilibrium, the force on the region is the force of constraint, i.e. the external force that is

needed to hold the nucleus fixed. This is the same as in the application of the usual force

theorem, but here it is essential to add that there are no other constraints on the system in

the volume considered. The expression for the stress (e.g., see App. H) is a sum of potential

and kinetic terms. The kinetic term is due to particles crossing the surface and is present

in classical systems at finite temperature and quantum systems at all temperatures. The

potential terms are due to interactions crossing the surface; interactions within the region,

e.g. a nucleus with its own core electrons are not counted. For electrostatic interactions, this

is simply the force on the multi-poles inside the region due to fields from outside, which

can be conveniently written as volume integrals over the sphere. Finally, the exchange–

correlation contribution is the effect of the exchange–correlation hole extending across the

surface; for the LDA this is a delta function.

I.5 Force in APW-type methods

An approach to calculation of forces in APW and LAPW methods has been developed by

Soler and Williams [673] and by Yu, Singh, and Krakauer [674]. The general idea is quite

close to the spirit of the alternative force approaches described above, but the implementation

is very different. These authors work directly with the APW or LAPW expressions for the

total energy, and calculate a force from the derivative of the total energy with respect to the

displacement of an atom relative to the rest of the lattice, or equivalently the displacement of
the rest of the lattice relative to the given atom. There are many choices for the change in the

wavefunction with displacement of the nucleus, and the latter interpretation suggests a most

convenient one. The sphere and all it contents (nucleus, core electrons, . . .) are held fixed,

and the energy changes only because of the change in boundary conditions on the sphere

and Coulomb potentials that propagate into the sphere. The change in energy to first order

can be found straightforwardly [673] by differentiating each of the terms in the expression

for the APW or LAPW total energy with respect to the position of the sphere, evaluated for

the unchanged wavefunction. This avoids any need to evaluate the derivative of the large

Coulomb energy of interaction of the nucleus with the change density in its sphere; the effect

is replaced by forces on the sphere due to its displacement relative to surrounding spheres.
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Exercises

I.1 Show that the expression, (I.4), for an energy difference to first order follows from the form of

the energy functional given in Eq. (9.13). Use this result with the special choice for the change

in potential to derive the final result, Eq. (I.5).

I.2 Using the fact that ψi is a solution of the Kohn–Sham equations in a spherical geometry, show

that the potential can be eliminated and the expression for pressure can be written in terms of

the wavefunction and its derivatives as in Eq. (I.8). Also show that there is an added term for

exchange and correlation that can be written in the form in Eq. (I.8) in the local approximation.

Hint: The first part can be done by partial integration and the second is the correction due to the

fact that the potential is not fixed as the spherical system is scaled.



Appendix J

Scattering and phase shifts

Summary

Scattering and phase shifts play a central role in many fields of physics and
are especially relevant for electronic structure in the properties of pseudopoten-
tials (Ch. 11) and the formulation of augmented and multiple-scattering KKR
methods (Chs. 16 and 17). The purpose of this appendix is to collect the for-
mulas together and to make added connections to scattering cross sections and
electrical resistivity.

J.1 Scattering and phase shifts for spherical potentials

Scattering plays an essential role in interesting physical properties of electronic systems and

in basic electronic structure theory. Scattering due to defects leads to such basic phenomena

as resistivity in metals and is the basis for pseudopotential theory (Ch. 11) and all the

methods that involve augmentation (Ch. 16). The basic element is the scattering from a

single center, which we will consider here only in the spherical approximation, although

the formulation can be extended to general symmetries (see [641]). A schematic figure of

the scattering of plane waves is shown in Fig. J.1.

Consider the problem of scattering from a potential that is localized. This applies to a

neutral atom (and charged ions with appropriate changes) and to the problem of a single

muffin-tin potential, where the potential is explicitly set to a constant outside the muffin-tin

sphere of radius S. Since the problem is inherently spherical, scattering of plane waves

is described by first transforming to spherical functions using the well-known identity

[11, 266, 448]

eiq·r = 4π
∑

L

i l jl (qr ) Y ∗
L (q̂) YL (r̂), (J.1)

where jl (qr ) are spherical Bessel functions (Sec. K.1) and YL (r̂ ) ≡ Yl,m(θ, φ) denotes a

spherical harmonic with {l, m} ≡ L (Sec. K.2). Since there is no dependence upon the

angle around the axis defined by r̂ , this can also be written as a function of r and θ ,

eiq·r = eiqrcos(θ ) =
∑

l

(2l + 1) i l jl(qr ) Pl[cos(θ )], (J.2)
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Figure J.1. Schematic illustration of scattering of a plane wave by a spherical potential.

where Pl(x) are the Legendre polynomials (Sec. K.2). Using spherical symmetry, the

scattering can be classified in terms of wavefunctions of angular momentum L ≡ {l, m},
i.e.

ψL (r) = i lψl(r )YL (θ, φ) = i lr−1φl (r )YL (θ, φ), (J.3)

as in Eq. (10.1). Inside the region, where the potential is non-zero, radial function ψl (r )

or φl(r ) can be found by numerical integration of the radial Schrödinger equation, (10.12).

Outside the region at large r the solution must be a linear combination of regular and

irregular solutions, i.e. spherical Bessel and Neumann functions jl(κr ) and nl (κr ),

ψ>
l (ε, r ) = Cl [ jl(κr ) − tan ηl (ε) nl(κr )], (J.4)

where κ2 = ε. The energy-dependent phase shifts ηl(ε) are determined by the condition that

ψ>
l (ε, S) must match the inner solution ψl(ε, S) in value and slope at the chosen radius S.

In terms of the dimensionless logarithmic derivative of the inner solution (see Eq. (11.20))

Dl(ε, r ) ≡ rψ ′
l (r )/ψl(r ) = r

d

dr
ln ψl(r ), (J.5)

this leads to the result

tan ηl(ε) =
S

d

dr
jl (κr )|S − Dl(ε) jl(κS)

S
d

dr
nl (κr )|S − Dl(ε) nl(κS)

. (J.6)

The scattering cross-section for a single site at positive energies can be expressed in terms

of the phase shift. Using asymptotic forms of the Bessel and Neumann functions at positive

energies ε = 1
2
k2, the wave function, Eq. (J.4), at large radius approaches [96, 266, 704]

ψ>
l (ε, r ) → Cl

kr
sin

[

kr + ηl(ε) − lπ

2

]

, (J.7)

which shows that each ηl is a phase shift for a partial wave. The full scattered function can
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be written

ψ>
l (ε, r ) → eiq·r + i

eiqr

qr

∑

l

(2l + 1)eiηl sin(ηl)Pl[cos(θ )], (J.8)

and the scattering cross-section is then given by the scattered flux per unit solid angle (see,

e.g., [96, 266, 704])

dσ

d

= 1

q2

∣
∣
∣
∣
∣

∑

l

(2l + 1)eiηl sin(ηl)Pl[cos(θ )]

∣
∣
∣
∣
∣

2

, (J.9)

and the total cross-section by

σtotal = 2π

∫

sin(θ )dθ
dσ

d

= 4π

q2

∑

l

(2l + 1)sin2(ηl). (J.10)

For negative energy, κ is imaginary and the Neumann function should be replaced by the

Hankel function (Sec. K.1) h(1)
l = jl + inl , which has the asymptotic form i−le−|κ|r/|κ|r .

The condition for a bound state is that tan(ηl(ε)) → ∞, so that the coefficient of the Bessel

function vanishes in Eq. (J.4) and the Hankel solution is the solution in all space outside the

sphere. The bound state wavefunctions are thus real if one adopts a convention of inclusion

of a factor i l in the wavefunction as in Eq. (16.37), for example.
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Appendix K

Useful relations and formulas

K.1 Bessel, Neumann, and Hankel functions

Spherical Bessel, Neumann, and Hankel functions are radial solutions of the Helmholtz

equation in three dimensions. Spherical Bessel and Neumann functions are related to the

half-order functions and can be represented as

jm(x) =
√

π

2x
Jm+ 1

2
(x) = (−1)m xm

(
d

xdx

)m
sin(x)

x
, (K.1)

and

nm(x) =
√

π

2x
Nm+ 1

2
(x) = −(−1)m xm

(
d

xdx

)m
cos(x)

x
. (K.2)

Examples are

j0(x) = sin(x)

x
, n0(x) = −cos(x)

x
,

j1(x) = sin(x)

x2
− cos(x)

x
, n1(x) = −cos(x)

x2
− sin(x)

x
,

j2(x) =
(

3

x3
− 1

x

)

sin(x) − 3

x2
cos(x), n2(x) =

(

− 3

x3
+ 1

x

)

cos(x) − 3

x2
sin(x).

(K.3)

Hankel functions are defined by h(1)
l = jl + inl and h(2)

l = jl − inl which are convenient

combinations for many problems. In particular, for positive imaginary arguments, h(1)
l has

the asymptotic form i−le−|κ|r/|κ|r corresponding to a bound state solution.

K.2 Spherical harmonics and Legendre polynomials

Spherical harmonics are the angular part of the solutions of the Laplace equation in spherical

coordinates. They are given by,1

1 The definitions here are the same as given by Condon and Shortley [916], Jackson [448], and in “Numerical

Recipes” [854]. However, some authors define Yl,m with a factor (−1)m and omit the factor (−1)m in the

associated Legendre polynomials, Eq. (K.6). Of course, the final form for Yl,m is the same, but one must be

careful to use consistent definitions.
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Yl,m(θ, φ) =
√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l [cos(θ )]eimφ, (K.4)

which define an orthonormal representation on a sphere

∫ π

0

dθ sin(θ )

∫ 2π

0

dφY ∗
l,m(θ, φ)Yl ′,m′(θ, φ) = δll ′δmm ′ . (K.5)

The functions Pm
l (cos(θ )) are associated Legendre polynomials, which are related to the

ordinary Legendre polynomials Pl(x) by

Pm
l (x) = (−1)m(1 − x2)m/2 dm Pl (x)

dxm
, m = 0, . . . , l. (K.6)

The Legendre polynomials Pl(x) are defined to be orthogonal on the interval [−1, 1]; a

compact expression valid for any order is (Rodrigues formula)

Pl(x) = 1

2l l!

dl(x2 − 1)l

dxl
. (K.7)

Using the Rodrigues formula for Pl(x), a definition for Pm
l (x) can be derived valid for

both negative and positive m (see previous footnote regarding the factor (−1)m).

Pm
l (x) = (−1)m

2l l!
(1 − x2)m/2 dl+m(x2 − 1)l

dxl+m
. (K.8)

It can be shown that

P−m
l (x) = (−1)m (l − m)!

(l + m)!
Pm

l (x). (K.9)

It is helpful to give explicit examples for low orders in terms of angles with Pm
l ≡

Pm
l (cos(θ )):

P0
0 = 1, P0

1 = cos(θ ), P0
2 = 1

2
[3 cos2(θ ) − 1], P0

3 = 1
2

cos(θ )[5 cos2(θ ) − 3],

P1
1 = −sin(θ ), P1

2 = −3 sin(θ ) cos(θ ), P1
3 = − 3

2
sin(θ )[5 cos2(θ ) − 1],

P2
2 = 3 sin2(θ ), P2

3 = 15 cos(θ ) sin2(θ ),

P3
3 = −15 sin3(θ ). (K.10)

K.3 Real spherical harmonics

It is often convenient to work with real functions instead of Yl,m(θ, φ) that are eigenfunctions

of angular momentum. The general definition is simply the normalized real and imaginary

parts of Yl,m(θ, φ), which can be denoted Sl,m(θ, φ) given by

S+
l,m(θ, φ) = 1√

2
[Yl,m(θ, φ) + Y ∗

l,m(θ, φ)],

S−
l,m(θ, φ) = 1√

2i
[Yl,m(θ, φ) − Y ∗

l,m(θ, φ)]. (K.11)

These functions are used, e.g., in Ch. 14.
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K.4 Clebsch–Gordon and Gaunt coefficients

The Clebsch–Gordan coefficients are extensively used in the quantum theory of angular

momentum and play an important role in the decomposition of reducible representations of

a rotation group into irreducible representations. Clebsch–Gordan coefficients are given in

terms of Wigner 3 jm symbols by the expression

C j3m3

j1m1, j2m2
= (−1) j1− j2+m3

√
2 j3 + 1

(
j1 j2 j3

m1 m2 −m3

)

, (K.12)

where the Wigner 3 jm symbol is defined by

(
j1 j2 j3

m1 m2 m3

)

= δm1+m2+m3,0(−1) j1− j2−m3

×
[

( j3 + j1 − j2)!( j3 − j1 + j2)!( j1 + j2 − j3)!( j3 − m3)!( j3 + m3)!

( j1 + j2 + j3 + 1)!( j1 − m1)!( j1 + m1)!( j2 − m2)!( j2 + m2)!

]1/2

×
∑

k

(−1)k+ j2+m2 ( j2 + j3 − m1 − k)!( j1 − m1 + k)!

k!( j3 − j1 + j2 − k)!( j3 − m3 − k)!(k + j1 − j2 + m3)!
. (K.13)

The summation over k is over all integers for which the factorials are non-negative.

The Gaunt coefficients [917] (also given by Condon and Shortley [916], pp. 178–179)

are defined as

cl ′′ (l m, l ′ m ′) =
√

2

2l ′′ + 1

∫ π

0

dθ sin(θ )�(l ′′, m − m ′) �(l, m) �(l ′, m′), (K.14)

where �(l, m) are given by

�(l, m) =
√

2l + 1

2

(l − m)!

(l + m)!
Pm

l [cos(θ )]. (K.15)

Like the Clebsch–Gordan coefficients, the Gaunt coefficients can be expressed in terms of

the Wigner 3 jm symbols

cl ′′ (l m, l ′ m ′) = (−1)m

[
(2l + 1)(2l ′ + 1)

2l ′′ + 1

]1/2

×
(

l l ′ l ′′

0 0 0

) (
l l ′ l ′′

m −m ′ −m + m′

)

. (K.16)

The product of two Wigner 3 jm symbols is associated with the coupling of two angular

momentum vectors. In order to make the connection between the two coefficients more

transparent we express the Gaunt coefficients in terms of the Clebsch–Gordan

cl ′′ (l m, l ′ m ′) = (−1)m′
[
(2l + 1)(2l ′ + 1)

]1/2

2l ′′ + 1
Cl ′′0

l0,l ′0 Cl ′′m−m ′
lm,l ′−m ′ . (K.17)
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K.5 Chebyshev polynomials

A Taylor series is a direct expansion in powers of the variable

f (x) → c0 + c1x + c2x2 + · · · + cM x M . (K.18)

In operator expansions, such as needed in Eq. (23.20), this has the advantage that each

successive term is simply obtained recursively using xn+1 = xxn; however, for high powers

there can be problems with instabilities and the expansion becomes worse as x increases.

On the other hand, Chebyshev polynomials of type I, Tn(x), are defined to be orthogonal

on the interval [−1, +1], so that any function on this interval can be expanded as a unique

linear combination of Tn(x). Furthermore, the expansion has the property that it fits the

function f (x) over the entire interval in a least-squares sense, and the polynomials can be

computed recursively. The polynomials can be expressed by defining the first two and all

others by the recursion relation [854]

T0(x) = 1; T1(x) = x ; Tn+1(x) = 2xTn(x) − Tn−1(x). (K.19)

The resulting expansion is

f (x) → c0

2
+

Mp∑

n=1

cnTn(x). (K.20)

It is a simple exercise to derive the first few polynomials and to demonstrate the orthogo-

nality.
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Numerical methods

Summary

The methods described here are widely used in numerical analysis, selected be-
cause of their importance in electronic structure calculations. These methods are
used primarily in iterative improvements of the wavefunctions (iterative diag-
onalization), updates of the charge density in the Kohn–Sham self-consistency
loop, and displacements of atoms in structure relaxation. Because the size and
nature of the problems are so varied, different methods are more appropriate
for different cases.

L.1 Numerical integration and the Numerov method

Equations (10.8) and (10.12) are examples of second derivative equations which play a

prominent role in physics, e.g. the Poisson equation which we also need to solve in finding the

self-consistent solution of the full Kohn–Sham or Hartree–Fock equations. These equations

can be written in the general form

d2

dr 2
ul (r ) + k2

l (r )ul(r ) = Sl(r ), (L.1)

where S = 0 for Schrödinger-like equations. For the Poisson equation, ul (r ) is the electro-

static potential and Sl(r ) = 4πρl(r ) is the l angular momentum component of the charge

density. The equations may be discretized on a grid and integrated using a numerical ap-

proximation for the second derivative. (A good description can be found in [444].) An

efficient approach is to use the Numerov algorithm [921] to integrate the equations outward

from the origin, and inward from infinity to a matching point. The solution is given by

requiring that the wavefunction and its derivative match at a chosen radius Rc. Since the

amplitude of the wavefunction can be required to match (only the overall amplitude is set

by normalization), actually it is required only to match the ratio x(r ) ≡ (dφl(r )/dr )/φl (r ),

which is the logarithmic derivative of dφl (r ).

We want to discretize the differential equation (L.1) on a grid with spacing h. The second

derivative operator can be expressed as (here we drop the subscript l and denote discrete



544 Numerical methods

points by r j → j)

d2

dr2
u( j) = u( j + 1) − 2u( j) + u( j − 1)

h2
+ h2

12

d4

dr4
u(r ) + O(h4). (L.2)

Here we have explicitly written out the leading error, which is O(h2) (see Exercise L.1).

Direct application of this discretized derivative allows one to calculate all values of u( j)

recursively given two initial values, say u(1) and u(2). The error in calculating the new u( j)

at each step is of order h4. However, with a little extra work we can obtain a method that is

of order h6, a substantial improvement known as the Numerov method.

The leading error in the second derivative formula (L.2) is from the fourth derivative of

the function. But this can be found by differentiating the differential equation, (Eq. L.1),

twice which leads to the relation d4

dr4 u(r ) = d2

dr2 (S(r ) − k2(r )u(r )). That is, knowledge about

the curvature of the source and potential terms leads to a more accurate integration scheme.

Substituting this expression into (L.2), defining F(r ) = S(r ) − k2(r )u(r ), and using (L.2)

to lowest order for d2

dr2 F(r ), we find the improved formula (Exercise L.2)

d2

dr2
u( j) = u( j + 1) − 2u( j) + u( j − 1)

h2
+ F( j + 1) − 2F( j) + F( j − 1)

12
+ O(h4).

(L.3)

Substituting this into the original equation leads to the final formula (here a ≡ h2/12)

[1 + ak2( j + 1)]u( j + 1) − 2[1 − 5ak2( j)]u( j) + [1 + ak2( j − 1)]u( j − 1)

= a[S( j + 1) − 2S( j) + S( j − 1)] + O(h6), (L.4)

which can be solved recursively (forward or backward) starting with u at two grid points.

The idea behind the Numerov method can be extended to any dimension, where the pattern

of points is given the name “Mehrstellen” (see [209] which cites [537], p. 164)). The key

point is the use of the differential equation itself to find an expression for both kinetic and

potential terms valid to higher order than the original finite difference expression.

L.2 Steepest descent

Minimization of a function F({xi }) in space of variables xi , i = 1, N is a widely studied

problem in numerical anlysis [854, 920, 922].1 In the absence of any other information the

best choice for a direction of displacement from a point x0
i to reach the minimum is the

steepest descent (SD) direction

g0
i = − ∂ F

∂xi
|xi =x0

i
, (L.5)

which is shown by the initial direction from point 0 in Fig. L.1. The lowest energy along

this direction can be found by “line minimization” in one-dimensional space, i.e. the

minimum of F as a function of α1, where x1
i = x0

i + α1g0
i . Of course, a series of such

1 For simplicity we assume that there is only one minimum, which is valid in large classes of problems in electronic

structure. For special cases, such as level crossing at transition states, one may need to adopt special measures.
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3
0

2∗

1

2

Figure L.1. Schematic illustration of minimization of a function in two dimensions. The steps

1, 2, 3, . . ., denote the steepest descent steps, and the point 2∗ denotes the conjugate gradient path

that reaches the exact solution after two steps if the functional is quadratic.

steps must be taken to approach the absolute minimum, generating the sets of points

x0
i , x1

i , x2
i , . . .,. This process is illustrated in Fig. L.1 for a very simple function of two

variables F(x1, x2) = A(x1)2 + B(x2)2, with B � A. We see that even though the function

F decreases at each step, the steps do not move directly to the minimum. Furthermore, the

method suffers from a real version of the “Zeno paradox” and one never reaches the minimum

exactly. The SD method is particularly bad if the function F has very different dependence

on the different variables so that the region around the minimum forms a long narrow

valley.

L.3 Conjugate gradient

Although it may seem surprising, there is a faster way to reach the minimum than to

always follow the “downhill” steepest descent direction. After the first step, one not only

has the gradient F at the present point, but also the value and gradient at previous points.

The additional information can be used to choose a more optimal direction along which

the line minimization will lead to a lower energy. In fact, for a quadratic functional in N
dimensions, the conjugate gradient (CG) method is guaranteed to reach the minimum in

N steps [704, 854, 920, 922]. We will consider this case explicitly to illustrate the power

of method. In addition, CG can be applied to more complicated functionals (such as the

Kohn–Sham functional) and we expect many advantages still to accrue since the functional

is quadratic near the minimum.

Consider the quadratic functional

F({xi }) ≡ F(x) = 1

2
x · H · x, (L.6)
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with gradients

g = −∂ F

∂x
= −H · x. (L.7)

The first step is the same as steepest descent, i.e. minimization of F along a line x1 =
x0 + α1d0, where d0 = g0. For this and for all steps, the minimum occurs for

dn · g(xn+1) = 0. (L.8)

For the n + 1 step the best choice is to move in a direction where the gradient along the

previous direction dn remains zero. Since the change in gradient as we move in the new

direction dn+1 is �g = αn+1H · dn+1, it follows that the desired condition is satisfied if

dn · H · dn+1 = 0. (L.9)

This equation defines the “conjugate direction” in the sense of orthogonality in the space with

metric H = Hi j . If this condition is satisfied at each step, then it can be shown (Exercise L.3)

that the conjugate condition is maintained for all steps

dn′ · H · dn+1 = 0, for all n′ ≤ n. (L.10)

The key point is that (unlike SD) each line minimization preserves the minimization done in

all previous steps and only adds independent (i.e. conjugate) variations. This is manifested

in the fact that (unlike the SD method that never reaches the minimum) for a quadratic

functional the conjugate gradient method reaches the minimum exactly in N steps, where

N is the dimension of the space xi , i = 1, N . This is illustrated in Fig. L.1 where the exact

solution is reached in two steps for a problem with two variables.

For actual calculations it is useful to specify the new conjugate gradient direction dn+1

in terms of the quantities at hand, the current gradient and the previous direction,

dn+1 = gn+1 + γ n+1dn. (L.11)

Also available is the quantity yn = dn · H which is needed for the evaluation of F in the

line minimization for direction dn . Using Eq. (L.8), (L.11) can be written

γ n+1 = −〈yn|gn+1〉
〈yn|dn〉 . (L.12)

It is straightforward to show (Exercise L.4) that the directions are also given by

γ n+1 = gn+1 · gn+1

gn · gn
, (L.13)

with the definition γ 1 = 0. These forms2 are equivalent for the quadratic case; however, they

are different in the applications needed for electronic structure, where there are constraints

or non-linearities (App. M).

2 Equation (L.12) is often called the Hestens–Steifel form; Eq. (L.13) is the Fletcher–Reeves expression; and an

alternative Pollak–Ribiere form is particularly useful for non-quadratic functionals [854].
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How does one apply the CG method to problems that are not quadratic? The basic idea is

to define conjugate directions as above, but to carry out the line minimization for the given

non-linear functional. This is essential for the CG algorithm since one must reach the line

minimum in order for the new gradient to be perpendicular to the present direction, so that

the functional is fully minimized along each direction in turn.

L.4 Quasi-Newton–Raphson methods

Consider the problem of solving the equation

F(x) = x, (L.14)

where x denotes a vector in many dimensions. For example, this could be the problem in

Sec. 9.3 of finding the solution of the Kohn–Sham equations where the output density nout(r)

(which is a function of the input density nin(r)) is equal to the input density nin(r). This

problem has exactly the form of (L.14) if the density is expanded in a set of M functions

nin(r) = ∑M
k xkhk(r), with x = {xk}. This becomes a minimization problem for the norm

of the residual |R[x]|, where

R[x] ≡ F(x) − x. (L.15)

In Eqs. (9.21) and (13.7) it was shown how to solve this problem if one is in a region

where R is a linear function of x and the Jacobian,

J ≡ δR
δx

, (L.16)

is known. Then one can follow the Quasi-Newton–Raphson approach to minimize the

residual. In terms of xi at step i , the value that would give ri+1 = 0 at the next iteration is

xi+1 = xi − J−1Ri . (L.17)

The problem is that, in general, the Jacobian is not known (or it is hard to invert) and one

needs to resort to other methods which iterate to the solution in a space of functions, i.e. a

Krylov subspace.

L.5 Pulay DIIS full-subspace method

The idea behind the “discrete inversion in the iterative subspace” (DIIS) method3 is to

minimize the residual at any step i by using the best possible combination of all previously

generated vectors, i.e. making use of the full Krylov subspace.

xi+1 =
i∑

j=0

a j x j = c0x0 +
i∑

j=1

c jδx j . (L.18)

3 The present discussion follows [718].
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If we assume linearity of the residual near the solution, then

R[xi+1] = R[
i∑

j=0

a j x j ] =
i∑

j=0

a j R[x j ]. (L.19)

The condition is that xi+1 be chosen to minimize the square norm of the residual

〈R[xi+1]|R[xi+1]〉 =
∑

j,k

a j ak A j,k ; A j,k = 〈R[x j ]|R[xk]〉, (L.20)

subject to any auxiliary conditions. In electronic structure problems, the two most relevant

conditions are:

� electronic bands, where one requires orthonormalization of eigenvectors;
� density mixing, where

∑i
j=0 a j = 1 for charge conservation.

In the latter case the solution is [718]

ai =
∑

j

A−1
j,i

/ ∑

j,k

a j ak A−1
j,k . (L.21)

Through Eq. (L.18), this provides the optimal new vector at each step i in terms of the

results of all previous steps. For extremely large problems, such as many eigenvectors for

the Schrödinger equation, it is not feasible to store many sets of vectors. However, for

density mixing, especially for only a few troublesome components of the density, one can

store several previous densities.

Kresse and Furthmüller [718] have shown that the Pulay DIIS method described above

is equivalent to updating a Jacobian that is closely related to the modified Broyden schemes

[433,434]. In addition, van Lenthe and Pulay have shown that it is possible to carry out the

Davidson and DIIS algorithms with only three vectors at each step [923].

L.6 Broyden Jacobian update methods

The Broyden method [431] is a way to generate the inverse Jacobian successively in the

course of an iterative process.4 The modified Broyden method [433, 434] given at the end

is similar to the result of the DIIS method, except that it explicitly involves only the two

states at a time. This method is widely used and it is illuminating to derive the form in steps

that show the relevant points.

The method starts with a reasonable guess J−1
0 (e.g. that for linear mixing J−1

0 = α1
[430]). The approximate form may be used for several steps after which the inverse J−1 is

improved at subsequent steps. Since the Jacobian is not exact at any step, Eq. (L.17) and

the actual calculation at step i provide two quantities: (1) the prediction from (L.17) for

step i , δxi = xi − xi−1 = −J−1
i−1Ri−1; and (2) the actual result from step i , the change in

the residual δRi = Ri − Ri−1. The new, improved J−1
i is chosen by requiring that at each

4 The description here follows that of Pickett in [413].
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step i the J−1
i be able to reproduce the result of the iteration just completed, i.e.

0 = δxi − J−1
i δRi . (L.22)

This provides M equations for the M2 components of J−1
i . The other conditions are fixed

by requiring the norm of the change in the Jacobian matrix

Q = ∣
∣
∣
∣J−1

i − J−1
i−1

∣
∣
∣
∣ (L.23)

be minimized. The last may be accomplished by the method of Lagrange multipliers, and

is equivalent to the condition that J−1
i produces the same result as J−1

i−1 acting on all vectors

orthogonal to the current change δRi . The result is [413, 430] (see Exercise L.8)

J−1
i = J−1

i−1

(δxi − J−1
i δRi )δRi

〈δRi |δRi 〉 . (L.24)

As it stands, Eq. (L.24) can be used if the Jacobian matrix is small, e.g. in plane wave

methods where only a few troublesome components of the density need to be treated in

this way. However, it is not useful in cases where storage of a full Jacobian matrix is not

feasible, e.g. in the update of the charge density on a large grid needed in many calculations.

Srivastava [430] introduced a way to avoid storage of the matrices completely by using

Eq. (L.24) to write the predicted change δxi+1 in terms of a sum over all the previous steps

involving only the initial J−1
0 (see also [432]).

A modified Broyden method has been proposed by Vanderbilt and Louie [433] and

adapted by Johnson [434] to include the advantages of Srivistava’s method [430] that

requires less storage. The idea is that the requirement that the immediate step be reproduced

exactly is too restrictive, and an improved algorithm can take into account information from

previous iterations. Then one finds J−1
i by minimizing a weighted norm

Qmodified =
i∑

j=1

w j

∣
∣δx j − J−1

i δR j

∣
∣2 + w0

∣
∣
∣
∣J−1

i − J−1
0

∣
∣
∣
∣. (L.25)

This has the advantage that the weights w j can be chosen to emphasize the most relevant

prior steps and the term w0 adds stability. Vanderbilt and Louie [433] showed a simple

example in which the modified method approached the exact Jacobian rapidly, compared to

a slower approach using the original Broyden scheme. Clearly, there are strong resemblances

to the Pulay DIIS algorithm of the previous section.

L.7 Moments, maximum entropy, kernel polynomial method, and random vectors

The direct determination of the spectral properties of a Hermitian matrix via conventional

Householder tridiagonalization has computational cost scaling as N 3. However, if one is in-

terested only in the density of states of such a matrix (whatever its origin – dynamical matrix,

Hamiltonian matrix, etc.), then there are more efficient schemes based on the relative ease of

extracting power moments of the spectral densities. The utility of moments in physical calcu-

lations was recognized before the era of quantum mechanics, when Thirring used moments

of the dynamical matrix to estimate thermodynamic quantities [924]. Montroll employed



550 Numerical methods

moments to compute vibrational state densities as referenced in Born and Huang [90],

p. 74.

The moments of the eigenvalue spectrum about an energy E0 are defined as

〈[H − E0]n〉 =
∑

i

[εi − E0]n =
∫

dε[ε − E0]nn(ε), (L.26)

where n(ε) is the density of states (see Sec. 4.7)

n(ε) =
∑

i

δ(ε − εi ). (L.27)

The zeroth moment is the total number of states; the first moment, the average eigenvalue;

the second, a measure of the spectral width; the third moment, a measure of the spectral

asymmetry about E0; etc. From many moments, one can approximately reconstruct the

density of states. Similarly, local information is derived using the local projected density of

states, such as the angular momentum projected density around an atomic site in Eq. (16.33)

or the basis function projection in Eq. (23.17). Thus the fundamental quantities in electronic

structure can be determined from the moments if there are useful ways to compute the

moments and there are stable algorithms to reconstruct the spectrum.

The first aspect, finding the moments given the hamiltonian matrix, is beautifully solved

by the recursion method [828]. The expressions given in (23.17) relate the moments to the

coefficients generated in the Lanczos algorithm, which have the interpretation of creating a

“chain” of hops whereby the hamiltonian connects one state to the next. If the hamiltonian

matrix is localized in space (short-range hops) this means that information about the local

density of states at a site can be efficiently generated in a small number of applications

of the hamiltonian because only hops within some local range are needed, as explained in

Ch. 23.

If the global (rather than projected) DOS is needed, one can compute approximate mo-

ments of the global DOS by repeated matrix-on-vector operations where the vectors needed

have random components (a suitable choice is to sample each component independently

from the unit normal distribution). For the global DOS for large matrices, very few vec-

tors are needed to provide moments leading to accurate spectra (there is a “self-averaging”

which requires fewer vectors for larger system sizes [832]. Very accurate determination of

partial integrals of the DOS is another matter and requires more careful convergence of

the moment data with respect to random vectors. Much of this was grasped earlier with

characteristic prescience by Lanczos [925].

The second aspect, reconstructing the spectrum, is a long-standing problem in applied

mathematics in the nineteenth and twentieth centuries called the “classical moment prob-

lem” [830]:

Given a finite number of moments over some interval of a non-negative function, find the function

from which the moments arose.

Two classes of practical solutions have emerged. Most naturally, one may adopt a polynomial

solution using polynomials suitably orthogonal on the interval. With a sufficient number of
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moments, it is possible to obtain very accurate reconstructions, e.g. with plausible jagged

spikes approximating δ functions. The method is numerically robust [838] and has been

extended to non-orthogonal bases [926]. It is routine in these computations to work with

several hundred or more moments.

Alternately, one can seek to find a “best” solution given incomplete information (a finite

moment sequence). A modern method that has been applied to this problem is the method

of maximum entropy, which utilizes a variational principle to maximize the “entropy”

−∫
n(ε) ln(n(ε)) subject to the constraints that the moment conditions are satisfied [927].

The utility of maximum entropy for moments was shown with examples by Mead and

Papanicolaou [928]; Skilling [927] used maximum entropy with random vectors to extract

state densities of large matrices; Drabold and Sankey [832] applied the method to electronic

structure problems and introduced “importance sampling” in selecting vectors to improve

the convergence of integrated quantities (like the band energy for determining Fermi level);

and Stephan, Drabold, and Martin [855] demonstrated that this scheme was useful in density

functional schemes for determining the Fermi level order-N in several thousand atom

models. An example of calculation of the phonon density of states from a sparse dynamical

matrix is given in Fig. 23.4. Maximum entropy converges much faster than the orthogonal

polynomial solution, but is more delicate numerically and it is difficult to use more than a

few hundred moments in current maximum entropy schemes.
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Exercises

L.1 Derive the leading error in the finite difference approximation to the second derivative that is

O(h2) and is given explicitly in Eq. (L.2).

L.2 Derive the Numerov expressions (L.3) and (L.4) and show the leading error in the solutions are,

respectively, O(h4) and O(h6).

L.3 Show that the conjugate gradient minimization equations, (L.8) and (L.9), follow from differ-

entiating the functional and assuming it is quadratic. Then derive the key equation, (L.10), that

if each direction is made conjugate to the previous one, then it is also conjugate to all previous

directions. This can be shown by induction given that each direction is defined to be conjugate

to the previous direction and it is a linear combination only of the new steepest descent gradient

and the previous direction, as in Eq. (L.11).
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L.4 For the quadratic functional (L.6), show that the conjugate directions (L.12) are also given by

(L.13).

L.5 Consider a two-dimensional case F(x, y) = Ax2 + By2, with B = 10A. Show that the CG

method reaches the exact minimum in two steps, starting from any point (x, y), whereas SD does

not. What is the value of F in the SD method after two steps starting from x = 1; y = 1.

L.6 As the simplest three-dimensional example, consider F(x, y, z) = Ax2 + By2 + Cz2, and show

that the third direction d3 is conjugate to the first direction d1 = g1.

L.7 Make a short computer program to do the CG minimization of a function F = G · x + x · G · x
in any dimension for any G and H.

L.8 The Broyden method generates a new approximation to the inverse Jacobian J−1
i at each step

i based upon the conditions outlined before Eq. (L.24). Verify that J−1
i , defined by Eq. (L.24),

satisfies (L.22) and that J−1
i − J−1

i−11 gives a null result when acting on any residual orthogonal

to δRi .
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Iterative methods in electronic structure

Summary

This appendix describes technical aspects of advances made in recent years,
stimulated by the work of Car and Parrinello in 1985 (Ch. 18), that have brought
entire new classes of problems and properties under the umbrella of ab initio
electronic structure. In fact, the methods belong to general classes of iterative
algorithms that have a long history in eigenvalue problems, even though their
widespread use in electronic structure in condensed matter followed the work
of Car and Parrinello. This chapter is devoted to features particularly relevant
to electronic structure, and aspects that are inherent to general numerical algo-
rithms are deferred to App. L. The methods may be classified in many ways:
as minimization of the energy versus minimization of a residual; single vector
update versus full iterative subspace methods; etc. Nevertheless, they can all be
brought into a common framework, in which the key features are to:

� replace matrix diagonalization by iterative equations for the wavefunctions
ψi in an iterative (Krylov) subspace;

� find new ψn+1
i using ψn

i (and possibly previous ψn′
i , n′ < n) and the gradient

dE/dψn∗
i = HKSψ

n
i (the algorithms for this step is where methods differ);

� For plane waves, replace dense matrix multiplications with fast Fourier trans-
forms (FFTs).

M.1 Why use iterative methods?

Electronic structure methods can be grouped into two camps differentiated by the types

of basis functions. Methods such as LCAO and LMTO are predicated upon the goal of

constructing a minimal basis of size Nb; the work goes into constructing the basis, which

may be highly optimized for a given class of problems. Except for very large systems

(see Ch. 23), the hamiltonian is expressed as a small, dense matrix of size Nb × Nb, for

which it is appropriate to employ traditional dense matrix diagonalization techniques, for

which the computational effort scales as N 3
b or as Ne N 2

b , where Ne is the number of desired

eigenvectors.
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On the other hand, methods that use general bases such as plane waves1 and grids often

involve a much larger number of basis functions than the number of desired eigenstates

(Nb � Ne); the hamiltonian is very simple to construct and it can be made sparse, i.e.

mainly zero elements so that only the non-zero elements need to be calculated and/or stored.

Except for small problems, it is much more efficient to use iterative methods, in which the

Nb × Nb hamiltonian is never explicitly constructed and the computational effort scales as

N 2
e Nb or as N 2

e Nb ln(Nb). These approaches have been applied most successfully to plane

waves (where they are built upon the pioneering work of Car and Parrinello [156] using fast

Fourier transforms and regular grids as described in Sec. M.11), and real-space methods

[525]: finite difference [526, 535], finite element [544, 545, 547], multigrid [209, 538]; and

wavelets [553, 814]

The iterative methods described in this appendix have much in common with the problem

of finding the self-consistent Kohn–Sham potential, which is in general an iterative process

as described in Ch. 9, and “order-N” approaches of Ch. 23, which are useful for very

large systems with iterative methods employed that take advantage of the sparseness of

the hamiltonian. Since many of the methods employed are useful in many contexts, the

general forms for the methods are discussed in App. L and their application to calculations

of eigenvalues and eigenvectors emphasized in this appendix.

We first consider the problem of solving the Schrödinger equation for a fixed hamiltonian

(H − ε)|ψ〉 = 0. (M.1)

This is the problem in many-body simulations where the hamiltonian never changes, and

it is the inner loop in a Kohn–Sham problem where the effective independent-particle

hamiltonian may be taken as fixed during the iterations (the solution inside of the loop in

Fig. 9.1) to find the eigenvalues and eigenvectors of that effective hamiltonian. Iterative

methods also have the advantage that the hamiltonian can be updated simultaneously with

improvements to the wavefunctions (e.g. in the Car–Parrinello unified method, Ch. 18) to

achieve self-consistency as well as to solve the Schrödinger equations. However, logically

it is simpler to first consider the case of a fixed hamiltonian after which the extension is not

difficult.

M.2 Simple relaxation algorithms

The algorithm [939] proposed by Jacobi in 1848 is in many ways the grandfather of iterative

eigenvalue methods. The basic idea is to iterate a from of the equation

(H − εn)|ψn〉 = |R[ψn]〉, (M.2)

where n is the iteration step, |ψn〉 and εn are approximate eigenvectors and eigenvalues,

and |R[ψn]〉 is a “residual” vector. The iterations continue with a particular choice of the

1 The APW, LAPW, and PAW methods are in some ways intermediate and it may be possible to take advantage

of both types of approaches.
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improved eigenvector |ψn+1〉 and eigenvalue εn+1 until the eigenvalue is converged or the

norm of the residual vanishes to within some tolerance [930].

If the matrix is diagonally dominant (as is the case for the hamiltonian expressed in the

bases most commonly chosen in electronic structure calculations) then we can rewrite the

eigenvalue problem, Eq. (M.1), as

|ψ〉 = D−1(H − ε)|ψ〉 + |ψ〉, (M.3)

where D is a non-singular matrix. This form suggests many variations and the choice of D
can be viewed as a “preconditioning” of the hamiltonian operator, as discussed below. If

we define the iteration sequence [930]

εn = 〈ψn|H |ψn〉
〈ψn|ψn〉 ,

δψn+1 = D−1(H − εn)ψn,

ψn+1 = ψn + δψn+1, (M.4)

then the middle equation of (M.4) is just the linear set of equations

Dδψn+1 = Rn or δψn+1 = D−1 Rn ≡ K Rn, (M.5)

where Rn is the residual at step n and K ≡ D−1.

The sequence Eq. (M.4) with Eq. (M.5) corresponds to updates of ψ using the residual R
multiplied by a “preconditioning” matrix K (see Sec. M.3). For the methods to be efficient,

the matrix D must be easier to invert than the original matrix (H − ε), and yet be chosen so

that the change δψn+1 is as close as possible to the improvement needed to bring ψn to the

correct eigenvector. From perturbation theory we know that if the hamiltonian is diagonally

dominant a good choice is D equal to the diagonal part of H (the choice made by Jacobi). If

D is the lower (or upper) triangular part of H , then this becomes the Gauss–Seidel relaxation

method [854, 940] which is useful in “sweep methods” where the points on one side have

already been updated. At each iteration the new vector is updated with only information

from the previous step.

M.3 Preconditioning

The basic idea behind “preconditioning” is to modify the functional dependence upon the

variables to be more “isotropic,” i.e. to make the curvature more similar for the different

variables, which is exactly the idea behind the improved convergence in (M.5). For the

problems encountered in electronic structure, it often happens that the original formulation

is very badly conditioned; but on physical grounds it is simple to see how to improve the

conditioning. In general, the choice of formula depends upon the problem and we will be

content to list two characteristic examples.

The simplest example is the energy expressed in a plane wave basis, where the functions

are expressed as ψi,k(r) = exp(ik · r)ui,k(r), with u the Bloch function given in (12.12),

where cn
i,m(k) are the m = 1, NPW variables describing the i = 1, Ne eigenvectors at step n.
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Because high Fourier components |k + Gm | have high kinetic energy, the total energy varies

much more rapidly as a function of coefficients cn
i,m(k) with large |Gm | than for coefficients

with small |Gm |. Preconditioning can be used to modify the gradients and cancel this effect;

a simple form suggested in [931] is

K (x) = 27 + 18x + 12x2 + 8x3

27 + 18x + 12x2 + 8x3 + 16x4
, (M.6)

where

xn
i (Gm) = 1

2

|k + Gm |2
T n

i

, (M.7)

which multiplies each steepest descent vector gn
i (Gm). Here xn

i (Gm) is the ratio of the kinetic

energy of the |k + Gm | Fourier component to the kinetic energy T n
i of the state i at step

n. Since K ∝ 1/|Gm |2 for large |Gm |, this cancels the increase in gn
i (Gm) which grows as

|Gm |2.

Seitsonen [941] proposed to precondition the steepest descent vector in real-space meth-

ods by extending the form of (M.6) to represent a local kinetic energy at point r. The variable

x in (M.6) is defined to be

xn
i (r) = A

|λm
i − V (r)|

T n
i

, (M.8)

which is the ratio of the local kinetic energy |λn
i − V (r )| to the total kinetic energy for state

i , T n
i = 〈ψn

i |∇2|ψn
i 〉, and A is an adjustable parameter. At each step n the factor K (xn

i (r))

multiplies the residual for state i at each point r of the real-space grid as in (M.5).

M.4 Iterative (Krylov) subspaces

Iterative methods are based upon repeated application of some operator A to generate new

vectors. Starting from a trial vector ψ0, a set of vectors Anψ0 is generated by recursive

application of A. Linear combinations of the vectors can be chosen to construct the set

{ψ0, ψ1, ψ2, . . .}, which forms a Krylov subspace [919]. In many cases, an accurate solution

for desired states can be found in terms of a number of states in this new basis that is much

smaller than the number of states in the original basis. The distinction between the various

methods is the choice of operator A and the way that new vectors ψn+1 are created at each

step using Aψn and the previously generated ψ i , i = 0, n.

There are three choices for A that are most directly applicable to problems related to

electronic structure: the (shifted) hamiltonian, A = [H − ε]; the shifted inverse hamilto-

nian operator, A = [H − ε]−1; and the imaginary time propagator, A = exp(−δτ (H − ε)).

Each of these choices has important advantages. The first is closely related to the variational

Schrödinger and Kohn–Sham equations, (3.13) and (7.11), which leads to helpful physical

interpretations and suggests solution in terms of well-established minimization techniques

and subspace matrix diagonalization techniques [919, 920, 942]. The second choice, em-

ploying inverse powers, is especially appropriate for finding eigenvectors close to a trial
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eigenvalue ε. The inverse is useful for proofs of principle, but in practice one uses approxi-

mations with easily invertible operators; these are closely related to perturbation expansions

for the wavefunctions and eigenvalues. Imaginary time projection has the advantage that it

is closely related to real-time methods for time-dependent phenomena (see Ch. 20) and to

statistical mechanics involving thermal expectation values, where β = 1/kB T → δτ .

Methods differ in the extent of the Krylov subspace explicitly treated at each iteration.

Simple relaxation methods such as the Jacobi algorithm find the new approximate eigen-

vector ψn+1 in terms of the previous ψn only. This is analogous to steepest descent mini-

mization. Others, such as the Lanczos, Davidson, and the RMM–DIIS (Sec. M.7) methods

consider the entire subspace generated up to the given iteration. In general, a great price must

be paid to keep the entire Krylov subspace for very large problems; however, the widely

used Lanczos and conjugate gradient (CG) minimization methods are full subspace meth-

ods, able to generate a new vector orthogonal (or conjugate) to all previous vectors even

though ψn+1 is found only in terms of the previous two vectors ψn and ψn−1. Thus these

methods can be much more powerful than simple relaxation methods, with only a moderate

increase in requirements at each step of the iteration. The original Davidson method [935]

requires keeping the entire subspace, but it can also be cast in a form requiring only three

vectors using a CG approach [923].

M.5 The Lanczos algorithm and recursion

The Lanczos method [943] was one of the first iterative methods used by modern computers

to solve eigenvalue problems. It is remarkably simple and amazingly powerful as a tool to

bring out physical interpretations and analogies. The algorithm automatically generates

an orthogonal basis (a Krylov or iterative subspace) in which the given operator A is

tridiagonal. (In electronic structure problems A = H , where H is often the hamiltonian.)

It is especially powerful for generating a number of the lowest (or highest) eigenvectors

of large matrices. The simplest version suffers from the “Lanczos disease” of spurious

solutions due to numerical rounding errors as the number of desired eigenvectors increases;

however, this can be easily controlled by orthogonalizing after a number of iterative steps.

In addition, it can be formulated as a continued fraction which leads to powerful methods

for finding moments of the spectral distribution.

The Lanczos algorithm proceeds as follows (good descriptions can be found in [444]

and [944]): Starting with a normalized trial vector ψ1, form a second vector ψ2 =
C2 [Aψ1 − A11ψ1], where A11 = 〈ψ1|A|ψ1〉 and C2 is chosen so that ψ2 is normalized.

It is easy to see that ψ2 is orthogonal to ψ1. Subsequent vectors are constructed recursively

by

ψn+1 = Cn+1 [Aψn − Annψn − Ann−1ψn−1] . (M.9)

The matrix Ann′ is explicitly tridiagonal since Eq. (M.9) shows that A operating on ψn yields

only terms proportional to ψn , ψn−1, and ψn+1. Furthermore, each vector ψn is orthogonal

to all the other vectors, as may be shown by induction (see Exercise M.1). Going to step M
yields a tridiagonal matrix
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 β2

β2 α2 β3

β3 α3 .

. . .

. . βM

βM αM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (M.10)

where α and β are given by Eq. (M.9). Standard routines exist to find eigenvalues of an

order-M tridiagonal matrix in time order-M. (The ideas are straightforward and can be cast

in the form of the roots of a function defined by a recursive set of polynomials [444]. See

Exercise M.2.) Eigenvectors can easily be found by inverse iteration if the eigenvalues are

known. If the original basis contains N vectors, then N steps are required to generate the

full hamiltonian in this tridiagonal form.

The importance of the method is that eigenvectors and eigenvalues near the bottom and

top of the spectrum can be determined with great accuracy without generating the entire
matrix. One can understand why the highest and lowest vectors are generated first by noting

that if one starts with a trial vector ψ1 that is a linear combination of eigenvectors, each step

of Eq. M.9 is an operation by H that increases the weight of those eigenvectors that are

farthest away in energy from the average energy of the trial state. Since the average energy

must be somewhere in the middle of the spectrum the states at the edges are projected out

with greatest efficiency. In typical cases involving millions of states, a few steps of the

algorithm are sufficient to find the ground state with great precision [944].

There are many variations in the way the Lanczos algorithm can be used. For example,

the recursive relation (M.9) can be used to generate a matrix of size M × M , which is

diagonalized to find the desired state, e.g., the lowest eigenstate. The state thus found can

be used as the starting vector for the next iteration, etc., until the desired accuracy is achieved.

This is particularly stable [944] and useful in a block form for finding several states. This

approach may even be used for M as small as M = 2, which makes a particularly efficient

algorithm for the ground state that does not require storing many vectors.

The Lanczos algorithm is widely used for a few extreme eigenvalues in extremely large

problems such as many-body problems where it is synonymous with “exact diagonaliza-

tion.” The most complete application in large-scale electronic structure calculations has

been presented by Wang and Zunger [945] who have incorporated procedures for avoiding

spurious states.

The Arnoldi method [854] is a variation of Lanczos that explicitly orthogonalizes each

vector ψn to all the previous vectors by a Gram–Schmidt procedure. This eliminates the

instability and allows calculation of as many eigenvectors as desired. This approach can be

applied to non-hermitian matrices.

An elegant consequence of the Lanczos tridiagonal form is a “continued fraction” repre-

sentation of the spectrum for any dynamical correlation function, expressed as a function

of complex frequency z. This leads to the recursion method [696,828], for which pertinent

aspects are summarized in Sec. 23.3.
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M.6 Davidson algorithms

Davidson [923,935–937,946] has devised methods that are now widely applied to electronic

structure problems. There are a number of variations that cannot be covered here. A primary

point is that the Davidson approach is closely related to the Lanczos algorithm, but adapted

to be more efficient for problems in which the operator is diagonally dominant. This is often

the case in electronic structure problems, e.g. plane wave algorithms.

The flavor of the Davidson methods can be illustrated by defining the diagonal part of the

hamiltonian matrix as Dmm ′ = Hmmδmm ′ and rewriting the eigenvalue problem Hψ = εψ

as

(H − D)ψ = (ε I − D)ψ, (M.11)

or

ψ = (ε I − D)−1(H − D)ψ. (M.12)

Here I is the unit matrix, inversion of I − D is trivial, and H − D involves only off-diagonal

elements. The latter equation is very similar to perturbation theory and suggests iterative

procedures that converge rapidly if the diagonal part of the hamiltonian is dominant. An

algorithm has been suggested by Lenthe and Pulay [923] that involves three vectors at each

step of the iteration.

M.7 Residual minimization in the subspace – RMM–DIIS

The approaches described up to now (and the minimization methods described below)

converge to the lowest state with no problems because the ground state is an absolute

minimum. In order to find higher states, they must ensure orthogonality, either implicitly as

in the Lanczos methods or by explicit orthogonalization. The residual minimization method

(RMM) proposed by Pulay [934] avoids this requirement and converges to the state in the

spectrum with eigenvalue closest to the trial eigenvalue ε because it minimizes the norm

of a “residual vector” instead of the energy. Since the approach of Pulay minimizes the

residual in the full Krylov iterative space generated by previous iterations, the method is

known as RMM–DIIS for “residual minimization method by direct inversion in the iterative

subspace.” The general idea is to replace the last equation in (M.5) with

ψn+1 = c0ψ
0 +

n+1∑

j=1

c jδψ
j , (M.13)

where the entire set of c j is chosen to minimize the norm of the residual Rn+1. (Pre-

conditioning can also be applied at each step [718] to speed the convergence.) The c j

coefficients can be obtained by diagonalizing the hamiltonian in the iterative subspace

{ψ0, ψ1, ψ2, . . . , ψn}, which is a miniscule operation since the number of vectors is at

most 10 or so. The time-consuming step is the operation Hψ , which is a matrix operation

requiring, in general, O(N 2
b ) operations for each eigenvector ψ , where Nb is the size of

the basis. However, for sparse operations this reduces to O(Nb) for large bases, and to
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O(Nb ln(Nb)) if FFTs are used as described in Sec. M.11. In practice, for large problems,

it is prohibitive to store many vectors and only small matrices are actually diagonalized

corresponding to only a few steps n before restarting the process.

The application of this approach in electronic structure was initiated by Wood and Zunger

[929] and used subsequently by many authors in various modifications [718,930,947]. The

DIIS method involves construction of a full matrix of the size of the subspace, which can be

efficient so long as the matrix is small and all the vectors spanning the space can be stored.

This can be achieved in solving the Kohn–Sham equations in two regimes. If the number of

eigenstates needed is small, then all states can be generated at once using the RMM-DIIS

approach. If the number of eigenstates needed is large, then the problem can be broken

up into energy ranges, and a few states with eigenvalues nearest the chosen energy can be

generated by solving a small matrix equation. In this case, care must be taken not to miss or

to overcount eigenstates [718]. A great advantage of this method compared to the conjugate

gradient methods of Sec. M.8 is that any eigenvector can be found even in the middle of

the spectrum with no explicit need to require orthogonality to the other vectors.

M.8 Solution by minimization of the energy functional

The energy minimization approach has the virtue that it parallels exactly the physical pic-

ture of minimizing the total energy and the analytic variational equations (3.10)–(3.12) and

(7.8), which is also given below in (M.15). To accomplish the minimization one can utilize

the steepest descent (SD) and conjugate gradient (CG) algorithms, which are general min-

imization methods widely used in numerical analysis [854,920] and in electronic structure

calculations [425,440,931–933]. As in all iterative methods, one starts from trial functions

ψ0
i , for the i = 1, N orbitals, and generates improved functions ψn

i by n successive iter-

ations. The basic SD and CG algorithms are described in App. L; however, applications

in electronic structure require special choices and modifications due to the constraint of
orthonormality of the functions ψn

i . The explicit equations and the sequence of operations

in electronic structure calculations are given in Fig. M.1 which is described in this section.

Minimization algorithm with constraints

The analytic variational equations, (3.10)–(3.12) and (7.8), including the constraint of or-

thonormality follow from the Lagrange multiplier formulation2 with

L = E[ψi ] −
∑

i j

	i j

(∫

drψ∗
i (r)ψ j (r) − δi j

)

, (M.14)

where E[ψi ] is the usual Kohn–Sham expression for energy, Eq. (7.5). The derivative of

the Lagrangian gives the steepest descent direction including the constraint

2 Note the similarity to the lagrangian in the Car–Parrinello method, Ch. 18, where there the “fictitious electronic

mass” is also added.
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Figure M.1. Iterative loop for solving the non-self-consistent Schrödinger equation in the

“band-by-band” conjugate gradient method [440,931] (or steepest descent where di = gi ), using the

notation of App. L. For unconstrained functionals of non-orthonormal orbitals (Eqs. (M.16) or

(23.26)), this is the usual SD or CG method and no other steps are needed. If the constraint of

orthonormality is explicitly imposed, then in addition to the steps shown there are

orthonormalization operations g(n)
i ← g(n)

i ⊥
(
ψ1, ψ2, . . . , ψi−1; ψ

(n)
i

)
;

d (n)
i ← d (n)

i ⊥
(
ψ1, ψ2, . . . , ψi−1; ψ

(n)
i

)
.

δL
δψ∗

i

= HKSψi −
∑

j

	i jψ j . (M.15)

This is completely sufficient for infinitesimal variations; however, for finite steps in a nu-

merical procedure additional steps must be taken to conserve orthonormality.

In Car–Parrinello MD simulations (Ch. 18), constraints are enforced using a Lagrange

multiplier in a way that conserves energy [711]. Minimization methods have the opposite

philosophy: the goal is energy minimization: to lose energy as efficiently as possible to reach

the ground state (which of course must obey the constraints). In SD and CG minimization, the

constraint is violated at each step, so that orthonormalization is needed after each of the
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intermediate steps. The most common method is the Gram–Schmidt procedure, which

produces one of the possible sets of orthonormal vectors.

There are two basic approaches for SD or CG minimization in electronic structure: “band-

by-band” [931] and “all-bands” [933]. The former approach diagonalizes the hamiltonian,

i.e. all the desired eigenvalues and vectors are found. The latter finds vectors that span the

desired subspace, which is sufficient for many purposes; subspace diagonalization can be

added if needed. We will describe the steps in the “band-by-band” method; the only change

needed for “all bands” is that all desired eigenvectors i = 1, Ne are treated together as a

“supervector” of size in each line minimization. The basic strategy is outlined in Fig. M.1 and

further details are given in [931] and [440]. The algorithm for finding the direction in Hilbert

space for minimization of ψn
i , the i th vector at step n, is as follows: calculate the SD gradient

g(n)
i = HKSψ

n
i as in Fig. M.1; orthogonalize g(n)

i to all the previously calculated eigenvectors

ψ j , j < i , and to the present vector ψn
i ; precondition and orthonormalize; find the conjugate

direction d (n)
i in the case of CG minimization followed by another orthonormalization.

The next step is line minimization, i.e. ψn
i → ψn+1

i = aψ + b
ψ to find the minimum

eigenvalue εi as a function of a and b. A simple procedure to maintain normalization is to

construct the new vector as cos(θ)ψ + sin(θ )
ψ , and minimize as a function of θ . Since

both ψ and 
ψ are orthogonal to the previous vectors by construction, this maintains

orthonormalization along the line. Repeating for i = 1, Ne, produces the desired set of

eigenvectors ψi , i = 1, Ne.

The CG method is well known to speed convergence greatly in some problems, as dis-

cussed in App. L. However, the basic ideas of CG are violated by the constraints or for non-

linear functionals (as is the case for the unconstrained quadratic functionals in Sec. M.8);

there is no proof that the new direction is conjugate to all previous directions. Furthermore,

the two formulas for the CG direction, Eqs. (L.12) and (L.13), are no longer equivalent and

tests must be made to find the most efficient approach in any given problem.3

Finally, there is another important choice: when to update the density n(r) and the potential

Veff(r) in the Kohn–Sham or any other self-consistent method. The “band-by-band” method

has the advantage that one can update during or after the line minimization for each band. If

there are many bands, each update of the density is a small perturbation, which can improve

convergence (see Sec. 9.3). If the update is done after all bands are completed, then various

extrapolation techniques can be used to choose a new V n+1
eff (r) given the potential and/or

density at previous steps n, n − 1, . . . In addition, there are choices of the way to update

the density most effectively during iterations toward self-consistency or when the atoms

move [716].

Functionals of non-orthogonal orbitals

One can also construct functionals that do not require orthonormal orbitals so that the SD

and CG methods can be used directly. One approach is the CG method of [932], where the

3 The widely used form in Sec. L.13 does not converge for the simplest case of a fixed hamiltonian; however, it

may still be useful if one only needs inaccurate solutions for a given hamiltonian in a self-consistency cycle.
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density and energy are defined using well-known expressions in terms of the inverse overlap

matrix S−1
i j , where Sn

i j = 〈ψn
i |ψn

j 〉 at step n (see also Sec. 23.5). Using the expressions in

Sec. 9.2, such as Eq. (9.7) the energy can be written as

EKS =
∑

i j

〈ψi |HKS|ψ j 〉S−1
i j + G[n]. (M.16)

Another approach is described in Ch. 23: to define a modified functional, Eq. (23.26),

that can be minimized with no constraint and which equals the Kohn–Sham energy at

the minimum. The new functional is closely related to Eq. (M.16), except that the inverse

matrix is replaced by S−1 = [1 + (S − 1)]−1 → [1 − (S − 1)] = 2 − S. This can be viewed

as the first term [844] in the expansion of S−1 or as an interpretation [845] of the Lagrange

equations, (M.15).

Non-extremal eigenstates

How can one use minimization methods to find states in the middle of a spectrum? The first

and simplest approach follows by noting that the eigenfunctions of the “folded” operator

(H − ε)2 are the same as those of H , and the eigenvalues are always positive with absolute

minimum for the state with eigenvalue closest to ε. Any minimization method or power

method (such as Lanczos) that rapidly converges to extreme states can be used to find the

states closest to ε. However, there is a problem with this approach due to poor convergence

that is inherent in the use of the “folded” operator (H − ε)2. The eigenvalue spectrum of

the squared operator is compressed ∝ (εi − ε)2 close to the chosen energy ε, making the

problem poorly conditioned and leading to difficulties in separating the states in the desired

energy range near ε. Nevertheless, there is an important case where the method is effective:

the states closest to the gap (the HOMO and LUMO) in a semiconductor or insulator [948]

can be found choosing ε in the gap. Since there are no states with very small values of εi − ε,

the spectrum has a positive lower bound and there is no essential difficulty. More than one

state can be found if orthonormalization is explicitly required or if a “block” method of

several states is used.

A much more robust method is the “shift and invert” approach often attributed to Ericsson

and Ruhe [949], which is a transformation of the Lanczos method. There is a price to pay

for the inversion, but the full inverse is not required – only the operation of the inverse on

vectors. The advantage is that the spectrum is spread out near the desired energy ε making

it easier to obtain the eigenstates near ε. In fact, if the eigenvalues are separated by ≈
E ,

the separation of the eigenvalues of the shift-invert operator is ∝ 
E/(εi − ε)2.

M.9 Comparison/combination of methods: minimization of residual or energy

Perhaps the most extensive comparison to date for different iterative methods has been pre-

sented by Kresse and Furthmüller [718] for the CG and RMM–DIIS methods. The “VASP”

program created by these authors, which is one of the most widely used pseudopotential

codes, uses a combination of CG and RMM–DIIS steps. The methods require very similar
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operations except that CG minimization requires explicit orthonormalization of each vector

at each step. They report that for large systems, orthonormalization becomes the dominant

factor because one vector must be orthonormalized to a large number of other vectors at

every single band update. This requires access to memory which then dominates over the

cost of the floating point operations. The RMM–DIIS method operates on each vector sep-

arately and needs no such orthonormalization. However, for small systems, the cost can be

comparable. The main disadvantage of RMM–DIIS is that it always finds the vector closest

to the trial vector, so that care must be taken to find all the vectors.

Kresse and Furthmüller [718] have made an algorithm that combines CG and RMM–

DIIS methods, applying them sequentially to a set of vectors equal to the number of bands,

and performing only a few updates during each iteration. After each iteration the bands

are explicitly orthogonalized (only for the RMM–DIIS method where they may be non-

orthogonal due to numerical error) and this becomes the input for the next iteration. Many

examples of convergence are given in [718] and the method has been applied to many

systems.

M.10 Exponential projection in imaginary time

The Schrödinger equation in imaginary time τ = it is

−dψ

dτ
= Hψ, (M.17)

which has the formal solution

ψ(τ ) = e−Hτψ(0). (M.18)

It is straightforward to see that the operation in (M.18) projects out of the ground state as

τ → ∞.

This is a widely used approach in many problems (e.g. many-body quantum Monte Carlo

simulations) and it has the conceptual advantage that it is closely related to time-dependent

phenomena and to statistical mechanics. It has not been widely applied in solving the Kohn–

Sham equations for condensed matter, but has been adapted to calculations on electrons

confined to “quantum dot” structures [840].

M.11 Algorithmic complexity: transforms and sparse hamiltonians

All iterative methods replace diagonalization of the hamiltonian matrix by the application

of an operator Â, such as the hamiltonian Ĥ or a function of Ĥ ,

HKSψi = δEKS

δψ∗
i

≡ −Fe
i , (M.19)

to approximate wavefunctions, where we have omitted spin and space labels. The interpre-

tation as a gradient of the total energy follows from the Kohn–Sham equations, (7.8) and

(7.12), which can be considered as a the negative of a generalized “force” on the electrons
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−Fe
i . The solution at the minimum is that the force be zero, and iterative procedures arrive

at this condition in various ways.

In this appendix we will consider plane waves as the primary example for iterative

methods. (It is straightforward to translate the arguments and algorithms for other bases,

e.g. real-space grids treated in Sec. 12.8.) The explicit form of (M.19) needed for plane

waves is given by (using Eq. (12.9))

−Fi (Gm) =
∑

m ′
Hm,m ′ (k)ci,m ′(k), (M.20)

where the variables in the wavefunctions are the cn,m(k) coefficients in the Bloch functions

(see Eq. (12.12)),

uik(r) = 1√
�cell

∑

m

ci,m(k) exp(iGm · r). (M.21)

Here i = 1, Ne, where Ne is the number of desired eigenvectors (often the number of filled

bands) and m = 1, NPW, where NPW = Nb is the number of plane waves included in the

basis. Applied straightforwardly, however, this does not lead to an efficient algorithm for

plane waves. The reason is that the matrix operator form for Hm,m ′(k) in plane waves

Gm, Gm ′ given in Eq. (12.10) is a dense matrix due to the fact that the potential part

Veff(Gm − Gm ′) is, in general, non-zero for all Gm, Gm′ . Multiplication by a full square

matrix on each of the Ne eigenvectors requires Ne N 2
PW operations. In addition, there are other

operations such as construction of the charge density in real space that require convolutions

in Fourier space that involve O(Ne N 2
PW) operations if done by the direct sums over G vectors

as Eq. (12.29).

How can an efficient sparse algorithm be created for plane waves? The idea has already

been used in Sec. 12.7 to calculate the density from the wavefunctions using fast Fourier

transforms (FFTs) and the fact that the density is easily expressed in real space as n(r j ) =
∑

i,k |ui,k(r j )|2. If each wavefunction is expanded in NPW plane waves, the density requires a

larger number of Fourier components N̄PW (see explanation below). In order to calculate the

density each wavefunction is represented by ci,m(k) with m = 1, NPW non-zero components

and the other N̄PW − NPW components set equal to zero. This expanded ci,m(k) is then

transformed using an FFT to a grid in real space, leading to the Bloch function (M.21) on

a grid of N̄grid = N̄PW regularly spaced points r j . The density is then simply the sum of

squares of the wavefunctions at each point, as shown in Fig. 12.4.

Now consider the operation Hψi needed in Eq. (M.20) (and the corresponding equations

(18.14), (M.2), or (M.15)). Multiplication of the kinetic energy term is very simple since

the kinetic energy part of Hm,m ′ (k) given by (12.10) is a diagonal matrix in Fourier space.

On the other hand, multiplication by V is simple in real space, where V is diagonal. The

operations are done by FFTs as shown in the sequence of steps in Fig. M.2 very much like

the operations for the charge density. The FFTs are done on an expanded grid with N̄PW

points and the new wavefunction is truncated to the original size NPW when the results are

collected in Fourier space. This procedure can be used in any of the iterative plane wave

methods described here as well as in the Car–Parrinello method of Ch. 18.
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Apply laplacian

FKE{G} =   ∇2 ⋅ ψ{G}

Change of basis: R → G

FPE{G} = [FFT ]−1 · FPE{R}

Multiply effective potential

FPE{R} = −Veff{R} ⋅ ψ{R}

Change of basis: G → R

ψ{R} = [FFT] ⋅ ψ{G} 

Add kinetic and potential energy terms

[Hψ]{G} = −F{G} = −FKE{G} − FPE{G} 

Initial wavefunction

ψ{G}

 

1
2

Figure M.2. Schematic representation describing the application of the hamiltonian using Fourier

transforms (FFTs). The “force” in Eq. (M.19) is denoted by Fi . The operations are diagonal in each

space respectively as long as the potential is local; non-local pseudopotentials require generalization

to a non-local expression on the grid points in real space.

Clearly, this approach can be applied to any operator A involving the hamiltonian. In

general, additional applications of the FFT will be needed; however, this need not be a major

increase in complexity. In particular, powers of H may be treated by repeated application

of the FFT.

Aliasing and the FFT transforms

When is the FFT operation exact? Clearly, the Fourier analysis is a mathematical identity

if done with an infinite number of plane waves. But the question is: what is required for the

FFT operations to give the exact answers for a given finite basis of plane waves? One of the

great advantages of the plane wave method is that it truly is a basis, i.e. it is variational and

the energy always decreases as more plane waves are added. We do not want to add some
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uncontrolled approximation that would destroy this property. See Exercise M.3 for further

discussion.

For the density, it is easy to see the required conditions. If the wavefunction is limited

to Fourier components with |G| < |Gmax|, then the density can have components up to

|2Gmax|. If the box for the FFT is defined to be greater than twice as large as |Gmax| in
all directions, then every Fourier component will be calculated exactly. Note that in three

dimensions, this means a box of size at least as large as 23 = 8 times larger than the smallest

box that contains the sphere of G vectors, i.e. N ∗
PW is larger than NPW by at least a factor of

8π/3 = 8.4, roughly an order of magnitude. Despite this fact, it is still much more efficient

to carry out the operations using the FFT for all but the smallest problems.

Note that the estimate for the size of the FFT box depends upon the assumption that the

problem is roughly isotropic so that the G vectors are defined in a cube. If one chooses

non-orthorhombic primitive vectors of the reciprocal lattice, then the number of G vectors

will be larger than the above estimate in order to circumscribe a sphere of radius |2Gmax|.
Fortunately, for large systems, where the methods are most useful, the cell can usually be

chosen so that the FFT operations are efficient.

The condition for multiplication of the potential times the wavefunction does not appear

so obvious at first sight. There is no reason to suppose that V (G) has a limited number of

Fourier components; the ionic potential has a 1/G2 form which is reduced by screening but

not to zero. The Hartree potential has exactly the same range as the density due to the Poisson

equation; however, there is no such limitation on the exchange–correlation potential (more

on this below). Thus V ψ extends to all G vectors even if ψ is limited. Nevertheless, the
range up to |2Gmax| is sufficient for an exact calculation. The reason is that only the Fourier

components of V ψ with |G| < |Gmax| are relevant for the Schrödinger equation. This is

easily seen from the definition of the matrix elements of the potential, Eq. (12.8), which

involves only components of V up to |2Gmax| if the wavefunctions extend up to |Gmax|.
In an iterative approach, the potential enters by explicit multiplication of V times a trial

vector; even though multiplication would give Fourier components with |G| > |Gmax|, only
those with |G| < |Gmax| are relevant. Even if the higher Fourier components are calculated,

the contribution to the wavefunction is explicitly omitted. In fact, it is essential that such
components be omitted; otherwise one violates the original statement of the problem: the
solution of the Schrödinger equation with wavefunctions expanded in a fixed finite basis
set.

The algorithm shown in Fig. M.2 denotes the operations on a wavefunction ψ(G) defined

on a set of NPW Fourier components. The algorithm, in fact, generates the product V ψ on a

large grid of size N ∗
PW and the product is explicitly truncated to produce the “force” F(G)

defined on the small set of NPW Fourier components. This force is then used to update the

wavefunction in any of the iterative methods described in this chapter.

A few words are in order regarding the exchange–correlation energy and potential. There

is no simple relation of the reciprocal space and real-space formulations since εxc(n) is

a non-linear function of n. For example, the fact that exchange involves n1/3 means that

a single Fourier component of n(G) gives rise to an infinite set of components of εxc(G)

and Vxc(G). Thus the problem is in G space formulation: direct sums in G space can
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never give exact εxc(G) and Vxc(G) in terms of n(G). However, FFT formulation allows

the exchange–correlation terms to be treated in real space with no problem. So long as one

includes all components up to |2Gmax|, the resulting εxc(G) and Vxc(G) can be used to define
those terms in a way that is sufficiently accurate for the solution of Kohn–Sham equations

(Exercise M.3).
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Exercises

M.1 Show by induction that each vector ψn generated by the Lanczos algorithm is orthogonal to

all the other vectors, and that the hamiltonian has tridiagonal form, Eq. (M.10). Regarding the

problem that orthogonality is guaranteed only for infinite numerical precision, show how errors

in each step can accumulate in the deviations from orthogonality.

M.2 The solution for the eigenvalues of the tridiagonal matrix H in Eq. (M.10) is given by |Hi j −
λδi j | = 0, which is polynomial PM (λ) of degree M. This may be solved in a recursive manner

starting with the subdeterminant with M = 1. The first two polynomials are P1(λ) = α1 − λ

and P2(λ) = (α2 − λ)P1(λ) − β2
2 . Show that the general relation for higher polynomials is

Pn(λ) = (αn − λ)Pn−1(λ) − β2
n [Pn−2(λ)], (M.22)

and thus that the solution can be found by root tracing (varying λ successively to reach condition

PM (λ) = 0 in computer time proportional to M for each eigenvalue.

M.3 Consider a plane wave calculation with the wavefunction limited to Fourier components with

|G| < |Gmax|. Show that all Fourier components of the external potential and the Hartree poten-

tial are given exactly (with no “aliasing”) by the FFT algorithm, so long as the FFT extends to

|2Gmax|. For the non-linear exchange–correlation potential, show that there is no exact expres-

sion and that the expressions are “reasonable.”



Appendix N

Code for empirical pseudopotential

and tight-binding

The “TBPW” code is a modular code for Slater–Koster orthogonal tight-binding (TB,

Sec. 14.4) and plane wave empirical pseudopotential (EPM, Sec. 12.6) calculations of elec-

tron energies in finite systems or bands in crystals. This appendix is a schematic description.

A much more complete description, sample files, and the full source codes are available

on-line at the site given in Ch. 24.

TBPW is meant to be an informative, instructional code that can bring out much of the

physics of electronic structure. It has many of the main features of full density functional

codes, but is much simpler. A main characteristic is that the codes are modular and are

organized to separate the features common to all electronic structure calculations from the

aspects that are specialized to a given method.

A sample input file is given below in Sec. N.4. The input file uses keywords that are recog-

nized by the input routines, so that the same file can be used for either TB or PW calculations.

N.1 Calculations of eigenstates: modules common to all methods

The functional features are listed below with the corresponding inputs in square brackets [ ].

� Crystal structure:
� Space: number of space dimensions [dimension = 1, 2, 3, . . .]
� Lattice: real-space cell [translation vectors]
� Atomic basis: [positions, types of atoms]

� kpoints: points in BZ for calculation [list of points, specification of lines in BZ, or “special

points” (Sec. 4.6)]
� Hamiltonian: generated by specialized modules for TB or PW
� Diagonalization: calls to standard dense matrix routines to diagonalize hamiltonians gen-

erated by either PW or TB methods (for PW there is an option for the conjugate gradient

method of App. M) [choice of method]
� Plotting resulting bands: [information for plots, if desired]

N.2 Plane wave empirical pseudopotential method (EPM)

The EPM calculation requires information on the potential to set up the hamiltonian matrix.

Local empirical potentials for Si, Ga, and As [532] are included. Options are given for a
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user to create new potentials. (See exercises 12.11 and 12.12 for examples of problems that

illustrate the calculations and the results.)

Features of the code special to the EPM calculations are:

� Basis: list of plane waves included [cutoff in energy for plane waves]
� Hamiltonian: Fourier components of potential [list of values or choice available in sub-

routines]
� Diagonalization method: standard dense matrix routines or conjugate gradient method

(App. M) [choice of method]
� Charge density in real space [choice of real-space points, lines, or planes]

N.3 Slater–Koster tight-binding (TB) method

The tight-binding (TB) calculations require procedures to find all the relevant neighbors and

hamiltonian matrix elements. Basis states can have arbitrary angular momentum using the

rotation operator methods described in Sec. N.5. The Slater–Koster parameters can be read

in from a file or calculated using Harrison’s “universal” parameters [344,590]. The user can

specifiy arbitrary interactions (not necessarily two-center), which requires changing one

subroutine.

Features of the code special to the TB calculations are:

� Basis: orbitals included for each atom [atom type, angular momentum]
� Neighbor list: general program to find neighbors in any cluster or crystal [cutoff radius

for neighbor distance]
� Hamiltonian: choice of Slater–Koster parameters [read in from a file or specify choice

available]

N.4 Sample input file for TBPW

Input is specified by keywords defined in the on-line manual. (The verbose keywords are

meant to be self-explanatory.) The lines can be in any order and comments can be added

simply by inserting lines. Some comments are marked with *** for visibility, but this is not

essential.

*** Information for PW or TB calculation of Si

*** Information for lattice
NumberOfDimensions 3
LatticeConstant 10.2612170
LatticeVectors
0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0
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*** Information for atomic positions
NumberOfAtoms 2
NumberOfSpecies 1
ChemicalSpeciesLabel
1 14 Si
(Chemical Species label (first number) assumed to be in
sequential order)

AtomicCoordinatesFormat ScaledByLatticeVectors
AtomicCoordinatesAndAtomicSpecies
-0.125 -0.125 -0.125 1
0.125 0.125 0.125 1

*** Information for k points and number of bands to plot
(This example is a set of k points along lines in the fcc BZ
for plotting band structure. This is used for the free electron
bands and Si and Ni bands in Chapters 12 and 14.)
NumberOfBands 8
NumberOfLines 5
NumberOfDivisions 15
KPointsScale ReciprocalLatticeVectors
KPointsAndLabels
0.0 0.0 0.0 Ga
0.375 0.375 0.75 K
0.5 0.5 0.5 L
0.0 0.0 0.0 Ga
0.0 0.5 0.5 X
0.25 0.625 0.625 U

*** Information for Plane Wave Calculation (atomic units
assumed)
EnergyCutOff 6.0

*** Information for Tight Binding Calculation
MaximumDistance 5.5
EnergiesInEV
TightBindingModelType 1 (Harrison Model)
OrbitsAndEnergies

4
0 0 -13.55
1 1 -6.52
1 2 -6.52
1 3 -6.52

N.5 Two-center matrix elements: expressions for arbitrary angular momentum l

Two-center matrix elements for any particular angular momenta can be worked out [950],

with increasing effort for increasing L . Is it possible to make an algorithm that works for
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any angular momenta? By using rotation operator algebra, the rotations (analogous to those

shown explicitly for p states in Fig. 14.2) can be generated to define the quantization axis

for the orbitals along the line between the atoms.1 The general formulation is most easily

cast in terms of the complex orbitals that are eigenfunctions of Lz , where the z-axis is

the same for all orbitals. (It is straightforward at the end to convert back to real orbitals.)

Thus the two orbitals involved in any matrix element are l, m and l ′, m ′. These orbitals

must be written in a representation quantized along the z′-axis, which is parallel to the

direction R̂. The transformation is applied to the set of orbitals −l ≤ m ≤ l for a given l,
since the transformation preserves the angular momentum l but the different m components

are mixed. Let the set of 2l + 1 states for a given l be denoted by |l{m}〉. The rotation is a

unitary transformation given by [951]

|l{m′}〉 = e−iθ L̂ y e−iφ L̂ z |l{m}〉, (N.1)

where the rotation angles θ and φ are defined by

R̂ = sin θ (x̂ cos φ + ŷ sin φ) + ẑ cos θ. (N.2)

The two exponential operators in (N.1) rotate the quantization axis first about the z-axis,

and then about the new y ′-axis to define the quantization axis along z ′. Then the matrix

elements for the (2l + 1) × (2l ′ + 1) block of the K matrix corresponding to l and l ′ can

be written

Kl{m},l ′{m′} = 〈l{m}|eiφ L̂ z eiθ L̂ y K̂ e−iθ L̂ y e−iφ L̂ z |l ′{m ′}〉, (N.3)

where the right-hand side is expressed in terms of the operator K̂ (e.g. the overlap) which

is diagonal in the azimuthal quantum number m defined about the z′-axis.

The operations involving L̂ z are straightforward; the states are eigenfunctions of L̂ z so

that e−iφ L̂ z |l, m〉 = e−imφ|l, m〉, which is diagonal in the set {m}. However, L̂ y is more

difficult. The matrix elements of L̂ y are well known [951]

〈l, m|L̂ y|l ′, m ′〉 = 1

2i
δll ′

×
[√

l(l + 1) − m′(m ′ + 1)δm,m ′+1 −
√

l(l + 1) − m′(m ′ − 1)δm,m ′−1

]
, (N.4)

but there is still a difficulty since this non-diagonal operator appears in an exponential. This

can be solved by diagonalizing the matrix, Eq. (N.4), for the L̂ y operator in the basis of

eigenfunctions |l, m〉 of L̂ z for each l. Standard numerical routines can be used to find the

eigenvalues and eigenvectors so that the L̂ y operator can be written as

L̂ y = My Lz M†
y, (N.5)

where My is a matrix whose columns are the eigenstates of the L̂ y operator written in L̂ z

basis. Using the identity eV AV † = V eAV †, where V is unitary, the resulting expression for

1 This formulation is due to N. Romero and T. Arias.
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the matrix elements takes the form

Kl{m},l ′{m′} = 〈l{m}|eiφ L̂ z My eiθ L̂ z M†
y K̂ Mye−iθ L̂ y M†

ye−iφ L̂ z |l{m′}〉. (N.6)

Finally, it is a small step to transform Kl{m},l ′{m ′} to a representation with real orbitals S±
l,m that

are combinations of ±m and ±m ′ give in (K.11). A more detailed description of the method

and computer codes for tight-binding calculations that use this algorithm are available on-

line at the site in Ch. 24. The codes can treat more than one orbital per angular momentum

channel and are used for the calculation of bands shown in Figs. 14.6 and 14.7.
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Units and conversion factors

Quantity Symbol Hartree atomic units Conventional units

Electron mass me 1 9.109,381,88(72) × 10−31 kg

Electron charge e 1 1.602,176,462(63) × 10−19 C

Planck constant/(2π ) -h 1 1.054,571,596(82) × 10−34 J s

Speed of light c 137.036,000 299,792,458 m/s

Bohr radius a0 = -h2

mee2 1 0.529,2083(19) × 10−10 m

Hartree Ha = e2/a0 1 27.211,3834(11) eV

Rydberg Ryd = 1
2
e2/a0 0.5 13.605,6917(6) eV

Electron volt eV 0.036,749,3260 1.602,176,462(63) × 10−19 J

Proton–electron

mass ratio m p/me 1,836.152,6675(39)

Other conversion

factors

1 eV = 23.06 Kcal/mol 8.0685 × 103 cm−1 1.1604 × 104 K

1 GPa = 10 kbar 6.241 meV/Å3 3.399 × 10−5 Hartree/a3
0

1 Hartree/a3
0 = 2.9418 × 104 GPa 294.18 Mbar

Source: P. J. Mohr and B. N. Taylor, “CODATA recommended values of the fundamental physical

constants: 1998,” Rev. Mod. Phys. 72 (2000), 351.

The latest CODATA values available can be found at http://physics.nist.gov/Constants.
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der Quantenmechanik,” Z. Phys. 45:455, 1927.

[252] M. Born and V. Fock, “Beweis des Adiabatensatzes,” Z. Phys. 51:165, 1928.
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[498] G. Lüders, “Zum zusammenhang zwischen S-Matrix und Normierungsintegrassen in der Quan-

tenmechanik,” Z. Naturforsch. 10a:581, 1955.

[499] G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseudopotentials that work: From H to Pu,”
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adiabatic approximation, 53, 482–484

angle resolved photoemission, see photoemission

anharmonicity, see lattice dynamics

APW, see augmented plane wave method

Arnoldi method, 558

atomic sphere approximation, 199–201, 333, 360,

362, 532, 533

atomic units

Hartree, 53, 188, 316

Rydberg, 316

augmented plane wave method, 7, 235, 313–323

band gaps

“band gap problem”, 43, 46

derivative discontinity in functional, 143, 145,

149, 265

fundamental gap

definition, 40

non-local functionals, 44, 166, 303, 304,

416

semiconductors, 44, 265

band structure

Al, 327

BaTiO3, 264

C60, 38

canonical fcc, 336

Cu, 42

Cu-Ni alloys, 330

ferromagnetic Ni, 322

free electrons in a fcc crystal, 240

GaAs, 244, 361

Ge, 7, 43, 361

Ge (100) surface, 303

graphite, 48

MgB2, 48

Na, 6, 114

nanotubes, 270

Os, 360

tight-binding

CuO2 planes, 283

nanotubes, 287

Ni, 285

Si, 284

square lattice, 280

transition metal 3d series, 321

YBa2Cu3O7, 354, 364

band theory

early history, 4–8

non-interacting excitations in crystals,

85–89

overview of methods, 233–235

Bardeen, J., 7, 9, 105, 256

Berry’s phase

polarization, 27, 401, 439–441

spin waves, 24, 393, 446

Bethe, H., 3–5, 46

Bloch functions, 87–89, 246, 399, 418,

565

and Wannier functions, 418–421

Berry’s phase and polarization, 439–441

Bloch theorem, 4, 233, 234, 389, 404

first proof, 85–89

second proof, 238–239

third proof, 273–274

Bloch, F., 4, 234, 272

Bohr, N., 2, 8

bond order, 460

Born-Oppenheimer approximation, see
adiabatic approximation

Bravais lattice, see translation symmetry

Brillouin zone (BZ), 74, 239

and Bragg scattering, 88, 239

definition, 83

examples, 84

irreducible (IBZ), 91

Broyden method, 180, 258, 548–549

modified, 181, 182, 549

bulk modulus

atomic sphere approximation, 533

definition, 16

sp-bonded metals, 113

transition metals, 18
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Callaway, J., 7

canonical bands, 333–338

densities of states, 337

fcc lattice, 336

potential function, 335

Car-Parrinello simulations, see quantum molecular

dynamics

catalysis, 31–32

Ziegler-Nata reaction, 31

Chebyshev polynomials, 542

expansion of Fermi function, 461

expansion of time dependence, 414

chemical potential, 32, 34, 60, 128, 179,

268

Clebsch-Gordan coefficients, 192, 541

clusters, 36–39, 409–417

metal, 409

metals, 36

optical properties, see optical properties

semiconductor, 36–37, 409–411

cohesive energy

transition metals, 18

conjugate gradient, see minimization methods

correlation, 8, 51, 67–68

energy

definition, 67

Hedin-Lundquist, 479

homogeneous gas, 108–112

Perdew-Zunger fit to QMC energies, 480

quantum Monte Carlo, 109

self-consistent GW approximation, 109

Vosko-Wilkes-Nusiar fit to QMC energies,

480

Wigner interpolation formula, 108, 479

Coulomb Sums

Ewald method, 255, 500–504, 509–511, 516

Madelung constant, 112, 503–504

CPA, see multiple scattering theory

crystal momentum

definition, 88

crystal structure

basis, 73, 77–80

close-packed, 80

cubic (fcc), 81

hexagonal (hcp), 81

definition, 73

diamond, 79

graphene plane, 77

MgB2, 78

NaCl, 78

perovskite, 79

square CuO2 plane, 77

ZnS, 79

crystal symmetry, 73

inversion, 89

point operations, 91

time reversal, 89

translations, see translation symmetry

Davidson algorithm, 548, 559

defects, 35–36

“negative U”, 35, 36

DX: Si in GaAs, 35

extended, 467

H in Si, 35, 36

density functional perturbation theory,

395–401

density functional theory, 119–185

also, see functionals

constrained, 161, 199

current functional, 128, 161

Hohenberg-Kohn functional, 124–125, 131

Hohenberg-Kohn theorems, 120–126, 133, 137,

147, 436

Kohn-Sham method, see Kohn-Sham method

Levy-Lieb functional, 125, 126, 134

Mermin functional, 127, 130, 133, 147, 178

time-dependent, see time-dependent density

functional theory

density matrix, 60

and O(N ) methods, 463–466

homogeneous gas, non-interacting electrons,

103–104

idempotency, 463

independent-particle, 62

McWeeny purification, 464

polynomial representation, 461–462

spectral representation, 462

density of states

canonical, 337

critical points, 96

line, square, cube, 280, 281, 294

one dimension, 98

three dimensions, 98

definition, 96

ferromagnetic Fe, 293, 353

fullerenes, 459

graphene plane, 459

liquid C, 381

liquid Fe and Co, 458

maximum entropy method, 459, 461, 551

MgB2, 49

moments, 458–459, 550

defintion, 550

phonon, see phonons

random vector sampling, 461, 550

recursion method, 457

density-polarization functional theory, 129, 149,

436

DFT, see density funtional theory
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dielectric function, 492–498

also, see optical properties

conductivity, 494

lattice contribution, 496

Lindhard, 115, 394, 402, 495

longitudinal scalar function, 495

non-interacting particles, 407

transverse tensor function, 496

Dirac equation, 193–195

scalar relativistic approximation, 195

Dirac, P., 2, 8, 193

Drude, P. K. L., 3

elastic constants, 21, 22, 390

non-linear, 21

elasticity, 21

electron

discovery of, 1

electron-phonon interaction, 401–402

MgB2, 48

empirical pseudopotential method (EPM),

see pseudopotential methods

energy

density, 519–527

exchange-correlation, 65–68, 138, 152–171

total energy expressions, 54–56, 137, 255–256,

307–308, 500–506

enthalpy

definition, 19

Ewald Sum, see Coulomb Sums

exact exchange, 43–44, 162–164, 190, 196–8, 213,

219, 265, 303, 416

exchange, 8, 65–67

exchange-correlation functionals, see, functionals,

exchange-correlation

exclusion principle, 2

Exx, see exact exchange

Fermi energy

chemical potential for electrons, 36

homogeneous gas, non-interacting electrons,

102

Fermi surface, 95, 399, 401

and density functional theory, 131

and Kohn-Sham theory, 146

calculation in Green’s function approach, 328

definition, 45

homogeneous gas, 102

Luttinger theorem, 102

MgB2, 49

square lattice, 280, 281

Fermi, E., 2, 7, 120, 205, 206

Fermi-Thomas approximation, see Thomas-Fermi

approximation

ferroelectricity, 442, 443

Feynman, R. P., 57, 71, 182, 513

Flouquet theorem, 88

force theorem, 56–59, 182, 291, 373, 377, 466, 511

alternative form, 529–535

generalized, 58, 390, 513, 514, 526

localized-orbital formulation, 308–309

Pulay correction, 183, 308

form factor, 217, 240

free energy, 60, 122, 128, 178, 381, 392

definition, 19

Friedel oscillations, 104, 115, 329

fullerenes, 37, 38, 459, 465

functionals

equations, 476–478

exact exchange (EXX), 44, 162–165

exchange-correlation, 152–171, 479–481

hybrid, 165

Gaunt coefficients, 192, 325, 334, 541

generalized gradient approximation (GGA) 154–159,

479–481

Gibbs free energy

definition, 19

grand potential, 60, 127, 178, 179, 464, 467

definition, 32

GW calculations

Ge (100) surface bands, 303

Ge bands, 43

Si bands, 304

GW method, 43, 109

Harris-Weinert-Foulkes functional, 175–177

Hartree

atomic units, 53

energy, 56

potential, 61

self-consistent method, 61–62

Hartree, D. R., 5, 161

Hartree-Fock, 302

approximation, 62–65

equations, 63

atoms, 189–192

Fermi surface singularity, 105

He and H2, 167–169

homogeneous gas, 104–107

Heisenberg, W., 2–4, 8, 22, 513

Heitler-London orbitals, 3

helium atom

test of functionals, 167

Hellmann, H., 7, 57, 205

Hellmann-Feynman theorem, see force theorem

Herman, F., 7

Herring, W. C., 7, 35, 36, 205, 207–208, 256,

382

homogeneous electron gas 101–117
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Hubbard model, 161, 171, 422

Hund’s rules, 8

hydrogen

atom

test of functionals, 171

bond, 15, 29

metal at high pressure, 243, 463

molecule

test of functionals, 167, 168

insulators

Mott, 136, 162, 282, 303, 355

interfaces

band offset, 34, 266–267, 360, 507–508

Si/Ge, 267

Janak theorem, 144

jellium, see homogeneous electron gas

KKR, see multiple scattering theory

Kleinman-Bylander projectors, see pseudopotentials,

separable

Kohn anomaly, 115, 451

Kohn, W., 115, 120, 444, 450

Kohn-Sham method, 152, 135–185

equations

atoms, 189–192

general formulation, 138–139, 172–174

He and H2, 167–169

self-consistency, see self-consistency

Koopmans’ theorem, 64

Kramers’ theorem, 89, 90

Kramers, H., 90, 494

Lanczos algorithm, 455, 456, 458, 473, 550, 557–558,

569

LAPW, see linearized augmented plane wave method

lattice constant

transition metal series, 18

lattice dynamics

and electronic structure, 387–402

anharmonicity, 16, 26, 50, 266, 391

dynamical matrix, 389

effective charges, 27, 265, 389, 393, 399, 442, 443,

448, 496–497

force constants, 389

phonons, see phonons

piezoelectricity, 27, 497

lattice instability

ferroelectricity, 26

omega phase, 391

LCAO, see localized orbital methods

LDA, see local density approximation

LDA+U, 160–162

Lewis, G. N., 3

linear-scaling methods, 302, 428, 450–474

“Divide and Conquer”, 460

density matrix, 461–466

Green’s functions, 455–458, 462

moments, 458–459

non-orthogonal orbitals, 468–469

recursion, 456–460

Wannier functions, 453, 466–468

linearization in augmented methods, 345–350

linearized augmented plane wave method, 235,

350–355

full potential, 364

linearized muffin-tin orbital method, 235,

355–362

beyond linear, NMTO, 362

full potential, 364

localized formulation, 358

LMTO, see linearized muffin-tin orbital method

local density approximation 152–154, 157–159,

479–481

localization, 444–446

localized orbital methods, 234

atom-centered orbitals, 273–274

matrix elements, 274–278

gaussians, 300–303

integrals, 300–301

Slater type orbitals, 301

numerical orbitals, 304–309

integrals, 305–307

Lorentz, H. A., 1

Madelung constant, see Coulomb Sums

magnetism, 8, 22–24

antiferromagnetism, 22, 23, 136, 162, 282, 303,

355

diamagnetism, Landau, 90

ferromagnetism, 22, 23

absence of time reversal symmetry, 90

Cu-Ni alloys, 403

Fe, 293

Ni, 322

Heisenberg model, 22

Ising model, 22

itinerant, 23

spin paramagnetism, 3, 45

Stoner parameter, 23, 320, 328

elements, 24

Zeeman field, 23, 52, 53, 90, 127, 133, 486

maximum entropy method, see density of states

Maxwell’s equations, 492

phenomenological form in matter, 45, 493

minimization methods, 560–562

conjugate gradient, 545–547, 551, 552, 562, 570

residual minimization, 559–560

steepest descent, 544–545, 562
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molecular dynamics, see quantum molecular

dynamics

classical, 371–372

Verlet algorithm, 372

Mott, N. F., 8, 272

MTO, see muffin-tin orbital method

muffin-tin orbital method, 235, 331–338

localized formulation, 338–341

structure constants, 332

muffin-tin potential, 313, 314, 323, 346, 356, 402

multigrid, 248–250, 269, 554

multiple scattering theory, 235, 323–331

band structure expressions, 326

Green’s function formulation, 328

coherent potential approximation, 329

localized formulation, 338–341

structure constants, 325

nanomaterials, see clusters

nanotubes, 39, 269, 270, 285–289

BN, 39, 288

nearly-free electron approximation, 239–240

NMTO, see linearized muffin-tin orbital method

Numerov method, 189, 544

“Mehrstellen” extension to higher dimensions, 249,

544

OEP, see optimized effective potential

optical properties, 406–417, 492–498

also, see dielectric function

Bethe-Salpeter equation, 46

clusters, 409–417

C60, 415, 416

metal, 409–410

semiconductor, 409–411

crystals, 45, 243

CaF2, 46

GaAs, 46

Drude model, 3, 115, 380

excitonic effects, 46

non-interacting particles, 407

optimized effective potential, 162–164, 190

OPW, see orthogonalized plane wave method

Order-N O(N ) methods, see linear-scaling methods

orthogonalized plane wave method, 7, 207–209, 225,

229, 230, 234

pair correlation function

also, see radial density distribution

definition, 65

exchange hole, 107

interacting particles

homogeneous gas, 111

non-interacting identical particles, 68, 71, 107

homogeneous gas, 107, 117

normalized, 66

Pauli exclusion principle, see exclusion principle

Pauli spin matrices, 193

Pauli, W., 2, 3, 57, 513

PAW, see projector augmented wave method

perturbation-theory, 68–70

“2n + 1 Theorem”, 69–70

phase shift, 204–206, 215, 318–319, 325, 536–538

phase transitions

displacive, 24, 442

under pressure, 17–21

Si O2, 262

carbon, 28

nitrogen, 19, 260, 261

semiconductors, 20, 21

silicon, 19, 263

phonons

also, see lattice dynamics

dispersion curves, 26, 389

Al, Pb, Nb, 400

GaAs, 27, 392

Green’s function method, 395–401

MgB2, 50

“frozen phonons”, 25, 387, 390–393, 402

BaTiO3, 26, 309, 353

GaAs, 392

MgB2, 26

Mo, Nb, Zr, 391

photoemission, 40–43

angle resolved

schematic, 40

angle resolved spectra

MgB2, 49

inverse, 42

plane wave method, 233, 236–271

plasmon, 115, 116, 409

point symmetry, see crystal symmetry

polarization, 434–444

preconditioning, 258, 555–556

pressure

also, see phase transitions

atomic sphere approximation, 360, 527, 532

definition, 16

relation to stress, 514

projector augmented wave method, 207, 225–226,

234, 258–259

comparision with other methods, 261

pseudohamiltonian, 227

pseudopotential methods

ab initio pseudopotential method, 255–258

empirical pseudopotential method, 205, 212,

243–247

pseudopotentials, 7, 204–231

cancellation theorem, 210

empirical, see empirical pseudopotential method

(EPM)

hardness, 219
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many-body, 228

model forms, 211

non-linear core corrections, 219

norm-conserving, 206, 209, 210, 212–218

extended, 221

projector augmented wave method, 225–226

separable, 220–222

transformation of OPW, 205, 209

ultrasoft, 222–224

Pulay correction, see force theorem

quantum mechanics

history of, 2

quantum molecular dynamics, 28–32

carbon, 28

catalysis, 31, 382

clusters, 37, 382

geophysics, 380

liquid Fe, 381, 382

magnetic clusters, 383

water, 29, 30, 381

quasiparticle, 43, 45, 106, 109

radial density distribution

also, see pair correlation function

liquid C, 380

liquid carbon, 291

liquid Fe, 381

liquid water, 30

random phase approximation, 43, 106, 109,

113–116, 408

reciprocal lattice, see translation symmetry

recursion method, 309, 359, 362, 455–460, 473,

557–558

also, see bond order

relativistic equations, 193–195

residual minimization, see minimization methods

response functions, 485–491

charge, 394–402, 407–411

spin, 23, 403, 486

rs

definition, 100

typical values, 101

Ruderman-Kittel-Kasuya-Yosida oscillations,

104

Rutherford, E., 2

Schrödinger, E., 2, 513

Seitz, F., 5, 494

self-consistency, 179–182

also, see Broyden method

atomic calculations, 190

dielectric function approximations, 179–180,

257–258

linear mixing, 179

plane wave calculations, 257–258

self-interaction correction, 160–162

Shockley, W., 7

SIC, see self-interaction correction

Slater transition state, 198, 202

Slater, J. C., 2, 5–7, 17, 57, 63, 88, 91, 112, 144,

156, 164, 189, 191, 198, 234, 272, 301, 313

Slater-Janak theorem, see Janak theorem

Slater-Koster method, 234, 278–279, 570, 571

Sommerfeld, A., 3–5

space symmetry, see crystal symmetry

special k-points, 92–94, 98, 570

spherical harmonics, 187, 315, 536, 539–540

real, 540

spin orbital, 2

spin-orbit interaction, 195

and pseudopotentials, 221

spin-orbitals, 63

statistics

Bose-Einstein, 2, 3

Fermi-Dirac, 2, 3

non-interacting particles, 2, 3

steepest descent, see minimization methods

Stoner, E. C., 2, 23

strain

definition, 21, 513–514

finite, 22, 514

internal, 390, 516

stress, 390, 512–518

definition, 21, 59, 514

density, 523–524, 526–527, 533

sign convention, 514

stress theorem, 21, 59, 71, 183, 512–518, 529

Ewald contribution, 516

kinetic contribution, 516

localized-orbital formulation, 308–309

plane wave expressions, 515

pressure, 532

alternative form, 532

tight-binding formulation, 291, 296

two-body terms, 514

stress-strain relations, 21, 512–514

structure constants

muffin tin orbital method, 332

multiple scattering theory, 325

structure factor, 240

superconductivity, 50, 401

BCS theory, 9

Eliashberg equations, 401

example of MgB2, 47

surfaces, 32–34

bands

Ge (100), 303

chemical potential and stoichiometry, 32

dipole layer, 507–508

structure

GaN (000-1), 33
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surfaces (cont.)
Si (100), 268

ZnSe (100), 34

Suzuki-Trotter expansion, 413, 463

TDFT, see time-dependent density functional

theory

tetrahedron method, 95–96

Thomas-Fermi approximation, 120–121, 133, 143,

162

screening, 107, 115, 117, 243, 257, 258

Weizsacker correction, 121, 133, 523

Thomson, J. J., 2

tight-binding method, 234, 279–293

CuO2 planes, 282

ferromagnetic Fe, 293

graphene plane, 286

LMTO formulation, 358

nanotubes, 285–289

Ni, 285

non-orthogonal orbitals, 281

s-band: line, square and cubic lattices, 279

Si, 284

time-dependent density functional theory, 128–129,

147–148, 408–417

total energy, see energy

total energy expressions

localized-orbital formulation, 307–308

plane wave, 255–256

translation symmetry, 74–89

Bravais lattice, 73–75

primitive translations, 74

reciprocal lattice, 81–85

Bravais lattice, 82

Brillouin zone, see Brillouin zone

primitive translations, 74, 82

unit cell

conventional, fcc and bcc, 76

primitive, 73–75

Wigner-Seitz, see Wigner-Seitz

Trotter formula, see Suzuki-Trotter expansion

van Leeuwen, H. J., 8

van Vleck, J. H., 8

virial theorem, 21, 59, 522

Wannier functions, 30, 93, 129, 282, 418–433, 436,

443, 448, 470

and O(N ) methods, 466–468

and polarization, 442

Cu, 431

definition, 418–421

entangled bands, 429–431

GaAs, 424

maximally-localized, 422–428

maximally-projected, 421–422

non-uniqueness, 420

Si, 423, 424

water, 31

wavelets, 250, 554

Wigner crystal, 108

Wigner interpolation formula, 109, 510

Wigner, E. P., 5, 7, 8, 494

Wigner-Seitz

cell, 74–76, 97, 503

and first Brillouin zone, 74, 83

bcc lattice, 76

fcc lattice, 76

simple cubic lattice, 75

simple hexagonal lattice, 75

two dimensions, 74

method, 6

radius, 200, 360

Zeeman field, see magnetism

Zeeman, P., 1, 23
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